
Identifying Effective Improvements to
Software Safety Practice

Matthew Steven Osborne

University of York

Department of Computer Science

Doctor of Philosophy

November 2024

Abstract

Good safety management means that continuous attempts are made to improve
all aspects of safety engineering practice. This includes the work required to as-
sure the safe contribution of software to acceptable system safety (software safety
practice). These improvements are often through creating interventions to per-
ceived problems with software safety practice.

Historically, improvements to software safety practice have resulted in in-
terventions which seem to have been largely ineffective. This suggests that they
may not be addressing the real impediments to good software safety practice. It
is not argued that existing tools for improving software safety practice are nec-
essarily deficient, rather that the notion of whether they are being employed to
correct the actual causes of impediments to better practice is challenged.

Software safety practice ‘As Observed’ (the actual software safety engineer-
ing activities performed) is informed by defined processes (software safety prac-
tice ‘As Required’). These processes aim to ensure practice achieves the best
safety outcomes (software safety practice ‘As Desired’). For many different and
complex reasons ‘As Observed’ software safety practice may not be equivalent
to software safety practice ‘As Required’. Similarly, software safety practice ‘As
Required’ may not be equivalent to software safety practice ‘As Desired’. Any,
or all of these discrepancies could play a significant role in poor software safety
practice. By exploring these discrepancies it becomes possible to understand the
causes of deficiencies in practice, and to start to propose effective interventions.

This thesis defines a framework and process for understanding and assess-
ing software safety practice based around modelling software safety practice ‘As
Desired’, ‘As Required’, and ‘As Observed’, and the interactions between these
elements.

The process is defined, described, instantiated and evaluated. Use of this
framework and process for understanding software safety practice is an effective
means by which an organization can identify currently existing impediments to
the achievement of software safety best practice.

2

Acknowledgements

Sam, you are my rock. You are the reason I ‘do what I do’. Without you, this thesis
would never have been written. Thank you and our wonderful sons - Lewis and
Samuel - for supporting me through thick and thin (my thanks must also go to
the wonderful NHS for the ’thin bit’, too).

Richard (Hawkins) and Mark (Nicholson); thank you for your advice, guid-
ance, challenge, and friendship. Your unwavering support has been incalculable
over the years.

My thanks to Rob (Alexander) for becoming my mentor on academic writing.
I’m not sure I ever asked you officially, but it is a role you excelled in regardless.
I hope I remembered at least some of your guidance.

Finally my thanks to friends and colleagues in the Assuring Autonomy Inter-
national Programme and Centre for Assuring Autonomy. Your supportive nature
is limitless, and your intelligence unbounded. Special thanks must go to Philippa,
Katrina, Ana, Chrysle, Dawn, and John (you know why).

3

Declaration

I declare that this thesis is a presentation of original work and I am the sole author.
This work has not previously been presented for an award at this, or any other,
University. All sources are acknowledged as References.

Some of the material presented in this thesis has previously been published
in the following papers:

• Matt Osborne, Mark Nicholson, and Richard Hawkins. Empirical evalua-
tion of the impediments to an “as desired” model of software safety assur-
ance. Systems and Covid-19. 2021.

• Matt Osborne and Mark Nicholson. Skills for assuring the safe adoption of
emerging technology. 2023.

• Matt Osborne, Richard Hawkins, Mark Nicholson, and Rob Alexander. Un-
derstanding safety engineering practice: Comparing safety engineering prac-
tice as desired, as required, and as observed. Safety science, 172:106424, 2024.

All of the work contained within this thesis represents the original contribu-
tion of the author.

4

Contents

1 Introduction 14

1.1 Problem Space . 14

1.2 Thesis Scope . 15

1.3 Thesis Motivation . 16

1.4 Thesis Aims . 17

1.5 Thesis Structure . 17

2 Current State of the Art of Software Safety Process Improvement 19

2.1 Existing Investigations of Software Safety Practice 20

2.2 Models of Safety Engineering Practice 23

2.3 Idealized Software Safety Practice versus Reality 25

2.4 Functional Safety Standards . 32

2.5 Modelling Approaches . 35

2.6 Research Objectives and Research Questions 38

2.7 Summary . 40

3 Software Safety Practice Framework and Process 42

3.1 A Framework of Software Safety Practice 43

3.2 Process to Understand & Assess Software Safety Practice 52

3.3 Process Steps . 61

3.4 Information to Action: Next Steps 73

5

3.5 Data, Information, and Knowledge Management 76

3.6 Model and Assessment Maintenance 79

3.7 Empirical Research Discussion . 80

4 Representing Software Safety Practice 83

4.1 State of the Art of Graphical Modelling 83

4.2 Graphical Representation Selection Process 86

4.3 Defining the Scoring Criteria . 90

4.4 Assess One Example for Each Modelling Notation 91

4.5 Refining the Selected Graphical Notation 93

5 Applying the Framework and Process: An Illustrative Example 110

5.1 Application of the Process . 110

5.2 Further Illustrative Examples . 137

5.3 Discussion . 140

6 Evaluation of the Proposed Process 141

6.1 G1: The Process is Complete . 142

6.2 G2: The Process is Easy to Use . 146

6.3 G3: The Process Provides a Way to Represent all Elements of Prac-
tice in a Consistent Manner . 153

6.4 G4: The Process is Effective at Enabling an Organization to Identify
Impediments to Best Practice . 165

6.5 Goal G5 The Process is Applicable for Use in any Industry 171

6.6 Summary . 173

6.7 Empirical Research Evaluation . 174

6.8 Analyzing the Empirical Data . 176

6.9 Coda . 187

7 Conclusions and Recommendations for Future Work 190

6

7.1 Conclusions . 190

7.2 Recommendations . 194

7.3 Future Work . 196

A ARP 4754A - A Critique and Characterisation 212

B ARP 4754A and DO178C Assessment Against the As Desired Criteria 217

B.1 A Clear Definition of Software Within the System 218

B.2 The Operating Context of the System in Which the Software Re-
sides will be Described . 221

B.3 A Clear Description of the System in Which the Software Resides
will be Provided . 224

B.4 The System Hazard to Which Software may Contribute will be
Identified . 227

B.5 The Specific Failure Modes by Which Software Contributes to the
Identified System Hazards will be Described 230

B.6 The Software Contribution to the Identified System Hazards will
be Acceptably Managed Through the Elicitation of Software Safety
Requirements Which Specify the Required Behaviour(s); for each
Identified Software Contribution, to each System Hazard 233

B.7 All Software Safety Requirements will be Atomic, Unambiguous,
Defined in Sufficient Detail, and Verifiable 233

C JB61834 Assessment Against Principle 1 234

C.1 A Clear Definition of Software in the System 235

C.2 The System Hazards to Which Software may Contribute will be
Identified . 240

C.3 The Specific Failure Modes by Which Software Contributes to the
Identified System Hazards will be Described 241

C.4 The Software Contribution to the Identified System Hazards will
be Acceptably Managed Through the Elicitation of Software Safety
Requirements that Specify the Required Behaviours; for each Iden-
tified Software Contribution, for Each System Hazard 244

C.5 All Software Safety Requirements Will be Atomic, Unambiguous,
Defined in Sufficient Detail, and Verifiable 247

7

D Evaluation Session One 249

D.1 Session One Practical Session . 250

D.2 Session One Questionnaire . 250

D.3 Session One Questionnaire Responses 253

E Evaluation Session Two 254

E.1 Session Two Questionnaire . 255

8

List of Figures

2.1 The 3 Elements of Safety Engineering Practice. 26

2.2 Research Objectives and Research Questions 39

3.1 The Elements of Software Safety Practice. 49

3.2 Modelling Safety Practice . 54

3.3 Assessing Safety Practice . 58

4.1 Framework for Selecting a Modelling Language [16] 87

4.2 Graphical Representation Selection Process 89

4.3 FRAM Notation Example [31] . 94

4.4 FRAM Instantiation Example [31] . 95

4.5 Activities and their Aspects . 95

4.6 Modelling of Resources . 96

4.7 Modified FRAM Notation . 97

4.8 Artefact Symbol . 100

4.9 Linking Activities Together . 101

4.10 Referenced Documents . 102

4.11 The Use of Notes . 103

4.12 Off-page Link Using the Intersect Symbol 104

4.13 Off-page Link Using the Title in Italicised Text 104

4.14 Multiple Options in Support of Activities 105

4.15 Multiplicity and Optionality Extensions in GSN 106

9

4.16 Artefacts Linked Without a Consuming Activity 107

4.17 Modelling of Time . 107

4.18 Using Colour to Denote the Assumed Existence of an Artefact . . . 108

5.1 The Elements of Safety Engineering Practice (Repeated from Chap-
ter 3) . 111

5.2 Suite of SAE Documents Covering the Development Phases [147] . 112

5.3 A Typical V-Model Lifecycle . 113

5.4 Extract from JB61834 As-Required (Closed) Model 114

5.5 Extract from JB61834 As-Observed Model 116

5.6 Extract from JB61834 Step 7 Model 130

5.7 Extract from JB61834 Step 8 Model 133

5.8 Extract from ISO 62304.3 Model . 138

5.9 Extract from VF3800 As-Required (Open) Model 139

6.1 Thesis Evaluation Criteria . 142

6.2 Goal G1 - The Process is Complete 143

6.3 Goal G2 - The Process is Easy to Use 147

6.4 Goal G3 - The Process Provides a Way to Represent all Elements of
Practice in a Consistent Manner . 154

6.5 Extract from AY8697 Model One . 163

6.6 Extract from HH75783 Model One 165

6.7 Goal G4 - The Process is Effective at Enabling an Organisation to
Identify Impediments to Best Practice 166

6.8 Goal G1 - The Process is Applicable for Use in Any Industry 172

B.1 ARP 4754A a Clear Definition of Software Within the System 220

B.2 ARP 4754A a Clear Definition of Software Within the System 222

B.3 ARP 4754A Clear Description of the System in which the Software
Resides . 225

10

B.4 ARP 4754A System Hazards to which Software may Contribute
will be Identified . 228

B.5 ARP 4754A specific Software Failure Modes 231

C.1 JB61834 Software Description . 236

C.2 JB61834 Software Safety Cases . 238

C.3 JB61834 Requirements Database . 239

C.4 JB61834 System Hazards . 240

C.5 JB61834 Software Failure Contribution to Hazards 242

C.6 JB61834 Software Contribution to System Hazards 245

C.7 JB61834 Software Safety Requirements 248

11

List of Tables

3.1 Aspects and Quality Criteria . 56

3.2 Potential Impediments and their Mitigation(s) 73

3.2 Potential Impediments and their Mitigation(s) 74

3.2 Potential Impediments and their Mitigation(s) 75

3.2 Potential Impediments and their Mitigation(s) 76

3.3 Software Safety Practice Information Management 77

3.3 Software Safety Practice Information Management 78

3.4 Triggers which Require Re-assessment of the Models of Software
Safety Practice . 80

4.1 Model-Based Analysis Tools . 86

4.2 Notations Eliminated after Considering Lifecycle Modelling Capa-
bility . 88

4.3 Scoring Criteria . 91

4.4 Notation Scoring Template . 91

4.5 UML Evaluation . 92

4.6 SPEM Evaluation . 92

4.7 FRAM Evaluation . 92

4.8 Comparing the Use of Aspects between FRAM and our Adapted
Version . 99

6.1 Evaluation Session One Modelling Outputs Comparison 158

6.1 Evaluation Session One Modelling Outputs Comparison 159

12

6.1 Evaluation Session One Modelling Outputs Comparison 160

6.1 Evaluation Session One Modelling Outputs Comparison 161

6.1 Evaluation Session One Modelling Outputs Comparison 162

D.1 Session One Evaluation Questions 251

E.1 Session Two Evaluation Questions 257

13

Chapter 1

Introduction

1.1 Problem Space

Many safety engineers, safety engineering consultants, safety managers, and aca-
demics have suggested that current software safety practice observed in organi-
zations undertaking software projects1 rarely achieve the best safety outcomes.
It should be our collective ambition to try to establish whether (and why) this is
true, and if so to recover the gaps between the software safety practice carried
out and good software safety practice.

A variety of stakeholders, such as companies, organizations, standards com-
mittees, and researchers, have tried to implement changes to software safety prac-
tice over the last few decades to ‘fix’ issues. Examples of changes to software
safety practice range from those proposing a change to the software safety lifecy-
cle (e.g. Safe Scrum [153] or spiral software development [10]); using ‘Duration
Calculus’ to improve software safety requirements [45]; attempts to reduce the
errors in software safety requirements [89]; using Fault Tree Analysis to automat-
ically derive software safety requirements [99]; and the proposed use of patterns
[4] and new models for development [131].

These fixes seem to have been largely ineffective(despite the expenditure -
and assuming that the fixes have been adopted) and evidence (including anec-
dotal evidence) suggests that problems still persist (see [94], [83], [47], [56], [101],
[74], for example). Often, proposed ‘fixes’ offer nothing more than a new variant
of existing analysis methods which are only evaluated in terms of how they could
have prevented a notable accident/incident (decried as YAAPing by Rae et al in
[135]).

Before researchers, practitioners, or managers embark on a program of soft-
ware safety practice improvement they must be as confident as possible that they

1A Project can emanate from any industry and application, and its level of design abstraction
can range from a full product, through systems, items, or down to the hardware and software
levels. A Project may involve one or more organizations.

14

Identifying Effective Improvements to Software Safety Practice

have both identified where any issues lie, and that they are addressing the com-
plete set of issues. Moreover, they must be confident that they are addressing
appropriately-distal causes of issues rather than only proximal causes or indeed
just symptoms.

Without empirical evidence, one cannot be sure where any issues with soft-
ware safety practice lie. To understand the current state of software safety prac-
tice, we argue that one must first identify and understand the elements that con-
stitute software safety practice, and the relationships between these individual
elements. This thesis discusses what these elements are later.

To understand software safety practice fully, an analyst needs a process which
can be used to understand and assess software safety practice in a robust man-
ner that allows the different elements of practice to be represented effectively and
consistently. This thesis develops a framework which is capable of linking the dif-
ferent elements together, and a process for evaluating the relationships between
the different elements, and ways of revealing and presenting any nuances and
subtleties therein.

1.2 Thesis Scope

The research is not focussed on the effectiveness, nor currency of a specific safety
engineering technique (such as the work of Leveson and Thomas [81], [82] to
improve the status quo of safety engineering), but is concerned with the phe-
nomenon [164] of software safety practice in safety critical systems. We describe
’practice’ as the set of processes which describe the activities carried out. The
software safety process is merely a subset of the system safety process [79], and
as such, the term ‘software safety’ is used to describe the contribution of software
to safety in its system context [95]. ‘Software safety practice’ means the activi-
ties carried out to assure and demonstrate the safe contribution of software to a
system. A ‘system’ is a combination of interacting elements organized to achieve
one or more stated purposes [66]. This software safety practice is a socio-technical
endeavour [154], and is predominantly the work carried out by software safety
engineers or software engineers with responsibility for system safety; but also
involves many other engineering disciplines (e.g. hardware, systems, reliability,
and requirements engineers), and other specializations such as programme and
project managers, and those within commercial, contractual, and legal services.
For brevity and clarity, the multi-disciplinary professionals working on the activ-
ities which constitute software safety practice are referred to as ‘software safety
practitioners’.

The research presented in this thesis seeks to answer the question of how an
organization can make effective improvements to its software safety practice. To
make effective improvements, an organization will first need to understand its
software safety practice. By ‘understand’ we mean identify the elements of the
organization’s project’s software safety practices, and determine their interrela-

Chapter 1 Matthew Steven Osborne 15

Identifying Effective Improvements to Software Safety Practice

tionships. Once an organization understands its software safety practice, it can
then assess it. By ‘assess’ we mean identify the relationships between the ele-
ments and determine the effectiveness of those relationships (including against
appropriate measures of ‘good’ practice).

Practice of any kind is impacted by the culture of the organization. Organi-
zational culture [20], of which safety culture is a subset [35], bears a predictive re-
lationship with safety; and particular kinds of organisational culture affect safety
- both positively and negatively [167], [143], [62], [35], [143]. The term ‘safety
culture’ has been used since the Chernobyl disaster of 1986 [35], [20], and has
been attributed as a causal factor in many well-known accidents (see [35] and
[62]). Whilst we acknowledge it has a reciprocal, and causal effect on safety out-
comes [143], [20], we do not seek to contribute to the debate on the efficacy and
usefulness of safety culture as a phenomenon (see [143], and [62] for example).
Rather, we acknowledge the influence of safety culture on the attainment of good
software safety practice, and provide a framework and process by which any im-
pediments to good practice can be identified and remedied.

Having understood and assessed its software safety practice, an organiza-
tion can identify potential impediments to achieving good practice for software
safety practice, and then undertake targeted investigations into whether any im-
pediments exist, and derive effective mitigations. The notion of good practice
considers ensuring the safe contribution of software to system safety through-
out the system lifecycle. By ‘lifeycycle’ we mean the “activities occurring during
a given time interval that starts when a system is conceived and ends when the
system is no longer available for use, is decommissioned and is disposed of” [63].

There are many different types of system lifecycle models, ranging from the
V-Model development lifecycle required by ARP 4754A [147], through to Iterative
Incremental Development lifecycle models such as Scrum (see [153] for example)
or DevOps [72]. We do not make any judgements on the model of system lifecycle
used by an organization, but do restrict our focus to the design and development
phase of the lifecycle (i.e. up to, but not including the point that a system enters
service).

1.3 Thesis Motivation

Personal experience of the author in delivering consultancy to a plethora of de-
sign and development organizations reveals that many organizations have pre-
conceived notions on where issues with their software safety practice lie.

Organizations often assert (with varying degrees of confidence) where im-
pediments to best practice for software safety emanate from, and yet it is often
the case that such assertions relate to symptomatic manifestations. As such, the
motivation for the research presented in this thesis is to enable an organization to
identify appropriately-distal causes of any impediments to achieving good prac-
tice for software safety.

16 Chapter 1 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

1.4 Thesis Aims

This thesis aims to provide a framework through which an organization can gain
an understanding of the elements which constitute their software safety practice,
and a process by which that organization can therefore understand and assess its
software safety practice. To our knowledge, no process exists for understanding
and assessing software safety practice within an organization.

The Thesis Aims are supported by:

• a state of the art review into the elements and activities of software safety
practice associated with the Research Objectives and Research Questions
(Chapter 2)

• the development of a framework for understanding the elements that con-
stitute software safety practice (Chapter 3)

• the development of a process for understanding and assessing software
safety practice (Chapter 3)

• an adapted modelling symbology by which software safety practice is rep-
resented and subsequently assessed (Chapter 4)

• an instantiation of the framework and process (Chapter 5), and

• an evaluation of the framework and process (Chapter 6).

We deliberately avoid theorising as to whether and why poor software safety
practice exists within current projects. Instead, we adopt a phenomenon-based
research approach suggested by von Krogh, Rossi-Lamastra and Haefliger, and
create a novel process which will allow an organization to identify and gather
relevant data that enables them to assess their own software safety practice [164].

1.5 Thesis Structure

Chapter 2 provides a Literature Review in support of defining the research ob-
jectives and research questions. This concludes the aspects of this thesis which
represent existing knowledge. Based upon the literature review a set of research
objectives are defined.

The unique contribution of this thesis commences from Chapter 3, which
(using the research questions from Chapter 2) outlines the framework and process
by which the elements of software safety practice can be identified, and the inter-
relationships of the elements can be understood, and assessed.

Chapter 4 evaluates the options for modelling software safety practice (pred-
icated on the framework and process defined in Chapter 3), and argues over the

Chapter 1 Matthew Steven Osborne 17

Identifying Effective Improvements to Software Safety Practice

selection and adaptation of the modelling symbology and ontology to be used in
the process to understand and assess software safety practice.

The framework is used, and the processes is instantiated in Chapter 5, with
the outputs of the process to understand and assess software safety practice pre-
sented as evidence of its effectiveness. The instantiated framework and process
uses the symbology and ontology selected and argued over in Chapter 4.

Chapter 6 evaluates the framework and process, and argues over the ‘good-
ness’ of the framework and associated process. This evaluation considers the ex-
tent by which the research questions from Chapter 2 have been met, by arguing
over the evidence and its inference to meeting the evaluation claims.

The thesis concludes in Chapter 7. This final Chapter also contains recom-
mendations for future work which will provide an improved framework and pro-
cess to understand and assess software safety practice, as well as generating more
evidence for the evaluation claims made in Chapter 6.

This chapter has outlined and contextualized the problem space, has pro-
vided an overview of the solution space, and provided the contents and structure
for the thesis.

18 Chapter 1 Matthew Steven Osborne

Chapter 2

Current State of the Art of Software
Safety Process Improvement

This chapter presents the extant academic and industrial practice knowledge with
regard to the following areas:

• Existing Investigations of Software Safety Practice (to assess the state of the
literature)

• Models of Software Safety Practice (to determine what modelling exists)

• The concept of ‘Idealised Software Safety Practice versus Reality’ (to con-
sider what the literature reveals about the notion of ‘best practice’; what it
is constituted by; and how it is interpreted in practice)

• Functional Safety Standards (to review what Standards Committees require
projects to undertake to assure the safety of software in a system)

• Considering the Solution Space (to assess what models or processes exist
which could be used or adapted for our research)

• Empirical Research Methods (to understand best practice for undertaking
the planned empirical research).

The rationale for considering each area relating to the problem space (and
how they relate to the thesis aims) is discussed in turn as the chapter progresses.
As a result of the findings of the literature review, the chapter concludes by defin-
ing the research objectives and research questions addressed by this thesis.

19

Identifying Effective Improvements to Software Safety Practice

2.1 Existing Investigations of Software Safety Prac-
tice

Before embarking on a drive to improve software safety practice, it is prudent to
first assess the state of the literature with regard to empirical investigations into
software safety practice. By examining what is argued to represent good practice
for software safety, we can undertake empirical research to reveal whether and
how it is being followed. If we can establish whether recognized good practice for
software safety is already agreed and stipulated, we can plan research to discover
whether it is being followed, and to uncover the reasons why it may not.

Although investigations exist into incidents and mishaps where software is
asserted to be a causal factor (such as the Therac-25 accident [84], the loss of
the Mars Climate Orbiter [9], or the loss of Ariane 5 [85]), the literature review
provided in this chapter revealed that (to the author’s knowledge) no empiri-
cal investigations have been carried out to specifically assess the effectiveness of
software safety practice itself. In the absence of any empirical investigations into
software safety practice specifically, attention now turns to the existing investiga-
tions of safety practice generally (to establish what software safety practice could
learn/adopt from safety practice).

State other the Art Summary 1: No empirical investigations into the effec-
tiveness of software safety practice exists.

Surprisingly few empirical investigations have been undertaken into what
constitutes good continuous improvement, or fixes for software safety engineer-
ing practice, nor why improvement attempts have historically not been effective.
Anecdotal evidence suggests that issues with general safety engineering practice
itself also persists. This may be for instance, due to only a limited subset of the
elements of practice being considered.

One example of focusing on a limited subset of the elements of safety engi-
neering practice is the use of checklists [39]. With checklists, the aim is to prevent
any gaps between between ‘work as-required’ and ‘work as-done’. Previously
used in the realm of pilots who use them as part of a ‘pre-flight check’ routine,
their use is potentially without evidence of effectiveness, nor evidence that the
issues lie with either ‘work as-required’, or ‘work as-done’. Checklists have also
increasingly been adopted by industries outside of aviation as a means of ensur-
ing work as-done done corresponds to work as-required. Guwande used check-
lists in nursing [39] to improve adherence to the steps of a procedure. However,
adherence may not be the problem. It might be that the procedure was inappro-
priate or incorrect. If this is true, any fix may instead need to focus on the identi-
fication and control of processes. Rasmussen [139] focused on the control of work
processes to avoid “accidental side effects causing harm to people, environment,
or investment”.

Rasmussen also noted that at the highest level, safety was controlled, influ-
enced, and motivated by rules, regulations, and instructions. Rasmussen later ac-

20 Chapter 2 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

knowledged however, that owing to the localized contingencies associated with
tasks and procedures, work instructions can never be “followed to the letter”, be-
cause to be operational, the rules have to be “interpreted and implemented in the
context of a particular company, considering the work processes and equipment
applied”. He further argued that the complexities, freedom of choice, and the in-
terpretations of work carried out by an operative are a reason why classical pre-
scriptive work processes (such as those required by an organization) could never
be effective. Rasmussen observed that “modelling human behaviour in terms of
a stream of acts will be unreliable for a dynamic environment when behaviour is
context dependent” [139].

This theory that prescriptive work processes can never be followed to the let-
ter is supported by Rooksby et al [144] who set out to ethnographically observe
the relationships between the documented or expected procedures of software
testing and the ‘reality’ of practice, and what the testing “actually involved”.
In doing so they were not concerned with having pre-conceived ideas on what
“ought to be done”, rather they set out to observe and characterize the socio-
technical issues emanating from the practice of software testing.

State of the Art Summary 2: There is a lack of explanations as to why good
practice for software safety has not been achieved.

Any, all, or none of these examples could provide appropriate explanations
as to why good practice for software safety is not being achieved, but we cur-
rently do not have the evidence. We need empirical data to establish whether
software safety practice is sub-optimal, and this lack of research to date could be
reducing the effectiveness of practitioners in improving practice [132]. This lack
of empirical data may be due to one of the inherent problems with safety science
research, insofar as there are many ethical and practical issues with studying in-
terventions [157].

Empirical investigations of safety work are sparse, and those that do exist
appear to be centred on the safety of working practices, and the work of assuring
the safety of working practices (e.g. [133]). Both types of investigations have
investigated (Safety) <Work As> <X> concepts:

• Work as Desired: how people would like work to take place [137]

• Work as Imagined: what people expect everyday work to be [60]

• Work as Done: that carried out by the workforce [133], or

• Work as Documented, or Observed: an observed and documented assess-
ment of work carried out by the workforce [58]

For example, Hollnagel has described the differences between the construct
of “Work as Imagined” and “Work as Done”, noting that this could be extended
further through analyses of different ‘lenses’ of ‘Work as X’ (such as between

Chapter 2 Matthew Steven Osborne 21

Identifying Effective Improvements to Software Safety Practice

work as documented and work as observed) [58]. Such a theoretical construct al-
lows the analyst to ethnographically identify differences between Work as Imag-
ined and Work as Done (such as the work of [133] in considering the safety of
work and safety work), thereby making changes to either—in order to improve
safety and resilience.

A potential limitation of these investigations is that they tend to be centred
on investigating theoretical discrepancies between two elements of safety prac-
tice. These investigations tend to compare two elements of <Work As> <X> as
an omni- or bi-directional relationship, which makes an implicit assumption that
any issues with practice emanate from only the elements under consideration. Ex-
amples of such investigations of safety practice include Hollnagel’s description of
the construct of ‘Work as Imagined’ and ‘Work as Done’ [155], and the empirical
investigations of this construct by researchers such as Provan, Rae, and Dekker
in [133]. The terms used in these investigations (<Work As> <X>) are heavily en-
trenched in the discipline of Occupational Health and Safety (OHS), or the “safety
of work”[133]. They do not yet extend to consider the work of a software safety
practitioner working to assure the safety of a complex safety-critical system.

Each of these omni- or bi-directional approaches (Hollnagel’s characteriza-
tions of Work as Imagined and Work as Done, Provan et al’s considerations of the
differences between the work of safety and the safety of work, and Gawande’s
use of checklists) are focused on assessing specific elements of safety practice.
Should changes be made as a result of these assessments, we cannot currently be
sure whether such approaches are identifying and fixing real problems, as not all
elements of safety practice have been considered concurrently. Nor do we know
whether such ‘fixes’ are introducing new issues, or undermining other elements
of safety practice. Notwithstanding, such approaches have become the accepted
norm when issues with safety practice are suspected. Noting that academics have
pre-conceived ideas on what the issues and fixes may be [144], and that “safety
professionals are not confident operationally of how to create safety improve-
ment” [133], the question therefore arises, how do we improve software safety
practice?

What has not yet been produced is a credible process for understanding
safety practice per se. Myriad papers have hinted at providing a ‘framework’ on
which such a process could be built, but we seem to be ‘separated by a common
language’ in this regard. For example, the prevailing use of the term ‘framework’
in the safety science literature does not in fact refer to a framework as a ‘struc-
ture on which something is built’, but provides attributes such as concepts (e.g.
[6]), notations (e.g. [70]), new tools ([55], [27], [171]), [148], [162]), models ([92]),
principles (e.g. [52]), patterns (e.g. [170]), checklists (e.g. [96]), or ontologies
([138], [137], [73]). To prevent confusion with any of these definitions, the term
‘framework’ is used in this thesis to describe the elements of practice, and the
relationships between them.

Noting that fixes to safety practice have been implemented despite surpris-
ingly little empirical investigations [135], this lack of investigation may question
the effectiveness of these fixes in addressing the real impediments to good safety

22 Chapter 2 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

practice. We argue that many implemented changes to safety practice were inef-
fective perhaps because the analysis that revealed their necessity was limited to
a consideration of only a limited subset of all the elements that constitute safety
practice in its entirety.

Improvements to software safety practice are needed to prevent further fail-
ures such as the emergency shut-down of the Hatch Nuclear reactor [168]; misin-
terpretations such as those leading to the loss of the Mars Climate Orbiter [9]; and
incidents such as the fatal radiation overdoses administered at the Panamanian
National Oncology Institute [12].

Before embarking on a programme of software safety practice improvement
however, we believe we must be as confident as possible that we have both identi-
fied where any issues lie, and that we are addressing the complete set of problems
and their causes. This thesis therefore starts from the position taken by Rae et al
[135] in that we must describe current work before changes are prescribed. It also
aims to “capture, describe, and document, as well as conceptualize” [164] soft-
ware safety practice so that appropriate theorizing can proceed. In other words,
we need to first understand software safety practice.

We could have looked to empirical investigations into the ‘good practice’
of engineering disciplines other than software safety and safety engineering in
general. We argue however, that the discipline of safety engineering and its re-
lationship with the field of safety science makes safety practice ’unique amongst
its peers’. Safety science and safety engineering are described by Shorrock in
[75] as “islands in a common sea”, and cognisant that safety relies on many non-
engineering stakeholders for a successful ‘outcome’, this renders any comparison
with other engineering disciplines null. We do not know if any process to under-
stand any other engineering discipline exists.

To understand safety practice fully, we need to have a means by which we
can discuss and evaluate software safety practice in an ontologically robust man-
ner that allows the different elements of safety practice to be represented equally.
We need a form of model.

2.2 Models of Safety Engineering Practice

By model, we take the INCOSE definition of a "representation of a system of
interest from a particular viewpoint" [25], and extend this to also include ‘phe-
nomenon’ . The literature did not in fact reveal any existing models which have
been created specifically to understand the practice itself of software safety (nor of
safety practice generally), and so attention initially turned to how safety practice
is currently controlled and directed.

Safety practice is nominally controlled and directed through processes and
procedures expressed in Open and/or Closed standards. The term ‘Open’ (Stan-
dard) refers to the fact that there are no Intellectual Property Rights (IPR) that

Chapter 2 Matthew Steven Osborne 23

Identifying Effective Improvements to Software Safety Practice

preclude paid access to the standard. ‘Closed’ (Standard) refers to those created
and used by an organization - who restrict access to their employees, thereby pro-
tecting the invested IPR held by the organization. Examples of Closed Standards
include organizational procedures and processes, and examples of Open Stan-
dards include BS EN 61508 [13] which describes functional safety processes for
the design of software and complex electronic hardware used in safety functions,
and the ARP 4754A suite of publications [147] 1 which describe safety processes
for the design of aerospace systems.

Many of these standards comprise multiple sections ([13] having 7 volumes
as but one example), as they aim to consider all phases of development, from con-
cept to disposal/termination. Understanding large, predominantly text-based
standards presents many weaknesses. These weaknesses include the need for
multiple cross-references, and the need to be re-read numerous times to decipher
meaning; as Weaver discovered when considering text-based safety arguments
[165]. Another weakness of lengthy text-based processes and procedures stems
from the complexity of being able to clearly and succinctly describe the complex
interrelationships between processes or activities. These weaknesses may suggest
that textual representation is not a suitable form of representing software safety
practice.

State of the Art Summary 3: Existing means by which (software) safety prac-
tice is currently controlled and directed is limited to textual representations. Text-
based representations suffer from inherent weaknesses.

Research Design Decision: Owing to the weaknesses of text-based repre-
sentations, a graphical representation with a suitably-defined structure, syntax,
and taxonomy would be a critical enabler for this empirical research.

There are many potential options for representing practice / processes graph-
ically. One option is a ‘pattern’. In his 1998 book, Ambler defines a Process Pat-
tern as “a pattern which describes a proven, successful approach and/or series of
actions (for developing software)” [3]. To define what a process pattern should
constitute, Ambler examines the definitions of both ‘process’ and ‘pattern’; a pro-
cess being defined as a “series of actions in which one or more inputs are used
to produce one or more outputs”; and a pattern being “the description of a gen-
eral solution to a common problem or issue from which a detailed solution to a
specific problem may be determined” [ibid].

When considering Ambler’s further definition of a ‘Task Process Pattern’; a
subset of process patterns that “depicts the detailed steps to perform a specific
task” [ibid], this resonates with an aim of producing a workflow, or pattern of
required activities that can be used repeatably as a means to understand software
safety practice. Although process patterns can be written in text, it is common
practice to employ a graphical representation. There are many tools that pro-
vide visual representations, and Chapter 4 contains a thorough review of those

1This thesis considers ARP 4754A. It is noted that ARP 474B now exists - which primarily aims
to clean up the distinction between ‘process’ and ‘techniques and methods’ considered in ARP
4761A.

24 Chapter 2 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

available. Beforehand, we must first consider the specifics of what needs to be
represented when considering software safety practice.

Whilst extant lifecycle representations portray the activities to be undertaken,
they do not currently consider the attributes of such activities e.g. timing con-
straints [49], timing requirements [163], commercial/contractual complexities [152],
[141], the resources required to undertake the activities (nor the attributes thereof),
nor the intricate interrelationships and interdependencies between activities. They
rely instead on a simplistic overview portrayed in any accompanying visual rep-
resentations.

Software safety practice is constituted by many elements (and their interre-
lationships); including philosophy, intent, and activities. As such, any graphical
representation must support the creation of a model that can be employed as part
of a robust and repeatable process for understanding practice; whose constituent
parts represent all elements of the practice under analysis.

This thesis aims to provide a means by which an organization can under-
stand and assess their software safety practice - in order that the organization
can assure that best practice is being/will be achieved. The first enabling step in
the creation of such a process is to identify all elements that constitute software
safety practice. To define these disparate elements, attention turns to how ide-
alized practice is conceptualized, how it is described, and how it compares with
the reality of practice.

2.3 Idealized Software Safety Practice versus Reality

To understand the current state of software safety practice, we argue that an an-
alyst must first identify the elements that constitute practice as indicated above,
and the relationships between these disparate elements. We define ‘elements’ as
any ’constituents which make up the whole’ [2], and assert these elements to be
the discrete building blocks which combine to constitute practice (see Figure 2.1).

We have already noted that existing investigations into safety practice gen-
erally are limited, and have been referred to using the form (Safety) <Work As>
<X>, such as:

• Work as Desired: how people would like work to take place [137]

• Work as Imagined: what people imagine everyday work to be [59]

• Work as Done: that carried out by the workforce [133]

• Work as Documented, or Observed: an observed and documented assess-
ment of work carried out by the workforce [57].

We have identified three elements of software safety practice, spanning the
idealized concept of what practice should be, the manner in which it is imparted

Chapter 2 Matthew Steven Osborne 25

Identifying Effective Improvements to Software Safety Practice

As Desired

Open
Standard

As Required
(Organisation's

Processes)

Meets

Meets

May Inform

As
Observed

Meets

May Consider

Empirical Data

Figure 2.1: The 3 Elements of Safety Engineering Practice.

to practitioners, and the reality of practice as carried out by practitioners. These
elements are represented in Figure 2.1. All existing software safety (<Work As>
<X>) can be mapped onto these three elements, and whilst it is argued this is
necessary, it cannot yet be argued whether this is complete:

• Software Safety Work as Desired - a representation of how an organization
desires software safety work to be, in the abstract

• Software Safety Work as Required - a representation of how an organization
explicitly requires its personnel to carry out software safety work

• Software Safety Work as Observed - a representation of how an organiza-
tion’s software safety practitioners carry out their work.

The term ‘software safety practice (as X)’ is now used to describe the different
elements by which it can be categorized. We now consider each of these elements
of software safety practice in turn.

2.3.1 Software Safety Practice As Desired

Software safety practice as-desired is characterized by a set of safety objectives
that are held by stakeholders within a project. The stakeholders who hold these

26 Chapter 2 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

objectives are the individuals, teams, organization, or classes thereof, having an
interest in a system [67] - specifically those who are responsible and accountable
for system and / or software safety. Together these safety objectives embody the
software safety philosophy and risk appetite of the organization. Complete and
correct compliance with software safety practice as-desired should manifest in a
product which is acceptably safe to operate in a given operating environment. Of
course, poorly identified or articulated, or incompatible safety objectives may be
a source of software safety process failures.

There is no ‘one-size-fits-all’ approach to defining software safety practice
as desired across all sectors and applications, and we do not prescribe what as-
desired practice is constituted by in all cases. We do provide criteria for as-desired
practice in Chapter 3.1.1 however, and offer these criteria to projects for consid-
eration and further adaptation.

For an organization that wishes to understand software safety practice, defin-
ing what constitutes as-desired practice may be the most complex and challeng-
ing element. Even if the responsible and accountable stakeholders in an orga-
nization believe that their as-desired practice is clearly defined and described, it
may not actually be explicitly documented anywhere - or at least it may not be
described in a manner which allows its philosophical attributes to influence an
engineered design. There are many potential reasons for this.

From experience, Open Standards (such as [13]) are often held to represent
safety practice as-desired in the form of codified expertise [5]. We argue that
this cannot in fact, be considered to be sufficient for as-desired practice. Such
standards contain a mixture of normative requirements, informative guidance,
and safety philosophy. Whilst normative requirements can be measured and even
audited against, it is not immediately clear how the required intent and safety
philosophy of a Standard can be validated and verified in a design. Nor can the
committee responsible for an Open Standard presuppose the safety philosophy
and risk appetite of an organization which aims to comply with it.

Whilst compliance with requirements can be measured through qualitative
and quantitative means; and processes can be assessed as to their correctness and
completeness, it is not possible to measure the alignment of intent and philos-
ophy of a standard in an auditable manner. This presents an open question of
whether a safe design is achieved by following a standard, or whether a safe de-
sign is achieved because the software safety practitioners cared enough to deliver
it, despite the standards’ deficiencies.

Standards committees therefore face the challenge of ensuring that their stan-
dard will represent the overarching intent and safety philosophy for any organi-
zation that elects to comply with it as a means of assuring the safety of their
design. Consider BS EN 61508 [13], which was established as a unified, generic
standard that aims to achieve functional safety by minimizing risk through the
application of Safety Integrity Levels (SIL) to safety functions. A challenge that
arises through offering such a ‘pan-industry’ approach is whether the standard
can appeal to the different safety philosophies of disparate organizations across

Chapter 2 Matthew Steven Osborne 27

Identifying Effective Improvements to Software Safety Practice

industry, many of whom will also have their own disparate supply chain.

Different Open Standards have been designed with variations in the means
of their intended application, and predicated on different principles of risk man-
agement. For example, whilst BS EN 61508 [13] may be formally certified against
for compliance, the standard is not designed to be applied in tandem with a reg-
ulatory or certifying body specifically. This is in contrast with the ARP 4754A
(ARP) suite of standards [147], which provide “safety recommended practice”.
These practices have been adopted as acceptable means of compliance for certifi-
cation by regulatory bodies (such as the FAA and EUROCAE).

The ARP’s safety philosophy is to moderate the severity of outcome through
the application of Design Assurance Levels (DAL) to components and systems.
A challenge for the Standard’s body here is ensuring that its safety philosophy is
applicable to all civil manufacturers of aerospace systems - both rotary and fixed
wing (and indeed to organizations outside of the civil aerospace sector which
have adopted it). Organizations and regulatory bodies in these disparate sectors
may have differing approaches to risk which are predicated on factors other than
the moderation of the severity of outcome (alone). They may also have differing
safety philosophies.

Standards such as BS EN 61508 and ARP 4754A are predicated on philoso-
phies that safety is achieved through the moderation of risk or severity of out-
come, yet an organization’s philosophy may not be founded in risk or severity
reduction per se. The as-desired software safety practice of an organization may
be founded on principles (e.g. [49]), systems theory (e.g. [82]), Normal Accident
Theory (as discussed in [40]), or predicated on specific attributes such as resilience
(e.g. [61]), or high levels of reliability (e.g. [142]). Further, an organization may
also operate a safety management system which is based on either centralized
control (i.e. ‘Safety I’), or guided adaptability (i.e. ‘Safety II’ [134]).

Whilst we accept that an organization can impart some aspects of idealized
practice through normative requirements, a final challenge concerns the efficacy
of the processes, procedures, techniques, and methods that manage these re-
quirements. Consider again BS EN 61508 [13], for which compliance is met by
achieving its objectives. These are held to have been met if the applicant meets
the requirements (clauses); which in turn can be instantiated by following rec-
ommended techniques and measures (with accompanying levels of importance
predicated on the SIL). What is not known is whether this process (objectives
met by requirements, which are instantiated by techniques and measures) mani-
fests in a safe design directly (referred to as the ‘inductive quality gap’ by Habli,
Hawkins, and Kelly [43]). These objectives, requirements, and techniques and
measures are not derived from an evaluation of empirical data, but predicated on
expert judgement and opinion - based on the experience of the standard’s com-
mittee members.

Similarly, UK Defence Standards require both clauses and objectives to be
met. Defence Standard 00-055 [160] requires not only that its specific clauses be
met, but demands compliance with its objectives (expressed as five Principles).

28 Chapter 2 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

One clause requires the Contractor to select an Open Standard to comply with.
Once selected, the proposed Standard is agreed with the MoD and complied
with. Additional work is then required to conform with the appropriate ‘Military
Delta’. The ‘Military Delta’ stipulates additional requirements to recover per-
ceived shortfalls in the selected standard when used in a military context. Whilst
the five Principles are laudable (predicated on [49]), it is not immediately clear
how the Principles are met by compliance with the clauses of the Standard it-
self, the selected Open Standard, nor the Military Delta required by the Defence
Standard.

Research Design Decision: Noting the complexities associated with estab-
lishing as-desired practice for software safety, this thesis therefore defines and
expresses software safety practice as-desired. The description of as-desired prac-
tice is given in Chapter 3.1.1; where we also explain how as-desired practice can
be represented and assessed for compliance.

2.3.2 Software Safety Practice As Required

Software safety practice as-required is constituted by a set of processes which are
designed to instantiate software safety practice as-desired when followed by a
software safety practitioner. Software safety practice as-required is a representa-
tion of how an organization explicitly requires its personnel to carry out software
safety practice. Used by standards bodies and organizations alike, software safety
practice as-required describes the processes required to be followed by software
safety practitioners.

The activity to convert software safety practice as-desired into software safety
practice as-required is not considered as part of this thesis as there exist many
projects emanating from disparate industries and applications, and there can be
no ‘one-size-fits-all’ approach to this. The next research design decision therefore
relates to the means by which an organization can understand its safety practice.

Research Design Decision: A multi-directional mechanism should be pro-
vided to enable a project to understand its software safety practice.

There are two types of as-required software safety practice, the first being an
Open Standard such as the ARP 4754A suite of publications, which requires the
adoption of a ‘V-Model’ lifecycle that aims to show the interaction between safety
processes and design and development processes, and is used in an iterative and
concurrent manner from ‘Platform’ level down to ‘Item’ and ‘Software’ levels.
Another example of as-required practice expressed by a standard is that specified
by BS EN 61508, and whilst this standard doesn’t require a specific development
lifecycle model, it requires that its objectives are met. Each objective is achieved
through compliance with the standard’s requirements (clauses) - which may in
turn be instantiated by the use of selected techniques and methods.

Standards Committees design and compile their Open Standards in a man-

Chapter 2 Matthew Steven Osborne 29

Identifying Effective Improvements to Software Safety Practice

ner that expresses a set of lifecycle activities which - when adopted by an organi-
zation, and followed by the organization’s software safety practitioners - aims to
comply with the standard’s version of as-required safety practice.

We must also look to the practice required by organizations who employ
software safety practitioners within a manufacturing, design, or procurement
setting. Such practice is normally documented by the developing / acquiring
organization, and expressed as a lifecycle of processes, and resulting documenta-
tion that are undertaken throughout the product lifecycle (referred to as ‘Closed
Standards’). An organization may develop its own practice predicated on the
requirements and informative guidance expressed by an Open Standard, as the
organization seeks to demonstrate due diligence based on conformance with the
selected Open Standard [42] by incorporating the Standard’s knowledge within
its processes [4]. Typically, organizations do not directly follow an Open Stan-
dard - they create their own set of internal processes and procedures which may
be derived with the intent of meeting a specific and selected Open Standard. An
organization may select an Open Standard and create their processes and pro-
cedures such that they will comply with the as-required practice required in the
Open Standard. Open Standards have their own challenges, and these challenges
may be masked or exacerbated as an organization develops their processes in a
manner that may lose the intent of the Open Standard.

Closed Standards may offer different representations of software safety prac-
tice to Open Standards, but they are protected by IPR which prevents, for exam-
ple, the widespread sharing of practice and issues arising. When considering the
development of complex ‘Systems of Systems’ (SoS), the constituent systems /
components may also be developed by differing organizations who adhere to dif-
ferent Open / Closed safety Standards. Should these differences between Open
and / or Closed standards exist, we need to understand the reasons for this, and
what impact they may have on software safety practice as-observed across the
SoS development process.

Akin to Morley et al’s argument that research into policies for safely imple-
menting Artificial Intelligence (AI) into the health care domain requires a prospec-
tive approach that is cognizant of the complexities of individuality, and social and
organizational structures; any subsequent mitigation research into improving the
effectiveness of Open / Closed Standards should take into account the complex
interrelationships of all elements of software safety practice [100].

The challenges associated with the creation and maintenance of Standards
are well-documented (see [42]), but we offer no a priori hypotheses regarding any
contribution made by the use of as-required processes [164]. A challenge for any
organization is to define as-required processes and procedures which meet their
as-desired software safety practice AND to express this in a way that clearly and
explicitly imparts the requirements, intent, and philosophy to those individuals
charged with implementing it.

Individuals control a lot of detailed software safety practice, and individu-
als form both organized and unorganized groupings within an organization and

30 Chapter 2 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

will learn, modify behaviours, and create their own norms and rules for self-
governance [164]. Any means by which an organization can understand and
assess its software safety practice must therefore be capable of eliciting such nu-
anced practices and behaviours, and identifying how they relate to an organiza-
tion’s processes [164].

2.3.3 Software Safety Practice as Observed

Software safety practice as-observed is a representation of how an organization’s
software safety practitioners carry out their work. This software safety practice
as-observed is nominally controlled and directed through defined processes, and
there will often be multiple sources of these processes which “can be represented,
with imperfect fidelity, through standardized models and procedures” [135] (or
software safety practice as-required).

For example, we may observe in an organization that work on eliciting soft-
ware safety requirements starts before component-level safety requirements are
fully established. This may deviate from the lifecycle model that portrays a
chronological and sequential hierarchical decomposition of safety requirements.

For many different and complex reasons, software safety practice as-observed
may not be equivalent to software safety practice as-required, and this could con-
tribute to achieving poor software safety engineering outcomes. We must there-
fore strive to ensure software safety practice as-observed aligns with software
safety practice as-required. Further we must show that both elements of practice
are fit for purpose (i.e. that software safety practice as-required, and software
safety practice as-observed are aligned with software safety practice as-desired
as well).

Of course, it may be the case that those charged with undertaking as-observed
practice are aware of shortcomings in software safety practice as-required and
that they have made subtle (perhaps hidden) improvements on software safety
practice as-required in an attempt to align with software safety practice as-desired.
For example, in the example above of software safety requirements being partly
derived before component-level requirements are finalized, this may be a positive
deviation, in that it allows the design activities to progress within the required
timescales in the specific context of the project that does this. Because devia-
tions may be positive, any evaluation should be capable of identifying any subtle
improvements made by those carrying out software safety practice as-observed
over that stated in the as-required processes; including any changes resulting in
meaningful engagement with internal or external communities of practice [5].

It is of course possible that any such perceived ‘improvements’ may not actu-
ally improve software safety practice, and may instead undermine other elements
of practice, or may introduce new issues. This observation is aligned with the
systems-theoretic approach [78], [80] as it acknowledges the existence of emer-
gence as a system property.

Chapter 2 Matthew Steven Osborne 31

Identifying Effective Improvements to Software Safety Practice

By considering all elements of software safety practice (and the interrelation-
ships between them) in a holistic manner, it should be possible to identify and
mitigate the risk of unintentionally undermining software safety practice.

It is also possible that even when gaps, conflicts, or differences do not exist,
emergent behaviour [82] could still lead to ‘bad’ practice due to phenomena man-
ifesting at an organizational level. These deviations could create deficiencies in
practice.

Beyond deficiencies in the as-required process, software safety practice as-
observed may contain elements of what Dekker refers to as “malicious compli-
ance” - where those charged with implementing safety practice as-required carry
out processes that they know are inadequate [23]; or instances of work that don’t
contribute to achieving or demonstrating safety (or “safety clutter” [133]). As-
observed practice may also have instances of what Provan refers to as “role re-
treat” (where workers just perform their role only as defined (i.e. work to role)),
or covert work systems (where work as-observed is hidden from ‘outsiders’ due
to the fear that it will be stopped or changed, thereby making work more difficult
for front-line teams) [134].

Safety practice as-observed is normally measured by auditing against work
as-required. This misses the nuances and intricacies of what actually happens ‘as
done’. Indeed, Provan notes that safety work needs to adapt and deviate from
plans, rules, roles, and procedures because of the dynamic and emergent nature
of complex systems [134].

Having considered the contribution of Standards to, and their relationship
with the elements which constitute software safety practice, attention now turns
to the efficacy of Functional Safety Standards themselves.

2.4 Functional Safety Standards

Functional Safety Standards are compiled by regulatory or standardization bod-
ies such as those which publish BS EN 61508 [13], and together present variations
of goal-based and process-based processes. Prescriptive, process-based assurance
processes (in isolation of a product-based assurance process, or robust assurance
of safety requirements) are not supported by the literature however for modern,
complex, software-derived safety critical systems [152], [43], [94], [53], [29], [54].

Open Standards are often adopted as a means of appealing to Recognized
Good Practice (RGP); with organizations adopting the recommendations made
by them into their internal processes. Their applicability is neither pan-industry,
nor pan-technology however, and whilst there are commonalities within Open
Standards, there are also major variations across sectors and countries [94].

Open Standards also present inherent weaknesses in terms of the guidance
they offer on vital aspects of a software safety lifecycle, such as the decompo-

32 Chapter 2 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

sition of software safety requirements [4]. Of equal issue is the fact that Open
functional safety standards, and regulatory/Defence Standards do not necessar-
ily align with realistic software safety requirements engineering practices, nor the
evolution of software safety requirements throughout the product/system lifecy-
cle [87].

Open safety standards such as BS EN 61508 [13], and ARP 4754 [147] that ad-
vocate ‘traditional V-Model’ Lifecycles do not support pragmatic software safety
requirements engineering practices, as:

• Many still (unrealistically) assume that all requirements are known ‘up front’
[55]

• Some encourage the ‘finalization’ of requirements before the design work
commences [87]

• Offer weak guidance on the decomposition of requirements [4]

• Their implementation varies widely between the Open Standards – mak-
ing integration into complex systems awkward and complicated [163], [36],
[103], and their implementation is difficult in practice [93]

• They inadvertently encourage tokenism [71] and naïve implementation [152];
which may lead to a lack of any tangible safety benefit [87] – especially when
focussing purely on prescriptive compliance [70]

• They can present an inductive qualitative gap when considering the assur-
ance of software (vice integrity) [43]

• Have inherent weaknesses in the implementation of the 4+1 Principles [71]

• Ignore the basic principles of systems engineering (i.e. simplicity) [152]

• Do not take into account the commercial and/or contractual complexities
in the procurement of safety-critical systems [152], [141].

In 2013, Stålhane et al asserted that V-model development processes are weak
as they cannot handle changes to requirements and / or customer needs [153] - al-
though they acknowledged that safety requirements are not particularly volatile
(but are often impacted through changes in functional requirements and emerg-
ing hazard analyses). Implicit in hierarchical representations such as the V-Model
lifecycle, is that software safety requirements are derived specifically from com-
ponent or hardware safety requirements (item requirements being the previous
development/design tier in the overall lifecycle process). Habli and Kelly how-
ever, urge caution against not considering software requirements at the system
level [44]; asserting that a lack of system-level requirements review by software
analysts may give rise to common mode failures.

Although iterative in nature, the sequential and hierarchical lifecycle inferred
by the V-Model is not supported by the state of the literature as to the links be-
tween requirement elicitation activities and the software safety lifecycle. In the

Chapter 2 Matthew Steven Osborne 33

Identifying Effective Improvements to Software Safety Practice

literature, software safety requirements are considered at a far higher level of
abstraction and earlier phase of the design lifecycle. Furthermore, in complex
socio-technical systems, emergent properties (and therefore hazards) are gener-
ated from a complex web of interdependencies that span systems, sub-systems,
components and the environment [153]. Iterative, yet chronological models are
insufficient for mitigating and managing such complexity. Indeed, sociotechni-
cal systems that are both tightly coupled and interactively complex cannot, in the
long run, be managed in a safe manner [40]. The continued management of safety
during the run-time of such complex systems (in the presence of inherent uncer-
tainty) is not typically given sufficient consideration by open safety standards.

In 2001, McDermid and Pumfrey observed that some projects that have been
developed to ‘certification standards’ were, in essence, “developed three times”
with the rework due to “late discovery of requirements or design flaws” [94].
They further highlighted that development standards assume a lifecycle for “com-
pletely new systems, and generally ignore the change and development of exist-
ing systems”; and also, that processes such as those described in ARP 4761 would
be enhanced by mandating an extension to the classic functional failure analysis
to the software level (through techniques such as a Software HAZOP) [ibid].

Boehm urged a re-consideration of development lifecycles as far back as 1988
[11]; warning that “many software projects. . . have come to grief because they
pursued their various development and evolution in the wrong order”. In a
more recent Systematic Literature Review, Vilela et al highlighted the importance
of identifying requirements as early as possible in the lifecycle in order to pre-
vent the propagation of safety issues through subsequent phases of development
[163]. This would also reduce costs significantly – by addressing the issues when
it is cheapest to do so.

Defence Standards present similar weaknesses with respect to requirements
engineering; in terms of a lack of guidance for the decomposition of safety re-
quirements [4]. They do not take into account commercial or contractual com-
plexities; and the requirements are often difficult to impart to suppliers and sub-
suppliers in the supply chain [52].

In many functional safety standards, no consideration is given to non-functional
requirements such as timing constraints, or requirements of activities that derive
artefacts; nor to any contractual principles (between acquirer and supplier) or
limitations thereof [53]. Vilela et al [163] note further that “safety standards. . . do
not explicit [sic] highlight which information should be specified early in the de-
velopment process”. Examples of such information may include human interac-
tion with software, and integrity constraints (which may also inform an organi-
zation’s make/buy decision at the simplest level).

The type of V-lifecycle model portrayed by many Open Standards may no
longer be valid therefore, and we suspect that people and projects are not actually
following ‘traditional’ safety lifecycles such as this, as:

• The model is neither complete nor sufficient to deal with the complexities

34 Chapter 2 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

of socio-technical system safety assurance; AND/OR

• People/organizations may be willfully detracting from the model as it is no
longer fully fit for purpose for the complex socio-technical (and software-
intensive) systems that are being designed.

Having considered the issues, deficiencies and nuances involved in deter-
mining good practice for software safety assurance, attention now turns to the
potential modelling solutions, and the research questions this thesis aims to an-
swer.

2.5 Modelling Approaches

This section of the thesis presents the state of literature with regards to how the
solution space highlighted in Sections 2.1, 2.2, 2.3 and 2.4 can be defined. The
concept of ‘solutions’ are returned to as the thesis progresses.

As we have discussed in Section 2.2, to understand software safety practice
fully, we need to have a graphical representation which can be used to under-
stand and assess software safety practice in an ontologically-robust manner that
allows the different elements of practice to be represented equally. This thesis
therefore presents a framework which is capable of linking the different elements
together. This allows an analyst to evaluate their relationships, and reveal any
nuances and subtleties.

It is noted that the implementation of any new models or process patterns
will face their own impediments to adoption. Some of these impediments may
by socio-technical in nature. This includes those impediments incurred as or-
ganizational structures change (people churn) [46], and any association a new
model/process may have with a previously ‘failed’ product [3].

We did not envisage that an entirely new model, or tool would be required
however, as the literature reveals representations and notations that – although
not currently adopted in a safety-related context – may be improved or adapted
for use within this empirical research. The review of models and graphical rep-
resentations is contained in Chapter 4 as it provides the link between the frame-
work and process in Chapter 3 and their instantiation in Chapter 5. Attention
now turns to how the empirical research is to be conducted.

Empirical Research Methodology

This research adopts a ‘soft’ normative approach [48], and starts from the po-
sition that an identified difference between elements of software safety practice
is not necessarily positive nor negative (until further analysis and assessment is
satisfactorily completed).

Chapter 2 Matthew Steven Osborne 35

Identifying Effective Improvements to Software Safety Practice

The assurance of software safety practice is supported currently by compli-
ance or conformance with a project’s Closed Standard that has been designed
specifically to meet software safety practice as-desired. Closed Standards may
also have been informed by the requirements and objectives of an appropriate
Open Standard (relevant to their industry, technology, and intended use).

It is logical, therefore to assume that any impediments to achieving good
practice for software safety manifest from the identification or translation into
practice of software safety practice as-desired, the characteristics of software safety
practice as-required, and/or software safety practice as-observed. These ele-
ments of software safety practice will be modelled and assessed using the frame-
work and process outlined in Chapter 3. Chapter 4 presents an assessment, se-
lection, and adaptation of the graphical representation used in the Case Studies
[169].

Software safety practice as-observed presents a distinct challenge for em-
pirical research however, as it must represent the practice of people performing
software safety activities. Rather than relying on a suite of documents, eliciting
softare safety practice as-observed requires a form of ethnographic study [109].
Ideally this would be carried out as an impartial ethnographic observation of
software safety practice. To our knowledge however, such studies are not carried
out due to the substantial time required (dependent on the technology involved,
and the length of the project/programme); the need for wholly impartial and in-
dependent observers; and/or the cost of such an undertaking. As Lipshitz et al
note “it takes a team to study teams in context” [86]. This leads us to another
research design decision.

Research Design Decision: Undertake a series of interviews to create a model
of as-observed practice.

As multiple ethnographic studies are not feasible to complete in the course
of a single PhD programme, a series of interviews are employed with represen-
tatives of projects that had submitted their processes for modelling and assess-
ment. Representation at interviews was fulfilled by team members who were
either software safety engineers, or software engineers with a responsibility for
safety.

As responses from interviewees could have been influenced by the created
models of safety practice, the models of practice were not shared with the inter-
viewees. Instead, the interviews were conducted from a single initiating request:

"In your role, please describe the software safety engineering activities you carry
out"

Care was taken when designing the interviews, including planning for follow-
up questions, considering the structure, manner and concepts of the interview,
its location, sensitivity awareness (from the interviewer), question sets that avoid
ambiguity, questions of a leading nature, double negative/positives, double-barreled

36 Chapter 2 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

questions, and inherent biases [151], [30], [90].

The pre-defined follow up questions were as follows:

"Are the activities defined?"

and..

"Are you able to carry them out verbatim?"

As this thesis is wholly reliant on a robust set of empirical data, the data had
to be compelling and ethically derived, and the inferences and interpretations
derived from it demonstrably sound. This required a clear strategy for deriving
and defining (inter alia):

• The presence of existing, relevant empirical data that may be utilised to
become ‘theory aware’ [151]

• Interviews:

(a) Structure, manner, contexts and concepts [151],

(b) Objectivity

(c) Location considerations and decision criteria [151], [30] [73]

(d) Interviewee categorizations and selection criteria

Sensitivity awareness (closely linked to social bias – below).

• Question sets [151], [90] – avoiding:

(a) Ambiguity

(b) Leading questions

(c) Double negatives/positives

(d) ‘Double-barrelled’ questions

(e) Antagonistic questions

(f) Biases.

• Reliability of data

• Validity of data:

(a) Statistical validity

(b) Lack of social biases.

• Data capture, storage, and retention

• Ethical questions (neutrally framed so as not to be ‘leading’)

• Ethical data mining (can one legitimately make the inferences from the data?).

Chapter 2 Matthew Steven Osborne 37

Identifying Effective Improvements to Software Safety Practice

This chapter has presented a review of the pertinent literature that relates
to both the problem space and the potential solution space for modelling solu-
tions. Analysis of the literature reveals a paucity of empirical investigations into
software safety practice, and despite many posited theories as to where the im-
pediments to achieving good practice may emanate from, no evidence yet exists
as to their source, and no current process exists by which empirical evidence can
be generated and assessed.

It is argued that these gaps in both the literature and data can begin to be
closed through fulfilling the Research Objectives and specific Research Questions
therefore.

2.6 Research Objectives and Research Questions

The current state of the literature reveals that we do not know confidently whether
good practice for software safety exists. If it does exist, we do not know whether it
is being followed. As there are no existing empirical investigations into software
safety practice, we have no available means by which an empirical investigation
can be fulfilled. This thesis therefore identifies two Research Objectives to fill this
knowledge gap:

1. OBJECTIVE ONE: To provide a process by which an organization can un-
derstand and assess the disparate elements that constitute their software
safety engineering practice

2. OBJECTIVE TWO: To provide a process by which an organization can
identify potential impediments to achieving best practice for software safety
practice, in a manner that gives confidence that any potential impediments
are appropriately-distal, and enable effective remedies to be derived.

These two research objectives can be decomposed into measurable, and atomic
research questions which, if answered, fulfill the two objectives of the research.
Based on the Thesis Aims, the research questions are as follows:

• RQ1 How can an organization understand its software safety practice?

• RQ2 How can an organization assess its software safety practice?

• RQ3 How can an organization identify true impediments (i.e. appropriately-
distal and confirmed as being causal rather than just symptomatic) to achiev-
ing best practice for its software safety practice?

• RQ4 How can an organization derive effective mitigations for the identified
impediments to software safety engineering best practice?

38 Chapter 2 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

O
B

JE
C

T
IV

E
 O

N
E

O

B
JE

C
T

IV
E

 T
W

O
F

U
T

U
R

E
 W

O
R

K

DATA

RQ1: How can a
project

understand its
software safety

practice?

RQ2: How can a
project assess its

software safety
practice?

RQ3: How can a
project identify true

impediments to
achieving best practice
for its software safety

practice?

RQ4: How can a project
derive effective mitigations

for the identified
impediments to software
safety engineering best

practice?

DATA

Remove
impediments

Figure 2.2: Research Objectives and Research Questions

Whilst the proposed novel framework and process provides the means by
which an organization can glean data to address the four research questions, this
thesis only provides empirical data in support of the first two. This is illustrated
in Figure 2.2 by the use of ‘traffic light’ colour-coding:

• GREEN: Research Questions 1 and 2 will generate empirical data in a for-
mat which can be used by an organization in Objective Two.

• AMBER: Research Questions 3 and 4 use the data outputs from Objective
One (i.e. the models and reports created by the framework and process).
Through investigations, an organization uses this data to identify true im-
pediments are correct and appropriately-distal. The organization then em-
barks on mitigation research to remove the impediments.

• RED: The final steps are to implement the identified mitigation(s) to remove
the impediments. As indicated by the arrows, aspects of the process must
now be repeated to confirm whether practice has been improved, and no
aspects have been detrimented. This element is a future work activity

The proposed novel framework and process provides an organization with
instructions for how to complete all of the above steps, but the thesis only pro-
vides data in support of Objective One. Other than operating with the constraints
of a single PhD programme, the reason for the omission of all later process steps
is because the answers to questions 3 and 4 are application-, technology-, and
sector-specific. They are also entirely dependent on the means by which each
element of practice is described, imparted to practitioners, and interpreted. As

Chapter 2 Matthew Steven Osborne 39

Identifying Effective Improvements to Software Safety Practice

such there can be no one-size-fits-all approach to determining whether potential
impediments are true and appropriately-distal. For the same reasons, this thesis
cannot derive what constitutes effective mitigations, nor confirm the removal of
impediments. This requires specific, dedicated research to be planned and en-
acted; and is therefore not in scope.

What this thesis is capable of achieving however, is to gather data amassed
from the output of research questions one and two, and present it in a manner by
which it supports research questions three and four (future work).

Research Questions 1 and 2 are answered by providing an organization with
a framework and process with which software safety practice can be understood
and assessed. The framework and process is provided in Chapter 3. The frame-
work and process requires a graphical notation which facilitates the modelling.
The selection and adaptation of the graphical representation is explained in Chap-
ter 4. Use of the framework and process is explicated by an illustrative example
in Chapter 5.

2.7 Summary

The current state of the art is summarized as follows:

• No empirical investigations into the effectiveness of software safety practice
exists

• There is a lack of explanations as to why good practice for software safety
has not been achieved

• Existing means by which (software) safety practice is currently controlled
and directed is limited to textual representations. Text-based representa-
tions suffer from inherent weaknesses.

As a result of the investigations into the state of the art, the following research
design decisions have been taken:

• Owing to the weaknesses of text-based representations, a graphical repre-
sentation with a suitably-defined structure, syntax, and taxonomy is a criti-
cal enabler for this empirical research

• Noting the complexities associated with establishing as-desired practice for
software safety, this thesis therefore defines and expresses software safety
practice as-desired

• A multi-directional mechanism should be provided to enable an organiza-
tion to understand its safety software safety practice

40 Chapter 2 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

• Undertake a series of interviews to create a model of as-observed practice.

Having discussed the state of the literature, and defined the research objec-
tives and questions answered by this thesis, attention now turns to the framework
of the different elements which constitute software safety practice, and the means
by which they can be understood and assessed.

Chapter 2 Matthew Steven Osborne 41

Chapter 3

Software Safety Practice Framework
and Process

In answering the research objective from Chapter 2, the framework and process to
understand and assess software safety practice must answer two research ques-
tions:

• RQ1 How can an organization understand its software safety practice?

• RQ2 How can an organization assess its software safety practice?

This chapter therefore describes a theoretical framework of the elements which
constitute software safety practice, and posits how these elements interact. The
framework which illustrates the elements of software safety practice and their in-
terrelationships is constructed, discussed, and its ontology described in Section
3.1. The chapter also describes the required modelling and assessment activities
required to instantiate the framework. The modelling and assessment activities
are defined in Section 3.2, with step-by-step process instructions provided in Sec-
tion 3.3.

The process to understand and assess software safety practice will generate
a substantial amount of information for action by a project. The actions required
of an organization are considered in Section 3.4. The models created by the pro-
cess will require maintenance throughout a project’s life, and this maintenance is
considered in Section 3.5. The ‘trigger points’ in a project’s life which will require
parts of the process to be repeated by a project are considered in 3.6. The chapter
concludes in Section 3.7 by considering the potential outcomes from applying the
process, and what these outcomes may suggest.

42

Identifying Effective Improvements to Software Safety Practice

3.1 A Framework of Software Safety Practice

We have created a theoretical framework which defines the elements which com-
bine to constitute software safety practice. This framework also defines how the
elements of software safety practice relate to and influence each other. The aim
of the framework is to enable an understanding of how software safety practice
is carried out, and why it is done in the manner that it is.

Specifically, we seek an understanding of how software safety practice is de-
sired to be, how the desired practice is imparted to those required to enact it,
and how software safety practice as desired is interpreted and implemented by
software safety practitioners. The resulting framework model is useful because it
creates a detailed representation of software safety practice whilst remaining as
simple as possible.

We deliberately avoid theorising as to whether and why poor safety practice
exists, rather we adopt the phenomenon-based research suggested by von Krogh,
Rossi-Lamastra and Haefliger, and create a process (Section 3.2) which can be
used to identify and gather relevant data using this innovative framework [164].

We noted in Chapter 2.3 the three elements which constitute software safety
practice, and that these three elements improve on the simpler model of ‘work
as imagined versus work as done’ [137] discussed in Section 2.1. Before we can
understand and assess the elements which constitute software safety practice,
we must first be able to describe and represent each element of practice as com-
parable models that describe each element as accurately and as simply as pos-
sible. Before we recommend any changes to software safety practice, we must
be as confident as possible that it has identified genuine impediments which are
appropriately-distal. This requires a representation of what constitutes software
safety practice, and an understanding of the relationships between the disparate
elements of practice.

Framework Design Decision: Define a framework which articulates the dis-
parate elements of software safety practice and their interrelationships.

The first decision in designing the framework was to decide how the ele-
ments of software safety practice can be broken down in a way that makes them
amenable to modelling and assessment. A number of approaches to doing this
were identified in the literature review in Chapter 2.3, and the proposed frame-
work employs the three identified elements of software safety practice, spanning
the idealised concept of what best practice should be, the manner in which it is im-
parted to practitioners, and the reality of practice as carried out by practitioners.
This framework is shown in Figure 3.1, where each of the elements, along with
the relationships between them is shown:

• Software Safety Practice as-desired

• Software Safety Practice as-required

Chapter 3 Matthew Steven Osborne 43

Identifying Effective Improvements to Software Safety Practice

• Software Safety Practice as-observed.

We now consider in turn each of these elements of software safety practice
identified in Chapter 2.3.

3.1.1 Software Safety Practice As-Desired

In the instantiation of this framework, a project will determine and assert its own
version of software safety practice as-desired. This as-desired practice may be
defined by establishing and expressing the objectives by which it will deliver a
product that is safe to operate within a stated system and given operating en-
vironment. Such objectives will likely be influenced by the organization’s risk
appetite, and legislative and regulatory obligations; and the need for an organi-
zation to simultaneously minimize expenditure and maximize profitability. An
organization’s version of as-desired practice may or may not be documented
by the organization. Understanding and modelling an organization’s as-desired
software safety practice does not guarantee that practice is complete, nor correct;
rather it provides a mechanism to assess its ‘goodness’ — as we will demonstrate.

Software safety practice as-desired is an idealized representation of what
software safety practice is to achieve. The 4+1 Principles are an example of what
could constitute software safety practice as-desired, because they are claimed to
be “constant across domains and across projects, and can be regarded as the im-
mutable core of any software safety justification” [49]. The use of these principles
is further justified as they continue to be widely adopted for use in system safety
— including their incorporation as the overarching principles and objectives of
UK Defence Standards such as [105].

Each of the 4+1 Principles are considered in turn, and we have defined a
set of measurable criteria for each principle. Software safety practice must be
capable of meeting each criterion to achieve compliance with that principle. To
describe the decomposition of the design, the concept of design ‘tiers’ [51] are
used. ‘Tier n’ describes the current design level, and ‘tier n-1’ and ‘tier n+1’ the
previous and subsequent levels of design decomposition respectively. Each of the
4+1 Principles are considered in turn, and the criteria is defined for each.

The criteria for the 4+1 Principles serve two purposes. Firstly, they are of-
fered as a unique contribution of this thesis, and are offered as a reasonable pat-
tern which an organization may adopt and adapt further. The second purpose
is to use the criteria to explicate the framework and process to understand and
assess software safety practice (see Chapter 5).

Principle 1
The first principle states that “software safety requirements shall be defined to address
the software contribution to system hazards”. Software safety practice must therefore
demonstrate that:

44 Chapter 3 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

• A clear description of the software in the system will be provided

• The operating context of the system in which the software resides will be
described

• A clear description of the system in which the software resides will be pro-
vided

• The system hazards to which software may contribute will be identified

• The specific failure modes by which software contributes to the identified
system hazards will be described

• The software contribution to the identified system hazards will be accept-
ably managed through the elicitation of software safety requirements that
specify the required behaviour(s); for each identified software contribution,
to each system hazard

• All software safety requirements will be atomic, unambiguous, defined in
sufficient detail, and be verifiable.

Principle 2
The second principle states that “the intent of the software safety requirements shall be
maintained throughout requirements decomposition”. Software safety practice must
therefore demonstrate that:

• For each tier of design abstraction, the software safety requirements derived
at the previous tier will be adequately addressed:

(a) Either instantiated into, and mitigated by a design realization, OR

(b) Further software safety requirements derived for implementation at
tier n+1.

• The design for each tier of abstraction will be fully defined and understood

• Software safety requirements will be adequately allocated, decomposed,
apportioned, and interpreted at each subsequent tier of design abstraction

• Software safety requirements at tier n will adequately capture the software
safety requirements (and their intent) from tier n-1

• Design decisions taken at tier n will be appropriate to ensure that the soft-
ware safety requirements at tier n-1 are maintained in the context of the
potential hazardous failures identified at tier n-1 (for each design decision
made)

• The balance of design decisions and derivation of further software safety
requirements will be appropriate for the software safety requirements (and
design as applicable) at tier n-1

• The design of tier n will be considered when defining the software safety
requirements for tier n

Chapter 3 Matthew Steven Osborne 45

Identifying Effective Improvements to Software Safety Practice

• Full (forward and backward) traceability will be made through each tier of
decomposition of software safety requirements

• Software safety requirements will be predicated on a reasonably stable de-
sign (at the earliest point in the design lifecycle)

• Software safety requirements will be re-validated at tier n following any
resultant design changes at tier n.

Principle 3
The third principle states that “software safety requirements shall be satisfied”. Soft-
ware safety practice must therefore demonstrate that:

• All software safety requirements will be verified as being fully instantiated
into a design realization

• The appropriateness of the evidence set with respect to the software safety
requirements at each tier of design will be demonstrated

• The sufficiency of the evidence set with respect to the software safety re-
quirements at each tier of design will be demonstrated.

Principle 4
The fourth principle states that “hazardous behaviour of the software shall be identified
and mitigated”. Software safety practice must therefore demonstrate that:

• Potentially hazardous failure modes of the software will be identified (i.e.
in normal operation)

• Potential additional hazardous contributions at each tier will be identified
(i.e. in faulted conditions)

• Potential additional hazardous contributions at each tier will be mitigated
through the derivation or elicitation of further software safety requirements

• Appropriate software safety requirements will be elicited in mitigation of
all identified potentially hazardous failure modes

• Design errors that could cause hazardous failure modes will not be intro-
duced during the design process

• The design (and software code) will be analysed to ensure it does not con-
tain design errors that could cause a hazardous failure mode

• Any changes to the design will not introduce potentially hazardous design
(or code) errors.

46 Chapter 3 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

Principle 4 + 1
The fifth principle states that “The confidence established in addressing the software
safety principles shall be commensurate to the contribution of the software to system
risk”. Software safety practice must therefore demonstrate that:

• The required confidence behind the attainment of each Principle (1 to 4) will
be determined

• The most effort in generating evidence will be focussed on the areas with
the highest risk from software’s contribution to hazards (noting that the
areas denoted as requiring the most effort are currently indicated in Open
Standards by the notion of integrity/assurance levels)

• For each Principle (1 to 4), the required confidence that each has been met
will be reflected in:

(a) The appropriateness of evidence

(b) The trustworthiness of each evidential artefact (the rigour in the ap-
proaches to be used):

(i) Independence

(ii) Resources and required attributes (personnel)

(iii) Techniques and Methods used

(iv) Audits and reviews

(v)Tools

(c) The type of evidence to be used.

• An understanding of the limitations with each type of evidence being used
will be clearly understood.

If any alternative version of software safety practice is not expressed as a
set of measurable criteria, gaps or ambiguities regarding the intent of as-desired
practice may exist. In such cases, it is important to note that any lack of detail in
a project’s as-desired model may be an oversight, but it may also be deliberate —
reasonably relying on other elements of software safety practice to add the detail.

3.1.2 Software Safety Practice As-Required

As noted in Chapter 2, there are two elements of as-required software safety prac-
tice. The first element is that represented in Open Standards such as [147] or [13].
Standards such as these prescribe a set of lifecycle activities that are argued to
represent good practice. The second element is those practices described by or-
ganizational processes (Closed Standards), and these may, or may not have been
designed as a means to implement the described lifecycle of a specific Open Stan-
dard. Our framework is designed to allow both ways to be represented, and any
relationships between them (and other elements of practice) to be evaluated.

Chapter 3 Matthew Steven Osborne 47

Identifying Effective Improvements to Software Safety Practice

3.1.3 Software Safety Practice As-Observed

Software safety practice as-observed is the element of software safety practice
carried out by practitioners. Our framework is designed to represent this element
of practice, and facilitates an evaluation of as-observed practice’s relationships
with the other elements of software safety practice.

3.1.4 The Framework

All the constituent parts of software safety practice can be mapped onto the
three elements of practice we have identified (as-desired, as-required, and as-
observed), and whilst it is argued this mapping is necessary, it cannot yet be ar-
gued whether this is complete - although further instantiations of the framework
will reveal the levels of confidence in its completeness.

It is a reasonable challenge to argue that all of these elements of software
safety practice (i.e. practice as-desired, as required, and as-observed), once repre-
sented in text or a graphical representation, are simply a form of ‘Work as Imag-
ined’ [58] (the as-required process that one ‘imagines’ is carried out for exam-
ple). Whilst this is a reasonable challenge to the framework, the transformation
of practice into accurate, comparable models is a necessary compromise if we are
to understand and assess software safety practice.

The main elements of software safety practice, and their relationships are
shown in the framework in Figure 3.1. Each number on the framework denotes
either a representation of an element of practice, or a relationship between ele-
ments. Each element and relationship is defined below.

The Framework:

1. Desired: the as-desired representation

2. Required (Open): representation of an Open Standard

3. Required (Closed): representation of a Closed Standard

4. Observed representation of practice as-observed

5. Required (Closed) v Desired: comparison of an organization’s software
safety process with software safety practice as-desired

6. Required (Open) v Desired: comparison of an Open Standard with soft-
ware safety practice as-desired

7. Observed v Required (Closed): comparison of observed practice with the
organization’s software safety processes

48 Chapter 3 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

As Desired

As Required
(Open

Standard)

As Required
(Organisation's

Processes)

As
Observed

1

2 3

4

9

8

7

6 5

10

Figure 3.1: The Elements of Software Safety Practice.

8. Required (Closed) v Required (Open): comparison between the organi-
zation’s software safety process and the Open Standard which may have
informed its development

9. Observed v Desired: comparison of observed practice with software safety
practice as-desired

10. Observed v Required (Open): comparison of observed practice with an
Open Standard.

An activity is required to translate as-desired software safety practice into
software safety practice as-required (Closed). This activity is sector, application,
and technology specific. It will not be considered in our proposed framework.

Framework Design Decision: The translation of as-desired software safety
practice into software safety practice as-required (Closed) is not considered in the
framework.

Having established the framework of software safety practice, we next need
to decide what needs to be included in the representations of each element of the
framework.

Framework Design Decision: Define what must be included in each repre-

Chapter 3 Matthew Steven Osborne 49

Identifying Effective Improvements to Software Safety Practice

sentation of practice, and all artefacts employed by each activity.

Instantiating the framework requires the creation of models that are a faithful
representation of the key elements of software safety practice, but which are also
as simple as possible. One of the weaknesses of many software safety process
lifecycles is that although they portray the activities to be undertaken, they do
not consider the attributes of activities such as timing constraints [50], timing re-
quirements [163] commercial/contractual complexities [152], [141], the resources
required to undertake the activities (nor the attributes thereof), nor the intricate
interrelationships and interdependencies between activities. These weaknesses
must be mitigated by our process. We also noted in Chapter 2.4 that the tradi-
tional ‘V-Model’ lifecycles were no longer valid, and that people were not neces-
sarily following them anyway.

Framework Design Decision: The framework must be capable of represent-
ing any type of lifecycle (including those employed in ‘Agile’ lifecycles (see [140]
for example)).

Framework Design Decision: The framework must be capable of represent-
ing all activities undertaken within an element of software safety practice.

As well as modelling the activities within each element of practice, and the
artefacts employed by each activity, we can look to the ever-increasing body of
knowledge on the attributes required to successfully complete each activity (see
[57] for example). We cannot yet argue these attributes are a complete list of
those required, but take confidence from this body of knowledge. Using this
body of knowledge, we argue that the framework must be capable of modelling
the following:

• Resources consumed by the activity (which includes both human resource
and materiel)

• Inputs to the activity

• Output from the activity

• Methods/techniques that can be used to carry out an activity

• Controls that constrain or define the activity

• Time by which the activity must take place.

Framework Design Decision: Define the required attributes of each activity
and artefact.

We need to provide a means of assessing and evaluating software safety prac-
tice. When considering conformity, ‘(lifecycle) Assessment’ is defined by the ISO
as a “compilation and evaluation of the inputs, (and) outputs...of a product sys-
tem throughout its lifecycle” [65]. ‘Evaluation’ is subsequently defined as a “sys-
tematic examination of the extent to which a product, process or service fulfils

50 Chapter 3 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

specified requirements” [64]. As such we argue that the framework must there-
fore also be capable of:

• Representing the links between activities

• Representing levels of agreement (e.g. between work as-required (Open)
and work as-required (Closed))

• Representing levels of compliance/conformance (with a standard for exam-
ple)

• Representing identified deficiencies

• Describing optionality and multiplicity

• Quality attributes, including time (expressed as either a calendar date or
phase in the lifecycle); personnel attributes including qualifications, experi-
ence, independence, authority, and role; and data format and contents.

As the model of practice progresses through activities, a level of abstraction
is reached at which the inputs to, and/or outputs from an activity are merely
artefacts that are consumed or produced by an activity. Examples of this would
be a standard guidance document that controls how an analysis such as a HAZOP
is to be undertaken, or a Project Management Plan that is not under the control of
the safety team. For artefacts we expect to model the following attributes which
are needed to meet the ‘assessment’ and ‘evaluation’ capabilities noted above:

• Human Resources

• Methods/techniques

• Data inputs (to activities)

• Data outputs (from activities).

Each of these attributes require specific quality criteria and time constraints
to be defined for them if we are to assert/assess software safety practice as re-
quired. The required attributes of an artefact are discussed in Chapter 3.2.1, and
the means of representing artefacts are shown in Chapter 4.5.

It is possible that assessments of software safety practice may reveal instances
where the existence of an artefact is not explicitly stated by the element of prac-
tice under analysis. It is also possible that instances may be encountered where
an artefact is required as part of the lifecycle, but where no producing activity for
that artefact is explicitly stated. We propose to categorize these as Inferred Activ-
ities. Artefacts may also be inferred, and we have established three categories of
modelled artefacts:

Chapter 3 Matthew Steven Osborne 51

Identifying Effective Improvements to Software Safety Practice

• Explicit: artefacts that are explicitly described, and have a consuming or
producing activity that is clearly stated

• Inferred: artefacts that are discussed without any consideration of their cre-
ation or management, and with no consuming or producing activity that is
explicitly stated. (e.g. if a standard says that “assumptions must be man-
aged”, we can infer the existence of an ‘Assumptions’ artefact)

• Orphan: artefacts that are explicitly described, but have no stated activity
that produces them.

The means by which different types of artefacts are modelled is outlined in
Chapter 4.5.

This concludes our discussions on our theoretical framework, but any theory
needs to be tested. As such we need to ensure the framework design supports
widespread use.

Attention now turns to the process which instantiates the framework.

3.2 Process to Understand & Assess Software Safety
Practice

The framework introduced in Section 3.1.4 has ten elements constituted by four
different representations of practice and their interrelationships. In this section,
the process to apply each of these elements of the framework in order to un-
derstand and assess software safety practice in a particular project is described
(addressing RQ1 and RQ2). To instantiate the framework, the process requires
four modelling steps (1-4) and six analysis steps (5-10). Each analysis step takes a
baseline model from Steps 1-4 and annotates it. Finally, there is a further activity
not represented in Figure 3.1, and this concerns the maintenance of the process
outputs throughout the life of a product/project. The maintenance of the created
models is considered in Chapter 3.6.

To apply the framework for a particular software safety project the follow-
ing modelling, comparison and annotation activities must be undertaken. The
modelling process steps are provided in Chapter 3.2.1, and the means by which
comparisons are to be annotated are provided in Chapter 4.5. Each activity is
annotated to indicate the research question it seeks to address:

1. Model and represent the organization’s as-desired model (RQ1)

2. Model and represent the relevant Open Standard (RQ1)

3. Model and represent the organization’s software safety processes (as-required
(Closed)(RQ1)

52 Chapter 3 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

4. Model and represent software safety practice as carried out (as-observed)
(RQ1)

5. Compare the organization’s software safety processes (as-required (Closed))
with the as-desired model (RQ2)

6. Compare the selected Open Standard with the as-desired model (RQ2)

7. Compare software safety practice (as-observed) with the software safety
processes formulated by the organizational lifecycle (as-required) (RQ2)

8. Compare the organization’s software safety process (as-required (Closed))
and the Open Standard which informed/influenced its development (RQ2)

9. Compare software safety practice (as-observed) with the organization’s as-
desired model (RQ2)

10. Compare the organization’s software safety practice (as-observed) with an
Open Standard (RQ2).

Particular note should be taken of Step 9 which indicates that the assessment
should compare software safety practice as-observed directly with respect to the
as-desired model (rather than just with what is required by processes or stan-
dards). By performing this step, an analyst can identify whether software safety
practitioners, through deviations from the defined processes and standards, are
overcoming deficiencies in the as-required practice in order to improve safety
practice (intentionally or otherwise). Step 9 ensures the assessment identifies
any subtle improvements made by those instantiating an organization’s software
safety processes over what is specified by the as-required model. By considering
all elements of software safety practice (and the interrelationships between them)
our novel process is able to also identify, and mitigate the risk of unintention-
ally undermining safety practice by implementing ‘fixes’ which have negative
impacts elsewhere in practice (RQ3 and RQ4).

Step 10 of Figure 3.1 is in place as it is entirely possible that software safety
practitioners charged with implementing as-required practice may appeal to the
requirements or guidance from an Open Standard they are familiar with rather
than the organization’s own software safety process. Practitioners could do this
to recover shortfalls they perceive in the as-required processes, or could simply be
a default to a standard they know well. Any identified differences or deviations
between elements of practice will enable an assessment of whether, and how,
software safety guidance and/or practices need to change.

3.2.1 Modelling Software Safety Practice

Before the process steps themselves are given, we first consider each element of
software safety practice and describe what needs to be modelled for each element
of practice, and how this is to be achieved. We then describe in Section 3.2.2 the

Chapter 3 Matthew Steven Osborne 53

Identifying Effective Improvements to Software Safety Practice

1.Establish
Practice

2. Model
Activities

considering considering considering

considering considering considering

3. Model
Artefacts

considering

considering

considering

Inputs Outputs Techniques /
Methods

Existence

Quality

Time
Required

ResourceControls
Time

Required

Figure 3.2: Modelling Safety Practice

activities required to facilitate an assessment of these models of practice, and their
interrelationships. We now explain how the elements of software safety practice
are to be modelled, along with the six attributes of each activity which must be
defined. The first part of this process is illustrated in Figure 3.2, and concerns the
modelling of software safety practice as-desired and as-required.

1. Establish As Desired or As Required Practice: This involves identifying
standards / organizational practice, and as-desired practice relevant to the
software safety practice being evaluated.

2. Model Activities: By scrutinizing the publication or criteria it is possible
to identify and model all activities required by the lifecycle. Once these are
modelled we can represent the aspects of each process activity (see Chapter
4.5):

• Techniques/Methods: means by which an activity is fulfilled (e.g. car-
rying out a SHARD analysis)

• Inputs/Outputs: stipulated inputs to and outputs from each required
activity (for example design data as an input to an analysis, and a re-
port as an output therefrom)

• Time: expressed as the point by which the activity should start and/or
be complete by (or perhaps not start until). This may be expressed as a
calendar date, a dependent activity, or phase in the programme

• Controls: aspects that control how an activity is undertaken (e.g. a
recognized Open Standard that controls how functional safety analysis
is to be undertaken)

• Resources: person(nel) required to undertake the task, and any ma-
teriel required to complete it.

54 Chapter 3 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

3. Model Artefacts: Artefacts represent the lowest level of abstraction, and are
modelled as inputs to / outputs from an activity. Artefacts are deliverables
or items that support or constrain an activity, or are produced as a result
of an activity. Examples of artefacts include a description of the resource
required in support of an activity, or a report produced as a result of an
activity.

When discussing artefacts in the Structured Assurance Case Metamodel [106],
OMG refer to the requisite properties of artefacts such as:

• Quality (completeness, consistency etc.)

• Its lifecycle / temporal properties (creation and / or modifications events)

• Relationships and dependencies (to and from the artefact)

• Resources expended in the production of an artefact

• Activities related to the management of artefacts, and

• Techniques associated with the production of the artefact.

The UK MoD’s Acquisition Safety and Environmental Management System
(ASEMS) [104] considers the characteristics of Timing, Independence, Method,
and Personnel when recommending how ‘proportionality’ will be measured across
acquisition projects.

Specifying the quality attributes of objects, or the characteristics of projects
may not be sufficient for modelling software safety practice artefacts however, as
we have already noted that the process needs to model:

• Human Resources

• Methods/techniques

• Data inputs (to activities)

• Data outputs (from activities).

All of these attributes require specific quality criteria and time constraints
to be defined for them when representing software safety practice. The required
quality criteria for aspects will differ - as illustrated by the examples given in
Table 3.1 (noting that Time constraints are required for all – and is therefore not
included in this table).

As can be seen in Table 3.1, the kinds of attributes which need to be defined
for software safety practice artefacts are wide-ranging, differ on the type of arte-
fact, and are not always required or relevant (for all artefacts). Defining every

Chapter 3 Matthew Steven Osborne 55

Identifying Effective Improvements to Software Safety Practice

Aspect Quality Criteria Examples

Human
Resource

Qualifications Safety Engineer with MSc
Experience 5 Years experience
Independence Not involved in the design
Authority Authorised signatory
Role Software Safety Consultant

Method/
technique

Relevance (to an activity) ISO Standard for HAZOP
Approved/
Recommended status Formally Issued at Rev C

Data
(inputs/
outputs)

Format DOORS export in Excel

Specific Contents
Requirements Specification
Measures of Performance
Maturity Level

Generating Resource Requirements Engineer
Receiving Resource Owner

Table 3.1: Aspects and Quality Criteria

quality criteria for each artefact would be cumbersome in modelling terms, and
many criteria may not be required for specific instantiations (i.e. ‘Format’ would
not be required for a ‘Resource’ artefact).

Whilst activities are modelled with the inputs and outputs thereof, having
both an input AND an output aspect of an artefact would be superfluous as we
only need to represent the existence of the artefact – which can itself be assessed
and analyzed using a pertinent colour scheme. To ensure an analyst can ade-
quately model the required aspects of all types of artefact, the following aspects
are modelled:

• Time (‘T’): expressed as the point by which the artefact should be created
by or supplied to an activity. This may be expressed as a calendar date or
phase in the programme

• Quality Criteria ‘Q’): quality attributes required of an artefact, such as the
skills and experience required of the person charged with carrying out an
activity, or the format and contents required of a report

• Existence (positive/negative) (‘E’): does the artefact (yet) exist? This at-
tribute is used to consider whether the artefact needs to be produced ahead
of the supported activity (and therefore whether another activity should be
modelled to create it; or a dependency placed on a department other than
Software Safety Engineering); or whether a person exists within the project
who has the requisite skills or independence when considering a ‘Resource’
artefact.

The accuracy of the represented model determines the robustness of the re-
sultant assessment, and so it is vital that any model be as accurate and complete
as possible. Organizations may have competitive advantage, or security concerns

56 Chapter 3 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

that leads them to withhold parts of their software safety processes from the an-
alyst. Such instances must be explicitly disclosed by the respondent, along with
an assessment from the analyst as to whether the strength of any inferences made
on the model(s) are impacted by the absence of such data.

The second part of the modelling process considers software safety practice
as-observed.

Software Safety Practice As Observed

Software safety practice as-observed represents the observed practice of practi-
tioners performing software safety activities. Rather than relying on a suite of
documents, modelling software safety practice as-observed requires a form of
ethnographic study [109] of actual software safety practice. To our knowledge
however, such ethnographic studies on the work of software safety practitioners
are not carried out due to the substantial time required (dependent on the type
of practice, the technology involved, and the length of the project/programme);
the need for impartial and independent observers; and/or the cost of such an
undertaking.

Should a full ethnographic study be infeasible, then an alternative method
is to employ a series of interviews. Care must be taken if this approach is taken
however, as this element of safety practice can no longer be considered as soft-
ware safety practice as-observed, and instead morphs into safety practice “as-
disclosed” [150], and presents many opportunities for bias to skew the data ([151],
[169], [90]).

3.2.2 Assessing Software Safety Practice

Having modelled the relevant aspects of software safety practice, an assessment
is performed to identify deficiencies in practice, and impediments to the adoption
of software safety practice as-desired. The assessment process is illustrated in
Figure 3.3, and the means of representing the outcome of the assessment is given
in Chapter 4.5.

Assessing the Internal Completeness and Internal Consistency of Software
Safety Practice As Required

This assessment has the following two steps:

1. Evaluate Activities. Each activity in as-required practice is assessed for:

• Completeness and Consistency: are there enough activities commen-
surate with achieving the required outcome; and does each activity

Chapter 3 Matthew Steven Osborne 57

Identifying Effective Improvements to Software Safety Practice

1. Evaluate
Activities

Internal
Completeness

&
Consistency

Aspects

considering

considering

2. Evaluate
Artefacts

considering

considering

Figure 3.3: Assessing Safety Practice

have sufficient supporting sub-activities to ensure it can be completed
to a sufficient level?

For example, to produce the artefact ‘Software Common Cause Analysis Report’,
does the modelled software safety practice identify all activities that are reasonably
required to produce it? Examples here would be ‘Failure Modes Analysis’, ‘Assess
Levels of Independence’ and perhaps ‘Carry out SHARD Analysis’. An analyst
with an understanding of the activities required to produce such a software safety
assessment will be able to assess whether it is reasonable that the safety assessment
will be produced. Although this is perhaps a subjective assessment, it is an early
indication of the sufficiency of the safety practice under review.

• Consideration of Aspects: is there sufficient detail in the description
of the attributes required of / produced by the identified activities to
have confidence that sufficient consideration is given to Inputs, Out-
puts, Time, Techniques and Methods, Controls, and Resources?

For example, the activity ‘Review Software Safety Requirements’ should have at-
tributes that denote the time it should be completed by; a defined set of inputs and
outputs; the techniques and methods by which the Software Safety Requirements
are to be reviewed; any controlling procedures (such as a Process Instruction); and
the resources expended by the activity.

2. Evaluate Artefacts: Each artefact is assessed for:

• Completeness and Consistency: are there enough artefacts to enable
successful completion of all activities; does every activity produce an

58 Chapter 3 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

artefact; and does each activity have an adequate set of required inputs
and outputs?

Many Open Standards do not explicitly document the specific artefacts that are
consumed by an activity, but merely infer them (such as stating that the user should
“check the validity of any assumptions”, without ever referencing where such as-
sumptions are derived from, nor what should be the arbiter of ‘validity’. Open
Standards also often fail to consider who needs an artefact, and in what format.
This may not be an inadequacy on the part of the standard, however - which may
reasonably rely on those implementing the standard’s processes to consider such
details. Whether this is a deliberate and reasonable assumption will be revealed
through the modelling of organizational processes, and observations of practice.

• Consideration of Aspects: is there sufficient detail of the attributes to
denote when they need to be produced or used; are sufficient quality
attributes considered; and does the artefact yet exist, or does it need to
be created (in which case further producing/consuming activities may
need to be modelled)?

Whilst standards and organizational process denote the production of artefacts, they
do not always specify when the artefact is needed. For aspects that are required in-
puts to activities, there isn’t always consideration of when the artefact is needed by,
who produces it, nor to what quality (such as format). On the occasion that re-
sources are mentioned, the quality attributes of the resource are often not stipulated
(such as qualifications, training, experience, and independence). Future analysis
of organizational processes and Open Standards (subsequent steps in the process)
will uncover whether this is an acceptable omission from an as-required perspective,
and follow-up interviews with practitioners/management will reveal whether such
potential shortcomings are overcome - intentionally or otherwise (RQ3 and RQ4).

Assessing Software Safety Practice As Required

An analyst next needs to compare the relationships between software safety prac-
tice as-required with software safety practice as-desired, so an assessment is un-
dertaken to consider the levels of compliance between the as-required model and
software safety practice as-desired (Steps 5 and 6 of Figure 3.1), as well as (where
applicable) between the as-required (Closed) model and the model of the applica-
ble Open Standard (Step 8 of Figure 3.1). When assessing the levels of compliance,
we recommend the adoption of the following colour-coding scheme (further de-
tails for which are provided in Chapter 4.5):

• GREEN: The considered aspects of the activity meets the claims required of
/ agrees with the comparison model in full

• AMBER: The considered aspects of the activity only partially meets claims
required of / partially agrees with the comparison model

• RED: The considered aspects of the activity meet no aspect of the claims
required of / does not agree with any of the comparison model.

Chapter 3 Matthew Steven Osborne 59

Identifying Effective Improvements to Software Safety Practice

Assessing Safety Practice As Observed

Once the analyst has assessed as-required safety practice, they can then assess
safety practice as-observed. Primarily, they should do this in terms of its its re-
lationships with software safety practice as-required and as-desired. They can,
again, use colour-coding to represent the level of consistency between as-required
(Closed and Open) and as-desired practice:

• GREEN: The considered aspects of the activity agrees with that of software
safety practice as-required/as-desired in full

• AMBER: The considered aspects of the activity partially agrees with that of
software safety practice as-required/as-desired

• RED: The considered aspects of the activity does not agree with any part of
software safety practice as-required/as-desired.

Once the analyst has assessed the as-observed practice in this way, they can
then hold follow-up interviews with representatives of the organization whose
processes are under analysis in the context of the respondent’s industry sector,
organizational hierarchy, and the product being created by the respondent’s or-
ganization (RQ3 and RQ4). These follow-up interviews should aim to identify:

• The reasons for limited areas of agreement

• The reasons why there are areas of no agreement

• Evidence regarding the validity of the as-desired model (is the as-desired
model complete and correct?)

• Any difficulties or complexities behind the areas of limited or no agreement

• Whether and why any areas of limited/no agreement contribute to meeting
any perceived shortfalls with an organization’s processes with respect to an
Open Standard (Step 8 of Figure 3.1)

• Whether and why any areas of limited/no agreement contribute to meeting
any perceived shortfalls with an organization’s processes and that of the
as-desired model (Step 9 of Figure 3.1)

As a result of the follow-up interviews, the analyst must determine whether
and how the models and subsequent evaluations are challenged, and whether
they need to be modified as a result of new information. These follow-up inter-
views are out of scope for this thesis (Research Questions 3 and 4).

Attention now turns to the Process Steps themselves. Each step of the process
requires a Suitably Qualified and Experienced Person (SQEP) to undertake it. The
argument of what constitutes a SQEP individual is outside of the scope of this
research, however (see Recommendation 1).

60 Chapter 3 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

3.3 Process Steps

This section now considers how each element of software safety practice de-
scribed in the framework is transposed into explicit steps for an organization to
understand and assess software safety practice. Each element of software safety
practice framework is considered in turn (from 1 to 10). For each step we define
its Objective(s), the Input(s), the Task(s), and its Output(s).

3.3.1 Step One: Create a Model of Software Safety Practice As
Desired 1

We have already provided the criteria for software safety practice as-desired in
Section 3.1.1. This process is applicable only if an organization wishes to deter-
mine an alternative model of as-desired practice.

Objective
Define software safety practice as desired for the organization wishing to under-
stand and assess their software safety practice (RQ1, RQ2).

Inputs
An organization wishing to model software safety practice as-desired requires
the following inputs:

• A Software Safety Philosophy

• A Risk (acceptance and tolerance) Policy

• A Software Safety Management Philosophy (which may be instantiated as
a Management System and Plan(s))

• A suitably qualified and experienced Safety Manager to determine, repre-
sent and agree with the product owners the model of as-desired practice.

Tasks

1. Define software safety practice as-desired

2. Create a tangible and measurable representation of software safety practice
as-desired.

Output
The output of this step is either a set of objectives, or a set of measurable cri-
teria which can then be used to assess the other elements of safety practice for
compliance.

Chapter 3 Matthew Steven Osborne 61

Identifying Effective Improvements to Software Safety Practice

Discussion
Asserting what constitutes software safety practice as-desired is perhaps the most
challenging and complex part of understanding any aspect of software safety
practice, as discussed in Chapter 2.3.1. Notwithstanding the complexities and
challenges of this task, the organization must create a representation of as-desired
practice which is both tangible and measurable.

It is important to note that any ambiguities in an as-desired model may be
an oversight, but it may also be deliberate - reasonably relying on practice at the
as-required or as-observed level to remove them.

This process to understand software safety practice does not guarantee that
an organization’s as-desired practice will be complete, nor correct; rather it pro-
vides a mechanism to assess its ‘goodness’.

62 Chapter 3 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

3.3.2 Step Two: Create a Model of Software Safety Practice As
Required (Open) 2

Objective

There are two ways in which software safety practice as-required is currently
modelled and represented in industrial practice. The objective of this step is to
model the as-required lifecycle of an Open Standard.

Input
The single input for this task is the Open Standard which may have influenced
the creation of organizational practice.

Tasks

1. Identify all the activities and produced / consumed documents and other
artefacts required by the standard

2. Identify the sequences of linked activities and artefacts

3. Represent graphically the lifecycle required by the standard as a sequence
of linked activities and artefacts

4. Compile a report which defines the:

(a) Modelling process used

(b) Modelling symbology used

(c) Location of the model, and any proprietary software required to access
it.

Outputs
Two outputs are created by this step:

1. A representation of the as-required (Open) model

2. The report accompanying the as-required (Open) model.

3.3.3 Step Three: Create a Model of Software Safety Practice As
Required (Closed) 3

Objective

The second way in which software safety practice as-required is currently
defined is that generated by a project in its ‘Closed’ Standard. The lifecycle of ac-
tivities expressed in organizational practice may, or may not have been influenced
by / designed as a means to implement the prescribed lifecycle of a specific Open

Chapter 3 Matthew Steven Osborne 63

Identifying Effective Improvements to Software Safety Practice

Standard. The objective here therefore, is to model the set of lifecycle activities
described by the organizational processes and procedures (RQ1).

Input
The single input for this task is the Closed Standard which constitutes organiza-
tional practice.

Tasks

1. Identify all the activities and produced / consumed artefacts required by
organizational practice (as specified in the organization’s Closed Standard)

2. Identify the sequences of linked activities and artefacts

3. Represent graphically the lifeycycle required by the organization as a se-
quence of linked activities and artefacts

4. Compile a report which defines the:

(a) Modelling process used
(b) Modelling symbology used
(c) Location of the model, and any proprietary software required to access

it.

Outputs
Two outputs are created by this step:

1. The appropriately represented as-required (Closed) model

2. The report accompanying the as-required (Closed) model.

Discussion
The terms ‘Organizational Practice’ and ’practice As-Required (Closed)’ are syn-
onymous.

3.3.4 Step Four: Create a Model of Software Safety Practice As
Observed 4

Objective
Software safety practice as-observed is the model of safety work carried out by
practitioners. Instead of relying on a suite of documentary articles, software
safety practice as-observed necessitates a form of independent ethnographic study
[109]. The objective here therefore, is to model the software safety activities car-
ried out by software safety practitioners in a given organization (RQ1).

Input
The single input to this task is an empirical report of as-observed software safety
practice as carried out by software safety practitioners.

64 Chapter 3 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

Tasks

1. Identify all the activities and produced / consumed artefacts carried out by
the software safety practitioner

2. Identify the sequence of activities carried out by the software safety practi-
tioner(s)

3. Represent graphically the sequence of linked activities carried out and arte-
facts produced / consumed

4. Compile a report which defines the:

(a) Modelling process used

(b) Modelling symbology used

(c) Location of the model, and any proprietary software required to access
it.

Outputs
Two outputs are created by this step:

1. The appropriately represented as-observed model

2. The report accompanying the as-observed model.

Having identified, modelled and represented the elements of software safety
practice, attention now turns to the process to assess software safety practice.

3.3.5 Compare Organizational Practice with Software Safety Prac-
tice As-Desired 5

Objective
Organizational practice must be capable demonstrably of complying with soft-
ware safety practice as-desired. The objective of this step is therefore to assess the
degree of compliance between organizational practice and software safety prac-
tice as-desired (RQ1, RQ2).

Inputs
Two modelling elements of the framework must have already been completed:

Chapter 3 Matthew Steven Osborne 65

Identifying Effective Improvements to Software Safety Practice

1. The as-required (Closed) model of software safety practice

2. The as-desired model of software safety practice.

Tasks

1. Create a copy of the model of as-required (Closed) practice created at Step
3

2. Using this copy, create a representation of where as-required practice com-
plies with each of the as-desired criteria in turn

3. Taking each model element in turn, evaluate each contributing activity:

Internal Completeness and Consistency: are the activities correct and
commensurate with achieving as-desired practice? Do the right amount of
activities exist; and does each activity have the correct amount of support-
ing / contributing activities to ensure it can be completed to the required
level of compliance?

Consideration of Attributes: is the information stated for the required
attributes the correct information (i.e. Inputs, Outputs, Time, Techniques
and Methods, Controls, and Resources); and is the correct amount of infor-
mation given for the attributes for the as-desired practice to be met?

4. For each model element / criteria, evaluate each artefact produced / con-
sumed by an activity:

Sufficiency: is there the correct number of artefacts to enable successful
completion of all activities, and are the artefacts the correct ones? Does
every activity produce an artefact; and does each activity have the correct
amount and type of artefacts (as inputs) to comply with the model of as-
desired practice?

Consideration of Attributes: is the information stated for the attributes
correct (i.e. Time, Quality Criteria and Existence) to denote when they need
to be produced or used? Are the correct number and set of quality attributes
considered for each artefact, and are they the correct quality attributes for
as-desired practice to be complied with?

5. Annotate the newly-created model indicating the degree of compliance with
as-desired software safety practice.

6. Should potential deficiencies be evident, then follow-up research with the
organization should be undertaken to establish the reasons why (RQ3, RQ4).

7. Compile a report which defines the:

(a) Modelling process used

(b) Modelling symbology used

(c) Location of the model, and any proprietary software required to access
it.

66 Chapter 3 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

Outputs
Two outputs are created by this step:

1. The appropriately annotated model of as-required (Closed) practice com-
pliance

2. The report accompanying the model of as-required (Closed) practice com-
pliance.

Discussion
The means of representing degrees of compliance are evaluated, selected, and
asserted in Chapter 4.

3.3.6 Step Six: Compare the Open Standard with Software Safety
Practice As-Desired 6

Objective
A published Open Standard must be capable demonstrably of complying with
an organization’s software safety practice as-desired. The objective of this step
is therefore to assess the levels of compliance between an Open Standard and
software safety practice as-desired (RQ1, RQ2).

Inputs
For this step to proceed, two modelling elements of the framework must have
already been completed:

1. The as-required (Open) model of software safety practice

2. The as-desired model of software safety practice.

Tasks

1. Create a copy of the model of as-required (Open) practice created at Step 2.

2. Using this copy, create a representation of how as-required (Open) practice
complies with each criteria of as-desired software safety practice in turn.

3. Taking each model element / criteria in turn, evaluate each contributing
activity:

Internal Completeness and Consistency: are the activities correct and
pertinent commensurate with achieving as-desired practice? Do the right
amount of activities exist; and does each activity have the correct amount
of supporting / contributing activities to ensure it can be completed to the
required level of compliance?

Chapter 3 Matthew Steven Osborne 67

Identifying Effective Improvements to Software Safety Practice

Consideration of Aspects: is the information stated for the aspects the
correct information (i.e. Inputs, Outputs, Time, Techniques and Methods,
Controls, and Resources); and is the correct amount of information given
for the aspects for the as-desired practice to be met?

4. For each model element / criteria, evaluate each artefact which is produced
/ consumed by an activity:

Sufficiency: is there the correct number of artefacts to enable successful
completion of all activities, and are the artefacts the correct ones? Does
every activity produce an artefact; and does each activity have the correct
amount and type of artefacts (as inputs) to comply with the model of as-
desired practice?

Consideration of Aspects: is the information stated for the aspects the
correct information (i.e. Time, Quality Criteria and Existence) to denote
when they need to be produced or used? Are the correct amount of qual-
ity attributes considered for each artefact, and are they the correct quality
attributes for as-desired practice to be complied with?

5. Annotate the newly-created model with the degree of compliance with as-
desired software safety practice.

6. Should potential deficiencies be evident, then follow-up research with the
project should be undertaken to establish the reasons why (RQ3, RQ4).

7. Compile a report which defines the:

(a) Modelling process used

(b) Modelling symbology used

(c) Location of the model, and any proprietary software required to access
it.

Outputs
Two outputs are created by this step:

1. The appropriately represented model of as-required (Open) practice com-
pliance

2. The report accompanying the model of as-required (Open) practice compli-
ance.

Discussion
A Standard’s Committee can also be considered as ‘an organization’ who wishes
to understand the current state of their software safety practice.

68 Chapter 3 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

3.3.7 Step Seven: Compare As-Observed Practice with Software
Safety Practice As-Required (Closed) 7

Objective
Software safety practice as-observed may be different to, or the same as software
safety practice as-required (Closed). The objective of this step is therefore to com-
pare as-observed practice with organizational practice (RQ1, RQ2).

Inputs
Two modelling elements of the framework must have already been completed:

1. The as-required (Closed) model of software safety practice

2. The as-observed model of software safety practice.

Tasks

1. Create a copy of the model of as-observed practice created at Step 4.

2. Using this copy, compare the levels of agreement between software safety
practice as-observed, and software safety practice as-required (Closed).

3. Annotate the newly-created model with the levels of agreement, and the
differences between the two models of practice.

4. Should differences be evident, then follow-up research with the project should
be undertaken to establish the reasons why (RQ3, RQ4).

5. Compile a report which defines the:

(a) Modelling process used
(b) Modelling symbology used
(c) Location of the model, and any proprietary software required to access

it.

Outputs
Two outputs are created by this step:

1. The annotated model of how as-observed practice compares with as-required
(Closed) practice

2. The report accompanying the comparison of how as-observed practice com-
pares with as-required (Closed) practice.

Discussion
This step is NOT a compliance check, as there is no assumption made on the
completeness and correctness of organizational practice. Assessment of the inter-
relationships of the elements of this framework will reveal whether and how any
element of software safety practice should or could change.

Chapter 3 Matthew Steven Osborne 69

Identifying Effective Improvements to Software Safety Practice

3.3.8 Step Eight: Compare As-Required (Closed) Practice with
As-Required (Open) Practice 8

Objective
Software safety practice as-required (Closed) may be different to, or the same as
the Open Standard which may have informed its development. The objective
of this step is therefore to compare both models of software safety practice as-
required (RQ1, RQ2).

Inputs
Two modelling elements of the framework must have already been completed:

1. The as-required (Closed) model of software safety practice

2. The as-required (Open) model of software safety practice.

Tasks

1. Create a copy of the model of as-required (Closed) practice created at Step
3.

2. Using the copy, compare the levels of agreement between software safety
practice as-required (Closed), and software safety practice as-required (Open).

3. Annotate the copy with the levels of agreement, and the differences be-
tween the two models of as-required practice.

4. Should differences be evident, then follow-up research with the project should
be undertaken to establish the reasons why (RQ3, RQ4).

5. Compile a report which defines the:

(a) Modelling process used

(b) Modelling symbology used

(c) Location of the model, and any proprietary software required to access
it.

Outputs
Two outputs are created by this step:

1. The appropriately represented model of how as-required (Closed) practice
compares with as-required (Open) practice.

2. The report accompanying the comparison of the two models of as-required
practice.

70 Chapter 3 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

Discussion
This step is NOT a compliance check, as there is no assumption made on the
completeness and correctness of any specific Open Standard. Assessment of the
inter-relationships of the elements of this framework will reveal whether and how
any element of software safety practice should or could change.

3.3.9 Step Nine: Compare As-Observed Practice with As-Desired
Practice 9

Along with Step 10, this is a conditional step which may not necessarily have an
output. The tasks for Steps 9 and 10 are identical, only the rationale behind any
identified differences will differ.

Objective
Having completed the model of as-observed software safety practice, and com-
pleted the comparison with organizational practice, differences between the two
models may have been identified. The objective here, therefore is to determine
whether any differences in the as-observed model exist because those charged
with implementing an organization’s software safety practice are aware of defi-
ciencies in organizational practice with regards to achieving as-desired practice.
The step aims to determine whether any differences are additional activities to
those required by organizational processes, or whether activities are carried out
in a manner other than those required by organizational processes (RQ3, RQ4).

If no examples of additional or differing activities have been uncovered, then
there is no action required for this step.

Inputs
Two modelling elements of the framework must have already been completed:

1. The model of how as-observed practice compares with as-required (Closed)
practice.

2. The as-desired model of software safety practice.

Tasks

1. Determine whether any differences in the model of how as-observed prac-
tice compares with as-required (Closed) practice are a result of practitioners
attempting to overcome deficiencies in the as-required practice in order to
comply with software safety practice as desired.

2. Conduct further enquiries with the participant(s) in the observation of soft-
ware safety practice to determine the reasons behind identified differences
(RQ3).

3. Create a report that documents the reasons for the identified differences.

Chapter 3 Matthew Steven Osborne 71

Identifying Effective Improvements to Software Safety Practice

4. Carry out further investigations with the project whose processes are under
analysis (RQ4).

Output
The single output from this step is a report outlining any differences between
as-required practice (Closed) and as-observed practice which specifically aim to
overcome deficiencies in the as-required practice in order to comply with soft-
ware safety practice as desired.

Discussion
Any identified deviations may be owing to reasons other than a motivation to
comply with as-desired practice. It is vital that all reasons for deviations are de-
termined and mitigated appropriately (as identified through the other steps of
this process).

3.3.10 Step Ten: Compare As-Observed Practice with As-Required
(Open) Practice 10

Along with Step 9, this is a conditional step which may not necessarily have an
output. The tasks for Steps 9 and 10 are identical, only the rationale behind any
identified differences will differ.

Objective
Having completed the model of as-observed software safety practice, and com-
pleted the comparison with as-required (Open) practice, differences between the
two models may have been identified.

The objective here, therefore is to determine whether any differences in the
as-observed model exist because those charged with implementing an organiza-
tion’s software safety lifecycle are aligning practice with an Open Standard other
than one associated with their organization.

There are many potential reasons why a practitioner may carry out activi-
ties required of an Open Standard (which are not required by, or differ from their
organization’s practice), perhaps even a standard other than the one which influ-
enced organizational practice. Further data is required to establish whether this is
a deviation from as-required (Closed) practice, and the reasons why (RQ3, RQ4).

Input
The model of how as-observed practice compares with as-required (Open) prac-
tice must already have been completed.

Tasks

1. Determine whether any differences in the as-observed model exist.

2. Conduct further enquiries with the participant(s) in the observation of soft-

72 Chapter 3 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

ware safety practice to determine the reasons behind any identified differ-
ences.

3. Create a report that documents the reasons for the identified differences.

4. Carry out further investigations with the project whose processes are under
analysis (RQ4).

Output
The single output from this step is a report outlining any instances of software
safety practitioners undertaking working practice required by an Open Standard
not associated with their organization. For these instances to be of concern, the
working practices highlighted must be additional and / or different to aspects of
as-required software safety practice associated with their organization.

Discussion
Any identified deviations may be owing to reasons other than appeal to an Open
Standard. It is vital that all reasons for deviations are determined and mitigated
appropriately (as identified through the other steps of this process).

3.4 Information to Action: Next Steps

The information produced by the process provides an organization with valuable
insights into the state of its software safety practice. Some of the generated data
may reveal the need for further, immediate recovery action, and some data may
necessitate further research before any action is taken. Some potential outputs
from the process and their implications are considered in Table 3.2 (RQ3, RQ4).
Appropriate next steps are also considered. The implementation of these next
steps is outside the scope of this empirical research.

Table 3.2: Potential Impediments and their Mitigation(s)

Identified Potential Impediment Next Steps

Non-compliance between
As-Required and As-Desired Practice

1. Clear deficiency (i.e. Lack of
‘activity x’ requires the creation of
‘activity x’)
2. Repeat Process Step 2/3 to ensure
completeness and correctness
3. Repeat Process Step 5/6 to ensure
deficiency has been cleared

Internal consistency deficiencies
(insufficient information for activity to
successfully conclude/for artefact to be
produced)

1. Remove internal inconsistency
2. Repeat Step 2/3 to ensure deficiency
is removed

Chapter 3 Matthew Steven Osborne 73

Identifying Effective Improvements to Software Safety Practice

Table 3.2: Potential Impediments and their Mitigation(s)

Identified Potential Impediment Next Steps

Levels of disagreement between a
project’s process and the
Open Standard which influenced
its development

(Not applicable if the project
is a Standard’s Committee)

1. Determine the reason for each
disagreement considering the following:
a. Is there evidence of safety clutter?
b. Are the disagreements due to
contractual/commercial complexities?
c. Are the disagreements reasonable
(i.e. is there an option asserted?)
2. Assess the impact of the disagreement
in terms of whether this represents:
a. An unsafe act
b. A necessary deviation
c. Surplus work activities
3. Identify potential mitigation options
4. Assess each mitigation option on the
ability of the organisation to meet the
as-desired criteria
5. Assess each mitigation option for
whether an unintended consequence
could manifest
6. Select mitigation(s) and implement
7. Repeat Process Steps 8 and 5

74 Chapter 3 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

Table 3.2: Potential Impediments and their Mitigation(s)

Identified Potential Impediment Next Steps

Non-compliance between As-Observed
and As-Required (Closed) Practice

1. Determine the reason for each
non-compliance considering the
following (not exhaustive):
a. Whether the non-compliance
is an intentional deviation in order
to meet As-Desired practice
(i.e. recovering a perceived
shortfall in As-Required (Closed)
Practice)
b. Whether there is a lack of
clarity in the As-Required
(Closed) Practice (an ambiguity
or interpretation issue)
c. Whether the non-compliance
has an impact on safety (i.e.
whether the non-compliance is
predicated on removing clutter)
2. Identify potential mitigation
options
3. Assess each mitigation option
on the ability of the organisation
to meet the as-desired criteria
4. Assess each mitigation option
for whether an unintended
consequence could manifest
5. Select mitigation(s) and implement
6. Repeat Step 7

Chapter 3 Matthew Steven Osborne 75

Identifying Effective Improvements to Software Safety Practice

Table 3.2: Potential Impediments and their Mitigation(s)

Identified Potential Impediment Next Steps

Activities emanating from As-Observed
Practice which comply with As-Required
(Open) Practice – but which are not
mandated by As-Required (Closed) Practice

1. Determine the reason for each
activity considering the following
(not exhaustive):
a. Whether the activity is an
intentional act in order to meet
As-Desired practice (i.e.
recovering a perceived shortfall
in As-Required (Closed) Practice)
b. Whether the activity has a
positive/negative impact on safety
2. Identify potential mitigation options
3. Assess each mitigation option on
the ability of the organisation to meet
the as-desired criteria
4. Assess each mitigation option for
whether an unintended consequence
could manifest
5. Select mitigation(s) and implement
6. Repeat Steps 4 (partial) and 10
(as applicable)

Activities emanating from As-Observed
Practice which comply with As-Desired
Practice – but which are not mandated by
As-Required (Open or Closed) Practice

1. Determine the rationale for the
additional activities of the
as-observed practice
2. Determine whether other activities
required by as-required practice comply
with the same requirement(s) of
as-desired practice (using different
activities)
3. Assess the data from #1 and #2 and
establish which of the activities would
be the most prudent to adopt or cease
4. Repeat Steps 2, 3, or 4 as appropriate

Having extracted the maximum value from the data generated by the process
for understanding and assessing software safety practice, attention now turns to
the management of the generated data.

3.5 Data, Information, and Knowledge Management

The results of the process must be consumable by the project and associated or-
ganization(s). To do this we must ensure that data is transformed to informa-
tion, and that this information is in a form that can be consumed and turned into

76 Chapter 3 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

knowledge. We use the definitions from [21] to frame this element of the process:

• Data: a set of discrete objective facts

• Information: a message, usually in the form of a document

• Knowledge: a fluid mix of framed experience, values, contextual informa-
tion, and expert insight that provides a framework for evaluating and in-
corporating new experiences and information.

Each step of the framework and process has at least one output, and the data
created by these outputs must be communicated to the appropriate stakeholders
as an information exchange. This information must be absorbed into organiza-
tional knowledge if maximum benefits are to be realized.

The process will generate the following data outputs contained in informa-
tion:

• Models of each element of software safety practice

• Reports validating the creation of each model

• Compliance Models

• Compliance Reports (of elements of practice)

• Comparison Models

• Comparison Reports (between elements of practice).

Each ‘message’ represents valuable information to an organization, and man-
aged in the right way this information will provide valuable organizational knowl-
edge. Each data source created by the process has different customers with dif-
ferent needs (stakeholders), and this information should be managed and used
as suggested in Table 3.3.

Table 3.3: Software Safety Practice Information Management

Data Source Format Stakeholder Purpose
Model of Practice Source format Analyst Maintenance

Source format Engineering
Peers Review

pdf Manager Review &
Authorisation

pdf Regulator /
Auditor

Review &
Endorsement

Model Validation
Report Office Analyst Maintenance

Chapter 3 Matthew Steven Osborne 77

Identifying Effective Improvements to Software Safety Practice

Table 3.3: Software Safety Practice Information Management

Data Source Format Stakeholder Purpose

pdf Engineering
Peers Review

pdf Manager Review &
Authorisation

pdf Regulator /
Auditor

Review &
Endorsement

Compliance
Model Source format Analyst Maintenace

Source format Engineering
Peers Review

pdf Manager Review &
Authorisation

pdf Regulator /
Auditor

Review &
Endorsement

Compliance
Reports Office Analyst Maintenance

pdf Engineering
Peers Review

pdf Manager

Review &
Endorsement

Generate
Action Plan

pdf Regulator /
Auditor

Review &
Endorsement

Comparison
Model Source format Analyst Maintenace

Source format Engineering
Peers Review

pdf Manager Review &
Authorisation

pdf Regulator /
Auditor

Review &
Endorsement

Comparison
Report Office Analyst Maintenance

pdf Engineering
Peers Review

pdf Manager

Review &
Endorsement

Generate
Action Plan

pdf Regulator /
Auditor

Review &
Endorsement

Whilst the precise format and contents of each message is outside the scope

78 Chapter 3 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

of this thesis, care must be taken by the authors of these messages as to the con-
tents and structure of each. It will be advantageous if maxims such as those cre-
ated by Grice [37] are followed. Although Grice’s maxims were originally created
for efficient oral exchanges, they are applicable to all forms of communication
and interaction, and not just conversation [98]. Miller discusses Grice’s maxims
in multi-modal communication terms, and these should guide the author of the
data artefacts [98]:

• Quality: ensure the information is high quality. Do not say things that you
believe to be false, and do not say things for which you have no evidence

• Quantity: provide the right amount of information. Be as informative as
required, and no more informative than required

• Relation: only provide information related to the communication. Be rele-
vant

• Manner: avoid obscurity of expression, avoid ambiguity, be brief (avoid
unnecessary prolixity), and be orderly.

Avoiding the provision of too much data and associated information is vital
if the messages aim to obtain or influence a decision. Too much data may mean
that decision-makers can struggle to ignore irrelevant information. Irrelevant in-
formation can lead to less optimal decisions (referred to as the dilution effect in
[68]).

3.6 Model and Assessment Maintenance

The models generated during the process to understand and assess software
safety practice, and the assessments of the models provide an organization with a
valuable resource as a safety management tool. We have noted the importance of
establishing a model which is as accurate as possible, and this accuracy must be
maintained through life for the models to retain their value. The currency and ac-
curacy of the information must be maintained throughout the life of a project, but
this should require a minimal maintenance overhead if the accuracy and currency
are re-evaluated at regular, predetermined intervals.

Having completed the ten steps of the process, and completed any resultant
analysis from the initial findings, a project will have established a ‘final’ model of
each element of software safety practice:

• As-desired

• As-required (Open)

• As-required (Closed)

Chapter 3 Matthew Steven Osborne 79

Identifying Effective Improvements to Software Safety Practice

• As observed.

Table 3.4 considers the events which should trigger a re-evaluation of each
model of software safety practice by an organization. The events listed should be
considered as the minimum triggers for re-evaluation to which an organization
can supplement / modify as required pertinent to their needs. The left hand
column defines the triggers, and the remaining columns represent the models of
practice. An ‘X’ in a column denotes the need to re-assess the model stated.

Whilst Table 3.4 highlights the triggers for models of practice to be re-assessed,
subsequent steps in the process (i.e. Steps 5-10) must be repeated if the models
of practice are amended as a result of the re-assessment. It may be beneficial for
an organization to add such trigger events to their Safety Management System,
or Safety Management Plan, but such considerations are outside the scope of this
research.

Table 3.4: Triggers which Require Re-assessment of the Models of Software Safety
Practice

Event Trigger As-desired As-required
(Open)

As-required
(Closed) As-observed

Updated Safety Philosophy X
Changes to Legislation X X X X
Changes in Customer
Requirements X

Lifecycle Process Changes X X X
Introduction of a new
(Process) Tool/Method X X

Introduction of a new
(Organisation) Artefact X X

Change to Competence
or Competencies X X

Safety Incident/
Accident X X X X

In completing this chapter, it is prudent to consider the potential outcomes
from the process, and consider what these outcomes may suggest.

3.7 Empirical Research Discussion

An assessment of software safety practice may reveal elements of practice which
are in agreement or compliant with each other, or some areas of discrepancies
between the different elements of software safety practice may exist. There are
many potential reasons for any equivalence or discrepancy, and we now discuss
some of these potential outcomes and reasons.

80 Chapter 3 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

Organizational practice improves on practice required by an Open Stan-
dard, or as-desired practice. Should the as-required software safety practice of
an organization’s lifecycle improve on software safety practice expressed in Open
Standards, or the representation of as-desired software safety practice, this may
suggest that the practices required of Open Standards or the as-desired model are
a cause of impediments to good software safety practice. Alternatively, perhaps
the practitioner is implicitly or explicitly aware of the shortcomings of such stan-
dards and has evolved local processes in isolation of the standards. In such cases
the organization may consider research into improving the as-required (Closed)
practice and / or use this as a mechanism to research potential amendments to
the practices extolled in as-required (Open) practice (RQ3 and RQ4).

Organizational practice is deficient when compared to the as-desired model.
This may indicate that issues with software safety practice manifest in the inter-
pretation of software safety practice as-desired into organization -described pro-
cesses. Targeted interviews with the organization may indicate where the issues
lie (RQ3).

Internal Inconsistency. It may be revealed that software safety practice as-
required (by Open and / or Closed Standards) is inconsistent, preventing the
software safety practice as-required from ever being successfully completed as
software safety practice as-observed. Should this be revealed, it must be high-
lighted to the organization as part of follow-up interviews, and / or the relevant
standard’s committee should be notified (RQ3).

Software safety practice as-observed is equivalent to that stipulated in or-
ganizational processes. As the assessment process moves from the as-required
software safety practice to software safety practice as-observed, software safety
practice as-observed may be equivalent to as-required (Closed) practice. Equiv-
alency between organizational practice and software safety practice as-observed
will suggest that organizational processes are being fully implemented. However,
follow-up interviews as part of evaluating software safety practice as-observed
may identify difficulties in implementing the organization’s processes, and the
existence of such difficulties may suggest issues with the organization’s processes
exist (RQ3).

Software safety practice as-observed is not equivalent to organizational
practice. Should software safety practice as-observed not be equivalent to or-
ganizational software safety practice, this may suggest those charged with im-
plementing the organization’s processes are aware of potential limitations, ineffi-
ciencies, inaccuracies, or unrealistic expectations of their organization’s processes
and have adopted approaches to compensate. There may even be elements of
core and discretionary work. Such discretionary work may be owing to any de-
liberate vagaries of processes, and made by recourse to what a collective of engi-
neers engaged with them believe is required [5]. There could also be assumptions
made by the practitioner, or tensions arising through power relationships [135]
that require investigation. Through targeted investigations as part of Steps 7 and
10 of Figure 5.1, it may be possible to identify any impediments or difficulties that
have led to a circumvention of process; and ultimately characterize and suggest

Chapter 3 Matthew Steven Osborne 81

Identifying Effective Improvements to Software Safety Practice

mitigation research accordingly (RQ3 and RQ4).

Any large gap between software safety practice as-required and software
safety practice as-observed could suggest a breakdown in the coordination of
the organizational system itself [134], and through follow-up questions and/or
further interviews as part of Steps 7 and 10, the aim is to identify, characterize,
and suggest research areas that are intended solve or mitigate any impediments
or difficulties (RQ3 and RQ4).

Having outlined the framework and process to understand and assess soft-
ware safety practice, and considered the potential outcomes of the process, Chap-
ter 4 now considers the different means by which the elements of software safety
practice can be represented graphically.

82 Chapter 3 Matthew Steven Osborne

Chapter 4

Representing Software Safety
Practice

Chapter 3 has described both the framework and the process to understand and
assess software safety practice, but we have not yet considered the aspects of the
framework and process which need to be represented graphically. The need to
model and assess software safety practice graphically is pivotal in supporting
Research Questions 1 and 2 (as we noted in Chapter 2.5). This chapter evaluates
the current tools which could be used in a graphical representation for the frame-
work and process. Having selected the most appropriate tool, the chapter then
describes how the tool is to be used by a project to instantiate the framework.
The chapter concludes by describing how the selected tool is used to represent
the models, and undertake the assessment of the different elements of software
safety practice required (as described in Chapter 3.3).

The current state of the art for graphical modelling is now assessed, followed
by the steps taken to identify a suitable graphical notation. The chapter concludes
by describing how each step of the process for understanding and assessing soft-
ware safety practice is implemented using the selected notation.

4.1 State of the Art of Graphical Modelling

A plethora of model-based analysis / engineering tools exists which are perpet-
ually amended and proposed as enhancements or extensions to systems, busi-
ness processes, and safety engineering techniques. These emanate from a wide-
range of academic and industrial sources (such as the examples given in Table
4.1). It is not argued that Table 4.1 represents a systematic literature review of
the ever-increasing number of available modelling tools and graphical represen-
tations, but it is offered as a reasonable representation of the state of the literature
nonetheless.

To compile the data shown in Table 4.1, academic databases (Science Direct,

83

Identifying Effective Improvements to Software Safety Practice

IEEE Explore, Scopus, Springer, ACM Digital Library, and Elsevier) were interro-
gated using the keywords “Safety Modelling”, “Information Model”, “Require-
ments Engineering and Safety Standards”, “Responsibility Modelling”, “SPEM
Modelling”, “Socio-Technical Modelling”, “FRAM Notation”, “Patterns”, “Re-
quirements Engineering Patterns”, “Process Patterns for Assuring Software Safety”,
“Process Patterns for Requirements Evolution”, “Management of Software Safety
Requirements”, “Safety Case Patterns”, “Standard Approaches to Information
Modelling”, “Business Process Modelling”, “Compliance Models”, and “Mod-
elling Safety Assurance”.

These search terms were selected as a result of the returns from initial searches
for ‘process modelling’ and ’graphical representations’, and in combination with
both our prior knowledge of software and safety engineering methodologies, and
results from the literature reviews carried out early in the research. We judged
that these search terms would cast a sufficiently wide net for our purposes. This
was NOT intended to be a full, systematic literature review.

The results of these searches are presented in Table 4.1. The “Modelling No-
tation” column represents the primary or original title of the modelling notation,
and the second column denotes known uses of the notation. The third column
notes some of the extensions to the original notation, or languages used to com-
plement the original notation which were revealed by the search.

Modelling Notation Use(s) Extensions/Languages

Goal Structuring Notation [38]
Safety Cases
Assurance Cases
Requirements Elicitation

UML [7]
Multiplicity
Optionality
Entity
(instantiated/
developed or not)

Bow Tie [24] Safety Cases
Safety Architectures AdvoCATE [24]

Behaviour Trees [166] Requirements
Management

NORMATIC [28] Requirements
Management

i* (Goal based modelling) [131]
Requirements Elicitation
Business Process
Modelling

CREWS-SAVRE [156]

84 Chapter 4 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

Modelling Notation Use(s) Extensions/Languages

UML
UML 2.0

Many, including:
Requirements Elicitation
(from Use Cases for
example)
Object-Oriented
Modelling
Safety Modelling
Safety Cases Development
Model Driven Engineering
Process Lifecycles
Information Modelling
Cost Modelling
Product Line
Development [41]
Hazard Relation Diagrams
[159]
Business Compliance
Modelling

SysML [8]
SafeML [8]
SAFE-RE [103]
Ecore [22]
SACM [106]
COCOMO
COCOMO II
SPEM (see below)
SAEM

MMI Development Lifecycle

EPRAM [18]
PSM [102]
CMMI-DEV [103]
which is itself
extended by +SAFE
[17]
SRP CMMI [103]

IDEF0 [149]
IDEF3 [149]

Business Process
Modelling (functions)

DFD [149] Business Process
Modelling (information)

CoMOn [158] Business Process
Modelling (compliance)

Fault Trees Safety/Reliability
Engineering IFFS Model [26]

Event Trees Safety Engineering Cascade
Diagrams [161]
State Charts Functional Modelling
Responsibility Model [88] Responsibility Modelling
ORDIT [19] Responsibility Modelling

SPEM [107]
SPEM 2.0

Software/System Process
Engineering Modelling
Business Process
Modelling

vSPEM [91]

CHESS-FLA (A plug-in
within the CHESS
toolset) [32]

Failure Logic Analysis CONCERTO-FLA [32]

SAFE-Net [73] Accident Modelling
STAMP [77] Accident Modelling STPA

Chapter 4 Matthew Steven Osborne 85

Identifying Effective Improvements to Software Safety Practice

Modelling Notation Use(s) Extensions/Languages

FRAM [57] Accident Modelling
Process Modelling

FRET [34] Requirements Elicitation

Table 4.1: Model-Based Analysis Tools

4.2 Graphical Representation Selection Process

In selecting a graphical notation the aim was not to empirically assess the merits
of individual tools, but to argue over the suitability of the potential representa-
tion for use in modelling and assessing elements of software safety practice. Each
modelling option shown in Table 4.1 therefore needed to be assessed for its suit-
ability of use as a graphical representation.

In Chapter 3.1.4 it was noted that the framework must be capable of mod-
elling defined attributes. Any graphical representation must therefore be capable
of representing the:

• Resources consumed by the activity (which includes both human resource
and materiel)

• Inputs to the activity

• Output from the activity

• Methods/techniques that can be used to carry out an activity

• Controls that constrain or define the activity

• Time by which the activity must take place.

It must be noted that the defined attributes we seek are not specific to system
safety activities. The attributes considered are applicable to any form of activity,
and are in no way related to the specific needs of safety activities.

Having identified a range of potential tools and notations, attention then
turned to selecting the most appropriate tool or notation to be used in a graphi-
cal representation. We needed a robust selection method which could be used to
evaluate each potential tool or notation.

Campos and Almeida [16] note a lack of guidance as to how different mod-
elling options may be evaluated for selection. In response they have developed
a somewhat complex scoring / weighting system as a route to model selection.
Whilst their methodology may be considered as being ‘overly scientific’ for the
needs of this research, their 6-step process does provide a framework on which to
build a selection criteria and evaluation means. Their process involves a 4-point

86 Chapter 4 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

Figure 4.1: Framework for Selecting a Modelling Language [16]

scoring mechanism (score of 0 = not supported, 1 = partially supported, 2 = sat-
isfactorily supported, and 3 = very well supported); and a weighting criteria for
selection (see Figure 4.1).

Contrasted with the mathematical approach of Campos and Almeida, Kele-
men et al [69] suggest a simple 5-step selection process and selection criteria. The
process is given as follows:

1. Select a subset of candidate process modelling languages

2. Review the candidate process modelling languages

3. Define the comparison criteria for selection purposes

Chapter 4 Matthew Steven Osborne 87

Identifying Effective Improvements to Software Safety Practice

Goal Structuring Notation Bow Tie
NORMATIC CMMI

IDEF0 IDEF3
CoMOn Fault Trees

Event Trees State Charts
CHESS-FLA SAFE-Net

STAMP/STPA FRET

Table 4.2: Notations Eliminated after Considering Lifecycle Modelling Capability

4. Compare the modelling languages based on the criteria

5. Select process modelling language.

. . . and the suggested selection criteria are:

• Intelligibility

• Coverage of Process Elements

• Ability to express workflow patterns

• Software support

• Portable format

• Widespread use.

Using the required attributes which any graphical representation should be
capable of, it was possible to establish a selection process and evaluation criteria
by using [69] and [16] as a reasonable benchmark. The selection process is illus-
trated in Figure 4.2. The selection process considered each required attribute of
the graphical representation in turn and is now used to select the most appropri-
ate notation.

Capable of Modelling Lifecycle Activities?

The lifecycle activities are those activities performed within an element of soft-
ware safety practice. A review of the notations in Table 4.1 resulted in the nota-
tions in Table 4.2 being discounted, as they are neither designed for, nor capable
of modelling the activities of a software safety lifecycle:

Capable of Modelling Inputs/Outputs?
The remaining notations were then assessed as to whether they were capable of
modelling inputs / outputs to activities. Inputs in this regard are the artefacts that
enable the activity to occur, and outputs are those artefacts created as a result of
the activity. This was not a question as to whether the notation was designed for
this purpose – but an assessment as to whether the notation was capable of doing
so. As a result, the following notations were discounted as they fail this criterion:

88 Chapter 4 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

Selection Process

Assign Score

Evaluate and
Select

End

Select
Modelling

Notation for
Evaluation

Capable of
Modelling
Lifecycle

Activities?

End No

Capable of
Modelling Inputs/

Outputs?
No

Yes

Capable of
Modelling Process

Interactions?

Yes
No

Capable of
Modelling

Dependencies/
Constraints?

Yes

No

Capable of
Modelling

Respources?

Yes

No

Define Scoring
Criteria

Assess one
example for

each
Modelling
Notation

Yes

Figure 4.2: Graphical Representation Selection Process

Chapter 4 Matthew Steven Osborne 89

Identifying Effective Improvements to Software Safety Practice

• i*

• Responsibility Models

• ORDIT.

Capable of Modelling Process Interactions?
The previous step assessed whether a notation could model the requisite in-
puts/outputs of an activity undertaken in an element of software safety practice.
This step assessed whether the interactions between different activities could be
modelled (timing/sequencing imperatives, precursor activities etc.). As a result,
Behaviour Trees (which are only capable of modelling clearly hierarchical or ver-
tical interactions) and the DFD notation (which is only capable of modelling in-
formation flow) were discounted as they fail this criterion.

Capable of Modelling Dependencies and Constraints?
Each activity in an element of software safety practice has dependencies that en-
able the activity to take place (such as data inputs), constraints that affect its con-
duct (such as quality criteria), and required attributes of its output (deadlines for
example). All three remaining notations (UML, SPEM, and FRAM) meet, or are
capable of meeting this criterion.

Capable of Modelling Resources?
Each activity in an element of software safety practice consumes resources (ma-
teriel) as they are carried out. All three remaining notations (UML, SPEM, and
FRAM) meet this criterion.

4.3 Defining the Scoring Criteria

Satisfied that the remaining notations all met the functional criteria, the next part
of the selection process evaluated the non-functional capabilities of UML, SPEM,
and FRAM.

We noted in Chapter 3.1.4 that the design of the framework must support
widespread use. Considering also Keleman et al’s selection criteria given in Sec-
tion 4.2, we argue that the selected graphical representation should therefore also
be:

• Ready for use with minimal adaptation

• Capable of use without the need for proprietary software

• Saveable in a portable format

• Capable of construction and analysis in the absence of formal modelling
knowledge

90 Chapter 4 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

• Understandable and interpretable in the absence of prior ontological knowl-
edge/experience

• Capable of construction in the absence of complex background databases.

The scoring criterion for this final step of the selection process is binary: a
score of 1 (meets the need), or a score of 0 (does not meet the need) – as shown in
Table 4.3 below.

Criterion Meets the
Need

Does Not Meet
the Need

Ready to use with minimal adaptation 1 0
Saveable in a portable format 1 0
Use without proprietary software 1 0
Construction without prior modelling knowledge 1 0
Interpretable/understandable without prior
ontological knowledge 1 0

Does not require complex modelling databases 1 0

Table 4.3: Scoring Criteria

4.4 Assess One Example for Each Modelling Nota-
tion

The term ‘one example’ is used to signify that only one instance of each notation
or tool (either the original notation, or an extension) was selected for assessment
(see Table 4.1). Taking the remaining modelling notations in turn, individual re-
sults were compiled using the format in Table 4.4 below.

<Notation> Score
Ready to use with minimal adaptation
Use without proprietary software
Saveable in a portable format
Construction without prior modelling knowledge
Interpretable/understandable without prior ontological knowledge
Does not require complex modelling databases
TOTAL SCORE

Table 4.4: Notation Scoring Template

UML
Using the scoring criteria, UML is marked as per Table 4.5.

Chapter 4 Matthew Steven Osborne 91

Identifying Effective Improvements to Software Safety Practice

UML Score
Ready to use with minimal adaptation 1
Use without proprietary software 0
Saveable in a portable format 1
Construction without prior modelling knowledge 0
Interpretable/understandable without prior ontological knowledge 0
Does not require complex modelling databases 0
TOTAL SCORE 2

Table 4.5: UML Evaluation

SPEM
Using the scoring criteria, SPEM is marked as per Table 4.6.

SPEM Score
Ready to use with minimal adaptation 1
Use without proprietary software 0
Saveable in a portable format 1
Construction without prior modelling knowledge 0
Interpretable/understandable without prior ontological knowledge 0
Does not require complex modelling databases 0
TOTAL SCORE 2

Table 4.6: SPEM Evaluation

FRAM
Using the scoring criteria, FRAM is marked as per Table 4.7.

FRAM Score
Ready to use with minimal adaptation 1
Use without proprietary software 1
Saveable in a portable format 1
Construction without prior modelling knowledge 1
Interpretable/understandable without prior ontological knowledge 1
Does not require complex modelling databases 1
TOTAL SCORE 6

Table 4.7: FRAM Evaluation

As illustrated by the results in Table 4.5, Table 4.6, and Table 4.7, FRAM [57]
scored the highest of the remaining three notations and was selected as the basis
for the graphical notation due to its inherent simplicity in representing process in-
teractions, dependencies and constraints; and it supports fully our non-functional
requirements for widespread use.

The next section of this chapter takes FRAM as the selected notation and
shows how it has been modified for use in the framework and process to under-
stand and assess software safety practice.

92 Chapter 4 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

4.5 Refining the Selected Graphical Notation

Having selected FRAM to model and assess software safety practice, the next
step was to establish and refine (where needed) the symbology for the graphical
representation. This graphical representation is crucial for communicating the
processes and the results with practitioners and stakeholders alike, and is also a
vital enabler for answering Research Questions 1 and 2.

Whilst it is possible that other notations - either not revealed by the research,
or developed at some point in the future - may prove to be more suitable and effi-
cient, we assert that this adapted version of FRAM should be used in the process
to understand and assess software safety practice. The reasons for this assertion
are now discussed.

Using this FRAM-based notation to construct the models of practice enables
the identification of agreements and disagreements between models in a simple
manner, and the representation of complex empirical data in a manner that is easy
to digest and comprehend. Further, FRAM is capable of representing simplisti-
cally not only the activities that should be carried out (depicted as ‘functions’ in
the original ontology); but also has inherent ability to represent the prerequisite
considerations (depicted as ‘aspects’) for each ‘function’ (see Figure 4.3). Aspects
in FRAM are given as:

• Input

• Output

• Precondition

• Resource

• Time

• Control.

FRAM functions can be decomposed into sets of sub-functions – each of
which have their own respective aspects. The FRAM notation can represent the
links between the functions; and facilitates this linking via aspects [31] as shown
in Figure 4.4.

FRAM was designed with the aim of assessing the safety of a system in terms
of what is needed in performance terms - in order that “everything goes right”
[57], and is a useful tool for modelling complex, socio-technical systems [33].
It has also already been subjected to adaptation. For example Leong et al [76]
adapted FRAM as a means of arguing the management of epistemic uncertainty
in socio-technical systems – adapting the syntax of ‘aspects’ for ‘causal factors’,
‘functions’ for ‘objects’, and the linking of functions/sub-functions being denoted
as ‘causal paths’.

Chapter 4 Matthew Steven Osborne 93

Identifying Effective Improvements to Software Safety Practice

Activity /
Function

CT

I O

P R
ResourcePrecondition

OutputInput

ControlTime

Figure 4.3: FRAM Notation Example [31]

In the adapted version of FRAM for this empirical research, the majority of
the taxonomy from the original FRAM model is retained, but some of the syntax
are modified. A ‘layered approach’ to the modelling is also adopted; and some
new concepts to adapt and enhance the utility of FRAM for the specific research
purpose are introduced (the comparison being made in Table 4.8). As each adap-
tation is introduced, the reasons behind it are explored.

The original FRAM symbology was designed to represent simplistically and
assess functions / activities that occur sequentially / chronologically in a process.
A function is depicted by a hexagon, and the circles on the edges of the hexagon
denote the required attributes of a function (see Figure 4.3). These attributes are
referred to as ‘aspects’, and are used to link activities and artefacts together as
shown in the example on retrieving cash from an ATM in Figure 4.4. This exam-
ple of FRAM shows the abridged activities required to withdraw cash from an
ATM. Here preconditions are modelled using sub-activities shaded in grey. The
customer requiring cash must first insert their card, and then enter their PIN. The
entering of a PIN is a security check, and the precondition for entering the PIN is
the ability to recall it. After entering the correct PIN, the customer specifies the
amount to withdraw before collecting it – as long as they have sufficient funds in
their bank account.

Whilst retaining most of the structure of the original FRAM, the adapted
version used in this research has been modified to better represent the activities
in an element of software safety practice. Further, specific instructions on how
these shapes and linking lines are used are given as the instructions in the use of
FRAM progresses.

Figure 4.5 shows the shapes which represent activities, and the aspects which
represent their required attributes. The meaning of each aspect of an activity is
explained in Table 4.8, which also compares the original FRAM with our adapted
version. Our adapted version of FRAM uses ‘aspects’ to denote the characteris-
tics, dependencies, and attributes / constraints required to undertake an activity,

94 Chapter 4 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

Figure 4.4: FRAM Instantiation Example [31]

Activity

MT

I O

R C

Figure 4.5: Activities and their Aspects

Chapter 4 Matthew Steven Osborne 95

Identifying Effective Improvements to Software Safety Practice

Item FTA

MT

I O

R C

Fn Safety
Engineer

TQ

E

Figure 4.6: Modelling of Resources

or produce an output. Only ‘Resources’ are used (rather than ‘Resources/Execution
Conditions’), as ‘Execution Conditions’ are modelled by linking to the aspects
‘Time’, ‘Control’, and ‘Resources’.

As shown in Figure 4.6, the activity ‘Item FHA’ expends the resource ‘Fn
Safety Engineer’ in order to carry out the FHA. The representation of artefacts
such as resources which are consumed or expended by activities are discussed
shortly.

FRAM uses ‘Preconditions’ to model system states that must be true, or con-
ditions that must be met before a function is performed. Our modified version
of FRAM does not consider ‘functions’ this way – rather it models the activities
associated with software safety practice. As such, the ‘Precondition’ aspect is re-
placed with that of ‘Methods / Techniques’, which is used to describe the means
by which an activity is performed.

As system states are not modelled, the FRAM concept of preconditions is ad-
dressed through the consideration of the aspects ‘Time’ and ‘Control’, as shown
in Figure 4.17. ‘Time’ describes a temporal relationship with the activity, and a
‘Control’ represents the aspect which supervises or regulates an activity - such as
ARP 4761 controlling the way the ‘Item FHA’ is performed (see Figure 4.17).

Table 4.8 compares the aspects used in FRAM with those used in our adapted
version. In the original FRAM, a general rule is that an aspect is described using
a noun or noun-phrase. Another rule states that there can exist more than one
link to / from an aspect. These rules are retained in our adapted version.

96 Chapter 4 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

Activity

MT

I O

R C

I: Input
T: Time
M: Method/Technique
O: Output
C: Control
R: Resource

Figure 4.7: Modified FRAM Notation

Aspect Original FRAM Aspect Adapted FRAM

Input

That which is used or
transformed by the
function to produce the
Output, or that which
activates or starts a
function (always stated
as a noun or noun
phrase)

Input

That which is used or
transformed by the
activity to produce the
Output, or that which
activates or starts an
activity (always
stated as a noun or noun
phrase)

Output

Describes the result of
what the function does.
The description of the
output should be a
noun or noun phrase.
Something that is
defined as an Output
from one function must
clearly also be defined
as either an Input,
Precondition,
Resource, Control, or
Time of another
function(s)

Output

Describes the result of
what the activity does.
The description of the
output should be a noun
or noun phrase.
Something that is defined
as an Output from one
activity must clearly also
be defined as either an
Input, Method, Resource,
Control, or Time of
another activity or activities

Chapter 4 Matthew Steven Osborne 97

Identifying Effective Improvements to Software Safety Practice

Aspect Original FRAM Aspect Adapted FRAM

Precondition

System states that must
be True, or as
conditions that ought to
be verified before a
function is carried out.
A Precondition must
always be defined as an
output from another
function(s). The
description of the
precondition should be
a noun or noun phrase

Method

A technique/method that
can be employed
to carry out the activity.
The description of the
Method should be a noun
or noun phrase

Resources/
Execution
Condition

Something that is
needed or consumed
while a function is
carried out. A resource
is consumed by a
function. An execution
condition is used to
describe (for example)
the competence of a
resource to carry out a
task. The description
of the
resource/execution
condition should be a
noun or noun phrase

Resource

Something that is needed
or consumed while an
activity is carried out. A
resource is consumed by
an activity. Where the
original FRAM used this
aspect to include
Execution Conditions,
characteristics such as this
will be modelled by the
aspects controlling an
artefact. The description
of the resource should be
a noun or noun-phrase

Control

That which supervises
or regulates a function
so that it produces the
desired Output, such as
a plan, process, or
guidelines. The
description of the
control should be a
noun or noun phrase.
Something that is
defined as a Control for
a function(s) must also
be defined as an Output
from another
function(s)

Control

That which supervises or
regulates an activity so
that it produces the
desired Output - such as a
plan, process, or
guidelines. A Control
may also be a quality
stipulation (expressed
only by an artefact/free
text). The description of
the control should be a
noun or noun phrase

98 Chapter 4 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

Aspect Original FRAM Aspect Adapted FRAM

Time

Temporal relations that
represent the various
ways in which time can
affect how a function is
carried out. It may
relate to a function
alone (i.e. elapsed
time/clock time); or
relate to a sequence of
actions. It can also
represent the point
at/by which a function
must occur. The
description of Time
should be a noun or
noun phrase

Time

Temporal relations that
represent the various
ways in which time can
affect how an activity is
carried out. It may relate
to an activity alone (i.e.
elapsed time/clock time);
or relate to a sequence of
actions. It can also
represent the point at/by
which an activity must
occur. The description of
Time should be a noun or
noun phrase

Table 4.8: Comparing the Use of Aspects between FRAM and our Adapted Ver-
sion

This adaptation results in an updated notation of the activity and aspects
from the original FRAM as depicted in Figure 4.7. Attention now turns to de-
scribing how our adapted version of FRAM is used to instantiate the process to
both represent the outputs from the process steps, and used to assess software
safety practice. Each step of the process from Chapter 3.3 is considered in turn.
Only the modelling and assessment activities are considered, and the steps are
not repeated here.

STEP 1: Define As Desired Software Safety Practice

Software safety practice as-desired is given as a set of criteria. As such no graph-
ical representation is required for Step 1.

STEP 2: Model Software Safety Practice Practice As Required (Open)

Step 2 of the process in Chapter 3.3 requires the activities within software safety
practice as-required (Open) to be represented graphically. This requires an ana-
lyst to represent the software safety activities of the Open Standard in graphical
form. From the documents that constitute the selected Open Standard a set of ac-
tivities and supporting artefacts must be generated. These activities and artefacts
are represented using the modified FRAM notation as follows:

1. Create a hexagon shape for each activity required by the standard, plac-
ing the title of each activity in the centre of the shape (see Figure 4.5).

As a software safety lifecycle progresses beyond activities, a level of abstrac-
tion is reached at which the inputs to, and/or outputs from an activity are simply
artefacts which are an output from and / or an input to an activity. These artefacts
must be defined and be capable of representation. This is now discussed.

Chapter 4 Matthew Steven Osborne 99

Identifying Effective Improvements to Software Safety Practice

Artefact

TQ

E

E: Existence
Q: Quality Criteria
T: Time

Figure 4.8: Artefact Symbol

An artefact represents an article that supports or constrains an activity, or is
produced as the result of an activity. As such, it is the lowest level of abstrac-
tion that this process for modelling software safety practice will represent. The
hexagon used to represent activities cannot be used to portray artefacts as one
should not use the same symbology to represent different elements, and only
three aspects of an artefact are required (as discussed in Chapter 3.2). As such, a
simple triangle will be used – as shown in Figure 4.8. Having defined the mod-
elling symbology for artefacts, the process is now returned to.

2. Create a triangle shape for each produced and consumed artefact, placing
the title of the artefact in the centre of the shape.

3. Link the activities and artefacts together – connecting them using black,
curved lines. The links should denote the role of the artefacts as either:

(a) Inputs to an activity

(b) Outputs produced by an activity (which may then provide an input
to another concurrent activity)

(c) The time by which an activity should commence / complete

(d) Methods / techniques by which an activity is completed

(e) Controls which constrain/inform the way an activity should be un-
dertaken, OR

(f) Resources expended.

An example of this is shown in Figure 4.9 where the output from the activ-
ity ‘Create FDAL and IDAL Assignment’ is the artefact ‘FDAL and IDAL Assig-
ment’; which in turn is an input to the activity ‘Create Platform Safety Assess-
ment’; which in turn creates the artefact ‘Platform Safety Assessment’.

4. For each modelled artefact, represent the following attributes as aspects
(as stated by the Open Standard):

(a) Time the artefact should be produced or delivered to enable an ac-
tivity to commence

100 Chapter 4 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

Determine FDAL
& IDAL

Assignment

MT

I O

R C

Create Platform
Safety

Assessment

MT

I O

R C Platform
Safety

Assessment

TQ

E

FDAL &
IDAL

Assignment

TQ

E

Figure 4.9: Linking Activities Together

(b) Quality criteria required of an artefact (i.e. the skills and experience
of a Resource, or the format of a report)

(c) Whether the artefact exists, or whether another activity should be
modelled to create it.

Some nuances in the description of software safety activities have been un-
covered during this research, and these have required further specific amend-
ments to the adapted version of FRAM. These are now considered in turn.

Referenced Documents
During the modelling of the as-required software safety processes provided by
organization’s, it became evident that some organization’s have a vast suite of
process artefacts held in their repositories. Whilst the referenced documents were
not all provided, they were referenced from documents that were provided as
part of the empirical research.

There are many reasons why an organization may withhold documentary
artefacts from analysis (such as confidentiality, security, competitive advantage,
or for other commercial reasons). This thesis does not consider how referenced
artefacts may be provided or utilized, but does provide a means of acknowledg-
ing their existence when it is prudent to do so.

Some of these referenced artefacts may contribute to the generation of a more
complete (and therefore more accurate) model of practice, even though they were
not supplied by the organization. As such, and where pertinent to do so, these
referenced documents must be added to the graphical representation of prac-
tice. The positioning of these referenced documents in the Illustrated Example
in Chapter 5 was based on a judgement of the author’s personal experience of
software safety engineering and software development lifecycles. An analyst un-
dertaking the investigation on behalf of a project should apply the same personal
judgement.

The motivation for adding these referenced (but not supplied) artefacts was
twofold. Firstly, it is important to create as accurate a representation as possible,
and secondly (for the purpose of this thesis) to enable the research to complete
within the time limits of a single PhD programmme (as modelling scores of extra
documents would be time-prohibitive).

The annotation of referenced documents in the adptated version of FRAM
is facilitated by ‘inverting’ the colours of activities and artefacts to a black shape

Chapter 4 Matthew Steven Osborne 101

Identifying Effective Improvements to Software Safety Practice

Analyse Source
Code

MT

I O

R C

Spark
Coding

Standard

TQ

E

Software
V&V
Plan

TQ

E

Figure 4.10: Referenced Documents

with white font (as shown in Figure 4.10).

Notes
Occasionally the modelling will require notes to be annotated to maintain the
readability of the model. An example of how this is to be represented is shown
in Figure 4.11. In this example Note 7 is used to (more fully) describe the specific
data types that the artefact ‘FDAL and IDAL Assignment’ delivers in support of
the activity ‘Create Platform Safety Assessment’.

102 Chapter 4 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

FDAL &
IDAL

Assignment

TQ

E

Create Platform
Safety

Assessment

MT

I O

R C

Note 7

Figure 4.11: The Use of Notes

Levels of Abstraction
Open Standards such as ARP 4754A [147] portray lifecycle activities that span
all layers of design abstraction – from the Platform- down to the Software-level.
Modelling the activities and artefacts that traverse all layers of design abstraction
results in a large, monolithic model that would span multiple pages of a portable
document format such as Microsoft Word. This would detract from the readabil-
ity and usability criteria on which FRAM was selected as a suitable modelling
notation. To preserve the readability, usability, and portability of this adapted
version of FRAM, the activities can be modelled in separate levels of design ab-
straction (one model per level), perhaps using the following as a guide:

• Platform

• System

• Item

• Software.

As activities and artefacts often span multiple levels of design abstraction, a
means of linking the different (off-page) models was required. Two similar op-
tions for doing this has been created, both of which use an entirely grey-coloured
activity/artefact:

• Off-page items whose title clearly denotes the level of abstraction to which
the activity/artefact is linked

• Off-page item whose title does not clearly denote the level of abstraction to
which the activity/artefact is linked.

The first option is to model an off-page reference using the ‘Intersection’
mathematical operator (∩) underneath the title of the activity/artefact (as shown
in Figure 4.12). In Figure 4.12 the linked object emanates from/to the artefact
‘System Architectures’, and as the title of the artefact reveals its location (the
System-level model), only the intersect symbol is used.

The second option is to model an off-page reference using the name of the
page on which the activity or artefact is modelled – using italicised text within
parentheses (Figure 4.13).

In Figure 4.13, the title of the object (Interface Requirements) does not reveal
the location of the model from/to which the artefact emanates. As such the title of
the model (‘platform’ in this case) is inserted in italicised text within parentheses.

Chapter 4 Matthew Steven Osborne 103

Identifying Effective Improvements to Software Safety Practice

System
Architectures

?
TQ

E

Figure 4.12: Off-page Link Using the Intersect Symbol

Interface
Requirements

(platform)

TQ

E

Figure 4.13: Off-page Link Using the Title in Italicised Text

STEP 3: Model Software Safety Practice Practice As Required (Closed)

The tasks for Step 3 are the same as for Step 2 - except that the element of soft-
ware safety practice being modelled is as-required (Closed) practice. As such, the
FRAM modelling process steps remain the same as for Step 2.

STEP 4: Represent Software Safety Practice As Observed

The tasks for Step 4 are the same as for Step 2 - except that element of software
safety practice being modelled is as-observed practice. As such, the FRAM mod-
elling process steps remain the same as for Step 2.

STEP 5: Compare Organizational Practice with Software Safety Practice As-
Desired

Step 5 of the modelling process in Chapter 3.3 requires the model of software
safety practice as-required (Closed) to be assessed for completeness and internal
consistency. It also requires the models of software safety practice as-required
(Closed) to be assessed for compliance with software safety practice as-desired.

When considering the completeness and consistency of activities and arte-
facts (with respect to meeting software safety practice as-desired), colour-coding
is to be applied to the newly created model (the copy). The colour coding is to be

104 Chapter 4 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

System FHA

MT

I O

R C
System

Requirements
Identification

MT

I O

R C

System CCA

MT

I O

R C

Preliminary
System Safety
Assessment

MT

I O

R C

Figure 4.14: Multiple Options in Support of Activities

applied to the aspects of the activities and artefacts as follows:

• GREEN: The aspect has been sufficiently defined to meet the criterion of
the as-desired model in full

• AMBER: The aspect has been partially defined to meet the criterion of the
as-desired model, but full compliance cannot be claimed.

• RED: There is no consideration given to the aspect.

There may be occasions when applying colour coding to the aspects of ac-
tivities and artefacts is not sufficient to represent certain ambiguities, however.
These ambiguities and their means of representation in the models are now dis-
cussed.

Optionality and Multiplicity
During the modelling of the as-required representations as part of this research, it
became clear that Open Standards often suggest that a number of activities may /
should / could be used as a method for/input to another activities. An example
taken from the modelling of [147] is given in Figure 4.14.

In this example, the activity of identifying Platform Requirements is carried
out by completing the activities of Platform Functional Hazard Analysis (FHA),
Preliminary Platform Safety Assessment, and Platform Common Cause Analysis
(CCA). What is not clear from the text nor illustrations in the standard is whether
some, or all of the sub-activities should be undertaken to completely and correctly
carry out the activity of ‘Platform Requirements Identification’.

Chapter 4 Matthew Steven Osborne 105

Identifying Effective Improvements to Software Safety Practice

We could colour the linking lines, but using colour coding of the linking lines
would not offer a sufficient solution to represent optionality and multiplicity,
however. Optionality and Multiplicity is managed in Goal Structuring Notation
[38] using the extensions shown in Figure 4.15. Where optionality or multiplicity
is to be denoted, the same iconography is to be used in the linking lines for this
process.

The Diamond - representing a GSN 'option' that denotes
possible alternatives in satisfying relationships

Figure 4.15: Multiplicity and Optionality Extensions in GSN

Artefacts linked Directly to Artefacts
During the modelling of Open Standards as part of this research, it became ev-
ident that artefacts were occasionally linked directly to other artefacts without
recourse to a consuming or producing activity. As artefacts are produced or con-
sumed by an activity, an artefact cannot be linked to another without a resourced
activity to facilitate this.

An example of a breach of this artefact-artefact prohibition is shown at Figure
4.16 (taken from the modelling of DO 178C), where the artefacts ‘Object Code’ and
‘Executable Object Code’ are created using ‘Loading Data’ (and other artefacts
that are not shown here for brevity) without defining the specific activity that
fulfils this.

As such where processes link artefacts together in the absence of a producing
or consuming activity, the linking line between the artefacts should be coloured
red - thereby highlighting the absence of an expending or consuming activity.

Aspects not Required
In certain circumstances, it is neither meaningful nor helpful to consider the as-
pects of an artefact. An example of this is shown in Figure 4.17 when considering
‘Time’. Whilst time needs to be stated (e.g. phase / date etc.), it is not meaning-
ful to define any quality attributes of time. In such cases, a simple free-text box
should be used in this process (“By Phase 2a” in the example given at Figure 4.17).

Inferences
During the modelling of the as-required representations it emerged that Open
Standards often infer an activity, or the reader must assume an input for an activ-
ity to take place. An example of this (from [147]) is the statement that “additional
assumptions” will emerge. Although not explicitly clear from the text, this requires

106 Chapter 4 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

Loading
Data

TQ

E

Executable
Object Code TQ

E

Object
Code

TQ

E

Figure 4.16: Artefacts Linked Without a Consuming Activity

Item FTA

MT

I O

R C

ARP 4761

TQ

E

By Phase 2a

Figure 4.17: Modelling of Time

Chapter 4 Matthew Steven Osborne 107

Identifying Effective Improvements to Software Safety Practice

System
Assumptions

TQ

E

Figure 4.18: Using Colour to Denote the Assumed Existence of an Artefact

the creation of an artefact entitled ‘System Assumptions’ if internal consistency is
to be achieved.

We have established three categories of artefacts in Chapter 3.1.4:

• Explicit: artefacts that are explicitly described, and have a consuming or
producing activity that is clearly stated

• Inferred: artefacts that are discussed without any consideration of their cre-
ation or management, and with no consuming or producing activity that is
explicitly stated. (e.g. if a standard says that “assumptions must be man-
aged”, we must infer the existence of an ‘Assumptions’ artefact)

• Orphan: artefacts that are explicitly described, but have no stated activity
that produces them.

Inferred artefacts and activities, and inferred and orphan artefacts, and their
associated aspects are to be fully shaded red – as shown in Figure 4.18.

STEP 6: Compare the Open Standard with Software Safety Practice As-Desired

The tasks for Step 6 are the same as for Step 5 - except that the element of software
safety practice being assessed is different. As such, the use of FRAM for the
modelling and assessment steps remains the same as Step 5.

STEP 7: Compare As Observed Practice with As Required (Closed) Practice

Step 7 of the process in Chapter 3.3 changes from a compliance assessment to a
process which compares different elements of software safety practice.

Step 7 requires the model of as-observed practice to be compared with the
model of as-required (Closed) practice. The levels of agreement, and any dif-
ferences between the two models of practice are annotated using colour-coding.
The following colour-scheme is to be applied to the aspects of the activities and
artefacts of the newly created model (the copy):

108 Chapter 4 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

• GREEN: The aspect of the activity / artefact is in full agreement with the
as-required model.

• AMBER: The aspect of the activity / artefact is in limited agreement with
the as-required model.

• RED: The aspect of the activity / artefact has no agreement with the as-
required model.

STEP 8: Compare As Required (Closed) Practice with As Required (Open)
Practice

The comparison tasks for Step 8 do not differ from Step 7 (only the source models
differ). As such, the modelling and comparison steps remain the same as Step 7.

STEPS 9 and 10

Steps 9 and 10 are conditional comparison steps which may not necessarily have
an output, and have no additional process instructions which need to be instan-
tiated by the adapted version of FRAM.

Our proposed methodology is now complete. We have proposed a frame-
work, created a modelling and assessment process based on the framework for
software safety practice of a given project or organization, and have proposed a
way of presenting the result of this activity via modified FRAM diagrams. Chap-
ter 5 now provides an illustrative example that instantiates the framework in
Chapter 3.1.4, using the process in Chapter 3.3, with the graphical notation de-
scribed in this chapter.

Chapter 4 Matthew Steven Osborne 109

Chapter 5

Applying the Framework and
Process: An Illustrative Example

This chapter contains an illustrative example of instantiating the framework of
software safety practice outlined in Chapter 3.1.4. It uses the process steps from
Chapter 3.3 to produce the outputs created by following the process to under-
stand and assess software safety practice. The models created, and the assess-
ments of these models are represented using the graphical notation selected and
adapted in Chapter 4. This instantiation of the framework and process to under-
stand and assess software safety practice contributes to the demonstration that
Research Questions 1 and 2 have been met.

5.1 Application of the Process

This section presents a step-by-step instantiation of the framework and process
to understand software safety practice. The steps relate to the numbers in Fig 5.1
(repeated here from Chapter 3 for ease of reference).

1. Model and represent the organization’s as-desired model

2. Model and represent as-required (Open)practice

3. Model and represent as-required (Closed) practice

4. Model and represent software safety practice as carried out (as-observed)

5. Compare the organization’s (as-required (Closed)) practice with the as-desired
model

6. Compare as-required (Open) practice with the as-desired model

7. Compare as-observed practice with as-required (Closed) practice

8. Compare as-required (Closed) practice and as-required (Open) practice

9. Compare as-observed practice with the as-desired model

10. Compare as-observed practice with an Open Standard.

110

Identifying Effective Improvements to Software Safety Practice

As Desired

As Required
(Open

Standard)

As Required
(Organisation's

Processes)

As
Observed

1

2 3

4

9

8

7

6 5

10

Figure 5.1: The Elements of Safety Engineering Practice (Repeated from Chapter
3)

The organization and project which participated in this illustrative example
is referred to as JB61834 to protect their identity. JB61834 are a global technology
company who design and manufacture avionics equipment for use in military
aircraft. They kindly supplied the software safety lifecycle processes from one of
their aircraft development programmes.

5.1.1 Model Software Safety Practice As-Desired 1

As indicated in Chapter 3, any organization wishing to model safety practice
as-desired requires as input a Safety Philosophy, a Risk (acceptance and toler-
ance) Policy, a Safety Management Philosophy and a suitably qualified and expe-
rienced Safety Manager.

JB61834 identified the 4+1 Principles [53], [49] as representative of their soft-
ware safety practice as-desired. The criteria for meeting these principles are set
out in Chapter 3.1.1, and are therefore not repeated here.

5.1.2 Model Software Safety Practice As Required (Open) 2

The Open Standard selected by JB61834 was ARP 4754A [147]. The four tasks
for this process step were undertaken. The resultant as-required (Open) model is

Chapter 5 Matthew Steven Osborne 111

Identifying Effective Improvements to Software Safety Practice

located at [111], and the accompanying report is at Appendix A. The modelling
and assessment of the ARP 4754A lifecycle was presented at the Safety Critical
Systems Club Conference, and positive feedback was received [130].

The lifecycle processes from JB61834 span more than two decades, during
which time both Open and Defence Standards have changed considerably, and
the project’s processes have been influenced by differing safety philosophies. De-
spite this, it is argued that ARP 4754A remains valid as the selected Open Stan-
dard, not least as it is representative of Civil Aerospace system safety recom-
mended practice. It is also an acceptable means of compliance for certification by
regulatory bodies (e.g. FAA and EUROCAE). Its use is not merely confined to the
aerospace sector, however.

ARP 4754A identifies the contribution made to system safety by software.
Its objectives are therefore also in accord with Principle 1 of the 4+1 Principles
[49] which manifest in UK Defence Standard 00-055 [160]. ARP 4754A is in fact
a suite of documents as shown by the relationships in Figure 5.2 [147]. Figure
5.2 illustrates how the ARP has relationships with other documents in a suite of
artefacts that combine to create lifecycle processes for the safety-assured develop-
ment of systems, electronic hardware, and software for use in civil aviation. The
development of aircraft and systems is expressed in ARP 4754A in the form of
a ‘traditional V-model’ lifecycle that aims to show the interaction between safety
and development processes – as shown in Figure 5.3.

Safety Assessment
Process Guidelines

and Methods
(4761)

ARP
4754A

- Guidelines for
Integrated Modular
Avionics (DO-297)

- HW Development
Lifecycle (DO 254)

- SW Development
Lifecycle (DO 178)

Operation

Figure 5.2: Suite of SAE Documents Covering the Development Phases [147]

The purpose of the ARP 4754A suite of publications is to provide guidelines

112 Chapter 5 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

V-Model Lifecycle
Platform

Requirements
Identification

System
Requirements
Identification

Item Requirements
Identification Item Design

Item
Verification

System
Verification

Platform
Verification

Top-down Safety Requirements Development & Validation

Bo
tto

m-u
p S

afe
ty

 Re
qu

ire
men

ts
Ve

rif
ica

tio
n

System Allocation

Item Allocation Ite
m In

te
gra

tio
n

Sy
ste

m In
te

gra
tio

n

Platform Verification

Systems Verification

Item Verification

Validation of
Requirements

Tier n-1

Validation of
Requirements

Tier n-1

Validation of
Requirements

Tier n-1

Figure 5.3: A Typical V-Model Lifecycle

directed at the systems that support aircraft-level functions whose failure modes
affect the safety of the aircraft [147]. The ARP presents a V-model lifecycle process
which is defined as being employed “in an iterative and concurrent fashion using
both top-down and bottom-up strategies” [147]. It focuses “on the top-down
aspect since it provides the necessary links between aircraft safety and system
development” [ibid].

5.1.3 Establish As Required Practice (Closed Standard) 3

The single required input to this step is the Closed Standard which constitutes
required organizational practice.

JB61834 do not have a single artefact which constitutes organizational prac-
tice; rather it is constituted by a suite of documentary artefacts. JB61834 provided
the following eight software safety lifecycle documents for modelling:

1. Software Safety Plan

2. System Safety Programme Plan

3. Generic Requirements Management Process (for the entire project)

4. System Safety Working Practice Accident Mitigation Strategy

5. Software Safety Requirements Process Definition

6. Hazard Log

7. Software Development Plan

Chapter 5 Matthew Steven Osborne 113

Identifying Effective Improvements to Software Safety Practice

Failure Mode
Effects and
Criticality
Analysis

MT

I O

R C

Shall be started
during the Design &
Integration Lifecycle
Phase, and completed
during the Design
Evaluation Phase

Reliability
Group at
equipment
level

Reliability and
Maintainability
Programme
Plan

FMEAs
from

Equipment
Suppliers

TQ

E

Used to minimise the number of single
point failures and:
Ensure that areas requiring frequent or
safety critical maintenance actions are
identified and minimised as far as
possible. This is accomplished by the
completion of the Reliability Centred
Maintenance Analysis and through the
identification of the Maintenance
Concept.
Assist in the establishment of testing
requirements (e.g. BIT) and test
equipment requirements.

Figure 5.4: Extract from JB61834 As-Required (Closed) Model

8. Software Testing Methods and Tool Application Standard.

Two outputs are created by this step - the appropriately represented as-required
(Closed) model (found at [113]), and a report accompanying the as-required model
(this section).

Evaluation of the supplied documents revealed a further 103 documentary
artefacts that could contribute to the achievement of functional safety, and the
initial modelling resulted in five referenced documents being appended to the
completed graphical representation.

The full modelling of JB61834’s organizational practice for software safety
can be found at [113], and this initial stage of modelling made no judgement as
to the efficacy of their software safety practice. An extract of the model showing
the activity ‘FMECA’ is provided in Figure 5.4.

The models of JB61834’s practice served only to feedback to the project to
ensure it was an accurate representation of their processes. Follow-on meetings
with representatives of JB61834 confirmed that model was an accurate portrayal
of their activities and artefacts.

Of note, JB61834 have started to use the model of the practice as a basis on
which to establish Training Needs Analysis (TNA). This TNA will be facilitated
by the further consideration of the ‘Resource’ aspect, including the quality at-
tributes required of the resources.

5.1.4 Model As Observed Software Safety Practice 4

The single required input to this task is an empirical report of as-observed safety
practice (i.e. that which is carried out by either a software safety engineer, or a

114 Chapter 5 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

software engineer with responsibility for system safety).
The two outputs of this step are the appropriately represented as-observed

model (found at [114]), and the report accompanying the as-observed model (this
section).

It was noted in Chapter 2.5 that a full ethnographic study was not feasible
within the constraints of a single PhD programme, and interviews were under-
taken instead with representatives of JB61834. This does change the assessment
from work as-observed to ‘work as disclosed’ as a proxy for work as observed
[150]. The implications and potential limitations of adopting this approach are
discussed in Chapter 6.

To model the as-observed element of JB61834’s software safety lifecycle, in-
terviews with two of its representatives were undertaken:

• KY40540: A Product Safety Engineer throughout the life of the project, who
now acts as the internal Independent Safety Assessor and Advisor for the
project.

• SJ84999: A former lead software engineer throughout the project, who is
now the Software Team Lead for the project. SJ84999 has over 30-years of
experience on the XX projects - undertaking a multitude of software roles
during that time.

The interviews were carried out remotely, and recorded and transcribed us-
ing the project’s own encrypted conferencing software. As the recordings of the
interviews occasionally had discussions in which the identity of the project and
the individuals concerned could be revealed, the recordings are not provided in
this thesis in order to maintain anonymity. A redacted transcript of one of the
interviews is provided at [127] (redacted to prevent the disclosure of any infor-
mation which could reveal the identity of the participants or the project). The
transcript recording facility of the company’s own conference software of the first
interview (with KY40540) did not function correctly (which was not under the
control of the author). A precis of the information gained from these interviews
is now provided, and an extract of the model showing the allocation of safety
targets is provided in Figure 5.5.

KY40540
KY40540 provided an overarching description of software safety practice within
the project, and this is outlined below:

• Levels of safety required for the avionics software are established at a Plat-
form level

• Standard core safety processes derive these levels of safety into targets for
decomposition down to the software-level

(a) These targets are expressed as safety targets, via top-level system
requirements, equipment requirements, and software safety requirements

(b) Based on historical data, it is assessed whether the software design
will be capable of achieving these derived requirements and targets

Chapter 5 Matthew Steven Osborne 115

Identifying Effective Improvements to Software Safety Practice

Standard Core
Safety Process

(platform
) M

T

I
O

R
C

System

Safety
Targets

T
Q

E

A
llocate Safety

Targets to
Sub-System

s

M
T

I
O

R
C

System

Safety
M

anagem
ent

Plan
T

Q

E

A
ssess

Sub-System

D
esign for Safety

Target

M
T

I
O

R
C

Sub-System

Safety Target

T
Q

E

Equal
distribution
across 10
sub-system

s

D
erived

Safety
Requirem

ents

T
Q

E

FM
ECA

s

T
Q

E

Specification
or Schem

e
of W

ork
T

Q

E

Softw
are

D
evelopm

ent
Plan

T
Q

E

Including
Safety
Integrity

Sub-System

Safety
Requirem

ents
T

Q

E

D
etailed

D
esign

D
raw

ings

T
Q

E

Engineering
Judgem

ent
(predicated on
required
integrity)

Functional &
 N

on-Functional
Requirem

ents

N
FR: Reliability, A

vailability,
D

ata Ranges, D
ata Validity

Safety Requirem
ents of the

type 'Protect', 'D
etect', and

'Recover'

Prelim
inary

Safety
Requirem

ents
T

Q

E

A
ccident

M
itigation

Strategies

T
Q

E

Figure
5.5:Extractfrom

JB61834
A

s-O
bserved

M
odel

116 Chapter 5 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

(c) If the targets are not achievable, the design teams must write a justifi-
cation that the ‘best achievable result’ has been achieved, but that the target
cannot be met owing, for example, to the legacy status of the products

(d) The safety requirements and safety targets are then formalized as
contractual agreements.

• Allocation of targets is carried out in accordance with the System Safety
Management Plan (SSMP)

(a) The SSMP requires the safety targets to be equally decomposed over
ten systems

(b) This is stated as being a pure mathematical (division) exercise; which
is held to be “straightforward”.

• It was stated that difficulties only occur at the next level (of design abstrac-
tion)

• If the Design Team feel the allocated target is too onerous for a system, then
more work is required by the Design Team

• Any shortfalls in a system’s ability to meet safety targets are argued in terms
of mitigations (where possible)

• ‘Shortfalls’ are held to have arisen should the threshold be close to the sys-
tem’s capability, or beyond it

(a) Mitigations against shortfalls of safety targets occur predominately
as ‘Accident Mitigation Strategies’

(b) These accident mitigation strategies have been progressively devel-
oped with different customers over the years of the project (which was de-
scribed as an informal ‘framework’)

• Safety Arguments are text-based, and argue how the top level claim con-
tributes to an accident as a result of system faults. A top level claim is cre-
ated in the safety argument which correlates to each Top Level Event in a
Fault Tree

• Fault Tree Guidance informs and controls the construction of each Fault
Tree. Fault Trees are reviewed as part of the work of creating a safety argu-
ment

• The responsibility for managing the risk of Accidents is placed on the Haz-
ard Owner of each contributing hazard

(a) The Hazard Owner is the respective System Technical Authority

(b) Hazards are demarcated into ‘Physical Hazards’ and ‘Equipment
Hazards’

(c) Functional Hazards are a type of equipment hazard, and these haz-
ards are the responsibility of the System Technical Authority, and as such,
they ‘own’ the respective Fault Trees and Fault Tree Analyses.

Chapter 5 Matthew Steven Osborne 117

Identifying Effective Improvements to Software Safety Practice

• The Fault Tree Analyses are constructed at the System Level, and represent
the “right hand side of the V-lifecycle”

• System Level safety targets are used to elicit preliminary safety require-
ments (at a component level), which in turn identify derived design safety
requirements. Both are allocated at the equipment level

(a) The derived requirements are ‘top level’, and are captured in tabular
form

(b) The achieved component safety targets are added into the Fault Tree,
to calculate whether the System Level safety targets are achieved at the Top
Event

(c) Equipment level safety requirements are either allocated to Mission
System equipment owners, or placed in a Specification / Scheme of Work
and allocated to suppliers

• Safety engineers may provide additional requirements to include in the
specification as appropriate - based on Fault Trees, considering specific fail-
ure modes (e.g. invalid / out of range data)

• As the system design transitions from Preliminary Design Review (PDR)
to Critical Design Review (CDR), the safety targets in the Fault Tree are re-
placed with ‘real data’ (historical reliability data, and historical failure rates)

• Reliability data is taken from FMECAs performed by suppliers (assessed for
accuracy by the organization’s Reliability Engineers) which is predicated on
field data

(a) This ’real data’ informs the System and Sub-System Hazard Analysis
Reports

(b) System and Sub-System Hazard Analysis Reports are predicated on
Fault Tree Analysis, and an argument that the preliminary safety require-
ments are complete and correct

(c) Hazard Analysis Reports also look at individual hazards, and uses
the initial Fault Trees to decompose requirements down to component-level
contributions

(d) This decomposition is carried out by recourse to system drawings
and detailed design drawings (i.e. what the designers know will constitute
the final design).

• System failures are assessed by undertaking a cut set analysis of the Fault
Trees

(a) The contribution to system failures from software is assessed by al-
locating arbitrary failure rates (no probabilistic analysis is attempted), and
a subsequent sensitivity analysis

(b) The means of conducting sensitivity analyses is detailed in the Sys-
tem Safety Processes and Plans, which contain tables of the values to be
used.

118 Chapter 5 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

• The definition of SIL in legacy designs is predicated on the definitions con-
tained within Defence Standard 00-55 at Issue 2

(a) New customers require argument over the achievement of other mil-
itary standards (not stated here for reasons of anonymity), or DALs (de-
tailed in the ARP 4754A suite of publications)

(b) The mapping of SILs to DALs is contained in the Software Develop-
ment Plan (which also requires a number of safety activities).

• Software safety requirements are identified by a safety tag and are allocated
via the XX Database Tool

• Functional and Non-functional requirements are turned into specifications
and Statements of Work (SoW), using memoranda to argue over allocation

• Equipment Safety Assessment Reports are compiled to argue that the equip-
ment meets the safety requirements, including an assessment of what the
equipment cannot mitigate

• The verification of safety requirements (including acknowledgements where
requirements are not met) are argued to be acceptably safe by a mixture of
dependencies and assumptions on the assumed operation and operating
environment

• Stated assumptions and dependencies are captured by the System Design
Teams.

The key findings from the interview are as follows:

1. Safety targets are equally distributed over ten systems, without regard for a
system’s specific contribution to hazard(s)

(a) Should the Design Team feel that the target(s) allocated to a system
are too onerous, the required ‘further work’ is not formally captured
anywhere.

2. If there are more than ten hazards per sub-system group, the engineers need
to set the target at an order of magnitude less. This ‘coarse’ reduction in
targets can be problematic for a legacy programme which is already ‘flying’

3. The framework to identify and use accident mitigation strategies (when fac-
ing shortfalls in system safety targets) is not formalized into processes or
guidance, but is left to the engineers to carry out as they see fit (based on
what has worked previously), as the SSMP assumes that the target(s) will
always be met

4. Safety arguments are:

(a) Text-based,

(b) Predicated on arguing over whole-system operation and Standard Op-
erating Procedures (SOP),

Chapter 5 Matthew Steven Osborne 119

Identifying Effective Improvements to Software Safety Practice

(c) Underpinned by stated assumptions, but these assumptions are not
formally managed, and

(d) Predicated on random failure targets, underpinned by independence
claims.

5. The decomposition of derived requirements (in mitigation of contributions
to hazards) does not inform design decisions. Instead, the decomposition
is predicated on what the designers know the architectural solution will
comprise

6. Single Point of Failure (SPoF) and Common Cause Factors (CCF) are con-
sidered only through an analysis of the ‘detailed impact of software factors’,
and are held to be addressed through the allocation of ‘appropriate levels
of integrity’

7. Human Factor (HF) considerations are limited to cut set analyses in the
Fault Trees (which implies HF are modelled, and modelled completely and
correctly), and arguments over independence

8. Design treatments of Human Errors are held to be mitigated by appeal to
procedures

9. Numerical analysis (different values applied as part of a sensitivity analy-
sis) are applied to software’s contribution to system failures, but the manner
by which software contributes to hazards (or even system failures) is neither
modelled nor analyzed

10. Should Safety Engineers elicit further safety requirements after undertaking
a Fault Tree Analysis, no report is created which would justify their elicita-
tion

11. Confidence in the supply chain meeting software safety requirements is
achieved through audits of suppliers. These audits are undertaken by the
System Design Teams

12. A safety assessment report considers design reviews which address safety

13. Most suppliers to the organization are not able to argue over integrity, but
there is a mapping between SIL and DAL

14. No process exists which states how safety requirements are decomposed
and allocated (i.e. what analyses are required). Instead, the Safety Engi-
neers work informally with the Equipment Engineers, and use ‘engineering
judgement’, which is influenced by integrity targets, and the failure modes
modelled in the Fault Trees

15. Although processes claim a SHARD analysis was undertaken, it was in fact
a HAZOP, and didn’t consider the failure modes of software

16. The term ‘Safety Case’ is not, in fact used by the organization, they are re-
ferred to as ‘Safety Arguments’

120 Chapter 5 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

17. Whilst dependencies and assumptions are formally captured, they are ‘man-
aged elsewhere’. It is not clear how nor by whom.

The interview then moved to discuss KY40540’s role as an internal Indepen-
dent Safety Auditor (ISA). KY40540 noted (with humour) that theirs was a case
of the “poacher turning gamekeeper”, and argued the benefits of their role, and
their contribution made from having a “wealth of experience” across the teams.

KY40540 noted that they could proactively influence decisions, and give ad-
vice where appropriate - especially on how to undertake tasks that may not be
well documented. KY40540 was pressed on this matter of how some task instruc-
tions were not well documented, and how their own knowledge and benefit of
experience would be retained by the project should they leave it. KY40450 noted
that, although some product knowledge would be lost, they were confident that
process knowledge would be retained as there exists a wealth of knowledge in
the project. This runs counter to KY40450’s assertion that part of their role was to
provide advice on processes that weren’t clearly defined. Nor does their response
satisfactorily answer the question as to how implicit knowledge can be managed
and retained by the project, however.

SJ84999
SJ84999 was interviewed, and the redacted transcript is provided at [127]. The
key findings arising from the interview are as follows:

1. As the projects have matured, the organization has gradually moved to-
wards a failure analysis focus as well as the development processes, and
have started to introduce a more active element of failure analysis which
aims to add more rigour and detail. Naturally, this is problematic when
considering legacy equipment

2. Safety requirements are not ‘given’ to the software team, the software team
leads the development of software safety requirements

3. Historically, software safety requirements did not exist, software require-
ments were ‘tagged’ with integrity requirements

4. Legacy software was:

(a) A monolithic build,

(b) Assumed no partitioning, and

(c) Everything was built to the highest integrity requirement.

5. Internal efforts to modularize safety cases (NOT referred to as safety argu-
ments) resulted in the introduction of software safety requirements

6. The introduction of an Operating System necessitated a SHARD Analysis

7. Original ‘safety requirements’ were just a re-expression of existing func-
tional requirements, so were perceived as being a “waste of time”. This is
perhaps owing to the SHARD analysis having been carried out at an inap-
propriate level of design abstraction. The SHARD analysis looked at soft-
ware as a monolithic entity, and only considered failures external to the

Chapter 5 Matthew Steven Osborne 121

Identifying Effective Improvements to Software Safety Practice

software (i.e. a loss of a signal), and NOT how the software itself could
contribute to a failure. It did not consider interface failures

8. Despite the SHARD analysis having been carried out, it is not clear where
SHARD (or similar analysis) is required by the ARP 4754A suite of docu-
ments

9. A mid-life upgrade required software to be copied over to a new piece of
equipment, with some ‘minor changes’. A review of the software safety re-
quirements revealed they were not fit for purpose, and were not achievable
at the software level. These requirements were restricted to considering
what should be done, but did not consider what shouldn’t (i.e. only consid-
ered positive contributions to be made by software, and not the negative).
The analysis did not consider what would happen if the software ’failed’,
nor how it could contribute to system/component failures

10. The Software Design Authority at the time was content to remove these
software safety requirements, as they didn’t add anything that the existing
functional requirements already considered. This was rejected by a cus-
tomer team, and so the software safety requirements were ‘re-worked’

11. The original software was monolithic, but the requirement to introduce par-
titioning revealed the potential for new failure mechanisms across interfaces

12. In the absence of any process or modelling tools, new requirements were
elicited by relying on spreadsheets and word-processor documents (and it
was felt that this still didn’t cover the required information). This absence of
process led to a substantial amount of (“too long-winded”) documentation
to be produced and maintained. This extra documentation was required as
the need to elicit further requirements was a ‘bolt-on’ to the project’s normal
processes

13. It is asserted that “nothing wrong” was found with the existing software,
and that this was due to “great engineers doing the right thing”. This good-
ness of engineering was not recorded formally anywhere

14. It was asserted that if the ARP 4754A suite of documents had been followed
originally, then the ‘goodness’ of the software could have been argued -
through following clearly defined objectives for traceability

15. Whilst it is argued that the re-work didn’t make the product safer, it did
enable its level of safety to be revealed to the customer

16. The original software requirements were expressed as data flows, but the
newly-introduced software safety process generated text-based requirements.
These new requirements were nothing more than functional descriptions
and perhaps pseudo-code, however; and were a re-expression of existing
functional requirements

17. Early development of mid life upgrades revealed faults in testing, such as
a pitch ladder rolling when the input values weren’t changing - i.e. the

122 Chapter 5 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

software was extrapolating to take into account for system delays. It was
felt that more should have been done to elicit faults such as these

18. It was asserted that if they were starting over again (with the designs) they
would ensure that they elicited formal software safety requirements for in-
stantiation

19. The new processes and analyses for eliciting software safety requirements
still do not consider all aspects of software’s contribution to a fault / failure
/ hazard (negative or positive)

20. When the mid-life upgrades required a change in approach to the software
safety requirements elicitation process, whilst the process was changed, the
process documents were not updated to reflect the new approach required

21. Every mid life upgrade relied on SQEP personnel to get good results any-
way - it all relied on people

22. Different customers have different contractual and regulatory obligations,
and the organization faces repeated calls to undertake processes which add
no value to the product nor its safety

23. Further, newer customers are trying to place on contract processes which
the organization does not, and cannot undertake

24. It is not felt that DO 178C is clear as to where the split (and interface) be-
tween systems and software is made

25. It is felt that DO 178C doesn’t deal well with anything other than a single
block of software

26. The Quality Assurance section of DO 178C states that pseudo-code should
not be used, but the main section of the Standard does not warn against it

27. People on different projects and teams have differing ideas on how DO 178C
is to be interpreted, and as none of them have had the experience of a certi-
fication programme, no one can yet agree on how it is to be interpreted

28. The project has not provided a clear definition on how DO 178C is to be
interpreted and followed

29. It was asserted that some software currently being written to safety stan-
dards has not been written as well as it would have been before the standard
was adopted

30. It was asserted that techniques such as ‘strongly typed languages’ add no
value

31. There is an ‘uneasy’ hierarchical relationship between the system and soft-
ware teams. The system team assumes that their process ends once they
have given the software team the requirements, and are not ‘open’ to de-
ductive challenges from the software team

Chapter 5 Matthew Steven Osborne 123

Identifying Effective Improvements to Software Safety Practice

32. The Standards the project use assumes a Waterfall development lifecycle,
but the requirements do not get flowed down to the software team in time
to sufficiently mature the analyses

33. Often the system requirements are allocated to software too late in the de-
sign process to make meaningful changes. The software team cannot wait
for all requirements however (as nothing would ever be designed)

34. It is asserted that if you get too prescriptive on requirements and test speci-
fications, it prevents people from undertaking critical and intelligent think-
ing

35. With the introduction of new processes, the software design activity is now
out of sync with the software coding activity

36. Derived failure targets are based on the size of the fleet, which distorts the
allocation of targets

37. The project is often ‘forced’ to follow regulatory processes required by their
customers’ regulators. These processes are held to add no benefit (and may
therefore be an example of Administrative Safety [133])

38. Any successes in their project are held to be reliant on the people, and not
the processes (nor the requirements flowed down to them).

The two outputs of this step are an appropriately represented as-observed
model, and a report accompanying the as-observed model (this sub-section).

The responses from the two interviews resulted in the creation of the as-
observed model found at [114]. This model, and the responses from the inter-
views inform the comparisons with as-required practice (both Open and Closed)
and with as-desired practice.

5.1.5 Compare Organizational Practice with Safety Practice As-
Desired 5

For this step to proceed, two modelling elements of the framework instantiation
process must have already been completed:

1. The as-required (Closed) model of software safety practice (completed at
Step 3)

2. The as-desired model of software safety practice (completed at Step 1).

The aim of this step is to create a representation of how as-required (Closed)
practice conforms with each objective / criteria of as-desired safety practice in
turn.

The process to understand software safety practice considers the following
criteria when assessing the completeness and correctness of an element of prac-
tice in terms of its compliance with as-desired practice:

124 Chapter 5 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

• Internal Completeness and Consistency: are the activities correct and per-
tinent commensurate with achieving as-desired practice? Do the right amount
of activities exist; and does each activity have the correct amount of sup-
porting activities to ensure it can be completed to the required level of com-
pliance?

• Consideration of Attributes: is the information stated for the attributes the
correct information (i.e. Inputs, Outputs, Time, Techniques and Methods,
Controls, and Resources); and is the correct amount of information given
for the attributes for the as-desired practice to be met?

The process to understand software safety practice then considers the fol-
lowing criteria when assessing the levels of compliance between the model of
as-required practice and software safety practice as-desired:

• Sufficiency: are there the correct amount of artefacts to enable successful
completion of all activities, and are the artefacts the correct ones? Does
every activity produce an artefact; and does each activity have the correct
amount and type of artefacts (as inputs) to comply with the model of as-
desired practice?

• Consideration of Attributes: is the information stated for the attributes the
correct information (i.e. Time, Quality Criteria and Existence) to denote
when they need to be produced or used? Are the correct amount of qual-
ity attributes considered for each article, and are they the correct quality
attributes for as-desired practice to be complied with?

The two required outputs of this step are the appropriately represented model
of as-required (Closed) practice compliance, and the report accompanying the
model of as-required (Closed) practice compliance (this section). JB61834’s lifey-
cle was assessed for compliance against Principle 1 of the 4 + 1 Principles using
this criteria. The full assessment against Principle 1 is contained in Annex C.5,
and the main findings are summarized and presented here, before assessing what
may be inferred by them.

Precis of Assessment

The overall observation in relation to whether JB61834 meets Principle 1 of the
as-desired criteria is that it can be inferred that the required information is gener-
ated; with one exception. The exception to this claim of compliance relates to the
required attributes of software safety requirements. In this regard, organizational
practice does not explicitly state how the required information will be generated.
No single point of truth can be identified for any criterion of Principle 1, in fact.

Many of the documents (and diagrams within) describe what must be done,
and these are often presented as options available to the analyst/designer follow-
ing the process artefacts. What is not stipulated is how (nor when) activities are
to be carried out. The manner in which activities are to be carried out may be
reliant on implicit or tacit knowledge at the as-observed level.

The main findings are summarized as follows:

Chapter 5 Matthew Steven Osborne 125

Identifying Effective Improvements to Software Safety Practice

• No single artefact, nor group of disparate artefacts contains a clear defini-
tion of the software within the system under analysis, and it is only possible
to assume by inference that this required information will be available.

• The Hazard Log plays a pivotal role in identifying the system hazards which
software contributes to, but whilst the data can be argued to flow into the
Hazard Log, there is no explicit lifecycle of activities that can trace this data
from the Hazard Log to the right activity, at the right time, to the required
quality, by a suitably qualified person.

• The Hazard Log is the ‘single point of truth’ as a repository of data that com-
bines to identify the specific failure modes by which software contributes to
identified hazards, yet there is a disconnect between the system-level activ-
ities and those undertaken at the software-level.

• One can only have a low degree of confidence that the information required
to enable the elicitation of software safety requirements in mitigation of the
identified contributions to system hazards is created. There are weaknesses
in identifying the system hazards however, and when this is combined with
the instances of activities that have no explicit input, and artefacts which are
produced but do not act as an input to any identified subsequent activity, it
is only possible to infer the data will be created. It is not possible to state
who would create the data, nor by what means.

• No argument can be made as to the required aspects of the software safety
requirements. The criterion requires that the software safety requirements
be atomic, unambiguous, defined in sufficient detail, and verifiable, but
these required attributes are not considered by the artefacts provided.

A common theme running through much of the text in the supplied artefacts
is prose written in both the past and future tenses - a mixture of describing his-
torical design or process decisions, and what is intended to be placed in certain
plans or other documentary artefacts. This is perhaps due to the length of time
the project has been running for. The systems involved have been successfully
deployed in aircraft already, and the artefacts provided reflect a mixture of doc-
uments produced for the initial design, for modifications, and for a mid-life up-
grade. This mid-life upgrade shifted the design policy to one of modular design
with open architectures.

This mix of legacy (yet still extant) processes and procedures with more re-
cent processes that reflect the design policy shift, results in a lack of clarity for
one not already familiar with the project and its history. Examples include:

• Development plans that assert what must be done, but not how, nor by
whom

• Aspects of the design lifecycle (such as Configuration Management) that
have sections in multiple documents concurrently

• A plethora of ‘should’ statements, without advice on how to decide whether
or not to

126 Chapter 5 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

• Plans that describe the different types of testing, but fall short of arguing
the circumstances or criteria for which type should be deployed. This is
exacerbated by a clear description as to the weakness of some techniques
and methods (but not their merits)

• Documents that highlight what has changed, and what will be placed in
other documents at an unstated point in the future.

At this stage there is no definitive evidence that any of the deficiencies found
are certain impediments to the achievement of Principle 1 of software safety prac-
tice as-desired. It may be left reasonably to those charged with the implemen-
tation of software safety process as-observed. The risk here however, is that
without a robust knowledge and information management system, preventing
impediments to the achievement of as-desired practice will rely on retaining per-
sonnel within the organization who are suitably experienced (and qualified) in
the specifics of the project and its history.

Does as-observed software safety practice recover the weaknesses found in
the as-required assessment? Consider each potential impediment in turn:

• No single artefact, nor group of disparate artefacts contains a clear defini-
tion of the software within the system under analysis, and it is only possible
to assume this required information will be available. Both models of prac-
tice are weak in this regard, and this must now be considered a deficiency
which requires follow-up work with the project. (RQ3)

• The Hazard Log:

(a) Plays a pivotal role in identifying the system hazards which software
contributes to.

(b) Data can be argued to flow into the Hazard Log, but there is no
explicit lifecycle of activities that can trace this data from the Hazard Log
to the right activity, at the right time, to the required quality, by a suitably
qualified person.

(c) Is the ‘single point of truth’ as a repository of data needed to identify
the specific failure modes by which software contributes to identified haz-
ards, yet there is a disconnect between the system-level activities and those
undertaken at the software-level.

(d) Is the ‘CRADLE database’ in the as-observed model, but this is
only cited as an input to the activity ‘Allocate Safety Requirements to
Equipment’. This must now be considered a deficiency which requires
follow-up work with the project. (RQ3)

• There is a low degree of confidence that the information required to elicit
software safety requirements in mitigation of the identified contributions to
system hazards is created. There are weaknesses in identifying system haz-
ards that when combined with instances of activities that have no explicit
input, and artefacts which are produced but do not act as an input to any
identified subsequent activity, mean it is only possible to infer the data will
be created. It is not possible to state who would create the data, nor by what

Chapter 5 Matthew Steven Osborne 127

Identifying Effective Improvements to Software Safety Practice

means. As noted above, this must now be considered a deficiency which
requires follow-up work with the project. (RQ3)

• The criterion to assess relevant aspects requires that software safety require-
ments be atomic, unambiguous, defined in sufficient detail, and verifiable is
not met, as these required attributes are not considered by the artefacts pro-
vided.This must now be considered a deficiency which requires follow-
up work with the organization. (RQ3)

5.1.6 Compare the Open Standard with Safety Practice As-Desired
6

For this step to proceed, two modelling elements of the process must have already
been completed:

1. The as-required (Open) model of software safety practice

2. The as-desired model of software safety practice.

The process to understand software safety practice considers the following
criteria when assessing the completeness and correctness of an element of prac-
tice in terms of its compliance with as-desired practice:

• Internal Completeness and Consistency: are the activities correct and per-
tinent commensurate with achieving as-desired practice? Do the right amount
of activities exist; and does each activity have the correct amount of sup-
porting activities to ensure it can be completed to the required level of com-
pliance?

• Consideration of Attributes: is the information stated for the attributes the
correct information (i.e. Inputs, Outputs, Time, Techniques and Methods,
Controls, and Resources); and is the correct amount of information given
for the attributes for the as-desired practice to be met?

The process to understand software safety practice then considers the fol-
lowing criteria when assessing the levels of compliance between the model of
as-required practice and software safety practice as-desired:

• Sufficiency: is there the correct amount of artefacts to enable successful
completion of all activities, and are the artefacts the correct ones? Does
every activity produce an artefact; and does each activity have the correct
amount and type of artefacts (as inputs) to comply with the model of as-
desired practice?

• Consideration of Attributes: is the information stated for the attributes the
correct information (i.e. Time, Quality Criteria and Existence) to denote
when they need to be produced or used? Are the correct amount of qual-
ity attributes considered for each artefact, and are they the correct quality
attributes for as-desired practice to be complied with?

128 Chapter 5 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

The two outputs of this step are a report accompanying the model of as-
required (Open) practice compliance (this section), and an appropriately rep-
resented model of as-required (Open) practice compliance. The criteria of as-
desired software safety practice is highlighted by the use of bold font in the re-
mainder of this section.

The Open Standard used by JB61834 is ARP 4754A [147], and the model of
this Open Standard was completed as part of Step 2. The as-desired model was
established as a set of measurable criteria at Step 1. The model and full evaluation
of the levels of conformance of ARP 4754A with Principle 1 of the as-desired
practice is at Appendix B.7.

The main findings are as summarized as follows:

• There is no definitive artefact which is produced by the ARP 4754A lifecycle
that would clearly identify the software within the system. There are a
number of potential artefacts in which it could be expected reasonably for
this information to reside, but there are potential issues with these artefacts
(see Section 5.1.5).

• There are six artefacts from the ARP 4754A set of processes which could
reasonably contain information on the operating context of the system in
which the software will reside. There are potential issues with these arte-
facts however (see Section 5.1.5).

• To provide a clear description of the system in which the software will
reside, the ARP lifecycle creates two artefacts which could fulfill this cri-
terion. Neither of these artefacts might be provided before the design has
been fully instantiated however, and they only contain a section that gives
a brief system overview.

• No Hazard Log, nor any form of Hazard List is created which would iden-
tify the system hazards to which software may contribute. A trace from
the Platform-level down through the design levels of abstraction to the
Software-level can be made, so it can be assumed that the software safety
activities and analyses will identify potential hazardous states for which
mitigating safety requirements shall be elicited and managed. Assuming
that sister publications govern safety activities, it is reasonable to accept
that system hazards will be identified at the software boundary.

• To describe the specific failure modes by which software contributes to
the identified system hazards there is no clear link between the system
hazards and specific failure modes, and the software requirements process
does not describe a specific methodology by which software requirements
are to be elicited.

• The claim for the elicitation of software safety requirements which specify
the required behaviour for each identified contribution to each system
hazard cannot be made.

• In the absence of a robust software safety requirements process, the crite-
rion to state all software safety requirements in an atomic, unambiguous
manner which is defined in sufficient detail and verifiable is not met.

Chapter 5 Matthew Steven Osborne 129

Identifying Effective Improvements to Software Safety Practice

Operational
 SW

Safety Case TQ

E

SW Safety Case
Configuration
and Review

MT

I O

R C

Project
Safety

Engineer

TQ

E

ISA

TQ

E

Authorize
Sub-System

Safety Argument

MT

I O

R C

System
Technical
Authority

Hazard
Owner

TQ

E

Preliminary
Sub-System

Safety Argument

TQ

E

Interim SW
Safety Case

TQ

E

Figure 5.6: Extract from JB61834 Step 7 Model

5.1.7 Compare As Observed Practice with As Required (Closed)
Practice 7

For this step, two modelling elements of the process must have already been com-
pleted:

1. The as-required (Closed) model of software safety practice

2. The as-observed model of safety practice.

The two outputs of this step are a report accompanying the comparison of
how as-observed practice compares with as-required (Closed) practice (this sec-
tion), and an appropriately represented model of how as-observed practice com-
pares with as-required (Closed) practice, which is at [115]. An extract from the
produced model showing a comparison of Safety Case activities is provided at
Figure 5.6

Both original models of practice only considered the activities required to
comply with Principle 1, and this is the extent of the comparison between the

130 Chapter 5 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

two models. It is noted that whilst the differences revealed by this comparison
step require further investigation (RQ3), the differences are not explicitly linked
to a compliance argument with Principle 1 (as this is quite weak for both models
anyway).

The as-observed model of JB61834 cannot make any claim of compliance
with the criteria of Principle 1, as no activity would explicitly identify the soft-
ware within a system. This lack of process prevented a direct comparison of this
criteria between the two models. The lack of information in this regard may be
due to the focus of the respondents more than a weakness of as-observed software
practice per se. This potential weakness should be investigated with JB61834,
however (RQ3). It was possible that information on the software within a system
(Principle 1 criteria) could be contained within, or referenced from the produced
safety cases. The process for the delivery of safety cases between the two elements
of practice was also compared as part of this step, therefore. The management of
safety cases was not part of the original models of software safety practice.

Comparison of the two models for creating safety cases revealed termino-
logical differences; the most obvious discrepancy being the reference to ‘software
safety cases’ (as-required (Closed)) and ‘system / subsystem’ safety cases (as-
observed) respectively. By recourse to the interview transcripts, this termino-
logical difference would appear to emanate from the perspectives (and maybe
colloquialisms) of the respondents, and is not deemed a significant difference.
Follow-up research with the project should be carried out to confirm whether
this is true (RQ3).

The as-observed model doesn’t appear to consider the same maturity lifecy-
cle of safety case management to that of the as-required (Closed) model (i.e. ini-
tial - preliminary - operational), and only considers the ‘preliminary’ safety case.
However, as this preliminary safety case is subsequently subject to authorization,
this difference is deemed to be due to the potential limitations and nuances of
modelling verbal responses.

The responsible person who authorizes the safety cases is different between
the two lifecycle models. The ‘Hazard Owner’ is responsible for safety cases in
the as-observed model, and the ‘Project Safety Engineer’ (with input from the
ISA) for the as-required (Closed) model respectively. In addition, it is not ex-
plicitly stated which activity in the as-required (Closed) lifecycle fulfils the act of
‘authorization’. The as-required (Closed) lifecycle matures the safety cases itera-
tively (not shown for brevity at [115]) from initial safety case through to opera-
tional - and an analyst could assume that ‘configure and review’ is synonymous
with the act of authorization. A simile cannot be argued between the roles of
‘Hazard Owner’ and ’Project Safety Engineer’ however, as it has already been
established in the model of as-required (Closed) practice that the hazard owner
is the ‘System Technical Authority’ and not the ’Project Safety Engineer’. As it is
perhaps more prudent for the ‘Hazard Owner’ to authorize safety cases, this may
be an instance of documented processes being out of date, and follow-up work
with JB61834 should be carried out to determine the reasons for these discrepan-
cies (RQ3).

Whilst there are issues with terminology between the two models of practice,
a comparison has been made. The resultant analysis would suggest that there are
differences between the two models of practice which requires further investiga-

Chapter 5 Matthew Steven Osborne 131

Identifying Effective Improvements to Software Safety Practice

tion with the project.

5.1.8 Compare As Required (Closed) Practice with As Required
(Open) Practice 8

For this step, two modelling elements of the process must have already been com-
pleted:

1. The as-required (Closed) model of software safety practice

2. The as-required (Open) model of software safety practice.

The two outputs of this step are a report accompanying the comparison of
the two models of as-required practice (this section), and an appropriately rep-
resented model of how as-required (Closed) practice compares with as-required
(Open) practice, which is at [116].

The model of the ARP 4754A lifecycle (the as-required (Open) model) created
at Step 2 is divided into distinct levels of design abstraction:

• Platform

• System

• Item:

(a) Mechanical

(b) Hardware

(c) Software.

JB61834, as avionics and mission system manufacturers, do not have a life-
cycle of activities which considers the platform-level of design abstraction, and
make assumptions that the platform-level analyses are already undertaken (with
data provided to the item-level activities).

It is not possible to directly overlay the lifecycles of both ARP 4754A and
JB61834 as a direct comparison (even at the Item-level of design abstraction and
lower), and there are two reasons for this. The first is that the terminology and
syntax of the two lifecycles are only loosely coupled (owing to the differing levels
of design abstractions considered). This is especially true of the term ‘system’,
which is a level of abstraction in ARP 4754A, but a product in JB61834. The second
reason is that JB61834 has a mixture of legacy, new, and updated processes (as a
result of the mid-life upgrades).

This required some additional modelling before an evaluation could com-
mence, and what has been modelled and assessed is a comparison of the two
lifecycles at the following levels of abstraction:

• System-level Hazard Management

• System-level Safety Requirements Management

• Software Safety Requirements Management.

An example of this additional modelling can be seen in the extract at Figure
5.7 which shows safety assessment activities at the System-level. Each level of
abstraction is now considered in turn, after some generalized observations.

132 Chapter 5 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

Sy
st

em

FH
A

M
T

I
O

R
C

Sy
st

em

PS
SA

T

I
O

R
CM

Pr
el

im
in

ar
y

Sy
st

em
 H

az
ar

d
Id

en
ti

fic
at

io
n

M
T

I
O

R
C

Pr
el

im
in

ar
y

Sy
st

em
 H

az
ar

d
A

na
ly

si
sM

T

I
O

R
C

Fu
nc

ti
on

al
Fa

ilu
re

A
na

ly
si

s
Re

po
rt

s

T
Q

E

Ca
nd

id
at

e
Sy

st
em

A

rc
hi

te
ct

ur
es

T
Q

E

Pr
el

im
in

ar
y

Sy
st

em
 H

az
ar

d
A

na
ly

si
s

re
po

rt

T
Q

E

Te
xt

H
az

ar
d

Lo
g

T
Q

E

Sy
st

em

Sa
fe

ty

En
gi

ne
er

s
T

Q

E

H
is

to
ri

ca
l

an
d

Pa
st

 In
 S

er
vi

ce
Ex

pe
ri

en
ce

T
Q

E

H
az

ar
d

Ch
ec

kl
is

t
Re

po
rt

s
T

Q

E

Fa
ilu

re

Co
nd

it
io

ns

T
Q

E

Pl
at

fo
rm

Sa

fe
ty

 G
ro

up

T
Q

E

Fa
ilu

re

Co
nd

it
io

ns
Cl

as
si

fic
at

io
n

T
Q

E

Sy
st

em

FH
A

 M
an

ua
l

T
Q

E

Ite
m

-le
ve

l
D

er
iv

ed
Sa

fe
ty

Re
qu

ir
em

en
ts

T
Q

E

Pl
at

fo
rm

Fu

nc
ti

on
s

T
Q

E

Sa
fe

ty

O
bj

ec
ti

ve
s

T
Q

E

Pr
el

im
in

ar
y

H
az

ar
d

Li
st

T
Q

E

A
RP

 4
76

1

T
Q

E

FM
ES

T
Q

E

M
il-

ST
D

88
2C

 T
as

k
20

2

T
Q

E
Ca

rr
ie

d
ou

t
at

m

ul
ti

pl
e

st
ag

es
 o

f
th

e
sy

st
em

de

ve
lo

pm
en

t
?

in
cl

ud
in

g
sy

st
em

,
co

m
po

ne
nt

, a
nd

ha

rd
w

ar
e/

so
ft

w
ar

e
de

si
gn

 d
ef

in
it

io
nsTe

xt

Fi
gu

re
5.

7:
Ex

tr
ac

tf
ro

m
JB

61
83

4
St

ep
8

M
od

el

Chapter 5 Matthew Steven Osborne 133

Identifying Effective Improvements to Software Safety Practice

General

After completing Step 2, a number of potential deficiencies were identified with
the ARP 4754A lifecycle with respect to complying with the as-desired criteria.
These potential deficiencies in the lifecycle were held to be ’potential’ as it may
be reasonable to expect them to be recovered by organizational practice (i.e. as-
required (Closed), or perhaps at the as-observed level of practice. Considering
the abstraction levels compared in this step, these deficiencies are found to be
NOT recovered by as-required (Closed) practice, however.

It can be seen in the comparison model at [116] that some of the aspects in
the JB61834 model are coloured ’red’. This is not necessarily an indication of the
sufficiency of that aspect, nor whether it is deemed worse than the ARP model’s
corresponding aspect. A red-coloured aspect signifies only that it has no level
of agreement with the corresponding aspect in the activity / artefact of the ARP
4754A model.

In the ARP 4754A as-required (Open) practice model produced at Step 2,
activities are often linked directly to each other (and not via produced / con-
sumed artefacts). The model at [116] uses artefacts as inputs / outputs as it is
assumed that activities such as a ’System FHA’ will produce a ’System FHA Re-
port’. Whilst not part of the original model created at Step 2, this use of artefacts
has been undertaken for reasons of internal consistency, and the readability of
the model produced by this step. It is also important to note that although some
activities have iterative relationships with produced artefacts (i.e. artefacts which
are both inputs to and outputs from an activity), only one direction is shown for
reasons of brevity and readability of the model. This lack of iterative updates in
the model is argued to be acceptable in a model used for comparison purposes.

At a system-engineering / design level, the JB61834 lifecycle majors only on
software safety requirements, and does not consider the integration with system
engineering activities. This is not necessarily a deficiency of the project, and may
be due to the focus of the artefacts supplied for assessment.

System-Level Hazard Management

Whilst the ‘Hazard Log’ is the single point of truth for JB61834, and is the link be-
tween the levels of design abstraction, in ARP 4754A the system-, item- analyses
feed directly into the design activities of the lower tier, and no recourse is made
to a single Hazard Log.

System-Level Safety Requirements Management

Before results are discussed, it should be noted that some observations drawn
out of the comparison are predicated on an inability to overlay the two models
directly. The key findings are highlighted using bold text as follows:

• As well as the differences in abstraction levels between the two standards,
the ARP does not further decompose ‘system’ analysis activities into ‘sub-
system’ activities (whilst JB61834 does)

• JB61834 doesn’t consider ‘item-level’ design activities and moves from system-
to software-level. This is not necessarily a deficiency, as the ‘system’ in

134 Chapter 5 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

JB61834’s case may be a single black box (with elements therein) – and so
may be an issue of terminology with respect to the levels of design abstrac-
tion

• Analysis of the ARP revealed that there is no output from the activity ‘Sys-
tem FHA’ in terms of creating a requirements specification (in mitigation
of the identified hazards). This may be left reasonably to the project (as
JB61834 do produce such an artefact). From an ARP perspective this is en-
tirely reliant on the Safety Management System of the project itself follow-
ing ARP 4761 (or indeed by relying on the regulatory / certifying body),
however

• Neither the ARP, nor JB61834 considers the resources required to carry
out the System Safety Analyses. This cannot be left to the ‘as observed’
level to determine

• ARP 4754A does not explicitly require an output from the System Safety
Analyses, but this is required by the JB61834 lifecycle, which produces an
analysis report - although the required quality attributes of the report are
not considered by the JB61834 lifecycle

• Whilst the ARP lifecycle does not suggest a ’Control’ attribute (aspect) by
which the System Safety Analyses are carried out (likely relying on sister
publications such as ARP 4761 to be followed concurrently), JB61834 uses a
referenced Military Standard

• Neither the ARP, nor JB61834 consider the time or phase by which the
system safety analyses should be completed by. This cannot be left to the
‘as observed’ level to determine

• At a sub-system level of design abstraction, neither the ARP, nor JB61834
consider the resources required to carry out the required safety analysis.
This cannot be left to the ‘as observed’ level to determine

• The ARP does not define the resource (nor quality attributes thereof) which
carry out the activity FHA, and although this is considered by the JB61834
lifecycle the required quality attributes of the ‘System Safety Engineers’
are not considered.

Software Safety Requirements Management

Results for JB61834 show that:

• Their lifecycle majors on safety activities at the software-level. These are
used as the nearest comparison to the ARP

• The ativity ‘Identify mitigations for SW Failure’ may improve on the ARP
activity ‘SW Requirements Process’ (as its nearest direct comparison). This
potential improvement is because it considers more of the requisite attributes
of an activity. Follow up work is required to ensure this would be an im-
provement to the standard (RQ3)

Chapter 5 Matthew Steven Osborne 135

Identifying Effective Improvements to Software Safety Practice

• Software Design activities (specifically the links to and from the safety ac-
tivities) are very weak, and differ from the ARP to an extent such that no
direct comparison is possible

• ‘Code Review’ activities are shown ‘isolated’ from any other activity. This
is deliberate as it has no inputs. Although not capable of being assessed
further, its placement on the comparison model is shown aligned with ARP
activity ‘SW Conformity Review’ (as the nearest equivalent activity).

5.1.9 Compare As Observed Practice with As Desired Practice 9

Along with Step 10, this is a conditional step which may not necessarily have an
output. The tasks for Steps 9 and 10 are identical, only the focus of the assessment,
and the rationale behind any identified differences will differ.

For this step, two modelling elements of the framework instantiation process
must have already been completed:

1. The model of how as-observed practice compares with as-required (Closed)
practice

2. The as-desired model of software safety practice.

The output from this step is a report outlining any differences between as-
required practice and as-observed (Closed) practice which specifically aims to
overcome deficiencies in the as-required practice in order to comply with soft-
ware safety practice as desired (this section).

Whilst the comparison for this step revealed no explicit instances of as-observed
software safety practice moving away from as-required software safety practice
(to recover perceived shortfalls in meeting software safety practice as-desired),
responses from the interview respondents reveal two implicit instances. Both in-
stances should be investigated with the project through further targeted research
(RQ3).

The first instance relates to the use of formal software safety requirements
for instantiation into a design. The careful management of software safety re-
quirements is an essential aspect of meeting the as-desired criteria, for which
both as-required (Closed) practice and as-observed practice are deficient. There
is an acknowledgement from the respondents, however that they would ensure
that they elicit formal software safety requirements for instantiation if they were
“starting over again”, and this could represent an informal ‘recovery’ act if this
was not also mandated in project artefacts.

The second instance concerns a change in process made at the as-observed
level which was not subsequently updated in the as-required software safety
lifecycle process documents. When the mid-life upgrades required a change in
approach to the safety requirements elicitation process, whilst the process was
changed, the process documents were not updated to reflect the new approach.
This may represent an example of recovering a deficiency in ‘real time’.

136 Chapter 5 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

5.1.10 Compare As Observed Practice with As Required (Open)
Practice 10

Along with Step 9, this is a conditional step which may not necessarily have an
output. The tasks for Steps 9 and 10 are identical, only the rationale behind any
identified differences will differ.

For this Step, the model of how as-observed practice compares with as-required
(Closed) practice must already have been completed.

The output from this step is a report outlining any instances of software
safety practitioners undertaking working practice required by an Open Standard
not associated with their project. For these instances to be of concern, the work-
ing practices highlighted must be additional and / or different to aspects of as-
required software safety practice associated with their project.

Whilst difficulties with complying with Open Standards have been uncov-
ered (including different suppliers making appeal to different Standards from
JB61834), no instances of differences owing to practice perceived to be in accor-
dance with an Open Standard other than one associated with as-required practice
were revealed as part of this step.

This concludes the illustrative example of application of the framework, pro-
cess and representation of software safety practice. The example demonstrates
the potential efficacy of the framework and process through an illustrative exam-
ple. It shows that the process has internal consistency, and can produce results.
The evaluation section will consider validity issues further.

5.2 Further Illustrative Examples

We now provide details of two further illustrative examples of models created
by the process to understand and assess software safety practice. Both examples
arose during the empirical data gathering of this PhD programme. These two
models demonstrate further the usability and usefulness of our novel framework
and process to understand software safety practice.

The first example model is another model of as-required (Open) software
safety practice. This example of as-required (Open) practice is in the form of a
draft Open Standard which is aimed at assuring the safety of ’Health Software’
(ISO/TC 215 N 2750 – IEC/CD 62304.3 [15]). The model of this standard is con-
tained at [112], and an extract showing software safety activities is provided at
Figure 5.8.

The other example model is another model of as-required (Closed) practice
and emanates from the automotive industry. The project which provided their
process artefacts is referred to as VF3800 for reasons of anonymity. VF3800 are
designers of electric drive technology for the automotive industry, and kindly
supplied their safety requirements management lifecycle artefacts. The model of
their as-required (Closed) practice can be found at [110].

Initial modelling of the VF3800 practice made no judgements on the efficacy
nor completeness of the lifecycle, and the only colour coding used was to identify
inferred activities and artefacts (see the extract at Figure 5.9), and a lack of clarity
concerning optionality / multiplicity.

Chapter 5 Matthew Steven Osborne 137

Identifying Effective Improvements to Software Safety Practice

A
pply Softw

are
Safety

Classification

M
T

I
O

R
C

Softw
are

Safety
Class

T
Q

E

Risk
Controls

External to
the Softw

are
System

T
Q

E

Begins prior to softw
are

developm
ent activities, and

is executed prior to risk
control im

plem
entation in

the softw
are system

 ? but
should be com

pleted A
FTER

the Risk A
nalysis Process has

established w
hat harm

 could
arise from

 failure of the
softw

are system
.

For the purpose of
softw

are safety
classification, the
softw

are failure
shall be treated as
occurring w

ith
100%

 probability

For each softw
are system

Class C requirem
ents shall

apply until a softw
are

safety class is assigned

Class A
, B or C (H

ighest
severity) iaw

 Figure 3

Prior to the
start of
softw

are
developm

ent
activities

ISO
 14971

T
Q

E

FM
EA

T
Q

E

m
ay b

e u
sed

Figure
5.8:Extractfrom

ISO
62304.3

M
odel

138 Chapter 5 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

Approved
Design

Document
TQ

E

Create Project
Plan(s)

MT

I O

R C

Project
Manager

TQ

E

Estimated
Task

Durations
TQ

E

Figure 5.9: Extract from VF3800 As-Required (Open) Model

The project provided three process documents that were extracted from their
electronic lifecycle management tool:

1. Design System Architecture

2. Elicit Stakeholder Requirements

3. Specify Requirements.

There were no referenced documents in the artefacts provided, and unfortu-
nately, requests for clarification and the provision of further artefacts were unan-
swered. The company confirmed they were overhauling their processes, and that
the artefacts supplied were an accurate representation of their processes in their
current state (as of July 2021), however.

It is clear (from [110]) that the artefacts provided cannot represent the entirety
of the company software safety process lifecycle, and requests were made for
further data. Despite persistent attempts at contact with the project; with requests
for further artefacts, this yielded no results until a point by which the participant
in the project gave notice of their intent to leave their organization. Regrettably,
there was no response from the participant’s successor in the project. As such, no
further modelling or analysis of the VF3800 software safety assurance lifecycle
was undertaken.

Whilst no empirically significant assessment can be made of the organiza-
tion’s processes and inter-relationships between the elements, the model at [110]
further highlights the utility and effectiveness of the framework and process.

Chapter 5 Matthew Steven Osborne 139

Identifying Effective Improvements to Software Safety Practice

5.3 Discussion

This chapter has provided the empirical data from applying the framework and
process to understand software safety engineering practice. he data provided by
the application of the framework supports the two research questions.

Research Question 1 seeks to answer the question of how an organization
can understand its software safety practice. The application of the framework
and process has created models of the organization’s software safety practice,
and this has enabled an understanding of all elements of their practice and the
interrelationships of these elements of practice.

Research Question 2 seeks to answer the question of how an organization can
assess its software safety practice. The application of the framework and process
has revealed internal inconsistencies with the organization’s documented pro-
cesses; inter-team tensions; disagreements between elements of practice; and has
uncovered impediments to achieving software safety practice as-desired. This
data may not have been revealed to the organization had the framework and
process not been followed.

No generalizations are made from the data provided, and it is not possible
to identify any themes from a single application of the framework and processes.
We do not know whether any themes will emerge from future work (see Chapter
7), as any disagreements, discrepancies, or impediments to achieving as-desired
practice for software safety may be localized and pertinent to the organization,
sector, and application.

Chapter 6 now considers the extent to which the research objectives have
been met - by evaluating the framework and process itself.

140 Chapter 5 Matthew Steven Osborne

Chapter 6

Evaluation of the Proposed Process

This chapter aims to establish how far the research undertaken has fulfilled the
research objective and research questions identified in Chapter 2.6.

Research Objective One is to provide a process by which an organization can
understand and assess the disparate elements that constitute their software safety
practice. This objective is met by answering two research questions: how can an
organization understand its software safety practice; and how can an organiza-
tion assess its software safety practice?

These research questions have been answered by the creation of the frame-
work and process for understanding software safety practice. This chapter aims
to present a compelling argument and associated evidence as to the ‘goodness’ of
the framework and associated process.

The framework and process’ ability to allow an organization to understand
and assess software safety practice is evaluated using five success criteria. The
success criteria is derived from the framework design decisions articulated in
Chapter 3, and the non-functional requirements used to select the graphical no-
tation (Chapter 4). Namely, the process:

1. Is complete

2. Is easy to use

3. Represents all elements of software safety practice in a consistent manner

4. Is effective, and

5. Is applicable for use in any safety-critical industry

We will elaborate on what these criteria mean explicitly in the following sec-
tions.

We provide an argument to demonstrate how the research aims and objec-
tives have been met by this thesis. This is shown in Figure 6.1 using Goal Struc-
turing Notation (GSN). Each criterion is represented as a ‘Goal’, and each of these
goals is now considered in turn. The labels in parentheses correspond to the la-
bels in the associated GSN diagram (i.e those shown in Figures 6.2 to 6.7).

141

Identifying Effective Improvements to Software Safety Practice

G0
The Research Aims
and Objectives have
been met

C0
{Research Aims
and Objectives}

S0
Argument by Appeal
to Evaluation
Criteria

G1
The Process is
Complete

G2
The Process is Easy
to Use

G4
The Process is
Effective

G5
The Process is
Applicable for Use in
Any Industry

G3
The Process
Represents all
elements of Practice in
a consistent manner

C0b
The Aims and Objectives
require a process. These
criteria define the goodness
of the created process

Figure 6.1: Thesis Evaluation Criteria

6.1 G1: The Process is Complete

Goal G1 is instantiated by the argument structure at Figure 6.2. The goal that ‘The
Process is Complete’ (G1) is made in the context of what defines ‘completeness’.
In this case, the process is argued to be complete if it covers all elements of soft-
ware safety practice (C1). The need for completeness is justified as impediments
to best practice can occur anywhere in the software safety lifecycle (J1), and it is
argued in Chapter 3 how this 10-step framework and process is complete (J1b).

Goal G1 is divided into an appeal to evaluation by independent experts
(G1.1) and a strategy which appeals to the framework itself (S1).

6.1.1 G1.1 Independent Experts have Found the Process Com-
plete

This goal argues that independent experts have reviewed the process to instanti-
ate the framework, and have provided a scored assessment of the completeness
of the process (‘Evaluation Question EQ1’ at Sn1.1). The scoring of the assess-
ment follows a structured evaluation session - the details of which are at Annex
D.3.

The evaluation question EQ1 asks independent experts (whose careers have
spanned multiple domains and technologies (J1.13)) to annotate their levels of
agreement with the statement “The process considers all elements that together
constitute software safety practice (the 10 ‘steps’ which assert the elements of
software safety practice; the models of practice created; and the assessment of the
models of practice)”. The scoring mechanism used was in the form of a Likert
scale as follows (Context C1.11):

• Fully Disagree (1)

• Somewhat Disagree (2)

142 Chapter 6 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

G
1

T
he

 P
ro

ce
ss

 is
 C

om
pl

et
e

C
1

C
om

pl
et

e:
 c

ov
er

s
al

l
el

em
en

ts
 o

f s
of

tw
ar

e
sa

fe
ty

 p
ra

ct
ic

e

J1 C
om

pl
et

en
es

s
m

at
te

rs

be
ca

us
e

im
pe

di
m

en
ts

 in

pr
ac

tic
e

ca
n

oc
cu

r
an

yw
he

re

J1
.3

.1
P

ee
r

R
ev

ie
w

 o
f t

he
 p

ap
er

,
in

w

hi
ch

 th
e

pr
oc

es
s

is

pr
es

en
te

d
as

 c
ov

er
in

g
al

l
el

em
en

ts
 o

f p
ra

ct
ic

e

S
n

1.
3.

1

C
on

fe
re

nc
e

P
ap

er
S

n
1.

2.
1

(F
ul

l)
C

as
e

S
tu

dy

J1
.2

.1

T
he

 c
om

pl
et

ed
 C

as
e

S
tu

dy

sh
ow

s
co

ve
ra

ge
 o

f a
ll

el
em

en
ts

 b
y

vi
rt

ue
 o

f i
ts

su

cc
es

sf
ul

 c
on

cl
us

io
n

C
h

al
le

n
g

e
1.

13
:

C
om

pl
et

en
es

s
ac

ro
ss

 m
ul

tip
le

do

m
ai

ns
 in

cr
ea

se
s

th
e

st
re

ng
th

 o
f t

he
 a

rg
um

en
t o

ve
r

co
m

pl
et

en
es

s,
 a

s
di

ffe
re

nt
 s

ec
to

rs
 a

nd
 te

ch
no

lo
gi

es

m
ay

 h
av

e
di

ffe
re

nt
 p

ro
ce

du
re

s
an

d/
or

 r
el

at
io

ns
hi

ps

w
hi

ch
 m

ay
 n

ot
 b

e
co

ve
re

d
by

 th
e

pr
oc

es
s.

 A
ny

di

ffe
re

nc
es

 c
ou

ld
 n

ot
 b

e
id

en
tif

ie
d

(o
r

ar
gu

ed
 a

s
no

t
be

in
g

pr
es

en
t)

 in
 a

 s
in

gl
e

ap
pl

ic
at

io
n

in
 o

ne
 d

om
ai

n

S
n

1.
1

E
va

lu
at

io
n

Q
ue

st
io

n
E

Q
1

R
ec

ov
er

ed
 th

ro
ug

h
#F

W
n

(F
ut

ur
e

W
or

k)

re
co

m
m

en
da

tio
n

C
1.

11
E

Q
1

as
ks

 e
xp

er
ts

 to
 s

co
re

 a
nd

co

m
m

en
t o

n
th

e
co

m
pl

et
en

es
s

of

th
e

pr
oc

es
s

(t
ha

t i
t c

ov
er

s
al

l 1
0

st
ep

s
of

 th
e

fr
am

ew
or

k)

J1
.1

3
A

sk
ed

 o
f e

xp
er

ts
 w

ho
se

ca

re
er

s
ha

ve
 s

pa
nn

ed

m
ul

tip
le

 d
om

ai
ns

 a
nd

te

ch
no

lo
gi

es
.

J1
b

T
he

 1
0-

st
ep

 fr
am

ew
or

k
is

co

m
pl

et
e

-
se

e
C

ha
pt

er
 3

G
1.

2
T

he
 P

ro
ce

ss
 c

ov
er

s
al

l
el

em
en

ts
 o

f t
he

 1
0-

st
ep

fr

am
ew

or
k

G
1.

3
T

he
 1

0-
S

te
p

F
ra

m
ew

or
k

is

co
m

pl
et

e

S
n

1.
13

Ju

st
ifi

ca
tio

n
in

 c
ha

pt
er

 3

G
1.

1
In

de
pe

nd
en

t e
xp

er
ts

 h
av

e
fo

un
d

th
e

pr
oc

es
s

co
m

pl
et

e

G
1.

2.
1

C
om

pl
et

ed
 c

as
e

st
ud

y
sh

ow
s

ea
ch

 e
le

m
en

t i
s

co
ve

re
d

G
1.

3.
1

T
he

 fr
am

ew
or

k
ha

s
be

en

in
de

pe
nd

en
tly

 p
ee

r

re
vi

ew
ed

S
1

A
rg

um
en

t o
ve

r
th

e
10

-s
te

p
fr

am
ew

or
k

S
n

1.
3.

2

U
S

P

Jo
ur

na
l

P
ap

er

Fi
gu

re
6.

2:
G

oa
lG

1
-T

he
Pr

oc
es

s
is

C
om

pl
et

e

Chapter 6 Matthew Steven Osborne 143

Identifying Effective Improvements to Software Safety Practice

• Neither Agree / Disagree (3)

• Somewhat Agree (4)

• Fully Agree (5)

No claim is made that this use of the Likert scale to assess the question’s
responses will generate ‘known statistical characteristics’ [108], and the general
weaknesses of the Likert scale are widely-known (such as not being reproducible;
the ability to derive equal overall scores using different question sets; and the
vagaries associated with the interpretation of ‘neutral scores’ [108]).

These potential weaknesses are further compounded in this case by the low
number of respondents - but it would not be feasible in the time constraints of a
single PhD programme to generate enough questionnaire responses (which are
only requested on completion of an evaluation session) to argue statistical sig-
nificance. It is argued that this potential weakness is offset by the use of experts
with a demonstrable record of expertise in multiple domains and applications,
however. Further, no generalizations are made from the question’s responses as
they serve merely as a score against the perceived utility of the framework and
process attributes directly.

Sn1.1

Sn1.1 is the output of Evaluation Question EQ1. Evaluation Question 1 was
scored by the anonymous respondents as follows:

AY8697
AY8697 ’somewhat disagreed’ with the notion that ’the process considers all ele-
ments that together constitute software safety practice’, providing the following
qualifying statement:

"Subsidiary processes, such as quality, configuration management, etc., are not typ-
ically defined in standards or desired practice but are implicitly assumed, yet software
safety is implicitly dependent upon them."

SH27236
SH27236 ’somewhat agreed’ with the notion that ’the process considers all ele-
ments that together constitute software safety engineering practice’, providing
the following qualifying statement:

"It is not clear that the ‘as desired’ would fully capture all relevant aspects – I guess
it comes down to what is understood by ‘practice’ and what is in scope of ‘desired’. Activ-
ities and Artefacts could address aspects such as competence, supply-chain management,
COTS etc, but it is not clear to me that the process inherently captures this without a
reference model for the ‘as desired’."

HH75783
HH75783 ’somewhat agreed’ with the notion that ’the process considers all el-
ements that together constitute software safety engineering practice’, providing

144 Chapter 6 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

the following qualifying statement:

"For this I considered: 1) Tool qual 2) tabular SW quality audit of non-safety OTS
sw 3) goal based assessment 4) CI/CD. I think they all work, 2 may be challenging but I
think shortfall management, limitations on use, justifications for non-compliance all cov-
ered. Step 8 assumes there is a project lifecycle (this may be very poorly defined for some
OTS devices, I could tell some stories)."

It could be that the feedback from AY8697 is not an indictment on the frame-
work and process’ ability to consider all elements that together constitute soft-
ware safety practice, but instead a comment that relates to a perceived weak-
nesses of extant as-required practice. The reasoning behind this assertion is borne
out by the comments from the other two respondents - whose comments also
seem to express difficulties for an analyst to infer the intent of documented prac-
tice. It could also be a failure of EQ1 to clearly ask the right question, but this is
argued not to be the case as the feedback from two of the respondents suggest
the process is capable. Whilst not statistically significant, it provides increased
confidence that Goal G1.1 is met.

The knowledge and experience of the analyst is fundamental to the success-
ful application of this process - not least in the ability of an analyst to observe
what may be missing from an element of practice. This is evident from the feed-
back received.

The argument of what constitutes a SQEP analyst was declared out of scope
in Section 3.2. The need to define the competence and competencies of the analyst
undertaking the process to instantiate the framework is mitigated by recourse to
future work, see Recommendation 1.

6.1.2 Strategy S1 Argument Over the 10-Step Framework

The strategy to appeal to the framework and 10-step process is realized by the
Goals G1.2 and G1.3, and these sub-goals are now considered in turn.

Goal G1.2 The Process Covers all Elements of the 10-Step Framework

This goal is instantiated by arguing that the “Completed Case study Shows each
Element is Covered”. This Goal is achieved by the completion of the illustrative
example detailed in Chapter 5 (Sn1.2.1). The use of this solution is justified as
Chapter 5 shows coverage of all elements of software safety practice by virtue of
its successful conclusion (J1.2.1).

As a challenge (Challenge 1.13 in Figure 6.2), it is argued that ‘completeness’
across multiple domains increases the strength of the argument over complete-
ness, as different sectors and technologies may have different procedures and/or
relationships which may not be covered by the process. Any differences could
not be identified (or argued as not being present) in a single application in one
domain. This is addressed by a recommendation for future work (see Recom-
mendation 3).

Chapter 6 Matthew Steven Osborne 145

Identifying Effective Improvements to Software Safety Practice

Goal G1.3 The 10-Step Framework is Complete

This goal is instantiated by appeal to a solution node and a further sub-goal.
The solution node (Sn1.13) is the justifications made in Chapter 3, specifically
“All existing elements of software safety practice can be mapped onto these three
elements, and whilst it is argued this is necessary, it cannot yet be argued whether
this is complete - although further instantiations of the process will reveal the
levels of confidence in completeness.”

Goal G1.3.1 claims that “The Framework has been Independently Peer Re-
viewed”, and is instantiated by appealing to the published Conference Paper at
[130] (Sn1.3.1) and a peer-reviewed Journal Paper at [128] (Sn1.3.2). These two
solution nodes are justified as being sufficient as the claims over completeness
made therein have been subjected to expert and independent peer review.

6.2 G2: The Process is Easy to Use

Goal G2 is instantiated by the argument structure at Figure 6.3 and is made in the
context that ‘easy’ refers to the framework’s implementation by a software safety
practitioner with at least five years of experience (C2).

This goal is justified in its use as the process will not be adopted by projects
if it is NOT easy to use (J2). Goal G2 is instantiated by appealing to individual
criteria for ‘ease’ (S2) and an assumption that the aggregation of these individual
criteria equates to an ease of use (A2). The criteria for being easy to use are:

1. The process instructions are written in a manner that allows them to be
followed

2. The modelling symbology used in the process is readily understandable

3. The modelling symbology used in the process is readily usable

4. No formal modelling skills are required for the process to be followed

5. The process can be instantiated by anyone with recourse to portable office
applications

6. Independent experts with no prior knowledge of the process were able to
complete the Case Study.

Each individual criterion is argued by the sub-goals G2.1 to G2.6 inclusive.
Each of these goals are now considered in turn.

6.2.1 Goal G2.1 The Process Instructions are Written in a Manner
that Allows them to be Followed

This goal is instantiated by asking experts to to score and comment on their ability
to follow each step of the instructions (Sn2.11 and C2.11). The evaluation ques-
tion EQ6 asks independent experts to annotate their levels of agreement with the
statement “The modelling process instructions are easy to follow (you could fol-
low each step)” using the same Likert Scale as introduced for Goal G1.1.

146 Chapter 6 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

G
2

T
he

 P
ro

ce
ss

 is
 E

as
y

to

U
se

C
2

E
as

y
fo

r
so

ftw
ar

e
sa

fe
ty

pr

ac
tit

io
ne

rs
 w

ith
 a

t
le

as
t 5

 y
ea

rs
 e

xp
er

ie
nc

e

J2 If
th

e
pr

oc
es

s
is

n'
t e

as
y

to

us
e,

 th
en

 it
 w

ill
 n

ot
 b

e
ad

op
te

d
by

 o
rg

an
iz

at
io

ns

S
2

A
rg

um
en

t b
y

A
pp

ea
l

to
 in

di
vi

du
al

 c
rit

er
ia

fo

r
'e

as
e'

G
2.

1
T

he
 P

ro
ce

ss
 in

st
ru

ct
io

ns

ar
e

w
rit

te
n

in
 a

 m
an

ne
r

th
at

 a
llo

w
s

th
em

 to
 b

e
fo

llo
w

ed

G
2.

2
T

he
 m

od
el

lin
g

sy
m

bo
lo

gy

us
ed

 in
 th

e
pr

oc
es

s
is

re

ad
ily

 u
nd

er
st

an
da

bl
e

G
2.

4
N

o
fo

rm
al

 m
od

el
lin

g
sk

ill
s

ar
e

re
qu

ire
d

fo
r

th
e

pr
oc

es
s

to
 b

e
fo

llo
w

ed

G
2.

3
T

he
 m

od
el

lin
g

sy
m

bo
lo

gy

us
ed

 in
 th

e
pr

oc
es

s
is

re

ad
ily

 u
sa

bl
e

S
n

2.
11

E

va
lu

at
io

n
Q

ue
st

io
n

E
Q

6

C
2.

11

E
Q

6
as

ks
 e

xp
er

ts
 to

 s
co

re

an
d

co
m

m
en

t o
n

th
ei

r

ab
ili

ty
 to

 fo
llo

w
 e

ac
h

st
ep

of

 th
e

in
st

ru
ct

io
ns

S
n

2.
21

E

va
lu

at
io

n
Q

ue
st

io
n

E
Q

2

C
2.

21
E

Q
2

&
 3

 a
sk

s
ex

pe
rt

s
to

sc
or

e
an

d
co

m
m

en
t o

n
th

ei
r

ab
ili

ty
 to

 u
nd

er
st

an
d

th
e

di
ffe

re
nt

 s
ha

pe
s

an
d

lin
es

us

ed

S
n

2.
41

E

va
lu

at
io

n
Q

ue
st

io
n

E
Q

4

C
2.

41

E
Q

4
as

ks
 e

xp
er

ts
 to

 s
co

re

an
d

co
m

m
en

t o
n

th
ei

r
ab

ili
ty

to

 im
pl

em
en

t t
he

 p
ro

ce
ss

w
ith

ou
t a

ny
 p

rio
r

kn
ow

le
dg

e
or

 e
xp

er
ie

nc
e

of
 fo

rm
al

m
od

el
lin

g

C
h

al
le

n
g

e
2:

 L
im

ita
tio

ns

of
 L

ik
er

t S
ca

le
 -

 b
ut

 h
ow

th

is
 m

ay
 b

e
m

iti
ga

te
d

so
m

ew
ha

t b
y

th
e

fr
ee

 t
ex

t
bo

x.
..(

an
d

th
e

la
ck

 o
f

st
at

is
tic

al
 s

ig
ni

fic
an

ce
)

A
2

T
he

 c
rit

er
ia

 a
gg

re
ga

te
 to

an

 a
cc

ep
ta

bl
e

de
fin

iti
on

of

 'e
as

e
of

 u
se

'

G
2.

5
T

he
 p

ro
ce

ss
 c

an
 b

e
in

st
an

tia
te

d
by

 a
ny

on
e

w
ith

re

co
ur

se
 to

 p
or

ta
bl

e
of

fic
e

ap
pl

ic
at

io
ns

J2
.5

T
hi

s
go

al
 a

im
s

to
 p

ro
ve

 th
at

re

co
ur

se
 to

 c
om

pl
ex

, p
ro

pr
ie

ta
ry

so

ftw
ar

e
is

 n
ot

 r
eq

ui
re

d
(w

hi
ch

w

ou
ld

 in
hi

bi
t a

do
pt

io
n

of
 th

e
pr

oc
es

s)

S
n

2.
51

E

va
lu

at
io

n
Q

ue
st

io
n

E
Q

5

C
2.

51
E

Q
5

as
ks

 e
xp

er
ts

 to
 s

co
re

 a
nd

co
m

m
en

t o
n

th
ei

r
ab

ili
ty

 to

im
pl

em
en

t t
he

 p
ro

ce
ss

 u
si

ng
 o

nl
y

'b
as

ic
' p

or
ta

bl
e

'O
ffi

ce
-b

as
ed

'

ap
pl

ic
at

io
ns

S
n

2.
31

E

va
lu

at
io

n
Q

ue
st

io
n

E
Q

3

R
ec

ov
er

ed
 th

ro
ug

h
#F

W
n

(F
ut

ur
e

W
or

k)

re
co

m
m

en
da

tio
ns

an

d
ap

pe
al

 to
 th

e
C

as
e

S
tu

dy

(d
es

pi
te

 th
e

lim
ita

tio
ns

 o
f t

ha
t

fo
r

th
is

 c
rit

er
ia

)

J2
.1

1

A
sk

ed
 o

f e
xp

er
ts

 w
ho

se

ca
re

er
s

ha
ve

 s
pa

nn
ed

m

ul
tip

le
 d

om
ai

ns
 a

nd

te
ch

no
lo

gi
es

.

J2
.1

1

A
sk

ed
 o

f e
xp

er
ts

 w
ho

se

ca
re

er
s

ha
ve

 s
pa

nn
ed

m

ul
tip

le
 d

om
ai

ns
 a

nd

te
ch

no
lo

gi
es

.

G
2.

6
In

de
pe

nd
en

t e
xp

er
ts

 w
ith

no

 p
rio

r
kn

ow
le

dg
e

of
 th

e
pr

oc
es

s
w

er
e

ab
le

 to

co
m

pl
et

e
th

e
ca

se
 s

tu
dy

S
n

2.
6

In
de

pe
nd

en
t

ca
se

 s
tu

dy

(x
3)

C
h

al
le

n
g

e
2.

6
O

nl
y

pa
rt

 o
f

th
e

fu
ll

pr
oc

es
s

w
as

in

de
pe

nd
en

tly
 a

pp
lie

d

R
ec

ov
er

ed
 th

ro
ug

h
#F

W
n

(F
ut

ur
e

W
or

k)

re
co

m
m

en
da

tio
n

Fi
gu

re
6.

3:
G

oa
lG

2
-T

he
Pr

oc
es

s
is

Ea
sy

to
U

se

Chapter 6 Matthew Steven Osborne 147

Identifying Effective Improvements to Software Safety Practice

Sn2.11
Sn2.11 is the output of Evaluation Question EQ6. Evaluation Question 6 was
scored by the respondents as follows:

AY8697
AY8697 ’somewhat agreed’ with the notion that ’the modelling process instruc-
tions are easy to follow’, providing the following qualifying statement:

"Standard bits were very easy, but nuances were far more difficult to work out the
best approach, e.g. how selection of activities can be modified via the Safety Management
Plan, which would impact on how the generic process is modelled."

SH27236
SH27236 ’neither agreed nor disagreed’ with the notion that ‘the modelling pro-
cess instructions are easy to follow’, providing the following qualifying state-
ment:

"Only part of Step 2 has been followed so far... too early to tell. It seems like the
scope of application is to software based systems, which is much broader than software
safety engineering. I think it would be helpful to be clearer in the scope – what is included
and what is not."

HH75783
HH75783 ’fully agreed’ with the notion that ‘the modelling process instructions
are easy to follow’, providing the following qualifying statement:

"Yes, but a couple of small examples in the process instructions would be helpful."

AY8697’s comment on the difficulties in establishing the required activities
in an as-required (Closed) process (i.e. the Safety Management Plan) is acknowl-
edged. However, we noted in Chapter 3.1.4 that the process to translate as-
desired practice into as-required practice is not in scope for the framework.

The suggestion to provide examples is of course valid, but an evaluation
design decision was to deliberately not provide anything but the templates and
process instructions for the purpose of independent evaluation. The tutorial in-
cluded examples (see [121]) and an organization would have access to all exam-
ples shown in this thesis when applying the framework and process.

The responses were either positive or neutral. The neutral (neither agree nor
disagree) response was relating to the fact that the respondent hadn’t completed
the full process. This is acknowledged, and somewhat predictable as the design
decision taken was to limit the amount of time and effort we could reasonably
expect potential respondents to commit to. As such it is argued that this evidence
node supports a claim that Goal 2.1 has been met.

148 Chapter 6 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

6.2.2 Goal G2.2 The Modelling Symbology Used in the Process
is Readily Understandable

This goal is instantiated by asking experts to to score and comment on their abil-
ity to understand the different shapes and lines used in the adapted version of
FRAM (Sn2.21 and C2.21). The evaluation question EQ2 asks independent ex-
perts to annotate their levels of agreement with the statement “The modelling
symbology is easy to understand (you knew what the different shapes and lines
represented)” using the same Likert Scale as introduced for Goal G1.1.

Evaluation Question 2 was asked on completion of the second evaluation
session. The completed questionnaires are at Appendix G.

Sn2.21

Sn2.21 is the output of Evaluation Question EQ2. Evaluation Question 2 was
scored by the respondents as follows:

SH27236
SH27236 ’somewhat agreed’ with the notion that ’the modelling symbology is
easy to understand’, providing the following qualifying statement:

"I needed the reference key to remind me – would probably be less required with fre-
quent use, but would likely need a ‘refresh’ after gaps in use."

AY8697
AY8697 ’somewhat agreed’ with the notion that ’the modelling symbology is easy
to understand’, provding the following qualifying statement:

"A key to the attributes would have been useful."

HH75783
HH75783 ’fully agreed’ with the notion that ’the modelling symbology is easy to
understand’, providing the following qualifying statement:

"I understood the symbols and concepts. I needed a key as a reminder for the exer-
cises but once more familiar with the notation am sure would be fine."

The comments and scores are largely positive, and it is clear that the respon-
dents needed to make frequent reference to the supplied key to the symbology
used. With hindsight, the fact that the key to attributes was actually provided to
the respondents should have been made much clearer. This does not detract from
a claim that evidence Sn2.21 supports Goal G2.2, however.

6.2.3 Goal G2.3 The Modelling Symbology Used in the Process
is Readily Usable

This goal is instantiated by asking experts to score and comment on their ability
to use the different shapes and lines required (Sn2.31 and C2.31). The evaluation

Chapter 6 Matthew Steven Osborne 149

Identifying Effective Improvements to Software Safety Practice

question EQ3 asks independent experts to annotate their levels of agreement with
the statement “The modelling symbology is easy to use (you could easily use the
different shapes and lines to construct a model)” using the same Likert Scale as
introduced for Goal G1.1.

Sn2.31

Sn2.31 is the output of Evaluation Question EQ3. Evaluation Question 3 was
scored by the respondents as follows:

SH27236
SH27236 ’neither agreed nor disagreed’ with the notion that ’The modelling sym-
bology is easy to use’, providing the following qualifying statement:

"Wrt EQ3: I found the scope of the models being compared were not the same, and
used different terminology – even where the terms used were the same (or similar) it was
not clear that they meant the same thing."

AY8697
AY8697 ’somewhat agreed’ with the notion that ’The modelling symbology is
easy to use’ providing the following qualifying statement:

"A key to the attributes would have been useful."

HH75783
HH75783 ’fully agreed’ with the notion that ’The modelling symbology is easy to
use’, providing the following qualifying statement:

"I understood the symbols and concepts. I needed a key as a reminder for the exer-
cises but once more familiar with the notation am sure would be fine."

The comments on having a key to the attributes have been discussed for EQ2,
but attention now turns to the comment from SH27236. It is asserted that their
comment is an indictment on the relationships between the disparate elements
of software safety practice, rather than a critique concerning the ease of use of
the modelling symbology. Whilst the issues noted may present complications
when carrying out the framework and process, it is a ’finding’ discovered by the
design intent of the framework and process process, and a potential issue that
the organization should conduct further research on. It is therefore claimed that
evidence node Sn2.31 supports Goal G2.3.

6.2.4 Goal G2.4 No Formal Modelling Skills are Required for the
Process to be Followed

This goal is instantiated by asking experts to to score and comment on their ability
to implement the process without any prior knowledge or experience of formal
modelling (Sn2.41 and C2.41). The evaluation question EQ4 asks independent
experts to annotate their levels of agreement with the statement “The process to

150 Chapter 6 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

model software safety practice can be carried out without any prior knowledge
of formal modelling (i.e. no training in model-based systems engineering was
required)” using the same Likert Scale as introduced for Goal G1.1.

Sn2.41

Sn2.41 is the output of Evaluation Question EQ4. Evaluation Question 4 was
scored by the respondents as follows:

SH27236
SH27236 ’fully agreed’ with the notion that ’the process to model software safety
practice can be carried out without any prior knowledge of formal modelling’,
providing the following qualifying statement:

"The ‘editorial’ aspects of applying colours uses similar skills, but the judgement of
equivalence is a different skillset."

AY8697
AY8697 ’somewhat agreed’ with the notion that ’the process to model software
safety practice can be carried out without any prior knowledge of formal mod-
elling’.

HH75783
HH75783 ’neither agreed nor disagreed’ with the notion that ’the process to model
software safety practice can be carried out without any prior knowledge of for-
mal modelling’. They also made the following qualifying statement:

“Reflecting on this I’m not sure I can answer EQ4 with confidence because I am
familiar with these MBSE concepts?”

A potential weakness of this piece of evidence stems from the possibility
that one or more of the independent experts may have former modelling knowl-
edge. It is argued that this threat to validity is mitigated by both asking the expert
whether anyone could instantiate the process in the absence of formal modelling
skills (i.e. not whether they are personally capable), and that the question relates
to the use of this specific graphical representation (and not formal modelling in
general). Noting that HH75783 was already familiar with the concepts of model
based systems engineering, these responses are still largely positive.

SH27236 notes that the ability to judge equivalence is an entirely different
skillset to that of creating a graphical representation, and is argued to be miti-
gated by recourse to Recommendation 1. It is therefore claimed that evidence
node Sn2.41 supports Goal G2.4.

6.2.5 Goal G2.5 The Process can be Instantiated by Anyone with
Recourse to Portable Office Applications

This goal is instantiated by asking experts to to score and comment on their ability
to implement the process using only ‘basic’ portable ‘Office-based’ applications

Chapter 6 Matthew Steven Osborne 151

Identifying Effective Improvements to Software Safety Practice

(Sn2.51 and C2.51). The evaluation question EQ5 asks independent experts to an-
notate their levels of agreement with the statement “The process can be instanti-
ated by anyone with access to standard ‘Office’ applications (such as Visio, Lucid
Chart, Word, Pages, Google Docs etc.)” using the same Likert Scale as introduced
for Goal G1.1. The use of this goal is justified as it aims to prove that recourse
to complex, proprietary software is not required (which could inhibit adoption of
the framework and process - see the framework design decision made in Chapter
3.1) (J2.5).

Sn2.51

Sn2.51 is the output from Evaluation Question EQ5. Evaluation Question 5 was
scored by the anonymous respondents as follows:

SH27236
SH27236 ’somewhat agreed’ with the notion that ‘the process can be instantiated
by anyone with access to standard ‘Office’ applications’.

AY8697
AY8697 ’neither agreed nor disagreed’ with the notion that ‘the process can be
instantiated by anyone with access to standard ‘Office’ applications’, providing
the following qualifying statement:

"Visio and Lucid charts are not part of our standard office tools. Most people would
probably try to use it in word or powerpoint, which would make it more difficult, I think."

HH75783
HH75783 ’fully agreed’ with the notion that ‘the process can be instantiated by
anyone with access to standard ‘Office’ applications’.

The response from AY8697 is noted, and it is accepted that an organization
would be limited to the tools provided. However, if an organization is commit-
ting substantial resource to understand and assess its software safety practice,
then it is not unreasonable to assume that the project would also commit to a
modest investment associated with software license costs. It is therefore claimed
that evidence node Sn2.51 supports Goal G2.5.

6.2.6 Goal G2.6 Independent Experts with no Prior Knowledge
of the Process were Able to Complete the Case Study

This goal is instantiated by an independent Case Study which was undertaken
separately by independent experts in functional safety. After a tutorial [121], each
expert was given process instructions [120], an excerpt from an Open Standard
[119], and a template of the symbols with which a FRAM model could be com-
piled (sent via email after the tutorial). The three models created by the inde-
pendent experts are found at [122], and it is therefore claimed that evidence node
Sn2.6 fully supports Goal G2.6.

A ‘compliance’ step (i.e. in addition to this comparison step) could also have

152 Chapter 6 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

been carried out in support of Goal G2.6 (i.e. asking the independent experts to
undertake Steps 5 or 6 of the process to understand software safety practice), and
this is a potential limitation of the evaluation. In mitigation, it is argued that the
process steps for comparisons, and the process steps for compliance checks are
sufficiently similar for the purposes of independent evaluation, because:

• Both kinds of steps require the creation of two models

• Both kinds of steps require the comparison of two models

• Both kinds of steps involve a critical assessment

• Both kinds of steps require one of the models to be annotated with a pre-
defined colour-coding scheme.

Further mitigation is also claimed by recourse to future work to apply the
framework and process in full, and to more projects (see Recommendation 4).

6.3 G3: The Process Provides a Way to Represent all
Elements of Practice in a Consistent Manner

Goal G3 is instantiated by the argument structure at Figure 6.4 and is made in
the context that consistent is defined as “done in the same manner” (C3). The
use of this goal is justified as the different elements of software safety practice
must be modelled in a consistent manner to facilitate meaningful comparisons
and evaluations (J3).

Goal G3 is instantiated by appealing to three criteria for ‘consistency’ (S3):

1. The process creates models of each element of practice using consistent ter-
minology

2. The model of each element of software safety practice is created using iden-
tical modelling symbology

3. Independent people produced consistent model representations.

Each individual criterion is argued by the sub-goals G3.1 to G3.3. inclusive.
Each of these sub-goals are now considered in turn.

6.3.1 Goal G3.1 The Process Creates Models of Each Element of
Practice Using Consistent Terminology

This goal is instantiated by both asking experts to score and comment on the con-
sistency of the terminology used in the process (Sn3.1), and by appeal to the out-
puts of Steps 1, 2, 3 and 4 in Chapter 5 (Sn3.1b). The evaluation question EQ12
asks independent experts to annotate their levels of agreement with the state-
ment “The process uses consistent terminology when considering each different
element that constitutes software safety practice” using the same Likert Scale as
introduced for Goal G1.1. Goal G3.1 is claimed in the context of the terms used for
each element of the process and the models (C3.1). The use of this goal is justified
as the different models must be created in a manner that allows for ’like-for-like’
comparison and assessment (J3.2)

Chapter 6 Matthew Steven Osborne 153

Identifying Effective Improvements to Software Safety Practice

G
3

T
he P

rocess provides a
w

ay to represent all
elem

ents of P
ractice in a

consistent m
anner

J3T
he different elem

ents of safety
practice m

ust be m
odelled in a

consistent m
anner to facilitate

m
eaningful com

parisons and
evaluations

C
3

C
onsistent: done in

the sam
e w

ay

S
3

A
rgum

ent by A
ppeal

to individual criteria
for 'consistent'

G
3.1

T
he process creates

m
odels of each elem

ent
of practice using
consistent term

inology

C
3.1

Term
inology - the term

s
used for each elem

ent of
the process and the
m

odels
G

3.2
T

he m
odel of each elem

ent of
softw

are safety practice is created
using identical m

odelling
sym

bology

S
n

3.1b

C
ase S

tudy
S

teps 1, 2,
3 &

 4

S
n

3.1
E

valuation
Q

uestion
E

Q
12

S
n

3.2
E

valuation
Q

uestion
E

Q
13

J3.2
T

he different m
odels m

ust be
created in a m

anner that allow
s

for 'like-for-like' com
parison

and assessm
ent

J3.2
T

he different m
odels m

ust be
created in a m

anner that allow
s

for 'like-for-like' com
parison and

assessm
ent

C
h

allen
g

e 3.1: Lim
itations

of Likert S
cale - but how

this m

ay be m
itigated

som
ew

hat by the free text
box...(and the lack of
statistical significance)

C
h

allen
g

e 3.2: Lim
itations

of Likert S
cale - but how

this m

ay be m
itigated

som
ew

hat by the free text
box...(and the lack of
statistical significance)

C
h

allen
g

e 1.13: C
om

pleteness across m
ultiple

dom
ains increases the strength of the argum

ent over
com

pleteness, as different sectors and technologies
m

ay have different procedures and/or relationships
w

hich m
ay not be covered by the process. A

ny
differences could not be identified (or argued as not
being present) in a single application in one dom

ain

R
ecovered through
#F

W
n (F

uture
W

ork)
recom

m
endation

C
3.1b

E
Q

12 asks experts to score
and com

m
ent on the

consistency of the term
inology

used in the process

J3.1

A
sked of experts w

hose
careers have spanned

m
ultiple dom

ains and
technologies.

J2.11

A
sked of experts w

hose
careers have spanned

m
ultiple dom

ains and
technologies.

C
3.2

E
Q

13 asks experts to
score and com

m
ent on

the consistency of the
m

odelling sym
bology

G
3.3

Independent people
produced consistent
m

odel representations

S
n

23.3
Independent
case study

Figure
6.4:G

oalG
3

-The
Process

Provides
a

W
ay

to
R

epresentallElem
ents

ofPractice
in

a
C

onsistentM
anner

154 Chapter 6 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

Sn3.1

Sn3.1 is the output of Evaluation Question EQ12, and it partially instantiates Goal
G3.1 along with Sn3.1b. Evaluation Question 12 was scored by the anonymized
respondents as follows:

SH27236
SH27236 ‘somewhat agreed’ with the notion that ‘the process uses consistent
terminology when considering each different element that constitutes software
safety practice’, providing the following qualifying statement:

“I found it useful to model at different levels of granularity, This can lead to a hier-
archy of ‘practice’ models being applied across a hierarchy of product architectures and at
differing levels of abstraction. Which works best in a given situation will likely depend
on context and intent of the exercise to ‘understand system safety engineering practice’
and is likely to be a learned skill from experience. Your research may offer an insight into
the validity of this observation.”

AY8697
AY8697 ’fully agreed’ with the notion that ’the process uses consistent terminol-
ogy when considering each different element that constitutes software safety en-
gineering practice’, providing the following qualifying statement:

“The interpretation of nuance in standards or observed practice will lead some people
to model things in different ways to others. I don’t think that can ever be fully resolved,
but this type of standardisation goes a long way towards helping with that!”

HH75783
HH75783 ’fully agreed’ with the notion that ‘the process uses consistent termi-
nology when considering each different element that constitutes software safety
engineering practice’, providing the following qualifying statement:

“I had no difficulty understanding the concepts and terminology.”

The responses and the comments are positive (notwithstanding the com-
ments from SH27236 which again emphasizes the importance of a skilled analyst
for the implementation of this framework and process (see Recommendation 1)).
It is therefore argued that Sn3.1 supports the claim that Goal G3.1 is met.

Sn3.1b

Sn3.1b addresses the outputs of the process Steps 1 to 4 described in Chapter 5:

• STEP 1: produced a set of criteria which, when met will ensure the as-
desired criteria would be met. The criteria was taken from the 4 + 1 Prin-
ciples - which are argued to be “constant across domains and across projects,
and can be regarded as the immutable core of any software safety justification”
[49]. The representation of as-desired practice as a set of criteria is there-
fore argued to be capable of consistent application across domains, using a

Chapter 6 Matthew Steven Osborne 155

Identifying Effective Improvements to Software Safety Practice

consistent terminology in the form of the criteria.

• STEP 2: created a model of an Open Standard, and the model uses consis-
tent terminology - activities which produce and/or consume artefacts, sup-
ported by free text boxes where an artefact is not required.

• STEP 3: created a model of a Closed Standard, and the model uses consis-
tent terminology - activities which produce and/or consume artefacts, sup-
ported by free text boxes where an artefact is not required.

• STEP 4: created a model of practice as-observed, and the model uses consis-
tent terminology - activities which produce and/or consume artefacts, sup-
ported by free text boxes where an artefact is not required.

It is therefore argued that Sn3.1 and Sn3.1b combine to support the claim that
Goal G3.1 has been met.

6.3.2 Goal G3.2 The Model of Each Element of Software Safety
Practice is Created Using Identical Modelling Symbology

This goal is instantiated by asking experts to score and comment on consistency
of the modelling symbology (Sn3.2), and by undertaking and analyzing the out-
puts of Steps 1, 2, 3 and 4 in Chapter 5 (Sn3.1b). The evaluation question EQ13
asks independent experts to annotate their levels of agreement with the statement
“The process creates models whose symbology is consistent across all elements of
software safety engineering practice” using the same Likert Scale as introduced
for Goal G1.1

The goal is claimed in the context of the consistency of the modelling sym-
bology (C3.2).

Sn3.1b

Sn3.1b is the outputs of the process Steps 1 to 4 described in Chapter 5:

• STEP 1: produced a set of criteria, and as such no argument over consis-
tency of modelling symbology can be argued. It is argued that this is NOT
a limitation, as Steps 2 to 4 provide sufficient evidence in support of the
efficacy of this solution node.

• STEP 2: created a model of an Open Standard, and the model used con-
sistent symbology - a hexagon to represent activities; a triangle to represent
artefacts; a rectangle for free text, and single, curved lines to link symbols to-
gether.

• STEP 3: created a model of a Closed Standard, and the model used con-
sistent symbology - a hexagon to represent activities; a triangle to represent
artefacts; a rectangle for free text, and single, curved lines to link symbols to-
gether.

156 Chapter 6 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

• STEP 4: created a model of practice as-observed, and the model used con-
sistent symbology - a hexagon to represent activities; a triangle to represent
artefacts; a rectangle for free text, and single, curved lines to link symbols to-
gether.

Sn3.2

Evidence node Sn3.2 combines with Sn3.1 to meet Goal G3.2. Sn3.2 is the output
of Evaluation Question EQ13 which asks independent experts to annotate their
levels of agreement with the statement “The process creates models whose sym-
bology is consistent across all elements of software safety engineering practice”
using the same Likert Scale as introduced for Goal G1.1. Evaluation Question EQ
13 was scored by the respondents as follows:

SH27236
SH27236 ‘neither agreed nor disagreed’ with the notion that ‘the process cre-
ates models whose symbology is consistent across all elements of software safety
practice’, providing the qualifying statement as stated for Question EQ 12.

AY8697
AY8697 ‘fully agreed’ with the notion that ‘the process creates models whose sym-
bology is consistent across all elements of software safety practice”, providing the
qualifying statement as stated for Question EQ 12.

HH75783
HH75783 ’fully agreed’ with the notion that ‘the process creates models whose
symbology is consistent across all elements of software safety practice.”

These positive responses received therefore contribute to meeting Goal G3.2.
It is therefore argued that Sn3.2 and Sn3.1b combine to support the claim that
Goal G3.2 has been met.

6.3.3 Goal G3.3 Independent People Produced Consistent Model
Representations

This goal is instantiated by direct appeal to the partial Case Study carried out by
experts (Sn3.3). The term ‘consistent’ in this case refers to the equivalence of the
symbology and terminology produced by using the adapted FRAM schema. It
is NOT claiming a ‘repeatability’ of output from the independent experts used in
this evaluation.

Three independent system safety experts were asked to create a model on
two separate occasions, and this modelling was carried out independently and
in isolation. For each of the two modelling tasks, the modelling activity was
preceded by a short tutorial given to the independent experts. The completed
models are found at [122]. Each model is now considered in turn.

Chapter 6 Matthew Steven Osborne 157

Identifying Effective Improvements to Software Safety Practice

Model One

The first modelling task required the independent experts to create a model that
represents a snapshot of as-required (Open) software safety practice.

All three models used the same correct symbology and terminology, and the
‘consistent’ claim is fully supported. There are some differences observed across
the models however, and these are illustrated in Table 6.1. In Table 6.1, amber font
denotes limited agreement, and red font denotes either no agreement or incorrect
modelling (as will now be discussed).

Table 6.1: Evaluation Session One Modelling Outputs Comparison

Activity Aspect AY8697 HH57583 SH27236
Safety
Assessment Input Design

Information - -

Time When info is
available - -

Method
(MooN) from 7
other
activities

- -

Output
Safety
Assessment
Report

- -

Control - - -
Resource - - -

AFHA Input Aircraft
functions

Aircraft
functions -

Time - - -
Method ARP 4754B ARP4761 ARP 4761

Output

Failure
conditions,
effects and
classifications

Failure
conditions,
effects and
classifications;
Assumptions

Assumptions;
Potential
hazards;
Failure
conditions,
effects, and
severity;
Safety
objectives

Control - - -
Resource - - -

PASA Input

Aircraft
architecture;
Failure
conditions,
effects and
classifications;
Proposed
requirements

Failure
conditions,
effects and
classifications;
Proposed
requirements

-

158 Chapter 6 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

Table 6.1: Evaluation Session One Modelling Outputs Comparison

Activity Aspect AY8697 HH57583 SH27236
Time - - Before ASA

Method ARP 4754B

ARP 4761;
Methods
for CCA;
Other
safety analysis
methods

ARP4761;
Qualitative/
Quantitative
safety
analysis
methods

Output

Proposed
aircraft
safety
requirements;
System failure
conditions,
effects,
classifications
and
safety
requirements;
Failure
Conditions and
Safety
Objectives

Assumptions;
FDAL,
safety
requirements,
CCA and
architecture
assignments

Proposed
assumptions;
Proposed
safety
requirements;
independence
requirements;
FDAL

Control - - -

Resource - -

Failure
Conditions;
Safety
objectives;
Proposed
architecture

SFHA Input

System
Functions;
System failure
conditions,
effects,
classifications
and safety
requirements

Failure
conditions and
classifications;
FDAL safety
requirements,
CCA and
architecture
assignments

Crew
awareness;
Flight phase
environmental
conditions;
Operational
considerations

Time - -

Beginning of
system
development
process;
change to
system
functions

Method ARP 4754B ARP4761 ARP 4761

Chapter 6 Matthew Steven Osborne 159

Identifying Effective Improvements to Software Safety Practice

Table 6.1: Evaluation Session One Modelling Outputs Comparison

Activity Aspect AY8697 HH57583 SH27236

Output

Failure
conditions,
effects and
classifications

Assumptions,
Safety
Objectives,
Failure
Conditions
for
functions

Failure
conditions;
Functional
Hazards

Control - - -
Resource - - -

PSSA Input

System
architecture;
Failure
conditions,
effects and
classifications;
Proposed
Requirements

Failure
conditions for
functions;
Safety
objectives

-

Time - - Early phases
of design

Method ARP 4754B

ARP 4761;
Other
safety
analysis
methods

ARP 4761

Output

Failure
conditions,
effects,
classifications,
safety
requirements;
Failure
conditions
and safety
objectives;
Proposed
item
safety
requirements

System safety
requirements
including
IDAL;
FDAL, safety
requirements,
CCA and
architecture
assignments

Proposed
assumptions;
Proposed
safety
requirements;
independence
requirements;
FDAL;
IDAL

Control - - -

Resource - -

Proposed
architecture;
Safety
objectives;
Failure
conditions

160 Chapter 6 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

Table 6.1: Evaluation Session One Modelling Outputs Comparison

Activity Aspect AY8697 HH57583 SH27236

SSA Input

Implementation;
Failure
conditions,
effects,
classifications,
safety
requirements;
Results of
CCA

System safety
requirements
including
IDAL; Safety
Objectives;
FDAL,
safety
requirements,
CCA and
architecture
assignments

-

Time - - -
Method ARP 4754B ARP4761 -

Output Results

Exposure times
to latent
failures;
Analysis results

-

Control - - -

Resource - Implemented
System -

ASA Input

System level
integration
and
verification
evidence;
System
failure
conditions,
effects,
classifications
and safety
requirements,
Results of CCA

Analysis results;
Safety
objectives;
FDAL, safety
requirements,
CCA and
architecture
assignments;
Failure
conditions and
classifications

-

Time - - -
Method ARP 4754B ARP4761 -
Output Results - -
Control - - -
Resource - Complete aircraft -

Chapter 6 Matthew Steven Osborne 161

Identifying Effective Improvements to Software Safety Practice

Table 6.1: Evaluation Session One Modelling Outputs Comparison

Activity Aspect AY8697 HH57583 SH27236

Common Cause
Considerations Input

Aircraft
architecture;
System
failure
conditions,
effects,
classifications
and safety
requirements;
Failure
conditions,
effects,
classifications,
safety
requirements
(PSSA); Failure
conditions and
safety objective
(from safety
objectives)

- -

Time - - -
Method ARP 4761 - -

Output
Proposed
requirements;
Results

- -

Control - - -
Resource - - -

None of the differences identified in the comparison of the three models cre-
ated a challenge to the claim that the process creates consistent models. With few
exceptions, the differences between the models can be categorized either as errors
in modelling, or differences in the levels of detail considered by the respondents
in their respective models.

No respondent’s model considered aspects which control an activity, nor the
resources consumed by an activity (notwithstanding the comments below), and
this is consistent with the extract provided to the three respondents.

In terms of errors, it is noted that AY8697’s model shows that ’ARP 47564B’
is an artefact which supplies the ‘Method’ for the various safety analyses (see the
extract of the model at Figure 6.5). The other two respondents’ models show that
the artefact is in fact ARP 4761 (which is correct). It is argued that this is a form
of typographical error, as the extract given is taken from ARP 4754B, and as such
it would not reference itself. It can be seen from Figure 5.2 that ARP 4761 forms
part of the ARP 4754 suite of standards.

The other observed error is that SH27236 has linked artefacts to the ‘Re-
source’ aspect of safety activities (and not the ‘Input’ aspect). This error can easily
be remedied by recourse to the process steps (or perhaps more training of the an-

162 Chapter 6 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

AFHA

MT

I O

R C

Aircraft functions

TQ

E

Failure conditions,
Effects &

Classifications

TQ

EARP 4754B Para
5.1.1
ARP 4761A
Appendix A

Figure 6.5: Extract from AY8697 Model One

alyst).
Differences in the levels of details between the models also revealed incon-

sistencies - notably SH27236 considered the activities at a much more detailed
level of granularity (perhaps owing to their own experience). AY8697 also cre-
ated some extra activities (compared to the other two respondents) but this again
does not detract from the claim that the process creates consistent models.

No model is entirely the same, and this is perhaps more to do with the va-
garies of Open Standards (as we have discussed in Chapter 2) than the framework
and process to understand software safety practice. To strengthen the claim that
the framework and process to understand software safety practice produces con-
sistent models, each model is now considered in turn.

AY8697
AY8697 produced a model which was centred around the activity “Safety Assess-
ment”. It shows seven safety analysis activities linked to the activity “Safety As-
sessment” as ‘Controls’ in a MooN relationship. These analysis activities should
have been linked to the ‘Method’ activity but this may not be clear enough in the
process instructions (see Recommendation 6).

A red-coloured linking line has been used to connect an artefact with an ac-
tivity, and whilst this is not ontologically correct (in accordance with the process
steps), the use of a ‘?’ suggests this is to signify uncertainty in what is required
by the ARP.

HH75783
HH75783 created a model with five safety analysis activities which develop in
detail and abstraction in a chronological (left to right) manner. The model ‘starts’
with “AFHA” and culminates with the “ASA”. HH75783 noted on the model that
there are many feedback loops in reality - but that they were not shown for clarity
and brevity.

Chapter 6 Matthew Steven Osborne 163

Identifying Effective Improvements to Software Safety Practice

SH27236
SH27236 also considered each safety analysis activity in turn (although some are
in apparent isolation). They applied a great deal of assessment into the consumed
and produced artefacts (more than the other two respondents), and also consid-
ered a number of other activities implied by the ARP.

Model Two

The second modelling task required the independent experts to undertake a com-
parison of as-required (Closed) software safety practice with as-required (Open)
software safety practice. Both models were provided to the respondents as an
‘overlay’ so they did not need to undertake any modelling as a precursor to this
evaluation. Evaluating the attribute of consistency here is relevant only in the
context of attributing the colour-coding required by this process step. Other than
instances discussed below, the three respondents used the colour-coding to anno-
tate the levels of agreement in a manner which supports the claim that the process
produces ‘consistent’ models.

All three respondents found a direct comparison between the model of Open
and Closed practice challenging for the same reasons we articulated in Chapter
5 (i.e. the ARP’s use of different terminology and syntax, and the fact that Com-
pany X’s processes are a mixture of legacy, new, and updated processes). The
three respondents ‘handled’ this in subtly different ways, as we now discuss by
considering each respondent’s model in turn.

AY8697
Although AY8697 used the correct colour coding to denote the levels of agree-
ment between the two models of practice, they coloured the entire artefact/activity
rather than considering each aspect of an activity/artefact in turn. This may be a
misunderstanding of the process required, but it is argued that (when considering
the other two respondent’s models) this is owing to the difficulty in making direct
comparisons between the two models of practice. This once again emphasizes the
importance of having a SQEP analyst undertake this process (see Recommenda-
tion 1). AY8697 also annotated their model with notes to identify the activities
and artefacts which were potentially comparable, or partially comparable.

HH75783
HH75783 used the correct colour coding to denote the levels of agreement be-
tween the two models of practice, and annotated the colour coding scheme to
both the entire artefacts / activities, and to individual aspects as well. It is ar-
gued that the use of this colour-coding scheme is also because of the difficulties
in making a direct comparison. For the instances where a confident comparison
could be made, individual aspects were appropriately coloured. When confident
assertions over a comparison could not be made, the entire activity / artefact has
been coloured. HH75783 also added useful notes to highlight where they sus-
pected deficiencies, or inefficiencies in both models of practice (see the extract of
the model at Figure 6.6). Such data will prove invaluable for Research Questions
3 and 4.

164 Chapter 6 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

SHARD

TQ

E

Software
Hazard Analysis

MT

I O

R C

SW Hazard
Analysis Report

TQ

E

System
Teams

TQ

E

On each identified data
flow to identify potential
breaches of SSSOs
resulting from deviations
in OFP behaviour

Both

Examination
of Critical

Data Flows
TQ

E

These are
considered

comparable to
'integration'

tasks

Figure 6.6: Extract from HH75783 Model One

SH27236
SH27236 used the correct colour coding scheme to denote the levels of agreement
between the two models, but again struggled with making a direct comparison
between the two models. This was confirmed in the ‘return email’ and, as can be
seen from the model, SH27236 only annotated the model where they were con-
fident in a direct comparison. SH27236 used the correct colour coding scheme -
applying it only to the aspects of activities/artefacts.

It is therefore claimed that the evidence from the three respondents (Sn3.3)
supports Goal G3.3 (independent people produced consistent model representa-
tions).

6.4 G4: The Process is Effective at Enabling an Orga-
nization to Identify Impediments to Best Practice

Goal G4 is instantiated by the argument structure at Figure 6.7 and is made in the
context that ’effective’ equates to providing meaningful data relating to potential
impediments to achieving best practice (C4). The use of this Goal is justified as,
for a project to invest time on employing the process, the process must deliver
meaningful data on potential impediments to achieving best practice (J4).

Goal G4 is instantiated by appealing to individual criteria for ‘effectiveness’

Chapter 6 Matthew Steven Osborne 165

Identifying Effective Improvements to Software Safety Practice

G
4

T
he P

rocess is E
ffective at

enabling an organisation to
identify im

pedim
ents to best

practice

C
4

E
ffective: provides m

eaningful
data relating to potential
im

pedim
ents to achieving best

practice

J4F
or an organisation to invest

tim
e on em

ploying the process,
the process m

ust deliver
m

eaningful data on potential
im

pedim
ents to best practice

S
4

A
rgum

ent by
A

ppeal to
individual criteria
for 'effectiveness'

G
4.1

T
he P

rocess facilitates an
understanding of all the different
elem

ents w
hich constitute

softw
are safety practice

G
4.2

T
he P

rocess facilitates an
assessm

ent of the relationships
betw

een the different elem
ents of

softw
are safety practice

G
4.3

T
he P

rocess identifies potential
im

pedim
ents to achieving best

practice for softw
are safety

practice

C
h

allen
g

e 4.1: C
om

pleteness across m
ultiple dom

ains
increases the strength of the argum

ent over com
pleteness, as

different sectors and technologies m
ay have different

procedures and/or relationships w
hich m

ay not be covered by
the process. A

ny differences could not be identified (or
argued as not being present) in a single application in one
dom

ain

S
n

3.1b

C
ase S

tudy
S

teps 1, 2,
3 &

 4

S
n

4.1
E

valuation
Q

uestion
E

Q
8

S
n

4.2
E

valuation
Q

uestion
E

Q
9

S
n

4.2b

C
ase S

tudy
S

teps 5, 6, 7,
8, 9 &

 10

S
n

4.3
E

valuation
Q

uestion
E

Q
10

C
h

allen
g

e 3.1: Lim
itations

of Likert S
cale - but how

this m

ay be m
itigated

som
ew

hat by the free text
box...(and the lack of
statistical significance)

C
h

allen
g

e 3.1: Lim
itations

of Likert S
cale - but how

this m

ay be m
itigated

som
ew

hat by the free text
box...(and the lack of
statistical significance)

R
ecovered through
#F

W
n (F

uture
W

ork)
recom

m
endation J4.3

A
sked of experts w

hose
careers have spanned m

ultiple

dom
ains and technologies.

C
4.3

E
Q

10 asks experts to score
and com

m
ent on the ability

of the process to identify
potential im

pedim
ents

J4.3
A

sked of experts w
hose

careers have spanned
m

ultiple dom
ains and

technologies.

C
4.2

E
Q

9 asks experts to score

and com
m

ent on the
ability of the process to

allow
 com

parisons
betw

een elem
ents of

practice to be m
ade

C
4.1

E
Q

8 asks experts to score and

com
m

ent on the ability of the
process to create an
understanding of softw

are

safety practice

Figure
6.7:G

oalG
4

-The
Process

is
Effective

atEnabling
an

O
rganisation

to
Identify

Im
pedim

ents
to

BestPractice

166 Chapter 6 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

(S4). The criteria for effectiveness are:

1. The process facilitates an understanding of all the different elements which
constitute software safety practice

2. The process facilitates an assessment of the relationships between the dif-
ferent elements of software safety practice

3. The process identifies potential impediments to achieving best practice for
software safety practice.

Each individual criterion is argued by the sub-goals G4.1 to G4.3. inclusive.
Each goal is now considered in turn.

6.4.1 Goal G4.1 The Process Facilitates an Understanding of all
the Different Elements which Constitute Software Safety
Practice

This Goal is instantiated by asking experts to score and comment on the ability
of the process to create an understanding of software safety practice (Sn4.1 and
C4.1), and by the outputs of Steps 1, 2, 3 and 4 in Chapter 5 (Sn3.1b). Evaluation
question EQ8 asks independent experts to annotate their levels of agreement with
the statement “Using the modelling process allows me to understand all elements
of software safety practice” using the same Likert Scale as introduced for Goal
G1.1.

Sn4.1

Sn4.1 is one half of the supporting evidence in support of claiming Goal G4.1 is
met. Sn 4.1 is the output of Evaluation Question EQ8. Evaluation Question EQ8
was scored by the anonymous respondents as follows:

SH27236
SH27236 ‘somewhat disagreed’ with the notion that ‘using the modelling process
allows me to understand all elements of software safety practice’, providing the
following qualifying statement:

“My main ‘disagreement’ is with the ‘all’ part of the statement. There are benefits in
making explicit an interpretation of written processes and standards. I take ‘practice’ to
mean what is actually performed in an instantiation of those processes to realise satisfac-
tion of a standard. I can see no step in the evaluation that deals with completeness.”

AY8697
AY8697 ‘somewhat agreed’ with the notion that ‘using the modelling process al-
lows me to understand all elements of software safety practice’, providing the
following qualifying statement:

“The two ‘as required’ models are pitched at different levels. The standard is at rel-
atively high level, but the closed model is much more detailed. For example, recording

Chapter 6 Matthew Steven Osborne 167

Identifying Effective Improvements to Software Safety Practice

outcomes in a database is far too low level for the ‘open’ model. Hence the implied com-
pleteness of ‘all elements’ is difficult to ascertain.”

HH75783
HH75783 ’fully agreed’ with the notion that ‘using the modelling process allows
me to understand all elements of software safety engineering practice’, providing
the following qualifying statement:

“The modelling helps me understand how individual processes works. Interpretation
is needed where there are mismatches in levels of abstraction.”

The negative and neutral responses received are argued to be a limitation
of the way on which the evaluation questions and evaluation instructions were
phrased. It should have been made clearer to the respondents that they were
asked to “also consider applications and technologies not covered by the artefacts
we provided you with (i.e. from experience throughout your career), and don’t
restrict your response to just the artefacts sent to you.”

It is claimed that the qualifying statements and the results from the third
respondent enable a limited claim to be made that Sn4.1 supports Goal G4.1

Sn3.1b

Sn3.1b is the other half of the evidence which combines to satisfy Goal G4.1.
Sn3.1b represents the outputs of the process steps one to four described in Chap-
ter 5:

• STEP 1: produced a model of as-desired software safety practice in the form
of a set of criteria which all (other) elements of software safety practice must
meet

• STEP 2: produced a model of as-required (Open) software safety practice.

• STEP 3: produced a model of as-required (Closed) practice

• STEP 4: produced a model of as-observed software safety practice.

Whilst it can be argued that all existing elements of software safety practice
can be mapped onto these three elements, it cannot yet be argued whether these
three elements represent the full range of software safety practice. Further in-
stantiations of the process will reveal the levels of confidence in completeness,
(see Recommendation 3).

6.4.2 Goal G4.2 The Process Facilitates an Assessment of the Re-
lationships Between the Different Elements of Software
Safety Practice

This goal is instantiated by both asking experts to score and comment on the abil-
ity of the process to allow comparisons between elements of practice to be made
(Sn4.2 and C4.2), and by undertaking and analyzing the outputs of Steps 5, 6, 7,

168 Chapter 6 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

8, 9 and 10 in Chapter 5 (Sn4.2b). The evaluation question EQ9 asks independent
experts to annotate their levels of agreement with the statement “Using the mod-
elling process allows me to assess all aspects of software safety practice (through
comparisons between the elements of practice and their relationships)” using the
same Likert Scale as introduced for Goal G1.1.

Sn4.2

Sn4.2 is one half of the supporting evidence in support of claiming Goal G4.2. is
met. Sn 4.2 is the output of evaluation question EQ9. Evaluation question EQ9
was scored by the anonymous respondents as follows:

SH27236
SH27236 ‘somewhat disagreed’ with the notion that ‘using the modelling process
allows me to assess all aspects of software safety practice.’ They also made the
qualifying statement discussed under Goal G4.1.

AY8697
AY8697 ‘somewhat agreed’ with the notion that ‘using the modelling process al-
lows me to assess all aspects of software safety practice.’ They also made the
qualifying statement discussed under Goal G4.1.

HH75783
HH75783 ’somewhat agreed’ with the notion that ‘using the modelling process
allows me to assess all aspects of software safety practice.’ They also made the
qualifying statement discussed under Goal G4.1.

Following the discussions in Goal G4.1, and in combination with the neu-
trally positive responses from respondents, it is argued that Sn4.2 meets its con-
tribution to Goal G4.2.

Sn4.2b

Sn4.2b is the other half of the evidence which combines to satisfy Goal G4.2.
Sn4.2b represents the outputs of process steps five to ten in Chapter 5:

• STEP 5: produced a comparison (compliance check) between software safety
practice as-required (Closed) and software safety practice as-desired.

• STEP 6: produced a comparison (compliance check) between software safety
practice as-required (Open) and software safety practice as-desired.

• STEP 7: produced a comparison between software safety practice as-observed
and software safety practice as-required (Closed).

• STEP 8: produced a comparison between software safety practice as-required
(Open) and software safety practice as-required (Closed).

• STEP 9: assessed whether the model of software safety-practice as-observed
revealed activities which were additional and/or different from software
safety practice as-required.

Chapter 6 Matthew Steven Osborne 169

Identifying Effective Improvements to Software Safety Practice

• STEP 10: assessed whether the model of software safety practice as-observed
revealed activities which would appeal to an open standard which was not
influencing / informing software safety practice as-required (Closed).

It is therefore argued that Sn4.2 and Sn4.2b combine to show Goal G4.2 has
been met.

6.4.3 Goal G4.3 The Process Identifies Potential Impediments to
Achieving Best Practice for Software Safety Practice

This Goal is instantiated by asking experts to score and comment on the ability of
the process to identify potential impediments (Sn4.3 and C4.3), and by undertak-
ing and analyzing the outputs of Steps 5, 6, 7, 8, 9 and 10 in Chapter 5 (Sn4.2b).
The evaluation question EQ10 asks independent experts to annotate their lev-
els of agreement with the statement “The process to understand software safety
practice will help to identify potential impediments to achieving best practice for
software safety” using the same Likert Scale as introduced for Goal G1.1.

Sn4.2b

Goal G4.3 is partially constituted by the outputs of process steps five to ten in
Chapter 5:

• STEP 5: produced a comparison (compliance check) between software safety
practice as-required (Closed) and software safety practice as-desired. The
revealed potential deficiencies are discussed in Chapter 5.1.5.

• STEP 6: produced a comparison (compliance check) between software safety
practice as-required (Open) and software safety practice as-desired. The re-
vealed potential deficiencies are discussed in Chapter 5.1.6.

• STEP 7: produced a comparison between software safety practice as-observed
and software safety practice as-required (Closed). The potential discrepan-
cies are discussed in Chapter 5.1.7.

• STEP 8: produced a comparison between software safety practice as-required
(Open) and software safety practice as-required (Closed). The potential dis-
crepancies are discussed in Chapter 5.1.8.

• STEP 9: assessed whether the model of software safety-practice as-observed
revealed activities which were additional and/or different from software
safety practice as-required. The observations made as a result of this step
are contained in Chapter 5.1.9.

• STEP 10: assessed whether the model of software safety practice as-observed
revealed activities which would appeal to an open standard which was not
influencing / informing software safety practice as-required (Closed). The
observation made as a result of this step is contained in Chapter 5.1.10.

170 Chapter 6 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

Sn4.3

Sn4.3 is the other half of the evidence which combines to satisfy Goal G4.3. Sn4.3
is the output of evaluation question EQ10. Evaluation Question EQ10 was scored
by the respondents as follows:

AY8697
AY8697 ‘fully agreed’ with the notion that ‘the process to understand software
safety practice will help to identify potential impediments to achieving best prac-
tice for software safety’. They also made the qualifying statement discussed un-
der Goal 5.

HH75783
HH75783 ‘somewhat agreed’ with the notion that ‘the process to understand soft-
ware safety practice will help to identify potential impediments to achieving best
practice for software safety’.

SH27236
HH75783 ‘somewhat agreed’ with the notion that ‘the process to understand soft-
ware safety practice will help to identify potential impediments to achieving best
practice for software safety’.

It is therefore argued that Sn4.2b and Sn4.3 combine to show Goal G4.3 has
been met.

6.5 Goal G5 The Process is Applicable for Use in any
Industry

Goal G5 is instantiated by the argument structure in Figure 6.8. Goal G5 is instan-
tiated by direct appeal to two evidence nodes - Sn5 and Sn5b.

Sn5

Sn5 is one half of the supporting evidence in support of claiming Goal G5 is met.
Sn5 is the output of Evaluation Question EQ11 which asks independent experts to
annotate their levels of agreement with the statement “The process to understand
software safety engineering practice can be used for any industry and any tech-
nological application” using the same Likert Scale as introduced for Goal G1.1.
Evaluation Question EQ11 was scored by the respondents as follows:

AY8697
AY8697 ‘neither agreed nor disagreed’ with the notion that ‘the process to under-
stand software safety engineering practice can be used for any industry and any
technological application’, providing the following qualifying statement:

“Theoretically, I believe it could be applied to all industries and applications, how-
ever, the nature of some industries, where process is low priority, would make it very
difficult to apply. I think its fair to say that it should be able to be used effectively for all

Chapter 6 Matthew Steven Osborne 171

Identifying Effective Improvements to Software Safety Practice

G5
The Process is Applicable for Use
in Any Industry

Sn5
Evaluation

Question
EQ11

Sn5.b

Future Work
Recc 2 and 3

C5
EQ11 asks experts to score and
comment on the pan-industry
applicability of the process

J2.11

Asked of experts whose
careers have spanned
multiple domains and
technologies.

Figure 6.8: Goal G1 - The Process is Applicable for Use in Any Industry

safety involved industries!”

HH75783
HH75783 ‘somewhat agreed’ with the notion that ‘the process to understand soft-
ware safety engineering practice can be used for any industry and any technolog-
ical application’, providing the following qualifying statement:

“As noted in detailed comments, I’m not sure if there’s an assumption about the sw
developer originally being in the SC domain or using an open standard for their develop-
ment.”

SH27236
SH27236 ‘somewhat agreed’ with the notion that ‘the process to understand soft-
ware safety engineering practice can be used for any industry and any technolog-
ical application’.

These responses are neutrally positive, and the respondents have also pro-
vided some interesting comments. Taking AY8697’s observation that the nature
of practice in some industries may prove problematic for this framework and pro-
cess, the final part of their comment suggests it should be applied within those in-
dustries. This suggests the issues lie within the industry and not with the frame-
work and process itself. Any organization must of course wish to understand its
software safety practice in the first place, and no ‘external process’ can be forced
upon a non-receptive audience.

HH75783’s comment on the possibility that there is an assumption that the
‘sw developer’ (taken to mean the project rather than an individual) is ‘originally
in the SC domain’ is interesting, but the framework and process is not exclusively

172 Chapter 6 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

designed for industries operating in any specific industry. The framework and
process has been designed to contribute to the improvement of software safety
practice in any industry where software may contribute to system hazards (either
directly in a causal chain, or by preventing the mitigation of a hazard). This is
discussed in Section 1.2, but was not made explicitly clear to the respondents.
This doesn’t answer the second part of the comment relating to whether a project
uses an Open Standard or not, however. It is hard to envisage a project where
software contributes to a hazard, and where some form of Open Standard would
not be used during the design and build phase (as Open Standards are not limited
to specific safety concerns). Should such a project exist, then they would simply
not be able to follow the entire process (i.e. Steps 2, 6, 8, and 10 would be ‘null’).
It is argued that this does not detract from the ability to use the framework and
process in any industry (notwithstanding the outcomes from ‘future work’ which
are considered in Chapter 7).

Sn5b

Sn5 is the other half of the supporting evidence for claiming Goal G5 is met.
The future work evidence will not be available within the timescale of this PhD,
naturally.

It is argued that despite the inevitable lag in gathering the data from future
instantiations, there is confidence in the combination of evidence nodes Sn5 and
Sn5b to support a claim that Goal G5 is met. Other than completing multiple
studies simultaneously with the instantiation of the framework and process (see
Chapter 5) there is no other (current) means of arguing the claim of applicability
further.

6.6 Summary

We have argued that the argument outlined at Figure 6.1 is a compelling defence
that the Research Objective has been met, because, despite the noted potential
limitations:

1. The process is complete. Supported by:

(a) Evaluation by independent experts

(b) Argument over the 10-step process,

(c) An illustrative example of the process being instantiated, and

(d) Publication of Conference and Journal papers.

2. The process is easy to use. Supported by:

(a) Evaluation by independent experts, and

(b) An independent Case Study.

3. The process represents all elements of software safety practice in a consis-
tent manner. Supported by:

(a) Evaluation by independent experts,

Chapter 6 Matthew Steven Osborne 173

Identifying Effective Improvements to Software Safety Practice

(b) An illustrative example of the process being instantiated, and

(c) An independent Case Study.

4. The process is effective. Supported by:

(a) Evaluation by independent experts

(b) An illustrative example of the process being instantiated, and

(c) An independent Case Study.

5. The process is applicable for use in any industry. Supported by:

(a) Evaluation by independent experts

(b) Appeal to Future Work recommendations.

6.7 Empirical Research Evaluation

“An inherent problem with a scientific approach to safety is that it appears to be difficult
to devise unambiguous experiments to determine whether safety programmes, interven-
tions, concepts, or optimisations actually work (and there is an insurmountable set of
practical and ethical problems involved in the study of interventions)” [157].

As a science, there are steps we can take to understand the current state of
safety practice, however. This chapter has argued over the ’goodness’ of our
novel framework and process to understand existing software safety practice.
Having evaluated the framework and process for ‘goodness’, attention now turns
to an evaluation of the empirical research methodology. We now consider in turn
the use of graphical representation, and the modelling process itself.

6.7.1 Graphical Representation

FRAM was selected as the most appropriate modelling tool because it was the
best fit for both the functional and non-functional requirements (see Chapter 4).
The motivation to use an open-source software package had an unforeseen con-
sequence, however. Two publicly-available software applications were used to
build the models of software safety practice during the period of research - Mi-
crosoft’s Visio, and then Lucid’s Lucidchart.

As the models of software safety practice grew in size, a text-based word
search was often used to locate relevant activities and artefacts for the purpose of
comparison. The text-based search functions of both software programmes were
found to be lacking, however. Words or phrases which were visible in a current
screen view would not be found by the two applications’ ‘search’ function, which
eroded confidence in the thoroughness of the search returns.

Once identified, this issue was mitigated by a manual search which was
time-consuming. This is a potential impediment to the utility and widespread
adoption of the framework and process in its current guise, but it is argued to be
mitigated by appeal to future work - see Recommendation 2.

174 Chapter 6 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

6.7.2 Modelling Process

The data gathered during the empirical research revealed a plethora of artefacts
which - although listed in the reference section of the provided processes and
plans - where not supplied by the participating project. The decision to include
these as ‘Referenced Artefacts’ (using an inverted colour scheme) was discussed
in Chapter 4.5, but the positioning of these artefacts were based only on the
knowledge and experience of the author.

Whilst we retain confidence in the benefits and relationships of the ‘Refer-
enced Artefacts’, there is a risk that the models of as-required (Closed) practice
may not be complete and correct. This is mitigated by appeal to the fact that
the participating organization (see Chapter 5) was supplied the models of their
practice, and confirmation that the models were accurate representations was re-
ceived. An additional step to ask the participating organization to supply refer-
enced documents could serve to mitigate the risk of having incomplete models,
however - see Recommendation 7.

In Chapter 3.1 it was noted that, when transforming elements of software
safety practice into a graphical representation, it could be challenged that all such
representations are simply a form of ‘Work as Imagined’ [58]. Whilst this is a po-
tential weakness of the framework and process, if we are to be able to understand
and assess software safety practice then we need to transform each element of
practice into comparable models that describe each element as accurately as pos-
sible, and this is a necessary compromise.

In the feedback after Session 1 of the independent evaluation, SH27236 noted
that they could “see benefits from the modelling”, but that they could “see challenges
in understanding the objective of modelling, the fidelity required – and the degree of com-
pleteness needed to achieve a ‘safety’ focused outcome.” This is a valid point, and an
aphorism often attributed to George Box suggests that “all models are wrong,
some are useful”. Any model of practice will only be useful if the objective of the
modelling is clear, and the fidelity is appropriate for the desired outcome.

SH27236 also observed that they had “worked with some large generic process
models designed to be tailored to the specific context (and most safety standards and in-
house management systems are created in this mould). There is a real skill in capturing
these in a way that conveys clearly the intent whilst also enabling the flexibility – I’m not
sure that any of the cases I’ve seen have got it correct – but some are useful...I think the
success of the approach will come down to the practical relevance of the findings that can
be extracted from the ‘understanding’ that the approach enables.” Although perhaps
not made explicitly clear to the respondents, the process requires the analyst to
consider the required attributes (aspects) of each activity and artefact. The colour
coding scheme also notes that ‘green’ can signify an appropriate level of detail
is considered, OR that no consideration is required for that aspect. The decision
made by the analyst in this regard is reliant on their skills and experience however
(see Recommendation 1).

Two or more people may create different models of software safety practice
from the same textual artefact (indeed this was apparent in the models created
by the independent experts who participated in the evaluation. As noted by
SH27236, some Open Standards are goal-based (and sometimes contain vague
language (see Appendix A) for example). This leads to different interpretations
of what practice should constitute. That two or more people could produce dif-

Chapter 6 Matthew Steven Osborne 175

Identifying Effective Improvements to Software Safety Practice

ferent interpretations of the same process artefact is a critique of the efficacy of
the Open Standard, however - and not of the framework and process for under-
standing software safety practice.

The limitations of Open Standards are discussed further in Chapter 6.8.2
when considering data gleaned from the early stages of the empirical research.

6.8 Analyzing the Empirical Data

This section now evaluates the findings from each step of the process, and consid-
ers whether the models produced by each step were sufficient to facilitate analy-
sis.

6.8.1 Software Safety Practice As Desired

Step 1 of the process required a model of software safety practice to be created
which was both tangible and measurable. The relating representation had to be
either a graphical representation of as-desired practice, or a set of measurable
criteria which could then be used to assess the other elements of software safety
practice for compliance.

The produced output was a set of criteria which was predicated on the 4+1
Principles for software safety assurance [53], [49]. Whilst these principles are
well-established in both academia and in practice, the unique contribution of this
thesis is the creation of a set of tangible, and measurable criteria against which
other elements of software safety practice can be measured.

6.8.2 Software Safety Practice As Required (Open)

The initial design decision was to create a model of ‘best practice’ predicated and
built upon three Open Standards. Although this initial direction revealed some
interesting data, it no longer forms part of the framework and process to under-
stand software safety practice. It nevertheless provides a valuable contribution to
knowledge regarding the efficacy and usefulness of current Open Standards, and
an insight into how standards committees’ intent is articulated in textual form.

Recognized good practice for software safety assurance is currently expressed
in the form of functional safety lifecycles depicted by Open Standards such as BS
EN 61508 [13] and ARP 4754A [147], and the initial objective for the first part
of the empirical research was to create a ‘metamodel’ or ‘supermodel’ of avail-
able standards. To meet this objective, a design decision was taken to model a
representation of ‘best practice’ using the denoted activities and methods therein
described.

The design decision taken to meet this objective was to select three Open
Standards ([13], [147], and [14]), and taking each standard in turn model the life-
cycle both as depicted pictorially (typically a flow chart or ‘V’model), and as con-
veyed by the accompanying and supporting text. The decision to undertake the
modelling in two distinct steps was predicated on an observation that the main
text of the standards do not necessarily match the simplistic overview portrayed
by the visual representation – and often contradicts and / or confuses it (which

176 Chapter 6 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

may in itself suggest an impediment).
Each standard was to be compared to the wider state of academic literature,

enabling the identification of any potential shortfalls, vagaries, or disagreements
between the standards and the literature – with each subsequent standard im-
proving on the shortfalls, and mitigating the vagaries of the last.

On completion, further recourse to academic literature and personal experi-
ence would be made to eliminate any residual shortfalls, and clarify any remain-
ing vagaries. This ‘supermodel’ of best practice would then be offered for review
and feedback as a lifecycle representation that may be considered a referenceable
benchmark in support of the empirical research.

As the data produced by Step 2 highlights, the processes and practices re-
quired of Open Standards cannot defensibly be asserted to constitute best practice
for software safety, and an alternative strategy had to be adopted as the model of
practice was already unwieldy (for which there are many different reasons). For
example, even though ARP 4754A relies heavily on sister publications such as
ARP 4761 for safety activities, and child publications such as DO178C and DO254
for the assurance of software and complex electronic hardware respectively, its
model of required practice still resulted in a large monolithic model which had
to be divided into multiple layers of abstraction. Even with the division of the
model, it was still unwieldy, and undertaking focused searches was cumbersome
(see Recommendation 2).

Despite the monolithic nature of the ARP 4754A model, the process required
to create it revealed interesting data. The full list of findings is found at Annex A,
and some findings relate to the following potential issues which otherwise may
not have been revealed had the framework and process not been followed:

• The standard majors on the establishment of an overarching intent, but is
lacking in any detailed guidance or mandated / recommended activities

• Throughout the standard, the stipulation of what constitutes ‘recommended
practice’ is avoided – offering what can only be described as ‘helpful ad-
vice’, but without making any stipulations on whether / how it would be
beneficial to follow it

• In many cases, a list of recommendations is offered with a caveat that they
may not, in fact, constitute best practice

• Although the standard offers a brief insight in the constituent parts of each
methodology, it stops short of discussing which methods / techniques are
more suited / appropriate.

Even though the created model is somewhat sparse in detail (i.e. the at-
tributes of an activity are not considered fully), and not always internally consis-
tent, this may be owing to an incorrect interpretation by the author. However,
because the standard is written in a manner which is open to interpretation a
subjective interpretation which manifests as a graphical representation cannot, in
fact, be ‘wrong’. “All models are wrong, some are useful.”

Step 2 of the process (Chapter 5) produced the model of software safety prac-
tice required by ARP4754A - for which the accompanying model is at [111], and
the accompanying report is at Appendix A. As the report highlights, there are

Chapter 6 Matthew Steven Osborne 177

Identifying Effective Improvements to Software Safety Practice

issues with the standard, and there exists the potential for readers to arrive at
different interpretations. However, everything within the ARP was able to be
modelled using the notation described in Chapter 4. The model revealed poten-
tial impediments to achieving software safety best practice, but these may have
been left reasonably to as-observed practice.

6.8.3 Software Safety Practice As Required (Closed)

The model of software safety practice as-required (Closed) was predicated on
the eight artefacts supplied by JB61834. The model of this element of practice
was shared with the organization to confirm its accuracy. JB61834 confirmed the
model was an accurate representation of their practice.

JB61834 also informed us that they intended to use the model to inform an
upcoming Training Needs Analysis. This is an additional benefit of the frame-
work and process which was not anticipated at the onset of this research.

6.8.4 Software Safety Practice As Observed

As noted in Chapter 5, an ethnographic study was not carried out, and the model
of this element of practice is more accurately described as ‘Software Safety Prac-
tice As Disclosed’ (see Recommendation 5).

The transcripts from the two respondents have been redacted, as some as-
pects of the recorded conversations may have revealed the organization and /
or the respondent. The redaction does not detriment the quality of the data as
suitable non-specific terminology has replaced the redacted aspects.

The process to create the model of as-disclosed practice (as a proxy for as-
observed practice) revealed interesting data, including some interesting poten-
tial issues, but initial caution and care must be taken with the data until such a
time that further, follow-up investigations have taken place with the organization
(RQ3 and RQ4). Caution is required as the data gathered is only as-disclosed by
the respondents, and we cannot yet know whether the data is subjective, opinion-
based, biased, or motivated by other non-altruistic means.

Biases may exist in the data gathered from the respondents. The presence of
such biases would represent an interesting finding in its own right, and would
merit further follow-up investigations regardless. The full findings are discussed
in Chapter 5, with the transcripts contained at [127], and some data findings in-
clude the following potential issues which otherwise may not have been revealed
had our novel framework and process not been followed:

• Some activities inferred by the respondents are not found in the process
artefacts supplied by the organization

• Decisions (and the rationale behind them) which impacted how require-
ments were derived and apportioned were not always recorded formally

• Discrepancies between as-required and as-observed practice appear to exist

• The management of safety requirements is not always robust, and is some-
times performed informally

178 Chapter 6 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

• Quantifiable targets are apportioned by mathematically simple means

• If an existing item is incapable of meeting safety targets, the targets are ad-
justed and reapportioned elsewhere on a purely mathematical basis

• There exists a disconnect between customer requirements and supplier ca-
pability

• There exists a knowledge management risk - (one of corporate knowledge
retention) as some important knowledge appears to be held by a single in-
dividual

• The documentary artefacts provided were either too sparse or too full

• It is asserted by respondents that successful delivery of safe products is
achieved by people, and not process

• Engineers are not confident in the appropriateness of, nor the guidance
within the organization’s associated as-required (Open) standards

• Inter-team tensions exist between the system engineering and software en-
gineering teams.

6.8.5 Comparison between Software Safety Practice As Required
(Closed) and Software Safety Practice As Desired

The annotated model which denotes the comparison between software safety
practice as-required (Closed) and software safety practice as-desired was carried
out using Step 5 of the process (see Chapter 5), and revealed further interesting
data. The creation of this model was made possible by the creation of the as-
desired criteria - against which any other element of software safety practice can
be assessed for compliance.

Only the criteria for the first principle of as-desired software safety practice
was assessed for this step, and this was for three reasons. The first reason is the
limitation of time in a single PhD programme - as the modelling and comparison
is time- and resource-intensive. Linked to the rationale over time, the second rea-
son is efficiency. Whilst carrying out compliance checks for all principles would
reveal more data, the proof of concept is not improved by the creation of more
models and their data. The third and final reason is one of efficacy. As the model
of as-required (closed) practice had already revealed potential deficiencies (which
may be recovered by practice as-observed), it was already discovered that soft-
ware safety practice as-required (Closed) would not be capable of meeting the
as-desired criteria.

The outputs and associated findings from this step are found in Chapter
5.1.5, with the full assessment contained in Annex C.5. Some findings include
the following potential issues which may otherwise not have been revealed had
our novel framework and process not been followed:

• With a single exception, the first principle can be inferred to be met by as-
required (Closed) practice, but the process artefacts do not state explicitly
how the required information will be generated

Chapter 6 Matthew Steven Osborne 179

Identifying Effective Improvements to Software Safety Practice

• Process artefacts present options for which activities could be carried out,
but stop short of defining a selection criteria. None of the required attributes
of any outputs are stated either

• There exists a disconnect between system- and software-level activities

• Potential deficiencies in compliance with the Principle 1 criteria have been
identified

• The required quality attributes of software safety requirements cannot be
argued to have been met by following the as-required (Closed) activities
alone

• The process steps for the activities contain a mixture of tenses (past, present,
and future) as they consider processes, design decisions, and intentions.
This is likely due to the length of time the project has been running for

• Activities are described in terms of what must be done, but not always how

• Descriptions of different testing methods are provided, along with perceived
advantages and disadvantages of each. What isn’t provided is a basis of se-
lection

• Continued (albeit limited) compliance with Principle 1 is currently reliant
on the retention of a small number of key individuals who hold pertinent
knowledge implicitly.

6.8.6 Comparison between Software Safety Practice As Required
(Open) and Software Safety Practice As Desired

The annotated model which denotes the comparison between software safety
practice as-required (Open) and software safety practice as-desired was carried
out using Step 6 of the process (see Chapter 5), and revealed further interesting
data. The creation of this model was made possible by the creation of the as-
desired criteria - against which any other element of software safety practice may
be assessed for compliance.

Only the criteria for the first Principle was assessed for this step for the same
three reasons argued over in the consideration of the comparison between as-
required (Closed) practice, and practice as-desired.

The outputs and associated findings from this step are found in Chapter
5.1.6, with the full assessment contained in Annex B.7. Findings include the fol-
lowing potential issues which may otherwise not have been revealed had our
novel framework and process not been followed:

• There is no definitive, identifiable artefact created by the as-required (Open)
practice which would clearly identify the software contained within a sys-
tem

• Any one of six artefacts required to be produced by the as-required (Open)
practice may contain the context of the system in which the software will
reside - but there are potential issues identified with each artefact

180 Chapter 6 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

• Although two artefacts are produced which will contain a clear description
of the system in which the software will reside, these artefacts are not pro-
duced until late in the development lifecycle.

• The as-required (Open) lifecycle will not produce a single ‘point of truth’ in
which the system hazards are identified, contained, and managed

• It must be assumed that sister publications are used to identify the system
hazards at the software boundary

• There is no clear link between system hazards and specific failure modes

• No claim can be made as to the specification of software safety requirements
elicited in mitigation of system hazards

• No process exists for the careful management of software safety require-
ments.

It must be noted however, that any potential impediment may be reasonably
be left to practice as-required (Closed) practice or as-observed.

6.8.7 Comparison between Software Safety Practice As Observed
and Software Safety Practice As Required (Open)

The annotated model which denotes the comparison between software safety
practice as-observed and software safety practice as-required (Open) was carried
out using Step 7 of the process (see Chapter 5), and revealed further interesting
data.

Only the criteria for the first Principle was assessed for this step for the same
three reasons argued over in the consideration of the comparison between as-
required (Closed) practice, and practice as-desired.

The outputs and associated findings from this step are found in Chapter
5.1.7. Findings include the following potential issues which may otherwise not
have been revealed had our novel framework and process not been followed:

• The data revealed potential issues with both elements of practice, but these
cannot be confirmed without recourse to follow-up investigations with the
project

• The data required for assessing compliance with Principle 1 was so sparse
that further, extensive searches where undertaken. This is not a weakness
of the process, however. This extensive search could have reasonably been
left to future follow-up work, but was instead undertaken with the aim of
proving the efficacy and utility of Step 7

• There is a mismatch between the two elements of practice with regard to
the management of Safety Cases

• There is a potential mismatch between the two models of practice in terms
of the abstraction-level at which activities and artefacts are discussed. This
may be owing to colloquial terms used by the respondents, however.

Chapter 6 Matthew Steven Osborne 181

Identifying Effective Improvements to Software Safety Practice

• Assertions as to who the hazard owner is differs between the two models
of practice

• Step 5 of the process revealed potential issues which may have been reason-
ably left to the as-observed element of software safety practice to recover.
None of the issues were recovered however, and so must now be considered
as issues which require further follow-up work

• Once activities and artefacts required for compliance with as-desired prac-
tice had been separated from the monolithic models, a number of activi-
ties and artefacts remained ‘unused’ from a safety perspective. Even after
aspects such as certification are considered, activities and artefacts remain
’unused’, and these are perhaps superfluous, or even examples of safety
clutter [136]. This is found for all comparison steps, and the ability of the
framework and process to reveal such issues is indicative of the usefulness
of it.

6.8.8 Comparison Between Software Safety Practice As Required
(Open) and Software Safety Practice As Required (Closed)

The annotated model which denotes the comparison between software safety
practice as-required (Open) and software safety practice as-required (Closed) was
carried out using Step 8 of the process (see Chapter 5), and revealed further in-
teresting data.

The outputs and associated findings from this step are found in Chapter
5.1.8. Findings include the following potential issues which may otherwise not
have been revealed had our novel framework and process not been followed:

• JB61834 do not have a Platform-level element of their practice in their pro-
cess artefacts, but make assumptions about the completeness and correct-
ness of the safety analyses undertaken at the Platform-level, and the result-
ing safety requirements derived by the System-level processes

• It is not possible to overlay both models of practice as a direct comparison.
There are two reasons for this. The first reason is the terminology and syn-
tax used are divergent. The second reason is that JB61834’s lifeycle artefacts
are constituted by a mixture of both legacy and updated processes. This
is not a weakness of the process, however, as the activities and artefacts
in both elements of practice are unlikely to be identically-named, and the
levels of abstraction will often differ. Whilst the extra modelling activities
required to facilitate this comparison is labour-intensive, it is a necessary
part of the process for understanding and assessing software safety practice

• After Step 2 a number of potential issues with the ARP’s ability to meet the
as-desired criteria where identified. These potential issues could be left rea-
sonably to organizational practice. These potential issues are not recovered
by the as-required (Closed) practice, however

• Instances of no-agreement between the two elements of practice were iden-
tified

182 Chapter 6 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

• Whilst the JB61834 lifecycle has the Hazard Log as a singe point of truth
for safety data, the ARP makes no recourse to a Hazard Log, nor similar
artefact

• Neither element of practice considers the resources required to perform
safety activities (nor their required quality attributes). This cannot be left
to as-observed practice to determine

• Neither element of practice considers the time or phase by which the system
safety analyses should be completed by. This cannot be left to as-observed
practice to determine

• It is also acknowledged that any potential issues may be incurred by the
inability to precisely overlay the models of both elements of practice. This
is mitigated by appeal to follow-up work to confirm their existence.

It is acknowledged that the issues and potential issues identified by this step
could be due to the full range of as-required (Closed) process artefacts not be-
ing delivered. This is mitigated by both the fact that the model of as-required
(Closed) practice was reviewed by the organization for completeness and correct-
ness; and that the existence of any further process artefacts should be revealed as
part of any follow-up work. It is also acknowledged that any potential issues
may be incurred by the inability to precisely overlay the models of both elements
of practice. This is mitigated by appeal to follow-up work with the organization
to confirm their existence (neither of which is in scope for this PhD).

After the first evaluation session, HH75783 queried whether all organiza-
tions would use Open Standards to influence or inform the development of a
project’s development - citing an occasion in the nuclear industry where this was
absent. Their comment was in reference to a ‘smart device’ of low integrity re-
quirements (‘below SIL 1’) which was procured from a ‘small company’. The
assertion was that such sub-contracted organisations may not have a significant
suite of practices (as-required (Closed)). We have discussed whether some projects
may not have such practice in Chapter 6.5, and the issue of safety assuring indi-
vidual components is not precluded by this framework and process (in fact it
supports it fully). HH75783 in fact concluded by noting that “I think what you
propose works fine in this situation.”

AY8697 found this comparison step “much more difficult than the initial mod-
elling task”, noting that:

“trying to articulate an equivalence between a number of tasks in the closed standard
to parts of one or more activity in the open model was tricky. That is as much a challenge
of the two processes rather than a challenge of the modelling, but you could almost do with
rearranging the models to group together comparable activities visually, perhaps directly
under each other, during the comparison. I wonder if that might make it easier? Wish I’d
tried that now!”

It is acknowledged that this evaluation step was more challenging - and we
discuss this very issue in Chapter 5. It is reassuring that the respondent acknowl-
edges this is more owing to the nuances of the models rather than the framework
and process itself.

Chapter 6 Matthew Steven Osborne 183

Identifying Effective Improvements to Software Safety Practice

HH75783 noted that:

“It was hard to separate criticising (or praising!) individual processes from assess-
ing differences between them. I’m not very familiar with the ARP which may have slowed
me down. I’ve done a lot of comparisons of internal sw processes to standards. There are
usually strengths and weaknesses and sometimes those don’t matter in context. For ex-
ample, WCET analysis not done but the system isn’t time critical. Or lacking separate
requirements document from a manual/design diagrams when the sw has existed for a
long time. The latter can be okay for generating tests in some circumstances. In step 8
task 4 – reasons for why they are different, does the process thinking about whether it
matters that they are different? (I think this is different than comparing the as observed
but you may well have covered it).”

This comment both emphasizes the potential issues with Open Standards
which we have discussed, and also notes the importance of understanding the
‘discipline’ in the process steps. The steps have been designed to only require
an analyst to (in this case) note (rather than posit the reasons for) any differences
observed - leaving the discovery of the rationale to RQ3 and RQ4. It is argued
that this is commentary in support of the framework and process rather than a
critique necessitating a form of corrective action.

SH27236 made similar comments to HH75783, noting:

“the evaluation doesn’t seem to handle well the differing purposes, abstraction levels
(hierarchy and conceptual) or non-like-for-like models. Standards may be goal based or
prescriptive, and may be a step on the path between legislation/regulation (which are in-
herently very abstract and non-specific) to tasking at the coal face. Standards tend to set
out to avoid constraint on the detail of implementation – deliberately so to permit inno-
vation, and to allow application to a broad spectrum of real world problems. I think it is
inevitable that there will be disconnects between the four nodes of the diamond, because
they are doing different things. The modelling seems to have some benefits in understand-
ing self-consistency and coherence of any one of the nodes, but the relationship between
them is more complex that a traffic light rating can communicate”.

The purpose of Step 8 (within the constraints of Research Questions 1 and 2)
is to identify levels of agreement in order that further investigations can occur as
part of Research Questions 3 and 4; and in the context of the outputs of all process
steps. This doesn’t detract from the observations made by SH27236, who high-
lights nuances with various Open Standards (as we have discussed in Chapters 2
and 5).

The concern raised over comparing non ‘like-for like’ models is valid. For ex-
ample, a goal-based Open Standard could not be readily overlaid with a model of
organizational practice which had been established as a set of activities in a safety
lifecycle. This can be remedied by inserting optional steps in the process to define
and use a set of criteria for goal-based (Open) standards - see Recommendation
8.

184 Chapter 6 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

6.8.9 Comparison of Software Safety Practice As Observed with
Software Safety Practice As Desired

Although no ethnographic study was carried out, responses from the as-disclosed
interviews did reveal two instances which may be examples of as-observed prac-
tice deviating from as-required practice in an attempt to comply with as-desired
practice. It is possible that without carrying out this process to understand and
assess software safety practice, that these potential instances may not have been
revealed.

The first potential instance concerned an assertion from the respondents that
existing processes for the management of requirements is not robust, and would
attempt to formalise the process if they were ‘starting over’. The second poten-
tial instance concerned the local changes made to the software safety elicitation
process as a result of mid-life upgrades - which was not reflected in an update in
the as-required process artefacts.

Further follow up work is required to confirm these two potential instances,
and it is acknowledged that further explicit instances may have been revealed,
had a full ethnographic study been carried out. See Recommendation 5.

6.8.10 Comparison of Software Safety Practice As Observed with
Software Safety Practice As Required (Open)

Whilst application of the process to understand software safety practice have
revealed difficulties and issues with complying with Open Standards (includ-
ing suppliers making appeal to different Open Standards), no instances of as-
observed working to a different Open Standard were identified.

Instances may have been revealed if a full ethnographic study had been car-
ried out (see Recommendation 6), but it is argued that the lack of identified in-
stances is not an indication on the utility of the process, merely that nothing was
found on this occasion.

The data produced by applying the framework and process to understand
and assess software safety practice meets the thesis aims and the research ob-
jective. Although some threats to the validity of data have been identified (and
discussed next), these threats have been successfully mitigated by appeal to both
claims made in this chapter and to recommendations for future work (see Chap-
ter 7).

6.8.11 Validity of Data

The illustrative example in Chapter 5 has demonstrated the efficacy and useful-
ness of the framework and process to understand and assess software safety prac-
tice, and has revealed useful data for the organization under assessment. The use-
fulness of this data relates to identified and potential impediments to the achieve-
ment of good practice for the organization. Further research is required by the or-
ganization to determine whether and how one or more elements of their software
safety practice needs to change.

Notwithstanding the successful application of the framework and process to
understand and assess software safety practice, it has only been applied to one

Chapter 6 Matthew Steven Osborne 185

Identifying Effective Improvements to Software Safety Practice

organization and project in one sector. The claim of successful application and
claims over ease of use, completeness, effectiveness, and pan-industry applica-
bility would have been stronger if an independent researcher had applied the
framework and process concurrently to another project in a different sector. This
was neither a realistic nor viable option for a single PhD programme, but it is ar-
gued that this threat to validity is mitigated by the independent evaluation, and
by appeal to future work at Recommendation 3.

Threats to the validity of data gathered during the illustrative example in
Chapter 5 may also exist and these are now discussed - along with a discussion
on limitations of the process.

The strategy for the empirical research involved the creation (adaptation) of
a graphical representation that facilitated an understanding and subsequent as-
sessment of software safety practice. Whilst not predicated on a formal ontology
with robust claims over its modelling capabilities, the chosen graphical represen-
tation was selected not only to facilitate the modelling of the aspects of software
safety practice we had identified, but also to promote widespread use and under-
standing.

There may be more appropriate modelling tools or ontologies that exist or are
in the process of being created, but we remain unaware of their existence. Whilst
we argue that modified FRAM best suited the needs of the empirical research, we
do not mandate its use however, and encourage others to use graphical represen-
tations and modelling tool(s) that best suits their needs.

The modelling aspects of the empirical research was undertaken using a non-
judgemental perspective with the aim of representing process as written and / or
described. One can never argue reasonably over the subjective interpretation of
textual or oral descriptions, however.

To mitigate this threat to validity, we could have employed an independent
researcher to carry out the exact modelling and analysis in tandem, before com-
paring and contrasting the results. Such an approach would more than double
the effort of the research activities (which would not be commensurate with the
timeframe of a single PhD programme), and would perhaps only serve to com-
pare the subjective personas of the independent researchers. As such we argue
this threat to validity is mitigated by the independent evaluation, and the publi-
cation of our results in peer-reviewed journals.

Empirical data relating to work as-observed (and its relationship with work
as-required and as-desired) was gathered through interviews with representa-
tives of the organization which submitted their software safety process artefacts
for analysis. The representatives were a software engineer with system safety
responsibilities, and a safety engineer with the role of assessing software’s con-
tribution to system safety.

Ideally, the evaluation of work as-observed would have been borne out of a
comprehensive ethnographic study that independently and objectively observed
software safety practice over an extended period of time (and with a team of
impartial assessors). Whilst we recommend this is undertaken (Recommendation
5), it was not possible within the remit of a single PhD research programme.

Extracting data from interviews poses risks to the validity of data (and hence
any inferences made from it), as it is entirely possible that external factors may
have influenced the responses from the respondents. Such factors include those

186 Chapter 6 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

that may be self-imposed on the interviewee (a reluctance to self-incriminate, po-
tentially sensitive responses, or any biases held by the respondent).

External influencing factors may also have influenced the responses from the
respondents. These could range from restrictions associated with commercially
sensitive data, Intellectual Property Rights concerns, though to formal constraints
placed on the interviews by the organization (which we are unaware of).

In mitigation, we took care to avoid any leading questions, and questions
that could have hinted at the identification of the organization (whose identity
we have taken all reasonable steps to protect throughout this research).

We could also have embarked on a formal Pilot Study of the interviews ahead
of the research into work as-observed, but this would have required either an-
other demand for time from the projects (in the form of extra interviews) who
had supplied their process for scrutiny (which was not palatable); or a fabricated
interview with a colleague. It is argued that this would have yielded little benefit
- as the questions where not ‘closed’ (and no claim at arguing statistical signifi-
cance is made anyway). A Pilot Study does allow one to test (and adjust) a series
of questions, in order that any biases can be eliminated, but as our interviews em-
anated from a single initiating request, it was assessed that there was no benefits
to be gained from a Pilot Study.

Notwithstanding these argued mitigations and rationale, it would be invalu-
able to compare our analysis of this empirical data with that realised by a full
ethnographic study. Such a study would also be hugely beneficial in accurately
identifying any issues with software safety practice at large (see Recommenda-
tion 5).

6.9 Coda

The modelling process is labour-intensive. The modelling phases of the research
took almost 2-years (part time) to complete. However, all elements of software
safety practice must be modelled, understood, and assessed if we are to truly
improve software safety practice. Failure to do so will likely manifest in further
years of effort wasted ’fiddling with the edges’ of practice, with little or no tan-
gible improvements in software safety practice. Further work is needed to make
the modelling process as efficient as possible, however.

The graphical notation selection process pointed to FRAM as the best fit for
both the needs of the process, and the non-functional requirements we estab-
lished to promote maximal use across industry sectors and technologies. The
trade-off between maximal use and the detriments manifest in a publicly-available
tool for creating models which has probably been skewed in favour of widespread
use over a reliable search function. Whilst the framework and process could be
abstracted up to general safety engineering, its focus in this thesis is firmly on
software safety practice.

Comparing a proposal with existing frameworks and processes is a common
way to evaluate the efficiency of a proposal. Unfortunately, we are not aware of
the existence of a framework and associated process to understand and assess
any form of safety (or indeed any engineering) practice. The proposed frame-
work and instantiation of the framework and process was focussed on software

Chapter 6 Matthew Steven Osborne 187

Identifying Effective Improvements to Software Safety Practice

safety practice of the project. Independent evaluation involved very experienced
software safety assurance practitioners and researchers. It is accepted that a full
ethnographic study has not been completed, and there are good reasons why this
would be an appropriate next step. However, there are many reasons why an
organisation would not wish to participate in an ethnographic study. We discov-
ered this when trying to convince even one organisation to participate. Perhaps
these reasons are some or all of the following:

• (Perceived) cost

• Concerns about Intellectual Property Rights

• Security concerns

• Disenchantment with safety science and safety research

• Not wishing to ‘air one’s dirty linen in public’

• Perceived and real gaps (and attitude issues) between safety science and
safety practice

• Ethnography is not always appropriate. This may be true for any cognitive
processes; and

• Observing any form of safety activity moderates behaviour.

We encourage organizations to instantiate this framework and process, as:

• For a field of research to move forward, each new project or paper must
strive to change what has come before – adding, synthesising, testing, tear-
ing down or making anew [135]

• There is systemic pressure placed on researchers to ground their work in
untested models, reductionist categories, and proxy measurements, rather
than on direct observation and sophisticated analysis of real people doing
real work in real organisations [135]. This reduces the uptake of such re-
search by industry and perpetuates a “credibility gap”

• "The work of...designers and software developers is complex" [135]. Ap-
plying the proposed process may allow an organisation to draw broader
conclusions about how it supports design workers in creating safe designs.
That is the remit of safety science [135]

• "Describing” encompasses much more than raw data collection. Safety sci-
ence researchers have addressed the use of descriptive research. In [134],
[135], [136] they indicate that descriptive research encompasses:

Making direct and indirect observations of the thing being studied. This
needs a wide range of data collection methods;

Analyzing and modelling the thing being studied; and

Assessing and evaluating the thing being studied.

188 Chapter 6 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

Safety science descriptive research [134], [135], [136] indicates that:

• Most empirical data problems in safety science (i.e. generation of, and ac-
cess to) arise from an inability by researchers to directly observe the phe-
nomena that they are interested in measuring

• If data generated by researchers is merely a re-representation of work-as-
imagined, we can never really see the problems that we are trying to de-
scribe

• A researcher observing work should look at the relationships between prac-
tices, how these practices are produced and re-produced, what their under-
lying assumptions and meanings are, and what this might imply in terms of
workplace tensions and power relations. None of this is possible, however,
without observing what is going on

• One model of safety work in organizations proposed that safety activities
fulfil broader political and social needs, in addition to the reduction of safety
risk. If this is true then the nature of these needs and whether they are being
met must be uncovered and understood by organisations

• Repeated observations of front-line activities enable safety professionals to
identify operational changes and probe the potential for normalization of
deviance.

In the development and evaluation of the proposal in this thesis we have
employed these safety science descriptive research findings This chapter has con-
tributed by undertaking an evaluation of the application of the proposed frame-
work and process to understand and assess software safety practice. The combi-
nation of evidence provided, and recommendations for future work combine to
argue the ’goodness’ of the framework and process. It is argued that the frame-
work and process is complete, straight forward to use, and represents all elements
of software safety practice consistently. It is effective, and applicable for use in
any industry.

Chapter 6 Matthew Steven Osborne 189

Chapter 7

Conclusions and Recommendations
for Future Work

7.1 Conclusions

The thesis now concludes with a commentary on what the work has achieved,
and by making recommendations for future work. These recommendations are
not weaknesses of the thesis, but are argued to be a natural step in advancing the
research which started with this PhD programme. They may also be considered
as steps to recovering gaps in the current state of research into how software
safety practice can be improved. The recommendations represent a call to action
for all safety science and safety engineering researchers - including the author.

The thesis aim stated in Chapter 1 was to provide a framework through
which an organization can gain an understanding of the elements which con-
stitute their software safety practice, and a process by which that organization
can therefore understand and assess its software safety practice. The aim has
been met by fulfilling the research objective, which has in turn, been met through
answering the two research questions. The research objective and research ques-
tions were derived after identifying the gaps in the literature highlighted in Chap-
ter 2. The research objective has been met by answering the following two re-
search questions:

• RQ1 How can an organization understand its software safety practice?

• RQ2 How can an organization assess its software safety practice?

7.1.1 The Framework and Process

An organization can understand and assess its software safety practice by using
our framework to establish the elements which constitute their software safety

190

Identifying Effective Improvements to Software Safety Practice

practice. The framework establishes the relationships between the elements of
the organization’s software safety practice. Our novel process provides the step-
by-step instructions to guide an organization through the activities required to
understand and assess their software safety practice. Following our novel pro-
cess will enable an organization to identify potential, and appropriately-distal
impediments to the achievement of best practice for software safety.

The successful implementation of the process is dependent on an organiza-
tion utilizing a skilled analyst who possesses the necessary skills and experience.
The competence and competencies required of an organization’s analyst to suc-
cessfully implement the process has not been considered by this thesis, however.
See Recommendation 1.

Completion of our novel process will elicit data which is presented in a for-
mat which supports the organization in undertaking further work. This further
work is necessary to complete the process in its entirety, and is carried out in three
stages. The first stage of work is to carry out investigations to confirm the pres-
ence of any potential impediments which have been elicited during the process
to understand and assess software safety practice. The second stage of work re-
quired is to perform mitigation research to identify the mechanisms by which
any confirmed impediments to best practice for software safety can be elimi-
nated. Such mechanisms must first be assessed for any unintended consequences
in other elements of software safety practice. The third stage of work is to repeat
relevant steps of the process to understand and assess software safety practice.
This is important, as an organization must confirm the impediments have been
removed, and must update the models of practice so they can be maintained ef-
fectively. The process to undertake these final stages are provided in this thesis,
but have not been evaluated as part of this empirical research.

Whilst these latter three stages have not been implemented in the illustrative
example in this thesis, we can take confidence in their efficacy and utility from the
independent evaluation. Notwithstanding this confidence held, it is important
to implement fully the final three stages of the process. This work will meet
Research Objective 2 (provide a process by which a project can identify potential
impediments to achieving best practice for software safety practice, in a manner
that gives confidence that any potential impediments are appropriately-distal,
and enables effective remedies to be derived), and will be fulfilled by answering
the remaining two research questions:

• RQ3 How can an organization identify true impediments (i.e. appropriately-
distal) to achieving best practice for its software safety practice?

• RQ4 How can an organization derive effective mitigations for the identified
impediments to software safety engineering best practice?

Answering Research Questions 3 and 4 will be fulfilled by completing Future
Work Activity 1.

Chapter 7 Matthew Steven Osborne 191

Identifying Effective Improvements to Software Safety Practice

7.1.2 Process Enablers

Having argued that a graphical notation would be a key enabler of the process to
understand and assess software safety practice, we carried out research into the
available graphical and modelling notations and tools which could be used (with
or without adaptation) for the framework and process. The selected notation
was an adapted version of FRAM, and this was selected as it provided the best
fit for both the needs of the process, and the non-functional requirements we
established to promote maximal use across industry.

The use of our adapted version of FRAM is not without its challenges, how-
ever. In Chapter 6.7.1, it is noted that a sub-optimal text-based search function
in the software programmes resulted in reduced confidence in the totality of the
models created as a result of the comparison and compliance checks. See Recom-
mendation 2.

7.1.3 Illustrative Example

An illustrative example has been completed which implements fully the frame-
work and process to understand and assess software safety practice. The data
produced by the process has revealed areas of disagreement between elements of
software safety practice; levels of non-compliance with as-desired criteria; prac-
tice carried out which is not in accordance with the latest documentary artefacts;
and potential deviations from the organizational lifecycle of activities. This data
is argued to support the claims as to the usefulness and efficacy of the process to
understand software safety practice.

7.1.4 Thesis Evaluation

We have evaluated the framework and process, and have used Goal Structuring
Notation to argue by inference how the disparate evidence sources contribute to
successfully arguing that the framework and process to understand and assess
software safety practice is:

• Complete

• Easy to use

• Represents all elements of software safety practice in a consistent manner

• Effective, and

• Applicable for use in any industry.

The evaluation of the thesis has revealed some areas of potential weakness,
but it is argued that these can be mitigated by appeal to further recommendations

192 Chapter 7 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

for future work. These further recommendations for future work are considered
under themes, and their consideration completes the thesis.

7.1.5 Pan-industry Applicability

In Section 6.1.2, Challenge 1.13 notes that ‘completeness’ across multiple domains
increases the strength of the argument over completeness, as different sectors
and technologies may have different procedures and/or relationships which may
not be covered by the process. They also note that any differences could not be
identified (or argued as not being present) in a single application in one domain.
See Recommendation 3.

7.1.6 Independent Evaluation

In Section 6.2.6 it was noted that the independent evaluation may be limited by
not asking the respondents to carry out a process step which required levels of
compliance to be assessed (i.e. Steps 5 and 6 of the process). See Recommendation
4.

7.1.7 Software Safety Practice As-Observed

In Chapter 6, and throughout the thesis it is noted that as-observed practice has
not been assessed explicitly, as an ethnographic study has not been carried out.
See Recommendation 5.

7.1.8 Process Instructions

In Chapter 6, it is noted that the process instructions may not have been as clear,
nor as explicit as possible (leading to small deviations in the intended outputs
from the modelling steps). See Recommendation 6.

In Chapter 6.7.2 it is noted that a risk to the completeness of the completed
models exists if ‘referenced’ artefacts are not received and assessed for their util-
ity. See Recommendation 7.

7.1.9 Comparing Software Safety Practice As-Required

In Chapter 6.8.8 it was noted that the framework and process would not cope
well when comparing organizational practice with an Open Standard which was
goal-based (as the two models could not be simply overlayed and compared). See

Chapter 7 Matthew Steven Osborne 193

Identifying Effective Improvements to Software Safety Practice

Recommendation 8.

The thesis now concludes by listing the recommendations and asserting the
future work activity for the author.

7.2 Recommendations

7.2.1 Recommendation 1

In Section 3.2 it was stated that the argument of what constitutes a SQEP individ-
ual is outside of the scope of this research. The need to establish the skills and
experience of an analyst implementing this process is reinforced by the feedback
of independent reviewers, however (see Chapter 6). Recommendation 1 is there-
fore to determine the competence and competencies [129] required of an analyst
to successfully implement our framework and process to understand and assess
a project’s software safety practice.

Competence and competencies should be determined to ensure the analyst
possesses at least the following:

• Expert1 knowledge of software safety practice (Chapters 3, and 6.7.2)

• Expert appreciation on what attributes (aspects) are required of software
safety activities and supporting / produced artefacts (Chapter 6.7.2)

• Expert knowledge of the different names for software safety activities used
throughout and pan-industry (Chapter 6.8.8)

7.2.2 Recommendation 2

Recommendation 2 is to assess whether any proprietary software modelling pack-
ages, or formal modelling tools would render a more effective search function in
support of the framework and process to understand software safety practice.
Any assessment must also take into account the functional and non-functional
criteria specified in Chapter 4 to assess whether each criterion remains valid.

7.2.3 Recommendation 3

Recommendation 3 is to apply the framework and process to understand and
assess software safety practice to more domains (other than the military air do-

1For definitions of expert (Level 3), practitioner (Level 2), and supervised practitioner (Level
1) see [1].

194 Chapter 7 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

main). This is to increase confidence in the completeness of the framework and
process.

7.2.4 Recommendation 4

Recommendation 4 is to apply the framework and process in full to more projects.
This will increase the confidence in the ease of use of the framework and process
to understand and assess software safety practice.

7.2.5 Recommendation 5

Recommendation 5 is to carry out a full ethnographic study of software safety
practice as-observed, and use this model of practice to facilitate all associated
comparison and conformance steps (Steps 7, 9, and 10).

7.2.6 Recommendation 6

Recommendation 6 is to review the process instructions for instantiating the frame-
work and process to understand software safety practice. Changes to the process
instructions should be tested in a Pilot Study before embarking on Recommenda-
tion 3 and Recommendation 4.

7.2.7 Recommendation 7

Recommendation 7 is to add a step in the process to understand software safety
practice which suggests the analyst asks the project under assessment to provide
any further pertinent artefacts.

7.2.8 Recommendation 8

Recommendation 8 is to add an optional process instruction to use when a goal-
based as-required (Closed) element of practice is used. Should a goal-based stan-
dard be used, then optional steps should be inserted into the following (current)
process steps:

• Step 2: insert instructions as to how as-required practice can be established
as a set of criteria predicated on the goals denoted in the Open Standard

• Step 6: insert instructions as to how the criteria established in the optional
instructions for Step 2 can be compared with the as-desired criteria. This

Chapter 7 Matthew Steven Osborne 195

Identifying Effective Improvements to Software Safety Practice

should use the same schema as per Steps 7 and 8 in the extant process in-
structions

• Step 8: insert instructions as to how organizational practice can be com-
pared to a goal-based Open Standard. These optional process instructions
should ‘mirror’ Step 1 (i.e. defining a set of criteria against which a project
should demonstrate conformance against). This changes Step 8 from one of
comparison to one of conformance.

Step 1 (defining as-desired practice is unaffected), as it is already using crite-
ria derived from a set of principles - and these principles are already ‘goals’.

Step 3 (and resulting comparisons and conformance checks associated with
it) cannot be changed, as it is not appropriate to have goal-based instructions at
an organizational level. Should an organization have goal-based processes estab-
lished, then a process of converting the goals into activities capable of instanti-
ation by the workforce must be created. These newly-created activities are then
established as software safety practice as-required (Closed), and the remainder of
steps associated with it remain unaffected.

7.3 Future Work

7.3.1 Future Work Activity 1

Undertake the work to implement Research Questions 3 and 4. Answering these
research questions will fulfill the second research objective and confirm that the
process is capable of mitigating any identified impediments.

7.3.2 Further Uses of the Framework and Process

The framework and process to understand and assess software safety practice
could be abstracted up a level to understand and assess safety practice in general
(see [128]).

It may also be useful to safety regulators and safety auditors. Regulators
could use the models as a means of assessing compliance with regulations / leg-
islation / standards. In a similar vein, safety auditors could use the framework
to do the same as regulators - both assessing the efficacy of practice and judging
the safety of a product in real-time (and as a management tool for the life of a
project).

The models created by the framework and process could also be tailored to
suit the needs of different stakeholders, creating:

196 Chapter 7 Matthew Steven Osborne

Identifying Effective Improvements to Software Safety Practice

• Compliance models for regulators

• Comparison model of both types of as-required practice for projects (i.e.
Open and Closed as-required practice)

• All types of models for safety managers and Independent Safety Auditors
/ Advisers

• All as-observed models for assessment and evaluation of software safety
practice

The models could also be used to facilitate investigations and planning into
SQEP profiling, and competence and competency management.

Chapter 7 Matthew Steven Osborne 197

Bibliography

[1] IET Code of Practice: Competence for Safety-Related Practitioners. The IET, 2017.

[2] Robert Allen, editor. The New Penguin English Dctionary. Penguin, 2000.

[3] Scott W. Ambler. Process Patterns, Building Large-Scale Systems Using Object
Technology. Cambridge University Press, Cambridge, 1998.

[4] Pablo Oliveira Antonio, Mario Trapp, Paulo Barbosa, Edmar.C Gurjao,
and Jeferson Rosario. The Safety Requirements Decomposition Pattern.
Proceedings of SAFECOMP 2015, pages 269 –282, 2015. doi:10.1007/
978-3-319-24255-2_20.

[5] Fredrik Asplund, Greg Holland, and Saleh Odeh. Conflict as software lev-
els diversify: Tactical elimination or strategic transformation of practice?
Safety Science, 126:104682, 2020. doi:10.1016/j.ssci.2020.104682.

[6] Terje Aven. A risk science perspective on the discussion concerning safety
i, safety ii and safety iii. Reliability Engineering & System Safety, 217:108077,
2022. doi:10.1016/j.ress.2021.108077.

[7] Kristian Beckers, Isabelle Côté, Thomas Frese, Denis Hatebur, and Maritta
Heisel. Systematic derivation of functional safety requirements for auto-
motive systems. Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8666
LNCS(256980):65–80, 2014. doi:10.1007/978-3-319-10506-2_5.

[8] Geoffrey Biggs, Takeshi Sakamoto, and Tetsuo Kotoku. A profile and tool
for modelling safety information with design information in SysML. Soft-
ware and Systems Modeling, 15(1):147–178, 2016. URL: http://dx.doi.org/10.
1007/s10270-014-0400-x, doi:10.1007/s10270-014-0400-x.

[9] Mishap Investigation Board. Mars climate orbiter mishap investigation
board phase i report november 10, 1999, 1999.

[10] Barry Boehm and Prasanta Bose. A Collaborative Spiral Software Process
Model Based on Theory W. 3rd International Conference on the Software Pro-
cess, ICSP 1994, pages 59–68, 1994.

[11] Barry W. Boehm. A spiral model of software development and enhance-
ment. Computer, 21(5):61–72, 1988. doi:10.1109/2.59.

198

https://doi.org/10.1007/978-3-319-24255-2_20
https://doi.org/10.1007/978-3-319-24255-2_20
https://doi.org/10.1016/j.ssci.2020.104682
https://doi.org/10.1016/j.ress.2021.108077
https://doi.org/10.1007/978-3-319-10506-2_5
http://dx.doi.org/10.1007/s10270-014-0400-x
http://dx.doi.org/10.1007/s10270-014-0400-x
https://doi.org/10.1007/s10270-014-0400-x
https://doi.org/10.1109/2.59

Identifying effective improvements to software safety practice

[12] Cari Borrás. Overexposure of radiation therapy patients in panama: prob-
lem recognition and follow-up measures. Revista Panamericana de Salud
Pública, 20(2-3):173–187, 2006.

[13] BSi. Functional safety of electrical / electronic / programmable electronic
safety related systems Parts 1-7. Standard BS EN 61508, 2010.

[14] BSi. Systems and Software Engineering - Vocabulary. standard BS ISO/IEC
IEEE 24765:2010, 2010.

[15] BSi. DRAFT INTERNATIONAL STANDARD: Health Software - Software
Life Cycle Processes. standard IEC/CD 62304.3, 2019.

[16] Ana Carolina Scanavachi Moreira Campos and Adiel Teiveira de Almeida.
Multicriteria framework for selecting a process modelling language. Enter-
prise Information Systems, 10(1):17–32, 2016. doi:http://dx.doi.org/
10.1080/17517575.2014.906047.

[17] Carnegie-Mellon-SEI. +SAFE, V1.2 A Safety Extension to CMMI-DEV, V1.2.
Technical Report 1.2, 2007. doi:CMU/SEI-2007-TN-006.

[18] Ryan A. Carter, Annie I. Antón, Aldo Dagnino, and Laurie Williams. Evolv-
ing beyond requirements creep: A risk-based evolutionary prototyping
model. Proceedings of he IEEE International Conference on Requirements En-
gineering, pages 94–101, 2001. doi:10.1109/ISRE.2001.948548.

[19] J. Chudge and D. Fulton. Trust and co-operation in system development:
applying responsibility modelling to the problem of changing require-
ments. Software Engineering Journal, 11(3):193, 1996. doi:10.1049/sej.
1996.0025.

[20] M Dominic Cooper. Towards a model of safety culture. Safety science,
36(2):111–136, 2000.

[21] Thomas H Davenport. Working knowledge: How organizations manage
what they know. NewYork Harvard Business School, 1998.

[22] JoseLuis de la Vara and RajwinderKaur Panesar-Walawege. SafetyMet:
A Metamodel for Safety Standards. 8107:69–86, 2013. doi:10.1007/
978-3-642-41533-3_5.

[23] Sidney Dekker. Malicious compliance. Hindsight 25, 2017. Last ac-
cessed 08 Dec 2023. URL: https://www.eurocontrol.int/sites/default/
files/publication/files/hindsight25.pdf.

[24] Ewen Denney, Ganesh Pai, and Iain Whiteside. Model-Driven Develop-
ment of Safety Architectures. Proceedings - ACM/IEEE 20th International
Conference on Model Driven Engineering Languages and Systems, MODELS
2017, pages 156–166, 2017. doi:10.1109/MODELS.2017.27.

[25] p. Douglass, Bruce. Introduction to model-based engineering,
2021. URL: https://www.incose.org/docs/default-source/michigan/
what-does-a-good-model-smell-like.pdf?sfvrsn=5c9564c7_4.

Bibliography Matthew Steven Osborne 199

https://doi.org/http://dx.doi.org/10.1080/17517575.2014.906047
https://doi.org/http://dx.doi.org/10.1080/17517575.2014.906047
https://doi.org/CMU/SEI-2007-TN-006
https://doi.org/10.1109/ISRE.2001.948548
https://doi.org/10.1049/sej.1996.0025
https://doi.org/10.1049/sej.1996.0025
https://doi.org/10.1007/978-3-642-41533-3_5
https://doi.org/10.1007/978-3-642-41533-3_5
https://www.eurocontrol.int/sites/default/files/publication/files/hindsight25.pdf
https://www.eurocontrol.int/sites/default/files/publication/files/hindsight25.pdf
https://doi.org/10.1109/MODELS.2017.27
https://www.incose.org/docs/default-source/michigan/what-does-a-good-model-smell-like.pdf?sfvrsn=5c9564c7_4
https://www.incose.org/docs/default-source/michigan/what-does-a-good-model-smell-like.pdf?sfvrsn=5c9564c7_4

Identifying effective improvements to software safety practice

[26] Omar El Ariss, Dianxiang Xu, and W. Eric Wong. Integrating safety anal-
ysis with functional modeling. IEEE Transactions on Systems, Man, and Cy-
bernetics Part A:Systems and Humans, 41(4):610–624, 2011. doi:10.1109/
TSMCA.2010.2093889.

[27] Neil A. Ernst, Alexander Borgida, John Mylopoulos, and Ivan J. Jureta.
Agile requirements evolution via paraconsistent reasoning. In Interna-
tional Conference on Advanced Information Systems Engineering, pages 382–
397. Springer, 2012. doi:10.1007/978-3-642-31095-9_25.

[28] Weam M. Farid and Frank J. Mitropoulos. NORMATIC: A visual tool for
modeling non-functional requirements in agile processes. Conference Pro-
ceedings - IEEE SOUTHEASTCON, (978), 2012. doi:10.1109/SECon.
2012.6196989.

[29] Jane Fenn and Brian Jepson. Putting Trust into Safety Arguments.
Constituents of Modern System Safety Thinking - Proceedings of the 13th
Safety-Critical Systems Symposium, pages 21 –35, 2005. doi:10.1007/
1-84628-130-X_2.

[30] Floyd J. Junior Fowler. Survey Research Methods - Applied Social Research
Methods. Sage, California, 3rd edition, 2002.

[31] Dominic Furniss, Paul Curzon, and Ann Blandford. Using FRAM beyond
safety: a case study to explore how sociotechnical systems can flourish or
stall. Theoretical Issues in Ergonomics Science, 17(5-6):507–532, 2016. doi:
10.1080/1463922X.2016.1155238.

[32] Barbara Gallina, Edin Sefer, and Atle Refsdal. Towards safety risk assess-
ment of socio-technical systems via failure logic analysis. Proceedings - IEEE
25th International Symposium on Software Reliability Engineering Workshops,
ISSREW 2014, pages 287–292, 2014. doi:10.1109/ISSREW.2014.49.

[33] Fakhredin Ghasemi, Esmaeil Zarei, and Vahid Salehi. Unraveling complex-
ity: Fram applications in sociotechnical systems safety analysis. In Safety
Causation Analysis in Sociotechnical Systems: Advanced Models and Techniques,
pages 213–236. Springer, 2024.

[34] Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, Ju-
lian Rhein, Johann Schumann, and Nija Shi. Formal requirements elicita-
tion with FRET. CEUR Workshop Proceedings, 2584, 2020.

[35] A Ian Glendon and Neville A Stanton. Perspectives on safety culture. Safety
science, 34(1-3):193–214, 2000.

[36] Patrick Graydon, Ibrahim Habli, Richard Hawkins, Tim Kelly, and John
Knight. Arguing conformance. IEEE Software, 29(3):50–57, 2012. doi:
10.1109/MS.2012.26.

[37] Herbert P Grice. Logic and conversation. In Speech acts, pages 41–58. Brill,
1975. doi:10.1163/9789004368811_003.

200 Bibliography Matthew Steven Osborne

https://doi.org/10.1109/TSMCA.2010.2093889
https://doi.org/10.1109/TSMCA.2010.2093889
https://doi.org/10.1007/978-3-642-31095-9_25
https://doi.org/10.1109/SECon.2012.6196989
https://doi.org/10.1109/SECon.2012.6196989
https://doi.org/10.1007/1-84628-130-X_2
https://doi.org/10.1007/1-84628-130-X_2
https://doi.org/10.1080/1463922X.2016.1155238
https://doi.org/10.1080/1463922X.2016.1155238
https://doi.org/10.1109/ISSREW.2014.49
https://doi.org/10.1109/MS.2012.26
https://doi.org/10.1109/MS.2012.26
https://doi.org/10.1163/9789004368811_003

Identifying effective improvements to software safety practice

[38] The Assurance Case Working Group. Goal Structuring Notation Commu-
nity Standard. Standard, 2018.

[39] Atul Guwande. The checklist manifesto. New York: Picadur, 2010.

[40] Torgeir Kolstø Haavik. Debates and politics in safety science. Reliability
Engineering & System Safety, 210:107547, 2021. doi:10.1016/j.ress.
2021.107547.

[41] Ibrahim Habli. Model-based assurance of safety-critical product lines. PhD the-
sis, University of York, 2009.

[42] Ibrahim Habli. Safety standards: Chronic challenges and emerging prin-
ciples. Handbook of Safety Principles, pages 732–746, 2017. doi:10.1002/
9781119443070.ch31.

[43] Ibrahim Habli, Richard Hawkins, and Tim Kelly. Software safety: Relat-
ing software assurance and software integrity. International Journal of Crit-
ical Computer-Based Systems, 1(4):364–383, 2010. doi:10.1504/IJCCBS.
2010.036605.

[44] Ibrahim Habli and Tim Kelly. A Model-Driven Approach to Assuring Pro-
cess Reliability. 19th International Symposium on Software Reliability Engineer-
ing, pages 7–16, 2008. doi:10.1109/ISSRE.2008.19.

[45] Kirsten M Hansen, Anders P Ravn, and Victoria Stavridou. From safety
analysis to software requirements. IEEE Transactions on Software Engineer-
ing, 24(7):573–584, 1998.

[46] Martie G. Haselton, Daniel Nettle, and Paul W. Andrews. The Evolution
of Cognitive Bias. The Handbook of Evolutionary Psychology, pages 724–746,
2015. doi:10.1002/9780470939376.ch25.

[47] John Hatcliff, Alan Wassyng, Tim Kelly, Cyrille Comar, and Paul Jones. Cer-
tifiably safe software-dependent systems: challenges and directions. Future
of Software Engineering Proceedings, pages 182–200, 2014.

[48] Jop Havinga, Sidney Dekker, and Andrew Rae. Everyday work investiga-
tions for safety. Theoretical issues in ergonomics science, 19(2):213–228, 2018.
doi:10.1080/1463922X.2017.1356394.

[49] Richard Hawkins, Ibrahim Habli, and Tim Kelly. The Principles of Software
Safety Assurance. International System Safety Conference, 2013.

[50] Richard Hawkins, Ibrahim Habli, Tim Kelly, and John McDermid. Assur-
ance cases and prescriptive software safety certification: A comparative
study. Saf. Science, 59:55–71, 2013. doi:10.1016/j.ssci.2013.04.
007.

[51] Richard Hawkins and Tim Kelly. A structured approach to selecting and
justifying software safety evidence. 2010.

Bibliography Matthew Steven Osborne 201

https://doi.org/10.1016/j.ress.2021.107547
https://doi.org/10.1016/j.ress.2021.107547
https://doi.org/10.1002/9781119443070.ch31
https://doi.org/10.1002/9781119443070.ch31
https://doi.org/10.1504/IJCCBS.2010.036605
https://doi.org/10.1504/IJCCBS.2010.036605
https://doi.org/10.1109/ISSRE.2008.19
https://doi.org/10.1002/9780470939376.ch25
https://doi.org/10.1080/1463922X.2017.1356394
https://doi.org/10.1016/j.ssci.2013.04.007
https://doi.org/10.1016/j.ssci.2013.04.007

Identifying effective improvements to software safety practice

[52] Richard Hawkins and Tim Kelly. A framework for determining the suffi-
ciency of software safety assurance. System Safety, incorporating the Cyber
Security Conference 2012, 7th IET International Conference on, pages 1–6, 2012.
doi:10.1049/cp.2012.1529.

[53] Richard Hawkins and Tim Kelly. A Software Safety Argument Pattern Cat-
alogue. page 32, 2013. URL: http://www.cs.york.ac.uk/ftpdir/reports/
2013/YCS/482/YCS-2013-482.pdf.

[54] Richard D Hawkins. Using Safety Contracts in the Development of Safety Crit-
ical Object-Oriented Systems. PhD thesis, 2006.

[55] Petra Heck and Andy Zaidman. A framework for quality assessment of
just-in-time requirements: the case of open source feature requests. Re-
quirements Engineering, 22(4):453–473, 2017. arXiv:1408.1293, doi:
10.1007/s00766-016-0247-5.

[56] Mats PE Heimdahl. Safety and software intensive systems: Challenges old
and new. In Future of Software Engineering (FOSE’07), pages 137–152. IEEE,
2007.

[57] Erik Hollnagel. FRAM: The Functional Resonance Analysis Method. Ashgate,
Dorchester, 2012.

[58] Erik Hollnagel. Why is work-as-imagined different from work-as-done?
In Resilient health care, Volume 2, pages 279–294. CRC Press, 2017. doi:
10.1201/9781315605739.

[59] Erik Hollnagel. Safety–I and safety–II: the past and future of safety management.
CRC press, 2018. doi:10.1201/9781315607511.

[60] Erik Hollnagel. The FRAM Manual, 2018.

[61] Erik Hollnagel, David D Woods, and Nancy Leveson. Resilience engineering:
Concepts and precepts. Ashgate Publishing, Ltd., 2006.

[62] Andrew Hopkins. Studying organisational cultures and their effects on
safety. Safety science, 44(10):875–889, 2006.

[63] IEC. Signalling and security apparatus for railways / Reliabilty, availabil-
ity, maintainability and safety. standard IEC 62278:2002, 3.41, 2020.

[64] ISO. Electrical and magnetic devices / Operating conditions and testing.
standard SO/CEI Guide 2 (14.1, 2001.

[65] ISO. Environmental standardization for electrical and electronic products
and systems / General terms relating to environmental protection and
management. standard ISO 14040:2006, 2006.

[66] ISO/IEC. Systems and software engineering — System life cycle processes.
standard ISO/IEC 15288:2008, 2008.

[67] ISO/IEC. Internet of Things (IoT). Standard ISO/IEC 20924:2018, 2015.

202 Bibliography Matthew Steven Osborne

https://doi.org/10.1049/cp.2012.1529
http://www.cs.york.ac.uk/ftpdir/reports/2013/YCS/482/YCS-2013-482.pdf
http://www.cs.york.ac.uk/ftpdir/reports/2013/YCS/482/YCS-2013-482.pdf
https://arxiv.org/abs/1408.1293
https://doi.org/10.1007/s00766-016-0247-5
https://doi.org/10.1007/s00766-016-0247-5
https://doi.org/10.1201/9781315605739
https://doi.org/10.1201/9781315605739
https://doi.org/10.1201/9781315607511

Identifying effective improvements to software safety practice

[68] Yan Jia, John Alexander McDermid, Nathan Hughes, Mark-Alexander Su-
jan, Tom Lawton, and Ibrahim Habli. The need for the human-centred ex-
planation for ml-based clinical decision support systems. In 2023 IEEE
11th International Conference on Healthcare Informatics (ICHI). IEEE, 2023.
doi:10.1109/ICHI57859.2023.00064.

[69] Zador Daniel Kelemen, Rob Kusters, Jos Trienekens, and Katalin Balla. Se-
lecting a Process Modeling Language for Process Based Unification of Mul-
tiple Standards and Models. pages 1–14, 2013.

[70] Tim Kelly. Arguing Safety – A Systematic Approach to Managing
Safety Cases. PhD thesis, University of York, 1998. doi:10.1007/
s00779-007-0163-2.

[71] Tim Kelly. Software Certification : Where is Confidence Won and Lost? In
Addressing Systems Safety Challenges, pages 1–13, 2014.

[72] Gene Kim, Patrick Debois, John Willis, and Jez Humble. The DevOps Hand-
book: How to Create World-Class Agility, Reliability, and Security in Technology
Organizations. IT Revolution Press, 2016.

[73] Karen Klockner and Yvonne Toft. Railway accidents and incidents: Com-
plex socio-technical system accident modelling comes of age. Safety Sci-
ence, 110(November 2017):59–66, 2018. doi:10.1016/j.ssci.2017.
11.022.

[74] Mathieu Lavallée and Pierre N Robillard. Why good developers write bad
code: An observational case study of the impacts of organizational factors
on software quality. In 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, volume 1, pages 677–687. IEEE, 2015.

[75] Jean-Christophe Le Coze. Safety science research: evolution, challenges and new
directions. CRC Press, 2019.

[76] Chris Leong, Tim Kelly, and Rob Alexander. Incorporating epistemic un-
certainty into the safety assurance of socio-technical systems. Electronic
Proceedings in Theoretical Computer Science, EPTCS, 259:56–71, 2017. doi:
10.4204/EPTCS.259.7.

[77] Nancy Leveson. A new accident model for engineering safer systems.
Safety Science, 42(4):237–270, 2004. doi:10.1016/S0925-7535(03)
00047-X.

[78] Nancy Leveson, Mirna Daouk, Nicolas Dulac, and Karen Marais. A sys-
tems theoretic approach to safety engineering. Dept. of Aeronautics and As-
tronautics, Massachusetts Inst. of Technology, Cambridge, pages 16–17, 2003.

[79] Nancy G Leveson. Safeware: System safety and computers. ACM New York,
1995.

[80] Nancy G Leveson. A systems-theoretic approach to safety in software-
intensive systems. IEEE Transactions on Dependable and Secure computing,
1(1):66–86, 2004.

Bibliography Matthew Steven Osborne 203

https://doi.org/10.1109/ICHI57859.2023.00064
https://doi.org/10.1007/s00779-007-0163-2
https://doi.org/10.1007/s00779-007-0163-2
https://doi.org/10.1016/j.ssci.2017.11.022
https://doi.org/10.1016/j.ssci.2017.11.022
https://doi.org/10.4204/EPTCS.259.7
https://doi.org/10.4204/EPTCS.259.7
https://doi.org/10.1016/S0925-7535(03)00047-X
https://doi.org/10.1016/S0925-7535(03)00047-X

Identifying effective improvements to software safety practice

[81] Nancy G Leveson. Engineering a safer world: Systems thinking applied to safety.
MIT Press, 2011.

[82] Nancy G Leveson and John P Thomas. Stpa handbook. Cambridge, MA,
USA, 2018.

[83] Nancy G Leveson and Kathryn Anne Weiss. Software system safety. In
Safety Design for Space Systems, pages 791–823. Elsevier, 2009.

[84] N.G. Leveson and C.S. Turner. An investigation of the therac-25 accidents.
Computer, 26(7):18–41, 1993. doi:10.1109/MC.1993.274940.

[85] Jacques-Louis Lions et al. Flight 501 failure. Report by the Inquiry Board, 190,
1996.

[86] Raanan Lipshitz, Gary Klein, Judith Orasanu, and Eduardo Salas. Taking
stock of naturalistic decision making. Journal of behavioral decision making,
14(5):331–352, 2001.

[87] Martin H. Lloyd and Paul J. Reeve. IEC 61508 and IEC 61511 assessments
- some lessons learned. 4th IET International Conference on Systems Safety
2009. Incorporating the SaRS Annual Conference, pages 2A1–2A1, 2009. doi:
10.1049/cp.2009.1540.

[88] Russell Lock, Tim Storer, and Ian Sommerville. Responsibility modelling
for risk analysis. 2009.

[89] Robyn R. Lutz. Analyzing software safety requirements errors in safety crit-
ical systems. Proceedings of the IEEE International Symposium on Requirements
Engineering, pages 126–133, 1993. doi:10.1109/ISRE.1993.324825.

[90] Rebecca Marschan-Piekkari and Catherine Welch, editors. Handbook of
Qualitative Research Methods for International Business. Edward Elgar, Chel-
tenham, 2004.

[91] Tomás Martınez-Ruiz, Félix Garcıa, Mario Piattini, and Jürgen Münch.
Modelling software process variability: an empirical study. IET software,
5(2):172–187, 2011. doi:10.1049/iet-sen.2010.0020.

[92] Pierre Mauborgne, Samuel Deniaud, Eric Levrat, Eric Bonjour, Jean Pierre
Micaëlli, and Dominique Loise. Operational and System Hazard Analysis
in a Safe Systems Requirement Engineering Process - Application to auto-
motive industry. Safety Science, 87:256–268, 2016. doi:10.1016/j.ssci.
2016.04.011.

[93] Alois Mayr, Reinhold Plösch, and Matthias Saft. Towards an operational
safety standard for software: Modelling IEC 61508 part 3. Proceedings - 18th
IEEE International Conference and Workshops on Engineering of Computer-Based
Systems, ECBS 2011, pages 97–104, 2011. doi:10.1109/ECBS.2011.8.

[94] John A McDermid. Software safety: where’s the evidence? In SCS, vol-
ume 1, pages 1–6, 2001.

204 Bibliography Matthew Steven Osborne

https://doi.org/10.1109/MC.1993.274940
https://doi.org/10.1049/cp.2009.1540
https://doi.org/10.1049/cp.2009.1540
https://doi.org/10.1109/ISRE.1993.324825
https://doi.org/10.1049/iet-sen.2010.0020
https://doi.org/10.1016/j.ssci.2016.04.011
https://doi.org/10.1016/j.ssci.2016.04.011
https://doi.org/10.1109/ECBS.2011.8

Identifying effective improvements to software safety practice

[95] John A. McDermid and David J. Pumfrey. Software Safety: Why is there no
Consensus? Proceeds of the International System Safety Conference, 2001.

[96] Catherine Menon. Technical Report on Defining Software Safety Require-
ments. Technical Report 1, Software Systems Engineering Initiative Man-
agement, York, 2009. doi:SSEI-TR-000046.

[97] Catherine Menon and Tim Kelly. Eliciting software safety requirements in
complex systems. Systems Conference, 2010 4th Annual IEEE, pages 616–621,
2010. doi:10.1109/SYSTEMS.2010.5482343.

[98] Tim Miller. Explanation in artificial intelligence: Insights from the social
sciences. Artificial intelligence, 267:1–38, 2019. doi:10.1016/j.artint.
2018.07.007.

[99] Ramin Mojdehbakhsh, Satish Subramanian, Ramakrishna Vishnuvajjala,
W-T Tsai, and Lynn Elliott. A process for software requirements safety
analysis. In Proceedings of 1994 IEEE International Symposium on Software
Reliability Engineering, pages 45–54. IEEE, 1994.

[100] Jessica Morley, Lisa Murphy, Abhishek Mishra, Indra Joshi, Kassandra
Karpathakis, et al. Governing data and artificial intelligence for health
care: Developing an international understanding. JMIR formative research,
6(1):e31623, 2022. doi:10.2196/31623.

[101] Simona Motogna, Diana Cristea, Diana-Florina Sotropa, and Arthur-Jozsef
Molnar. Uncovering bad practices in junior developer projects using static
analysis and formal concept analysis. In ENASE, pages 752–759, 2024.

[102] John Murdoch, Graham Clark, Antony Powell, and Paul Caseley. Measur-
ing safety: applying psm to the system safety domain. pages 47–55, 2003.

[103] Sireen Kamal Najjar and Khalid T. Al-Sarayreh. Capability Maturity Model
of Software Requirements Process and Integration (SRPCMMI). Proceedings
of the International Conference on Intelligent Information Processing, Security
and Advanced Communication - IPAC ’15, pages 1–5, 2015. doi:10.1145/
2816839.2816856.

[104] Ministry of Defence. ASEMS. URL: https://www.asems.mod.uk/.

[105] Ministry of Defence. Safety Management Requirements for Defence Sys-
tems Part 1: Requirements. Standard Defence Standard 00-56 Part 1, Min-
istry of Defence, 2017.

[106] Object Management Group (OMG). Structures . Technical report, 2018.

[107] SPEM OMG and O Notation. Software systems process engineering meta-
model specification. OMG Std., Rev, 2, 2008.

[108] Abraham Naftali Oppenheim. Questionnaire design, interviewing and attitude
measurement. Bloomsbury Publishing, 2000.

Bibliography Matthew Steven Osborne 205

https://doi.org/SSEI-TR-000046
https://doi.org/10.1109/SYSTEMS.2010.5482343
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.2196/31623
https://doi.org/10.1145/2816839.2816856
https://doi.org/10.1145/2816839.2816856
https://www.asems.mod.uk/

Identifying effective improvements to software safety practice

[109] Karen O’Reilly. Ethnographic Methods. Routledge, Abingdon, 2nd edition,
2012.

[110] Matt Osborne. Vf3800 as required (closed). URL: https://github.
com/thefuriousengineer/Empirical-Research/blob/Empirical-Research/
VF38000_As_Described.pdf,year={2021}.

[111] Matt Osborne. Arp4754a - as desired principle 1, 2021. URL:
ttps://github.com/thefuriousengineer/Empirical-Research/blob/
Empirical-Research/ARP4754A_AsDesiredPrinciple1_v01.pdf.

[112] Matt Osborne. Iso 62304 as required (open), 2021. URL:
https://github.com/thefuriousengineer/Empirical-Research/blob/
Empirical-Research/ISO62304_As%20Described.pdf.

[113] Matt Osborne. Jb61834 - as required (closed), 2021. URL:
https://github.com/thefuriousengineer/Empirical-Research/blob/
Empirical-Research/JB61834_AsDescribed_Clean.pdf.

[114] Matt Osborne. Jb61834 - as observed, 2023. URL: https://github.
com/thefuriousengineer/Empirical-Research/blob/Empirical-Research/
JB61834%20As%20Observed.pdf.

[115] Matt Osborne. Jb61834 - step 7, 2023. URL: https://github.com/
thefuriousengineer/Empirical-Research/blob/Empirical-Research/Step%
207.pdf.

[116] Matt Osborne. Jb61834 - step 8, 2023. URL: https://github.com/
thefuriousengineer/Empirical-Research/blob/Empirical-Research/
JB61834_Step%208.pdf.

[117] Matt Osborne. Ay8597 questionnaire - session one, 2024. URL:
https://github.com/thefuriousengineer/Independent-Evaluation/blob/
main/AY8697_EQs_SessionOne.pdf.

[118] Matt Osborne. Ay8597 questionnaire - session two, 2024. URL:
https://github.com/thefuriousengineer/Independent-Evaluation/blob/
main/AY8697_EQs_SessionTwo.pdf.

[119] Matt Osborne. Evaluation session one handout, 2024. URL:
https://github.com/thefuriousengineer/Independent-Evaluation/blob/
main/Session%20One%20Handout.pdf.

[120] Matt Osborne. Evaluation session one process instructions, 2024.
URL: https://github.com/thefuriousengineer/Independent-Evaluation/
blob/main/Session%20One%20Instructions.pdf.

[121] Matt Osborne. Evaluation session one tutorial, 2024. URL:
https://github.com/thefuriousengineer/Independent-Evaluation/blob/
main/Evaluation%20Session%20One.pdf.

[122] Matt Osborne. Evaluation session repository, 2024. URL: https://github.
com/thefuriousengineer/Independent-Evaluation.

206 Bibliography Matthew Steven Osborne

https://github.com/thefuriousengineer/Empirical-Research/blob/Empirical-Research/VF38000_As_Described.pdf, year= {2021}
https://github.com/thefuriousengineer/Empirical-Research/blob/Empirical-Research/VF38000_As_Described.pdf, year= {2021}
https://github.com/thefuriousengineer/Empirical-Research/blob/Empirical-Research/VF38000_As_Described.pdf, year= {2021}
ttps://github.com/thefuriousengineer/Empirical-Research/blob/Empirical-Research/ARP4754A_AsDesiredPrinciple1_v01.pdf
ttps://github.com/thefuriousengineer/Empirical-Research/blob/Empirical-Research/ARP4754A_AsDesiredPrinciple1_v01.pdf
https://github.com/thefuriousengineer/Empirical-Research/blob/Empirical-Research/ISO62304_As%20Described.pdf
https://github.com/thefuriousengineer/Empirical-Research/blob/Empirical-Research/ISO62304_As%20Described.pdf
https://github.com/thefuriousengineer/Empirical-Research/blob/Empirical-Research/JB61834_AsDescribed_Clean.pdf
https://github.com/thefuriousengineer/Empirical-Research/blob/Empirical-Research/JB61834_AsDescribed_Clean.pdf
https://github.com/thefuriousengineer/Empirical-Research/blob/Empirical-Research/JB61834%20As%20Observed.pdf
https://github.com/thefuriousengineer/Empirical-Research/blob/Empirical-Research/JB61834%20As%20Observed.pdf
https://github.com/thefuriousengineer/Empirical-Research/blob/Empirical-Research/JB61834%20As%20Observed.pdf
https://github.com/thefuriousengineer/Empirical-Research/blob/Empirical-Research/Step%207.pdf
https://github.com/thefuriousengineer/Empirical-Research/blob/Empirical-Research/Step%207.pdf
https://github.com/thefuriousengineer/Empirical-Research/blob/Empirical-Research/Step%207.pdf
https://github.com/thefuriousengineer/Empirical-Research/blob/Empirical-Research/JB61834_Step%208.pdf
https://github.com/thefuriousengineer/Empirical-Research/blob/Empirical-Research/JB61834_Step%208.pdf
https://github.com/thefuriousengineer/Empirical-Research/blob/Empirical-Research/JB61834_Step%208.pdf
https://github.com/thefuriousengineer/Independent-Evaluation/blob/main/AY8697_EQs_SessionOne.pdf
https://github.com/thefuriousengineer/Independent-Evaluation/blob/main/AY8697_EQs_SessionOne.pdf
https://github.com/thefuriousengineer/Independent-Evaluation/blob/main/AY8697_EQs_SessionTwo.pdf
https://github.com/thefuriousengineer/Independent-Evaluation/blob/main/AY8697_EQs_SessionTwo.pdf
https://github.com/thefuriousengineer/Independent-Evaluation/blob/main/Session%20One%20Handout.pdf
https://github.com/thefuriousengineer/Independent-Evaluation/blob/main/Session%20One%20Handout.pdf
https://github.com/thefuriousengineer/Independent-Evaluation/blob/main/Session%20One%20Instructions.pdf
https://github.com/thefuriousengineer/Independent-Evaluation/blob/main/Session%20One%20Instructions.pdf
https://github.com/thefuriousengineer/Independent-Evaluation/blob/main/Evaluation%20Session%20One.pdf
https://github.com/thefuriousengineer/Independent-Evaluation/blob/main/Evaluation%20Session%20One.pdf
https://github.com/thefuriousengineer/Independent-Evaluation
https://github.com/thefuriousengineer/Independent-Evaluation

Identifying effective improvements to software safety practice

[123] Matt Osborne. Hh75783 questionnaire - session one, 2024. URL:
https://github.com/thefuriousengineer/Independent-Evaluation/blob/
main/HH75783_EQs_SessionOne.pdf.

[124] Matt Osborne. Hh75783 questionnaire - session two, 2024. URL:
https://github.com/thefuriousengineer/Independent-Evaluation/blob/
main/HH75783_EQs_SessionTwo.pdf.

[125] Matt Osborne. Sh27236 questionnaire - session one, 2024. URL:
https://github.com/thefuriousengineer/Independent-Evaluation/blob/
main/SH27236_EQs_SessionOne.pdf.

[126] Matt Osborne. Sh27236 questionnaire - session two, 2024. URL:
https://github.com/thefuriousengineer/Independent-Evaluation/blob/
main/SH27236_EQs_SessionTwo.pdf.

[127] Matt Osborne. Sj 84999 interview transcript, 2024. URL:
https://github.com/thefuriousengineer/Empirical-Research/blob/
Empirical-Research/SJ84999%20Interview%20Transcript_redacted.pdf.

[128] Matt Osborne, Richard Hawkins, Mark Nicholson, and Rob Alexander.
Understanding safety engineering practice: Comparing safety engineering
practice as desired, as required, and as observed. Safety science, 172:106424,
2024. doi:10.1016/j.ssci.2024.106424.

[129] Matt Osborne and Mark Nicholson. Skills for assuring the safe adoption of
emerging technology. 2023.

[130] Matt Osborne, Mark Nicholson, and Richard Hawkins. Empirical evalua-
tion of the impediments to an “as desired” model of software safety assur-
ance. Systems and Covid-19, 2021.

[131] João Pimentel, Jaelson Castro, Emanuel Santos, and Anthony Finkel-
stein. Towards requirements and architecture co-evolution. Lecture
Notes in Business Information Processing, 112 LNBIP, 2012. doi:10.1007/
978-3-642-31069-0_14.

[132] David J. Provan, Sidney W.A. Dekker, and Andrew J. Rae. Bureaucracy,
influence and beliefs: A literature review of the factors shaping the role of
a safety professional. Safety science, 98:98–112, 2017. doi:10.1016/j.
ssci.2017.06.006.

[133] David J. Provan, Andrew J. Rae, and Sidney W.A. Dekker. An ethnography
of the safety professional’s dilemma: Safety work or the safety of work?
Safety science, 117:276–289, 2019. doi:10.1016/j.ssci.2019.04.024.

[134] David J. Provan, David D. Woods, Sidney W.A. Dekker, and Andrew J. Rae.
Safety ii professionals: How resilience engineering can transform safety
practice. Reliability Engineering & System Safety, 195:106740, 2020. doi:
10.1016/j.ress.2019.106740.

Bibliography Matthew Steven Osborne 207

https://github.com/thefuriousengineer/Independent-Evaluation/blob/main/HH75783_EQs_SessionOne.pdf
https://github.com/thefuriousengineer/Independent-Evaluation/blob/main/HH75783_EQs_SessionOne.pdf
https://github.com/thefuriousengineer/Independent-Evaluation/blob/main/HH75783_EQs_SessionTwo.pdf
https://github.com/thefuriousengineer/Independent-Evaluation/blob/main/HH75783_EQs_SessionTwo.pdf
https://github.com/thefuriousengineer/Independent-Evaluation/blob/main/SH27236_EQs_SessionOne.pdf
https://github.com/thefuriousengineer/Independent-Evaluation/blob/main/SH27236_EQs_SessionOne.pdf
https://github.com/thefuriousengineer/Independent-Evaluation/blob/main/SH27236_EQs_SessionTwo.pdf
https://github.com/thefuriousengineer/Independent-Evaluation/blob/main/SH27236_EQs_SessionTwo.pdf
https://github.com/thefuriousengineer/Empirical-Research/blob/Empirical-Research/SJ84999%20Interview%20Transcript_redacted.pdf
https://github.com/thefuriousengineer/Empirical-Research/blob/Empirical-Research/SJ84999%20Interview%20Transcript_redacted.pdf
https://doi.org/10.1016/j.ssci.2024.106424
https://doi.org/10.1007/978-3-642-31069-0_14
https://doi.org/10.1007/978-3-642-31069-0_14
https://doi.org/10.1016/j.ssci.2017.06.006
https://doi.org/10.1016/j.ssci.2017.06.006
https://doi.org/10.1016/j.ssci.2019.04.024
https://doi.org/10.1016/j.ress.2019.106740
https://doi.org/10.1016/j.ress.2019.106740

Identifying effective improvements to software safety practice

[135] Andrew Rae, David Provan, Hossam Aboelssaad, and Rob Alexander. A
manifesto for reality-based safety science. Safety science, 126:104654, 2020.
doi:10.1016/j.ssci.2020.104654.

[136] Andrew J Rae, David J Provan, David Emanuel Weber, and Sidney WA
Dekker. Safety clutter: the accumulation and persistence of ‘safety’work
that does not contribute to operational safety. Policy and practice in health
and safety, 16(2):194–211, 2018.

[137] Andrew J. Rae, David E. Weber, and Sidney W.A. Dekker. Work as planned,
as done and as desired: A framework for exploring everyday safety-critical
practice. In Inside Hazardous Technological Systems, pages 115–132. CRC
Press, 2021.

[138] Balasubramaniam Ramesh, Lan Cao, and Richard Baskerville. Ag-
ile requirements engineering practices and challenges: an empirical
study. Information Systems Journal, 20(5):449–480, 2010. doi:10.1111/
j.1365-2575.2007.00259.x.

[139] Jens Rasmussen. Risk management in a dynamic society: a mod-
elling problem. Safety science, 27(2-3):183–213, 1997. doi:10.1016/
S0925-7535(97)00052-0.

[140] Felix Redmill. Agile Methods for Developing Safety-related Software ?
(September 2014):1–24, 2015.

[141] D.W. Reinhardt and John McDermid. Contracting for Assurance of Military
Aviation Software Systems. In Proceedings of the Australian System Safety
Conference (ASSC 2012), number Assc, pages 91–105, 2012.

[142] Karlene H. Roberts. Managing high reliability organizations. California
management review, 32(4):101–113, 1990. doi:10.2307/41166631.

[143] Carl Rollenhagen. Can focus on safety culture become an excuse for not
rethinking design of technology? Safety Science, 48(2):268–278, 2010.

[144] John Rooksby, Mark Rouncefield, and Ian Sommerville. Testing in the
wild: The social and organisational dimensions of real world practice. Com-
puter Supported Cooperative Work (CSCW), 18(5-6):559, 2009. doi:10.1007/
s10606-009-9098-7.

[145] RTCA. Software Considerations in Airborne Systems and Equipment Cer-
tification. standard RTCA DO-178C, 2011.

[146] SAE Aerospace. Aerospace Recommended Practice Guidelines and Meth-
ods for Conducting the Safety Assessment Process on Civil Airborne Sys-
tems and Equipment. Standard ARP 4761, 1996.

[147] SAE Aerospace. Aerospace Recommended Practice (R) Guidelines for De-
velopment of Civil Aircraft and Systems. Standard ARP 4754A, 2010.

208 Bibliography Matthew Steven Osborne

https://doi.org/10.1016/j.ssci.2020.104654
https://doi.org/10.1111/j.1365-2575.2007.00259.x
https://doi.org/10.1111/j.1365-2575.2007.00259.x
https://doi.org/10.1016/S0925-7535(97)00052-0
https://doi.org/10.1016/S0925-7535(97)00052-0
https://doi.org/10.2307/41166631
https://doi.org/10.1007/s10606-009-9098-7
https://doi.org/10.1007/s10606-009-9098-7

Identifying effective improvements to software safety practice

[148] Ali Shahrokni and Robert Feldt. Towards a framework for specifying soft-
ware robustness requirements based on patterns. In International Work-
ing Conference on Requirements Engineering: Foundation for Software Quality,
pages 79–84. Springer, 2010. doi:10.1007/978-3-642-14192-8_9.

[149] Hui Shen, Brian Wall, Michal Zaremba, Yuliu Chen, and Jim Browne. Inte-
gration of business modelling methods for enterprise information system
analysis and user requirements gathering. Computers in Industry, 54(3):307–
323, 2004. doi:10.1016/j.compind.2003.07.009.

[150] Steven Shorrock. Proxies for Work-as-Done: 3. Work-as-
Disclosed, 2020. URL: https://humanisticsystems.com/2020/11/01/
proxies-for-work-as-done-3-work-as-disclosed/.

[151] Bridget Somekh and Cathy Lewin. Research Methods in the Social Sciences.
Sage, London, 2005.

[152] MJ Squair. Issues in the application of software safety standards. Proceed-
ings of the 10th Australian Workshop on Safety Critical Systems and Software,
55:13–26, 2006. URL: http://dl.acm.org/citation.cfm?id=1151818.

[153] Tor Stålhane, Thor Mykelbust, and Geir K. Hanssen. Safety Standards and
Scrum - A Synopsis of Three Standards. Nbl.Sintef.No, 2013. URL: https://
nbl.sintef.no/upload/IKT/9013/SafetystandardsandScrum_May2013.pdf.

[154] Margaret-Anne Storey, Neil A Ernst, Courtney Williams, and Eirini
Kalliamvakou. The who, what, how of software engineering research: a
socio-technical framework. Empirical Software Engineering, 25:4097–4129,
2020.

[155] Mark A. Sujan, Dominic Furniss, Janet Anderson, Jeffrey Braithwaite, and
Erik Hollnagel. Resilient health care as the basis for teaching patient safety–
a safety-ii critique of the world health organisation patient safety curricu-
lum. Safety Science, 118:15–21, 2019. doi:10.1016/j.ssci.2019.04.
046.

[156] Alistair G. Sutcliffe and Shailey Minocha. Linking business modelling to
socio-technical system design. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), 1626:73–87, 1999. doi:10.1007/3-540-48738-7_7.

[157] Paul Swuste, Jop Groeneweg, Coen Van Gulijk, Walter Zwaard, Saul
Lemkowitz, and Yvette Oostendorp. The future of safety science. Safety
science, 125:104593, 2020. doi:10.1016/j.ssci.2019.104593.

[158] Norris Syed Abdullah, Shazia Sadiq, and Marta Indulska. A compliance
management ontology: Developing shared understanding through mod-
els. Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics), 7328 LNCS:429–444,
2012. doi:10.1007/978-3-642-31095-9_28.

Bibliography Matthew Steven Osborne 209

https://doi.org/10.1007/978-3-642-14192-8_9
https://doi.org/10.1016/j.compind.2003.07.009
https://humanisticsystems.com/2020/11/01/proxies-for-work-as-done-3-work-as-disclosed/
https://humanisticsystems.com/2020/11/01/proxies-for-work-as-done-3-work-as-disclosed/
http://dl.acm.org/citation.cfm?id=1151818
https://nbl.sintef.no/upload/IKT/9013/Safety standards and Scrum_May2013.pdf
https://nbl.sintef.no/upload/IKT/9013/Safety standards and Scrum_May2013.pdf
https://doi.org/10.1016/j.ssci.2019.04.046
https://doi.org/10.1016/j.ssci.2019.04.046
https://doi.org/10.1007/3-540-48738-7_7
https://doi.org/10.1016/j.ssci.2019.104593
https://doi.org/10.1007/978-3-642-31095-9_28

Identifying effective improvements to software safety practice

[159] Bastian Tenbergen, Thorsten Weyer, and Klaus Pohl. Hazard Relation
Diagrams: a diagrammatic representation to increase validation objectiv-
ity of requirements-based hazard mitigations. Requirements Engineering,
23(2):291–329, 2018. doi:10.1007/s00766-017-0267-9.

[160] UK Ministry of Defence. Defence Standard 00-055 Part 1 Requirements
for Safety of Programmable Elements (PE) in Defence Systems Part 1 :
Requirements and Guidance. (4), 2016.

[161] I. B. Utne, P. Hokstad, and J. Vatn. A method for risk modeling of inter-
dependencies in critical infrastructures. Reliability Engineering and System
Safety, 96(6):671–678, 2011. doi:10.1016/j.ress.2010.12.006.

[162] Jose Luis de la Vara and Rajwinder Kaur Panesar-Walawege. Safe-
tymet: A metamodel for safety standards, 2013. doi:10.1007/
978-3-642-41533-3_5.

[163] Jéssyka Vilela, Jaelson Castro, Luiz Eduardo G. Martins, and Tony
Gorschek. Integration between requirements engineering and safety anal-
ysis: A systematic literature review. Journal of Systems and Software, 125:68–
92, 2017. doi:10.1016/j.jss.2016.11.031.

[164] Georg Von Krogh, Cristina Rossi-Lamastra, and Stefan Haefliger.
Phenomenon-based research in management and organisation science:
When is it rigorous and does it matter? Long range planning, 45(4):277–298,
2012. doi:10.1016/j.lrp.2012.05.001.

[165] Robert A. Weaver. The safety of software: Constructing and assuring arguments.
Citeseer, 2003.

[166] Lian Wen, David Tuffley, and R. Geoff Dromey. Formalizing the transition
from requirements’ change to design change using an evolutionary trace-
ability model. Innovations in Systems and Software Engineering, 10(3):181–202,
2014. doi:10.1007/s11334-014-0230-6.

[167] Ron Westrum. A typology of organisational cultures. BMJ Quality & Safety,
13(suppl 2):ii22–ii27, 2004.

[168] W. Eric Wong, Vidroha Debroy, Adithya Surampudi, HyeonJeong Kim, and
Michael F. Siok. Recent catastrophic accidents: Investigating how software
was responsible. In 2010 Fourth International Conference on Secure Software
Integration and Reliability Improvement, pages 14–22, 2010. doi:10.1109/
SSIRI.2010.38.

[169] Robert K. Yin. Case Study Research Design and Methods. Sage, California, 5th
edition, 2014.

[170] Koen Yskout, Riccardo Scandariato, and Wouter Joosen. Change patterns:
Co-evolving requirements and architecture. Software & Systems Modeling,
13:625–648, 2014. doi:10.1007/s10270-012-0276-6.

210 Bibliography Matthew Steven Osborne

https://doi.org/10.1007/s00766-017-0267-9
https://doi.org/10.1016/j.ress.2010.12.006
https://doi.org/10.1007/978-3-642-41533-3_5
https://doi.org/10.1007/978-3-642-41533-3_5
https://doi.org/10.1016/j.jss.2016.11.031
https://doi.org/10.1016/j.lrp.2012.05.001
https://doi.org/10.1007/s11334-014-0230-6
https://doi.org/10.1109/SSIRI.2010.38
https://doi.org/10.1109/SSIRI.2010.38
https://doi.org/10.1007/s10270-012-0276-6

Identifying effective improvements to software safety practice

[171] Didar Zowghi, Aditya K. Ghose, and Pavlos Peppas. A Framework for
Reasoning about Requirement Evolution. Proceedings of the 4th Pacific Rim
International Conference on Artificial Intelligence, Cairns, Australia, 1996, pages
157–168, 1996. doi:10.1007/3-540-61532-6_14.

Bibliography Matthew Steven Osborne 211

https://doi.org/10.1007/3-540-61532-6_14

Appendix A

ARP 4754A - A Critique and
Characterisation

This characterization of ARP 4754A was created as part of the early stages of
the empirical research. The aim at the time was to create a meta- or supermodel
of recognized good practice in an attempt to create a referenceable benchmark
of ‘best practice’ for software safety. Whilst a completed model was never cre-
ated, this appendix provides valuable supporting data to the literature review in
Chapter 2 as to the limitations of Open Standards in their role as software safety
practice as-required (Open).

The ARP relies heavily on sister publications such as ARP 4761 [146] (for
Functional Safety Techniques and Measures), and child publications such as DO178C
[145] and DO254 for the assurance of software and complex electronic hardware
respectively. It regards the activities of standards such as DO-178C as the means
by which development mitigates ‘design errors’; but limits this unidirectionally
as a “development assurance process from aircraft level down to item level”.

In directing the reader to the process of allocating requirements from ‘sys-
tem’ to ‘item’, ARP 4754A notes that it is an iterative cycle (where requirements
become ‘clearer’ with each iteration); but falls short of asserting an iterative bi-
directional process that links activities, or stating the potential entry/exit points
at which the sibling/child standards are entered or exited (including any assur-
ance activities and analyses that must occur in order to do so).

The ARP majors on objectives and an overarching intent but is lacking in any
detailed guidance or mandated/recommended analyses. As such it is not explicit
in its treatment of software hazard analyses [71] (accepting that it doesn’t set out
to do this – relying instead on related publications).

Throughout the standard, the stipulation of what constitutes ‘recommended
practice’ is avoided – offering what can only be described as ‘helpful advice’,
without making any stipulations on whether/how it would be beneficial to fol-
low it. This is done under the explicit assumption that a regulator or certifying
body will agree the analyses, techniques, or practices with the developer (in a

212

Identifying effective improvements to software safety practice

manner that will result in ‘certification’).

It should be noted that in many cases, a list of recommendations is offered
with a caveat that they may not, in fact, constitute best practice. If accepted as an
acceptable means of compliance, the terminology of the ARP changes between
‘could’ and ‘may’ to ‘shall’ and ‘should’. The caveat that it may not constitute
best practice hints at the existence of more suitable practice, however.

The right hand (verification) side of the ARP 4754A V-model again implies
a sequential, yet iterative and recursive process that appears strictly chronolog-
ical in order; and the findings on the inadequacies of the left-hand side of the
V-model are echoed for the right. Indeed, the ARP notes that the bottom of the
V is the point at which it ‘hands over’ to DO-178/254. It does highlight the need
for “extra rigor” [sic] when interfaces span organizational or contractual bound-
aries but offers no guidance on how such commercial, communication, legal, or
contractual complexities can be managed. Such shortcomings in open standards
are highlighted, and guidance is provided as to how the shortcomings can be
mitigated by Menon [97].

Dealing with verification, the ARP notes that independence may be key (de-
pendent on the DAL) and offers suggested (but high-level) methods (Inspec-
tion/Review; Analysis; Test/Demonstration; and Service Experience). Although
the ARP offers a brief insight in the constituent parts of each methodology, it stops
short of discussing which methods are more suited/appropriate to different as-
surance levels; what the verification activities should cover; the (code / data /
timing / states) coverage required for each methodology; what artefacts / activi-
ties are required for each; whether formal tools should / may be employed; what
the output of each method should comprise; who is expected to carry them out
/ independently assess them; or when they should occur in relation to the de-
velopment lifecycle. It is assumed by ARP 4754A that the specific requirements
required for software are dealt with in child publications such as DO-178C.

In terms of safety integrity, the ARP uses the concept of Development Assur-
ance Levels (DALs) to moderate the objectives of the standard according to the
criticality of the software under development [97]. It asserts at Section 5.2 (De-
velopment Assurance Level Assignment) that the means of eliminating errors
(in fact limiting “the likelihood of development errors”) is by appeal to an assurance
of the development process of ‘items’, and only begins to consider the mitigat-
ing/contributing effects of the proposed architecture when assigning Functional
Development Assurance Levels (FDAL) at a lower level in the lifecycle process.

Taken from 5.2.3.1 when discussing a single FDAL A development process:

“. . . the development assurance process needs to provide confidence that the devel-
opment error(s) will be detected and resolved within the process rather than relying on
independence within the architecture”.

Appendix A Matthew Steven Osborne 213

Identifying effective improvements to software safety practice

Such a (prescriptive) process-based assurance process (in isolation of a product-
based assurance process, or robust assurance of safety requirements) is not sup-
ported by the literature, however [152], [43], [?], [53], [29], [54].

A particular strength of the ARP is found within its discussions on concep-
tual diversity, by asserting the need to consider functional independence of differ-
ent functions “in order to minimize the likelihood of common requirement errors”. This
consideration takes the premise of conceptual diversity (as a means of mitigating
common mode / cause failure) a stage further than is found in some open stan-
dards, by mitigating not only requirement errors, but also common requirement
interpretation errors. It does not offer guidance on how this should be achieved,
however – noting only that “this should be substantiated at all levels of abstraction or
requirement decomposition”.

Requirements Engineering is only loosely considered by the ARP as it ma-
jors on traceability only; neglecting the assurance of the traced requirements and
offers no guidance on what would constitute trustworthy evidence.

Vague statements abound with regards to the management of safety require-
ments, such as the section that purports to deal with the ‘determination’ of safety
requirements; noting only that they are derived through assessment(s) "commen-
surate with the guidance" – but stopping short of stipulating the guidance (again
relying on its sister publication ARP 4761 to provide this).

The subject of ‘Requirements Capture’ is discussed at Section 5.3 of the ARP,
but again, only at a very high-level of abstraction; noting only that the "selection
of the architecture establishes additional requirements necessary to implement the archi-
tecture" and that each phase of requirements identification and allocation process
further and derived requirements will be identified (as well as more granularity
of detail for existing requirements).

Safety requirements, specifically, are dealt with in Section 5.3.1.1, noting only
that they should be "determined by conducting a safety assessment consistent with the
processes in Section 5.1.” With very limited advice on the visibility of requirements
at the software and electronic hardware design level, no specific details are of-
fered.

Although the derivation of requirements is referenced throughout the ARP,
Section 5.3.1.4 specifically discusses ‘Derived Requirements’ as a category in its
own right; using a definition of ‘Derived Requirements’ here as "requirements that
may not be uniquely related to a higher-level requirement". This definition (not widely
shared with in other Open Standards) is unhelpful as it may be inferred that this
can be read across to the wider parts of the standard when referencing the deriva-
tion of requirements.

Section 5.3.2 notes that certain safety assessments will derive safety require-
ments, but again offers only vague guidance on what types of safety assessment
are required, and the measures of performance and constraints that can be allo-
cated against such requirements. It offers no assertions as to how these require-

214 Appendix A Matthew Steven Osborne

Identifying effective improvements to software safety practice

ments should be managed as they evolve however. Nor does the ARP consider
what constitutes a set of reasonable assessment techniques (pertinent to the level
of design abstraction/stage in the safety lifecycle) that may be undertaken to elicit
such safety requirements.

Section 5.4 of the ARP considers the validation of requirements and presents
a list of generic considerations that “may be helpful” – leaving the specific format
of requirements validation to the developer. This high-level guidance (and the
various other shortcomings posited within this Annex) can only be effective and
robust when relying on a certification authority or regulator to endorse the sub-
set of developmental activities. Otherwise, the vagaries of the standard are left to
the developer to design to a commensurate level of assurance – relying instead
on sister publications such as ARP 4761.

Figure 12 of the ARP presents a ‘Validation Process Model’, which also ap-
pears linear and hierarchical in manner – although the accompanying text sug-
gests that (in reality) the process is cyclic and recursive; with confidence in the
process increasing with each cycle. It notes that a "completeness and correctness"
check should be carried out, but without guidance on what constitutes such prop-
erties.

Although the ARP discusses the management and validation of requirements,
it offers no guidance on HOW assumptions should be validated – nor what con-
stitutes ‘trustworthy’ evidence of ‘supporting data’ (related to assumption vali-
dation or indeed evidence at large). It is noted that only in the fifth section (5.4.2)
does the standard acknowledge the presence of “bottom-up influences”.

Section 5.4.4.1 (Templates and Checklists) suggests considerations when as-
sessing whether the requirements have been managed, but whilst it does so, it
offers no guidance on how judgements may be formed and assured. In-service
considerations for the validation of safety requirements are dealt with in Section
5.4.4.2 and asserts some techniques which may be beneficial in eliciting require-
ments that may have been missed - but asserts that they may not be ‘the best
methods’ to use. Such a statement calls their efficacy into question. A more use-
ful guide would be to specify what the best (or at least recommended) techniques
are – perhaps varying in accordance with FDAL/IDAL (which is only mentioned
in abstract at 5.4.5).

Further techniques are asserted in Section 5.4.6 (including a table of recom-
mended techniques in line with the DAL) – but these major on traceability (alone),
testing, or some form of independent or peer review and ‘vigilance’ - all of which
are of limited value for justifying the trustworthiness of data.

The lifecycle diagram at Fig 5.3 suggests that software safety requirements
are only considered by the time the ‘bottom of the V’ is reached. Hawkins ob-
served in 2006 that the Preliminary System Safety Assessment (PSSA) is the first
point at which software safety requirements are considered [54] – as part of the
system requirements which must be allocated to software; which is not articu-
lated in the denoted linear process. Hawkins later affirmed the importance of

Appendix A Matthew Steven Osborne 215

Identifying effective improvements to software safety practice

establishing the specific failure modes of software that may contribute to hazards
[49], and the linking of hazards to software safety requirements are also remiss
from the ARP’s process. Hawkins cautions that – if this linking is not not un-
dertaken – there will exist a “danger of defining generic software safety requirements,
or simply correctness requirements, that can fail to address the specific hazardous failure
modes that affect the safety of the system.”

Habli and Kelly urged further caution against not considering software re-
quirements at the system level [44]; asserting that a lack of system-level require-
ments review by software analysts may give rise to common mode failures.

Conspicuous by its absence is the lack of consideration concerning the en-
try/exit points in the lifecycle for pre-existing software (or hardware elements).

216 Appendix A Matthew Steven Osborne

Appendix B

ARP 4754A and DO178C Assessment
Against the As Desired Criteria

In this Annex we present the assessment of ARP 4754A and DO 178C against the
criteria that must be met to comply with the first principle of the ‘As Desired’
model.

Principle 1 requires that the lifecycle process under assessment ensures:

• A clear description of the software in the system will be provided

• The operating context of the system in which the software resides will be
described

• A clear description of the system in which the software resides will be pro-
vided

• The system hazards to which software may contribute will be identified

• The specific failure modes by which software contributes to the identified
system hazards will be described

• The software contribution to the identified system hazards will be accept-
ably managed through the elicitation of software safety requirements that
specify the required behaviour(s); for each identified software contribution,
to each system hazard

• All software safety requirements will be atomic, unambiguous, defined in
sufficient detail, and verifiable.

. . . and to comply with the ‘plus one’ Principle, each Principle must ensure:

• The required confidence behind the attainment of each Principle (1 to 4) will
be determined

217

Identifying effective improvements to software safety practice

• The most effort in generating evidence will be focussed on the areas with
the highest risk from software’s contribution to hazards (noting that the
areas denoted as requiring the most effort are currently indicated in Open
Standards by the notions of integrity/assurance levels)

• For each Principle (1 to 4), the required confidence that each has been met
will be reflected in:

(a)The appropriateness of evidence

(b) The trustworthiness of each evidential artefact (the rigour in the ap-
proaches to be used):

(i) Independence

(ii) Resources and required attributes (personnel)

(iii) Techniques and Methods used

(iv) Audits and reviews

(v)Tools

(c) The type of evidence to be used.

• An understanding of the limitations with each type of evidence being used
will be clearly understood.

Taking each criterion in turn, we assess the levels of compliance.

B.1 A Clear Definition of Software Within the Sys-
tem

There is no definitive artefact that is produced by the ARP 4754A lifecycle that
would clearly identify the software within the system. Whilst many disparate
artefacts may be used to extract the information, it remains unclear and un-defined
from a coherent, identifiable source.

Of the artefacts in the model of as-required (Open) software safety practice,
it would be reasonably expected for this information to reside in one or more of
the following artefacts:

• System Architectures

• System Description and Environment

• Software Design Details

• Software Load Control Records

• (Software) Loading Data

218 Appendix B Matthew Steven Osborne

Identifying effective improvements to software safety practice

• Software Configuration Management Records

• Software Configuration Index

• Candidate Platform Architecture.

The relationship of these artefacts in the ARP 4754A model of practice are
shown in Figure B.1. Not all links are modelled here, as only the contributors to
the criteria of Principle 1 are represented.

Whilst the model at Fig B.1 represents the candidate artefacts within which
a clear description of the software in a system may reside, it is an unconnected
set of artefacts and activities that produces/consumes them. The artefacts ‘Sys-
tem Description and Environment’, and ‘Software Design Details’ – which may
be reasonably considered the most obvious artefacts that would contain a clear
description of the software – are, in fact ‘orphan’ artefacts (in that there is no
identified activity that produces them).

‘System Description and Environment’ is an inferred artefact created at ‘Plat-
form’ level as an input to the activities ‘Validation Planning’ and ‘Safety Require-
ments Validation. When discussing the ‘Validation Process Model’ at Section
5.4.2, ARP 4754 notes that “inputs to the validation process may include a descrip-
tion of the system (including the operating environment”. The ARP does not define
when this data is created, nor by what activity, however.

‘Software Design Details’ is also an inferred activity created at ‘Platform’
level as an input to the activity ‘Safety Requirements Verification’. Section 2.5.6
of DO-178C notes that “Software design details that relate to the system functionality
need to be made available to aid system verification”, yet the nature of these details is
not expanded on, nor is the activity that produces them identified.

‘System Architectures’ is an artefact created by the (also inferred) activities
‘Platform Detailed Design Activity’ and ‘System Detailed Design Activity’. Sec-
tion 4.6 of ARP 4754A notes that “candidate system architectures are derived from the
activity ‘System Requirements Identification’ which are iteratively and recursively eval-
uated using the PSA, PSSA, and CCA processes in order to establish their feasibility in
meeting the requirements”. At some stage, these candidate architectures must be
formally endorsed through design decision(s); yet such an activity is not consid-
ered. There is no activity that ‘transforms’ candidate architectures into baselined
architectures, and as an artefact cannot link to another artefact, the linking line
between these two artefacts is coloured red.

‘Software Load Control Records’ is another inferred artefact – assumed to
be created by the activity ‘Software Load Control’. The only quality attribute
considered for this artefact is the conformation of compatibility with the system
or equipment hardware, however.

‘Software Loading Data’ is an artefact created by the activity ‘Integration Pro-
cess’, but no consideration of its aspects is made by the lifecycle process.

Appendix B Matthew Steven Osborne 219

Identifying effective improvements to software safety practice

System
Architectures

TQ

E

Platform
Safety
Group

TQ

E

NOTE 14

Platform Detailed
Design Activity

T

I O

R C

M
Candidate
Platform

Architecture

TQ

E

System Detailed
Design Activity

T

I O

R C

M

Candidate
Items

TQ

E

Item Hardware
Design

MT

I O

R C

Item Software
Design

MT

I O

R C

Item Mechanical
Design

MT

I O

R C

Integration
Process

MT

I O

R C

Loading Data

TQ

E

Object Code

TQ

E

Executable
Object Code

TQ

E

A form of code that is directly usable by
the processing unit of the target
computer and is, therefore, the
software that is loaded into the
hardware or system.

That EOC complies with low-level
requirements should be independently
verified for SW level A.

That EOC is robust with low-level
requirements should be independently
verified for SW levels A&B.

System
Description and

Environment

TQ

E

SW Design
Details

TQ

E

Software
Configuration
Management

Process

MT

I O

R C

SW
Configuration
Management

Records
TQ

E

1. Configuration Item Identification
2. Baseline Identification
3. Change History
4. Release status
5. Definition of the data to be maintained
and the means of recording and reporting
the status of the data

Examples include configuration
identification lists, baseline ort SW library
records, change history reports, archive
records, and release records. These
examples do not imply that records of
these specific types need to be produced,
however.

Software
Configuration
Management

Plan

TQ

E

Software Load
Control

MT

I O

R C

SW Load
Control
Records

TQ

E

Confirm SW
compatibility with
the airborne
system or
equipment
hardware

Change Control

MT

I O

R C

Baseline
Establishment
& Traceability

MT

I O

R C

1. Established for configuration items used for certification credit.
Intermediate baselines may be established to aid in controlling
SW life cycle process activities.
2. A SW product baselines should be established for the SW
product and defined in the SW Configuration Index.
3. Baselines should be established in controlled SW libraries,
whether physical, electronic, or other, to ensure their integrity.
Once a baseline is established, it should be protected from
change.
4. Change Control activities should be followed to develop a
derivative baseline from an established baseline.
5. A baseline should be traceable to the baseline from which it
was derived, if certification is sought for SW life cycle process
activities or data associated with the development of the
baseline.
6. A configuration item should be traceable to the configuration
item from which it was derived, if certification credit is sought for
software life cycle process activities or data associated with the
development of the previous configuration item.
7. A baseline or configuration item should be traceable either to
the output it identifies or to the process with which it is
associated.
8. Data Control Category CC1

SW
Configuration

Index

TQ

E

Candidate
System

Architectures

TQ

E

Non-
Functional
Constraints

NOTE 1
TQ

E

Should identify:
1. The SW product.
2. EOC and Parameter Data Item Files, if any.
3. Each Source Code component.
4. Previously developed SW in the SW product, if used.
5. SW lifecycle data.
6. Archive and release media.
7. Instructions for building the EOC and Parameter Data Item
Files, if any, including, for example, instructions and data for
compiling and linking, and the procedures used to recover the SW
for regeneration, testing, or modification.
8. Reference to the SW Lifecycle Environment Configuration
Index, if it is packaged separately.
9. Data integrity checks for the EOC, if used.
10. Procedures, methods, and tools for making modifications to
the user-modifiable SW, if any.
11. Procedures and methods for loading the SW into the target
hardware.

THE SCI may be produced for one SW product version, or it may
be extended to contain data for several alternative or successive
SW product versions.

Software
Development

Activities

T

I O

R C

M

Figure B.1: ARP 4754A a Clear Definition of Software Within the System

220 Appendix B Matthew Steven Osborne

Identifying effective improvements to software safety practice

‘Software Configuration Management Records’ are produced by the activity
‘Software Configuration Management Process’ and offer partial compliance with
the criteria for Principle 1, but it cannot be held as full compliance as it does not
specifically concern the software instances in each system.

The ‘Software Configuration Index’ is created by the activity ‘Baseline Es-
tablishment and Traceability’ and offers partial compliance with the criteria for
Principle 1, but it cannot be held as full compliance as it does not specifically
concern the software instances in each system.

The ‘Candidate Platform Architecture’ is an inferred artefact that is itera-
tively assessed by the inferred activity ‘Platform Detailed Design Activity’. No
quality criteria is specified for either the activity or the artefact, so no level of
compliance can be claimed.

B.2 The Operating Context of the System in Which
the Software Resides will be Described

ARP4754A meets this criterion of Principle 1 by ensuring this information is cap-
tured in six artefacts as shown in Fig B.2. The six artefacts that could contain this
information are one or more of the following:

• Design Description

• Certification Plan(s)

• Functional Requirements

• Operational Requirements

• Operation Scenarios

• Operational Assumptions.

The artefact ‘Design Description is an inferred artefact without a producing
activity. Table 9 of ARP 4754A lists the sources of information that constitute ‘Cer-
tification Data’, with a ‘Design Description’ being one of five such sources. Al-
though some of these sources are produced by activities that are explicitly stated
by the ARP, there is no activity that transforms a ‘Design Description’ into ‘Cer-
tification Data’, and as an artefact cannot directly link to another artefact, the
linking line between these two artefacts is coloured red.

Despite this shortfall, the ARP does list some quality criteria for a ‘Design
Description’ pertinent to this criterion:

• Intended platform-level functionality provided or supported by the sys-
tem(s)

Appendix B Matthew Steven Osborne 221

Identifying effective improvements to software safety practice

Certification Planning

MT

I O

R C

Certification
Plan(s)

TQ

E

Describe the certification project.
Identify the basis for certification (including any special conditions)
Outline the means by which the applicant expects to demonstrate compliance
(including an outline of the anticipated development assurance process)..
Schedule for the project (including approximate sequence and schedule for
certification events).
Definition of 'processes'.
Requirements to be used for certification.
Agreed resolution with the certification authority concerning any issues over the
means to demonstrate compliance.
A functional and operational description of the system and platform on which the
system will be installed (addressing hardware and software).
The description should establish the functional, physical, and information
relationship between the system and other platform systems and functions.
A statement on the relationship of the certification plan to any other certification
plan(s).
A summary of the FHA (platform hazards, Failure Conditions, and Classification).
A summary of the preliminary/platform/system safety assessment (aircraft safety
objectives and preliminary system DALS.
A description of any unique/novel design features that are planned for use in
meeting the safety objectives.
Description of the new technologies/new technology applications to be
implemented.
Data to be submitted and retained under configuration control.
Identification of the personnel or specific organisation responsible for
certification coordination.
How Service History is to be used (accompanied by the analysis that determines
the extent of its applicability).

'The Applicant'
(certification plan)
Platform Safety Group

Agreed to by the
certification authority.
Description of the
analytical approaches
used to show that the
program meets the
certification requirements
for the hazards identified
in the platform FHA

Before
relevant
development
activities
occur

Certification &
Regulatory Authority

Coordination

MT

I O

R C

Certification
Data

TQ

E

'The
applicant'

Design
Description

TQ

E

Intended platform-level functionality
provided or supported by the system(s).
Anticipated system operating
environment(s).
The specific intended capabilities of the
system(s) as installed on the platform.
Primary fault or containment means.
Identification of new/novel design
elements.
Identification of specific architectural
features and design elements that
perform a specific role in establishing or
maintaining platform system safety.

Operational
Requirements

TQ

E

Specifying in both normal and non-normal
circumstances:

Interfaces between crew and each functional
system
Interfaces between crew and the maintenance
crew
Interfaces between crew and each platform
system
Interfaces between crew and platform support
stakeholders
Interfaces between crew and related
functions/equipment
Actions
Decisions
Information requirements
Timing.

Preliminary
Platform Safety

Assessment

MT

I O

R C

FDAL & IDAL
Assignment

MT

I O

R C

Platform Functions
Identification

MT

I O

R C

Functional
Requirements

TQ

E

Customer Desires
Operational Constraints
Regulatory Restrictions
Implementation Requirements

Operational
Assumptions

TQ

E

Industry experience,
Industry standards,
Regulation(s)

Operator/
Maintenance
Requirements
Identification

T

I O

R C

M

Operation
Scenarios

TQ

E

Using the required
procedures in

manuals

"Early in the design
process"

Operating modes
Operating
Environments
Anomalous conditions

AC/AMC
25.19

TQ

E

System-level
Derived
Safety

Requirements
TQ

E

Figure B.2: ARP 4754A a Clear Definition of Software Within the System

222 Appendix B Matthew Steven Osborne

Identifying effective improvements to software safety practice

• Anticipated system operating environment(s).

‘Certification Plan(s)’ are produced by the activity ‘Certification Planning,
which is resourced by ‘The Applicant’ and ‘The Platform Safety Group’. Certifi-
cation Plans are to be produced before relevant development activities occur, and
include the following quality aspects pertinent to this criterion:

• A functional and operational description of the system and platform on
which the system will be installed (addressing hardware and software)

• The description should establish the functional, physical, and information
relationship between the system and other platform systems and functions.

‘Functional Requirements’ is an orphan artefact (as the ARP does not con-
sider its creation) but is assumed to be customer-generated. Although time is
not considered by the ARP, it is reasonably assumed that this is required at the
concept stage of development as it is an input to the activity ‘Platform Functions
Identification’. The ‘Functional Requirements’ artefact is required to establish:

• Customer desires

• Operational constraints.

‘Operational Requirements’ is also an orphan artefact (as the ARP does not
consider its creation) but is assumed to be customer-generated. Although time
is not considered by the ARP, it is reasonably assumed that this is required at
the early stages of the lifecycle as it is an input to the activities ‘FDAL & IDAL
Assignment’ and ‘Preliminary Platform Safety Assessment’. Pertinent to this cri-
terion, this artefact will establish (in both normal and non-normal circumstances),
the interfaces between:

• Crew and each functional system

• Crew and the maintenance crew

• Crew and each platform system

• Crew and platform support stakeholders

• Crew and related functions or equipment.

It will also establish the necessary:

• Actions

• Decisions

Appendix B Matthew Steven Osborne 223

Identifying effective improvements to software safety practice

• Information requirements

• Timing.

‘Operation Scenarios’ are created by the inferred activity ‘Operator / Main-
tenance Requirements Identification’. Whilst this is an inferred activity that is not
resource-profiled, it is controlled by the artefacts ‘AC/AMC 25.19’ and ‘System-
level Derived Safety Requirements’. In support of this criterion, the artefact will
provide details on the:

• Operating modes

• Operating Environments

• Anomalous conditions.

‘Operational Assumptions’ are created by the inferred activity ‘Operator /
Maintenance Requirements Identification’. Whilst this is an inferred activity that
is not resource-profiled, it is controlled by the artefacts ‘AC/AMC 25.19’ and
‘System-level Derived Safety Requirements’. In support of this criterion, the arte-
fact will provide details on the industry standards and regulations that must be
met (which will be pertinent to the intended operating context and intended use).

B.3 A Clear Description of the System in Which the
Software Resides will be Provided

At the software boundary, there are only two artefacts in the lifecycle process that
will provide a clear description of the system in which the software resides:

• Plan for Software Aspects of Certification

• SW Accomplishment Summary.

Both artefacts only provide this data once the design has been fully instanti-
ated, however – as can be seen in Figure B.3.

224 Appendix B Matthew Steven Osborne

Identifying effective improvements to software safety practice

Plan for
Software
Aspects

Of Certification

TQ

E

Proposed development methods.
Means of compliance with DO-178C.
Define the transition criteria by specifying:
1. The inputs to the process, including
feedback from other processes
2. Any integral process activities that may
be required to act on these inputs
3. Availability of tools, methods, plans and
procedures.
State the procedures to be used to
implement software changes prior to use
on a certified product.
State the software levels as determined by
the system safety assessment process
Agreed with the certification authority

Required Contents:
1. System overview ? its functions and their allocation to HW and SW, the
architecture, processor(s) used, HW/ SW interfaces, and safety features.
2. Software overview ? SW functions with emphasis on the proposed safety ad
partitioning concepts.
3. Certification considerations ? summary of the certification basis (including
means of compliance) as relating to the SW aspects of certification. Also states
the proposed SW level(s) and summarises the justification provided by the
system safety assessment process, including potential SW contributions to
failure conditions.
4. SW Lifecycle ? that is to be used, and to include a summary of each of the
SW lifecycle processes for which detailed information is defined in their
respective SW plans. The summary explains how the objectives of each SW
lifecycle process will be satisfied, and specifies the organisations to be
involved, their responsibilities, and the system lifecycle processes and
certification liaison process responsibilities.
5. SW Lifecycle Data ? that to produced and controlled by the SW lifecycle
processes. Also describes the relationship of the data to each other/ to other
data defining the system, the SW lifecycle data to be submitted to the
certification authority, the form of the data, and the means by which the data
will be made available to the certification authority.
6. Schedule ? the means the applicant will use to provide the certification
authority with visibility of the activities of the SW lifecycle process so reviews
can be planned.
7. Additional considerations (that may effect the certification process)
8. Supplier oversight ? describe the means of ensuring that supplier processes
and outputs will comply with approved SW plans and standards

System SSA

T

I O

R C

M

Provide direction to the personnel
performing the software lifecycle
processes.
Be under change control and have
reviews of them completed.
If user-modifiable software is planned,
related processes, tools, environment,
and data items substantiating the design
should be specified.
If software development activities will
be performed by a supplier, planning
should address supplier oversight

SW
Accomplishment

Summary

TQ

E

System
Architectures

TQ

E

SW
Requirements

Process

MT

I O

R C

Certification
Compliance

Substantiation

MT

I O

R C

Should include:
1. System Overview: an overview of the system , including a description of its functions and their allocation to
hardware and software, the architecture, the processor(s) used, the hardware/software interfaces, and safety
features. This section also describes any differences from the system overview in the Plan for Software Aspects
of Certification.
2. Software Overview: a description of the SW functions with emphasis on the safety and partitioning concepts
used, and explains the differences from the SW overview proposed in the Plan for SW Aspects of Certification.
3. Certification Considerations: restates the certification considerations described in the Plan for Software
Aspects of Certification, and describes any differences.
4. Software Lifecycle: summarises the actual software life cycle(s) and explains the differences from the SW
lifecycle and SW lifecycle processes proposed in the Plan for Software Aspects of Certification.
5. Software Life Cycle Data: describe the differences from the proposals made in the Plan for Software Aspects of
Certification for the SW lifecycle data produced, the relationship of the data to each other and to other data
defining the system, and the means by which the data was made available to the certification authority. This
section explicitly references, by configuration identifiers and version, the applicable Software Configuration
Index and Software Lifecycle Environment Configuration Index. Detailed information regarding configuration
identifiers and specific versions of software lifecycle data is provided in the Software Configuration Index.
6. Additional Considerations: summarises any specific considerations that may warrant the attention of the
certification authority. It explains any differences from the proposals contained in the Plan for Software Aspects
of Certification regarding such considerations. Reference should be made to data items applicable to these
matters, such as issue papers or special conditions.
7. Supplier Oversight: describes how supplier processes and outputs comply with plans and standards.
8. Software Identification: identifies the software configuration by part number and version.
9. Software Characteristics: states the EOC size, timing margins, including WCET, memory margins, resource
limitations, and the means used for measuring each characteristic/
10. Change History: as applicable, this section includes a summary of SW changes made due to failures affecting
safety, and identifies any changes from and improvements to the SW lifecycle processes since the previous
certification.
11. Software Status: a summary of Problem Reports unresolved at the time of certification. The Problem Report
summary includes a description of each problem and any associated errors, functional limitations, operational
restrictions, potential adverse effect(s) on safety together with a justification for allowing the Problem Report to
remain open, and details of any mitigating action that has been or needs to be carried out.
12. Compliance Statement: a statement of compliance with DO-178C and a summary of the methods used to
demonstrate compliance with criteria specified in the SW plans. This section also addresses additional rulings
made by the certification authority and any deviations from the SW plans, standards, and DO-178C not covered
elsewhere in the Software Accomplishment Summary.

System PSSA

T

I O

R C

M

Candidate
System

Architectures

TQ

E

System Detailed
Design Activity

T

I O

R C

M

System
Requirements
Identification

MT

I O

R C

System Safety
Requirements

TQ

E

Elicit Interface
Requirements

MT

I O

R C

Interface
Requirements

TQ

E

System
Assumptions

TQ

E

Platform/ System
Integration Requirements

Identification

MT

I O

R C

Platform FHA

MT

I O

R C

Platform
Requirements
Identification

MT

I O

R C

Physical &
Installation

Requirements

TQ

E

Physical attributes
of the system in
relation to the
platform
environment

Platform
Safety
Group

TQ

E

ARP 4761

TQ

E

Architectural
Design

TQ

E

Physical system
interconnections
Defined input and
output sources
Signal behaviour

Non-
Functional

Requirements
NOTE 2

TQ

E

Independence
Probabilistic availability (typically handled
through a budgeting process)
Integrity
No single failure criteria
Monitor performance
Safety or protective features
DALs
Operational and Maintenance Limitations
All failure conditions
Reliability
Availability
Fault Tolerance
Mitigation of unsafe design/ design errors

Carried out at multiple
stages of the system
development ?
including system,
component, and
hardware/software
design definitions

ARP 4761

TQ

E

Platform
Safety
Group

TQ

E

Transition criteria.
OBJECTIVES:
1. High-level requirements are
developed
2. Derived High-level
requirements are defined and
provided to the system processes,
including the system safety
assessment process

SW
Requirements

TQ

E

One or more level (i.e. high-level on low-level requirements).
That low-level requirements meet high-level requirements, and that the
low-level requirements are accurate and consistent should be independently
verified for SW levels A&B
Each system requirement that is allocated to software should be specified in
the high-level requirements.
High-level requirements that address system requirements allocated to
software to preclude system hazards should be defined. This should be
independently verified for SW levels A&B
The high-level requirements should conform to the Software Requirements
Standards, and be verifiable, traceable, and consistent.
The high-level requirements should be stated in quantitative terms with
tolerances where applicable.
The high-level requirements should not describe design or verification detail
except for specified and justified design constraints.
Data Requirements:
1. Description of the allocation of system requirements to SW, with attention
to safety-related requirements and potential failure conditions
2. Functional and operational requirements under each mode of operation.
3. Performance criteria e.g. precision and accuracy.
4. Timing requirements and constraints.
5. Memory size constraints
6. HW and SW interfaces e.g. protocols, formats, frequency of inputs, and
frequency of outputs.
7. Failure detection and safety monitoring requirements.
8. Partitioning requirements allocated to SW, how the partitioned SW
components interact with each other, and the SW level(s) of each partition.

The system functional and
interface requirements that are
allocated to software should be
analysed for ambiguities,
inconsistencies, and undefined
conditions.
Verification that high-level
requirements are accurate and
consistent should be
independently verified for SW
levels A&B

Software
Derived

Requirements

TQ

E

One or more level (i.e. high-level on low-level
requirements).
Derived high-level requirements and the reason for
their existence should be defined.
Derived high-level requirements should be provided to
the system processes,
including the system safety assessment process.
If parameter data items are planned, the high-level
requirements should describe how any parameter data
item is used by the software. The high-level
requirements should also specify their structure, the
attributes for each of their data elements, and, when
applicable, the value of each element. The values of the
parameter data item elements should be consistent
with the structure of the parameter data item and the
attributes of its data elements
Derived low-level requirements and the reason for their
existence should be defined and analyzed to ensure
that the higher level requirements are not
compromised.

Trace between high-level and low-level
requirements to:
1. Enable verification of the complete
implementation of the high-level
requirements.
2. Give visibility to those derived
low-level requirements that are not
directly traceable to high-level
requirements and to the architectural
design decisions made during the
software design process.

Figure B.3: ARP 4754A Clear Description of the System in which the Software
Resides

The ‘Plan for Software Aspects of Certification’ is informed by the activity
‘System SSA’ and has the following relevant quality attributes:

• System overview – its functions and their allocation to hardware and soft-
ware, the architecture, processor(s) used, hardware/software interfaces, and
safety features

• State the software levels as determined by the system safety assessment pro-
cesses.

It also informs the artefact ‘SW Accomplishment Summary’, but as there is
no activity that transforms a ‘Plan for Software Aspects of Certification’ into a
‘Software Accomplishment Summary’, and as an artefact cannot link directly to
another artefact, the linking line between these two artefacts is coloured red.

As well as being informed by the ‘Plan for Software Aspects of Certification’,
the artefact ‘Software Accomplishment Summary’ is created by, and iteratively
informs the activity ‘Certification Compliance Substantiation’. It has the follow-
ing quality attributes specified for the system overview:

Appendix B Matthew Steven Osborne 225

Identifying effective improvements to software safety practice

• An overview of the system, including a description of its functions and their
allocation to hardware and software

• The processor(s) used

• The hardware/software interfaces

• Safety features.

It also describes the differences from the system overview in the Plan for
Software Aspects of Certification, yet it is not clear why there should be any
differences between these two artefacts (especially by the time a certification /
accomplishment stage is reached).

As these two artefacts are produced towards the end of the design lifecycle,
and only contain a section that gives a system overview, full compliance with
this criterion cannot be claimed without recourse to activities and artefacts un-
dertaken and produced at higher levels of abstraction.

The system-level activity ‘System SSA’ (which creates the ‘Plan for Software
Aspects of Certification’, also informs/creates (relevant to this criteria):

• Item Software Design (activity with iterative links)

• Item Hardware Design (activity with iterative links)

• SW Levels (artefact).

Other than the safety engineering activities that contribute to the ability to
create a (P)SSA, there are no inputs to the activity ‘System SSA’ that could impart
a clear description of the system to the lower levels of design abstraction. We
must therefore look to other safety engineering activities:

• System PSSA

• System FTA (an inferred activity)

• System CCA.

The System PSSA is further informed by more safety engineering activities,
the relevant activities to this criterion being:

• System FHA

• System Requirements Identification.

The System PSSA also takes ‘Candidate System Architectures’ as an iterative
input linked to the artefact ‘System Architectures’ (an inferred activity that is not
linked by a consuming activity). ‘Candidate System Architectures’ is created by
iterative links to:

226 Appendix B Matthew Steven Osborne

Identifying effective improvements to software safety practice

• Preliminary Platform Safety Assessment

• Platform Safety Assessment

• System Requirements Identification

• FDAL and IDAL Assignment

• Platform CCA.

These are all linked through to the activity ‘System Requirements Identifica-
tion’. System Requirements Identification is informed by:

• System Safety Requirements (artefact)

• Elicit Interface Requirements (inferred activity with iterative links)

• Interface Requirements (artefact)

• System Assumptions (inferred artefact with iterative links)

• Platform/System Integration Requirements Identification (activity)

• Platform FHA (activity)

• Platform Requirements Identification (activity)

• Physical and Installation Requirements (artefact with iterative links).

Other than ‘System Requirements Identification’, the activities reveal no fur-
ther (relevant) trace, however. The activity ‘SW Requirements Process’ has inputs
from the (inferred) artefact ‘System Architectures’, which is ‘informed’ by the
artefact ‘Candidate System Architectures’; and the inferred activity ‘System De-
tailed Design Activity - with all potentially relevant data to this criterion passed
through the artefact ‘Candidate System Architectures’.

As a deductive link to the activity ‘Software Requirements Process’ can be
traced back to all the expected activities/artefacts that would contribute to im-
parting a clear definition of the system in which the software will reside, one can
assume that such a description will be known at the software boundary. How-
ever, as this is not explicitly made, only partial compliance with this criterion can
be claimed.

B.4 The System Hazard to Which Software may Con-
tribute will be Identified

An artefact entitled ‘X Hazards’ or even ‘Hazard Log’ does not exist in the ARP
4754A lifecycle process; rather the artefacts ‘Platform/System/Item/Software Re-
quirements’ exist (in mitigation of the identified hazards, presumably). A trace

Appendix B Matthew Steven Osborne 227

Identifying effective improvements to software safety practice

from the Platform-level down through the design levels of abstraction to the Soft-
ware level can be made. Following this trace, it can be assumed (but not explic-
itly proven) that the safety engineering activities and analyses identified potential
hazardous states for which mitigating safety requirements are elicited and man-
aged.

The contribution made by software to system hazards will ultimately be
managed and mitigated through software safety requirements, so we start a de-
ductive trace from this point. This is illustrated in Figure B.4.

SW
Requirements

TQ

E

One or more level (i.e. high-level on low-level requirements).
That low-level requirements meet high-level requirements, and that the
low-level requirements are accurate and consistent should be independently
verified for SW levels A&B
Each system requirement that is allocated to software should be specified in
the high-level requirements.
High-level requirements that address system requirements allocated to
software to preclude system hazards should be defined. This should be
independently verified for SW levels A&B
The high-level requirements should conform to the Software Requirements
Standards, and be verifiable, traceable, and consistent.
The high-level requirements should be stated in quantitative terms with
tolerances where applicable.
The high-level requirements should not describe design or verification detail
except for specified and justified design constraints.
Data Requirements:
1. Description of the allocation of system requirements to SW, with attention
to safety-related requirements and potential failure conditions
2. Functional and operational requirements under each mode of operation.
3. Performance criteria e.g. precision and accuracy.
4. Timing requirements and constraints.
5. Memory size constraints
6. HW and SW interfaces e.g. protocols, formats, frequency of inputs, and
frequency of outputs.
7. Failure detection and safety monitoring requirements.
8. Partitioning requirements allocated to SW, how the partitioned SW
components interact with each other, and the SW level(s) of each partition.

The system functional and
interface requirements that are
allocated to software should be
analysed for ambiguities,
inconsistencies, and undefined
conditions.
Verification that high-level
requirements are accurate and
consistent should be
independently verified for SW
levels A&B

Software
Requirements
Standard(s)

TQ

E

Structural
Coverage
Analysis

Resolution

MT

I O

R C

SW Design
Process

MT

I O

R C

Design
Description

TQ

E

Data Requirements:
1. Detailed description of how the SW satisfies the specified high-level
requirements, including algorithms, data structures, and how SW
requirements are allocated to processors and tasks.
2. The description of the SW architecture defining the SW structure to
implement the requirements.
3. The input/output description e.g. a data dictionary, both internally and
externally throughout the SW architecture
4. The data flow and control flow of the design.
5. Resource limitations, the strategy for managing each resource and its
limitations, the margins, and the method for measuring those margins e.g.
timing and memory.
6. Scheduling procedures and inter-processing/ inter-task communication
mechanisms, including time-rigid sequencing, pre-emptive scheduling, Ada
rendezvous, and interrupts.
7. Design methods and details for their implementation e.g. SW loading,
user-modifiable SW, or multiple-version dissimilar SW.
8. Partitioning methods and means of preventing partition breaches.
9. Descriptions of the SW components, whether they are new/ previously
developed, and, if previously developed, reference to the baseline from which
they were taken.
10. Derived requirements resulting from the SW design process.
11. If the system contains deactivated code, a description of the means to
ensure that the code cannot be enabled in the target computer.
12. Rationale for those design decisions that are traceable to safety-related
system requirements.

SW
Architecture

TQ

E

SW
Requirements

Process

MT

I O

R C

Conform to the Design Standards and be
traceable, verifiable and be traceable.
Interfaces between software components, in
the form of data flow and control flow,
should be defined to be consistent between
the components.
Control flow and data flow should be
monitored when safety-related requirements
dictate, for example, watchdog timers,
reasonableness-checks, and cross-channel
comparisons.
Responses to failure conditions should be
consistent with the safety-related
requirements

E.g. Problem Reporting

System
Safety

Requirements

TQ

E

Note 18

Note 18

System
Requirements
Identification

MT

I O

R C

System
Detailed

Design Activity

T

I O

R C

M

Uniquely Identifiable
Identifiable as a requirement
Valid (extant and not redundant)
Traceable to arhitecture, source and to
lower levels
Verifiable
Measurable and achievable
Measures of performance
Consistent with other requirements
Necessary
Factually correct
Amendable
Rationale provided
Atomic
Reflects the safety analyses

Independence
Probabilistic availability (typically handled
through a budgeting process)
Integrity
No single failure criteria
Monitor performance
Safety or protective features
DALs
Operational and Maintenance Limitations
All failure conditions
Reliability
Availability
Fault Tolerance
Mitigation of unsafe design/ design errors

System
Requirements

TQ

E

Note 16

Transition criteria.
OBJECTIVES:
1. High-level requirements
are developed
2. Derived High-level
requirements are defined
and provided to the system
processes, including the
system safety assessment
process

System SSA

T

I O

R C

M

System FHA

MT

I O

R C

System PSSA

T

I O

R C

M

Platform FHA

MT

I O

R C

System CCA

MT

I O

R C

Platform
Requirements
Identification

MT

I O

R C

Figure B.4: ARP 4754A System Hazards to which Software may Contribute will
be Identified

The artefact ‘SW Requirements’ (in the absence of a specific software safety
requirements artefact) can be expected reasonably to be the single point of truth
for software safety requirements that link deductively to system hazards, and
inductively to the software design. This artefact is created by the activity ‘SW Re-
quirements Process’, is updated during the activity ‘Structural Coverage Analysis
Resolution’, and is an input to the activity ‘SW Design Process’. It is influenced
by the artefact ‘Software Requirements Standard(s)’, and informs two other arte-
facts. As no activity is defined for these, the connecting lines are coloured red):

• Design Description

228 Appendix B Matthew Steven Osborne

Identifying effective improvements to software safety practice

• SW Architecture.

Various quality attributes are defined for ‘SW Requirements’ (modelled as
aspects), with the following being relevant to this criterion:

• High-level requirements allocated to software to preclude system hazards
should be defined. This should be independently verified for software lev-
els A and B

• Description of the allocation of system requirements to software, with at-
tention to safety-related requirements and potential failure conditions

• Failure detection and safety monitoring requirements.

Although safety requirements are considered here, it is not robust enough to
argue a link to the hazards to which software contributes. To identify the hazards
to which the software contributes, we must look to the activity that produces the
‘SW Requirements’ – ‘SW Requirements Process’. This activity has the following
controlling aspects:

• Define the transition criteria (not established by the lifecycle)

• Ensure high-level requirements are developed (an objective)

• Ensure the high-level requirements are defined and provided to the system
processes, including the system safety assessment process (an objective).

It is informed by (has inputs from):

• System Safety Requirements (artefact) as an iterative link (Note 18)

• System Requirements Identification (activity)

• System Requirements (an assumed artefact)

• SW Design Process (an iterative link between the 2 activities).

The ‘SW Requirements Process’ activity does not have a specific methodol-
ogy that defines how software requirements are to be elicited, nor does it have
a time constraint for completion, nor an indication of the resource(s) required to
carry it out.

To deductively trace to system hazards, we must look to the inputs to the
activity ‘SW Requirements Process’. ‘System Requirements’ is an assumed arte-
fact that is an input to the activity ‘SW Requirements Process’ (and others), and
although the ARP makes frequent reference to ‘system requirements’ as a quality
attribute required of many activities and artefacts, it does not positively assert an
activity that produces them.

Appendix B Matthew Steven Osborne 229

Identifying effective improvements to software safety practice

As an example, Section 2.2.2 notes “The software life cycle processes analyze the
system requirements allocated to software as part of the software requirements process”.
It further states “If such an analysis identifies any system requirements as inadequate or
incorrect, the software life cycle processes should capture the issues and refer them to the
system processes for resolution” – but fails to specify what this ‘analysis’ is, or what
such ‘system processes’ may be.

‘System Safety Requirements’ are produced by, and have iterative links with
the activities:

• System Requirements Identification

• SW Requirements Process, and

• System Detailed Design Activity.

The trace to system hazard data must logically emanate from one of these
activities. Each activity is assessed in turn, therefore.

The inputs to ‘System Requirements Identification’ include:

• System SSA (activity)

• System Detailed Design Activity (an assumed activity)

• System CCA (activity)

• System FHA (activity)

• System PSSA (activity)

• Platform FHA (activity), and

• Platform Requirements Identification.

On the assumption that sister publications to ARP 4754A (such as ARP 4761)
govern these safety activities, it is reasonable to accept that the identification of
the system hazards (and corresponding mitigating safety requirements) are iden-
tified at the software boundary. As this is not explicitly stated (and requires as-
sumptions based on a deductive trace), this criterion is only partially satisfied.

B.5 The Specific Failure Modes by Which Software
Contributes to the Identified System Hazards will
be Described

The modelling of this criterion is illustrated in Figure B.5, and whilst a trace from
the system-level safety activities can be made to software requirements artefacts,

230 Appendix B Matthew Steven Osborne

Identifying effective improvements to software safety practice

there is no clear link between the system hazards and specific software failure
modes.

Plan for
Software
Aspects

Of Certification
TQ

E

Required Contents:
1. System overview ? its functions and their allocation to HW and SW, the
architecture, processor(s0 used, HW/ SW interfaces, and safety features.
2. Software overview ? SW functions with emphasis on the proposed safety ad
partitioning concepts.
3. Certification considerations ? summary of the certification basis (including
means of compliance) as relating to the SW aspects of certification. Also states
the proposed SW level(s) and summarises the justification provided by the
system safety assessment process, including potential SW contributions to
failure conditions.
4. SW Lifecycle ? that is to be used, and to include a summary of each of the
SW lifecycle processes for which detailed information is defined in their
respective SW plans. The summary explains how the objectives of each SW
lifecycle process will be satisfied, and specifies the organisations to be
involved, their responsibilities, and the system lifecycle processes and
certification liaison process responsibilities.
5. SW Lifecycle Data ? that to produced and controlled by the SW lifecycle
processes. Also describes the relationship of the data to each other/ to other
data defining the system, the SW lifecycle data to be submitted to the
certification authority, the form of the data, and the means by which the data
will be made available to the certification authority.
6. Schedule ? the means the applicant will use to provide the certification
authority with visibility of the activities of the SW lifecycle process so reviews
can be planned.
7. Additional considerations (that may effect the certification process)
8. Supplier oversight ? describe the means of ensuring that supplier processes
and outputs will comply with approved SW plans and standards

SW
Requirements

TQ

E

One or more level (i.e. high-level on low-level requirements).
That low-level requirements meet high-level requirements, and that the
low-level requirements are accurate and consistent should be independently
verified for SW levels A&B
Each system requirement that is allocated to software should be specified in
the high-level requirements.
High-level requirements that address system requirements allocated to
software to preclude system hazards should be defined. This should be
independently verified for SW levels A&B
The high-level requirements should conform to the Software Requirements
Standards, and be verifiable, traceable, and consistent.
The high-level requirements should be stated in quantitative terms with
tolerances where applicable.
The high-level requirements should not describe design or verification detail
except for specified and justified design constraints.
Data Requirements:
1. Description of the allocation of system requirements to SW, with attention
to safety-related requirements and potential failure conditions
2. Functional and operational requirements under each mode of operation.
3. Performance criteria e.g. precision and accuracy.
4. Timing requirements and constraints.
5. Memory size constraints
6. HW and SW interfaces e.g. protocols, formats, frequency of inputs, and
frequency of outputs.
7. Failure detection and safety monitoring requirements.
8. Partitioning requirements allocated to SW, how the partitioned SW
components interact with each other, and the SW level(s) of each partition.

SW
Architecture

TQ

E

Conform to the Design Standards and be
traceable, verifiable and be traceable.
Interfaces between software
components, in the form of data flow and
control flow, should be defined to be
consistent between the components.
Control flow and data flow should be
monitored when safety-related
requirements dictate, for example,
watchdog timers, reasonableness-checks,
and cross-channel comparisons.
Responses to failure conditions should be
consistent with the safety-related
requirements

SW
Level(s)

TQ

E

If the anomalous behaviour of
a SW component contributes
to more than 1 failure
conditions, then the
component should be
assigned the SW level
associated with the most
severe failure condition to
which the SW can contribute,
including combined failure
conditions

System SSA

T

I O

R C

M

SW
Accomplishment

Summary

TQ

E

Should include:
1. System Overview: an overview of the system , including a description of its functions and their allocation to
hardware and software, the architecture, the processor(s) used, the hardware/software interfaces, and safety
features. This section also describes any differences from the system overview in the Plan for Software Aspects
of Certification.
2. Software Overview: a description of the SW functions with emphasis on the safety and partitioning concepts
used, and explains the differences from the SW overview proposed in the Plan for SW Aspects of Certification.
3. Certification Considerations: restates the certification considerations described in the Plan for Software
Aspects of Certification, and describes any differences.
4. Software Lifecycle: summarises the actual software life cycle(s) and explains the differences from the SW
lifecycle and SW lifecycle processes proposed in the Plan for Software Aspects of Certification.
5. Software Life Cycle Data: describe the differences from the proposals made in the Plan for Software Aspects of
Certification for the SW lifecycle data produced, the relationship of the data to each other and to other data
defining the system, and the means by which the data was made available to the certification authority. This
section explicitly references, by configuration identifiers and version, the applicable Software Configuration
Index and Software Lifecycle Environment Configuration Index. Detailed information regarding configuration
identifiers and specific versions of software lifecycle data is provided in the Software Configuration Index.
6. Additional Considerations: summarises any specific considerations that may warrant the attention of the
certification authority. It explains any differences from the proposals contained in the Plan for Software Aspects
of Certification regarding such considerations. Reference should be made to data items applicable to these
matters, such as issue papers or special conditions.
7. Supplier Oversight: describes how supplier processes and outputs comply with plans and standards.
8. Software Identification: identifies the software configuration by part number and version.
9. Software Characteristics: states the EOC size, timing margins, including WCET, memory margins, resource
limitations, and the means used for measuring each characteristic/
10. Change History: as applicable, this section includes a summary of SW changes made due to failures affecting
safety, and identifies any changes from and improvements to the SW lifecycle processes since the previous
certification.
11. Software Status: a summary of Problem Reports unresolved at the time of certification. The Problem Report
summary includes a description of each problem and any associated errors, functional limitations, operational
restrictions, potential adverse effect(s) on safety together with a justification for allowing the Problem Report to
remain open, and details of any mitigating action that has been or needs to be carried out.
12. Compliance Statement: a statement of compliance with DO-178C and a summary of the methods used to
demonstrate compliance with criteria specified in the SW plans. This section also addresses additional rulings
made by the certification authority and any deviations from the SW plans, standards, and DO-178C not covered
elsewhere in the Software Accomplishment Summary.

SW
Requirements

Process

MT

I O

R C

System
Requirements
Identification

MT

I O

R C

Certification
Compliance

Substantiation

MT

I O

R C

Safety
Related

Requirements

TQ

E

Including:
Safety strategies, design constraints and
design methods, such as, partitioning,
dissimilarity, redundancy, or safety
monitoring.

 In cases where the system is a component
of another system, the requirements and
failure conditions for that other system may
also form part of the system
requirements allocated to software

Figure B.5: ARP 4754A specific Software Failure Modes

It is important to note that although there is an artefact entitled ‘Safety Re-
lated Requirements’ this is an inferred artefact that has no activity to produce it,
yet it must serve as an input to other activities for them to be fulfilled.

It is already known that an artefact containing specific software safety re-
quirements is not produced by this lifecycle, and our assessment therefore fo-
cussed initially on the artefact ‘SW Requirements’.

‘SW Requirements’ are produced by the activity ‘SW Requirements Process’
and have the following quality attributes:

• Each system requirement that is allocated to software should be specified in
the high-level requirements

• High level requirements that address system requirements allocated to soft-
ware to preclude system hazards should be identified. This should be inde-
pendently verified for Software Levels A and B

• A description of the allocation of system requirements to software, with
attention to safety-related requirements and potential failure conditions

Appendix B Matthew Steven Osborne 231

Identifying effective improvements to software safety practice

• Failure detection and safety monitoring requirements.

Whilst this may be argued to assert the system hazards that software con-
tributes to (including performance criteria such as precision and accuracy), it falls
short of describing the specific failure modes by which the software contributes
to system hazards.

The artefact ‘SW Requirements’ is linked to the artefact ‘SW Architecture’,
but as there is no activity that links these two artefacts, the connecting line is
coloured red. ‘SW Architecture’ has the following relevant quality attributes:

• Control flow and data flow should be monitored when safety-related re-
quirements dictate, for example, watchdog timers, reasonable-checks, and
cross-channel comparisons

• Responses to failure conditions should be consistent with the safety-related
requirements.

These attributes suggest a form of mitigation to specific failure modes (at the
software boundary), but it is not clear how these failure modes and the system
hazards they contribute to are identified. As such we must look to whether rele-
vant hazard and failure data can be traced to the architecture (via the artefact ‘SW
Requirements’).

‘SW Requirements’ are produced by the activity ‘SW Requirements Process’,
which is informed by the activity ‘System Requirements Identification’ – which
itself is informed by the activity ‘System SSA’. Whilst this provides assurance that
the system hazard data will flow deductively to the software boundary, the activ-
ities or analyses that identify the specific software failure modes are not defined.

‘System SSA’ produces the artefact ‘SW Levels’, but the only pertinent quality
attribute considers the requirement for Software Levels – should the component
contribute to more than one failure mode. This assumes the failure modes will be
identified, but not how.

The only other artefact in the lifecycle process that considers this criterion is
the ‘SW Accomplishment Summary’, which requires:

• A system overview that includes safety features

• A software overview. . . with emphasis on the safety and partitioning con-
cepts used

• Software characteristics. . . including Worst Case Execution Time.

However, this is produced towards the end of design lifecycle as an assur-
ance and certification artefact.

232 Appendix B Matthew Steven Osborne

Identifying effective improvements to software safety practice

As the means of identifying the software failure modes are not explicitly
stated (and requires assumptions based on a deductive trace), this criterion is
only partially satisfied.

B.6 The Software Contribution to the Identified Sys-
tem Hazards will be Acceptably Managed Through
the Elicitation of Software Safety Requirements
Which Specify the Required Behaviour(s); for each
Identified Software Contribution, to each System
Hazard

We have already assessed that software safety requirements are not specifically
created by this lifecycle. Whilst some aspects could be inferred, the elicitation of
software safety requirements cannot be assured with any degree of confidence.
ARP 4754A is therefore non-compliant with this criterion.

B.7 All Software Safety Requirements will be Atomic,
Unambiguous, Defined in Sufficient Detail, and
Verifiable

In the absence of any software safety requirements, this criterion cannot be held
to be met.

Appendix B Matthew Steven Osborne 233

Appendix C

JB61834 Assessment Against
Principle 1

The as-required (Closed) practice of the JB61834 project was assessed against the
first principle of the as-desired model, and the findings of this assessment are
presented in this Appendix.

Principle 1 requires that the lifecycle process under assessment ensures that:

• A clear description of the software in the system will be provided

• The operating context of the system in which the software resides will be
described

• A clear description of the system in which the software resides will be pro-
vided

• The system hazards to which software may contribute will be identified

• The specific failure modes by which software contributes to the identified
system hazards will be described

• The software contribution to the identified system hazards will be accept-
ably managed through the elicitation of software safety requirements that
specify the required behaviour(s); for each identified software contribution,
to each system hazard

• All software safety requirements will be atomic, unambiguous, defined in
sufficient detail, and verifiable.

Further, to comply with the ‘plus one’ Principle, each Principle must ensure:

• The required confidence behind the attainment of each Principle (1 to 4) will
be determined

234

Identifying effective improvements to software safety practice

• The most effort in generating evidence will be focussed on the areas with
the highest risk from software’s contribution to hazards (noting that the
areas denoted as requiring the most effort are currently indicated in Open
Standards by the notions of integrity/assurance levels)

• For each Principle (1 to 4), the required confidence that each has been met
will be reflected in:

(a) The appropriateness of evidence

(b) The trustworthiness of each evidential artefact (the rigour in the ap-
proaches to be used):

(i) Independence

(ii) Resources and required attributes (personnel)

(iii) Techniques and Methods used

(iv) Audits and reviews

(v) Tools

(c) The type of evidence to be used.

• An understanding of the limitations with each type of evidence being used
will be clearly understood.

Taking each criterion in turn, the levels of compliance of the JB61834 lifecycle
is assessed. The complete representation of JB61834’s lifecycle is not included
here owing to its size. The full model of JB61834’s assessment against the as-
desired criteria can be found at [114].

C.1 A Clear Definition of Software in the System

As illustrated in Figure C.1, there are four artefacts which could be reasonably
expected to contain a clear definition of software within the system. This descrip-
tion could reside in any or all of the following:

1. Software Design Description

2. Software Design Decision Log

3. Software Version Document

4. Software Product Specification.

The required quality attributes for these artefacts however, are either not
stated (with the exception of ‘Time’ which is stated for the artefacts Software
Product Specification, and Software Design Decision Log), or only stipulate the

Appendix C Matthew Steven Osborne 235

Identifying effective improvements to software safety practice

Prepare the
Version

Description

MT

I O

R C

Prepare the
Version

Description

MT

I O

R C

Software
Version

 Document

TQQ

EE

Software
Version

 Document

TQ

E

Comply with the required
format and content of
MIL-STD-498 DID for an
SVD

Contain instructions for
the installation

DRAFT version
provided for Test
Readiness Review

Software
Design

MT

I O

R C

Software
Design

MT

I O

R C

Software
Design

Description

TQQ

EE

Software
Design

Description

TQ

E

Software
Design

Decision
Log

TQQ

EE

Software
Design

Decision
Log

TQ

E

Microsoft Word, but UML
for CSCI

UML supported by
Artisan Real-Time Studio
Toolset

One SDD for each
functional application

3-layer software
architecture

Use of Object Oriented
Development

Software
V&V
 Plan

TQQ

EE

Software
V&V
 Plan

TQ

E

STMTAS

TQQ

EE

STMTAS

TQ

E

CSCI
Qualification

Testing

MT

I O

R C

CSCI
Qualification

Testing

MT

I O

R C

Software
Product

Specification

TQQ

EE

Software
Product

Specification

TQ

E

DRAFT version
provided for Test
Readiness Review

Prior to being
released for sub-
system and system
qualification

Figure C.1: JB61834 Software Description

required format (for the artefacts Software Version Document, and Software De-
sign Description).

The three activities that produce the four artefacts which could reasonably
be expected to contain a clear definition of software within the system are:

• For the Software Decision Log - ‘Software Design’

• For the Software Design Description - ‘Software Design’

• For the Software Version Document - ‘Prepare the Version Description’ and
‘CSCI Qualification Testing’

• For the Software Product Specification - not stated; although ‘CSCI Qualifi-
cation Testing’ updates the specification on completion.

Taking each activity in turn, the aspects that denote the required quality cri-
teria are assessed.

Software Design

1. Inputs: there is a single input to this activity which is a document (Software
V&V Plan). This artefact alone would not allow the software design process
to proceed, as there are no requirement specifications on which to undertake
a design activity.

2. Time: when this activity is to be completed by/start is not stated.

3. Method: no technique or method by which the activity is undertaken is
stated.

236 Appendix C Matthew Steven Osborne

Identifying effective improvements to software safety practice

4. Output: the activity produces the required artefacts.

5. Control: this is partially satisfied by requiring a 3-layered architecture and
the use of Object Oriented Design

6. Resource: no indication is made as to the consumed resources, nor person-
nel required.

CSCI Qualification Testing

1. Inputs: none stated.

2. Time: given as "prior to being released for sub-system and system qualifi-
cation".

3. Method: no technique or method by which the activity is undertaken is
stated.

4. Output: the activity produces the required artefacts.

5. Control: satisfied by the STMTAS.

6. Resource: no indication is made as to the consumed resources, nor person-
nel required.

Prepare the Version Description

1. Inputs: none stated.

2. Time: when this activity is to be completed by/start is not stated.

3. Method: no technique or method by which the activity is undertaken is
stated.

4. Output: the activity produces the required artefacts.

5. Control: not controlling aspects are stated.

6. Resource: no indication is made as to the consumed resources, nor person-
nel required.

Whilst it is possible to identify activities that produce these artefacts, it can-
not be shown compellingly how they are produced, by whom, nor to what stan-
dard. In addition, the aspects of the produced artefacts are not considered suffi-
ciently to argue over the first criterion of Principle 1 being met.

There is an activity entitled ‘Software Development’in the JB61834 lifecycle,
and although similar in title to ‘designing’ the software, it also lacks any defined
inputs.

Appendix C Matthew Steven Osborne 237

Identifying effective improvements to software safety practice

Construct GSN
Safety

Argument

MT

I O

R C

Construct GSN
Safety

Argument

MT

I O

R C

Shall include:
1. Updates to the Interim safety Case as
previously presented at TRR
2. Completion of all safety goal and solution
development
3. Completion of all safety arguments, context
information and justifications for each safety
argument
4. Completion and provision of the evidence
required to support all goals allocated.
Justification of any change in safety argument
strategy from those strategies identified in the
previous phase.
5. Completion of all actions arising from
previous safety reviews.

Contents:
1. Scope – clearly define the boundary of concern; identifying the software to which the safety argument is applicable.
2. References
3. Introduction
4. System and Design Aspects:
(a) Overview of the system architecture including the system boundaries and interfaces
(b) Overview of the system functions
(c) Brief description of the operating environment, including both normal and abnormal modes of operation
(d) A list of the main system safety requirements
(e) The system design report
5. System Hazards – a brief description of the system level hazards that are applicable to the software under
consideration (referencing the Hazard Log as an aid to traceability
6. Software Safety Requirements – describe the role that SW plays in ensuring safety. Include a list of the functional and
non-functional SW safety requirements, along with the safety integrity requirements for the SW, and any required SW
standards
7. Software Description – describe the architecture of the SW and how this contributes towards safety. Including:
(a) Overview of the SW architecture
(b) Description of the main design features of the SW (e.g. real-time aspects, user interfaces, key algorithms etc.)
(c) Means by which SW of different SILs is segregated (if relevant)
8. Safety Arguments – justifying how each SW safety requirement has been met, and that the necessary measures have
been taken to reduce the SW contribution to system hazards to an acceptable level. The argument will reference at
least 2 independent sources of evidence (e.g. analysis and testing). A complete list of all assumptions (with
corresponding justifications) used in constructing the safety argument, and a list of weaknesses in the current
argument.
9. Software Development Process – justification that the SW development process is adequate to achieve the required
SIL of the SW:
(a) Briefly describe the main methods, tools and key project staff
(b) Describe and justify the use of any previously developed SW
(c) Provide a measure of the performance of the SW development process
(d) The results of any safety/quality audits carried out
(e) If the data is available, provide an analysis of historical data on the safety integrity of SW developed using the
proposed/similar SW development process.
A summary of the testing evidence is needed for the argument, and could be placed in this section.
10. Current Status
11. Change History
12. Compliance – statement of compliance against all relevant SW standards
13. In-Service Feedback – from realistic operational testing, trials or in-service usage
14. Software Identification – specifying the current release of the SW, citing a SW release notice
15. Conclusions
16. Notes – definitions and abbreviations used within the document, and the provision of any additional material that
may aid in the reading of the SW Safety Case.

Operational
 SW

Safety Case

TQQ

EE

Operational
 SW

Safety Case

TQ

E

Interim SW
Safety Case

TQQ

EE

Interim SW
Safety Case

TQ

E

Operational
 SW

Safety Case

TQQ

EE

Operational
 SW

Safety Case

TQ

E

Shall include:
1. Updates to the Interim safety Case as
previously presented at TRR
2. Completion of all safety goal and solution
development
3. Completion of all safety arguments, context
information and justifications for each safety
argument
4. Completion and provision of the evidence
required to support all goals allocated.
Justification of any change in safety argument
strategy from those strategies identified in the
previous phase.
5. Completion of all actions arising from
previous safety reviews.

Figure C.2: JB61834 Software Safety Cases

Examination of the Software Safety lifecycle of JB61834 identifies three Safety
Cases that are created, and these are shown (in an abridged form) in Figure C.2.
As a safety case should contain or reference a clear definition of software within
a system, these safety cases were assessed. The safety cases are:

1. Preliminary Software Safety Case

2. Interim Software Safety Case

3. Operational Software Safety Case.

Analysis of the lifecycle activities that produce the safety cases reveals that
for these safety cases to be completed, the following attributes are required:

• Scope - clearly identifying the software to which the safety argument is ap-
plicable

• Software Safety Requirements - describe the role that software plays in en-
suring safety. Include a list of the functional and non-functional SW safety
requirements, along with the safety integrity requirements for the software,
and any required software standards

238 Appendix C Matthew Steven Osborne

Identifying effective improvements to software safety practice

Safety
 Requirements

TQQ

EE

Safety
 Requirements

TQ

E

Place Safety
Requirements

into the CRADLE
Database

MT

I O

R C

Place Safety
Requirements

into the CRADLE
Database

MT

I O

R C

CRADLE
Database

TQQ

EE

CRADLE
Database

TQ

E

Place SW
Safety

Requirements
into the CRADLE

Database

MT

I O

R C

Place SW
Safety

Requirements
into the CRADLE

Database

MT

I O

R C

Software Test
Planning

MT

I O

R C

Software Test
Planning

MT

I O

R C

For any DSSRs where the
existing evidence is
insufficient, further analysis
may be required in order to
discharge the requirement –
this analysis would invo9lve
the SW Safety and SW
Development Teams as
appropriate

SW Safety
Requirements
Specification

TQQ

EE

SW Safety
Requirements
Specification

TQ

E

Figure C.3: JB61834 Requirements Database

• Software Description – describe the architecture of the SW and how this
contributes towards safety. Including:

(a) Overview of the software architecture

(b) Description of the main design features of the software (e.g. real-
time aspects, user interfaces, key algorithms etc.)

(c) Means by which SW of different SILs is segregated (if relevant)

• Safety Arguments – justifying how each software safety requirement has
been met, and that the necessary measures have been taken to reduce the
software contribution to system hazards to an acceptable level

Although a trace of activities and artefacts cannot be etablished for the data
to be provided within the safety cases, in order for the software safety cases to
have been satisfactorily completed and accepted, such data must have been pro-
vided. We can also determine that there is a requirements database (‘CRADLE’),
whose inputs are shown in Figure C.3. Figure C.3 shows that platform and soft-
ware safety requirements are placed in the database (and presumably the system
safety requirements too), and that software safety requirements are derived from
it. As there is no consuming activity that produces the software safety require-
ments specification, the linking line between these two artefacts is coloured red.

Whilst the JB61834 as-required (Closed) model does not establish explicit ac-
tivities required to produce a clear definition of the software in the system(s),
it is possible to assume that this information is created - largely relying on the
required quality attributes defined by the aspects of the software safety cases.
There cannot be a high confidence in this owing to the lack of clearly defined ac-
tivities, however. As such this first criterion is partially met, with a low degree of
confidence.

Appendix C Matthew Steven Osborne 239

Identifying effective improvements to software safety practice

Manage the
Hazard Log

MT

I O

R C

Manage the
Hazard Log

MT

I O

R C

Hazard
Logging

and Tracking
Procedure

TQQ

EE

Hazard
Logging

and Tracking
Procedure

TQ

E

Update the
Hazard Log

MT

I O

R C

Update the
Hazard Log

MT

I O

R C

Hazard Log

TQQ

EE

Hazard Log

TQ

E

Defined in the System Safety
Programme Plan, and based upon Def
Stan 00-56 Part 1, and MIL-STD-882C
Task 106.

The Hazard Owners shall be responsible
for maintaining the Hazard Log and
ensuring that the information contained
within it is accurate and up to date.

The Project Safety Engineer shall
formally issue the Hazard Log as
required to support the Project.

System Safety
Program Plan

As a minimum, the Hazard Log shall contain/reference:
1. All hazards identified with a severity level of catastrophic,
critical, and marginal.
2. A description of each hazard.
3. A unique reference number for each hazard.
4. A Title for each hazard
5. A Description of each hazard
6. Safety effects (i.e. the potential accident).
7. Hazard severity.
8. Accident probability target
9. Safety Integrity Level Traget
10. Accident mitigation documentation.
11. Hazard Risk Assessment documentation.
12. Hazard Probability.
13. Hazard Risk Index.
14. Status of Hazard.
15. Hazard owner.
16. Project Safety Committee meeting which closed the hazard.
17. Tracking of the hazard, from the time it was identified, to the
time it was closed.

‘System’-level
Hazard Analysis

Reports

TQQ

EE

‘System’-level
Hazard Analysis

Reports

TQ

E

During the
Design
Evaluation
Phase

Preliminary
System Hazard
Identification

MT

I O

R C

Preliminary
System Hazard
Identification

MT

I O

R C

System
Safety Engineers

TQQ

EE

System
Safety Engineers

TQ

E

Historical
and

Past In Service
Experience

TQQ

EE

Historical
and

Past In Service
Experience

TQ

E

Hazard
Checklist Reports

TQQ

EE

Hazard
Checklist Reports

TQ

E

Functional
Failure

Analysis Reports

TQQ

EE

Functional
Failure

Analysis Reports

TQ

E

Preliminary
Hazard List

TQQ

EE

Preliminary
Hazard List

TQ

E

Preliminary
System Hazard

Analysis

MT

I O

R C

Preliminary
System Hazard

Analysis

MT

I O

R C

Mil-STD
882C Task 202

TQQ

EE

Mil-STD
882C Task 202

TQ

E

Preliminary
System Hazard

Analysis
report

TQQ

EE

Preliminary
System Hazard

Analysis
report

TQ

E

Identify system-
level hazardous

behaviour

MT

I O

R C

Identify system-
level hazardous

behaviour

MT

I O

R C

Hazard
Mitigation
Strategy

TQQ

EE

Hazard
Mitigation
Strategy

TQ

E

System-Level
Software Safety

Objectives

TQQ

EE

System-Level
Software Safety

Objectives

TQ

E

Capture the required behaviour of the
OFP
Suitable to prevent the hazardous
behaviour.
Structured such that if the OFP meets
the objectives, the precise OFP failure
(identified for the hazard) will not occur.
The SIL assigned to the software
contribution associated with the
relevant SSSO – and then with the
software safety requirements derived to
ensure the objective is met.
Derived conditions only under which the
objectives need to hold.

Software Hazard
Analysis

MT

I O

R C

Software Hazard
Analysis

MT

I O

R C

OSL and AL
Teams

TQQ

EE

OSL and AL
Teams

TQ

E

That the designs satisfy the
allocated safety requirements.
That no new hazards are
unnecessarily introduced, and
that unavoidable hazards are
adequately mitigated by derived
safety requirements

SW Hazard
Analysis Report

TQQ

EE

SW Hazard
Analysis Report

TQ

E

Include the steps taken to
progress hazards to a
closed status and
eliminate / reduce risk.

Enable prioritisation of
hazard reduction work by
sorting information into
different criteria.

Figure C.4: JB61834 System Hazards

C.2 The System Hazards to Which Software may Con-
tribute will be Identified

As illustrated in Figure C.4, there are two artefacts at the software level of de-
sign which could reasonably be expected to contain data concerning the system
hazards to which software contributes:

1. System-Level Software Safety Objectives

2. SW Hazard Analysis Report.

Whilst it can be established that these two artefacts are produced by explicitly-
stated activities (‘Identify System-level Hazardous Behaviour’ and ’Software Haz-
ard Analysis’ respectively), a traceable link between these activities and those un-
dertaken at the system level cannot be established (with the exception of the arte-
fact ‘Hazard Log’ being an input to the software activity ‘Identify System-level
Hazardous Behaviour’).

The system-level artefacts which cannot be traced to the software-level, but
which contain system-level hazard data are:

• Preliminary Hazard List, and

240 Appendix C Matthew Steven Osborne

Identifying effective improvements to software safety practice

• Preliminary System Hazard Analysis Report.

To meet this criterion therefore, the Hazard Log is the single repository that
must bridge the gap between system hazards and the contribution made by soft-
ware. Examination of the quality attributes of the Hazard Log reveals that no
specific software attributes, nor any requirements for the specification of a causal
failure path are stated, however.

Whilst is is reasonable to infer that the activity ‘Identify System-level Haz-
ardous Behaviour’ will extract the system-level data and assess the causal path
and reveal software’s contribution, the activity does not feed back to the Hazard
Log, and there are deficiencies regarding the aspects of this activity. The deficien-
cies are seen by considering the aspects of the activity:

• Time: no consideration as to when the activity is to start/complete

• Method: Whilst it is noted (not shown in Figure C.4) that the Fault Trees
are to be analysed to identify ’behaviour which may contribute to a system
hazard’, this only partially satisfies this attribute (as system behaviour is
but one contribution)

• Outputs: Only the ‘System-level Software Safety Objectives’ are noted to be
created by this activity, and having identified such behaviour, feedback to
the platform-level would be expected

• Control: Although the activity will be influenced by the strategy, this arte-
fact is not sufficient in isolation (as a mitigation strategy will not control the
identification of behaviours)

• Resource: Only a Pilot (not shown) is noted as being required for this activ-
ity. It is asserted that at least software safety and design engineers will be
required.

Although there can be a medium-level of confidence that system-level haz-
ards will be identified, it can only be inferred that the Hazard Log will be the
singly repository for establishing the software contribution to these hazards. As
this is not compellingly demonstrated, this criterion cannot be supported.

C.3 The Specific Failure Modes by Which Software
Contributes to the Identified System Hazards will
be Described

As illustrated in Figure C.5, there is no single artefact which contains a dedicated
list of the failure modes by which software contributes to the identified system

Appendix C Matthew Steven Osborne 241

Identifying effective improvements to software safety practice

Hazard Log

TQQ

EE

Hazard Log

TQ

E

Preliminary
System Hazard
Identification

MT

I O

R C

Preliminary
System Hazard
Identification

MT

I O

R C

Preliminary
System Hazard

Analysis

MT

I O

R C

Preliminary
System Hazard

Analysis

MT

I O

R C

System
Safety Engineers

TQQ

EE

System
Safety Engineers

TQ

E

Preliminary
Hazard List

TQQ

EE

Preliminary
Hazard List

TQ

E

Functional
Failure

Analysis Reports

TQQ

EE

Functional
Failure

Analysis Reports

TQ

E

System
Safety

Requirements

TQQ

EE

System
Safety

Requirements

TQ

E

SIL Allocation

MT

I O

R C

SIL Allocation

MT

I O

R C
Independence

Analysis

MT

I O

R C

Independence
Analysis

MT

I O

R C

In arguing for independence of functions, the analysis shall:
1. Clearly describe the hazards that are to be mitigated
2. Clearly describe the safety requirements that mitigate the hazard
3. Provide traceability from these requirements to the design objects.
4. Clearly describe the design of each function within the specific objects and other
(interrelated) objects that influence the functionality
5. Provide traceability through to the implementation in the code
6. Clearly describe the implementation of each function within specific code objects
and other (interrelated) objects that influence the functionality (e.g. by using pseudo-
code).
7. Show that there are no single failures within the system which could cause both
functions to fail in such a manner that the hazard could occur. This can be achieved by:
(a) Examining the functionality provided by each object,
(b) methodically determining and assessing the failure modes of the design and
implementation by considering:

(i) internal SW failures within the primary objects
(ii) failures on the interface to other objects,
(iii) HW failures (other than the Mission Computer failure itself).

(c)and assessing whether particular failures within the implementation of one function
could cause the other function to fail
8. Where there is an apparent breach of independence (e.g. links between the
functions such as common routines relying on common data) show that if the link
failed then it would still not be feasible for the hazard to occur.
9. Where there are weaknesses in the implementation (e.g. it’s perceived that
additional precautionary measures could be provided but aren’t) show that the
weaknesses cannot feasibly cause the hazard to arise.
10. Provide traceability to testing and other evidence that supports the analysis and
supports the claimed SIL of the functions.

Independence
Analysis

TQQ

EE

Independence
Analysis

TQ

E

Produced in
GSN

Managed by
the Software
Safety Group

Carried out should ‘SIL
Splitting be required
Show that the functions are
indeed independent
Particular attention to be
paid to the implementation
of SIL 3* requirements

Combine
Preliminary SAR

with System
SHAR

MT

I O

R C

Combine
Preliminary SAR

with System
SHAR

MT

I O

R C

Combined
SAR/

SSHAR

TQQ

EE

Combined
SAR/

SSHAR

TQ

E

Based on the best available data, the report will:
Identify, for the purpose of the analysis, the system including boundaries, any other
system with which the system interacts, and the environmental and operational
domain.
Identify/reference the purpose and intended use of the system.
Identify/reference the system development history.
Describe the system and its components including highlighting any key safety
architecture/design features (e.g. safety interlocks, redundant systems etc.).
Reference the procedures for operating, testing and maintaining the system (if
completed).
Reference any specific skills required for safe operation, test, and maintenance.
Reference any special facility requirements to support the system.
Describe the system safety engineering activities performed and reference the
supporting evidence, including:

A System Safety Engineering Overview
Analysis and tests performed to identify hazardous conditions
The results of tests conducted to validate safety criteria requirements
and analysis.

State compliance with the safety design criteria (i.e. random failures, systematic
failures and human error).
List for the purpose of reporting to RAF Airworthiness Board, all identified
Catastrophic, Critical, and Marginal hazards.
Recommend actions necessary to eliminate or reduce the risk of a hazard occurring to
an acceptable level or as low as reasonable practicable.
Identify any specific safety recommendations or precautions required to ensure a safe
interface with other systems.
Have an Annex containing specific details regarding each hazard (e.g. title, description,
safety effects, major failure modes, risk assessment, residual risk etc.)
Referred to as the DRAFT Safety Case Report in the SSPP

Prior to the
Critical
Design
ReviewShould reflect the activities

performed during the Design
Evaluation Lifecycle Phase, and
include the:
1. FMECAs
2. Operating and Support
Hazard Analysis
3. Design Phase ZHA
4. Sub-system Hazard Analysis
(including FTA, if required)

Preliminary
System Hazard

Analysis
report

TQQ

EE

Preliminary
System Hazard

Analysis
report

TQ

E

Sub-System
Hazard Analysis

MT

I O

R C

Sub-System
Hazard Analysis

MT

I O

R C

Sub
System

Hazard Analysis
Report

TQQ

EE

Sub
System

Hazard Analysis
Report

TQ

E

Produced by the
relevant Design
Authority or
their
representative

1. Determine the hazard probability due to
technical causes using equipment and component
reliability data (covering all failures that can
contribute towards the hazard including those in
other systems, sub-systems, or support
equipment
2. Provide traceability to the failure rate data
3. Identify any assumptions being made so that
[sic] can be challenged if necessary
4. Verify that the required SILs identified in the
Accident Mitigation Strategies are unchanged
5. Identify any single point failures that can cause
catastrophic hazards to occur
6. Identify any additional design changes,
procedural mitigation or training mitigation
required to reduce the hazard probability to an
acceptable level or ALARP.

Failure Mode
Effects and
Criticality
Analysis

MT

I O

R C

Failure Mode
Effects and
Criticality
Analysis

MT

I O

R C

Reliability and
Maintainability
Programme
Plan

Used to minimise the number of single
point failures and:
Ensure that areas requiring frequent or
safety critical maintenance actions are
identified and minimised as far as
possible. This is accomplished by the
completion of the Reliability Centred
Maintenance Analysis and through the
identification of the Maintenance
Concept.
Assist in the establishment of testing
requirements (e.g. BIT) and test
equipment requirements.

Shall be started
during the Design &
Integration Lifecycle
Phase, and
completed during
the Design
Evaluation Phase

FMEAs from
Equipment
Suppliers

TQQ

EE

FMEAs from
Equipment
Suppliers

TQ

E

Reliability
Group at
equipment
level

Identify system-
level hazardous

behaviour

MT

I O

R C

Identify system-
level hazardous

behaviour

MT

I O

R C

Hazard Log

TQQ

EE

Hazard Log

TQ

E

System-Level
Software Safety

Objectives

TQQ

EE

System-Level
Software Safety

Objectives

TQ

E

To which the xxx can contribute.
Carried out for each identified system hazard
associated with the Mission Systems Computer
(MSC).

Capture the required behaviour of the xxx
Suitable to prevent the hazardous behaviour.
Structured such that if the xxx meets the
objectives, the precise xxx failure (identified for
the hazard) will not occur.
The SIL assigned to the software contribution
associated with the relevant SSSO – and then
with the software safety requirements derived
to ensure the objective is met.
Derived conditions only under which the
objectives need to hold.

Analyse the System
Fault Trees to
identify OFP
behaviour which
may contribute to a
system hazard

Identify
mitigation for

SW failures

MT

I O

R C

Identify
mitigation for

SW failures

MT

I O

R C

SHARD

TQQ

EE

SHARD

TQ

E

MSC
Architectural

Design

TQQ

EE

MSC
Architectural

Design

TQ

E

Derived
Software

Safety
Requirements

TQQ

EE

Derived
Software

Safety
Requirements

TQ

E

Derived
Software

Safety
Constraints

TQQ

EE

Derived
Software

Safety
Constraints

TQ

E

Define constraints on the
behaviour of the xxx which ensure
that a hazardous failure does not
occur. NOTE: hazardous failures
are those failures that may
contribute to the breach of an
SSSO, and which don’t break any of
the objective assumptions

Safety
Requirement
Allocation to
Sub-Systems

MT

I O

R C

Safety
Requirement
Allocation to
Sub-Systems

MT

I O

R C

To include the
flow of data
through the
MSC Platform

Specific to
the
architectural
design being
used

Figure C.5: JB61834 Software Failure Contribution to Hazards

hazards. It is possible to trace some of this required data through to the artefact
‘System-Level Software Safety Objectives’ - an artefact that informs the activity
‘Identify Mitigation for SW Failures’, however.

Figure C.5 is not the complete model of this criterion, as to show all artefacts,
activities and the links between them would be too large to distill down to a
readable figure for this Appendix. The colour coding used does represent the
strength of aspects from analysis of the full model with regard to this criterion,
however.

According to the project artefacts, the artefact ‘System-level Software Safety
Objectives’ must:

• Have objectives for each identified system hazard associated with the prod-
uct

• Capture the product’s required behaviours - suitable to prevent the haz-
ardous behaviour, and

• Assert the derived conditions only under which the objectives need to hold.

The activity which produces the artefact ‘System-level Software Safety Ob-
jectives’ is ‘Identify System-level Hazardous Behaviour’. Considering whether
there is sufficient data to undertake this activity, it can be seen from Figure C.5
that both the architectural design and the ‘Sub-system Hazard Analysis Report’
are sufficient inputs for this activity to proceed.

The ‘Sub-System hazard Analysis Report’ (inter alia):

242 Appendix C Matthew Steven Osborne

Identifying effective improvements to software safety practice

• Determines the hazard probabilities due to technical causes using equip-
ment and component reliability data

• Provides traceability to the failure rate data

• Identifies any assumptions

• Identifies any single points of failure.

The ‘Sub-system Hazard Analysis Report’ is created by the activity ‘Sub-
System Hazardous Analysis’, which:

• Is carried out by undertaking a FMECA

• Has the ‘Preliminary System hazard Analysis Report’ as an input, which is
created by an activity which has the required inputs to inform it (‘Prelimi-
nary System Hazard Analysis’).

The ‘Preliminary System Hazard Analysis is created by the activity ‘Prelimi-
nary System Hazard Analysis’, which has inputs from the ‘HAZID’ and the ‘Haz-
ard Log’.

It is possible to trace pertinent hazard data from the ‘Platform’ level through
the layers of design abstraction to the software boundary, and this involves nu-
merous activities which use the ‘Hazard Log‘ as a source of frequently updated
hazard data. There are two instances of data that would also be required to meet
this criterion, but which cannot be traced to the artefact ‘System-level Software
Safety Objectives’, however.

The first instance concerns independence analysis. The activity ‘Indepen-
dence Analysis’ produces an artefact of the same name, and as a control, when
arguing for the independence of (software) functions the activity and associated
artefact must (inter alia):

• Clearly describe the hazards to be mitigated

• Clearly describe the safety requirements to mitigate the hazards

• Show that there are no single points of failure within the system that could
cause functions to fail in such a manner that the hazard(s) could occur.

The activity also iteratively informs the ‘System Safety Requirements’, and
would contain vital data regarding how software could contribute to system haz-
ards (a key data source for eliciting specific software failure modes). However,
other than an inferred link to the ’Hazard Log’ through other activities that con-
tribute to the ‘System Safety Requirements’, no explicit trace can be made from
either the ’System Safety Requirements’ or the ‘Independence Analysis’ to the
‘System-level Software Safety Objectives’.

Appendix C Matthew Steven Osborne 243

Identifying effective improvements to software safety practice

The second instance concerns the combination of Safety Assessment reports.
There is an activity to ‘Combine the Preliminary SAR with the System SAR’, and
the output of the preliminary system hazard analysis is a defined input to this,
along with the ‘Preliminary SAR’, and the ‘Sub-System Hazard Analysis’.

The artefact ‘Combined SAR/SSHAR’ has attributes that state it must (inter
alia):

• Include the FMECAs

• Describe the system and its components, including highlighting any key
safety architecture/design features

• Recommend any actions necessary to eliminate or reduce the risk of a haz-
ard occurring to an acceptable level, or as low as reasonably practicable

• Identify any specific safety recommendations or precautions required to en-
sure a safe interface with other systems.

No explicit trace can be made to the ‘System-level Software Safety Objec-
tives’, however. It is only the iterative inputs to and outputs from the ‘Hazard
Log’ that are capable of eliciting the specific failure modes which software con-
tributes to. It could be argued that this specific data will be elicited from the
FTAs used to analyse system safety, or from the FMECAs, yet the former does
not specifically argue for this criterion, and the latter is informed by supplier
data only, and is not performed by the safety team.

As such only partial compliance can be argued for this criteria, with a medium-
level of confidence.

C.4 The Software Contribution to the Identified Sys-
tem Hazards will be Acceptably Managed Through
the Elicitation of Software Safety Requirements
that Specify the Required Behaviours; for each
Identified Software Contribution, for Each Sys-
tem Hazard

It is key to note at the start of this analysis the partial compliance with the pre-
vious criteria, which will already hinder the ability of the lifecycle to meet this
criterion.

Figure C.6 is not the complete model of this criterion, as to show all artefacts,
activities and the links between them would be too large to distill down to a
readable figure for this Appendix. The colour coding used does represent the

244 Appendix C Matthew Steven Osborne

Identifying effective improvements to software safety practice

Develop
Accident

Mitigation
Strategies

MT

I O

R C

Develop
Accident

Mitigation
Strategies

MT

I O

R C

Software
Safety

Requirements

TQQ

EE

Software
Safety

Requirements

TQ

E
Safety

Requirement
Allocation to
Sub-Systems

MT

I O

R C

Safety
Requirement
Allocation to
Sub-Systems

MT

I O

R C

System
Engineers

TQQ

EE

System
Engineers

TQ

E

Safety
Requirement

Partitioning to
HW & SW

MT

I O

R C

Safety
Requirement

Partitioning to
HW & SW

MT

I O

R C

Identify system-
level hazardous

behaviour

MT

I O

R C

Identify system-
level hazardous

behaviour

MT

I O

R C

Sub-System
Hazard Analysis

Report

TQQ

EE

Sub-System
Hazard Analysis

Report

TQ

E

System-Level
Software Safety

Objectives

TQQ

EE

System-Level
Software Safety

Objectives

TQ

E Capture the required behaviour of the
OFP
Suitable to prevent the hazardous
behaviour.
Structured such that if the OFP meets
the objectives, the precise OFP failure
(identified for the hazard) will not occur.
The SIL assigned to the software
contribution associated with the
relevant SSSO – and then with the
software safety requirements derived to
ensure the objective is met.
Derived conditions only under which the
objectives need to hold.

Contains the System
Fault Trees – within
which each hazard is
implicit.
FTs are used to define the
SIL requirements for the
OFP

Software
Requirements

Analysis

MT

I O

R C

Software
Requirements

Analysis

MT

I O

R C

Supportability
& Through
Life of Type

TQQ

EE

Supportability
& Through
Life of Type

TQ

E

Safety
Partitioning

TQQ

EE

Safety
Partitioning

TQ

E

3rd Party
Application
Provision

TQQ

EE

3rd Party
Application
Provision

TQ

E

Software
Requirements
Specification

TQQ

EE

Software
Requirements
Specification

TQ

E

Software Hazard
Analysis

MT

I O

R C

Software Hazard
Analysis

MT

I O

R C

OSL and AL
Teams

TQQ

EE

OSL and AL
Teams

TQ

E
SW Hazard

Analysis Report

TQQ

EE

SW Hazard
Analysis Report

TQ

E

One for each layer (Application
and Operating System).
Contain the results of the
analysis, and summarising any
new hazards found, and how
they are to be mitigated.

Examination
of Critical

Data Flows

TQQ

EE

Examination
of Critical

Data Flows

TQ

E

Both

SHARD

TQQ

EE

SHARD

TQ

E

On each identified
data flow to identify
potential breaches
of SSSOs resulting
from deviations in
OFP behaviour

Identify
mitigation for

SW failures

MT

I O

R C

Identify
mitigation for

SW failures

MT

I O

R C

Failures which may
result in the breach
of the SSSO and
assumptions

Pilot and
Engineering input
used as necessary to
correctly define the
Derived Software
Safety Constraints

OFP SW
Architectural

Design

TQQ

EE

OFP SW
Architectural

Design

TQ

E

OFP Data Items

TQQ

EE

OFP Data Items

TQ

E

MSC
Architectural

Design

TQQ

EE

MSC
Architectural

Design

TQ

E

Preliminary
SW

Safety Case

TQQ

EE

Preliminary
SW

Safety Case

TQ

E

Agreed with the ISA and
the Customer

Comprising:
1. Safety Goals, expressed in GSN, flowed
down to the MSC SW from the system
safety analyses.
2. Strategies for each goal, identifying how
each of these goals will be met. Justification
and context data is provided where a
further refinement to that given in the top-
level of the safety case is required.
3. Development of the goals in terms of
sub-goals and further strategies.
4. Identification of preliminary design phase
artefacts that will be used as evidence to
support sub-goals.

Presented at
PDR

Derived
Software

Safety
Requirements

TQQ

EE

Derived
Software

Safety
Requirements

TQ

E
Specific to the
architectural design
being used

Derived
Software

Safety
Constraints

TQQ

EE

Derived
Software

Safety
Constraints

TQ

E

Define constraints on the
behaviour of the OFP which ensure
that a hazardous failure does not
occur. NOTE: hazardous failures
are those failures that may
contribute to the breach of an
SSSO, and which don’t break any of
the objective assumptions

SW Safety Case
Configuration
and Review

MT

I O

R C

SW Safety Case
Configuration
and Review

MT

I O

R C

Project
Safety Engineer

TQQ

EE

Project
Safety Engineer

TQ

E

ISA

TQQ

EE

ISA

TQ

E

Interim SW
Safety Case

TQQ

EE

Interim SW
Safety Case

TQ

E

Agreed with the ISA and the
Customer.
There will be several Interim
Safety Cases, the first of
which must be sufficiently
advanced in terms of goals
and evidence to be
considered complete for the
OSL and MSL.

Comprising:
1. Updates to the Preliminary SW Safety
Case since PDR.
2. Development of the goals in terms of
sub-goals and further strategies.
3. Identification of critical design
artefacts that will be used as evidence to
support sub-goals.
4. Justification of any change in safety
argument strategy from those strategies
identified in the previous phase.
5. Completion of all actions arising from
previous safety reviews.

Construct GSN
Safety

Argument

MT

I O

R C

Construct GSN
Safety

Argument

MT

I O

R C

SW Safety
Group

TQQ

EE

SW Safety
Group

TQ

E

Consisting of interested
parties from the IV&V
teams, Safety Teams, SW
development teams, and
the Project Safety
Engineer

Defence
Standard 00-55

TQQ

EE

Defence
Standard 00-55

TQ

E

Operational
 SW

Safety Case

TQQ

EE

Operational
 SW

Safety Case

TQ

E

One for each
operational
clearance of the OFP
Agreed with the ISA
and the Customer

Shall include:
1. Updates to the Interim safety Case as
previously presented at TRR
2. Completion of all safety goal and solution
development
3. Completion of all safety arguments, context
information and justifications for each safety
argument
4. Completion and provision of the evidence
required to support all goals allocated.
Justification of any change in safety argument
strategy from those strategies identified in the
previous phase.
5. Completion of all actions arising from
previous safety reviews.

Contents:
1. Scope – clearly define the boundary of concern; identifying the software to which the safety argument is applicable.
2. References
3. Introduction
4. System and Design Aspects:
(a) Overview of the system architecture including the system boundaries and interfaces
(b) Overview of the system functions
(c) Brief description of the operating environment, including both normal and abnormal modes of operation
(d) A list of the main system safety requirements
(e) The system design report
5. System Hazards – a brief description of the system level hazards that are applicable to the software under
consideration (referencing the Hazard Log as an aid to traceability
6. Software Safety Requirements – describe the role that SW plays in ensuring safety. Include a list of the functional and
non-functional SW safety requirements, along with the safety integrity requirements for the SW, and any required SW
standards
7. Software Description – describe the architecture of the SW and how this contributes towards safety. Including:
(a) Overview of the SW architecture
(b) Description of the main design features of the SW (e.g. real-time aspects, user interfaces, key algorithms etc.)
(c) Means by which SW of different SILs is segregated (if relevant)
8. Safety Arguments – justifying how each SW safety requirement has been met, and that the necessary measures have
been taken to reduce the SW contribution to system hazards to an acceptable level. The argument will reference at
least 2 independent sources of evidence (e.g. analysis and testing). A complete list of all assumptions (with
corresponding justifications) used in constructing the safety argument, and a list of weaknesses in the current
argument.
9. Software Development Process – justification that the SW development process is adequate to achieve the required
SIL of the SW:
(a) Briefly describe the main methods, tools and key project staff
(b) Describe and justify the use of any previously developed SW
(c) Provide a measure of the performance of the SW development process
(d) The results of any safety/quality audits carried out
(e) If the data is available, provide an analysis of historical data on the safety integrity of SW developed using the
proposed/similar SW development process.
A summary of the testing evidence is needed for the argument, and could be placed in this section.
10. Current Status
11. Change History
12. Compliance – statement of compliance against all relevant SW standards
13. In-Service Feedback – from realistic operational testing, trials or in-service usage
14. Software Identification – specifying the current release of the SW, citing a SW release notice
15. Conclusions
16. Notes – definitions and abbreviations used within the document, and the provision of any additional material that
may aid in the reading of the SW Safety Case.

Software
Design

MT

I O

R C

Software
Design

MT

I O

R C

Figure C.6: JB61834 Software Contribution to System Hazards

strength of aspects from analysis of the full model with regard to this criterion,
however.

The first step in assessing compliance with this criterion is to identify all
hazards to which software contributes. It is already known however, that there
is only a medium level of confidence that this can be claimed - relying on the
‘Hazard Log’ artefact as a single point of truth for this data.

Despite the medium confidence held, a trace can be made (as illustrated in
Figure C.6) to assess the efficacy of the lifecycle in enabling the complete identifi-
cation of the ways software contributes to these hazards (and thereafter the elic-
itation of safety requirements that contribute to mitigating the hazards through
specified software behaviour(s)).

The artefact ‘Hazard Log’ (although not annotated in Figure C.6) is an in-
put to the activity ‘Identify System-level Hazardous Behaviour’, which in turn
produces the artefact ‘System-Level Software Safety Objectives’.

‘System-level Software Safety Objectives’ have the following required qual-
ity attributes:

• Capture the required behaviour of the (software)

Appendix C Matthew Steven Osborne 245

Identifying effective improvements to software safety practice

• Suitable to prevent the hazardous behaviour

• Structured such that if the (software) meets the objectives, the precise failure
(identified for the hazard) will not occur.

It further notes that any assigned SIL (associated with the contribution) should
be assigned to the relevant software safety requirements derived to ensure the ob-
jective is met. There are two shortfalls with this, however. The first shortfall is
that there is no link between the activity ’SIL Allocation’ (a system-level activity)
and the software safety requirements. Secondly, there is no direct link between
the ‘System-level Software Safety Objectives’ and the ‘Software Safety Require-
ments’.

Although the ‘System-level Software Safety Objectives’ are an input to the
activity ‘Identify Mitigation for SW Failures’, which in turn produces ‘Derived
Software Safety Constraints’ and ’Derived Software Safety Requirements’, these
two artefacts do not inform any further engineering nor design activity (only
feeding in to the requirements database and safety arguments respectively).

’Software Safety Requirements’ can only be traced as an output from the
platform-level activity ‘Develop Accident Mitigation Strategies’ which implies
that the level of granularity of these requirements will be at too high a level
for considering specific behaviours and failures of the software. Other identified
artefacts that could contain such data are:

• Derived Software Safety Requirements

• Derived Software Safety Constraints

• Sub-System Hazard Analysis Report

• Software Hazard Analysis Report.

Taking each of these in turn, we already know that the derived software
safety requirements and constraints do not inform any further design/engineering
activity, and the required attributes are also weak. The ‘Derived Software Safety
Requirements must only be "specific to the architectural design being used", and
the required attributes for the ‘Derived Software Safety Constraints’ note only
that they should constrain the behaviour in a manner that ensures a hazardous
failure does not occur (not what these hazardous failures are)

The required attributes for the artefact ‘Sub-System Hazard Analysis Report’
stipulate that the report must contain the system fault trees, within which "each
hazard is implicit", and these fault trees are used to define the SIL requirements.

The required attributes for the artefact ‘Software Hazard Analysis Report’
stipulate that any new hazards that are found should be summarized, along with
how they are to be mitigated. Although this appears positive, the only consumer

246 Appendix C Matthew Steven Osborne

Identifying effective improvements to software safety practice

of this product is the activity ‘Software Design’, and the producing activity (‘Soft-
ware Hazard Analysis’) has no denoted inputs to it (despite fully articulating how
the analysis is to be carried out).

The lifecycle does have a robust process for the creation of Software Safety
Cases whose maturity is increased in line with the increasing maturity of design,
and so these were also assessed for this criterion. Artefacts such as safety cases
contain a wealth of data required to support any safety argument, and can be
expected reasonably to contain specific details on software’s behaviour, contri-
bution to system hazards, and evidence that safety requirements have been both
elicited and instantiated in mitigation of dangerous behaviour(s).

The lifecycle requires three versions of a Software Safety Case (listed in in-
creasing levels of maturity):

• Preliminary Software Safety Case

• Interim Software Safety Case

• Operational Software Safety Case (not shown in Figure C.6 as it is not rele-
vant to this criterion).

But these offer no evidence required of this criterion, with their aspects being
concerned only with the nature of the GSN structure and updates from previous
versions.

Whilst it can established, with high confidence, that the lifecycle produces
sufficient artefacts from which the manner that software contributes to the miti-
gation of identified hazards can be identified, there is nothing within the model
that identifies the specific behaviours of software that would result in the mani-
festation of these hazards. Neither can there be any confidence, from the as de-
scribed lifecycle alone, that the data contained in various artefacts will be made
available in the right format, at the right time, to the right people, for the nec-
essary activities. Therefore, no claim can be made against the satisfaction of this
criterion.

C.5 All Software Safety Requirements Will be Atomic,
Unambiguous, Defined in Sufficient Detail, and
Verifiable

Having already analysed how software safety requirements are established by
the JB61834 lifecycle, attention now turns to the specific quality attributes of the
software safety requirements themselves. The supporting activities and artefacts
appropriate to this criterion are illustrated in Figure C.7.

There are three artefacts to be assessed here, and each are considered in turn:

Appendix C Matthew Steven Osborne 247

Identifying effective improvements to software safety practice

Identify
mitigation for

SW failures

MT

I O

R C

Identify
mitigation for

SW failures

MT

I O

R C
Derived

Software
Safety

Requirements

TQQ

EE

Derived
Software

Safety
Requirements

TQ

E

Specific to the
architectural design
being used

Software
Safety

Requirements

TQQ

EE

Software
Safety

Requirements

TQ

E

SIL ‘associated
with the
software safety
requirements.

Develop
Accident

Mitigation
Strategies
(platform)

MT

I O

R C

Develop
Accident

Mitigation
Strategies
(platform)

MT

I O

R C

CRADLE
Database

TQQ

EE

CRADLE
Database

TQ

E

For any DSSRs where the
existing evidence is
insufficient, further analysis
may be required in order to
discharge the requirement –
this analysis would invo9lve
the SW Safety and SW
Development Teams as
appropriate

Place SW
Safety

Requirements
into the CRADLE

Database

MT

I O

R C

Place SW
Safety

Requirements
into the CRADLE

Database

MT

I O

R C

Capture DSSRs
within Database

MT

I O

R C

Capture DSSRs
within Database

MT

I O

R C

SW Safety
Requirements
Specification

TQQ

EE

SW Safety
Requirements
Specification

TQ

E

Figure C.7: JB61834 Software Safety Requirements

• Derived Software Safety Requirements

• Software Safety Requirements

• SW Safety Requirements Specification.

‘Derived Software Safety Requirements’ are required only to be “specific to
the architectural desgin being used”. ‘Software Safety Requirements’ are raw re-
quirements, and are required only to have a measure of performance expressed
against them in terms of SIL. The software safety requirements are placed into the
CRADLE database, but the activity which does this has no considerations made
for time, method, resources, nor control. A formal ‘SW Safety Requirements Spec-
ification’ is extracted from the requirements database, but no activity is stipulated
to do so (hence the red line connecting the database to the specification), and the
specification has no consideration as to any of the required quality attribute.

The ‘Software Requirements Specification’ artefact was also assessed to de-
termine whether this criterion could be argued to have been met by the attributes
required of it. However, this is an inferred artefact created to fulfil internal con-
sistency and no attributes are considered by the as-required practice.

As such, this criteria cannot be claimed.

248 Appendix C Matthew Steven Osborne

Appendix D

Evaluation Session One

The first Evaluation Session was held with the following anonymous participants
as an online tutorial and evaluation session held on the following dates:

1. AY8697 on 07 June 2024

2. SH27236 on 11 June 2024

3. HH75783 on 13 June 2024.

The suitability of each participant in this evaluation is argued by appeal to
their experience claimed in the Questionnaire (see Section D.2).

Evaluation Session One comprised a short tutorial, and the presentation for
Session One contained the following topics:

1. Introduction to the FRAM notation

2. Introduction to the adapted version of FRAM used in this research

3. Tutorial on the Framework and Process to understand software safety prac-
tice

4. A Practical Session (see below)

5. An opportunity to ask any questions.

The Evaluation Session presentation pack and script, along with the pro-
vided handout and process instructions is found at [122].

249

Identifying effective improvements to software safety practice

D.1 Session One Practical Session

The participants were each given digital templates of the modified FRAM sym-
bols and the participants’ understanding of their use and meaning was confirmed
verbally with each participant.

Confident in the participants understanding of the modified FRAM symbol-
ogy, the participants were then given Section 5.1 of ARP 4754B 1 [119].

Participants were then invited to create a partial model of as-required (Open)
practice using only Section 5.1 of ARP 4754B. Participants were told they could
use the text of Section 5.1, the diagram of the process detailed by Section 5.1 OR
a combination of the two.

There was no time limit for the task explicitly, but the evaluation session was
planned to last for two hours (deemed by the author to be sufficient time for
the tutorial and practical exercise, and yet short enough so as not to demand an
onerous commitment from the respondents (thereby promoting engagement)).

On completion of the task, the participants were asked to complete a ques-
tionnaire, which is contained in the next section. The completed questionnaires
from Session One - along with the completed models from the three sessions are
found at [122], and the findings are discussed in Chapter 6. The Questionnaire is
now provided.

D.2 Session One Questionnaire

Having completed this first evaluation session, you are kindly invited to respond
to the following questions.

It would be beneficial for us to be able to argue over your expertise in the
field of software safety practice. To that end we would be grateful if you could
list the attributes of your experience as a software safety practitioner and indicate
in parentheses afterwards the number of years experience you have. For example:

1. Software Safety Engineer (5 years)

2. Principle Software Safety Engineer (3 years)

3. Safety Manager (3 years)

4. Independent Safety Assessor (2 years).

1It was positively confirmed that each participant had paid access to this IPR-protected doc-
ument through their employment and / or participation in national / international Standards’
Committees

250 Appendix D Matthew Steven Osborne

Identifying effective improvements to software safety practice

Please use the text box below and list all attributes you believe are relevant.
There is no word count limit, but please complete this digitally using an appro-
priate word-processing software package (such as Microsoft Word), so that we
can ensure all comments are fully legible.

Table D.1: Session One Evaluation Questions

Statement
Fully

Disagree
1

Somewhat
Disagree

2

Neither
Agree/

Disagree
3

Somewhat
Agree

4

Fully
Agree

5

Completeness: Reflecting on your understanding of the process to understand
software safety engineering practice, we would like your opinion on the
following statements. In considering your response, we ask that you ALSO consider
applications and technologies NOT covered by the artefacts provided (i.e. from
experience throughout your career), and don’t restrict your response to JUST the
artefacts sent to you
EQ1: The process considers
all elements that together
constitute software safety
engineering
practice (the 10 ‘steps’)
EQ6: The modelling
process instructions are
easy to follow (you could
follow each step)
Effectiveness: Having applied part of the process to understand software safety
engineering practice through modelling and assessment of practice, we are interested
in your thoughts on the usefulness of this process. How much do you agree with the
following statements? In considering your response, we ask that you ALSO consider
applications and technologies NOT covered by the artefacts we provided you with
(i.e. from experience throughout your career), and don’t restrict your response to
JUST the artefacts sent to you
EQ10: The process to
understand software safety
practice will
help to identify
potential impediments to
achieving best practice for
software safety
(Pan-industry Applicability)
EQ11: The process to
understand software safety
practice can be
used for any industry and any
technological application

Appendix D Matthew Steven Osborne 251

Identifying effective improvements to software safety practice

Table D.1 continued from previous page

Statement
Fully

Disagree
1

Somewhat
Disagree

2

Neither
Agree/

Disagree
3

Somewhat
Agree

4

Fully
Agree

5

Consistency: Having applied part of the process to understand software safety
engineering practice, we are interested in your thoughts on the consistency of the
outputs which the process creates. How much do you agree with the following
two statements?
EQ12: The process uses
consistent terminology
when considering each
different element that
constitutes software
safety practice
EQ13: The process creates
models whose symbology
is consistent across all
elements of software safety
practice

If you have any additional comments on the process, or on this specific eval-
uation you are invited to make them in the box below. There is no word count
limit, but please complete this digitally using an appropriate word-processing
software package (such as Microsoft Word), so that we can ensure all comments
are fully legible.

This appendix now provides the details on the experience stated by the three
independent experts. The anonymity of the respondents has been maintained.

252 Appendix D Matthew Steven Osborne

Identifying effective improvements to software safety practice

D.3 Session One Questionnaire Responses

The three independent experts who took part in the evaluation sessions are as
follows:

1. AY8697 - a System Safety Engineer for thirty years; working for a company
which “considers system safety and software safety as two different disci-
plines”. AY8697 has worked as an ‘industrial researcher’ for twenty-five
years and over their career have had ‘sporadic involvement’ with Safety
Management and Independent Safety Assessments.

2. SH27236 - an Independent Safety Consultant with thirty-five years experi-
ence in developing, managing, assuring, and certifying safety critical software-
based systems.

3. HH75783 a ‘general software safety practitioner with twenty-five years’ ex-
perience in both academia and industry). The experience includes time as
an independent safety assessor and auditor (including software) for six and
a half years, and a software verification tool R&D manager for one and a
half years. They have worked in defence (land, aviation, maritime), civil
aviation, nuclear, rail, and automotive industries.

AY8697 provided the completed questionnaire at [117].

SH27236 provided the completed questionnaire at [125].

HH75783 provided the completed questionnaire at [123].

Appendix D Matthew Steven Osborne 253

Appendix E

Evaluation Session Two

The second Evaluation Session was held with the same anonymous participants
from Session One, and an online tutorial and evaluation session held on the fol-
lowing dates:

1. SH27236 on 12 June 2024

2. AY8697 on 14 June 2024

3. HH75783 on 18 June 2024.

The suitability of each participant in this evaluation is argued by appeal to
their experience claimed in the completed questionnaire (see Section D.2).

This Evaluation Session required the participants to complete a short Case
Study which involved the comparison of two different models of software safety
practice. The participants were presented with two models of as-required prac-
tice created as part of this Thesis - the as-required (Closed) model of practice (Step
3 in Chapter 5), and the as-required (Open) model of practice (Step 2 in Chapter
5).

Having received a tutorial in the use of colour coding for use in our adapted
version of FRAM, the participants were then asked to complete Step 8 of the pro-
cess to understand and assess software safety practice. On completion of the task,
the participants were asked to complete a questionnaire, which is contained in the
next section.

The session instructions, and completed questionnaires from Session Two -
along with the completed models are found at [122], and the findings are dis-
cussed in Chapter 6.

254

Identifying effective improvements to software safety practice

E.1 Session Two Questionnaire

As the same participants were used for both evaluation sessions, the participants
were not asked to provide details of their experience again.

The questionnaire provided to the participants is now provided.

Having completed this first evaluation session, you are kindly invited to re-
spond to the following questions.

Statement
Fully

Disagree
1

Somewhat
Disagree

2

Neither
Agree/

Disagree
3

Somewhat
Agree

4

Fully
Agree

5

Ease of Use: Reflecting on your experience with using the symbology that
was supplied to you for the purpose of creating / assessing a model, we
would like your opinion on how much you agree with the following two
statements
EQ2: The modelling
symbology is easy to
understand (you knew
what the different
shapes and lines
represented)
EQ3: The modelling
symbology is easy to use
(you could easily
use / interpret the different
shapes and lines to
construct / assess a model
Ease of Use: Reflecting on your experience of following the steps in
the process to model and assess software safety engineering practice,
we would like your opinion on how much you agree with the following
three statements.
EQ4: The process to
model software safety
engineering practice
can be carried out
without any prior
knowledge of formal
modelling (i.e. no
training in model-based
systems engineering
was required)

Appendix E Matthew Steven Osborne 255

Identifying effective improvements to software safety practice

Table E.1 continued from previous page

Statement
Fully

Disagree
1

Somewhat
Disagree

2

Neither
Agree/

Disagree
3

Somewhat
Agree

4

Fully
Agree

5

EQ5: The process can be
instantiated by anyone
with access to standard
‘Office’ applications
(such as Visio, Lucid
Chart, Word, Pages,
Google Docs etc.)
EQ6: The modelling
process instructions
are easy to follow
(you could follow
each step)
Reflecting on your experience of following the steps in the process to
assess software safety engineering practice, we would like your
opinion on how much you agree with the following statement
EQ7: The process
instructions to assess
software safety
engineering practice
(the way in which
comparisons are
made) are easy to
follow
Effectiveness: Having applied part of the process to understand software
safety engineering practice through the modelling and assessment of
practice, we are interested in your thoughts on the overall usefulness of
this process. How much do you agree with the following four
statements? In considering your response, we ask that you also
consider applications and technologies NOT covered by
the artefacts we provided you with (i.e. from experience throughout your
career), and don’t restrict your response to JUST the artefacts sent to you
EQ8: Using the
modelling process
allows me to
understand all
elements of
software safety
engineering
practice

256 Appendix E Matthew Steven Osborne

Identifying effective improvements to software safety practice

Table E.1 continued from previous page

Statement
Fully

Disagree
1

Somewhat
Disagree

2

Neither
Agree/

Disagree
3

Somewhat
Agree

4

Fully
Agree

5

EQ9: Using the
modelling
process allows me
to assess all
aspects of
software safety
engineering practice
(through comparisons
between the elements
of practice and their
relationships)

Table E.1: Session Two Evaluation Questions

If you have any additional comments on the process, or on this specific eval-
uation you are invited to make them in the box below. There is no word count
limit, but please complete this digitally using an appropriate word-processing
software package (such as Microsoft Word), so that we can ensure all comments
are fully legible.

SH27236 provided the completed questionnaire at [126].

AY8697 provided the completed questionnaire at [118].

HH75783 provided the completed questionnaire at [124].

Appendix E Matthew Steven Osborne 257

	Introduction
	Problem Space
	Thesis Scope
	Thesis Motivation
	Thesis Aims
	Thesis Structure

	Current State of the Art of Software Safety Process Improvement
	Existing Investigations of Software Safety Practice
	Models of Safety Engineering Practice
	Idealized Software Safety Practice versus Reality
	Functional Safety Standards
	Modelling Approaches
	Research Objectives and Research Questions
	Summary

	Software Safety Practice Framework and Process
	A Framework of Software Safety Practice
	Process to Understand & Assess Software Safety Practice
	Process Steps
	Information to Action: Next Steps
	Data, Information, and Knowledge Management
	Model and Assessment Maintenance
	Empirical Research Discussion

	Representing Software Safety Practice
	State of the Art of Graphical Modelling
	Graphical Representation Selection Process
	Defining the Scoring Criteria
	Assess One Example for Each Modelling Notation
	Refining the Selected Graphical Notation

	Applying the Framework and Process: An Illustrative Example
	Application of the Process
	Further Illustrative Examples
	Discussion

	Evaluation of the Proposed Process
	G1: The Process is Complete
	G2: The Process is Easy to Use
	G3: The Process Provides a Way to Represent all Elements of Practice in a Consistent Manner
	G4: The Process is Effective at Enabling an Organization to Identify Impediments to Best Practice
	Goal G5 The Process is Applicable for Use in any Industry
	Summary
	Empirical Research Evaluation
	Analyzing the Empirical Data
	Coda

	Conclusions and Recommendations for Future Work
	Conclusions
	Recommendations
	Future Work

	ARP 4754A - A Critique and Characterisation
	ARP 4754A and DO178C Assessment Against the As Desired Criteria
	A Clear Definition of Software Within the System
	The Operating Context of the System in Which the Software Resides will be Described
	A Clear Description of the System in Which the Software Resides will be Provided
	The System Hazard to Which Software may Contribute will be Identified
	The Specific Failure Modes by Which Software Contributes to the Identified System Hazards will be Described
	The Software Contribution to the Identified System Hazards will be Acceptably Managed Through the Elicitation of Software Safety Requirements Which Specify the Required Behaviour(s); for each Identified Software Contribution, to each System Hazard
	All Software Safety Requirements will be Atomic, Unambiguous, Defined in Sufficient Detail, and Verifiable

	JB61834 Assessment Against Principle 1
	A Clear Definition of Software in the System
	The System Hazards to Which Software may Contribute will be Identified
	The Specific Failure Modes by Which Software Contributes to the Identified System Hazards will be Described
	The Software Contribution to the Identified System Hazards will be Acceptably Managed Through the Elicitation of Software Safety Requirements that Specify the Required Behaviours; for each Identified Software Contribution, for Each System Hazard
	All Software Safety Requirements Will be Atomic, Unambiguous, Defined in Sufficient Detail, and Verifiable

	Evaluation Session One
	Session One Practical Session
	Session One Questionnaire
	Session One Questionnaire Responses

	Evaluation Session Two
	Session Two Questionnaire

