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Abstract

Physics-Informed Machine Learning (PIML) aims to exploit the benefits of both
physics and data-based modelling approaches; insight, structure and an enhanced
ability to extrapolate are provided through physical knowledge, whilst a data-based
component increases flexibility and allows for the capture of complex relationships
directly from data. For many applications within engineering, our available phys-
ical knowledge might only be sufficient to represent part of a complete systems’
behaviour, while the accompanying use of measured data can help capture variation
due to environment, manufacturing tolerances, or other effects. When working
effectively, PIML models often outperform the individual physics and data-based
models from which they are constructed.

This thesis develops PIML models within the field of structural dynamics, with a
focus toward Structural Health Monitoring (SHM), offshore structures and wave
loading prediction. In harsh environments, including those offshore, conditions are
often difficult to fully characterise with purely physics-based approaches, whilst a
high variability of conditions places large demands on the collection of measured
data. Typically, the predictions of machine learners are only suitable within
the realms of previously observed conditions, requiring extensive, and expensive,
monitoring campaigns. PIML has the potential to address both of these issues.

Amongst the thesis contributions, is the first instance of a physics-informed model
for the prediction of wave loads on a real offshore structure. The widely used
Morison’s Equation, an empirical wave loading solution, is incorporated within
the mean function of an autoregressive form of Gaussian process Regression (GP-
NARX). The model achieved a 29.13% and 5.48% relative reduction in error over
Morison’s Equation and a purely data-based GP-NARX respectively. Enhanced
improvement was seen when extrapolating, where the model was able to rely upon
physical knowledge to overcome a scarcity of measured data.
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Other novel contributions include the design and undertaking of an experiment,
within a laboratory wave tank, to investigate wave loading across a range of
representative ocean state spectra. A monopile structure, representing an offshore
wind turbine, was heavily instrumented with accelerometers, strain gauges, flow
meters, wave gauges and, most importantly, a force collar. The availability of wave
load measurements, even within an experimental setting, are rare, making the
dataset a valuable resource with which to develop and validate models. Within the
thesis, the dataset was used to construct PIML models that relied on only incoming
wave height as a model input, a commonly available variable on many offshore
structures. Aspects of linear wave theory were integrated within a GP-NARX
framework to remove the requirement for access to measured flow conditions close
to a structure. The installation of flow meters in offshore environments is typically
both expensive and challenging.

In the latter stages of the thesis, after a range of PIML models have been developed,
a wider view of PIML is taken. Being a relatively new field, the rules of best practise
of how to develop models for a given scenario (available level of physical knowledge
and measured data) are not yet in place. Relationships between how different
types of physics may be incorporated within a model, the effects of changing model
structure and the capabilities of constructed models are studied and discussed. The
concluding contribution of the thesis is the development of a framework to aid with
how best to integrate a given piece of physical knowledge within a PIML model.
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Chapter 1

Introduction

The construction of engineering models has, until recently, occurred from two
opposing philosophies: physics-based approaches, which use our insight into how
a system behaves to mathematically represent underlying phenomena; and data-
based approaches, opting instead, to infer relationships directly from measured
data. Despite preferences, varying by both research community and application,
there is no singular correct answer as to the ‘right way’ to construct a model.

The use of physical knowledge and machine learning in combination creates models
that aim to exploit the benefits of both physics and data-based approaches. Struc-
ture, insight into a problem and a degree of understanding into model operation
is provided through physics, whilst increased flexibility and an enhanced ability
to model complex relationships, that may not be fully understood, is provided
through a data-based learner.

The work of this thesis applies Physics-Informed Machine Learning (PIML) models
to the field of structural dynamics, with a particular focus towards offshore struc-
tures. The use of PIML for structural dynamics, though growing rapidly, is in its
infancy with a huge potential for benefit within a range of real world engineering
applications. A key goal of this thesis, along with the development of novel model
architectures, is to explore how one might decide how to combine physics and data
most effectively for a given modelling scenario.

This chapter motivates the need for physics-informed machine learning within
structural dynamics applications, and details the contributions and structure of
the thesis.

1



2 1.1 Motivation

1.1 Motivation

Many engineering structures, ranging from offshore wind turbines to aircraft landing
gear, operate in harsh environments, in which accurate representation of dynamic
behaviour and prediction of remaining fatigue life is difficult. In such extreme
environments, physics-based (white-box) models are often unable to fully capture
the complexity of dynamic behaviour. For example, phenomena including movement
of mechanical joints, thermal effects and humidity are difficult to characterise and,
therefore, model and validate in a dynamic context, often leading to the adoption
of large factors of safety at the design stage.

A data-based (black-box) approach aims to provide a more flexible alternative,
where machine learning techniques may be used to characterise relationships
between measured variables directly. The nature of the variables being modelled is
arbitrary and no prior understanding of the physics is required. Although purely
data-based approaches have proven to be effective across a range of predictive tasks
within structural dynamics [1–3], machine learning models are not without their
drawbacks. Black-box models are generally poor at extrapolation, with performance
suffering in conditions outside the scope of provided training data. Overfitting and
the adoption of unnecessarily complex model structures during training can also
be an issue [4, 5].

A physics-informed (grey-box) approach combines physics-based modelling and
data-based learning with the aim of having a flexible model that is informed by
physical insight. A key area of expected improvement concerns extrapolation; it is
hoped that the structured white-box component of the model will assist inference
in areas where training data coverage is low. Improvement of performance outside
the observed training conditions would reduce the current demand for increasingly
large training datasets and associated monitoring efforts.

1.1.1 The balance between physics and data

One may consider the construction of physics-informed machine learning models to
lie on a scale between the extremes of a purely physics-based and purely data-based
models, similar to that shown in Figure 1.1. In the case of complete physical
understanding, a purely physics-based model would be most appropriate whilst zero
knowledge of a process would suggest the implementation of a purely data-driven
learner. The intuitive sliding colour scale from white, through various shades
of grey, to black is a key reason for the author’s preference for the terminology
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‘grey-box’ model. For instance, one could quickly grasp what would be meant be a
‘light grey’ (more reliant on physics) or ‘dark grey’ (more reliant on data) model.

Figure 1.1: Sliding scale of prior knowledge inclusion within physics-
informed machine learning. Examples of prior knowledge are placed in
their approximate place on the scale for visualisation purposes, however,
there will be significant overlap between categories.

External effects such as environmental conditions and weather can change the
dynamic behaviour of a structure and failure to account for this can lead to
increasing model error and misclassification of damage states [6, 7]. Knowledge of
how a structure’s behaviour changes with its environment can be useful to improve
prediction quality within varying environments. Zhang et al. [8] incorporated
the relationship between temperature and longitudinal deflection of a bridge deck
within the mean function of a Gaussian process to improve prediction quality across
varying seasons.

An important, and recurring, theme throughout this thesis is the balance between
physics and data. For any given modelling scenario faced by a user, one can assess
the relative levels of both knowledge and data available. This will determine the
location on the chart shown in Figure 1.2. The amount of knowledge here is
defined as the extent to which a user understands and is able to define a process or
phenomena, ranging from zero (no assumed knowledge), to complete understanding.
An important point to note about the data axis, is that it is not strictly a measure
of the quantity of data available (in terms of gigabytes etc.), it represents the
proportion of possible conditions observed by a model. To highlight this, consider
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the following two examples:

� Case 1: 100 GB of measured data for a structure, all recorded during a
heatwave in the month of July.

� Case 2: 52 GB of measured data for a structure, where each GB was recorded
during a different week of the year.

Although the raw quantity of data for Case 1 is higher, a much wider range of
conditions will be observed for Case 2. Access to seasonal variations will allow
structural behaviour to be captured within a more varied range of environmental
conditions. The author argues that this would place Case 2 at a higher point on
the data axis despite a lower quantity of data.

Figure 1.2: The knowledge vs data axes for a given modelling scenario.
The knowledge scale ranges from zero (e.g. unknown variables) to
complete understanding (e.g. closed form solutions available). The
data scale measures the proportion of total possible conditions that
have been observed by the model [9].

There are many possible ways to construct a grey-box model, an overview for some
of which can be found in [9–12]. Figure 1.3 presents a range of existing grey-box
modelling approaches and highlights an important concept; the type of model
construction affects the balance between physics and data within the model.
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Figure 1.3: Potential Grey-box modelling approaches and their approx-
imate location on a grey-box scale.

The concepts presented in Figure 1.1, Figure 1.2 and Figure 1.3 all represent
important stages of the PIML modelling process. The identification of available
physical knowledge, the relative balance between knowledge and measured data, how
to design a model to reflect this relative balance and considerations of how physics
may be integrated within a given machine learner are all important challenges. An
understanding of the PIML model development process, and how some of these
decisions may be made more easily is an important area of focus for the thesis.

1.2 Structural Health Monitoring

Physics-informed machine learning has shown to be a promising area for research
and has the potential to be applied successfully to a wide range of tasks within
structural dynamics. These may range from full structure response prediction, to
health state estimation, to smaller subtasks such as load quantification. This thesis
hopes to contribute toward the adoption of PIML in structural dynamics, with
a focus on structural health monitoring for offshore structures and wave loading
prediction. The nesting of subfields and contributions of the thesis are summarised
in Figure 1.4.

Structural Health Monitoring (SHM) [13, 14] involves the collection, and utilisa-
tion, of data from a structure to estimate its condition (health-state) and inform
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Figure 1.4: Graphical summary of the thesis contribution: The devel-
opment and application of physics-informed machine learning models
for structural dynamics, with a focus on wave loading prediction and
structural health monitoring for offshore structures.

operational strategies. Outcomes from an SHM system might range from continued
operation, for a healthy structure; to the scheduling of repair work, for a dam-
aged structure; to full decommissioning, for a structure deemed at the end of its
Remaining Useful Life (RUL). A distinguishing feature of SHM is that the data
collected must be used, applied, or acted upon in some way; the installation of a
measurement system and recording of data alone would not qualify as SHM [7].

The objectives for SHM are concisely defined by Rytter’s hierachy [15], which
breaks down the challenge of health-state estimation in to a series of ‘levels’. Each
level builds upon the work of those previous, with the difficulty increasing down
the list. Rytter’s hierachy is summarised as:

1. Detection - Is there any damage present?

2. Localisation - Where is the damage?

3. Assessment - What is the type and severity of the damage?

4. Prognosis - What is the remaining useful life of the structure?

Worden and Dulieu-Barton [16] extended the work of Rytter, splitting the assess-
ment level into two steps: classification determined the type of damage present
(e.g. cracks, corrosion, delamination etc.), whereas quantification determined the
severity (e.g. crack length).
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The potential advantages from the successful implementation of an SHM system in
industry are vast and can be broadly considered to fall within two main categories:
humanitarian and economic. The first of these includes the protection of human
lives, which in the author’s opinion, is the most important motivator for SHM
systems. The early identification of structural damage, and repair/decommissioning
of structures where necessary, could help avoid many life-threatening disasters
caused by bridges [17] and aircraft [18, 19]. For structures including oil rigs, a
failure may also have a lasting impact on the surrounding ecosystem [20], further
motivating the need for an SHM system.

Although there will be an upfront cost associated with any SHM system, the
price of which will vary by scale, application and sensor type [21, 22], a successful
implementation aims to repay this with profit. A transition from Time Based
Maintenance (TBM), where repairs and inspections are typically carried out peri-
odically, to maintenance strategies informed by SHM has several potential financial
advantages. Firstly, the quantity of unnecessarily scheduled inspections could be
reduced, leading to large savings in applications such as offshore, where each visit
to a structure is very expensive [23]. The ability of an SHM system to detect
potential damage early and more quickly inspect or repair the damage can also
reduce costs. The earlier a damage source is detected, the less chance the damage
has to worsen (e.g. crack growth) before action is taken.

1.2.1 SHM for Offshore structures

Many engineering structures within the North Sea have already exceeded or are close
to their initially specified 20-25 year design lives [24]. The financial incentive for
continued operation of structures, beyond their design lives, brings attention to the
need for accurate prediction of remaining fatigue life. Safety concerns around the
operation of ageing structures are a key priority and confidence within prognosis is,
therefore, paramount. For modern installations, particularly large-scale, expensive
projects, minimising the risk of investment through informed decision-making
[25, 26] is a key driver for SHM.

Offshore engineering structures operate in harsh, highly variable environments, in
which characterisation of the conditions, and how these interact with the structure
is challenging. Variation of weather, temperature, salinity and sea state place a
significant strain on the required amount of data to be collected. For the occurrence
of events including storms and freak waves [27], having measured data for a similar
such event becomes increasingly unlikely. The ability of purely data-based models
to predict on unseen data therefore becomes a key area of concern, and an important
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area for PIML models to aim to improve.

An important factor impacting the nature of offshore SHM implementation is the
type of structure being monitored; a distinction may be drawn between offshore
wind turbines, and oil and gas platforms [28]. A key difference to highlight is the
type of loading experienced: for a wind turbine, large aerodynamic loads due to
wind and operational loads due to the rotating blades are major considerations. For
an oil or gas platform, the priorities are instead focussed on large static loads, due
to the weight of platform decks, and dynamic loading due to waves [29]. Although
wave loading occurs on all offshore structures, its importance is typically higher
for oil and gas platforms, and a secondary factor to wind loads for offshore wind
turbines.

Within research communities, the study of Computational Fluid Dynamics (CFD)
has dominated the quantification of wave loading forces [30, 31]. Within industrial
applications however, the high computational resource requirements of CFD and
difficulty of model validation for structures in complex environments, has led to a
preference, in some industries at least, for more simplistic empirical methods. A
common example of one such method is Morison’s Equation [32], which offers an
empirical solution for wave loading with minimal computational resources.

1.2.2 Wave loading prediction

The cyclic loading of an offshore structure due the motion of waves is a driving
factor of fatigue and therefore has a significant impact of the useful remaining life of
the structure. The quantification of wave loading, through either measurement or
prediction, presents its own set of challenges. The direct measurement of wave loads
acting on offshore structures is rare, and where attempted, it often requires the
development and installation of bespoke systems. Even when measurements may
be available, these are generally at point locations and do not provide access to a
distributed load over the structure. The prediction of wave loads across a structure,
using data readily available from other sensors has the potential to provide access
to wave loads where they can not be measured and reduce the cost of implementing
additional measurement equipment. This thesis will focus on the utilisation of
sensor data commonly available on offshore structures, including incoming wave
height, often measured using wave radars [33, 34].

The modelling of waves and prediction of wave loads acting on structures is
challenging and forms an extensive field of research [35, 36]. The harsh offshore
environments, highly variable conditions and complexity of phenomena such as
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vortex shedding and breaking waves makes the validation of physics-based models
difficult. Attempts to represent the underlying physics have lead to the development
of Computational Fluid Dynamics (CFD) models which have been shown to be
effective in a range of wave loading prediction tasks [31, 37, 38]. A key challenge
facing physics-based approaches, including CFD, is that as the complexity of the
phenomena being captured grows, so too does the required model fidelity. For a case
such as breaking wave dynamics [39], the resulting CFD model is computationally
expensive and requires extensive resources (time, money and technical expertise)
to validate.

An ability to model processes without complete understanding of the underlying
physics has been a key driver of the development of data-based models. Here the
relationship between variables may be learned directly, without prior knowledge of
how a process may behave. Within the field of wave loading quantification, Neural
Networks [40], Gaussian process NARX models [41] and Bayesian Regression [42]
have shown to be helpful tools for capturing the non-trivial relationship between
flow conditions and wave force. Although effective when operating within the
realm of previously observed conditions, a tendency to extrapolate poorly, often
exhibiting unexpected behaviours, and a lack of insight in to how a model operates
has posed an obstacle to their adoption within an industrial setting.

Within industrial applications, empirical solutions including Morison’s Equation
[32] are often popular; they offer a computationally inexpensive means of achieving
approximate wave loading solutions. They have been shown to be effective within
a variety of applications including wind turbines [43, 44] and Spar platforms [45].
Although the limitations of such methods are understood (e.g. Morison’s Equation
valid for unidirectional waves [46]), they have been widely implemented for many
years, and as such provide a degree of trust within model operation when used
within appropriate conditions. An increasing concern, threatening a continued
reliance on existing empirical methods is the growth of modern offshore wind
turbine sizes. From 2010 to 2023, the average rotor diameter of a newly installed
offshore wind turbine more than doubled, increasing from 126m to 280m [47]. As
turbines, and their towers, grow, a necessary assumption of slender structural
members becomes less valid and the results of empirical models less accurate.

At the outset of this thesis, the adoption of PIML within SHM applications was
very rare, with purely data-based methods dominant within the previous decade
of literature. For offshore structures, and the field of wave loading prediction
specifically, the author was unaware of any existing PIML approaches. This
presented a key area of novelty in which to make research contributions.
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1.3 Contribution of this thesis

There are two aims of this thesis:

1. To develop novel grey-box models for structural dynamics that combine
physics and data-based learning with the intention to exploit the benefits
of either approach used independently.

2. To explore and formulate the relationship between the type of prior
physical knowledge possessed by a user and how best to incorporate it
within a model.

The first aim will be the initial focus of the thesis, forming a building block from
which to tackle the second. A range of models, developed throughout the thesis
and applied to relevant tasks within structural dynamics are used to study what
types of model are most appropriate for a given modelling scenario. A framework
to aid with the selection of model structure will form the concluding chapter of the
thesis.

1.3.1 Outline of the thesis and contribution of each chapter

An outline of the content within the upcoming chapters of the thesis is as follows:

� Chapter 2 presents literature from the field of physics-informed machine
learning and addresses how these methods change the typical workflow of
a purely data-based approach. Current gaps in research fields, in which to
focus PIML model development efforts, are highlighted.

� Chapter 3 provides necessary background theory and the authors interpreta-
tions on Gaussian process regression, the machine learner of choice for this
thesis. Relevant physical topics including linear wave theory and empirical
wave loading prediction are also introduced.

� Chapter 4 details the primary datasets used for model development throughout
the thesis: the Christchurch Bay Tower (CBT) project, a full scale structure in
a real offshore environment, and a monopile wave tank experiment, designed
and carried out by the author at the Laboratory for Verification & Validation
(LVV).
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� Chapter 5 develops the first grey-box model to predict wave loads on an
offshore structure. The widely used Morison’s Equation is incorporated within
a GP-NARX residual model, with a focus placed on improving performance
in extrapolation on the CBT dataset.

� Chapter 6 develops wave loading prediction models that utilise only incoming
wave height as an input, a commonly available measured variable on many
offshore structures. Experimental data are used to validate and include
aspects of linear wave theory within Gaussian process models.

� Chapter 7 focusses on physics-informed kernel design for Gaussian processes.
Circumstances of how one might incorporate partial understanding of a
process are addressed.

� Chapter 8 explores how the method of incorporating prior physical knowledge
within a Gaussian process effects the structure and capabilities of the final
model. A case study using a consistent form of prior knowledge is used to
directly compare results.

� Chapter 9 presents a framework for prior knowledge inclusion within Gaussian
processes. A tool, in the form of a flowchart, aims to help a user decide
how best to incorporate a given piece of prior physical knowledge within a
model. The success of the flowchart outcomes are tested using findings from
throughout the thesis.

� Chapter 10 concludes the thesis and discusses the direction of future work.



Chapter 2

Integrating Physics and Data

This chapter introduces the reader to a range of modelling approaches that com-
bine physical knowledge and machine learning within the literature. Methods are
presented in order of progression through a typical black-box machine learning
pipeline, from the initial definition of a problem to a complete functioning model,
addressing how physics may be incorporated at each stage. The aim is to place
the reader within the shoes of a prospective modeller, whom might wish to imple-
ment such methods, which will be beneficial throughout the thesis. The gaps in
implementation, for which many of the methods includes structural dynamics, are
addressed, and highlighted as areas of focus for the work of the thesis.

2.1 Terminology

The concept of combining physics with data-based learning is known by many names
and is not exclusive to the term ‘grey-box model’ [11, 48], although that will be the
preferred term throughout this thesis. Approaches that combine physics with data-
based learners have been referred to as ‘hybrid models’ [49–51], ‘physics-informed’
[12, 52, 53], ‘physics-guided’ [54, 55], ‘physics-inspired’ [56–59] and ‘semi-physical’
[60, 61] amongst other terms [62–64]. The balance between physics and data within
a model is not necessarily tied to the language used to describe it; for example,
linguistically, one might expect a ‘physics-guided’ model to be more reliant on
physics than one which is ‘physics-inspired’, but this need not be the case. The
terminology used to define a model is primarily dependent on the preferences of

12
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the author, rather than the specific meaning of language used, with a selection of
valid terms possible for equivalent models.

The field of integrating physical knowledge within machine learners has grown
rapidly in recent years and continues to do so. Benefits including a reduced
reliance on data collection, reduced computational demands, increased capability
to extrapolate and providing interpretability into model results are key drivers of
this growth. The return of search results for academic articles and book chapters
containing field relevant terms is shown in Figure 2.1. In the decade 2013-2023
the sum of results returned for all search terms grew by a factor of more than 10.
Although search results are a proxy for the true underlying quantity of relevant
research, their sharp growth highlights the increasing interest.

Figure 2.1: The growth of terms used to describe models combining
physics with machine learning from the year 2000 to 2023. A Scopus®

search was used to count results for academic articles and book chapters
within a given publication window. In each case, terms were searched
with ‘AND’ ‘Machine learning’ to alleviate the impact of search results
that may refer to something unintended e.g. a model of a hybrid vehicle.

This chapter presents an overview of relevant literature, catergorising similar
methods of introducing physics within a machine learner and discussing their effect
on modelling capabilities. More in depth analysis of selected methods, and how
they tension against the models developed in this thesis, is saved for later chapters,
with a focus here on introducing the reader to a variety of key approaches within
the field.
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2.2 A machine learning pipeline

There are a wide array of techniques to integrate physical knowledge within a
machine learner, the ordering and presentation of which can be shown in a variety of
ways. Karniadakis et al. [12] focus on the primary benefits and challenges of physics-
informed machine learning and how specific methods might help potentially tackle
these. Von Reuden et al. [10] separate methods by prior knowledge representation
e.g. algebraic equations, logic relation etc., and explain how each type is most
commonly integrated within a machine learner. Cross et al. [65] look at techniques
specifically within the field of Structural Health Monitoring (SHM) and discuss the
balance between physics and data within model structures. Here, the literature
of physical knowledge integration techniques is presented narratively, as they
would appear through the progression of a typical machine learning pipeline. The
deviations from a black-box approach and at what stage of the modelling process
physical knowledge is introduced will be highlighted. A simplified diagram of a
black-box machine learning pipeline is presented in Figure 2.2. Throughout the
chapter, modifications to this pipeline, caused by the incorporation of physical
knowledge, are highlighted in blue using similar diagrams.

Figure 2.2: Typical black-box machine learning pipeline.

A typical machine learning pipeline1 aims to progress from some defined problem
X → Y , the relationship between a set of inputs X and a target Y , to a model
capable generating predictions y∗ for a new set of inputs x∗. To achieve this, a set
of data [X, Y ] is used to maximise model performance according to a given loss

1References made here to a typical machine learner will most accurately apply to regression
tasks, the primary focus of ML implementation within this thesis.
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(or objective) function, via determination of an optimal set of model parameters
θ̂. These learned parameters may then be used within the model to generate a
prediction y∗ for a new set of inputs x∗. The inclusion of physical knowledge is
possible throughout each stage of this process, which will now be presented along
with appropriate examples from the literature.

2.2.1 Problem focussed knowledge integration

The first stage of a typical machine learning pipeline is the definition of a problem
X → Y , the relationship between a set of inputs X and a target Y to be learned.
Methods focussed on using physical knowledge to assist with the definition of
X → Y are highlighted in Figure 2.3.

Figure 2.3: An overview of problem focussed physical knowledge integ-
ration methods within a typical machine learning pipeline. Informed
input selection and problem simplification can change how the inputs
X and target Y are specified. Residual modelling replaces the target
Y with the residual of a physics-based model δ(X).

Informed input selection

The selection of appropriate inputs is a highly important step of the modelling
process, which if done incorrectly may harm prediction quality with little potential
scope to remedy through further modelling decisions [66, 67]. Within a black-box
pipeline, inputs are selected via a range of means including statistical methods
[68] and information theory [69]. Emphasis is placed on correlation and shared
information with the target, diversifying selected features and minimising the total
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number of selected features [70, 71].

Informed input selection focusses on the use of prior knowledge to aid with the
selection of model inputs, either through accompanying or replacing data-based
methods. Luarte [72] addresses the relative balance of prior knowledge and data for
selecting inputs (relevant wavelengths) for spectroscopy. As experimental conditions
became less favourable, reducing the signal strength of relevant spectra, the reliance
on prior knowledge over data-based input selection methods increased.

A key benefit of informed input selection is model parsimony, the improvement
(or maintaining) of performance whilst minimising the total number of selected
inputs. This leads to more simplistic models, that are more convenient to work
with and easier to interpret [73]. When selecting a reduced number of inputs from
a larger feature set, the use of domain knowledge can help to ensure relevant inputs
aren’t excluded, thereby achieving a higher performance at smaller selected feature
numbers. Des Touches [74] used sparsity-enforcing priors to improve input selection
stability and encourage the selection of expert-determined features within the field
of Chemometrics. Groves [75] used prior knowledge of airline passenger preferences,
such as number of stops on a journey, to limit the potential feature set size for
airline ticket price prediction before model inputs were selected.

The interpretability of model inputs and justification for their selection is important
for inspiring confidence within model results. The distinguishing of correlation vs
causation is important and well understood within modelling [76]. The reliance on
external input of field knowledge promotes confidence within a models’ construction.
Where physical justification of selected inputs can be provided [77], or the decision
process itself made more interpretable [78], further confidence within the model
can be achieved.

Problem simplification

Problem simplification blurs the line between physics-informed machine learning
and machine learning best practise. Here, the term defines the use of expertise
or physical understanding to simplify a problem before it is passed to a machine
learner, the aim being to achieve an improved performance on the easier task.
Within the field of fluid mechanics for example, a high importance is placed on
the understanding and definition of a problem, with attempts to simplify being
common before any data is presented to a machine learner [53, 79]. A common
form of this is dimension reduction and the treatment of 1D flows [80].

Residual modelling

Residual modelling replaces the target Y of the machine learner with the residual
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of a physics-based model δ(X) = y(X) − fphy(X), often referred to as model
discrepancy [81–83]. This produces model predictions of the form:

y∗(X) = fphy(X)︸ ︷︷ ︸
Physical model

+ δ(X)︸ ︷︷ ︸
Machine learner

+ ϵ︸︷︷︸
Noise

(2.1)

The field of residual modelling acknowledges that physical models, even high fidelity
FE and CFD models, are not able to fully capture a process. The role of the machine
learner here is to capture phenomena not represented within the physical model,
for example the friction of bearings within a swinging pendulum [84] or changing
hydro-mechanical behaviours of soil due to internal erosion [85]. The nature of
residual model structures does not place a requirement for any particular type of
machine learner, with the most appropriate choice dependent on the modelling
problem. For example Chen [86] uses a selection of nonlinear AutoRegressive (AR)
techniques to capture the residuals of numerical wind models, with AR models being
well suited to capturing the non-stationarity of wind speeds [87, 88]. Sirignano [89]
used a Deep Neural Network (DNN), primarily due to its highly flexible modelling
capabilities, in combination with reduced order Partial Differential Equations
(PDEs) for large-eddy simulation of turbulence. The DNN had two roles here; to
capture phenomena such as the complexities of turbulence about which little is
known and to model phenomena more efficiently than computationally expensive
available physical modelling techniques.

Utilising Gaussian Processes (GPs) to model residuals presents a promising frame-
work with residual-based GPs offering a range of potential advantages: being a
Bayesian technique they provide a quantification of uncertainty when estimating
missing physics and the use of flexible kernels allows the modelling of phenomena
about which little may be understood. The similarities shared between residual
models and incorporation of physics within the GP mean function is an interesting
research area, with discussion of this presented in Chapter 4. GP residual models
are used within a large range of applications including modal identification of
bridges [90], damage detection of multi-storey structures [83], liquid production
rates of wells [91], molecular interactions [92] and spatial prediction of salinity
curves [93].

Xing [94] extends the idea of residual modelling via introduction of a sum of GPs
(termed ResGP), where the role of each individual GP is the capture the difference
of successive increasing model fidelities. The advantage of this model structure is
that training data from lower fidelity models can be used to train the early GP
components of the sum to reduce reliance on higher fidelity models, improving
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performance where high fidelity training data may be sparse. This is particularly
helpful in cases of more computationally expensive high fidelity models. The key
challenge of ResGP is that access to a range of increasing model fidelities is not
always available, and when it is, the validation efforts of ensuring all the models
used are working as intended are increased.

The development of residual models for wave loading prediction was identified
as an area in which to focus efforts of this thesis. As discussed further in the
upcoming Chapter 3, Morison’s Equation [32] is a widely used empirical solution
for the approximation of wave loads, and is known to simplify the true interaction
between a structure and fluid. To overcome this, the development of extensions
and corrections to Morison’s Equation, to improve its capabilities, presents its own
niche research field [95–99]. As yet, the nature of these extensions has primarily
been the further inclusion of empirical terms, with the use of a machine learner
to perform an equivalent role unexplored. Efforts of the author into this area are
presented in Chapter 5 and published in [100].

2.2.2 Data focussed knowledge integration

Upon the definition of a problem X → Y , machine learners will require data for
use during their training. Methods focusing on the generation and modification of
data before it is passed to the machine learner are outlined in Figure 2.4.

Figure 2.4: Data focussed integration of physical knowledge within
a typical machine learning pipeline. Emulators use physical models
to generate training data [X,Y ]. Input augmentation uses physical
knowledge to generate additional inputs f(X) for a model.



2.2 A machine learning pipeline 19

Emulation

The availability of suitable training data is a key challenge for the development of
machine learning models. In many cases it is not possible to measure the breadth
of conditions required to adequately train a model. The high variability of real
world environments, the rarity of conditions such as freak events [101] and expense
of collecting large amounts of data are key drivers for the use of physically derived
models and simulations. The field of emulation involves the use of physical models
to generate training data for use within a machine learning model, with the machine
learner then aiming to replicate the predictions of the physical model [102].

A key driver for the development of emulators is to achieve equivalent prediction
quality of physical models at a fraction of the computational cost. This is of
particular benefit within the fields such as Computational Fluid Dynamics (CFD)
[103, 104] and Finite Element (FE) modelling [105–107], where expensive computa-
tional costs and long runtimes discourage running many simulations. Overcoming
computational expense makes emulators useful within a variety of fields from
infectious diseases [108] to the formation of galaxies [109].

A popular application for emulators is Sensitivity Analysis (SA) [110], which aims
to determine how the output of a model varies with respect to changing inputs or
parameters. Typically, SA will require a large number of model evaluations, resulting
in high computational demands for expensive models. Using an emulator can greatly
reduce this cost. SA is particularly important in applications where slight changes
in input have the potential for large changes in output; this includes the modelling
of natural disasters such as landslides [111] and Tsunamis [112], and environmental
modelling [113]. The Gaussian Emulation Machine for Sensitivity Analysis (GEM-
SA) [114] is a tool developed by Kennedy and Petropoulos, leveraging the flexibility
of GP regression, to enable SA within a variety of applications.

There are many instances where a particular region of training data is known to be
difficult to attain and the use of a physical model can be used to supplement existing
measured data to train a data-based model. Omigbodun [115] used computational
models of lung cancer to supplement measured patient data. The availability of
healthy lung data is more widely available within a clinical setting, as of course
would be hoped for, and therefore a focus is placed on the capability of models to
generate additional data for cancer-positive patients.
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Input augmentation

The use of physical knowledge to transform inputs before they are passed to a
machine learner is useful to both replace and use alongside (augment) existing
measured data. The work of Lindskog and Ljung [60] focussed of the transformation
of black-box model inputs through physical insight. The aim here is to reduce the
complexity of the relationship that must be learned by the black-box component,
such that the chances of a superior model fit are maximised. An advantage of this
approach is that standard black-box model structures need not be modified, only
their inputs. This approach was used by Sohlberg [116] to achieve increased power
generation and reduced water level variation at a hydroelectric power station. They
used knowledge of river flow physics and turbine flow-power curves to transform
the measured inputs of the model to an estimate of turbine flow.

Alongside potential benefits in performance, transformed additional inputs may
offer a degree of interpretability in to a model that was not previously offered if
the input has some physical meaning. Fuentes [117] approximated the dynamic
pressure acting on an aircraft wing, which provides a measure of kinetic energy
within a fluid, as an input for in-flight strain predictions. Rogers [118] used a
physical approximation of the current water height within a series of cascaded
tanks as an additional model input for estimation of water level in the lower tank.
Here, the additional input provided a secondary estimation of the model target
which could be compared with the final model prediction.

Brahma [119] focussed on physical transformations of inputs to reframe extrapola-
tion tasks as ones of interpolation. Where prediction tasks may originally lie outside
the extreme limits of observed data (i.e. extrapolation), within a transformed input
space this is not necessarily the case. For the prediction of diesel engine emissions,
extrapolation tasks in the original input space, e.g. cases of high fuel mass injection,
were reframed as interpolation tasks in terms of transformed inputs, including Peak
Mean Effective Pressure (PMEP) and Fuel-Oxygen Ratio, leading to increased
model performance. Although effective in the cases shown, a consideration here is
that through input space transformation, the reverse case would also be possible,
with a transition from an interpolation to an extrapolation task occurring.

The development of novel input augmentation methods may stem from a number
of possible avenues: the input variable itself may be new, the method by which an
input is generated may be new, or specific advantages may be achieved through the
generation of particular inputs (e.g. performance, reduced reliance on measurement
equipment). For the work of this thesis, the development of input augmentation
methods for offshore structures was identified as a key area of potential benefit. Its
application to wave loading prediction is explored is Chapters 5 and 6.
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2.2.3 Training focussed knowledge integration

The training process involves the determination of an optimal set of parameters (or
hyperparameters) θ̂ for a selected model. These are obtained via treatment as an
optimisation problem, with the performance according to a specified loss function
maximised for a given set of training data [X, Y ]. Methods integrating physics
within the training of models are summarised in Figure 2.5.

Figure 2.5: Training focussed integration of physical knowledge within a
typical machine learning pipeline. Physics-informed loss functions typ-
ically include a term LPhy(θ) used to encourage optimisers to converge
towards physically desirable solutions. Physics-informed optimisers use
physical knowledge to improve optimisation stability and encourage
faster convergence for a given task.

Physics-informed loss functions

The loss function provides a measure of model performance and, when minimised,
determines the optimum set of parameters for use within a given model. There are
a variety of common themes for terms within loss functions including: encouraging
mean model fit, maximising likelihood and penalising model complexity [120, 121].
Physics-informed loss functions are used to encourage a model to converge towards
a desirable behaviour, constraint, or governing equation, typically via inclusion of
an additional term to reward its presence. This generally leads to a loss function
of the form:

L(θ) = Lfit(θ)︸ ︷︷ ︸
Encourage model fit

+ Lcomplexity(θ)︸ ︷︷ ︸
Penalise complexity

+ Lphy(θ)︸ ︷︷ ︸
Reward physical behaviour

(2.2)
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Physics-informed loss functions are most commonly used in Neural Networks [122–
124], although are possible to use within other types of machine learner [125].
They are used within a range of fields, including, solid mechanics [126], image
classification [127], lake temperature modelling [55] and nonlinear diffusivity [128].

Laubscher [129] further separates the loss function with application to heat transfer
of flow over in-line tubes, introducing specific physical terms such as adherence to
initial and boundary conditions. The relative importance of terms is addressed
through a parameter β, to be tuned by the user, allowing particular aspects of
physics to be weighted more highly if the user is confident of their knowledge.

Physics-informed optimisers

Although less common than modification of the loss function, it is possible to
integrate physical knowledge in to other aspects of the optimisation process. It
is well known that it is not possible for any particular optimiser to outperform
another across all problems [130]. When working with a specific problem however,
it is possible to tune performance, in terms of convergence speed and stability,
through the introduction of physical knowledge. A common example of this is the
use of physics to constrain an optimisation problem and reduce the potential search
space [131, 132]. With application to wind turbines, knowledge of parameters such
as drag coefficients and turbine hub height was used to improve robustness and
power generation in urban environments [133].

Xie [134] used knowledge of the dynamics of a robotic arm, such as number
and connectivity of linkages, in order to speed up optimisation for online model
predictive control. Termed ‘optimistic exploration’, a selection of linear dynamics
models were repeatedly assessed, with poor performance encouraging the switching
of model choice. The role of prior knowledge here was to limit the potential choice
of new models and allow the construction of potential models in least squares form,
allowing for their computation fast enough to perform online control.

The work of Ha [135] focusses on integrating the prior knowledge and intuition of
design engineers within topological feature optimisation. Here a human is included
within the loop and asked to judge the quality of designs after a number of iterations.
Their input comes in the form of selecting Regions of Interest (ROI), where they
believe design changes are most needed for the next set of optimiser iterations.
This allows the temporary reduction of search space and unnecessary additional
calculation. A challenge of this approach, acknowledged by the authors, is that the
identifying of suitable ROI can be difficult, even for experienced design engineers.
The quality of structural performance achieved was also highly tied to identification
of ROI, placing risk on correct decision-making.
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The utilisation of physical knowledge at the training stage of a modelling process
poses a valuable tool within the field of structural dynamics. Generally, research
efforts focussing on the loss function [136–138] are much more common than any
other kind. Although the efforts of this thesis do not focus on the specific devel-
opment of a physics-informed optimiser, consideration of loss functions, bounding
of search spaces and selection of optimiser start points are all influenced by the
author’s knowledge of various prediction tasks during model development. The
development of task-specific optimisers, designed to work well for a given physical
application remains an open and interesting research area in offshore structural
dynamics.

2.2.4 Model focussed knowledge integration

The broadest category of physical knowledge integration within machine learners
presented here is the direct modification of model architectures. These methods
consider approaches that effect how the model itself is constructed, selected or
defined to in someway impose physical understanding. Although highlighted
within the model definition stage of the pipeline in Figure 2.6, the nature of these
methods will also impact both how these models are trained and how they generate
predictions.

Figure 2.6: Methods focussing on the integration of physical knowledge
within the selection or construction of model architectures.

Mean functions

The mean function of a Gaussian process dictates general trends and behaviours
within predictions and can be a useful means to integrate prior knowledge within
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a GP [139]. As earlier mentioned, the use of mean functions overlaps with the
field of residual modelling, with an in depth discussion on this presented in
Chapter 8. A useful property of mean functions is that they are not restricted
to any particular functional form; this makes them popular within a range of
applications. Engineering relevant examples include: crack growth [140, 141], tool
wear [142, 143], estimation of Remaining Useful Life (RUL) [144], bridge response
prediction [8], tracking control of robotic arms [145] and modelling of wind turbine
power curves [146, 147]. The potential for mean functions to assist with predictions
in regions of sparse data coverage, a key area for expected benefit over purely
data-based approaches, is presented in [100] and [107].

For the fields of offshore SHM and wave loading prediction, the potential advantages
of GPs with physics-based mean functions are yet to be explored. Also considering
the reasons highlighted in the earlier discussion of residual modelling, the incor-
poration of physical knowledge in GP mean functions is therefore an area of focus
for the thesis. The work of Chapter 5 includes the development of models with
physics-informed mean functions for wave loading prediction. The capability of
models to extrapolate, a key expected benefit, forms a specific study.

Kernel design

The covariance function (kernel) of a Gaussian process is responsible for the family
of functions from which predictions may be drawn, with commonly used kernels
enforcing properties such as smoothly varying functions, periodicity and localised
behaviours [139, 148]. Through careful design of the kernel, it is possible to mimic
physically desirable behaviours within drawn functions; such examples include
the representation of a physical process [149, 150] or the enforcement of axial and
rotational symmetries [151–154]. Being more restricted in their construction, having
to satisfy several constraints, the design of kernels presents a more challenging
means for the embedding of physics within Gaussian processes. A more detailed
discussion on integration of physical knowledge through kernel design is presented
in Chapter 7 with a few key examples shown here.

The work of Duvenaud [155, 156] attempts to tackle the challenge of kernel selection
via automation of the process. A small number of candidate kernels are composed,
through either summation or multiplication, to create more complex customised
kernel structures. To find an appropriate kernel structure with feasible computation
effort, the problem was framed as a greedy search where only the next best kernel,
and how it should be composed, is considered. Even with this consideration however,
the compuatational demands are high, with the potential number of candidate
models growing very rapidly with search tree depth. Building on this work,
Duvenaud [156] and Lloyd [157] improve the interpretability of models through the
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generation of natural language descriptions alongside selected kernel components.
For example, a kernel structure of KSE ×KPer (a Squared Exponential multiplied
by a periodic kernel) would generate the accompanying description ‘A periodic
function whose shape changes smoothly ’. Although less helpful for experienced
users of GPs who might infer similar descriptions from the mathematical expression
themselves, these automatic interpretations are particularly useful for users less
familiar with the behaviours present within common kernels, providing a concise
way to interpret the model that may be understood by a layperson.

Alvarez [158] introduced the Latent Force Model (LFM), which derives a GP
kernel from a second-order Ordinary Differential Equation (ODE) for a dynamical
system. The LFM models the response of the system as a finite combination of
latent functions (unknown input forces) convolved with Green’s functions (impulse
response functions). The unknown input forces are modelled as GPs in time,
and since they are transformed via a linear operator, the response of the system
is also a valid GP. This allows important aspects of the systems physics to be
directly encoded within the kernel, improving extrapolation capabilities of the
model. The major challenge of the LFM comes from the computational expense
of evaluating the cross correlations between the response and output, which are
typically obtained through numerical methods. Research efforts to alleviate this
computational expense have included state space representations of the LFM [159–
162], where the states of the system may be more efficiently estimated through
Kalman filtering [163]. Guarnizo [164] used Random Fourier Features (RFF) to
obtain approximate solutions to the cross covariance terms rather than relying
on more expensive numerical solutions. With application to SHM, Petersen [165]
used a GP-LFM for the estimation of wind loading on the Hardanger Bridge.
Although capable of working with only access to acceleration measurements, the
use of measured wind velocities and wind tunnel test data were used to augment
the GP-LFM, helping to improve performance whilst restricting the growth of
model structure complexity.

The field of physics-informed kernel design spans a large variety of methods, with
many kinds of potential advantages, including increased performance [149, 150],
reduced demand for data collection [151–154] and insight in to model behaviour
[156, 158]. The author argues that there are many more potential ways to design
a kernel than there would be to include knowledge within the inputs or mean
function of a GP. High variability within methods, and a current lack of literature
applied to the field of offshore SHM, make kernel design another region of focus for
the thesis. The work of Chapter 7 explores how one might use kernel structures to
represent partial understanding of a physical system.
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PINNs

Although this thesis focusses on the integration of knowledge within Gaussian
processes, for the capabilities outlined in the theory of Chapter 3, Physics Informed
Neural Networks (PINNs) form a large and varied research area that should not go
unmentioned2. For the interested reader, more detailed overviews of PINNs are
presented in [12, 166, 167], with a brief outline of key themes given here. As with
many of the earlier presented methods, PINNs are a recent and rapidly growing
research field, with the introduction of the term ‘Physics Informed Neural Network ’
widely credited to Raissi [52] in 2019. Raissi used PINNs for two distinct tasks:
the efficient solving of physically derived Partial Differential Equations (PDEs)
and the discovery of new PDEs to explain physical processes e.g. pressure fields
within flow past a cylinder. This was achieved through modification of the loss and
activation functions.

The physical knowledge integrated within PINNs commonly takes the form of
PDEs, with engineering relevant examples including the wave equation [168, 169],
Navier-Stokes equations [170, 171], von Mises elasoplasticity [172] and the Buckley-
Leverett equation [173, 174]. As earlier stated in the section on training focussed
knowledge integration, a common means of including physics in PINNs is through
the loss function, where for a PDE this will generally take the form:

L(θ) = LRes(θ)︸ ︷︷ ︸
PDE residuals

+ LBC(θ)︸ ︷︷ ︸
Boundary conditions

(2.3)

By minimising the PDE residual, the network is encouraged to converge towards
physically meaningful solutions whilst the introduction of a boundary term can be
used to penalise solutions where they may be broken. References [168–174] involve
modification of the loss function similar to this way. An important property of
loss based approaches is that the adherence to physics is rewarded, rather than
enforced, meaning that outside the scope of training data, incorporated physics is
not guaranteed to hold.

Physical Activation Functions (PAFs) provide another means of including physics
in PINNs, via the mimicking of a physical process within the expression of the
activation function, for example, the dynamic behaviour of a harmonic oscillator
[175] or solute transport in porous media [176]. A key distinction between PAFs

2At the outset of the thesis, a narrower scope, focussing on the integration of knowledge within
a consistent type of machine learner was viewed as a more likely direction to generate valuable
contributions.
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and loss based knowledge inclusion is that here the functional form is enforced,
rather than rewarded during training. This is a stricter enforcement of physics,
with the network constrained to functions of the specified form [175]. The design
of PAFs presents a promising, but challenging research area, with the adoption of
loss based approaches currently much more widely used.

State space approaches

State Space (SS) representations of systems provide an effective modelling frame-
work to account for varying levels of prior knowledge of a systems’ behaviour.
Simpler systems, that are typically more well understood, may be suited to the
linear case (the Kalman filter [163]), where solutions are available in closed form.
Non-linear extensions to the Kalman filter [177–179] allow for an increased capabil-
ity to model more complex systems. In cases where a higher degree of flexibility
is desirable, for example the non-linear dynamics of a cart-pole system [180, 181],
Gaussian Process State Space Models (GPSSMs) incorporate a GP to capture some
desired nonlinear aspect of system behaviour, commonly in place of the transition
or measurement matrices [182–184].

Lindsten [185] used a GPSSM to model a Wiener system, where a state space
model was used to capture the behaviour of the underlying linear system and a GP
was used to capture the effects of the static nonlinearity. The model outperformed
standard existing approaches (ADM [186] and PEM [187]) at the expense of higher
computational demands. This was due to the GP evaluation scaling with O(N3)
and the requirement of particle-Gibbs with ancestor sampling to obtain a solution.
Rogers [188] used the same approach to model a known nonlinearity present within
a Duffing oscillator, which was later extended [189] for the case of an unknown
nonlinearity. Here, without any a priori knowledge of the form of the nonlinearity,
the states and parameter estimates of the system along with an estimate of the
nonlinearity were extracted.

For SHM applications, there are a few possible avenues through which novel state
space contributions may be made: the continued development of alternative non-
linear Kalman filter extensions, capable of representing real world structures more
accurately; achieving increased computational efficiency, allowing for utilisation
of datasets from large monitoring campaigns; and the incorporation of physical
knowledge alongside existing state space approaches. The work of this thesis is
primarily centred around the use of ocean state measurements (wave heights, flow
conditions etc.), rather than response measurements from the structure, and as a
result, state space methods are not a major focus. It is still acknowledged as an
area of potential future contributions however.
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Boundary conditions and constrained learners

The inclusion of boundary conditions or constraints within a model represents a
scenario where some aspect of a systems’ behaviour is known for a given condition,
often in the form of a physical law e.g. conservation of energy [190, 191]. The
use of constrained learners is useful to ensure predictions obey known restrictions,
whilst maintaining a degree of model flexibility to capture the specifics of complex
phenomena. With application to SHM, Jones [192] used Neumann boundary
conditions to improve the localisation of acoustic emissions in instances of low
data coverage. Particular improvements were seen in locations further from sensor
locations but close to where constraints were enforced. Mclean [193] used Beta
likelihoods within a GP to constrain wind turbine power curve predictions within
physical limits i.e. below the maximum power rating. This not only improved
performance, but also ensured predictive distributions were physically meaningful,
inspiring a higher degree of trust from operators.

Overlapping with the field of kernel design, Wahlström [194] developed curl and
divergence free kernels for the modelling of magnetic fields, which Jidling [195]
extended to a more general linearly constrained case. The cross covariance terms
within Multiple Output Gaussian Processes (MOGPs) provide a useful way to
integrate known constraints between outputs. Later work of Jidling [196] predicted
strain fields with a MOGP and enforced equilibrium constraints for linearly elastic
materials through manipulation of the cross-covariance terms within the kernel.
Cross [197] introduced pseudo-measurements of cantilever beam boundary condi-
tions along with derivative constraints within the MOGP cross covariance terms.
This constrained the position and slope of the beam to zero at the wall, improving
performance in this region.

The enforcing of symmetries is a popular type of constrained learner, with it being
an effective way to reduce the required amount of data to learn a task. Reviews
of symmetry enforcement within wider ML applications are available in [198] and
[199]. As earlier stated, the use of Gaussian process kernel design is one way in
which symmetries may be enforced [151–154]. Meyer [200] utilises data embeddings
to exploit symmetries that may be more complex, and therefore challenging to
represent. An example of tic-tac-toe game states is presented to introduce methods,
where rotating the board by a multiple of 90◦ or reflecting along an axis will produce
equivalent game states. In this example, the total number of observable game
states, and therefore the effective demand for data, is reduced by a factor of 8.

For contributions to the field of offshore SHM, the constraining of GPs through
the modification of the kernel is an area for potential model development. Though
examples exist for SHM [193, 196, 201] and structural dynamics [197] more generally,
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there are currently far fewer examples for offshore structures. Constraints of sea
bed foundations, principles of fluid mechanics and structural response could all be
potential candidates for inclusion.

2.2.5 Output focussed knowledge integration

Within a black-box pipeline, the output of models is typically a prediction of the
target variable of interest Y . It is possible however to use the outputs of machine
learners alongside, or to assist with, the use of physical knowledge. This presents
a modification to the end of a typical pipeline, with these methods summarised
graphically in Figure 2.7.

Figure 2.7: Output focussed integration of physical knowledge within
a typical machine learning pipeline. Physical transforms of predictions
use knowledge to modify the output of machine learners in some way,
whilst model selection uses the outputs of machine learner to assist
with the selection or discovery of physical model structures.

Physical transforms of machine learning outputs

In some cases, a machine learner may be used to approximate part of a process,
with further modification of the output occurring using physical knowledge to
obtain the parameter of interest. An example of this, sometimes referred to as
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virtual sensing [202–205], is the use of machine learners to estimate parameters
that may be difficult (or impossible) to measure, which are then used as inputs to
physical models. Specific to SHM, Gibson [206] used a GP to predict strain within
an aircraft wing during flight, with samples from the GP posterior then individually
passed through a rainflow count to obtain a distribution of fatigue damage. Using
sample draws from the GP, which inherently contain a larger number of stress
cycles than a GP mean, was found to estimate a larger accrual of fatigue damage.

Putz [207] used knowledge of dependencies between parameters such as aspect ratio,
area and slope when generating input data for microstructure modelling using a
GAN. This ensured generated grains followed physically representative statistical
distributions which is important for accurate definition of metallic microstructures.
In this application, the parameter of interest is not the grains themselves, but the
properties of materials they form, and how they change throughout manufacturing
processes such as casting and welding.

Model selection and discovery

When opting to use a physical model, deciding how to best represent the physical
system is a challenging and important task. For many scenarios, such decisions
will require access to high levels of subject expertise, leading to a high level of cost.
The use of machine learners to assist with how to physically represent a system
is a potential way to alleviate this reliance on experts, or to provide a tool to aid
with their decisions. A popular form of this is the use of a machine learner for the
discovery of physically representative PDEs [52, 208–210]. A key advantage of this
approach is model parsimony, with the discovered PDEs being a simpler, more
interpretable way to represent the problem than directly using the network.

Singh [211] looks at the selection of the most appropriate model form for the
modelling of turbulent flows over airfoils using a neural network. The task is framed
as a selection of inverse problems, representing a series of model discrepancies,
which when solved and combined may be used to reconstruct the full flow. Through
learning of a model form rather than direct prediction of the flow, the model is
able to achieve improved predictions for airfoil predictions not shown to it during
training.

With application to sound synthesis, Gabrielli [212] used a neural network to aid
with the selection of physical model parameters. Here, the structure of the physical
model aimed to mimic a pipe organ, with three main parts: an exciter, to model
the wind jet; a resonator, acting as a wave guide; and a noise model, to simulate
air noise modulated by the wind jet. Determination of suitable parameters was
non-trivial and had a significant effect on properties such as pitch and timbre of
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sounds.

In the field of structural dynamics, the work of Lai [213] developed methods
for the identification of state-space representations of dynamic systems. Termed
physics-informed neural Ordinary Differential Equations (Neural ODEs), two com-
ponents within a hybrid ODE representation are utilised to represent the system:
a physics-based term, encapsulating a users prior knowledge of a system, and a
discrepancy term, offering increased flexibility, captured by a feed-forward neural
network. Through sparse identification, retrieving closed form expressions for terms
represented by the network, an additional level of insight into the ‘known’ and
‘unknown’ parts of system behaviour could be gained. The isolation of non-linear
effects was identified as a promising avenue for progression.

2.3 Grey-box models for structural dynamics

This chapter has explored a range of ways in which to incorporate prior knowledge
within a machine learner and discussed how methods introduce differences in
methodology at each stage of a typical black-box modelling pipeline. Examples
from the literature covered a variety of applications from heat transfer [129], to
galaxy formation [109], to the modelling of magnetic fields [214]. The novelty of
this thesis comes from the development and application of grey-box models to
the field of structural dynamics, where the integration of physics within machine
learners is currently much rarer. A specific focus is placed on the wave loading of
offshore structures, a field where the benefits of physics-informed machine learning
have yet to be exploited.

Throughout this chapter, the research gaps specific to PIML methodogies were
highlighted as areas in which to focus efforts of model development. Where possible,
avenues through which potential contributions might be made were identified
(e.g. generation of new input variables, non-linear Kalman filter extensions etc.).
Although not possible to tackle all identified areas of novelty, the categorising of
PIML methods was very helpful for guiding the efforts of the thesis. As seen within
the thesis outline of Chapter 1 and upcoming GP theory of Chapter 3, many of the
PIML models developed aim to target a specific gap in a particular research field.



Chapter 3

Background Theory and
Interpretation

This thesis focusses on the integration of data-based and physics-based methods
within structural dynamics applications, with the aim of this chapter to provide
an overview of key theory relevant to each. First, Gaussian process models, the
machine learning technique of preference used throughout later work, are introduced
with a focus placed on the interpretation of model components and important
behaviours exhibited during their use. With the wave loading of offshore structures
a reoccurring application, a chosen selection of key topics from a physics-based
perspective are then presented, namely: linear wave theory, the representation of
sea states and empirical wave loading prediction.

3.1 Gaussian processes

This section aims to introduce Gaussian process models, explain important aspects
of how they operate and motivate their use within engineering regression tasks.
Although there are many ways to interpret a Gaussian Process (GP), the most
intuitive of which will vary by reader, only the authors favoured interpretation is
presented here. Extensive derivations of GP theory are widely available within the
literature [139, 215, 216], and as such, a focus is instead placed on the interpretation
of key equations and use of illustrated examples.

32
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A family of functions

A Gaussian process (GP) is comprised of a set of random variables, any finite
number of which, share a joint Gaussian distribution. A popular view of a GP is as
a distribution over functions, where each individual draw from the GP represents
a realisation of one of the infinitely many potentially generated functions. A GP,
and the family of functions it may generate, is fully defined by its mean function
and covariance function (kernel). For a real process f(X), a GP is expressed

f(X) ∼ GP(m(X), K(Xi, Xj)) (3.1)

where X is an N ×D matrix; N being the number of datapoints and D being the
dimension of the input space. For a pair of inputs Xi and Xj, the mean function
m(X) and covariance function K(Xi, Xj) are defined

m(X) = E[f(X)] (3.2)

K(Xi, Xj) = E[f(Xi)f(Xj)]− E[f(Xi)]E[f(Xj)] (3.3)

Sampling a function from a GP is equivalent to making a draw from the multivariate
normal distribution N (m(X), K(Xi, Xj)). An example of 20 draws from a GP with
a Squared Exponential (SE) kernel is shown in Figure 3.1. A SE kernel produces
smoothly varying functions and its flexibility makes it a popular choice for many
modelling tasks.

Figure 3.1: 20 prior draws from a GP with a Squared Exponential (SE)
kernel. Coloured lines represent individual draws.



34 3.1 Gaussian processes

Conditioning on data

A highly useful property of a GP, particularly for regression tasks, is an ability
to be conditioned on data. Fitting within a Bayesian framework, when a GP is
shown a set of observations (evidence), it is able to update the prior distribution
of functions (beliefs), such that they align more closely with observed data. This
allows information and structure present within datasets to be captured and utilised
by a GP. The term conditioning stems from the use of conditional distributions,
p(A|B), the probability of event A, given that event B has already occurred. In an
engineering regression context, this is often framed as predicting how a system is
likely to behave, given that we have observed some previous behaviour.

To introduce an example of conditioning, following the notation of Rasmussen
[139], consider a noisy process y = f(X)+ ϵ, where measurements y represent noisy
observations of the underlying process f(X). Assuming access to N measured
pairs of inputs and outputs, y will be an N × 1 vector and X will be a N × D
matrix, where D is the dimension of the input space. This represents a typical
scenario of a real world engineering regression task where data might come from a
sensored structure. Commonly referred to as a training set, a set of inputs with
corresponding targets [Xi, yi, i = 1, ..., N ] is used in the conditioning step, to
encode the relationship between X and y. Generally, a prediction is then made on
a test set [X∗i, y∗i, i = 1, ..., N∗], that the GP has not previously seen.

For a prediction y∗ at new set of test points X∗, the covariance matrices for the
training points K(X,X), the test points K(X∗, X∗), training-test points K(X,X∗)
and test-training points K(X∗, X) are required. For predictions based on noisy
observations, with an assumed zero-mean Gaussian noise of variance σ2

n, the problem
may be formulated:[

y
y∗

]
∼ N

([
m(X)
m(X∗)

]
,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
(3.4)

Within a machine learning context, the conditional distribution of the test target
y∗, given the test inputs X∗, observed training inputs X and training targets y is
of key interest. This is often referred to as the posterior or predictive distribution.

p(y∗|X∗, X, y) = N (E[f(X∗)], V[f(X∗)] + σ2
nI) (3.5)
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where the predictive mean E[f(X∗)] and variance V[f(X∗)] are expressed1:

E[f(X∗)] = m(X∗) +K(X∗, X)(K(X,X) + σ2
nI)−1(y −m(X)) (3.6)

V[f(X∗)] = K(X∗, X∗)−K(X∗, X)(K(X,X) + σ2
nI)−1K(X,X∗) (3.7)

These expressions are among the most important for those interested in using GPs
for regression, and their structure offers insight into the modelling capabilities of a
GP. The predictive mean and variance may be interpreted as follows:

E[f(X∗)] = m(X∗)︸ ︷︷ ︸
Predictive mean follows mean function...

+ K(X∗, X)(K(X,X) + σ2
nI)−1(y −m(X))︸ ︷︷ ︸

...unless observed data suggests otherwise.

(3.8)

V[f(X∗)] = K(X∗, X∗)︸ ︷︷ ︸
A maximum of test set covariance...

− K(X∗, X)(K(X,X) + σ2
nI)−1K(X,X∗)︸ ︷︷ ︸

...with observations shrinking final result.

(3.9)

To observe the effects of conditioning on data, Figure 3.2 shows 20 draws from
the predictive distribution N (E[f(X∗)], V[f(X∗)] + σ2

nI) of a GP conditioned on 3
data points. The same SE kernel was used as the prior draws presented in Figure
3.1. The sampled functions now pass within a noise level σ2

n of observed data.

Considering infinite samples

As earlier stated, a GP represents an infinite set of potentially generated functions,
defined by its mean and covariance functions. While possible to draw and observe
individual functions, what is often of more interest is the entire set of functions as a
whole. However, naively considering increasing numbers of samples quickly becomes
infeasible, both in terms of practicality and computation. A more convenient means
of handling, is through the use of the predictive mean and confidence intervals. For

1Many readers may be most familiar with a zero prior mean GP. Here the predictive mean
reduces to E[f(X∗)] = K(X∗, X)(K(X,X) + σ2

nI)−1y
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Figure 3.2: 20 draws from the predictive distribution of GP with a
squared exponential kernel, conditioned on three observed data points.
Coloured lines represent individual draws, with observations as black
circles.

a prediction with a set of inputs X∗, a 3σ interval is calculated:

±3σ = ±3
√

diag(V[f(X∗)]) + σ2
nI (3.10)

A confidence interval provides information about a region through which a desired
fraction of functions pass and provides a useful method of visualising a GP. Increas-
ing numbers of draws from the same predictive distribution, along with a plot of
the predictive mean and confidence intervals is shown in Figure 3.3. All plots are
produced from a GP with a SE kernel, conditioned on the same three data points.

Learning from data

One of the most attractive, but computationally intensive properties of a GP
is an ability to encode information present within datasets. This is particularly
helpful when phenomena present within data are not fully understood e.g. response
of composite structures, bolted joints or extreme weather conditions. Although
both are closely involved, it is important to distinguish between conditioning and
training in this context:

Conditioning : The calculation of the conditional distribution
p(y∗|X∗, X, y); the probability of an output for a new set of inputs, given
that a set of data has already been observed.
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Figure 3.3: Draws from the predictive distribution of GP with a squared
exponential kernel, conditioned on 3 observed data points. Increasing
numbers of draws are plotted: (a) 10, (b) 30, (c) 50, with the predictive
mean and confidence intervals shown in (d). Coloured lines represent
individual draws, with observations as black circles.

Training : The optimisation of hyperparameters within the GP for a given set
of training data. A selected cost function is minimised in order to maximise
performance on the observed data.

Although referred to as non-parametric models, in that model complexity is not
constrained by a fixed number of parameters, a GP still requires the determination
of hyperparameters. Hyperparameters control the behaviours of functions generated
by a GP and their effect will vary depending on the selected kernel. Here a squared
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exponential (SE) kernel is considered.

KSE(Xi, Xj) = σ2
f exp

(
−1

2
(Xi −Xj)

TΛ−1(Xi −Xj)

)
(3.11)

where σ2
f is the signal variance, dictating the magnitude of generated functions,

and Λ is the matrix of length scales such that diag(Λ) = [l21, l
2
2, ..., l

2
D] for a D

dimensional input. The lengthscale(s) within a SE kernel controls the distance
from which observed data may influence the prediction of a GP and the ‘wiggliness’
of generated functions. Short length scales allow more sudden changes of direction,
but will cause predictions to quickly return to their prior when moving away from
observations. Long length scales will produce slowly varying functions that return
to their prior very gradually when moving away from observations. Subplots
highlighting the effects of varying hyperparameters within a SE kernel are shown
in Figure 3.4.

The kernel hyperparameters, along with a noise variance σ2
n are use to construct a

vector θ, to be passed as an argument to an optimiser. For a SE kernel with D = 1:

θ = {σ2
f , l

2, σ2
n} (3.12)

These parameters are typically optimised over the Negative Log Marginal Likelihood
(NLML) of model predictions on a training set:

− log p(y|X, θ) =
1

2
yT (K + σ2I)−1y +−1

2
log |K + σ2I|+ n

2
log(2π) (3.13)

The predictions of models trained on increasing numbers of data points are shown in
Figure 3.5. The model trained on only five data points (a), exhibits behaviours of a
model with a long lengthscale and does a poor job of capturing the true underlying
function. Any machine learning model, not just GPs, can only be expected to
capture information presented to it during training and an inability here to capture
the complexities of unobserved data is to be expected. As the training data
supplied to the model increases, so too does model performance. The 50 data point
model (c), would represent a scenario of very high data coverage in which data-
based models are known to work well. Within engineering applications however,
while desirable, such high data-coverage levels across all observable conditions
is generally unattainable. Highly variable environments, extreme weather and
changing structural conditions make data coverage a challenging task.
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Figure 3.4: Draws for a GP with a SE kernel highlighting the effects of
varying hyperparameters. The signal variance σ2

f controls the amplitude

of generated functions, whilst the lengthscale l2 is responsible for how
smoothly a function varies. Shorter lengthscales produce more ‘wiggly’
functions.

Quality as well as quantity

Intuitively, as a GP is presented with an increasing quantity of training data its
ability to capture the complexity of an underlying function increases. However,
another important factor could be described as the quality of data. Here, the
following interpretations are proposed:

Data quantity : The number of data points N supplied to a GP during training.

Data quality : The degree to which the training data supplied to a GP is
helpful in capturing the behaviour of a desired underlying function.

There are many factors that may effect the perceived quality of training data
including noise levels, relevance of measured variables and distribution of data.
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Figure 3.5: Predictions of a GP with a SE kernel with 5 (a), 15 (b)
and 50 (c) training points. Observations are shown as black circles,
with data not shown to the GP during training shown as blue X’s.

The determination of data quality is highly application specific and an important
step within GP model construction. For purposes of highlighting an example, a
variation of data distribution for 20 training points is shown in Figure 3.6.

The distribution of training data has a significant effect on the properties of a
constructed model. Figure 3.6 (a) shows a model trained on evenly spaced points,
where a reasonable capture of the mean behaviour of the function is achieved.
However, due to a lack of closely spaced data points, the noise variance σ2

n is visibly
underestimated. Accurate estimation of the noise will generally require at least
some training data to be close together in the input space. Figure 3.6 (b) shows
a model trained on randomly scattered data points, with an improvement in the
estimation of noise present within the signal due to the presence of closely spaced
training points. However, due to the randomness of data location, regions with
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Figure 3.6: Predictions of GPs with varied distributions of 20 training
data points: (a) Evenly spaced points, (b) Randomly located points
and (c) Consecutive points.

missing training data also cause to the estimation mean function behaviour to
suffer. Figure 3.6 (c) shows a model trained on consecutive data points. The model
performs well, both in terms of mean function behaviour and noise estimation,
within the observed data and poorly outside.

Although limited examples are highlighted here through the use of a toy function,
the phenomena observed are an important consideration when constructing GP
models. The impact of training data quality, which will be specific to the modelling
scenario, on final model performance should be well understood. The conditions in
which a model will perform well, along with expected limitations should be used to
advise how a model may be used most effectively.
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Physical knowledge in Gaussian processes

A running theme throughout this thesis is the incorporation of physical knowledge
within GP models to improve their capabilities, in terms of performance, inter-
pretability, ability to work with restricted data or other benefits. There are many
ways in which this is possible, a few of which are summarised here.

Beginning with a reference case, a black-box model is a term used to refer to when
no prior knowledge is integrated within a machine learner. Typically, for a GP,
this would involve the use of a zero mean function and a flexible kernel, producing
a model of the form:

y ∼ GP(0, K(X,X)) (3.14)

where K(X,X) is a kernel of choice, often a Squared Exponential or Matérn kernel.
Throughout the thesis, black-box models are utilised at a start point from which to
develop PIML model architectures. They also serve as a performance benchmark
with which to compare the results of potential PIML model structures. Generally,
for a successful PIML model, the hope would be to outperform (or provide some
other benefit) over an equivalent black-box case.

Input augmentation uses physical knowledge to generate input(s) for the GP.
This can be of particular help when desired inputs may be difficult or expensive to
measure. Input augmentation has a model structure of:

y ∼ GP(0, K([X, fPhy(X)], [X, fPhy(X)])) (3.15)

where fPhy(X) is an additional input generated using physical knowledge in some
way. The use of input augmentation is explored within the work of Chapters 5
and 6 in the context of wave loading prediction. Aspects of linear wave theory and
Morison’s Equation, detailed in the upcoming Section 3.2, were both utilised to
generate inputs for the GP.

Constrained learners use physical knowledge to restrict how the predictions
of a GP may behave. This can take many forms, from known behaviours under
specific conditions e.g. boundary constraints [196, 197], to the constraining of
predictions between limits [193]. There are multiple avenues through which a GP
may be constrained, including the kernel, the loss function and through the use of
pseudo-measurements. Here, to represent a GP, constrained by physical knowledge
in some way, set notation is used to convey which variable has been constrained:
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� For outputs y, constrained to a physically meaningful subset yPhy

{y ∼ GP(0, K(X,X)) | y ∈ yPhy} (3.16)

� For inputs X, constrained to a physically meaningful subset XPhy

{y ∼ GP(0, K(X,X)) | X ∈ XPhy} (3.17)

� For hyperparameters θ, constrained to a physically meaningful subset θPhy

{y ∼ GP(0, K(X,X)) | θ ∈ θPhy} (3.18)

where the hyperparameters θ control the properties of the kernel K(X,X).

Due to the nature of physical knowledge utilised in the thesis, the development of
constrained learners was not a major focus. Discussions on how to define the types
of prior knowledge possessed by a user, including those used in the thesis, and how
this affects the most appropriate PIML model structure is presented in Chapter 9.

A residual model is one way of incorporating physical knowledge within the
mean function of a GP; it replaces the target of the machine learner with the
residual of a physics-based model δ(X) = y(X) − fPhy(X), often referred to as
model discrepancy [81–83]. Where data coverage for a problem may be sparse,
a residual model is able to rely upon a physical model fPhy(X) to increase the
quality of predictions. A GP residual model is of the form:

y ∼ GP(fPhy(X), K(X,X)) (3.19)

The development of a residual model is presented in Chapter 5, where Morison’s
Equation was used to assist the predictive capabilities of a GP-NARX. Discus-
sions on how the capabilities of residual model structures differ from alternative
approaches is explored in Chapter 8.

Kernel methods look to encode physical knowledge within the covariance function
of a GP. The kernel of a GP determines the nature of functions that may be used
by a GP to make predictions. For a process f(X), the calculation of its covariance
Cov(f(X), f(X)) may be used to enforce physically derived behaviours within the
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kernel:

KPhy(X,X) = Cov(f(X), f(X))

KPhy(X,X) = E[f(X)f(X)]− E[f(X)]E[f(X)]
(3.20)

Used alone in a GP, assuming a zero-mean, a physics-informed kernel would
lead to a model structure of:

y ∼ GP(0, KPhy(X,X)) (3.21)

As later discussed in the thesis, a useful property of physics-informed kernels is their
ability to be combined with other kernels. Circumstances where a user might have
partial physical knowledge of a system and how this can be represented through
the structure of kernels is presented in Chapter 7.

Along with an introduction to GPs, and interpretations of model operation, the
secondary role of this chapter is to provide key background of the types of physical
knowledge utilised in the thesis. In keeping with the theme of offshore structures,
the following section introduces the reader to linear wave theory, the representation
of sea states and empirical methods of wave loading prediction.

3.2 Wave theory, sea states and wave loading

The prediction of wave loading on offshore structures is a critical step within the
accurate estimation of their remaining life and it forms the application for many
physics-informed models developed later in the thesis. Here, aspects of physical
theory are introduced, which are later used in models and experimental design.

3.2.1 Linear waves

The simplest case of wave theory considers a two-dimensional, small amplitude
gravity wave. A linear wave of amplitude A, wavelength λ, propagating within a
fluid of depth d is shown in Figure 3.7. It is assumed that the fluid is incompressible,
inviscid (negligible viscosity), without surface tension and without any temperature
or salinity gradients [35, 36].
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Figure 3.7: Diagram of a linear wave. The free surface elevation (η),
wave length (λ), amplitude (A) and depth (d) are highlighted.

The determination of expressions for many important physical quantities of linear
waves including free surface elevation, particle velocities and accelerations, pressure
and the dispersion relation relies on a velocity potential solution for the Laplace
equation:

∂2ϕ

∂x2
+

∂2ϕ

∂z2
= 0 (3.22)

The velocity potential ϕ is a scalar function of space and time, the negative
derivatives of which are equal to the fluid velocity component for a given direction:

Ux = −∂ϕ

∂x
, Uz = −∂ϕ

∂z
(3.23)

The solution velocity potential requires the imposing of boundary conditions, both
at the sea bed (∂ϕ

∂z
= 0 at z = −d) and at the free surface. An important assumption

made here is the adoption of small amplitude wave theory (A << λ and A << d).
This allows for the neglection of non-linear terms within the free surface boundary
conditions:
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]
+ gη = 0 at z = η (3.25)

Without adoption of small amplitude wave theory and neglection of corresponding
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nonlinear terms, the solution for velocity potential becomes complex, presenting
its own area of study and shall not be further investigated here. For the interested
reader, see the work of [217–219]. So long as wave amplitudes remain small, this
simplification remains a valid means through which to derive the solution for
velocity potential:

ϕ =
Ag

kc

cosh(k(z + d))

cosh(kd)
sin(kx− ωt+ Φ) (3.26)

where k = 2π
λ

is the wave number, c = ω
k
is the wave speed and Φ is the phase.

The solution for velocity potential allows for the expression of a variety of useful
quantities, a selection of which is given in Table 3.1. Access to closed form
expressions for quantities including free surface and particle velocities is a key
advantage of utilising linear wave theory within wave loading applications.

Table 3.1: Quantity expressions for linear waves [36].

Quantity f(X)

Dispersion relation ω2 = gk tanh(kd)

Free surface η = A cos(kx− ωt+ Φ)

Particle velocities
Ux = ωA cosh(k(z+d))

sinh(kd)
cos(kx− ωt+ Φ)

Uz = ωA sinh(k(z+d))
sinh(kd)

sin(kx− ωt+ Φ)

Particle accelerations
ax = ω2A cosh(k(z+d))

sinh(kd)
sin(kx− ωt+ Φ)

az = ω2A sinh(k(z+d))
sinh(kd)

cos(kx− ωt+ Φ)

The theory for linear waves is useful both for the study of sinusoidal waves, and
also to provide a platform from which to construct more complex wave forms.
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3.2.2 Representation of sea states

An irregular wave is constructed via a sum of linear waves. Assuming superposition,
the free surface of an irregular wave is expressed

η(x, t) =
N∑
i=1

Ai cos(kix− ωit+ ϕi) (3.27)

where N is the number of linear waves, Ai is the amplitude, ki is the wave number,
ωi is the frequency and ϕi is the phase of wave i respectively [35, 36]. The complexity
of irregular waves can grow quickly with increasing N , with an example of irregular
wave construction for N = 3 shown in Figure 3.8.

Figure 3.8: Construction of an irregular wave of the form η(x, t) =
ΣN
i=1Ai cos(kix− ωit+Φi) where N = 3.

Irregular wave construction forms the basis for which ocean states may be rep-
resented, with the Ai, ki and ωi determined via a representative spectra rather
than randomly assigned. The ability to represent sea states is useful to measure,
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compare and approximate real world conditions that an offshore structure might
be exposed to. A popular example is the Pierson-Moskowitz [220] spectrum:

S(ω) =
αg2

ω5
exp

(
−β
(ωp

ω

)4)
(3.28)

where ω is angular frequency, g is acceleration due to gravity, ωp is peak frequency,
β = 0.74 and additionally

α = 0.076

(
U2
10

Fg

)0.22

(3.29)

ωp = 22

(
g2

U10F

) 1
3

(3.30)

σ =

{
0.07 ω ≤ ωp

0.09 ω > ωp

(3.31)

where U10 is the wind speed 10m above the surface, F is the fetch (the distance
over which wind velocity remains constant) and σ determines peak sharpness either
side of the peak frequency ωp.

An extension to Pierson-Moskowitz spectrum, the JOint North Sea WAve Project
(JONSWAP) [221], introduced the peak enhancement factor γ to better represent
of waves in the North Sea. The JONSWAP spectrum is expressed:

S(ω) =
αg2

ω5
exp

(
−β
(ωp

ω

)4)
γa (3.32)

where a typical peak enhancement factor of γ = 3.3 is often used with an exponent
of

a = exp

(
−(ω − ωp)

2

2σ2ω2
p

)
(3.33)

The peak enhancement factor is an important parameter within a JONSWAP
spectra and effects the maximum spectral densities that are achieved. A JONSWAP
spectra with γ = 1 (i.e no peak enhancement) is equivalent to the Pierson-Moskowitz
spectrum. A comparison of the JONSWAP and Pierson-Moskowitz spectra is shown
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in Figure 3.9.

Figure 3.9: Comparison of the JONSWAP and Pierson-Moskowitz
spectra. The introduction of the peak enhancement factor γ causes a
sharper peak and higher maximum spectral density within the JON-
SWAP spectra.

By varying the parameters within the spectra, it is possible to define and generate
a variety of ocean states. Where the variation of ωp is intuitive, having an effect
on the dominant frequencies present with the wave, for the variation of γ it can
be helpful to visualise with the examples shown in Figure 3.10. In general, the
higher the γ value, the narrower the peak within the spectrum and the higher the
maximum value within the spectrum achieved. For the relative wave profiles, this
produces higher peak wave amplitudes with a narrower band of frequency content
within the wave.

3.2.3 Empirical wave loading prediction

Empirical methods of wave loading prediction offer a balance between predictive
performance, computational resource requirements and ease of model validation;
they are popular within many industrial applications [44, 45]. For the modelling
of wave loads on slender members, which many offshore structures are comprised
of, Morison’s Equation has been the most widely used such method since its
introduction in 1950 [32].

For a stationary, rigid, slender, cylinder of diameter D positioned within waves of
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(a) Free surface realisations from a JONSWAP spectra with γ = 1.3.

(b) Free surface realisations from a JONSWAP spectra with γ = 3.3.

(c) Free surface realisations from a JONSWAP spectra with γ = 5.3.

Figure 3.10: A comparison of free surface realisations from JONSWAP
spectra with varying γ values. A wind speed of U10 = 12mss−1 and
fetch of F = 100km were kept constant for all waves.
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velocity U and acceleration U̇ , the force per unit axial length F is expressed:

F =
1

2
ρDCd︸ ︷︷ ︸
C ′

d

U |U |+ 1

4
πρD2Cm︸ ︷︷ ︸
C ′

m

U̇ (3.34)

where ρ is the fluid density, Cd is the drag coefficient and Cm is the inertia coefficient.
The dimension specific terms may be grouped to form two constants C ′

d and C ′
m

relating to the drag and inertia forces of the wave [36, 222].

An important consideration when using empirical methods, as with any engineering
model, is understanding the limitations and assumptions made within the construc-
tion of the model. To achieve their computational efficiency, empirical methods
often rely on strong simplifying assumptions. For Morison’s equation these include:

� The waves are not affected by the presence of the submerged members. For a
cylindrical structure, the wavelength and water depth should far exceed the
diameter [44].

� Flow should be unidirectional [46].

� The wave force may be separated into a velocity-dependant drag term and
an acceleration-dependant inertia term, simplifying the wave-structure inter-
action [46].

� The considered waves are surface waves and unbroken [32].

Extensions to Morison’s Equation

Morison’s Equation is generally well regarded within the literature [46, 223, 224]
with Sarpkaya stating ‘it is unlikely that an entirely new equation will ever replace
it’ [225]. Research efforts focus mainly on the development of extensions and
modifications to Morison’s Equation, rather than a competing alternative.

The work of Chakrabarti [95], Sundar [96] and Anandkumar [97] modified Morisons
equation to calculate forces on inclined cylinders. This is particularly useful in
the case of offshore jacket structures, helping to maintain the unidirectional flow
assumption relative to diagonal struts.

The Lighthill correction [226] is expressed

F = C∗
mρV U̇ +

1

2
ρAU2Cd (3.35)
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where C∗
m is the ideal inertia coefficient, V is the volume of the body and A is the

projected area. Lighthill’s correction has the advantage of now requiring only a
singular model parameter, CD, however further studies have shown that performance
declined in comparison to Morison’s Equation outside inertia dominated flow regimes
[224, 227].

Sarpkaya [98] introduced a parameter ∆ = π2

K
(C∗

m − Cm) such that

F = −Cd| cos(ωt)| cos(ωt) +
π2

K
Cm sin(ωt)− ∆|∆|

Cd

sin(3ωt) (3.36)

where K is the Keulegan Carpenter number. Although the model was able to
reduce the residuals of Morison’s Equation for cases of sinusoidal flow, this would
not be a valid assumption for an offshore structure in a general sea state.

Drawing from methods within the system identification community, Stansby [99]
and Worden [228] proposed the Morison Duffing equation

F̂i = −α1F̈i − α2Ḟi − α3Fi|Fi|+ β1Ui|Ui|+ β2U̇i (3.37)

where the higher order wave force terms, F̈i and Ḟi, aimed to capture the history
effect of vortex shedding. The model was able to improve wave force classification
in to drag, inertia and history components, however the prediction errors remained
inline with Morison’s Equation.

3.3 Concluding remarks on theory

In this chapter, introductions to relevant theory from both a data-based and physics-
based perspective were presented to the reader. Gaussian process models form the
data-based component of later developed models and were therefore a major focus.
Instead of a traditional mathematical introduction, for which many high quality
examples exist within the literature [139, 215, 216], model interpretation through
figures, particularly during their training stage was the main aim here.

From a physics-based perspective, linear wave theory, the representation of sea
states and empirical wave loading prediction methods were introduced. These are
all widely used aspects of physical theory used within offshore applications. It
was important to introduce readers to the types of physical knowledge used in the
models developed within the thesis. For readers already familiar with physical
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methods used within offshore applications, this chapter serves to collate the authors
understanding of a selection of key methods.



Chapter 4

Data and Experimentation

The physics-informed models presented throughout this thesis are primarily de-
veloped using two datasets: a subset from the Christchurch Bay Tower (CBT)
project, a heavily instrumented column structure within a real offshore environ-
ment; and an experimental study of a monopile within a wave tank designed and
carried out by the author. The experiment is designed to study the wave loading
of monopiles in a range of representative sea states, steady flows and sinusoidal
waves in a controlled lab environment. Its primary motivation comes from only
having access to a narrow range of conditions from the CBT dataset. This chapter
aims to outline each dataset and provide detail of experiment design.

4.1 The Christchurch Bay Tower

The Christchurch Bay Tower (CBT) was an offshore test facility, constructed spe-
cifically for the study of wave loading and effects of current and tides on cylindrical
offshore structures. This provided a dataset capturing a real sea state environment
with valuable measurements of the wave load, allowing for the validation and
performance measurement of modelling approaches [229]. The project design and
data collection was lead by British Maritime Technology (BMT) throughout the
1980s, with data collected in 1987 [230, 231].

The structure is comprised of a large central column, 2.8m in diameter, and a smaller
column, 0.48m in diameter, each equipped with an array of sensors. Perforated ball
Velocity Meters (PVMs), pressure transducers, force sleeves and wave buoys were

54
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used to create a 41 channel dataset [230]. Although this is a historic dataset, the
sensor network here is more densely populated than those that might be employed
on offshore structures today due to the CBT being constructed specifically as a
test facility. A schematic of the structure is shown in Figure 4.1.

Figure 4.1: Schematic of Christchurch Bay Tower [232].

Whilst it would be desirable, the author did not have access to the full CBT
dataset. Access to a single 17 minute run was kindly provided by Keith Worden
from use in earlier work [232]. To the best of the authors knowledge, much of the
remainder of the dataset has been lost over time. Access to only a narrow range of
wave conditions was a major motivator for the development of an experiment, as
discussed later in this chapter, in which a range of conditions could be generated
and controlled.

Three subsets of 1000 data points, sampled at 13.25Hz, were selected from the 17
minute run for use as training, validation and test sets. A region of 3000 points was
selected where the ratio of the x-velocity to y-velocity of the wave was a maximum
to ensure that the flow was primarily unidirectional. This was then split in to
three sequential subsets as seen in Figure 4.2. The study here focuses on data from
the small column where the assumptions of Morison’s equation around slender
members are more likely to be valid.
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Figure 4.2: The inline water particle velocity, acceleration and wave
load of the selected subset of the CBT dataset. The training, validation
and test sets are shown in black, red and blue respectively.

The data used was taken from one of the high intensity measurement runs of the
complete CBT dataset in which the Reynolds number (Re) > 1 × 105 and the
Keulegan–Carpenter number (Kc) was in the range 17 < Kc < 26 [230]. For these
flow conditions, Clauss [233] suggests a drag coefficient of Cd = 0.6. For the inertia
coefficient, DNV-RP-C205 [234] also considers the effect of surface roughness, which
for a heavily instrumented cylinder gives Cm = 1.2. The presence of the force
sleeve, accelerometers and numerous pressure transducers along the cylinders length
significantly increase the surface roughness.

In the literature, some of the earliest analysis is available from Bishop throughout
the data collection phase of the project. He derived wave force coefficients for the
tower both before [231] and after [229] the repair of concrete foundations. The
initial gravity base of the structure experienced rocking due to being too small,
leading increased erosion of surrounding seabed and eventually failure. This led
to a pause of the project and an increase of base weight from 200 to 800 tonnes
before measurements continued [229]. Later work of Burrows [235] and Najafian
[230] studied the applicability of Morisons Equation across the range of conditions
within the dataset, with both reporting good agreement. Burrows [235] reported
that no simple extension to the equation, to improve performance in the presence
of history effects and vortex shedding, could be found.
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The CBT dataset is used in both Chapter 5 and Chapter 7 to develop PIML models
for wave loading prediction. Chapter 5 incorporates physical knowledge within the
inputs and mean function of a GP whilst Chapter 7 focusses on physics-informed
kernel design.

4.2 Monopile Experiment

Although access to a section of the CBT dataset was very useful for the observation
of wave loads acting on a real world offshore structure, the narrow window of
conditions available to the author meant that the development of models able to
operate across a range of wave states was challenging. An ability of a model to
operate well in conditions it hasn’t previously seen is a key driver of grey-box
research. This therefore motivated the design and completion of an experiment,
with the aim of providing access to measurements of the wave load acting on a
structure across a wider range of conditions.

The wave loading of a monopile structure was performed in the wave tank at
the Laboratory for Verification and Validation (LVV)1. This provided an environ-
ment in which conditions could be more tightly controlled by the user, ensuring
through experimental design that a wide variety of wave states could be measured.
Conditions including sinusoidal waves, steady flow and representative sea state
spectra were generated within the tank and data from the structure and tank recor-
ded. The structure and wave tank were heavily instrumented with accelerometers,
strain gauges, a force collar, wave gauges and a velocimeter, providing a 2048Hz,
27 channel dataset. This section aims to detail the methods and motivation of
the experiment along with specific detail of wave load measurement and wave
generation.

4.2.1 The structure

A monopile structure with a fixed base was used within the experiment, allowing
for the study of wave loads on vertical cylinders, a popular application within
literature [224, 236, 237]. Monopile structures including offshore wind turbines are
a common industrial application, with the potential extension of findings to slender
cylindrical members relevant for jacket structures. The structure, before it was
placed within the wave tank, is seen in Figure 4.3.

1More information on LVV facilities available at lvv.ac.uk
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Figure 4.3: The monopile structure before it was placed within the
wave tank. The fixed metal base and crane used to load variable masses
to the top of the structure can be seen.

The structure was comprised of a 2990mm length of PVC pipe with an outer
diameter of 90mm and wall thickness of 5.4mm. The relatively low stiffness
material in combination with long pipe length helped to keep the natural frequency
of the structure low, both to mimic the low natural frequencies of real offshore
structures and to allow the study of excitation close to this frequency via waves
within the tank. Keeping the pipe length long rather than trimming also aimed
to align the ratio of the structure above and below the waterline with some real
structures. When within the 1m water depth of the wave tank, this would result in
approximately one third of the structures length being submerged; which is within
the range of deeper water offshore wind turbines found in the literature [238–242].

In its default state, the first natural frequency of the structure was measured
at 2.46Hz. This was significantly higher than the wave frequencies that could
be generated within the wave tank and therefore studying the behaviour of the
structure around resonance would be challenging. It was therefore desirable to lower
the first natural frequency of the structure within the bounds of wave frequencies
that could be generated. The adopted means of natural frequency reduction was
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through the addition of mass to the top of the structure; this had the additional
benefit of mimicking the mass of a rotor and nacelle at the top of a wind turbine.

To calculate the required additional mass, the monopile was first modelled as a
cantilever beam following the approaches of Blevins [243] and Rao [244] from which
the natural frequency is expressed:

ωn = (βnL)
2

√
EI

ρAL4
(4.1)

where βn is a boundary condition specific constant, L is the length of the beam,
E is Young’s modulus, ρ is material density and A is cross sectional area. The
cantilever approximation was found to be in good agreement with measured results,
with the first four modes shown in Figure 4.4. This was to be expected due to the
homogenous material, constant cross section and sturdy fixed clamp at the base of
the structure.

Figure 4.4: Comparison of the first four measured natural frequencies,
in Hertz (fn = ωn

2π ), with the calculated result from a cantilever beam
approximation.

To calculate the change in natural frequency due to the addition of mass, the
effective mass meffn of the beam was calculated as if all mass was placed at the
beam tip.

meffn =
3EI

L3ω2
n

(4.2)
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This was then able to be summed with added mass and the new natural frequency
ω∗
n calculated.

ω∗
n =

√
3EI

L3(meffn +madd)
(4.3)

To validate the approach, a series of increasing masses were placed on the structure
and natural frequencies measured. Figure 4.5 shows the FRFs for the structure
with varying levels of added mass. The optimum operating range for the wave tank
is 0.7-1.0Hz, and a desired first mode natural frequency of 0.8Hz was therefore
chosen. Measured results were found to be in close agreement with calculated
changes in natural frequency. An estimated 8.43kg of added mass was required
to reduce the first natural frequency to 0.8Hz, as highlighted in Figure 4.6. The
attached mass along with a safety tether in case of it falling from the structure can
also be seen installed on the structure in Figure 4.10.

Figure 4.5: FRFs of the monopile with increasing amounts of added
mass. The optimum operating range of the wave tank is highlighted in
grey.

The main requirement of securing the structure in the tank was a solution that
would last for the full duration of the experiment without any degradation or
loosening. This would provide a consistent set of boundary conditions for all wave
run measurements. Were the structure to separate from the tanks base, this would
require draining of the tank to perform repairs and rerunning of measurements,
therefore causing delays. For this reason, a fixed metal baseplate was used to
securely clamp the structure, with high strength suction cups used to attach this
to the glass floor of the wave tank. The fixed baseplate installed within the tank
before it was filled can be seen in Figure 4.7.
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Figure 4.6: Measured and calculated changes of the first natural fre-
quency of the monopile with increasing quantities of added mass. The
desired natural frequency of 0.8Hz required an estimated 8.43kg of
added mass.

Figure 4.7: Metal baseplate with suction cups used to secure the
structure to the wave tank. The photo was taken before the tank was
filled with water.

The accelerometers and strain gauges were both installed on the structure in pairs;
two single-axis accelerometers measured ax (inline acceleration) and ay (lateral
acceleration) at six locations along the structures length. Strain gauges fixed
to opposite sides of the column were used to measure compressive and tensile
strain, allowing the calculation of inline bending strain. Unlike the accelerometers,
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the strain gauges were fully waterproofed, enabling some to be placed below the
water-line. The locations of the accelerometers and strain gauges are shown in
Figure 4.8.

Figure 4.8: Locations of installed sensors on the monopile structure.

4.2.2 The wave tank

The wave tank had an operational volume 10.74m in length, 0.5m in width and
1m in depth. Although the tank had paddles capable of generating waves in
either direction, one set of paddles was kept slack to absorb incoming waves and
reduce reflection of waves back along the tank as much as possible. A series of



4.2 Monopile Experiment 63

two wave gauges were used to capture the free surface of passing waves, whilst an
Acoustic Doppler Velocimeter (ADV) was used to measure water particle velocity
and acceleration. An ADV relies on the transmitting, reflection and receiving of
high frequency sound waves on particulates suspended within the water. This
therefore required the seeding of the wave tank. Dimensions of the wave tank and
experimental setup are shown in Figure 4.9.

Figure 4.9: Dimensions of the wave tank and experimental setup.

The generation of waves was done using Edinburgh Designs Wave Synthesiser and
Runtime [245]. This allowed the definition of sinusoidal waves via frequency and
amplitude, along with irregular waves based on representative spectra. The wave
tank was capable of generating waves within the frequency range 0.5 ≤ ω ≤ 1.5Hz,
up to a maximum amplitude of approximately 280mm (peak to trough). The
structure was instrumented with accelerometers, strain gauges and a force collar.
Along with the measurement equipment within the wave tank, this would provide
access to incoming wave heights, flow conditions, wave load, structure response
and strain. A photograph of the experimental setup is shown in Figure 4.10.

4.2.3 Measurement of the wave load

The wave load was the most challenging variable to measure and required the design
and development of bespoke equipment. The difficulty and expense in measuring
wave loads is a driving factor for the field of wave loading prediction. There exists a
range of methods by which to measure wave loads within the literature: Bachynski
[246] used a leaf spring and dynamometer at the base of the monopile to allow for
the measurement of moments, Esandi [247] used a fixed cross beam connected to
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Figure 4.10: Monopile structure and measurement equipment setup
within the wave tank.

the monopile via load cells and the Christchurch Bay Tower (CBT) project [230]
used a force collar. Here, a force collar was used for two main reasons: it would
not impede the motion of the monopile, as would be the case when connecting to a
fixed cross beam; and the force collar could be positioned at any desired vertical
height, providing a local measurement of wave load.

The force collar used for this work was designed by Robin Mills and manufactured
by Robin Mills and Michael Dutchman. The author wishes to express thanks here
for both their efforts. The force collar consisted of two concentric rings; an inner
ring fixed to the structure and an outer ring fixed to cover plates. The rings were
connected via hinged strain gauges, such that when a force is applied to the cover
plates, a series of stains are produced when the load is transferred to the inner ring.
With three strain gauges, there was sufficient information to resolve for forces in x
and y directions. A diagram of the force collar is shown in Figure 4.11.
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Figure 4.11: Force collar diagram with key components highlighted.

The force collar was aligned such that the x direction corresponded to an inline
force, with its centre positioned at the waterline. The area close to the free surface
is typically where the maximum wave forces are experienced and is therefore the
region of interest of this study. The force collar was first installed on the structure
without cover plates and a calibration check was performed by Robin Mills in dry
conditions under known forcing. The wave tank was then filled and cover plates
installed. Images of the installed force collar are shown in Figure 4.12.

Figure 4.12: Images of the force collar installed on the monopile without
the cover plates (left) and with the cover plates (right). The position
of the hinged strain gauge connecting the inner and outer rings is
highlighted.
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4.2.4 Measurement of flow conditions

The instantaneous velocity and acceleration of the flow was measured using an
Acoustic Doppler Velocimeter (ADV), a popular method used within civil and
geographical applications. An ADV relies on the transmitting, reflection and
receiving of high frequency sound waves on particulates suspended within the water.
This therefore required the seeding of the wave tank. A diagram of an ADV in
operation is shown in Figure 4.13.

Figure 4.13: An Acoustic Doppler Velocimeter (ADV) in operation.
The relative change between the source frequency f0 and received
frequency f at is highlighted.

An ADV works via calculation of Doppler shift, the change in frequency observed
due to relative motion of an observer and source. Here, the motion of a passing
particle (seeding) produces a frequency shift in the transmitted and observed
frequencies. The observed frequency (f) is expressed

f =

(
1 +

∆v

c

)
f0 (4.4)

where ∆v is the relative motion between the receiver and source, c is the wave
propagation speed and f0 is the source frequency. Assuming a stationary source,
the particle velocity can then be derived. The presence of multiple receivers allows
for the calculation of velocity components in multiple directions.
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The data from an ADC can be subject to a high level of noise and the presence of
spikes. This is due to the reliance on a consistent stream of particles passing within
the control volume. The numerical differentiation required to obtain acceleration
measurements was highly susceptible to both spikes and noise and the use a filters
was therefore a necessity. A 102 point median filter was first used to remove spikes
within the data and a 4Hz stopband Butterworth filter was then used to reduce
the impact of noise. In both cases the filter parameters required significant tuning:
the median filter was increased until all spikes were successfully removed and the
Butterworth stopband frequency reduced until successful numerical differentiation
could be achieved. A single set of filter parameters was kept constant for all test
cases.

4.3 Test cases

The primary motivation for this experiment was to provide access to a range of
controlled conditions and wave states with which to test the development of wave
loading prediction models. The range of test cases for in the experiment are detailed
here with the development of models using this data shown in Chapter 6.

4.3.1 Sinusoidal waves

Sinusoidal waves are the most simplistic wave type that may be generated within
the wave tank and present a test case suitable for the study of linear wave theory
and initial testing of new methods. A series of 153 sinusoidal waves were generated
through variation of frequency and amplitude to create a 9×17 grid. The amplitude
was varied from 0.01m to 0.05m in 0.005m increments, whilst the frequency was
varied from 0.5Hz to 1.3Hz in 0.05Hz increments. The wave tank was programmed
to run batches of wave states, with each individual sine wave case run for a period
of two minutes. A 30 second settling period was used to separate wave states;
this allowed any leftover waves from previous states to decay before the next run
started. A time series segment of selected variables for a sinusoidal wave is shown
in Figure 4.14.
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Figure 4.14: Measured surface elevation, inline water particle velocity
and acceleration, and inline wave force over a 10 second time period
for a sinusoidal wave. Note that unlike the other variables, the wave
load here is not sinusoidal; this is due to the interaction between the
wave and the structure.

4.3.2 Representative sea states

The generation of sea state spectra is of particular interest when studying offshore
structures. The prediction of wave loads and structural response within these
conditions is more challenging and provides a more representative measure of model
performance. Although within a lab environment, which does not capture the
true variability of a real sea, sea spectra are a useful means through which to first
develop model structures.

By varying the parameters within the JONSWAP [221] spectra, it is possible to
define and generate a variety of ocean states. For this experiment, a series of
JONSWAP waves were generated by varying both γ and ωp, thereby creating a
matrix of test conditions. Based on the capabilities of the wave tank, ωp was varied
from 0.7Hz to 1.1Hz in 0.1Hz increments and γ was varied from 1.3 to 5.3 in 1.0
increments. This was deemed to give a suitably fine grid of 25 test conditions. The
JONSWAP spectra variation is shown in Figure 4.15.

Unlike sine waves, which have a repeating profile, the surface of a JONSWAP wave
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Figure 4.15: JONSWAP spectra highlighting the effect of γ variation
for the generated test cases. All JONSWAP wave states had a runtime
of 10 minutes.

varies over time, even when the spectra used to generate it remains constant. This
behaviour can be seen in the time series in Figure 4.16. For this reason the wave
state duration was increased to 10 minutes for each individual wave state. In the
case that a longer continuous length of wave state measurement might be required,
some additional longer runs of 1 hour each were also recorded.

4.3.3 Steady flow

Structures subject to steady flow can be of interest when studying phenomena
such as tidal flows, currents and the potential identification of vortex shedding. To
record the force due to the flow and the response of the structure for a range of
flow speeds a ramp up in flowrate was performed. The wave tank had capability to
adjust steady flow as a % of maximum, with a ramp from 0% to 80% performed
over a period of 40 minutes. Beyond 80% flowrate, the flow became very turbulent
and measurements of flow conditions became challenging. Plots of the inline water
particle velocity and wave force are shown in Figure 4.17. A key observation here
is that for a linearly increasing flow velocity, a square relationship can be seen in
the inline force. This is to be expected due to the expression for drag load caused
by a moving fluid (FD = 1

2
ρU2CDA) [222].
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Figure 4.16: Measured surface elevation, inline water particle velocity
and acceleration, and inline wave force over a 20 second time period
for a JONSWAP wave. Note the more complex wave profile than the
previously shown sinusoidal wave in Figure 4.14.

Figure 4.17: Inline water particle velocity and wave force during the
steady flow ramp. Wave tank flowrate was linearly increased from 0%
to 80% over a 40 minute duration.
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4.4 Data within the thesis

This chapter presented the main datasets used to develop models within this thesis,
one of which was a monopile experiment designed and completed by the author.
Although both useful for the study of offshore structures, each dataset will serve its
own distinct role. A section of data the Christchurch Bay Tower project provided
access to measurements from a real world structure in an offshore environment.
The experimental dataset provided a wider range of conditions that are more
tightly controlled by the user, allowing for the evaluation of model performance in
conditions they hadn’t previously seen.

The experiment itself is a novel contribution here, with measurements of wave
load on structures very rare. This is primarily due to the difficulty and expense
of creating the bespoke equipment required. An effort was made to measure
more variables and generate more conditions than would be needed for this thesis,
with the hope that this dataset will be useful for the future work the author and
others. The PIML models in Chapter 6 are developed using the experimental
dataset, showcasing how both Morison’s Equation and linear wave theory may be
incorporated within a GP-NARX framework.



Chapter 5

A First Grey-box Model for
Offshore Structures

This chapter presents the first development, to the author’s knowledge, of a grey-box
model for the prediction of wave loads on a real offshore structure. It is developed
using the Christchurch Bay Tower dataset detailed in Chapter 4. The widely used
Morison’s Equation, an empirical wave loading solution, is incorporated within an
autoregressive form of Gaussian process Regression (GP-NARX). Important details
of implementation for GP-NARX models are addressed including lag selection,
uncertainty propagation and cost function selection, all of which have an impact
on final model performance. A specific study focuses on the ability of different
grey-box model architectures to extrapolate in circumstances of low data coverage.
This is a key expected benefit of incorporating physical knowledge within a machine
learner. The majority of the work in this chapter has been published in [100].

5.1 Development of a grey-box model

The work in this chapter was the first attempt of the author at grey-box model
development and was completed at a time when the field was much smaller than
today. At the time, and arguably still, there was not a defined methodology for the
creation of grey-box models. This therefore required thought on how one might
sensibly define and create an effective model. To provide structure to the task, the
answering of three questions was proposed:

72
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1. What type of physics is to be included in the model?

2. What type of machine learner should be used?

3. How should the physics be integrated within the machine learner?

The ordering of the questions is also important here, with the most suitable way to
construct the model highly dependent on the chosen types of physics and machine
learner. In the view of the author, it is therefore sensible to first define the physics
and data-based approaches before deciding how they should be combined.

This section details the modelling methodology proposed for the prediction of wave
loading and is structured to answer the questions above. Morison’s Equation forms
the basis for the white-box model construction (with Bayesian linear regression
for parameter estimation), whilst a GP-NARX model is used for the black-box.
Methods of combining the approaches to form grey-box models are then presented.

5.1.1 White-box

Within research communities, the study of Computational Fluid Dynamics (CFD)
has dominated the quantification of wave loading forces [30, 31]. Within industrial
applications however, the high computational resource requirements of CFD and
difficulty of model validation for structures in complex environments, has led to
a preference, in some industries at least, for more simplistic empirical methods.
A common example of one such method is Morison’s Equation [32], which offers
an empirical solution for wave loading with minimal computational resources. It
has been used in a range of applications including wind turbine design [44] and
characterising dynamic behaviour of offshore spar platforms [45].

Further details on the application of Morison’s Equation and the assumptions
behind its construction are given in Chapter 3. Here, the earlier defined form is
adopted:

F =
1

2
ρDCd︸ ︷︷ ︸
C ′

d

U |U |+ 1

4
πρD2Cm︸ ︷︷ ︸
C ′

m

U̇ (5.1)

where ρ is the fluid density, D is the cylinder diameter, Cd is the drag coefficient
and Cm is the inertia coefficient. The dimension specific terms may be grouped to
form two constants C ′

d and C ′
m relating to the drag and inertia forces of the wave.
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This leads to the simplified version of Morison’s equation used within this work:

F = C ′
dU |U |+ C ′

mU̇ (5.2)

The construction of the white-box model presented will rely on the estimation of the
grouped parameters within Morison’s equation. The simplicity of this approach will
aid in minimising the complexity of the final combined grey-box models presented
in later sections, although a non-dimensional form can be readily used.

Parameter estimation and model prediction with Morison’s equation is achieved
via Bayesian Linear Regression (BLR). Approaching the regression in a Bayesian
manner provides distributions over the parameter estimates and confidence intervals
for the predictions, which can then be compared with the Gaussian process models
used later.

Implementation of Morison’s Equation as a BLR begins with gathering model
inputs U, U̇ and grouped constants C ′

d, C
′
m; they may then be expressed as a single

design matrix X along with model parameters β:

X = [U |U |, U̇ ] (5.3)

β =

[
C ′

d

C ′
m

]
(5.4)

Morison’s equation can then be expressed in matrix form:

F = Xβ + ε where ε ∼ N (0, σ2
nI) (5.5)

A Bayesian linear regression can be set up for the model.

p(F |X, β, σ2
n) = N (Xβ, σ2

β) (5.6)

In order to retrieve the desired posteriors over the parameters for Morison’s Equation
β and noise variance σ2

n, it is necessary to place priors over the parameters. Here a
Normal-Inverse-Gamma semiconjugate prior is used:

p(β) = N (mβ, σ
2
β) (5.7)

p(σ2
n) = IG(a, b) (5.8)

A Gaussian prior over the parameters for Morison’s Equation allows for a positive
or negative mean mβ with a given variance σ2

β. The selection of appropriate C ′
d

and C ′
m priors can be made using the dimension specific terms for the structure

and standards relating to flow specific drag Cd and inertia Cm coefficients such as
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DNV-RP-C205 [234]. An Inverse Gamma (IG) prior can encode belief about the
noise variance through hyperparameters a and b, whilst restricting to only positive
values.

The full joint posterior p(β, σ2
n|F,X) is unavailable in closed form and it is therefore

necessary to calculate the conditional posterior for each parameter: p(β|F,X, σ2
n),

p(σ2
n|F,X, β). The parameter posterior distributions were recovered via Gibbs

sampling with 10,000 draws. This provided a computationally efficient method
for accurate estimation of the conjugate conditional distributions [248]. Once the
parameter distributions were retrieved, further sampling was used to recover the
posterior distribution of the test set force prediction from Equation 5.6.

5.1.2 Black-box

Gaussian Process Regression (GPR), utilised here, is a non-parametric, flexible,
Bayesian machine learning technique [139]. The return of confidence intervals with
predictions, minimal requirement for prior knowledge and modelling capabilities
under the presence of noise have lead to the popularity of GPR within a wide
range of usage applications. These span from standard regression tasks [249], to
image processing [250], to more engineering relevant examples [1, 214, 251]. A
dynamic-variant of a GP regression model is employed here, namely a GP-NARX
[41, 232, 252].

A Nonlinear AutoRegressive model with eXogenous inputs (NARX) is a function
of previous signal values and additional (exogenous) inputs, in which both are fed
through some nonlinear function f(x).

yt = f([ut, ut−1, ..., ut−lu , yt−1, yt−2, ..., yt−ly ]) + ε (5.9)

The previous signal values, yt−i and exogenous inputs, ut−j are considered up to
ly and lu lagged time steps respectively. For the wave force estimation in this
work, the exogenous inputs, u, considered are the velocity, U and acceleration, U̇
of the wave particles. There are several reasons why one might wish to use an
autoregressive model for the prediction of wave loads: they are well suited to the
capture of periodic behaviours, for example, dominant frequencies within waves;
they have been shown to be effective in capturing higher order terms present within
fluid phenomena such as vortex shedding [232]; and they are capable of capturing
delays between measured signals. The perforated ball velocimeters on the CBT
project, as with most flow measurement equipment, were offset from the main
tower, therby creating a delay between the measured velocities and wave load.
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The nonlinear function, f(x), in a NARX model is commonly fixed to be a polyno-
mial [253, 254], but in the case of a GP-NARX, a Gaussian process (GP) is used.
With a GP one avoids needing to fix the functional form explicitly, instead, the
selection of a mean and covariance function defines a family of feasible functions
that may explain the data. An overview of GP theory along with the author’s
interpretation of how a GP model operates is given in Chapter 3.

5.1.3 Grey-box

A grey-box model combines physics and data-based approaches with the aim of
extracting benefits from each of the model types: structure, insight and extrapolative
performance from the white-box component and flexibility and ability to model
unknown phenomena from the black-box component. There are two potential
architectures presented here, both of which combine the earlier discussed Morison’s
equation with GP and GP-NARX models.

Residual modelling

Perhaps the simplest approach to grey-box modelling is to sum the predictions of a
white and black-box model. If the white-box takes a fixed form, this summation is
equivalent to using the black-box to model the residual error between the white-box
and any collected data. In the FE modelling community the practice of using a
machine learner (often a GP) to model the residuals from an FE model is often
referred to as ‘bias correction’, acknowledging that there is likely to be some error
in the complex FE representation of the structure. It is possible to apply the
approach to more simplistic base models such as Morison’s Equation, with the
modelling of polynomial regression residuals using a GP being explored as early as
1975 [255].

It is known that Morison’s Equation simplifies the behaviour of wave loading, not
accounting for effects such as vortex shedding or other complex behaviours [256]
and will typically have residual errors in the region of 20%[257]. Through the use
of a black-box component, these residual errors may be modelled and the result
added to the white-box, producing a model of the form:

yt = Fmor︸︷︷︸
White−box

+ f([U, U̇ ]) + ε︸ ︷︷ ︸
Black−box

(5.10)
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Here, the parameters in Morison’s equation will be established via Bayesian linear
regression. The GP or GP-NARX model is set up identically to those discussed
within the black-box section, except that the target is now the residual error of
Morison’s Equation rather than the measured wave force itself. The intention
is to capture the missing physics excluded by the simplifications present within
Morison’s Equation.

The magnitude of the black-box term can be interpreted as being the extent to
which the data confirms the prediction of Morison’s Equation. In regions of high
uncertainty, outside the observed training data, the GP will revert to its prior of
zero with the overall model therefore outputting Morison’s Equation. An equivalent
view of this is the usage of a white-box mean function within the GP or GP-NARX
[139].

Input augmentation

An alternative means by which physics and data-based approaches may be combined
is via the inclusion of the white-box model output as an additional input to the
black-box. Models involving the manipulation of the non-parametric components of
black-boxes using physics have been termed ‘type B’ [258] grey-box models within
the nonlinear system identification community, whilst the transformation of model
input data through physical insight has been referred to as ‘semi-physical’ modelling
[60]. This approach was used in [116] to model and optimise hydroelectric power
generation. Input augmentation has been shown to offer performance increases
over white and black-box approaches in the context of a nonlinear cascaded tanks
system, particularly in the case of an extended physical model [118].

Here, the result of Morison’s Equation is used along with the originally included
water particle velocity U and acceleration U̇ as the input to the GP or GP-NARX.
The model is of the form:

yt =

Black−box︷ ︸︸ ︷
f([Fmor,︸ ︷︷ ︸
White−box

U, U̇ ]) + ε (5.11)

The output of the white-box model is carried forward to provide an input for the
GP that is strongly linked to the physics of the problem. An advantage of this
approach over residual modelling is the maintaining of the signal to noise ratio.
This is particularly important in cases of high fidelity physics-based models, where
the residual of the model will be small in comparison to the model noise.
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5.2 GP-NARX implementation

There are several important distinctions between the implementation of GP-NARX
models, compared with a classic static GP. Many of these are introduced due to
the ability of a GP-NARX to utlise previous predictions as future model inputs.
They are important considerations within the modelling process, to ensure the
potential benefits of a GP-NARX may be maximised. Key decisions made for the
implementation of GP-NARX models on the CBT dataset are detailed here.

5.2.1 One step ahead and model predicted output

There are two types of prediction that may be calculated from any autoregressive
model form: One Step Ahead (OSA) and Model Predicted Output (MPO)1. For
OSA, previously measured values of the output signal are used as lagged inputs to
the model, whilst MPO requires the feedback of the model prediction itself. An
OSA prediction for a GP-NARX has the form:

yt = f([ut, ut−1, ..., ut−lu , yt−1, yt−2, ..., yt−ly ]) + ε (5.12)

where f(X) is a GP, [ut, ut−1, ..., ut−lu ] are previously measured exogenous inputs
and [yt−1, yt−2, ..., yt−ly ] are previous measurements of the target variable. An
MPO prediction for a GP-NARX has the form:

yt = f([ut, ut−1, ..., ut−lu , ŷt−1, ŷt−2, ..., ŷt−ly ]) + ε (5.13)

where [ŷt−1, ŷt−2, ..., ŷt−ly ] are now previous predictions of the target variable.
This one change can have a large impact on the properties of a model, how best to
select hyperparameters and prediction errors. The MPO performance will generally
be worse than that of OSA due to the compounding of model errors, however, it is
a much more representative measure of how well the model has captured the true
dynamics of the process and therefore a more rigorous test.

The practical use of an OSA prediction occurs most naturally in a control setting,
where continual measurements of the target of interest are available. In a Structural
Health Monitoring (SHM) context, the assumption is that continual measurement
of the wave force itself will not be available, meaning that an OSA prediction will
not generally be useful here. This work, therefore, focuses on the MPO task.

1In some communities these are referred to as the prediction and simulation tasks for OSA
and MPO respectively.
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The focus on an MPO necessitates careful attention to how the hyperparameters
in the GP covariance function are optimised. In a standard static implementation
of a GP, the hyperparameters, θ of the covariance function, which control things
like the smoothness of predictions, are set by optimising a negative log marginal
likelihood:

θ̂ = argmax
θ

{− log p(y|X, θ)} (5.14)

where y are the set of targets in the training set, with corresponding inputs X. In
this work a squared exponential kernel with Automatic Relevance Determination
(ARD) is used. This allows an independent length scale for each input parameter
and offers increased model flexibility when operating with multiple types of input
parameter.

k(xi, xj) = σ2
f exp

(
−1

2
(xi − xj)

TΛ−1(xi − xj)

)
(5.15)

where σ2
f is the signal variance and Λ is the matrix of length scales such that

diag(Λ) = [l21, l
2
2, ..., l

2
D] for a D dimensional input. These parameters are typically

optimised over the Negative Log Marginal Likelihood (NLML) of model predictions
on a training set:

− log p(y|X, θ) =
1

2
yT (K + σ2I)−1y +−1

2
log|K + σ2I|+ n

2
log(2π) (5.16)

This optimisation doesn’t reflect the dynamic nature of the GP-NARX and strongly
favours the performance of OSA predictions if used. The cost function should
always be aligned with the desired performance criteria of the model, in this case
the MPO. Here, therefore, a more appropriate choice of cost function is the Negative
Log Predictive Likelihood of the Model Predicted Output (MPO NLPL):

θ̂ = argmax
θ

{− log p(y|E(y∗),V(y∗), θ)} (5.17)

The NLPL of the MPO is calculated as a joint Gaussian likelihood of each
measured data point yt coming from the corresponding predictive distribution
y∗t ∼ N (E(y∗t ),V(y∗t )) of the GP-NARX output. Importantly, it provides a measure
of how well the GP-NARX is able to perform when relying on previous predictions
that have been fed back for use as model inputs. The MPO NLPL may be derived
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as:

− log p(y|E(y∗),V(y∗), θ) = 1

2
(y − E(y∗))TV(y∗)−1(y − E(y∗))

+
1

2

n∑
t=1

log(V(y∗t )) +
n

2
log(2π)

(5.18)

For the implementation of a MPO NLPL cost function, the author suggests using
an independent validation set, used only for the assessment of MPO performance.
The process is defined in Algorithm 1.

Algorithm 1: MPO NLPL cost function for GP-NARX optimisation.

1 Calculate training set covariance matrix K(X,X) for hyperparameters θ

2 Initialise GP-NARX for validation set from Ut:t−lu , U̇t:t−lu and yt−1:t−ly

3 for t = 1 : T do

4 Calculate: p(y∗t |Ut:t−lu , U̇t:t−lu ,E(y∗t−1:t−ly
), θ) = N (E(y∗t ),V(y∗t ))

5 end

6 NLPL = −
∑T

t=1 logN (yt|E(y∗t ),V(y∗t ))

where Ut:t−lu and U̇t:t−lu refer to the lagged exogenous input vectors of velocity
and acceleration, yt−1:t−ly refers to the lagged vector of measured wave force and
y∗t−1:t−ly

the lagged vector of predicted wave force.

5.2.2 Uncertainty propagation in a GP-NARX

One of the benefits of using a Bayesian regression approach, such as GPR, is access
to the full posterior distribution and therefore availability of confidence intervals on
any prediction made. This causes an issue, however, in a NARX MPO setting, as
model predictions get fed back and used as model inputs at the next step. Previous
uses of GP-NARX models have generally avoided the tricky issue of uncertainty
propagation in an MPO setting.

Without alteration, the confidence intervals of the GP-NARX fail to account for
the full uncertainty within the prediction. The MPO requires the feedback of the
model prediction, for use as subsequent lagged output. This is typically taken
as a point estimate of the expected value of the GP-NARX prediction, failing to
acknowledge that the output of the model is in fact a distribution. This does not
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account for the potential variation in the feedback of model outputs which would
have a cumulative effect over time. This causes an uncertain input problem in the
GP, not handled by the standard GP framework.

Uncertainty propagation within the GP-NARX can be achieved via the use of
Monte Carlo sampling [232, 259]. Instead of feeding back the model output mean,
a sample from the output distribution ŷt is used. This may be repeated for N
samples to form a series of N potential realisations for the model output y

(n)
t∗ from

which more realistic posterior distributions may be estimated. The procedure
for generating the Monte Carlo sampled Model Predicted Output (MC MPO) is
summarised in the block diagram within Figure 5.1.

Figure 5.1: Block diagram of Monte Carlo uncertainty propagation
within the GP-NARX.

5.2.3 Hyperparameter optimisation

Quantum Behaved Particle Swarm Optimisation (QPSO) [260] was used as a global,
gradient-free method for the determination of hyperparameters in GP covariance
functions, although it would be possible to use any other appropriate optimisation
scheme. To ensure stable convergence, optimisation runs were repeated and the
hyperparameters cross checked. The swarm size and cost function stability tolerance
were adjusted accordingly until stability was achieved over 12 repeated optimisation
runs. The required parameter settings for stable convergence of the GP and
GP-NARX models are shown in Table 5.1.

In order to achieve stable convergence of hyperparameters, the GP-NARX required
both a higher swarm size and a tighter cost function stability tolerance than
the static GP. There were two major reasons for this: the increased number of
hyperparameters introduced via additional length scales for lagged inputs and
the increased complexity of the cost function. The additional hyperparameters
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Table 5.1: QPSO parameter settings used for GP and GP-NARX
optimisation.

Model type Swarm size (n) Cost function stability tolerance (t)

GP 200 1× 10−3

GP-NARX 1000 1× 10−5

increased the dimensionality of the search space whilst the propagation present
within the calculation of the MPO NLPL cost function led to a high sensitivity to
changes in hyperparameters.

5.2.4 GP-NARX lag selection

The selection of lag terms within a GP-NARX model has a significant effect on
the structure and performance of the model. The number of lags included for the
previous signal values and exogenous inputs can be optimised by considering lu
and ly as hyperparameters. The optimal model may then be chosen via calculation
of an appropriate model selection criterion. Two key challenges of lag selection
addressed here are the high computational cost and evaluation of the most suitable
model.

Computational cost

The primary difficulty faced within GP-NARX lag selection is the computational
cost of the search. Even when considering only the maximum lags, rather than
the full combinatorial problem, a significant number of models are required to
be constructed and evaluated. Due to the long training time of the GP-NARX,
particularly when using the MPO NLPL cost function, the computational cost
of covering even moderate search spaces becomes an issue. A proposed solution
is to perform the search on a computationally inexpensive AutoRegressive model
with eXogeneous inputs (ARX) mimicking the structure of Morison’s Equation and
carry the lag selections forward for use in the full GP-NARX model. Although
still autoregressive in nature and trained using the same datasets as the GP-
NARX, it should be noted that the ARX is a linear model and will thus capture
a reduced range of behaviours when compared with the GP-NARX. This will
likely introduce slight deviation from the optimal lag selections; however, due to
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Morison’s Equation performing in line with best expectations, the result is expected
to provide a sensible lag selection. This pragmatic decision was taken here to make
a compromise between computation time and potential improvements in model
performance.

An ARX model is considered for the lag selection search of the form:

yt =
lu∑
i=0

αiut−i +

ly∑
i=1

βiyt−i + ε (5.19)

where similarly to the GP-NARX, the previous signal values, y are the wave force
and the exogenous inputs considered are the velocity, U and acceleration, U̇ of the
wave particles.

UT = [U |U |t, U̇t, U |U |t−1, U̇t−1, ..., U |U |t−lu , U̇t−lu ] (5.20)

α = [C ′
d0, C ′

m0, C ′
d1, C ′

m1, ..., C ′
dlu , C ′

mlu ] (5.21)

yT = [yt−1, yt−2, ..., yt−ly ] (5.22)

β = [C ′
y1, C ′

y2, ..., C ′
yly ] (5.23)

Model evaluation

Broadly, model selection criteria have two roles: to reward models that are of a
‘good fit’ to target data and to penalise model complexity. The aim is to have the
most simplistic model that achieves good performance. The Akaike Information
Criterion (AIC) [261] is a commonly used metric for the selection of models. In its
least squares case, for a model with k parameters and n data points, AIC can be
calculated as:

AIC = n log

(
n∑

i=1

(yi − f(xi))
2

n

)
+ 2k (5.24)

The first term, containing the sum of square residuals, has the role of minimising
model error whilst the second term penalises models with a high number of
parameters. The more favourable the model, the lower the AIC.

For instances of a low sample size relative to the number model parameters
(n/k < 40) [262], it has been shown [263] that a second order variant (AICc) should
be used. For a large sample size with respect to number of model parameters,
the difference between AIC and AICc is negligible, however AICc provides better



84 5.2 GP-NARX implementation

model order choices at lower ratios [263]. AICc includes a bias correction term that
favours more simplistic models and may be expressed in its least squares case as:

AICc = n log

(
n∑

i=1

(yi − f(xi))
2

n

)
+ 2k +

2k(k + 1)

n− k − 1
(5.25)

Due to two exogenous inputs being used within the model, the number of model
parameters will grow very quickly within a search space of maximum lags considered.
For example, by 10 output lags and 10 input lags, the number of model parameters
will have already reached 30. This will exceed the condition (n/k < 40) for the
sample size used of n = 1000. It is therefore more appropriate to use AICc for lag
selection within the ARX model.

For model selection, it can often be preferable to consider multiple metrics and cross
check results. This can be done as either a sense-check or for additional validation
in the decision. An alternative to AIC is the Bayesian Information Criterion (BIC)
[264]. It is similar in structure to AIC and may be expressed in its least squares
case as:

BIC = n log

(
n∑

i=1

(yi − f(xi))
2

n

)
+ kln(n) (5.26)

The differing second term of the BIC takes in to account the sample size when
penalising model complexity. At higher sample sizes, more complex models are
penalised more heavily. For sample sizes of 8 and above, BIC will favour more
simplistic models than AIC. Determining whether AIC or BIC is used depends
heavily on model assumptions, approximations and inference and it is general good
practise to consider both in model selection [265].

Viewed alone, model selection metrics have no physical meaning. The absolute
values can differ greatly depending on the nature of datasets used and numbers
of model parameters. It is instead more useful to consider the metric difference
∆i. This is the difference between the metric score for a given model and the best
performing model. ∆i may be calculated as:

∆AICci = AICci − AICcmin (5.27)

∆BICi = BICi −BICmin (5.28)

The best model will have a ∆i of zero whilst all other models will be some positive
value. The higher the ∆i, the worse the model. Suggested levels of model support
for given values of ∆i are shown in Table 5.2.
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Table 5.2: Perceived levels of model evidence for delta values. [262]

∆i range Level of empirical support of model i

0 < ∆i < 2 ”Substantial”
4 < ∆i < 7 ”Considerably less”
∆i > 10 ”Essentially none”

A search space of up to 20 lagged time steps was considered for both the outputs
and exogenous inputs. A heatmap of ∆AICc and ∆BIC values for both the OSA
and MPO prediction of the ARX model is shown in Figure 5.2. The blue areas
represent lower values of ∆i and superior models whilst yellow indicates higher ∆i

values and therefore worse models.

The optimum lags were found to be lu = 1 and ly = 3 for both the OSA and MPO
predictions of ∆BIC and the OSA prediction of ∆AICc. The MPO prediction of
∆AICc narrowly suggested lu = 1 and ly = 4 as optimal with lu = 1 and ly = 3
having a ∆AICc of 1.67. This still provided ‘substantial’ [262] evidence in favour
of the lags lu = 1 and ly = 3 which were therefore selected for the model.

Figure 5.2: Heatmaps of lag selection metrics for the OSA and MPO
predictions of the ARX model.
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The results suggest that, uniformly, there is little benefit in considering more than
one lag for the particle velocity and acceleration terms. Instead, the richer dynamics
are expressed through the autoregressive terms for the force.

5.3 Results on the Christchurch Bay Tower

This section presents implementations of the proposed model architectures on a
dataset collected from the Christchurch Bay Tower (CBT) [230] detailed in Chapter
4. This provided a test of model performance on a structure within a real sea
environment. In all cases, the training, validation and test sets remain the same,
and unless otherwise specified, all results correspond to performance on the unseen
test set. All GP-NARX model variants included three lags of the wave load and
one lag of the exogenous input terms (water particle velocity and acceleration).

5.3.1 Uncertainty propagation

The consideration of the uncertainty present within the feedback of GP-NARX
outputs via implementation of MC MPO was found to contribute a significant
amount to the overall uncertainty within predictions. Figure 5.3 compares GP-
NARX MPO and MC MPO predictions, where one can see a significant difference
between the widths of confidence intervals. The average increase in ±3σ confidence
interval width was 75.0%.

Figure 5.3: Comparison of black-box GP-NARX MPO and MC MPO
predictions on the test set.
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Although a perceived increase of model uncertainty may be argued a disadvantage,
the underlying uncertainty present within the modelling processes has remained
the same. What has instead changed is the proportion of the uncertainty that has
been captured. A model should aim to be as realistic as possible about uncertainty
within its predictions in order to prevent circumstances of ‘confidently wrong’
predictions. At around time points 840 and 910, instances can be seen of poorer
model performance when a sudden downwards spike in the measured data occurs.
The data under study here are selected from a time when the wave state was
close to unidirectional. It is likely that these spikes occur at times when the wave
direction changed. This results in both a data-based component that is unable to
characterise the unseen conditions well and a physics-based component where the
underlying assumptions are likely less valid. In the case of the MPO prediction,
the confidence bounds are not wide enough to accommodate the measured data.
For the MC MPO prediction however, the confidence interval width can be seen to
increase significantly in these areas and is able to account for the true behaviour. A
reduction in cases of ‘confidently wrong’ predictions is a major advantage of using
MC MPO predictions.

In contrast to the confidence intervals, very little variation between the mean
outputs can be seen. For the majority of the test set prediction, the MPO (solid
line) and MC MPO (dotted line) are difficult to distinguish. For the purposes of
uncertainty feedback, 10,000 Monte Carlo samples were used which were enough to
ensure the convergence of NMSE within a 0.001% tolerance and average variance
within a 0.01N tolerance. With the wave load exceeding a 200N magnitude in many
areas, this level of precision was deemed acceptable. If the number of samples were
to be increased, the mean output of MC MPO should continue to converge towards
the MPO. This similarity in response means that the advantages in uncertainty
representation are achieved without deterioration in performance of the mean
output.

From here onwards, the MC MPO will be considered the primary prediction type
of interest.

5.3.2 Model predictive performance

The performance of each model was assessed using the response prediction on
an unseen test-set that was not used in the estimation of any parameters or
hyperparameters. For the purposes of model comparison, two measures are used:
the Normalised Mean Square Error (NMSE) to assess the performance of each
models expected output and the Mean Standardised Log Loss (MSLL) to provide
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a probabilistic measure. The NMSE is expressed:

NMSE =
100

nσ2
y

(y⋆ − y∗)T (y⋆ − y∗) (5.29)

where n is the sample size, σ2
y is the signal variance, y⋆ is the measured test signal

and y∗ is the model prediction. An NMSE of zero implies perfect prediction whilst
an NMSE of 100 would be equivalent to predicting the mean of all observations.

To construct the MSLL, one must first consider the negative log predictive likelihood
of the model, − log p(y⋆|X⋆, X, y), where y⋆ is the measured test signal, X⋆ is the
set of test inputs, X is the set of training inputs and y is the training target. Taking
the negative here returns a loss rather than a utility which may be standardised by
subtraction of the loss calculated when predictions equal the mean and variance of
the training set. This returns a Standardised Log Loss (SLL):

SLL = − log p(y⋆|X⋆, X, y) + log p(y⋆;E(y),V(y)) (5.30)

The SLL, and therefore the MSLL, will be equal to zero for the baseline case of
predicting with the training set mean and variance and increasingly negative for
improved model predictions.

A comparison of metrics for the models and their various prediction types is shown
in Table 5.3. Comparisons of the full test set posterior between the model with
the lowest NMSE, the grey-box residual modelling GP-NARX, and other model
types are shown in Figures 5.4-5.6. All results presented within this section relate
to models constructed using the full training and validation sets.

A stand out observation from the results in Table 5.3 is the significant performance
gap, in terms of both NMSE and MSLL, between the GP-NARX OSA and all other
prediction types. This is to be expected due to the nature of OSA predictions and
inclusion of lagged measured outputs within the model inputs. The prediction of a
single time step ahead is of very limited use in SHM applications, particularly in
the case of high sample rates, thus the good performance is of little benefit.

The NMSE of the white-box linear regression was found to be 19.528% which is
in line with the expected 20% [257] residuals of Morison’s Equation. Although
this is around 3-6% higher than the NMSE of other models, the result is achieved
with reduced modelling complexity and computational burden. Considering the
simplified version of Morison’s Equation used had only the two model parameters
C ′

d and C ′
m to model the relatively complex wave load, even moderate levels of

model performance are commendable.
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Table 5.3: Performance comparison of model types.

Model Model type NMSE (%) MSLL

Morison’s Equation White-box 19.528 −0.813

Static GP
Black-box 16.433 −0.939
Residual modelling 16.751 −0.914
Input augmentation 15.627 −0.951

GP-NARX OSA
Black-box 2.702 −1.444
Residual modelling 5.212 −1.012
Input augmentation 2.947 −1.429

GP-NARX MPO
Black-box 14.773 −0.968
Residual modelling 13.862 −0.872
Input augmentation 14.072 −0.994

GP-NARX MC MPO
Black-box 14.643 −0.788
Residual modelling 13.840 −0.835
Input augmentation 14.088 −0.791

All models including a machine learning component were able to offer significant
reductions in NMSE over the white-box model. The success of the grey and black-
box models was to be expected due to the failure of Morison’s Equation to account
for complex behaviours present within wave loading such as vortex shedding [256].
The inclusion of the black-box component, whether this be a GP or GP-NARX,
increased model flexibility, allowing the representation of such behaviours. This
indicates that previously missed underlying structure within the wave force was
then able to be captured.

For all grey-box models except the residual modelling static GP, modest improve-
ments in NMSE over the equivalent black-box approach were observed, implying
that the inclusion of physics through the white-box component was able to aid
model performance. For the residual modelling static GP, the inability of the
black-box component to model the dynamics in the white-box residuals led to a
reduction in performance. The fact that the residual modelling GP-NARX was
the best performing grey-box model suggests the presence of some structure within
the residuals only able to be captured by the GP-NARX and not by the static GP.
In terms of missed phenomena from the model, this would be a process captured
well by an autoregressive model exhibiting features such as periodicity over a small
time scale.
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In general, a larger increase in performance can be seen between the grey-box
and white-box models, than between the grey-box and black-box models. The
primary reason for this is when the full training and validation sets are used, the
model is deemed to be mostly interpolating (See Section 3.1.3). Black-box and
grey-box models are expected to achieve a similar performance in interpolation,
with a physics-based component being most useful to assist with extrapolation.
The specific type of components used to construct a grey-box model will also affect
the relative differences in performance. Here, Morison’s Equation – an approximate
wave loading solution, is combined with a GP-NARX – a relatively powerful black-
box architecture. The computational balance is heavily weighted in favour of the
GP-NARX and it is to be expected that the performance of the grey-box would be
more similar to the black-box than the white box in this case.

The MSLL of Morison’s Equation was −0.813, which being in line with the MSLL
of the residual modelling GP-NARX MC MPO of −0.835, indicated a strong model
performance. Although a similar MSLL results in a similar prediction likelihood, it
does not describe other aspects of model performance. Morison’s Equation achieved
the result with the highest NMSE of all models and the residual modelling GP-
NARX the lowest. The similar MSLL was achieved through the lower prediction
variance of Morison’s Equation which can be seen from the narrower confidence
interval width within Figure 5.4. The trade-off between variance and NMSE would
generally be preferred in favour of NMSE with wider confidence intervals better
able to contain the measured result.

The earlier discussed effect of GP-NARX uncertainty propagation can be seen
within the increase in MSLL between the MPO and MC MPO of the GP-NARX.
The increased prediction variance caused by the feedback of output distribution
samples reduced the likelihood of the prediction significantly. However, the proper
treatment of uncertainty is important in preventing overestimation of prediction
likelihood and overconfidence within predictions far from the observation.

5.3.3 Model performance during extrapolation

A major drawback of black-box models is poor performance in conditions outside
those experienced within the training and validation sets. In an engineering context,
this necessitates the collection of data across all possible operating conditions of
the structure or system of interest. Such a demand may be extremely costly,
or impossible in some cases. Improvements in extrapolative capabilities would
relax the dataset coverage of conditions required for effective machine learning
implementation, thereby reducing the associated monitoring efforts. This is where
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Figure 5.4: Test set prediction comparison between the white-box
linear regression (solid line) and the MC MPO of the grey-box residual
modelling GP-NARX (dotted line).

Figure 5.5: Test set prediction comparison between the MC MPO of
the black-box (solid line) and grey-box residual modelling GP-NARX
(dotted line).

Figure 5.6: Test set prediction comparison between the MC MPO of
the grey-box input augmentation (solid line) and residual modelling
(dotted line) GP-NARX models.
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one would expect a grey-box model to be of particular use.

To consider the extent to which a model is extrapolating, it is useful to consider
how the training, validation and test sets overlap within the input space, which for
the case of wave loading is formed of the velocity U and acceleration U̇ of the wave
particles, and their lags. In the idealised case, all conditions within the test set
will lie within the area/volume2 covered by the training and validation sets; this
guarantees that the model is interpolating at all times (assuming the training and
validation set are representative of the behaviour of the system). Obtaining such
a dataset is challenging in many contexts, particularly for offshore environments
where conditions are highly variable and measured data for extreme events is rare.
Model performance in extrapolation is, therefore, very important in such cases.

For fewer than four dimensions, one may visualise the input space for the training,
validation and test sets, and consequently their overlap. Here, considering the input
space in terms of the only the velocity and acceleration of the wave particles and
not their lags, Figure 5.7 plots the boundaries for the three datasets used in the
previous section. The boundaries of the dataset are determined to be the maximum
projections from the origin of the input space in all directions encompassed by the
measured data. In areas where the testing set overlaps the training and validation
sets, the model will be interpolating, else it will be extrapolating. It is worth noting
that even the ‘complete’ datasets used here represent only a small proportion of
conditions able to be experienced by the structure (as the data were chosen where
flow conditions were close to uni-directional, as discussed at the start of Section 3).
The 2D boundaries of wave velocity and acceleration were found to be comparable
to the boundaries of the first 2 input space PCA components which accounted for
95% of total variance and deemed representative of the input space as a whole.

For this two-dimensional case, one may use a coverage measure to assess the extent
to which one is extrapolating. Here the coverage is calculated as the proportion
of area within the test set boundary that lies within the boundaries of both the
training and validation sets:

Coverage = 100

(
A′

A

)
(5.31)

where A′ is the area within the test set boundary also enclosed by both the training
and validation set boundaries and A is the total area within the test set boundary.
Although the density of points within boundaries can vary at each coverage level,
a relative measure of extrapolation is achieved, allowing for an investigation in to

2In most cases this is likely to be an n−dimensional volume, as the input space will generally
have more than two dimensions



5.3 Results on the Christchurch Bay Tower 93

Figure 5.7: 2D visualisations of training, validation and test set bound-
aries and their overlapping region of interpolation. The black lines
represent the boundaries enclosing the coloured points from each data-
set. The blue, green and grey shaded regions represent the areas covered
by each dataset whilst the shaded teal region represents the area of the
test set considered interpolation.

extrapolative performance of the models. Note that outliers will have a considerable
impact on the calculated coverage level, leading to an over estimation of actual
coverage and should be removed from datasets where appropriate. In order to
assess model performance at a range of coverage levels, the sizes of the training and
validation sets were adjusted to achieve desired levels of coverage. As the number
of points used increases, the boundary covered by the datasets will grow and hence
cover a larger area of the test set. The rate of growth of the boundary will be
highest at low quantities of training and validation points where each additional
data point will have a higher chance of widening the boundary. Plots of overlapping
boundaries for a range of training and validation set sizes and their respective
coverage levels are shown in Figure 5.8. Results of model NMSE from 0% to 80%
coverage levels in 5% coverage intervals is shown in Figure 5.9.

Figure 5.8: Plots of 10%, 30%, 50% and 70% test set coverage at
increasing quantities of training and validation points. The blue, green
and grey shaded regions represent the areas covered by each dataset
whilst the shaded teal region represents the area of the test set con-
sidered interpolation.
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Figure 5.9: NMSE vs coverage for the MC MPO of black-box and
grey-box GP-NARX models and Morison’s Equation with all models
constructed using the restricted sizes of training and validation sets
and prior Cd and Cm coefficients suggested by Clauss [233] and DNV-
RP-C205 [234].

The largest difference in model performance is visible at the lowest levels of coverage,
with the NMSE of the black-box and input augmentation models increasing steeply
as the coverage approaches zero. With no supplied data and zero coverage, all
models revert to their prior, resulting in an NMSE of 100% for both the black-box
and input augmentation models. The poor performance of black-models at low
levels of coverage is to be expected, however, the input augmentation model failed
to offer improvement despite being supplied with the same Morison’s Equation
prediction and prior Cd and Cm coefficients as the residual modelling approach.
The physics-based component was unable to assist the input-augmentation model
at low coverage due to being supplied as GP input, since the inputs of a GP may
only influence a prediction within a proximity to observed data determined by the
lengthscale. When far from observed data, the inclusion of Morison’s equation as
an input will have minimal benefit.

The performance of residual modelling suffers significantly less when the coverage is
reduced, indicating an improvement in extrapolative capabilities. In the case where
no data are supplied, the black-box component of the model reverts to a zero prior,
so that the predicted output of the model is now just the prediction of Morison’s
equation. The usage of Morison’s Equation with prior Cd and Cm coefficients was
able to achieve an NMSE of 54.03%, a significant improvement over the black-box
and input augmentation models. The white-box acts as a baseline performance
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for the model which may be improved if data are provided but will not override
the improved black-box predictive capabilities in areas where data are available.
Residual modelling combined the same white-box and black-box components as
the input augmentation model but in a means that achieved superior extrapolative
performance.

An alternative investigation in to the effect of coverage on model performance
assumed an existing white-box model could be used to assist with predictions,
with C ′

d and C ′
m fixed independently of the supplied training data. This scenario

represents the possible case of machine learning implementation within industry
where a white-box model is already established and in use. To mimic an established
white-box model, the coefficients of Morison’s equation were established via Bayesian
Linear Regression using the complete validation set, which would not ordinarily be
used in white-box model creation, and kept constant throughout the variation of
coverage. Results of model NMSE from 0% to 80% coverage levels in 5% coverage
intervals is shown in Figure 5.10.

Figure 5.10: NMSE vs coverage for the MC MPO of black-box and
grey-box GP-NARX models and Morison’s Equation with C ′

d and
C ′
m calculated independently of the supplied training data and kept

constant throughout the variation of coverage.

By incorporating an existing white-box model rather than beginning model con-
struction from scratch, a significant increase in residual modelling performance at
low coverage levels can be seen. Where previously, the model performance here
was heavily dependant on the selected prior Cd and Cm coefficients, the model
is now able to revert to the prediction of the existing white-box model, thereby
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reducing model NMSE to 21.26% at zero coverage. Provided that the existing
model has been validated for use over the intended prediction range, this highlights
the benefit of incorporating existing models within the newly created architectures.
At high levels of coverage the incorporated existing model has a minimal effect
on predictions, with models relying more heavily on their black-box component in
areas where data are available.

5.3.4 Computation time

The trade-off between performance and computational demand is an important
consideration, particularly within industrial applications. Across all models, perhaps
unsurprisingly, the general trend is that those that perform best require an increased
computation time. For the training and prediction of a single model this ranges
from 0.9 seconds for the linear regression, to an average of 81 seconds for GPs and
2 hours 11 minutes for the extreme case of GP-NARX models.3 This difference is
only exaggerated when taking in to account repeated optimisation runs to ensure
stable convergence of GP and GP-NARX hyperparameters.

There are two major reasons for the considerably higher computation time of the
GP-NARX models: the complexity and computational demand of the MPO NLPL
cost function and the requirement of MC samples to propagate uncertainty within
the output. During optimisation, for any considered approach [130], the complexity
of the cost function is tied to the computational cost of the search. For the case of
the MPO NLPL, the cost function was both slow to evaluate due the requirement
of propagation through an independent validation set and highly sensitive to small
changes in parameters, thereby creating a complex search space with high numbers
of local minima. Hyperparameter sensitivity was a particular issue within the
GP-NARX MPO and MC MPO due to the feedback of predictions within the
model. This meant that the hyperparameters not only had an effect on predictions
at the current time step but again for every instance the prediction was used as
a lagged input. The high hyperparameter sensitivity meant that an increased
swarm size and tighter convergence tolerance had to be used with QPSO to ensure
stable optimisation which further slowed computation time. Although the larger
factor within the overall run time of the GP-NARX model, the MPO NLPL cost
function only affected the training time of the model, whilst the requirement of
MC samples for the propagation of uncertainty affected the prediction time of the
model. The computational demand within prediction is a priority for machine

3Runtimes achieved on a laptop with specification: 16GB RAM, Intel i7-9850H processor (6
core, 2.60-4.60GHz)
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learning techniques as models are generally required to be trained once but make
predictions repeatedly. In order to reduce prediction time, it would be possible to
explore reductions within the number of MC samples used and achieve compromises
between predictive stability and computation time.

An alternative means by which to reduce computation cost, with a more specific
focus on training time, is through the use of sparse GPs. A subset of training
points or set or pseudo-input points [266] is used to approximate the true posterior
of the GP. The computational cost of training is reduced from O(n3) to O(nm2)
[267], where n is the number of data points and m is the size of the subset. These
methods are most useful in cases of very large datasets, with a training set of
n = 700, 000 and m = 1000 being effective for the estimation of flight delay times
[249]. Their implementation should be considered if the dataset was expanded to
cover a wider range of conditions.

5.4 Conclusions

The combining of physics-based white-box and data-based black-box modelling
techniques in the form of two grey-box architectures was found to offer benefits
in predictive performance over either approach used alone. The best performing
grey-box model, the residual modelling GP-NARX, achieved an NMSE of 13.840%
and a MSLL of -0.835, an improvement over both Morison’s Equation (19.528%
and -0.813) and a black-box GP-NARX (14.643% and -0.788). It was expected
that grey-box models would be of specific help in assisting with extrapolation,
an area in which data-based methods typically experience difficulty, and this was
indeed found to be the case. Residual modelling achieved improved performance
outside the range of observed training conditions, particularly in instances where a
pre-established white-box was available for inclusion in to the combined model.

This chapter investigated the combining of Morison’s Equation with both GP and
GP-NARX regression models to predict wave loading on a structure in a real sea
environment. It presented the first successful case of integrating physics and data-
based methods for wave loading prediction. Two key challenges with employing
the GP-NARX formulation addressed here were the selection of appropriate lag
terms and the proper treatment of uncertainty propagation within the dynamic
GP. A key limitation of the model, addressed in the next chapter, is a reliance
on measured flow conditions close to the structure. These were used as inputs for
both Morison’s equation and the GP-NARX and would require the installation of
flow meters.



Chapter 6

Enhancing Gaussian Process
Wave Loading Predictions Using

Linear Wave Theory

This chapter builds upon the grey-box model development of Chapter 5, in which
models relied on measurements of flow conditions close to a structure to predict the
wave load. These measurements are rare and can be difficult and costly to obtain.
Here, aspects of linear wave theory are integrated within a GP-NARX framework
to remove this reliance. Utilising physical knowledge, models are developed which
rely on only incoming wave height as an input, a commonly available measured
variable on many offshore structures. Models are developed using data from the
monopile experiment detailed in Chapter 4, which was designed and carried out by
the author. The developed PIML models provide a quantification of uncertainty
alongside predictions as well as insight into the breakdown of wave load components.

6.1 Measurement of waves

The quantification of wave loading, through either measurement or prediction,
presents its own set of challenges. The direct measurement of wave loads acting on
offshore structures is rare, and where attempted it often requires the development
and installation of bespoke systems. Even when measurements may be available,
these are generally at point locations and do not provide access to a distributed

98
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load over the structure. The prediction of wave loads across a structure, using data
readily available from other sensors has the potential to provide access to wave loads
where they can not be measured and reduce the cost of implementing additional
measurement equipment. This chapter focuses on the utilisation of incoming wave
height data, commonly available from wave radars across many offshore structures
[33, 34]. Incoming wave heights are often used for the construction of directional
wave spectra [268, 269], which provide an interpretable way to present a snapshot of
a given sea state. Petersen [270] utilised directional spectra alongside accelerometer
measurements to estimate the wave loading on the Bergsøysund bridge.

The role of a wave radar on an offshore structure was replicated in the monopile
experiment, introduced in Chapter 4, through the use of wave gauges. Images
of both are shown in Figure 6.1. Although both pieces of equipment provide a
measurement of wave height, there are a number of differences in capability worth
highlighting. Firstly a wave radar is a non-contact measurement device, able to
be attached to a structure high above the waters surface, whereas a wave gauge
must be partially submerged to work. In the harsh conditions of a real offshore
environment, the expected lifetime of a wave gauge would be much lower than
that of a wave radar. A second advantage of wave radars is that they are able
to measure wave profiles over an area, therefore providing an indication of wave
direction along with an instantaneous wave profile [271]. A wave gauge, however,
is only capable of providing a point estimate of water depth, which may be used to
estimate wave profiles over time.

Figure 6.1: Images of a MIROS WAVEFUSION [271] wave radar
installed on an offshore wind turbine (left) and the wave gauges used
within the monopile experiment (right).
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Due to the experiment taking place in a laboratory wave tank, the primary ad-
vantages of the wave radar over the wave gauge were not deemed to justify the
significant additional expense. The conditions within the tank were much less harsh
than a real offshore environment, with smaller amplitude waves, a lack of salinity
and no wind. This meant that a reduced lifetime due to submerged measurement
equipment was not a major factor. An ability to measure wave direction was also
not of significant benefit due to only inline waves being generated within the wave
tank. For these reasons, the more cost-efficient wave gauge was the prefered choice
of measurement equipment.

The work in this chapter has two main objectives: to model the wave load acting on
a monopile using only data of incoming wave height and to showcase how physical
knowledge may be integrated within Gaussian process NARX models to improve
performance and provide interpretability. Here, linear wave theory is used to
improve predictive performance by providing an approximation of flow conditions
as a model input whilst Morison’s Equation is used to visualise the breakdown of
the wave load in to drag, inertia and excluded effects. A key conclusion drawn was
that although the physical knowledge included was imperfect, relying on a number
of simplifying assumptions, it was still able to assist the combined final models.

6.2 Integrating physics and data

The types of physics and data-based components used, along with the means by
which they are combined, has a significant effect on the model structure produced,
its performance level and levels of insight provided into predictions. Here, two
pieces of physics are integrated within a GP-NARX: linear wave theory is used to
approximate flow conditions for use as a model input, whilst Morison’s Equation is
used to provide an estimate of the drag and inertia components of the wave load.
A summary of included physics is shown in Table 6.1.

6.2.1 Input augmentation: Linear wave theory

The objective of models here is to predict wave load using incoming wave height as
an input, however the relationship between free surface elevation and wave force is
complex. This means that not only is a flexible model required, but also that the
learning task is highly challenging, placing increased demand on required training
data. The role of linear wave theory is to achieve an approximation of the flow
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Table 6.1: Summary of physical knowledge included and its role within
the combined model.

Physics included Aim Method How is aim achieved?

Linear wave
theory

Performance
improvement

Input
augmentation

Simplification of
learning task

Morison’s
Equation

Interpretability
Mean

function
Breakdown of wave
load components

conditions close to the monopile, thereby reducing the complexity of the learning
task, allowing an increased performance when data availability is lessened. The
change in model structure from a black-box approach is summarised in Figure 6.2.

Figure 6.2: A comparison of the proposed physics-informed model structure
with a black-box approach. The measured free surface η is used to approximate
flow conditions (water particle velocity U and acceleration a) close to the
monopile for use as an input to the model, rather than being directly used
itself.
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The approximation of flow conditions will be used to predict force acting on the
monopile at the force collar, around the region close to the free surface (−0.05 ≤
z ≤ 0.05m). This is where flow velocities and accelerations are typically highest
and where the maximum forces are likely to be experienced. The prediction of
the largest forces applied to the monopile is most influential for the prediction of
remaining fatigue life. Only the data from a single wave gauge will be available for
use as a model input. A diagram of the relative dimensions between measurement
equipment is shown in Figure 6.3.

Figure 6.3: Relative positions of measurement equipment within the
wave tank. Only data from wave Gauge 1 was used as input data for
models. Wave Gauge 2 and the velocimeter were used for validation
whilst data from the force collar was used as a training target and an
unseen test target.

In order to integrate linear wave theory within the GP-NARX, the following
workflow is proposed:

1. Perform a free surface reconstruction using the measured surface elevation
from wave gauge 1, located 363mm from the monopile.

2. Validate the accuracy of the free surface reconstruction using the measured
data from wave gauge 2, located 252mm from the monopile, none of which
will be shown to the model prior to testing.
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3. Construct a velocity field for the sum of linear waves obtained from the free
surface reconstruction.

4. Validate the accuracy of the generated water particle velocities and accelera-
tions generated using the measured data from the velocimeter.

5. Use the validated velocity field to achieve an estimate for the flow conditions
at the force collar.

6. Use the flow conditions at the force collar as inputs within a range of models
for wave loading prediction.

7. Test the performance of wave loading prediction achieved using the measured
data from the force collar.

The reconstruction of the free surface follows the methods described within [272]
and relies on the decomposition of the wave in to a sum of harmonic components.
Here, the discrete form of the Fourier transform is employed:

Xk =
N−1∑
n=0

xn exp(−2πi

N
kn) (6.1)

This allows for the representation of a signal as a sum of N sinusoidal functions,
for which the ith term may be expressed in terms of its angular frequency ωi,
amplitude Ai and phase Φi.

ωi =
2πnf

N
(6.2)

Ai =
1

N

√
ℜ(Xk)2 + ℑ(Xk)2 (6.3)

Φi = arctan

(
ℑ(Xk)

ℜ(Xk)

)
(6.4)

where f is the sample rate in Hz. The ith wave number ki is obtained through
solution of the linear dispersion relation.

ω2
i = gki tanh(kd) (6.5)

where g is acceleration due to gravity and d is depth. This allows for the expression
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of free surface η as a sum of N linear waves [272].

η =
N∑
i=1

Ai cos(kix− ωit+ Φi) (6.6)

For the validation of the free surface reconstruction, the surface elevation from
wave gauge 1, placed 363mm from the monopile was used to determine a sum of
linear waves. The accuracy of a free surface reconstruction was then tested at wave
gauge 2, placed 252mm from the monopile as shown in Figure 6.4. None of the
measured data from wave gauge 2 was shown to the model before performance was
measured.

Figure 6.4: A comparison of free surface reconstruction at wave gauge 1
(top), located 363mm from the monopile, and wave gauge 2 (bottom),
located 252mm from the monopile for a JONSWAP wave with γ = 3.3
and ωp = 0.8Hz.

The measured free surface elevation from wave gauge 1 was used for the reconstruc-
tion, with an average NMSE of 15.48% achieved on the free surface fit at wave
gauge 2 across all JONSWAP waves.

The reconstruction of the free surface required the decomposition of the wave in
to a sum of linear waves, which provides a useful tool for the derivation of several
properties [36]. An important one of which is the velocity potential ϕ, which when
treated as a sum over N linear waves is expressed:

ϕ =
N∑
i=1

Aig

kici

cosh(ki(z + d))

cosh(kid)
sin(kix− ωit+ Φi) (6.7)

The horizontal and vertical velocities are negative spatial derivatives of the velocity
potential and their calculation for a given range of x and z will allow for the
construction of a velocity field. Noting that velocities here are only meaningful
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below the free surface, the horizontal velocity Ux and vertical velocity Uz are
expressed:

Ux = −∂ϕ

∂x
=

{∑N
i=1 ωiAi

cosh(ki(z+d))
sinh(kid)

cos(kix− ωit+ Φi) z ≤ η

0 z > η
(6.8)

Uz = −∂ϕ

∂z
=

{∑N
i=1 ωiAi

sinh(ki(z+d))
sinh(kid)

sin(kix− ωit+ Φi) z ≤ η

0 z > η
(6.9)

from which the horizontal acceleration ax and vertical acceleration az are derived
as

ax = − ∂2ϕ

∂x∂t
=

{∑N
i=1 ω

2
iAi

cosh(ki(z+d))
sinh(kid)

sin(kix− ωit+ Φi) z ≤ η

0 z > η
(6.10)

az = − ∂2ϕ

∂z∂t
=

{∑N
i=1 ω

2
iAi

sinh(ki(z+d))
sinh(kid)

cos(kix− ωit+ Φi) z ≤ η

0 z > η
(6.11)

The construction of velocity fields allows for the visualisation of an important
property of flow conditions within waves, the orbital motion of water particles.
The size and shape of orbits is affected by both the wave and relative depth of the
water, causing a non-trivial relationship between different points within the wave
field. In extreme cases, it is possible for nearby points within a wave field to have
velocities in almost opposite directions. This factor contributes to the difficulty of
predicting a wave load on a structure from nearby flow conditions.

By calculating the velocities and accelerations at the location of the velocimeter,
where there is access to the measured variables, it was possible to test performance.
It should be noted that it is not expected that results should match exactly, the true
behaviour of fluid motion is far more complex than defined within linear wave theory.
The aim of the velocity field reconstruction was to provide an approximation of flow
conditions that would be useful as an input for wave loading prediction models. The
reconstruction also has the advantage of only using the velocimeter as a validation
step, with only data from a wave gauge (a cheap and widely implemented sensor)
being shown to the model. A timeseries fit of the velocities and accelerations at
the velocities achieved at the velocimeter location is shown in Figure 6.5.

For all wave conditions generated within the tank, an adequate approximation of the
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Figure 6.5: A comparison of water particle velocities and accelerations
at the velocimeter from a JONSWAP wave with γ = 3.3 and ωp =
0.8Hz.

flow conditions at the velocimeter was achieved via the velocity field reconstruction.
A summary of validation performance for the velocities, accelerations and free
surface is shown in Table 6.2. Reconstruction accuracies of 15− 20% were deemed
acceptable, and around the order expected given the use and limitations of linear
wave theory [35, 36].

Table 6.2: Summary of average NMSE achieved across all JONSWAP
waves, when estimating the horizontal velocity Ux, vertical velocity Uz,
horizontal acceleration ax and vertical acceleration az at the location
of the velocimeter and the free surface η2 at wave gauge 2.

Variable Ux Uz ax az η2

NMSE (%) 15.693 18.853 17.959 20.602 15.480

For the approximation of flow conditions at the location of the force collar, the region
of the velocity field where x = 363mm and (−0.05 ≤ z ≤ 0.05m) was evaluated.
This represented its location w.r.t wave gauge 1 where the reconstruction of linear
waves was performed. A diagram of the relative positions of the wave gauges,
velocimeter sampling volume and force collar surface is shown in Figure 6.6.

The reconstructed force collar velocities were averaged to provide a single represent-



6.2 Integrating physics and data 107

Figure 6.6: The relative positions of the wave gauges, velocimeter
sampling volume and force collar surface within a reconstructed velocity
field from a JONSWAP wave with γ = 3.3 and ωp = 0.8Hz.

ative velocity to calculate the total force acting on the force collar. A convergence
study on the vertical grid spacing dz was performed to a velocity stable with 1%
tolerance, leading to a selection of dz = 0.2mm.

Where the reconstruction of the flow conditions at the velocimeter could be com-
pared with measured data, this was not the case at the force collar as it was not
possible to measure flow in this location. However, it should be emphasised that
the flow conditions themselves are not the quantities of interest; the wave load is.
The success of the velocity field reconstruction at the force collar shall therefore be
determined not by the accuracy of the reconstructed flow conditions, but whether
they provide a useful input to assist a wave loading prediction model. The steps to
validate the constructed sum of linear waves indicate a satisfactory representation
of conditions at the velocimeter. Whether this was repeated at the force collar
will be in part determined by the performance of wave loading predictions models
presented in the next section.

6.2.2 Mean function: Morison’s Equation

Morison’s equation approximates two components of a wave load: the drag force,
caused by the relative motion of fluid and a body, and the inertia force, caused by
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pressure gradients within an accelerating fluid. The accuracy of Morison’s Equation
is, in part, determined by the extent to which a wave load is dominated by the
drag and inertia components. In reality, there are many other excluded effects,
contributing towards the total wave load [36, 222], including:

� Diffraction forces, caused when a wave pattern is modified when moving past
a structure. These occur when the diameter of a structure is comparable in
size, or larger, than the wavelength of the wave.

� Pressure forces, induced by the fluctuating pressure within a moving wave.
These typically include higher-order terms and are more significant for steep
waves (a large amplitude relative to wave length).

� Oscillatory forces, caused by the periodic shedding of vortices. These will
occur at the Strouhal number St = fD

U
, where f is the shedding frequency,

D is the diameter of the structure and U is flow velocity.

� Boundary interactions, caused by the restriction of fluid flow nearby the
structure. These may be caused by the close proximity of other structures
(e.g. dense array of monopiles, multiple legs of a jacket structure) or presence
of walls (e.g. wave tank).

� Damping forces, from the dissipation of energy when a structure is moving
relative to a fluid. These are enhanced when a structure experiences sway.

Morison’s Equation is known to neglect the above effects [222], which although is
often a valid assumption for slender structures in deep water, is not expected to
hold within the experimental setup here. The 90mm diameter monopile within a
0.5m wide wave tank results in a blockage ratio of 0.18, a value high enough to
modify the passing wave pattern [222]. To capture the total wave load, a model
structure is proposed of:

F =
1

2
ρDCdU |U |︸ ︷︷ ︸
Drag

+
1

4
πρD2CmU̇︸ ︷︷ ︸
Inertia

+ f(x)︸︷︷︸
Excluded effects

(6.12)

where f(x) is a GP-NARX. Within the GP framework, this is equivalent to a
Morison’s Equation mean function, as in the previous chapter, with the residuals
learned from data. The estimation of other effects, including diffraction, and
pressure forces often involves the use of CFD and numerical methods [273, 274],
which can result in high computational demands. Here, it is hoped that the
flexibility of the GP-NARX may learn its structure from data.
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A key challenge facing the implementation of the Morison’s Equation mean function
is an appropriate method of selecting Cd and Cm. The presence of other effects
can impact the calculation of Cd and Cm, often leading to unrealistic coefficients
to achieve a best fit to data. It is known that Cd and Cm are dependent on
variables related to flow conditions, including Reynold’s number Re and Keulegan-
Carpenter number Kc, along with variables related to the structure, including
surface roughness k and slenderness D

L
. This has lead to the use of standardised

formulae, tables and charts from which to estimate Cd and Cm based from these
variables. Here, DNV-RPC-205 Recommended Practice [234] is used to achieve
appropriate estimates of the drag and inertia components of the wave load. It should
be noted that these standardised coefficients aim to serve only an approximation
and would not be expected to outperform fitted coefficients if the drag an inertia
components dominated the wave load.

6.3 Results on the Monopile Experiment Data

This section aims to present and compare the performance of wave loading prediction
models with a specific focus on the benefits of integrating physical knowledge with
data. Each model was tested across a matrix of JONSWAP waves as a function of
peak enhancement factor γ and peak frequency ωp as detailed in Chapter 3. Each
model was trained on 300 data points and tested on an unseen set of 1000 data
points.

6.3.1 Morison’s Equation

The approximation of flow conditions as described in 6.2.1 combined with the use of
Morison’s Equation, is able to provide a means of wave load prediction using only
wave gauge data as an input with very low computational expense. Here, this will
be considered a purely physics-based approach. A surface of NMSE performance
over the range of wave conditions for Morison’s Equation, with inputs provided
through linear wave theory, is shown in Figure 6.7.

The performance of Morison’s Equation ranged from 34.43-51.34% NMSE, somewhat
above the ∼ 20% residual [257] that might be hoped for when Morison’s Equation
is performing to its potential. There are two primary reasons for this observed
drop in performance: the modelling process here begins with wave height rather
than flow conditions, presenting an additional challenge within the task; and there
is expected occurrence of other effects caused by the monopile disturbing the
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Figure 6.7: NMSE surface of Morison’s Equation using the approxim-
ated flow conditions at the force collar as inputs. Models were tested
over a grid of JONSWAP waves as a function of peak enhancement
factor γ and peak frequency ωp.

passing wave profile within the narrow tank. Morison’s Equation is known to only
approximate the drag and inertia components of the wave load and it is unfair to
expect optimum performance from its implementation in this case.

A key performance trend observed within Figure 6.7 is a visible ridge along the
0.8Hz peak frequency wave states. The natural frequency of the structure was
intentionally dropped within the operating range of the wave tank to approximately
0.8Hz, such that wave loading prediction around resonance could be observed, and
this being the region of worst performance was to be expected. When excited close
to a natural frequency, the motion of the structure will be largest, thereby having
the greatest impact on the relative motion of the structure and fluid. Although
extensions to Morison’s have focussed on accounting for moving structures [275],
the standard form implemented here assumes a static structure. The aim of utilising
empirical methods here was to provide a computationally efficient start point from
which to develop improved model structures.

6.3.2 Autoregressive modelling

The development of linear autoregressive models provides a useful tool to bridge the
gap between Morison’s Equation and GP-NARX modelling, providing a compromise
between performance and computational cost. A specific motivator for their use
here is their role within lag selection, for which many model optimisations are
required. The completion of a similar process using GP-NARX models would have
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been computationally infeasible.

AutoRegressive models with eXogenous inputs (ARX) are considered here of the
form:

yt =
lu∑
i=0

αiut−i +

ly∑
i=1

βiyt−i + ε (6.13)

where the previous signal values, yt−i are the wave force and the exogenous inputs
ut−i considered were the approximated velocity, U and acceleration, U̇ of the
wave particles at the force collar location. This form of ARX model mimics the
structure of Morison’s equation, with lagged terms adding capability to cope with
the upstream position of measurement equipment and representation of higher
order terms. Alternatively, one may use the measured free surface elevation η as the
input to the ARX model. This case is also considered here, alongside the Morison
structured ARX, as a purely data-based approach as it would not rely on either
linear wave theory or Morison’s equation for its construction.

Lag selection: A grid search over grids

The determination of the number of selected lags for the exogeneous inputs, Lu and
the model output, Ly is an important step in autoregressive model construction.
The selection of lagged terms has significant effect on the structure and performance
of the model. In some cases, the selection of lags may even change the name of a
model, with a summary of this shown in Table 6.3. The key challenge of lag selection
is computational cost; the modification of lagged terms requires the construction,
fitting and evaluation of a new model. Here, this problem is amplified due to the
range of generated wave states. For each generated JONSWAP wave state, in terms
of γ and ωp values, the lag selection process must be repeated.

Table 6.3: Categorisation of linear-in-the-parameters autoregressive
Models depending on considered lag space. *Here, AR models are
considered to depend only on lagged values of the target yt−i.

Lu = 0 Lu > 0

Ly = 0 Linear regression Finite impulse Response (FIR) model
Ly > 0 AR model* ARX model

Consistent with the approach of Chapter 5, the Bayesian Information Criterion
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(BIC) [264] was selected as a model selection criterion, against which candidate
lags were evaluated. It rewards model performance whilst penalising more complex
models. Lag selection was done using the Morison structured ARX model as a
grid search up to a maximum of 20 lags, beyond which models would be become
increasingly likely to overfit. A heatmap of ∆BIC is shown for the JONSWAP
wave file γ = 3.3, ωp = 0.8 Hz in Figure 6.8. The ∆BIC is the difference in BIC
between the optimum model and any other result and is useful as a method of
comparison between models. The optimum model will have ∆BIC = 0, with a
high BIC being an indicator of a poor model selection.

Figure 6.8: ∆BIC heatmap for OSA and MPO predictions of the
Morison ARX model for a JONSWAP wave with γ = 3.3 and ωp =
0.8Hz. For an OSA prediction, inputs to the model include previously
measured values of the target, whereas for the MPO, they are previous
predictions of the target.

Since the selection of lags defines the structure of the model and a single model
was required to work across a range of conditions, it was necessary to select a single
combination of optimum lags. The selection of multiple optimum lags for each set
of generated wave conditions would require the construction of multiple models.
To achieve a single lag selection, the lag selection process was first repeated for
each γ and ωp dependent JONSWAP wave. An overview of heatmaps is shown in
Figure 6.9. The results were then averaged across the set of conditions to provide a
single indicator of how a lag selection performed across a range of conditions. The
averaged ∆BIC heatmap across the generated set of JONSWAP waves is shown
in Figure 6.10.

The optimum lags selected were Lu = 4 and Ly = 0, indicating that the lagged
flow conditions provided a more useful model input than lagged predictions of the
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Figure 6.9: ∆BIC heatmaps from the Morison ARX model for the
generated set of JONSWAP waves as a function of γ (columns) and
ωp (rows). Each subplot represents a grid search of lags Lu and Ly

for a particular generated JONSWAP wave. A consistent pattern of
∆BIC suggests the selection of a single set of Lu and Ly would be
appropriate.

wave force. This is expected to be due to a compounding of errors due to the
prediction feedback. Even errors that begin small, have the potential to grow with
each feedback cycle of an autoregressive model. Autoregressive model structures
dependent on exogenous inputs only are sometimes referred to as Finite Impulse
Response (FIR) models (See Table 6.3).

Visualisation of the cross correlation can provide a helpful tool in interpreting the
selected lags. A high correlation between variables, particularly at specific lagged
time steps, is an indicator of a useful model input. The cross correlation of the
measured wave force F with itself, horizontal velocity Ux, horizontal acceleration
ax and predicted wave force F̂ is shown in Figure 6.11.
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Figure 6.10: Averaged ∆BIC heatmap from the Morison ARX model
across the generated set of JONSWAP waves as a function of γ and
ωp. An optimum lag selection of Lu = 4 and Ly = 0 was achieved.

Figure 6.11: The cross correlation of the measured wave force F with
itself, horizontal velocity Ux, horizontal acceleration ax and predicted
wave force F̂ (left) and their average magnitude of cross correlation
(right) within a 20 lag range.
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A few key observations may be drawn from the cross correlations of Figure 6.11.
Firstly, there is a large difference in average correlation magnitude between the
measured and predicted wave loads (F and F̂ ), highlighting a key difference
between OSA and MPO model structures. For OSA models, where access to
previous measurements of the target variable are available, the selection of these as
lagged model inputs is generally much more likely due to their high correlation with
the current target. For the MPO model constructed here, the lower correlation of
the lagged predicted wave loads with the current measured target explains why no
output lags were deemed preferable. Another important observation is that the
magnitude of correlation for horizontal acceleration ax was much higher than that
of horizontal velocity Ux. This is an indicator of the flow regime and aligns with
what would be expected when the wave interaction is inertia dominated (Keulegan-
Carpenter number < 1 and Reynolds number > 4000). Here, the acceleration based
Cm term within Morison’s equation has most influence on predictions.

Autoregressive model performance

Here, two autoregressive model structures are tested, both of which will use lags
Lu = 4 and Ly = 0 found during lag selection for fairness of comparison. For
any given JONSWAP wave state, each model was trained on the same 300 data
points and tested on an unseen set of 1000 data points. The model structures are
summarised as:

� The Morison FIR model, using the approximated water particle velocity and
acceleration as inputs:

yt =
lu∑
i=0

α
(1)
i Ut−i|Ut−i|+

lu∑
i=0

α
(2)
i U̇t−i + ε (6.14)

� The wave gauge FIR model, using the measured free surface from the wave
gauge directly as an input:

yt =
lu∑
i=0

αiηt−i + ε (6.15)

A comparison of the performance of wave gauge input FIR model and the Morison’s
Equation FIR model using the approximated flow conditions as inputs is shown in
Figure 6.12.
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Figure 6.12: (a) NMSE surface of a FIR model using wave gauge data
as an input. (b) NMSE surface of a FIR form of Morison’s Equation
as a function of approximated flow conditions. (c) The improvements
in performance of the Morison FIR over the wave gauge FIR model.
Models were tested over a grid of JONSWAP waves as a function of
peak enhancement factor γ and peak frequency ωp.

The approximation of flow conditions at the force collar for use as a model input
rather than using the wave height directly was able to improve performance over
the full range of wave states by between 28.1% and 54.2% NMSE. Although a
flexible model, the FIR struggled to adequately capture the relationship between
the wave height and wave load and by approximating the flow conditions, the
complexity of the learning task was reduced, thereby increasing performance. The
consistency of results was also aided, observed within the flatter NMSE surface
across the various wave conditions for the Morison FIR model. The greatest areas of
improvement were seen in the low peak frequency waves, for which the amplitude of
waves was larger. Larger waves produce larger particle velocities and accelerations,
and therefore larger wave loads, for which accurate prediction is more impactful
for fatigue life estimation.

The autoregressive model structure helped the Morison FIR model outperform the
standard form of Morison’s Equation used within Figure 6.7. This was due to a
number of factors: the Morison FIR had a higher number of model parameters
(8 vs 2), allowing for increased flexibility and an ability to model more complex
relationships; the lagged timesteps may have been useful in helping capture the
time delay between the monopile and upstream measurement equipment; and the
multiple time lags may have been used to approximate higher order terms, being
helpful in capturing phenomena typically excluded by Morison’s Equation e.g.
vortex shedding [228].
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6.3.3 GP-NARX

A GP-NARX1 provides the advantages of autoregressive modelling previously
discussed within a GPR framework. The ability of a GP to model relationships
without a restriction to a fixed functional form is especially helpful when a process
is only partially understood. Here, the SE kernel, suitable for modelling smooth
continuous functions, is used to capture phenomena present within wave loading.
A purely data-based approach is first considered in which the wave gauge data are
passed directly to the GP-NARX as an input, with the relationship between them
learned. This is then compared with a physics-informed case of approximating the
flow conditions at the force collar using linear wave theory for use as a GP-NARX
input. A comparison of the performance for these cases across the range of wave
states is shown in Figure 6.13. The same training (300 points) and testing (1000
unseen points) were used for each JONSWAP wave state as previous models.

Figure 6.13: (a) NMSE surface of a GP-NARX with a SE kernel using
wave gauge data as an input. (b) NMSE surface of a GP-NARX
with a SE kernel as a function of approximated flow conditions. (c)
The improvements in performance achieved as a result of using the
approximated flow conditions rather than the wave gauge data as an
input to the GP-NARX. Models were tested over a grid of JONSWAP
waves as a function of peak enhancement factor γ and peak frequency
ωp.

The best model in terms of mean square error is the GP-NARX using physically-
informed inputs with an NMSE of 15.93%, a very respectable performance, con-
sidering only incoming wave height data was required to be measured. As well
as highlighting the results in terms of mean squared error, the discussion here
aims to explain motivation for the use of machine learning and physical knowledge

1Since the GP-NARX was constructed with Ly = 0, it might be more accurately described as
a GPX, however the term GP-NARX will be used here for consistency with existing literature.
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in combination. Beginning with data-based benefits, both implemented cases of
the GP-NARX were able to outperform their equivalent linear FIR models with
51.37% vs 59.17% NMSE for the wave gauge input, and 15.93% vs 17.05% for the
reconstructed flow conditions. The increased flexibility of the GP-NARX, much of
which is provided through the SE kernel, was better able to capture to complex
relationship between variables. The bigger benefits, both in terms of absolute and
proportional improvements, were seen when wave gauge data was used as an input.
Here, the learning task was more challenging, favouring more flexible models. The
performance of the wave gauge FIR model was also worse, meaning that there was
more scope for absolute improvement.

Even though a GP-NARX is a flexible and effective data-based technique within a
variety of applications, the inclusion of the reconstructed flow conditions as a model
input was still able to improve prediction quality. By reducing the complexity of
the learning task, the use of linear wave theory was able to assist the machine
learning model, even though it only provides an approximation of flow conditions.
This highlights perhaps the major finding of this work, that physical knowledge
integrated within machine learning models does not have to be exact to be helpful.
The limitations of linear wave theory are well understood [35, 36], and are unlikely
to fully hold even within laboratory environments. This is observed within the
∼ 15− 20% errors in the velocities, accelerations and free surface within Table 6.2.
However, whether or not the approximated flow conditions were close to their true
value, they were still able to assist the GP-NARX with wave loading prediction,
which was their primary goal.

6.3.4 Interpretability through inclusion of prior knowledge

Where the approximation of flow conditions was able to offer improvements in
performance, the inclusion of empirical methods aims to provide interpretability
within results. This is done by providing a breakdown of the wave load in to drag,
inertia and other effects. Due to the obstruction caused by the monopile within
the relatively narrow wave tank (blockage ratio of 0.18), the wave profile cannot be
assumed to be undisturbed and effects excluded by Morison’s Equation should not
be ignored [222].

When used alone, Morison’s Equation and suitable values for Cd and Cm may
adequately estimate the drag and inertia components of a wave load within appro-
priate flow regimes. However, in the presence of other effects, the fitting of Cd and
Cm to data becomes challenging, with the correct estimation of drag loading often
biased. Fitted coefficients in the presence of other effects may result in moderate
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performance, but without physically meaningful values. The 34.43-51.34% NMSE
achieved by the fitted Morisons Equation in Figure 6.7 often produced exceedingly
high Cd coefficients, with Cd > 10 in some cases, thereby losing physical inter-
pretability within results. The primary aim of implementing Morison’s Equation
here is not to maximise the performance of Morison’s Equation itself, but to provide
interpretability within the results of the final model.

Here, the guidance of DNV-RPC-205 Recommended Practice [234] is used to define
Cd and Cm, with the aim being to approximate the drag and inertia loading without
being skewed by the presence of other effects. A GP-NARX with a SE kernel is
then used to capture the residual to sum within the final model. The performance
of Morison’s Equation accounting for only drag and inertia loading, along with
GP-NARX residual models also accounting for excluded effects is shown in Figure
6.14.

Figure 6.14: (a) NMSE surface of Morison’s Equation when used with
the Cd and Cm coefficients suggested by DNV-RPC-205 [234]. (b)
NMSE surface for a GP-NARX residual model using wave gauge data
as an input. (c) NMSE surface for a GP-NARX residual model using
approximated flow conditions as an input. Models were tested over a
grid of JONSWAP waves as a function of peak enhancement factor γ
and peak frequency ωp.

The poor performance of Morison’s Equation used with the Cd and Cm suggested
by DNV-RPC-205 [234] highlights the importance of understanding the limitations
of empirical models. Used in this way, Morison’s Equation only approximates the
drag and inertia components of the wave load. Attempts to capture excluded effects
with the GP-NARX led to improvements in performance, with greater performance
achieved when the approximated flow conditions were used as inputs rather than
the wave gauge data directly. It is expected, like with other models presented, that
the approximation of flow conditions helped to simplify the learning task and help
the GP-NARX better learn structure from smaller amounts of training data.
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The breakdown of drag, inertia and excluded effects for a JONSWAP wave with
γ = 3.3 and ωp = 0.8Hz is shown in Figure 6.15. The most basic information
gained from the plot is the relative magnitudes of the force components; both the
inertia load and the load due to excluded effects were significantly higher than the
drag load. Although here, their effects are combined, the quantification of pressure
forces, diffraction forces and other excluded effects are particularly helpful for a
number of specific offshore structure calculations. These include the calculation of
deck heights and required air gaps, and the calculation of wave loading on nearby
structures [222]. The identification of specific features within force components,
including conditions in which peaks occur, can also be helpful in understanding
wave loads. A trend specific to this experiment is the non-zero mean of the drag
load, due to the positioning of the force collar at the water line. When the wave
height at the monopile is a maximum, and velocities approach their peak, the wave
load acts across the entire force collar, producing a large positive peak in drag
loading. However, in the opposite case, when a wave trough passes the monopile
and velocities reach their maximum negative values, the wave load acts below where
the force collar is placed.

Figure 6.15: A breakdown of the relative drag, inertia and combined
other effects within the wave load from a JONSWAP wave with γ = 3.3
and ωp = 0.8Hz. The prior Cd and Cm coefficients suggested by [234]
were used to estimate drag and inertia forces, with excluded effects
captured by a GP-NARX with a SE kernel.
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6.4 Conclusions

Novel wave loading prediction models were developed that utilised only incoming
wave height as a model input. They were implemented on an experimental dataset
of a monopile structure within a wave tank across a variety of representative ocean
state spectra. The data from a single wave gauge, performing an equivalent role
to wave radars installed on offshore structures, was used to predict a wave load
measured by a force collar.

The use of a GP-NARX, Morison’s Equation and linear wave theory in combination
within a physics-informed model was able to offer increased performance over
any of its components used alone. The model was also able to offer a degree of
interpretability, by providing a breakdown of the wave load in to drag, inertia and
excluded effects. Model results were able to be visualised and interpreted easily,
along with quantification of uncertainty.

Although the results of this work are promising, achieving wave height to wave
force prediction errors of ∼ 15%, it is important to highlight that the models were
developed using experimental data. There are many benefits of working within
laboratory environments, particularly for research, including more tightly controlled
conditions, increased repeatability of test states and an ability to install extensive
sensor networks. However, it is important to note the difference between a wave
tank and a real offshore environment; weather, salinity, wind and the nature of
generated waves will all make the construction of models more challenging. Further
testing and development of models, utilising data from real structures will be the
natural progression of this work, with the validity of linear wave theory an expected
important area for investigation. The progression to Stokes waves [276] or other
similar extensions might prove a necessary inclusion.



Chapter 7

Partial Knowledge Inclusion
Through Kernel Design

The models developed so far in the thesis have incorporated physical knowledge
into Gaussian process mean functions and within the inputs to models. This
chapter focuses on the incorporation of prior physical knowledge within the kernels
of Gaussian processes, as introduced in section 2.2.4 of the literature review in
Chapter 2. Modelling scenarios where one might have partial knowledge of a system
or process are investigated through the combination of physics-informed kernels and
more flexible ‘data-based’ kernels. Case studies of kernel structures are presented
with application to wave loading prediction and a vibrating cantilever beam. The
incorporation of physical knowledge in the kernel is rare within engineering generally,
with very few examples currently in the field of SHM. Detailing the design process
for the construction of physical kernels and how this might reflect a users physical
insight should be a useful resource.

7.1 Kernel design

The covariance function (kernel) of a Gaussian process controls the behaviour of
generated functions and completely defines a GP along with the mean function.
Frequently used kernels such as the squared exponential and Matérn kernels correlate
points closer together within the input space more highly. This is useful for a
general model and can be highly flexible, however it does not embed any prior
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physical knowledge about the system. It can be beneficial, in terms of performance,
insight and trust within a model, to incorporate physical knowledge within the
design of kernels e.g. the oscillatory behaviour of a spring mass damper system
[149]. The design of the kernel may influence the prediction of the model to obey
expected behaviours and constrictions.

Unlike mean functions, which may be any arbitrary function [139], kernels must
satisfy several constraints:

1. The kernel must be symmetric.

k(X,X ′) = k(X ′, X) (7.1)

2. The kernel must be positive semi-definite.

n∑
i=1

n∑
j=1

αiαjk(Xi, Xj) ⩾ 0 for all n ∈ N, X ∈ D,α ∈ R (7.2)

3. The kernel must be measurable. This ensures the kernel represents a valid
inner product within some feature space [277].

k(X,X ′) ∈ M(X ×X ′,R) (7.3)

where M(X ×X ′,R) is the set of measurable functions acting on the input
spaces X and X ′.

4. The kernel must be non-infinite.

k(X,X ′) < ∞ for all X,X ′ ∈ X ×X ′ (7.4)

The second constraint can be challenging to prove and poses the largest obstacle
within the design of kernels. A common method to ensure this constraint is met
for kernel designs is through the use of Bochner’s theorem [278].

A positive definite, continuous, stationary function k(τ) may be expressed as the
Fourier transform of a finite positive measure µ.

k(τ) =

∫ ∞

−∞
e−iωτ dµ(ω) (7.5)
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Provided a Fourier transform may be taken, the definition of finite positive measures
within the frequency domain is a useful means of constructing kernels. It is often
easier than attempting to prove positive semi-definiteness directly. The spectral
mixture kernel [279] utilises Bochner’s theorem in its design. A symmetric sum
of Gaussians is constructed and its Fourier transform taken to construct a valid
kernel. The means and widths of the Gaussians determine the properties of the
kernel, allowing for a high flexibility within kernel modelling capabilities.

There are a variety of means by which kernels may be constructed, with a summary
provided in Figure 7.1. In general, these may be separated in to two categories:
kernels that are constructed from scratch, and kernels that are constructed utilising
other kernels in combination or as a starting point. A useful property of kernels is
that linear operators between kernels produces a valid kernel as an output. This
allows existing valid kernels to be combined to produce new kernels.

Figure 7.1: A summary of potential means by which to design a kernel
for a Single Output Gaussian Process (SOGP). ‘From new’ refers to
methods that begin from scratch, whilst ‘From old’ refers to methods
that utilise existing kernels.

Combining kernels can be an effective means of accounting for partial understanding
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of a process. A physically derived kernel, KPhy(X,X ′) may be used to capture
some aspect of a process that is well understood, with a more flexible kernel,
KData(X,X ′) used to capture the remainder. For example, an additive kernel
structure may aim to capture phenomena not represented within a physics based
model:

K(X,X ′) = KPhy(X,X ′)︸ ︷︷ ︸
Understood process

+ KData(X,X ′)︸ ︷︷ ︸
Excluded phenomena

+ σ2
nδij︸︷︷︸

Noise

(7.6)

This model structure is presented in this chapter with application to wave loading
prediction. It is revisited, along with a comparison to mean function based
approaches, in Chapter 8. A multiplicative kernel structure may aim to incorporate
partial understanding of a particular process:

K(X,X ′) =

Combined process︷ ︸︸ ︷
KPhy(X,X ′)︸ ︷︷ ︸
Understood

aspect

KData(X,X ′) + σ2
nδij︸︷︷︸

Noise

(7.7)

This chapter will introduce a physics-informed kernel of this form applied to a
vibrating cantilever beam, showing how kernels may be derived for a physical
process and combined with flexible kernels. This is used to reflect instances where
knowledge about a particular aspect of a process is missing. The chosen example is
relevant to a wide variety of engineering applications and the kernel structure maps
nicely onto how one would typically structure a physical model of the system.

7.2 Morison’s Equation in kernel form

Within a GP, the kernel defines the family of functions from which predictive
samples may be drawn. Through the design and selection of kernels, one may
control and restrict the behaviour of predictions generated from a GP and enforce
desirable or physically derived constraints. It is often the case that one may wish
to design a kernel to capture the behaviours of some physical process f(x). If
a functional form for f(x) is known, this is possible through calculation of the
(auto)covariance of the process:
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cov(f(Xi), f(Xj)) = E[f(Xi)f(Xj)]− E[f(Xi)]E[f(Xj)] (7.8)

Earlier work in this thesis investigated the use of Morison’s equation for the
prediction of wave loads on offshore structures [32, 100]. Morison’s equation relies
on a number of simplifying assumptions and does not account for phenomena such
as vortex shedding and turbulence [45, 256]. In Chapter 5, it was used within the
mean function, with the learning of the excluded processes the role of the data-based
GP-NARX. This improved predictive performance, particularly in instances of
reduced training data coverage. Here, a kernel is derived to represent Morison’s
Equation.

A GP with a Morison’s kernel will have equivalent modelling capabilities to a
Bayesian Linear Regression of Morison’s equation, except that the model training
time is now of order O(n3) rather than O(n). Used alone, an implementation of
this model would be needlessly inefficient; the advantage of kernel representation
here comes from the ability to combine with other kernels. In many engineering
applications, there is some aspect of a process that is not well understood and is
not accounted for within a physics-based model. A useful property of kernels for
varying the inclusion of prior knowledge within a GP is the ability to be combined,
through addition, multiplication and composition, with other kernels. The use
of physically derived kernels, KPhy, in combination with flexible, more generally
applicable, kernels, such as a Squared Exponential, KData, allows for the creation
of model structures where KPhy aims to encode some aspect of prior knowledge
and KData captures unknowns.

The derivation of the Morison kernel begins with the expression for Morison’s
Equation first presented in Chapter 3. For a stationary, rigid, slender, cylinder of
diameter D positioned within waves of velocity U and acceleration U̇ , the force
per unit axial length F by Morison’s Equation is expressed:

F =
1

2
ρDCd︸ ︷︷ ︸
C ′

d

U |U |+ 1

4
πρD2Cm︸ ︷︷ ︸
C ′

m

U̇ (7.9)

where ρ is the fluid density, Cd is the drag coefficient and Cm is the inertia coefficient.
The dimension specific terms may be grouped to form two constants C ′

d and C ′
m

relating to the drag and inertia forces of the wave. This allows the structuring of



7.2 Morison’s Equation in kernel form 127

Morison’s Equation as a Bayesian Linear regression.

X = [U |U |, U̇ ] (7.10)

β = [C ′
d, C ′

m]
T (7.11)

p(F |X, β, σ2
n) ∼ N (Xβ, σ2

nI) (7.12)

The covariance of a process f(X) = Xβ with prior β ∼ N (0, σ2
βI) between two

input vectors Xi and Xj is derived

cov(f(Xi), f(Xj)) = E[f(Xi)f(Xj)]− E[f(Xi)]E[f(Xj)]

= E[(Xiβ)(Xjβ)
T ]−

��������:0
E[Xiβ]E[Xjβ]

= XiE[ββT ]XT
j

= XiΣβX
T
j

(7.13)

The expression for covariance can then be used as a kernel within a physically-
informed GP of the form

f(X) ∼ GP(0, KPhy(X,X ′)) (7.14)

where KPhy(X,X ′) = XΣβX
′T + σ2

nδX,X′ and X = [U |U |, U̇ ]. If one considers the
target to be the sum of f(x) and some function g(x) to account for unmodeled
phenomena, then it follows that the covariance structure is

K(X,X ′) = KPhy(X1, X
′
1) +KData(X2, X

′
2) + σ2

nδX,X′

= X1ΣβX
′T
1︸ ︷︷ ︸

Morison’s Equation

+ σ2
f exp

(
−1

2
(X2 −X ′

2)Λ
−1(X2 −X ′

2)
T

)
︸ ︷︷ ︸

Excluded phenomena

+ σ2
nδX,X′︸ ︷︷ ︸
Noise

(7.15)

where a Squared Exponential (SE) has been used as the covariance of the unknown
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behaviour under a zero mean assumption. HereX1 = [U |U |, U̇ ],X2 = [Ut, U̇t, Ut−1,
U̇t−1, ŷt−1, ŷt−2, ŷt−3], σ

2
f is the signal variance, Λ is the matrix of length scales

such that diag(Λ) = [l21, l
2
2, ..., l

2
D] for a D dimensional input and σ2

n is the noise
variance. The selected maximum lags, lu = 1 and ly = 3, have been carried forward
from the work in Chapter 5.

7.2.1 Model Predictive Performance

Models were implemented on the Christchurch Bay Tower (CBT) [230] dataset,
detailed in Chapters 4 and 5. All models were trained using the first 500 datapoints
of the training and validation sets highlighted in Figure 4.2. For the GP-NARX
models, this involved the optimisation of MPO performance on the validation set
(see Algorithm 1 of Chapter 5). To summarise the model structures being tested:

� Morison’s Equation, structured as a Bayesian Linear Regression.

X1β (7.16)

where X1 = [U |U |, U̇ ] is an input space of flow conditions and β = [C ′
d, C

′
m]

T

are the combined drag and inertia coefficients.

� A black-box, zero-mean GP-NARX with a Squared Exponential kernel.

GP(0, KSE(X2, X
′
2)) (7.17)

where X2 = [Ut, U̇t, Ut−1, U̇t−1, ŷt−1, ŷt−2, ŷt−3] is the lagged input space
of flow conditions and previous predictions of the wave load.

� A physics-informed GP-NARX, with Morison’s Equation in the mean function.

GP(X1β, KSE(X2, X
′
2)) (7.18)

� A physics-informed GP-NARX, using the kernel defined in Equation 7.15.

GP(0, KLin(X1, X
′
1) +KSE(X2, X

′
2)) (7.19)

The performance of models was measured using two metrics: the Normalised Mean
Square Error (NMSE) and the Mean Standardised Log Loss (MSLL). The MSLL
is a probabilistic measure, with superior models having more negative scores. A
baseline of zero is equivalent to setting the predictive mean and variance for all test
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set points as the mean and variance of the training set. A comparison of results is
shown in Table 7.1.

Table 7.1: Model performance comparison.

Model Structure NMSE (%) MSLL

Morison’s Eq.
X1β 19.528 −0.813
X1β (Normalised) 15.458 −0.857

GP-NARX
MC MPO

GP(0, KSE) 19.383 0.450
GP(X1β, KSE) 14.797 −0.598
GP(0, KLin +KSE) 14.913 −0.939

A promising trend observed within Table 7.1 is that models using physics and data
in combination outperformed both Morison’s Equation and black-box data-based
models. The residual modelling GP-NARX and combined kernel GP-NARX were
the two best performing models, with similar NMSE scores and an improved MSLL
on the combined kernel model. A potential reason for the worse MSLL of the
residual model is that attempting to fit a GP to a residual rather than the complete
signal greatly reduces the signal to noise ratio. This can make it challenging to
pick out remaining structure within the signal, favouring long lengthscale, high
noise variance model fits.

Inline with findings within the literature [46, 223–225], Morison’s Equation was
found to perform very well considering its simplicity and outperformed the black-
box GP-NARX. This was in part helped by the dataset, which was from a region
of primarily unidirectional flow, a key assumption of Morison’s Equation. The
training, validation and test sets were all from drag-dominated flow regimes,
meaning that parameters learned within the construction of the model were likely
to be appropriate for the test conditions. When using Morison’s Equation, it is
important to consider the likely flow regime in which it may be implemented and
adjust Cd and Cm accordingly.

Although achieving a moderate NMSE score, the black-box GP-NARX performed
very poorly with regards to MSLL. This highlighted two issues: the importance
of considering multiple performance metrics and unexpected behaviours that may
arise from the use of black-box models, particularly highly flexible ones such as
a GP-NARX. The cause of a poor MSLL here was the explosion of uncertainty
intervals due to feedback of samples within the MC MPO prediction, a common
phenomena within autoregressive model structures.
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7.2.2 Posterior contribution breakdown

Along with benefits in overall performance, an advantage of combining physics
with data-driven techniques is the insight that can be provided by looking at
the contribution of each kernel component. Whilst the separation of a mean
function and residual model is already clear within the combined model structure,
the individual kernel posterior contributions within a combined kernel require
decomposition. Following [156] it is possible to derive the conditional predictive
distribution for the contribution of a kernel Ki within a combined additive kernel
of the form K =

∑i=n
i=1 Ki.

p(f ∗
i |f ∗, X∗, f,X, θ) ∼

N (K∗T
i (

i=n∑
i=1

Ki)y,K
∗∗
i −K∗T

i (
i=n∑
i=1

Ki)K
∗
i )

(7.20)

where f ∗
i is the prediction contribution of kernel Ki within the combined prediction

f ∗ =
∑i=n

i=1 f
∗
i . The breakdown of the mean function and residual GP contributions

is shown in Figure 7.2, with the breakdown of kernel component contributions of
the combined kernel model shown in Figure 7.3.

In both cases, Morison’s Equation is able to capture the majority of structure
within the wave force via either the mean function or linear kernel component. Here,
this provides interpretability in to the flow conditions, highlighting the presence of
a drag dominated flow regime and primarily unidirectional flow. For alternative
flow conditions, particularly those breaking the assumptions of Morison’s Equation,
the relative contributions of model components would likely be very different.

Due to the good fit of the mean function, the signal to noise ratio of the residual is
very poor and the residual fit GP struggles to pick out the remaining structure. The
middle plot of Figure 7.2 shows a long lengthscale fit with a large estimated noise.
This contributes towards the larger variance and poorer MSLL of the combined
residual model.

The consideration of individual component contributions within a model is of
particular importance during extrapolation. Far from observed data, the data-
based component of the model (or stationary kernel) will revert to its zero prior,
with the overall model therefore dependant on the quality of either the mean
function or physics-derived (nonstationary) kernel component. Independent of
the overall model performance for a given testing dataset, ensuring that model
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Figure 7.2: Residual modelling contribution breakdown of the linear
mean function (top), residual GP-NARX with SE kernel (middle) and
combined model (Bottom).

components are capturing their intended processes is therefore important. The
ability of kernel components to be learned simultaneously will help to reduce the
‘biasing’ phenomena of mean functions. Here, the GP with the derived-kernels has
captured each component very well, indicating that it is likely to perform well in
extrapolation.

7.2.3 Conclusions

The use of Morison’s Equation and a GP-NARX in combination was found to
increase predictive performance over either technique used independently. Residual
modelling was able to improve NMSE at the expense of MSLL, whilst the combined
kernel was able to offer advantages in both NMSE and MSLL.

Inline with the literature, Morison’s Equation was found to achieve satisfactory



132 7.2 Morison’s Equation in kernel form

Figure 7.3: Combined kernel model contribution breakdown of the
linear (Morison) kernel (top), SE GP-NARX (second), noise variance
(third) and combined model (bottom).

performance when used in an appropriate flow regime for little computational cost.
It provided a sensible start point for the development of combined physics and
data-based models.

The decomposition of combined models was found to offer physical insight into the
role of each model component. Here, due to the flow conditions, the majority of
structure was captured via the physics-based component. Further work investigating
how model component contributions vary over a range of flow conditions is planned
to further explore how data-based learning may assist prediction in conditions
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where the performance of Morison’s Equation would typically suffer.

This case study investigated a case of an additive partial knowledge structure
presented in Equation 7.6, applied to the task of wave loading prediction. The
second case study of the chapter will now present a more broadly applicable
engineering example of a cantilever beam in free vibration. The example also takes
the multiplicative structure present within Equation 7.7, with the aim of presenting
a range of potential kernel structures to the reader.

7.3 Physical kernels for the free vibration of a

cantilever beam

To demonstrate the proposed method of handling partial knowledge within the
GPR framework, a simulated case study of a cantilever beam is employed. This
case study is useful for a number of reasons; a beam assumption is applicable to a
wide range of engineering applications from the modelling of offshore structures to
aeroplane wings, and importantly, it provides us with an opportunity to explore
the embedding of various levels of physical insight. Where a structure of interest is
well modelled by a cantilever beam, there are full analytical solutions available. If
a structure is cantilever but not of uniform cross section or homogeneous material,
knowledge of the mode shapes may no longer be assumed (this is the example
pursued here). Finally, one may face a situation where only confident about
boundary conditions, in which case employing constraints within the GPR may
be appropriate, for example [197, 201]. The work in this section of the chapter
presents the first use of the derived SDOF kernel [149] within a larger MDOF kernel
structure. It highlights how along with incorporating physics within individual
kernel components, the structure of how multiple kernels are combined can itself
mimic a physical model or process.

The dataset used within the study was from a simulated cantilever beam as shown
in Figure 7.4, where x is distance along the beam from the fixed end.

The beam was modelled as a steel cylinder, 1m in length, with a radius of 0.01m.
The modal amplitudes Ai were assumed to decay logarithmically; this was to impart
more energy into the lower modes of the beam [244, 280]. The parameters of the
simulation are given in Table 7.2.
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Figure 7.4: Cantilever beam of length L.

Table 7.2: Parameters of the cantilever beam simulation.

Quantity Value

Length, L 1 m
Radius, r 0.01 m
Young’s Modulus, E 190 GPa
Density, ρ 8050 kgm−3

Damping ratio, ζ 0.005
Simulation frequency, fs 8192
Number of modes, N 4

Modal amplitudes, Ai 10
0−(i−1)(N−1)

N−1 for i = 1, . . . , N

The free vibration response of a beam can be found through separation of variables
with a solution of the form Y (x, t) = W (x)T (t). The response of a beam in free
vibration may be calculated through the superposition of normal modes [244].

Y (x, t) =
∞∑
i=1

Wi(x)Ti(t) =
∞∑
i=1

Wi(x)e
−ζωi

nt(Ai cos(ω
i
nt) +Bi sin(ω

i
nt)) (7.21)

where Ai and Bi are determined from the initial conditions of the beam. For many
sets of known boundary constraints it is possible to derive an exact analytical
expression for the mode shapes Wi(x). Following Blevins [243], for a fixed-free
beam of uniform cross section in free vibration, this gives

Wi(x) = cos(βix)−cosh(βix)−
cos(βiL) + cosh(βiL)

sin(βiL) + sinh(βiL)
(sin(βix)− sinh(βix)) (7.22)
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where L is the length of the beam and βi is a constant specific to the boundary
conditions and mode. The analytical solutions of Blevins [243] were used to create
a simulated dataset of a fixed-free beam in free vibration. The first four modes of
the beam were investigated, with plots of the mode shapes, Wi(x), and oscillatory
behaviour, Ti(t), shown in Figure 7.5.

Figure 7.5: Wi(x) and Ti(t) plots of the first four modes of a simulated
cantilever beam in free vibration.

It is worth noting that the main focus of this case study is not to minimise prediction
error on a test set, as for the cantilever beam simulated this could be achieved
through an analytical solution. The aim here is to investigate how to vary the level
of physical knowledge incorporated within a machine learning model and discuss
the effects this will have. At one extreme would lie “complete knowledge”, i.e.
the analytical solutions of Blevins [243] and Rao [244], whilst a purely data-based
approach would represent zero prior knowledge.
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7.3.1 Relaxing assumptions through kernel design

The construction of physics-based (white-box) models requires the approximation
of phenomena and a reliance on assumptions and simplifications remaining rep-
resentative. In the case of a cantilever beam these may include a perfectly fixed
beam, a uniform beam cross section or homogenous material properties. When
assumptions hold, physics-based models often provide efficient, accurate solutions
to a range of engineering problems. However, the usage of physics based models
when their assumptions breakdown can lead to significant increases in error. For a
cantilever beam, examples of this might range from a non-uniform cross section
of a turbine blade or aircraft wing, marine growth along the length of an offshore
monopile or a soil foundation being approximated as fixed. The relaxing or removal
of assumptions within a physics-based model will therefore allow for the widening
of conditions in which the model may be used. Examples of restricted modelling
cases are summarised in Table 7.3.

Table 7.3: Summary of assumptions and modelling restrictions within
the analytical expressions of Blevins [243] and Rao [244] for a fixed-free
beam in free vibration.

Modelling assumption Restrictive modelling case

Uniform cross section. Non-uniform cross section of a turbine
blade or aircraft wing.

Perfectly fixed base. Deflection of structures within soil or
sea bed foundations [281].

Homogeneous material proper-
ties.

Composite materials with directional
material properties.

Equal mass distribution along
the length of the beam.

Marine growth adding mass along the
length of offshore monopiles [282].

Many key restrictions of the physics-based model of the cantilever beam come
from the analytical expression for the mode shape, Wi(x), which is specific to the
boundary conditions of the beam. This work suggests a means of removing these
restrictions, accounting for partial knowledge by combining different covariance
functions, each to capture different components of the combined target function.
For a beam where the mode shapes are assumed to be unknown, the displacement
will be a product of oscillatory behaviour and the unknown modes, Y (x, t) =
W (x)T (t) where W (x) is unknown. The covariance of Y in this case is equal to
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cov(Y, Y ′)=KW (x, x′)KT (t, t
′). Here the SE kernel is used to model the covariance,

KW , of the unknown mode shapes:

KSE(τ) = σ2
fexp

(
−1

2
(τ)TΛ−1(τ)

)
+ σ2

nδij (7.23)

where σ2
f is the signal variance, σ2

n is the noise variance, Λ is the matrix of length
scales such that diag(Λ) = [l21, l

2
2, ..., l

2
D] for a D dimensional input and τ = x− x′

is the distance between a pair of input points x and x′. To capture the covariance
of the oscillatory behaviour, KT , the SDOF kernel [149] is employed:

KSDOF (τ) =
σ2

4m2ζω3
n

e−ζωn|τ |
(
cos(ωdτ) +

ζωn

ωd

sin(ωd|τ |)
)

(7.24)

where the hyperparameters of the kernel now relate to physical properties of a
SDOF oscillator: m is the mass, ζ = c/2

√
km is the damping ratio, ωn =

√
k/m

is the natural frequency and ωd = ωn

√
1− ζ2 is the damped natural frequency.

Draws from this kernel are constrained to obey the behaviour of a decaying SDOF
oscillator, a useful property to encode.

For the prediction of the full beam response, the SE and SDOF kernels are multiplied
together to predict the response contribution of a single mode i. These kernel
products may then be summed for a given number of modes N to predict the
combined response of the beam. This will lead to a combined kernel structure of

K(τx, τt) =
N∑
i=1

Ki
SE(τx)︸ ︷︷ ︸
Mode
shape

Ki
SDOF (τt)︸ ︷︷ ︸
Oscillatory
behaviour

+ σ2
nδij︸︷︷︸

Noise

(7.25)

where τx = x− x′ and τt = t− t′ represent distances between points in the spatial
and temporal inputs respectively. The combined model has the flexibility to recover
Wi(x) and Ti(t) with an important distinction; the analytical form of the cantilever
mode shape has not been fixed and the corresponding assumptions used to construct
it have been relaxed.
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7.3.2 Recovery of mode shapes

The recovery of the mode shapes Wi(x) and temporal functions Ti(t) can be useful
to estimate stress in difficult-to-reach areas of a structure [283]. Although the
simulated beam will obey the analytical expressions for Wi(x), this constraint was
removed from the model structure via the introduction of the SE kernel. As such,
the capability of the model to recover the mode shapes is a useful property to
measure. The use of a simulation is useful for this case as it allows the exact mode
shapes used to construct the response to be compared with the predictions and
performance levels to be measured. Eight evenly spaced data points were selected
along the length of the beam as training points, with the response simulated at
8192Hz. Model performance was measured on an unseen test set of 100 points
along the beams length simulated for one second.

To extract the mode shapes from the combined beam response prediction, the
posterior contributions for each mode i within the kernel sum will require decom-
position. This was achieved through the use of Gaussian conditionals, following
[156], similarly to the decomposition of Morison kernel components presented in
section 7.2.2. The predictive performance for each mode was measured using two
metrics: the Normalised Mean Square Error (NMSE) and the Mean Standardised
Log Loss (MSLL). The MSLL is a probabilistic measure, with superior models
having more negative scores. A breakdown of predictive performance is shown in
Table 7.4 and plots of the recovered W1:4(x) and T1:4(t) are shown in Figure 7.6.

Table 7.4: Modal performance breakdown of beam response prediction.

Model target Function NMSE (%) MSLL

First mode
W1(x) 0.002 −5.472
T1(t) 0.411 −3.088

Second mode
W2(x) 0.225 −3.520
T2(t) 0.285 −2.677

Third mode
W3(x) 9.949 −1.118
T3(t) 0.240 −2.055

Fourth mode
W4(x) 1.221 −2.522
T4(t) 0.541 −1.969
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Figure 7.6: Breakdown of recovered W1:4(x) (left column) and T1:4(t) (right column)
from a cantilever beam in free vibration by a combined kernel of the form K(τx, τt) =∑4

i=1K
i
SE(τx)K

i
SDOF (τt) + σ2

nδij . All models observed eight evenly spaced points
along the beams length at time points [1:2:2000] as training data.
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A key trend observed within Table 7.4 is that performance generally worsens for the
higher modes of the beam. This is to be expected for a number of reasons; firstly,
the mode shapes are more complex for the higher modes, meaning that the same
eight spatial points measured along the beams length must be used to represent
additional, sharper changes in direction. The magnitude of vibration of the higher
modes was also significantly lower, making identifying a modes’ contribution from
the full response more challenging. A useful property of the SDOF kernel for
identifying modal contributions was having physically interpretable hyperpara-
meters, specifically the natural frequency ωn. The first four natural frequencies
of the beam were able to be identified and the corresponding hyperparameters
fixed within the kernel. This reduced the number of required hyperparameters
to optimise whilst encouraging the model to learn the response contributions at
specific frequencies. Physically interpretable hyperparameters provide an avenue
through which knowledge may flow in and out of a system. If parameters are learnt
instead of fixed, optimisation can provide a means of retrieving this information
from the system.

Within the plots of W1:4(x), the ability of the model to recover the mode shapes
is observed. A useful property of the GP here is the quantification of uncertainty
within predictions. For the first mode, where an excellent fit is achieved, a narrow
confidence interval indicates the model is certain in its prediction. For W3(x),
behaviour indicative of an underestimation of the lengthscale within the SE kernel
is observed. The influence of observed points decays very quickly with distance
and the model attempts to revert to its zero prior between the training points
along the length of the beam. The confidence intervals of the GP expand quickly
within these areas to reflect this however, preventing an overconfident, incorrect
prediction.

One of the major advantages of including physical knowledge within a model is
improving the ability to extrapolate. This can be seen in the T1:4(t) plots within
Figure 7.6, where the model continues to predict beyond the end of observed training
data (Dotted line). The behaviour of a decaying SDOF oscillator is encoded within
the design of the SDOF kernel and has shown to be useful when conditioning
models on a reduced quantity of data [149]. An important consideration when
using prior knowledge to extrapolate however is any assumptions present within
the construction of the model.
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7.4 The balance between physics and data

Relating back the proposed model structure to Figure 1.1 and the early discussions
of Chapter 1, it can be useful to consider how this changes the models relative
position on the scale of prior knowledge inclusion. By relaxing the assumptions
made within the physics-based model, the reliance on data has increased. If unsure
about whether assumptions of a physics-based model may hold, e.g. the examples
presented within Table 7.3, the inclusion of them has the potential to cause overly
confident, erroneous model predictions. Were these assumptions maintained, for
example via the inclusion of a mean function, a higher reliance on the physics-based
component would be achieved, thereby moving the model’s position on the scale.

The balance between physics and data within a model is an important consideration
within the construction of physics-informed machine learning models. Figure 7.7
highlights the concept of an optimum level of prior knowledge inclusion for a specific
modelling scenario. A modelling scenario here is categorised by its relative levels
of available knowledge and data. Ideally, one would wish for both high levels of
data and prior knowledge, for example, a heavily sensored structure in well defined
laboratory conditions; however in real life industrial applications this would be
rarely achievable. In circumstances when neither knowledge or data are abundant,
the predictions of models may often be unreliable or erroneous.

The concept of an “optimum” level of prior knowledge within a model should
be considered when developing models along with the consequences of incorrect
placement on the scale. The over inclusion of prior knowledge within a model can
lead to a higher reliance on the physics-based component of the model which may
not accurately represent the modelled system or phenomena. This can lead to
reduced model flexibility and overly confident models. An under inclusion of prior
knowledge may waste a key resource, useful for increasing model interpretability
and capabilities in extrapolation. Models with reduced prior knowledge inclusion
will rely more heavily on available data, increasing the demand for expensive data
collection.

The work done so far has highlighted potential model structures for the relaxing
of assumptions imposed on the vibration of a cantilever beam, however the initial
testing of the model has focussed on a simulated dataset, representing an idealised
case. The aim for future work is to implement and test the methods on a measured
dataset, for which the assumptions made in the analytical formulas of Blevins [243]
and Rao [244] would be less valid.



142 7.5 Conclusions

Figure 7.7: The concept of an optimum level of prior knowledge in-
clusion within a physics-informed machine learning model for a given
modelling scenario. Examples of incorrectly estimating a models place-
ment on the scale, leading to an heavy reliance on physics or data are
shown.

7.5 Conclusions

The idea of an optimum level of prior knowledge to be included within a model
changing depending on the modelling scenario was highlighted within the context
of a cantilever beam in free vibration. The benefits of achieving this optimum
level such as improved extrapolation, interpretability and reduced reliance on data
collection were discussed. Consequences of being incorrectly placed on the scale of
prior knowledge inclusion were also presented. These included reduced flexibility
and potential reliance on unrealistic assumptions for a physics-heavy model and
poor extrapolation, interpretability and increased demand for data collection for a
data-heavy model.

The model developed in the second half of this chapter explored a scenario where
only partial prior knowledge was available and it was assumed the assumptions
used to construct physics based models could not be guaranteed to hold. These
assumptions were relaxed through the use of kernel design within a GP. The mode
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shapes of the beam, for which the analytical solutions were removed from the model
as to relieve specific boundary conditions, were able to be recovered for the first
four modes of the beam.

This chapter as a whole outlined the design process for how one might incorporate
physical knowledge within the kernels of a Gaussian process and highlighted import-
ant links between how the nature of prior knowledge possessed by a user changes the
optimum kernel structure. Two case studies were presented in the chapter: a kernel
representation of Morison’s Equation, the first example of physically-informed
kernel for wave loading prediction, and an MDOF kernel structure capturing the
free vibration response of a cantilever beam. The beam kernel presented the first
utilisation of the derived SDOF kernel within a MDOF scenario and the first to ex-
tract the mode shapes of a vibrating system utilising a posterior kernel contribution
breakdown.



Chapter 8

Exploring the Effects of Prior
Knowledge Inclusion on
Gaussian Process Model

Structure

Deciding on the most appropriate means of integrating prior knowledge within
a GP can be challenging, with the capabilities of models not always clear before
they are implemented. An important step to aid with making this decision is
understanding how the means of incorporating prior knowledge within a GP effects
the properties, structure and performance of a constructed model. This chapter
aims to directly compare differences in models with modifications to their mean and
covariance functions, through the use of a case study utilising a consistent form of
prior knowledge. An example is considered where a linear function represents some
known aspect of a system’s behaviour, with the remainder captured by a flexible
kernel; this allows the maths for all examples to be worked through completely,
whilst highlighting differences more clearly. A toy dataset is then used to compare
the performance of models in circumstances of limited training data, an important
area of focus for grey-box models. The work of this chapter is early in its field and
provides an important platform from which to construct the decision framework
presented later in Chapter 9.

144
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8.1 Prior knowledge through linear models

To allow for the direct comparison of model structures, it is important that the
form of prior knowledge integrated within models remains consistent. Here, linear
prior knowledge is used to represent an approximation of a known behaviour across
all models. The use of linear models is common across many applications within
engineering, some examples of which are shown in Table 8.1. The applicability of
linear prior knowledge to a range of fields, along with an ability to more easily show
differences in mathematical derivations made it an effective case study example.

Table 8.1: Examples of linear models within engineering applications.

Model f(X) Description

Hooke’s Law F = xk Force F required to deflect a ma-
terial by some distance x.

Charles’ Law V = Tk Volume V and temperature T rela-
tionship of a gas at constant pres-
sure.

Archard Wear
Equation

Q = W
H
K The volume of wear Q produced

by a load W sliding a distance L
over a material of hardness H.

Morison’s Equation F = U |U |C ′
d + U̇C ′

m Wave force F acting on a slender
cylinder given wave velocity U and
acceleration U̇ .

A model is deemed linear (or linear-in-the-parameters) if the output f(X) may
be represented as some combination of the input space X multiplied by a set of
constants β:

f(X) = β0 +X1β1 +X2β2 + ...+Xnβn (8.1)

expressed in matrix from as
f(X) = Xβ (8.2)

where X is the design (input) matrix and β is the vector of parameters. It is
important to note that X is not restricted to only linear combinations of variables;
for example, X = [sin(X), XY, Z2] would still produce a model that was linear-in-
the-parameters.
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It is possible to represent any linear-in-the-parameters model as a GP, via relation
to Bayesian linear regression [156]. This represents the most simple case of GP
construction and is useful to highlight parallels between GPs, regression and linear
models. Assuming a process f(X) = Xβ with prior β ∼ N (0, B) between two
input vectors Xi and Xj, the covariance is derived

cov(f(Xi), f(Xj)) = E[f(Xi)f(Xj)]− E[f(Xi)]E[f(Xj)]

= E[(Xiβ)(Xjβ)
T ]−

��������:0
E[Xiβ]E[Xjβ]

= XiE[ββT ]XT
j

= XiBXT
j

(8.3)

with expectation
E[f(X)] = 0 (8.4)

leading to Gaussian process of

f(X) ∼ GP(0, XiBXT
j ) (8.5)

This is equivalent to a zero-mean GP with a linear kernel. If used in this form, the
model will perform equivalently to a Bayesian linear regression, but with a higher
computational cost. The advantage of this representation comes from an ability to
be easily integrated within other GP models, as will now be presented.

For all upcoming model examples, a case will be considered where linear prior
knowledge represents only partial knowledge of a system’s complete behaviour. A
process will be assumed of the form:

y = f(X)︸ ︷︷ ︸
Prior knowledge

+ g(X)︸ ︷︷ ︸
Unknown process

+ ϵ︸︷︷︸
Noise

(8.6)

where f(X) = Xβ represents prior knowledge of a process in linear form, g(X) ∼
GP(0, K) represents purely data-based capture of unknown phenomena and ϵ ∼
N (0, σ2

n) is Gaussian noise.
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8.2 Modification of GP model structures

The modification of either the mean or covariance function presents two clear
avenues via which one might wish to alter the modelling capabilities of a GP. The
modification of the mean function is generally more common within the literature
[8, 100, 107, 142–147], however, as this chapter investigates, is not always the
optimum method through which to incorporate prior knowledge. The capabilities
of a model, and therefore the most appropriate modification to structure, should
be tuned to best fit a given modelling task.

This chapter explores differences between four model structures. Though more
detail is provided in the upcoming sections, these models are summarised as:

� Deterministic mean function: Certain knowledge of how the mean of a process
behaves.

� Stochastic mean function: Knowledge of how the mean of a process behaves
with an associated degree of uncertainty.

� Physics-informed kernel with zero mean prior: Knowledge of the nature of
functions present with a process without knowledge of the mean behaviour.

� Physics-informed kernel with known mean: Knowledge of both the nature of
functions present within a process and its mean behaviour.

The following sections derive the model structures applied to fit Equation 8.6. This
allows results to be directly compared.

8.2.1 Deterministic mean function

A deterministic model assumes a fixed output for any given input. Within an
engineering context, this is a strict assumption, even for highly controlled environ-
ments and well understood phenomena. A point estimate, rather than a predictive
distribution (or degree of uncertainty), implies that the user has certain knowledge
of how the mean of a process behaves. For circumstances such as simulations,
certain knowledge of outputs is possible, and deterministic functions can offer a
computationally efficient way to enforce trends within the mean of a process.

Although m(X) may be any arbitrary function, for the purposes of consistency
and comparison to other models, a linear mean function is used here of the form
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m(X) = Xβ, where X is a set of inputs and the regression weights have no
associated uncertainty β ∼ N (b, 0). For a process of the form in Equation 8.6, a
deterministic mean leads to a structure of:

y = Xβ︸︷︷︸
Deterministic mean

+ g(X)︸ ︷︷ ︸
Unknown process

(8.7)

where the unknown process, g(X) is captured by a GP with a flexible kernel. To
derive the mean and covariance functions of the complete model, the expectation
of the deterministic mean is first calculated:

E[m(X)] = XE[β] = Xb (8.8)

followed by its covariance

cov(m(Xi),m(Xj)) = E[m(Xi)m(Xj)]− E[m(Xi)]E[m(Xj)]

= E[(Xiβ)(Xjβ)
T ]− (Xb)(Xb)T

= Xibb
TXT

j −Xibb
TXT

j

= 0

(8.9)

This leads to a GP of

y = GP(Xb, K(Xi, Xj) + σ2
nI) (8.10)

where K(Xi, Xj) is a kernel of choice. Note that since there is no effect from the
deterministic mean on the covariance of the GP, the predictive variance remains
unchanged. However, the predictive mean now becomes

E[y∗] = X∗b+K(X,X∗)(K(X,X) + σ2
nI)−1(y −Xb) (8.11)

This may be interpreted as the sum of the mean function and a zero mean GP
implemented on the residuals (y −Xb). Relating back to the interpretations of
Equation 3.8 in Chapter 3, the predictions of a GP will follow the mean function
when predicting far from observed training data. This makes mean functions an
effective way to assist with extrapolation.
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8.2.2 Stochastic mean function

Stochasticity acknowledges the presence of uncertainty and is necessary to account
for variability within real world applications. A stochastic mean function will
produce an added contribution σ2

m(X) within the covariance function. The added
contribution will be dependent on the mean function used and accounts for the
uncertainty present within the output of the stochastic model. For example, one
might wish to use the output of a Finite Element (FE) model as a mean function,
with a variance output of the model (if provided) as the covariance contribution. In
other circumstances, such as for a linear mean function, it is possible to calculate
the covariance contribution to be included. The inclusion of a stochastic mean
function in a GP leads to a model of the form:

y = GP(m(X), K(Xi, Xj) + σ2
m(X) + σ2

nI) (8.12)

To align with the earlier deterministic case, a stochastic mean function is assumed
here of the form m(X) = Xβ with β ∼ N (b, B). Though the expectation remains
the same, E[m(X)] = Xb, it is now important to account for the covariance
contribution, whish is derived as

σ2
m(X) = cov(m(Xi),m(Xj)) = E[m(Xi)m(Xj)]− E[m(Xi)]E[m(Xj)]

= E[(Xiβ)(Xjβ)
T ]−Xibb

TXT
j

= XiE[ββT ]XT
j −Xibb

TXT
j

= Xi[B + bbT ]XT
j −Xibb

TXT
j

= XiBXT
j

(8.13)

An important consideration when implementing a stochastic prior mean is how
the components of the model are optimised; this will impact both the final model
structure and performance. A residual model first fits a mean function to a
dataset, with the residual then passed to a zero mean GP. For a stochastic linear
mean this would be expressed:

y = GP(Xb, XBXT )︸ ︷︷ ︸
Stochastic mean fitted first

+ GP(0, K(Xi, Xj) + σ2
nI)︸ ︷︷ ︸

Residual GP

(8.14)

Residual models provide a flexible and effective means of incorporating stochastic
mean functions with little modification to existing GP architecture. The residual GP
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in Equation 8.14 is zero mean, with a chosen flexible kernel, a widely implemented
choice of model structure. Although the linear case is shown in Equation 8.14, there
is no restriction on types of mean functions that may be used, making residual
models suitable for building upon existing physics based approaches (e.g. simulation
outputs or empirical laws). The major drawback of residual models occurs when
the presence of unknown processes, aimed to be modelled by a residual GP, makes
the initial fit of the mean function challenging. The biasing of model parameters
and mis capture of an intended function component can be common problems, with
this phenomenon highlighted later through a toy example.

An alternate implementation of a stochastic prior mean is to jointly optimise the
whole model, learning the stochastic mean alongside the remainder of the GP in a
single step. For a stochastic linear mean, this is expressed:

y∗ = GP(Xb, K(Xi, Xj) +XBXT + σ2
nI) (8.15)

Implemented in this way, this is equivalent to the inclusion of a linear kernel with
a linear prior mean [139]. The simultaneous learning of model components can
be of particular help when the learning of a linear component is disturbed by the
presence of other processes.

8.2.3 Physics-informed kernel with zero mean prior

The additive inclusion of covariance functions with zero mean priors will not affect
the mean function of a GP. In general, a physics-informed kernel with a zero mean
prior is useful to include when one knows something about the form of a process
(e.g. linear, periodic, smooth) but not specifically about magnitudes of function
parameters or mean process behaviour. Alternatively, a process may be known
to have a zero mean, a common example of which is white noise, f(X) = ϵ with
ϵ ∼ N (0, σ2

nI), with covariance calculated:

K(Xi, Xj) = cov(f(Xi), f(Xj)) = E[f(Xi)f(Xj)]− E[f(Xi)]E[f(Xj)]

= E[ϵϵT ]−�����:0E[ϵ]E[ϵ]
= σ2

nI

(8.16)

An alternative view of incorporating noise within a GP is the addition of the
‘white noise kernel’. The structure of the kernel (σ2

nI) implies values are only
correlated with themselves (zero off the diagonal), with the magnitude of the
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variance controlled by the noise variance σ2
n.

To represent any of the engineering knowledge present within Table 8.1, a kernel
may be derived for a linear process f(X) = Xβ with prior β ∼ N (0, B):

K(Xi, Xj) = cov(f(Xi), f(Xj)) = E[f(Xi)f(Xj)]− E[f(Xi)]E[f(Xj)]

= E[(Xiβ)(Xjβ)
T ]−

��������:0
E[Xiβ]E[Xjβ]

= XiE[ββT ]XT
j

= XiBXT
j

(8.17)

Note how this is equivalent to both the linear kernel (8.3) and the stochastic
linear mean function covariance contribution in (8.13). When working with similar
processes, similar terms will often appear and whether these are determined a
‘kernel’, a ‘covariance contribution’ or another name may depend on the frame of
reference.

8.2.4 Physics-informed kernel with known mean

Along with an ability to encode information about the form of a process, the
introduction of non-zero priors within a covariance function allows information
about the magnitude of function components, specifics about functional behaviours
(e.g. long or short term trends, quickly or slowly varying processes) and mean
process behaviour to be incorporated within a model.

As earlier stated, the additive inclusion of a linear covariance function with a
linear prior is equivalent to a jointly optimised stochastic linear mean function.
The advantage of this approach over residual modelling is that since all function
components are now learned simultaneously, the likelihood of model components
learning their intended part of a process is increased. If an initial model component
is first fit to the data, the biasing of parameters may occur due the presence of
processes not represented within the physical model.

Continuing with a model structure consistent with earlier examples, the introduction
of a covariance component with a linear mean can be shown through treatment of
the whole process:

y = f(X) + g(X) + ϵ (8.18)

where f(X) = Xβ with prior β ∼ N (b, B) and g(X) ∼ GP(0, K). The covariance
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of the combined process is derived as

cov(y, y) = cov(f(Xi), f(Xj)) + cov(g(Xi), g(Xj)) + cov(ϵ, ϵ)

= E[f(Xi)f(Xj)]− E[f(Xi)]E[f(Xj)] +K(Xi, Xj) + σ2
nI

= E[(Xiβ)(Xjβ)
T ]−Xibb

TXT
j +K(Xi, Xj) + σ2

nI
= XiE[ββT ]XT

j −Xibb
TXT

j +K(Xi, Xj) + σ2
nI

= Xi[B + bbT ]XT
j −Xibb

TXT
j +K(Xi, Xj) + σ2

nI
= XiBXT

j +K(Xi, Xj) + σ2
nI

(8.19)

with expectation
E[f(X)] = XE[β] = Xb (8.20)

leading to Gaussian process of

f(X) ∼ GP(Xb, Ky +XBXT ) (8.21)

where Ky = K(Xi, Xj) + σ2
nI. Taking the expression for predictive mean and

variance

E[f(X∗)] = m(X∗) +KT
∗ (K + σ2

nI)−1(y −m(X)) (8.22)

V[f(X∗)] = K∗∗ −KT
∗ (K + σ2

nI)−1K∗ (8.23)

substituting the expressions for mean and covariance will give

E[f(X∗)] = X∗b+ (K∗ +XBXT
∗ )

T (Ky +XBXT )−1(y −Xb) (8.24)

V[f(X∗)] = (K∗∗ +X∗BXT
∗ )

− (K∗ +XBXT
∗ )

T (Ky +XBXT )−1(K∗ +XBXT
∗ )

(8.25)

these may be rearranged beginning with the predictive mean as follows

E[f(X∗)] = X∗b+ (K∗ +XBXT
∗ )

T (Ky +XBXT )−1(y −Xb)

which may be expanded using the Woodbury inversion [284]

E[f(X∗)] = X∗b+ (KT
∗ +X∗BXT )

(K−1
y −K−1

y X(B−1 +XTK−1
y X)−1XTK−1

y )(y −Xb)
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leading to the form

E[f(X∗)] = X∗β̂ +KT
∗ K

−1
y (y −Xβ̂) (8.26)

where β̂ = (B−1 + XTK−1
y X)−1(B−1b + XTK−1

y y). This form of the predictive
mean is useful in terms of interpretability as it maintains the same structure as
Equation 8.22, with an effective mean function of m(X) = Xβ̂. This allows the
prior b and posterior β̂ linear model parameters to be compared. Another benefit
occurs when one may be interested in the case of uninformative (or very weak)
priors. As B → ∞, the term XBXT present in the original expression for predictive
mean would lead to numerical errors. However, as B−1 → 0, the now present term
B−1 may cancel. As both expressions may work for smaller B values, it is sensible
to stick with a single implementation [102].

Alternatively, the predictive mean may be expressed

E[f(X∗)] = KT
∗ K

−1
y y + (X∗ −KT

∗ K
−1
y X)β̂ = KT

∗ K
−1
y y +RT β̂ (8.27)

where R = XT
∗ −XTK−1

y K∗. This form of the expression is useful to consider for
implementation reasons as the first term is equivalent to a standard predictive
mean. This makes modification to existing code easier to implement and allows for
comparison of model contributions.

For the the predictive variance

V[f(X∗)] = (K∗∗ +X∗BXT
∗ )− (K∗ +XBXT

∗ )
T (Ky +XBXT )−1(K∗ +XBXT

∗ )

expanding using the Woodbury inversion [284]

V[f(X∗)] =(K∗∗ +X∗BXT
∗ )

−(KT
∗ +X∗BXT )(K−1

y −K−1
y X(B−1 +XTK−1

y X)−1XTK−1
y )

(K∗ +XBXT
∗ )

leading to the form

V[f(X∗)] = (K∗∗ −KT
∗ K

−1
y K∗) +RT (B−1 +XTK−1

y X)−1R (8.28)

where R = XT
∗ − XTK−1

y K∗. Similarly to the predictive mean expressions, the
form of predictive variance is more suitable for implementation in cases of unin-
formative priors. Occurrences of B are no longer present and have been replaced
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by occurrences of B−1. Advantages in implementation are also achieved due to the
first term being equivalent to the expression for standard predictive variance.

8.2.5 Summary of methods

It is often the case that when modifying either the mean or covariance function of
a GP, changes to the other may be produced. Figure 8.1 highlights how beginning
from differing perspectives may produce similar effects within final model structures.

Figure 8.1: Overlap in consequences of modification of the mean and
covariance functions of a GP.

Deterministic mean functions will modify the mean function of a Gaussian
process but will have no impact on the covariance function. This is because unlike
stochastic mean functions, there is no degree of uncertainty associated to the
mean function. They are most suitable for use when one has certain knowledge
about an underlying trend, for example, in cases of simulated data.

Utilising physics-informed kernels with zero mean priors will change the
structure of a GPs covariance function, but does not include prior knowledge within
the mean function. They are useful when one might have knowledge about the
nature of functions present within a process, but not about the magnitude of
underlying trends.
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Stochastic mean functions and physics-informed kernels with known
means incorporate prior knowledge within both the mean and covariance functions
of a GP. For stochastic mean functions, an additional term is included within
the covariance function, accounting for uncertainty within the representation of
the mean function. For physics-informed kernels, a prior mean provides an
avenue through which to incorporate knowledge of physical parameter magnitudes
or underlying process behaviours.

8.3 Toy case study: Learning from limited data

One of the scenarios where prior knowledge can be most helpful is when observed
data are ‘limited’. As introduced in Chapter 1, this does not necessarily mean
that only a small amount of data has been collected, but that the collected data
may cover only a partial area of potential conditions. It is very possible within a
monitoring campaign to measure many hundreds of Gigabytes (or even Terabytes)
of data and still account for a small fraction of the potential conditions observable.
The ability of models to perform outside the ranges of their observed training data
is therefore very important and is investigated here through the use of a toy data
example.

An important first point to highlight is that a function need not grow very complex
before it becomes easy to misrepresent the function by observing a limited range of
data. Consider the fit of a linear model, having been shown various training ranges
of a function of the form y = αx+ ϵ, shown in Figure 8.2.

In the case of the linear function, the reduction in training data shown to the model
does not significantly impact performance. A similar fit is achieved whether the
model has observed the majority of the dataset or a smaller subset. This would
be a favourable phenomenon to occur within an engineering dataset, and would
allow for high predictive performance outside observed data ranges. However, such
a modelling task would be unlikely to occur within complex systems and changing
real world conditions.

Consider, now the introduction of a second process within the target function such
that it is now of the form y = αx+ β sin(ωx) + ϵ. The fit of a linear model, having
been shown varying ranges of training data is repeated and shown in Figure 8.3.

Here, the introduction of the additional process within the target function made the
capture of the underlying linear component more difficult. Although the underlying
linear component was captured well when the model observed a large data range,
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Figure 8.2: The fit of a linear model to a function of the form y = αx+ϵ.
A large training range is shown to the model in (a), with smaller training
ranges shown in (b) and (c). The fit of the model remains reasonable
for all training windows.

in cases where the model observed a limited range, it was possible to both under
and over estimate the true gradient. This toy example aims to highlight how
misrepresentation of a process can occur when only a subset of conditions are
observed. The models introduced here will highlight how manipulation of the
kernel and mean function can combat this. Remaining with a toy function of the
form y = αx+ β sin(ωx) + ϵ, models are shown the first 25% of the dataset during
training and predict across the full range.

8.3.1 Black-box SE kernel fit

The dataset is first modelled using a zero mean GP with Squared Exponential (SE)
kernel, a model of the form

f(X) ∼ GP(0, KSE(Xi, Xj) + σ2
nI) (8.29)
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Figure 8.3: The fit of a linear model to a function of the form y =
αx+ β sin(ωx) + ϵ. The model is able to capture the underlying linear
component of the target function when a large training range is shown
to the model (a). However when limited training ranges are shown, a
linear fit may underestimate (b) or overestimate (c) the gradient of the
underlying linear component within the target function.

This is what one might consider an ‘out of the box’ or ‘default’ modelling approach.
No particular considerations have been made about the process being modelled. A
SE kernel can be suitable for any process that is smoothly varying and continuous
and so often provides a start point from which to build more complex models. It
may be used as an initial model to study a dataset or integrated within final model
designs. As seen from the training window in Figure 8.4, SE kernels generally
perform well in interpolation, with an excellent fit to previously observed data.
However, when the training data runs out, performance quickly drops and the
model refers to its prior. As one would expect, the SE kernel alone is unable to
extrapolate effectively.
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Figure 8.4: Prediction of a zero mean GP with a SE kernel on a toy
dataset of the form y = αx+ β sin(ωx) + ϵ. The model is shown the
first 25% of the dataset during training.

8.3.2 Stochastic mean function

A residual model is one way of incorporating a stochastic mean function within
a GP. A model is first fit to the target dataset, here a Bayesian linear regression,
with the residual passed to a zero mean GP. This leads to a combined model of the
form

f(X) ∼ GP(Xb, XBXT ) + GP(0, KSE(Xi, Xj) + σ2
nI) (8.30)

A linear model is first fit to the data to provide an estimate for a linear mean
function, with the result of this shown in Figure 8.5. However, the presence
of additional processes, represented here as β sin(ωx), may sometimes disrupt
the learning of a linear function component. This is a particular problem in
circumstance of limited data where the chance of a non-representative data region
(i.e. a region too steep or shallow) is more likely.

The GP is able to achieve a reasonable fit to the residual within bounds of previously
observed data. However, when far from observed data, the residual GP reverts to
its prior. The GP fit to the residual is shown in Figure 8.6.

When the residual GP is combined with the linear model, the overall model
performance is improved within the bounds of observed data. Far from observed
data, the combined model reverts back to the originally fitted linear model, which
acts as a stochastic mean function. This has the potential to be a highly useful
property if an appropriate or representative mean function is able to be fitted. It
allows for improvements in performance where data are available, and may otherwise
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Figure 8.5: Bayesian linear regression on a toy dataset of the form
y = αx+β sin(ωx)+ ϵ. The model is shown the first 25% of the dataset
during training. The model overestimates the gradient of the linear
function component (α) due to the presence of the sinusoidal term
(β sin(ωx)).

revert to a baseline performance. Where this type of model may underperform is
in circumstances highlighted in Figure 8.7. Here the underlying linear model was
poorly fit and the model therefore performed poorly in extrapolation. Far from
observed data, residual models are highly dependent on their initially fit model
(mean function) and care should be taken to ensure this model is performing as
expected.

8.3.3 Physics-informed kernel with zero mean prior

If knowledge of the functional form of a process is known, this structure may be
represented within the covariance function (kernel) of a Gaussian process. The
kernel is responsible for controlling the family of functions from which predictions
may be drawn and design choices may be made to enforce desired behaviours. For
the example of a linear function component, using the earlier derived linear kernel
in Equation 8.3, it may be included within the covariance function of the Gaussian
process such that it is now of the form:

f(X) ∼ GP(0, KSE(Xi, Xj) +XBXT + σ2
nI) (8.31)

One advantage of kernel representation of processes is the potential for single step
learning. This can help to avoid the biasing/disruption caused by trying to learn a
function component as part of a combined process. An aim of kernel design is to



160 8.3 Toy case study: Learning from limited data

Figure 8.6: Prediction of a zero mean GP with a SE kernel on the
residual of a Bayesian linear regression on a toy dataset of the form
y = αx+β sin(ωx)+ ϵ. The model is shown the first 25% of the dataset
during training.

Figure 8.7: Prediction of a residual model on a toy dataset of the form
y = αx+ β sin(ωx) + ϵ. The model is comprised of a Bayesian linear
regression and zero mean GP fit on the residuals; it is shown the first
25% of the dataset during training.

learn all processes simultaneously, such that each kernel component is able to best
capture its intended function component. This phenomena can be seen within the
improved linear component capture and extrapolation within Figure 8.8.



8.3 Toy case study: Learning from limited data 161

Figure 8.8: Prediction of a GP with a SE plus a zero mean linear kernel
with structure f(X) ∼ GP(0, KSE(Xi, Xj) +XBXT + σ2

nI) on a toy
function of the form y = αx+ β sin(ωx) + ϵ. The model is shown the
first 25% of the dataset during training.

8.3.4 Physics-informed kernel with known mean

The inclusion of covariance functions with non-zero prior means maintains the
advantages of single step learning provided by representation of function components
within the kernel. In addition, if specific prior knowledge is known about magnitudes
of prior coefficients, this may now be included. Here the GP will be of the form

f(X) ∼ GP(Xb, KSE(Xi, Xj) +XBXT + σ2
nI) (8.32)

The linear function component and SE kernel will be learnt at the same time
following the theory from section 8.2.4. The prediction of the model is shown in
Figure 8.9

The implementation of priors through the covariance function can also provide
a degree of interpretability via access to the posterior distributions of specific
parameters. The prior and posterior distributions of the linear parameter β is
shown in Figure 8.10. This is of particular help where such parameters may have
physical meaning e.g. coefficients within empirical laws.

Any advantages provided through the inclusion of prior means alongside covariance
functions is highly dependent on the accuracy and strength of priors and their
appropriate selection is therefore an important modelling decision. It is very
possible to worsen model performance through inclusion of priors, particularly in
cases of overly confident inaccurate parameters.
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Figure 8.9: Prediction of a GP with a SE plus a non-zero mean linear
kernel with structure f(X) ∼ GP(Xb, KSE(Xi, Xj) +XBXT + σ2

nI)
on a toy function of the form y = αx + β sin(ωx) + ϵ. The model is
shown the first 25% of the dataset during training.

8.3.5 Performance summary

The performance of models was measured using two metrics: the Normalised Mean
Square Error (NMSE) and the Mean Standardised Log Loss (MSLL). The MSLL
is a probabilistic measure, with superior models having more negative scores. A
baseline of zero is equivalent to setting the predictive mean and variance for all test
set points as the mean and variance of the training set. A comparison of results is
shown in Table 8.2.

Table 8.2: Performance summary of models on toy dataset.

Model Structure NMSE MSLL

Zero mean SE kernel GP(0, KSE + σ2
nI) 223.247 −14.727

Linear prior mean, GP(Xb, XBXT )+ 20.413 −15.458
residual model GP(0, KSE + σ2

nI)

Zero prior mean, GP(0, KSE +XBXT + σ2
nI) 2.920 −16.948

linear + SE kernel

Linear prior mean, GP(Xb, KSE +XBXT + σ2
nI) 3.032 −16.954

linear + SE kernel

The zero mean GP with a SE kernel, what might be considered the ’out of the box’
approach, is suitable for a wide range of modelling tasks and capable of capturing a
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Figure 8.10: Prior and posterior draws of the linear model coefficients for
a joint optimisation GP with a linear mean function and SE covariance
y = αx+β sin(ωx)+ϵ. Training data was normalised using its calculated
mean and standard deviation.

wide variety of functional forms. However, it performed poorly during extrapolation
on the toy data set. This behaviour was to be expected as a stationary kernel, such
as a SE, will revert to its prior far from data. In general, the implementation of
flexible modelling approaches are only suitable when working within the limits of
observed data.

A key observation within these results is the performance improvement of the kernel
based methods over the residual model. This is primarily due to the mis-learning
of the linear component via the initial fitting of the linear function. In an attempt
to account the the sinusoidal component, an over estimation of the linear slope
was achieved. Although a simplistic case is highlighted here, this scenario presents
a common problem posed with residual model structures. If they are adopted in
cases in which a model known to exclude parts of a process, it is important to first
check, via the use of an additional validation step, that acceptable fit of the mean
function may be achieved.

The performance of the kernel based methods for this example were found to be
very similar, being within 0.112% NMSE and 0.006 MSLL of each other. The
difference in performance here is due to the placing of a prior over the parameter
α. In this case, the true value for the toy dataset was known to be α = 1, whilst
a prior of α ∼ N (0.9, 0.1) was used as a linear prior mean. The fact that the
linear prior mean in this case performed so similarly to a zero prior highlights the
importance of both accurate and appropriately confident priors. Though within
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10% of the true underlying value, the relatively high confidence placed over the
prior limited the potential benefit to the model, with a slight underestimate of the
true underlying linear gradient achieved.

8.4 Conclusions

This chapter explored how changing the way in which prior knowledge is incorpor-
ated within a Gaussian process, can change the capabilities and properties of the
constructed model. To allow for direct comparison of results, a consistent example
of prior knowledge was used in the form of a linear function f(X) = Xβ. This was
then incorporated via both the mean function and kernel of a GP. As shown in
Table 8.1, a linear form of prior knowledge is relevant to a wide range of engin-
eering tasks, however, future efforts hope to expand the forms of prior knowledge
considered. Constraints, non-linear equations and simulated prior knowledge would
all be valuable to investigate in a similar manner.

The derivation of model expressions highlighted why differences in model capability
occur due to the introduction of additional terms within expression for the predictive
mean and variance. The role and utility of how these terms can be exploited by a
user were discussed. For example, an additional term included within the predictive
variance allows a stochastic mean function to account for uncertainty with the
expression of a mean function, which a deterministic mean function does not
possess.

The examples of models presented in this chapter were all of the additive partial
knowledge structure presented in Equation 8.6, allowing for more direct comparison
of the expressions produced. Although an additive structure is arguably the intuitive
first case to investigate, as discussed in Chapter 7, it is not the only potential way
to represent physical knowledge within a model. The investigation of other cases,
such as a multiplicative partial knowledge structure, are a natural continuation
of this work. Efforts of Jones [285], alongside the author are currently ongoing to
investigate and compare alternative structures.

The classification of model structures utilising an equivalent form of prior knowledge
was a useful step to aid the work of the next chapter of the thesis. In the upcoming
Chapter 9, a proposed framework to assist a user with PIML model construction
is developed. Based on the nature of prior physical knowledge possessed by
a prospective modeler, the framework aims to suggest an appropriate model
architecture. For this reason, it was very important to distinguish, understand and
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clearly define architectures with similar capabilities. The first section of the chapter
applies a similar logic to the type of physical knowledge possessed by the user,
aiming to classify and describe common categories of prior physical knowledge.



Chapter 9

A Framework for Prior
Knowledge Inclusion Within

Gaussian Processes

Effective incorporation of prior knowledge within machine learners brings an array
of potential benefits, including interpretability into model results, reduced demand
for expensive data collection and increased operator confidence. However, deciding
how best to integrate any given piece of prior knowledge within a model can be
challenging and will have an effect on final model structure and performance. This
chapter investigates important relationships between the form in which knowledge
presents itself (e.g. equations, simulations, bounds), the source from which it comes
(e.g. domain experts), its cost of accrual and how best to incorporate it within a
model. A proposed framework is developed to assist with deciding how best to
integrate prior knowledge within Gaussian Process Regression (GPR) models. The
aim is to help classify a given piece of prior knowledge and suggest an appropriate
model architecture. To the author’s knowledge, this is the first attempt to develop
a tool to assist a user with the development of PIML models. This chapter is
built upon work from throughout the thesis, relying upon the understanding of
GP model structures presented in Chapters 3 and 8, and utilising the PIML model
development of Chapters 5, 6 and 7 as case studies with which to test the developed
framework.

166
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9.1 Categorising prior knowledge

The most appropriate means of integration of prior knowledge within any machine
learner is highly dependent on the knowledge being integrated. Here, therefore,
some steps are taken to understand and categorise common types of prior know-
ledge a prospective modeler might utilise. Factors including where the knowledge
comes from, here defined as the knowledge source, along with its structure (equa-
tions, simulations, logical relations etc.), here defined as the knowledge form, are
considered.

9.1.1 Types of knowledge source

The source of prior knowledge can have a significant influence on its value, ease of
implementation within a model and potential improvements in performance [10].
Here, the following definitions of knowledge sources are proposed:

Universal knowledge: Known by an average person, or able to be very quickly
explained. Explanations should be immediately obvious, not requiring a
discussion e.g. “The sky is blue”.

Basic reasoning : Something that could be easily inferred from looking at a
scenario. Explaining may require some level of justification e.g. “The trolley
will roll down the hill”.

Scientific knowledge: Based on scientific theory but need not require any
specialised knowledge from a specific field. Approximate level of science that
might be taught to teenage school children e.g. F = ma.

Domain knowledge: Technical knowledge relating to a specific field. It should
be known and understood by the majority of people working within the field

e.g. ωn =
√

k
m
, the natural frequency ωn of a system, given its stiffness k and

mass m.

Expert knowledge: Knowledge requiring years of experience, or high levels
of expertise within a specific application e.g. Soil interaction effects at a
particular wind farm.
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With each subsequent knowledge source presented, the availability of knowledge
reduces, becoming more difficult to acquire and with generally increasing costs.
This concept is highlighted in Figure 9.1. An important consideration relating to
the source of prior knowledge is the trade-off between the cost of knowledge (in
terms of money, time and expertise) and the potential benefit that may be provided
to a model. This is maximised when easily accessible universal knowledge or basic
reasoning is able to provide a large benefit to model performance. The reverse
case, in which expensive or challenging to acquire expert knowledge provides little
benefit to a model should be avoided. In the case where knowledge is already
available e.g. existing results of a simulation, the utilisation should be maximised,
so long as results are validated.

Figure 9.1: Diagram of knowledge sources. Rings represent knowledge
contained within a particular source and are intentionally overlapping;
for example, an expert would also be expected to have access to scientific
and universal knowledge.

The author believes that the classification of knowledge sources is a useful step
before integration of prior knowledge within machine learning; however, their
classification can be subjective. It is helpful to consider how the process might
be applied to an engineering example. A mass spring damper system is shown in
Figure 9.2, with a summary of knowledge source examples in Table 9.1.
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Figure 9.2: Mass spring damper system.

Table 9.1: Knowledge source examples for a mass spring damper system.

Knowledge type Knowledge Description

Universal knowledge m ≥ 0 The block exists and has some
mass.

Basic reasoning x ≥ xwall The block may not move left of the
wall boundary.

Scientific knowledge F = ma Newton’s second law.

Domain knowledge mẍ+ cẋ+ kx = F Equation of motion for a linear
mass spring damper system.

Expert knowledge k = f(T ) Expected stiffness of a specific
spring as a function of temperat-
ure.

9.1.2 Knowledge forms

It is argued here that, the form which prior knowledge takes and the structure of
how it may be expressed is the primary factor in how best it should be integrated
within a machine learning model. The relationship between knowledge form and
model structure is studied by von Rueden et al. [10]. There are many types of
knowledge forms, the classification of which in to broader categories is presented
here:
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Variable dependence

When constructing models, an assessment of variable dependence is an important
step when selecting inputs; this involves distinguishing between causal and asso-
ciative relationships. If inappropriate inputs are selected for a model, very little
may be done with model structure to remedy this [66]. Although statistical tests
are helpful for the detection of dependence, determining whether the relationship
is causal is challenging without the use of prior knowledge. Strong correlations
between variables, indicating the presence of a linear relationship, are very possible
without any direct causal link [76]. Associative relationships between model inputs
and the target have the potential to lead to highly confident erroneous model
predictions.

Bounding of variables

Without knowledge of the specific behaviour of a variable, it is often the case
the extreme limits might be known either as an upper bound, a lower bound or
both. The bounding of input variables might occur through knowledge of expected
operational conditions e.g. temperature ranges. The bounding of outputs can
be useful for preventing models from giving physically impossible or unrealistic
predictions. The bounding of parameters (or hyperparameters) could be used to
limit search spaces, reducing the computational burden during optimisation.

Functions of variables

Where relationships between variables can be expressed as a function, a series
of powerful methods for prior knowledge inclusion become available. Where an
approximate functional form of a process is known, e.g. through an empirical law,
a fitted mean function can provide means through which to improve extrapolative
capabilities. Access to the functional form of parts of a process allows for the
mimicking of behaviours within the covariance function design. Where desired
inputs for a model are unavailable or can not be measured, the approximation
of these variables in function form has the potential to simplify learning tasks,
particularly if the variable is known to strongly influence a model target.

Simulation outputs

The use of simulations is an important part of many steps within engineering
applications including design, manufacturing and development of maintenance
strategies. Used alongside experimental and physical studies, simulations are an
excellent way to acquire helpful data to support engineering decisions. Simulations of
a target variable can be utilised as a mean function, with a stochastic mean function
possible where uncertainty estimates of variables are also provided. Similarly to
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functional estimates of model inputs, simulations can provide useful access to
additional model variables where measured data are unavailable. In all cases where
a simulation output might be utilised, additional care should be taken that the
outputs of the simulation are validated and to be trusted by the user.

Dimension reduction

The use of dimension reduction via prior knowledge is an effective means of
simplifying the learning task presented to a data-based model. Dimension reduction
here is used to refer to any means by which the operational space is transformed
from a higher-dimensional space to a lower-dimensional one whilst aiming to retain
important information present within the data. Examples of dimension reduction
include the use of rotational and reflectional symmetries, representation of 3D
problems as a 2D slice and 1D ‘inline’ representation of problems. Although the
act of dimension reduction itself can simplify problems, the decision of where and
when such simplifications are valid can be a challenging task.

Knowledge source examples

To highlight how various knowledge forms may present themselves within an
engineering context, it is useful to present examples from a specific application.
Much of the work within this thesis focusses on the wave loading of offshore
structures, an important subtask in the estimation of their useful remaining life.
Table 9.2 presents relevant prior knowledge of varying forms.

Table 9.2: Examples of varying knowledge forms within the context of
wave loading of offshore structures.

Knowledge form Expression Description

Variable dependence p(F ∩X) = p(F )p(X) Wave load independent of
lightening flash.

Bounding of variables 6◦C ≤ T ≤ 18◦ Average North Sea
temperature range [286].

Functions of variables F = U |U |C ′
d + U̇C ′

m Morison’s Equation.

Simulation outputs f(X) = FFE Results from an external
Finite Element model.

Dimension reduction U(x) ∼ U(x, y, z) Inline representation of
problem.
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The form in which prior knowledge is expressed is often linked to the source from
which it is provided, for example, knowledge of appropriate dimension reduction
for a problem would not be provided through universal knowledge. It can be
useful to consider this relationship when constructing physics informed models,
with the aim of maximising the benefit provided to a model whilst minimising
the resources spent (time, money and expertise) in acquiring knowledge. A key
advantage of physics-informed models is that prior knowledge may be used to
reduce a models reliance on data collection, thereby reducing monitoring efforts and
costs. If a large amount of resources are spent in acquiring the knowledge to do so,
the net benefits are diminished. The form of knowledge, closely linked to how most
appropriately it should be integrated to a model, the benefits in performance this
achieves, along with the knowledge source and expense of knowledge accrual should
all be considered during model construction. The approximate relationship between
knowledge sources and forms is presented in Figure 9.3. There is, of course, a large
degree of subjectivity and overlap about what constitutes a boundary between
knowledge sources; however the important takeaway is the relative positions between
knowledge forms.

Figure 9.3: A comparison of the relationship between knowledge source
and knowledge form.

A first key relationship between knowledge source and knowledge form drawn from
Figure 9.3, is the difficulty of acquiring simulation data. Typically, the construction
of any form of simulation, (CFD, FEA or otherwise) requires a high degree of
domain expertise, placing a relatively high resource cost on this knowledge form. A
consequence of this is that before any effort is spent creating simulations specifically
to assist a machine learner, care should be taken to ensure alternative options could
not provide similar benefit to the model.

The scope of knowledge sources for both variable dependence and the bounding
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of variables was the widest, covering almost the full range of knowledge sources.
The difficulty of both tasks and level of expertise required varies strongly with
application, however examples from across the full range can be very valuable with
PIML models. For instance, bounding variables within physical laws, or limitations
can ensure predictions are physically meaningful [193].

9.2 A framework for prior knowledge inclusion

Deciding how best to integrate any given piece of prior knowledge within a machine
learning model can be challenging and will have an effect on final model structure
and performance. This section provides a framework, in the form of the flowchart
in Figure 9.4, to assist with deciding how best to integrate prior knowledge within
Gaussian process models. The aim is to break the decision down in to a series
of more easily answered questions that may help classify a given piece of prior
knowledge and suggest an appropriate means of integration within a model. An
expected user of the framework should be comfortable with implementing Gaussian
process models but need not be experienced with physics-informed modelling. For
users who may have enough experience to develop their own judgments of how best
to integrate a piece of prior knowledge, the framework should act as a sense check
that may be useful alongside personal opinion.

Alongside the goal of suggesting an appropriate model architecture, there were
several soft constraints placed on its design. Though these may have to be disreg-
arded, if future versions necessitate it, they were deemed useful for the usability of
the framework. These design constraints included:

� The flowchart should be able to fit on a single page. This would allow for
use without flicking between pages, and an ability to be displayed in formats
such as a poster.

� The boxes within the flowchart should be a consistent size. This would allow
for an aligned layout and a clearer presentation.

� Avoid the use of mathematical expressions within flowchart boxes. Where
possible, text descriptions of models and decisions are preferable will avoid
complications with notation and clarity to a variety of readers.

� Maintain a readable text size. Attempts to shrink the flowchart to a single
page should not be so extreme that the text present becomes difficult to read.
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Figure 9.4: A flowchart for the inclusion of prior knowledge within Gaussian process design. Teal
nodes represent decisions, orange nodes represent actions and purple nodes represent outcomes.
*The design of kernels to account for partial knowledge of a process presents its own widely
varying research area, which is detailed further in Chapter 7.
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Application of the framework

In order for the framework to be useful, it is important that the outcomes and
suggestions it produces should be sensible and that navigation of the flowchart
itself is user friendly. This necessitates adherence to the following aims:

� The language used within the flowchart should be clear, concise and easily
understood by an expected user.

� The outcomes produced by navigating the flowchart should align as closely
as possible with effective implementation of prior knowledge found within
this thesis and other literature.

� It should not be possible to end up in a situation in which a question asked
within the flowchart does not apply or make sense, given the users modelling
scenario.

To test the reliability of the framework, examples of prior knowledge used throughout
the thesis are used as case studies. The hope is that successful examples of prior
knowledge integration would be suggested as model structures via navigation of the
flowchart. In each upcoming example, questions from the flowchart were answered
based on only the prior knowledge with no knowledge of the PIML model structure
assumed.

9.2.1 Example A: Morison’s Equation

The first application example focusses on Morison’s Equation, which formed the
physics-based component of the first PIML model within the thesis in Chapter 5.
For the modelling of wave loads on slender members, which many offshore structures
are comprised of, Morison’s Equation has been the most widely used such method
since it’s introduction in 1950 [32]. Here, the prior knowledge (Morison’s Equation)
takes the form:

Prior knowledge example A

f(X) =
1

2
ρDCdU |U |+ 1

4
πρD2CmU̇ (9.1)

where ρ is the fluid density, D is cylinder diameter, U is water particle velocity,
U̇ is water particle acceleration, Cd is the drag coefficient and Cm is the inertia
coefficient [36, 222].
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Navigating the flowchart in Figure 9.5 for this example, takes the following route:

Q1. Is there knowledge of appropriate inputs to use within the model?

A1. Yes. The water particle velocity and acceleration were known to be appropriate
inputs for wave loading prediction models.

Q2. Does knowledge extend beyond selection of appropriate model inputs?

A2. Yes. Morison’s Equation is utilised here.

Q3. Does knowledge extend beyond bounding variables between extreme limits?

A3. Yes. Morison’s equation approximates the wave load.

Q4. Is any knowledge in functional form?

A4. Yes. Morison’s Equation is a function.

Q5. Does the function aim to restrict or reduce valid solutions to a problem?

A5. No. Morison’s Equation does not constrain what values for wave load are or
aren’t valid.

Q6. Does the function approximate any part of the behaviour of the target variable?

A6. Yes. Morison’s equation approximates the wave load, the target of the model.

Q7. Does the function provide an approximation of the whole process?

A7. Yes. Morison’s equation approximates the whole wave load.

Q8. Is the fitting of the function disrupted by the presence of unknown processes?

A8. No. When Morison’s Equation was fit to the data, an NMSE of < 20% was
achieved on an unseen test set. This is inline with expected performance and
implied Morison’s equation was working as well as could be expected [257].
This suggests that the presence of processes such as vortex shedding, not
captured by Morison’s Equation did not impede or disrupt its fitting.

� Suggested Model: Residual model with a fitted mean function and
a flexible kernel.
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Figure 9.5: Application of the flowchart for the incorporation of Morison’s Equation within a
Gaussian process. This work is presented in Chapter 5. Teal nodes represent decisions, orange
nodes represent actions and purple nodes represent outcomes.
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In this case, the suggested model of the flowchart aligned with the best performing
PIML model structure within Chapter 5, with the implemented structure outper-
forming a black-box model. Particular improvements were seen where access to
measured data was limited and models relied on their capability to extrapolate.
The chapter also investigated a case where Morison’s Equation was used for input
augmentation, with a residual model structure found to be preferable, further
supporting the alignment of the flowchart decision.

In terms of flowchart navigation, the most challenging section was Q8 ‘Is the fitting
of the function disrupted by the presence of unknown processes? ’. The answer to this
question is arguably the most subjective, with the answer determined by whether
a satisfactory fit of Morison’s Equation was achieved. Here, due to the model
obtaining an NMSE of < 20% on an unseen validation set, Morison’s Equation
was deemed to be working as expected [257], and not disrupted by the presence of
unknown processes. If the answer to this question was instead deemed to be ‘yes’,
with an alternate route of the flowchart taken, the suggestion of the flowchart would
have been a physics-informed kernel added to a flexible kernel. This model structure
was implemented for Morison’s Equation in the work within Chapter 7 and was also
found to be an effective choice of PIML structure. The additive kernel structure
and residual model were compared within Chapter 7 and found to perform similarly.
The residual model achieved a slightly improved NMSE (14.797% vs 14.913%)
whilst the additive kernel structure achieved an improved MSLL (-0.939 vs -0.598).
As models become more similar, in terms of both capability and performance,
their separation within the framework becomes more challenging. An advantage of
this however, is that though questions may become more subjective later in the
framework, the consequences of decisions appears to reduce. In this case, due to
comparable performance and model capabilities, either model structure would be
deemed appropriate in the author’s opinion.

9.2.2 Example B: Linear wave theory

The second application example for the flowchart looks at aspects of linear wave
theory, which were integrated within PIML models in Chapter 6. Multiple useful
quantity expressions were used in this chapter, including the free surface η, water
particle velocities Ux, Uz and water particle accelerations ax, az [35, 36]. A common
theme however is that they all relied upon the linear solution for velocity potential.
Though the multiple expressions used may be referred to in Chapter 6, only the
expression for velocity potential is given here:
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Prior knowledge example B

ϕ =
N∑
i=1

Aig

kici

cosh(ki(z + d))

cosh(kid)
sin(kix− ωit+ Φi)

where A is wave amplitude, k = 2π
λ
is the wave number, c = ω

k
is the wave speed and

Φ is the phase. The horizontal and vertical water particle velocities are negative
spatial derivatives of the velocity potential and their calculation for a given range
of x and z allowed for the construction of a velocity field. Deriving w.r.t t provided
access to the water particle accelerations ax and az.

Navigating the flowchart in Figure 9.6 for this example, takes the following route:

Q1. Is there knowledge of appropriate inputs to use within the model?

A1. Yes. The models in this chapter were designed to use incoming wave height
as an input, a commonly measured variable on many offshore structures.

Q2. Does knowledge extend beyond selection of appropriate model inputs?

A2. Yes. Multiple asppects of linear wave theory is utilised here.

Q3. Does knowledge extend beyond bounding variables between extreme limits?

A3. Yes. Linear wave theory is able to approximate many important wave
quantities, including, velocity, free surface and pressure.

Q4. Is any knowledge in functional form?

A4. Yes. Linear wave theory has multiple functions.

Q5. Does the function aim to restrict or reduce valid solutions to a problem?

A5. No. Though assumptions must be relied upon when utilising linear wave
theory (e.g. no temperature gradients, small amplitude waves), the equations
themselves do not constrain what values for each respective quantity are or
aren’t valid.

Q6. Does the function approximate any part of the behaviour of the target variable?

A6. No. Linear wave theory doesn’t approximate any component of the wave
load.

� Suggested Model: Input augmentation with calculated additional
variable.
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Figure 9.6: A flowchart for the inclusion of the aspects of linear wave theory, utilised in Chapter
6, within a Gaussian process. Teal nodes represent decisions, orange nodes represent actions and
purple nodes represent outcomes.
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The suggestion of the flowchart again aligned with the findings of the thesis, with
the calculated flow conditions close to the monopile found to be a very valuable
model input. The constructed models in Chapter 6 were able to achieve better
performance across the full range of wave states generated within the wave tank
compared with a purely data-based approach. The suspected reason for this
performance improvement was that the realtonship between the approximated
flow conditions and the wave load was an easier learning task than that between
incoming wave height and the wave load.

For the navigation of the flowchart in this case, the most challenging aspect was that
multiple expressions could potentially be considered when answering each question.
To obtain flow conditions close to the monopile, expressions for the velocity potential
and free surface were also required. In this case however, answering the questions
with respect to any of the utilised expressions would result in the same suggested
model architecture. For scenarios where a user might be incorporating multiple
instances of prior physical knowledge within the same model, there are two main
possible ways to utilise the flowchart; either the prior knowledge is treated as a
singular group and questions answered to most reflect the knowledge as a whole,
or each piece of knowledge is passed through the flowchart individually. For the
case of linear wave theory, the former of these options seemed most appropriate.

9.2.3 Example C: Free vibration of a cantilever beam

Part of the work within Chapter 7 focussed on modelling the response of a cantilever
beam in free vibration. The free vibration response of a beam can be found through
separation of variables with a solution of the form Y (x, t) = W (x)T (t). The
response of a beam in free vibration may be calculated through the superposition of
normal modes [244]. The prior knowledge included was the form of the oscillatory,
time dependent, behaviour of the beam T (t), whilst no form of the mode shape
W (X) was assumed:

Prior knowledge example C

Y (x, t) =
∞∑
i=1

Wi(x)e
−ζωi

nt(Ai cos(ω
i
nt) +Bi sin(ω

i
nt))

where Ai and Bi are determined from the initial conditions of the beam. For many
sets of known boundary constraints, including cantilever beams, it is possible to
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derive an exact analytical expression for the mode shapes Wi(x) [243, 244]. This
was not done within the work of Chapter 7, to allow for an increased level of model
flexibility.

Navigating the flowchart in Figure 9.7 for this example, takes the following route:

Q1. Is there knowledge of appropriate inputs to use within the model?

A1. Yes. The response of the beam Y (x, t) was known to be a function of both
position x and time t.

Q2. Does knowledge extend beyond selection of appropriate model inputs?

A2. Yes. The form of the oscillatory behaviour of the beam, T (t) was known.

Q3. Does knowledge extend beyond bounding variables between extreme limits?

A3. Yes. T (t) approximates how a fixed location on the beam oscillates over time
for a given mode.

Q4. Is any knowledge in functional form?

A4. Yes. An expression for T (t) is known.

Q5. Does the function aim to restrict or reduce valid solutions to a problem?

A5. No. The expression for T (t) does not constrain what values for beam response
are or aren’t valid.

Q6. Does the function approximate any part of the behaviour of the target variable?

A6. Yes. T (t) approximates the oscillatory, time dependent, behaviour of the
beam’s response.

Q7. Does the function provide an approximation of the whole process?

A7. No. The expression for T (t) only provides an approximation of the time
dependant component of system behaviour. It does not provide an approxim-
ation of the full response Y (x, t) = W (x)T (t).

� Suggested Model: Physics-informed kernel, incorporating partial
knowledge of a process.
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Figure 9.7: A flowchart for the inclusion of the oscillatory behaviour of a cantilever beam T (t)
within a Gaussian process. This work was implemented in Chapter 7. Teal nodes represent
decisions, orange nodes represent actions and purple nodes represent outcomes.
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The suggested model structure by the flowchart for the case of the cantilever beam
in free vibration aligned with the findings in Chapter 7. The developed model in
this chapter was able to incorporate knowledge of the oscillatory behaviour of a
cantilever beam without strict enforcement of boundary conditions specific to the
analytical expressions for mode shapes W (x). These included uniform cross-section
of the beam, a perfectly fixed base and uniform mass distribution [243, 244].

An important point of note here was that the suggested model structure of ‘Physics-
informed kernel, incorporating partial knowledge of a process.’ is a broad category.
To develop an appropriate PIML model from this point still required a large amount
of research and model development effort. Firstly, the physically derived SDOF
kernel [149], was utilised to mimic the oscillatory behaviour of the beam. This was
then incorporated within a wider multiplicative kernel structure of the form:

K(τx, τt) =
N∑
i=1

Ki
SE(τx)︸ ︷︷ ︸
Mode
shape

Ki
SDOF (τt)︸ ︷︷ ︸
Oscillatory
behaviour

+ σ2
nδij︸︷︷︸

Noise

(9.2)

where the squared exponential kernel Ki
SE was used to model the mode shape for

a given mode i. The construction of the combined kernel reflected the structure of
the solution for free vibration response Y (x, t) = W (x)T (t). Each of these steps
required an additional degree of insight to the problem beyond the aid provided by
the framework. However, the suggestion of the framework would provide a helpful
starting position from which to begin making such developments.

9.3 Conclusions

The common types of physical knowledge that one might wish to incorporate within
a physics-informed engineering model were discussed and categorised according
to how they were obtained and the form which they take. This is argued as a
useful first step a user might take before constructing a PIML model. An improved
understanding of how to define a type of physical knowledge should make the
answering of questions based upon the knowledge less subjective. A consideration
of how difficult, or expensive, any given piece of knowledge is to acquire is considered
as a factor for its use within a PIML model.

A framework to aid with decision-making on how best to incorporate a piece of
prior knowledge within a PIML model was developed, in the form of a flowchart.
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Examples of models developed within the thesis were used to check the alignment
of flowchart suggestions with successful modelling decisions. In all cases, without
assuming any knowledge of the adopted model structure, the flowchart suggestion
aligned with the findings of the thesis.

To date, to the author’s knowledge, there are no other examples of attempts to
construct a similar framework. Deciding how best to integrate physical knowledge
within a machine learner is typically done using the personal expertise of the
modeler, researcher or engineer constructing the model. These decisions can be
challenging, even for those with appropriate expertise, and efforts to alleviate the
difficulty of the decision have the potential to be a valuable resource.

Although several iterations of the framework have been produced, and efforts have
been made to test that the suggestions of the framework are sensible, it is not the
intention of the author to present the current framework as an absolute truth. It
aims to serve as a useful tool to help a user, but never to override an individuals
expertise for a given modelling task. There are many nuances to the construction
of PIML models, and it is very possible that exceptions to the rules within the
framework might be found. An important area for future work is further testing
and development of the framework, preferably with those away from the author’s
own research group. The insight and different perspectives of those within industry
or different research groups would be extremely valuable for future versions, and
would help to strengthen the current edition.



Chapter 10

Conclusions and Future Work

This thesis has developed and applied a range of PIML model architectures within
the field of structural dynamics and studied how they performed, the capabilities of
changing model structures and potential benefits brought to real-world applications.
A framework to aid users with the construction of PIML models for a given
modelling scenario concluded the thesis. At the beginning of the thesis, there were
two primary goals outlined:

1. To develop novel grey-box models for structural dynamics that combine
physics and data-based learning with the intention to exploit the benefits
of either approach used independently.

2. To explore and formulate the relationship between the type of prior
physical knowledge possessed by a user and how best to incorporate it
within a model.

As will now be discussed within the upcoming chapter contributions, the author
believes that these aims have been achieved within the thesis. Chapters 3 to 7
focussed primarily on achieving the first aim, whilst Chapters 2, 8 and 9 addressed
the second. The adoption of PIML within structural dynamics is by no means
complete however, with remaining potential challenges then discussed alongside
areas for future work.

186



10.1 Summary of contributions 187

10.1 Summary of contributions

Chapter 2 introduced a range of physics-informed machine learning methods
to the reader, with examples of model structures from literature. Methods were
presented in order of progression through a typical black-box machine learning
pipeline, from the initial definition of a problem to a complete functioning model,
addressing how physics may be incorporated at each stage. The catergorsing and
presentation of methods in this way is novel and will be a helpful resource to a user
wishing to modify an existing black-box model architecture. The specific changes
made to a typical process, e.g. modification of the cost function, and the resulting
effects on modelling capabilities were discussed.

Chapter 3 provided introductions and the author’s interpretations of relevant
theory from both a data-based and physics-based perspective. Gaussian process
models form the data-based component of later developed models and were therefore
a major focus. Instead of a traditional mathematical introduction, for which many
high quality examples exist within the literature [139, 215, 216], model interpretation
through figures, particularly during their training stage was the main aim here. One
of the major potential advantages of PIML models, is increased interpretability into
model results and an understanding of model behaviours is therefore important.

From a physics-based perspective, linear wave theory, the representation of sea
states and empirical wave loading prediction methods were introduced. These are
all widely used aspects of physical theory used within offshore applications. It
was important to introduce readers to the types of physical knowledge used in the
models developed within the thesis. For readers already familiar with physical
methods used within offshore applications, this chapter serves to collate the authors
understanding of a selection of key methods.

Chapter 4 detailed the two datasets primariliy used to develop PIML models
within the thesis: a subset from the Christchurch Bay Tower (CBT) project, a
heavily instrumented column structure within a real offshore environment; and
an experimental study of a monopile within a wave tank devised and carried out
by the author. Although both useful for the study of offshore structures, each
dataset served its own distinct role. A section of data the Christchurch Bay Tower
project provided access to measurements from a real world structure in an offshore
environment. The experimental dataset provided a wider range of conditions that
were more tightly controlled by the user, allowing for the evaluation of model
performance in conditions they hadn’t previously seen.

The experiment itself is a novel contribution here, with measurements of wave
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load on structures very rare. This is primarily due to the difficulty and expense of
creating the bespoke equipment required. Again, the author expresses their thanks
to Robin Mills and Michael Dutchman for their work designing and manufacturing
the force collar. An effort was made to measure more variables and generate more
conditions than would be needed for this thesis, with the hope that this dataset
will be useful for the future work of myself and others1.

Chapter 5 presented the first development of a grey-box model for the prediction
of wave loads on a real offshore structure. It was developed using the Christchurch
Bay Tower dataset detailed in Chapter 4. The widely used Morison’s Equation, an
empirical wave loading solution, was incorporated within an autoregressive form of
Gaussian process Regression (GP-NARX). Important details of implementation for
GP-NARX models are addressed including lag selection, uncertainty propagation
and cost function selection, all of which have an impact on final model performance.
A specific study focussed on the ability of different grey-box model architectures to
extrapolate in circumstances of low data coverage. This was a key expected benefit
of incorporating physical knowledge within a machine learner.

The combining of physics-based white-box and data-based black-box modelling
techniques in the form of two grey-box architectures was found to offer benefits
in predictive performance over either approach used alone. The best performing
grey-box model, the residual modelling GP-NARX, achieved a 29.13% and 5.48%
relative reduction in NMSE over Morison’s Equation and a black-box GP-NARX
respectively. It was expected that grey-box models would be of specific help
in assisting with extrapolation, an area in which data-based methods typically
experience difficulty, and this was indeed found to be the case. Residual modelling
was found to offer significant benefits in performance outside the range of observed
training conditions, particularly in instances where a pre-established white-box
may be available for inclusion into the combined model.

Chapter 6 built upon the grey-box model development of Chapter 5, in which
models relied on measurements of flow conditions close to a structure to predict the
wave load. Here, aspects of linear wave theory were integrated within a GP-NARX
framework to remove this reliance. Utilising physical knowledge, models were
developed which relied on only incoming wave height as an input, a commonly
available variable on many offshore structures. Models were developed using data
from the monopile experiment detailed in Chapter 4. The use of a GP-NARX,
Morison’s Equation and linear wave theory in combination within a physics-informed
model was able to offer increased performance over any of its components used
alone. The model was also able to offer a degree of interpretability, by providing a

1The experimental dataset will be made publicly available in due course.
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breakdown of the wave load into drag, inertia and diffraction components. Model
results were able to be visualised and interpreted easily, along with quantification
of uncertainty.

Chapter 7 focused on the means of incorporation of prior physical knowledge
within the kernels of Gaussian processes. Modelling scenarios where one might have
partial knowledge of a system or process were investigated through the combination
of physics-informed kernels and more flexible ‘data-based’ kernels. Case studies of
kernel structures were presented with application to wave loading prediction and
a vibrating cantilever beam. Having partial knowledge of a system or process is
common within engineering applications and this is discussed with reference to the
data vs physics chart in Figure 7.7 and how this might affect one’s position on it.

A kernel was derived for Morison’s Equation, showing how one might use the
covariance of physical processes within Gaussian processes. Following a similar
approach could be potentially be effective across a wide range of applications. Using
the derived Morison kernel in combination with a more flexible Squared Exponential
(SE) kernel was found to increase predictive performance over either Morison’s
Equation or a (SE) kernel used independently. The decomposition of combined
models was found to offer physical insight into the role of each model component.
Here, due to the flow conditions, the majority of structure was captured via the
physics-based component.

The idea of an optimum level of prior knowledge to be included within a model
changing depending on the modelling scenario was highlighted within the context
of a cantilever beam in free vibration. The benefits of achieving this optimum
level such as improved extrapolation, interpretability and reduced reliance on data
collection were discussed. Consequences of being incorrectly placed on the scale of
prior knowledge inclusion were also presented. These included reduced flexibility
and potential reliance on unrealistic assumptions for a physics-heavy model and
poor extrapolation, interpretability and increased demand for data collection for a
data-heavy model.

Chapter 8 explored how changing Gaussian process model structure affected
the capabilities on properties of a constructed model. A consistent piece of prior
knowledge, in the form of a ‘linear-in-the-parameters ’ function, f(X) = Xβ was
incorporated in a range of ways through modification of both mean and covariance
functions, with findings compared. An example was considered where a linear
function represented some known aspect of a system’s behaviour, with the remainder
captured by a flexible kernel; this allowed the maths for all examples to be worked
through completely, whilst highlighting differences more clearly. A toy dataset
was then used to compare the performance of models in circumstances of limited
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training data, an important area of focus for grey-box models. The work of this
chapter is early in its field and provided an important platform from which to
construct the decision framework presented in Chapter 9.

Chapter 9 investigated important relationships between the form in which know-
ledge presents itself (e.g. equations, simulations, bounds), the source from which
it comes (e.g. domain experts), its cost of accrual and how best to incorporate
it within a model. A proposed framework was developed to assist with deciding
how best to integrate prior knowledge within Gaussian Process Regression (GPR)
models. The aim is to help classify a given piece of prior knowledge and suggest an
appropriate model architecture.

Types of physical knowledge that one might wish to incorporate within a physics-
informed engineering model were discussed and catergorised according to how they
were obtained and the form which they take. This was a useful exercise and brought
structure to the process of constructing a PIML model. The first stage of the
process is argued as understanding and defining the physical knowledge possessed
by a user. Only after this, and the selection of a data-based modeller, is it deemed
sensible to begin deciding how to integrate the two. This process is also touched
on in the beginning of Chapter 5, when beginning to construct the first PIML
model.

The testing of a framework for PIML model construction concludes both Chapter
9 and the thesis. The framework, in its current state, presents a concise summary of
the authors findings and experience of what has (and hasn’t) worked effectively for
PIML modelling within engineering applications. Role-playing as a modeller, with
access to a given piece of prior knowledge, the author was able to answer yes-no
questions (e.g. Does knowledge extend beyond bounding variables between extreme
limits? ) and arrive at a PIML model structure that aligned with the findings of
the thesis. For PIML modelling generally, as well as for engineering applications,
guidance for model construction based on an authors modelling scenario is currently
rare, with the decision based largely on the modellers expertise and judgement. The
framework hopes to serve as a useful contribution toward this area, whilst being
able to function as a sense check for modellers who might already be confident in
their choices.

The contribution of this thesis as a whole aims to progress the adoption and
development of PIML models for the fields of structural dynamics, structural health
monitoring, offshore structures and wave loading prediction. Though impactful
early steps have been taken, including the development of novel PIML models,
generation of experimental datasets and creation of a decision framework, the task
of industry-ready PIML model adoption is by no means complete. In the coming
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section, directions for areas of future work, along with remaining key challenges of
the field are introduced.

10.2 Future work

The two primary areas for future work identified relate closely to the two aims
of the thesis presented at the beginning of this chapter. Continued PIML model
development is an extension of the first aim, whilst decision-making for PIML
builds upon the work of the second.

10.2.1 Continued PIML model development

With a key focus of the thesis being the development of PIML model architectures,
a natural progression of work is a continuation of this. Introduced here are some
potential directions.

Dynamic balancing of physics and data

A theme throughout the thesis was a consideration of achieving ‘the right balance’
between physics and data within a model that reflects a users given modelling
scenario. Intuitively, a high availability of physical knowledge, with limited access to
measured data would suggest a physics-dominant model, whilst the opposite would
be true for a data-dominant case. Particular focus was given to this in Chapter 7
where examples of partial knowledge of a system behaviour were represented via
kernel design.

A potentially interesting area of research is how one might be able to tune the
relative reliance of physical knowledge and data within a model dynamically. There
are many reasons why one might want to change the relative reliance on physical
knowledge within a model, an important one of which is the changing validity of a
physics-based model. With any physical model, and particularly so with simple
ones, assumptions must be made in order to represent the system of interest. The
extent to which these assumptions hold affects the performance of the constructed
model and care should be taken not to trust the results of models constructed upon
invalid assumptions. Assigning a fixed degree of trust within a physical model
component may be challenging when a model is required to operate over a range of
conditions and allowing this to vary is therefore highly desirable. The presence of
regime-switching and localised behaviours provide alternative motivation to vary
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the reliance on physical knowledge. If a phenomena is known to occur in specific
conditions, for example the dependency of vortex shedding on flow speed [225], one
might wish to phase its occurrence in and out of a model.

Some ongoing investigations into switching model structures utilising kernel design
have shown to be one potential area for tuning the reliance on physics and data
within the same PIML model. Further work on this could look toward the many
existing kinds of switching model, including Mixtures of Experts (MOEs) [287, 288],
Markov-switching models [289], Treed Gaussian Processes (TGPs) [290] and regime-
switching cointegration models [291].

Incorporation of higher fidelity physical knowledge

Through choice, the PIML models developed within this thesis typically relied
upon familiar, widely utilised examples of physical knowledge as the physics-based
component of the model. These included Morison’s Equation, linear wave theory
and the free vibration response of a cantilever beam. Well understood instances of
physical knowledge, for which the limitations and assumptions were well known
made the suitable scope of PIML model operation more clear.

The inclusion of higher fidelity physics-based components could be one potential way
to effectively construct ‘physics-dominant’ model architectures. When a simpler
piece of physical prior knowledge is incorporated within a PIML model, it is
important to understand the limitations of the assumptions present within the
model and understand in which regimes the model is able to extrapolate effectively.
For example, one of the assumptions present within the adoption of linear wave
theory is that the waves being modelled have small amplitudes, relative to wave
length and water depth. For higher frequency, tall waves in shallower water, this
assumption may begin to break down. Extensions to linear wave theory, including
Stokes Waves [276] have been shown to be more effective at capturing the shape
or wind generated offshore waves, which typically have sharper peaks and steeper
troughs than those generated by laboratory wave tank paddles [36].

10.2.2 Decision-making for PIML

The framework to aid with the construction of physics-informed Gaussian process
models presented in Chapter 9 aims to help tackle an important challenge within
the field of PIML - ‘How should a given piece of physical knowledge be effectively
incorporated within a PIML model? ’. Although a start has been made, this remains
an ongoing challenge, with some areas of focus for future work.
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Progression of the framework

In its current state, the framework navigates a user with access to a given piece of
physical knowledge to an appropriate type of model structure. Currently, examples
of these model structures include suggestions such as ‘Residual model with a
fitted mean function and a flexible kernel.’ or ‘Input augmentation with simulated
additional variable.’. For the cases tested against the content of this thesis, the
suggestions of the framework aligned with effective PIML model architectures.

One potential area for extension on the framework, is an ability to provide more
specific guidance beyond the suggested model structures. For some suggested
architectures, including constrained learners and the incorporation of partial know-
ledge within the kernel, there are multiple ways in which one could approach this.
Further guidance, for example, how specifically one might constrain a GP would
be a helpful additional resource. An ability to provide more specific suggestions for
the structure of kernels, for instance, whether to use an additive or multiplicative
kernel structure would also be a valuable area for exploration.

Although possible, an example of the flowchart suggesting an inappropriate model
structure was not found within the work of this thesis, nor did navigation of the
flowchart deviate away from effective implementations of PIML model architectures.
The consequences of an incorrect navigation of the chart, through differing inter-
pretations of questions or otherwise would be an interesting area for investigation.
For example, if the ‘true’ most appropriate model structure was a physics-informed
kernel, what would be the consequences of ending up with a suggestion of input
augmentation? Firstly, would the suggested model structure be feasible for the
available prior knowledge, and if so, how would the capabilities of the final model
be affected?

Collaboration with the PIML community and industry

So far, the testing and application of the PIML framework has been done using
the authors personal findings and examples of models developed within the thesis.
An important extension to this would come from collaboration with others in the
PIML community and industrial partners. A key area that this would help to
test is the interpretability and navigation of the chart. Although attempts have
been made to liaise with supervisors and other members of the research group2

when constructing the chart, to test whether its questions are easily interpretable,
opinions from outside the group would be very valuable. Through seeing multiple
versions, and being familiar within the field, a biasing of how things might be

2Thank you to Matt, Sam, Lizzy and Tim for their readings of many multiple versions of the
flowchart
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viewed is also very possible.

A rigorous test of the framework would be the presentation of the framework to
others in the PIML community to navigate the chart and compare with their findings
of existing work. This could be done similarly to the examples in Chapter 9 without
any external input from the author. Feedback on whether the flowchart aligned
with their selected methods and suggestions for improving the interpretability of the
chart would be very valuable. Performing a similar exercise with industrial partners
could help make a revision of the flowchart more adapted for use within industrial
settings, whether this involves changes to terminology or other modification.

10.3 Challenges for PIML in SHM

10.3.1 Dealing with large quantities of data

One of the major potential benefits of PIML modelling is the ability to utilise
physical knowledge to improve model performance in regions of sparse data coverage.
A consequence of this is a reduced demand for data collection, with the importance
of ensuring every available potential set of conditions has been previously measured
reduced. With a purely data-based learner, making predictions on previously
unobserved conditions is typically unreliable, and making operational decisions on
extrapolative machine learning predictions would be ill-advised.

Although PIML modelling may reduce the demand for data collection, this does
by no means suggest that the quantity of data being dealt with would be small.
Firstly, it is still beneficial for models to have access to as wide a range of conditions
as is feasible. Although possessing an enhanced ability to extrapolate, it remains
preferable for PIML models to operate in interpolation wherever possible. For
large structures, with dense sensor networks, measurement campaigns can quickly
generate extremely large quantities of data, that needs to be managed, stored and
handled appropriately. An important topic not focussed on within the content of
this thesis how to effectively scale the PIML models developed to work with much
higher quantities of data. As is necessary for research and the trialing of new ideas,
the models within the thesis were instead developed using smaller scale datasets,
that were able to be easily stored on a personal desktop computer. For example, the
file size of the complete experimental dataset was of the order ∼ 20GB, which could
be many magnitudes smaller that the file sizes of complete industrial datasets.

Along with appropriate methods of handling and storing large quantities of data
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efficiently, the reliance on Gaussian process regression for PIML models developed
within the thesis will require some adjustment of methodology. For a number of
data points n within a dataset X, a GP will have requirements of the order:

� O(n2) for the storage of the covariance matrix K(X,X)

� O(n3) for the computation of the inverse of the covariance matrix K(X,X)−1

In the authors experience, with access to moderately powerful computational
resources (64GB RAM desktop), the training and storage of data for standard
Gaussian process regression became infeasible above ∼ 10, 000 datapoint training set
sizes. For effective implementation within industrial applications, one would likely
want to exceed this quantity. To achieve this, methods could adopt sparse Gaussian
process regression [267], which allows for computation of the order O(nm2) and
storage of O(nm). Hensman [249] showed how a combination of inducing variables
and appropriate mini-batching could allow GP regression to be implemented on
dataset sizes in the millions of points.

10.3.2 Operator confidence and benefit to the industry

The work of this thesis has highlighted many of the benefits of PIML modelling over
either purely physics-based or purely data-based approaches, including: improved
performance, enhanced insight into results and reduced reliance on bespoke sensor
systems. Within academia, with reference back to the growth chart in Figure 2.1,
the popularity and adoption of PIML is growing rapidly. Advances in methodology
across a range of applications are continuing to be published. However, a very
important distinction to make is the difference in perceptions between academia
and industry. A key goal of this thesis is to help progress towards the adoption of
PIML methods within real world SHM applications. For this reason, the effective
communication of potential PIML benefits to industry is very important.

For the successful adoption of a PIML model within an industrial application, it
must be shown that:

� The PIML model should work effectively within the realms of operational
conditions and the results that it provides can be validated and trusted.

� The benefit provided by a PIML model (financial, humanitarian, operational
or otherwise) outweighs the expense and effort spent to develop it.
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Achieving operator confidence within results is a very important step for the
adoption of any model, and particularly those containing a machine learning com-
ponent. For safety critical structures, including bridges, aircraft and many offshore
platforms, the decisions informed by the output of a model have severe potential
consequences at stake. This might range from a highly expensive false shutdown, to
an unnecessary structural failure, to the loss of life. This understandably, produces
a degree of inertia when posed with an introduction to any new methodology. One
of the potential advantages of PIML modelling over a purely data-based approach
is that models are often able to offer a degree of insight into model results. For
operators, particularly those familiar with existing physics-based approaches, the
insight provided by similar approaches incorporated within a PIML model could be
an effective way to communicate information about a models capabilities. The val-
idation of PIML models in real world environments and the effective communication
of this remains a key challenge.

An additional consideration when implementing new approaches within industrial
settings is a cost-benefit analysis of what might be gained. Assuming the benefits
of PIML modelling have been communicated, understood and quantified for a given
application, which itself remains a challenge, it is also important to consider the cost
of implementation. For the adoption of a PIML model, factors including personnel,
hardware, software and changes to existing operational practise would have to
be considered. For example, a deviation away from design-life approaches would
require an overhaul of many aspects of how an engineering firm might operate.
Quantification of both the cost and benefit of a PIML model is an important step
before its implementation, to ensure a net-benefit is achieved.
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for machine learning problems in quantum physics and chemistry. Machine
Learning: Science and Technology, 2, 2021.
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