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Abstract 

 

Breast cancer is the leading cause of cancer-related mortality for women. 

Dysregulated RNA polymerase III (Pol III) transcription of tRNA is significantly 

implicated in cancer progression. Oestrogen receptor alpha (ER) potentiates ~75% 

of breast tumours, and resistance to endocrine therapies that target ER activity is a 

major clinical problem urgently requiring significant advances in research to improve 

survival outcomes for women with endocrine-resistant disease.  The ER is a 

prolific transcription factor that upregulates many pro-tumorigenic genes, including 

tRNAs in response to hormone activation. This thesis sought to investigate the 

mechanism driving ER-dependent tRNA expression. Analysis of public ChIP-seq 

data showed ER was physically associated with ~50% of tRNA loci in breast 

cancer cells. ER recruitment to tRNA genes was mediated by protein-protein 

interactions of ER with Pol III-specific TFIIIC, determined by qPLEX-RIME and co-

immunoprecipitation. FOXA1, a modulator of ER activity, was enriched at tRNA 

promoters, suggesting FOXA1 may facilitate ER recruitment to Pol III-transcribed 

genes and hormone-dependent activation of transcription. Further exploration of this 

ER-FOXA1-Pol III axis could lead to novel and necessary developments in the 

treatment of advanced ER-driven breast cancer 

 

Altered Na+ homeostasis is a critical determinant of breast cancer progression. 

Intratumoral hypoxia is linked to disruption of many cellular processes, including ion 

transport, which has significant implications in therapy resistance and advanced 

disease. This thesis aimed to delineate hypoxia-dependent changes in Na+ 

transport. Optimisation of reference genes (RGs) for studying alterations in gene 

expression in hypoxic breast cancer cell lines by RT-qPCR identified RPLP1 and 

RPL27 as suitable RGs for such investigations. RNA-seq and RT-qPCR found 

hypoxia enhanced Na+ transporter gene expression in ER+ breast cancer cell 

lines, particularly by upregulating Na+/K+-ATPase (NKA) and epithelial Na+ channel 

(ENaC), highlighting a new mechanism by which hypoxia may contribute to breast 

cancer progression and therapy resistance. Conversely, voltage gated Na+ channels 

(VGSCs) were not affected by low O2 tension, but ER was shown to mediate 

expression of some VGSC isoforms. Understanding changes in Na+ handling in 

advanced breast cancer is imperative and may result in the development or 

repurposing of targeted therapies aimed at modulating Na+ transport to improve 

breast cancer outcomes. 
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TTX Tetrodotoxin  

VEGF Vascular Endothelial Growth Factor 
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VGSC Voltage-Gated Sodium Channel 

Vm Membrane Potential  
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1. Introduction 

 

1.1 Overview of breast cancer 

 

Breast cancer is the second most common malignancy diagnosed worldwide 

after lung cancer, accounting for 11.6% of cancers diagnosed in 2022 (Bray et al., 

2024). Due to improved health education, implementation of screening programmes 

for early detection and advancements in therapeutic strategies, overall survival for 

women diagnosed with breast cancer has greatly improved over the last few 

decades (Nardin et al., 2020). However, despite a favourable five-year relative 

survival of 91% when all breast cancer diagnoses are considered, approximately 

30% of cases will ultimately result in death as a consequence of therapy resistance, 

metastasis, or delayed presentation of treatment toxicities (Darby et al., 2013; 

Anurag et al., 2018; Gote et al., 2021). 90% of metastatic cancers are incurable, 

and approximately 75% of primary breast tumours have already established 

micrometastases at the time of diagnosis (Nicolini et al., 2022; Pedersen et al., 

2022). As such, metastatic breast cancer is the leading cause of cancer-related 

death in women and identifying novel molecular targets for therapeutic intervention 

is imperative (Bray et al., 2024). Many factors dictate breast cancer survival, 

including subtype and grade, age, race, obesity, family history and geographical 

location (Yedjou et al., 2019; Goodarzi et al., 2020; Johansson et al., 2021; Dehesh 

et al., 2023).  

 

1.1.1 Studying molecular characteristics of different breast cancer subtypes  

 

 Breast cancers are highly heterogeneous with distinct subtypes that are 

characterised by immunohistochemistry (IHC) for oestrogen receptor alpha (ER), 

progesterone receptor (PgR), human epidermal growth factor receptor 2 (HER2), 

and Ki67 expressing cells (%) (Abubakar et al., 2019). In addition, intrinsic 

molecular subtypes are further defined by comparison of mRNA expression of 50 

genes (PAM50) including CDC6, EGFR, FOXA1, MELK, MYC and PGR, which 

improves prognostication when compared to clinical factors (histological grade, 

tumour size, lymph node positivity, metastasis) and IHC (Parker et al., 2009; Nielsen 

et al., 2010). There are four universally recognised breast cancer subtypes: Luminal 

A (ER+, PgR+, HER2−, Ki67 26.9 %), Luminal B (ER+, PgR+/−, HER2+/− Ki67 

41.5 %), HER2-enriched (ER−, PgR−, HER2+, Ki67 61.1 %) and TNBC (ER−, 
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PgR−, HER2−, Ki67 68.6 %) (Husni Cangara et al., 2021). TNBC has been further 

deconstructed into basal-like or normal-like, and more recently basal-like claudin-

low subtypes (Perou et al., 2000; Prat and Perou, 2011; Mathews et al., 2019). 

Luminal and TNBC constitute approximately 70% and 20% of total breast cancer 

diagnoses, respectively (Łukasiewicz et al., 2021). Since development of PAM50 for 

breast cancer classification, additional gene signatures have been suggested to 

further improve prognostic risk prediction and subtype classification, including 

incorporating a 13-gene hypoxia signature or implementing topological data analysis 

(TDA) which expands PAM50 intrinsic subtypes into seven classes based on 

activation or inactivation of gene groups specific to normal mammary cell types 

(Nicolau et al., 2011; Mathews et al., 2019; Pu et al., 2020). Accurate classification 

of breast cancer subtype is important, as gene expression and hormone status 

guide treatment strategies and provide valuable information about predicted overall 

or disease-free survival. Patients with ER+ tumours initially have a more 

favourable five-year outcome compared to patients with ER negative (ER−) 

breast cancers. However ER+ patients have a constant long-term risk of relapse 

as a consequence of de novo and acquired resistance to conventional anti-

oestrogen therapy, even several decades after the primary diagnosis (Pan et al., 

2017; Lindström et al., 2018; Yu et al., 2019). In contrast, TNBC tumours are more 

aggressive and typically more advanced at the time of primary diagnoses, with an 

initial worse overall survival and disease-free survival when compared to all other 

subtypes of breast cancer (Onitilo et al., 2009). However, TNBC patients who have 

been disease free for five years have a low probability of disease recurrence over 

the following ten years (Reddy et al., 2018).  

 

 A significant amount of current knowledge surrounding breast cancer 

development and progression is derived from in vitro and in vivo studies utilising 

breast cancer cell lines. At least 92 breast cancer cell lines have been described in 

literature, but the number of cell lines routinely implemented is very small in 

comparison, where MCF-7, T-47D and MDA-MB-231 cells make up more than two-

thirds of breast cancer cell lines used in such studies (Dai et al., 2017). For each 

breast cancer subtype, corresponding cell lines exist which can be used to 

investigate unique molecular characteristics and phenotypic properties driving a 

particular disease (Table 1.1). However, many issues surrounding use of cell lines 

for research into cancer progression have been described. Tumours are 

heterogeneous, where the proportion of cancer cells is low compared to abundance 
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of other cell types making up the tumour microenvironment (TME) (Nofech-Mozes et 

al., 2023). Furthermore, TME is hostile where cancer cells are subject to a 

significant number of challenges including nutrient starvation and oxygen (O2) 

depletion, attack by infiltrating immune cells and extracellular acidification 

(Reshetnyak et al., 2011; Petrova et al., 2018; Galli et al., 2020; Vaziri-Gohar et al., 

2022). As such, 2D culture of a single homogenous cell type in normal atmospheric 

O2 (20 - 21% O2; normoxia) is unable to completely recapitulate complex 

aberrations in metabolism as well as cell-cell and cell-stroma networks that 

significantly influence cancer cell growth and survival.  
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Table 1.1 Breast Cancer Cell Lines Commonly Used in Research. Four subtypes of 

breast cancer include Luminal A, Luminal B, HER2+ and triple negative breast cancer 

(TNBC). Characterisation of subtype is determined by immunohistology staining of ER, PR 

and HER2 as either positive (+) or negative (-). Abbreviations: invasive ductal carcinoma 

(IDC), adenocarcinoma (AC) and metastasis (met). (Park et al., 2012; Vasconcelos et al., 

2016; Dai et al., 2017). 

Cell Line Source Tumour Subtype ER PR HER2 

MCF-7 
Pleural 
effusion 

IDC Luminal A + + - 

T-47D 
Pleural 
effusion 

IDC Luminal A + + - 

ZR-75-1 
Mammary 
gland 

IDC Luminal A + +/- - 

BT474 Tumour  IDC Luminal B + + + 

MDA-MB-361 Brain met AC Luminal B + +/- + 

ZR-75-27 
Mammary 
gland 

IDC Luminal B + - + 

HCC1008 
Lymph 
node met 

IDC HER2 + + - 

MDA-MB-453 
Pericardial 
effusion 

AC HER2 + + - 

SKBR3 
Pleural 
effusion 

AC HER2 + + - 

BT549 Tumour IDC TNBC - - - 

MDA-MB-231 
Pleural 
effusion 

AC TNBC - - - 

MDA-MB-468 
Pleural 
effusion 

AC TNBC - - - 

MCF-10A 
Mammary 
gland 

N/A “normal” - - - 
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1.2. Oestrogen receptor structure and activity  

 

Oestrogen receptors (ERs) include nuclear receptors ER and ER, and G-

protein-coupled oestrogen receptor (GPER), which orchestrate biologic effects in 

response to steroid compounds (Walter et al., 1985; Kuiper et al., 1996; Carmeci et 

al., 1997; Kumar et al., 2011). To date, four steroid oestrogens have been identified 

in humans with similar chemical structure but different affinity for ERs: oestrone, 

oestradiol, oestriol and oestetrol (Kumar and Goyal, 2021). ER is predominantly 

expressed in female reproductive tissues, white adipose tissue, and breast. ER is 

expressed in male reproductive organs, the central nervous system (CNS) and the 

cardiovascular system (Jia et al., 2015). GPER is expressed in skeletal muscle, 

neurons and immune cells (Olde and Leeb-Lundberg, 2009). In Luminal breast 

cancers, ER is the predominant driving force behind cancer cell survival and 

progression (Harvey et al., 1999; Perou et al., 2000; Sørlie et al., 2001; Groenendijk 

et al., 2019). 

 

GPER exists as a 42 kDa transmembrane protein of seven -helices, 

whereas nuclear ER and ER are compartmentalised into distinct functional 

regions making up a 66 kDa and 59 kDa protein, respectively (Figure 1.1). 

Activating Function (AF) 1 and 2 are localised in the N terminal domain (NTD) or C 

Terminus   next to the ligand binding domain (LBD) and are important for hormone 

receptor activity in a ligand-independent (AF1) or ligand-dependent (AF2) manner. 

AF1 and AF2 are necessary for maintaining protein-protein interactions with nuclear 

coregulators to facilitate transcription factor activity (Shiau et al., 1998; Wärnmark et 

al., 2003; Huang et al., 2018).  

 

The DNA binding domain (DBD) of ERs associate with oestrogen response 

elements (EREs) at proximal promoters or distal enhancers of ER target genes 

(Klein-Hitpass et al., 1989; Kumar et al., 2011; Huang et al., 2018). The DBD is 

made up of two zinc-binding motifs, each of which contains -helices that make 

phosphate contacts with the major groove of EREs (Schwabe et al., 1993; Chen et 

al., 2023a). The LBD contains 12 helices that make up a hormone binding pocket, a 

dimerization interface, and co-regulator interaction sites (Kumar et al., 2011; Chen 

et al., 2023a). Oestrogens and selective oestrogen receptor modulators (SERMs; 

see Chapter 1.1.3) compete for binding to ER, where only one compound can 

occupy LBD with significant effects on ER transcriptional activity (Hanker et al., 
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2020). The AF2 pocket that sits proximal to the LBD preferentially binds 

coregulators that contain at least one LxxLL consensus motif, forming a stable -

helix within the AF2 binding groove. Conformational changes that occur with agonist 

binding to ER LBD exposes critical residues in the AF2 binding pocket for 

coregulator interactions, whereas antagonist association with the ERs LBD results 

in the AF2 coregulator pocket being blocked and significantly impedes ER 

transcriptional activity. The AF2 domain is therefore critical in ER activity and breast 

cancer progression (Foo et al., 2024).  

 

Nuclear ERs were thought to be exclusively activated upon binding of 

oestrogens to LBD, otherwise steroid receptors would remain sequestered in the 

cytoplasm in association with heat shock protein 90 (HSP90) and unable to bind to 

chromatin to act as a transcription factor (Devin-Leclerc et al., 1998). However, ER 

can associate with chromatin in the absence of steroids, occurring in particular by 

protein kinase A or mitogen-activated protein kinase (MAPK) phosphorylation of the 

hormone receptor, with genome-wide transcriptional activity that is independent of 

ligand (Patrone et al., 1998; Maggi, 2011; Caizzi et al., 2014). Many oestrogen-

dependent and oestrogen-independent genes have been identified. Oestrogen-

induced genes include CCND1, CTSD, and MYC which are important for cell 

proliferation and survival (Westley and May, 1987; Cavaillès et al., 1993; Altucci et 

al., 1996; Prall et al., 1997; Wang et al., 2011; Clusan et al., 2023). In contrast, 

ligand-independent gene targets of ER are associated with development, cell 

differentiation and morphogenesis (Caizzi et al., 2014). Two canonical mechanisms 

of nuclear ER-mediated transcriptional regulation are known: (i) ERs make direct 

contact with an ERE (GGTCAnnnTGACC) and mediate transcriptional responses 

through interactions with co-regulators (Ikeda et al., 2015). Or (ii) ERs associate 

with activator protein-1 (Ap1) and specificity protein-1 (Sp1) at promoters of target 

genes through a protein-protein interaction, and act to either stabilise transcription 

factor complexes, or recruit additional cofactors to facilitate transcription changes. In 

this instance, ER is not directly bound to DNA. GPER is responsible for mediating 

most of the rapid non-genomic effects of hormone, distinct from those of ER and 

ER and involving MAPKs Erk-1 and Erk-2 (Filardo et al., 2000; Revankar et al., 

2005). ER and ER have high sequence similarity and share a significant number 

of DNA binding sites enriched for EREs as determined by ChIP-on-chip (Liu et al., 

2008). The genome-wide binding of ER has been extensively studied, at the 

chromatin and transcriptome level, revealing important activities of this hormone 
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receptor (Piryaei et al., 2023). However, while ER associates with genomic loci 

distinct from ER target genes, this ER isoform remains less well studied owing to 

critical differences in ER expression and lack of sufficiently adapted ChIP protocols 

that can capture ER chromatin dynamics (Zhao et al., 2010; Indukuri et al., 

2022).,It is known however that ER can regulate ER transcriptome, either 

enhancing or inhibiting ER-regulated gene expression (Williams et al., 2008; 

Grober et al., 2011; Madak-Erdogan et al., 2013).  
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Figure 1.1 Structure of Canonical Oestrogen Receptors. Nuclear receptors ER (595 

aa) and ER (530 aa) are compartmentalised into distinct functional regions. N-terminal 

domain (NTD) houses activation function (AF) domain 1 (AF1) and is the major 

compartment exhibiting divergence between ER and ER. DNA binding domain (DBD) 

interacts with oestrogen response elements (EREs) proximal to target genes. The hinge 

region (D) contains a nuclear localisation signal and acts as a flexible region between 

DBD and ligand binding domain (LBD). LBD contains a hormone binding pocket where 

oestradiol can associate with hormone receptors. LBD is therefore important for functional 

activity of ERs in response to hormone stimulation. AF2 is located in the C terminus (CT) 

next to the LBD, where it is responsible for regulating gene transcription in a ligand-

specific manner. GPER (375 aa) consists of 7 transmembrane -helical regions with 4 

extracellular and 4 intracellular segments (Capatina et al., 2024). 
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1.2.1. Regulators and co-factors of ER activity 

 

Modulation of ER activity is dependent on associated cofactors and 

regulatory proteins. P160 steroid receptor coactivator (SRC) family consists of three 

nuclear receptor coactivator (NCOA) members, SRC-1 (NCOA1), SRC-2 (NCOA2) 

and SRC-3 (NCOA3) (Varlakhanova et al., 2010). Three additional NCOA proteins 

exist, NCOA4, NCOA5 and NCOA6, which are distantly related to SRC transcription 

factors (Sun and Xu, 2020). Only one coregulator can occupy ER regulatory 

binding sites, with differential transcriptional targets depending on identity of NCOA-

ER complex (Zwart et al., 2011). SRC proteins contain functional domains that 

enhance interactions with transcription factors to further fine tune regulation of ER 

regulated genes, including histone acetyltransferases (HATs), p300 and CBP 

(Hanstein et al., 1996; Smith et al., 1996; Xu et al., 2009). ER can also form 

complexes with corepressor proteins: silencing mediator of retinoic acid and thyroid 

hormone receptors (SMRT) and nuclear corepressors (NCOR). In contrast to 

recruitment of HATs and active transcription mediated by SRC-ER, SMRT/NCOR-

ER represses gene transcription by recruitment of several members of the histone 

deacetylase (HDAC) family (Heinzel et al., 1997; Fischle et al., 2002). Thus, 

transcriptional regulation is strongly influenced by associated coregulator proteins 

which modulate chromatin landscape surrounding ER target genes. 

 

In addition to coregulatory SRC-HAT complex formation, pioneer factor 

Forkhead Box A1 (FOXA1) binds condensed chromatin to facilitate chromatin 

opening, providing transcription factors accessibility to target DNA elements that 

were previously obscured in heterochromatin domains. Downstream of FOXA1 

binding to DNA is reduced cytosine methylation and enhanced H3K4 dimethylation, 

demonstrating FOXA1-mediated epigenetic modifications dictate chromatin 

accessibility (Sérandour et al., 2011). FOXA1 is essential for pancreatic and renal 

function, embryogenesis and postnatal development of mammary and prostate 

tissue (Bernardo and Keri, 2012). Thus, FOXA1 has been implicated in modulation 

of ER and androgen receptor (AR) in breast and prostate cells under normal and 

malignant conditions, respectively (Gao et al., 2003; Mirosevich et al., 2005; 

Hurtado et al., 2011). Expression of FOXA1 and ER are significantly positively 

correlated in breast cancer, and pioneer activity is essential for many ER 

associations at target DNA (Carroll et al., 2005; Hurtado et al., 2011). However, 
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FOXA1 recruitment is dynamic and can also be influenced by activated DNA-bound 

ER (Swinstead et al., 2016; Paakinaho et al., 2019).  

 

1.2.2 Therapeutic strategies and resistance in Luminal A and TNBC tumours 

 

Clinically, breast cancers of Luminal A subtype are low grade, slow growing 

and highly responsive to anti-oestrogen therapies (Orrantia-Borunda et al., 2022). 

Despite an initial favourable prognosis, Luminal A breast cancers have a long-term 

risk of disease recurrence, which is reduced by tamoxifen (Yu et al., 2019). Late 

local and distant recurrence remains a significant risk for at least 20 years from 

diagnoses, with more than 50% of recurrences occurring after the first five years of 

follow-up (Pistilli et al., 2022). Mainstay Luminal A breast cancer treatment is 

surgery in combination with oestrogen suppression or ER antagonism. Aromatase 

inhibitors (AIs) including letrozole or anastrozole are used in post-menopausal 

patients to block aromatase conversion of androgens produced in ovaries, breast 

and adipose tissue, to oestrogens. ER is activated by oestrogens, therefore use of 

AIs is one mechanism to attenuate ER function (Smith and Dowsett, 2003). 

SERMs are used for pre-menopausal women and include tamoxifen and raloxifene, 

which compete with oestrogens for binding to ER, and can both agonise and 

antagonise ER transcriptional activities. In breast tissue, tamoxifen causes 

antiestrogenic and antitumour effects, whereas in bone and brain, tamoxifen 

stimulates ER activity (Lee et al., 2008). Fulvestrant is a first generation selective 

oestrogen receptor downregulator (SERD) used to induce proteasomal degradation 

of ER, and impair intra-nuclear mobility of the hormone receptor (Long and 

Nephew, 2006; Vergote and Abram, 2006). Endocrine resistance, referring to 

resistance to SERDs, SERMs or AIs, occurs in ER+ metastatic breast cancers. 

Mechanisms bestowing endocrine resistance to breast cancer cells include point 

mutations in ESR1, the gene encoding ER, which promote hormone-independent 

ER activity and decrease sensitivity to AIs and SERMs (Jeselsohn et al., 2015; 

Kinslow et al., 2022). Additionally, ER+ breast tumours shut off oestrogen 

signalling and activate alternative growth-stimulating pathways including HER2, in 

response to endocrine therapy which render AIs, SERDS and SERMS redundant 

(Creighton et al., 2008).Furthermore, due to the critical role the AF2 pocket plays in 

modulating ER activity through coregulator recruitment, Deep Docking 

computational methods have been developed and implemented to identify novel 
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targets that may be able to block AF2 functionality in endocrine resistant breast 

cancer disease (Foo et al., 2024).TNBC accounts for 15-20 % of global breast 

cancer instances, and is particularly prevalent in women with mutations in the gene 

encoding breast cancer type 1 susceptibility protein (BRCA1) (Lee et al., 2011; 

Zagami and Carey, 2022). Surgery is a key part of TNBC treatment strategy. Breast-

conserving lumpectomy or a mastectomy are performed depending on the stage of 

cancer at diagnosis (Obidiro et al., 2023). Because TNBC tumours lack targetable 

hormone and growth factor receptors, pharmacological treatment options are less 

specific than those available for patients with Luminal or HER2 subtype. As such, 

systemic chemotherapies that take advantage of the high proliferation of TNBC cells 

are used. Anthracyclines such as doxorubicin are potent topoisomerase inhibitors, 

preventing DNA replication, thus causing growth arrest and cell death (Tewey et al., 

1984; Geisberg and Sawyer, 2010). Anthracyclines also activate CD8+ T cells of the 

immune system to further fine-tune anti-cancer responses (Denkert et al., 2010).  

Taxanes including paclitaxel disrupt cell cycle progression by stabilising 

microtubules and inducing apoptosis due to aberrations in spindle formation and 

mitosis (Abal et al., 2003). Despite initial promising responses to anthracycline and 

taxane chemotherapy, resistance to treatment and disease recurrence is 

significantly more likely for women with TNBC compared to other breast cancer 

subtypes (Nedeljković and Damjanović, 2019). De novo expression of Multidrug-

resistant protein (MRP)-1 and MRP-8 are significantly elevated in TNBC tumours, 

and confers resistance to anthracyclines, taxanes and many other chemotherapy 

agents. Additionally, MRP-1 is upregulated in TNBC in response to treatment 

(Guestini et al., 2019). Recently, a ground-breaking clinical trial exploring 

therapeutic benefit of immune checkpoint inhibition for patients with advanced 

TNBC demonstrated significant improved overall survival when programmed cell 

death protein 1 (PD-1) is targeted by immunotherapy pembrolizumab (Cortes et al., 

2022). Pembrolizumab (Keytruda) is now approved for treatment of PD-1 

expressing early high-risk TNBC in combination with chemotherapy and surgery (Li 

et al., 2023). 

 

1.2 RNA Polymerase III and tRNA gene transcription 

 

Transcription of the human genome is mediated by three specialised RNA 

polymerase enzymes (Pol I, Pol II and Pol III), each of which are responsible for 

orchestrating expression of specific classes of genes (class I, class II and class III, 
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respectively) and share a 12-subunit core (Cramer, 2002). Pol I is restricted to the 

nucleolus, whereas Pol II and Pol III are localised to the nucleoplasm. Pol I is 

essential for transcribing 28S, 5.8S and 18S ribosomal RNA (rRNA) in equimolar 

amounts, accounting for more than 50% of all RNA synthesised in a cell (Russell 

and Zomerdijk, 2005). Pol II transcribes messenger RNA (mRNA), micro-RNA 

(miRNA), small nucleolar RNA (snoRNA) and small non-coding RNA (snRNA). Pol 

III contains 17 subunits, making it the largest of all three Pol enzymes (Ramsay et 

al., 2020). Expression of transfer RNA (tRNA), 5S rRNA, 7SL of the signal 

recognition particle, U6 spliceosome small nuclear RNA and other class III non-

protein-coding genes is carried out by Pol III in eukaryotic cells (White, 2004). Thus, 

Pol III is crucial for expressing RNA with functions related to ribosomal biogenesis 

and protein synthesis. 

 

1.2.1 Class III transcription by Pol III 

 

Pre-initiation complex (PIC) assembly and Pol III transcription of target 

genes is dependent on internal and external regulatory elements, and 

corresponding organisation of transcription factors. There are three different 

promoter types that recruit Pol III to transcription start sites (TSS) of target genes 

(Type I, Type II and Type III) (Figure 1.2). A conserved feature of all three promoter 

types is binding of transcription factor TFIIIB, which positions Pol III at the TSS of 

target genes. TFIIIB is made up of a TATA box binding protein (TBP), B double 

prime 1 (Bdp1), and TFIIIB-related factor (Brf)1 or Brf2 which directly associate with 

Pol III (Gouge et al., 2017). TFIIIA is a 5S rRNA-specific transcription factor, thus 

unique to Type I promoters. Internal Control Regions (ICR) are recognised by 

TFIIIA, which initiates PIC assembly by sequential recruitment of TFIIIC, Brf1-

containing TFIIIB and then Pol III. Type II promoters exist in tRNA genes. Here, 

internal A and B box sequences downstream of TSS are recognised by TFIIIC, a six-

subunit complex that recruits Brf1-TFIIIB to promoters, and subsequent loading of 

Pol III (Kassavetis et al., 2001; Vorländer et al., 2020). Type III promoters are 

distinct from Type I and Type II as they contain exclusively gene-external elements. 

For complete PIC assembly at Type III genes, Brf2-TFIIIB-TBP associates with a 

TATA box located upstream of TSS and interacts with SNAPc positioned at a 

proximal sequence element (PSE). In addition to PSE, a distal sequence element 

(DSE) is occupied by transcription activators such as ZNF143 and POU2F1 that 

enhance Pol III PIC assembly (James Faresse et al., 2012).  
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Figure 1.2 RNA Polymerase III Promoter Architecture and Initiation Assembly 

Factors. Three different types of class III promoters exist (Type I, Type II and Type III). All 

types of class III promoters utilise TFIIIB trimer composed of TBP, BDP and Brf1 or Brf2. 

5S rRNA genes uses a Type 1 promoter which includes an internal control region (ICR) 

recognised by 5S gene-specific TFIIIA, as well as Brf1-containing TFIIIB and TFIIIC. Type 

2 promoters are used by tRNA genes and Alu elements. Type 2 requires TFIIIC which 

recognises A and B box internal promoter elements downstream of TSS, and recruits Brf1-

containing TFIIIB. Type 3 promoters are used by U6 snRNA, RMRP, Y RNA and a 

specialised selenocysteine tRNA (tRNA[Ser]Sec). Unlike Type 1 and Type 2 promoters, Type 

3 promoters are external, made up of a proximal sequence element (PSE) recognised by 

SNAPc and a TATA box which is recognised by the TBP component of the Brf2-containing 

TFIIIB. Additionally, Type 3 promoters contain a distal sequence element (DSE) which are 

typically located around positions -210 and -240 and are occupied by transcriptional 

activators that assist Pol III in transcription. Adapted from (Arimbasseri and Maraia, 2016). 
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1.2.1.1 Post transcriptional processing of tRNA  

 

Canonical tRNA transcripts are relatively small, averaging between 76 to 90 

nucleotides in length. Following transcription, pre-tRNA are immediately processed 

in the nucleus by ribonucleoprotein RNase P to remove ~10 bases from the 5’ end 

of the transcript, and endonuclease RNase Z which cleaves the poly U tract at the 3’ 

end of the transcript (Berg and Brandl, 2021). Addition of a 3’-terminal CCA 

modification is carried out by a tRNA nucleotidyltransferase prior to cytoplasmic 

localisation, and is essential for attachment of amino acid at the 3’ terminus of tRNA 

molecules (Nagaike et al., 2001). A small subset of tRNA genes contain introns 

which are spliced by tRNA splicing Sen complex and a tRNA ligase (Greer et al., 

1983; Paushkin et al., 2004). Export of processed tRNA out of the nucleus is carried 

out by the -importin family member Xpot (Arts et al., 1998; Cook et al., 2009). 

Additional modification of tRNA is carried out in the cytoplasm by specialised 

enzymes and can be extensive, where ~12% of tRNA residues have some form of 

base modification such as methylation, thiolation, acetylation, hydroxylation, 

pseudouridylation or deamination (Phizicky and Alfonzo, 2010; Lei et al., 2023). The 

resulting complex is a cloverleaf structure of four helixes with a single 3’ CCA which 

carries a charged amino acid, and three functional hairpin loops: dihydrouracil (D), 

anticodon (AC) and thymine (T) loops. The D loop is important for aminoacyl-tRNA 

synthetase recognition, which is the enzyme involved in aminoacylation of the tRNA 

molecule at 3’ CAA  (Hardt et al., 1993). The AC loop decodes mRNA codons. Many 

modifications are centred around the AC loop and are therefore important for 

translation and translation fidelity (Urbonavicius et al., 2001; Murphy and 

Ramakrishnan, 2004; Johansson et al., 2008). Modifications that occur in the main 

body of tRNA and away from the AC are more important in stabilising tRNA structure 

and ensuring proper folding (Davanloo et al., 1979; Vermeulen et al., 2005; Ohira 

and Suzuki, 2024). The T loop recognises ribosome and is involved in formation of a 

tRNA-ribosome complex during protein synthesis (Chan et al., 2013). 

 

1.2.2 Implications of dysregulated Pol III activity and aberrant tRNA in cancer 

 

While induction of Pol III gene transcription is dependent on recruitment of 

necessary transcription machinery to promoters, synthesis of translational 

apparatus is energy intensive and subsequently tightly regulated to ensure Pol III 

activity is dampened in unfavourable conditions. MAF1 is the major general 
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negative regulator of Pol III activity in response to stress, by blocking Pol III 

interactions with TFIIIB and promoters and ensuring Pol III output is sensitive to 

growth factor signalling through the mTOR pathway (Desai et al., 2005; Kantidakis 

et al., 2010; Bonhoure et al., 2020). Mammalian cells contain two Pol III isoforms 

that differ in one subunit, either POLR3G or POLR3GL, which arose from a gene 

duplication event and share 49% protein sequence identity (Haurie et al., 2010; 

Renaud et al., 2014). POLR3G is selectively elevated by oncogenes and 

pluripotency factors that do not induce POLR3GL, including MYC, NANOG and 

OCT4A (Enver et al., 2005; Haurie et al., 2010; Wong et al., 2011; Durrieu-Gaillard 

et al., 2018; Wang et al., 2020; Van Bortle et al., 2021). Accordingly, POLR3G to 

POLR3GL ratio is significantly elevated in a variety of cancer types relative to 

matched healthy tissues, such as in lung and colorectal carcinomas (Van Bortle et 

al., 2021). High POLR3G levels correlate with a worse prognosis for patients with 

lung adenocarcinomas, oesophageal, bladder urothelial and transitional cell 

carcinomas (Liu et al., 2020; Van Bortle et al., 2021). Overexpression of POLR3G is 

observed in clinical TNBC specimens, but not breast cancers of other molecular 

subtypes and blocking POLR3G results in reduced tumour growth and supressed 

metastasis in vivo (Lautré et al., 2022). Cryo-EM of POLR3G and POLR3GL 

paralogues in the Pol III complex revealed a more stable interaction of POLR3G 

with core Pol III subunits, blocking the specific site MAF1 occupies (Girbig et al., 

2021). Thus, selective incorporation of POLR3G over POLR3GL impedes MAF1 

repression of Pol III transcription and consequently promotes tumorigenicity. Ras 

and Myc oncogenes stimulate tRNA synthesis by phosphorylating and inhibiting 

MAF1, promoting Pol III function and enhancing cell and tissue growth 

(Sriskanthadevan-Pirahas et al., 2018). Additionally, loss of key tumour 

suppressors: retinoblastoma protein (Rb), p54, phosphatase and tensin homolog 

(PTEN) and BRCA1 is linked to enhanced Pol III activity (White et al., 1996; Cairns 

and White, 1998; Woiwode et al., 2008; Veras et al., 2009). As such, Pol III activity 

is strongly connected to oncogenicity. Therefore, a large proportion of tRNAs are 

frequently induced in cancers.  Overexpression of tRNAs correlates with a worse 

prognosis in breast cancer (Pavon-Eternod et al., 2009; Goodarzi et al., 2016).  

 

1.2.2.1 ER regulation of tRNA expression in ER+ cancer 

 

ER is implicated in regulating expression and modification of tRNA. 

Depletion of ER in a PTEN-null mouse model of prostate cancer significantly 
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reduces Elp3 mRNA in association with polysome, and further decreases ELP3 

protein levels (Lorent et al., 2019). ELP3 is one enzyme responsible for a 5-

methoxycarbonyl-methyl-2-thiouridine (mcm5s5U) modification at position 34  

(U34) of the AC loop in tRNA, which is important for modulating codon recognition 

and therefore translation efficiency (Rafels-Ybern et al., 2018). Accordingly, 

mcm5s5U modification of tRNAs are decreased by 40% following steroid receptor 

knockdown (Lorent et al., 2019). In yeast, mcm5s5U modification of U34 is present 

on tRNA-Glu-UUC, tRNA-Lys-UUU and tRNA-Gln-UUG which decode GAA, AAA 

and CAA codons through U-G wobble decoding (Johansson et al., 2008). In breast 

tumours, oncoprotein DEK is elevated and associated with high histological grade, 

lymph node metastasis and high Ki67 (Yang et al., 2021a). Translation of Dek is 

dependent on U34 mcm5s5U modification (Delaunay et al., 2016). Thus, ER drives 

breast cancer tumorigenesis by upregulating tRNA modifying enzymes, enhancing 

translation efficiency of oncogenes. In addition, ER can directly influence tRNA 

expression in response to oestradiol. Global run-on (GRO)-sequencing (seq) used 

to measure nascent gene transcription as it occurs demonstrated significant 

induction of ~32% or tRNA genes in MCF-7 cells within 10 – 160 minutes of 100 nM 

oestradiol stimulation (Hah et al., 2011). The rapid nature of oestradiol-mediated 

induction of tRNA suggests ER is directly targeting many tRNA genes, rather than 

secondary or tertiary effects of hormone stimulation elevating tRNA transcription. 

Alcohol consumption is significantly associated with risk of breast cancer, although 

the exact mechanism by which alcohol increases breast cancer development is still 

largely unknown (Jung et al., 2016). A link between alcohol and ER+ tumours has 

been suggested, but much disagreement surrounding ER+ breast cancer and a 

correlation with alcohol intake exists (Freudenheim, 2020). In MCF-7 cells, 5 nM 

oestradiol induced a ~2-fold increase in tRNALeu and 5S rRNA, which was increased 

11- and 14-fold respectively by the addition of 25 mM ethanol in a Brf1-dependent 

mechanism, linking activated ER and alcohol to aberrant Pol III activity (Zhang et 

al., 2013b). Conversely, Tamoxifen represses Pol III-dependent gene transcription in 

breast cancer cells by inhibiting expression of Brf1 and Pol III transcription of Type I 

and Type II genes (Zhong et al., 2014). Furthermore, ER directly associates with 

Brf1, tRNALeu and 5S rRNA promoters in MCF-7 cells (Fang et al., 2017). Thus, 

oestradiol-dependent induction of tRNA transcription likely occurs because of direct 

ER associations with tDNA. P300 is an intrinsic co-activator of TFIIIC, with HAT 

activity being essential for activation of tRNA gene transcription (Mertens and 

Roeder, 2008). Active ER may drive tRNA expression by recruiting necessary co-
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activators to tRNA promoters. A tRNAome-wide study of ER and related cofactor 

occupancy at tRNA loci has not been conducted but would provide valuable insight 

into non-coding ER targets that may be therapeutically relevant for breast cancer 

patients.  

 

1.3 Hypoxia and hypoxia-inducible factors 

 

Hypoxia is a physiological term describing insufficient supply of O2 to tissues 

or cells required for maintaining normal function and homeostasis. In particular, O2 

is vital in the electron transport chain (ETC), acting as a terminal electron acceptor 

during ATP synthesis (Hirota, 2020). If tissues and cells were maintained in hypoxic 

environments, they would be unable to survive. As such, adaptation to cellular 

hypoxia is driven by accumulation of transcription factors termed hypoxia-inducible 

factors (HIFs) which coordinate expression of a myriad of genes that impose 

survival advantages when O2 is limited. HIFs were first described in 1992, when 

rapid upregulation of erythropoietin (EPO) mRNA levels in hypoxic Hep3B cells was 

studied (Semenza and Wang, 1992). A functional HIF is a heterodimer consisting of 

two basic-helix-loop-helix (bHLH) Per Arnt Sim (PAS) proteins of 120 kDa and 94 

kDa, termed HIF-1 and HIF-1 (ARNT), respectively (Wang et al., 1995). 

Alternative HIF- isoforms were discovered by homology screens for interaction 

partners of HIF-1, namely HIF-2 (EPAS1) and HIF-3 (Ema et al., 1997; Tian et 

al., 1997; Gu et al., 1998). HIFs regulate transcription of target genes through 

recognition and binding to a core pentanucleotide sequence (5’-RCGTG-3’) referred 

to as the hypoxia response element (HRE) (Wang and Semenza, 1993). While HIF-

1 has roles outside of hypoxia response and is therefore constitutively expressed 

in normoxia, HIF- are specific hypoxia-sensing molecules that accumulate when 

O2 availability is limited. (Jewell et al., 2001).  

 

HIF proteins are compartmentalised into discrete functional segments, with 

HIF-1 and HIF-2 sharing greatest domain organisation homology (Figure 1.3). All 

HIF proteins contain N-terminal bHLH and PAS domains. The bHLH domains are 

important for making contact with minor groove of target DNA, whereas PAS 

domains are important for correct heterodimerization of HIF- with HIF-1ꞵ (Wang et 

al., 1995). HIF- are constitutively transcribed and translated. In the presence of 

physiological levels of O2 (physoxia) or normoxia, prolyl hydroxylase domain (PHD) 

enzymes catalyse hydroxylation of two prolyl residues in oxygen-dependent 
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degradation domain (ODDD) of HIF-, stabilising an association with E3 ubiquitin 

ligase member Von Hippel-Lindau (pVHL), leading to rapid polyubiquitination and 

proteasomal degradation (Maxwell et al., 1999). Therefore, HIF- have a high 

turnover rate when O2 is available, and a half-life of approximately five to ten 

minutes (Wang et al., 1995; Salceda and Caro, 1997). HIF-1 is O2-independent 

with distinct roles in cellular signalling pathways involved in xenobiotic and hypoxic 

responses, as well as regulating adaptive immunity and organ development 

(Fujisawa-Sehara et al., 1987; Walisser et al., 2005; Carreira et al., 2015; Neavin et 

al., 2018; Haidar et al., 2021). As such, HIF-1 does not possess an ODDD and is 

stable in normoxia and hypoxia. An additional level of negative HIF- regulation 

comes in the form of hydroxylation of an asparagine in C-terminal transactivation 

domains (C-TAD) by factor inhibiting HIF (FIH), which obstructs interaction with 

transcriptional coactivator p300 and thus inhibits transcriptional activation of HIF- 

target genes (Lando et al., 2002). HIF-3 is exempt from FIH regulation because 

this isoform does not possess a C-TAD, and instead contains a leucine zipper. As 

such, HIF-3 is unable to interact with p300 and induce gene expression (Gu et al., 

1998). HIF-1 and HIF-2 are associated with driving transcription of target genes, 

whereas HIF-3 is a negative regulator of HIF-transcription, possibly by 

sequestering HIF-1 in a transcriptionally inactive heterodimer (Hara et al., 2001). 

Hydroxylation activity of PHD enzymes is O2-dependent. In hypoxia, PHD enzymes 

are inactivated and unable to catalyse hydroxylation of HIF- ODDD prolyl residues. 

PHD enzymes are also inhibited by Dimethyloxalylglycine (DMOG), resulting in 

normoxic accumulation of HIF- (Liu et al., 2009a). The result of hypoxia or DMOG 

is mass accumulation of HIF- protein (Bruick and McKnight, 2001). When stable, 

HIF- forms a heterodimer with HIF-1ꞵ and translocate into the nucleus. HIF-

1/HIF-2 – HIF-1 associate with p300 at HRE sequences and drive transcription 

of target genes that have functional roles in angiogenesis such as vascular 

endothelial growth factor A (VEGFA), glucose transport, such as glucose transporter 

1 (GLUT1) or pH regulation including Na+/H+ exchanger 1 (NHE1) and carbonic 

anhydrase IX (CA9) to ensure cell survival and maintain metabolism during hypoxic 

stress (Forsythe et al., 1996; Wykoff et al., 2000; Chen et al., 2001; Shimoda et al., 

2006). 
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Figure 1.3 Domain Organisation of HIF Proteins. Hypoxia-inducible factors HIF-1 

(826 aa), HIF-2 (870 aa), HIF-3 (667 aa) and ARNT (789 aa) are segmented into 

distinct functional and regulatory domains. All four HIF proteins contain a basic helix-loop-

helix (bHLH) domain involved in DNA binding, a PER-ARNT-SIM (PAS) domain which is 

required for protein interactions and dimerization and a transcriptional activation domain 

(TAD). HIF-1, HIF-2 and HIF-3 contain an oxygen-dependent degradation domain 

(ODDD) and N-terminal TADs. HIF-3 does not have a C-terminal TAD and instead has a 

Leucine Zipper (LZ). HIF-1 does not contain ODD as it exists in an oxygen-independent 

manner. Turnover of HIF- in the presence of O2 occurs through a stepwise process of 

involving hydroxylation of proline (Pro) residues in highly conserved ODD by proline 

hydroxylases, binding of von Hippel Lindau (VHL) E3 ubiquitin ligase complex and 

polyubiquitination, and proteasomal degradation. An additional level of HIF- regulation 

occurs by factor inhibiting HIF (FIH) hydroxylating asparagine (Asn) residues in C-TAD 

which compromises transcriptional potential of these factors.  
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1.3.1 Hypoxia in cancer 

 

Hypoxia is essential for orchestrating transcriptional programs that regulate 

cell differentiation and tissue development during embryogenesis, and also 

prevalent in adult stem cell niches necessary to maintain undifferentiated cell states 

(Mohyeldin et al., 2010; Pimton et al., 2015; Woods et al., 2018; López-Anguita et 

al., 2022). Concordant with developmental processes often being hijacked during 

malignant progression, hypoxia and HIFs are recognised as important contributors 

to cancer development (Zhong et al., 1999). Hypoxia is a common feature of many 

solid tumours including: non-small cell lung cancer (NSCLC), neuroblastoma, 

glioma, head and neck squamous cell carcinoma (HNSCC), prostate cancer and 

breast cancer (Zhong et al., 1999; Jögi et al., 2002; Nordsmark and Overgaard, 

2004; Jensen et al., 2014; Samanta et al., 2014; Yan et al., 2024). Accordingly, 53% 

of formalin-fixed paraffin-embedded (FFPE) malignant tumours are positively 

stained for HIF-1 expression (Talks et al. 2000). In breast tumours, low O2 tension 

is in part due to increased consumption of O2 in rapidly dividing cancer cells, but 

also due to an overall decrease in O2 supply as tumours out-grow local blood 

vessels. To try and combat dysfunctional O2 levels, hypoxia induces de novo 

angiogenesis to promote new blood vessel formation through HIF-1 mediated 

VEGFA induction (Forsythe et al., 1996). However, newly developed vessels are 

leaky and inefficient in O2 delivery (Muz et al., 2015). Further to an attempt at 

restoring O2 equilibrium, HIF-mediated blood vessel development provides 

malignant cells entry into circulatory systems, an important first step in metastasis 

and a hallmark of cancer (Jahroudi and Greenberger, 1995; Hanahan and 

Weinberg, 2000; Carmeliet, 2005). The breast TME has regions of hypoxia, with O2 

partial pressure (PO2) ranging from 2.5 to 2.8 mm of mercury (Hg), compared to a 

PO2 of 65 mm Hg in normal breast tissue (Vaupel et al., 2007). Hypoxia and HIF 

expression in solid tumours is strongly associated with more advanced disease and 

resistance to radiation and chemotherapy (Gray et al., 1953; Horsman et al., 2012; 

Samanta et al., 2014; Rankin et al., 2016; Ebright et al., 2020; Yong et al., 2022). In 

breast cancer cells, hypoxia promotes chromatin remodelling to induce epithelial-to-

mesenchymal transition (EMT) in a HIF-1-dependent manner (Kakani et al., 2024). 

Thus, hypoxic signatures are significantly associated with more aggressive basal 

TNBC tumours compared to other breast cancer subtypes (Ye et al., 2018). Indeed, 

it is estimated that more than 80% of TNBC tumours overexpress HIF-1, and the 

HIF-1 pathway is overactive in TNBC compared to other subtypes (Liu et al., 
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2023). Hypoxia has been significantly implicated in TNBC immune escape by 

causing immune effector cell dysfunction and subsequent resistance to 

immunotherapy, in a HIF-1-dependent manner (Ma et al., 2022). Furthermore, 

expression of hypoxia-induced CA9 has been shown in TNBC primary samples to 

be an independent marker of increased tumour size, higher histological grade and 

significantly worse disease-free survival and overall survival (Ong et al., 2022).  

 

Low O2 in cancer is not the only mechanism in which HIF- are stabilised. 

Loss of tumour suppressor gene pVHL causes higher levels of HIF-1 protein, as 

do functional mutations in p53 and PTEN which ordinarily suppress HIF-1 

stabilisation in hypoxia (An et al., 1998; Zundel et al., 2000; Pollard et al., 2007). 

Tumour suppressor regulation of HIF- labels HIF transcription factors as 

oncoproteins, able to drive breast cancer development through regulation of key 

genes involved in growth, proliferation and metastasis. 

 

1.3.2 Implications of Hypoxia in ER+ breast cancers 

 

In ER+ Luminal A and Luminal B breast cancers, HIF-1 and CA9 

expression is significantly associated with decreased disease-free survival, whereas 

HIF-2 is not linked to disease outcome (Shamis et al., 2022). Loss of functional 

ER is an important event preceding endocrine therapy resistance (Lindström et al., 

2012, 2018). Hypoxic culture of ER+ MCF-7 and T-47D breast cancer cell lines 

significantly reduces ESR1 transcription in a HIF-1-dependent manner (Ryu et al., 

2011). Accordingly, prolonged culture of MCF-7 and T-47D cells in low O2 tension 

induces proteasomal degradation of ER and ER protein (Wolff et al., 2017). 

Furthermore, a comprehensive investigation of 10 ER+ breast cancer cell lines 

revealed hypoxia induces HIF-1-dependent proteasomal degradation of ER in all 

models, regardless of basal ER abundance (Padró et al., 2017). Conversely, MDA-

MB-231 TNBC cells increase ER expression in response to HIF-1 stabilisation 

with a chemical hypoxia mimetic (Wolff et al., 2017). Investigation of primary 

Luminal A tumours show ER is negatively correlated with expression of HIF-1 

within a cycling hypoxia microenvironment (Kang and Li, 2022).  

 

Further to hypoxia-mediated proteasomal degradation regulating ER 

levels, the hormone receptor is also regulated through reactive oxygen species 
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(ROS)-dependent epigenetic modification. Hypoxia increases ROS by acting on 

complexes I, II and III of the mitochondrial ECT. In turn, ROS destabilise PHD 

enzymes and enhances HIF- stabilisation (Wang et al., 2007; Kondoh et al., 2013). 

MCF-7 cells cultured with hydrogen peroxide (H2O2) as a source of ROS exhibit 

increased cell growth, colony formation and up-regulation of pro-metastatic genes 

such as VEGF and WNT1 (Mahalingaiah and Singh, 2014). MCF-7 cells adapted to 

chronic oxidative stress are significantly less responsive to oestradiol and tamoxifen 

which is reversed by the demethylating agent 5-Aza-2′-deoxycytidine (5-aza-dC) 

(Mahalingaiah et al., 2015). Concurrent with desensitisation to oestradiol and 

tamoxifen is increased expression of DNA methyltransferases DNMT1 and MBD4, 

increased methylation surrounding ESR1 and decreased abundance of ESR1 

mRNA and ER protein. ESR1 is methylated in ER null MDA-MB-231, MDA-MB-

468 and Hs578t cells (Ottaviano et al., 1994). Importantly, ESR1 is hypermethylated 

in primary breast tumours, which strongly correlates with reduced ER protein 

expression and more advanced disease (Yoshida et al., 2000; Ramos et al., 2010; 

Wei et al., 2012). Additional epigenetic modifications are implicated in ESR1 gene 

silencing. TWIST, a bHLH transcription factor, reduces ER expression by (i) 

recruiting DNA methyltransferase 3B (DNMT3B) to the ESR1 promoter which 

induces methylation and (ii) re-organising the chromatin landscape by assembling 

HDAC1 to the ESR1 locus (Vesuna et al., 2012). TWIST expression is enhanced in 

hypoxia through HIF- activity, and drives EMT in solid tumours (Yang et al., 2008a; 

Sun et al., 2009; Zhang et al., 2013a).    

 

In endocrine-resistant breast cancer, FOXA1 is significantly amplified and 

enhances tumour aggressiveness by activating IL-8 signalling to further promote 

tumour invasion, metastasis and therapy resistance (Britschgi et al., 2012; Singh et 

al., 2013; Fu et al., 2016). FOXA1 transcriptional reprogramming increases active 

enhancer H3K27ac and H3K4me1 marks across chromatin. Genes within the 

vicinity of gained active enhancer deposits are associated with pro-proliferation, 

anti-apoptosis and developmental signalling (Fu et al., 2019). EPAS1 (encoding 

HIF-2) shows increased FOXA1 binding and significant induction in a FOXA1-

dependent, hypoxia-independent manner, and this is associated with ER-positive 

metastasis to the liver, pancreas and bone (Fu et al., 2019).    
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1.3.3 Hypoxia, glycolysis and pathological transport of ions and solutes 

 

Hypoxia inhibits O2-dependent metabolism of glucose to CO2 in the 

tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). Instead, O2 

deprived cells utilise the less energy-efficient metabolism of pyruvate to lactic acid 

to generate ATP required for cellular needs. Of the many HIF- target genes 

identified over the last two decades, enzymes of glycolysis have been shown to be 

strongly upregulated in response to hypoxia, including phosphoglycerate kinase-1 

(PGK1) and lactate dehydrogenase (LDH), which are key enzymes in conversion of 

glucose into pyruvate and lactate respectively, and pyruvate dehydrogenase kinase 

1 (PDK1) which inhibits pyruvate entry into the TCA cycle (Firth et al., 1994; Kim et 

al., 2006). Additionally, glucose transport into the cell is increased through HIF-1-

mediated upregulation of hypoxia responsive GLUT1 and GLUT3 transporters 

(Chen et al., 2001; Hayashi et al., 2004; Liu et al., 2009b). Activities of these 

transporters provide malignant cells with a high supply of glucose to be used in 

glycolysis. Cancer cells often utilise glycolysis even when O2 is not limiting, shifting 

metabolism to “aerobic glycolysis” in a process known as the Warburg effect, which 

underpins the reprogramming energy metabolism hallmark of cancer (Hanahan and 

Weinberg, 2011). With glycolytic conversion of glucose into lactic acid in malignant 

cells, a highly acidic intracellular pH (pHi) might be expected. However, it is 

important for cancer cells to export acids from the cytoplasm to survive. HIF-1 

regulates several membrane transporters in response to hypoxia to maintain a 

favourable pHi, such as monocarboxylate transporter (MCT)-4 which co-transports 

both H+ and lactate out of cytosol into extracellular matrix (ECM), and NHE1 which 

uses the inward Na+ gradient to simultaneously push H+ out into ECM, contributing 

to intracellular alkalinisation and extracellular acidification (Shimoda et al., 2006; 

Ullah et al., 2006). As such, extracellular pH (pHe) is decreased to pH 6.6 compared 

to physiological pHe of pH 7.4 in healthy tissues (Swietach et al., 2014; Pedersen et 

al., 2017; Pethő et al., 2020). An acidic ECM supports activity of matrix 

metalloproteinases (MMPs) which degrade supporting networks allowing for 

invasion of cancer cells and infiltration of new blood vessels through angiogenesis 

(Liotta et al., 1980; Bergers et al., 2000). Stabilisation of HIF-1 by either hypoxia or 

MCT-4 inhibitor bandalit decreases ER+ breast cancer cell line sensitivity to 

tamoxifen, whereas inhibition of HIF-1 resensitises ER+ breast cancer cell lines 

to tamoxifen (Nadai et al., 2021).  
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1.4 Na+ homeostasis and dysregulated Na+ transport in cancer 

 

Dysregulation of various ion channels and transporters is significantly 

implicated in solid tumours and haematological malignancies. Indeed, ion channels 

have been extensively studied in cancer following observations of impaired tumour 

development and improved responses to therapy by pharmacological attenuation of 

ion transport more than three decades ago (Yamashita et al., 1987; Lee et al., 1988; 

Pancrazio et al., 1989; Taylor and Simpson, 1992). Of great importance for breast 

cancer development is dysregulated sodium (Na+) handling, contributing to raised 

intracellular [Na+] ([Na+]i) and corresponding to a more aggressive phenotype. 

Despite advancements in characterising Na+ levels in breast tumours by 23Na MRI, 

and greater understanding of clinical implications of altered Na+ channel expression 

or activity, mechanisms driving elevated [Na+]i are underexplored (Ouwerkerk et al., 

2007; Zaric et al., 2016; Arponen et al., 2024). Several types of Na+ and solute 

transporters are responsible for maintaining Na+ homeostasis in cells, such as: 

voltage gated Na+ channels (VGSCs), epithelial Na+ channels (ENaCs), acid-

sensing ion channels (ASICs), Na+/K+/Cl- cotransporter (NKCC), Na+/glucose 

cotransporter (SGLT2) and Na+/K+ ATPase (NKA). Dysregulated Na+ 
 handling 

through such channels has been implicated in various aspects of tumour 

progression (Leslie et al., 2019).  

 

1.4.1 Voltage gated Na+ channels 

 

VGSCs are responsible for initiating action potentials and modulating 

conduction in excitable cells including neurons, cardiomyocytes and muscle cells 

(Dutta et al., 2018). In addition, VGSCs are found in non-excitable cells including 

fibroblasts, glia, immune cells, and invasive breast cancer cells (Brackenbury, 2012; 

Djamgoz et al., 2019). VGSCs are multimeric transmembrane complexes composed 

of an ion conduction pore-forming  subunit and one or more auxiliary  subunits 

(Brackenbury and Isom, 2011; Catterall, 2012; Dutta et al., 2018; Angus and Ruben, 

2019). There are nine  subunits, NaV1.1 – NaV1.9 (SCN1A – SCN5A and SCN8A – 

SCN11A) which are expressed with tissue-specific distribution and variable 

sensitivity to Tetrodotoxin (TTX) (Table 1.2). Functional  subunits are 230 - 260 

kDa comprised of four homologous domains, each containing six transmembrane -

helices (Figure 1.4) (Leslie et al., 2022). Five  subunits have been characterised, 

1 – 4 (SCN1B – SCN4B) which are transmembrane proteins, and 1B which is an 



47 

alternative splice variant of 1 that lacks conserved -subunit transmembrane 

domain, making it a soluble protein (Patino et al., 2011).  subunits contain an 

extracellular immunoglobulin (Ig) domain which is used for a functional role as a cell 

adhesion molecule (CAM).  

 

The crystal structure of the VGSC  subunit was first resolved in 2011 in 

Arcobacter butzleri (Payandeh et al., 2011). The Na+-selective pore exists at the 5th 

and 6th segments of each domain (Guy Hr Seetharamulu, 1986). Voltage sensing is 

carried out by the 4th segment, which moves across the membrane with segments 

1 and 3 upon depolarisation of membrane potential (Vm) and opens the channel to 

establish fast inward Na+ current (INa), significantly raising [Na+]i (Guy Hr 

Seetharamulu, 1986; Yarov-Yarovoy et al., 2006). Rapid inactivation occurs within 1 

– 3 milliseconds of channel opening by an intracellular inactivation loop between 

domains III and IV allosterically blocking the channel to prevent Na+ entry 

(Armstrong and Bezanilla, 1977; Bezanilla and Armstrong, 1977; Vassilev et al., 

1988; Pan et al., 2018). A small number of channels fail to elicit fast inactivation 

following channel opening events, which allows a “persistent” Na+ current to 

continue to pass through open VGSCs into the cytosol. VGSCs in breast cancer 

cells do not open in response to membrane depolarisation but can intermittently 

open at the resting Vm. Consequently, persistent Na+ current has been recorded in 

breast cancer cells (Roger et al., 2007; Driffort et al., 2014). Although a functional 

VGSC can exist as a single  subunit, auxiliary  subunits modulate gating kinetics, 

amplify activation and inactivation rates of VGSCs, and enhance membrane 

expression of channels (Isom, 2001; Angus and Ruben, 2019).   
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Table 1.2 Tissue Specificity of VGSCs and TTX Sensitivity. Highlighted VGSCs (green) 

are “TTX-resistant”, requiring M concentrations to block channel activity. Remaining 

channels are “TTX-sensitive” as nM concentrations are required for inhibition. Abbreviations: 

central nervous systems (CNS), peripheral nervous systems (PNS) dorsal root ganglion 

(DRG). (Akiba et al., 2003; Vanoye et al., 2013; Tsukamoto et al., 2017; Sanchez-Sandoval 

et al., 2023) 

VGSC Gene symbol Primary tissue TTX-sensitivity (IC50) 

NaV1.1 SCN1A CNS neurons 4.1 nM 

NaV1.2 SCN2A CNS neurons 14 nM 

NaV1.3 SCN3A CNS neurons 5.3 nM 

NaV1.4 SCN4A Skeletal muscle  7.6 nM 

NaV1.5 SCN5A Cardiomyocytes 1 M 

NaV1.6 SCN8A CNS neurons 2.3 nM 

NaV1.7 SCN9A PNS neurons 36 nM 

NaV1.8 SCN10A DRG neurons 73.3 M 

NaV1.9 SCN11A DRG neurons 30 M 
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Figure 1.4 Schematic of VGSC Structure. VGSCs at plasma membrane contain a single 

 subunit and one or more  subunit. VGSC  subunits (cyan) have an intracellular 

carboxyl terminal (COOH) and external N-terminal (NH3) Ig-like domain. VGSC  subunits 

contain four homologous domains (D I – D IV), each comprised of six transmembrane 

segments (1 – 6). Voltage sensing is carried out by segment 4. Na+ pore formation exists 

as a loop between segments 5 and 6 of each domain. Inactivation loop is formed by an 

intracellular loop (red) between segment 6 of D III and segment 1 of D IV. NH3 and COOH 

termini are both intracellular. Adapted from (Denomme et al., 2019). 
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1.4.1.1 Expression of VGSC subunits in cancer 

 

Non-invasive 23Na MRI shows solid brain, breast and prostate tumours 

have raised [Na+]i compared to healthy surrounding tissues (Ouwerkerk et al., 2003, 

2007; Barrett et al., 2018). VGSC  subunits are overexpressed in many types of 

solid tumours, whereas  subunits can be either upregulated or downregulated 

(Figure 1.5). VGSC  subunits are found in gliomas, small-cell lung cancer (SCLC), 

NSCLC, prostate cancer, colorectal carcinoma (CRCa), cervical cancer, ovarian 

cancer, mesothelioma, melanoma, neuroblastoma and breast cancer cells and 

tissues (Blandino et al., 1995; Allen et al., 1997; Bennett et al., 2004; Ou et al., 

2005; Fulgenzi et al., 2006; Diaz et al., 2007; Roger et al., 2007; Gao et al., 2010; 

House et al., 2010; Brackenbury, 2012; Hernandez-Plata et al., 2012; Fraser et al., 

2014a; Nelson et al., 2015b; Lopez-Charcas et al., 2021, 2022; Ai et al., 2023).  

subunits are dysregulated in NSCLC, prostate cancer, cervical cancer, colorectal 

cancer and breast cancer (Roger et al., 2007, 2015; Diss et al., 2008; Chioni et al., 

2009; Brackenbury, 2012; Hernandez-Plata et al., 2012; Djamgoz et al., 2019).  

 

In highly metastatic MDA-MB-231 cells, a neonatal splice variant of NaV1.5 

(nNaV1.5) is overexpressed, which drives invasion of TNBC cells in vitro 

(Brackenbury et al., 2007; Dutta et al., 2018). Differential splicing of SCN5A is 

developmentally regulated, and occurs in exon 6, encoding domain I segment 3 

(DI:S3) (Onkal et al., 2008). nNaV1.5 allows a greater quantity of Na+ to enter cells 

when compared to the adult splice variant (Chioni et al., 2010; Fraser et al., 2014a). 

Importantly, expression of nNaV1.5 is observed in metastatic breast cancer biopsies, 

and is strongly associated with tumour progression and metastasis (Fraser et al., 

2005; Yamaci et al., 2017; Leslie et al., 2024). Levels of NaV1.5 are negatively 

correlated with ER, and positively correlated with HER2 in primary breast tumours 

(Leslie et al., 2024). Selective nNaV1.5 expression impacts regulation of pHi and 

pHe, enzyme activity and Na+ and Ca2+ exchange. Replacing negative aspartate in 

NaV1.5 to a positive lysine in nNaV1.5 at position 211 alters reactions to extracellular 

chemical factors as well as protein-protein interactions on the plasma membrane 

(Onkal et al., 2008; Fraser et al., 2014a). 

 

 Cell-based studies of CRCa identified nNaV1.5 as the predominant VGSC 

isoform at mRNA and protein level, whereas NaV1.6 mRNA levels are significantly 

lower in CRCa tumours compared to matched healthy tissue (House et al., 2010; 
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Baptista-Hon et al., 2014; Djamgoz et al., 2019; Lastraioli et al., 2021). Expression 

of nNaV1.5 in human CRCa tumours is significantly associated with decreased 

progression-free survival and high “Tumour-Node-Metastasis” (TNM) staging 

(Lastraioli et al., 2021). Pre-cancerous colorectal adenomas also have elevated 

nNaV1.5 expression compared to healthy tissue, suggesting upregulation of VGSCs 

is involved in malignant development (Lastraioli et al., 2021). In prostate cancer 

biopsies, immunohistochemistry and RT-PCR revealed variable expression of 

several VGSC  subunits, namely: NaV1.2, NaV1.3, NaV1.5, NaV1.7 and NaV1.9. 

(Diss et al., 2005). NaV1.7 transcript levels are most prevalent, being 27-fold higher 

in prostate tumours compared to healthy prostate tissue (Djamgoz et al., 2019). In 

cervical cancer cells, NaV1.6 and NaV1.7 transcripts are elevated ~40 and ~20 fold 

respectively relative to normal tissue, which correspond to functional channels. In 

particular, NaV1.6 contributes almost one-third of Na+ current passing into cervical 

cancer cells (Hernandez-Plata et al., 2012). NaV1.7 overexpression is detected in 

gastric cancer biopsies and is associated with increased invasion and proliferation 

(Xia et al., 2016). In ovarian cancer, levels of NaV1.1, NaV1.3, NaV1.4, NaV1.5 and 

NaV1.7 mRNA are significantly elevated compared to benign ovarian tumours or 

normal ovaries. However, NaV1.5 is translated into functional VGSC, and is thought 

to be a contributing factor in the transition from benign to malignant ovarian cancer 

(Gao et al., 2010).  

 

All isoforms of  subunits are expressed in prostate cancer cells, however 

1 is most prevalent and is correlated with expression of NaV1.7 (Diss et al., 2008). 

In breast cancer, 1 is inversely correlated with NaV1.5 and metastatic potential of 

breast cancer cells (Brackenbury, 2012; Djamgoz et al., 2019). 1 mRNA and 

protein are highly expressed in non-metastatic ER+ MCF-7 breast cancer cells 

compared to metastatic TNBC MDA-MB-231 cells (Luo et al., 2020). Additionally, in 

MCF-7 cells 2 and 4 mRNA are 20- and 50-fold greater relative to MDA-MB-231 

cells, respectively (Chioni et al., 2009). 2 is also expressed in several models of 

prostate cancer (Diss et al., 2008; Jansson et al., 2012). In C4-2B cells there is a 

15% increase in 2 protein relative to LNCaP, correlating with castration resistance 

and disease progression (Jansson et al., 2012). Expression of 3 is less well 

characterised in malignant cells, however there is some evidence of low levels of 

expression in NSCLC and prostate cancer cell lines, and hepatocellular carcinoma 

(Roger et al., 2007; Diss et al., 2008; Li et al., 2020). Additionally, ꞵ4 is expressed in 

NSCLC cell lines (Roger et al., 2007). In cervical cancer biopsies, ꞵ4 has low 
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transcript levels but is still more abundant when compared to non-cervical cancer 

tissues (Hernandez-Plata et al., 2012). ꞵ4 is expressed at low levels in prostate 

cancer cells, but favoured in weakly metastatic LNCaP cells compared to strongly 

metastatic PC-3 cells (Diss et al., 2008). 

 

Several studies have explored mechanisms contributing to aberrant 

expression of VGSCs, including: transforming growth factor (TGF)-1 and epidermal 

growth factor (EGF) signalling, silencing of negative regulator Salt-Inducible Kinase 

1 (SIK1), and inhibition of repressor element silencing transcription factor (REST) 

and HDACs (Kamarulzaman et al., 2017; González-González et al., 2019; Gradek 

et al., 2019). Concordantly, hypoxia has been linked to synergistic growth factor 

signalling, SIK1 inhibition and modulating REST nuclear localisation and activity, 

suggesting hypoxia may be important in dysregulated VGSC expression in solid 

tumours (Cavadas et al., 2016; Mallikarjuna et al., 2019; Mamo et al., 2020; Pu et 

al., 2022). 
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Figure 1.5 VGSCs in solid tumours. VGSC  and  subunits are dysregulated in several 

solid tumour types. VGSCs are made of one α subunit, and one or more auxiliary  

subunits. VGSCs exhibit dysregulated expression in several malignant cancer types, 

contributing to altered sodium homeostasis in solid tumours. The  subunits of VGSCs are 

overexpressed (green triangle) in transformed cells relative to matched healthy tissue or 

cell line counterpart, whereas  subunits can be overexpressed, mutated or under-

expressed (red triangle) in malignancies (Malcolm et al., 2023). 
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1.4.1.2 Tumour progression and VGSC activity 

 

Tumour invasion is an important hallmark of cancer, requiring key changes 

in cell morphology to enhance mobility and invasion into surrounding stroma 

(Hanahan and Weinberg, 2000; Martin et al., 2013). Processes involved in this 

malignant progression include breakdown of surrounding ECM, upregulation of pro-

metastatic genes, and dysregulation of cell surface CAMs. Aberrant expression and 

activity of VGSCs in malignant cells is strongly implicated in driving such processes. 

VGSC  subunits facilitate cell invasion and metastasis in a variety of cancer types 

(Diss et al., 2001; Bennett et al., 2004; Fulgenzi et al., 2006; Campbell et al., 2013; 

Nelson et al., 2014; House et al., 2015; Mohammed et al., 2016; Xia et al., 2016; Li 

et al., 2020, 2022a; Sui et al., 2021; Erdogan et al., 2023). For effective breakdown 

of ECM, a low pHe is optimal for proteolytic MMPs and cathepsins. VGSCs 

contribute to an acidic ECM, which is particularly favourable for cysteine protease 

cathepsin B (Giusti et al., 2008). For example, in breast cancer cells NaV1.5 drives 

INa which elevates NKA activity to export Na+, increasing ATP demand. NaV1.5 fulfils 

additional ATP requirement by increasing the rate of glycolysis, which elevates 

lactate production and therefore H+. To overcome intracellular acidification, NaV1.5 

increases NHE1 activity to export H+, facilitating extracellular acidification and 

therefore sustaining optimal pHe for MMPs and cathepsins to digest ECM (Gillet et 

al., 2009; Brisson et al., 2011, 2013; Leslie et al., 2024).  

 

Fast metastasis-promoting INa is specific to TNBC MDA-MB-231 cells, 

sensitive to µM TTX and is not observed in weakly metastatic MCF-7 cells (Roger et 

al., 2003). Expression of nNaV1.5 specifically confers invasive properties which are 

diminished upon siRNA knockdown targeting this channel (Roger et al., 2003; 

Brackenbury et al., 2007). EMT is induced by NaV1.5 upregulation in invasive breast 

cancer cell lines, in a manner dependent on loss of SIK1 and concurrent increase in 

EMT-promoting transcription factor SNAI1 (Gradek et al., 2019). Additionally, 

nNaV1.5 enhances eukaryotic elongation factor-2 kinase (EF2K) expression, which 

promotes breast tumour growth and lung metastasis by activating tumorigenic 

drivers including c-Myc and cyclin D1 (Erdogan et al., 2023). In colon cancer, 

NaV1.5 is a key transcriptional driver of several pro-migratory signalling pathways 

including Wnt and MAPK, the latter of which can be negatively regulated in 

response to VGSC inhibitor lidocaine (House et al., 2010, 2015). JAK-STAT 

signalling pathway in follicular thyroid carcinoma is activated by NaV1.6 
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phosphorylation of JAK2 which enhances cell proliferation, EMT and invasion (Li et 

al., 2022a). In NSCLC, TTX-sensitive Na+ currents through VGSCs promote 

invasiveness and EGF signalling upregulates expression of NaV1.7, which is crucial 

for increased invasive potential (Roger et al., 2007; Campbell et al., 2013). NaV1.7 

drives endometrial cancer progression, and pharmacological inhibition of this 

channel significantly impairs cancer cell invasion (Liu et al., 2019). NaV1.7 

expression is correlated with NHE1 and metastasis-associated in colon cancer-1 

(MACC1) in gastric tumours. TTX inhibition of NaV1.7 decreases NF-kB p65 nuclear 

translocation by p38 activation, inhibiting MACC1 expression and further reducing 

NHE1 levels due to impaired c-Jun phosphorylation (Xia et al., 2016) 

 

As members of the Ig superfamily of CAMs,  subunits regulate cell 

adhesion and migration. 1 forms heterophilic associations with other CAMs and 

ECM proteins, such as 2, contactin, neurofascin-186 and N-cadherin (Kazarinova-

Noyes et al., 2001; Ratcliffe et al., 2001; Malhotra et al., 2004; McEwen and Isom, 

2004). In MCF-7 cells, high ꞵ1 expression corresponds to a weakly invasive 

phenotype which is reversed by siRNA targeting 1. TNBC cell lines have low levels 

of 1. Stable transfection of 1 into MDA-MB-231 cells increases adhesion, and 

decreases migration and proliferation (Chioni et al., 2009). 2 and 4 mRNA are 20- 

and 50- fold higher in MCF-7 cells compared to MDA-MB-231 cells (Chioni et al., 

2009). Conversely, 2 expression in prostate cancer cells, increases association 

with nerve axons, and enhances cell growth, migration and invasion (Jansson et al., 

2012, 2014). 3 is implicated in hepatocellular carcinoma tumorigenicity, by 

negatively regulating p53 and promoting HepG2 cell proliferation and tumour growth 

in vivo (Li et al., 2020). Loss of 4 protein correlates to high-grade primary and 

metastatic breast tumours and activated RhoA activity, increased cell migration and 

metastasis. Overexpressing SCN4B in breast cancer cells reduces invasion and 

tumour progression (Bon et al., 2016). Hypermethylation of SCN1B DNA results in 

loss of 4 in papillary thyroid cancer (PTC) and is associated with decreased 

recurrence-free survival (Gong et al., 2018). Taken together,  subunits can be anti- 

or pro-tumorigenic and expression of these molecules could present a novel 

therapeutic target for some cancer patients or be used as biomarkers for predicting 

disease outcomes. 
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1.4.2 NKA and ENaC 

 

NKA was discovered in 1957 in shore crab nerves (Skou, 1957). A 

functional pump is minimally composed of a catalytic  subunit and an auxiliary  

subunit. Some NKAs utilise a tissue-specific  subunit that belongs to the FXYD 

family of small membrane proteins (Mercer et al., 1993). There are three highly 

conserved isoforms of  subunit that are ~87% identical (ATP1A1, ATP1A2, and 

ATP1A3) encoding 1 – 3, and a less-well conserved sperm-specific 4 subunit 

(ATP1A4) (McDermott et al., 2015). The  subunit has three isoforms that share 

~40% identity (ATP1B1, ATP1B2 and ATP1B3) encoding 1 – 3 (Blanco et al., 

1994). In addition, there are seven FXYD  subunits. NKA establishes and maintains 

electrochemical and osmotic gradients by utilising energy from the hydrolysis of a 

single ATP molecule to simultaneously export three Na+ and import two K+ across 

basolateral plasma membranes against natural concentration gradients. In kidneys, 

it is estimated that 50 million NKA are expressed per cell of the distal convoluted 

tubule, where 2,000 molecules of ATP can be hydrolysed per minute, per K+ site, at 

maximum ATP turnover rate (El Mernissi and Doucet, 1984). In neurons, NKA 

activity is essential as the pump maintains high extracellular [Na+] ([Na+]e) for 

efficient firing of action potentials, and reverses postsynaptic Na+ flux. NKA can use 

up to 75% of available ATP in a cell (Attwell and Laughlin, 2001; Clausen et al., 

2017).  

 

Structurally, the  subunits contain 10 transmembrane helices with 

extracellular binding sites for K+ and cardiac glycosides such as ouabain, and 

intracellular binding sites for ATP and Na+ on an intracellular catalytic loop (Figure 

1.6). The  subunits are type II membrane proteins with a short intracellular N 

terminus and a larger extracellular C terminus that is glycosylated to release  

proteins from endoplasmic reticulum (Tokhtaeva et al., 2010). The  subunits 

regulate localisation and stabilisation of the  complex in plasma membranes, fine-

tune affinity of NKA for Na+, K+ and cardiac glycosides, and establish adhesion 

contacts with E-cadherin and -catenin (Geering, 2001; de Souza et al., 2014). The 

 subunit is not essential for NKA activity and can be delivered to plasma 

membranes independent of  and  subunits. The function of the  subunit appears 

to centre around modifying voltage dependence of K+ and Na+ of  complex (Minor 

et al., 1998; Geering, 2005). 
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 Activity of NKA is coupled with passive Na+ influx through ENaCs that are 

expressed at apical membranes in kidney tubules, lung, reproductive organs and 

colon (Canessa et al., 1994a; Duc et al., 1994; Hanukoglu and Hanukoglu, 2016). 

Na+ is a major electrolyte in extracellular fluid. Transport of Na+ is accompanied by 

flow of water, which means ENaCs are essential in regulating extracellular fluid 

volume and blood pressure (Bourque, 2008; Rossier et al., 2015). Na+ entry into 

epithelial cells through ENaC dampens the Na+ gradient. As a result, NKAs at 

basolateral membranes export Na+ into the interstitial fluid to reestablish a Na+ and 

osmotic gradient (Feraille and Dizin, 2016). Four homologous ENaC genes are in 

the human genome: SCNN1A, SCNN1B, SCNN1D and SCNN1G, encoding -, -, 

-, and -ENaC proteins, respectively (Canessa et al., 1994b; Waldmann et al., 

1995). Each of the four ENaC subunits share ~28% sequence identity with each 

other, and ~20% identity with ASIC subunits (Hanukoglu and Hanukoglu, 2016). 

Expression of ENaC subunits is regulated by epigenetic modifications, where DNA 

methylation is inversely correlated to ENaC mRNA (Pierandrei et al., 2021). 

Channel activity is affected by hormones such as aldosterone, which enhances 

passive Na+ current through ENaC by promoting open conformation, without 

affecting mRNA or protein levels of the channel (Chen et al., 1999). Typical ENaC is 

comprised of -, - and -ENaC subunits (Figure 1.6). Each subunit comprises two 

transmembrane domains which form the ENaC pore. Both N and C termini are 

located intracellularly, and a large extracellular domain links the two transmembrane 

domains together (Kashlan and Kleyman, 2011). A novel -, - and -ENaC 

increases Na+ current two-fold compared to -containing channels (Waldmann et 

al., 1995). However, -ENaC is less-well understood owing to mice and rats which 

are used as animal models to study channel kinetics not expressing this subunit 

(Paudel et al., 2021). 
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Figure 1.6 Schematic of NKA and ENaC Structures. NKA (left) is comprised of a single 

catalytic  subunit (orange), a regulatory glycosylated  subunit (green) and a FXYD  

subunit (blue). The  subunit comprises 10 transmembrane segments with NH3 and 

COOH termini both on intracellular side of the membrane. Catalytic hydrolysis of ATP to 

ADP occurs in intracellular Na+ and phosphate binding loop (red). K+ (or ouabain) bind to 

extracellular compartments of  subunit. ENaC (right) comprises  (yellow),  (red) and  

(pink) subunits existing as a heterotrimer. Each subunit consists of two transmembrane 

helices with internal NH3 and COOH termini, and an extracellular loop. Adapted from 

(Gonçalves-de-Albuquerque et al., 2017; Ahmad et al., 2023). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b
a

s
o

la
te

ra
l 

a
p

ic
a
l

Intracellular

Extracellular

ENaCNKA

K+ and ouabain 

binding site

Na+ and phosphate 

binding loop



60 

1.4.2.1 Evidence of NKA and ENaC in cancer 

 

 Several malignancies have altered expression of NKA and ENaC subunits, 

with significant clinical implications (Liu et al., 2016; Silva et al., 2021). In CRCa, 

NKA 1 expression is decreased compared to normal accompanying mucosa, and 

31 is the predominant isozyme (Sakai et al., 2004; Baker Bechmann et al., 2016). 

In CRCa liver metastases, only 31 is present, and this combination is not found in 

healthy liver tissue, implicating this isozyme as a novel biomarker of CRCa 

progression (Baker Bechmann et al., 2016). Similarly, ENaCs are expressed in 

CRCa HCT116 and HT29 cells, which are downregulated by resveratrol in an 

AMPK-dependent manner, significantly increasing apoptosis of cancer cells. The 

ENaC inhibitor amiloride also significantly decreases CRCa cell viability in vitro 

(Gündoğdu and Özyurt, 2023). In aggressive melanoma cell lines and primary cells, 

3 of NKA is abundant. UNBS1450, a cardiac glycoside that specifically blocks NKA 

activity, significantly blocks pro-tumorigenic activity in vitro and in vivo (Mathieu et 

al., 2009). All ENaC isoforms are expressed in human melanoma G-361 cells, with 

-ENaC being most prevalent. However, ENaC’s role in neoplastic progression of 

melanoma has of yet, not been characterised (Yamamura et al., 2008). In clear-cell 

renal cell carcinoma (RCC), diffuse intracellular NKA 1 expression was identified 

by immunofluorescence in vivo, relative to basolateral plasma membrane 

localisation of  and  subunits in normal kidney cells. Additionally, RCC cells have 

a 95% reduction in 1 expression, and a corresponding decrease in NKA activity in 

membranes implicating loss of NKA function as a malignant determinant in clear-cell 

RCC (Rajasekaran et al., 1999). Decreased expression of NKA 1 has also been 

reported in poorly differentiated CRCa, breast and pancreatic cancer lines, and this 

corresponds to decreased levels of E-cadherin and increased Snail expression, 

linking NKA 1 to EMT (Espineda et al., 2004). In contrast, ATP1A1 mRNA 

expression is elevated and ATP1A2 is decreased in Luminal A, Luminal B, HER2 

and TNBC tumours compared to normal breast tissue (Bogdanov et al., 2017). In de 

novo and acquired endocrine resistant breast cancer cell lines, ouabain treatment 

significantly inhibits cell proliferation, invasion and motility, suggesting 

pharmacological attenuation of NKA activity may prolong survival for a population of 

women with advanced Luminal breast cancers (Khajah et al., 2018). Conversely, 

high -ENaC expression in breast cancer is associated with a less aggressive and 

less proliferative phenotype, whereas decreased -ENaC levels correspond to a 

more aggressive mesenchymal subtype (Ware et al., 2021).  
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1.4.3. Tumour microenvironment and dysregulated Na+ homeostasis 

 

Altered Na+ homeostasis in the TME is implicated in several hallmarks of 

cancer, such as sustaining proliferative signalling, activating invasion and 

metastasis and evading immune response (Prevarskaya et al., 2010; Hanahan and 

Weinberg, 2011; Leslie et al., 2019). Innate immune system signalling molecules 

including selectins, chemokines and chemokine receptors are expressed by 

malignant cells in order to evade detection by infiltrating immune cells and provide 

additional survival advantages (Coussens and Werb, 2002). Cytokines and 

chemokines hone leukocytes to the TME, which increase levels of tumour-

promoting factors including ROS, tumour necrosis factor (TNF)-, MMPs, serine 

and cysteine proteases, interleukins and interferons (Wahl and Kleinman, 1998; 

Kuper et al., 2000; Coussens and Werb, 2002). High concentration of monocyte 

chemoattractant protein (MCP) localises tumour-associated macrophages (TAMs) to 

the TME, with significant clinical implications for patients with CRCa, NSCLC and 

breast cancer (Schoppmann et al., 2002; Watanabe et al., 2008; Zhang et al., 

2013c; Yoshimura et al., 2023). As such, cancer cells direct a variety of immune 

cells to tumours to support cell survival, promote angiogenesis and drive cancer 

progression and metastasis (Rossi and Zlotnik, 2000; Schoppmann et al., 2002). 

One of the most abundant cell types in tumours is cancer-associated fibroblasts 

(CAFs), which secrete chemokines to enhance recruitment and activation of 

immune cells and remodel ECM to support growth and metastasis of transformed 

cells (Servais and Erez, 2013; Tao et al., 2017; Mishra and Banerjee, 2023; Wright 

et al., 2023).  

 

A link between inflammation, cytokine and chemokine secretion, and Na+ 

transport has been explored (Viviani et al., 2007). Microglia express VGSCs NaV1.1, 

NaV1.5 and NaV1.6, and NHE1 (Black et al., 2009; Shi et al., 2011). Phenytoin or 

TTX inhibition of VGSCs, or cariporide targeting of NHE1 decreases phagocytic and 

migratory capacity of activated microglia (Black et al., 2009; Hossain et al., 2013). 

Inhibition of NHE1 in lipopolysaccharide (LPS)-stimulated microglia reduces [Na+]i, 

and decreases proinflammatory and pro-tumorigenic cytokine activities, production 

of TNF-, ROS and H2O2  (Hossain et al., 2013). DRG neuron cells incubated with 

pro-tumorigenic chemokine CXCL1 increase TTX-resistant and TTX-sensitive Na+ 

currents, which corresponds to elevated NaV1.1, NaV1.7 and NaV1.8 transcription, 
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further establishing a connection between immune signalling and Na+ transport 

(Wang et al., 2008).  

 

Cancer cells use growth factors and chemokines secreted by CAFs for 

protection against immune attack within the TME (Loeck and Schwab, 2023). CAFs 

enhance solid tumour progression by activating VEGF, CXCL12, FGF, and PDGF 

for angiogenesis, or secreting MMPs to degrade ECM and remove physical barriers 

impeding cancer cell invasion (Tang et al., 2016; Sahai et al., 2020; Loeck and 

Schwab, 2023). CAFs express Na+/Ca2+ exchanger (NCX)-1, which moves Ca2+ out 

of a cell (forward mode) in exchange for Na+ into the cell, or vice versa (reverse 

mode). NCX1 activity is regulated by pHi, whereby acidic pHi inhibits forward mode 

action and affects Na+ transport with significant implications for cell growth, 

proliferation and migration of glioblastoma, pancreatic and gastric cancer cells 

(Philipson et al., 1982; Hu et al., 2019; Wan et al., 2022; Loeck et al., 2023).  

 

1.4.4 Hypoxia and Na+ transport in solid tumours 

 

Hypoxia significantly increases persistent Na+ current through VGSCs in 

cardiac cells, and such an increase in Na+ influx is linked to increased invasive 

capacity of cancer cells (Ju et al., 1996; Hammarström and Gage, 2002; Roger et 

al., 2003; Fraser et al., 2005; Nelson et al., 2015b; Plant et al., 2020). NaV1.7 mRNA 

is elevated in hypoxic rat prostate cancer cells, and is inhibited by the non-selective 

VGSC inhibitor riluzole (Rizaner et al., 2020). HIF-1 enhances NaV1.5 expression 

in TNBC cells subject to the hypoxia-mimetic agent cobalt chloride (CoCl2), and 

siRNA targeting HIF-1 reduced NaV1.5 mRNA, cell viability and migration of MDA-

MB-231 cells (Dewadas et al., 2019). Hypoxia- and normoxia-mediated 

invasiveness of CRCa SW620 cells is dependent on persistent Na+ currents 

mediated by nNaV1.5, and is inhibited by the VGSC blocker ranolazine (Guzel et al., 

2019). In primary prostate cancer samples, it is thought that [Na+]i is elevated by 

hypoxia-induced persistent Na+ current through VGSCs occurring in solid tumours 

(Djamgoz and Onkal, 2013; Djamgoz et al., 2019). Thus, VGSCs upregulated by 

low O2 tension could represent novel diagnostic biomarkers, or therapeutic targets 

that would be responsive to repurposing of VGSC inhibitors ranolazine or riluzole 

(Diss et al., 2005; Djamgoz et al., 2019).   
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Hypoxia further disrupts Na+ homeostasis via NHE1 and Na+ driven 

bicarbonate transporters (NDBTs) (Shimoda et al., 2006; Carroll et al., 2022). 

Hypoxia and tumour acidosis are closely linked (Corbet and Feron, 2017). NHE1 is 

upregulated in hypoxia and drives alkalinisation of pHi, cell migration and invasion of 

human tongue squamous cell carcinoma by enhancing MMP-9 activity (Shimoda et 

al., 2006; Lv et al., 2012; Persi et al., 2018). Besides transcriptional regulation, 

hypoxia enhances NHE1 activity by phosphorylation of p90 Ribosomal S6 Kinase 

(p90RSK), causing formation of invadopodia and invasion of fibrosarcoma BT-1080  

cells (Lucien et al., 2011). Hypoxia also upregulates SLC4A4 and SLC4A5 NDBTs in 

breast and colon cancers in a HIF-1-dependent manner, which elevates pHi and 

promotes EMT and metastasis in vivo (Carroll et al., 2022). NDBTs work together 

with CA9 in regulating pHi and driving migration of HeLa cells and this is impaired 

by the CA9 inhibitor acetazolamide (Svastova et al., 2012). NCX1 forms a complex 

with CA9 and NHE1 in hypoxic tumours which causes extracellular acidosis and 

cancer cell migration (Liskova et al., 2019). Hypoxia disrupts Vm by decreasing the 

number of active NKAs at the plasma membrane in a ROS-dependent mechanism, 

causing endocytosis and proteasomal degradation of the pump (Dada et al., 2003; 

Gusarova et al., 2009). In contrast, hypobaric hypoxia increases NKA 2 

electrogenic activity and membrane abundance in rat diaphragm and soleus 

muscles, without affecting total protein content (Kravtsova et al., 2022). Expression 

of -, - and -ENaC mRNA is decreased in primary rat alveolar epithelial cells 

cultured in 1.5% O2, with a corresponding reduction in Na+ transport and active 

ENaC subunits at apical membranes (Baloglu et al., 2020). Conversely, ENaC is 

endogenously expressed in rat neuronal cells and is activated during acute hypoxia 

(Bae et al., 2013). Taken together, hypoxia is implicated in modulating Na+ transport 

in a variety of cell types, but responses are nuanced and context dependent. 

 

1.4.5 The future of targeting dysregulated Na+ transport in cancer 

 

VGSCs overexpressed in many solid tumours present novel therapeutic 

targets for treatment of aggressive malignancies and provide an exciting opportunity 

to repurpose FDA approved VGSC inhibitors (Roger et al., 2006; Brackenbury and 

Isom, 2008; Brackenbury, 2012; Fraser et al., 2014b). VGSCs share highly 

conserved sequences and domain organisation making development of isoform-

specific inhibitors challenging, further highlighting a necessity to repurpose existing 

drugs over investing significant funds, and especially time, in developing new VGSC 
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inhibitors (Corry, 2018). However, VGSC isoform-specific compounds do exist, with 

unexplored potential in cancer therapy (Bian et al., 2023). Altered VGSC activity 

contributes to cardiac arrhythmias, epilepsy, depression and neuropathy (Clare et 

al., 2000; Fairhurst et al., 2016). Consequently, a wide variety of VGSC inhibitors 

exist to block aberrant conductance of VGSCs, including ranolazine, phenytoin, 

lamotrigine and valproate (Mantegazza et al., 2010). Potential of using VGSC 

inhibitors to halt tumour progression has been explored in models of prostate 

cancer, breast cancer and colon cancer (Abdul and Hoosein, 2002; Anderson et al., 

2003; Angelucci et al., 2006; Fortunati et al., 2008; Li et al., 2012; Papi et al., 2012; 

Jafary et al., 2014; Fairhurst et al., 2015). Ranolazine or phenytoin inhibition of 

NaV1.5 reduces breast tumour growth, local invasion and metastasis in vivo (Driffort 

et al., 2014; Nelson et al., 2015b, 2015a). Culture of prostate cancer cells with 

eicosapentaenoic acid decreases SCN9A and SCN8A mRNA and reduces 

proliferation and invasion by inhibiting INa (Nakajima et al., 2009). Valproic acid in 

combination with a retinoid ligand of retinoic X receptor significantly reduces HT-29 

and LoVo colon cancer cell viability, and further decreases HT-29 invasion by 

inhibiting MMP expression (Papi et al., 2012). A recent retrospective study of an 

association between VGSC inhibitor use and survival of patients with colon, breast 

and prostate cancer found significantly improved cancer-specific survival in patients 

exposed to class 1c (encainide, flecainide or propafenone) and 1d (ranolazine) 

antiarrhythmics prior to cancer diagnoses, which are fast and late Na+ current 

blockers, respectively (Fairhurst et al., 2023; King et al., 2024). However, patients 

exposed to VGSC inhibitors used as local anaesthetics, tricyclic antidepressants or 

anticonvulsants had increased risk of cancer-specific mortality (Fairhurst et al., 

2023).  

 

Attenuation of NKA is also being explored as a promising therapeutic 

avenue. In acute myeloid leukaemia, NKA  subunit ATP1B1 is poorly expressed in 

malignant cells of haematopoietic lineage. To maintain Vm cells instead express 

paralogous ATP1B3 which is not ubiquitously expressed in other tissues, making 

inhibition of this subunit an attractive candidate for patients with haematological 

malignancies (Schneider et al., 2024). Cardiac glycosides are naturally-derived 

selective inhibitors of NKA used in clinic for treatment of some types of cardiac 

arrhythmias (Calderón-Montaño et al., 2014). Bufalin suppresses proliferation in 

melanoma and NSCLC (Yang et al., 2006; Jiang et al., 2010). HIF-1 is also 

inhibited by bufalin through activation of mTOR signalling in hepatocellular 
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carcinoma (Wang et al., 2016). In BT20 breast cancer and DU145 prostate cancer 

cells, ouabain significantly inhibits cell proliferation by inducing NKA endocytosis 

and degradation (Tian et al., 2009). LNCaP cells are sensitive to cardiac glycoside 

digitalis treatment compared to other prostate cancer cell lines, significantly 

increasing intracellular Ca2+ influx, causing cell toxicity and apoptosis (Yeh et al., 

2001). Therefore, repurposing cardiac glycosides as novel cancer therapeutics may 

further attenuate malignant progression when used in combination with current 

standard of care chemotherapeutics, or alongside surgery and radiotherapy.  

 

1.5 Project rationale, hypotheses and aims 

 

 Work carried out in this thesis focused on understanding contributions of 

ER and hypoxia in dysregulating important cellular processes that propel breast 

cancer progression. Studies were set out to expand understanding of ER 

regulation of Pol III transcription of tRNA and other class III genes in breast cancer 

cells. In addition, hypoxia, and to a lesser extent ER, were explored to delineate 

mechanisms of aberrant Na+ transport which stimulates breast cancer progression. 

Thus, the two main hypotheses tested in this thesis were: i. ER is recruited to 

many tRNA genes in breast cancer cells by a protein tethering mechanism, where it 

can coordinate rapid changes in expression in response to oestradiol (Hah et al., 

2011), and ii. Hypoxia and ER significantly contribute to dysregulated Na+ 

homeostasis in breast cancer by affecting expression of Na+ channels, including 

VGSCs, NKA and ENaC.  

 

The main aims of this thesis were: 

1. To quantify ER enrichment at tRNA genes and delineate the mechanism in 

which ER is recruited to Pol III-transcribed loci (Chapter 3). 

2. To identify robust reference genes (RGs) that can be used for sensitive RT-

qPCR investigations of hypoxia-mediated gene expression alterations in a 

panel of breast cancer cell lines (Chapter 4). 

3. To determine to what extent hypoxia and ER alter Na+ transport in TNBC 

and Luminal A breast cancers (Chapter 5). 

 



66 

2. Materials and Methods 

 

2.1 Cell culture 

 

2.1.1 Cell lines 

 

MCF-7 breast cancer cells used in Chapter 3 were purchased from the 

European Collection of Authenticated Cell Cultures (ECACC). For Chapter 4 and 

Chapter 5,  T-47D cells were provided by Dr. Andrew Holding (University of York), 

originally from ATCC, and MDA-MB-231 cells were a gift from Prof. Mustafa 

Djamgoz (Imperial College London). Both T-47D and MDA-MB-231 cell lines were 

authenticated once by Eurofins commercial STR profiling (Masters et al., 2001). The 

MCF-7 and MDA-MB-468 cell lines were newly purchased at the time of 

experiments from the American Type Tissue Collection (ATCC), which confirms STR 

profiling of cell lines at time of purchase. 

 

2.1.2 Maintenance of cells 

 

 Culture medium for MCF-7 cells used in chapter 3 was Dulbecco’s Modified 

Eagle Medium (DMEM; Gibco; 41966-029), supplemented with 10% (v/v) Foetal 

Bovine Serum (FBS; Gibco; 10270-098) and 1% (v/v) Penicillin Streptomycin 

(PenStrep; Gibco; 15070-063). Hormone-free medium was phenol red-free DMEM 

(Gibco; 31053-028), supplemented with 10% (v/v) hormone-depleted FBS (see 

2.1.2.3) and 1% (v/v) PenStrep. Cells were maintained in a humidified CO2 Galaxy 

B 150-400 incubator at 37°C and 5% CO2. Culture medium for all cell lines used in 

Chapter 4 and Chapter 5 was DMEM supplemented with 5% (v/v) FBS (Gibco; 

10270-106) and no antibiotic. Cell lines were maintained in a humidified Binder 

C150 CO2 incubator at 37°C and 5% CO2. All breast cancer cell lines throughout 

this thesis were grown in 75 cm2 treated canted neck culture flasks with vented caps 

(Corning) for standard culturing needs.  

 

To passage cells, medium was removed, and cells were washed with 

phosphate buffered saline (PBS; Gibco; 14200-067) before incubating at 37°C in 

0.05% Trypsin-EDTA (Gibco; 15400-054) in PBS. Once cells had detached, Trypsin-

EDTA was inactivated by the addition of culture medium and cell suspension was 

transferred to 15 ml falcon tubes before centrifugation (5 minutes, 1,200 Revolutions 
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Per Minute (RPM)). The supernatant was then aspirated, and remaining cell pellets 

were resuspended in culture media and split 1:5 into new 75 cm2 flasks. A maximum 

of 10 passages following thawing from long-term liquid nitrogen (LN2) storage were 

performed before cells were discarded and fresh cell stocks from LN2 were 

established. 

 

2.1.2.1 Cell counts and viability check 

 

 Cells were detached from the surface of the flask with 0.05% trypsin-EDTA 

in PBS, as described in Section 2.1.2. Following centrifugation, cell pellets were 

resuspended in 10 ml culture medium. An aliquot of cell suspension was diluted 1:5 

in Trypan Blue (Sigma-Aldrich; T8154) and viable and non-viable cells were counted 

using a Neubauer Haemocytometer and a Motic AE2000 inverted microscope. The 

number of cells/ml and cell viability was calculated by: 

 

 Cells/ml = 
# 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑑

# 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑑
 x 104 x dilution factor 

 % Viability = 
# 𝑜𝑓 𝑣𝑖𝑎𝑏𝑙𝑒 𝑐𝑒𝑙𝑙𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑑

# 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑑
  x 100 

 

2.1.2.2 Hypoxic culture of breast cancer cell lines 

 

 For studies investigating hypoxic effects, breast cancer cell lines were 

incubated in a humidified Baker Ruskinn InvivO2 oxygen workstation (37°C, 1% O2, 

5% CO2 and 96% N2) for the duration of the experiment. 

 

2.1.2.3 Charcoal stripping Hormone-depletion of FBS  

 

 Activated charcoal (Sigma-Aldrich; C9157) and Dextran (mW 60-76 kDa; 

Sigma-Aldrich; D8821) were incubated in FBS at a concentration of 1% (w/v) and 

0.1% (w/v) respectively, for one hour at room temperature with agitation. The 

charcoal was pelleted by centrifugation (15 minutes, 12,000 g). The supernatant 

was vacuum filtered, and filter sterilised using a 0.2 m stericup. This process was 

repeated twice to allow for sufficient depletion of endogenous steroids present in 

FBS. FBS stripping protocol was provided by Dr. Andrew Holding (Department of 
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Biology, University of York) who adapted the Dembinski method of hormone-

depletion (Dembinski et al., 1985). 

 

2.1.3 Freezing and thawing of breast cancer cells 

 

 Stocks of breast cancer cell lines were routinely kept in LN2 for long-term 

storage. To generate a cell line stock, early passage cells were grown to confluency 

in 75 cm2 flasks before trypsinisation and pelleting as described in 2.1.2. Cell pellets 

were resuspended in 1 ml freezing medium comprised of 70% (v/v) DMEM, 20% 

(v/v) FBS and 10% (v/v) dimethylsulfoxide (DMSO; PanReac AppliChem 

A3672,0100). Cells in freezing medium were divided into 200 l aliquots in Greiner 

cryovials and placed at -80°C for one week before being transferred to a LN2 dewar. 

 

 To thaw cells, cryovials were removed from LN2 and 1 ml of warmed culture 

medium (37.5°C) was used to gently wash over the frozen suspension. Thawed 

cells were transferred to a 75 cm2 flask containing culture medium and left overnight 

to adhere to the flask surface. Culture medium containing DMSO was removed the 

following day and replaced with fresh culture medium.  

 

2.1.4 Mycoplasma testing of cells 

 

Breast cancer cells used in Chapter 3 were tested for the presence of 

Mycoplasma by sending MCF-7 culture media to Eurofins Genomics Mycoplasma 

Service. Here, cells were cultured for one week without antibiotic. Following 

trypsinisation, cell culture supernatant was boiled at 95°C for 10 minutes. 

Supernatant was briefly centrifuged to pellet cellular debris, and a sample of 

medium was collected and sent off to Eurofins for PCR analysis to test for the 

presence of Mycoplasma species: M. arginini, M. fermentans, M. orale, M. 

hyorhinis, M. hominis, M. genitalium, M. salivarium, M. synoviae, M. pirum, M. 

gallisepticum, M. pneumoniae, M. yeatsii, Spiroplasma citri and Acholeplasma 

laidlawii..  

 

 Routine Mycoplasma testing of breast cancer cell lines used in Chapter 4 

and Chapter 5 was conducted in-house monthly. For this, cancer cell lines were 

seeded onto sterile 13 mm coverslips (Scientific Laboratory Supplies (SLS)) in 4-

well plates for 24 - 48 hours, until they had reached 50-80% confluency. Cells were 

fixed to coverslips with 100% methanol and allowed to air dry. Coverslips were 
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mounted onto microscopy slides with ~20 l ProLong Gold DAPI slide fix 

(Invitrogen; P36935). The slide was left to air dry and sealed by clear nail varnish. 

The presence of DAPI-stained contaminating Mycoplasma DNA was investigated 

using fluorescence microscopy (Russell et al., 1975).   

 

2.1.5 Pharmacology 

 

 Breast cancer cell lines were treated with various pharmacological agents 

during the work carried out in Chapter 3 and Chapter 5 (Table 2.1). Here, drugs 

were prepared in breast cancer culture medium and applied to cells. Cell lines were 

incubated at 37°C, 5% CO2 and 20% or 1% O2 for the duration of experiments. As a 

negative control, vehicle-only experiments were conducted in parallel to the drug 

treatment experiments.  
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Table 2.1 Pharmacological agents and their properties 

Drug Source 
Final Drug 

Concentration 

Final Vehicle 

Concentration 

Molecular 

Target 

17β-Oestradiol 
Sigma-Aldrich 

E2758 
100 nM 0.1% EtOH ER 

4-hydroxytamoxifen 
Sigma-Aldrich 

H6278 
12.5 M 0.1% EtOH ER 

Fulvestrant 
Thermo 

16627042 
100 nM 0.1% EtOH ER 

Ouabain octahydrate 
Calbiochem 

4995 
100 nM 0.001% DMSO NKA 
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2.2 Chromatin immunoprecipitation  

 

Per ChIP sample, 1 x107 MCF-7 cells were used. For chromatin extraction, 

cells were crosslinked with 1% formaldehyde in culture medium (v/v) for eight 

minutes at room temperature. Crosslinking was inhibited by adding equal volume 

(v/v) of ice-cold quenching buffer to the formaldehyde-culture medium solution (250 

mM Glycine/ 2mM EDTA / TBS). Cells were scraped off the flask surface, and cell 

suspension was collected into 50 ml falcon tubes followed by centrifugation (5 

minutes, 1,100 g, 4°C). Cells were washed twice more in ice cold quenching buffer 

with centrifugation (5 minutes, 1,100 g, 4°C). To lyse cell membranes, cells were 

washed in Buffer 1 (50 mM HEPES-KOH [pH 7.5], 140 mM NaCl, 1mM EDTA, 10% 

glycerol, 0.5% NP-40, 0.25% Triton X-100) for 10 minutes at 4°C. Cell lysate was 

collected by centrifugation (5 minutes, 1,100 g, 4°C), supernatant was discarded 

and pellet was resuspended and washed in Buffer 2 for 10 minutes at 4°C, in order 

to remove detergents (10 mM Tris-HCl [pH8.0], 200 mM EDTA, 1 mM EGTA). Nuclei 

were harvested by centrifugation (5 minutes, 1,100 g, 4°C), supernatant was 

discarded, and pellet was resuspended in Buffer 3 to disrupt nuclei (10 mM Tris-HCl 

[pH 8.0], 100 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 0.1% sodium deoxycholate, 

0.5% N-lauroylsarcosine). Nuclei were then sonicated (Bioruptor; 30 seconds per 

sonication cycle for a total of 12 sonication cycles). Finally, 0.1% of Triton X-100 

was added to nuclear extract and debris was pelleted by centrifugation (5 minutes, 

5,000 g, 4°C). 

 

For immunoprecipitation, Protein A DynabeadsTM were briefly washed in 

blocking solution (0.5% BSA in PBS (w/v)) and collected on a magnetic stand. Next, 

Dynabeads were incubated in blocking solution containing either pre-immune, anti-

RNA Polymerase III serum or anti-GTF3C5, anti- ER or anti-FOXA1 antibodies for 

2 hours at 4°C. Full details of antibodies and their dilutions are provided in Table 

2.2. Protein A: antibody-containing beads were added to nuclear lysate and mixed 

overnight at 4°C. Next, Dynabeads were collected on a magnetic rack and washed 

in RIPA buffer (50 mM HEPES-KOH [pH 7.6], 500 mM LiCl, 1 mM EDTA, 1% NP-40, 

0.7% Na-Deoxycholate) for six washes (5 minutes per wash, 4°C). Beads containing 

sample were washed with wash buffer (50 mM NaCl Tri- EDTA) twice (5 minutes per 

wash, 4°C) before incubating with elution buffer (100 mM NaHCO3 + 1% SDS (w/v)) 

at 50°C for 10 minutes. Crosslinking was reversed by heating at 55°C overnight. 

Chromatin was collected by adding 1.8x (v/v) SPRY beads and placing samples on 
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a magnetic stand after 10 minutes incubation with gentle agitation. Beads were 

washed twice with 80% ethanol. Finally, DNA was eluted from SPRY beads by 

resuspending in dH2O and heating for 5 minutes at 65°C for a total of two elution 

steps. Eluates were pooled together.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



73 

Table 2.2 Antibody Information and Experimental Applications. Abbreviations: 

Chromatin immunoprecipitation (ChIP), co-immunoprecipitation (Co-IP), western blot (WB), 

immunocytochemistry (ICC). 

Molecular Target Source 
Molecular 

Weight (kDa) 
Application Dilution 

1901 pre-immune 

(no target) 

Prof. R. J. White,  

University of York 
N/A ChIP 1.5:100 

1901 RNA 

Polymerase III 

Prof. R. J. White,  

University of York 
156 ChIP 1.5:100 

Ab2 GTF3C1 
Prof. R. J. White,  

University of York 
220 Co-IP 1:1,000 

3208 GTF3C2 
Prof. R. J. White,  

University of York 
110 Co-IP 2.5:100 

GTF3C5 
Bethyl;  

A301-242A 
63 

ChIP 

Co-IP 

1.5:100 

2.5:100 

ER 
Abcam; 

Ab32063 
67 

ChIP 

WB 

ICC 

3:1,000 

1:1,000 

1:500 

FOXA1 
GeneTex; 

GTX100308 
49 ChIP 4:1,000 

Ki67 
Abcam; 

Ab15580 
319 ICC 1:300 

AlexaFluor488 2° 

goat anti-rabbit 

Invitrogen; 

10236882 
N/A ICC 1:500 

HIF-1 
Cell Signalling; 

36169 
96 WB 1:1,000 

HIF-2 
ProteinTech; 

26422-1-AP 
96 WB 1:1,000 

-Tubulin 
Merck;  

T6199 
50 WB 1:5,000 

ꞵ-actin 
Santa Cruz;  

sc-47778 
43 WB 1:1,000 

Anti-rabbit IgG 

HRP-linked 2° 

Cell Signalling; 

7074S 
N/A WB 1:10,000 

Anti-mouse IgG 

HRP-linked 2° 

Cell Signalling; 

7076 
N/A WB 1:10,000 
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Table 2.3 Sequence Information of Primers Used in ChIP-qPCR and RT-qPCR Studies. 

All primers were made into 10 mM stocks before final dilution in qPCR reaction mixture.  

Gene Primer Sequences 5’ – 3’ Method Source 

Pro-TGG-1-1 
FWD: TTCTGGCTCGTTGGTCTAG 

REV: AGGGGCTCGTCCGG 
ChIP-qPCR (Malcolm et al., 2022) 

Arg-CCF-2-1 
FWD: GTGGCCTAATGGATAAGGCATCA 

REV: CTAATCTCACGCGACCCAGATG 
ChIP-qPCR (Malcolm et al., 2022) 

Met-CAT-1-1 
FWD: ACTAGGTGCCTCGTTAGCGCAG 

REV: ACAAAATTATTGTGCCCCGTGTGAGG 
ChIP-qPCR (Malcolm et al., 2022) 

Leu-AAG-2-4 
FWD: CATATTGCAGCTGGGTAGCG 

REV: CCGAAGAGACTGGAGCCTTA 
ChIP-qPCR (Malcolm et al., 2022) 

RMRP 
FWD: AAGAAGCGTATCCCGCTGAG 

REV: GCACTGCCTGCGTAACTAGA 
ChIP-qPCR (Malcolm et al., 2022) 

RN7SL1 
FWD: TATCCGACCGCCGGGC 

REV: AGTGGCTATTCACAGGCGCG 
ChIP-qPCR (Malcolm et al., 2022) 

GREB1 ERE 
FWD: GTGGCAACTGGGTCATTCTGA 

REV: CGACCCACAGAAATGAAAAGG 
ChIP-qPCR (Sun et al., 2007) 

Gene Desert 
FWD: CATCCCTGGACTGATTGTCA 

REV: GGTTGGCCAGGTACATGTTT 
ChIP-qPCR (Petrie et al., 2019) 

nSCN5A 
FWD: CATCCTCACCAACTGCGTGT 

REV: AAAGTTCGAAGAGCCGACAA 
RT-qPCR 

(Brackenbury et al., 

2007) 

SCN8A 
FWD: AGACCATCCGCACCATCCTG 

REV: TGTCAAAGTTGATCTTCACG 
RT-qPCR This Thesis 

SCN9A 
FWD: TATGACCATGAATAACCCAC 

REV: TCAGGTTTCCCATGAACAGC 
RT-qPCR This Thesis 

CA9 
FWD: GTGCCTATGAGCAGTTGCTGTC 

REV: AAGTAGCGGCTGAAGTCAGAGG 
RT-qPCR (Hou et al., 2014) 

OAZ1 
FWD: ATAAACCCAGCGCCACCATC 

REV: AGGGAGACCCTGGAACTCTCA 
RT-qPCR (Malcolm et al., 2024) 

ACTB 
FWD: CCTCGCCTTTGCCGATCC 

REV: GGATCTTCATGAGGTAGTCAGTC 
RT-qPCR (Zhang et al., 2005) 
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TBP 
FWD: GTGAGGTCGGGCAGGTTC 

REV: AAGAAACAGTGATGCTGGGTCA 
RT-qPCR (Malcolm et al., 2024) 

RPL27 
FWD: ATCGCCAAGAGATCAAAGATAA 

REV: TCTGAAGACATCCTTATTGACG 
RT-qPCR (de Jonge et al., 2007) 

RPL30 
FWD: ACTGCCCAGCTTTGAGGAAAT 

REV: GCCACTGTAGTGATGGACACC 
RT-qPCR (Malcolm et al., 2024) 

RPLP1 
FWD: AGGAAGCTAAGGCTGCGTTG 

REV: GCATTGATCTTATCCTCCGTGACT 
RT-qPCR (Malcolm et al., 2024) 

CCSER2 
FWD: GACAGGAGCATTACCACCTCAG 

REV: CTTCTGAGCCTGGAAAAAGGGC 
RT-qPCR (Hauck et al., 2022) 

GUSB 
FWD: CTGTACACGACACCCACCAC 

REV: ATTCGCCACGACTTTGTT 
RT-qPCR (Caradec et al., 2010) 

TFRC 
FWD: GGACGCGCTAGTGTTCTTCT 

REV: CATCTACTTGCCGAGCCAGG 
RT-qPCR 

(Kaneko et al., 2020; 

Zheng et al., 2022) 

PGK1 
FWD: GGAGCTCCTGGAAGGTAAAGTC 

REV: TCCTGGCACTGCATCTCTTG 
RT-qPCR (Malcolm et al., 2024) 

EPAS1 
FWD: CACCTCGGACCTTCACCACC 

REV: TCCTCTCCGAGCTACTCCTTTTC 
RT-qPCR (Malcolm et al., 2024) 

ATP1A1 
FWD: CTAGCTCCCTCCACTTGGCT 

REV: ATCACGTCCAACCCCCTTC 
RT-qPCR This Thesis 

NHERF1 
FWD: CACCAGCGAGGAGCTGAAT 

REV: AGTCTAGGATGGGGTCGGAG 
RT-qPCR This Thesis 

SCN1B 
FWD: CACAGGAGAATGCCTCGGAA 

REV: TTACGGCTGGCTCTTCCTTG 
RT-qPCR This Thesis 

SFXN2 
FWD: GGGAATCTGCGTGAAGGACA 

REV: CTGGCAGCAAGATCATCCCA 
RT-qPCR This Thesis 

SFXN3 
FWD: CAAATCCCTCACCAAGCACC 

REV: GAGTAGCCAAGCCTCTGACC 
RT-qPCR This Thesis 

SLC16A3 
FWD: CTTTGGCATCTCCTACGGCA 

REV: CATCCAGGAGTTTGCCTCCC 
RT-qPCR This Thesis 
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2.3 Immunocytochemistry and confocal microscopy 

 

MCF-7 cells were seeded onto sterile 16 mm coverslips to a density of 1 x 

105 cells/well of a 12-well plate in hormone-free DMEM. Cells were incubated for 

four days, with daily PBS washes and replenishment of hormone-free media. 

Experiments were started on the fifth day. At experimental end point, culture 

medium was aspirated, and cells were fixed to coverslips by incubation with 4% 

paraformaldehyde (Thermo Fisher; 043368-9M) in PBS (v/v) for 10 minutes at room 

temperature. Coverslips were washed twice with PBS and cells were permeabilized 

with 0.1% Triton X100 for 15 minutes. Coverslips were washed twice with PBS and 

blocked with 1% BSA in PBS (BSA-PBS w/v) for 30 minutes. The cells were washed 

twice with PBS and incubated with anti-ER or anti-Ki67 antibody in BSA-PBS for 

one hour (Table 2.2). Coverslips were washed three times with PBS and incubated 

with AlexaFluor488 goat anti-rabbit antibody in BSA-PBS for 1 hour. Coverslips 

were washed three times with PBS and left to air-dry for 15 minutes before 

mounting onto glass slides using EverBrite Hardset Mounting Medium with DAPI 

(Biotium; 23004). Cells were visualized on a Zeiss LSM 710 confocal microscope 

with an AxioImager.M2 upright platform using 405 and 488 nm laser lines, for DAPI 

and ER or Ki67, respectively.  

 

2.4 Wound healing assay 

  

MCF-7 and T-47D cells were seeded to a density of 5 x 106 cells/well of a 

6-well plate. Three biological replicates were carried out. Cells were left for 72 hours 

to attach and grow to complete confluency. A single wound was created down the 

centre of each well using a P1000 pipette tip before culture medium was aspirated 

and wells were washed for a total of three times with PBS to ensure detached cells 

from the wound were removed. Next, cells were treated with 100 nM Fulvestrant or 

corresponding vehicle, or 100 nM Ouabain or corresponding vehicle made up in 

culture medium (Table 2.1). Initial wound size was measured at 15 intersections 

(Figure 2.1) on a Motic AE2000 inverted microscope with an eyepiece graticule. 

Plates were then either returned to the incubator at 20% O2 or placed into the 

InvivO2 hypoxic workstation at 1% O2 for 24 hours. Finally, wound closure was 

measured at each of the 15 intersections, and Motility Index (MI) was calculated by: 

 MI = 1-(
𝑤𝑜𝑢𝑛𝑑 𝑠𝑖𝑧𝑒 𝑎𝑓𝑡𝑒𝑟 24 ℎ𝑜𝑢𝑟𝑠

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑜𝑢𝑛𝑑 𝑠𝑖𝑧𝑒
) 
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Figure 2.1 Example Figure to Demonstrate how Measurements were Taken in Each 

Well to Calculate MI. 
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2.4 RNA Extraction, cDNA synthesis and quantitative PCR 

 

2.4.1 RNA extraction 

 

MCF-7, T-47D, MDA-MB-231 and MDA-MB-468 cell lines were seeded to a 

density of 2 x105 per well of a 6-well plate and were left for a minimum of 24 hours 

before starting experiments. Each experiment comprised three biological replicates, 

consisting of three technical replicates. At the end of the experimental time point, all 

samples from each biological replicate were collected on the same day. To collect 

samples, cold QIAzol lysis reagent (QIAgen; 79306) was used as per 

manufacturer's guidelines. To isolate nucleic acids, phenol/chloroform with 

isopropanol precipitation was carried out as previously described (Toni et al., 2018). 

To enhance nucleic acid yield, GlycoBlue Coprecipitant (Invitrogen; AM9515) was 

included in the isolation step. Nucleic acid was re-suspended in 0.2 μm-filtered 

RNase-free water (Ambion; AM9937). To remove contaminating DNA, samples were 

treated with DNase I (New England BioLabs; M0303S) and incubated at 37°C for 10 

minutes. DNase I reaction was inhibited by the addition of 5 mM EDTA and heat 

inactivation at 75°C for 10 minutes. Final RNA concentration and purity were 

measured using a NanoDrop™ One/OneC Microvolume UV-Vis Spectrophotometer 

(Thermo Fisher Scientific). RNA with an A260/280 of ≥ 2.0 was used.  

 

2.4.2 Luminal A cell line sample preparation for RNA-sequencing 

 

 MCF-7 and T-47D cells were seeded to a density of 6,500 cells/cm2 in 10 

cm culture dishes and left for 24 hours before starting experiments. MCF-7 and T-

47D experiments were comprised of triplicate and quadruplicate biological 

replicates, respectively. At the end of the experiment, culture medium was aspirated, 

and cells were washed with PBS before trypsinisation for 5 minutes to detach cells. 

Trypsin was inactivated by culture media and cells were pelleted by centrifugation 

(300 g, 5 minutes). The supernatant was discarded, and the cell pellet was washed 

with 1 ml of PBS and centrifuged (500 g, 5 minutes). The supernatant was 

discarded, and the cell pellet was resuspended in PBS-RNA later (Sigma; R0901) 

and stored at -80°C prior to RNA extraction. Samples were thawed and PBS was 

added prior to RNA isolation with Monarch Total RNA mini kit (New England Biolabs; 

T2010S), as per manufacturer guidelines.  
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2.4.2 cDNA synthesis 

 

RNA was reverse transcribed using SuperScript IV cDNA Synthesis Kit as 

per manufacturer’s instructions (Invitrogen; 18091050). The final reaction volume 

was 20 μl, consisting of 1 μl 0.1M DTT, 4 μl SSIV buffer, 1 μl RNAseOUT, 1 μl SSIV 

Enzyme, 1 μg of RNA in 11 μl of dH2O, 1 μl of random hexamer and 1 μl of 10 mM 

dNTP. Reactions were carried out on a Bioer LifePro thermocycler, comprising an 

initial step at 65°C for 05:00 (mm:ss), followed by 23°C for 10:00 (mm:ss), 55°C for 

10:00 (mm:ss), 80°C for 10:00 (mm:ss) and then 4°C for 10:00 (mm:ss). cDNA was 

diluted to 5 ng / μl in 0.2 μm-filtered RNase-free water (Ambion; AM9937). A 

standard curve was prepared from pooled RNA from each biological replicate, and 

diluted to 20 ng / μl, 4 ng / μl, 0.8 ng / μl, 0.16 ng / μl and 0.032 ng / μl. Samples 

were stored at -30°C until further downstream analysis. 

 

2.4.3 qPCR for ChIP experiments 

 

Quantitative PCR (qPCR) was performed on a QuantStudio™ 3 qPCR 

system (Thermo Fisher). Duplicate reactions were performed using LUNA Universal 

qPCR Master Mix (NEB; M3003L). Final reaction volume was 20 l and consisted of 

10 l LUNA, 1 l primer stock, 8 l dH2O and 1 l of ChIP sample. For input, 2 ng of 

DNA (2 ng / l) was used. All details of primer sequences are provided in Table 2.3. 

RT-qPCR cycling parameters comprised an initial denaturation step at 95°C for 

03:00 (mm:ss), followed by 42 cycles of 00:20 (mm:ss) at 95°C, 00:15 (mm:ss) at 

62°C and 00:15 (mm:ss) at 72°C. Melt curve analysis was carried out in the final 

cycle of the RT-qPCR by increasing the temperature from 60°C to 95°C at 0.1°C per 

second. 

 

2.4.4 qPCR 

 

RT-qPCR was performed using the QuantStudio™ 7 qPCR system (Thermo 

Fisher) in MicroAmp optical 384-well reaction plates (Applied Biosystems; 4309849) 

sealed with Expell™ optical sealing membranes (CAPP; 510400C). Technical 

reactions were performed in duplicate using 2X SYBR Green SuperMix (Applied 

Biosystems; 4385612). Each reaction mixture had a final working volume of 12 μl, 

containing 6 μl SuperMix, 1 μl 10 μM primer stock (Table 2.3) and 4 μl of 5 ng / μl 

cDNA. For primer design, National Centre for Biotechnology Information (NCBI) 
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Primer BLAST was used to generate primer pair sequences that span the exon-

exon junction with an amplicon size of between 70 and 200 bp and an optimal 

melting temperature of 60°C ± 3°C. All primer sequences were run through NCBI 

Primer BLAST to ensure no unintended gene targets could be amplified, but 

predicted transcript variants of the same gene were allowed. Primers were 

purchased from Integrated DNA Technologies. 

 

For the standard curve, 80 ng, 16 ng, 3.2 ng, 0.64 ng and 0.128 ng of pooled 

cDNA was used. No-template reactions were included as a negative control. RT-

qPCR cycling parameters comprised an initial denaturation step at 95°C for 01:35 

(mm:ss), followed by 40 cycles of 00:03 (mm:ss) at 95°C and 00:30 (mm:ss) at 

60°C. Melt curve analysis was carried out in the final cycle of the RT-qPCR by 

increasing the temperature from 60°C to 95°C at 0.1°C per second. 

 

2.4.5 qPCR analysis 

 

Following qPCR, reaction summaries were exported from Thermo Fisher 

Design and Analysis Data Gallery and analysed in Microsoft Excel. A standard curve 

was used to calculate primer efficiency (PE) using the equation:  

PE% = (10(−1/𝑚) − 1) ∗ 100  

where 𝑚 denotes the slope of the standard curve. Then,  

PE = 𝑆𝑈𝑀(𝑃𝐸%/100) + 1.  

Efficiency-corrected Ct values (CtE) were calculated using the equation  

CtE =  𝑆𝑈𝑀(𝐶𝑡 ∗ (𝐿𝑜𝑔(𝑃𝐸)/𝐿𝑜𝑔(2)))  

mRNA expression (mE) of normoxic reference genes was determined by  

mE =  10((𝐶𝑡𝐸 − 𝑎)/𝑚)  

Where 𝑎 refers to the Y intercept.  
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2.5 Protein extraction and western blotting 

 

2.5.1 Protein extraction 

 

In Chapter 3, cells were washed with ice-cold PBS and collected in lysis 

buffer (150 mM NaCl, 20 mM Tris pH 8, 1 mM EDTA, 0.5 % NP-40 and protease 

inhibitor cocktail). In Chapter 4, cells were washed with ice-cold PBS and collected 

in RIPA buffer (Merck; R0278) with cOmpleteTM EDTA-free protease inhibitor 

cocktail (Sigma-Aldrich; 05892791001) and PhosSTOP TM phosphatase inhibitor 

(Roche; 04906845001). Samples were left to sit on ice for 10 minutes and then 

centrifuged to pellet cellular debris (16,000 g, 10 minutes, 4℃). Supernatant was 

collected for western blot analysis and pellet was discarded.  

 

2.5.2 Co-immunoprecipitation 

 

Protein lysate was pre-cleared by incubating with Protein A magnetic beads 

(Pierce: 88846) for 2 hours with rotation at room temperature. Magnetic beads were 

collected on a magnetic stand and lysates were transferred to fresh Eppendorf 

tubes. Samples were incubated overnight at 4°C with anti-ER antibody, anti-

GTF3C5 antibody or anti-GTF3C2 antisera (Table 2.2). A “mock” was prepared by 

incubating magnetic beads overnight without antibody. Protein A magnetic beads 

were washed three times with PBST and added to samples. Antibody-protein 

complexes were isolated and purified by incubation with protein A magnetic beads 

for 2 hours with rotation at room temperature. Magnetic beads were collected and 

washed three times in lysis buffer. Antibody-protein complexes were eluted from 

magnetic beads by incubating in Laemmli Buffer + ꞵ-Mercaptoethanol at 95℃ for 5 

minutes and quenching on ice. 

 

2.5.3 Western blot 

 

Cell lysate was prepared 1:4 (v/v) in Laemmli sample Buffer (Bio-Rad; 

1610747) with -mercaptoethanol (1:9 v/v) and boiled at 100°C for 5 or 15 minutes. 

Samples were quenched on ice, briefly centrifuged and loaded onto a 10% or 12% 

polyacrylamide gel (Table. 2.4). Samples were brought through the stacking gel by 

applying 70 V for 15 minutes. Samples were then resolved at 120 V until sample 

dye was at the bottom of the gel.  
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For Chapter 3, gels were equilibrated in 20% EtOH (v/v) for 10 minutes with 

gentle rocking, rinsed in dH2O loaded onto an iBlotTM 2 nitrocellulose transfer stack 

(Invitrogen; IB23001), and transferred in an iBlotTM 2 Gel Transfer Device 

(Invitrogen; 15217995) using a default program of 25 V for 7 minutes. Nitrocellulose 

membranes were blocked overnight at 4°C in blocking solution comprised of 5% 

(w/v) non-fat dairy milk (Marvel) and 1% (w/v) polyvinylpyrrolidone (PVP) in PBS 

with 0.1% (v/v) Tween 20 (PBST). Membranes were washed three times in PBST (5 

minutes per wash) before incubating at room temperature for one hour in anti-ER 

or anti--actin antibodies (Table 2.2) prepared in 5% (w/v) BSA, 1% (w/v) PVP and 

0.05% (w/v) sodium azide in PBST. Membranes were washed three times in PBST 

(5 minutes per wash) and incubated at room temperature for two hours in anti-rabbit 

(ER) or anti-mouse (-actin) IgG HRP-linked antibody (Table 2.2) in 5% (w/v) BSA 

and 1% (w/v) PVP in PBST. Membranes were washed three times in PBST (5 

minutes per wash). Finally, membranes were incubated for 5 minutes in 

SuperSignalTM West Pico PLUS Chemiluminescent Substrate (Thermo Fisher; 

34580) and imaged on the iBright FL500 imager.   

 

For Chapter 4, gels were loaded onto Trans-Blot Turbo Mini polyvinylidine 

difluoride (PVDF) membranes (Bio-Rad; 1704156EDU) and transferred in a Trans-

Blot Turbo Transfer Device (Bio-Rad; 1704150) using a default 1.5 mm gel program 

of 25 V for 10 minutes. Nitrocellulose membranes were blocked at room 

temperature for 1 hour in a blocking solution comprised of 4% (w/v) non-fat dairy 

milk (Marvel) in Tris-buffered saline (TBS) with 0.1% (v/v) Tween 20 (TBST). 

Membranes were washed three times in TBST (5 minutes per wash) before 

incubating overnight at 4°C in anti-HIF-1, HIF-2 or -Tubulin antibodies (Table 

2.2) prepared in blocking solution. Membranes were washed three times in TBST (5 

minutes per wash) and incubated at room temperature for one hour in anti-rabbit 

(HIF-1 and HIF-2) or anti-mouse (-Tubulin) IgG HRP-linked antibody (1:4,000 

v/v (Table 2.2)) in blocking solution. Membranes were washed three times in TBST 

(5 minutes per wash). Membranes were incubated for 5 minutes in western blotting 

luminol reagent (Santa Cruz; sc-2048) and imaged on the iBright FL500 imager.   
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2.5.2.1 Densitometry Analysis of HIF and -Tubulin bands 

  

 ImageJ was used to carry out densitometry analysis of protein bands 

following image development. The “rectangle” tool was used mark out individual 

lanes containing HIF- and -Tubulin bands. The Analyze > Gels functions were 

used to plot each lane, and the “wand” tool was used to measure the area under the 

curve (AUC) for each band in each lane. AUC values were used to normalise HIF-

1 or HIF-2 band density to corresponding -Tubulin band density  

  

Normalised density = 
𝐴𝑈𝐶 𝑜𝑓 𝐻𝐼𝐹−𝑎

𝐴𝑈𝐶 𝑜𝑓 𝑎−𝑇𝑢𝑏𝑢𝑙𝑖𝑛
  

  

Fold change of normalised HIF-2 after 8 or 48 hours in hypoxia was compared to 

normoxic (0 hour) normalised HIF-2 band density 

 

Fold Change = 
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 ℎ𝑦𝑝𝑜𝑥𝑖𝑐 𝐻𝐼𝐹−2𝑎

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑛𝑜𝑟𝑚𝑜𝑥𝑖𝑐 𝐻𝐼𝐹−2𝑎
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Table 2.4 Western blot polyacrylamide gel recipes.  

Reagent Stacking  12% Resolving 10% Resolving  

30% Acrylamide /  

0.8% bisacrylamide 
0.98 ml 9 ml 7.5 ml 

4x Tris-Cl/SDS, pH 6.8 1.9 ml - - 

4x Tris-Cl/SDS, pH 8.8 - 5.6 ml 5.6 ml 

dH2O 4.6 7.9 ml 9.4 ml 

10% Ammonium Persulfate (w/v) 37.5 l 75 l 75 l 

TEMED 7.5 l 15 l 15 l 
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2.6 Bioinformatic approaches to investigate ER association with tRNA genes 

in breast cancer cell lines and patient specimens 

 

2.6.1 Acquiring MCF-7, MDA-MB-231 and clinical breast cancer ER and 

FOXA1 ChIP-seq datasets  

  

Publicly available ChIP-seq datasets are available from the Encyclopaedia of 

DNA Elements (ENCODE) or the National Institutes of Health Sequence Read 

Archive (NIH SRA). Specific information regarding the datasets used in this thesis is 

in Table 2.5.  

 

To access datasets from the NCBI SRA, usegalaxy,org (version 21.05.rc1) 

was used to acquire files in Fastq format with “download and extract reads in 

FASTA/Q format from NCBI SRA”. Next, Fastq files were converted to Binary 

Alignment and Map (BAM) format. For this, Bowtie2 was implemented to map 

sequencing reads against a reference genome (Table 2.5).  
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Table 2.5 Details of Public ChIP-Seq Datasets. 

Repository and 

Experiment ID  
File ID Target Tissue Type Source 

ENCODE 

ENCSR463GOT 

ENCFF365BIT 

ER 

MCF-7 (CRISPR 

insertion: stable 

C-terminal LAP-

tag containing 

eGFP, fused to 

ESR1) 

(ENCODE Project 

Consortium, 

2012) 
ENCFF063JMY 

SRA 

PRJNA147213 

SRR1021787 

ER 

MCF-7 

(Ross-Innes et al., 

2012; Caizzi et 

al., 2014) 

SRR1021788 

SRR1021789 

SRR1021801 
FOXA1 

SRR1021803 

SRR1021749 

ER 
Invasive Ductal 

Carcinoma 

SRR1021750 

SRR1021756 

SRR1021758 

SRR1021790 ER ZR-75-1 

SRR1021765 

ER Metastasis SRR1021766 

SRR1021767 

SRA 

PRJNA129093 
GSM560853 ER 

MDA-MB-231 

(stable expression 

of a wildtype ER 

construct) 

(Stender et al., 

2010) 
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2.6.2 EaSeq for the quantification of transcription factor enrichment  

 

ChIP-Seq datasets were uploaded into EaSeq “Datasets”. Complete tables 

of tracked GRCh38 (hg38), GRCh37 (hg19) and NCBI36 (hg18) tRNA genes, or 

hg38 snoRNA and miRNA genes were downloaded from the UCSC Table Browser, 

(available at https://genome.ucsc.edu) and imported as EaSeq “Region Set”. 

Complete RefSeq mRNA genome assemblies were downloaded directly into 

“Region Sets” from EaSeq. To quantify transcription factor peaks at tRNA or protein 

coding genes, EaSeq “quantify” tool was used. This tool counts the number of reads 

from the “Dataset” that overlaps with the specified regions of interest in the “Region 

set”. For this process, default setting of “normalize signal to a size of 1000 bp” was 

unchecked. Quantification analyses were performed at ± 500 bp from the start of 

tRNA genes. A wider window was used for protein coding genes if necessary. 

Quantification values are referred to as “Q-values” in this thesis. Data visualisation 

was performed using EaSeq “heatmap”, “average signal intensity plot” and “filltrack” 

tools. EaSeq is available at http://easeq.net (Lerdrup et al., 2016). 

 

2.6.3 Characterisation of ER-bound tRNA genes based on their role in 

cellular processes 

 

Classification of tRNA gene function was previously conducted in order to 

characterise their primary role in cellular processes of proliferation, differentiation or 

other processes by Gingold et al. (Gingold et al., 2014). To determine if tRNA genes 

enriched with ER signals were more involved in differentiation of proliferation, the 

top 50 ER-bound tRNA genes from the ENCODE MCF-7 ChIP-seq dataset were 

independently compared against the Gingold classifier list using Excel conditional 

formatting. 

 

2.6.4 tRNA gene coordinate remapping 

 

To determine overlap between ER-associated tDNA in MCF-7 cells aligned 

to hg38 and hg18 invasive ductal carcinoma samples, NCBI genome remapping 

service was implemented to remap hg38 tDNA coordinates to NCBI36 hg18 tDNA 

coordinates (available at https://www.ncbi.nlm.nih.gov/genome/tools/remap). Of the 

631 hg38 tDNA coordinates provided, 80% were successfully remapped (Malcolm et 

al., 2022). 
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2.7 Motif analysis 

 

Motif investigations were conducted in high confidence tRNA genes with the 

largest ER Q-values following analysis of ENCODE and Ross-Innes MCF-7 ER 

ChIP-seq datasets (n = 19). The tRNA sequences ± 20 kbp were obtained using the 

NCBI Gene database and supplied to the Multiple Expectation Maximization for 

Motif Elicitation (MEME) Suite CentriMo (v 5.3.0) to search for known sequences, 

using default settings. Sequence motifs of the TFIIIC-recognised conserved A box 

(TRGYNNARNNG) and B box (RGTTCRANTCC), and of the ERE 

(GGTCAnnnTGACC) or half EREs (GGTCA; TGACC) were supplied. 

 

2.8 Analysing public qPLEX-RIME data 

 

 Multiplexed (qPLEX) Rapid Immunoprecipitation Mass spectrometry of 

Endogenous proteins (RIME) was performed in MCF-7 cells and five independent 

ER+ human breast cancer tumours and compared to IgG controls. Data were 

acquired from Papachristou et al. supplementary data sets 2, 8 and 11 

(Papachristou et al., 2018).  

 

2.9 Reference gene candidate selection and validation 

 

2.9.1 Analysis of public RNA-seq data to identify reference genes 

 

High throughput RNA-seq datasets of 32 breast cancer cell lines cultured in 

20% or 1% O2 for 24 hours are available from the NCBI Gene Expression Omnibus 

(GEO; Series Accession: GSE111653) (Ye et al., 2018; Godet et al., 2019). Using 

the University of York’s Viking 2 cluster, we recovered paired-end fastq files for 

hypoxic and normoxic MCF-7, T-47D, MDA-MB-231 and MDA-MB-468 breast 

cancer cells with fastq-dump (Table 2.6). Low-quality reads were trimmed with 

trimmomatic (ILLUMINACLIP: TruSeq3-PE.fa:2:30:20 LEADING:3 TRAILING:3 

SLIDINGWINDOW:4:15 MINLEN:36) and fastQC reports were generated with 

fastQC. Reads were pseudoaligned to the GRCh38.p14 annotation (release 111) 

and quantified using kallisto. Hierarchical Data Format (h5) files containing 

quantified reads for each experiment were input into RStudio (version 4.3.3). Here, 

quantified reads were aggregated on the gene level using sleuth_prep (gene_mode 

= TRUE) for differential analysis.  
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Table 2.6 SRA Accession Numbers. Hypoxic (1% O2, 24 hours) and Normoxic Breast 

Cancer Cell Lines from BioProject PRJNA437670, Series GSE111653 (Ye et al., 2018; 

Godet et al., 2019) 

SRA Run Accession 
number 

Breast Cancer 
Cell Line 

Breast Cancer 
Subtype 

Environmental Oxygen 
Status 

SRR6822831 
MCF-7 Luminal A 

Hypoxic 

SRR6822832 Normoxic 

SRR6822837 MDA-MB-231-
PSOC 

Basal B 
Hypoxic 

SRR6822838 Normoxic 

SRR6822841 
MDA-MB-468 Basal A 

Hypoxic 

SRR6822842 Normoxic 

SRR6822857 
T-47D Luminal A 

Hypoxic 

SRR6822858 Normoxic 
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2.9.2 Stability score determination 

 

To determine relative stability across a selection of common reference genes (RGs), 

and generate a shortlist of RG candidates, normalised reads in transcript per million 

(TPM) at common RGs in hypoxia and normoxia were assessed independently for 

each cell line. A shortlist of RG candidates was selected based on (i) the 

appearance of the RG in literature searches and/or (ii) had a calculated similarity (s) 

score of ≤ 0.3 between the 20% and 1% O2 conditions in at least two of the breast 

cancer cell lines. s was calculated by s = 1 - MIN(A,B) / MAX(A,B) (Microsoft Excel), 

where A is the read count value for a gene in 1% O2, B is the read count value for a 

gene in 20% O2, MIN refers to the smallest value between A and B and MAX 

determines the maximum value between A and B. Additionally, s scores were 

calculated across remaining RNA-seq datasets of 28 breast cancer cell lines 

previously described (GSE111653), by accessing author-generated TPM data 

available in “GSE111653_GilkesSalmonCounts.csv.gz” from NCBI GEO (Ye et al., 

2018; Godet et al., 2019).  

 

2.9.3 RefFinder for RG selection 

 

Following RT-qPCR (Section 2.4), CtE values were supplied to RefFinder, 

(https://www.ciidirsinaloa.com.mx/RefFinder-master) for determination of most 

stable reference genes to be used in normoxic vs. hypoxic breast cancer cell lines  

(Xie et al., 2012). RefFinder is a comprehensive program which employs 

computational RG analysis tools GeNorm (Vandesompele et al., 2002), NormFinder 

(Andersen et al., 2004), BestKeeper (Pfaffl et al., 2004) and the comparative ΔCt 

method (Silver et al., 2006) to rank candidate RGs based on the ranking from each 

RG analysis tools.  

 

2.10 RNA-seq analysis of ER+ breast cancer cell lines 

 

Experimental design, execution and sample preparation was carried out by 

Dr. Susanna Rose from Dr. Andrew Holding’s lab (University of York). I carried out 

bioinformatic analysis of RNA-seq data generated by these experiments described 

in 2.10.1 – 2.10.3. After RNA extraction samples were sent for Illumina next 

generation sequencing (NGS), at the University of York Bioscience Technology 

Facility, Genomics Laboratory. cDNA libraries were prepared (by the Genomics lab 

in the Bioscience Technology Facility at the University of York) from 1 ug total RNA 
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from each sample using the NEBNext Ultra II Directional Library prep kit for Illumina 

in conjunction with the NEBNext® Poly(A) mRNA Magnetic Isolation Module (New 

England Biolabs), according to the manufacturer’s instructions. A 13-minute 

fragmentation time was used when eluting mRNA from polyA magnetic beads. 

Amplification of the final libraries involved 8 cycles of PCR using the NEBNext 

multiplex Oligos from Illumina (New England Biolabs). The samples were pooled at 

equimolar ratios, then run for paired-end 150 base sequencing on an Illumina 

NovaSeq 6000 instrument. 

 

2.10.1 Preparation of RNA-seq datasets 

 

 RNA-seq files were stored on the University of York’s Viking 2 HPC. 

Datasets were handled as described in 2.9.1, including trimmomatic to remove low-

quality reads, psuedoalinment to GRCh38.p14 annotation with kallisto and quality 

checks of RNA-seq data with fastQC. 

 

2.10.2 Differential expression and gene set enrichment analysis 

 

To conduct differential gene expression analysis (DGEA), h5 files containing 

kallisto-quantified reads for each experiment were input into RStudio (version 4.3.3). 

Here, biomaRt was used to generate a data frame containing human transcript and 

gene ID’s from Ensembl (release 111). Next, DESeq2 was implemented to 

investigate differential gene expression analysis in each cell line. Due to the 

experimental setup (Figure 2.2), the following comparisons could be made: 

 

• vehicle_normoxia vs. fulvestrant_normoxia 

• vehicle_normoxia vs. vehicle_hypoxia  

• vehicle_normoxia vs. fulvestrant_hypoxia 

• vehicle_hypoxia vs. fulvestrant_hypoxia 

• vehicle_hypoxia vs. fulvestrant_normoxia 

• fulvestrant_normoxia vs. fulvestrant_hypoxia 

 

Where the object is written in bold, this signifies the control condition in which 

comparisons were made against. For DGEA, DESeq2 undertakes the Wald test to 

determine significant differential gene expression. Here the null hypothesis is that 

there is no differential expression between two sample groups (log fold change = 0). 
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A significant result is reported where p < 0.05. To control for false discovery rate 

(FDR) the Benjamini-Hochberg (BH) method is implemented, generating Padj 

scores (Benjamini and Hochberg, 1995).  

 

To carry out GSEA, clusterProfiler was used. This allows identification of 

coordinated differential regulation of sets of genes which collectively may be 

involved in a specific molecular function (MF) or biological process (BP) 

(Subramanian et al., 2005; Yu, 2022, 04 / 24 / 2022). Following DGEA, ranked gene 

lists were created using significantly differentially expressed genes (DESeq2; padj < 

0.05) ordered by Log2FC, and GSEA was implemented to investigate which MFs, or 

BPs are significantly enriched in each experimental comparison. Additionally, MFs 

or BPs associated with Na+ transport and homeostasis were specifically looked for 

during using grep command to search for “sodium” in GSEA outputs. To report 

significantly enriched gene sets, clusterProfiler incorporates three main elements: 

 

1. Calculation of an enrichment score which represents the degree to 

which an apriori defined set of genes in a gene set are over-

represented at the top or bottom of a ranked DESeq2 list (ranked in 

order of Log2FoldChange) 

2. Estimation of enrichment score significance to generate a p-value 

using a permutational approach. Specifically, a Kolmogorov-Smirnov-

like test is implemented (Subramanian et al., 2005)  

3. Adjustment for multiple hypothesis testing and false discovery rate 

control with the BH method. 

 

2.11 Statistical analysis 

 

Statistical analysis was performed on raw (non-normalised, unless stated 

otherwise) data using GraphPad Prism 8.0.2. RNA-seq statistics were determined 

using DESeq2 and clusterProfiler as described in 2.10.3. Multiple comparisons of 

normally distributed data were made using ANOVA with Dunnett’s, Tukey’s or 

Sidak’s post hoc tests. Pairwise statistical significance was determined with 

Student’s unpaired t-tests. Statistical testing of contingency tables was carried out 

with Fisher’s exact test. Results were considered statistically significant where p < 

0.05, or padj < 0.05 for DGEA (Benjamini and Hochberg, 1995; Mistry et al., 2017; 

Love et al., 2024). Levels of significance used: * p < 0.05, ** p < 0.01 and *** p < 

0.001.  
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3. Investigating ER localisation at tRNA genes in ER+ Breast Cancer Cell 

Lines and Patient Breast Tumours  

 

3.1 Introduction 

 

RNA polymerase III (Pol III) is the largest of the three RNA polymerase 

enzymes that transcribe the human genome and is essential for the transcription of 

small non-coding (nc)RNAs, including 5S rRNA, tRNA and U6 spliceosome nuclear 

RNA (Cramer, 2002; Dieci et al., 2007; Vannini and Cramer, 2012). Due to the 

fundamental role ncRNAs play in regulating transcription, RNA processing and 

translation, mechanisms controlling their transcription are tightly regulated during 

the cell cycle and coupled to growth and differentiation (Dumay-Odelot et al., 2010). 

The recruitment of Pol III to its target genes is directed by promoter architecture, of 

which there are three main types (Type I, II and III). For Type II ncRNA, including 

tRNA, internal A and B box elements are bound by the hexameric complex TFIIIC, 

which in turn recruits TFIIIB upstream of the TSS, followed by Pol III at its target 

genes (Schramm and Hernandez, 2002; Ramsay and Vannini, 2018). Several 

tumour suppressors have been identified to negatively control Pol III transcription, 

including RB, p54, PTEN and BRCA1 (White et al., 1996; Cairns and White, 1998; 

Woiwode et al., 2008; Veras et al., 2009). Inactivation of such tumour suppressors, 

or activation of oncogenes Ras and Myc has been strongly implicated in many 

malignancies, including breast and ovarian tumours (White et al., 1996; Cairns and 

White, 1998; Johnson et al., 2000; Gomez-Roman et al., 2003; White, 2005; 

Woiwode et al., 2008; Veras et al., 2009; Grewal, 2015).  

 

Where tRNA are concerned, the observation that breast tumours exhibit 

significantly increased tRNA levels relative to healthy tissues has been reported, 

though the mechanism of aberrant induction is not yet fully understood (Pavon-

Eternod et al., 2009). Additionally, dysregulated tRNA expression has been 

identified in several other types of cancer, including but not limited to oesophageal, 

bladder, lung and prostate cancers (Zhang et al., 2018). In 2011, some insight into 

the potential driving force behind tRNA overexpression in breast cancer was first 

described. Here, global run on (GRO)-sequencing demonstrated significant 

oestradiol-mediated induction of 32% of tRNA genes within a 10 - 160 minute 

treatment window in MCF-7 cells (Hah et al., 2011). The rapid nature of this 

increased tRNA expression in response to oestradiol suggests a primary and direct 

mechanism of induction. To the best of our knowledge, this study by Hah et al. is the 
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only significant large-scale investigation implicating ER in regulating the tRNAome. 

However, the ER has been shown to occupy tRNALeu and 5S rRNA promoters in 

MCF-7 cells, enhancing their alcohol-mediated expression, an effect that can be 

repressed by modulating ER activity with tamoxifen (Zhang et al., 2013b; Zhong et 

al., 2014; Fang et al., 2017). Together, these findings implicate the ER in regulating 

tRNA gene expression in breast cancer cells. Additionally, some evidence suggests 

that the ER may interact directly with Pol III transcriptional machinery, as well as 

recruit essential co-regulators such as p300 to tRNA promoters to enhance 

transcription efficiency (Mertens and Roeder, 2008; Zhang et al., 2013b; Zhong et 

al., 2014; Fang et al., 2017). Notably, a previous study by Finlay-Shultz et al. 

identified PgR but not ER to be significantly associated with tRNA genes in patient-

derived xenograft tumours, mediated by a physical interaction between PgR and Pol 

III (Finlay-Schultz et al., 2017).  

 

3.1.1 Aims and hypotheses 

 

 The first hypothesis of this Chapter was that the ER is directly associated 

with many tRNA promoters in breast cancer cells, where it can elicit rapid induction 

of tRNA expression in response to oestradiol (Hah et al., 2011). Secondly, the ER 

is directed to target tDNA loci either through a canonical DNA binding mechanism, 

or a protein tethering mechanism, as seen for protein-coding gene targets of the 

hormone receptor. These hypotheses were tested by: 

• Analysing public ER ChIP-seq datasets from breast cancer cell lines, 

primary breast tumours and metastatic patient samples to quantify 

ER recruitment to tRNA genes,  

o Confirming major findings with ChIP-qPCR. 

• In silico analysis of tRNA sequences to search for proximal and distal 

canonical ERE motifs to test a DNA-biding mechanism of ER recruitment 

• Comparing Pol III, TFIIIC and FOXA1 enrichment at tDNA loci with or without 

ER by ChIP-qPCR in MCF-7 cells to investigate the role of ER in PIC 

assembly. 

• Analysing qPLEX-RIME datasets from MCF-7 cells and primary breast 

tumours to identify proteins strongly interacting with ER to explore protein-

protein interactions that direct ERa to target tRNA promoters. 

o Validating results with co-immunoprecipitation. 
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3.2 Results 

 

3.2.1 Cellular localisation of ER in MCF-7 breast cancer cells is responsive to 

hormone stimulation 

 

First, the effect of hormone stimulation on the cellular localisation of ER 

was assessed in vitro in MCF-7 breast cancer cells. This was an important 

consideration, as MCF-7 cells were to be used as the primary cell line for 

investigating mechanisms of ER-dependent altered tRNA gene expression in 

ER+ breast cancer. Prior to hormone stimulation, MCF-7 cells were serum starved 

for four days with daily PBS washes to ensure complete removal of exogenous 

hormone present in culture medium. MCF-7 cells were stimulated with either 100 

nM oestradiol or corresponding vehicle for 24 hours, and ER expression and 

localisation were determined by immunocytochemistry (ICC). Here, ICC revealed a 

diffuse localisation of ER in cytosol and nuclei of MCF-7 cells that were treated 

with the vehicle control for 24 hours (Figure 3.1). In contrast, strong induction of 

ER localisation to nuclei is observed in MCF-7 cells stimulated with oestradiol, with 

moderate cytosolic distribution detected (Figure 3.1).  
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Figure 3.1 The ER is Localised in Cytosol and Nuclei of MCF-7 Cells. MCF-7 

cells were stimulated with 100 nM oestradiol (O) or corresponding vehicle (V) for 24 

hours. Immunocytochemistry was carried out to determine cellular localisation of ER 

in MCF-7 cells with or without hormone. Images are split into nuclei staining with 

DAPI (blue), ER (green) and merge of DAPI and ER.  
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To further demonstrate MCF-7 cell line suitability for downstream 

investigations of ER and tRNA transcription mechanisms, changes in proliferation 

due to oestradiol stimulation or negative regulation of ER by tamoxifen in MCF-7 

cells was studied. ICC of nuclear protein Ki67 was used as a positive marker of 

MCF-7 cells actively undergoing cell division (Gerdes et al., 1983, 1991). Here, ICC 

analysis of Ki67-stained nuclei demonstrated that most serum-starved vehicle-

treated MCF-7 cells were exhibiting cell cycle arrest, as shown by the low proportion 

of cell nuclei positive for Ki67 expression (Figure 3.2a). Conversely, stimulation of 

MCF-7 cells with oestradiol for 24 hours resulted in great enrichment of nuclei 

positively stained for Ki67, suggesting cells are re-entering the cell cycle and are 

proliferating in response to hormone. Quantification of the proportion of cells 

positive for Ki67 shows significant increase in the number of actively proliferating 

MCF-7 cells in response to oestradiol, when compared to vehicle treated cells 

(Figure 3.2b). Finally, 12.5 M of ER antagonist tamoxifen was added alone or in 

conjunction with 100 nM oestradiol. The specified concentration of tamoxifen was 

selected as it has previously been shown to compromise ethanol-induced mRNA 

and protein expression of Brf1, a key regulator of Pol III activity and tRNA 

expression, and of great importance to the aims being tested further in Chapter 3 

(Fang et al., 2017). In this Chapter, addition of tamoxifen alone orwith oestradiol 

significantly inhibited MCF-7 cell re-entry into the cell cycle (Figure 3.2a – Figure 

3.2b).  
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Figure 3.2 MCF-7 Breast Cancer Cells Proliferate in Response to Oestradiol. MCF-7 

cells were stimulated with 100 nM oestradiol (O), 100 nM oestradiol and 12.5 M 

Tamoxifen (OT), 12.5 M Tamoxifen alone (T), or the corresponding vehicle (V) for 24 

hours. (a) Immunocytochemistry of Ki67 in MCF-7 breast cancer cell lines.  Images are 

split into nuclei staining with DAPI (blue), Ki67 (green) and merge of DAPI and Ki67. (b) 

Quantification of Ki67 stained MCF-7 breast cancer cells (%) following 24-hour treatment 

with 100 nM oestradiol (O), 100 nM oestradiol and 12.5 M Tamoxifen (OT), 12.5 M 

Tamoxifen alone (T), or vehicle (V). One-way ANOVA with Tukey’s multiple comparisons 

was performed. *p < 0.05, ** p = < 0.01. Error bars are ± SEM. n = 3. 
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In summary, MCF-7 cells to be used in this Thesis for the basis of 

investigating ER-mediated dysregulated tRNA synthesis in breast cancer showed 

(i) expected expression of  ER which was appropriately translocated to the 

nucleus upon hormone stimulation and (ii) demonstrated conventional proliferation 

responses to oestrogen and tamoxifen, in line with previous observations (Xu et al., 

2013; Tian et al., 2018).Therefore, MCF-7 cells were suitable for experiments 

investigating the relationship between the ER, Pol III and tRNA gene expression.  

 

3.2.2 The localisation of ER at tRNA genes in ER+ cell lines is widespread 

 

To investigate the extent to which tRNA genes are under the positive 

regulation of oestradiol signalling previously suggested by Hah et al. in 2011, 

replicate ER ChIP-seq datasets carried out in MCF-7 cells were obtained from 

ENCODE (ENCSR463GOT) and interrogated for identification of potential tRNA 

targets of the steroid receptor (ENCODE Project Consortium, 2012). UCSC table 

browser was used to generate complete tracks of 631 annotated tRNA genes (Lee 

et al., 2022; Raney et al., 2024). Analysis revealed that of the 631 annotated tRNA 

genes in the human genome, a robust association of ER with approximately 300 

tRNA genes in MCF-7 cells is found. Specifically, a heatmap of ER binding 

revealed a specific concentration of ER at about half of all tDNA, within 10 kb 

upstream and downstream flanking region from the centre of tRNA genes (Figure 

3.3a). Investigating an additional independent ER ChIP-seq dataset from MCF-7 

cells confirmed this finding (Figure 3.3b). Biological reproducibility was validated 

with ZR-75-1 cells, another ER+ breast cancer cell line which also demonstrated 

strong ER enrichment across many tRNA genes (Figure 3.3c) (Dai et al., 2017). To 

understand the selectivity of the ER when it comes to binding non-coding RNAs, 

two other classes of short non-coding RNA were investigated for ER enrichment in 

MCF-7 cells. Here, a very small proportion of snoRNAs and miRNAs were found to 

be bound by the ER in comparison to tRNA genes (Figure 3.3d). This result 

suggested that the ER is targeting tRNA genes, and that the enrichment identified 

at this class of small non-coding RNAs was not an artefact of the sequencing 

process. Additionally, an average signal intensity plot confirmed peaks of ER 

binding overlap with tRNA genes, whereas no representative signal was observed in 

a 10 kb upstream and downstream surrounding sequence (Figure 3.3e).  
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Figure 3.3 ER is Enriched at tRNA Genes in ER+ Cell Lines. Heatmap of 

ER binding events across tRNA genes in ER+ MCF-7 cells from (a) ENCODE or 

(b) Ross-Innes et al., or (c) ER+ ZR-75-1 breast cancer cells. Window represents 

the ± 10 kb region from the centre of tRNA genes. (d) Heatmap of ER binding 

events across snoRNA and miRNA genes in the MCF-7 (ENCODE) cell line. Window 

represents the ± 10 kb region from the centre of snoRNA and miRNA genes. (e) 

Average signal intensity overlay of ER ChIP-seq replicates (R1 and R2) from the 

ENCODE dataset, across all tRNA genes in the MCF-7 cell line. Window represents 

the ± 10 kb region from the centre of tRNA genes. 
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Next, ER signal intensity across tRNA genes was quantified using EaSeq 

“quantify” tool, generating quantification (Q)-values (Lerdrup et al., 2016). The top 

ER-bound tRNA gene was tRNA-Pro-TGG-1-1 with an average Q-value of 6.1, 

followed by tRNA-Arg-CCG-2-1 with a Q-value of 4.6. In comparison, known ER-

regulated genes CTSD, GREB1, TFF1 and CCND1 had Q-values in the range of 

0.5 - 4.1. This indicates that a Q-value of 0.5 is a suitable minimum threshold of 

bone fide targets of the ER. With that in mind, quantification of ER binding across 

the tRNAome in MCF-7 cells revealed 47.4 % of tRNA genes with a Q-value 

exceeding the minimum threshold of Q > 0.5, including three initiator methionine 

(iMet) tRNA genes, which had Q-values in the range of 1.68 - 1.97 and were ranked 

in the top 40 - 65 genes associated with predicted genuine ER interactions.  

 

Enriched binding of the ER was seen when reads at individual tDNAs were 

plotted. Here, clear overlap of ER with tDNA loci is evident, such as at tRNA-Pro-

TGG-1-1, tRNA-Arg-CCG-2-1 and tRNA-Met-CAT-1-1 (Figure 3.4a). Examples were 

also found of binding nearby rather than at a particular tRNA genomic locus, e.g. 

tRNA-Leu-AAG-2-4. To validate the ChIP-seq findings, ER and Pol III ChIP-qPCR 

was carried out in MCF-7 cells. As expected, there was a strong enrichment of Pol 

III at tRNA-Pro-TGG-1-1, tRNA-Arg-CCG-2-1, tRNA-Met-CAT-1-1 and tRNA-Leu-

AAG-2-4 (Figure 3.4b). Additionally, ER binding was enriched at these tDNAs, 

relative to the 1901 pre-immune control (e.g., the sera taken from a rabbit before it 

was immunized with the RNA Pol III antigen) (Figure 3.4b). The enrichment of ER 

at tRNA genes by ChIP-qPCR independently supports the ChIP-seq evidence that 

ER binds to tRNA genes in MCF-7 cells. 

 

Next, overlap in ER binding between the MCF-7 and ZR-75-1 cell lines was 

tested, using the Ross-Innes and ENCODE ER ChIP-seq datasets. Of the 631 

hg18 tRNA genes downloaded from UCSC Table Browser, 180 of the same tRNA 

had an ER binding event exceeding the 0.5 Q-value threshold in both MCF-7 and 

ZR-75-1 cells from the Ross-Innes dataset, and the MCF-7 cells from the ENCODE 

dataset (Figure 3.4c). For ZR-75-1 cells, only 14 out of 219 tRNA genes with 

enriched ER binding (Q > 0.5) was unique to this cell line. Additionally, 241 ER 

binding events were shared between both MCF-7 ER-ChIP-seq datasets. 

However, more than 100 ER binding events were also found to be unique to either 

the ENCODE or Ross-Innes MCF-7 ChIP-seq datasets. 
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Figure 3.4 Identification of ER at Individual tRNA Loci. (a) Representative fill tracks 

of ER binding at individual tRNA genes (tRNA-Pro-TGG-1–1, tRNA-Arg-CCG-2–1, 

tRNA-Met-CAT-1–1, and tRNA-Leu-AAG-2–4). Q-values (Q) are shown in orange. (b) 

ChIP-qPCR assays carried out at individual tRNA genes (tRNA-Pro-TGG-1–1, tRNA-Arg-

CCG-2–1, tRNA-Met-CAT-1–1*, and tRNA-Leu-AAG-2–4) to confirm pol III and 

ER enrichment. N = 3, *N = 2. PI refers to pre-immune serum, used as a negative 

control. Error bars are ± SEM. qPCR values have been normalised to % input. (c) 

Overlap in tRNA genes that have an ER binding event with a Q-value > 0.5 in MCF-7 

and ZR-75-1 cells from the Ross-Innes dataset, and the MCF-7 cells from the ENCODE 

dataset. 
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In conclusion, ER was found to preferentially bind almost half of the tRNA 

genes in the human genome by analysis of multiple public ChIP-seq datasets 

carried out in ER+ MCF-7 and ZR-75-1 breast cancer cell lines. The enrichment of 

ER to tRNA loci was preferential relative to other small non-coding RNA, which did 

not see the same level of steroid receptor recruitment. The finding of 

ER association with tRNA genes was confirmed by ChIP-qPCR, and suggests 

previous findings of oestradiol-dependent increase in tRNA gene expression could 

be due to ER recruitment to tDNA promoters (Hah et al., 2011).  

 

3.2.3 ER-targeted tRNA genes are not preferentially implicated in 

proliferation or differentiation 

 

To build on the findings that the ER was associated with many tRNA genes 

in breast cancer cell lines, analysis into the functional role of ER-bound tDNAs was 

implemented to ascertain the biological significance of these associations. A 

previous investigation aimed to stratify tRNA gene expression into those 

preferentially induced during cell differentiation or cell proliferation, based on the 

observation that protein-coding genes exhibit distinct codon patterns according to 

their roles in different biological processes (Gingold et al., 2012, 2014). The 

stratification of tRNAs based on their prevalence in differentiated or proliferating 

cells was carried out in a variety of cell types, including human embryonic stem cells 

(hESCs), as well as bladder, colon and prostate cancer cells (Gingold et al., 2014). 

Gene Ontology terms of “pattern specification” and “M phase of mitotic cell cycle” 

were used to identify genes involved in differentiation or proliferation respectively. 

Differential codon usage within the two disparate GO gene identifiers was studied to 

distinguish preferential tRNA codon selection. Although breast cancers were not 

included, analysis of the dataset was used to elucidate whether tRNA targets of 

ER identified by ChIP-seq in MCF-7 cells are enriched in either the differentiation 

or proliferation categories. Interrogation of the dataset revealed the top 75 ER-

bound tRNA genes were moderately depleted in the differentiation category relative 

to the proliferation group (Figure 3.5a). The majority of the top 75 ER-enriched 

tDNAs were involved in “other” biological process, such as cell adhesion, receptor 

signalling and formation of the ECM (Figure 3.5a). Next, Q-values of the top 75 ER 

binding events at tRNA loci was investigated in the proliferation and differentiation 

categories. Here, Q-values were found to not be significantly different, suggesting 
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that ER recruitment does not discriminate between the previously suggested 

functional tRNA categories in MCF-7 cells (Figure 3.5b).  
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Figure 3.5 Functional Stratification of tRNA Genes Targeted by ER. (a) Proportion of 

top 75 ER-bound tRNA genes in MCF-7 cells in accordance with their involvement in 

differentiation (n = 18; blue), proliferation (n = 24; orange) or other cellular processes (n = 

33; grey). (b) Quantified (Q) ER binding at top 75 ER-bound tRNA genes based on 

their preferential association with differentiation (D), proliferation (P) or other cellular 

processes (O). 
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3.2.4 The ER does not utilise consensus ERE and half ERE motifs for 

recruitment to target tRNA genes 

 

Two distinct mechanisms exist by which the ER is positioned at proximal 

promoters or distal enhancers of target genes to modulate their transcription: i) 

direct binding to a cognate DNA sequence motif (ERE) via the ER DNA-binding 

domain or ii) protein tethering interactions with other DNA-binding transcription 

factors, such that the ER is not directly bound to DNA (Heldring et al., 2011; Ikeda 

et al., 2015). To advance knowledge on the mechanism behind ER recruitment to 

target tRNAs, motif analysis was conducted to investigate if full or half ERE 

consensus sequences are involved in priming ER around tRNA genes with the 

strongest ER enrichment in MCF-7 cells. The search included tRNA sequences 

expanded by 20 kb up- and downstream, as ERE sequences can be found in distal 

regulatory elements, demonstrating long-range activation of target genes by the 

ER, and in situ Hi-C has previously revealed coordinated long-range regulation of 

tRNA expression, particularly where tDNA are connected by DNA loops proximal to 

CTCF binding sites (Sun et al., 2007; Van Bortle et al., 2017). Targeted motif 

analysis conducted in MEME-Suit CentriMo did not identify either full or half ERE 

sequences in these regions. Lack of ERE identification was not a result of technical 

failure, as conserved A and B box promoter sequences that are essential for Pol III 

loading were strongly enriched in all tRNA genes studied, as expected (Figure 3.6). 

Therefore, at least for the tRNA genes investigated, recognition of consensus ERE 

sequences seemed not to be involved in ER recruitment. It is possible that non-

canonical ERE sequences may establish ER association at tRNA loci, or a 

preferential protein tethering mechanism may be involved in positioning the 

hormone receptor at target tRNA gene promoters. 
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Figure 3.6. ER Localisation at tRNA Genes Does Not Require Consensus ERE 

Motifs. Position Weight Matrices (PWMs) of (a) A box and (b) B box promoter sequences 

identified within top 19 ER-bound tRNA genes, and the correct consensus sequence of 

each promoter element. E-Value denotes the significance of the motif according to 

CentriMo motif discovery. Nucleotide symbols are: (A) Adenine, (C) Cytosine, (G) 

Guanine, (T) Thymine, (R) Purine – Guanine or Adenine, (Y) Pyrimidine – Cytosine or 

Thymine, and (N) any nucleotide. Canonical ERE or half-ERE sequences were not 

identified. 
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3.2.5 Exogenous ER is not associated with tRNA genes in MDA-MB-231 cells 

 

Considering the observation that tRNA genes enriched for ER binding lack 

canonical full or half ERE sequence motifs, an exploration of a protein tethering 

mechanism for priming ER at tRNA promoters was conducted. If the ER is 

recruited to tRNA genes through interactions with other proteins, then accessibility 

of the ER to tRNA promoters might vary between cell types according to 

availability of the necessary factor(s) and/or chromatin accessibility. To begin to 

explore this possibility, tRNA promoter binding by a wild type exogenous ER stably 

transfected into MDA-MB-231 breast cancer cells negative for endogenous ER 

was investigated in a public ChIP-seq dataset (Stender et al., 2010). To 

demonstrate functionality of the exogenous ER in the MDA-MB-231 cell line, 

enrichment of ER at a GREB1 ERE was studied in relation to ER binding at the 

same site in MCF-7 cells. Here, ER was found to strongly bind to the GREB1 ERE 

in transfected MDA-MB-231 cells, to a greater extent than endogenous ER in 

MCF-7 cells (Figure 3.7a). Global heatmap analysis of exogenous ER ChIP-seq 

across 77,814 annotated gene entries in the MDA-MB-231 genome reveals very 

moderate intensity of hormone receptor binding. However, further analysis of ER 

enrichment across 631 tRNA genes revealed minimal interaction of the hormone 

receptor at tRNA loci(Figure 3.7b). Furthermore, plotting the average signal intensity 

of exogenous ER binding showed no discernible peak of hormone receptor 

enrichment in a 20 kb window spanning tRNA genes (Figure 3.7c). The observation 

that exogenous ER was not recruited to tRNA promoters in MDA-MB-231 cells 

despite robust enrichment at a well characterised ERE has several plausible 

explanations but alludes to the possibility that association of ER with tRNA genes 

requires additional post-translational modifications and/or transcription factors which 

influence ER access to, or retention at, tRNA promoters and are absent from MDA-

MB-231 cells. 
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Figure 3.7. Exogenous ER Does Not Associate at tRNA Genes in TNBC Cells. 

ER enrichment at a known ERE 1.7 kb upstream of the GREB1 promoter in (a) MCF-

7 or MDA-MB-231 TNBC cells stably transfected with an active ER construct. Window 

represents ± 2 kb region surrounding GREB1 ERE. GREB1 is located at 

Chr2:11591693-11700363. (b) Heatmap to show ER binding events across tRNA 

genes (n = 637) or from the centre of all hg18 genes (n = 77,814)in MDA-MB-231 cells. 

Window represents the ± 10 kb from the centre of tRNA genes. (c) Average signal 

intensity of ER ChIP-seq signal across all tRNA genes in the MDA-MB-231 cell line. 

Window represents the ± 10 kb from the centre of tRNA genes. 
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To summarise, investigations into the mechanism of ER recruitment to 

tRNA promoters showed that ER does not require canonical ERE sequences to 

bind to tRNA regulatory elements. Additionally, ChIP-seq analysis of ER-null MDA-

MB-231 cells indicated that ER expression alone was not sufficient for its access 

or retention at tRNA genes. The same is not true where a known DNA binding 

mechanism is involved, as seen by strong ER enrichment at the GREB1 ERE in 

the same cell line. These findings collectively suggest a protein tethering 

mechanism, where unknown factors are essential for efficient loading of ER at 

tRNA promoters.  

 

3.2.6 The ER is localised at tDNA in primary and metastatic breast tumours 

 

To understand the clinical relevance of ER association with tRNA genes 

observed in MCF-7 and ZR-75-1 cell lines, additional ChIP-seq datasets that 

analysed genome-wide binding of ER in primary breast tumour samples from 

patients with invasive ductal carcinomas (IDC) was analysed (Ross-Innes et al., 

2012). The ER ChIP-seq was performed in tumours of patients who had a good 

outcome (GdO) or who had died because of breast cancer (poor outcome; PrO), as 

determine by long-term clinical follow-up. As seen in ER+ cell lines, heatmaps 

showed ER association with many tRNA genes in breast tumours, confirming the 

observations in cell lines reflect the situation in clinical specimens (Figure 3.8a, 

Figure 3.8b). Plots of average ER signal intensity revealed peaks of ER binding 

at the tRNA genes, within a 20 kb of upstream and downstream surrounding 

genomic regions. However, no apparent differences in ER binding were detected 

between the GdO and PrO tumours in terms of numbers of tDNAs bound or average 

signal intensity (Figure 3.8a - Figure 3.8c). Next, the degree to which tRNA genes 

bound by ER in MCF-7 cells represent tRNA genes bound by ER in patient 

samples was investigated, with the minimum threshold of Q > 0.5 representing an 

ER binding event. Considerable overlap was observed between the identities of 

tDNAs bound by ER in GdO and PrO clinical samples, while MCF-7 cells exhibited 

greater number of ER associations with tRNA genes (Figure 3.8d). Despite the 

variation in the number of ER-bound tRNA genes in MCF-7 cells and primary 

tumours, the ChIP-seq data demonstrated large numbers of tRNA genes were 

targeted by endogenous ER in primary breast cancer biopsies. 
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Next, the MCF-7, GdO and PrO tRNA genes which shared ER enrichment 

was further studied to determine if tRNA preferentially upregulated in differentiating 

or proliferating cell types were selected for across the three sample types. Of the 

156 shared tRNA, 147 genes were able to be compared against Gingold’s tRNA 

classifier list (Gingold et al., 2012, 2014). Here, almost equal proportion of tRNA 

genes bound by ER in MCF-7, GdO and PrO samples were associated with either 

proliferation (n = 38) or differentiation (n = 33) (Figure 3.8e). The remaining 72 tRNA 

genes were associated with “other” cellular processes.  



115 

 

 

 

 

 

 

A
v
e
ra

g
e

 s
ig

n
a

l 
in

te
n

s
it

y
 

o
f 

E
R



tRNA
-10,000 bp 10,000 bp

0

1.5

156

104

32

21

18
23

18

MCF-7 (299)

BC GdO (227)

BC PrO (229)

a

G
o

o
d

 O
u

tc
o

m
e

tRNA

0 5ER

P
o

o
r 

O
u

tc
o

m
e

tRNA

10,000 bp 10,000 bp

b

c

d

GdO

PrO

1
0

20

40

60

80

C
o

u
n

t

Other

Proliferation

Differentiation

72

33

38

e



116 

Figure 3.8. ER is Enriched at tRNA Genes in Primary Breast Tumours. Heatmap of 

ER enrichment across tRNA genes in breast cancer patient samples stratified into either 

a (a) good outcome or (b) poor outcome. Window represents the ± 10 kb from the centre 

of tRNA genes. (c) Average signal intensity of ER enrichment across all tRNA genes in 

good outcome (GdO) and poor outcome (PrO) ChIP-seq datasets. Window represents the 

± 10 kb from the centre of tRNA genes. (d) Venn diagram demonstrating ER enrichment 

overlap between MCF-7 cells and good outcome (GdO) or poor outcome (PrO) breast 

cancer (BC) datasets. A positive enrichment of ER was determined where a Q-value of > 

0.5 was obtained at a tRNA gene. (e) Proportion of overlapping ER-bound tRNA genes 

in MCF-7 cells and GO and PO primary tumours, in accordance with their involvement in 

differentiation (n = 33; blue), proliferation (n = 38; orange) or other cellular processes (n = 

72; grey). 
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In addition to exploring primary breast tumours, ChIP-seq of distant ER+ 

metastases from three patients were analysed, to understand if enriched 

association of the ER with tRNA genes is implicated in breast cancer progression 

(141). First, fill tracks of ER binding at GREB1 ERE showed individual patient 

metastases had strong and comparable ER signal at this genomic locus (Figure 

3.9a). In contrast, plotting heatmaps of ER signals across the tRNAome in 

individual metastatic samples showed clear yet variable accumulation of ER at 

many tRNA genes, within the 10 kb upstream and downstream flanking regions 

(Figure 3.9b). In particular, the metastatic sample from one patient (Met 2) displayed 

substantial ER binding at tDNA, whereas the enrichment of ER at tRNA genes in 

Met 1 and Met 3 was much more discrete in comparison. The variability in ER 

enrichment at tRNA genes was further demonstrated in an average signal intensity 

plot which showed Met 2 has greater average ER binding intensity, compared to 

Met 1 and Met 3 (Figure 3.9c). Additionally, smaller peaks of ER enrichment were 

observed in 10 kb upstream and downstream flanking regions of tRNA in Met 2 but 

not in the other metastases. The observation of additional ER binding events near 

tRNA genes in Met 2, but not in Met 1 or Met 3, may indicate uncontrolled 

recruitment of ER to unspecified genomic loci. Alternatively, elevated ER 

enrichment seen in the Met 2 patient sample could be further explained by overall 

higher ER expression compared to Met 1 and Met 3, or additional unknown 

differences in the tumour content. Nevertheless, the enhanced ER binding seen in 

Met 3 may have significant clinical implications, which warrant further exploration.  
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Figure 3.9. Breast Cancer Metastasis are Positive for ER Enrichment at tRNA 

Genes. (a) Fill tracks of ER binding at a known ERE 1.7 kb upstream of the GREB1 

promoter in three metastatic (Met) patient samples. Window represents a ± 2 kb region 

from the centre of the ERE loci. GREB1 is located at Chr2:11591693-11700363. (b) 

Heatmap of ER binding events in three metastatic patient samples. Window represents 

the ± 10 kb from the centre of tRNA genes. (c) Average signal intensity of ER enrichment 

across all tRNA genes in three metastatic (Met 1, 2 and 3) patient samples. Window 

represents the ± 10 kb from the centre of tRNA genes.  
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To compare differences in the intensity of ER enrichment at tRNA genes in 

MCF-7 cell lines, primary breast tumours and metastatic biopsies, the Q-value of 

ER at 631 tRNA genes in each of the samples was investigated (Figure 3.10). The 

strength of ER enrichment at tRNAs was significantly higher in the MCF-7 cell line 

(mean 0.74 ± 0.77 sd, range 0 - 6.09) compared to the GdO (mean 0.57 ± 0.56 sd, 

range 0 - 5.26) and PrO (mean 0.52 ± 0.44 sd, range 0 - 4.93) primary tumours, as 

well as Met 1 (mean 0.43 ± 0.50 sd, range 0 - 5.86) and Met 3 (mean 0.40 ± 0.38 

sd, range 0 - 6.56) metastatic samples. No significant difference was seen in ER 

associations with tDNAs between GdO and PrO patient samples. However, the 

increase in association of ER with tRNA loci seen in Met 2 was highly significant 

relative to all other samples (mean 1.02 ± 1.84 sd, range 0 - 13.18). 
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Figure 3.10. Quantification of ER Enrichment in the MCF-7 Cell Line, Primary 

Breast Tumours and Metastatic Patient Samples. Scatter plot showing Q-values of 

ER binding at tRNA genes in MCF-7 cells (grey, closed), GdO (blue, closed) and PrO 

(orange, closed) primary tumours and three distant metastatic patient samples: Met 1 

(grey, open), Met 2 (blue, open) and Met 3 (orange, open). One-way ANOVA with Tukey’s 

multiple comparisons was performed. * p < 0.05, *** p < 0.001. 
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In conclusion, comprehensive investigations of ER+ cell lines, but 

especially clinical primary and metastatic ER+ breast tumours have revealed 

widespread association of the ER with ~30 to ~50 % of all tRNA genes annotated 

in the human genome. This was a significant finding that may have clinical 

implications in the progression of breast cancer. Despite there being no discernible 

differences in the number of tRNA genes enriched for ER binding between primary 

IDC tumours, a more varied and significant interaction of ER at tDNA loci was 

evident in advanced and aggressive metastatic samples. 

 

3.2.7. FOXA1 and ER enhance Pol III loading at tRNA genes 

 

Expanding on earlier findings that expression of the ER alone was not 

sufficient for its localisation at tRNA promoters, the involvement of additional 

regulatory factors for efficient ER loading at tDNA loci was explored in greater 

detail. FOXA1 is a pioneer factor with an essential role in remodelling chromatin to 

allow the ER access to cognate cis-regulatory elements (Hurtado et al., 2011). 

Additionally, FOXA1 is suggested to be a critical determinant of ER associations 

with target genes, even at sites that do not contain an ERE for direct DNA binding 

(Carroll et al., 2005; Hurtado et al., 2011). Indeed, independent analysis of ER and 

FOXA1 ChIP-seq in MCF-7 cells identified a significant overlap in 230 tRNA genes 

bound by both ER and FOXA1 transcription factors, with Q-values > 0.5 (Figure 

3.11a).  

 

To ascertain the importance of the ER for efficient positioning of Pol III 

transcriptional machinery at tRNA promoters, ER protein was knocked down in 

MCF-7 cells with a six-hour treatment of 100 nM fulvestrant, a potent SERD used in 

clinic to treat advanced ER+ breast cancer (Vergote and Abram, 2006). Western 

blot revealed substantial reduction in ER protein in fulvestrant treated MCF-7 cells, 

relative to the vehicle control, and in line with a previous study which similarly 

observed reduction of ER protein in MCF-7 cells following a 6-hour treatment with 

100 nM Fulvestrant (Figure 3.11b) (Yeh et al., 2013). However, the ER was not 

completely degraded, and a more prolonged treatment of 100 nM Fulvestrant may 

be required to fully eradicate the hormone receptor.  Additionally, evidence of 

possible ER proteasomal degradation is apparent in vehicle-treated cells, but not 

in untreated whole cell lysate from the same cell line. This observation is likely due 
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to sample handling at the time of lysis, and the inclusion of protease inhibitor 

cocktail may prevent unexpected proteolysis of the hormone receptor in future 

experiments. 

 

Proteasomal degradation of ER in fulvestrant treated MCF-7 cells, a 

showed a corresponding significant reduction in ER occupancy at the GREB1 

ERE, as observed by ChIP-qPCR (Figure 3.11c). Pol III enrichment at tRNA-Arg-

CCG-2-1, tRNA-Leu-AAG-2-4 and tRNA-Met-CAT-1-1 was slightly reduced following 

fulvestrant treatment, although this finding was not significant. However, where Pol 

III was most strongly enriched at the tRNA-Pro-TGG-1-1 promoter, significant loss of 

Pol III assembly at this tRNA gene occurred following ER depletion (Figure 3.11d). 

Reduced positioning of Pol III at tDNA loci was not due to decreased occupancy of 

GTF3C5, which forms part of the TFIIIC complex essential for facilitating recruitment 

of Pol III to tRNA promoters, as only a moderate reduction in GTF3C5 recruitment to 

tRNA genes was seen upon fulvestrant treatment of MCF-7 cells (Figure 3.11e). 

Additionally, knockdown of the ER only partially reduced ER recruitment to tRNA 

genes (Figure 3.11f), which could be explained by incomplete fulvestrant-mediated 

ER degradation (Figure 3.11b). Similar to the reduction in Pol III enrichment at 

tRNA-Arg-CCG-2-1, tRNA-Leu-AAG-2-4 and tRNA-Met-CAT-1-1, FOXA1 observed 

a notable but non-significant decrease in occupancy at these genes post fulvestrant 

treatment. However. ER knockdown significantly impeded the ability of FOXA1 to 

bind to tRNA-Pro-TGG-1-1 in MCF-7 cells (Figure 3.11g). 

 

 

 

 



124 

 

 

 

 

 

 

 

W V F

a

ERα  

~67 kDa

-Actin  

~40 kDa

Pol III GTF3C5

Fulvestrant

Vehicle

P
ro

-T
G
G
-1

-1

A
rg

-C
C
G
-2

-1

Leu
-A

A
G
-2

-4

M
et

-C
A
T-1

-1

0

50

100

150

200

250

RNA Pol III tRNA

R
e
la

ti
v
e
 E

n
ri

c
h

m
e
n

t

Vehicle

Fulvestrant

✱

P
ro

-T
G
G
-1

-1

A
rg

-C
C
G
-2

-1

Leu
-A

A
G
-2

-4

M
et

-C
A
T-1

-1

0

100

200

300

400

500

TF3C5 tRNA

R
e
la

ti
v
e
 E

n
ri

c
h

m
e
n

t
Vehicle

Fulvestrant

P
ro

-T
G
G
-1

-1

A
rg

-C
C
G
-2

-1

Leu
-A

A
G
-2

-4

M
et

-C
A
T-1

-1

0

20

40

60

80

100

ERa tRNA

R
e
la

ti
v
e
 E

n
ri

c
h

m
e
n

t

Vehicle

Fulvestrant

P
ro

-T
G
G
-1

-1

A
rg

-C
C
G
-2

-1

Leu
-A

A
G
-2

-4

M
et

-C
A
T-1

-1

0

20

40

60

80

FOXA1 tRNA

R
e
la

ti
v
e
 E

n
ri

c
h

m
e
n

t

Vehicle

Fulvestrant

✱

ER FOXA1

Fulvestrant

Vehicle

Fulvestrant

Vehicle

Fulvestrant

Vehicle

230

p < 0.0001
16

56

ER (246)

FOXA1(286)

b c

d e

f g

V
eh

ic
le

Fulv
es

tr
an

t
0

20

40

60

80

ERa GREB1

R
e
la

ti
v
e
 E

n
ri

c
h

m
e
n

t ✱✱✱

ER

R
e

la
ti

v
e

 E
n

ri
c

h
m

e
n

t

G
R

E
B

1
 E

R
E



125 

Figure 3.11. FOXA1 is Recruited to tRNA Genes by the ER and is Required for RNA 

Polymerase III Loading at tDNA Promoters. (a) Overlap in tRNA genes that have an 

ER and FOXA1 binding event with a Q-value > 0.5 from two publicly accessible ChIP-

seq datasets in MCF-7 cells. Fisher’s exact test was performed to determine significant 

overlap between tRNA genes bound by both transcription factors. p < 0.0001. (b) Western 

blot to show ER (top window) and -actin (bottom window) in MCF-7 cells treated with 

vehicle (V) or fulvestrant (F) for 6 hours, or untreated whole cell lysate (W). (c) ChIP-

qPCR of ER at GREB1 ERE in MCF-7 cells treated with vehicle (grey) or fulvestrant 

(blue) for 6 hours. qPCR Ct values normalised to gene desert. Student’s t-test performed 

against vehicle.  *** p = < 0.001. Error bars are mean ± SEM. N = 3. ChIP-qPCR of (d) Pol 

III, (e) GTF3C5, (f) ER and (g) FOXA1 at tRNA genes (tRNA-Pro-TGG-1-1, tRNA-Arg-

CCG-2-1, tRNA-Leu-AAG-2-4 and tRNA-Met-CAT-1-1) in MCF-7 cells treated with vehicle 

(grey) or fulvestrant (blue) for 6 hours. qPCR Ct values normalised to gene desert. One-

way ANOVA with Tukey’s multiple comparisons was performed against vehicle. * p < 0.05. 

Error bars are ± SEM. N = 3. 
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In summary, ChIP-seq analysis demonstrated significant overlap in ER- 

and FOXA1-bound tRNA genes in MCF-7 cells. Fulvestrant knockdown of 

ER reduced occupancy of Pol III at tDNA genes, as seen by ChIP-qPCR. Where 

Pol III was the most enriched at tRNA-Pro-TGG-1-1, perhaps suggesting active 

transcription, ER knockdown had a significant effect on the ability of Pol III to be 

efficiently loaded at the promoter, which was not due to reduced GTF3C5 

occupancy at this tDNA locus. However, FOXA1 recruitment was also significantly 

reduced at this tRNA gene following fulvestrant-mediated ER knockdown. This 

striking finding provides valuable insight into the necessary regulatory factors 

required for ER loading at tRNA genes and suggests a co-operative relationship 

between the ER and FOXA1 is involved in recruiting Pol III to tDNA promoters. 

 

3.2.8 The ER associates with other Pol III transcribed genes 

 

 To assess if ER is implicated in expression of other Pol III-transcribed 

non-coding RNA that are significant in breast cancer progression, ER ChIP-seq 

datasets were analysed to ascertain ER recruitment to ncRNA genes, BC200, 

RN7SL1 and RMRP.  Like tRNA genes, BC200 has a Type II promoter characterised 

by an ICR, and A and B boxes (Dieci et al., 2007; Orioli et al., 2012). Additionally, 

analysis of the proximal region surrounding BC200 promoter revealed an ERE-like 

sequence located -585 bp upstream of the TSS, previously reported to have 

enriched ER binding in MCF-7 cells (Singh et al., 2016). BC200 is typically 

expressed in the brain, and is a regulator of protein synthesis (Samson et al., 2018). 

However, expression of BC200 is elevated in several malignancies, including breast 

cancer, where a high level of this transcript is associated with advanced disease 

(Chen et al., 1997; Iacoangeli et al., 2004; Singh et al., 2016; Samson et al., 2018). 

Specifically, increased expression of BC200 in the MCF-7 cell line inhibits apoptosis 

through modulation of the alternative splicing of Bcl-x (Singh et al., 2016). However, 

analysis of ER ChIP-seq datasets from MCF-7 cells, MDA-MB-231 cells stably 

transfected with exogenous ER, as well as GdO and PrO primary tumours and 

three distant metastatic samples provided minimal evidence of ER targeting at the 

BC200 promoter, in contrast to previous studies (Figure 3.12). 
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Figure 3.12. ER is not Found at an ERE in Proximity of the BC200 Promoter. ER 

ChIP-seq fill tracks of BC200 genomic loci in MCF-7 cells, BC GdO and PrO patient 

samples, MDA-MB-231 cells stably expressing an ER construct and three distant 

metastatic (Met 1, 2 and 3) patient samples. Red asterisk (*) represents the approximate 

location of an ERE -585 bp upstream of the BC200 TSS (Singh et al., 2016). Window 

represents the ± 2.5 kb region from the centre of the BC200 gene. 
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RN7SL1 is essential for protein secretion and intracellular trafficking, as the 

RNA constituent of the signal recognition particle (SRP) (Walter and Blobel, 1982; 

Ullu and Tschudi, 1984). In contrast to tRNA genes and BC200, RN7SL1 has a Type 

III promoter formed of a PSE and a TATA box, and atypical for Type III promoters, A 

and B box motifs (Dieci et al., 2007; Orioli et al., 2012). Aberrant expression of 

RN7SL1 has been implicated in promoting inflammatory responses in breast 

cancers, influencing tumour growth, metastasis and therapy resistance (Nabet et al., 

2017). Furthermore, RN7SL1 has been shown to sequester translation of tumour-

suppressor p53 by hybridising with TP53 mRNA (Abdelmohsen et al., 2014).  

 

To investigate if ER potentiates aberrant RN7SL1 expression, ChIP-seq in 

ER+ breast cancer cell lines and patient samples were studied. Here, strong 

enrichment of ER at RN7SL1 gene locus in MCF-7 cells and metastatic sample 

Met 3 was identified (Figure 3.13a). Moderate ER enrichment was also observed 

in proximity to the RN7SL1 promoter in primary breast tumours (Figure 3.13a). In 

contrast, RN7SL1 promoter occupancy by ER was not observed in the MDA-MB-

231 cell line expressing exogenous ER or Met 1 and Met 3 tumour samples, 

suggesting heterogeneity in ER association with RN7SL1 in breast cancer cells 

(Figure 3.13a).  

 

Next, ChIP-qPCR was performed to confirm the findings of ER binding at 

the RN7SL1 locus and investigate the involvement of the ER and FOXA1 in 

assembling Pol III at RN7SL1 promoter. As expected, RN7SL1 was highly enriched 

for RNA Pol III binding, which was markedly reduced upon fulvestrant-mediated 

knockdown of the ER (Figure 3.13b). In support of the ChIP-seq findings, ER was 

also found to occupy the RN7SL1 gene locus, with a moderate decrease in 

recruitment following fulvestrant treatment (Figure 3.13c). Next, FOXA1 association 

with RN7SL1 was studied by ChIP-qPCR, which revealed pioneer factor occupancy 

at this gene. Like the ChIP-qPCR findings of tRNA genes, FOXA1 was also reduced 

when ER was knocked down (Figure 3.13d). Although reduction in the enrichment 

of Pol III, ER and FOXA1 was not significant following fulvestrant treatment, a 

clear downward trend in polymerase and transcription factor loading at RN7SL1 

locus was observed, which suggests ER and FOXA1 may have auxiliary roles in 

Pol III positioning and transcription of this gene. 
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Figure 3.13. ER is Localised at RN7SL1 in MCF-7 Cells and Patient Metastasis. 

ER ChIP-seq fill tracks of RN7SL1 genomic loci in MCF-7 cells, BC GdO and PrO 

patient samples, MDA-MB-231 cells stably expressing an ER construct and three distant 

metastatic (Met 1, 2 and 3) patient samples. Window represents the ± 2.5 kb region from 

the centre of the BC200 gene. ChIP-qPCR of (b) Pol III, (c) ER and (d) FOXA1 at 

RN7SL1 in MCF-7 cells treated with vehicle (grey) or fulvestrant (blue) for 6 hours. qPCR 

Ct values normalised to gene desert. Student’s t-test performed against vehicle. Error 

bars are ± SEM. N = 3. 
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RMRP is involved in mitochondrial DNA replication, rRNA processing, and 

cell cycle control (Thiel et al., 2005; Martin and Li, 2007; Goldfarb and Cech, 2017; 

Vakkilainen et al., 2019). Germline mutations in RMRP cause the inherited 

syndrome cartilage-hair hypoplasia, whereas somatic mutations in the Type III 

promoter of RMRP elevates expression and is significantly implicated in breast 

cancer development (Ridanpää et al., 2001; Rheinbay et al., 2017, 2020). When 

ChIP-seq data were investigated to explore ER association with RMRP, strong 

enrichment of the hormone receptor was observed in all metastatic samples, and to 

a lesser extent in MCF-7 cells and MDA-MB-231 cells expressing exogenous ER. 

In contrast, no ER enrichment was seen in primary breast cancer samples (Figure 

3.14a). Next, ChIP-qPCR was implemented to validate ChIP-seq findings. Here, Pol 

III ER and FOXA1 were enriched at RN7SL1 promoters, but only to a modest 

extent (Figure 3.14b – Figure 3.14d). However, despite limited occupancy at the 

RN7SL1 locus, Pol III recruitment to the promoter was still decreased following 

fulvestrant-mediated knockdown of the ER, as was FOXA1, albeit not significantly.  
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Figure 3.14. ER is Localised at RMRP in MCF-7 Cells and Patient Metastasis. 

ER ChIP-seq fill tracks of RMRP genomic loci in MCF-7 cells, BC GdO and PrO patient 

samples, MDA-MB-231 cells stably expressing an ER construct and three distant 

metastatic (Met 1, 2 and 3) patient samples. Window represents the ± 2.5 kb region from 

the centre of the BC200 gene. ChIP-qPCR of (b) Pol III, (c) ER and (d) FOXA1 at RMRP 

in MCF-7 cells treated with vehicle (grey) or fulvestrant (blue) for 6 hours. qPCR Ct values 

normalised to gene desert. Student’s t-test performed against vehicle. Error bars are 

mean ± SEM. N = 3. 
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 To summarise, the association of the ER with other classes of Pol III-

transcribed non-coding RNAs was investigated in ER+ cell lines, primary breast 

cancer tumours and metastatic samples. BC200 did not display any ER 

enrichment in the promoter, or proximal up and downstream regions, despite having 

an ERE-like sequence motif, and the same promoter architecture as tRNA genes 

which are able to recruit the hormone receptor. In contrast, RN7SL had enriched 

ER binding in the MCF-7 cell line, primary breast tumours and one metastatic 

sample. Additionally, RMRP had ER promoter occupancy in MCF-7 cells, three 

metastatic breast tumour samples and in MDA-MB-231 cells expressing exogenous 

ER. For both RMRP and RN7SL1, ER association at promoters was confirmed 

by ChIP-qPCR. Further investigating the significance of ER recruitment to the non-

coding promoters with ER knockdown found reduced Pol III positioning at the 

genomic loci when MCF-7 cells were treated with fulvestrant. The decreased Pol III 

occupancy could be explained by concurrent reduction in FOXA1 recruitment to the 

same ncRNA genes which was also seen following ER knockdown in MCF-7 cells. 

 

3.2.9 The ER interacts with Poll III subunits in MCF-7 cells and human breast 

tumours 

 

 Following on the earlier results that i) the ER was recruited to tRNA genes 

in the absence of canonical full or half ERE motifs, ii) GTF3C5 occupancy at tRNA 

genes was unaffected by ER knockdown and iii) Pol III occupancy was reduced at 

tRNA promoters in the absence of the ER, the relationship between the ER, 

TFIIIC and Pol III was further explored. Here, qPLEX-RIME datasets were analysed 

to assess if members of the Pol III transcription machinery were interacting with the 

ER, in support of a protein tethering mechanism of ER association at tRNA genes 

(Papachristou et al., 2018). In MCF-7 cells, immunoprecipitation of ER followed by 

mass-spectrometry revealed strong molecular interactions between the hormone 

receptor and four out of six TFIIIC subunits, including GTF3C5 (Figure 3.15a). The 

intensity of the ER-TFIIIC interactions were comparable to the intensity of ER 

with nuclear receptor coregulator proteins, NCOA2, NCOR2 and FOXA1 (Figure 

3.15a). In contrast, Pol III subunits were not found to have significant associations 

with the ER. Interaction of GTF3C1 with ER, GTF3C2 and GTF3C5 was 

confirmed by co-immunoprecipitation in MCF-7 cells. Here the band corresponding 

to GTF3C1 in the ER IP was more intense than the GTF3C1 band from the 
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GTF3C2 and GTF3C5 IPs, suggesting a strong interaction of the hormone receptor 

with the largest subunit of the TFIIIC complex (Figure 3.15b). The increased 

intensity of the ER IP band was not due to non-specific binding to Protein A 

magnetic beads used in the IP procedure, as no GTF3C1 band is observed in a 

mock control IP.  

 

 Next, analysis of qPLEX-RIME data of MCF-7 cells treated with 100 nM 

tamoxifen for 6 hours were analysed. Tamoxifen is a SERM, that induces systemic 

reprograming of ER activity towards a transcriptional repressor instead of a prolific 

activator of gene expression in breast cancer cells (Wickerham, 2002; Keeton and 

Brown, 2005). Here, tamoxifen treatment of MCF-7 cells significantly increased 

association of the ER with GTF3C1, GTF3C3 and GTF3C4, as well as nuclear 

corepressors NCOR1 and NCOR2 (Figure 3.15c). To contextualise the MCF-7 cell 

line findings of ER interactions with TFIIIC within a clinical framework, qPLEX-

RIME of primary breast cancer tumours was analysed (Papachristou et al., 2018).  

As in the MCF-7 cells, the ER exhibited significant interactions with GTF3C1, 

GTF3C3 and GTF3C5 (Figure 3.15d). Additionally, the intensity of ER interactions 

with coactivators NCOA2 and NCOA5, as well as FOXA1, was greater than the 

intensity of ER interactions with corepressors NCOR1 and NCOR2 (Figure 3.15d). 

The enhanced association of ER with coactivators and FOXA1 in primary breast 

tumours suggests that the hormone receptor may exhibit activating activity at target 

genes. Additionally, the strong association of ER with TFIIIC, along with earlier 

evidence that ER specifically targets tRNA genes in MCF-7 cells and breast 

tumours, provides insight into the mechanisms enhancing tRNA gene expression in 

oestradiol-stimulated MCF-7 cells (Hah et al., 2011).  

 

 In summary, investigating a protein tethering mechanism involved in 

recruiting ER to target tRNA genes identified a strong and significant association of 

the hormone receptor with several subunits of the TFIIIC complex, which binds to A 

and B box sequences in tRNA promoters and serves as the foundation for Pol III 

complex assembly. The evidence that ER strongly interacts with TFIIIC could 

explain how ER is located to tRNA loci in the absence of a canonical DNA binding 

mechanism. 
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Figure 3.15. Pol III Subunits Physically Interact with ER in MCF-7 Cells and ER+ 

Breast Tumours. (a) Log2FC (ER/IgGs) of ER interactions with subunits of Pol III 

(GTF3C1 – GTF3C5), nuclear receptor coactivator 2 (NCOA2) and 3 (NCOA3), nuclear 

receptor corepressor 2 (NCOR2) and FOXA1 in MCF-7 cells as determined by analysing 

qPLEX-RIME dataset (Papachristou et al., 2018). ***padj < 0.001. (b) Western blot of 

GTF3C1 following immunoprecipitation of GTF3C2 (G2), ER and GTF3C5 (G5). A mock 

(M) IP was included to detect any non-specific binding of proteins to the Protein A beads. 

(c) Log2 fold change in ER association with Pol III subunits (GTF3C1, GTF3C3 and 

GTF3C4), NCOR1 and NCOR2 following 6-hour treatment with 100 nM tamoxifen.  

* p < 0.05. (d) ER interaction intensity with GTF3C1, GTF3C3, GTF3C5 NCOA2, 

NCOR2 and NCOR1 in five independent ER+ breast cancer patient (ER+, PR+, HER2- 

and Grade2/Grade3) samples, as determined by qPLEX-RIME. ***padj < 0.001. 
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3.3 Discussion 

  

The research carried out in this Chapter aimed to advance understanding of 

ER-mediated dysregulated tRNA gene expression in breast cancers by uncovering 

the extent to which tRNA genes are under the regulatory influence of the hormone 

receptor, and to identify the mechanism of ER recruitment to its target tDNAs. The 

main hypothesis being tested was that the ER is directly associated with many 

tRNA genes where it can coordinate rapid changes in response to oestradiol (Hah et 

al., 2011). The investigations incorporated a combination of bioinformatic 

approaches utilising public ChIP-seq and qPLEX-RIME datasets, as well as 

molecular biology experiments to validate in silico findings and further enhance 

insight into the ER-Pol III regulatory axis.  

 

3.3.1 Summary of main findings  

 

• The ER was robustly associated with ~50 % of tRNA genes in the human 

genome in MCF-7 cells. Importantly, this observation was recapitulated in 

the clinical context, where primary and metastatic breast tumours also 

observed widespread association of the ER with tRNA genes.   

• No difference in the association of ER with tRNA genes was seen in 

primary tumours of patients with a good or poor outcome, whereas 

metastatic tumours were more heterogeneous in the numbers of tDNAs 

bound by the ER, and the strength of these associations. 

• The specific identity of codons associated with the tRNA genes most 

targeted by ER were not preferentially involved in conferring a 

differentiated or proliferative phenotype in MCF-7 cells. 

• Recruitment of the ER to target tRNA genes was not through recognition of 

a canonical ERE sequence in proximal or distal regions surrounding tDNA 

loci. 

• Knock down of the ER reduced occupancy of Pol III and FOXA1 at tRNA 

promoters, whereas GTF3C5 was still able to retain tight interactions with 

target A and B boxes in the absence of the hormone receptor. 

• The ER was found to have significant interactions with several subunits of 

the TFIIIC complex, both in MCF-7 cells and primary breast tumours. ER-

TFIIIC tethering was responsive to modulation of the ER with tamoxifen. 
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3.3.2 Localisation of the ER with tRNA and ncRNA genes in vitro and in vivo 

 

Association of the ER with tRNA loci in breast cancer cell lines was found 

to be extensive, whereby nearly 50% of tRNA genes in the human genome were 

identified as bone fide ER targets in MCF-7 cells, as determined by setting a 

minimum Q-value threshold of Q > 0.5, based on quantified ER read peaks at 

known ER protein-coding target genes. To validate in silico observations of ER 

binding to tRNA genes, ChIP-qPCR of Pol III and ER in MCF-7 cells was carried 

out which confirmed ER occupancy at specific tDNA loci, relative to a pre-immune 

control. While such comprehensive investigations into ER interactions with Pol III 

promoters have not been reported, the finding of ER recruitment to tRNA genes is 

in line with the previous observation that ER occupies the promoter of tRNALeu in 

MCF-7 cells (Fang et al., 2017). Enriched ER binding was also observed at RMRP 

and RN7SL1 loci in MCF-7 cells by ChIP-seq and ChIP-qPCR, which has not 

previously been identified. Thus, ER targeting of Pol III-transcribed genes is not 

limited to those containing Type II promoter architecture, and greatly expands the 

repertoire of ER targets to include some of the most highly abundant transcripts in 

cells (Boivin et al., 2018). However, occupancy of ER at the BC200 promoter was 

not identified in any of the ChIP-seq datasets analysed, despite previous 

identification of ER binding to an ERE-like sequence upstream of the BC200 TSS 

in MCF-7 cells (Singh et al., 2016). The reason for the discrepancy between the lack 

of ER association with BC200 in MCF-7 cells described in this Chapter, and the 

ER interaction with an ERE-like sequence proximal to BC200 TSS identified by 

Singh et al. is unclear but could be attributed to previously described heterogeneity 

of the MCF-7 cell line (Ben-David et al., 2018). 

 

To demonstrate clinical relevance of the ChIP-seq findings in ER+ cell 

lines, the association of ER with tRNA genes in primary and metastatic breast 

tumours was explored. Again, robust and widespread association of the ER at 

tRNA loci was found, confirming interactions of ER with tRNA genes seen in MCF-

7 and ZR-75-1 cell lines are applicable to a clinical setting. It is worth noting that in 

MCF-7 cells, ER occupied ~ 20% more tRNA genes than in the primary tumour 

specimens. The difference in ER associations at tDNA loci could be explained by 

the homogeneity of cell lines versus tumour heterogeneity (Choi et al., 2014). No 

detectable difference in tRNA targets of the ER were identified between primary 
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tumours that came from patients with a better prognosis (alive at a ten year follow 

up) or those that had died due to having breast cancer. However, metastatic 

tumours displayed significant variation in ER association at tDNAs, both in terms of 

numbers of ER-occupied tRNA loci and strength of these associations.  

 

In the context of breast cancer progression, tRNA expression has been 

found to be elevated 10-fold in breast tumours compared to healthy breast tissue 

(Pavon-Eternod et al., 2009). Overexpression of tRNA in transformed cells support 

dysregulated growth and proliferation by facilitating translation, ensuring effective 

and unimpeded transportation of tRNA isotypes to the ribosome, and rapid decoding 

of mRNA codons (Dana and Tuller, 2014). In particular, elevated tRNA expression is 

significantly associated with poor prognosis in breast cancer (Pavon-Eternod et al., 

2009; Goodarzi et al., 2016; Krishnan et al., 2016; Zhang et al., 2018). Exploring 

ER ChIP-seq datasets for associations of the hormone receptor with tDNAs in 

MCF-7 cells found tRNA-Arg-CCG-2-1 to be among the most strongly enriched for 

ER binding, an important finding considering specific overexpression of this gene 

has been shown to promote breast cancer invasion and metastasis in vitro and in 

vivo through codon-dependent effects on stability and translation of pro-metastatic 

proteins (Goodarzi et al., 2016). Additionally, upregulation of tRNAiMet has been 

implicated in cancer progression where elevation of this special isotype bypasses 

the initiation bottleneck of protein synthesis, and has been implicated in driving cell 

proliferation, tumour growth and modulating ECM to enhance invasion (Pavon-

Eternod et al., 2013; Gingold et al., 2014; Birch et al., 2016; Clarke et al., 2016). 

Thus, the observation that 30 % of genes encoding tRNAiMet were preferentially 

targeted by the ER could also have significant implications for patients with ER+ 

disease.   

 

3.3.3 Exploring ER recruitment to target tRNA genes 

 

Targeted motif analysis of top ER-bound tRNA genes was unable to identify 

full or half ERE sequences within a 40 kb window centred around tDNAs, 

suggesting ER recruitment to these 19 tRNA loci does not involve a DNA 

recognition mechanism. However, there are some important considerations to the 

finding that EREs may not be involved in ER recruitment to target tDNAs. Firstly, 

the possibility of a non-canonical ERE that is recognised by the ER remains. 
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Indeed, the ER has been found to recognise diverse ERE-like sequence elements, 

demonstrating flexibility of the hormone receptor in sequence identity requirements 

for DNA binding (Mason et al., 2010; Stender et al., 2010). Secondly, the vast 

majority (~95%) of ER binding sites occur in distal enhancer regions which can be 

up to ~ 150 kb away from the TSS in ER protein-coding gene targets (Carroll et al., 

2006), a distance that was not covered in the directed motif analysis conducted in 

this Chapter. Lastly, a significant proportion of ER-bound tRNA genes were not 

included in the investigation into hormone receptor recruitment to target tDNA loci 

(top 6% of ER enriched tRNA genes were studied for an ERE). As such, it is 

possible that remaining tRNA genes targeted by the ER but not included in the 

motif analysis do contain canonical ERE sequences. Nevertheless, a DNA-binding 

mechanism was not further explored in this thesis and remains an interesting 

question to be addressed.  

 

Instead, investigations into ER positioning at tRNA genes was directed 

towards testing recruitment of ER to tDNA loci through associations with other 

regulatory factors and a protein tethering mechanism, which is thought to account 

for 10 - 35 % of ER binding events in the human genome (O’Lone et al., 2004; 

Stender et al., 2010). Analysis of a ChIP-seq dataset in MDA-MB-231 breast cancer 

cells expressing exogenous ER revealed strong enrichment of the hormone 

receptor to a well characterised ERE, approximately 20 kb upstream of the GREB1 

TSS (Sun et al., 2007). However, the extensive recruitment of ER to tDNA loci 

observed in MCF-7 cells expressing endogenous ER failed to be recapitulated in 

the TNBC cell line following stable transfection of the hormone receptor. The lack of 

ER binding to previously identified tDNA targets suggest that expression of the 

ER alone is not sufficient to direct and maintain ER interactions with tRNA genes, 

and additional regulatory factors that are not present in the MDA-MB-231 cells are 

essential for effective loading of ER at tDNA promoters. FOXA1 is preferentially 

expressed in epithelial breast cancers, and is a key regulator of 

theER transcriptome (Hurtado et al., 2011; Glont et al., 2019; Seachrist et al., 

2021). Additionally, FOXA1 is lost when cells become mesenchymal, and is not 

expressed in TNBC tumours or MDA-MB-231 cells (Anzai et al., 2017; Kumar et al., 

2021). Analysis of FOXA1 and ER ChIP-seq datasets in MCF-7 cells found 

significant overlap in the tRNA genes targeted by both the pioneer factor and the 
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hormone receptor, as expected on the basis of literature where FOXA1 is found to 

occupy 50 - 60% of ER binding sites (Hurtado et al., 2011).  

 

When ER was knocked down by a short time course of fulvestrant, a 

reduction in promoter occupancy by both Pol III and FOXA1 was seen at all tRNA 

genes studied, which was significantly decreased at the tRNA-Pro-TGG-1-1 locus, 

where Pol III was found to be the most enriched in vehicle treated MCF-7 cells. In 

contrast, ER knockdown did not affect the ability of TFIIIC subunit GTF3C5 to 

maintain contact with tDNA loci, nor was ER association at the selected tDNA 

affected by fulvestrant treatment, in contrast to the significant reduction in ER 

occupancy at the GREB1 ERE that was observed. The mechanism by which ER is 

associated with target genes could provide an explanation as to why tRNA genes 

are not as susceptible to fulvestrant as other bona fide ER targets, such as 

GREB1. If a protein tethering mechanism is sequestering the hormone receptor in 

tight complexes at the DNA, it may render ER at these promoters resistant to 

fulvestrant-induced proteasomal degradation, whereas ER that is directly 

associated with EREs may be more open to pharmacological attenuation. Such a 

speculation requires further exploration. 

 

While FOXA1 is essential for ER accessibility to many of its cis regulatory 

elements in proximal and distal regions surrounding target genes, dynamic 

interactions between the ER and FOXA1 exist such that ER can also dictate 

FOXA1 localisation and enhance FOXA1 binding (Swinstead et al., 2016). The 

observation that ER knockdown reduced FOXA1 and Pol III occupancy at tRNA 

loci in MCF-7 cells suggests a mechanism where ER recruits FOXA1 to target 

tDNA, which in turn facilitates Pol III positioning at tRNA gene TSS. The link 

between FOXA1 and Pol III has not been further investigated in this thesis. 

However, one potential explanation for how FOXA1 could influence Pol III loading at 

tDNA involves the pioneer factor enhancing chromatin accessibility around tDNAs to 

improve accessibility at these loci by Pol III. The increased open conformation of 

chromatin could then facilitate TFIIIB binding near the TSS, which in turn recruits 

Pol III to its templates, a process that occurs downstream of TFIIIC localisation to 

tRNA A and B boxes (Kassavetis et al., 1990). When occupancy of tRNA genomic 

loci by FOXA1 is reduced, the chromatin surrounding target genes remains tightly 

wrapped around histones and impedes the ability of TFIIIB and/or additional 

auxiliary factors to navigate tDNA and recruit Pol III.  
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ER knockdown also decreased occupancy of Pol III and FOXA1 at RMRP 

and RN7SL1. While RMRP has true Type III promoter architecture and thus no A 

and B box or requirement for TFIIIC, RN7SL1 does not strictly conform to this 

definition of a Type III, as A and B box elements which recruit TFIIIC are found in 

this gene (Canella et al., 2010; de Llobet Cucalon et al., 2022). However, a similar 

auxiliary role for FOXA1 could still be applied to the efficient loading of Pol III to both 

RMRP and RN7SL1. A commonality between Type II and Type III promoters is the 

recruitment of TFIIIB to Pol III-transcribed genes. However, In Type III promoters, 

TFIIIB is comprised of a Brf2 subunit as opposed to Brf1. In addition, Type III TFIIIB 

recognises an upstream TATA box by the TBP member of the complex, whereas no 

TATA binding is involved in Type II TFIIIB recruitment (Alla and Cairns, 2014). Here, 

FOXA1 may be brought to proximal regions surrounding promoter structures by 

ER where it can enhance chromatin accessibility, allowing TBP of TFIIIB to 

recognise and bind to the TATA box with less difficulty. TFIIIB association with the 

TATA box would deliver Pol III to the TSS. Recruitment of FOXA1 to RMRP and 

RN7SL1 may further facilitate localisation of SNAPc to the PSE to initiate assembly 

of the Pol III machinery (Figure 3.16) 

 

 The observation that GTF3C5 was unaffected by the absence of ER in 

MCF-7 cells suggests that the recruitment of the hormone receptor to tDNA loci is 

secondary to the recruitment of TFIIIC to its cognate A and B box elements. The 

association of TFIIIC with tDNA is stable and does not require auxiliary support by 

ER or associated coregulators to maintain strong interactions with cis regulatory 

elements. Despite the resilient interaction of TFIIIC at tDNA in the absence of 

hormone receptor, the ER was found to be strongly associated with several 

members of the TFIIIC subunit, including GTF3C5, both by qPLEX-RIME, and by 

co-immunoprecipitation and western blot. The strong interactions between ER and 

TFIIIC could suggest that the ER is directed to target tRNA and maintains 

occupancy at these loci by robust protein tethering with TFIIIC. In addition to 

evidence of an ER - TFIIIC complex existing at tRNA genes, the ER also co-

immunoprecipitates with TFIIIB in MCF-7 cells (Fang et al., 2017). Thus, there is a 

possibility that in ER+ cell lines, the ER is in complex with several members of 

Pol III transcriptional machinery to facilitate rapid upregulation of tRNA gene 

expression in response to oestradiol (Hah et al., 2011). In addition to tight 

associations with TFIIIC, the ER was also found to be strongly interacting with 

coregulatory proteins, including co-activators (NCOA), co-repressors (NCOR) and 
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FOXA1, as expected (Hall and McDonnell, 2005; Hurtado et al., 2011). Importantly, 

the findings of ER in complex with TFIIIC subunits and coregulatory factors in 

MCF-7 cells was also identified in qPLEX-RIME of primary breast tumours. Thus, 

the proposed ER-TFIIIC-TFIIIB complex identified in MCF-7 cells could be 

implicated in clinical development and progression of breast cancer. Indeed, 

following a 6-hour treatment of tamoxifen in MCF-7 cells, a significant increase in 

ER-TFIIIC contact was induced, as was the association of ER with co-repressors 

NCOR1 and NCOR2, suggesting that pharmacological modulation of ER not only 

exerts a repressive function to the hormone receptor but also impairs Pol III 

translation of tRNA genes, potentially by the activities of repressive co-regulators 

associated with the ER at tDNA loci. The recruitment of coregulators to the 

promoters of tDNA, and corresponding changes in tRNA expression in response to 

ER agonism or antagonism needs to be further investigated. If it is true that 

coregulators are recruited to tDNA through interactions with ER, a ChIP-seq 

experiment designed to identify changes in chromatin acetylation or methylation 

deposits surrounding tRNA loci would further assist in delineating the mechanism by 

which ER may regulate tRNA expression in breast tumours. Similarly, inclusion of 

oestradiol stimulation or tamoxifen or fulvestrant attenuation could provide additional 

insight into the molecular changes that happen at the chromatin level, specifically 

surrounding tDNA, in response to alterations of ER activity or availability. 
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Figure 3.16. Proposed mechanism of ER recruitment to Type III promoters. 

At Type III promoters, such as in RMRP, FOXA1 may be directed to the TATA box by ER 

where it can enhance chromatin accessibility, allowing TBP of TFIIIB to bind to the TATA box 

and efficiently deliver Pol III to the TSS. FOXA1 may also open chromatin around the PSE, 

which would facilitate localisation of SNAPc to the PSE and the initiation of Pol III assembly. 
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3.3.4 Differential codon usage for tRNA isotypes and the implications in 

cellular processes and disease 

 

The ER was not found to significantly or preferentially associate with tRNA 

genes encoding anticodons involved in cell differentiation or proliferation, as 

proposed by Gingold et al. in 2014. Instead, of the top 75 ER-bound tDNA, almost 

equal proportions of genes were found between the “differentiation”, “proliferation” 

and “other” gene classifier groups, and no significant difference in the strength of 

ER associations with tRNA in each group was observed. This result is unexpected, 

as one might assume ER targeted tRNA genes in breast cancer cell lines would be 

specifically geared towards driving pathogenicity and associated with proliferation. 

Indeed, tRNA isoacceptor expression has been linked to favouring the translation of 

cancer-related genes (Pavon-Eternod et al., 2009). Furthermore, synonymous 

codon usage changes have been identified in malignant cells relative normal tissue. 

For example, decrease in tRNA-Gly-GGC is observed in breast cancers, in favour of 

increased usage of tRNA-Gly-GGT, exemplifying changes to codon usage patterns 

in malignancies (Meyer et al., 2021). Additionally, tRNA-Glu-UUC and tRNA-Arg-

CCG are found to be promoters of metastatic breast cancer by enhancing 

translation efficiency and increasing expression of EXOSC2 and GRIPAP1 

(Goodarzi et al., 2016). Of course, classification of ER-bound tDNA loci into 

functional groups only provides information on the potential functionality of these 

genes. As expression of tRNA genes bound by ER has not been investigated in 

this Chapter, it is not possible to state whether an ER binding event at tDNA loci 

signifies an actively transcribed gene, or if these genes associated with ER are 

repressed. Therefore, to be able to further characterise the significance of ER 

targeted tRNA genes in breast cancer using Gingold’s classifier list, transcriptional 

studies need to be carried out to see the functional consequence of an ER binding 

event at tRNA loci. 

 

3.3.5 Future work 

 

As highlighted in Section 3.3.3, a DNA binding mechanism behind ER 

recruitment to tRNA loci has not been fully explored. While there is strong evidence 

in support of a protein tethering mechanism, only a small proportion of tRNA targets 

of the ER were investigated. To assess a DNA binding mechanism further, 

expanding the motif search to include all tRNA genes identified as ER targets, and 
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utilising a more high-powered computational program, such as the TFBSTools 

package in R could inform in greater detail the requirement of canonical and non-

canonical ERE motifs in proximal and distal enhancer regions of tDNA loci (Tan and 

Lenhard, 2016). Additionally, a key principle of ER binding to the DNA is the 

presence of a functional DBD (Björnström and Sjöberg, 2002; Stender et al., 2010; 

Huang et al., 2018). Three mutations in the human ER DBD, namely E203G, 

G204S and A207V, have been shown to disrupt ER binding to EREs by up to 95% 

(Mader et al., 1989; Stender et al., 2010). Thus, generating ER DBD mutants and 

conducting ChIP-seq would allow the discrimination of tRNA genes targeted by the 

ER through protein tethering mechanisms - which would be unaffected by DBD 

mutations, and tDNAs that are targeted by the ER through a direct interaction with 

DNA at tRNA loci - which would see a reduction in ER occupancy with DBD mutant 

relative to wild type ER. 

 

It would also be useful to further explore the co-regulator axis of ER with 

tRNA genes and Pol III transcriptional machinery. Findings discussed in Section 

3.2.7 and Section 3.2.8 implicate FOXA1 in Pol III recruitment to some Type II and 

Type III promoters, although the exact mechanism underlying this remains unclear. 

FOXA1 recruitment appears to fall between the positioning of TFIIIC, whereby the 

GTF3C5 subunit is unaffected by reduced ER and FOXA1 occupancy at tDNA loci, 

and the subsequent loading of Pol III at the TSS. TFIIIB is directed to TFIIIC and is 

responsible for the efficient recruitment of Pol III to target promoters by an 

interaction with Brf1 (or Brf2 in Type III promoters) and at least three distinct Pol III 

sites (Kassavetis et al., 2001; Gouge et al., 2015). How FOXA1 affects the complete 

assembly of the Pol III apparatus prior to ncRNA transcription could be explored 

more comprehensively. Specifically, ChIP-qPCR of fulvestrant treated, or FOXA1-

depleted (siRNA) MCF-7 cells could be undertaken to assess Brf1 and Brf2 

occupancy at tDNA and RMRP/RN7SL1, respectively. If the TFIIIB subunits are also 

reduced at their target promoters, it would support the hypothesis that FOXA1 

promotes open chromatin around these loci to facilitate cognate TFIIIB binding. 

Many other co-regulatory proteins associated with the ER are essential for the 

ability of the hormone receptor to carry out transcriptional activation or repression of 

target genes. Such accessory factors include P300, CBP, AP-1, SP-1 as well as 

nuclear receptor coactivators (NCOA) and corepressors (NCOR) (Hanstein et al., 

1996; Kraus and Kadonaga, 1998; deGraffenried et al., 2002; Altwegg and 

Vadlamudi, 2021; Waddell et al., 2021). The intricate and dynamic co-regulatory 
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network of the ER - Pol III axis could therefore be further explored in the context of 

specific recruitment of such transcription factors, and their involvement in securing 

robust protein-tethering interactions or facilitating rapid upregulation of ncRNA in 

response to hormone stimulation.  Further ChIP-seq or ChIP-qPCR experiments 

could help unravel the complexes that form with the ER at Pol III promoters and 

ascertain the biological significance of such recruitment in terms of gene 

expression. To understand codon usage bias and the biological properties of tRNAs 

targeted by the ER in breast cancer cells, studies that investigate the 

transcriptional response to i) ER knockdown, ii) oestradiol stimulation and iii) ER 

antagonism could be carried out. Specifically, single-read tRNA-seq could 

discriminate preferential codon usage in breast cancer cells vs. normal breast 

tissue, as well as elucidate specific direction of tRNA gene transcription in response 

to hormone stimulation or ER repression (Hernandez-Alias et al., 2023). 

Additionally, analysis of such datasets would further help to stratify active targets of 

the ER into Gingold’s functional classifier groups, to ascertain if tDNA loci with 

robust ER associations are providing an anticodon pool that serves to enhance 

efficient translation of proliferative genes in breast cancer (Gingold et al., 2014).  

 

Finally, an interesting feature of tDNA biology is their propensity to be 

linearly organized into genomic clusters with other tDNAs. In particular, almost one-

third (158) of annotated human tRNA genes are closely spaced within 2.67 million 

base pairs of the class I major histocompatibility complex genes on the short arm of 

chromosome 6, and are similarly proximal to many genes which encode histone 

proteins and zinc-finger transcription factors (Mungall et al., 2003; Pan, 2018). Other 

smaller tRNA cluster hotspots are located on chromosomes 1, 5, 14, 16 and 17. 

Additionally, a cluster of tRNA genes are present on chromosome 7, which is 90% 

comprised of tRNACys genes (Mungall et al., 2003). The genomic organisation of 

tDNA therefore have been studied in some depth, and suggest that tDNA clusters 

are functional in preserving hetero-euchromatic borders by acting as barriers or 

insulators (Sizer et al., 2022). By acting in this way, tDNA insulators maintain distinct 

genomic boundaries but also perpetuate high-level Pol III transcription due to tDNAs 

being close to other tDNAs on the same chromosome. Further, the compact nature 

of chromosomes means tDNAs that may be spaced kilo bases away from another 

tDNA in linear organisation are in fact in proximity in 3D space, due to chromatin 

folding. As such, domain-level and loop-based organisation of tDNA are of 

significant importance when considering how these tRNA genes are regulated (Van 
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Bortle et al., 2017). Therefore, it would be of great interest to further explore the 

relationship between ER bound tDNA in breast cancer cells using methods that 

can capture topological chromatin interactions of transcription factors, such as Hi-C, 

an improved Chromatin Conformation Capture method that would allow unbiased 

probing of all chromosomal interactions occurring around ER binding sites (Belton 

et al., 2012). Such experiments would permit inference regarding the full extent to 

which ER may regulate tDNA expression. For instance, if Hi-C captured ER 

associated with two distinct tRNA genes present on the same chromosome, one 

could assume that these tDNA are preferentially targeted for regulation by the 

hormone receptor. However, if Hi-C instead captured a tRNA gene and a known 

ER regulated gene (e.g., GREB1), it could be possible that ER is only associated 

with the tRNA gene in 3D space, rather than being a genuine ER target gene, with 

subsequent alterations in tRNA expression being a byproduct of ER and 

coregulator association at Pol II, not Pol III promoters.  

 

3.4 Conclusion 

 

The aim of this Chapter was to quantify ER enrichment at tRNA genes and 

delineate the mechanism in which ER is recruited to Pol III-transcribed loci. 

Between 30 and 50% of tRNA genes are specifically targeted by the ER in ER+ 

cell lines and breast tumours. The recruitment of the hormone receptor to the tDNAs 

with the strongest association was not via canonical ERE sequence motifs as 

originally hypothesised, but instead appears to be a consequence of robust 

interactions of ER with TFIIIC subunits bound to A and B boxes of target tRNA 

genes. ER facilitates Pol III positioning at tRNA promoters, possibly by reinforcing 

assembly of necessary Pol III transcriptional machinery through enhanced protein 

tethering mechanisms, or by enhancing chromatin accessibility for TFIIIB and Pol III 

with the recruitment of pioneer factor FOXA1 to tDNA loci. 
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4. Identification of Robust RT-qPCR Reference Genes for Studying Changes in 

Gene Expression in Response to Hypoxia in Breast Cancer Cell Lines  

 

4.1 Introduction 

 

 Hypoxia is a key driver of breast cancer progression. In particular, breast 

tumours positive for HIF-1 or hypoxic signatures are associated with increased 10-

year breast cancer recurrence, therapy resistance and breast cancer-related death 

(Li et al., 2022b; Tutzauer et al., 2022). As HIF-1 and HIF-2 are the predominant 

transcription factors mediating the hypoxic response, important changes occurring 

at the transcriptional level because of HIF activity need to be investigated. 

Identifying novel targets of HIF-1 and/or HIF-2 could have significant therapeutic 

benefit for women with hypoxic breast tumours.  

 

To assess complex transcriptional changes occurring during hypoxia-

mediated breast cancer progression and therapy resistance, reverse transcription - 

quantitative real-time polymerase chain reaction (RT-qPCR) is gold standard for 

accurately quantifying gene transcription and capturing dynamic changes in gene 

expression that may be serving as molecular drivers of advanced disease 

(Ginzinger, 2002). A fundamental component of RT-qPCR is inclusion of reference 

genes (RGs) which act as internal controls for endogenous normalisation of 

measured target gene expression. RGs are selected on the basis of constitutive 

expression, and relative abundance not being altered by experimental conditions 

(Suzuki et al., 2000). The substantial adjustment to the epigenome and 

transcriptome of cells that occurs under hypoxic conditions renders traditional RGs 

such as glycolytic enzymes GAPDH or PGK1 unsatisfactory for this use; despite 

this, comprehensive, systemic determination of RGs for hypoxia studies in breast 

cancer cell lines has yet to be performed (Yang et al., 2008b; Higashimura et al., 

2011; Zhang et al., 2020; Wang et al., 2021).  

 

An additional consideration for investigating hypoxia-driven changes in gene 

transcription is ascertaining which HIF isoform is responsible for such aberrations in 

expression. The “HIF switch” refers to the transition from HIF-1 to HIF-2-

dependent transcription and is recognised by rapid accumulation of HIF-1 in 

response to acute O2 deprivation, followed by loss of HIF-1 during periods of 

chronic hypoxia and accumulation of HIF-2 protein as this secondary isoform 
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becomes the predominant driving force of a long-term hypoxic response (Zhong et 

al., 1999; Holmquist-Mengelbier et al., 2006; Franovic et al., 2009; Koh and Powis, 

2012). Identification of the molecular transitions between HIF isoforms will inform 

which transcription factor may be responsible for observed expression changes of 

genes of interest. Therefore, it is important to conduct studies in hypoxic breast 

cancer cells with the HIF switch in mind. 

 

4.1.1 Aims and objectives  

 

As determination of robust RGs for studying the effects of hypoxia on breast 

cancer cell lines has not been carried out, an important knowledge gap exists, 

whereby RGs suitable for this purpose need to be identified. To address this need, 

four widely used breast cancer cell lines representing both ER+ Luminal A (MCF-7 

and T-47D) and TNBC (MDA-MB-231 and MDA-MB-468) subtypes were used. To 

estimate the timing of the HIF switch, breast cancer cell lines were cultured in 

normoxia (20% O2), or hypoxia (1% O2) under an acute (8 hours) or chronic (48 

hours) time course and western blot was used to monitor HIF isoform abundance. 

To identify RG candidates, a publicly available RNA-seq dataset of hypoxic breast 

cancer cell lines was analysed (Ye et al., 2018; Godet et al., 2019). With 10 RG 

candidates, a comprehensive investigation to identify RGs with the least variability 

in expression after being cultured in normoxia, acute hypoxia or chronic hypoxia 

was implemented. RG candidates not abundantly expressed or associated with poor 

primer efficiencies were filtered out of the selection process. RGs were chosen by 

employing web-based RG tool RefFinder (Xie et al., 2012, 2023). The finding of 

robust RT-qPCR RGs in the context of hypoxic breast cancer cell lines will provide a 

valuable resource for future studies investigating important transcriptional changes 

occurring during breast cancer progression.  
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4.2 Results 

 

4.2.1 The HIF Switch in Hypoxic Breast Cancer Cell Lines Occurs between 8 

and 48 Hours of O2 Deprivation 

 

The overall aim of this study was to identify optimal RGs for investigations of 

normoxic vs. hypoxic ER+ Luminal A (MCF-7 and T-47D) and TNBC (MDA-MB-

231 and MDA-MB-469) cell lines. Cell lines were selected based on widespread use 

in breast cancer research: MCF-7, T-47D and MDA-MB-231 represent more than 

two-thirds of cell lines used within such studies (Dai et al., 2017).  

 

To select optimal timepoints for investigating hypoxia-mediated changes in 

transcription, it was important to identify the HIF switch in chosen breast cancer cell 

lines. To estimate HIF switch timepoints, MCF-7, T-47D, MDA-MB-231 and MDA-

MB-468 breast cancer cell lines were cultured in normoxia, or in hypoxia for 8 or 48 

hours to observe changes in HIF protein accumulation. In normoxic cell lysate from 

all cell lines, no HIF-1 protein was observed (Figure 4.1a). For a loading control, -

Tubulin was immunoblotted for on the same membrane which confirmed equal 

loading of cell lysate in all lanes. Densitometry analysis of HIF-1 and -Tubulin 

showed a maximum induction of HIF-1 protein after 8 hours culture in hypoxia, 

which was markedly reduced after 48 hours, in all cell lines. MDA-MB-231 cells saw 

the greatest induction of HIF-1 during acute hypoxia and saw the greatest loss of 

HIF-1 after chronic exposure to a hypoxic environment. When HIF-2 was 

investigated, normoxic cell lysate demonstrated moderate levels of this transcription 

factor in all cell lines (Figure 4.1b). Densitometry analysis revealed positive fold 

change increase in HIF-2 protein levels following acute and chronic hypoxic 

culture. For MCF-7s, this induction was small after 48 hours, whereas for T-47D 

cells, HIF-2 protein levels reached a nearly 2-fold increase by the end of the 

experiment. MDA-MB-231 cells saw a 1.5-fold induction in HIF-2 protein after 8 

hours of hypoxic culture, however the levels of this isoform returned to normoxic 

levels by 48 hours. The greatest induction of HIF-2 was seen in the second TNBC 

cell line. Here, MDA-MB-468 cells increased HIF-2 protein levels more than 2-fold 

after acute hypoxic culture, which was sustained up to the 48 hours’ time point. 

Despite cell line variability, HIF-1 was strongly induced in all cell lines at 8 hours of 

hypoxic culture, demonstrating rapid stabilisation in response to O2 deprivation. HIF-

2 was already present in all cell lines, even in normoxic conditions, but as HIF-1 
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protein was nearly absent after 48 hours while HIF-2 persists, it was reasonable to 

assume that HIF-2 mediates the prolonged hypoxic response at this time point. 

Therefore, hypoxic culture of 8 hours was used to determine HIF-1 transcriptional 

targets, whereas 48 hours would recapitulate chronic hypoxia and was used to 

ascertain HIF-2 targets. For the purposes of identifying non-variable RGs for RT-

qPCR studies, a hypoxic time course of 8 or 48 hours was used. 
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Figure 4.1 Identifying the “HIF Switch” in Breast Cancer Cell Lines (a) Western blot 

analysis of HIF-1 (top western blot windows) and -Tubulin (bottom western blot 

windows) in MCF-7, T-47D, MDA-MB-231 and MDA-MB-468 breast cancer cell lines. 

Plots under western blots demonstrate normalised densitometry analysis where density of 

HIF-1 bands from 8 and 48 hours of hypoxic culture were normalised to density of -

Tubulin bands of the same time point, in each cell line. N = 1. (b) Western blot analysis of 

HIF-2 (top western blot windows) and -Tubulin (bottom western blot windows) in MCF-

7, T-47D, MDA-MB-231 and MDA-MB-468 breast cancer cell lines. Plots under western 

blots represent fold change in normalised density values of HIF-2 following 8 or 48 hours 

of hypoxic culture relative to normalised normoxic (0 hour) HIF-2 band density. N = 1. 
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4.2.2 Analysis of public RNA-seq dataset identifies 10 RG candidates 

 

To address the need for robust RGs for studying hypoxia in breast cancer 

cell lines, a publicly available RNA-seq dataset was utilised to generate a shortlist of 

RG candidates. The original study investigated genome-wide transcriptional 

changes taking place in 32 breast cancer cell lines as a consequence of O2 

deprivation, and RNA-seq datasets were deposited to the NCBI SRA (Table 2.6) (Ye 

et al., 2018; Godet et al., 2019). In order to benefit from the public sequencing files 

for the purpose of exploring potential RG candidates, fastq files for normoxic and 

hypoxic MCF-7, T-47D, MDA-MB-231 and MDA-MB-468 breast cancer cells were 

obtained and reads quantified using kallisto (Bray et al., 2016). From the 30,187 

genes evaluated in selected ER+ and TNBC cell lines, sample to sample distances 

were measured in a Euclidean Distance Matrix (EDM) plot which showed samples 

from the same cell lines were clustered closer together than samples from different 

cell lines, as expected (Figure 4.2A). Additionally, TNBC cell lines were grouped 

together, as are Luminal A cell lines, whereas greater divergence was seen between 

cell lines representing different subtypes of breast cancer. Therefore, the result from 

the EDM analysis confirmed no sample outliers. 

 

To further validate the use of the public RNA-seq dataset, responsiveness of 

hypoxia-regulated genes was assessed to ensure cell lines behaved as expected 

when cultured in the absence of O2. Analysis demonstrated increased expression of 

CA9, PGK1 and VEGFA in all cell lines, in response to hypoxic culture and in line 

with previous findings (Figure 4.2B – Figure 4.2D) (Forsythe et al., 1996; Wykoff et 

al., 2000; Turner et al., 2002; Zhang et al., 2020). Therefore, the public dataset had 

undergone thorough validation and quality control and was suitable for identifying 

RG candidates.  
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Figure 4.2 Responsiveness of Breast Cancer Cell Lines to Hypoxia in a Publicly 

Available RNA-seq Dataset (GSE111653) (a) EDM of squared distances between MCF-

7, (pink) MDA-MB-231 (M231; salmon), MDA-MB-468 (M468; blue) and T-47D (green) 

breast cancer cell lines cultured in normoxia (N; teal) or hypoxia (H; gold). Transcripts per 

million (TPM) of hypoxic-responders (b) CA9, (c) PGK1 and (d) VEGFA in breast cancer 

cell lines cultured in normoxia (20% O2; grey) or hypoxia (1% O2; blue) for 24 hours. N = 

1. 
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As HIFs are constitutively transcribed, translated and turned over, the 

expression of HIF genes ARNT (HIF-1), ARNT2 (HIF-2), EPAS1, HIF1A and 

HIF3A was analysed to see if any of the hypoxic responders could serve as suitable 

RGs in the study of hypoxic breast cancer cell lines (Figure 4.3). Interestingly, 

EPAS1, the gene encoding HIF-2, appeared to be relatively stable in expression in 

TNBC but not ER+ cell lines (Figure 4.3c; Table 4.1). Specifically, EPAS1 was not 

expressed in MCF-7s, but was expressed in T-47D and MDA-MB-231 cells, and 

more so in the MDA-MB-468 cell line. As this study aims to identify RGs that can be 

used when comparing all breast cancer cell lines together, as well as RGs optimised 

for cell lines stratified into breast cancer subtype, or individual cell lines, EPAS1 was 

included as a promising candidate for an RG when studying transcriptional changes 

occurring in hypoxic MDA-MB-231 and MDA-MB-468 cells.  
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Figure 4.3 Members of the HIF Complex are Variable in their Expression in 

Normoxia and Hypoxia RNA-seq analysis (GSE111653) of HIF genes (a) ARNT (b) 

ANT2 (c) EPAS1 (d) HIF1A and (e) HIF3A in breast cancer cell lines cultured in normoxia 

(20% O2; grey) or hypoxia (1% O2; blue) for 24 hours. N = 1. 
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Next, read count stability of common RGs was determined when ER+ and 

TNBC cells were cultured in hypoxia or normoxia, to identify RG candidates that 

may be stable in expression in each cell line, regardless of O2 availability. From this, 

a shortlist of 10 RG candidates was generated (Table 4.1). Candidates were initially 

selected based on common use as RGs in breast cancer cell lines (e.g. CCSER2 in 

MCF-7, T-47D, MDA-MB-231 and MDA-MB-468 cell lines), or as stable RGs in 

other models of hypoxia (e.g. RPLP1 in hypoxic pre-conditioned human neural stem 

cells) (Tilli et al., 2016; Kang et al., 2019; Jain et al., 2020), and further stratified 

based on a calculated similarity score (𝑠) which was used to determine how similar 

read counts are in genes from breast cancer cell lines cultured in 20% or 1% O2. 

Where 𝑠 = 0, transcripts per million (TPM) are the same between the two conditions. 

A minimum threshold was established where 𝑠 ≤ 0.30 in at least two of the cell lines, 

to be carried forward as an RG candidate.  

 

Of the 10 RG candidates, ER+ MCF-7 cells had the greatest variability in 

RG expression compared to T-47D and TNBC cell lines, with CCSER2, EPAS1, 

OAZ1 and TFRC exceeding the maximum threshold for RG candidate selection, 

achieving 𝑠 scores of 0.39, 0.33, 0.34 and 0.39, respectively (Table 4.1). EPAS1 

also responded positively to hypoxic culture in T-47D cells with an 𝑠 score of 0.40, 

whereas no induction was observed in TNBC cells. However, EPAS1 was the only 

RG candidate that exceeded the maximum threshold in T-47Ds. Furthermore, for 

MDA-MB-231 and MDA-MB-468 cell lines, only TFRC or TBP had altered 

expression following O2 deprivation, with 𝑠 scores of 0.32 and 0.34, respectively. 

Remaining RG candidates ACTB, GUSB, RPL27, RPL30 and RPLP1 were stable in 

expression between the two conditions, in all cell lines (Table 4.1). When looking at 

the 𝑠 score across all RG candidates, MCF-7 cells demonstrated the highest degree 

of RG variability (mean 0.26 ± 0.10 SD). MDA-MB-231 (mean 0.10 ± 0.08 SD) and 

MDA-MB-468 (mean 0.11 ± 0.12SD) had the lowest degree of RG variability, 

suggesting TNBC cell lines may be more adapted to hypoxic environments. 
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Table 4.1 Similarity (𝒔) Score between Hypoxic and Normoxic RNA-Sequencing Reads 

of RG Candidates 

RG candidate MCF-7 T-47D MDA-MB-231 MDA-MB-468 

ACTB 0.23 0.08 0.11 0.30 

CCSER2 0.39 0.04 0.15 0.00 

EPAS1 0.33 0.40 0.07 0.03 

GUSB 0.11 0.20 0.08 0.21 

OAZ1 0.34 0.11 0.05 0.03 

RPL27 0.24 0.12 0.06 0.10 

RPL30 0.29 0.07 0.04 0.01 

RPLP1 0.15 0.22 0.01 0.03 

TBP 0.14 0.19 0.09 0.34 

TFRC 0.39 0.27 0.32 0.03 

Mean 0.26 0.17 0.10 0.11 

SD 0.10 0.10 0.08 0.12 
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4.2.3 Assessment of RG candidate mRNA expression confirms eight highly 

expressed genes 

 

To demonstrate suitability of RG candidates, RG expression in TNBC and 

ER+ breast cancer cell lines cultured in normal O2 conditions was determined 

against a standard curve of pooled cDNA from independent biological replicates. 

ACTB was expressed most highly among the breast cancer cell lines but also 

showed greatest variation between biological replicates ranging from 8 - 202 

arbitrary units (A.U.) in MCF-7 cells, and 30 - 179 A.U. in T-47D cells (Figure 4.4a). 

EPAS1 was only amplified in one biological replicate in MDA-MB-231 and MDA-MB-

468 cells, expression levels of  A.U, and 6 A.U., respectively (Figure 4.4c). 

Additionally, TBP did not have detectable levels of expression in any cell lines 

(Figure 4.4j). TBP and EPAS1 were therefore removed from further investigation. 

The next lowest expressed RG was CCSER2 which was expressed at 0.21, 0.31, 

1.15 and 2.36 A.U. in MCF-7, T-47D, MDA-MB-468 and MDA-MB-231 cell lysates, 

respectively (Figure 4.4b). The remaining RG candidates (GUSB, OAZ1, RPL27, 

RPL30, RPLP1 and TFRC) and PGK1 were more highly expressed in all cell lines 

(Figure 4.4d – Figure 4.4i, Figure 4.4k).  
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Figure 4.4 Expression of RG Candidates in MCF-7, T-47D, MDA-MB-231 and MDA-

MB-468 Breast Cancer Cell Lines Cultured in 20% O2. RG candidates (a) ACTB (b) 

CCSER2 (c) EPAS1 (d) GUSB (e) OAZ1 (f) PGK1 (g) RPL27 (h) RPL30 (i) RPLP1 (j) 

TBP and (k) TFRC were evaluated for expression in breast cancer cell lines cultured in 

normal conditions for 72 hours post seeding. Arbitrary Units (A.U.) were determined from 

a standard curve of pooled cDNA sample from each cell line. Error bars are ± SEM. N = 3. 

Where there is an outlier, the data point is displayed above the relevant box plot with 

mRNA expression value included. 
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4.2.4 Evaluating RG expression in normoxic vs. hypoxic breast cancer cell 

lines filters out poor RG candidates and identifies robust RGs with the least 

variability in expression 

 

Next, expression stability of RG candidates was investigated following breast 

cancer cell line culture in normoxia, or in hypoxia for 8 or 48 hours (Figure 4.5). 

Primer efficiencies (PEs) from standard curves were also included in RT-qPCR 

experiments (Table 4.2). ACTB, CCSER2 and GUSB displayed poor PE (Table 4.2; 

ACTB mean 1.70 ± 0.17 SD; CCSER2 mean 2.43 ± 0.35 SD; GUSB mean 2.22 ± 

0.15 SD). These RG candidates were therefore removed from downstream analysis. 

OAZ1, RPL27, RPL30 and RPLP1 were expressed at comparatively similar levels 

across all cell lines, and in each condition (Figure 4.5a - Figure 4.5d). TFRC showed 

inter-cell line stability when cultured in normoxia, or acute or chronic hypoxia. 

However, intra-cell line CtE was more varied. In particular, TFRC had higher CtE 

values in MCF-7 cells, which suggests this gene was not as highly expressed in 

MCF-7s compared to other breast cancer cell lines (Figure 4.5e). As predicted 

based on evidence in the literature, PGK1 CtE values decreased in all cell lines 

following hypoxic culture for 8 or 48 hours, which conferred increased expression of 

PGK1 in response to limited O2 availability (Figure 4.5f). This result is in line with 

previous observations of hypoxic induction of PGK1 (Hu et al., 2003; Jain et al., 

2020; Zhang et al., 2020; Ong et al., 2023). 
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Figure 4.5 RG Stability in Breast Cancer Cell Lines Cultured in Normoxia or 

Hypoxia. RT-qPCR was used to determine the variance in gene expression of selected 

RG candidates: (a) OAZ1, (b) RPL27, (c) RPL30, (d) RPLP1, (e) TFRC and (f) PGK1 

following culture of MDA-MB-231, MDA-MB-468, MCF-7 or T-47D breast cancer cell lines 

in normoxia (grey) or hypoxia for 8 hours (blue) or 48 hours (orange). Error bars are mean 

± SEM. N = 3 
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Table 4.2 Primer Efficiencies of RG Candidates. ACTB, CCSER2 and GUSB  have PE’s 

above or below an acceptable PE range and were therefore excluded. 
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CtE values of the five remaining RG candidates that met all our criteria, 

OAZ1, RPL27, RPL30, RPLP1 and TFRC, as well as hypoxia-responder PGK1, 

were then submitted to RefFinder, with intent to rank RG candidates in order of 

expression stability across all cell lines in normoxia or acute or chronic hypoxia. 

RefFinder first employs GeNorm, NormFinder, BestKeeper and the comparative ΔCt 

method to independently rank RGs. Next, RefFinder assigns a weight to an 

individual gene based on RG performance in the prerequisite programs, and 

calculates the geometric mean of candidate weights to provide a final ranking of the 

most stable RGs (Xie et al., 2012, 2023). In all iterations of RG stability analysis 

across all cell lines, PGK1 and TFRC were ranked 5th and 6th, respectively (Table 

4.3). According to BestKeepeer and the comparative ΔCt method, RPLP1 had the 

least variable inter- and intra-cell line expression in normoxic and hypoxic 

environments. RPLP1 was also the highest ranked RG candidate by RefFinder 

(Table 4.3; Figure 4.6a). Conversely, NormFinder ranked OAZ1 as the best RG 

candidate, and placed RPL27 and RPLP1 as the second and third best RG 

candidates (Table 4.3). A benefit of GeNorm over the other programs is the 

additional assessment of the optimal number of RGs to use for accurate 

normalisation (Vandesompele et al., 2002). For the study of hypoxia-mediated 

alterations in gene expression between MCF-7, T-47D, MDA-MB-231 and MDA-MB-

468 breast cancer cell lines, GeNorm recommended the combined use of RPL27 

and RPLP1. 

 

Next, optimal RGs to be used for RT-qPCR of hypoxic breast cancer cell 

lines following stratification into breast cancer subtypes was investigated. When CtE 

values from ER+ MCF-7 and T-47D breast cancer cell lines were supplied, RPLP1 

was again ranked top RG candidate with the least variability in expression, 

according to RefFinder, BestKeepeer and the comparative ΔCt method (Table 4.3, 

Figure 4.6b). As in all cell lines, NormFinder suggested OAZ1 to be the optimal RG 

to use when investigating hypoxic induction of genes of interest in the ER+ 

Luminal A breast cancer group. GeNorm recommended the combined use of RPLP1 

and RPL30, instead of RPL27 as previously put forward for all cell lines. PGK1 and 

TFRC were ranked as the least stable RGs in all outputs as before. For the TNBC 

MDA-MB-231 and MDA-MB-468 cell lines, RPL30 was placed first by all programs 

(Table 4.3, Figure. 4.6c), apart from GeNorm which recommended RPL27 and 

RPLP1, the same as for all breast cancer cell lines. Computational analysis of 

individual cell lines cultured in normoxia, and acute or chronic hypoxia was also 
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performed. Here, RPLP1 and RPL30 were the least variable and most suitable RGs 

for the MCF-7 (Table 4.3; Figure 4.6d) or T-47D (Table 4.3; Figure 4.6e) cell lines. 

Additionally, GeNorm identified RPLP1 and RPL27 as the least variable and most 

suitable RGs for MDA-MB-231 (Table 4.3; Figure 4.6f) or MDA-MB-468 cell lines 

(Table 4.3; Figure 4.7g), but RPL30 was ranked as the least variable single RG by 

RefFinder in both TNBC models. 
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Table 4.3 Summaries of Ranked RG Stability According to RefFinder and Prerequisite 

programs Ranked in order from least variable / best (1) to most variable / worst (6). 

Cell lines Method 1 2 3 4 5 6 

All Cell Lines 

MCF-7  

T-47D 

MDA-MB-231  

MDA-MB-468 

ΔCt RPLP1 RPL27 OAZ1 RPL30 PGK1 TFRC 

BestKeeper RPLP1 RPL27 OAZ1 RPL30 PGK1 TFRC 

NormFinder OAZ1 RPL27 RPLP1 RPL30 PGK1 TFRC 

GeNorm RPL27 | RPLP1  RPL30 OAZ1 PGK1 TFRC 

RefFinder RPLP1 RPL27 OAZ1 RPL30 PGK1 TFRC 

Luminal A 

MCF-7  

T-47D 

ΔCt RPLP1 RPL30 OAZ1 RPL27 PGK1 TFRC 

BestKeeper RPLP1 RPL27 RPL30 OAZ1 PGK1 TFRC 

NormFinder OAZ1 RPL27 RPLP1 RPL30 PGK1 TFRC 

GeNorm RPL30 | RPLP1  OAZ1 RPL27 PGK1 TFRC 

RefFinder RPLP1 RPL30 OAZ1 RPL27 PGK1 TFRC 

TNBC 

MDA-MB-231  

MDA-MB-468 

ΔCt RPL30 OAZ1 RPL27 RPLP1 TFRC PGK1 

BestKeeper RPL30 RPL27 RPLP1 OAZ1 TFRC PGK1 

NormFinder RPL30 OAZ1 RPL27 TFRC RPLP1 PGK1 

GeNorm RPL27 | RPLP1  RPL30 OAZ1 TFRC PGK1 

RefFinder RPL30 RPL27 RPLP1 OAZ1 TFRC PGK1 

MCF-7 

ΔCt RPL30 RPLP1 OAZ1 RPL27 PGK1 TFRC 

BestKeeper RPL30 RPLP1 OAZ1 RPL27 PGK1 TFRC 

NormFinder RPL30 RPLP1 RPL27 OAZ1 PGK1 TFRC 

GeNorm RPL30 | RPLP1  OAZ1 RPL27 PGK1 TFRC 

RefFinder RPL30 RPLP1 OAZ1 RPL27 PGK1 TFRC 

T-47D 

ΔCt RPLP1 RPL30 RPL27 OAZ1 PGK1 TFRC 

BestKeeper RPL27 RPLP1 RPL30 OAZ1 TFRC PGK1 

NormFinder RPLP1 RPL30 OAZ1 RPL27 PGK1 TFRC 

GeNorm RPL30 | RPLP1  RPL27 OAZ1 PGK1 TFRC 

RefFinder RPLP1 RPL30 RPL27 OAZ1 PGK1 TFRC 

MDA-MB-231 

ΔCt RPL30 OAZ1 TFRC RPL27 RPLP1 PGK1 

BestKeeper RPL27 RPLP1 RPL30 TFRC OAZ1 PGK1 

NormFinder RPL30 OAZ1 TFRC RPL27 RPLP1 PGK1 

GeNorm RPL27 | RPLP1  RPL30 TFRC OAZ1 PGK1 

RefFinder RPL30 RPL27 RPLP1 OAZ1 TFRC PGK1 

MDA-MB-468 

ΔCt RPL30 RPL27 OAZ1 RPLP1 PGK1 TFRC 

BestKeeper RPL30 OAZ1 PGK1 RPL27 RPLP1 TFRC 

NormFinder RPL30 OAZ1 RPL27 PGK1 RPLP1 TFRC 

GeNorm RPL27 | RPLP1  RPL30 OAZ1 PGK1 TFRC 

RefFinder RPL20 RPL27 OAZ1 RPLP1 PGK1 TFRC 
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Figure 4.6 Geomean of Ranking Values for RG Candidates The final overall ranking of 

RG candidates was determined by RefFinder based on the geometric mean of the 

weights of each RG from GeNorm, NormFinder, BestKeeper and the comparative ΔCt 

method for (a) all breast cancer cell lines, (b) ER+ breast cancer cell lines MCF-7 and T-

47D, (c) TNBC cell lines MDA-MB-231 and MDA-MB-468, or (d) MCF-7, (e) T-47D, (f) 

MDA-MB-231 and (g) MDA-MB-468 cell lines individually. 
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4.2.5 RPLP1 and RPL27 are suitable RGs for normalising gene expression in 

normoxic vs. hypoxic ER+ and TNBC cell lines 

 

Following identification of optimal RGs, the combined use of RPLP1 and 

RPL27 for normalisation of CA9 expression in breast cancer cell lines cultured in 

normoxia or hypoxia for 8 or 48 hours was assessed. The geometric mean of 

RPLP1 and RPL27 was used to normalise CA9 CtE values, before fold change 

induction (2-ΔΔCt) of CA9 was calculated (Livak and Schmittgen, 2001). Expression 

(CtE) of RPLP1 and RPL27 in MCF-7 (19.4 ± 0.4 SD), T-47D (19.7 ± 0.5 SD), MDA-

MB-231 (18.8 ± 0.5 SD) and MDA-MB-468 (19.6 ± 0.9 SD) cells were consistent, 

regardless of environmental O2 (Figure 4.7a). Conversely, all cell lines demonstrated 

significant induction of CA9 following hypoxic culture (Figure 4.7b). In MCF-7 cells, 

CA9 was increased 470-fold after chronic exposure to a hypoxic environment. For 

T-47Ds, acute and chronic hypoxia induced a 42- and 109-fold increase in CA9 

expression, respectively. After 8 hours of hypoxic culture, MDA-MB-231s had a 

moderate but significant 9-fold induction, and for MDA-MB-468s a 17-fold increase 

in CA9 expression was seen following 48 hours of hypoxic culture. Importantly, 

RPLP1 and RPL27 were similarly expressed in each cell line, in each condition. 

Thus, combination of RPLP1 and RPL27 as RGs was suitable for normalising gene 

expression in normoxic and hypoxic breast cancer cell lines.  
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Figure 4.7 RG Expression Level Stability and Hypoxic Induction of CA9.  

(a) RPL27 (N = 3) and RPLP1 (N = 3) expression was determined by RT-qPCR. Raw CtE 

values for triplicate biological replicates of the two RGs in MCF-7, T-47D, MDA-MB-231 

and MDA-MB-468 breast cancer cell lines are shown. Error bars are geometric mean ± 

geometric SD. (b) Expression of CA9 was assessed in MCF-7, T-47D, MDA-MB-231 and 

MDA-MB-468 breast cancer cell lines following culture in normoxia (20% O2, “0 hours”) or 

hypoxia (1% O2) for 8 or 48 hours. Changes in CA9 expression were determined by the 2-

ΔΔCt method, using the geometric mean of RGs RPLP1 and RPL27 for normalisation (a). 

One-way ANOVA with Dunnett’s multiple comparisons was employed to investigate 

significant fold change in gene expression relative to normoxic control. *p= < 0.05, 

 **p = < 0.01, ***p = < 0.001. Error bars are ± SEM. N = 3 
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4.2.6 Evaluation of RG shortlist in additional 28 breast epithelial or cancer cell 

lines 

 

 Finally, the initial RNA-seq dataset conducted across 32 hypoxic or 

normoxic breast cancer cell lines was studied to determine the s score of OAZ1, 

RPLP27, RPLP30, RPLP1 and TFRC across a broad range of breast cancer 

models. As previously shown in MCF-7 cells (Table 4.1), Luminal breast cancer cell 

lines tend to experience greater variability in the expression of the RG candidates, 

with ZR-75-1 being the most stable cell line in all five RG candidate expression 

when cultured in normoxia or in hypoxia, and achieving a mean s score of 0.29 ± 

0.09 SD (Table 4.4). In contrast, 38% of TNBC cell lines analysed had an average s 

score of ≤ 0.30. For the two HER2 cell lines included in this study, none of the RGs 

demonstrated an s score below the maximum cutoff. For the Luminal B cell line, 

BT474, TFRC showed very minimal variation in expression between normoxic and 

hypoxic conditions suggesting that this transferrin receptor may be a suitable RG for 

RT-qPCR experiments in this cell line. Non-tumorigenic mammary epithelial (NTME) 

cell lines were also included in the analysis. NTME cell lines from the MCF series 

were greatly affected by hypoxic culture, whereas HME cells maintained relatively 

stable expression of OAZ1, RPL30 and RPLP1. From our panel of RG candidates 

that made it to RefSeq analysis in MCF-7, T-47D, MDA-MB-231 and MDA-MB-468 

cells, we have demonstrated potential application of these RGs to a broader range 

of cell lines that expand beyond the four that have been intensively studied 

throughout this Chapter. Further work will be required to validate the use of OAZ1, 

RPL27, RPL30, RPLP1 and TFRC in additional breast cancer cell lines.  
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Table 4.4 s scores of top five RG candidates in 28 breast cancer or normal mammary 

epithelial cell lines. Data available from NCBI GEO – GSE111653. Cell lines have been 

arranged in accordance with the subtype of breast cancer they represent. Abbreviations: 

Non-Tumorigenic Mammary Epithelial (NTME) 

Cell Line Subtype OAZ1 RPL27 RPL30 RPLP1 TFRC Mean SD 

HME NTME 0.26 0.31 0.28 0.20 0.57 0.32 0.13 

MCF10A NTME 0.55 0.57 0.67 0.66 0.42 0.57 0.09 

MCF12A NTME 0.37 0.51 0.48 0.46 0.95 0.55 0.20 

CAMA1 Luminal A 0.39 0.50 0.49 0.55 0.55 0.49 0.06 

HCC1428 Luminal A 0.59 0.54 0.52 0.59 0.69 0.58 0.06 

MDA-MB-175 Luminal A 0.58 0.57 0.54 0.54 0.69 0.58 0.06 

SUM185 Luminal A 0.61 0.63 0.60 0.62 0.59 0.61 0.01 

ZR-75-1 Luminal A 0.34 0.32 0.29 0.37 0.11 0.29 0.09 

BT474 Luminal B 0.46 0.46 0.47 0.44 0.05 0.38 0.16 

HCC1569 HER2 0.60 0.68 0.69 0.70 0.44 0.62 0.10 

SKBR3 HER2 0.62 0.59 0.58 0.56 0.47 0.56 0.05 

BT20 TNBC 0.52 0.49 0.48 0.54 0.67 0.54 0.07 

BT549 TNBC 0.40 0.36 0.41 0.42 0.13 0.35 0.11 

DU4475 TNBC 0.03 0.01 0.10 0.05 0.38 0.11 0.14 

HCC1806 TNBC 0.55 0.46 0.37 0.39 0.78 0.51 0.15 

HCC1937 TNBC 0.51 0.54 0.55 0.54 0.77 0.58 0.09 

HCC38 TNBC 0.55 0.57 0.59 0.54 0.46 0.54 0.04 

HS578T TNBC 0.37 0.38 0.37 0.31 0.05 0.30 0.12 

MDA-MB-157 TNBC 0.61 0.64 0.62 0.64 0.49 0.60 0.06 

MDA-MB-436 TNBC 0.19 0.15 0.13 0.19 0.15 0.16 0.02 

SUM1315 TNBC 0.21 0.28 0.32 0.27 0.10 0.23 0.08 

SUM149 TNBC 0.21 0.09 0.02 0.06 0.79 0.23 0.28 

SUM159 TNBC 0.49 0.45 0.42 0.39 0.92 0.53 0.20 

SUM229 TNBC 0.41 0.38 0.33 0.37 0.18 0.33 0.08 

HBL100 Distinct 0.05 0.02 0.05 0.11 0.31 0.11 0.11 

htert-HME Distinct 0.69 0.63 0.64 0.64 0.28 0.58 0.15 

Sum225CWN Distinct 0.47 0.51 0.54 0.55 0.36 0.49 0.07 
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4.3 Discussion 

 

RT-qPCR has been the gold standard for quantifying mRNA expression 

since its inception in 1993, but interpretation of results is dependent on appropriate 

use of internal controls as a means of normalisation (Higuchi et al., 1993; Rebouças 

et al., 2013). Common RGs previously deemed stable in expression include 

GAPDH, ACTB, PGK1 and 18S rRNA, which have subsequently been shown to 

have variation in abundance across different experimental conditions, emphasising 

the notion that there is no such thing as an RG that works for all investigations 

(Dheda et al., 2004). Indeed, in the context of cellular hypoxia, ACTB is under the 

influence of insufficient O2 supply, as are GAPDH and PGK1 which are specifically 

regulated by the activity of HIF-1 (Higashimura et al., 2011; Zhang et al., 2020; 

Wang et al., 2021; Ong et al., 2023).  Thus, when looking to identify novel 

therapeutic targets to combat hypoxia-induced therapy resistance for breast cancer 

patients, suitable RGs need to be selected prior to RT-qPCR investigation of genes 

of interest, so hypoxia-induced alterations in RG expression do not obscure novel 

and important biological findings. 

 

4.3.1 Summary of main findings 

 

• The HIF switch occured within a 48-hour time course of low O2 tension in 

MCF-7, T-47D, MDA-MB-231 and MDA-MB-468 cells. HIF-1 had maximum 

protein accumulation at approximately 8 hours which was almost completely 

dissipated at 48 hours. HIF-2 remained constitutively present at the protein 

level, even in normoxic lysate. 

• For comparing transcriptional changes occurring in MCF-7, T-47D, MDA-

MB-231 and MDA-MB-468 cells cultured in normoxia, or acute or chromic 

hypoxia, RPLP1 and RPL27 were the most stably expressed RGs that would 

allow accurate normalisation of gene expression measured by RT-qPCR.  

 

4.3.2 The “HIF switch” in Luminal A and TNBC cell lines  

 

 The hypoxic response is complex and multifaceted, with changes in gene 

transcription due to hypoxia being regulated by temporal changes in HIF-1 or HIF-

2 protein expression, signifying acute or chronic hypoxic stress, respectively 

(Holmquist-Mengelbier et al., 2006). To meet the demand for robust RGs for 
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investigations of hypoxic ER+ and TNBC cell lines, western blot of HIF- isoforms 

was first carried out to estimate the timing of the HIF switch. Densitometry analysis 

predicted the molecular transition from HIF-1 to HIF-2 to occur between 8 and 48 

hours of hypoxic culture, and these timepoints were used as markers of acute and 

chronic hypoxia. It is interesting that HIF-2 appeared in normoxic lysates, as the 

accepted model of HIF- regulation involves constitutive translation and degradation 

under normoxic conditions (Mole et al., 2001). However, aberrant HIF- 

accumulation has been purported in normoxic cancer cell lines, and within well-

vascularised solid tumours (Holmquist-Mengelbier et al., 2006; Mills et al., 2009). In 

90% of high-risk renal cell carcinoma tumours, inactivating germline pVHL mutations 

correspond to constitutive HIF- expression in physiological levels of O2 and 

increased tumorigenesis (Kaelin, 2008). Thus, in the breast cancer cells studied in 

this Chapter, it is possible that alternative activating pathways have been 

established to selectively enable the accumulation of HIF-2 in the presence of O2. 

 

4.3.3 Ribosomal constituents as stably expressed RGs for hypoxic breast 

cancer studies  

 

A comprehensive investigation combining bioinformatic analysis of publicly 

available RNA-seq datasets to select 10 RG candidates, RT-qPCR of candidates to 

assess expression levels and variability, and utilisation of the online RG tool 

RefFinder was implemented. The 10 RG candidates identified included genes that 

are generally considered RGs (ACTB, RPL30, RPLP1, GUSB, TBP and TFRC), and 

novel RGs (OAZ1, RPL27, CCSER2, and EPAS1) (de Jonge et al., 2007; Gubern et 

al., 2009; Valente et al., 2009; Tilli et al., 2016; Kang et al., 2019; Jain et al., 2020). 

When CtEs of candidates were supplied to RG selection tools, it is perhaps 

unsurprising that constituents of the ribosome (RPLP1, RPL27 and RPL30) which 

are abundantly and consistently expressed in human tissues were selected as the 

optimal RGs with the least variability in expression in breast cancer cell lines 

cultured in normoxia, or acute or chronic hypoxia  (Hsiao et al., 2001; Zhou et al., 

2010; Nakayama et al., 2018). This result is supported by the observation that 

breast cancer cells can bypass hypoxia-mediated inhibition of protein synthesis 

through gene silencing of 4E-BP1, eEF2 kinase or tuberous sclerosis complex 2 

(TSC2), maintaining a continuous requirement of translational machinery (Connolly 

et al., 2006).  
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To highlight the importance of selecting RGs for individual cell types and 

experimental conditions, an initial 𝑠 score was calculated to demonstrate RG 

expression stability in MCF-7, T-47D, MDA-MB-231 and MDA-MB-468 cells using a 

public RNA-seq dataset. Among the 10 RG candidates, four candidates exceeded 

the maximum 𝑠 score threshold in MCF-7 cells, whereas only one RG candidate in 

the other cell lines had an 𝑠 score > 0.3. Additionally, MCF-7s had the highest 

average 𝑠 score compared to T-47D and TNBC cells. The higher 𝑠 score observed 

in MCF-7 cells suggests that this cell line undergoes dramatic transcriptional 

changes in response to hypoxia, altering the expression of more genes to survive 

hypoxic environments. Conversely, TNBC MDA-MB-231 and MDA-MB-468 cells had 

a much lower 𝑠 score compared to both Luminal A cell lines. This observation 

suggests TNBC cell lines undergo fewer dramatic transcriptional changes in 

response to hypoxia, which is supported by the evidence that TNBC tumours are 

inherently more aggressive and more hypoxic than other subtypes of breast cancer 

(Cancer Genome Atlas Network, 2012; Tutzauer et al., 2022).  

 

Throughout this study, the process of RG candidate deselection based on 

assessment of gene expression and primer efficiencies was included, as it is 

important to understand peripheral results which impact the quality of data 

interpretation. Thus, for full transparency of the RG selection process, negative 

filtration of poor candidates as well as positive selection of stable candidates was 

shown. To ensure precision in normalising expression of genes of interest, it is 

recommended that two RGs are included in RT-qPCR studies, as use of a single 

RG for normalising gene expression may result in erroneous interpretation, whereas 

inclusion of two RGs should ensure accurate normalisation of target gene 

abundance (Tricarico et al., 2002; Bustin et al., 2009). 

 

4.3.4 Limitations and considerations of this study 

 

With respect to selection of the 10 RG candidates, the RNA-seq dataset used to 

curate the shortlist was limited by a single replicate for each cell line in each 

condition being available for analysis (Ye et al., 2018; Godet et al., 2019). The 

original study is an impressive investigation into the molecular portrait of hypoxia 

spanning 32 breast cancer cell lines and for the purpose of RG candidate selection, 

provided a meaningful starting point for determining approximate RG stability in 

hypoxic breast cancer cell lines. Further, the RNA-seq dataset was used to 



176 

determine if any of the five RG candidates that were tested with RefFinder in MCF-

7, T-47D, MDA-MB-231 or MDA-MB-468 cell lines could also be used for any of the 

remaining 28 breast epithelial or cancer cell lines available in the GSE111653 

dataset. Comparison of s scores across OAZ1, RPL27, RPL30, RPLP1 and TFRC 

in a wide selection of NTME, Luminal, HER and TNBC cell lines demonstrated 

potential use of some of the RGs in hypoxic studies. However, the RNA-seq dataset 

alone would not be sufficient to draw robust conclusions about the optimal RGs to 

use in hypoxic breast cancer studies involving RT-qPCR, and additional work is 

required to validate RG use in the extended panel of breast cells.   As such, 

dentification of ribosomal proteins as suitable RGs may only be applicable to those 

wishing to capture hypoxia-induced changes in gene expression in MCF-7, T-47D, 

MDA-MB-231 and/or MDA-MB-468 breast cancer cell lines, where this result has 

been appropriately tested. How these results translate to other cancer cell lines, or 

patient samples, remains unclear. Cell lines representing the same disease model 

often display variation in response to environmental or experimental conditions and 

have unique gene expression signatures and molecular portraits (Dai et al., 2017). 

This is exemplified in MCF-7 and T-47D cell lines, where oestradiol has been shown 

to confer disparate changes in gene expression between the two models of Luminal 

A breast cancer, despite both cell lines being driven by ER activity (Rangel et al., 

2017). For patient derived samples, the answer to identifying suitable RGs for RT-

qPCR is more unclear, due to the complexity of individuality between patients, 

heterogeneity of cell types within the TME uneven distribution of hypoxia observed 

throughout tumours (Gay et al., 2016; Oda et al., 2016). Cancer grade at diagnosis, 

and samples coming from secondary metastatic sites will also require further 

optimisation of RGs. Indeed, patterns of dysregulated ribosomal protein expression 

have been observed in human tissues, primary cell lines and tumours (Guimaraes 

and Zavolan, 2016). Thus, careful identification of suitable RGs for such studies 

needs to be implemented prior to carrying out the experiment, and perhaps 

consideration of including a greater number of RGs (3 – 5 for more complex tissue 

samples) would narrow variability and allow more accurate normalisation in such 

instances (Vandesompele et al., 2002). Nonetheless, a robust strategy for selection 

of suitable RGs that can be implemented to a broad range of studies wishing to 

identify important transcriptional aberrations acting as drivers of breast cancer 

progression has been outlined in this Chapter.  
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4.4 Conclusion 

 

A comprehensive investigation to identify the most suitable RGs with the 

least variability in expression has been carried out, which can be used in RT-qPCR 

studies of breast cancer cell lines cultured in normoxia or hypoxia.  Identification of 

the HIF switch in breast cancer cell lines guided hypoxic timepoints for this 

investigation, to ensure HIF-dependent gene transcription can be captured. Use of 

robust computational RG selection programs following stringent criteria of RG 

candidates resulted in the recommendation of RPLP1 and RPL27 as internal 

controls in RT-qPCR studies for accurate interpretation of gene expression results. 

This important finding provides the means to assess the impact of hypoxia within 

breast cancer development and progression. 

 

4.5 Data Availability 

 

Code and supporting data available at zenodo.org/doi/10.5281/zenodo.13166160 
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5. Effect of Hypoxia and the ER on Na+ Transport in Breast Cancer Cells 

 

5.1 Introduction 

 

Maintenance of Na+ homeostasis is essential for many biological processes 

including: regulating extracellular fluid and cell volume, perpetuating nutrient and 

substrate transport, and conducting action potentials in electrically excitable nerve 

and muscle cells (Hille, 1984; Kato and Romero, 2011; Strazzullo and Leclercq, 

2014; Dutta et al., 2018). The delicate balance of intra- and extracellular Na+ 

transport is predominantly mediated by an electrochemical gradient set up by the 

NKA exporting three Na+ out of the cell and importing two K+ into the cell, in an ATP-

dependent manner (Skou and Esmann, 1992). The activities of NKA work against 

the natural Na+ and K+ gradients, maintaining high [Na+]e and thus ensuring a 

substantial driving force of Na+ back into the cell through a myriad of Na+ 

transporters present on the plasma membrane, such as: ENaCs, ASICs, NKCC, 

NHE and VGSCs.  

 

Despite tight regulation of Na+ transport, elevated [Na+]i has been observed 

in several solid malignancies, including in brain, breast and prostate tumours 

(Ouwerkerk et al., 2003, 2007; Barrett et al., 2018). Heightened Na+ influx has been 

implicated in driving aberrant proliferation and migration of high grade glioma cells 

(Kapoor et al., 2009; Rooj et al., 2012). Furthermore, elevated [Na+]i is a critical 

determinant of breast cancer progression, linked to several hallmarks of cancer 

including increased invasive and metastatic potential (Fraser et al., 2005; 

Brackenbury et al., 2007). In fact, there is great overlap in ion channel dysfunction 

and many hallmarks of cancer (Prevarskaya et al., 2018). Thus, dysregulated Na+ 
 

handling through Na+ channels has been strongly implicated in tumour progression 

(Leslie et al., 2019). The aberrant expression and/or activity of Na+ channels could 

therefore be used as clinical biomarkers and therapeutic targets in many types of 

malignancy, including in breast cancer. 

 

  MDA-MB-231 cells were shown to carry TTX-sensitive INa associated with 

metastatic potential by Roger et al. in 2003 (Roger et al., 2003). While pathological 

Na+ influx was identified in aggressive TNBC cells, weakly metastatic MCF-7 cells 

do not possess such a phenotype. Further investigations into the driver of aberrant 

Na+ transport in MDA-MB-231 cells identified nNaV1.5 encoded by SCN5A as the 

primary contributor to elevated Na+ influx (Fraser et al., 2005; Brackenbury et al., 
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2007). Importantly, expression of nNaV1.5 is found in human metastatic TNBC 

tumours (Fraser et al., 2005; Yamaci et al., 2017). Expression of nNaV1.5 over the 

adult isoform allows greater Na+ influx, owing to alternative splicing of the S3-S4 

linker in domain 1 (D1), which replaces a negative aspartate in the adult variant with 

a positive lysine residue in the neonatal variant, further increasing [Na+]i with 

significant implications for breast cancer progression (Onkal et al., 2008). The link 

between hormone receptor status of breast tumours and NaV1.5 expression has 

been explored. NaV1.5 is found to be negatively associated with ER and PgR 

expression, but positively associated with HER2 (Leslie et al., 2024). These findings 

suggest a negative selective pressure acting on NaV1.5 expression in ER+ breast 

tumours which could be enacted by ER activity.  

 

TNBC tumours have a more pronounced hypoxic signature than other 

subtypes of breast cancers, including Luminal A / ER+ tumours (Cancer Genome 

Atlas Network, 2012; Tutzauer et al., 2022). Hypoxia and the transcriptional 

regulators of the hypoxic response HIF-1 and HIF-2, have been implicated in 

modulating ion channel expression and function. For example, voltage-gated K+ 

channel expression is upregulated in response to acute (18 hour) hypoxic challenge 

in a HIF-1-dependent manner (Dong et al., 2012). Additionally, expression of 

NHE1 is induced by hypoxia-mediated cellular acidosis and promotes cell 

proliferation, EMT and metastasis in breast cancer cells (Gatenby et al., 2007; 

Takatani-Nakase et al., 2022). Furthermore, activation kinetics of the large-

conductance Ca2+-activated K+ channel is significantly increased in glioblastoma 

(GBM) U87-MG cells following exposure to chronic hypoxic treatment, enhancing  

GBM aggressiveness and chemoresistance (Rosa et al., 2018). Thus, hypoxia and 

HIF-1 have significant roles in modulating the ionic tumour microenvironment.  

Hypoxia and the transcriptional activity of HIF-1 and/or HIF-2 could therefore 

provide a potential mechanism for positive upregulation of nNaV1.5 in hypoxic TNBC 

tumours. Furthermore, emerging roles of other members of the Na+ channel family 

in breast cancer development and progression have been reported (Khajah et al., 

2018; Chen et al., 2019; Ware et al., 2021). The underlying mechanism behind 

dysregulated Na+ transport through nNaV1.5 channels in breast cancer has been 

underexplored. 
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NaV1.6 and NaV1.7 encoded by SCN8A and SCN9A, respectively, are two 

additional VGSCs that are well-documented in many solid malignancies (Figure 1.5) 

(Malcolm et al., 2023). In particular, hormone-driven prostate cancer cells have 

elevated NaV1.6 and NaV1.7 transcript levels, and TTX or siRNA targeting these 

VGSCs significantly inhibits metastatic progression in vitro (Diss et al., 2001; 

Nakajima et al., 2009). In prostate tumours, NaV1.7 mRNA levels are approximately 

27-fold higher compared to matched healthy tissue (Shan et al., 2014). Cervical 

tumours have significantly elevated levels of both NaV1.6 and NaV1.7 relative to 

healthy adjacent tissue (Hernandez-Plata et al., 2012). Similarly, ovarian tumours 

observe elevated NaV1.7 mRNA (Gao et al., 2010). As with aberrant expression of 

NaV1.5 in breast tumours, the mechanism behind selective upregulation of NaV1.6 

and NaV1.7 is largely unknown despite being important in tumour progression for 

many types of malignancy. Hypoxia is a key determinant of prostate cancer 

treatment resistance and metastasis (Bharti et al., 2019). Additionally, ovarian 

cancers are highly hypoxia-dependent which dampens ovarian cancer cells 

responsiveness to chemotherapy and immunotherapy (Klemba et al., 2020). 

Hypoxia is also essential for paclitaxel resistance in cervical cancers (Nishi et al., 

2023).  

 

5.1.1 Aims and hypotheses 

  

The work in this Chapter was set to investigate hypoxia and ER contributions 

to a dysregulated Na+ network in breast cancer cells. An RNA-seq experiment was 

established by Dr. Susanna Rose (University of York) in MCF-7 and T-47D breast 

cancer cell lines that were first treated with either vehicle or fulvestrant for 48 hours, 

and then subjected to either normoxic or hypoxic culture for a further 48 hours. 

Based on previous research implicating hypoxia in the positive modulation of ion 

channels in several malignancies, hypoxia was hypothesised to positively influence 

Na+ transport in the breast cancer cell lines by upregulating Na+ channel genes, 

such as VGSCs, ENaCs or NHE1, which would lead to a more invasive phenotype. 

In contrast, due to the observation of a negative correlation between the ER and 

NaV1.5 in breast tumours (Leslie et al., 2024), ER was expected to negatively 

regulate expression of Na+ channel genes including VGSCs, and ER knockdown 

would therefore increase expression of genes involved in Na+ transport. These 

hypotheses were tested by: 
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• Analysing RNA-seq data of Luminal A breast cancer cells cultured in 

normoxia or hypoxia to investigate alterations in Na+ transport at both the 

gene and gene set level. 

• Analysing RNA-seq data of Luminal A breast cancer cells cultured with 

vehicle or fulvestrant to knockdown ER and explore changes in Na+ 

channel gene expression. 

• Validating in silico findings by RT-qPCR using RGs identified in Chapter 4 to 

normalise fold change in Na+ channel gene expression. 

• Exploring the effects of inhibiting Na+ channel activity on the migratory 

capacity of breast cancer cells. 
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5.2 Results 

 

5.2.1 mRNA expression of VGSCs is not regulated by hypoxia in TNBC or 

Luminal A breast cancer cell lines 

 

 Because hypoxia has been significantly implicated in the progression of 

breast, prostate, cervical and ovarian tumours, and aberrant VGSC expression has 

similarly been implicated in the advancement of such malignancies, mRNA 

expression of VGSC subunits in response to hypoxic challenge was explored. MDA-

MB-231, MDA-MB-468, MCF-7 and T-47D breast cancer cell lines were cultured in 

normoxia (20% O2), or in acute (8 hours) or chronic (48 hours) hypoxia (1% O2), and 

total RNA was extracted. RT-qPCR was performed to measure transcriptional 

changes in nSCN5A, SCN8A and SCN9A, which encode nNaV1.5, NaV1.6 and 

NaV1.7, respectively. Normoxic MDA-MB-231 cells highly expressed nNaV1.5 

(Figure 5.1a), in line with previous studies (Fraser et al., 2005; Brackenbury et al., 

2007). However, despite a downward trend in mRNA levels, expression of nNaV1.5 

was not significantly altered by acute or chronic hypoxia in the MDA-MB-231 cell 

line. In contrast, no detectable transcript of nNaV1.5 was found in normoxic or 

hypoxic MDA-MB-468 or MCF-7 cells (Figure 5.1a), or in T-47D cells (Appendix 

Figure I). There was no detectable NaV1.6 transcript in both TNBC and Luminal A 

cell lines cultured in normoxia, and hypoxia had no effect on mRNA expression of 

this isoform (Figure 5.1b; Appendix Figure I). Normoxic MDA-MB-231 cells 

expressed NaV1.7, which was unaffected by O2 deprivation (Figure 5.1c). 

Conversely, MDA-MB-468, MCF-7 and T-47D cells had no detectable transcript 

levels of NaV1.7 in normoxic or hypoxic cell lysates (Figure 5.1c; Appendix Figure I). 
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Figure 5.1 Effect of Acute or Chronic Hypoxia on VGSC Subunit mRNA Expression 

in TNBC and Luminal A Cell Lines. RT-qPCR of VGSC subunits (a) nSCN5A (nNaV1.5), 

(b) SCN8A (NaV1.6) and (c) SCN9A (NaV1.7) in MDA-MB-231 (left), MDA-MB-468 

(middle) and MCF-7 (right) breast cancer cells. Cell lines were cultured in normoxia 

(~20% O2, “0 hours”), acute hypoxia (1% O2, 8 hours) or chronic hypoxia (1% O2, 48 

hours). One-way ANOVA with Dunnett’s multiple comparisons revealed no significant 

changes in expression where mRNA was detectable. No detectable mRNA was seen for 

each VGSC gene.in MDA-MB-468 or MCF-7 cells, or for SCN8A in MDA-MB-468 cells. 

Error bars are ± SEM. N = 3. 
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 TNBC MDA-MB-231 cells highly expressed nNaV1.5 and NaV1.6, but not 

NaV1.7, in normoxic culture conditions which was unperturbed by acute or chronic 

hypoxia. However, transcript of the investigated VGSC subunits was not detected in 

normoxic MDA-MB-468 or Luminal A cell lines, and expression was not induced 

following O2 deprivation. Therefore, hypoxia does not affect the expression of 

nNaV1.5, NaV1.6 or NaV1.7 in the cell lines studied, and unknown mechanisms are 

driving VGSC expression in breast cancers, which require more investigation.  

 

5.2.2 RNA-seq datasets are of good quality and suitable to use for the 

exploration of ER and hypoxia-mediated regulation of Na+ transport in 

Luminal A cell lines 

 

 To explore the contribution of hypoxia and ER in regulating Na+ transport 

beyond VGSC expression in breast cancer, Luminal A MCF-7 and T-47D breast 

cancer cell lines were cultured with fulvestrant or corresponding vehicle for 48 

hours, and then cultured in normoxia or in hypoxia for a further 48 hours. Thus, 

breast cancer cells were subjected to one of four conditions, prior to total RNA 

extraction (Table 5.1). Samples were sent to Azenta for Next Generation 

Sequencing (NGS) using a polyadenylation (polyA) library preparation to enrich for 

mRNA and lncRNA (Yu et al., 2020). Reads were pseodoaligned to the human 

transcriptome using kallisto (Bray et al., 2016). Samples from MCF-7 (Figure 5.2a) 

and T-47D cells (Appendix Figure II a) were plotted as a heatmap with hierarchal 

clustering which showed biological replicates of samples from the same conditions 

were clustered together as expected. Interestingly, the effect of fulvestrant vs. 

vehicle appeared to be more influential on sample-sample distancing over normoxia 

vs. hypoxia. Principal component analysis (PCA) based on variance in gene 

expression also showed good separation of NV, NF, HV and HF samples in MCF-7 

(Figure 5.2b) and T-47D cells (Appendix Figure II b). To identify potential influential 

outliers in each set of samples that could skew DGEA interpretation, Cook’s 

distance was measured across all reads per gene, per sample. Cook’s distance was 

similar for all 12 MCF-7 (Figure 5.2c) and all 16 T-47D samples (Appendix Figure II 

c) (Love et al., 2014). Together, quality control checks implemented demonstrated 

no outliers that could significantly impact downstream gene expression analysis 

pipeline.  
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Table 5.1 Details of Experimental Conditions 

Annotation Description 

NV Normoxia and vehicle 

NF Normoxia and fulvestrant 

HV Hypoxia and vehicle 

HF Hypoxia and fulvestrat 
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Figure 5.2 Data Quality of RNA-seq from MCF-7 Breast Cancer Cells. (a) EDM of 

squared distances between each sample from the MCF-7 RNA-seq. Experimental 

conditions for samples are vehicle and normoxia” (VN), vehicle and hypoxia (VH), 

fulvestrant and normoxia (FN) and fulvestrant and hypoxia (VH). N = 3. (b) Principal 

component analysis (PCA) plot with a PC1 variance of 67% and a PC2 variance of 21% 

for the 12 MCF-7 samples. (c) Boxplot of Cook’s distances for outlier detection, calculated 

for each gene within each MCF-7 sample.  
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5.2.3 Breast cancer cell lines had expected transcriptional responses to 

hypoxic culture and ER knockdown 

 

 To continue investigating quality of RNA-seq datasets prior to exploring 

alterations in Na+ transport, it was necessary to ensure cell lines had the 

appropriate and expected transcriptional response to hypoxic and fulvestrant 

perturbations. DESeq2 was implemented for DGEA in MCF-7 and T-47D cells. For 

DGEA, DESeq2 ensures accurate comparisons of gene expression between 

samples by normalising raw read counts generated by e.g. kallisto to sample-

specific size factors calculated from the median of ratios of observed counts per 

gene (Anders and Huber, 2010). Comparing vehicle treated normoxic vs. hypoxic 

samples demonstrated significant upregulation of CA9, VEGFA and GAPDH in 

MCF-7 (Figure 5.3a) and T-47D cells (Figure 5.3b) in response to hypoxia and in 

agreement with previous observations demonstrating hypoxic induction of these 

genes (Forsythe et al., 1996; Wykoff et al., 2000; Turner et al., 2002; Higashimura et 

al., 2011). Additionally, MCF-7 cells (Log2FC - 0.4, padj < 0.001) but not T-47D cells 

(Log2FC -0.04, padj 0.8) saw a significant reduction in ESR1 transcript as a 

consequence of hypoxia and in accordance with previous observations of ESR1 

gene silencing during hypoxic perturbation (Ryu et al., 2011; Wolff et al., 2017).  

 

Next, the effect of degradation of ER by fulvestrant on expression of ER-

regulated genes GREB1, CCND1 and TFF1 was studied. In normoxic MCF-7 cells, 

a significant reduction in GREB1 and TFF1, but not CCND1 in response to 

fulvestrant was observed (Figure 5.4a). Additionally, significant reduction in all three 

ER-regulated genes was observed in normoxic T-47D cells following ER 

knockdown, as expected on the basis of literature (Ghosh et al., 2000; Cicatiello et 

al., 2004; Pancholi et al., 2019, 2022). 
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Figure 5.3 Demonstrating Cell Line Response to Hypoxia. Box plots showing 

normalised counts of hypoxia-responders CA9, VEGFA and GAPDH as determined by 

DGEA with DESeq2.in (a) MCF-7 and (b) T-47D cell lines following normoxia (grey) vs. 

hypoxia (blue) culture. DESeq2 *** padj < 0.001. Error bars are ± SEM. MCF-7 N = 3. T-

47D N = 4.  
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Figure 5.4 Luminal A Cell Line Response to ER Knockdown. Box plots showing 

normalised counts of ER-regulated genes GREB1, CCND1 and TFF1 as determined by 

DGEA with DESeq2.in (a) MCF-7 and (b) T-47D cell lines following treatment with vehicle 

(grey) vs. fulvestrant (blue) *** padj < 0.001. Error bars are ± SEM. MCF-7 N = 3. T-47D N 

= 4. 
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 In summary, quality control analysis described in Section 5.2.2 and Section 

5.2.3 have demonstrated high quality RNA-seq data of MCF-7 and T-47D cell lines 

exposed to four different experimental conditions. Furthermore, cell lines exerted 

the appropriate transcriptional response to singular experimental challenge, namely 

O2 deprivation in ER+ cell lines, or ER knockdown in normoxic environments. 

Therefore, the RNA-seq datasets were suitable for exploring the effects of hypoxia 

and ER in modulating Na+ transport in Luminal A breast cancer cells. 

 

5.2.4 Genome-wide expression alterations because of cell line perturbations 

include Na+ transporter genes 

 

 To begin to understand the functional role hypoxia and ER play in 

modulating Na+ transport in breast cancer, DGEA was carried out across the entire 

transcriptome of Luminal A cell lines, comparing expression changes in all available 

RNA-seq permutations: 

  

1. NV vs. HV 

2. NV vs. NF 

3. NV vs. HF 

4. NF vs. HV 

5. NF vs. HF 

6. HV vs. HF 

 

Exploring differentially expressed genes in ER+ hypoxic vs. normoxic (NV 

vs. HV) MCF-7 (Figure 5.5a) and T-47D (Figure 5.5b) cell lines identified significant 

alterations in genome-wide expression levels with a slight preference for positive 

induction of gene expression over downregulation. Tables briefly detailing most up- 

and downregulated genes in response to hypoxic culture in MCF-7 and T-47D cells 

are available in the appendix (Appendix Table I – Appendix Table IV). Genes among 

the most upregulated in response to hypoxia according to Log2FC included PTPRN, 

AQP2, CASP1, and SLC28A1 which are involved in vesicle-mediated secretory 

processes, maintaining cell permeability, regulating inflammatory responses, and 

acting as a Na+/pyrimidine symporter, respectively.  
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Significant up- and downregulation of Na+ channel genes was evident in 

both Luminal A cell lines cultured under hypoxia, shown by Na+ channel gene 

annotations on volcano plots (Figure 5.5) and heatmaps (Appendix Figure V). In 

MCF-7 cells, low O2 tension induced positive expression of NKA ATP1A1 (Log2FC 

0.37, padj < 0.0001) and ATP1B1 (Log2FC 1.94, padj < 0.001), which encode -

NKA and -NKA, respectively. In T-47D cells, -NKA (Log2FC 0.50, padj < 0.0001) 

and -NKA (Log2FC 1.79, padj < 0.001) were similarly induced by hypoxic 

challenge.  

 

Additionally, positive induction of major ENaC subunits SCNN1A (-ENaC) 

(Log2FC 1.55; padj < 0.001), SCNN1B (-ENaC) (Log2FC 2.43; padj < 0.001) and 

SCNN1G (-ENaC) (Log2FC 1.28; padj < 0.01) was seen in MCF-7 cells. In T-47D 

cells, -ENaC (Log2FC 0.5; padj < 0.001), -ENaC (Log2FC 1.64; padj < 0.001) and 

-ENaC (Log2FC 3.78; padj < 0.001) were also induced in response to O2 

deprivation, providing evidence that hypoxia may potentiate dysregulated Na+ 

transport in breast cancer cell lines through NKA and ENaC. However, chronic 

hypoxia, here defined as a 48-hour time period, did not affect expression of any  or 

 VGSC subunits in Luminal A breast cancer cell lines. 
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Figure 5.5 Transcriptome-Wide Expression Changes in Hypoxic Luminal A Cells. 

Volcano plots of differentially expressed genes in (a) MCF-7 or (b) T-47D cells cultured in 

normoxia vs. hypoxia (ER+). Orange symbols above horizontal dashed line show 

significant differentially expressed genes (padj < 0.05). Orange symbols on the left of the 

vertical dashed line are significantly downregulated (negative Log2FoldChange). Orange 

symbols on the right of the vertical dashed line are significantly upregulated (positive 

Log2FoldChange). Black symbols are genes which were not significantly differentially 

expressed (padj > 0.05). Gene annotations are significant differentially expressed Na+ 

channel genes with the smallest padj.  
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 Next, investigations into the effect of fulvestrant on normoxic Luminal A 

gene expression (NV vs. NF) revealed strong genome-wide transcriptional changes 

with no bias towards up- or downregulation in either MCF-7 (Figure 5.6a) or T-47D 

(Figure 5.6b) cells. Tables exploring most up- and downregulated genes in response 

to ER knockdown in MCF-7 and T-47D cells are available in the appendix 

(Appendix Table VI – Appendix Table VIII). Genes positively induced post-fulvestrant 

treatment included AQP10 which encodes a water channel involved in water 

transport through the osmotic gradient across cell membranes, and NDP which 

activates the Wnt signalling pathway. Genes significantly downregulated in 

response to treatment with fulvestrant included AGR3 which is required for 

regulating intracellular Ca2+ stores in the endoplasmic reticulum, and scaffold 

protein PDZK1 which is thought to be involved in coordinating ion transport and 

second messenger cascades.  

Studying specific alterations in Na+ channel expression demonstrated ER-

dependent regulation of many Na+ transporters, shown by gene annotations on 

volcano plots (Figure 5.6) and heatmaps (Appendix Figure VI). Of the NKA, 

alternative  isoform 2-NKA (Log2FC 4.09; padj < 0.01) was preferentially 

upregulated in MCF-7 cells treated with fulvestrant. In T-47D cells, 4-NKA (Log2FC 

1.20; padj < 0.05) and 1-NKA (Log2FC 1.72; padj < 0.001) were positively 

upregulated following ER-knockdown, whereas 3-NKA (Log2FC -1.60; padj < 

0.001) was downregulated.  

Two members of the NDBTs family SLC4A4 (Log2FC 7.90; padj < 0.001) 

and SLC4A9 (Log2FC 1.11; padj < 0.05) were significantly upregulated in MCF-7 but 

not in T-47D cells. Selectivity of Na+ transporter gene expression suggests that the 

ER may preferentially drive expression of some Na+ channels but inhibit 

expression of others. Furthermore, the differential response between the MCF-7 

and T-47D cells demonstrated cell line variability in Na+ channel targets of the 

ER and implicates other unknown factors in ER-mediated Na+ channel gene 

expression.  

Cell line heterogeneity was further exemplified when studying fulvestrant-

dependent effects on VGSC subunit expression. In MCF-7 cells, none of the  

subunits were differentially expressed when ER was knocked down, whereas in T-

47D cells, transcript of NaV1.1 encoded by SCN1A (Log2FC 1.80; padj < 0.001) was 

upregulated and NaV1.6 encoded by SCN8A (Log2FC -1.05; padj < 0.01) was 

downregulated following fulvestrant treatment, suggesting ER is important in 
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mediating expression of these two VGSC  subunits in T-47D cells. Additionally, 1 

encoded by SCN1AB saw a significant positive fold change induction of mRNA 

levels in MCF-7 cells post-fulvestrant (Log2FC 1.16; padj < 0.001), whereas a 

significant downregulation in expression was seen in T-47D cells (Log2FC -1.67; 

padj < 0.001). Interestingly, normalised counts of 1 in normoxic and vehicle treated 

MCF-7 cells (719.44 ± 16.88 SD) were > 9-fold greater than in T-47D cells (77.92 ± 

5.24 SD) of the same conditions, further demonstrating cell-type specific differences 

in VGSC expression between the two cell lines.  
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Figure 5.6 Fulvestrant-Induced Transcriptome-Wide Expression Changes in MCF-7 

and T-47D Cells. Volcano plots of differentially expressed genes in (a) MCF-7 or (b) T-

47D cells treated with vehicle vs. fulvestrant (normoxia). Orange symbols above 

horizontal dashed line show significant differentially expressed genes (padj < 0.05). 

Orange symbols on the left of the vertical dashed line are significantly downregulated 

(negative Log2FoldChange). Orange symbols on the right of the vertical dashed line are 

significantly upregulated (positive Log2FoldChange). Black symbols are genes which were 

not significantly differentially expressed (padj > 0.05). Gene annotations are significant 

differentially expressed Na+ channel genes with the smallest padj.  
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Volcano plots that explore the remaining RNA-seq permutations (3 – 6) in 

MCF-7 and T-47D cells can be found in the appendix (Appendix Figure III, Appendix 

Figure IV). In brief, combinations of experimental challenge further demonstrated 

significant alteration in Na+ transporter gene expression, particularly in subunits of 

the NKA complex, ENaC family members, and NHE regulatory factors, and further 

implicated hypoxia and the ER in modulating the Na+ network in breast cancer cell 

lines.  

To summarise, DGEA has demonstrated widespread transcriptional 

responses in MCF-7 and T-47D cell lines in response to both hypoxic challenge and 

ER knockdown. Of particular interest was the differential regulation of many Na+ 

transporter genes, including positive induction of NKA and ENaC subunits in 

response to hypoxia, as well as following ER perturbation. Furthermore, VGSC 

subunits NaV1.6 and 1 appeared to be positively regulated by the hormone 

receptor in T-47D cells, in contrast to the original hypothesis, whereas 1 in MCF-7 

cells and NaV1.1 in T-47D cells seemed to be repressed by ER. Taken together, 

the findings discussed in Section 5.2.4 strongly implicate hypoxia in positive 

regulation of Na+ transport, whereas the response to ER modulation was more 

varied amongst genes in the Na+ network, and between the two Luminal A cell lines 

used. 

 

5.2.5 ER knockdown or hypoxia switches off biosynthetic and cell division 

processes in MCF-7 and T-47D breast cancer cell lines 

 

 To investigate the extent to which ER and hypoxia are involved in 

modulating Na+ transport in the MCF-7 and T-47D breast cancer cell lines, GSEA 

was performed using gene lists generated from each RNA-seq permutation of 

significantly differentially expressed genes (padj < 0.05) arranged in order from most 

positive to most negative Log2FC. The R package ClusterProfiler was implemented 

to first identify gene ontology (GO) terms most enriched in Luminal A cell lines in 

each available RNA-seq comparison (Yu et al., 2012). An unbiased GSEA approach 

was used to provide valuable information into major biological processes (BP) or 

molecular functions (MF) that are most affected because of hypoxia or fulvestrant-

mediated ER knockdown, either singularly or in combination, before investigating if 

BPs or MFs involved in Na+ transport are perturbed.  
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 In normoxic MCF-7 cells that were treated with fulvestrant, ER knockdown 

resulted in 97 significantly enriched BP GO terms that were downregulated, and 248 

BP GO terms what were positively enriched. BP GO terms that had the smallest 

padj in response to fulvestrant treatment all had a negative normalised enrichment 

scores (NES) and included “chromosome segregation” (Figure 5.7a) and other BP 

terms specifically involved in cell division processes (Table 5.2). Negative NES for 

cell division processes suggests that MCF-7 cells are shutting down replication in 

response to ER knockdown. Conversely, positively enriched BP terms included 

“positive regulation of epithelial cell migration” (NES:1.87; padj < 0.0001), “actin 

filament bundle assembly” (NES: 1.85; padj < 0.0001) and “tissue migration” (NES: 

1.79; padj < 0.0001) indicating that fulvestrant treatment bestows upon MCF-7 cells 

a more motile phenotype.  

MF GO term analysis demonstrated 10 significant MF GO terms that were 

negatively enriched, and 13 that were positively enriched. The MF GO term with the 

smallest padj was “catalytic activity, acting on DNA”, and along with negative 

enrichment of helicase activity, suggests gene transcription in response to 

fulvestrant treatment is being dampened (Figure 5.7b; Table 5.3). In contrast, 

positively enriched MF terms in fulvestrant treated MCF-7 cells were “heparin 

binding” (NES: 2.05; padj < 0.0001) which includes genes involved in regulating cell 

contacts with ECM, “cadherin binding” (NES: 1.63; padj <0.0001) which includes 

genes involved in regulating cell-cell contacts and also “peptidase regulator activity” 

(NES; 1.73; padj < 0.001) which includes genes essential for modulating the activity 

of any enzyme involved in catalysing hydrolysis of peptide bonds.  
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Figure 5.7 Most Enriched GO Terms in MCF-7 Cells Following ER Knockdown. 

GSEA revealing most enriched (a) BP and (b) MF GO gene sets in normoxic MCF-7 cells 

treated with fulvestrant compared to vehicle control. Significantly differentially expressed 

genes were ranked from most positive Log2FC to most negative Log2FC for GSEA. Top 

box of GSEA plots demonstrates the degree of correlation of genes with an ER -ve 

phenotype (> 0 for positive correlation, < 0 for negative correlation). The y-axis of the 

bottom box in GSEA plots represents the running enrichment score (ES) which is shown 

by the green line connecting the ES to genes of the gene set (black vertical bars at 0.0). 

NES is normalised ES. Red dashed line shows maximum ES. *** padj < 0.001. 
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Table 5.2 Most Enriched BP Terms in MCF-7 Cells Treated with Fulvestrant Compared 

to Vehicle. GO terms (Description) ranked according to FDR. ES is normalised to account 

for differences in gene set sizes. Set Size relates to how many genes make up the gene set. 

Leading Edge Tags (%) refers to the percentage of genes contributing to ES.  

Description NES Set Size 
Leading Edge 
Tags (%) 

Nuclear division -2.23 434 32 

Nuclear chromosome segregation -2.33 308 35 

Organelle fission -2.15 480 30 

DNA replication -2.30 275 49 

DNA-templated DNA replication -2.40 161 60 

Mitotic sister chromatid segregation -2.38 184 38 

Sister chromatid segregation -2.30 224 41 

DNA recombination -2.14 331 38 

Mitotic nuclear division -2.22 273 32 

Cell cycle checkpoint signalling -2.36 417 38 
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Table 5.3 Most Enriched MF Terms in MCF-7 Cells Treated with Fulvestrant Compared 

to Vehicle. GO terms (Description) ranked according to FDR. 

Description NES Set Size 
Leading Edge 
Tags (%) 

ATP-dependent activity, acting on 
DNA 

-2.17 122 39 

Heparin binding 2.05 157 31 

Helicase activity -1.98 154 40 

Single-stranded DNA binding -2.02 117 41 

Cadherin binding 1.62 334 34 

Peptidase regulator activity 1.73 205 21 

Sulphur compound binding 1.65 252 20 

ATP hydrolysis activity -1.56 409 33 

Endopeptidase regulator activity 1.75 164 22 

Peptidase inhibitor activity 1.71 154 23 
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 Investigating BPs that are most enriched in T-47D cells following fulvestrant 

treatment demonstrated significant negative enrichment of 39 BP GO terms, and 13 

positively enriched GO terms. The BP with the smallest padj was “ribosome 

biogenesis” (Figure 5.8a). Many other BPs involved in regulation of protein 

synthesis were also turned off as a consequence of ER knockdown, including 

“cytoplasmic translation” (NES: -2.03; padj < 0.0001) and “ribosomal small unit 

biogenesis” (NES: -1.99; padj < 0.0001) indicating inhibition of translational 

processes. Similar to MCF-7 cells, T-47D cells also downregulated genes involved 

in cell division, as shown by negative enrichment of “DNA-templated DNA 

replication” (NES: -1.96; padj < 0.0001) and “DNA replication” (NES: -1.78; padj < 

0.0001) (Table 5.4). In contrast, positively enriched BP GO terms included “vacuolar 

transport” (NES: 1.80; padj < 0.001) and “lysosomal transport” (NES: 1.73; padj < 

0.01).  

When ER-dependent MFs were explored, 19 MF GO terms were 

negatively enriched, and three MF GO terms were positively enriched following 

fulvestrant-mediated knock down of the steroid receptor. The MF term with the 

smallest padj was “structural constituent of the ribosome” (Figure 5.8b), followed by 

negative enrichment of several MFs involved in receptor signalling and hormone 

activity, such as “receptor ligand activity” (NES: -1.63; padj < 0.0001) “signalling 

receptor activator activity” (NES: -1.63; padj < 0.001) “growth factor activity” (NES: -

1.76; padj < 0.01) and “hormone activity” (NES: -1.79; padj < 0.01) (Table 5.5) which 

was an expected result given fulvestrant-mediated ER knockdown. Interestingly, 

the MF GO terms that exhibited positive enrichment in ER knock down in T-47D 

cells were centred around increased transcription factor activity: “protein 

heterodimerization activity” (NES: 1.46; padj < 0.01) “DNA-binding transcription 

activator activity, RNA polymerase II-specific” (NES: 1.29; padj < 0.05) and “DNA-

binding transcription activator activity” (NES: 1.28; padj < 0.05), which could 

suggest T-47D cells are beginning to bypass ER regulation of gene transcription 

by increasing expression of alternative signalling pathways, such as the 

EGFR2/HER2 signalling pathway observed in endocrine resistant breast cancer 

(Asghari et al., 2022). Indeed, core enrichment of ERBB2 (HER2), ERBB3 (HER3) 

and EPAS1 (HIF-2) was significant in MF GO terms associated with ER-depleted 

T-47D cells. 
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Figure 5.8 Most Enriched GO Terms in T-47D Cells Following ER Knockdown. 

GSEA revealing most enriched (a) BP and (b) MF GO gene sets in normoxic T-47D cells 

treated with fulvestrant compared to vehicle control. Significantly differentially expressed 

genes were ranked from most positive Log2FC to most negative Log2FC for GSEA. 

*** padj < 0.001. 
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Table 5.4 Most Enriched BP Terms in T-47D Cells Treated with Fulvestrant Compared 

to Vehicle. GO terms (Description) ranked according to FDR. 

Description NES Set Size 
Leading Edge 
Tags (%) 

Ribonucleoprotein complex 
biogenesis 

-1.87 467 58 

Cytoplasmic translation -2.05 155 61 

rRNA processing -1.96 222 67 

rRNA metabolic process -1.93 261 64 

DNA-templated DNA replication -1.96 160 57 

Ribosomal small subunit biogenesis -1.99 103 76 

DNA replication -1.78 275 48 

ncRNA processing -1.67 431 53 

Chromosome segregation -1.68 418 35 

Vacuolar transport 1.80 166 49 
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Table 5.5 Most Enriched MF Terms in T-47D Cells Treated with Fulvestrant Compared 

to Vehicle. GO terms (Description) ranked according to FDR. 

Description NES Set Size 
Leading Edge 
Tags (%) 

Receptor ligand activity -1.63 428 15 

Signalling receptor regulator activity -1.61 467 14 

Signalling receptor activator activity -1.63 433 15 

Catalytic activity, acting on DNA -1.69 242 37 

Growth factor activity -1.76 143 22 

Hormone activity -1.79 106 16 

Protein heterodimerization activity 1.46 327 20 

ATP-dependent activity, acting on 
DNA  

-1.69 122 41 

Integrin binding -1.62 151 21 

Organic acid transmembrane 
transporter activity 

-1.59 163 25 
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 Next, the effect of hypoxia on BPs and MFs in Luminal A cell lines was 

explored. In MCF-7 cells, hypoxic challenge negatively enriched for 80 BP whereas 

a striking 480 BPs were positively enriched. As expected, many of the BPs 

positively enriched in hypoxic MCF-7 cells were those involved in cellular responses 

to decreased O2 availability (Table 5.6), including “response to hypoxia” (NES: 1.93; 

padj < 0.0001) “cellular response to hypoxia” (NES: 1.92; padj < 0.0001) and 

“response to decreased oxygen levels” (NES: 1.87; padj < 0.0001). Additionally, 

“positive regulation of epithelial cell proliferation” (NES: 1.82; padj < 0.0001) was 

amongst the most positively enriched BPs, suggesting hypoxia drives increased 

proliferation. In contrast, BPs with the smallest padj in hypoxic MCF-7 cells were 

preferentially negatively enriched and were involved in protein synthesis, including 

“ribonucleoprotein complex biogenesis” (Figure 5.9a), “ribosome biogenesis” (NES: 

-2.41; padj < 0.0001), “tRNA processing” (NES: -2.28; padj < 0.0001) and 

“mitochondrial gene expression” (NES: -2.46; padj < 0.0001). Mitochondrial genes 

include 13 subunits of the respiratory chain and the ncRNA required for their 

translation. Negative enrichment of mitochondrial gene expression could be a 

consequence of impaired oxidative phosphorylation or remodelling of the electron 

transport chain since O2 is not available to act as the final electron acceptor 

(Fuhrmann and Brüne, 2017; Rusecka et al., 2018).  

Exploring hypoxia-mediated MFs in MCF-7 cells revealed 19 negatively 

enriched and 27 positively enriched GO terms. The MF with the smallest padj was 

“catalytic activity, acting on RNA” (Figure 5.9b), closely followed by “catalytic activity, 

acting on tRNA” (Table 5.7) which describes gene products that modify RNA (or 

tRNA) through a mechanism driven by ATP hydrolysis and includes RNA helicases 

and 3’-5’ RNA exonucleases, implicating hypoxia in dysregulated RNA stability, 

folding and turnover. Conversely, positive enrichment of MF terms including 

“signalling receptor regulator activity” (NES: 1.69; padj < 0.0001) “DNA-binding 

transcription activator activity” (NES: 1.62; padj < 0.0001) and “DNA-binding 

transcription activator activity, RNA polymerase II-specific” (NES: 1.62; padj < 

0.0001) was observed and corresponds to the preferential increase in gene 

expression in MCF-7 cells following O2 deprivation described in Section 5.2.4. 
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Figure 5.9 Most Enriched GO Terms in Hypoxic vs. Normoxic MCF-7 Cells. GSEA 

revealing most enriched (a) BP and (b) MF GO gene sets in ER+ MCF-7 cells cultured in 

hypoxia compared to normoxia. Significantly differentially expressed genes were ranked 

from most positive Log2FC to most negative Log2FC for GSEA. Top box of GSEA plots 

demonstrates the degree of correlation of genes with a hypoxic phenotype (> 0 for 

positive correlation, < 0 for negative correlation). *** padj < 0.001. 
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Table 5.6 Most Enriched BP Terms in MCF-7 Cells Cultured in Hypoxia vs. Normoxia. 

GO terms (Description) ranked according to FDR. 

Description NES Set Size 
Leading Edge 
Tags (%) 

ncRNA processing -2.22 433 54 

Ribosome biogenesis -2.41 323 54 

Mitochondrial gene expression -2.46 163 70 

Mitochondrial translation -2.44 130 72 

rRNA processing -2.30 223 57 

rRNA metabolic process -2.20 262 53 

tRNA metabolic process -2.27 196 58 

tRNA processing -2.28 133 62 

Response to hypoxia 1.93 277 31 

Response to decreased oxygen 
levels 

1.90 294 33 
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Table 5.7 Most Enriched MF Terms in MCF-7 Cells Cultured in Hypoxia vs. Normoxia. 

GO terms (Description) ranked according to FDR. 

Description NES Set Size 
Leading Edge 
Tags (%) 

Signalling receptor regulator activity 1.69 458 16 

Catalytic activity, acting on a tRNA -2.06 130 65 

Signalling receptor activator activity 1.70 425 17 

Receptor ligand activity 1.71 420 17 

Extracellular matrix structural 
constituent 

1.89 156 27 

DNA-binding transcription activator 
activity 

1.61 446 28 

DNA-binding transcription activator 
activity, RNA polymerase II-specific 

1.61 442 29 

Heparin binding 1.81 157 24 

Carbohydrate binding 1.71 247 17 

Cytokine activity 1.74 189 21 
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 Investigating hypoxia-dependent effects on BPs in T-47D cells showed 52 

negatively enriched BPs and 523 positively enriched BPs due to O2 deprivation. As 

in MCF-7 cells, “mitochondrial gene expression” was significantly downregulated in 

response to hypoxia in T-47D cells (Figure 5.10a). Additionally, “respiratory electron 

transport chain” (NES: -2.26; padj < 0.0001) and “oxidative phosphorylation” (NES: -

2.07; padj < 0.0001) were among the most significant downregulated BPs (Table 

5.8), and further support an impaired electron transport chain hypothesis as 

described for hypoxic MCF-7 cells. As expected, the most positively enriched BPs 

were those involved in hypoxic response including “response to hypoxia” (NES: 

2.05; padj < 0.0001), “response to oxygen levels” (NES: 1.97; padj < 0.0001) and 

“response to decreased oxygen levels” (NES: 2.00; padj < 0.0001), as was 

“pyruvate metabolic process” (NES: 1.85; padj < 0.0001) demonstrating the 

hypoxic-induced shift in energy metabolism in T-47D cells deprived of O2. 

In terms of MFs, 12 were negatively enriched in hypoxic T-47D cells, 

whereas positive enrichment of 64 MF GO terms was observed. Negative 

enrichment was again seen in “structural constituent of ribosome” (Figure 5.10b) 

indicating impaired protein translation due to compromised ribosome assembly. On 

the contrary, positively enriched MF GO terms included “glycosaminoglycan binding” 

(NES: 2.04; padj < 0.0001), “heparin binding” (NES: 2.02; padj < 0.0001) and 

“signalling receptor regulator activity” (NES: 1.68; padj < 0.0001) suggesting altered 

cell adhesion and motility properties and modulated signalling receptor function in 

hypoxic T-47D cells (Table 5.9).  
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Figure 5.10 Most Enriched GO Terms in Hypoxic vs. Normoxic T-47D Cells. GSEA 

revealing most enriched (a) BP and (b) MF GO gene sets in ER+ T-47D cells cultured in 

hypoxia compared to normoxia. Significantly differentially expressed genes were ranked 

from most positive Log2FC to most negative Log2FC for GSEA. *** padj < 0.001. 

 

 

 

 

MF

BP

NES -2.28

*** Padj < 0.001

NES -2.40

*** Padj < 0.001

a

b



214 

Table 5.8 Most Enriched BP Terms in T-47D Cells Cultured in Hypoxia vs. Normoxia. 

GO terms (Description) ranked according to FDR. 

Description NES Set Size 
Leading Edge 
Tags (%) 

Mitochondrial translation -2.42 130 71 

Response to hypoxia 2.05 279 28 

Response to decreased oxygen 
levels 

2.00 296 27 

Response to oxygen levels 1.97 321 26 

Ribosome biogenesis -1.98 319 49 

Respiratory electron transport chain -2.26 110 53 

Ribonucleoprotein complex 
biogenesis 

-1.75 467 40 

ncRNA processing -1.72 431 48 

rRNA processing -1.95 222 50 

Oxidative phosphorylation -2.07 131 64 
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Table 5.9 Most Enriched MF Terms in T-47D Cells Cultured in Hypoxia vs. Normoxia. 

GO terms (Description) ranked according to FDR. 

Description NES Set Size 
Leading Edge 
Tags (%) 

Glycosaminoglycan binding 2.04 225 23 

Heparin binding 2.02 163 23 

Signalling receptor regulator activity 1.68 467 15 

Receptor ligand activity 1.66 428 15 

Oxidoreductase activity 1.85 174 25 

Signalling receptor activator activity 1.65 433 15 

Sulphur compound binding 1.75 260 20 

Carbohydrate binding 1.72 260 22 

Cadherin binding 1.66 333 38 

Growth factor activity 1.78 143 22 
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5.2.6 Positive enrichment of Na+ transport occurs in Luminal A cell lines 

cultured in hypoxia 

 

 Continuing with GSEA in the RNA-seq data sets, each possible 

permutation in MCF-7 and T-47D cell lines were studied for perturbations in Na+ 

transport by including a search term of “sodium” in ClusterProfiler results. 

Interrogating MSigDB (available at gsea-msigdb.org) for gene sets that include 

“sodium” in the gene set name revealed 27 BP and 25 MF gene sets that are 

involved in Na+ handling, including Na+ channel clustering, Na+ channel function or 

Na+ transport. Directed investigations of GSEA revealed BP or MF gene sets 

implicated in Na+ handling were not significantly enriched in MCF-7 or T-47D cells 

singularly challenged by ER knockdown (NV vs. NF, and HV vs. HF). Additionally, 

Luminal A cells exposed to hypoxia and fulvestrant compared to the normoxic ER+ 

control (NV vs. HF) did not demonstrate significant alterations in Na+ transport. In 

contrast, culturing ER+ MCF-7 cells in hypoxia (NV vs. HV) significantly 

upregulated BP “sodium ion transport” (Figure 5.11). T-47D cells under the same 

experimental test upregulated BPs “sodium ion transmembrane transport” (Figure 

5.12a), “sodium ion transport” (Figure 5.12b) and MF “sodium ion transmembrane 

transporter” (Figure 5.12c). Additionally, in ER- T-47D cells, but not MCF-7 cells, 

O2 deprivation (NF vs. HF) significantly enriched BPs “sodium ion transmembrane 

transport” (NES: 1.57; padj < 0.01) (Appendix Figure VII a) and “sodium ion 

transport” (NES: 1.54; padj < 0.01) (Appendix Figure VII b). Therefore, hypoxic 

culture of Luminal A cell lines in the presence of the ER, or in T-47D cells that have 

experienced proteasomal degradation of the hormone receptor significantly 

enhanced Na+ transport. However, ER was not a significant regulator of Na+ 

handling in the cell lines studied.  
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Figure 5.11 GSEA Plot Showing Positive Enrichment of Na+ Transporter Genes in 

Hypoxic vs. Normoxic MCF-7 Cells. Targeted GSEA identified positive enrichment for 

genes in BP “sodium ion transport” (GO:0006814) in ER+ MCF-7 cells cultured in 

hypoxia compared to normoxia. Significantly differentially expressed genes were ranked 

from most positive Log2FC to most negative Log2FC for GSEA. ** padj < 0.01. 
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Figure 5.12 GSEA Plot Showing Positive Enrichment of Na+ Transporter Genes in 

Hypoxic vs. Normoxic T-47D Cells. Targeted GSEA identified positive enrichment for 

genes in (a) BPs “sodium ion transmembrane transport” (GO:0035725) and (b) “sodium 

ion transport” (GO:0006814) or (c) MF “sodium ion transmembrane transporter” 

(GO:0015081) in ER+ T-47D cells cultured in hypoxia compared to normoxia. 

Significantly differentially expressed genes were ranked from most positive Log2FC to 

most negative Log2FC for GSEA. ** padj < 0.01. 
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 Next, ion channels that contribute most significantly to the enhanced Na+ 

transport phenotype of hypoxic cell lines was explored in more detail. The “leading 

edge” of GSEA plots identifies the genes that are most responsible for the NES of a 

BP or MF (Reimand et al., 2019). Genes present in the leading edge of ER+ 

normoxic vs. hypoxic Na+ transport BPs or MFs were compared against a gene list 

of 131 Na+ channel genes generated from the Human genome organisation gene 

nomenclature committee (HGNC; available at genenames.org) to distinguish Na+ 

channel genes from “other” genes that affect Na+ transport. In total, 173 genes 

made up the leading edge of all the BP and MF GO terms involved in Na+ transport, 

and 44.51% of these genes were Na+ channel genes according to the HGNC Na+ 

channel list (Figure 5.13a). The remaining 55.49% of contributors to the leading 

edge included growth factor signalling molecules such as FGF11 and FGF12; other 

types of ion channels including Ca2+ transporter ATP2B4 and Ca2+-activated 

nonselective cation channel ANO6 or other classes of Na+ channel transporters that 

are not part of the HGNC Na+ channel gene list, including the Na+/Mg2+ exchanger 

SLC41A3 or the Na+/Pi symporter SLC20A1.  

Further extrapolating leading edge “HGNC Na+ Channel” genes to identify 

which classes of Na+ channels are most strongly associated with hypoxic 

modulation of Na+ transport revealed 15.58% of Na+ channel genes enriched in 

hypoxic Luminal A cell lines belonged to the ENaC family, closely followed by the 

NKA, the Na+-Cl--dependent dopamine transporter DAT1 and NHE1 (Figure 5.13b). 

Next, overlap between Na+ channel genes significantly differentially expressed (padj 

< 0.05) in hypoxic vs. normoxic MCF-7 and T-47D cells was explored. From DGEA, 

Luminal A cell lines had a significant overlap of 12 Na+ channel genes that were 

upregulated because of hypoxic challenge (NV vs. HV; Figure 5.13c), and included 

all major subunits of ENaC, the  and  subunits of the NKA and NHE1. In contrast, 

of the significantly downregulated Na+ channel genes in response to hypoxia, only 

NHERF1 and SLC9A2 (NHE2) was shared between MCF-7 and T-47D cells (Figure 

5.13d).  
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Figure 5.13 Leading Edge and Differentially Expressed Na+ Channel Genes in MCF-7 

and T-47D Cells Cultured in Hypoxia vs. Normoxia. (a) Stratifying genes in the Leading 

Edge of Na+ transport GO terms as either “HGNC Na+ channels” or “other”. (b) Frequency 

in which a HGNC Na+ channel gene appears in the Leading Edge characterised by the 

Na+ channel it encodes. Overlap in significantly differentially expressed Na+ channel 

genes that are (c) upregulated or (d) downregulated in MCF-7 and T-47D cells cultured in 

hypoxia compared to normoxia. Fisher’s exact test was used to calculate significant 

overlap in differentially expressed genes. *** p < 0.001. 
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5.2.7 METABRIC analysis reveals significant implications of hypoxia-regulated 

Na+ transporter gene amplification in relapse-free and overall survival 

 

 To contextualise major findings of this chapter so far into clinical relevance, 

gene expression profiles of Na+ channel genes differentially regulated in both MCF-

7 and T-47D cells cultured in hypoxia  were analysed utilising the METABRIC 

patient cohort of 2,509 primary breast tumours, available at cbioportal.org (Curtis et 

al., 2012; Dawson et al., 2013; Pereira et al., 2016). Specifically, Na+ transporter 

expression was assessed for the relationship between genomic alteration and 

overall or relapse-free survival in breast cancer patients. The  subunit of NKA 

encoded by ATP1A1 was found to be amplified in 1% of breast cancer patients (n = 

26). Amplification of -NKA was significantly associated with decreased overall 

survival with a hazard ratio (HR) of 1.59 and FDR < 0.05 (Figure 5.14a). 

Additionally, -NKA amplification also increased risk of disease relapse with a HR of 

1.70 and FDR < 0.05 (Figure 5.14b). In contrast, the  subunit of NKA encoded by 

ATP1B1 was amplified in 21% of breast cancers but had no significant association 

with relapse-free or overall survival (Table 5.10). Furthermore, genomic alterations 

in HCN2 (hyperpolarization-activated cyclic nucleotide gated channel), SLC28A1 

(nucleoside transporter), SLC6A3 (dopamine transporter), SLC6A8 (Na+-dependent 

creatine transporter), IST1 (ESCRT-interacting cargo transport protein) and SLC9A2 

(NHE2) had no relationship with relapse-free or overall survival (Table 5.10).  

 

Interestingly, visualising the OncoPrint revealed genomic alteration in 

SCNN1A (-ENaC) appeared to be mutually exclusive to alterations in SCNN1B (-

ENaC) and SCNN1G (-ENaC) which were often amplified together in the same 

patient (Figure 5.14c). -NKA was also amplified predominantly in breast tumours 

that did not have an alteration in ENaC subunits (Figure 5.14c). Amplification (or 

deep deletion) of -ENaC was not associated with survival metrics (Table 5.10). In 

contrast, amplification of -ENaC was associated with improved median relapse-

free survival (+ 58.2 months; FDR < 0.05), and amplification of -ENaC was 

associated with improved median relapse-free survival (+ 58.2 months, FDR < 0.05) 

and improved median overall survival (+ 37.9 months; FDR < 0.05) (Table 5.10, 

Table 5.11). Investigating NHE dynamics revealed that deep deletion of SLC9A1 

(NHE1) significantly decreased median overall survival (- 130.5 months, FDR < 

0.05) and median relapse-free survival (- 214.9 months, FDR < 0.01) for breast 

cancer patients, but perturbations in SLC9A2 (NHE2) were not associated with 
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either survival metric (Table 5.10, Table 5.11). Additionally, amplification of NHE 

regulatory factor NHERF1 was correlated to decreased median overall survival (- 

53.3 months, FDR < 0.05) and relapse-free survival (- 158.6 months, FDR < 0.001). 

Finally, amplification of Na+-coupled amino acid transporter SLC38A2 was 

significantly associated with decreased median overall survival (- 68.2 months, FDR 

< 0.05) and median relapse-free survival (- 157.8 months. FDR < 0.01) in breast 

cancer patients (Table 5.10, Table 5.11). 
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Figure 5.14 Overall and Relapse Free Survival Associated with Amplified ATP1A1 in 

Breast Cancer Patients (a METABRIC Analysis). Relationship between amplification of 

ATP1A1 (-NKA) in breast cancer patients and (a) overall survival or (b) relapse free 

survival from the METABRIC cohort of breast cancer patients available on cBioPortal. P 

value adjusted for FDR (q-Value) < 0.05. (c) Truncated OncoPrint of ATP1A1, SCNN1A 

(-ENaC), SCNN1B (-ENaC) and SCNN1G (-ENaC) in METABRIC primary tumours 

showing mutual exclusivity in genome alterations (created with cBioPortal). 
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Table 5.10 Overall and Relapse-Free Survival in the METABRIC Cohort with Alterations 

in Na+ Transporter Gene Expression. Na+ Transporter genes that were upregulated (Up) 

or downregulated (Down) in both MCF-7 and T-47D cells after chronic (48 hours) hypoxic 

challenge were studied for the relationship between gene expression alteration and overall 

survival (OS) or relapse free survival (RFS) using METABRIC breast cancer patient cohort. 

Alteration types identified were amplification (Amp) or deep deletions (D Del). Where both 

types of alterations were observed, the major alteration is in bold. P values corrected for 

FDR (q) are shown. * q < 0.05, ** q < 0.01 and ***q <0.001. 

Gene (Up) 
Occurrence 
n / (%) 

Alteration 
type 

OS (q) RFS (q) 

ATP1B1 440 / (21) Amp 0.636 0.643 

HCN2 11 / (< 1) Amp | D Del 0.672 0.672 

SCNN1A 60 / (3) Amp | D Del 0.794 0.794 

SCNN1B 128 / (6) Amp 0.0641 * 0.0329 

SCNN1G 129 / (6) Amp * 0.0402 * 0.0150 

SLC28A1 26 / (1) Amp 0.360 0.360 

SLC38A2 20 / (< 1) Amp | D Del * 0.0106 ** 0.0020 

SLC6A3 88 / (4) Amp 0.429 0.429 

SLC6A8 34 / (2) Amp | D Del 0.572 0.572 

SLC9A1 4 / (< 1) D Del * 0.0127 ** 0.0011 

IST1 12 / (< 1) Amp | D Del 0.654 0.654 

Gene (Down) 
Occurrence 
n / (%) 

Alteration 
type 

OS (q) RFS (q) 

NHERF1 124 / (6) Amp * 0.0174 *** < 0.001 

SLC9A2 13 / (< 1) Amp | D Del 0.722 0.488 
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Table 5.11 Median Overall and Relapse-Free Survival in the METABRIC Cohort.  

Na+ transporter genes that significantly affect patient overall survival (OS) or relapse free 

survival (RFS), and corresponding difference (Δ) in median OS or median RFS in months, 

relative to patients with tumours that did not possess the genomic alterations (unaltered). 

Gene 
Unaltered 
Median OS 

Altered 
Median OS 

ΔOS 
Unaltered 
Median RFS 

Altered 
Median RFS 

ΔRFS 

SCNN1B 151.2 189.1 + 37.9 218.7 276.9 + 58.2 

SCNN1G 151.2 189.1 + 37.9 218.7 276.9 + 58.2 

SLC38A2 153.9 85.7 - 68.2 229.3 71.5 - 157.8 

SLC9A1 153.9 23.4 - 130.5 229.3 14.4 - 214.9 

NHERF1 157.8 104.5 - 53.3 252.3 93.7 - 158.6 
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 To summarise, expression of Na+ transporter genes were significantly 

altered as a consequence of hypoxia in MCF-7 and T-47D cell lines. Subunits of 

ENaC and NKA were mostly involved in the increased Na+ transport phenotype of 

hypoxic Luminal A cells owing to significant induction of these genes following O2 

deprivation. Consequently, selective amplification in the expression of ATP1A1 but 

not ATP1B1, or SCNN1B and SCNN1G but not SCNN1A, was significantly 

associated with disease burden in breast cancer patients when relapse-free or 

overall survival metrics are considered. Taken together, the findings discussed in 

Section 5.2.7 implicated dysregulated Na+ transport through several Na+ channels in 

breast cancer progression, potentially in an O2-dependent manner. 

 

5.2.8 Hypoxia does not significantly affect ATP1A1 expression when 

measured by RT-qPCR 

 

 Because -NKA amplification is associated with adverse survival outcomes 

for patients with breast cancer, and mRNA of this subunit was amplified in response 

to chronic hypoxia, this channel was explored further in MCF-7 and T-47D cells 

cultured under an acute or chronic hypoxic time course to investigate which HIF- 

isoform may regulate ATP1A1 transcription. However, RT-qPCR found no significant 

alteration in ATP1A1 expression in MCF-7 (Figure 5.15a) or T-47D cells (Figure 

5.15b) following either an acute or chronic hypoxic time course. Looking at the 

DGEA in more detail revealed a small but highly significant (padj < 0.0001) Log2FC 

of 0.37 and 0.50 in MCF-7 and T-47D cells, respectively. Different approaches were 

used to normalise gene expression and perform statistical testing in RNA-seq and 

RT-qPCR experiments, which could explain the variance in results between the two 

methods. Furthermore, the small differences in ATP1A1 expression identified by 

RNA-seq may not be sufficiently strong enough to identify the same changes when 

tested using RT-qPCR.   
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Figure 5.15 RT-qPCR of ATP1A1 in MCF-7 and T-47D Breast Cancer Cells Following 

Acute or Chronic Hypoxic Culture. RT-qPCR of ATP1A1 in (a) MCF-7 and (b) T-47D 

breast cancer cells. Cell lines were cultured in normoxia (~20% O2, “0 hours”), acute 

hypoxia (1% O2, 8 hours) or chronic hypoxia (1% O2, 48 hours). Changes in ATP1A1 

expression were determined by the 2-ΔΔCt method, using the geometric mean of RGs 

RPLP1 and RPL27 for normalisation. One-way ANOVA with Dunnett’s multiple 

comparisons revealed no significant changes in expression. Error bars are ± SEM. N = 3. 
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5.2.9 Ouabain inhibition of NKA does not affect normoxic or hypoxic breast 

cancer cell migration 

 

 Since amplification of NKA  subunit ATP1A1 had significant prognostic 

effects in breast cancer patients, and expression of NKA has been implicated in 

cancer cell proliferation, motility and invasion in normoxic breast cancer cells 

(Khajah et al., 2018), it was expected that NKA activity in hypoxic breast cancer cell 

lines would further increase migratory capacity, and inhibition of NKA by ouabain 

would impede motility of hypoxic Luminal A cell lines. Therefore, the migratory index 

(MI) of MCF-7 and T-47D cells was measured following normoxic vs. hypoxic 

culture, in addition to treatment with 100 nM ouabain or corresponding vehicle 

control. Following a 24-hour time course post-wound, neither MCF-7 (Figure 5.16a) 

or T-47D cells (Figure 5.16b) saw a significant reduction in MI following singular 

challenge of ouabain or hypoxia, or when cells were cultured in hypoxia and with 

ouabain. After 48 hours, MCF-7 cells cultured in hypoxia saw a significant reduction 

in MI compared to normoxic cells (Figure 5.16c). Additionally, hypoxia alone, or in 

combination with ouabain significantly reduced MI when compared to normoxic 

ouabain-treated cells. However, no significant change in MI was observed between 

vehicle and ouabain treated cells cultured in normoxia, or vehicle and ouabain 

treated cells cultured in hypoxia. Furthermore, 48-hours post wound in T-47D cells, 

a significant reduction was only observed between normoxic vehicle treated cells, 

and hypoxic vehicle or hypoxic ouabain treated cells (Figure 5.16d). Therefore, 

hypoxia significantly inhibited the migratory capacity of MCF-7 and T-47D cells, 

whereas blocking of the NKA with ouabain had no additional inhibitory affect.  

 

The lack of significant reduction in MI of ouabain-treated cells could be 

attributed to the concentration of ouabain used. Previous research has 

demonstrated 100 nM ouabain is sufficient to inhibit cell proliferation of breast 

cancer cells, and inhibit NKA-dependent Na+ efflux (Kometiani et al., 2005; Shandell 

et al., 2022). In contrast, 1 M – 10 M ouabain has been shown to significantly 

inhibit breast cancer cell migration, although a prolonged 48-hour time course also 

significantly increased apoptosis relative to vehicle treated cells (Khajah et al., 

2018). Thus, 100 nM ouabain was chosen as the final concentration, as a 

compromise between eliciting significant inhibition of NKA and impairing cell 

function, without jeopardising cell survival.  
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Figure 5.16 Investigating NKA Inhibition on the Migratory Capacity of Normoxic or 

Hypoxic Breast Cancer Cells. The Migratory Index (MI) was calculated following 

Ouabain and / or hypoxia culture in (a) MCF-7 or (b) T-47D cells 24 hours post-wound, or 

(c) MCF-7 or (d) T-47D cells 48 hours post-wound.100 nM Ouabain (O) or vehicle (V) was 

applied and / or normoxic (N) or hypoxic (H; 1% O2) culture was implemented immediately 

following wound generation and initial (t0) wound measurement. After 24 or 48 hours, 

wounds were remeasured (t1). One-way ANOVA with Tukey’s multiple comparisons was 

performed. * p < 0.05, ** p < 0.01 and *** p < 0.001. Error bars are ± SEM. N = 3. 
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5.2.10 Ion transporter genes are significantly affected by O2 and ER 

perturbations in Luminal A cell lines 

 

 Following on from the findings of hypoxia and fulvestrant-dependent effects 

on Na+ channel gene expression, the analysis was expanded further to more 

broadly include ion channel gene expression alterations in MCF-7 and T-47D cells 

in all RNA-seq permutations described in Section 5.2.2. An ion channel list was 

generated from HGNC that contained 330 ion channel genes, including Na+ 

channels, Ca2+ channels, K+ channels, Cl- channels, porins and gap junction 

proteins (available at genenames.org). DGEA was performed using DESeq2 and 

the ion channel list was used to identify significantly differentially expressed ion 

channel genes (padj < 0.05) in response to hypoxia and/or ER knockdown. Ion 

channels that displayed significant alterations in expression in both MCF-7 and T-

47D cells, across all RNA-seq comparisons were identified. Out of the 330 ion 

channels available, only nine ion channels were differentially expressed in both 

Luminal A cell lines, and in all combinations of analysis (Table 5.12).  

 

ATP1A1 was among the nine shared significantly differentially expressed 

ion channel genes, with the greatest fold change in expression in normoxia and 

vehicle vs. hypoxia and fulvestrant comparison (NV vs. HF) of T-47D cells, whereas 

a moderate induction was seen in MCF-7 cells. However, largest alterations in 

expression of AQP3 (aquaporin), GJA1 (gap junction), SFXN2 (sideroflexin) and 

SLC29A4 (monoamine transporter) occurred in NV vs. HF MCF-7s. Changes 

occurring in NV vs. HF are of great interest, as this comparison could recapitulate 

Luminal A disease progression where endocrine resistance and hypoxic signatures 

are developing in the breast tumour (Jehanno et al., 2022). 

 

NHERF1 and the mitochondrial amino acid transporter SFXN2 were both 

significantly downregulated in MCF-7 and T-47D cells, because of O2 deprivation, 

fulvestrant treatment, or a combination of experimental challenges (Table 5.12). It is 

interesting that many genes regulated in one direction in MCF-7 cells had an 

opposite regulation in T-47Ds, especially where fulvestrant-mediated ER 

knockdown was the only test. For example, in normoxic MCF-7 cells, fulvestrant led 

to upregulated GJA1, mitochondrial serine transporter SFXN3 and NHE SLC9A4, 

and downregulated ATP1A1, compared to vehicle. T-47D cells had the opposite 

differential expression of the same genes. Similarly, in hypoxic MCF-7 cells, 
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fulvestrant treatment led to upregulated GJA1 and SLC9A4, and downregulated 

ATP1A1, relative to vehicle, and these genes were downregulated in T-47D cells. 

Such a striking observation could be explained by the differential ER transcriptome 

in the two Luminal A cell lines, and highlights the importance of selecting the most 

appropriate cell model, or utilising more than one cell line to observe differences in 

biological responses to a condition (Yu et al., 2017). The remaining two genes which 

were significantly differentially expressed were anoctamin 7 (ANO7) and 

monocarboxylic acid transporter 4 (MCT4; SLC16A3), which displayed the same 

regulatory patterns as each other.   
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Table 5.12 Log2FC in Shared Differentially Expressed Ion Transporter Genes. Log2FC 

of ion channel genes that are significantly (padj < 0.05) differentially regulated in MCF-7 (M) 

and T-47D (T) cell lines, in all RNA-Seq permutations available in this chapter: normoxia and 

vehicle vs. hypoxia and vehicle (NV vs. HV), normoxia and vehicle vs. normoxia and 

fulvestrant (NV vs. NF), normoxia and vehicle vs. hypoxia and fulvestrant (NV vs. HF), 

normoxia and fulvestrant vs. hypoxia and fulvestrant (NF vs. HF), normoxia and fulvestrant 

vs. hypoxia and vehicle (NF vs. HV) and hypoxia and vehicle vs. hypoxia and fulvestrant (HV 

vs. HF). Significantly upregulated genes are shown by light orange to dark orange colour 

arrangement. Significantly downregulated genes are shown by light blue to dark blue colour 

arrangement.  

Gene 
NV vs. HV NV vs. NF NV vs. HF NF vs. HV NF vs. HF HV vs. HF 

M T M T M T M T M T M T 

ANO7 0.59 1.47 -3.49 -0.74 -2.22 0.75 -4.14 -2.42 1.17 1.67 -2.87 -0.56 

AQP3 1.57 1.03 2.67 2.97 3.51 2.05 1.08 1.81 0.83 -0.82 1.93 0.87 

GJA1 2.95 0.75 1.73 -3.45 4.40 -1.73 -1.03 -4.49 2.49 1.50 1.31 -2.78 

SFXN2 -1.70 -1.03 -4.40 -1.91 -5.00 -2.24 -2.68 -0.87 -0.54 -0.31 -3.28 -1.20 

SFXN3 1.82 0.74 0.44 -0.43 1.22 0.43 -1.36 -1.19 0.75 0.87 -0.58 -0.30 

SLC29A4 1.57 1.25 1.89 -1.15 2.54 0.47 0.31 -2.43 0.62 1.64 0.95 -0.76 

SLC16A3 0.51 2.42 -1.16 -2.47 -0.61 1.00 -1.71 -4.91 0.50 3.49 -1.15 -1.41 

ATP1A1 0.37 0.50 -0.26 0.86 0.20 1.31 -0.63 0.35 0.45 0.45 -0.18 0.81 

NHERF1 -0.27 -0.15 -1.13 -0.39 -1.45 -0.69 -0.85 -0.23 -0.30 -0.29 -1.16 -0.52 
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 Next, RT-qPCR was performed to explore a potential HIF-dependent 

regulation of four shared ion channel genes in hypoxic breast cancer cell lines. 

MCF-7 cells were cultured under normoxia, or under hypoxia for 8 or 48 hours, and 

fold change in expression of SFXN2, SFXN3, SLC16A2 and NHERF1 was 

calculated. Based on the RNA-seq findings, expression of SFXN2 and NHERF1 

should be significantly downregulated because of chronic (48 hours) hypoxia, 

whereas expression of SFXN3 and SLC16A3 should be induced. RT-qPCR 

revealed a downward trend in SFXN2 expression (Figure 5.17a), upregulation of 

SFXN3 (Figure 5.17b), and a moderate decrease in SLC16A2 (Figure 5.17c) and 

NHERF1 (Figure 5.17d). Despite clear trends in hypoxia-mediated gene expression, 

most of which agreed with the RNA-seq expression patterns, none of the RT-qPCR 

results from MCF-7 lysates were significant (One-way ANOVA with Dunnett’s 

multiple comparisons). A possible reason for this is the large variation seen across 

samples which may be improved by including additional biological replicates.  
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Figure 5.17 RT-qPCR of Ion Transporters Differentially Expressed in All RNA-Seq 

Comparisons in MCF-7 Cells RT-qPCR of (a) SFXN2, (b) SFXN3, (c) SLC16A2 and (d) 

NHERF1 in MCF-7 breast cancer cells. Cell lines were cultured in normoxia (~20% O2, “0 

hours”), acute hypoxia (1% O2, 8 hours) or chronic hypoxia (1% O2, 48 hours). Changes in 

ion transporter gene expression was determined by the 2-ΔΔCt method, using the 

geometric mean of RGs RPLP1 and RPL27 for normalisation. One-way ANOVA with 

Dunnett’s multiple comparisons revealed no significant changes in expression. Error bars 

are ± SEM. N = 3. 
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 When T-47D cells were studied for changes in the same panel of ion 

channel genes, SFXN2 was significantly downregulated after 48 hours, but not 8 

hours of hypoxic culture (Figure 5.18a). In contrast, positive induction of SFXN3 

(Figure 5.18b) and SLC16A2 (Figure 5.18c) following an acute and chronic hypoxic 

time course was observed. The rapid induction of SFXN3 and SLC16A2 observed in 

T-47D cells implicates HIF-1 as the transcriptional regulator of these genes. 

Conversely, no significant change in NHERF1 was seen as a consequence of 

hypoxia in T-47D lysate (Figure 5.18d). The RT-qPCR findings are largely in 

agreement with the RNA-seq findings. Where NHERF1 is concerned, a very small 

Log2FC was seen in T-47D cells following 48 hours of hypoxic challenge (Log2FC -

0.15; padj < 0.5), which could explain the variance between RT-qPCR and RNA-seq 

results.  
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Figure 5.18 RT-qPCR of Ion Transporters Differentially Expressed in All RNA-Seq 

Comparisons in T-47D Cells. RT-qPCR of (a) SFXN2, (b) SFXN3, (c) SLC16A2 and (d) 

NHERF1 in T-47D breast cancer cells. Cell lines were cultured in normoxia (~20% O2, “0 

hours”), acute hypoxia (1% O2, 8 hours) or chronic hypoxia (1% O2, 48 hours). Changes in 

ion transporter gene expression was determined by the 2-ΔΔCt method, using the 

geometric mean of RGs RPLP1 and RPL27 for normalisation. One-way ANOVA with 

Dunnett’s multiple comparisons was performed. * p < 0.05 and ** p < 0.01. Error bars are 

± SEM. N = 3. 

 

 

 

 

 

T-47Da T-47D

T-47D T-47D

b

c d

0 
hours

8 
hours

48
 h

ours

0

1

2

SFXN2

2
-(




c
t)

S
F

X
N

2

✱

0 
hours

8 
hours

48
 h

ours

0

1

2

3

SFXN3

2
-(




c
t)

S
F

X
N

3 ✱

✱✱

0 
hours

8 
hours

48
 h

ours

0

2

4

6

8

10

SLC16A3

2
-(




c
t)

S
L

C
1
6
A

2 ✱✱

✱✱

0 
hours

8 
hours

48
 h

ours

0.0

0.5

1.0

1.5

2.0

NHERF1

2
-(




c
t)

N
H

E
R

F
1

2
-(

Δ
Δ

C
t)

 S
F

X
N

2

2
-(

Δ
Δ

C
t)

 S
F

X
N

3

2
-(

Δ
Δ

C
t)

 S
L

C
1
6
A

2

2
-(

Δ
Δ

C
t)

 N
H

E
R

F
1



238 

5.3 Discussion 

 

Investigations carried out in this chapter were set up to explore potential 

mechanisms of dysregulated Na+ homeostasis in breast cancer by identifying major 

Na+ channel genes most perturbed by O2 deprivation and/or fulvestrant-mediated 

ER knockdown. A primary aim was to understand if hypoxia positively induces 

expression of, or if ER negatively regulates expression of key VGSC subunits most 

implicated in breast cancer progression, particularly nNaV1.5 which is strongly 

associated with metastatic TNBC. A secondary aim was to explore the role of 

hypoxia and ER in regulating ion homeostasis through a broader range of Na+ and 

other ion channels. RNA-seq was predominantly utilised in this chapter, as it 

enables highly sensitive investigations of gene alterations on a genome-wide scale. 

Wet lab experiments included RT-qPCR to test the reproducibility of RNA-seq 

findings, as well as a wound healing assay to determine potential therapeutic benefit 

of inhibiting hypoxia-induced NKA activity in breast cancer metastasis. 

 

5.3.1 Summary of main findings 

 

• Widespread transcriptional changes were elicited following chronic hypoxic 

culture and/or ER knockdown with fulvestrant in MCF-7 and T-47D cells. 

• Acute or chronic hypoxia did not significantly affect expression of  or  

VGSC subunits in Luminal A cell lines. 

• ER positively regulated expression of SCN8A and SCN1B in T-47D cells, 

whereas ER attenuated expression of SCN1A in T-47D and SCN1B in 

MCF-7 cells. 

• Hypoxia and fulvestrant shut down major biosynthetic processes in both 

MCF-7 and T-47D cells. 

• Elevated Na+ transport was a feature of a hypoxic signature, whereas ER 

did not play a significant part in dysregulated Na+ homeostasis in ER+ cell 

lines. 

• Major contributors to enhanced Na+ transport in MCF-7 and T-47D cells were 

hypoxic-induced NKA, ENaC and NHE1 subunits. 

• Amplification of ATP1A1, SCNN1B or SCNN1G were significantly associated 

with disease outcomes for patients with breast cancer. 

• 100 nM ouabain was not sufficient to significantly impair Luminal A cell line 

migration in normoxia or in hypoxia.  
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5.3.2 Differential regulation of VGSC subunits in two models of Luminal A 

breast cancer 

 

 Neither an acute nor chronic hypoxic time course was able to induce 

transcription of nSCN5A, SCN8A or SCN9A in MCF-7, T-47D, MDA-MB-231 or 

MDA-MB-468 breast cancer cell lines, as determined by RT-qPCR. Only MDA-MB-

231 cells exhibited detectable levels of SCN5A and SCN9A, whereas the second 

model of TNBC and the two Luminal A cell lines had no detectable levels of VGSC 

transcript. One possible explanation for the difference in VGSC expression 

observed between two TNBC cell lines could be attributed to differential FOXC1 

binding in MDA-MB-231 and MDA-MB-468 cells. Pioneer factor binding has been 

shown to have small overlap with H3K27ac peaks, which is indicative of active 

chromatin in the basal-like MDA-MB-468s, whereas a large proportion of FOXC1 

binding events in mesenchymal stem-like MDA-MB-231s are associated with an 

active chromatin signal (Espinosa Fernandez et al., 2020; Ramachandran et al., 

2024). An unbiased RNA-seq approach of MCF-7 and T-47D cells cultured in 

chronic hypoxia did not show significant induction of any VGSC  subunit (SCN1A – 

SCN11A) or  subunit (SCN1B – SCN4B). Therefore, transcription of VGSCs in cell 

lines studied is not significantly affected by O2 deprivation. The finding that VGSC 

expression is unperturbed by hypoxia was unexpected, as a link between O2 

deficiency and mechanisms known to enhance VGSC expression have been 

reported, including a synergistic role between hypoxia and increased growth factor 

signalling, and impaired SIK1 activity. (Mallikarjuna et al., 2019; Mamo et al., 2020; 

Pu et al., 2022). Therefore, additional factors are mediating a hypoxia - growth 

factor / SIK1 - VGSC regulatory network that need to be explored in greater detail. 

However, control of VGSC expression in an O2-depednent manner was not 

investigated further in this chapter. Instead, functional involvement of the ER in 

repression of VGSC expression was studied.  

 

The ER is estimated to repress expression of between 35 – 50 % of 

canonical target genes, in a time-dependent manner post-oestradiol stimulation 

(Carroll et al., 2006). Additionally, a significant negative correlation has recently 

been reported between ER status of primary breast tumours and protein levels of 

NaV1.5 (Leslie et al., 2024). Therefore, VGSC expression in ER+ cell lines were 

expected to be negatively regulated by ER activity. RNA-seq analysis of fulvestrant 

treated MCF-7 and T-47D cells revealed differential expression of some VGSC 
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subunits in response to ER knockdown, in a cell type dependent manner. Of the 

VGSC  subunits, SCN1A was significantly upregulated, and SCN8A was 

significantly downregulated following proteasomal degradation of the steroid 

receptor in T-47D cells, whereas no such differential expression was observed in 

MCF-7 cells. Additionally, ER knockdown significantly reduced expression of 1 

subunit SCN1B in T-47D cells, whereas transcript levels of this gene were 

significantly amplified in MCF-7 cells in the same condition. Fulvestrant-dependent 

differential expression patterns of VGSC subunits suggest that in T-47D cells, ER 

enhances expression of SCN8A and SCN1B, whereas the steroid receptor seems 

to negatively regulate expression of SCN1A in T-47D and SCN1B in MCF-7 cells, in 

agreement with the original hypothesis. Transcript abundance of NaV1.5 was 

unperturbed by ER degradation in either cell line studied, suggesting expression of 

this isoform in TNBC tumours is not due to a lack of negative regulation of gene 

expression by the hormone receptor.  

 

 The channels encoded by SCN1A and SCN8A are TTX-sensitive NaV1.1 

and NaV1.6, respectively. Neither VGSC isoform has of yet been significantly 

implicated in breast cancer disease. However, mRNA expression of NaV1.1 is 

elevated in ovarian tumours, where positive expression of ER and PgR is 

associated with a better clinical outcome (Gao et al., 2010; Chen et al., 2017). 

Additionally, intronic single-nucleotide polymorphisms in SCN1A that are linked to 

increased risk of febrile seizures and epilepsy have been implicated in decreased 

time-to-recurrence (TTS) for patients with colorectal carcinoma (Benhaim et al., 

2014). NaV1.6 transcripts are elevated 40-fold in cervical cancer biopsies relative to 

noncancerous cervical samples, and active NaV1.6 channels on the plasma 

membrane of cervical cancer cells are responsible for almost one-third of Na+ 

current recorded by whole-cell patch-clamp experiments (Hernandez-Plata et al., 

2012). The observation that NaV1.1 and NaV1.6 were responsive to ER signalling 

in T-47D breast cancer cells was unexpected, as a hormone link modulating 

expression of these two channels has not previously been discussed. Thus, impact 

of altered VGSC transcription in response to hormone receptor perturbation should 

be further explored, particularly whether protein expression and membrane-

trafficking of the channels are also altered in response to ER knockdown. No 

inward Na+ current has been observed in T-47D cells, suggesting potential NaV1.6 

activity in this cell line may be distinct from a canonical role in membrane 

depolarisation (Leslie et al., 2024). NaV1.6 is expressed in astrocytes and microglia, 
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where Na+ channel activity modulates -amyloid clearance and microglial 

phagocytosis and migration (Reese and Caldwell, 1999; Black et al., 2009; Wang et 

al., 2024). Intracellular localisation of a NaV1.6 splice variant controls invasion and 

migration of macrophage and melanoma cells by modulating podosome formation 

(Carrithers et al., 2009). Enhanced NaV1.1 abundance in response to ER 

knockdown may also have significant clinical implications for patients with endocrine 

resistant Luminal A breast cancer, and potentially identifies a population of breast 

cancer patients who would most benefit from adjuvant VGSC blockers such as 

rufinamide (Gilchrist et al., 2014). 

 

In contrast to NaV1.1 and NaV1.6, VGSC 1 subunit encoded by SCN1B 

has been shown to be important in breast cancer progression. The  subunits are 

auxiliary proteins primarily involved in regulating  subunit trafficking, gating kinetics 

and post-translational modifications (Haworth et al., 2022). Thus, there may be 

some form of interplay that exists between 1 expression and NaV1.6 activity in T-

47D cells that should be explored in cell lines and primary and metastatic breast 

cancer specimens. In addition to  subunit regulation,  subunits are members of 

the Ig superfamily of CAMs involved in mediating trans-homophilic adhesion of 

ankyrin-dependent cell-cell contacts, and heterophilic contacts with other CAMs 

including 2, N-cadherin and tenascin-R (Xiao et al., 1999; Malhotra et al., 2000, 

2004; McEwen and Isom, 2004). In breast cancer, expression of 1 in patient 

tumour specimens is significantly elevated compared to healthy tissue and is 

correlated with ER status in a non-oestrogen dependent manner (Nelson et al., 

2014). 1 mRNA and protein levels are strongly expressed in weakly metastatic 

MCF-7 cells but not readily detectable in TNBC MDA-MB-231 cells (Chioni et al., 

2009). Downregulation of 1 by siRNA enhances NaV1.5 mRNA and protein 

expression in MCF-7 cells, whereas stably transfecting 1 in MDA-MB-231 cells 

significantly increases cell-cell adhesion and decreases migration and proliferation 

compared to control cells (Chioni et al., 2009). On the other hand, overexpression of 

1 in an orthotopic mouse model bearing MDA-MB-231 tumours significantly 

enhances tumour growth by inhibiting apoptosis, and promotes liver and lung 

metastasis relative to control tumours, highlighting a potential pro-tumorigenic role 

of 1 subunit in breast cancer in vivo (Nelson et al., 2014). RNA-seq analysis of T-

47D cells described in Section 5.2.5 disagrees with findings described by Chioni et 

al. as fulvestrant-mediated downregulation of SCN1B expression was not 

associated with elevated SCN5A transcription. The discrepancy could be a result of 
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cell line-specific variability in VGSC regulation, or due to contrasting experimental 

approaches leading to reduced levels of SCN1B with different primary molecular 

targets. However, expression of NaV1.5 was also unresponsive to elevated SCN1B 

in MCF-7 cells according to RNA-seq data, implicating other regulatory factors 

involved in the 1-NaV1.5 relationship in Luminal A cell lines. The observation that 

ER-degradation had cell type-dependent effects on SCN1B expression is 

contradictory to previous research that showed 1 is not responsive to ER 

activation or attenuation in MCF-7 cells and therefore thought not to be oestrogen-

regulated (Nelson et al., 2014). Here, microarray instead suggests that upregulation 

of 1 in ER+ breast tumours is correlated with expression of genomic neighbours 

of SCN1B on chromosome 19q (Nelson et al., 2014). Therefore, the RNA-seq 

finding that SCN1B expression is in fact potentially repressed by ER in MCF-7 

cells and enhanced by the hormone receptor in T-47D cells could have significant 

implications for the treatment of Luminal A breast cancers and highlights the need 

for investigations into patient-specific VGSC expression signatures and responses 

to anti-oestrogen therapies. The disparity between published results and the finding 

of ER-dependent regulation of 1 described in this Chapter could be attributed to 

the differences in fulvestrant-treatment. In Nelson et al. proteasomal degradation of 

ER was induced by a 24-hour treatment of 1 M fulvestrant, whereas ER 

attenuation described in this Chapter was the result of a 96-hour treatment of 100 

nM fulvestrant. Thus, the differences in working concentration of SERD and 

treatment length suggest effects in SCN1B expression may be a secondary or 

tertiary response, and not due to direct regulation by ER. Additional experiments 

exploring ER-VGSC axis in breast cancer needs to be implemented to ascertain 

functional involvement of the steroid receptor in regulating VGSC subunit 

expression, and clinical implications of such regulations in a cell type and patient-

specific manner.  

 

5.3.3 Hypoxia regulates Na+ network in vitro 

  

 Beyond aberrant VGSC activity enhancing pathological Na+ influx, RNA-

seq datasets analysed in this Chapter aimed to further delineate O2-dependent and 

ER-dependent mechanisms of Na+ regulation in a broader context, by exploring 

perturbations across 131 Na+ channel genes in Luminal A breast cancer cell lines. 

DGEA in MCF-7 and T-47D cells under stress of ER-knockdown found several Na+ 

channel genes that were significantly differentially expressed as a consequence of 
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fulvestrant treatment, including NKCC1 (SLC12A2), Na+-coupled nucleoside 

transporter (SLC28A1) and NDBT (SLC4A8). In contrast with previous studies, ER 

knockdown also predominantly enhanced expression of NKA subunits, including 

ATP1A1, ATP1B1 and ATP1A3, whereas NKA expression and activity has been 

reported to be elevated following oestradiol activation of the hormone receptor 

(Sudar et al., 2008; Obradovic et al., 2015). A possible explanation for the disparity 

could be due to differences in disease models, as Sudar et al. and Obradovic et al. 

are exploring oestrogen-dependent regulation of NKA in heart disease and 

hypertension, but the role of ER in pathophysiology of breast cancer was being 

investigated in Chapter 5. Despite evidence that ER regulates Na+ channels at the 

gene level, exploring Na+ handling on a gene set level with GSEA revealed no 

significant enhancement of BPs or MFs involved in Na+ transport. Thus, alterations 

in the expression of a few Na+ channel genes in response to ER perturbation does 

not contribute to a significantly altered Na+ transport phenotype in MCF-7 and T-47D 

cells, and so ER-dependent effects in Na+ handling in these cells were not studied 

further in this Chapter. Conversely, DGEA in response to chronic O2 deprivation in 

Luminal A cell lines found significant alterations in expression of all major ENaC 

subunits (SCNN1A, SCNN1B and SCNN1G), NKA  and  subunits (ATP1A1 and 

ATP1B1) and NHE1 (SLC9A1). In addition, GSEA found significant positive 

enrichment of BPs and MFs involved in Na+ transport in both cell lines as a 

consequence of hypoxic culture. Therefore, hypoxic stress significantly elevates Na+ 

transport in MCF-7 and T-47D cells by altering expression of many Na+ channel 

genes.  

 

 Overexpression of NKA subunits has been identified in several 

malignancies, including NSCLC, melanoma, hepatocellular carcinoma and breast 

cancer (Nilsson et al., 2007; Mathieu et al., 2009; Shibuya et al., 2010; Wang et al., 

2018). Researchers are developing novel NKA tracer molecules to stratify NKA+ 

breast cancer patients through non-invasive imaging of NKA 1 subunit, and further 

utilising overexpression of 1 subunit to enhance targeted delivery of doxorubicin to 

breast tumours with elevated NKA (Wang et al., 2018; Araste et al., 2020). Analysis 

of 2,509 primary breast tumours part of the METABRIC project revealed NKA 1 

amplification was more prevalent compared to NKA 1 (21% 1 vs. 1% 1). 

However, amplification of catalytic NKA 1 subunit was associated with poor 

prognostic signatures in relapse-free and overall survival whereas NKA 1 genomic 

alteration was not significantly associated with patient outcomes. Independent IHC 
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analysis of 107 breast tumours further demonstrated poor prognosis for overall and 

disease-free survival for patients with breast tumours that had high NKA 1 

expression (Wang et al., 2018). Investigating the genomic landscape dictating 

expression profiles of ATP1A1 in 764 TCGA samples revealed hypermethylation of 

1 gene was associated with better overall survival in TNBC, whereas high-risk 

patients had hypomethylated and elevated ATP1A1 expression and a corresponding 

decreased overall survival, relapse-free survival and metastasis-free survival (Kim 

et al., 2024). Adverse effects of increased NKA expression can be attributed to 

enhanced NKA signalling cascade activity involving Src, increasing cell migration 

(Ou et al., 2017). Decreased expression of NKA 1 has been shown to cause cell 

cycle arrest, induce apoptosis and inhibit migration of HCC cells in vitro and further 

impair tumorigenicity in vivo (Zhuang et al., 2015). Therefore, there is strong 

evidence implicating elevated ATP1A1 in cancer progression and identifies the 

catalytic subunit of NKA as a therapeutic biomarker for patients with breast cancer. 

The finding that both NKA 1 and NKA 1 transcripts were amplified following 

chronic O2 deprivation has not been reported before. However, a study in rat 

astrocytes demonstrated transient increase in NKA 1 and NKA 1 mRNA during 

reoxygenation after 24 hours hypoxia (8 mmHg), whereas hypoxia alone was not 

shown to affect expression of the NKA subunits (Kasai et al., 2003). In contrast, 

hypoxia is known to downregulate ATP-consuming proteins, including NKA, in a 

process mediated by mitochondrial ROS production, endocytosis of membrane-

bound NKA and subsequent ubiquitination and degradation of the enzyme (Dada et 

al., 2003; Chen et al., 2006; Comellas et al., 2006). When investigating potential 

therapeutic benefits of ouabain in reducing migration of hypoxic Luminal A cell lines, 

no significant difference was observed in MI between vehicle treated and ouabain 

treated cells cultured in hypoxia, and this could be explained by hypoxia-induced 

degradation of NKA protein, as only alterations in transcript levels as a result of O2 

deprivation were studied in this Chapter and not corresponding protein levels. 

However, ouabain was also ineffective in reducing MI of breast cancer cells cultured 

in normoxia, where an active NKA is expected. This result could be due to the dose 

of ouabain being too low, as previous studies have used 1 M – 10 M ouabain to 

inhibit NKA activity in vitro (Khajah et al., 2018). However, the IC50 of ouabain for 

inhibiting kynurenine production was purported to be 89 nM in MDA-MB-231 cells, 

with 100 nM significantly inhibiting Na+ export via the NKA, further supporting the 

initial use of 100 nM in this thesis (Shandell et al., 2022). Further investigations into 

the activity of NKA in normoxic and hypoxic Luminal A cells, and optimisation of 
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ouabain concentration for inhibiting NKA-dependent effects on breast cancer 

progression, are therefore warranted.  

 

In addition to NKA, ENaC is an emerging therapeutic target in breast 

cancer, although the field of ENaC+ breast cancer research is still in its infancy. 

ENaCs are mechanosensitive channels typically expressed on apical membranes of 

collecting ducts in kidney tubules, and are essential for Na+ and subsequently water 

reabsorption into cells (Hanukoglu and Hanukoglu, 2016). Luminal A cell lines 

exposed to chronic hypoxia significantly upregulated mRNA expression of three 

ENaC subunits, which make up the predominant ENaC trimer. However an in vivo 

model of pulmonary oedema demonstrated polyubiquitination of -ENaC (SCNN1A) 

and subsequent endocytosis and degradation of the channel as a feature of hypoxia 

which could suggest elevated ENaC transcript does not correspond to enhanced 

ENaC on cell membranes  (Gille et al., 2014). Analysis of METABRIC data found 

genomic amplification of -ENaC and -ENaC in 6% of breast cancer patients, 

compared to no genomic alteration in expression. Such amplification was 

significantly associated with improved relapse free and overall survival. Genomic 

alteration of SCNN1A (-ENaC) occurred independent of alterations in -ENaC and 

-ENaC subunits and had no significant impact on breast cancer patient outcomes, 

in contrast to previous research implicating -ENaC in HCC and GBM Na+-induced 

proliferation and migration (Bondarava et al., 2009; Kapoor et al., 2009, 2011). 

Conversely, a recent study in MCF-7, T-47D, BT549 and MDA-MB-231 cells 

suggests -ENaC expression or activity is a negative regulator of breast cancer cell 

proliferation and is associated with maintaining epithelial over mesenchymal 

phenotype (Ware et al., 2021). No functional studies into possible protective roles 

for ENaC  and  subunits in breast cancer cells have been undertaken, highlighting 

an important knowledge gap in ENaC breast cancer biology. Nevertheless, 

controlled activation of ENaC activity may present a novel therapeutic avenue for a 

cohort of breast cancer patients to improve survival outcomes. The observation that 

genomic alterations in -ENaC are independent of alterations in -ENaC and -

ENaC in breast tumours was surprising. Single-particle cryo-electron microscopy 

revealed trimer ENaC assembly occurs in a 1:1:1 stoichiometry of :: dictating 

equal expression of ENaC subunits is required for complete trimer formation 

(Noreng et al., 2018). Non-canonical ENaCs exist as monomers or heterodimers 

that are responsive to shear force (Baldin et al., 2020). Therefore, 6% of breast 

cancer patients may express a :-ENaC formation that protects against cancer cell 
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progression. Such mechanisms behind a beneficial heterodimer channel have not 

been studied but could be due to a decrease in Na+ influx through an incomplete 

ENaC which will protect against Na+-induced proliferation and migration. Specific 

dimer channel characteristics, including effect on Na+ influx and downstream cancer 

cell progression need to be investigated.  

 

5.3.4 Limitations and Future work 

 

 A significant proportion of research carried out in this chapter centred 

around bioinformatic approaches to explore differences in transcript levels of Na+ 

channel genes in response to chronic hypoxia or ER knockdown. Three and four 

biological replicates were carried out for MCF-7 and T-47D cell lines, respectively 

ensuring high reproducibility of data generated during RNA-seq. Complementary 

RT-qPCR was carried out in the same cell lines to validate major findings of altered 

Na+ channel gene expression. Similarly, three biological replicates consisting of 

three technical replicates were used. RT-qPCR did not recapitulate the -NKA gene 

induction determined by DESeq2. One possible explanation for the discrepancy is 

that different sets of samples were used for RT-qPCR and RNA-seq experiments, 

which would introduce a source of variability owing to differences in sample 

collection and nucleic acid extraction protocols implemented for each method of 

mRNA quantification. To limit differences associated between RNA-seq and RT-

qPCR, uniform processing of samples should be implemented, which includes 

utilising the same sample for each transcript detection method and diverging sample 

processing as late as possible (Aguiar et al., 2023).  

 

 An important consideration for transcriptional findings in this chapter is that 

changes in mRNA levels were not compared to subsequent aberrations in protein 

synthesis, PTMs, channel trafficking to plasma membrane or altered kinetics or 

activity. As such, elevated -NKA, -ENaC, -ENaC and -ENaC transcript does not 

guarantee a functional Na+ channel. As described above, NKA has been shown to 

be degraded at the protein level when O2 is limited to conserve energy in the form of 

ATP (Comellas et al., 2006). The same is also true for -ENaC in a hypoxic model 

of pulmonary oedema (Gille et al., 2014). Therefore, protein-level analysis of Na+ 

channel expression following O2 perturbation either by western blot or ELISA would 

be instrumental in ascertaining functional consequences of hypoxia-mediated NKA 

or ENaC transcription in breast cancer cells. In addition, alterations in Na+ influx or 
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efflux could be measured using SBFI AM following hypoxic challenges, in the 

presence of ouabain or amiloride to block NKA or ENaC activity respectively, which 

would also confirm if overexpressed channels at the transcript level are 

subsequently translated into a functional channel. Determining changes in [Na+]i 

may explain why upregulation of a proposed :-ENaC is beneficial for breast 

cancer patients. Such an experiment could include stable transfection of :: or 

: into MCF-7, T-47D, MDA-MB-231 and MDA-MB-468 cells to compare 

differences in Na+ influx through different ENaC conformations. Alterations in cancer 

cell behaviours including proliferation, invasion and migration could be measured in 

:: vs. : cell lines to further investigate why amplification of SCNN1B and 

SCNN1G leads to a significantly improved outcome for breast cancer patients. 

Accordingly, modulation of NKA and ENaC expression or activity could be tested 

alongside gold standard TNBC chemotherapies (doxorubicin or cisplatin) or Luminal 

A endocrine therapies (e.g. aromatase inhibitors or tamoxifen) to assess if there are 

additional therapeutic benefits by combining ouabain with breast cancer treatments, 

or if ENaC expression enhances breast cancer cells’ sensitivity to treatment. Na+ 

channel blockade using Class 1c and Class 1d antiarrhythmics in breast, bowel or 

prostate cancer has recently shown to associate with improved cancer-specific 

survival (Fairhurst et al., 2023). Thus, targeting altered Na+ in malignancies may 

derive therapeutic benefit via repurposing of existing Na+ channel inhibitors.  

 

 As regards ER-dependent regulation of VGSC expression, much is still to 

be addressed. It was not tested if altered transcription of 1, NaV1.1 or NaV1.6 

corresponds to altered protein levels of these subunits. Thus, western blots should 

also be considered to determine if protein levels of the VGSCs significantly affected 

by ER knockdown are also changed. Na+ currents have not been detected in 

Luminal A cell lines (Leslie et al., 2024). Of particular interest is upregulation of 

NaV1.1 in T-47D cells following treatment with fulvestrant. Whole-cell patch clamp 

recordings of these cells in the presence of 4.1 nM TTX would discern if expression 

of NaV1.1 is functional, as this channel is TTX-sensitive and INa would be blocked at 

this low concentration of inhibitor. In addition, stable transfection of the hormone 

receptor into ER- TNBC cell lines could also be implemented to determine whether 

ER affects expression of NaV1.5 in these cells. Only expression of nSCN5A, 

SCN8A and SCN9A was studied in MDA-MB-231 and MDA-MB-468 cells, whereas 

RNA-seq in Luminal A cells enabled unbiased pan-VGSC exploration. As VGSC 

expression is associated with more aggressive, metastatic cancers it would be 
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interesting to explore expression of all VGSCs in the TNBC cells as well as 

endocrine resistant Luminal A cells.  

 

To further advance research into Na+ channelopathies, primary and 

metastatic Luminal A and TNBC tumours and matched healthy tissue biopsies 

would be invaluable. For example, IHC could be conducted to determine relative 

Na+ channel abundance across a broad range of breast tumours. Such studies 

could stratify breast cancer patients based on Na+ channel expression and highlight 

cohorts of patients who would most benefit from Na+ channel blockade in 

conjunction with chemotherapy / endocrine therapy and surgery. 

 

5.4 Conclusion 

 

 Dysregulated Na+ transport has been implicated in many hallmarks of 

cancer, but the mechanism driving altered Na+ homeostasis was not known. By 

carrying out an extensive RNA-seq experiment, the contribution of hypoxia and the 

ER was able to be fully investigated into their involvement in perturbed Na+ 

regulation. Chronic hypoxic stress imparted on two Luminal A cell lines significantly 

enhanced Na+ transport through preferential upregulation of NKA, ENaC and NHE, 

whereas the involvement of the ER in dysregulated Na+ balance was more 

discrete and less significant on a gene-set level. However, ER was found to 

significantly regulate expression of VGSC subunits in a cell type specific manner. 

The findings of this Chapter may have significant implications for the treatment of 

breast tumours that have elevated [Na+]i driving disease progression. In particular, 

existing Na+ channel targeting drugs such as ouabain or rufinamide could be 

repurposed for a subset of breast cancer patients whose tumours are shown to 

have aberrant expression of NKA or VGSCs. 
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6. General discussion  

 

This thesis addressed two independent questions, that were motivated by 

the observation of: (i) elevated tRNA levels and; (ii) raised [Na+]i corresponding to 

adverse disease outcomes for patients with breast cancer (Roger et al., 2003; 

Fraser et al., 2005; Pavon-Eternod et al., 2009).  

 

Previous work identified a link between oestradiol activation of ER in 

MCF-7 cells and significant upregulation of a large proportion of tRNA genes (Hah 

et al., 2011). However, until now, large-scale investigation into ER regulation of Pol 

III transcribed genes had not been conducted.Research had also demonstrated 

elevated expression of VGSCs in many types of solid malignancies, including breast 

tumours, which correspondingly raises [Na+]i and promotes advanced disease 

(Brackenbury et al., 2007; Nelson et al., 2015b; Djamgoz et al., 2019). Hypoxia had 

been considered one such mechanism by which VGSCs are upregulated in breast 

tumours, owing to similar regulation of these channels in hypoxic cardiomyocytes 

(Ju et al., 1996; Plant et al., 2020). However, the link between hypoxia and VGSC 

expression in solid tumours had not been fully explored. Therefore, the focus of this 

thesis was to address two important knowledge gaps in breast cancer development, 

namely, to: (i) Understand the mechanism by which ER is targeted to tRNA genes 

and the functional significance of such targeted hormone receptor delivery to these 

promoters; and (ii) Investigate the effect of hypoxia on Na+ homeostasis in breast 

cancer cells, with a particular focus on hypoxia-mediated regulation of Na+ channel 

genes, including VGSCs. To enable (ii), an additional and equally important goal of 

this thesis was to identify robust and stably expressed RGs that can be used for 

studying hypoxia-mediated alterations in gene expression by RT-qPCR. Such 

identification of RGs in a panel of normoxic vs. hypoxic breast cancer cell lines had 

not been previously conducted.  

 

6.1 ER regulation of tRNA expression in breast cancer 

  

The main findings from Chapter 3 show that ER was strongly enriched 

with 30-50% of tRNA genes in breast cancer cell lines, and primary and secondary 

patient ER+ breast tumours as determined by ChIP-seq and ChIP-qPCR. GRO-

seq of oestradiol-stimulated MCF-7 cells demonstrated rapid induction in expression 

of 32% of tRNA genes (Hah et al., 2011). As such, results from Chapter 3 suggest 
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such rapid hormone-mediated tRNA transcription is a result of direct ER 

associations at these promoters, in agreement with previous ChIP-qPCR of ER at 

tRNA Leu (Fang et al., 2017). As GRO-seq is a measure of nascent transcription and 

does not capture steady state RNA, including processing and degradation of RNA in 

response to stimuli, further quantification of tRNA abundance mediated by ER 

activity is necessary (Tzerpos et al., 2021). FOXA1 was also associated at many of 

the same tRNA genes as ER in MCF-7 cells. As such, ER association at tRNA 

loci indicates that the hormone receptor may orchestrate transcription of Pol III 

genes by recruiting necessary transcription factors to promoters, or stabilising 

transcription complexes, though more work is required to confirm this potential role. 

TFIIIC was found to make strong connections with ER by qPLEX-RIME and co-

immunoprecipitation, suggesting a protein-protein tethering mechanism recruiting 

ER to target tDNA. ER was previously shown to co-immunoprecipitate with Brf1 

of TFIIIB, further supporting a mechanism of ER stabilising PIC assembly through 

protein-protein interactions with Pol III transcription factors (Fang et al., 2017). 

Fulvestrant-mediated knockdown of ER in MCF-7 cells slightly decreased 

occupancy of FOXA1 and Pol III and tRNA promoters, but did not affect TFIIIC 

binding to these loci, suggesting ER may influence Pol III loading to target genes 

after TFIIIC binds to tRNA A and B boxes. Therefore, Chapter 3 has provided 

significant evidence that ER can directly associate with tRNA genes in MCF-7 cells 

and Luminal A breast tumours, demonstrating that ER can promote tumorigenesis 

by mediating expression of Pol III transcribed genes, in addition to indirectly 

affecting tRNA modifications (Delaunay et al., 2016; Lorent et al., 2019). The 

proposed model of ER regulation of tRNA expression, modification and enhanced 

malignant capacity is shown in Figure 6.1.  
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Figure 6.1 Hypothetical Mechanism of ER Activity in Luminal A Breast Cancer 

Cells Discussed in this Thesis. 1. In hormone responsive breast cancer cells, the ER 
is directed to target tRNA genes through a robust protein-protein interaction with Pol III 

transcription factor TFIIIC. Once primed at target tRNA loci, ER may facilitate complete 
PIC assembly by honing FOXA1 to these promoters which could help unravel tightly 
bound chromatin such that TFIIIB and Pol III have easier access to regulatory elements. 

In complex, ER may strengthen stability of Pol III PIC to enable effective transcription of 

target genes. Additional recruitment of NCOAs or HATs associated with ER could also 

enhance Pol III transcription and should be investigated. 2. Some tRNA targets of ER 
are preferentially upregulated in transformed cells where they are essential for translation 
of oncoproteins, such as tRNA-Arg-CCG-2-1 which is necessary for protein synthesis of 

pro-metastatic GRIPAP1 and EXOSC2. ER was strongly associated with tRNA-Arg-

CCG-2-1 in breast cancer cells. 3. ER mediates transcription of tRNA modifying 
enzymes, such as ELP3. 4. ELP3 is essential for a mcm5s5U modification at position U34 
in tRNA anticodon loop, which enables efficient translation of oncoprotein DEK. The sum 

of ER regulation of tRNA transcription and modification in breast cancer cells is 
increased growth, proliferation, invasion and metastasis.   
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6.2 Role of hypoxia in progressing breast cancer development by modulating 

Na+ transport 

 

The aim of Chapter 4 was to identify stably expressed RGs that could be 

used to investigate important transcriptional changes occurring in MCF-7, T-47D, 

MDA-MB-231 and MDA-MB-468 breast cancer cell lines cultured in acute or chronic 

hypoxia, versus normoxia. The timepoints were determined based on abundance of 

HIF-1 and HIF-2 which corresponds to the HIF switch. The HIF switch is thought 

to be mediated by HIF-1 mRNA instability and reactivation of PHD enzymes 

(Jaśkiewicz et al., 2022). Due to cell type-dependent differences in HIF protein 

expression timings, it was important to elucidate a suitable time course that 

accommodates the four breast cancer cell lines ubiquitously (Zhou et al., 2011). 

Western blot analysis of HIF-1 and HIF-2 suggests the HIF switch occurs in an 8- 

and 48-hour time course at 1% O2. Next, a comprehensive study of a large panel of 

RG candidates revealed ribosomal proteins RPL27 and RPLP1 to be least variable 

in expression in the four breast cancer cell lines in all O2 conditions, which is a 

valuable and important finding necessary for accurate normalisation of gene 

expression quantification. Alongside positive identification of RGs, certain exclusion 

criteria were implemented that were predominantly centred around primer quality 

(i.e. primer-dimer formation and primer efficiency) as well as baseline gene 

expression.  

 

In Chapter 5, chronic exposure to low O2 tension was initially used to 

determine major changes in Na+ transporter expression by RNA-seq analysis, 

followed by an acute and chronic time course of hypoxia to identify the HIF isoform 

driving such transcriptional changes by RT-qPCR using RGs identified in Chapter 4. 

Chronic hypoxia had a significant positive effect on Na+ transport according to 

GSEA, which was independent of alterations in VGSC expression as determined by 

DGEA. In contrast, mRNA levels of NKA, ENaC and NHE1 subunits were most 

upregulated by low O2 tension and significantly contributed to Na+ transport BPs and 

MFs, possibly leading to increased [Na+]i. Recent work in Langendorff perfused rat 

hearts demonstrated elevated [Na+]i enhances NCX activity in mitochondrial 

membranes leading to significant Ca2+ export into cytosol and inhibition of the TCA 

cycle and OXPHOS, amplifying ROS production and stabilising HIF- in a process 

termed “Na+-induced pseudohypoxia”, suggesting a positive feedback mechanism 

between [Na+]i and HIF- transcriptional activity (Chung et al., 2024).  
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Amplification of the  subunit of NKA was shown to be an indicator of poor 

prognosis in breast cancer according to the METABRIC study, whereas amplification 

of the  subunit of NKA was not significantly correlated with breast cancer outcome. 

In contrast, amplification of -ENaC and -ENaC conferred a better prognosis for 

breast cancer patients compared to those who had unaltered expression of these 

subunits. The cardiac glycoside ouabain, which specifically blocks NKA activity, was 

shown to not be an effective inhibitor of MCF-7 cell migration in normoxia or in 

hypoxia. Corresponding protein levels of Na+ transporters upregulated at the mRNA 

level in hypoxia were not studied and may be one possible explanation as to why 

ouabain was ineffective at decreasing MI of breast cancer cells. In particular, 

hypoxia has been shown to induce proteasomal degradation of NKA, which 

warrants further investigation in breast cancer cell lines (Comellas et al., 2006). A 

hypothetical model of Na+ transporter expression in hypoxic breast cancer cells, and 

corresponding alterations in [Na+]i and pHe is shown in Figure 6.2. 

 

6.2.1 Potential role of ER in mediating VGSC expression in breast cancer 

 

ER was shown to modulate expression of some VGSC subunits by DGEA 

following proteasomal degradation of the hormone receptor in Luminal A breast 

cancer cells. Transcription of SCN1A, SCN8A and SCN1B was significantly affected 

by ER perturbation, which appeared to be cell type dependent. Specifically, 

SCN1A which encodes NaV1.1 was significantly upregulated, and SCN8A and 

SCN1B which encode NaV1.6 and 1, respectively, were significantly downregulated 

in T-47D cells treated with fulvestrant for 48 hours. Conversely, NaV subunits were 

not affected by fulvestrant-mediated ER knockdown in MCF-7 cells, whereas 1 

mRNA was significantly elevated. Whether or not changes in VGSC transcription by 

ER knockdown significantly alters protein levels of these channels, or numbers of 

these VGSCs on the plasma membrane, is a question that was not addressed in 

this thesis and warrants further exploration. 
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Figure 6.2 Proposed Model of Hypoxia-Driven Na+ Transport. 1. Hypoxic breast 

cancer cells have abundant protein levels of HIF-, which form heterodimers with O2-

independent HIF-1, translocate into the nucleus and regulate expression of target genes 
which may have a survival advantage in unfavourable conditions. Na+ transporter genes 
that are significantly upregulated in hypoxia include those encoding for NKA, ENaC and 
NHE1. Whether NKA or ENaC genes are upregulated by HIF activity is unknown. 2. Ion 
transport conducted by NHE1 raises [Na+]i and significantly contributes to the acidification 
of ECM. Heightened ENaC expression at plasma membranes would further contribute to 
increased [Na+]i. 3. Glucose transporters such as GLUT1 are upregulated in hypoxia, 
which feed more glucose into the glycolytic pathway. Lactate levels are enhanced which 
results in H+ extrusion through NHE1, further acidifying ECM to pH 6.6 which is the 
optimal pH for MMPs and cathepsins to effectively degrade surrounding stroma. 4. 
Despite elevated glucose transport, glycolysis does not feed into TCA cycle and OXPHOS 
is also inhibited as no O2 is available to act as the final electron acceptor in the ETC. ROS 

build up in mitochondria, destabilising PHD enzymes. HIF- proteins are therefore not 
degraded by the proteosome, and a positive feedback loop is established between 

hypoxia, HIF- and ROS. 5. Elevated ROS has been shown to induce endocytosis of NKA 
at plasma membranes in hypoxia, rendering cardiac glycosides ineffective. 6. Hypoxia 

induces proteasomal degradation of ER in breast cancer cells and may also cause 
proteasomal degradation of NKA if present at the protein level. 7. Elevated [Na+]i 
increases NCX activity on the mitochondria membrane, leading to Ca2+ efflux from the 
mitochondrial matrix into the cytosol and inhibition of Ca2+-dependent enzymes of the TCA 

and OXPHOS, further driving ROS production and HIF- stabilisation. This Na+-mediated 
mechanism occurs independent of O2 availability and is correspondingly termed “Na+-
induced pseudohypoxia” (Chung et al., 2024). 
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6.3 Future directions 

  

The future vision for work carried out in Chapter 3 would be to fully 

delineate the importance of ER regulation of tRNA gene expression in breast 

tumours, to understand the potential of targeting Pol III transcription for a cohort of 

breast cancer patients with endocrine resistant disease. Missense mutations of 

ESR1 are found in 60% of metastatic breast tumours that have progressed with 

endocrine therapy, and of these mutations, more than 70% are located in the LBD of 

ESR1 which promote constitutive oestrogen-independent ER transcriptional 

activities (Jeselsohn et al., 2015; Tolaney et al., 2022). As such, downstream targets 

of ER that promote tumorigenesis are of great importance when considering 

therapeutic options for metastatic tumours. If ER drives tRNA expression in 

Luminal breast cancers, it may be that novel therapeutics which shut down Pol III 

transcription in advanced endocrine resistant disease will significantly improve 

patient outcomes. Pol III antagonists exist but would not be well tolerated if 

delivered systemically, owing to Pol III-transcribed genes being essential in all cell 

types (Dumay-Odelot et al., 2010; Turowski and Tollervey, 2016). Therefore, tumour-

targeting drug delivery mechanisms including antibody-drug conjugates with Pol III 

inhibitors such as triptolide may be of great therapeutic benefit (Liang et al., 2019; 

Dannheim et al., 2022). For this vision to be realised extensive further work needs 

to be carried out to expand on the findings of Chapter 3. Disseminating oestrogen-

ER modulation of tRNA expression in primary and metastatic human breast 

tumours could involve culturing primary cell lines in combination with Pol III 

inhibitors and determining effects on cell viability, proliferation, migration and 

invasion, before moving forward to in vivo studies exploring mechanisms of safely 

delivering Pol III inhibitors to tumour-bearing mice.  

 

In addition to ER modulation of tRNA expression, SCN1A, SCN8A and 

SCN1B were identified to be differentially regulated at the transcription level by the 

hormone receptor in two Luminal A cell lines in Chapter 5. The implications of 

altered VGSC  and  subunit expression because of ER knockdown by 

fulvestrant was not studied beyond transcriptional aberrations. However, all VGSC  

subunits have been identified in many solid tumours, and some subunits are 

associated with disease progression and poor patient outcomes (Malcolm et al., 

2023). The different expression of VGSC subunits between MCF-7 and T-47D cells 

further highlights importance of considering cell-type and patient heterogeneity. If 
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VGSCs identified to be regulated at the mRNA level by ER are subsequently 

translated and trafficked to plasma membranes where they are functional, a sub-

population of patients with Luminal A breast tumours may significantly benefit from 

pharmacological inhibition of active  subunits. Many VGSC inhibitors are routinely 

used to treat a variety of channelopathies. As such, repurposing such drugs could 

save a significant amount of money and importantly time in developing new 

treatment strategies, and provide a population of breast cancer patients most at risk 

of adverse outcomes with better survival opportunities (Fairhurst et al., 2015, 2016, 

2023).  

 

More aggressive breast tumours are significantly associated with hypoxic 

signatures (Vaupel et al., 2007; Shamis et al., 2022). In endocrine resistant breast 

cancer, hypoxia induces proteasomal degradation of ER and gene silencing of 

ESR1 by promoting hypermethylation of this promoter (Stoner et al., 2002; Ryu et 

al., 2011; Wolff et al., 2017). In such cases of advanced disease, additional 

therapeutics are desperately needed to overcome treatment resistance and improve 

patient survival. Therefore, results from Chapter 5 aim to ultimately expand 

treatment options for women with breast cancer who are no longer responsive to 

conventional anti-oestrogen or chemotherapies. In the case of hypoxia-driven Na+ 

transport aberrations, methods of delivering cardiac glycosides to patient tumours 

overexpressing NKA -subunit may be of significant therapeutic benefit. For many 

solid tumours and haematological malignancies, NKA has been proposed as an 

attractive therapeutic target, particularly governed by selective expression of 

alternative  and  subunit isoforms which are seldom expressed in normal tissues 

(Sakai et al., 2004; Lefranc and Kiss, 2008; Mijatovic et al., 2008; Mathieu et al., 

2009; Schneider et al., 2024). Consequently, NKA-inhibiting agents such as bufalin, 

or ouabain with berbamine significantly inhibit tumorigenesis (Yang et al., 2021b; 

Soumoy et al., 2024). To fully understand the therapeutic potential of targeting NKA 

in advanced hypoxic breast tumours, NKA expression needs to be further 

characterised beyond elevated transcription in hypoxic breast cancer cell lines 

discussed in Chapter 5. Analysis of protein expression and cellular localisation of 

NKA is necessary, along with assessment of the pump activity. Corresponding 

effects of NKA expression and activity on cell growth, proliferation, invasion and 

migration should be explored in vitro and in vivo.  Importantly, hypoxia has been 

significantly linked to endocytosis and proteasomal degradation of NKA, further 
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highlighting the critical need for characterising NKA expression at the protein level 

both in normoxia and in hypoxia (Dada et al., 2003; Gusarova et al., 2009).  

 

ENaC subunits were also identified to be significantly elevated at the 

mRNA level in hypoxic breast cancer cell lines. Similarly, protein expression and 

functional characterisation of ENaC in breast cancer should be further explored in 

vitro and in vivo. Interestingly, amplification of -ENaC and -ENaC in patient breast 

tumours is associated with improved disease outcomes and seems to be mutually 

exclusive to amplification events of -ENaC and -NKA. Studying downstream 

effects of :-ENaC may identify novel anti-tumorigenic molecules that could be 

targeted pharmacologically to improve survival for patients who do not exhibit :-

ENaC amplification. For example, ENaC has been shown to be crucial for mediating 

Na+ / Ca2+ exchange through NCX, with significant effects on downstream Ca2+ 

signalling pathways involved in inflammation (Chen et al., 2023b). As such, ENaC 

expression in breast tumours may impose improved survival advantages by 

regulating activity of other ion channels or affecting ion-mediated signalling 

cascades. Where VGSC, ENaC and NKA are concerned, corresponding effects of 

Na+ channel activity on [Na+]i and pHe should be explored using an SBFI AM assay 

and a Seahorse analyser, respectively. Such studies would provide insight into 

important physiological changes occurring because of aberrant Na+ transport, and 

further determine NKA function. Additionally, measurement of [Na+]i and pHe could 

distinguish potentially beneficial Na+
 currents carried by :-ENaC versus potentially 

pathological Na+ currents carried by VGSCs or ::-ENaC.  

 

6.4 Conclusion  

  

This thesis aimed to investigate ER-Poll III transcriptome, delineate the 

mechanism by which ER is recruited to such targets and understand how ER 

mediates changes in tRNA expression in response to hormone. Significant evidence 

from Chapter 3 shows ER is specifically targeted to tRNA through a protein-protein 

interaction with Pol III transcription factors, both in vitro and in vivo, where it may 

elicit immediate transcriptional responses following hormone activation. 

Interestingly, FOXA1 appears to be recruited to some Pol III promoters secondary to 

ER recruitment. To date, no such studies exploring ER regulation of Pol III-

transcribed genes has been carried out to such an extent. Additionally, work in this 

thesis was set up to explore alterations in Na+ transport because of low O2 
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availability, or reduction in ER abundance. Importantly, RPLP1 and RPL27 were 

identified as stably expressed RGs in Chapter 4, allowing accurate determination of 

gene expression changes in hypoxic breast cancer cell lines by RT-qPCR. In 

Chapter 5, hypoxia was shown to significantly affect Na+ transport in breast cancer 

cell lines by preferentially upregulating NKA and ENaC. Amplification of the NKA 

catalytic  subunit is associated with a poor overall survival for patients with breast 

cancer, whereas amplification of some ENaC subunits is correlated with a more 

favourable outcome. Together, the findings discussed in this thesis highlight 

potential new mechanisms by which ER and hypoxia contribute to breast cancer 

progression and therapy resistance. As a result, future new breast cancer treatment 

strategies should focus on attenuating Pol III transcription of tRNA in endocrine 

resistant disease, or similarly be directed to inhibiting aberrant NKA activity in 

patient tumours with elevated -subunit expression.  
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Appendix 

 

 

Appendix Figure I Effect of Acute or Chronic Hypoxia on VGSC Subunit mRNA 

Expression in T-47D cells. RT-qPCR of VGSC subunits (a) nSCN5A, (b) SCN8A and (c) 

SCN9A in T-47D breast cancer cells. Cell lines were cultured in normoxia (~20% O2, “0 

hours”), acute hypoxia (1% O2, 8 hours) or chronic hypoxia (1% O2, 48 hours). No 

detectable mRNA was seen for each VGSC gene. 
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Apprendix Figure II. Data Quality of RNA-seq from T-47D Breast Cancer Cells (a) 

EDM of squared distances between each sample from the T-47D RNA-seq. Experimental 

conditions for samples are vehicle and normoxia” (V_N), vehicle and hypoxia (V_H), 

fulvestrant and normoxia (F_N) and fulvestrant and hypoxia (V_H). N = 4. (b) Principal 

component analysis (PCA) plot with a PC1 variance of 51% and a PC2 variance of 31% 

for the 16 T-47D samples. (c) Boxplot of Cook’s distances for outlier detection, calculated 

for each gene within each T-47D sample. 
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Appendix Figure III Transcriptome-Wide Expression Changes in MCF-7 Cells 

Following Different Oxygen and ER Perturbations. Volcano plots of differentially 

expressed genes in MCF-7 cells (a) cultured in normoxia with vehicle vs. hypoxia with 

fulvestrant, (b) cultured in normoxia with fulvestrant vs. hypoxia with fulvestrant, (c) 

normoxia with fulvestrant vs. hypoxia with vehicle or (d) in hypoxia with vehicle or 

fulvestrant. Orange symbols above horizontal dashed line show significant differentially 

expressed genes (padj < 0.05). Orange symbols on the left of the vertical dashed line are 

significantly downregulated (negative Log2FoldChange). Orange symbols on the right of 

the vertical dashed line are significantly upregulated (positive Log2FoldChange). Black 

symbols are genes which were not significantly differentially expressed (padj > 0.05). 

Gene annotations are significant differentially expressed Na+ channel genes with the 

smallest padj. 

 

a Normoxia (ER +) vs. Hypoxia (ER -) Normoxia vs Hypoxia (ER -) b

c Normoxia (ER -) vs. Hypoxia (ER +) ER + vs ER - (Hypoxia) d
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Appendix Figure IV Transcriptome-Wide Expression Changes in T-47D Cells 

Following Different Oxygen and ER Perturbations. Volcano plots of differentially 

expressed genes in T-47D cells (a) cultured in normoxia with vehicle vs. hypoxia with 

fulvestrant, (b) cultured in normoxia with fulvestrant vs. hypoxia with fulvestrant, (c) 

normoxia with fulvestrant vs. hypoxia with vehicle or (d) in hypoxia with vehicle or 

fulvestrant. Orange symbols above horizontal dashed line show significant differentially 

expressed genes (padj < 0.05). Orange symbols on the left of the vertical dashed line are 

significantly downregulated (negative Log2FoldChange). Orange symbols on the right of 

the vertical dashed line are significantly upregulated (positive Log2FoldChange). Black 

symbols are genes which were not significantly differentially expressed (padj > 0.05). 

Gene annotations are significant differentially expressed Na+ channel genes with the 

smallest padj. 

a Normoxia (ER +) vs. Hypoxia (ER -) Normoxia vs Hypoxia (ER -) b

c Normoxia (ER -) vs. Hypoxia (ER +) ER + vs ER - (Hypoxia) d
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Appendix Figure V Heatmaps of Ion Channel Genes with Greatest Significant Log2 

Fold Change in Expression Following 48 Hours of Hypoxic Culture. DGEA of RNA-

seq data showing significant (padj < 0.05) top 25 most upregulated (light to dark orange 

contrast) and bottom 25 most downregulated (light to dark blue contrast) ion channel 

genes according to Log2FC in ER+ normoxic vs. hypoxic (NV vs. HV) (a) MCF-7 and (b) 

T-47D breast cancer cells. Corresponding alterations in ion channel gene expression in; 

normoxia and vehicle vs. normoxia and fulvestrant (NV vs. NF), normoxia and vehicle vs. 

hypoxia and fulvestrant (NV vs. HF), normoxia and fulvestrant vs. hypoxia and fulvestrant 

(NF vs. HF), normoxia and fulvestrant vs. hypoxia and vehicle (NF vs. HV) and hypoxia 

and vehicle vs. hypoxia and fulvestrant (HV vs. HF) is shown. Black arrows indicate up- 

and down-regulated divergence. Grey indicated an ion channel gene that is not 

significantly differentially expressed in the comparison (padj > 0.05). Gene names 

highlighted in red are Na+ channel genes. 
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Appendix Figure VI Heatmaps of Ion Channel Genes with Greatest Significant Log2 

Fold Change in Expression Following ER Knockdown. DGEA of RNA-seq data 

showing significant (padj < 0.05) top 25 most upregulated (light to dark orange contrast) 

and bottom 25 most downregulated (light to dark blue contrast) ion channel genes 

according to Log2FC in ER+ vs. ER− normoxic (NV vs. NF) (a) MCF-7 and (b) T-47D 

breast cancer cells. Corresponding alterations in ion channel gene expression in; 

normoxia and vehicle vs. hypoxia and vehicle (NV vs. HV), normoxia and vehicle vs. 

hypoxia and fulvestrant (NV vs. HF), normoxia and fulvestrant vs. hypoxia and fulvestrant 

(NF vs. HF), normoxia and fulvestrant vs. hypoxia and vehicle (NF vs. HV) and hypoxia 

and vehicle vs. hypoxia and fulvestrant (HV vs. HF) is shown. Black arrows indicate up- 

and down-regulated divergence. Grey indicated an ion channel gene that is not 

significantly differentially expressed in the comparison (padj > 0.05). Gene names 

highlighted in red are Na+ channel genes. 
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Appendix Figure VII GSEA Plot Showing Positive Enrichment of Na+ Transporter 

Genes in ER− Hypoxic vs. Normoxic T-47D Cells. Targeted GSEA identified positive 

enrichment for genes in (a) BPs “sodium ion transmembrane transport” (GO:0035725) 

and (b) “sodium ion transport” (GO:0006814) in ER− T-47D cells cultured in hypoxia 

compared to normoxia. Significantly differentially expressed genes were ranked from most 

positive Log2FC to most negative Log2FC for GSEA. ** padj < 0.01. 
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Appendix Table I Most Upregulated Genes According to Log2FC in Normoxic vs. 

Hypoxic MCF-7 Cells. Gene function descriptions are from UniProtKB (available at 

uniprot.org) or GeneCards (available at genecards.org). 

Gene Symbol Log2FC Padj Function 

CA9 7.75 3.65E-75 
Catalyses interconversion between carbon 
dioxide and water and the dissociated ions of 
carbonic acid 

PTPRN 6.66 2.12E-08 
Important for vesicle-mediated secretory 
processes in hippocampus, pituitary and 
pancreatic islets 

AQP2 6.52 5.79E-08 
Essential for maintaining an osmotic gradient 
in renal collecting ducts by forming a water-
specific channel on the plasma membrane. 

TRNFRSF6B 5.91 2.91E-05 
Proposed to play a role in suppressing FasL- 
and LIGHT-mediated cell death. 

CASP14 5.88 1.23E-51 
Non-apoptotic caspase involved in epidermal 
differentiation. Is the predominant caspase in 
epidermal stratum corneum 

EGR4 5.77 2.86E-26 
Transcriptional regulator that activates target 
genes required for mitogenesis and 
differentiation. 

PPP1R3G 5.68 1.39E-24 
Glycogen-targeting subunit for protein 
phosphatase 1 (PP1). Involved in the 
regulation of hepatic glycogenesis.  

S100A3 5.58 0.00013 
Binds calcium and zinc. May be involved in 
calcium-dependent cuticle cell differentiation, 
hair shaft and hair cuticular barrier formation 

FOSB 5.16 1.32E-237 
Forms part of the AP-1 complex, binding 
promoters containing AP-1 ssequences and 
enhancing transcriptional activity. 

S100A4 4.84 6.34E-152 
Calcium-binding protein involved in motility, 
angiogenesis, cell differentiation, apoptosis, 
and autophagy 

SLC28A1 4.83 3.24E-05 
Na+ and pyrimidine nucleoside symporter that 
imports pyrimidines into cells by coupling 
transport to transmembrane Na+ gradient. 

EGR2 4.81 8.69E-64 
Sequence-specific DNA-binding transcription 
factor involved in hindbrain segmentation by 
regulating homeobox containing genes. 
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Appendix Table II Most Downregulated Genes According to Log2FC in Normoxic vs. 

Hypoxic MCF-7 Cells. Gene function descriptions are from UniProtKB (available at 

uniprot.org) or GeneCards (available at genecards.org). 

Gene Symbol Log2FC Padj Function 

SPDYE2B -4.27 2.00E-05 
 
Predicted to enable kinase binding activity. 
 

GP2 -4.09 0.00051 
Functions as an intestinal M-cell transcytotic 
receptor in the mucosal immune response 
toward type-I-piliated bacteria. 

RPL32P24 -3.66 0.005614 
 
Ribosomal Protein L32 Pseudogene 24. 
 

MYBPH -3.60 0.006257 
Predicted to be a structural constituent of 
muscle, involved in regulation of striated 
muscle contraction.  

THRSP -3.02 0.00193 
Plays a role in the regulation of lipogenesis, 
especially in lactating mammary gland.  

MCTS2 -2.85 0.000465 
Malignant T-cell-amplified sequence 2: 
Imprinted gene expressed from the paternal 
allele in foetal spinal cord. 

AOX1 -2.78 6.81E-23 
Oxidase with broad substrate specificity. 
Probably involved in regulation of ROS 
homeostasis.  

FSIP1 -2.44 8.40E-08 
May play a role in tumorigenesis and invasion 
of breast cancer and is a potential biomarker 
for breast cancer diagnosis or prognosis. 

CYP26B1 -2.30 2.67E-11 
A cytochrome P450 monooxygenase involved 
in the metabolism of retinoates (RAs), the 
active metabolites of vitamin A. 

ACOX2 -2.23 0.002142 
Oxidizes the CoA esters of the bile acid 
intermediates di- and tri-hydroxycholestanoic 
acids. 

ENTREP2 -2.17 0.014111 
Predicted to be an integral component of the 
membrane. 

VXN -2.08 2.48E-06 
Required for neurogenesis in the neural plate 
and retina. Strongly cooperates with neural 
bHLH factors to promote neurogenesis. 
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Appendix Table III Most Upregulated Genes According to Log2FC in Normoxic vs. 

Hypoxic T-47D Cells. Gene function descriptions are from UniProtKB (available at 

uniprot.org) or GeneCards (available at genecards.org). 

Gene Symbol Log2FC Padj Function 

CA9 6.57 5.74E-22 
Catalyses interconversion between carbon 
dioxide and water and the dissociated ions of 
carbonic acid 

PTPRN 5.90 2.72E-07 
Important for vesicle-mediated secretory 
processes in hippocampus, pituitary and 
pancreatic islets 

KRT3 5.73 9.63E-05 
Member of the keratin gene family. Type II 
keratin expressed in corneal epithelium with 
KRT12. 

PPFIA4 5.06 2.23E-38 
May regulate disassembly of focal adhesions. 
May localise phosphatases on plasma 
membrane, regulating interaction with ECM. 

KCNQ2 4.90 0.000429 
Associates with KCNQ3 to form a potassium 
channel important in the regulation of neuronal 
excitability.  

NDRG1 4.80 1.57E-27 
Stress-responsive protein involved in cell 
growth and differentiation. Tumour suppressor 
in many cell types.  

BPIFB2 4.64 0.000471 
A member of the lipid transfer / 
lipopolysaccharide binding protein (LT/LBP) 
gene family. 

EPO 4.56 5.96E-05 
Involved in regulation of erythrocyte 
proliferation and differentiation and 
maintenance of circulating erythrocyte mass 

MAP7D2 4.41 3.25E-20 
Predicted to be involved in microtubule 
cytoskeleton organisation.  

LRRC15 4.20 1.02E-40 
Enables collagen, fibronectin and laminin 
binding activity. Involved in positive regulation 
of cell migration. 

CASP14 4.13 1.95E-22 
Non-apoptotic caspase involved in epidermal 
differentiation. Is the predominant caspase in 
epidermal stratum corneum.  

NRG2 4.04 0.001671 
Direct ligand for ERBB3 and ERBB4 tyrosine 
kinase receptors. May also promote the 
heterodimerization with the EGF receptor. 
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Appendix Table IV Most Downregulated Genes According to Log2FC in Normoxic vs. 

Hypoxic T-47D Cells. Gene function descriptions are from UniProtKB (available at 

uniprot.org) or GeneCards (available at genecards.org). 

Gene Symbol Log2FC Padj Function 

GLYATL3 -2.73 0.000531 
Catalyses conjugation of long-chain fatty acyl-
CoA thioester and glycine to produce long-
chain N-(fatty acyl)glycine. 

RNA5-8SP6 -2.52 0.000274 RNA, 5.8S Ribosomal Pseudogene 6. 

IGKV2OR2-10 -2.34 0.012728 
Immunoglobulin Kappa Variable 2/OR2-10 
Pseudogene. 

OR11H7 -2.09 0.000546 
Olfactory receptors interact with odorant 
molecules in the nose, to initiate a neuronal 
response that triggers perception of smell. 

ASNSP1 -2.06 5.13E-13 Asparagine Synthetase Pseudogene 1. 

SINHCAFP3 -2.03 0.00117 
Family With Sequence Similarity 60 Member 
D, Pseudogene. 

GPR174 -1.98 0.004715 
G-protein-coupled receptor of 
lysophosphatidylserine (LysoPS) that plays 
different roles in immune response. 

GLRA3 -1.98 0.000145 
Glycine receptors are ligand-gated chloride 
channels. Channel opening is triggered by 
extracellular glycine. 

ANKRD30BL -1.80 8.52E-09 Ankyrin Repeat Domain 30B Pseudogene 3. 

POU3F3 -1.78 0.000191 
Encodes a POU-domain containing protein 
that functions as a transcription factor that may 
be involved in nervous system development.  

SP8 -1.77 0.000379 
Transcription factor which positively regulates 
FGF8 expression in apical ectodermal ridge 
and contributes to limb outgrowth in embryos. 

UGT2B11 -1.70 0.017192 
Enables glucuronosyltransferase activity. 
Involved in oestrogen metabolic process and 
xenobiotic glucuronidation. 
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Appendix Table V Most Upregulated Genes According to Log2FC in Vehicle vs. 

Fulvestrant Treated MCF-7 Cells. Gene function descriptions are from UniProtKB 

(available at uniprot.org) or GeneCards (available at genecards.org). 

Gene Symbol Log2FC Padj Function 

AQP10 9.47 3.80E-11 
Water channel that mediates water transport 
across cell membranes irrespective of the 
cytosolic pH. Also permeable to glycerol. 

UBD 8.21 3.53E-08 
Ubiquitin-like protein modifier which can be 
covalently attached to target protein and leads 
to protein degradation by the 26S proteasome. 

SLC4A4 7.91 8.77E-08 
Electrogenic sodium/bicarbonate cotransporter 
with a Na+:HCO3- stoichiometry, May regulate 
bicarbonate influx/efflux and regulate pHi. 

REG4 7.65 2.38E-40 
Calcium-independent lectin. Maintains 
carbohydrate recognition activity in acidic 
environment. 

CNR1 7.37 1.07E-44 
G-protein coupled receptor for endogenous 
cannabinoids.  

ABCA4 7.33 4.97E-09 
Flippase that catalyses transport of retinal-
phosphatidylethanolamine conjugates to 
cytoplasmic leaflet of photoreceptors. 

DHRS3 7.12 0 
Catalyses the reduction of all-trans-retinal to 
all-trans-retinol in the presence of NADPH. 

VSIR 6.98 5.00E-17 
Immunoregulatory receptor which inhibits the 
T-cell response. May promote differentiation of 
embryonic stem cells.  

TMEM238L 6.97 7.00E-09 
May play a role in inducing apoptosis during 
endoplasmic reticulum (ER) stress and in the 
inhibition of proliferation and tumorigenicity. 

ANAPC1P3 6.49 5.06E-05 
Anaphase Promoting Complex Subunit 1 
Pseudogene. 

BPIFA4P 6.39 1.90E-07 
Predicted to enable lipid binding activity and to 
be involved in regulation of liquid surface 
tension. 

GABBR2 6.30 9.84E-15 
Component of G-protein coupled receptor for 
GABA. Signalling activates K+ channels, 
inactivates voltage-dependent Ca2+-channels 
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Appendix Table V Most Downregulated Genes According to Log2FC in Vehicle vs. 

Fulvestrant Treated MCF-7 Cells. Gene function descriptions are from UniProtKB 

(available at uniprot.org) or GeneCards (available at genecards.org). 

Gene Symbol Log2FC Padj Function 

RAMP3 -8.28 6.69E-36 
Plays a role in cardioprotection by reducing 
cardiac hypertrophy and perivascular fibrosis 
in a GPER1-dependent manner. 

AGR3 -7.83 3.44E-109 
Required for Ca2+-mediated regulation of 
ciliary beat frequency in the airway. Might be 
involved in regulation of intracellular Ca2+.  

IGSF1 -7.38 1.78E-38 
Seems to be a coreceptor in inhibin signalling 
but seems not to be a high-affinity inhibin 
receptor.  

FAM72C -7.36 6.37E-06 
Novel neuronal progenitor cell protein with 
potential tumorigenic effects. 

ASCL1 -7.31 1.09E-42 
bHLH transcription factor involved in neuronal 
commitment and differentiation of olfactory 
and autonomic neurons. 

VCAN -7.30 9.68E-12 
Chondroitin sulphate proteoglycan of the ECM. 
Involved in cell adhesion, proliferation, 
migration and angiogenesis. 

TMPRSS3 -7.19 3.31E-09 
Probable serine protease. Acts as a 
permissive factor for cochlear hair cell survival 
and activation at the onset of hearing. 

HMGA1P7 -7.03 5.19E-06 High Mobility Group AT-Hook 1 Pseudogene 7 

BFSP2 -7.00 3.86E-11 
Plays a role in maintenance of retinal lens 
optical clarity.  

ARHGAP36 -6.95 2.53E-36 
GTPase activator for the Rho-type GTPases 
by converting them to an inactive GDP-bound 
state. 

SLC16A14 -6.42 1.73E-82 
Proton-linked monocarboxylate transporter. 
May catalyse transport of monocarboxylates 
across the plasma membrane. 

FGFBP2 -6.38 3.03E-07 
Serum protein that is selectively secreted by 
cytotoxic lymphocytes and may be involved in 
cytotoxic lymphocyte-mediated immunity. 
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Appendix Table VII Most Upregulated Genes According to Log2FC in Vehicle vs. 

Fulvestrant Treated T-47D Cells. Gene function descriptions are from UniProtKB (available 

at uniprot.org) or GeneCards (available at genecards.org). 

Gene Symbol Log2FC Padj Function 

SFT2D3 6.855441 0.009904 
May be involved in fusion of retrograde 
transport vesicles derived from an endocytic 
compartment with the Golgi complex. 

LIPF 6.836711 1.67E-06 
Catalyses the hydrolysis of triacylglycerols to 
yield free fatty acids, diacylglycerol, 
monoacylglycerol, and glycerol. 

KRT223P 5.855767 9.23E-12 Keratin 223 Pseudogene  

PLEKHG7 5.113326 1.17E-12 
Predicted to enable guanyl-nucleotide 
exchange factor activity. Predicted to be 
involved in Rho protein signal transduction.  

CCR2 4.711062 5.21E-12 
Functional receptor for CCL2. Mediates 
chemotaxis and migration induction through 
activation of the PI3K cascade. 

GLRA2 4.647974 2.63E-05 
Glycine receptors are ligand-gated chloride 
channels. Contributes to the generation of 
inhibitory postsynaptic currents. 

FPR3 4.485134 1.45E-31 
Low affinity receptor for neutrophils 
chemotactic factors. Binding of FMLP to the 
receptor causes activation of neutrophils. 

MS4A7 4.116863 8.06E-21 
May be involved in signal transduction as a 
component of a multimeric receptor complex. 

ANOS1 4.085046 3.70E-10 
Chemoattractant for foetal olfactory epithelial 
cells. 

NDP 4.083664 2.99E-18 
Activates canonical Wnt signalling pathway 
through FZD4 and LRP5 coreceptor. Plays a 
central role in retinal vascularisation. 

LTF 4.082233 0.000219 
Iron binding transport protein which can bind 
two Fe3+ ions in association with the binding of 
an anion, usually bicarbonate. 

CLCA2 3.958383 2.74E-22 
Plays a role in modulating Cl- current across 
the plasma membrane. May act as a tumour 
suppressor in breast and colorectal cancer. 
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Appendix Table VIII Most Downregulated Genes According to Log2FC in Vehicle vs. 

Fulvestrant Treated T-47D Cells. Gene function descriptions are from UniProtKB (available 

at uniprot.org) or GeneCards (available at genecards.org). 

Gene Symbol Log2FC Padj Function 

FGFBP2 -9.96 3.34E-15 
Serum protein that is selectively secreted by 
cytotoxic lymphocytes and may be involved in 
cytotoxic lymphocyte-mediated immunity. 

SPINK4 -9.33 9.68E-19 
Predicted to be involved in negative regulation 
of endopeptidase activity and response to 
xenobiotic stimulus.  

WARS2P1 -7.24 1.99E-07 
Tryptophanyl TRNA Synthetase 2, 
Mitochondrial Pseudogene. 

GATA4 -6.40 1.21E-19 
Transcriptional activator that plays a key role 
in cardiac development and function. 

DOK7 -6.12 2.24E-91 
Probable muscle-intrinsic activator of MUSK 
that plays an essential role in neuromuscular 
synaptogenesis.  

ACOX2 -5.92 2.43E-51 
Oxidizes the CoA esters of the bile acid 
intermediates di- and tri-hydroxycholestanoic 
acids. 

PDZK1 -5.82 1.47E-206 
Scaffold protein may be involved in 
coordination of regulator processes for ion 
transport and second messenger cascades.  

WSCD2 -5.67 2.55E-06 
Sialate:O-sulfotransferase which catalyzes 8-
O-sulfation at the Sia-glycan level. 

IL20 -5.36 0.00034 
Pro-inflammatory and angiogenic cytokine 
secreted by monocytes and skin keratinocytes 
that plays crucial roles in immune responses. 

AQP4 -5.34 1.35E-05 
Plays an important role in brain water 
homeostasis and is required for normal water 
exchange across the blood brain interface.  

CD34 -5.23 6.90E-36 
Possible adhesion molecule in haematopoiesis 
mediating attachment of stem cells to bone 
marrow ECM or stromal cells. 

SPRY4 -5.16 1.89E-08 
Suppresses the insulin receptor and EGFR-
transduced MAPK signalling pathway. Inhibits 
Ras-independent RAF1 activation. 
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