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Abstract

The simulation of fluid and deformable solid dynamics is a cornerstone in disciplines rang-

ing from engineering and environmental modeling to computer graphics and virtual reality.

Traditional computational methods, despite their power, often struggle to balance accuracy,

efficiency, and scalability, particularly in real-time and large-scale applications. This thesis

addresses these challenges by developing neural network-based surrogate models specifically

tailored for Lagrangian continuum simulations.

The research explores temporal learning within continuum simulations, starting with an

in-depth analysis of encoding and decoding techniques that transform Euclidean coordinate-

based continuum data into latent space representations. This transformation is essential for

training neural networks to accurately model complex physical phenomena. The study sys-

tematically compares traditional time series prediction methods with advanced neural archi-

tectures, such as Long Short-Term Memory (LSTM) networks. Experimental results demon-

strate that LSTM networks, when combined with Multi-Layer Perceptrons (MLP), signifi-

cantly outperform traditional methods in capturing the intricate multi-material interactions

and long-term dependencies inherent in Lagrangian simulations.

A key contribution of this research is the introduction of a Self-Supervised Graph Atten-

tion Operator, which enhances the neural network’s ability to capture and conserve critical

physical properties like vorticity and energy across simulated particles. This operator enables

accurate and stable predictions of complex fluid and deformable solid dynamics, overcoming

the limitations of existing surrogate models that often compromise between computational

efficiency and physical accuracy. Rigorous evaluations, including long-term stability tests

and comparative analyses with traditional methods, demonstrate that the proposed models

advance the state-of-the-art in surrogate modeling for continuum simulations.
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Chapter 1

Introduction

From manipulating water to fluttering a flag in the breeze or squeezing out a drenched cloth,

the interaction between liquids, gases, and solids is pervasive in the physical realm. These

phenomena have spurred extensive research into the simulation of continuum materials (fluids

and deformable solids). Figure 1.1 illustrates recent work attempting to realistically simu-

late various continuum materials (fluid, fabric, and porous media phenomena) in a single

scene. Research into physics-based continuum simulation techniques mainly aims to enhance

visual fidelity (Qu et al. (2019)), simulate new phenomena (Huang et al. (2019)); and improve

computational efficiency (Goldade et al. (2019)). In this work, our motivation bridges both

enhancing visual realism (through better vorticity modeling) and speeding up computation

(via machine learning) to enable real-time interactive graphics applications. By leveraging

machine learning algorithms, we aim to conserve critical flow features (e.g. vorticity, den-

sity, kinetic energy) while significantly reducing the computational overhead needed for fluid

simulations.

Given the need for interactive real-time graphics in domains such as augmented reality

and virtual reality, extensive research has been carried out on efficient fluid simulation (Woj-

tan et al. (2017), Gao et al. (2017)) and deformable solid simulation methods (Overby et al.

(2017), Bender et al. (2013), Oh et al. (2008)). Like fluids, simulating deformable solids

presents challenges due to the high number of degrees of freedom (DoFs), contact detection

and resolution for deformable objects, and potential self-collisions. The complexity increases

when simulating interactions between fluids and deformable solids due to the requirement to

simulate fluid interactions with solid interfaces. The researchers aim to accelerate simulation

1
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Figure 1.1: This Liquid-fabric simulation using physics simulator is astonishing

but computationally expensive; running this simulation could take more than 200

seconds per frameFei et al. (2018)

by optimizing algorithms by parallel computing on GPUs (Nie et al. (2015), Dharma et al.

(2017), Gao et al. (2018)) or CPUs (Gropp et al. (2001)). Over the past decade, numerous re-

searchers have also employed advanced Machine Learning techniques in simulators (Tompson

et al. (2017), Xie et al. (2018), Chu & Thuerey (2017), Kim et al. (2019)).

This research poses the question: can we achieve real-time interactive application of unified

multi-material - multi-phase solid-fluid simulation through advances in Machine Learning

techniques? Recent works offer initial steps toward this goal, but the efforts remain fragmented

between fluid and deformable solid simulations. Some research focuses on accelerating fluid

simulation using neural networks (Ladický et al. (2015), Tompson et al. (2017), Kim et al.

(2019)), while others aim to speed up fabric simulation (Lee et al. (2019), Laehner et al. (2018),

Holden et al. (2019)). There is also recent work adopting the Lagrangian representation to

generalize fluid-solid boundary interactions (Ummenhofer et al. (2019)). This PhD research

aims to build on these efforts, accelerating the simulation of solids and liquids both together

and separately through novel Deep Neural Networks.

Even with recent progress, accurately depicting flow characteristics like vorticity and ed-

dies, discerning underlying dynamic systems, and forecasting future states pose significant



1.1. MOTIVATION FOR LAGRANGIAN BASED NEURAL NETWORK 3

challenges in scientific machine learning, particularly in the context of Lagrangian representa-

tion. The majority of current research focuses on Eulerian representations, whereas the focus

of this thesis is around Lagrangian, particle-based, simulations.

Comprehending hidden flow dynamics poses significant challenges. Fluid systems governed

by the Navier-Stokes equations intricately interconnect multiple physical variables, including

velocity, pressure, and density. Nonetheless, in practical applications, only density information

is commonly available. The intricacy, uncertainty, and non-linearity of these systems make

it unfeasible to infer underlying dynamics directly from observable density data. Effective

learning frequently requires supervision of velocity or pressure, adding complexity to real-

world implementation.

1.1 Motivation for Lagrangian based Neural Network

Capturing flow features is a complex challenge in scientific machine learning. Traditional

methods for representing fluid dynamics often rely on storing velocity fields on regularly spaced

grids or employing smooth neural networks. While these approaches have shown potential

in modeling relatively smooth flow phenomena, they struggle with irregular, continuous data

structures and turbulent fluid systems across different scales. Challenges such as the curse of

dimensionality in detailed space-time domains, local discontinuities, and hidden constraints

persist. Consequently, there is a growing need for more compact and structured representation

spaces and data structures to advance Lagrangian-oriented approaches in scientific machine

learning.

Lagrangian continuum simulation is widely used in real-time applications, as evidenced by

works like Monaghan (1992b), Macklin & Müller (2013), Auer (2009), and Ihmsen et al. (2014).

Despite the popularity of these approaches, there has been a growing interest in training the

surrogate models within the Eulerian representation, as seen in various studies (Tompson

et al. (2017)). This includes PDE-based frameworks Raissi et al. (2019), applications in

robotic control and planning (Schenck & Fox (2018), Hu, Liu, Tenenbaum, Freeman, Wu,

Rus & Matusik (2018)), and more efficient cloth simulations (Lee et al. (2019), Tan et al.

(2019)). For instance, Chu et al. (2022) optimizes fluid dynamics from sparse video data,

while Deng et al. (2023) focuses on learning vortex particle dynamics from regular grid data

using single videos without requiring ground truth velocity.



4 CHAPTER 1. INTRODUCTION

However, the development of fluid or deformable solid predictors in particle-based or ma-

terial point-based methods remains limited. Recent efforts, such as continuous convolution

Ummenhofer et al. (2019) and Graph Network simulators (Ladický et al. (2015)), have shown

promise, but the field is still in its infancy. Similarly, Ummenhofer et al. (2020) employs con-

tinuous convolutions to process sets of moving particles, while Prantl et al. (2022) guarantees

the conservation of linear momentum in learned physics simulations.

Additionally, Xiong et al. (2023) combines the Discrete Vortex Method with neural net-

works, further highlighting the trend towards integrating vorticity into deep learning models

for fluid dynamics. Despite these advancements, significant challenges remain in effectively

merging these techniques with Lagrangian representations.

There are a number of challenges that we address in this field of research. One of the

key challenges is the active exploration of temporal modeling of fluids, which aims to manage

simulation errors in long-term predictions involving fluids or highly deformed solids (Xie et al.

(2019), Kim et al. (2019), Wiewel et al. (2020)). Additionally, while many attempts have

been made to develop surrogate models for fluid vorticity in Eulerian representation, studies

concerning the conservation of fluid vorticity in Lagrangian representation remain scarce.

1.2 Contributions

The main contributions of our investigation are:

1. We explore temporal learning in continuum simulations, focusing on encoding and de-

coding techniques, including the transformation of Euclidean data into latent space. We

also address challenges like hyperparameter tuning and dataset size impacts on model

performance.

2. We extend the architecture of Long Short-Term Memory Networks by integrating a

Multi-Layer Perceptron, aiming to improve prediction accuracy in unified multimaterial

simulations, particularly for liquids and deformable solids.

3. We propose a novel approach that incorporates the Self-Supervised Graph Attention

Networks (SuperGAT) convolution operator into a surrogate model for fluid simulation.

This ensures more accurate predictions of rotational dynamics by conserving vorticity.
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4. We enhance the training framework of the Graph-Based Simulator surrogate model to

include both acceleration-based and velocity-based predictions, thereby increasing the

model’s versatility in capturing dynamic behaviors.

5. We develop an extended loss function framework designed to capture the key physical

aspects of Lagrangian-based simulations. This framework includes loss terms for accel-

eration, velocity, position, density, divergence, and vorticity, ensuring a comprehensive

understanding of the dynamics being modeled and improving the model’s ability to

predict complex physical systems holistically.

6. We extend the evaluation metrics to robustly assess the surrogate model’s performance

in conserving vorticity using multiple methods. Our analysis involves comparing the

similarity between ground truth and model predictions by interpolating particle-based

quantities onto a fixed-size uniform grid to obtain vorticity values across the entire

domain. We employ three methods for this comparison: Pearson correlation, residual

analysis, and Kullback-Leibler (KL) divergence, each offering distinct advantages.

1.3 Thesis Outline

Chapter 2. This chapter provides an overview of the fundamental issues in computational

fluid dynamics (CFD), focusing on the differences between Lagrangian and Eulerian perspec-

tives. It discusses various simulation methods, including PIC, FLIP, APIC, and MPM, and

how these are combined in hybrid approaches. The chapter also reviews the intersection

of fluid mechanics with machine learning, highlighting the use of deep learning in fluid and

deformable solid simulations.

Chapter 3. The first part of our contributions is presented in this chapter, where we explore

temporal learning in continuum simulations. We delve into encoding and decoding techniques,

specifically focusing on the transformation of Euclidean data into latent space representations.

This transformation is crucial for effectively training neural networks to model complex phys-

ical phenomena. The chapter also addresses challenges such as hyperparameter tuning and

the impact of dataset size on model performance, ensuring the development of robust and

scalable models.
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Chapter 4. The second key contribution of this thesis is detailed here, where we extend

the architecture of Long Short-Term Memory (LSTM) Networks by integrating a Multi-Layer

Perceptron (MLP). This integration aims to improve prediction accuracy in unified multi-

material simulations, particularly for liquids and deformable solids. The chapter provides

a comprehensive analysis of temporal learning, comparing traditional time series prediction

methods with our advanced LSTM-MLP architecture. We introduce and evaluate our pro-

posed temporal model, demonstrating its effectiveness in capturing the dynamics of complex

systems over long-term simulations.

Chapter 5. This chapter delves into the conservation of vorticity in surrogate models, a

critical aspect of accurately simulating fluid dynamics. We propose a novel approach that

incorporates the Self-Supervised Graph Attention Networks (SuperGAT) convolution oper-

ator into a surrogate model for fluid simulation. This ensures more accurate predictions of

rotational dynamics by conserving vorticity, addressing a key limitation in existing surrogate

models. The chapter also enhances the training framework of the Graph-Based Simulator

surrogate model to include both acceleration-based and velocity-based predictions, thereby

increasing the model’s versatility in capturing dynamic behaviors. Additionally, we intro-

duce an extended loss function framework designed to capture the key physical aspects of

Lagrangian-based simulations, including acceleration, velocity, position, density, divergence,

and vorticity. We also incorporate a robust evaluation framework to assess the surrogate

model’s performance in conserving vorticity. Our evaluation involves comparing the similar-

ity between ground truth and model predictions by interpolating particle-based quantities

onto a fixed-size uniform grid to obtain vorticity values across the entire domain. We employ

multiple methods for this comparison, including Pearson correlation, residual analysis, and

Kullback-Leibler (KL) divergence, each offering distinct advantages. The chapter concludes

with potential extensions and improvements to the proposed methods, particularly in the

context of real-time applications and more complex fluid-solid interactions.



Chapter 2

Related Works

This chapter briefly introduces related work on fluid or deformable solid simulation used in

Computer Graphics. Since this research is driven by the goal of enabling real-time inter-

active graphics, we will briefly discuss core Computational Fluid Dynamics (CFD) concepts,

optimizations for computational performance, and the intersection of fluid mechanics with ma-

chine learning. The contents of this section are mainly derived from (Bridson (2015a)). We

summarise the essential concepts for understanding continuum material simulation, without

delving into the details of the Navier-Stokes equations. The chapter begins with a description

of discretization techniques for fluid domains from Lagrangian, Eulerian, and hybrid perspec-

tives, followed by a discussion on the coupling between fluid and solid simulations. Finally,

we will examine the state-of-the-art in fluid simulation using Deep Learning techniques.

2.1 Navier-Stokes and the Reynolds Number

The incompressible Navier-Stokes equations describe the behavior of a Newtonian incom-

pressible fluid. The first equation, which expresses the incompressibility condition, is given

by

∇ · u⃗ = 0, (2.1)

where u⃗ is the fluid velocity vector. This equation ensures that the volume of any fluid element

remains constant over time, meaning that there is no net compression or expansion of the

fluid.

7
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The momentum equation, which governs the dynamics of the fluid, is expressed as

∂u⃗

∂t
+ u⃗ · ∇u⃗ +

1

ρ
∇p = g⃗ + ν∆u⃗. (2.2)

In this equation, ∂u⃗
∂t denotes the local (or unsteady) acceleration, which is the rate of change

of velocity at a fixed point in space. The term u⃗ · ∇u⃗ represents the convective acceleration,

describing the change in velocity that a fluid particle experiences as it moves through a

spatially varying velocity field. The pressure gradient force, 1
ρ∇p, drives the fluid from regions

of high pressure to low pressure, while g⃗ represents external body forces such as gravity.

Finally, the term ν∆u⃗ accounts for the diffusion of momentum due to viscous effects, where

ν is the kinematic viscosity.

Non-dimensional analysis is a fundamental approach in fluid dynamics that enables the

comparison of flow behaviors across different systems and scales. One of the most important

non-dimensional parameters is the Reynolds number, defined as

Re =
ρUL

µ
, (2.3)

where ρ is the fluid density, U is a representative velocity scale (such as the mean or

maximum velocity), L is a characteristic length scale (for example, the diameter of a pipe or

the size of an obstacle), and µ is the dynamic viscosity of the fluid. The Reynolds number

essentially represents the ratio of inertial forces to viscous forces. When Re≪ 1, viscous forces

dominate, leading to smooth and steady flows often described as creeping or Stokes flow. For

flows where Re is on the order of 102, both inertial and viscous forces play important roles

and the flow generally remains laminar. In contrast, when Re exceeds approximately 103,

inertial effects become dominant and the flow is likely to transition to turbulence, which is

characterized by chaotic fluctuations and enhanced mixing.

Note: The dynamic viscosity µ is also related to the density ρ and the kinematic viscosity

ν by the relation

µ = ρ ν. (2.4)
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(?)

Figure 2.1: Illustration of Eulerian (a) and Lagrangian (b) standpoin.(York II

(1997))

2.2 Lagrangian and Eulerian Perspectives

There are two common perspectives to tracking the motion when observing a moving con-

tinuum (fluid or deformable solid): Lagrangian standpoint and Eulerian viewpoint. The

Lagrangian view represents the continuum as an evolving system through the tracking of

particles (with or without a mesh connecting up the particles). Every single point in the con-

tinuum may be specified as a particle that has properties of position and velocity. However,

the Eulerian method uses a different technique. It looks at static points in space (fixed grid)

and evaluates the change of fluid quantities (such as velocity, temperature, density, etc.) at

those points in time Bridson (2015a).

In the Eulerian method (Figure 2.1a, the grid nodes (black dots) represent the quantities

of material, such as mass. At the next time step in the simulation, t1, due to material

deformation governed by external and internal forces, the mass at the grid nodes has changed

(convected), but the grid remains fixed in space. In Figure 2.1a, the size of the black dots

also shows the change in the amount of mass. The material boundaries are designated with

dashed lines and describe the corresponding mass distribution. In Figure 2.1b (Lagrangian),

the material is represented by the grid which distorts with the material
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Figure 2.2: Particle Interpolation in SPH Method (Wang et al. (2016))

The Lagrangian approach is intuitive in defining the material boundaries, especially in the

multiphase or history-dependent simulation, since it does not need a particular procedure to

separate the interface of the interacting materials (provided that the grid deforms accurately

with the material).

An example of a Langrangian Approach is Lagrangian Finite Element Method (Ahamadi &

Harlen (2008a)). In this method, the deforming computational domain is discretized by means

of a finite element mesh that deforms with the flow (Ahamadi & Harlen (2008a)). The method

allows simulations of suspensions under planar extensional flow to be conducted to large

strains in a truly periodic cell. The method is illustrated for both isotropic and anisotropic

two-dimensional particles and can be easily extended to viscoelastic fluids (Ahamadi & Harlen

(2008b)) and to non-rigid particles (Ahamadi & Harlen (2008a)).

Another prominent example of the Lagrangian approach is SPH (Smoothed Particle Hy-

drodynamics) (Wang et al. (2016), Gingold & Monaghan (1977), Auer (2009), Ihmsen et al.

(2014), Müller et al. (2003), Monaghan (1992b)). Initially used in astronomy to simulate gas

dynamics on a large scale (astrophysics), but later it was also applied to the problem of incom-

pressible flow such as simulations of ocean waves and liquid mud in tanks (Auer (2009)), and

interactive application (Ihmsen et al. (2014)), (Müller et al. (2003)). In the SPH method, the

computational domain is discretized into a finite number of particles. This can be illustrated

briefly by Figure 2.2. The continuous integral representation of the field variable f(x) can then

be approximated by summation over the neighbouring particles using the smoothing/kernel

function W and smoothing length, r, defining the influence domain of W (Wang et al. (2016)).
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Figure 2.3: MAC (Marker Cell Method) (Cline et al. (2005))

To Calculate spatial derivatives, SPH uses analytical differentiation of interpolation formu-

lae. The essential part of SPH is an interpolation method which allows any function to be

expressed in terms of its values at a set of disordered particles (Monaghan (1992b)). SPH dis-

tributes local quantities to the neighbouring particles of each particle using radial symmetrical

smoothing kernels (Müller et al. (2003)). Compared to the Lagrangian approach, the main

advantage of the Eulerian method is the ability to simulate large-scale deformations and high

distortion flow (The Science of Fluid Sims (2011)). Because of these characteristics, the grid

approach is suitable for creating large oceanic effects. However, to achieve sufficient quality

details for the close-up visual effects (thin fluids), the grid needs adaptive mesh refinement

(AMR) (Wang et al. (2017)) . One example of the Eulerian method is the MAC (Marker and

Cell method) (Cline et al. (2005)).

Figure 2.3 shows how MAC discretizes the space into cubes cell with width h. Every cell

has pressure, p, which defined at the centre of the cube. The cube has velocity u = (ux, uy, uz),

however, the velocity components are placed at the centre of the cell’s surfaces. ux at the

x−minimum surface, uy at y−minimum, and uz at z−minimum. The velocity component

position is varied to improve the simulation stability rather than put all the components at the

centre of the cube cell (Cline et al. (2005)). Pixar Animation Studios make use of this method

for water jet animation in a film called Ratatouille (Bird & Pinkava (2007)). To reduce the

number of cells and the computational cost, instead of discretizing water into uniform cubes,
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Pixar modify the cube into cells with different heights (bars), placing exact cubes on the

surface and the bottom of fluid geometry but placing a bar (tall or long) cell at the centre

of the geometry (areas that are not visually significant), thus increasing speed of simulation

(Seymour (2014)).
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2.3 Hybrid Method

Hybrid techniques for fluid simulation seek to merge the benefits of both Eulerian and La-

grangian frameworks. Conventionally, this has been done in computational fluid dynamics

using arbitrary Lagrangian-Eulerian (ALE) approaches (refer to (Walkley et al. (2005)) for

more details). Nonetheless, this section emphasizes the progression of other hybrid methods

within computer graphics, including PIC (Particle in Cell), FLIP (Fluid Implicit Particle),

APIC (Affine Particle in Cell), and MPM (Material Point Method).

Figure 2.4: (a) PIC averages particles to a grid node. (b) An equivalent view, particles

are naturally fuzzy and have size, which makes it meaningful for particles to have properties

like angular momentum. (c) a basic comparison of PIC, FLIP and APIC (Jiang et al.

(2015))
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2.3.1 PIC, FLIP, APIC

Figure 2.4 (a) illustrates how PIC averages particles to a grid node. (b) Depicts an equivalent

view where particles are inherently fuzzy and possess size, making it possible for particles to

have properties such as angular momentum. (c) Presents a basic comparison of PIC, FLIP,

and APIC (Jiang et al. (2015)). Reference (Bridson (2015b)) offers a comprehensive review

of hybrid methods for fluid simulation that aim to merge the benefits of the Eulerian and

Lagrangian approaches. The innovator of this hybrid method is the PIC (Particle in Cell)

introduced by (Harlow (1963)). In PIC, all quantities, including velocities, are initially stored

on particles that sample the entire fluid domain. At each time step, these quantities are

transferred to the grid. All non-advection quantities (e.g., pressure projection, acceleration,

boundary resolution, viscosity) are computed on the grid. The step ends by interpolating

quantities from the grid to the particles, followed by advection of the particles in the velocity

field of the grid. However, PIC can suffer from significant numerical dissipation as fluid

quantities are averaged from particles to the grid, introducing some smoothing. Due to the

bidirectional transfer process in each cycle, considerable smoothing accumulates at each time

step.

To address this, FLIP method was developed (Brackbill & Ruppel (1986)). Instead of

replacing the particle value during the grid-to-particle transfer, FLIP interpolates the change

in quantity (calculated on the grid) to increment the particle value. A drawback of FLIP

is that it can generate noise; velocity fluctuations in particles can average down to zero and

vanish from the grid in some time steps, while appearing as unexpected perturbations in

others (Bridson (2015b)). To maintain the stability of PIC without the noise issues of FLIP,

the APIC method was introduced (Jiang et al. (2015)).

APIC mitigates the dissipation problem by enhancing each particle with a local affine

velocity description, preserving information during grid-particle transfers. This approach

effectively eliminates dissipation and allows for the conservation of angular momentum during

the transfer process. The comparison of PIC, FLIP, and APIC is summarized in Figure 2.4.

In Figure 2.4a, particles are transferred to grid nodes using PIC. In Figure 2.4b, the curved

arrows represent particles’ angular momentum properties. In Figure 2.4c, FLIP addresses

PIC’s dissipation issue by creating an unstable path, whereas APIC uses affine transfer to

eliminate dissipation and maintain stability.
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2.3.2 MPM

Figure 2.5: MPM algorithm diagram.(Jiang et al. (2016))

The hybrid methods mentioned previously have been used primarily in liquid simulation.

Another hybrid method that was used as a generalization of PIC to handle deformable solid

mechanics is MPM (Material Point Method) (Sulsky et al. (1994)). MPM grew in popularity

after 2013 when it was used to simulate snow (Stomakhin et al. (2013)) in Disney’s Frozen

movie. MPM uses a continuum description of the governing equations and utilizes user-

controllable elastoplastic constitutive models. The hybrid nature of MPM allows using a

regular Cartesian grid to automate treatment of self-collision and fracture. Like other particle

methods such as SPH (Monaghan (1992b)), topology change is easy because of the lack of

explicit connectivity between Lagrangian particles. Furthermore, MPM allows for a grid-based

implicit integration scheme that has conditioning independent of the number of Lagrangian

particles. MPM also provides a unified particle simulation framework similar to Position

Based Dynamics (PBD) (Macklin & Müller (2013)) for easy coupling of different materials.

Later, MPM has been extensively developed to simulate various phenomena. This includes,

the dynamics of non-Newtonian fluids and foams (Ram et al. (2015)), (Yue et al. (2015)) , the

melting process or phase changing through heat transfer (Stomakhin et al. (2014)), (Gao et al.

(2017)), frictional contact between granular materials (Klár et al. (2016),Yue et al. (2018)),

Rigid-body coupling and cutting (Hu, Fang, Ge, Qu, Zhu, Pradhana & Jiang (2018)), porous

media and solid-fluid coupling (Fei et al. (2018), Tampubolon et al. (2017), Fei et al. (2019)),
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contact and collision with volumetric elastic objects (Jiang et al. (2015)), (Zhu et al. (2017)),

frictional contact among hyper-elastic materials like hair and clothes (Guo et al. (2018), Jiang

et al. (2017), Fei et al. (2018)) and dynamic fracture animation (Wolper et al. (2019)).

The efficiency of the MPM algorithm has also been improved to boost the computational

performance of the simulator. This includes an adaptive MPM scheme to optimize compu-

tation resources in the area of interest (Gao et al. (2017)), Parallel MPM using GPU with

compute shader or CUDA (Dharma et al. (2017),Dharma et al. (2018)), and A Moving Least

Squares MPM (MLS-MPM) (Hu, Fang, Ge, Qu, Zhu, Pradhana & Jiang (2018)) which is

twice faster than the previous one. Figure 6 illustrates a time step of implicit MPM. In the

beginning, the particle quantities (mass, velocity) are transferred to the grid (P2G). Grid

operations are then carried out as in the Eulerian method. The particle velocities at the next

time step are updated by transferring the calculated grid velocity (G2P) to the particles.

2.3.3 Coupling

Computation of fluid-solid interaction is often challenging because of its strong nonlinearity,

especially when large deformation is considered (Wang et al. (2017)). When the fluid and

solid are interacting, the information for the solution at the interface or boundary between

the solids and fluids is shared between the fluid solver and the solid solver (Benra et al. (2011)).

The interaction between the fluid and the solid can be classified as one-way coupling when

the solids get their motion from the fluid but not the other way around; two-way coupling

is required for fairly massive objects that significantly affect the fluid flow, or for very soft

solids that are affected in turn by the fluid; strong coupling occurs when the forces of the

solid and the fluid are computed concurrently, and the motion of each directly impacts the

others (Bridson (2015b)). As shown in Figure 2.6, in the one-way coupling (2.6a), only the

fluid pressure acting at the solid interface is transferred to the solid solver. While in two-way-

coupling (2.6b), the displacement of the solid is also transferred to the fluid solver (Benra

et al. (2011)).
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(a) One way Coupling

(b) Two way Coupling

Figure 2.6: Algorithm for one- and strong two-way coupling (Benra et al. (2011))
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2.4 Deep Learning and Lagrangian Continuum Simulation

Numerous simulations of deformable and fluid fluid material based on physical principles

in computer graphics have achieved high levels of realistic visual quality (Qu et al. (2019),

Stomakhin et al. (2013), Tampubolon et al. (2017), Jiang et al. (2017)); however, the speed

of simulation remains far from real time. For example, simulating cloth and sand with the

Anisotropic Elastoplasticity model in (Jiang et al. (2017)) takes 876 seconds to compute 7.23

million particles per simulation frame. Despite advances in parallel computing and more

efficient algorithms for solving governing equations in recent years, real-time simulations of

fluids and deformable solids have only been feasible under restricted conditions.

The rise of Machine Learning Techniques, particularly Deep Neural Networks (DNN),

is currently propelling research into enhancing physical simulation and modeling physical

functions. Applications cover a range of areas such as rapid approximations for numerical

fluid solvers (Ladický et al. (2015), Tompson et al. (2017)), robotic control and planning

(Schenck & Fox (2018), Hu, Liu, Tenenbaum, Freeman, Wu, Rus & Matusik (2018)), and

more efficient cloth simulation (Lee et al. (2019), Tan et al. (2019)).

Originally dubbed the Deep feedforward network, the DNN employs a framework loosely

inspired by neuroscience, hence the term neural. These networks are generally composed of a

combination of various functions. The primary objective of a DNN is to approximate certain

functions (Goodfellow et al. (2016)).

Figure 2.7 presents a depiction of various neural networks. In Figure 2.7a, the sparse

connectivity of two different neural network types is compared. The top part of 2.7a depicts

a convolutional neural network, while the bottom part displays a multi-layer perceptron.

A highlighted unit, x3, serves as an input example, and the highlighted units in s are the

outputs influenced by this input. According to the top of Figure 2.7a, only three outputs are

influenced by x when s is generated by convolution (with a kernel width of 3). Conversely,

when s is produced via matrix multiplication (bottom of Figure 2.7b), the connectivity is not

sparse, resulting in all outputs being influenced by x3 (Goodfellow et al. (2016)). According

to (Goodfellow et al. (2016)), convolutional networks are a type of neural network that utilize

a convolution operation instead of matrix multiplication in at least one layer. Figure 2.7b

illustrates a 2-D convolution process. By applying the kernel to the top-left part of the input,

the corresponding top-left element of the output tensor is produced. In sequence modeling,
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Figure 2.7: Neural Network: (a) Comparison of Sparse Connectivity be-

tween Convolutional Neural Network (top) and Fully connected network (bottom);

(b)(Example of 2D Convolution (Goodfellow et al. (2016))

which deals with sequential data, there exists a category of neural networks known as recurrent

neural networks (RNNs). An RNN is designed to handle sequences of values x1, ..., xt in a

manner similar to how convolutional networks manage grid values like those in an image

(Goodfellow et al. (2016)).

Gated RNNs are examples of other types of neural networks that are recognized for their

efficiency in sequence modeling (Goodfellow et al. (2016)). These networks include long-

short-term memory (LSTM) units and are built upon the gated recurrent unit framework.

The concept of LSTM was initially introduced by (Hochreiter & Schmidhuber (1997a)). The

core idea involves self-loops to establish routes that allow gradients to propagate for extended

periods. Figure 2.8 illustrates this concept. Cells are recurrently connected, replacing tra-

ditional hidden units. An input is processed using a standard neuron, and its value can be

stored in the state if permitted by the sigmoidal input gate. The state unit features a linear

self-loop regulated by the forget gate’s weight. The cell output can be disabled through the

output gate.
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Figure 2.8: Block diagram of a cell of LSTM (Long short term memory) recurrent

network (Goodfellow et al. (2016))

2.4.1 Deep Learning and fluids

Recently, a fairly comprehensive study of machine learning in fluid mechanics in the literature

was published by (Brunton et al. (2020)). In this summary, we will highlight some recent work

which is mostly related to computer graphics, especially in interactive applications. Ladicky

et al. (Ladický et al. (2015)) and Yang et al. (Yang et al. (2016)) first time proposed real-time

fluid simulation using a data-driven approach. They used a supervised learning perspective

to train a black-box machine learning system to predict the output of a deterministic fluid

simulator. (Ladický et al. (2015)) used the Random Regression Forest to predict the output

produced by a Lagrangian Solver, SPH, while (Yang et al. (2016)) used a patch-based neural

network to predict ground truth pressure. Since the methods are entirely dependent on

a dataset provided by a conventional solver, their method suffers from the generalization
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problem, which cannot extrapolate the model far outside the data observed during training.

To improve the generalization properties of the accelerated fluid model, (Tompson et al.

(2017)) proposed the unsupervised training-loss method to accelerate the smoke simulation

by inferring the PCG (Poisson conjugate gradient) part of the calculation step in the Eulerian

Solver with Convolutional Network (Helfenstein & Koko (2012)). The proposed method still

uses the advantage of the understanding and modeling power of classical approaches. While

the proposed approach cannot ensure an exact solution to the pressure projection step, its

runtime and accuracy are better than the Jacobi method (Black et al. (2024)).

There is also increasing interest in differentiable physics simulation (Schenck & Fox (2018),

Hu, Liu, Tenenbaum, Freeman, Wu, Rus & Matusik (2018)), to efficiently solve inverse prob-

lems such as optimal control and motion planning, as it can be incorporated into gradient-

based optimization algorithms. It also can be combined with other learning methods to

provide physically consistent predictions. (Schenck & Fox (2018)) proposes an embedded

Position-Based Fluid (PBF) (Macklin & Müller (2013)) solver in convolutional neural net-

works called SPNets. It adds two new layers to the neural network toolbox, which enable

physical computing interactions with unordered particle sets. These layers are then used in

combination with standard neural network layers to directly implement fluid dynamics inside

a deep network, where the parameters of the network are the fluid parameters themselves (e.g.,

viscosity, cohesion, etc.). The generated models of fluid dynamics are fully differentiable since

it is implemented as a neural network. The solution demonstrates the ability to learn fluid

parameters from data, perform liquid control tasks, and learn policies to manipulate liquids.

While SPNets focuses on a fluid manipulation task in robotics, (Hu, Liu, Tenenbaum,

Freeman, Wu, Rus & Matusik (2018)) proposes a differentiable Moving Least Squares-Material

Point Method (MPM) simulator for deformable solids (soft robots). The system stores the

object data at every simulation step so that the gradient can be calculated out of the box. The

solution can simulate deformable objects including contact and can be seamlessly incorporated

into inference, control and co-design systems. Both forward simulation and backward gradient

can be computed precisely.

Figure 2.9 illustrates a time step of MLS-MPM. At time tn, the particle transferred to

the grid (P2G). Grid operations are then carried out as in the Eulerian method. The particle

speed at t(n + 1) is then updated trough transfer by transferring the calculated grid velocity

(G2P). All data in P2G, Grid op, and G2P will be stored in caches that will be used later for
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Gradient calculation in the backward process.

Figure 2.9: An illustration of a single time step of MLS-MPM. With for for-

ward simulation (top arrows) and backpropagation process (bottom arrows) Hu,

Liu, Tenenbaum, Freeman, Wu, Rus & Matusik (2018)

Temporal modeling in fluid simulation has been actively explored recently. Autoencoders

(AE) are used by (Xie et al. (2019), Kim et al. (2019), Wiewel et al. (2020)) to compress the

dimensionality of the simulation into latent space prior to temporal prediction. (Xie et al.

(2019)), in the separated training process from the AE, uses an LSTM network in latent space

to predict the temporal change of the fluid. This approach leads to large speed-ups (despite the

not “apple-to-apple” comparison, CPU-based traditional solver with the GPU-based model

predictor). (Kim et al. (2019)) uses a generative approach with CNN to re-synthesize /

upscale the dynamic flow fields for both smoke and liquid. This simulation is attractive for

re-simulation scenarios in a specified container where input interactions can be parameterized.

2.4.2 Deep Learning and deformable solids

Most previous research in reducing the computational cost for simulation based on physical

evidence using DNN has focused on fluid simulation. More recently, a study of the DNN

model for cloth simulation has been considered (Lee et al. (2019), Laehner et al. (2018),

Holden et al. (2019), Tan et al. (2019)). (Holden et al. (2019)) proposes a simulation of

a physical cloth character driven by data that meets the requirements of computation and

memory. As illustrated in Figure 2.10, (Holden et al. (2019)) combines subspace simulation

techniques, PCA (Principal Component Analysis, which emphasizes variation and reveals

strong patterns in a dataset, compressed representation), with machine learning which enables

efficient simulation of subspace-only physics that supports interactions with external objects.
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It acquires training data X and Y offline using a cloth simulator and reduced the representation

Z and W by performing PCA, before the neural network training process.

Figure 2.10: An illustration of a single time step of MLS-MPM. With for forward

simulation (top arrows) and backpropagation process (bottom arrows) Holden et al.

(2019)

2.4.3 Deep Learning and Vorticity

Recent advancements in deep learning have introduced data-driven approaches using La-

grangian representations to improve the accuracy of fluid predictions, specifically targeting

velocity and linear momentum prediction. However, these methods do not explicitly address

angular momentum conservation, leading to the absence of a direct metric for vorticity in

Lagrangian fluid simulations.

For instance, the framework proposed by Sanchez-Gonzalez et al. (2020), termed ”Graph

Network-based Simulators” (GNS), represents the state of a physical system using particles as

nodes in a graph and computes dynamics via learned message-passing. Their results demon-

strate the model’s ability to generalize from single-timestep predictions with thousands of

particles during training to different initial conditions and thousands of timesteps at test

time. However, while the model mitigates error accumulation by corrupting training data

with noise, it does not address vorticity explicitly.

Similarly, Ummenhofer et al. (2020) propose a method that uses continuous convolutions

to process sets of moving particles describing fluids in space and time without building an

explicit graph structure. This method generalizes to arbitrary collision geometries and can
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be used for inverse problems. However, it also lacks an explicit mechanism for vorticity

conservation.

Prantl et al. (2022) take a step further by guaranteeing the conservation of linear momen-

tum in learned physics simulations through antisymmetrical continuous convolutional layers.

While their method substantially increases the physical accuracy of the learned simulator, it

focuses on linear momentum conservation and does not provide explicit measures for vorticity.

On the other hand, approaches aiming to address vorticity often operate within Eulerian

frameworks or on regular grid data or images, rather than particle representations in contin-

uous space. For example, Guan et al. (2022) introduce ”NeuroFluid,” a method that infers

fluid state transitions from sequential visual observations of the fluid surface. Their approach

involves a particle-driven neural renderer and a particle transition model optimized to reduce

discrepancies between rendered and observed images, though it still lacks a direct focus on

vorticity.

Chu et al. (2022) propose a method to reconstruct dynamic fluid using physics-informed

neural fields, leveraging the governing physics like the Navier-Stokes equations on regularly

spaced grids. This method optimizes fluid dynamics from sparse video data but does not

explicitly conserve vorticity.

Xiong et al. (2023) introduce the ”Neural Vortex Method,” combining the Discrete Vortex

Method with neural networks. This method relies on ground truth velocity sequences of

vortex particles to represent fluid dynamics, which is a step towards integrating vorticity into

neural models.

Finally, Deng et al. (2023) propose a method that learns vortex particle dynamics from

regular grid data using single videos without needing ground truth velocity. Their approach,

termed the ”Differentiable Vortex Particle (DVP) Method,” provides a novel way to infer and

predict fluid dynamics, including vorticity, from limited observational data.

These methods demonstrate both the gaps and the recent trend towards incorporating

vorticity into deep learning models for fluid dynamics, but challenges remain in effectively

integrating this with Lagrangian representations.

2.4.4 Graph Network

Graph networks offer a powerful and flexible overall framework for modeling physical dynam-

ics, including fluid simulations. In this approach, particles are treated as nodes, while edges
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encode the interactions among them. This makes it straightforward to incorporate a variety

of graph neural network (GNN) convolutional layers, each bringing its own strengths to the

prediction of complex fluid behaviors. Below, we highlight several noteworthy GNN variants

that can be plugged into such a framework.

• Handling Irregular Geometries: Unlike traditional grid-based methods, graph net-

works are not constrained by regular grids and can accommodate irregular and dynamic

geometries. This flexibility is critical for simulating real-world fluid systems where par-

ticle distributions are often non-uniform and change over time.

• Rotational Invariance: Graph representations inherently maintain rotational invari-

ance, a crucial property in fluid dynamics where the relative positions and interactions

of particles matter more than their absolute positions. This ensures that simulation

results remain consistent regardless of the global orientation of the particle set.

• Capturing Local Interactions: Graph networks excel at modeling local interac-

tions among particles. Each node (particle) easily shares information with its neighbors

(connected edges), effectively capturing the local dependencies essential for accurate

fluid-dynamics modeling.

• Scalability: By leveraging sparse connectivity, graph networks can scale efficiently to

large particle systems. Only the relevant local interactions need be considered, reducing

computational overhead compared to methods requiring exhaustive, global interactions.

To evaluate the performance of our framework, we compare it against multiple GNN

convolutional layers that have been used in fluid-like or particle-based simulations. Each

represents a distinct approach to learning from graph-structured data:

PointNetConv (PointNet++)

PointNetConv, based on the PointNet++ architecture, extends the original PointNet model

with hierarchical feature learning. This extension captures both local and global geomet-

ric features from point clouds, making it effective in tasks such as 3D object recognition

and segmentation. Its ability to learn multi-scale features also proves advantageous in fluid

simulations, where particle distributions can vary significantly Qi et al. (2017).
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Graph Transformer

The Graph Transformer architecture integrates the principles of the Transformer model, orig-

inally developed for sequence processing, into graph-based data. By leveraging self-attention

mechanisms, the Graph Transformer can model long-range dependencies within a graph, mak-

ing it particularly well-suited for tasks that require capturing global context, such as node

and graph classification Shi et al. (2021). Yuan et al. (2022) use Transformer with Implicit

Edges (TIE), to capture the rich semantics of particle interactions in an edge-free manner.

GATConv

GATConv is the original Graph Attention Network (GAT) formulation, introducing attention-

based mechanisms into GNNs. By computing attention scores between a node and its

neighbors, GATConv can preferentially highlight the most relevant particle interactions for

fluid simulation. It has served as a foundational model for tasks involving graph-structured

data Veličković et al. (2018).

GATv2Conv

GATv2Conv is an enhanced version of the Graph Attention Network (GAT) architecture.

It refines the attention mechanism to improve the model’s expressive power and stability.

By dynamically weighting neighboring nodes’ contributions, GATv2Conv excels in capturing

complex relationships within a fluid system, focusing on the most critical interactions for

accurate predictive performance Brody et al. (2022).

2.4.5 Activation Functions

Activation functions are essential in the construction of neural networks, significantly influenc-

ing the network’s capacity to learn and provide accurate predictions. This subsection examines

the frequently employed activation functions in neural network arhictecture discussed in this

thesis, with a focus on Sigmoid, Tanh, ReLU, and ELU.

Sigmoid The sigmoid activation function, also known as the logistic function, is one of the

earliest and most widely used activation functions in neural networks. It is defined as:

σ(x) =
1

1 + e−x
(2.5)
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The sigmoid function maps input values to a range between 0 and 1, making it suitable

for binary classification problems. Its smooth gradient is advantageous for backpropagation,

ensuring that the gradient descent process is stable. However, the sigmoid function suffers

from the vanishing gradient problem, where gradients can become very small, slowing down

the learning process. This issue is particularly problematic for deep networks, as it hampers

their ability to learn efficiently.

Tanh The hyperbolic tangent function (tanh) is another commonly used activation function,

defined as:

tanh(x) =
ex − e−x

ex + e−x
(2.6)

The tanh function maps input values to a range between -1 and 1. Compared to the sigmoid

function, tanh is zero centered, which can help centering the data and thus lead to a more

efficient training process. The gradients of the tanh function are steeper than those of the

sigmoid, which helps mitigate the vanishing-gradient problem to some extent. However, tanh

is not immune to the issue of the vanishing gradient and can still slow down the training of

very deep networks.

ReLU The Rectified Linear Unit (ReLU) is defined as:

ReLU(x) = max(0, x) (2.7)

ReLU has become the default activation function for many neural networks because of its

simplicity and effectiveness. It introduces non-linearity by outputting zero for any negative

input and the input value itself for any positive input. ReLU is computationally efficient and

helps mitigate the problem of vanishing gradients, as it does not saturate positive values.

However, ReLU can suffer from the ”dying ReLU” problem, where neurons can get stuck

during training, always outputting zero. This issue arises when the learning rate is too high

or due to poor weight initialization.

ELU The Exponential Linear Unit (ELU) is defined as

ELU(x) =

x if x > 0

α(ex − 1) if x ≤ 0
(2.8)
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where α is a hyperparameter that controls the value to which an ELU saturates for negative

net inputs. ELU improves upon ReLU by allowing negative values when the input is less

than zero, which helps to bring the mean activation closer to zero. This zero-centered nature

can speed up learning. ELUs tend to mitigate the ”dying ReLU” problem and maintain a

stronger gradient during training. The choice of the α parameter can affect performance and

should be carefully selected based on the specific task.



Chapter 3

Methodology

This chapter will discuss methods and techniques used in the work that follows, including

the analysis of time complexity of deterministic / conventional simulators, the generation of

fluid data sets, spatial and temporal learning analysis, energy conservation analysis, design of

network architecture, training procedures, and evaluation methods.

3.1 Analysis of Time Complexity of Deterministic Simulator

The Material Point Method (MPM) algorithm described in Chapter 2 is used to generate

training data for simulations involving fluids or deformable solids. Each subsequent frame

is forecast from the preceding frame by performing several sub-iterations. An experiment

was carried out to determine the required number of sub-steps to achieve different levels of

simulation quality (by increasing the number of particles and grid resolution). The findings

of this experiment are shown in Table 3.1, which details how simulation resolution relates to

computational time when employing GPU-based parallelism (via CUDA in Taichi Lang). For

instance, in a simulation with 26 k particles (row 4 in Table 3.1), the per-frame time exceeds

70 ms, yielding a simulation frame rate of around 13.58 fps. This drop occurs because a higher

number of sub-steps is required to preserve accuracy at larger scales, making the simulation

impractical for interactive use.

Parameter q and the Timing Setup. In Table 3.1, the parameter q is a quality scaling

factor that controls both the number of particles and the MPM grid resolution. Specifically,

the number of particles is proportional to q2, and the grid dimensions (e.g., width and height)

29
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Table 3.1: MPM Computation Time using Parallelism on GPU in various con-

figurations

Quality MPM Grid size MPM Simulation Time (ms)

q q2 Particles Width Height Nodes substeps/f t/substep t/frame fps

1 1 16,384 128 128 16,384 20 0.06 1.17 854.70

2 4 65,536 256 256 65,536 20 0.14 5.33 187.62

3 9 147,456 384 384 147,456 40 0.51 41.46 24.12

4 16 262,144 512 512 262,144 40 0.73 73.66 13.58

5 25 589,824 768 768 589,824 80 0.85 136.09 7.348

6 36 819,024 896 896 801,216 80 1.14 180.05 5.55

7 49 1,024,576 1024 1024 1,048,576 120 1.60 238.69 4.19

8 64 1,048,576 1024 1024 1,048,576 160 2.25 361.89 2.76

9 81 1,324,104 1152 1152 1,324,104 180 3.08 562.43 1.78

likewise scale with q. Consequently, when q increases, the simulation employs a higher grid

resolution and more particles, thus necessitating more sub-steps per frame to maintain accu-

racy. Each row of the table represents a distinct two-dimensional fluid or deformable-solid

simulation scenario with incrementally larger problem sizes and correspondingly greater com-

putational demands. The “time per frame” (tframe) column then captures how the parallelized

MPM implementation scales as q grows.

To calculate the time complexity O(n) from the relationship between q2 and the column

tframe in the table, we examine how tframe scales with q2. The slope m of a log-log plot can

be found by linear regression on the log-transformed data:

log10(tframe) = m log10(q
2) + log10(k). (3.1)
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q2 log10(q
2) log10(tframe)

1 0.000 0.068

4 0.602 0.727

9 0.954 1.617

16 1.204 1.868

25 1.398 2.134

36 1.556 2.255

49 1.690 2.378

64 1.806 2.558

81 1.908 2.750

Figure 3.1 illustrates the relationship between log10(q
2) and log10(tframe) (Equation 3.1).

The best-fit line in Figure 3.1a has a slope of approximately 1.41, indicating the exponent in

the polynomial relationship between tframe and q2. Accordingly:

tframe ∝ (q2)1.41. (3.2)

Since q2 is proportional to the number of particles n, the time complexity O(n) can be

approximated as:

O(n) ≈ O
(
n1.41

)
.

This implies that the MPM simulation time per frame increases slightly faster than linearly

as the number of particles grows.

At smaller scales (e.g., a few thousand particles), the GPU-accelerated MPM simulator

can be run in real time or near real time. However, as problem size grows to tens or hundreds

of thousands of particles, per-frame computation times escalate due to the compounding

cost of sub-steps. Once the simulation reaches millions of particles, real-time performance

typically becomes infeasible unless significant parallelization or algorithmic optimizations are

employed.

3.2 Surrogate Model Efficiency

The efficiency of a surrogate model is a critical aspect of its design and performance, partic-

ularly when applied to large-scale Lagrangian fluid simulations. This subsection delves into
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(a) Log-log plot of q2 vs tframe. This plot shows the relationship between the quality parameter (q2) and the

simulation time per frame (tframe) in milliseconds. The points represent log-transformed data, labeled with their

log10(q
2) and log10(tframe) values. The red line, with a slope of approximately 1.41, indicates that the time

complexity increases slightly faster than linearly with q2.

(b) Polynomial Fit to q2 vs tframe of the MPM Simulator.

Figure 3.1: Plots showing the relationship between the quality parameter (q2) and

simulation time per frame (tframe) for the MPM Simulator. (b) The red curve represents

a second-degree polynomial fit, highlighting the super-linear relationship that reflects the

increasing computational demands at larger scales.
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the factors that influence the efficiency of a surrogate model, examining both the theoretical

underpinnings and practical considerations.

3.2.1 Training Efficiency

During the training phase of the surrogate model, efficiency is significantly influenced by

several factors, including the complexity of the underlying neural network architecture, the

choice of optimizer, and the selection of training parameters such as learning rates and batch

sizes.

The training data sets consist of sequential frames generated by the Material Point Method

(MPM) simulator, capturing the dynamic evolution of fluid and solid particles over multiple

simulation sub-steps. The neural network is trained to predict subsequent simulation frames

within a latent (lower-dimensional) space, minimizing the need for extensive computational

substeps during inference.

Key factors affecting training efficiency include:

Network Parameterization: The number of parameters within the neural network,

such as the depth and width of layers, directly impacts the computational resources required

during training. A higher number of parameters generally leads to increased computational

demands but may also improve model accuracy Goodfellow et al. (2016).

Choice of Optimizer: The selection of an optimizer plays a critical role in the efficiency

of training. Common optimizers include Stochastic Gradient Descent (SGD), Adam, and

RMSprop, each with its own advantages and trade-offs. For instance, the Adam optimizer is

widely used for its adaptive learning rate capabilities, which can lead to faster convergence

and improved efficiency, especially in complex models Kingma & Ba (2014). However, the

choice of optimizer must be matched with the specific needs of the model, as some optimizers

may be more computationally expensive or less effective for certain types of data.

Training Parameters: The efficiency of training is also influenced by the choice of key

parameters, such as the learning rate and batch size:

• Learning Rate: The learning rate determines the size of the steps the optimizer takes

during each iteration. A higher learning rate can speed up training but may lead to

instability or overshooting minima. Conversely, a lower learning rate may provide more

precise convergence but requires more iterations, thus increasing training time.



34 CHAPTER 3. METHODOLOGY

• Batch Size: The batch size affects how many data samples are processed before the

model’s parameters are updated. Larger batch sizes can lead to more stable gradient

estimates and faster training times, but they also require more memory. Smaller batch

sizes, while requiring less memory, may lead to noisier updates and longer training times

Keskar et al. (2017).

Data Dimensionality Reduction: The use of dimensionality reduction techniques,

such as encoding the particle states into a latent space, can reduce the computational burden

during training. This approach allows the network to focus on the most salient features of

the simulation data, thereby improving both training speed and generalization capabilities

Goodfellow et al. (2016).

By carefully selecting the optimizer and tuning the learning rate and batch size, along with

considering network parameterization and dimensionality reduction, the training efficiency of

the surrogate model can be significantly enhanced. This balance is crucial to ensure that the

model not only trains efficiently, but also generalizes well to unseen data.

3.2.2 Inference Efficiency

The surrogate model is designed to enhance efficiency during the inference phase by predict-

ing future simulation frames without the need for multiple computational substeps. This is

achieved by latent space forecasting, where the model operates within a latent space, pre-

dicting the next state of the system based on its current state. This approach significantly

reduces computational overhead compared to traditional methods, which require iterative

calculations for each substep of the simulation (Chollet (2018)). Furthermore, linear time

complexity is anticipated due to the structure of the latent space predictions, which means

that the surrogate model will likely exhibit linear time complexity as the size of the simulation

increases. This contrasts with the super-linear time complexity typically observed in

deterministic simulators (e.g. MPM) as discussed in Section 3.1, where computation time

grows more rapidly with the number of particles (Xie et al. (2019)).

3.2.3 Impact of Network Size on Performance

The performance of the surrogate model is closely tied to the size and complexity of the neural

network. A larger network with more layers and neurons may offer improved accuracy in
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capturing complex particle interactions, but at the cost of increased computational demands.

On the contrary, a smaller network may offer faster predictions but could struggle to maintain

accuracy, particularly in simulations involving highly dynamic or chaotic systems (Goodfellow

et al. (2016)).

Key considerations include the trade-off between accuracy and speed, where the

network must balance the need for accurate simulations with the requirement for real-time

or near-real-time performance. Achieving this balance often involves careful tuning of hy-

perparameters, such as the number of layers, neurons per layer, and the choice of activation

functions (Goodfellow et al. (2016)). Additionally, scalability is a critical factor, since the

ability of the surrogate model to scale with increasing simulation sizes must ensure that its

efficiency and accuracy are maintained as the number of particles in the simulation grows,

thus ensuring viability for large-scale simulations (Goodfellow et al. (2016)).

3.3 Dataset Generation

To generate a high-quality dataset for training purposes, we employ the Material Point Method

(MPM) (Sulsky et al. (1994), Jiang et al. (2016)) based simulator. The MPM is a power-

ful computational technique for simulating the behavior of materials under various physical

conditions, making it particularly suitable for fluid dynamics and other complex material

simulations.

For implementing the MPM, we use the Taichi programming language (Hu et al. (2019)).

Taichi is a domain-specific language designed for high-performance computational tasks, par-

ticularly in computer graphics and physics simulations. It leverages a just-in-time (JIT) com-

piler to efficiently map computationally intensive operations to multicore CPUs and highly

parallel GPUs, ensuring significant performance improvements in simulation tasks.

One of the key advantages of using Taichi is its deep integration with Python. This inte-

gration simplifies the process of incorporating Taichi-based simulations into workspaces that

utilize common Deep Learning frameworks, many of which are Python-based. This compati-

bility allows for a seamless workflow when embedding simulation data into machine learning

pipelines, facilitating the training of neural networks with realistic, high-fidelity datasets.

Our dataset generation process is centered around the creation of scenarios. Each scenario

begins with an initial configuration of the material or fluid, which is then evolved over time
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using the MPM simulator. This evolution is captured in a sequence of frames, each repre-

senting a state of the system at a particular time step. For supervised learning tasks, pairs of

consecutive frames from these sequences can be used as training data. Each frame provides a

snapshot of the system’s state, while the subsequent frame captures the resulting state after

a time step, forming a natural input-output pair for training predictive models.

This approach not only provides a rich set of training data but also captures the temporal

dynamics of the system, making it highly relevant for tasks that require an understanding

of time-dependent behaviors. The ability to generate such data in a controlled and precise

manner is critical for developing models that can generalize well to real-world scenarios.

3.4 General Training Procedure

In this project, the training was conducted in a supervised fashion. Supervised learning

involves using labeled datasets, where each input data point is paired with the corresponding

output label. The model learns to map input to output by minimizing the error between the

predicted output and the actual labels.

The training loss function used in this experiment is the Mean Squared Error (MSE). The

MSE is a common loss function for regression tasks, defined as the average of the squares

of errors between predicted and actual values. Minimizing the MSE helps the model make

accurate predictions by reducing the overall error.

The framework used to implement the training procedure depends on the specific experi-

ment being performed. We utilized both TensorFlow and PyTorch, two of the most popular

deep learning frameworks. TensorFlow and PyTorch offer versatile and effective tools for

constructing and training Neural Networks. The selection of the framework depends on the

specific needs of the experiment and compatibility considerations with preexisting methods.

Listing 3.1: TensorFlow example

import t en s o r f l ow as t f

model = t f . keras . models . Sequent i a l ( [ . . . ] )

model . compile ( opt imize r=’adam ’ , l o s s=’ mse ’ , met r i c s =[ ’ mse ’ ] )

model . f i t ( x t ra in , y t ra in , epochs =100 , b a t c h s i z e =32)

Listing 3.2: PyTorch example
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import torch

import torch . nn as nn

model = nn . Sequent i a l ( [ . . . ] )

c r i t e r i o n = nn . MSELoss ( )

opt imize r = torch . optim .Adam( model . parameters ( ) , l r =0.001)

for epoch in range ( 1 0 0 ) :

opt imize r . z e ro g rad ( )

outputs = model ( x t r a i n )

l o s s = c r i t e r i o n ( outputs , y t r a i n )

l o s s . backward ( )

opt imize r . s t ep ( )
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3.5 Evaluation Method

For the quantitative analysis, we use several metrics to evaluate the performance of our

model, including the mean squared error (MSE), the mean absolute error (MAE) and an

energy conservation plot. To provide a visual understanding of the model’s performance,

we include several qualitative assessments (Predicted vs Actual Vorticity Plot, Error Plot,

Temporal Evolution of Vorticity).

Quantitative Metrics We assess each technique using Mean Squared Error (MSE) and

Mean Absolute Error (MAE), providing a numerical evaluation of prediction accuracy. These

metrics measure how closely the predicted velocity and vorticity values match the actual

measurements across different test scenarios. Our model’s MSE and MAE are compared with

those of other techniques, demonstrating our model’s accuracy in relative to these.

Generalizability: We further evaluate the generalizability of each model by examining

their performance on unseen data. Our model’s ability to accurately predict velocity and

vorticity in previously unseen cases indicates a degreen of generalizability compared to other

techniques that might overfit specific training conditions.

Mean Squared Error (MSE) The Mean Squared Error is a measure of the average of

the squares of errors. It is used to quantify the difference between the predicted and actual

values.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (3.3)

Mean Absolute Error (MAE) The Mean Absolute Error measures the average magni-

tude of the errors in a set of predictions without considering their direction. It is the average

over the test sample of the absolute differences between the prediction and the actual obser-

vation, where all individual differences have the same weight.

MAE =
1

n

n∑
i=1

|yi − ŷi| (3.4)
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Energy Conservation: We include an energy conservation plot to compare how well each

model maintains adherence to the physical principle of energy conservation in fluid dynamics.

Our model’s performance in maintaining energy consistency underscores its alignment with

fundamental physical laws, distinguishing it from other technique’s degree of conserve energy.

Vorticity Distribution Evaluating the distribution of vorticity is crucial for understand-

ing fluid dynamics in simulations. Different methods can be employed to compare the pre-

dicted vorticity distribution from various models against the ground truth. We use three

primary evaluation methods: Pearson Correlation (Dowdy et al. (2004), Sul et al. (2014)

), Residual Analysis (Hoaglin (2003), Brady (2018)), and Kullback-Leibler (KL) Divergence

(Buhl (2023)). Each evaluation method offers unique insights into the similarity between pre-

dicted and ground truth vorticity distributions. Pearson Correlation provides a simple linear

measure, residual analysis offers a visual error representation, and KL Divergence captures

complex distribution differences. However, careful consideration of normalization is essential

when using KL Divergence to ensure meaningful and accurate comparisons.

Qualitative Analysis: Beyond numerical metrics, we offer qualitative comparisons through

visual assessments such as Predicted vs Actual Vorticity Plot and Temporal Evolution of

Vorticity. These visuals illustrate how well each model captures the complex flow dynamics,

velocity and vorticity patterns over time, with our model showing fidelity in preserving key

flow characteristics.

Velocity and Vorticity Field Plot This plot shows a comparison between the predicted

and actual vorticity values. The fluid domain is discretized into a certain number of grid

cells, and the particles’ velocities are interpolated to the nearest grid nodes to calculate the

vorticity magnitude using finite differences. The values are colored using a specific scale.

Error Plot The error plot highlights the difference between actual ground truth values and

those predicted by the model. A reliable surrogate model, as illustrated by the error plot,

will exhibit errors that are both low in magnitude and uniformly small across various data

points, demonstrating its precision. The errors should be randomly dispersed around the

horizontal zero axis, with no visible patterns or systematic trends, indicating the model’s lack

of significant biases and its competency under different conditions. Symmetrical distribution
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of errors around zero suggests that the model’s predictions are balanced, neither consistently

overestimating nor underestimating. Furthermore, the errors should show minimal variability,

which reinforces the model’s reliability and consistency. The lack of outliers in the error

plot signifies that the model manages all data aspects effectively without notable deviations.

Additionally, the errors should not show a correlation with the input values’ magnitude,

indicating that the model scales appropriately without introducing proportional errors. In

essence, a robust model’s error plot should feature small, random, and evenly spread errors,

reflecting dependable and generalizable performance.

By integrating these comparative analyses, we provide a holistic view of the strengths

and limitations of our model relative to other established methods. The combination of

quantitative performance metrics and qualitative fidelity highlights the ability of our model

to deliver accurate, efficient, and reliable predictions in fluid simulations.



Chapter 4

Temporal Learning of Continuum

Simulation

To model Lagrangian fluid and deformable solid simulations, it is crucial to understand how

to effectively utilize velocity, position, material properties, and other attributes derived from

Euclidean coordinate-based continuum data and encode them into a latent space. This chapter

explores the essential temporal modeling techniques applied to these Lagrangian simulations,

focusing on how these physical attributes evolve over time.

Initially, we investigate the potential of a baseline architecture using a Multi-Layer Percep-

tron (MLP / DNN). The MLP serves as a foundational model to capture the basic temporal

relationships within the data, offering a simple yet effective approach to understanding the

temporal dynamics in Lagrangian simulations.

In subsequent experiments, we shift our focus to more advanced neural networks, particu-

larly Long Short-Term Memory (LSTM) networks. LSTMs are well-suited for tasks involving

time series data, as they are designed to capture long-term dependencies and temporal pat-

terns. By employing LSTM networks, we aim to enhance the predictive capabilities of our

models, allowing them to more accurately forecast the evolution of fluid and solid states over

time.

To efficiently conduct these experiments, we employ an iterative prototyping approach

using basic 2D fluid data, as recommended by Bridson Bridson (2015a) for fluid simulation

prototyping. This methodology allows for rapid adjustments and refinements to the models,

accelerates network training, and facilitates quicker qualitative evaluations.

41
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4.1 Encoding and Decoding to Latent Space Representations

Effective encoding and decoding of latent space representations is crucial to the success of neu-

ral network-based surrogate models. This subsection delves into techniques for transforming

Euclidean coordinates-based continuum data into latent space and reconstructing the original

data from these latent representations.

4.1.1 Encoding Continuum Particles Using MLP

To accurately model Lagrangian fluid and deformable solid simulations, it is essential to encode

the attributes of the continuum particles, such as position, velocity, and material properties,

into a latent space. A Multi-Layer Perceptron (MLP) is a suitable choice for this encoding

task because of its ability to learn complex mappings from input to output space.

Consider a set of continuum particles in a 2D simulation, each characterized by their

position (x, y), velocity (vx, vy), and material properties m (e.g., coefficients such as density

or elasticity). The goal is to encode these attributes into a latent vector z, which serves as a

compressed representation of the state of the particle.

The MLP used for encoding can be described by the following notation: The input is

pi = (xi, yi, vx,i, vy,i,mi) for particle i, the output is zi (latent vector for particle i), and the

architecture consists of L layers with varying numbers of neurons and activation functions.

The encoding process is modeled as follows:

zi = MLP(pi; θ), (4.1)

where θ represents the learnable parameters of the MLP.

The MLP architecture for encoding consists of an input layer, several hidden layers, and

an output layer. Each hidden layer is typically followed by a non-linear activation function,

such as ReLU. The input layer takes the concatenated particle attributes pi, the hidden layers

form a sequence of layers with neurons and activation functions, and the output layer produces

the latent vector zi.

Below is a schematic diagram of the MLP architecture for encoding continuum particles:

Input Layer Hidden Layers Output Layer

(xi, yi, vx,i, vy,i,mi) → ReLU → . . .→ ReLU → zi
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4.1.2 Decoding Latent Space Representations

Decoding is the process of reconstructing the original attributes of the particles from their

latent space representations. This is achieved by using a decoder network, typically another

MLP, which takes the latent vector zi as input and outputs the reconstructed particle at-

tributes p̂i = (x̂i, ŷi, v̂x,i, v̂y,i, m̂i). The decoding process is modeled as:

p̂i = MLPdec(zi;ϕ), (4.2)

where ϕ represents the learnable parameters of the MLP decoder.

The architecture of the MLP decoder mirrors that of the encoder, with the input being

the latent vector zi and the output being the reconstructed particle attributes. The input

layer takes the latent vector zi, followed by a sequence of hidden layers with neurons and

activation functions, and the output layer produces the reconstructed particle attributes p̂i.

Below is a schematic diagram of the MLP architecture for decoding latent space represen-

tations.

Input Layer Hidden Layers Output Layer

zi → ReLU → . . .→ ReLU → (x̂i, ŷi, v̂x,i, v̂y,i, m̂i)

4.1.3 Training the Encoder-Decoder Model

The encoder-decoder model is trained end-to-end using backpropagation through time (BPTT).

This involves computing the gradient of the loss function with respect to the model’s param-

eters and updating those parameters to minimize the loss. The loss function measures the

discrepancy between the original particle attributes pt
i and the reconstructed attributes p̂t

i at

each time step t. The objective function, typically based on Mean Squared Error (MSE), is

given by:

L =
1

NT

T∑
t=1

N∑
i=1

∥pt
i − p̂t

i∥2, (4.3)

where N is the number of particles, and T is the number of time steps in the sequence.

Optimization is performed using gradient-based methods such as Stochastic Gradient De-

scent (SGD) or its adaptive variants like Adam. During training, the gradients of the loss

function with respect to the encoder parameters θ and decoder parameters ϕ are computed
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through backpropagation through time (BPTT). These gradients are then used to update the

parameters iteratively:

θ ← θ − η
∂L
∂θ

, (4.4)

ϕ← ϕ− η
∂L
∂ϕ

, (4.5)

where η is the learning rate, a hyperparameter that controls the step size during optimiza-

tion.

The choice of optimization algorithm and learning rate significantly influences the model’s

convergence and the quality of the learned representations. Learning rate schedules or adap-

tive learning rates are often employed to improve convergence and prevent the model from

getting stuck in local minima. Additionally, regularization techniques such as dropout or

weight decay may be applied to prevent overfitting and ensure better generalization to unseen

data.

4.2 Temporal Learning Analysis

Temporal learning is a critical aspect of modeling dynamic systems like Lagrangian fluid

and deformable solid simulations, where the state of the system evolves over time. The

ability to accurately predict the future state of the system based on its current and past

states is essential for creating reliable and efficient simulations. Temporal learning involves

understanding and modeling the temporal dependencies and interactions within the data,

allowing for the prediction of future states with high accuracy.

In the context of Lagrangian simulations, temporal learning must handle the continuous

and often complex interactions between particles, which are influenced by physical properties

like velocity, pressure, and material constraints. These interactions are inherently non-linear

and can involve long-term dependencies, where the effect of a particular state can influence

the system far into the future. Therefore, sophisticated temporal modeling techniques are

necessary to capture these dynamics effectively.

Temporal modeling in fluid simulation has been actively explored recently. Autoencoders

(AE) are used by (Xie et al. (2019), Kim et al. (2019), Wiewel et al. (2020)) to compress the

dimensionality of the simulation into latent space prior to temporal prediction. (Xie et al.
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(2019)), in the separated training process from the AE, uses an LSTM network in latent space

to predict the temporal change of smoke. This approach leads to large speed-ups (despite the

not “apple-to-apple” comparison, CPU-based traditional solver with the GPU-based model

predictor). (Kim et al. (2019)) uses a generative approach with CNN to re-synthesize /

upscale the dynamic flow fields for both smoke and liquid. This simulation is attractive for

re-simulation scenarios in a specified container where input interactions can be parameterized.

This section explores various temporal learning techniques, emphasizing the importance of

capturing both short-term and long-term dependencies in the data. We begin by introducing

traditional methods for time series prediction and gradually move toward advanced deep

learning architectures, specifically focusing on Long Short-Term Memory (LSTM) networks,

which have proven to be highly effective in modeling temporal sequences.

4.2.1 Traditional Time Series Prediction Methods

Rethinking the conventional approaches to predicting time series. These approaches have

been extensively used in numerous domains, such as finance, meteorology, and engineering,

and offer a solid basis for grasping temporal relationships.

Autoregressive (AR) Models (Yule (1927)) predict the future value of a variable as a

linear combination of its past values. The AR model is defined as:

yt = c +

p∑
i=1

ϕiyt−i + ϵt, (4.6)

where yt is the value at time t, c is a constant, ϕi are the parameters of the model, and ϵt

is the error term. The order of the model, p, indicates the number of past values used for

prediction.

Moving Average (MA) Models The Moving Average model (Kendall & Stuart (1964),

Kendall et al. (2007)) is another linear model that predicts the future value based on past

error terms. It is defined as:

yt = µ +

q∑
i=1

θiϵt−i + ϵt, (4.7)

where µ is the mean of the series, θi are the parameters of the model, and ϵt is the error term.

The order q indicates the number of past error terms used (Brockwell & Davis (2009)).
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Autoregressive Integrated Moving Average (ARIMA) Models ARIMA models com-

bine both AR and MA models and also include differencing to make the time series stationary

Box et al. (2016). The general form is:

y′t = c +

p∑
i=1

ϕiy
′
t−i +

q∑
i=1

θiϵt−i + ϵt, (4.8)

where y′t is the differenced series, making it stationary. ARIMA models are widely used for

time series prediction but are limited by their linear nature and the assumption of stationarity.

Limitations of Traditional Methods While these traditional methods are effective for

certain types of data, they struggle with non-linearities and long-term dependencies often

present in complex simulations like Lagrangian fluid dynamics. They also require careful

manual feature engineering and model selection, which can be time-consuming and less adap-

tive to the evolving nature of the data.

4.2.2 Temporal Learning with Long Short-Term Memory

As the limitations of traditional time series prediction methods became apparent, researchers

turned to more sophisticated approaches capable of capturing complex temporal dependencies,

particularly in the context of non-linear and non-stationary data. Long Short-Term Memory

(LSTM) networks, a type of Recurrent Neural Network (RNN), emerged as a powerful tool

for temporal learning due to their ability to retain information over extended sequences and

manage long-term dependencies effectively.

LSTM networks Hochreiter & Schmidhuber (1997b) were introduced by Hochreiter and

Schmidhuber in 1997 as an improvement over traditional RNNs, which suffered from the

problem of gradients vanishing and exploding during training. This problem made it difficult

for RNNs to learn long-term dependencies in sequential data. LSTMs address this issue by

introducing a memory cell and a series of gates that regulate the flow of information, allowing

the network to retain important information over long sequences and discard irrelevant data.

The architecture of an LSTM network is composed of a series of memory cells (Figure 4.1),

each containing three key components: the input gate, the forget gate, and the output gate.

These gates control the flow of information into and out of the cell, allowing the network to

learn which information to retain, which to update, and which to discard.
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Input xt Input Gate it

Forget Gate ft

Cell State Ct

Output Gate ot

Hidden State ht

Figure 4.1: Schematic diagram of a single LSTM memory cell. The cell contains

three gates: the input gate it, the forget gate ft, and the output gate ot. These

gates control the flow of information into, within, and out of the cell, allowing the

network to manage long-term dependencies effectively.

Memory Cell The memory cell is the core of the LSTM network, responsible for storing

the cell state Ct. The cell state acts as a conveyor belt with minor linear interactions, allowing

the information to pass through unchanged unless regulated by the gates.

Input Gate The input gate controls how much of the new information from the current

input xt should be added to the cell state. It is defined as:

it = σ(Wi · [ht−1, xt] + bi), (4.9)

where it is the activation of the input gate, Wi and bi are the weights and biases, σ is the

sigmoid function, ht−1 is the previous hidden state, and xt is the current input.

Forget Gate The forget gate determines how much of the previous cell state Ct−1 should

be forgotten. It is defined as:

ft = σ(Wf · [ht−1, xt] + bf ), (4.10)

where ft is the activation of the forget gate.

Output Gate The output gate decides what the next hidden state ht should be based on

the current cell state. The hidden state is used for prediction and passed to the next time

step:

ot = σ(Wo · [ht−1, xt] + bo), (4.11)
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ht = ot · tanh(Ct), (4.12)

where ot is the activation of the output gate, and tanh is the hyperbolic tangent function

applied to the cell state Ct.

Applying LSTM Networks to Lagrangian Continuum Simulations In Lagrangian

simulations, each particle’s state (position, velocity, and material properties) evolves over

time as it interacts with its surroundings. The challenge is to predict the future state of each

particle based on its past states, which requires capturing both short-term dynamics (e.g.,

immediate changes in velocity due to collisions) and long-term dependencies (e.g., gradual

accumulation of forces over time).

Input Representation The input to the LSTM network at each time step consists of

multiple frames of the state of a particle, represented by a matrix:

Pt =


pt−k

pt−k+1

...

pt

 ,

where each pt = (xt, yt, vx,t, vy,t,mt) is a vector representing the state of the particle at a

specific time frame. This sequence of frames is fed into the LSTM cell, which updates its

internal state and produces a hidden state ht that represents the learned temporal features.

Training the LSTM The LSTM network is trained using multiple sequences of particle

states over time. In practice, we have N distinct sequences, each with a length of T time steps.

For example, N might range from hundreds to thousands, depending on the dataset, and T

could be between 2 and 5 time steps—balancing the need to capture temporal dependencies

with computational efficiency.

During training, the network learns to predict the next state of the particle based on its

multiple past states. The loss function, typically Mean Squared Error (MSE), measures the

difference between the predicted state p̂t and the actual state pt at each time step:

L =
1

T

T∑
t=1

∥pt − p̂t∥2, (4.13)
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where T is the length of the sequence, pt is the actual state of the particle, and p̂t is the

predicted state at time step t.

The training process employs the Adam optimizer (Kingma & Ba (2014)), a widely used

algorithm due to its efficiency and adaptability across various tasks. Adam combines the ad-

vantages of two other extensions of stochastic gradient descent—namely, Adaptive Gradient

Algorithm (AdaGrad) and Root Mean Square Propagation (RMSProp)—to compute individ-

ual adaptive learning rates for each parameter. Typically, the learning rate is initialized at a

small value, commonly around η = 0.001, to ensure stable convergence. Additionally, Adam

utilizes two hyperparameters, β1 and β2, which control the exponential decay rates of the

moving averages of the first and second moments of the gradients. Standard values for these

hyperparameters are β1 = 0.9 and β2 = 0.999, which generally provide good performance in

practice. The training continues for a set number of epochs or until convergence criteria are

met, often using early stopping techniques to avoid overfitting by halting training when the

model’s performance on a validation set begins to deteriorate.

Advantages of LSTM Networks LSTM networks offer several advantages over tradi-

tional methods and even standard RNNs. One significant benefit is their ability to capture

long-term dependencies, which makes them particularly well-suited for modeling the complex

interactions present in Lagrangian simulations. Unlike simpler models, LSTMs excel at han-

dling the temporal relationships that are critical for accurately predicting the evolution of

particle states over time.

Additionally, LSTMs can effectively model non-linear relationships in the data. This

non-linearity is crucial for accurately simulating the behavior of fluids and deformable solids,

where interactions between particles often involve complex, non-linear dynamics. Another

advantage of LSTM networks is their robustness to noise. Due to their ability to selectively

forget irrelevant information through mechanisms like the forget gate, LSTMs can filter out

noise that is common in real-world simulation data, leading to more accurate predictions.

Challenges of LSTM Networks Despite their strengths, LSTM networks also present

several challenges. One of the primary challenges is their computational complexity. Com-

pared to simpler models like MLPs, LSTMs are more computationally expensive, both in

terms of training time and memory usage. This is due to their intricate architecture, which
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includes multiple gates and memory cells designed to manage information flow effectively.

Another challenge lies in hyperparameter tuning. The performance of LSTMs is highly

dependent on the careful selection of hyperparameters, such as the number of layers, hidden

units, and learning rate. These hyperparameters, as discussed earlier in this thesis, require

careful tuning to ensure that the model performs optimally. Additionally, the length of

the input sequence can significantly impact LSTM performance. Very long sequences might

increase computational costs, while very short sequences may fail to capture all relevant

dependencies, leading to suboptimal predictions.

Alternative RNN Architectures In addition to LSTM networks, other types of RNNs,

such as Gated Recurrent Units (GRUs) and vanilla RNNs, are also employed for temporal

learning. Vanilla RNNs, as described by Hopfield (1982) and Feng (n.d.), are simpler versions

of RNNs that do not have memory cells or gates. While they are less computationally expen-

sive than LSTMs, they suffer from issues such as vanishing and exploding gradients, which

make them less effective for capturing long-term dependencies.

GRUs, on the other hand, are similar to LSTMs but feature a simplified architecture.

Introduced by Cho et al. (2014), GRUs combine the forget and input gates into a single

update gate, making them faster to train while still being able to capture long-term depen-

dencies. However, in very complex tasks, LSTMs generally outperform GRUs, making them

the preferred choice when accuracy and the ability to model intricate temporal relationships

are paramount.
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4.3 Ground Truth for Continuum Simulation

In this section, we provide a detailed overview of the datasets and simulation environments

used in our research on fluid and deformable solid simulations. The primary goal is to establish

a comprehensive ground truth that serves as the basis for training and validating our models.

This involves generating diverse scenarios that capture various physical interactions between

different materials, such as liquids, snow, ropes, and jelly-like substances. Figure 4.2 illustrates

examples of the different types of multi-material simulations used in our study. These include

homogeneous liquid, snow, rope and jelly ball interactions, as well as mixed simulations where

different materials interact dynamically.

Figure 4.2: Dataset for multi-material multi-phase simulation. Top-left: homo-

geneous liquid; top-middle: snow; top-right: rope and jelly ball; bottom-left: liquid

and snow; bottom-middle: rope and snow; bottom-right: rope and liquid.
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4.3.1 Continuum Domain

These experiments involved two primary types of simulations: homogeneous fluid simula-

tion and multi-material simulation. For multi-material simulations, we generated 60 two-

dimensional scenes using predefined scenarios specified by different scenario IDs, each with

unique initial configurations involving varying shapes, sizes, initial positions, and velocities

of fluid bodies, jelly, and snow within a square container of 1 by 1 unit. Similarly, for fluid-

only simulations, we generated 40 distinct scenes, each focused solely on fluid dynamics, with

varied initial configurations of fluid particles.

The duration of the multi-material scenes was uniformly set to 10 seconds to capture

the full range of material interactions. For the fluid-only simulations, scene durations varied

from 5 to 25 seconds. These simulations were designed to run until significant fluid dynamics

had subsided, avoiding the bias of prolonged stationary scenarios in the training data. By

ending the simulations when little activity remained, we ensured that the dataset represented

a diverse set of dynamic behaviors without over-representing static configurations.

All simulations were conducted at 60 fps, with 20 substeps per frame, ensuring high

temporal resolution. Each scene featured 2,500 particles confined within a grid of 64×64 cells

for the multi-material simulations and 128× 128 cells for fluid-only simulations.

To further characterize the flow in these experiments, we refer to the Reynolds number

as defined in Eq. 2.3. Based on the normalized parameters used in our simulations (with

ρ = 1, a characteristic length L ≈ 1, and a dynamic viscosity µ = 0.5), the Reynolds number

is estimated to vary between approximately 0.2 and 40. This range indicates that, although

the flow experiences dynamic changes, the overall regime remains predominantly laminar.

4.3.2 Simulation Process

Environment and Setup We conducted our simulations using the MPM (Material Point

Method) solver on a GPU with CUDA 10, running in an Ubuntu 18 environment.Table 4.1

outlines the hardware and software specifications used in this work.

The MPM solver operates through several key steps to accurately simulate the physi-

cal interactions of particles and materials. Depending on the type of simulation, different

configurations are used to optimize the accuracy and relevance of the generated data.

For multi-material simulations, the simulation is initialized with 2,500 particles con-
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Table 4.1: Environment Specification for data generation and training on Tem-

poral Learning Experiment

Environment Specifications

CPU 6-Core Intel i7-5930K 64 bits Haswell, clock: 3.7GHz L2: 15.0 MiB

RAM 64 GB DDR4 2133MHz

GPU 2 X NVIDIA GP102 [TITAN Xp]

Physics Simulator MPM on Taichi 0.6.3 CUDA enabled

Training Framework TensorFlow 2

fined within a grid of 64×64 cells. This setup allows for the detailed modeling of interactions

between different materials such as fluids, elastic materials (like jelly), and snow. Each mate-

rial is characterized by distinct parameters, including Young’s modulus, Poisson’s ratio, and

a dynamically adjusted hardening coefficient, which influences material stiffness based on

deformation.

In contrast, fluid-only simulations employ a higher-resolution grid of 128 × 128 cells,

also initialized with 2,500 particles. This increased grid resolution enhances the simulation’s

ability to capture fine details of fluid dynamics, focusing solely on the behavior of fluid particles

without the complexity of multi-material interactions.

In both types of simulations, the grid resolution and particle count are determined by a

quality factor, resulting in a spatial resolution with grid cells of size ∆x = 1
64 for multi-material

simulations and ∆x = 1
128 for fluid-only simulations.

The simulation advances in time steps of ∆t = 1 × 10−4 seconds, calculated to maintain

numerical stability according to the Courant–Friedrichs–Lewy (CFL) condition (Courant et al.

(1928)). The CFL condition is given by:

∆t ≤ C ·∆x

vmax
(4.14)

where C is the CFL number (typically less than 1 for stability), ∆x is the grid cell

size, and vmax is the maximum velocity in the simulation. With C = 0.9 and assuming a

reasonable maximum velocity vmax = 10 units/second, the CFL condition ensures that our

chosen ∆t = 1× 10−3 seconds per sub-step remains well within the stability limit.

To ensure accuracy, each frame of the simulation is computed using 20 sub-steps, with
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each sub-step involving the transfer of particle state (position, velocity, material properties)

to the grid. The grid serves as the computational domain where forces such as gravity and

interactions with boundaries are applied.

The deformation of particles in multi-material simulations is captured using a deformation

gradient F, which is updated during each sub-step. Particles’ velocity fields and material

properties are then interpolated back from the grid, updating their states accordingly. Fluid-

only simulations follow a similar process but focus solely on fluid dynamics, without the need

to account for different material properties.

Boundary conditions are enforced to confine the particles within the simulation domain,

preventing them from crossing the grid boundaries. Additionally, in both types of simula-

tions, an attractor force can be applied to influence particle motion towards a specified point,

simulating scenarios such as gravity wells or magnetic attraction. This attractor force is only

applied before the initial fluid data recording starts, serving to generate a variety of initial

conditions without affecting the actual dynamics captured during the simulation.

Throughout the simulation, minimum and maximum values of particle positions and veloc-

ities are tracked and normalized for data storage. This normalization is particularly important

in fluid-only simulations, as it adjusts velocities within a range suitable for training machine

learning models and ensures that the dataset captures a broad spectrum of fluid dynamics.

The simulation setup produces highly detailed data, with each scene generating 2,400

frames over a 2-second duration at 60 frames per second for multi-material simulations.

Fluid-only simulations, however, vary in duration between 5 to 25 seconds, depending on

the scenario, and are terminated once significant fluid dynamics have subsided, ensuring that

the dataset remains representative of active rather than stationary scenarios.

4.3.3 Data Generation and Description

Figure 4.3 illustrates examples from the dataset used for fluid simulation, while Figure 4.2

displays example datasets for multi-material simulations. For the multi-material simulations,

initial configurations were generated using a shell script that automated the creation of 60

unique scenarios by running the python code of MPM Simulation with varying scenario IDs.

These scenarios included diverse initial conditions for fluids, jelly, and snow, ensuring a wide

range of material interactions.

For fluid-only simulations, a separate script was used to automate the generation of 40
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different scenarios, each focused solely on fluid dynamics. These scenarios were executed using

the python code, which varied the initial configurations of fluid particles to capture different

fluid behaviors.

In both types of simulations, we captured the position (px, py), velocity (vx, vy), and

material type (m) of each particle in every frame. Positions and velocities were normalized

relative to the simulation domain and a predefined maximum velocity to ensure consistency

across different scenes. The resulting datasets provide a comprehensive collection of fluid and

multi-material interactions, as depicted in Figures 4.3 and 4.2.

Data Storage and Compression To facilitate data compression and portability between

the fluid simulator and TensorFlow, we stored the simulation data in HDF5 (H5) files. This

binary format significantly reduces file size compared to text formats like CSV, JSON, or

XLSX, and allows for faster loading without the need for encoding or parsing. The datasets

generated from both the multi-material and fluid-only simulations were stored in this format.

For multi-material simulations, we generated 60 distinct scenarios, each producing data

for 10 seconds at 60 fps, resulting in 36,000 frames. For larger dataset training, we generated

an additional 15 scenarios, each running for 20 seconds at 60 fps, resulting in 18,000 frames.

In total, this yielded 54,000 frames of data for multi-material simulations.

For fluid-only simulations, we generated 40 scenarios with varying durations: one scenario

ran for 25 seconds, two scenarios for 20 seconds each, three scenarios for 15 seconds each,

four scenarios for 10 seconds each, ten scenarios for 7 seconds each, and twenty scenarios for

5 seconds each. This resulted in a total of 19,200 frames for the fluid-only simulations.

Altogether, these simulations produced a substantial dataset with a diverse range of phys-

ical interactions, efficiently stored in approximately 2 gigabytes of HDF5 files. This com-

prehensive dataset is well-suited for training machine learning models to learn complex fluid

dynamics and multi-material interactions.

4.4 Data Pre-processing and Feature Standardization

In the data pre-processing phase, our primary objective is to prepare the simulation data

for effective training of the machine learning model. The simulation data comprises feature

vectors that include positions (x, y), velocities (vx, vy), and potentially material parameters.
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Figure 4.3: Dataset of fluid simulation with 2,500 particles per domain. Each row

represents a different initial configuration and its evolution over time: Top row: A

circular fluid body, initially positioned near the center, spreading out and interacting

with the boundaries. Second row: A rectangular fluid body, similarly positioned

near the center, deforming and dispersing under gravity and boundary interaction.

Third row: A fluid body subjected to an initial force or velocity directed towards

the right wall, resulting in the fluid rapidly moving and accumulating against the

boundary. Bottom row: A complex-shaped splash, with particles having random

initial velocities, followed by a free fall under gravity

These features naturally have different ranges of values, which must be standardized to ensure

that each feature contributes equally during model training.
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Data Loading and Preparation The multi-material simulation data is stored in HDF5

files, with each file containing multiple frames of particle data. Each frame consists of 2,500

particles, each represented by several features. To facilitate the standardization process,

the data from all simulation frames is loaded into memory and reshaped from a 3D array of

dimensions (totalSimulationFrames, 2500, nFeatures) to a 2D array of dimensions (totalSimu-

lationFrames * 2500, nFeatures). This reshaping allows us to treat each feature independently

during standardization.

Handling Different Ranges of Values Given that the feature vector X includes different

types of data—positions, velocities, and potentially material parameters—each feature may

have a distinct range of values. For instance, positions might be within a normalized range

[0, 1], while velocities could vary more widely depending on the dynamics of the simulation.

To ensure that no single feature disproportionately influences the model’s learning process, it

is essential to standardize these features independently.

Standardization Process We standardize each feature in the dataset using the Z-Score

function, a common method that scales the data so that each feature has a mean of 0 and a

standard deviation of 1. The standard score for each sample X is calculated as follows:

z =
X − µ

σ
(4.15)

where X is the individual feature value, µ is the mean of the feature across the entire training

dataset, and σ is the standard deviation of the feature across the training dataset.

By applying this standardization process, we ensure that all features, regardless of their

original range, are on a comparable scale. This prevents features with larger numerical ranges

from dominating the training process, allowing the model to learn effectively from all features.

Implementation of Standardization The standardization is implemented using the Stan-

dardScaler function from Scikit-Learn. After loading and reshaping the data, the scaler, pre-

viously fitted on the entire dataset, is used to transform both the input (X) and target (Y )

data. This transformation normalizes each feature independently, making the dataset more

suitable for training machine learning models.

After standardization, the data is reshaped back to its original 3D format to preserve the

spatial and temporal relationships between particles across frames. The standardized data is
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then stored in HDF5 format for use in the subsequent training process.

Data Splitting Following standardization, the data is divided into training, validation, and

test sets. Care is taken to ensure that each set contains distinct simulation scenarios, allowing

for effective model evaluation and validation.

This comprehensive pre-processing pipeline ensures that the simulation data is standard-

ized and properly formatted, ready for the training process, and capable of contributing

effectively to the machine learning model’s learning process.

4.5 Training Procedure

We train our fluid and multi-material simulation network in a supervised manner, using

particle trajectories generated by a classic physics-based simulation as the “ground truth.”

The loss function, Ln+1, is defined as the Mean Squared Error (MSE) between the predicted

and actual particle attributes at time step n + 1. Specifically,

Ln+1 =
1

N k

N∑
i=1

k∑
j=1

(
yn+1
i,j − ŷn+1

i,j

)2
, (4.16)

where:

• N is the number of particles.

• k is the number of scalar attributes per particle (e.g., (x, y, vx, vy), densities, material

parameters, etc.).

• yn+1
i,j denotes the ground truth value of the j-th attribute for the i-th particle at time

step n + 1.

• ŷn+1
i,j is the corresponding predicted value from the network.

By defining the loss in this manner, we allow the framework to handle any set of attributes

of interest (positions, velocities, densities, material properties, etc.), making it generalizable

to a variety of multi-material settings.

The data is split into distinct subsets, with approximately 80% of the scenarios allocated

for training, 10% for validation, and 10% for testing. Specifically, we use 52 scenarios for
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training, 6 for validation, and 6 for testing. This splitting ensures that the model is tested on

a diverse range of unseen scenarios.

The training is implemented using TensorFlow 2, with TensorBoard utilized for real-

time monitoring of the training process. We optimize the loss function L using the Adam

optimizer Kingma & Ba (2015), with the default learning rate of 0.001. After experimenting

with various batch sizes, we settled on a batch size of 4096, which provided a balance between

training stability and speed.
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4.6 Network Architecture and Hyperparameter Tuning

In this section, we explain our systematic experimentation process, guided by the validation

set’s error (Tan et al. (2019)), to identify the best configuration for our network architec-

ture. This includes choosing the activation function, adjusting various hyperparameters, and

experimenting with larger datasets.

4.6.1 Selection of Activation Function

The choice of activation function is critical for the performance and efficiency of training

deep neural networks. We experimented with several popular nonlinear activation functions,

such as Sigmoid, Tanh, ReLU , and ELU (Nwankpa et al. (2018)). To determine the best

activation function, we trained a simple deep neural network (MLP) with three layers, each

containing 200 units, and an output layer with 10,000 units to predict the next simulation

frame based on input data from the previous frame.

Each frame consists of 2,500 particles, with each particle characterized by four properties:

(px, py, vx, vy) for the fluid model and five properties (px, py, vx, vy,m) for the multi-material

model. Thus, both the input and output layers have 10,000 units. We compared the Mean

Squared Error (MSE) after 500 epochs for different activation functions, as shown in Table

4.2. The results indicated that the network with ELU activation achieved the lowest MSE

(0.1131 for training and 0.1187 for validation).

The exponential linear unit (ELU) is essentially a smoothed ReLU function. As shown in

Figure 4.4, ELU reached the lowest MSE among the activation functions within 500 epochs,

indicating faster training. Figure 4.5 further illustrates the relationship between training

time and the minimum loss achieved with different activation functions. The plot also shows

a small gap between the validation loss and training loss, which reflects that the network is

not overfitted. From this comparison, it is evident that ELU and ReLU reduce the loss much

faster than Sigmoid and Tanh, with ELU achieving the lowest final training and validation loss.

Additionally, ELU maintains stable training dynamics throughout, with minimal fluctuation

in the loss curve. Given its superior performance in terms of rapid convergence, low final

loss, and training stability, we decided to use ELU activation in most of the subsequent

experiments.
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Figure 4.4: Comparison of training loss between different activation functions. The

horizontal axis represents the number of training epochs. Networks with ELU and ReLU

demonstrate faster learning.

Figure 4.5: Learning curve showing validation and training loss for different activation

functions. The small gap between the validation loss and training loss indicates that the

network is not overfitted. The horizontal width of each plot corresponds to 500 epochs

(unlabeled to simplify the comparison, as the four plots were merged into one image for

easier side-by-side comparison).
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Table 4.2: MSE results comparison from a different type of activation function

(after 500 epochs)

Number of Neurons

Dense Network Layer Pred.

No Model Activation L1 L2 L3 Layer Train. Val.

1 3LSigmoid sigmoid 0.1405 0.1547

2 3LTanh tanh 200 200 200 10000 0.1312 0.1467

3 3LReLU ReLU 0.1161 0.1204

4 3LELU ELU 0.1131 0.1187

Total Params (4,090,600) 2,000,200 40,200 40,200 2,010,000
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4.6.2 Layer Size

To determine the impact of the number of neurons on the network’s predictive performance,

we trained six neural networks with ELU activation, varying only the number of neurons in

each layer. Each network was trained for 200 epochs with a batch size of 512.

Table 4.3 shows that increasing the number of neurons generally lowers the MSE, but at

the cost of significantly higher memory usage due to the increased number of parameters.

Notably, configuration 6, which had the largest number of neurons, exhibited instability, with

the MSE increasing dramatically after 96 epochs. This issue is likely due to the combination

of a relatively small batch size and the aggressive learning behavior associated with the ELU

activation function. In Figure 4.6b, the MSE increases sharply just before reaching 100 epochs.

Our observation suggests that this behavior results from the relatively small batch size of 512

combined with the highly progressive learning behavior of the ELU activation function. To

address this instability, we opted to use a larger batch size in subsequent experiments. This

adjustment not only enhances learning stability but also increases GPU occupancy, thereby

reducing overall training time. Figure 4.6a provides a side-by-side comparison of the training

loss across different neuron sizes. All networks reached a flat loss curve by around 40 epochs,

with the main differences being the minimum loss achieved, which correlates with the number

of neurons. For configuration 6, training instability led to the MSE jumping to values greater

than 1, resulting in poor model accuracy.

Table 4.3: Benchmarking different unit sizes on Nework with ELU activation

# 1 2 3 4 Total Params Train MSE Val MSE

1 100 100 100 10000 2,030,300 0.1915 0.1968

2 200 200 200 10000 4,090,600 0.1147 0.1194

3 400 400 400 10000 8,331,200 0.0591 0.0657

4 800 800 800 10000 17,292,400 0.0290 0.0362

5 1000 1000 1000 10000 22,013,000 0.0235 0.0309

6 1600 1600 1600 10000 37,134,800 1.0036 1.0247
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(a) Side-by-side comparison of epoch-training loss for networks with different neuron sizes (y-

axis: MSE). The horizontal width of each plot corresponds to 500 epochs(unlabeled to simplify

the comparison, as the four plots were merged into one image for easier side-by-side compari-

son)

(b) The higher the number of neurons, the lower the MSE. Configuration 6 (green) shows

instability after 96 epochs.

Figure 4.6: Comparison of training loss and MSE for networks with different

neuron sizes: (a) Epoch-training loss comparison; (b) MSE versus neuron size,

highlighting the instability in Configuration 6.
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4.6.3 Number of Layers

We also investigated the effect of varying the number of layers on training loss. Five neural

networks with 1,000 neurons in each layer were trained using ELU activation (excluding the

output layer with 10,000 units). The training ran for 250 epochs with a batch size of 1024,

using 25,200 data frames (46.7% data).

Table 4.4: Comparison of different Neural Networks with different layers

# #Layers #Params Train MSE Validation MSE

1 3 ELU 22,013,000 0.0197 0.0268

2 4 ELU 23,014,000 0.0185 0.0267

3 5 ELU 24,015,000 0.0200 0.0279

4 6 ELU 25,016,000 0.0241 0.0306

5 7 ELU 26,017,000 0.0244 0.0322

Our results indicated that while increasing the number of layers can reduce training loss,

this effect diminishes as the network deepens. For example, while the 4-layer network outper-

formed the 3-layer network, adding more layers did not yield significant improvements and in

some cases, led to overfitting, as shown by the higher validation MSE in the 7-layer network

(4.4).

4.6.4 Dataset Scaling and Layer Optimization

We hypothesized that increasing the dataset size would enhance the network’s performance

by providing more diverse training data, which is crucial for capturing the variability inherent

in complex fluid and material simulations. Initially, the network was trained on 25,200 frames

from 45 scenarios. To test our hypothesis, we generated 15 additional scenes, each running

for 20 seconds at 60 fps, bringing the total dataset to 43,200 frames (80% of the data).

The larger dataset was expected to improve the model’s generalization by exposing it to

a broader range of physical interactions, thus reducing the risk of overfitting. Additionally,

this increase in data volume necessitated adjustments in the network architecture to maintain

efficient training.

To accommodate the larger dataset, we used a batch size of 4096, which helped to improve

training stability by smoothing out the gradient updates and enhancing the occupancy of GPU
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resources, thus accelerating the training process.

Figure 4.7: Overview of the selected baseline architecture: ELU [2,500, 1,250,

1,250, 2,500, 10,000]

Figure 4.7 provides a visual overview of one of our candidate multi-layer perceptron (MLP)

architectures. We experimented with several configurations, varying the number of layers and

neurons per layer, as summarized in Table 4.5.

Table 4.5: Neural Network Training and Validation Metrics on Larger Datasets

Config. #Layers Neurons #Params Epochs Train MSE Val MSE

1 3 3 x 1000 22,013,000 250 0.0287 0.0345

2 4 4 x 1000 23,014,000 400 0.0339 0.0282

3 4 2 x 2500, 2 x 1250 57,830,000 600 0.0091 0.0152

4 4 4 x 2500 68,770,000 500 0.0107 0.0162

Given that simply adding more layers does not always lead to better performance, we

focused on optimizing the network with either 3 or 4 layers. Our experiments revealed that

configuration 3, consisting of 4 layers with a mix of 2,500 and 1,250 neurons, achieved the

lowest mean squared error (MSE) during training. This configuration is depicted in Figure

4.7 and proved to be the most efficient in terms of both performance and memory usage (see

Table 4.5).

The choice of 2,500 and 1,250 neurons was based on balancing the need for a sufficient

number of parameters to model complex interactions with the computational constraints. This



4.7. PROPOSED TEMPORALMODELWITH END-TO-END LATENT SPACE AND LSTM67

configuration provided a good trade-off between training speed and accuracy, while avoiding

the pitfalls of overfitting that can arise with deeper networks.

Since the validation loss remains close to the training loss (within 0.1 to 0.2), as illus-

trated in Figure 4.8, we can conclude that the network generalizes well and is not prone to

overfitting. Therefore, we selected this architecture as the baseline for further experiments

and comparisons with more sophisticated models.

This optimized configuration will serve as a reference point for future architectural explo-

rations, guiding the development of more advanced models that may incorporate additional

layers, neurons, or even entirely different network structures to further enhance performance.

Figure 4.8: Training Loss of Selected Architecture (y-axis: MSE, x-axis: number

of epochs)



68 CHAPTER 4. TEMPORAL LEARNING OF CONTINUUM SIMULATION

Figure 4.9: Our LSTM Fluid Network. Two previous frames are used as input to

predict the current frame.

4.7 Proposed Temporal Model With End-to-End Latent Space

and LSTM

Figure 4.9 (middle) illustrates the loops of a recurrent neural network (RNN), denoted as A.

At each time step t, the RNN processes input xt and produces a hidden state ht, thereby

carrying information forward from multiple previous frames. In an LSTM (Figure 4.9 bot-

tom), the repeating module features four interacting layers—gating mechanisms that enable

the network to better preserve and emphasize relevant parts of that history Olah (2015).

Consequently, while both vanilla RNNs and LSTMs make use of multiple past time steps,

the LSTM’s memory mechanism can selectively retain crucial information more effectively.

Our network leverages these capabilities to predict the next frame (Figure 4.9 top) by using

a window of two consecutive frames as input, allowing for more accurate corrections.

In this section, we extend our LSTM-based approach by incorporating the encoder–decoder

methodology described in 4.1 directly into our fluid and deformable solid predictions. We

learn our latent space end-to-end via pointwise MLP encoders and decoders. This lets us

avoid fixed, precomputed dimensionality reductions and more flexibly capture nonlinear rela-

tionships among particle states.
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4.7.1 High-Level Architecture

Figure 4.10 (schematic) shows the pipeline, which processes two consecutive input frames

xt−1,xt (each containing N = 2500 particles, with per-particle attributes (x, y, vx, vy)) and

predicts the next state ht. Each frame is first encoded into a latent embedding via a pointwise

MLP applied independently to each particle and a global pooling step. A two-layer LSTM

with dropout processes these frame embeddings over time, producing a final hidden state.

Finally, a decoder MLP expands this hidden state back to the full (N × features) dimension.

The Encoder (Per-Frame) involves a pointwise MLP, which maps each particle’s
(
x, y, vx, vy

)
into a 1250-dimensional latent feature. We then apply mean pooling across all N = 2500 la-

tent features to obtain a single 1250-D vector representing the entire frame. This yields a

compact learned latent representation zt ∈ R1250 at each time step t.

The Temporal LSTM Module processes the sequence {zt−1, zt} using a two-layer LSTM,

where each layer has a hidden size of 1250. Dropout is applied after each LSTM layer to

reduce overfitting (e.g., 0.2 after the first LSTM and 0.1 after the second). The LSTM’s final

hidden state ht ∈ R1250 serves as a compressed representation of the last few frames.

The Decoder (Frame Reconstruction) uses a small MLP (either a single linear layer or

a multi-layer MLP) that takes ht and predicts all N × 4 outputs corresponding to the next

frame’s particle states x̂t+1. In our setup, x̂t+1 has the shape
(
2500, 4

)
, which matches the

positions and velocities for each particle. This decoding is learned jointly with the encoder

and LSTM.

4.7.2 Sequential Inputs and Window Size

We use a window of two frames as input (T = 2) to predict the next frame. Specifically, at

training time, each sample consists of the frames
(
xt−1,xt

)
, which together predict ht. At

inference time (rollout), once we predict ht, we set xt+1 = ht as the “newest” frame in the

sequence. To predict ht+1, we feed in
(
xt,ht

)
, and this closed-loop approach can continue

arbitrarily far into the future.

4.7.3 Learned Latent Space Versus Fixed PCA

The latent space is learned end-to-end along with the LSTM. Both the encoder MLP and

decoder MLP weights are updated jointly via backpropagation. This approach typically results
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in richer, nonlinear embeddings compared to a fixed linear PCA mapping. Moreover, it allows

the network to adapt the encoding to the dynamics that need to be predicted.

4.7.4 Hidden and Cell States in the LSTM

Each LSTM layer internally maintains hidden and cell states of size 1250. The output of the

first layer is fed through an MLP block (or possibly through a second LSTM layer, depending

on the variant), which also has hidden units of size 1250, maintaining its own hidden and cell

state. Ultimately, we take the final hidden state ht as the LSTM’s output. This design offers

a balance between expressiveness and memory constraints for our 2D fluid/solid simulations.

4.7.5 MLP Before the Output

As Figure 4.10 shows, the final LSTM hidden state ht is passed through a simple MLP or

fully-connected layer (sometimes just a linear projection) to produce the 2500× 5 outputs. A

small nonlinearity, such as an ELU activation, is often added in this decoder step for better

stability. The decoder may also be labeled as “Frame Decoder” or “Output MLP” in the

diagrams.

4.7.6 Training Details

We train the network end-to-end using a standard mean-squared-error (MSE) objective on po-

sitions and velocities, supplemented by an additional density-based loss to encourage globally

correct particle distributions. Specifically:

- Dataset Size (T and N): We use N = 2500 particles per frame, each containing 2D

positions (x, y) and velocities (vx, vy). We collect a total of Tframes frames from various fluid

or solid simulations. Each training sample consists of a pair of frames (xt−1,xt) as input, and

xt+1 as the target.

- Batching and Loss: We create minibatches of size B (e.g., 192), each containing partial

sequences. The total loss L combines position MSE, velocity MSE, and density map MSE

(4.1.3). Optimization uses Adam with a moderate learning rate (e.g., 10−3), typically for

several hundred epochs.

- Relation to T and N: During training, each sample contains 2 frames in and 1 frame

out. We iterate over all frames in the simulation (from 0 to Tframes − 1), with each frame
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containing N = 2500 particles. The same MLP is applied pointwise to each particle, and no

explicit PCA is needed.

Frame xt−1 Frame xt

Pointwise MLP

Latent zt−1 Latent zt

LSTM stack Hidden State ht Decoder MLP

Predicted Frame x̂t+1

Figure 4.10: Architecture diagram for the proposed model with encoder-decoder

and LSTM.

We enhance temporal modeling by combining a two-layer LSTM with an MLP interleaved

between the layers. We use a window of two consecutive frames as input, and dropout is

applied after the first and second LSTM layers for regularization to improve network per-

formance. In the first LSTM layer, the sequence of frame embeddings is passed, and the

output is processed by an MLP layer to transform the hidden dimensions. Finally, the net-

work outputs the predicted frame using a decoder MLP. The details of the architecture are

shown in Table 4.6. By learning the encoder, LSTM, and decoder weights simultaneously,

the model constructs a latent-space representation on the fly that best suits the prediction

task. The next section presents both qualitative and quantitative results showing how well

this end-to-end approach captures long-term fluid and solid behavior.

Table 4.6: Details of the proposed Spatial LSTM architecture with MLP inter-

leaved.

# Layers Type Activation Neurons Output Shape

1 Input 2 Frames (LSTM) ELU 2500 (batch, seq len, 1250)

Dropout 0.2 (batch, seq len, 1250)

2 LSTM 1st Layer ELU 1250 (batch, seq len, 1250)

Dropout 0.1 (batch, seq len, 1250)

3 MLP (Hidden transformation) ELU 1250 (batch, seq len, 1250)

4 LSTM 2nd Layer ELU 1250 (batch, seq len, 1250)

5 Output MLP ELU 1250 (batch, 2500, 5)
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4.8 Evaluation

In this section, we evaluate the performance of the proposed models across various simu-

lation tasks, including homogeneous fluid simulations and multi-material interactions. We

compare the predictions of different neural network architectures—namely, Deep Neural Net-

works (MLP), Long Short-Term Memory networks (LSTM), and hybrid LSTM+MLP mod-

els—against ground truth data. The evaluation is carried out both qualitatively and quan-

titatively, focusing on the accuracy of the predicted particle positions and velocities, as well

as the models’ ability to maintain the physical integrity of the simulated materials over time.

Through this comprehensive analysis, we aim to identify the strengths and limitations of each

model, providing insights into their suitability for different types of fluid and multi-material

simulations.

4.8.1 Homogeneous Fluid Surrogate Model Prediction Evaluation

We first evaluated our models’ performance on a homogeneous liquid simulation to establish a

baseline before training on more complex multi-material scenarios. We compared three trained

models: a Deep Neural Network (MLP), a Long Short-Term Memory network (LSTM), and a

hybrid LSTM+MLP model. The qualitative differences between these models are significant,

as illustrated in Figure 4.11.

Figure 4.11: Qualitative comparison of network performance on predicting a liq-

uid state. The top row shows ground-truth (physics-based) simulation results,

while the three rows below show predictions from LSTM+DNN, DNN, and LSTM

models (top to bottom). Each column represents a different time step in the simu-

lation.
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The MLP model, while better at predicting the overall shape of the liquid, fails to maintain

temporal consistency. This is evident in the right-most column of the third row in Figure 4.11,

where the prediction drifts significantly, indicating a jump to an incorrect simulation state.

The LSTM model, in contrast, excels at preserving the temporal trajectory of the fluid state

but struggles with accurately modeling the liquid’s shape, particularly in scenarios involving

significant deformation, as shown in the fourth row.

The hybrid LSTM+MLP model delivers the best performance, combining the strengths

of both approaches. As seen in the second row, it successfully maintains both the fluid’s

temporal trajectory and its shape. To quantify these observations, we computed the Mean

Squared Error (MSE) of particle positions and velocities at each frame relative to the ground

truth. The results, summarized in Table 4.7, reinforce the qualitative findings.

Table 4.7: Quantitative network performance on liquid simulation.

ID Scene Description Average MSE Sequential End MSE

MLP LSTM LSTM + MLP MLP LSTM LSTM + MLP

26 Falling circled liquid 3.342 3.583 1.485 2.127 4.489 0.222

4.8.2 Multi-material Surrogate Model Prediction Evaluation

To evaluate the generalization ability of our models in multi-material simulations, we trained

the same networks using datasets that include various material combinations. We used six

combinations of materials identified by their hardness coefficient (liquid-snow, snow-rope,

liquid-liquid, snow-snow, jelly ball-rope, and rope-liquid). For each combination, we gen-

erated ten different initial states by varying particle positions and velocities according to

predefined constraints. Particle positions were initialized within specific geometric regions,

such as rectangles or circles, ensuring they were uniformly distributed within these areas.

The initial positions were randomized within these boundaries, but the particles were con-

strained to remain within the specified limits. Velocities were also typically uniform within

each scenario, with some scenarios including a controlled degree of randomization within a

defined range. This method ensured that the initial conditions were physically plausible and

consistent across different simulations.

In total, we generated 60 scenes, which were randomized to ensure diverse training, vali-

dation, and testing datasets. The dataset was split into 80% for training, 10% for validation,
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and 10% for testing.

We performed roll-out predictions using the testing data, with qualitative comparisons

illustrated in Figures 4.12 through 4.13 (top). In Figure 4.12, the deformation of both liquid

and snow is well maintained throughout the sequence. However, as the liquid stabilizes, the

model predicts a slightly faster cessation of small-scale surface oscillations than observed in

the ground truth.

Figure 4.12: Qualitative comparison of liquid-snow simulation. The model accu-

rately predicts the deformation and stabilization of both materials.

In the snow-snow simulation (Figure 4.13 top), the model’s predictions are visually accu-

rate throughout, with the final frames showing no wave oscillations, matching the expected

physical behavior.

Simulating the interaction between a rope and a liquid presents a more challenging case,

as seen in Figure 4.13 (middle). While the model successfully predicts the rope’s coarse

deformation, it struggles to maintain the rope’s connectivity, with particles appearing slightly

disjointed at certain frames.

Figure 4.13 (bottom) shows the simulation of an elastic jelly ball interacting with a rope.

A notable observation is the bouncing of the jelly ball, which the model replicates accurately.

However, during high-speed motion, the model struggles to preserve the solid shape, with

particles dispersing before reverting to their original form, particularly evident in the fourth

column.
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Figure 4.13: Qualitative comparisons for various simulations: (top) Snow-snow

simulation, (middle) Liquid-rope simulation, and (bottom) Jelly ball-rope simula-

tion.

4.8.3 Comparison with ARIMA: Large-Scale VAR Approach

Although our primary focus is on neural network–based surrogates (DNN, LSTM, and hy-

brid LSTM+MLP), we also investigated the feasibility of using a classical ARIMA-like model

for these fluid and multi-material simulations. Specifically, we attempted to apply a mul-
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tivariate Vector Autoregression (VAR) model (from the statsmodels library) to the same

high-dimensional particle data.

Rationale. An ARIMA or VAR model estimates linear dependencies among time series.

In principle, with 2,500 particles × 4 features (position and velocity), each simulation frame

becomes a vector of 10,000 dimensions. A VAR(p) model then tries to learn how each of these

10,000 components depends on the previous p time steps of all 10,000 components.

Implementation. As with the neural network approach, we first loaded all frames from the

.h5 files, standardized them (each feature across all frames), and then flattened each frame to

size [1× 10,000]. We concatenated all frames into a single (T × 10,000) array, where T is the

total number of time steps. We then used a simple train/validation/test split by chronological

order. A code snippet illustrating this procedure is shown in Listing 4.1.

Listing 4.1: Fitting a large-scale VAR(1) model to the flattened particle data.

from s ta t smode l s . t sa . ap i import VAR

# Suppose ’ var da ta ’ has shape (T, D) = ( t o t a l f r ames , 10000) .

# We use T tra in = 70% fo r t ra in ing , e t c .

t r a i n d a t a = var data [ : T tra in ]

va l da ta = var data [ T tra in : T tra in+T val ]

t e s t d a t a = var data [ T tra in+T val : ]

model = VAR( endog=t r a i n d a t a )

r e s u l t s = model . f i t ( maxlags=1) # VAR(1)

# Attempt f o r e c a s t i n g the v a l i d a t i o n s e t

f o r e c a s t s t e p s = va l da ta . shape [ 0 ]

f o r e c a s t = r e s u l t s . f o r e c a s t ( t r a i n d a t a [ −1 : ] , s t ep s=f o r e c a s t s t e p s )

Results. While fitting the VAR(1) model on 10,000 dimensions theoretically addresses the

same forecasting problem as the LSTM, the parameter space grows prohibitively large. Even

with a single lag (p = 1), the coefficient matrix has (10,000×10,000) parameters, plus intercept
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terms. On typical hardware, this often leads to out-of-memory errors or extremely long

runtimes.

On our Intel Core i7-5930K system (6 cores, 12 threads), the solver allocated

about 19GB of virtual memory and actively consumed over 16GB of RAM while

running all CPU cores at full capacity for more than half an hour. Although

the solver did eventually complete in around 33 minutes, forecasting on the validation set

yielded an MSE of approximately 3.5×1018, demonstrating that the model’s predictions were

numerically unstable and physically implausible.

Empirically, we found that attempts to run this VAR approach for the multi-material

dataset often exhausted system memory or failed to converge in a reasonable timeframe.

Moreover, even in cases where the model returned a solution, the forecasts diverged rapidly,

providing no meaningful approximation of fluid–solid dynamics. These issues underscore that,

unlike the neural network models, an ARIMA/VAR approach does not scale well to thousands

of features. Furthermore, VAR relies on a linear assumption between features, whereas fluid

and deformable-solid simulations exhibit inherently nonlinear, neighbor-based interactions.

Conclusion. Our experiments confirm that ARIMA-like methods (via large-scale VAR) are

not viable for high-dimensional particle simulations. Although such models can be applied

to smaller or low-dimensional problems, the neural network surrogates (particularly the hy-

brid LSTM+MLP) remain far more practical and effective for large-scale multi-material fluid

simulations, both in terms of runtime feasibility and the physical plausibility of predictions.
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4.9 Ablation Study

To measure long-term similarity, we report the average Mean Squared Error (MSE) of particle

states (positions, velocities, etc.) between the ground-truth simulation and the network’s

predictions over an entire sequence. We let F denote the total number of frames, and thus

the final frame is the F -th frame. Building upon the loss function from (1), we define the

average MSE, MSEAvg, for a scene with F frames as:

MSEAvg =
1

F

F∑
i=1

Li, (4.17)

where Li is the MSE at the i-th frame (aggregated over all attributes).

We also consider a “sequential end MSE,” which evaluates the error at frame F (i.e., the

final frame in the sequence):

MSEseq = LF . (4.18)

Large errors at the final frame can produce visually noticeable artifacts, so end-of-sequence

accuracy is especially important.

Table 4.8 shows the ablation study results, reporting both the average MSE across all

frames (columns 3–5) and the end-of-sequence MSE at frame F (columns 6–8) for multiple

scenarios, ranging from homogeneous liquid simulations to multi-material setups.

The results demonstrate that combining a Long Short-Term Memory (LSTM) module

with a Multi-Layer Perceptron (MLP) backbone consistently yields lower MSE than either

component alone. In particular, the LSTM+MLP model significantly improves accuracy

at frame F , reducing visible artifacts and enhancing overall flow realism in multi-material

simulations.

4.10 Conclusion

We explored the essential aspects of temporal learning in the context of continuum simulations.

The chapter began with an examination of encoding and decoding techniques, emphasizing

the importance of transforming Euclidean coordinates-based continuum data into latent space

representations. This process can be effective in training neural networks to model complex

physical phenomena.
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Table 4.8: Ablation Study. We compare the average error (lower is better) between

the ground-truth particle states and the predicted future frames.

ID Scene Description Average MSE Sequential End MSE

MLP LSTM LSTM + MLP MLP LSTM LSTM + MLP

0 Falling rect. liquid 4.413 2.58 0.58 5.019 3.74 2.274

26 Falling circled liquid 2.127 3.583 0.222 3.342 4.489 1.485

54 Liquid and Snow 2.344 2.485 1.019 4.231 3.891 2.668

55 Rope and Snow 3.156 3.132 1.279 3.521 4.132 2.886

56 Rope and liquid 2.123 2.987 0.63 4.124 3.798 2.775

57 Snow and snow 3.891 3.567 1.571 3.277 4.235 3.04

58 Rope and jelly ball 3.325 2.576 0.998 4.362 3.234 2.549

59 Liquid and liquid 2.315 3.478 0.494 3.897 4.561 2.756

The chapter proceeded to discuss traditional time series prediction methods, including

Autoregressive (AR), Moving Average (MA), and ARIMA models. Although these meth-

ods have been foundational in many fields, their limitations in handling nonlinearities and

long-term dependencies highlighted the need for more advanced approaches. This led to the

introduction of long-short-term memory (LSTM) networks, which are particularly well suited

for capturing the temporal dependencies in dynamic systems like fluid simulations.

Through experimentation, the chapter demonstrated that LSTM combine with MLP net-

works significantly outperform traditional methods and even basic RNNs in modeling the

complex interactions and long-term dependencies inherent in Lagrangian simulations. The

experiments highlighted the importance of selecting appropriate network architectures, acti-

vation functions, and hyperparameters to achieve optimal performance.

The chapter also delved into the challenges of training deep neural networks, including the

need for careful hyperparameter tuning and the impact of dataset size on model performance.

The experiments carried out provided valuable information on the trade-offs between model

complexity, computational efficiency, and prediction accuracy.

In general, this chapter underscored the importance of temporal learning in the accurate

simulation of continuum systems. Using advanced neural network architectures such as LSTM,

the research presented here contributes to the development of more robust and accurate
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models to simulate the complex dynamics of fluids and deformable solids. The findings of

this chapter lay a strong foundation for future work in improving the predictive capabilities

of neural networks in continuum simulations.



Chapter 5

Vorticity Conservation on Surrogate

Model

This chapter focuses on understanding a surrogate model designed to preserve vorticity in

Lagrangian fluid simulations. It begins with a summary that introduces the problem in a

two-dimensional context, using the lid-driven cavity flow as an example, and outlines the key

contributions of the research.

Figure 5.1: Propagation of vortex rings in a water tank. The red color indicates

the particles with the highest magnitude of vorticity.

81
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5.1 Motivation

Imagine a calm pool of water, its surface undisturbed until a sudden motion—perhaps a hand

thrust through the water—generates a mesmerizing circular vortex ring. This ring, a toroidal

vortex structure, travels gracefully through the fluid, propelled by internal pressure differences

within the rotating water. This phenomenon, known as vortex-ring propagation, illustrates

the captivating dynamics of fluid motion, where the interplay of velocity, viscosity, and shear

forces creates complex, self-sustaining structures.

Capturing and maintaining these fluid structures in simulations presents significant chal-

lenges, especially in Lagrangian fluid simulations. Accurately conserving vorticity, which

represents the local spinning motion of fluid, is essential for modeling phenomena like vortex

shedding and turbulence. While the models developed in Chapter 4, such as MLP and LSTM

networks, were useful in predicting the evolution of fluid states, they faced limitations when

it came to representing rotational dynamics accurately.

The primary challenge with these models was that they processed the entire fluid system

as a whole, assuming global particle interactions. This approach has limitation, as it requires

considering the entire fluid domain, even when interactions occur only in specific, localized

regions. Fluid simulations often involve behaviors that are confined to smaller areas, such

as vorticity and vortex dynamics. The models in Chapter 4 were not well-suited for these

localized interactions, as they did not focus on specific regions of the fluid.

This limitation led us to switch to a Graph Neural Network (GNN), which allows for

spatially focused learning. Rather than treating the entire fluid domain uniformly, the GNN

focuses on localized regions of the fluid, capturing the interactions between neighboring par-

ticles. This approach was key to preserving vorticity and other rotational dynamics, as it

allowed the model to better handle the dynamic and variable nature of fluid flows.

The proposed GNN architecture, enhanced with a Self-Supervised Graph Attention Oper-

ator, significantly improved the model’s ability to conserve vorticity and angular momentum.

Evaluations of the model showed that it outperformed previous approaches, achieving lower

mean squared errors and better alignment with ground truth data. These improvements

highlight the model’s potential for realistic and scalable fluid dynamics simulations, offering

a promising direction for future research and refinement of surrogate modeling techniques.
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5.2 Conservation of Angular Momentum

The conservation of angular momentum is a fundamental principle in continuum mechanics,

describing how the rotational motion of a system remains constant in the absence of external

torques. This principle is crucial in the study of both incompressible fluids and deformable

soft solids (elastic fluids). In this section, we examine the conservation of angular momentum

for these two distinct types of materials, highlighting the differences and implications for fluid

dynamics.

5.2.1 Incompressible Fluid

For an incompressible fluid, the angular momentum L is given by:

L =

∫
Ω
r× (ρu) dV (5.1)

where r is the position vector, ρ is the fluid density, u is the velocity field, and Ω is the fluid

domain.

In the context of the Navier-Stokes equations, the fluid’s incompressibility is described by:

∇ · û = 0 Incompressibility condition on Ω (5.2)

The momentum conservation for an incompressible fluid is governed by:

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇p + µ∇2u + f Momentum conservation on Ω (5.3)

Here, ρ denotes the fluid density and µ its viscosity. Equation 5.2 states that the fluid is

incompressible, implying a divergence-free velocity field. Equation 5.3 describes the balance

of momentum, considering the contributions from the pressure gradient, viscous forces, and

external forces Batchelor (1967).

To derive the angular momentum conservation equation, we take the cross product of the

momentum equation with the position vector r:

dL

dt
=

∫
Ω
r×

(
−∇p + µ∇2u

)
dV (5.4)

In the absence of external body forces or torques, the total angular momentum remains

conserved:
dL

dt
= 0 (5.5)
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5.2.2 Elastic Fluid / Deformable (Soft) Solid

For a deformable soft solid, or elastic fluid, the conservation of angular momentum also

incorporates the material’s elasticity and deformation characteristics. The angular momentum

L for such a material is similarly defined as:

L =

∫
Ω
r× (ρu) dV (5.6)

However, the stress tensor σ in this context includes both viscous and elastic components:

σ = −pI + µ∇u + λ(∇ · u)I + 2Ge (5.7)

Here, λ and G are the Lamé parameters, I is the identity matrix, and e is the strain tensor.

The angular momentum conservation equation for elastic fluids is derived by taking the cross

product of the position vector r with the divergence of the stress tensor:

dL

dt
=

∫
Ω
r× (∇ · σ) dV (5.8)

Again, in the absence of external torques, the total angular momentum remains conserved:

dL

dt
= 0 (5.9)

5.2.3 Comparison and Implications

Although both incompressible fluids and deformable soft solids follow the principle of angular

momentum conservation, the presence of elasticity in soft solids introduces additional com-

plexity in the form of elastic stress components. This requires consideration of viscous and

elastic forces in the momentum and angular momentum equations, leading to a more complex

behavior under deformation and rotation.

Ensuring the conservation of angular momentum in simulations that involve either type

of material is crucial to accurately capture rotational dynamics and the effects of forces and

torques within the system.

5.3 Conservation of Energy Analysis

In fluid dynamics, the conservation of energy principle is a fundamental aspect that ensures

the accurate representation of physical systems. This section discusses the conservation of
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kinetic energy in the context of Lagrangian fluid simulation.

5.3.1 Kinetic Energy in Lagrangian Fluid Simulation

Lagrangian fluid simulation is a technique where fluid ”particles” are tracked over time, and

their motion is governed by the principles of Newtonian mechanics. Each fluid ”particle”

carries properties such as mass, velocity, and position, and the simulation computes the

evolution of these properties over time.

The kinetic energy (Ek) of a fluid particle in a Lagrangian framework is given by:

Ek =
1

2
mv2 (5.10)

where m is the mass of the particle and v is its velocity. The total kinetic energy of the fluid

is the sum of the kinetic energies of all the particles:

Ek,total =

N∑
i=1

1

2
miv

2
i (5.11)

where N is the total number of particles, mi is the mass of the i-th particle, and vi is the

velocity of the i-th particle.

5.3.2 Conservation of Kinetic Energy

In an ideal, inviscid (non-viscous) fluid with no external forces, the total kinetic energy should

be conserved. This implies that the total kinetic energy at the beginning of the simulation

should be equal to the total kinetic energy at any later time, assuming no energy is added to

or removed from the system.

Mathematically, this can be expressed as:

dEk,total

dt
= 0

This conservation can be affected by various factors in a simulation, such as numerical dissi-

pation, external forces, and boundary conditions. Therefore, ensuring energy conservation is

a crucial aspect of validating the accuracy and stability of a Lagrangian fluid simulation.

5.4 Measuring Vorticity

Vorticity is a fundamental concept in fluid dynamics that characterizes the local rotational

motion of fluid particles. It provides insight into the swirling and rotational behaviors within
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a fluid flow. Mathematically, vorticity (ω) is defined as the curl of the velocity field (u):

ω = ∇× u

Here, ∇× denotes the curl operator, which measures the rotation at a point within the fluid.

A high magnitude of vorticity indicates strong local rotation, while a low magnitude suggests

minimal rotational motion.

Understanding vorticity is crucial for analyzing various fluid phenomena, including the

formation of vortices, eddies, and turbulent flows. In ideal (inviscid) fluids, vorticity is con-

served along the paths of fluid particles. However, in real-world scenarios where viscosity

plays a role, vorticity can diffuse and dissipate over time.

In computational fluid dynamics (CFD), numerical methods are employed to calculate and

visualize vorticity. Accurate computation and representation of vorticity enable realistic simu-

lations of complex fluid behaviors, which are vital in applications such as weather forecasting,

aerodynamics, and the creation of visual effects in entertainment. Effective visualization of

vorticity not only enhances the understanding of intricate fluid dynamics but also contributes

to more immersive and accurate simulations.

5.4.1 Curl

The curl of a vector vield v⃗(x, y, z) = vz e⃗z + vy e⃗y + vxe⃗x is a vector function that can be

represented as:

curl v⃗ =

(
∂vz
∂y
− ∂vy

∂z

)
e⃗x +

(
∂vx
∂z
− ∂vz

∂x

)
e⃗y +

(
∂vy
∂x
− ∂vx

∂y

)
e⃗z = ∇× v⃗ (5.12)

The curl at a point is proportional to the on-axis torque to which a tiny pinwheel would

be subjected if it were centred at that point. The vector product operation can be visualized

as a pseudo-determinant:

∇× v⃗ =

∣∣∣∣∣∣∣∣
e⃗x e⃗y e⃗z
∂
∂x

∂
∂y

∂
∂z

vx vy vz

∣∣∣∣∣∣∣∣ (5.13)
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5.4.2 Vorticity

Figure 5.2 depicts a small fluid element (a square) subjected to velocity gradients, illustrating

the concept of angular velocity.

Figure 5.2: Illustration of angular velocity components for a fluid element. The

figure shows a square fluid element with initial vertices labeled O, A, and B. The

fluid element is subjected to velocity gradients ∂u
∂y and ∂v

∂x , which cause the element

to undergo small angular displacements dα and dβ. These displacements result in

a rotational motion with angular velocity ω, represented by the counterclockwise

rotation indicated in the figure.

The fluid element has initial vertices labeled O, A, and B. The velocity gradients are

represented by ∂u
∂y , which denotes the change in the u-component (horizontal) of the velocity

in the vertical direction, and ∂v
∂x , which denotes the change in the v-component (vertical)

of the velocity in the horizontal direction. The small displacements dx and dy correspond

to movements in the x and y directions, respectively. The angles dα and dβ represent the

infinitesimal rotations of the sides OA and OB due to the respective velocity gradients. The

angular velocity, ω, is derived as the average rate of these rotations and is expressed by the

formula:

ωz =
1

2
(ωOA + ωOB) (5.14)

=
1

2

(
∂v

∂x
− ∂u

∂y

)
(5.15)

This equation encapsulates how the fluid element rotates due to the differences in velocity

components across its edges, providing a measure of the element’s rotational motion within
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the fluid flow. Using a similar method, the average angular velocity around the x and y axes

is:

ωx =
1

2

(
∂w

∂y
− ∂v

∂z

)
(5.16)

ωy =
1

2

(
∂u

∂z
− ∂w

∂x

)
(5.17)

The angular velocity vector is given by:

ω⃗ =
1

2

(
∂vz
∂y
− ∂vy

∂z

)
î +

1

2

(
∂vx
∂z
− ∂vz

∂x

)
ĵ +

1

2

(
∂vy
∂x
− ∂vx

∂y

)
k̂ =

1

2
∇× V⃗ (5.18)

The vorticity is preferred over the angular velocity in fluid mechanics:

ζ⃗ = 2ω⃗ (5.19)

The vorticity of particle a is estimated by Monaghan (1992a) as follows:

wa = (∇× v)a =
∑
b

mb
va − vb

ρb
×∇Wab (5.20)

In this equation, wa represents the vorticity of particle a. The summation is performed

over all neighboring particles b, where mb is the mass of particle b, va and vb are the veloc-

ities of particles a and b, respectively, and ρb is the density of particle b. The term ∇Wab

represents the gradient of the smoothing kernel Wab, which is a function used in Smoothed

Particle Hydrodynamics (SPH) to approximate field quantities. In this context, Wab is a

weighting function that depends on the distance between two particles a and b. The gradi-

ent ∇Wab measures how this weighting function changes with respect to the position of the

particles. It is used to calculate the influence of nearby particles on each other, particularly

in the context of estimating vorticity, where it helps to determine the rotational effects by

considering the velocity differences between neighboring particles. This formulation captures

the rotational motion of the fluid particles by considering the differences in velocities weighted

by the smoothing kernel gradient, ensuring that the density ρb associated with particle b is

used in the calculation.

5.5 Vorticity Distribution Evaluation Methods

In the analysis of vorticity data, it is crucial to employ robust evaluation methods to assess

the similarity between the ground truth and model predictions. Since the fluid domain is dis-

cretized as ”particles” in a Lagrangian representation, for accurate evaluation, we interpolate
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all the particles’ quantities to a fixed-sized uniform grid to obtain the vorticity values across

the entire domain. This section discusses three methods for comparing the distribution of the

vorticity: Pearson correlation, residual analysis, and Kullback-Leibler (KL) divergence. Each

method has its advantages and weaknesses, which are described below.

5.5.1 Pearson Correlation

The Pearson correlation is a statistical tool used to assess the linear dependency between two

datasets Dowdy et al. (2004), Sul et al. (2014). This coefficient is computed to determine the

similarity between the actual values and the predictions of the model. It gives a measurement

of the linear relationship between two datasets, displaying a value within the range of −1 to 1.

A value of 1 denotes a perfect positive linear relationship, 0 indicates no linear relationship,

and −1 represents a perfect negative linear relationship. The Pearson correlation coefficient

r is expressed as follows:

r =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2
(5.21)

where xi and yi are the vorticity values for the ground truth and the model, respectively, and x

and y are their mean values. Pearson correlation is advantageous because it provides a simple

and intuitive interpretation, measuring the strength and direction of the linear relationship.

However, it only captures linear relationships and may not reflect non-linear similarities.

Additionally, it is sensitive to outliers, which can distort the correlation coefficient.

5.5.2 Residual Analysis

Residual analysis involves examining the differences (residuals) between ground truth and

model predictions Hoaglin (2003), Brady (2018). The residual ri for the i-th data point is

defined as:

ri = yi − xi (5.22)

where xi is the ground truth vorticity and yi is the predicted vorticity of the model. Residual

analysis provides insights into the distribution and magnitude of prediction errors, helping

identify systematic biases and trends in the model’s predictions. However, it does not provide

a single summary statistic, making comparisons more complex. Moreover, residuals can be

affected by the scale of the data.
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5.5.3 Kullback-Leibler (KL) Divergence

KL divergence measures the difference between two probability distributions Buhl (2023). For

vorticity data, we first normalize the vorticity values to form probability distributions. The

KL divergence DKL(P ∥ Q) is defined as:

DKL(P ∥ Q) =
n∑

i=1

Pi log

(
Pi

Qi

)
(5.23)

where P represents the normalized vorticity distribution of the ground truth data, Q repre-

sents the normalized vorticity distribution of the model predictions, and Pi and Qi are the

corresponding normalized vorticity values at each point in the domain. In this context, ”prob-

abilities” refer to the normalized vorticity values. These values are treated as probabilities

after normalization because they are non-negative and sum to one across the domain. This

approach allows the use of probability distribution tools like KL divergence to compare the

similarity between the ground truth and model-predicted vorticity distributions.

Normalization Process Normalization is crucial for calculating KL divergence as it con-

verts vorticity values into a form that can be treated as probability distributions:

Pi =
|vi|+ ϵ∑n

j=1(|vj |+ ϵ)
(5.24)

where vi is the vorticity value at a given point and ϵ is a small constant added to avoid zero

values. The result is a set of normalized values Pi that sum to one, resembling a probability

distribution.

Entropy Entropy, in the context of KL divergence, measures the unpredictability or ran-

domness of a distribution. It quantifies the amount of ”surprise” or information content in

a probability distribution. When comparing two distributions using KL divergence, entropy

helps determine how much one distribution diverges from another. Specifically, KL divergence

can be seen as the additional entropy (or information loss) incurred when using the model’s

distribution Q to approximate the ground truth distribution P .

Handling Infinite Values While computing KL divergence, infinite values can occasionally

appear. This problem usually occurs in two main situations: First, when there are zero

values in the distribution, which causes the logarithm function in the KL divergence formula
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to become undefined, leading to infinite values. Second, when there are non-overlapping

distributions, meaning that if there are values in the ground truth that are zero where the

model has non-zero values, or vice versa, the divergence becomes infinite because the relative

entropy calculation involves division by zero.

Regularization Term To address these issues, a small regularization term (epsilon) is

added to both the ground truth and model distributions. This adjustment ensures that all

probabilities are non-zero, avoiding the undefined logarithm and division by zero problems.

The algorithm follows these steps:

First, calculate the magnitudes of the vorticity values to treat them as probability dis-

tributions. This approach simplifies the handling of the data by focusing on the absolute

differences. Then, normalize both the ground truth and model distributions so that they sum

up to 1, ensuring that we are comparing valid probability distributions. A small epsilon value

(e.g., 1 × 10−10) is added to each element of the distributions, ensuring that there are no

zero probabilities in the distributions. Here, p and q are the original probability distributions,

and ϵ is the small regularization term. Finally, the KL divergence is recalculated using the

regularized distributions:

DKL(P ′||Q′) =
∑

p′ log
p′

q′
(5.25)

This equation calculates the relative entropy between the regularized ground truth distribution

P ′ and the model distribution Q′.

Conclusion In evaluating the similarity between the ground truth and model predictions of

vorticity distributions, each method—Pearson’s correlation, residual analysis, and KL diver-

gence—offers unique insights and has distinct advantages and limitations. Pearson correlation

effectively measures the linear relationship between datasets, providing a simple and intuitive

metric, but it is limited to capturing linear relationships and is sensitive to outliers. Resid-

ual analysis offers detailed insights into the magnitude and distribution of prediction errors,

allowing for the identification of systematic biases, but it lacks a single summary statistic

for straightforward comparison. KL divergence, on the other hand, quantifies the divergence

between two probability distributions, capturing both magnitude and directional differences,

though it requires careful normalization to avoid biases and handle zero values. Together,

these methods provide a comprehensive toolkit for assessing model performance, each com-
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plementing the others to give a fuller picture of how well models replicate the ground truth

vorticity data.

5.6 Design Method

5.6.1 Network Architecture

This subsection provides a detailed overview of the proposed network architecture. Our

goal is to enhance not only fluid velocity prediction but also vorticity by integrating a Self-

Supervised Graph Attention Operator with convolutional operations. This integration in-

creases the model’s capacity to learn the features of neighboring particles, which is crucial for

capturing the angular momentum of each particle.

The overall architecture is based on the work of Sanchez-Gonzalez et al. (2020), which uses

Graph Networks (GNs) to simulate complex physical systems. In their work, the model is

designed to simulate fluid dynamics by learning particle interactions over time using a graph-

based structure. We have adapted their model by substituting the original convolutional layers

with the Self-Supervised Graph Attention Operator (SuperGAT) from Kim & Oh (2022). This

substitution allows the model to better capture local particle interactions and improve the

conservation of vorticity, which is essential for realistic fluid simulations.

The Self-Supervised Graph Attention Operator (SuperGAT) is a novel attention mecha-

nism that dynamically adjusts the importance of neighboring nodes (particles) based on their

features and interactions. Unlike traditional graph attention mechanisms, SuperGAT utilizes

self-supervised learning to refine the attention coefficients and ensure the network focuses

on the most important local interactions. This mechanism, when applied within the Graph

Networks (GNs) framework, allows the model to more effectively preserve vorticity, angular

momentum, and energy, leading to superior performance in fluid dynamics simulations. This

novelty in attention mechanism design significantly improves the model’s ability to simulate

rotational dynamics and other complex fluid behaviors.

Furthermore, we have modified the architecture by adapting both the layers and the

loss function to deal more effectively with vorticity conservation. This adaptation includes

a more refined attention mechanism that emphasizes local interactions, helping the model

preserve key fluid characteristics such as vorticity, angular momentum, and energy. These

modifications ensure that the model can maintain the essential physical properties of fluid
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dynamics throughout the simulation.

We build the architecture by taking advantage of the graph representation. In a graph,

particles are represented as nodes, and interactions between particles are represented as edges.

This structure allows for a more natural and flexible representation of the complex relation-

ships and interactions in a fluid system. The key advantages include:

• Handling Irregular Geometries: Unlike grid-based methods, graph representations

are not restricted to regular grids and can handle irregular and dynamic geometries.

This flexibility is essential for simulating real-world fluid systems where the particle

distribution can be non-uniform and dynamic.

• Rotational Invariance: One significant advantage of graph representation is its abil-

ity to maintain rotational invariance. In fluid dynamics, the relative positions and

interactions of particles are more important than their absolute positions. Graph-based

methods can inherently respect this property, ensuring that the simulation results are

consistent regardless of the orientation of the particles.

• Capturing Local Interactions: Graphs can effectively model local interactions be-

tween particles, which are crucial for accurately simulating fluid dynamics. Each node

(particle) can easily share information with its neighboring nodes (particles) through

the edges, capturing the local dependencies and influences.

• Scalability: Graph-based methods can scale to large numbers of particles by leveraging

sparse connectivity. Only the relevant local interactions need to be considered, reducing

the computational complexity compared to methods that require global interactions.

Figure 5.3 illustrates the flow of data and operations through the network. In this figure,

the revised Particle Dynamics Stack and the Self-Supervised Graph Attention Operator are

shown as central components of the architecture, highlighting the novelty of their inclusion

for improved vorticity conservation.

The architecture starts with a neighborhood search for fluid particles, followed by the

construction of a graph incorporating node and edge features. These features serve as input

to the network. The architecture consists of three main components: an encoder, a PArticle

Dynamics Stack, and a decoder.
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Figure 5.3: Proposed Neural Network Architecture (OURS) to Conserve Vortic-

ity in Lagrangian Fluid Simulations. The model builds upon the architecture of

Sanchez-Gonzalez et al. (2020), with key modifications, including the substitution

of the original convolutional layer with the Self-Supervised Graph Attention Oper-

ator (SuperGAT). This modification enables the network to better focus on local

particle interactions, crucial for vorticity conservation. The Particle Dynamics

Stack and SuperGATConv layers have been adapted to ensure that vorticity, angu-

lar momentum, and energy are better preserved.
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• Encoder: The encoder processes the input node and edge features using two separate

Multi-Layer Perceptrons (MLPs). The Node MLP encodes the node features, and the

Edge MLP encodes the edge features. These encoded features are then fed into the

Particle Dynamics Stack.

• Particle Dynamics Stack: is the core of the architecture, comprising a stack of

ParticleNetwork layers. Each layer in the stack applies a self-supervised Graph Attention

Operator to update the features. This operator dynamically adjusts the importance of

neighboring nodes during feature aggregation, enhancing the representation of node

features. The Particle Dynamics Stack iterates through multiple passes, refining the

features with each pass.

• Decoder: The decoder takes the processed node features and applies a Node MLP

to generate the output features. These outputs include physical quantities such as

acceleration, velocity, position, and vorticity of the fluid particles.

The architecture is designed to conserve vorticity in Lagrangian fluid simulations by ef-

fectively capturing the interactions between particles through the graph-based representation

and attention mechanism.

5.6.2 Self Supervised Graph Attentional Operator

The self-supervised graph attentional operator introduced by Kim & Oh (2022)

x′
i = αi,iΘxi +

∑
j∈N (i)

αi,jΘxj , (5.26)

x′
i represents the updated feature vector for node i. This is the new representation of

node i after applying the graph attention layer. The term αi,i is the attention coefficient for

the self-loop of node i, indicating how much attention node i gives to itself in the update

process. The matrix Θ is a learnable weight matrix that transforms the input feature vectors

to a new space. This transformation is shared across all nodes and their neighbors. xi refers

to the feature vector of node i, representing the initial or previous layer’s features of node

i. The summation
∑

j∈N (i) is taken over all neighbors j of node i. Here, N (i) denotes the

set of all neighboring nodes of node i, and the summation aggregates information from all

these neighbors. The term αi,j is the attention coefficient for the edge between node i and its
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neighbor j, representing the importance or weight of the neighboring node j’s features when

updating the feature vector of node i.

Figure 5.4: An illustration from Kim & Oh (2022) showing the attention mecha-

nism of SuperGATs (GO, DP, MX, and SD). Blue circles denote the unnormalized

attention values before the softmax function, while red diamonds show the edge

probability between nodes i and j. The dashed rectangle contains the attention

mechanism of the original GAT (Veličković et al. (2018)).

This equation is part of the graph attention mechanism, which updates the feature vector of

a node by aggregating features from its neighbors and itself, weighted by attention coefficients.

The self-loop term αi,iΘxi considers the contribution of node i’s own features to its updated

feature vector. The feature vector xi is first transformed by the weight matrix Θ, and then

weighted by the attention coefficient αi,i.

The neighborhood aggregation term
∑

j∈N (i) αi,jΘxj aggregates the features of all neigh-

boring nodes j of node i. Each neighbor’s feature vector xj is transformed by the same weight

matrix Θ, then weighted by the corresponding attention coefficient αi,j , and summed up. In

essence, this equation describes how a node i updates its feature vector by considering both

its own transformed features and a weighted combination of the transformed features of its

neighbors, with the weights determined by the attention mechanism.

The two types of attention αMX or SD
i,j are computed as:
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αMX or SD
i,j =

exp
(

LeakyReLU
(
eMX or SD
i,j

))
∑

k∈N (i)∪{i} exp
(

LeakyReLU
(
eMX or SD
i,k

))
eMX
i,j = a⊤[Θxi ∥Θxj ] · σ

(
(Θxi)

⊤Θxj

)
eSDi,j =

(Θxi)
⊤Θxj√
d

(5.27)

In these equations, αMX or SD
i,j denotes the attention coefficient between nodes i and j

for either the MX (Mix) or SD (SumDot) attention mechanism. The attention coefficient

is computed using a softmax function, where the numerator is the exponential of a leaky

ReLU activation function applied to eMX or SD
i,j . The denominator normalizes this value by

summing over the exponential of the leaky ReLU applied to eMX or SD
i,k for all nodes k in the

neighborhood N (i) of node i including node i itself.

The term eMX
i,j represents the attention energy between nodes i and j for the MX mecha-

nism. It is calculated as the dot product of a learnable weight vector a and the concatenation

of the transformed feature vectors Θxi and Θxj . This concatenation is denoted by ∥. The

result is then multiplied by the sigmoid activation function σ applied to the dot product of

the transformed feature vectors (Θxi)
⊤Θxj .

The term eSDi,j represents the attention energy between nodes i and j for the SD mechanism.

It is calculated as the dot product of the transformed feature vectors (Θxi)
⊤Θxj divided by

the square root of the dimensionality of the feature vectors,
√
d.

Overall, these equations describe how the attention coefficients αMX or SD
i,j are computed,

which determine the importance of the features of neighboring nodes j when updating the

feature vector of node i. The two types of attention mechanisms, MX and SD, use different

methods to compute the attention energies eMX
i,j and eSDi,j .

The self-supervised task is a link prediction using the attention values as input to predict

the likelihood ϕMX or SD
i,j that an edge exists between nodes:

ϕMX
i,j = σ

(
(Θxi)

⊤Θxj

)
ϕSD
i,j = σ

(
(Θxi)

⊤Θxj√
d

) (5.28)
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5.7 Training Process

This section provides a detailed overview of each stage in the training pipeline, emphasizing

the critical techniques that allow iterative refinement of model parameters through a robust

and adaptive optimization strategy. Leveraging distributed training across multiple GPUs.

The training process involves iterative weight updates, where we utilize the Adam opti-

mizer, known for its adaptive learning rate capabilities.1 We begin with an initial learning

rate of 1 × 10−4, which is decayed by a factor of 0.1 every 5 million steps to ensure gradual

convergence. The model’s performance is evaluated using rollouts, each spanning 90 steps,

allowing for systematic adjustment of model parameters and ensuring both convergence and

stability throughout the training process.

The primary training loop is implemented in PyTorch within the train function. This loop

facilitates distributed training across multiple GPUs, where the environment is initialized,

metadata is loaded, and the simulator and optimizer are set up. The optimizer’s state is

transferred to the appropriate device to ensure that gradients and parameters are correctly

handled during the distributed training process. The training loop iterates over the data,

computing loss, performing backpropagation, updating the optimizer, and logging progress

through wandb. Both the model and the training state are periodically saved to disk, enabling

easy resumption in case of interruptions.

5.7.1 Data Preparation

Data preparation for both experimental setups—the Lid-Driven Cavity Flow and the Curl-

Noise Flow Test—follows an identical process to ensure consistency across standard and com-

plex flow scenarios.

In the Lid-Driven Cavity Flow experiment, a two-dimensional fluid domain is simulated

by applying a parallel force along one boundary to induce shear flow. The domain is discretized

into approximately 8,000 particles and a 40×40 grid is used to compute velocity and pressure

fields. Key simulation parameters—such as the time step, particle density, grid spacing, and

boundary conditions—are detailed in Table 5.2. The flow regime is predominantly laminar,

1The Adam optimizer adjusts learning rates for each parameter based on estimations of first and second

moments of the gradients. This adaptation helps to stabilize updates and improve convergence characteristics,

particularly in complex models and large data scenarios. Kingma & Ba (2014)
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with Reynolds numbers estimated between 0.2 and 40. A total of 48 simulation scenarios

are generated, each spanning 600 frames, yielding time-series data (positions, velocities, and

accelerations) stored in HDF5 format.

Similarly, the Curl-Noise Flow Test experiment generates more complex flow conditions.

Divergence-free velocity fields are initialized using Curl Noise, computed as the curl of the

gradient of a Perlin noise function Robert Bridson & Nordenstam (2007), Perlin (1985, 2002).

This method produces smooth, spatially varying vorticity fields that respect solid boundaries,

resulting in datasets that capture intricate and dynamic flow behaviors and challenge the

surrogate model to accurately conserve vorticity and simulate complex dynamics.

For both experiments, the preprocessing steps are identical:

• File Processing: Read and sort HDF5 files by frame number.

• Data Extraction: Extract position data from each file and compute velocities and

accelerations using finite differences between consecutive frames.

• Normalization: Calculate running statistics (means and standard deviations) for the

extracted data to enable normalization.

• Data Storage: Save the processed data as NPZ files, divided into training (48 sce-

narios), validation (6 scenarios), and test sets (6 scenarios), along with accompanying

metadata (see Table 5.3).

5.7.2 Metadata and Data Normalization

The metadata stored in the metadata.json file includes critical statistical information about

the dataset, such as the bounds of the simulation domain, sequence length, and connectivity

radius (particles neighbourhod radius). Most importantly, it provides the precomputed means

and standard deviations for positions, velocities, and accelerations, which are essential for

normalizing the dataset before training the neural network. These statistics are summarized

in Table 5.1 below:

• Position Statistics: The position means and standard deviations indicate that the

particle positions are centered near the middle of the simulation domain, with a spread

that is relatively uniform across both dimensions.
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Table 5.1: Statistical Summary Data Set for Vorticity Conservation Model

Statistic Mean Value Standard Deviation

Position (x, y) (0.499, 0.4999) (0.272, 0.272)

Velocity (x, y) (-1.8180e-05, 4.789e-07) (1.600-03, 1.6e-03)

Acceleration (x, y) (-3.116e-09, 7.532-08) (7.334e-05, 7.315e-05)

• Velocity Statistics: The small mean values for velocity suggest that the overall flow is

well-balanced with minor deviations, while the standard deviations indicate the typical

range of velocity fluctuations in the simulation.

• Acceleration Statistics: The acceleration values, both in mean and standard devi-

ation, are quite small, reflecting the subtle forces acting on the particles due to the

simulated fluid dynamics.

These statistics are vital for ensuring that the neural network training process operates on

data that is normalized, promoting faster convergence and more stable learning. In our im-

plementation, normalization is applied to both positions and velocities using the precomputed

mean and standard deviation values stored in metadata.json. The normalization is primarily

performed in the encoder and normalize sequences methods. In normalize sequences,

both the position and velocity sequences are normalized using the statistics provided in

self. normalization stats. Specifically, the position sequence is normalized by subtracting

the mean and dividing by the standard deviation, while the velocity sequence, computed as

the finite difference between subsequent positions, is normalized in a similar manner. After

the model predicts the normalized outputs (either velocity or acceleration), these values are

converted back to their original scale in the decoder method. This inverse normalization is

crucial for obtaining the final physical quantities from the model’s predictions. By integrating

normalization in both the preprocessing and postprocessing stages, the model benefits from

more stable and efficient training, as the input features are on a consistent scale. This ap-

proach also improves generalization, as the model becomes less sensitive to the scale of the

inputs, allowing it to focus on learning the underlying patterns in the data.
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5.7.3 Initialization

Distributed training is initialized across multiple GPUs. The optimizer state is transferred

to the specified device to ensure that the optimizer’s parameters and gradients are moved

correctly during training.

1. The distributed training environment is initialized (with distribute.setup).

2. Dataset metadata is read from the specified dataset path.

3. The Surrogate simulator model is initialized with the given hyperparameters (given

metadata, noise standard deviations, device, model type, and number of MLP layers).

The input features are normalized, and the simulator is set up with the specified pa-

rameters (See Table ??).

4. The simulator is wrapped with torch.nn.parallel.DistributedDataParallel to en-

able distributed training.

5. The optimizer is initialized with the learning rate scaled by the number of processes. 2

6. The logger is initialized only on the primary process (rank 0 GPU), logging the training

progress if specified in the flags.

7. Training data is loaded using a distributed data loader (distribute.get data distributed

dataloader by samples), ensuring each process gets a different subset of the data.

2The optimizer is initialized with a learning rate that is scaled by the number of processes. This adjustment

is necessary to maintain the effective learning rate during distributed training. In a distributed setup, each

process (e.g., each GPU) computes gradients based on a subset of the data. These gradients are then averaged

across all processes before updating the model parameters. Without scaling the learning rate, the effective

learning rate would be lower than expected, leading to slower convergence and potentially requiring re-tuning

of hyperparameters. By scaling the learning rate by the number of processes, the optimizer ensures that the

training dynamics remain consistent regardless of the number of GPUs or processes used. This practice, known

as the ”linear scaling rule,” Vaswani et al. (2017) is critical for maintaining stable and efficient training. It

compensates for the fact that each process is working on a smaller portion of the data, thus preserving the

magnitude of gradient updates and avoiding issues like gradient underflow. This adjustment allows for effective

utilization of hardware resources and ensures that the model converges as it would in a single-process training

setup.
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5.7.4 Loss Functions

The total loss is composed of several components, each targeting a specific aspect of the

simulation. Let N denote the number of kinematic particles (i.e., particles that are free

to move, not fixed boundary particles), and let D be the dimensionality (2D or 3D). The

predicted and target positions of particle i are ppred
i and ptarget

i , while vpred
i and vtarget

i

are the corresponding velocities. Similarly, apredi and atargeti are the predicted and target

accelerations. The predicted density dpred and target density dtarget are computed on a grid,

as are the predicted and target divergence fields ∇ · vpred and ∇ · vtarget, and the predicted

and target vorticities ωpred and ωtarget.

Throughout, ∥ · ∥p can represent either the L2 norm (mean squared error, MSE) or the

L1 norm (mean absolute error, MAE), depending on the chosen training configuration. In

our implementation, we select L2 (MSE) because it provides higher sensitivity to

large errors, penalizing significant deviations more heavily.

1. Acceleration Loss (Lacc)

Lacc =
1

N

N∑
i=1

∥apredi − atargeti ∥p (5.29)

Acceleration is a key factor in capturing dynamic changes. By penalizing the discrepancy

between predicted and target accelerations, the model is encouraged to learn correct force

and motion relationships.

2. Velocity Loss (Lvel)

Lvel =
1

N

N∑
i=1

∥vpred
i − vtarget

i ∥p (5.30)

Velocity is fundamental to fluid or particle transport. Minimizing this loss aligns flow speeds

and directions with the ground truth.

3. Position Loss (Lpos)

Lpos =
1

N

N∑
i=1

∥ppred
i − ptarget

i ∥p (5.31)

Position error is often useful when tracking particle locations or ensuring that fluid front

evolution is accurate.
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4. Density Loss (Ldens) After projecting the particle velocities and masses onto a grid,

the predicted density dpred and target density dtarget are compared:

Ldens = ∥dpred − dtarget∥p (5.32)

The norm is computed over all grid points. This helps ensure that the model correctly

represents the distribution of mass or particles in space.

5. Divergence Loss (Ldiv) To compute divergence, central finite differences are applied

on the velocity grid:

Ldiv = ∥∇ · vpred −∇ · vtarget∥p (5.33)

Penalizing divergence encourages realistic mass conservation. For incompressible flows, mini-

mizing divergence is especially crucial to prevent artificial sources or sinks in the fluid.

Figure 5.5: Comparison of a driven cavity flow simulation: (Left) Ground truth,

(Middle) Prediction without vorticity loss, and (Right) Prediction with vorticity

loss.

6. Vorticity Loss (Lvor) Vorticity quantifies the local spinning or swirling motion of a

fluid, and capturing this rotational flow is essential for physically realistic simulations. We

compute the vorticity field using central finite differences on the velocity grid:

Lvor = ∥ωpred − ωtarget∥p. (5.34)

Introducing a vorticity term in the loss function helps preserve these rotational features.

Figure 5.5 highlights the importance of this component: the middle panel shows results from
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a baseline GNS model without vorticity loss, while the right panel includes the vorticity term.

In the baseline model, the flow develops fewer or weaker rotational structures compared to the

ground truth (left). By contrast, adding vorticity loss yields significantly better alignment

with the reference flow, indicating that the model now captures swirling behaviors more

accurately. This not only enhances visual fidelity but also leads to more physically consistent

dynamics.

Total Loss (Ltotal)

Ltotal = wacc · Lacc + wvel · Lvel + wpos · Lpos + wdens · Ldens + wdiv · Ldiv + wvor · Lvor (5.35)

Here, wacc, wvel, wpos, wdens, wdiv, wvor are user-defined weights that control the relative im-

portance of each term.

Defining and Adjusting Loss Weights

In practice, choosing weightings (wacc, wvel, . . . ) determines how strongly each physical prop-

erty influences the model updates. For example, increasing the vorticity weight (wvor) pe-

nalizes errors in rotational flow more strongly and tends to produce more stable velocity

fields, while increasing divergence weight (wdiv) helps enforce near-incompressibility or mass

conservation. Emphasizing velocity, acceleration, or position fosters more accurate dynamic

predictions but can lessen the focus on global flow characteristics if not balanced properly.

During an initial training stage, the raw sizes of each loss term (before weighting) may

vary significantly. For example, one might see:

Lacc ≈ 0.7, Lvel ≈ 0.1, Lpos ≈ 3× 10−9, Ldens ≈ 0.03, Ldiv ≈ 1.5, Lvor ≈ 1.6.

Observing these magnitudes can help guide decisions on how heavily to weight each term. If,

for instance, the vorticity or divergence losses are intrinsically higher, boosting those weights

might be beneficial.

In many practical situations, particularly when there is limited time for hyperparameter

tuning, assigning equal weights to every component (i.e., setting wacc = wvel = · · · = 1) often

provides a balanced solution. For example, you might set all of the following to 1:

vorticity loss weight = 1, divergence loss weight = 1, density loss weight = 1,
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velocity loss weight = 1, position loss weight = 1, acceleration loss weight = 1.

This ensures that each loss component is penalized equally during training.

During training, each component’s raw loss is logged periodically. Below is an example

from one training run at step 507, which showed an Acceleration Loss (3.566×10−2), Velocity

Loss (2.56× 10−4), Density Loss (1.708× 10−2), Position Loss (almost zero), Divergence Loss

(1.209×10−1), and Vorticity Loss (1.278×10−1), summing to a total of 3.016×10−1. As train-

ing continued, those losses generally decreased further; by a later snapshot, the overall Train

Loss was about 6.443× 10−1, with the Acceleration, Velocity, Density, Position, Divergence,

and Vorticity Losses each having also lowered in value.

Even with uniform weighting, the network can learn to balance all aspects—acceleration,

velocity, density, position, divergence, and vorticity—sufficiently well for a physically con-

sistent simulation. Adjusting individual weights more finely could further improve specific

facets (e.g., mass conservation or rotational fidelity), but doing so might overemphasize one

component at the expense of others if not done carefully.

Summary. By combining acceleration, velocity, position, density, divergence, and vorticity

losses into one framework—and either carefully or uniformly weighting each term—the model

can capture both fine-grained particle motion and large-scale fluid properties. Tracking raw

magnitudes of each loss component and logging their values during training helps ensure that

no single aspect is neglected. This integrated approach ultimately yields more accurate and

physically plausible simulations for a wide range of fluid and particle dynamics problems.



106 CHAPTER 5. VORTICITY CONSERVATION ON SURROGATE MODEL

5.8 2D Lid Driven Cavity Flow Test

Figure 5.6: 2D Lid Cavity Simulation. Top Right: weakly compressible MPM Lid

Cavity Test, Bottom: Particle Velocity field vs Streamline of 2D Lid Cavity flow dataset.

Flow patterns reveal the formation of primary and secondary vortices, including the main

vortex driven by the lid and any smaller vortices near the corners of the cavity. The

velocity field provides the distribution of velocity components u and v within the cavity

Problem Setting The first step to examine the vorticity conservation performance of the

surrogate models, we use the 2D lid-driven cavity flow simulation as a test case. The 2D lid-

driven cavity flow is a classic benchmark problem in computational fluid dynamics (CFD) used

to study the behavior of fluid flow in a closed cavity. The physical setup consists of a square

cavity where the fluid is enclosed. The boundaries of this cavity include three stationary walls

(bottom, left, and right) and a top wall that moves horizontally. The top wall, also known as

the lid, drives the flow by moving at a constant velocity from left to right.
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For the boundary conditions, the top wall has a specified horizontal velocity u = Ulid and

no vertical velocity v = 0. The other three walls (bottom, left, and right) are stationary,

enforcing a no-slip condition where u = 0 and v = 0, meaning there is no relative motion

between the fluid and these walls.

The continuity equation ensures mass conservation and is given by:

∂u

∂x
+

∂v

∂y
= 0 (5.36)

The momentum equations describe the conservation of momentum in the fluid. For the

horizontal (x-direction) momentum, the equation is:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+

∂2u

∂y2

)
(5.37)

For the vertical (y-direction) momentum, the equation is:

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+

∂2v

∂y2

)
(5.38)

where u and v are the velocity components in the x and y directions, respectively, p is the

pressure, ρ is the fluid density (constant for incompressible flow), and ν is the kinematic

viscosity.

The main objectives of simulating the 2D lid-driven cavity flow are to analyze and un-

derstand various fluid flow characteristics such as the velocity field, vorticity distribution,

pressure distribution, and flow patterns. The velocity field provides the distribution of veloc-

ity components u and v within the cavity. The vorticity distribution, which measures the local

rotation of the fluid, helps identify regions of rotational flow. The pressure distribution shows

the variation of pressure within the cavity. Additionally, flow patterns reveal the formation of

primary and secondary vortices, including the main vortex driven by the lid and any smaller

vortices near the corners of the cavity, see Figure 5.6.



108 CHAPTER 5. VORTICITY CONSERVATION ON SURROGATE MODEL

5.8.1 Dataset Generation

In the two-dimensional fluid setting, a parallel force is applied from one side of the boundary

over a specified time duration. This force is exerted parallel to the surface of the fluid from

the boundary edge, influencing the motion and behavior of the fluid within the defined two-

dimensional space.

To simulate the 2D lid-driven cavity flow, the domain is discretized into 8000 particles and

40 by 40 square background grid of cells where the velocity and pressure fields are computed

Using The Material point method (2.3.2). This grid has boundaries where forces can be

applied. To accurately simulate fluid behavior, properties such as density and viscosity are

defined and appropriate initial and boundary conditions are established.

The parallel force is applied to one of the boundaries of the fluid domain. The force

can be modeled either as a constant or as a time-varying function, depending on the specific

simulation scenario. This applied force induces shear flow, which initiates fluid motion.

The parameters for the fluid setting are provided in Table 5.2.

Table 5.2: MPM Parameters for the Fluid Setting

Parameter Value

Number of particles (nparticles) 8192

Number of grid cells (ngrid) 40

Grid spacing (dx) 1
ngrid

(dimensionless)

Time step (dt) 2× 10−3 seconds

Particle density (pρ) 0.0001 kg/m3

Particle volume (pvol) (dx× 0.5)2 m2

Particle mass (pmass) pvol × pρ kg

Gravity 0.1 m/s2

Boundary thickness (bound) 3 cells (dimensionless)

Modulus (E) 0.0005 Pa (Pascals)

Recording substeps 50 (dimensionless)

Output dimension 2 (spatial dimensions)

Maximum frames 600 (frames)

Maximum substep force (maxsubstepforce) 150,000 + random.randint(1, 10)× 25,000 N
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To further characterize the flow in these experiments, we refer to the Reynolds number

as defined in Eq. 2.3. Based on the normalized parameters used in our simulations (ρ = 1,

a characteristic length L ≈ 1, and a dynamic viscosity µ = 0.5), the Reynolds number is

estimated to vary between approximately 0.2 and 40. This range indicates that, although the

flow experiences dynamic changes, the overall regime remains predominantly laminar.

The fluid domain is simulated using the Material Point Method (MPM) algorithm (see

Section 2.3.2 for details) with the parameters detailed in the table (5.2). These parameters

control the resolution of the simulation, the physical properties of the fluid, and the recording

settings. We generate 48 simulations scenario with 600 frames each. The simulation produces

time-series data for the position, velocity, acceleration in the fluid domain. The visualization

of the data sets provided in figure 5.7 (streamline) and figure 5.8 (Particles). The data set

consists of positions and opt.attr. we store all data per frame in the hdf5 file format.

To further characterize the flow in these experiments, we refer to the Reynolds number

as defined in Eq. 2.3. Based on the normalized parameters used in our simulations (with

ρ = 1, a characteristic length L ≈ 1, and a dynamic viscosity µ = 0.5), the Reynolds number

is estimated to vary between approximately 0.2 and 40. This range indicates that, although

the flow experiences dynamic changes, the overall regime remains predominantly laminar.



110 CHAPTER 5. VORTICITY CONSERVATION ON SURROGATE MODEL

Figure 5.7: Visualization of the 30 out of 48 initial conditions used for the training

dataset. The simulations here are run using a weakly compressible Material Point Method

(MPM) model with an initial velocity field under solid boundary conditions outside the

shown areas. Color mapping indicates velocity magnitude, and streamlines illustrate the

flow field at frame f of certrain secario (example), computed by mapping the particle

velocities to a regularly sampled grid using cubic spline interpolants.
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Figure 5.8: Visualization of the 9 out of 48 initial conditions used for the training

dataset. Particle indicates position while Color mapping indicates velocity magnitude
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Dataset Preprocessing

Data set pre-processing begins by reading all HDF5 files. It extracts frame numbers from the

filenames and sorts them accordingly. The position data are then read from each HDF5 file

into a position array.

The next step involves initializing variables to manage running statistics and setting up dic-

tionaries for running sums, sums of squares, counts, and concatenated data. These dictionaries

are used to compute statistics for velocities and accelerations based on the dimensionality of

the input data, which can be 2D or 3D.

Key Value

boundary [[0.065, 0.935], [0.065, 0.935]]

sequence length” 600

neighbour radius” 0.015

dimension 2

dt 1

velocity mean” [-3.5108e-05, -2.6359e-06]

acceleration mean [8.5449e-10, 1.3844e-07]

velocity std [0.002191, 0.002195]

acceleration std” [9.9393e-05, 9.9605e-05]

Table 5.3: Statistic of the 2D Lid cavity flow dataset

For each directory containing HDF5 files, the process reads and extracts the position data.

The files are sorted by frame number, and the position data from each file is read into an array.

Velocity and acceleration are then calculated using differences in positions between consecutive

substeps. The function returns the processed data for further analysis and updates the running

statistics by computing sums, sums of squares, and counts for velocities and accelerations while

concatenating the data. The running statistics dictionaries are updated with the new data.

Finally, statistics across all trajectories are calculated and printed, including the mean and

standard deviation for each dimension of velocity and acceleration.

The processed trajectory data are then saved to an NPZ file using numpy.savez compressed.

The NPZ file is divided into three files: train.npz (48 scenarios), valid.npz (6 scenarios), and

test.npz (6 scenarios). Each NPZ file consists of a collection of tuples of varying length,
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each tuple representing a unique training trajectory and containing positional information.

This NPZ file is ready for use in training. The metadata file containing dataset and statistic

information is stored as illustrated in Table 5.3:

5.8.2 Results

Figure 5.9: Velocity field predicted by our proposed model for frame 54, showcasing

stability over extended rollouts

In this section, we present both quantitative and qualitative results to provide a compre-

hensive evaluation of our vorticity prediction model. For quantitative analysis, we used several

metrics to evaluate the performance of our model, including the mean squared error (MSE),

mean absolute error (MAE), and an Energy Conservation Plot. To provide a visual under-

standing of the model’s performance, we include several qualitative assessments (Predicted

vs Actual Vorticity Plot, Residuals Plot, Temporal Evolution of Vorticity). These results will

help to understand the performance and effectiveness of our model.
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Results on Various Test Sets

Figure 5.10 illustrates the performance of the OURS model in conserving vorticity over long-

range predictions, measured by the mean squared error (MSE). The chart includes six curves

representing six different test cases (T0 to T5).

Figure 5.10: MSE of long term prediction using 6 different test case on OURS

model

The MSE for all test cases starts very low, close to 0, and gradually increases as the

number of frames progresses. In particular, the MSE remains below 0.0002 for the first 40

frames in all test cases, indicating stable performance in short-term predictions. An important

observation is that MSE grows almost linearly over time for each test scenario. This almost-

linearity implies a steady rate of error build-up as the frame count rises. After surpassing

50 frames, the MSE continues to climb, emphasizing the challenge of achieving long-term

prediction accuracy. However, the model keeps the MSE increase relatively controlled, with

values remaining below 0.0004 up to frame 80. Each test case shows minor differences in

MSE values, indicating some variations depending on the particular test scenario, yet the

overarching pattern stays stable. These minor variations suggest that the model has the

potential to generalize across various scenarios. Essentially, the model’s performance isn’t

significantly influenced by the specific test case, indicating its robustness and dependability

in diverse conditions.
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Benchmark: Long-Range Predictions Stability

Figure 5.11: MSE benchmark comparing the performance of 6 models over long-

range prediction. The red color represents our model, showing stability. During

intermediate frames (10-40), OURS maintains a consistently lower MSE com-

pared to graphnetwork− T0. The latter shows occasional spikes and higher error

variability, indicating less stability in its predictions.

In the comparative experiments presented in this section, we kept the overall model,

loss function, and training methodology consistent across all models. The key difference

lies in how the node features are updated in the Particle Network layer. For the original

GNS model, the node embedding update is performed through the original message passing

technique used in graph neural networks. In contrast, in the other comparison models, we

replace this part with different convolutional operator. Specifically, in ( OURS), we replace

the standard propagation method with the SuperGATConvolution Operator, which improves

the model’s ability to capture local interactions and conserve vorticity. All the models in this

comparative study use the overall GNS framework, and the only difference between them lies

in the convolutional layer used for node feature updates.

Figure 5.11 displays the mean squared error (MSE) in frames for various models predicting
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the vorticity (z-axis) using test scenario T0. The models included in the chart are GATv2Conv

(blue) [Brody et al. (2022)], graph transformer (orange) [Shi et al. (2021)], GNS (Graph

Network simulator, purple) [Sanchez-Gonzalez et al. (2020)], GATConv (yellow) [Veličković

et al. (2018)], pointnet conv (Pointnet++, green) [Qi et al. (2017)] , and OURS (red). The

x-axis represents the frames, while the y-axis represents the MSE.

In the initial frames (10-30), GATConv, GNS and OURS exhibit low MSE values. However,

OURS starts with a slightly lower MSE, indicating marginally better performance from the

beginning.

During intermediate frames (30-40), OURS maintains a consistently lower MSE compared

to graph network-T0. The latter shows occasional spikes and higher variability in error,

indicating less stability in its predictions.

In the later frames (40-60), OURS continues to outperform GNS by maintaining a lower

MSE. The gap between the two models becomes more apparent in these frames, highlighting

the robustness and accuracy of OURS over time.

Overall, the OURS model demonstrates superior performance with consistently lower MSE

across all frames, suggesting better predictive accuracy and generalization. On the other hand,

the graph network-T0 model, while performing reasonably well, exhibits higher errors and

variability, particularly in the later frames. This indicates potential issues with long-term

predictions or generalization.

Figure 5.11 illustrates that the OURS model consistently achieves lower mean square error

(MSE) values in every frame compared to the GNS model. A precise numerical analysis for

frame 54 is provided in Table 5.4.

Model MAE MSE RMSE

OURS 0.007715 0.000151 0.012297

GATConv 0.010443 0.000289 0.017006

Pointnet conv 0.012597 0.000420 0.020484

GNS 0.009757 0.000449 0.021191

GATv2Conv 0.011476 0.000447 0.021138

Graph transformer 0.014519 0.000724 0.026903

Table 5.4: Comparison of model predictions with ground truth using MAE, MSE,

and RMSE at frame and 54 (This was selected as a typical case).
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Benchmark: Vorticity distribution

To analyze the vorticity distributions of the models with ground truth as the benchmark, we

assess the alignment of each model’s vorticity distribution with the ground truth on frame

54 as depicted in Figure 5.12. We further explore this using the Pearson coefficient index,

residual plot, and KL divergence. Additional histograms for frames 6, 9, 18, 21, 48, and 51

are illustrated in Figure 5.18.

Figure 5.12: Histogram depicting the vorticity distribution at frames 54. The

black lines represent the ground truth vorticity magnitude binned as the reference.

.

Peak Alignment The OURS-T0 (Red Line) aligns well with the ground truth around

the peak vorticity values, showing similar peak height and position. Other models also show

varying degrees of alignment: GATConv-T0 (Orange) and GATv2Conv-T0 (Blue) show

peaks close to the ground truth but with slight deviations in height and width. The GNS-T0

(Purple) and graph transformer-T0 (Green) lines have peaks that align reasonably well

with the ground truth but exhibit more noticeable variations. The pointnet (Yellow) model

has the largest deviation from the ground truth peak, with a wider spread and lower peak

height.
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Distribution Shape The overall shape of the OURS-T0 (Red Line) is quite similar to

the ground truth, indicating a good match. Other models also show a similar distribution

shape but with some differences in the tails: GATConv-T0 (Orange) and GATv2Conv-

T0 (Blue) align reasonably well but exhibit some differences at the tails. The GNS-T0

(Purple) and graph transformer-T0 (green) models show more uneven distribution shapes

compared to the ground truth, and some bins show higher or lower counts. The pointnet

(Yellow) model exhibits the largest deviation in shape, with a broader distribution and more

significant discrepancies between bins.

Tails (Extreme Values) The tails of the OURS-T0 (Red Line) are relatively close to

the ground truth, with minor deviations. Other models have tail behavior similar to the

ground truth but with some fluctuations: GATConv-T0 (Orange) and GATv2Conv-T0

(Blue) align reasonably well, but exhibit some fluctuations. The GNS-T0 (Purple) and

graph transformer-T0 (Green) models show more pronounced differences in the tails,

with some bins having higher counts than the ground truth. The pointnet (Yellow) model

shows the most variation at the tails, with significant differences from the ground truth.

Smoothing and Noise The OURS-T0 (Red Line) is relatively smooth, indicating con-

sistent predictions with some noise. Other models also exhibit varying levels of smoothness

and noise: GATConv-T0 (Orange) and GATv2Conv-T0 (Blue) are smooth but with

minor noise. The GNS-T0 (Purple) and graph transformer-T0 (Green) models exhibit

more noise and an uneven distribution, indicating less consistent predictions. The pointnet

(Yellow) model has the most noise and an uneven distribution, indicating the least consistent

predictions.

Analysis of Pearson Correlation Coefficient at frame 54, as illustrated in Table 5.13,

reveals the correlation between the vorticity data of each surrogate model and the actual

ground truth. The model that aligns most closely with the ground truth is” OURS”, with a

correlation coefficient of about 0.957.
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Model Pearson Correlation Coefficient

OURS-T0 0.956670

GATConv-T0 0.918301

pointnetconv-T0 0.885932

GNS-T0 0.883097

GATv2Conv-T0 0.877435

graphtransformer-T0 0.811620

Figure 5.13: Pearson Correlation Coefficients for Surrogate models and Ground

Truth at frame 54. The ”OURS” model exhibits the highest correlation.
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The residual vorticity plots for frame 54 as illustrated in Figure 5.14 show that the

OURS−T0 pattern has relatively minor residuals that are uniformly spread around the zero

axis, demonstrating a strong correlation with the actual data.

Figure 5.14: Residual Plots of vorticity of the surrogate models at frame 54.

Proposed model (green-colored OURS − T0) pattern has relatively minor residuals

that are uniformly spread around the zero axis, demonstrating a strong correlation

with the actual data
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Figure 5.15: Scatter Plots of Residuals for Vorticity Models vs. Ground Truth

with Cell Index (grid dimension: 40x40) on the X-Axis. The model with the lowest

residuals is highlighted in green, while other models are shown in blue. The red

dashed line represents zero residuals
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Figure 5.16: KL Divergence of Surrogate Models Compared to Ground Truth.

The model with the lowest KL divergence is highlighted in green, indicating the

closest match to the ground truth vorticity distribution

Model MAE MSE RMSE KL Divergence

OURS-T0 0.007715 0.000151 0.012297 0.127755

GNS-T0 0.009757 0.000449 0.021191 0.172230

pointnet conv-T0 0.012597 0.000420 0.020484 0.296943

GATv2Conv-T0 0.011476 0.000447 0.021138 0.269795

GATConv-T0 0.010443 0.000289 0.017006 0.354617

graph transformer-T0 0.014519 0.000724 0.026903 0.391100

Table 5.5: KL Divergence of the vorticity of each surrogate model vs the ground

truth at frame 54 (This was selected as a typical case)

Table 5.5 shows that model OURS-T0 has the lowest KL divergence, indicating the

highest similarity to the ground truth. The low KL Divergence for OURS-T0 suggests

that this model effectively captures the underlying distribution of the vorticity data, likely

benefiting from its nonlinear modeling capabilities. The model’s architecture may include

advanced nonlinear transformations that allow it to better represent complex relationships

within the vorticity data, leading to a closer match with the ground truth.

One of the key motivations for examining the vorticity distribution at frame 54 rather
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than an early frame stems from the long-range rollout context. As shown in Figure 5.11, each

surrogate model’s mean squared error (MSE) accumulates over time, making later frames

such as frame 54 more stringent tests of a model’s predictive stability and accuracy. While

the MSE trend indicates how quickly or slowly each model’s predictions deviate from the

ground truth on a pointwise basis, it does not capture whether the overall shape or range of

the predicted vorticity distribution remains physically plausible.

Complementary Role of MSE and KL Divergence: By integrating both MSE and

KL divergence metrics, we gain a deeper insight into the models’ performance:

• MSE pinpoints how closely individual predicted vorticity values match the ground truth

across the domain. A lower MSE indicates smaller average discrepancies at each spatial

point.

• KL Divergence determines how well the probability distribution of predicted vorticity

magnitudes aligns with the real distribution. Specifically, it evaluates whether the model

reproduces the relative frequencies of low, medium, and high vorticity magnitudes.

Hence, a model could exhibit a respectable MSE yet still fail to capture the correct dis-

tributional profile, for example, if it consistently underestimates high-vorticity regions while

overestimating moderate-vorticity areas. Conversely, a low KL divergence coupled with high

MSE might signal that, despite getting the overall histogram roughly correct, certain regions

of the flow field are spatially misaligned. Thus, neither metric alone suffices; but their com-

bination, especially at a later frame like frame 54, provides a more robust portrait of both

pointwise accuracy and distributional realism.

Physical Relevance of Vorticity Distributions: In fluid dynamics, the distribution of

vorticity across the domain is intimately tied to flow structures such as vortices, shear layers,

and turbulent eddies. Capturing the shape of the vorticity histogram (via KL divergence) is

crucial for ensuring that the model has learned the fundamental statistics of the flow. The fact

that our OURS-T0 model retains a relatively low MSE over the entire temporal horizon

(up to frame 60) and achieves the lowest KL divergence at frame 54 demonstrates its ability

to maintain both pointwise accuracy and global distributional fidelity under long-term rollout

conditions.

Why Frame 54 is Instructive: Examining predictions at frame 54 offers a snapshot of

late-stage behavior, where error accumulation and compounding inaccuracies begin to mani-
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fest. A model that accurately predicts both the pointwise values (MSE) and the distribution

(KL divergence) at this challenging frame is likely to be robust throughout the simulation.

Thus, the low KL divergence at frame 54 serves as a strong indicator that OURS-T0 cap-

tures the essential statistical properties of the flow—beyond just matching individual vorticity

values—better than the other surrogate models.

In summary, the selection of frame 54 for the KL divergence analysis, combined with the long-

horizon MSE benchmarks, paints a comprehensive picture of how well each surrogate model

maintains both local and global accuracy as the simulation progresses. This dual perspective

is invaluable for fluid simulation tasks, where capturing the correct vorticity distribution can

be just as critical as reducing overall numerical errors.
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Figure 5.17: Qualitative comparison of predictions from 6 surrogate models at

frame 54. The ours model demonstrates the lowest error both in vorticity and

velocity prediction
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Figure 5.18: Vorticity distribution (left to right, top to bottom) at frames [6,

9],[18, 21],[48, 51] . The black lines represent the ground truth vorticity magnitude

binned as the reference, GATv2Conv (blue) , graph transformer (orange) , GNS

(purple) , GATConv (yellow), pointnet conv (green) , and OURS (red)
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Benchmark: Kinetic Energy Conservation

The provided plot shows the kinetic energy percentage over time for various models. The

following observations can be made regarding the performance of these models in terms of

kinetic energy conservation:

Figure 5.19: Kinetic Energy Conservations Benchmark of the surrogate models

The model Ours-model-2100.pt-T0 (represented by the red line) maintains the highest

kinetic energy percentage over time, indicating the best performance in conserving kinetic

energy. The kinetic energy decreases very slowly for this model, suggesting that it is highly

effective in retaining the initial kinetic energy throughout the time frames.

The GNS-model-2100.pt-T0 also maintains a high percentage of kinetic energy. The

GATv2Conv-model-2100.pt-T0 shows moderate performance, with a steady decline in en-

ergy conservation. However, the GATConv-model-2100.pt-T0, graph transformer-model-

2000.pt-T0, and pointnet conv-model-1000.pt-T0 exhibit significant drops in kinetic energy

conservation, indicating the need for improvement in their energy conservation capabilities.

Conclusion The OURS proposed model aligns closely with the ground truth in peak

alignment, distribution shape, tails, high Pearson correlation coefficient, low residual, low

KL divergence, and Highest Kinetic Energy Conservation. It is the best-performing model

in terms of matching the ground truth. Other models, such as GATConv (Orange) and

GATv2Conv (Blue), has slightly larger deviations from the ground truth. The GNS (Pur-
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ple) and graph transformer (Green) models have more noticeable differences and noise.

The pointnet (Yellow) model shows the most significant deviation, with a broader and

noisier distribution. In general, OURS (red line) is one of the best models for approximate

ground truth, suggesting an effective performance to capture the vorticity distribution.
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5.9 Curl-Noise Flow Test

Building upon the findings presented in the previous chapter, in which the performance of the

surrogate model was evaluated using the lid-driven cavity flow test, this chapter extends the

investigation to more complex flow scenarios. The focus is on assessing the surrogate model’s

ability to conserve vorticity in these more complex flow conditions, which pose significant

challenges due to their potential to exhibit both ordered and chaotic behaviors.

To generate these complex flow conditions, the dataset utilized in this chapter is initialized

using Curl Noise Robert Bridson & Nordenstam (2007), a method of generating smooth,

divergence-free vector fields by taking the curl of the gradient of a Perlin noise function

(Perlin (1985), Perlin (2002)) . This approach efficiently creates velocity fields with multiple

vorticities that exactly respect solid boundaries and whose amplitude can be modulated in

space as desired. This initialization method ensures that the initial vorticity field possesses the

complexity necessary to examine the model’s performance across a spectrum of flow behaviors.

This chapter provides a detailed exploration of the model’s capability to accurately rep-

resent such dynamic and potentially unstable flow environments. The results of these sim-

ulations are intended to offer valuable insights into the robustness and applicability of the

surrogate model.

5.9.1 Problem Setting

Curl noise is a technique for generating divergence-free vector fields, meaning that the vector

field has no net flux in or out of any region. This is essential in fluid dynamics simulations

where incompressibility (no divergence) is a key property. The curl noise method is particu-

larly useful for simulating turbulent flows, which exhibit complex, swirling patterns.

Given a 2D vector field v(x, y) = (u(x, y), v(x, y)), the curl of this field in 2D is defined

as:

curl(v) =
∂v

∂x
− ∂u

∂y
(5.39)

To create a divergence-free field, curl noise uses the curl of the gradient of scalar noise fields

(like Perlin noise). This ensures that the resulting vector field vcurl is divergence-free by

construction.
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Perlin Noise

Perlin noise, introduced by Perlin (1985), is a gradient noise function that produces smooth,

continuous pseudo-random values. It is widely used in procedural texture generation, terrain

generation.

Given a 2D point p = (x, y), Perlin noise is generated by computing a weighted sum of

dot products between random gradient vectors at the corners of the grid cell containing p and

the vectors from these corners to p. The process can be summarized as follows:

1. Grid Cell Identification: Identify the grid cell in which p is located. The four corners

of this cell are denoted as p00,p10,p01,p11.

2. Gradient Vector Assignment: Assign a random gradient vector gij at each corner

pij of the grid cell.

3. Dot Product Calculation: Compute the dot product between each gradient vector

gij and the vector from the corner pij to the point p:

dij = gij · (p− pij) (5.40)

4. Interpolation: Interpolate these dot products using a fade function f(t), typically a

smooth polynomial, to blend the contributions of the grid corners:

Perlin(p) = lerp(f(x), lerp(f(y), d00, d10), lerp(f(y), d01, d11)) (5.41)

where lerp denotes linear interpolation.

The smoothness and continuity of Perlin noise make it suitable for generating natural-looking

textures and, more importantly, for simulating the underlying structure of turbulence in fluid

simulations.

Curl Noise Generation

Once the Perlin noise is generated, its gradients are used to produce a curl noise vector field.

Given two scalar fields f(x, y) and g(x, y) generated by Perlin noise, the gradients of these

fields are:

∇f =

(
∂f

∂x
,
∂f

∂y

)
, ∇g =

(
∂g

∂x
,
∂g

∂y

)
(5.42)



5.9. CURL-NOISE FLOW TEST 131

The resulting curl noise vector field vcurl is defined as:

vcurl(x, y) =

(
∂g

∂y
− ∂f

∂x
,
∂f

∂y
− ∂g

∂x

)
(5.43)

This field is divergence-free, making it suitable for driving incompressible flow simulations.

Simulation Setup

The simulation uses the MPM algorithm (see Section 2.3.2) to represent the fluid domain, with

particles representing fluid elements. The velocities of these particles are initialized using a

curl noise field by interpolating the velocity from the curl-noised grid to uniformly distributed

particles across the fluid domain. The curl-noised grid is used only once at the beginning; the

rest of the simulation is purely carried out using MPM steps.

Position Initialization: Each particle position is distributed almost uniformly by based

on the cell size of the grid with dimension (40x40), with a small random displacement (jitter)

added.

xi = base pos + jitter (5.44)

• Base Position: The base position base pos of a particle is determined by its grid

coordinates, which are calculated as:

base pos = spacing× index + offset

where ‘spacing‘ is the distance between grid points, and ‘offset‘ is an initial offset to

ensure particles are well within the domain.

• Jitter: The jitter is a small random displacement added to each particle’s position to

avoid perfect alignment and to simulate natural irregularities. It is calculated as:

jitter = (r− 0.5)× spacing× 0.25

where r is a random vector in the range [0, 1]. The factor of 0.25 reduces the jitter

to a reasonable size, preventing particles from overlapping grid boundaries while still

introducing variability.
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Particle Velocity Initialization: The initial velocity vi of each particle is set based on

the curl noise field:

vi = velocity scale× vcurl(i, j) (5.45)

Here, velocity scale is a scaling factor that controls the magnitude of the initial velocities.

Substep Function The ‘substep()‘ function performs the core simulation operations, which

include updating the grid and particles based on the current state.

Grid Update

1. Grid Reset: All grid velocities vg and masses mg are initialized to zero at the start of

each substep:

vg[i, j] = 0, mg[i, j] = 0 (5.46)

2. Particle to Grid Transfer: Each particle’s velocity and mass are transferred to the

grid using a weighted kernel function w. This ensures that momentum is conserved:

vg[i, j]+ = w[i, j]× (mp × vp + affine momentum) (5.47)

mg[i, j]+ = w[i, j]×mp (5.48)

where vp is the particle velocity, mp is the particle mass, and ‘affine momentum‘ accounts

for stress contributions.

3. Grid Velocity Update: After transferring particle data to the grid, the grid velocities

are updated by applying external forces, such as gravity:

vg[i, j].y− = ∆t× gravity (5.49)

Boundary conditions are enforced to keep the particles within the simulation domain.

Particle Update

1. Grid to Particle Transfer: The particles’ velocities are updated by interpolating

from the grid velocities, ensuring a smooth transfer of motion from the grid back to the

particles:

vp =
∑
i,j

w[i, j]× vg[i, j] (5.50)
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The particle positions are then updated based on the new velocities:

xp+ = ∆t× vp (5.51)

2. Deformation Gradient Update: The deformation gradient Jp is updated to track

changes in the local volume around each particle:

Jp× = 1 + ∆t× trace(C) (5.52)

A volume correction term is applied to maintain stability and prevent excessive expan-

sion or compression:

xp+ = volume correction× (xp −Xp)×∆t (5.53)

Divergence Check A key aspect of the simulation is ensuring that the velocity field remains

as close to divergence-free as possible. The divergence of the ground truth is calculated as:

div(v) =
∂u

∂x
+

∂v

∂y
(5.54)

This check is intended to monitor whether the curl noise effectively enforces the incompress-

ibility condition. Although the divergence may not be exactly zero, the purpose of this

monitoring is to ensure that the divergence remains relatively low, indicating that the curl

noise is successfully contributing to a near-incompressible flow field.

5.9.2 Dataset Generation

This subsection details the comprehensive methodology used to generate the dataset using

curl noise simulation, including the role of scenario IDs, the influence of the noise scale on

vorticity, and the systematic organization of the dataset into distinct subsets.

Simulation Setup and Execution

We simulates fluid behavior using 8096 particles projected across a 40 x 40 grid which velocities

are initialized with curl noise. To automate the execution of this simulation across multiple

scenarios, batch script is employed. This batch file systematically runs the simulation program

multiple times, each time with different initial conditions or parameters as dictated by the

scenario ID. The script is designed to manage and organize the outputs into three primary

datasets:
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Figure 5.20: llustrations of 36 out of (28.8k) conditions employed for the training

dataset. The simulations depicted are weakly compressible and generated using the MPM

model, starting with a velocity field that is initially divergence-free and constrained by

solid boundaries outside the displayed areas. Velocity magnitude is shown through color

mapping, while streamlines represent the flow field at time t = f, computed by interpolating

particle velocities onto a regular grid using cubic interpolation.
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• Training Set: Comprising 48 scenarios, this set is used to train the neural network

model.

• Validation Set: Comprising 6 scenarios, this set is utilized for hyperparameter tuning

and to prevent overfitting.

• Testing Set: Comprising 6 scenarios, this set is reserved for evaluating the final per-

formance of the trained model.

Each scenario produces an output in HDF5 (.h5) format, which is a common format for

storing large numerical datasets, particularly those involving multi-dimensional arrays. The

outputs are organized into directories corresponding to the training, validation, and testing

datasets.

Scenario ID, Noise Scale, and Randomness

We generated 48 Scenario for Training data (values ranging from 0 to 49). The The variability

across simulation scenarios is primarily driven by the scenarioID variable, which significantly

influences key simulation parameters, most notably the noiseScale. The relationship between

scenarioID and noiseScale is defined as follows:

noiseScale = scenarioID%10 + 4 (5.55)

This formula results in noiseScale values ranging from 4 to 13, depending on the scenario

ID:

• scenarioID % 10: This operation yields a remainder between 0 and 9, effectively cy-

cling through a set of values as the scenario ID increases.

• + 4: This ensures that the noiseScale always starts from 4, producing possible values

between 4 and 13.

The noiseScale parameter is directly linked to the complexity and characteristics of the

fluid flow:

• Higher noiseScale values lead to more frequent variations in the curl noise field,

generating smaller, more numerous vortices. This results in a more complex flow pattern,

typical of high-energy fluid dynamics.
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• Lower noiseScale values cause less frequent variations, producing larger but fewer

vortices. The flow pattern becomes smoother and more orderly, simulating lower-energy

fluid dynamics.

By varying noiseScale across different scenarios, the simulation generates a diverse range

of fluid behaviors, from smooth and laminar flows to highly complex and chaotic ones. This

diversity is crucial for training a neural network capable of generalizing across various fluid

dynamics scenarios.

Incorporating Randomness for Unique Scenarios While the noiseScale repeats ev-

ery 10 scenarios, each scenario remains unique due to the inherent randomness in the noise

generation process. The Perlin and curl noise functions introduce stochastic elements that

ensure no two scenarios are exactly alike.

Here’s a brief overview of the noise generation process:

1. Perlin Noise Generation: The Perlin noise function generates a gradient noise that

is smooth and continuous. It creates a grid of random gradient vectors, which are then

used to compute noise values across the simulation space.

2. Curl Noise Calculation: Curl noise is derived from the gradient of the Perlin noise,

resulting in a vector field with swirling patterns. This vector field is used to simulate

fluid-like motions, with the curl noise dictating the velocity vectors of particles in the

simulation.

3. Scenario Initialization:

• Position Initialization: Each particle’s position is initialized with a base grid

location and a small random jitter to ensure variation within the grid cells.

• Velocity Initialization: The velocity of each particle is sampled from the curl

noise field, scaled by a factor to adjust the flow dynamics.

These random elements, particularly the Perlin noise gradients and the random jitter

in particle positioning, ensure that even with the same noiseScale, each scenario exhibits

unique fluid dynamics. The simulation’s ability to generate a broad spectrum of fluid behaviors

depends not only on the deterministic noiseScale but also on the underlying randomness



5.9. CURL-NOISE FLOW TEST 137

introduced in each scenario. This makes each scenario distinct, despite the cyclic nature of

the noiseScale.

Data Conversion and Organization

After the simulation generates the raw data in .h5 format, the next step involves converting

this data into a more efficient format for neural network training: the .npz format. This

conversion is processes the raw data as follows:

• Data Extraction: The script reads the .h5 files from the train, valid, and test

directories, extracting key variables such as particle positions, velocities, and potentially

accelerations.

• Statistical Analysis: It computes the mean and standard deviation of the particle

positions, velocities , and acceleration across all frames in each scenario. These statistics

are essential for normalizing the input data during neural network training, ensuring that

the data fed into the network is centered around zero and scaled to a consistent range.

• NPZ File Creation: The processed data, along with the computed statistics, is saved

into .npz files (train.npz, valid.npz, test.npz). These files are organized into their

respective folders, ensuring a clear separation of the datasets for training, validation,

and testing purposes.



138 CHAPTER 5. VORTICITY CONSERVATION ON SURROGATE MODEL

Figure 5.21: Training Loss of different models using Curl noise Dataset with

accceleration-based prediction.

5.9.3 Training Process

In the training process of our network, we employ two primary prediction strategies: acceleration-

based and velocity-based. The model is trained to predict the future states of particles by

learning both acceleration and velocity cues, which are critical to accurately modeling physical

systems. The training process involves iteratively adjusting the model’s parameters to mini-

mize a composite loss function that incorporates multiple aspects of the system’s dynamics,

including acceleration, velocity, density, divergence, position, and vorticity.

During training, the loss function is a weighted sum of these individual losses, with each

component contributing equally (the Acceleration Loss, Velocity Loss, Density Loss, Position

Loss, Divergence Loss, and Vorticity Loss), as indicated by the weight ratio of 1:1:1:1:1:1.

This balanced approach ensures that the model learns to predict all aspects of the system’s

dynamics equally well, without overemphasizing one component at the expense of others.

As the training progresses, the loss values for each component fluctuate, reflecting the

model’s ongoing adjustments. For instance, at specific training steps, acceleration loss, veloc-

ity loss, density loss, position loss, divergence loss, and vorticity loss contribute to the overall

Train Loss. A snapshot from our real training process illustrates these dynamics:
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At training step 507 5.21, the total loss was 0.301686, with contributions from accelera-

tion loss (0.035660), velocity loss (0.000256), density loss (0.017083963), position loss (almost

zero), divergence loss (0.120924) and vorticity loss (0.127761), all equally weighted. As the

training continued, these losses were periodically logged, showing variations as the model im-

proved its predictions across different components. By the end of the training, the network

achieved the following loss values: Acceleration loss (0.16061589), density loss (0.0268355),

divergence loss (0.25397250), position loss (0.00000000249), train loss (0.64425) and veloc-

ity loss (0.000623). The vorticity loss at this point was 0.2022085. These values indicate

that the model has effectively learned to balance the various physical properties, achieving a

comprehensive understanding of the system it was trained to simulate.

The equal weight ratio applied throughout the training ensured that the network developed

a robust capability to predict the system’s dynamics holistically, without biasing the model

towards any single component of the loss function. This balanced training strategy is crucial

for accurately simulating complex physical phenomena where multiple interacting forces must

be accounted for simultaneously.
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5.9.4 Results

Results on Various Test Sets

In this section, we present the results of our proposed model using curl-noise dataset on

multiple test sets, identified as Rollout 0 through Rollout 5. For each rollout, the ground

truth and predicted particle movements are visualized using three primary methods: quiver

plots, streamline plots, and vorticity plots. These visualizations provide a comprehensive view

of the fluid dynamics at key frames within each simulation, showcasing velocity magnitude,

flow patterns, and rotational characteristics.

Figure 5.22: Quiver plots of Rollout test 0. Our proposed surrogate model predicts

the subsequent frames (1-40) given the initial frame (0).

Quiver Plots The quiver plots, as shown in Figure 5.22, provide a direct representation of

the velocity vectors at each timestep. The vectors’ lengths and directions depict the magnitude

and direction of the particle velocities. This method is particularly effective in highlighting the

differences between the ground truth and predicted rollouts, as the color intensity correlates

with the velocity magnitude. We have displayed the results at frames 1, 5, 10, 20, 30, and

40 for each rollout. In these plots, the predicted rollouts generally follow the ground truth

closely, though some deviations can be observed in certain regions, particularly at later frames

and near the boundaries of the simulation domain. These discrepancies are more apparent in
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the quiver plots, where the vector directions and magnitudes can differ noticeably from the

ground truth.

Figure 5.23: Streamline view for Rollout Tests 0 and 3. First row: Ground Truth

Test case 0. Third row: Ground Truth Test case 3. Second and Fourth row are the

predictions of our porposed model.

Streamline Plots The streamline plots, illustrated in Figure 5.23, offer a continuous visu-

alization of the fluid flow, providing insight into the overall flow structure generated by the

curl-noise simulation. The streamlines trace the paths that particles would follow under the

simulated velocity field, with colors representing the velocity magnitude. These plots provide
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Figure 5.24: Our-proposed model rollout prediction on frame 35 (with SuperGAT

Convolution operator)

a clearer understanding of the flow coherence and divergence within the simulated domain.

Across the test sets, Rollouts 0 to 5, both quiver and streamline visualizations reveal the

fidelity of the surrogate model in approximating the ground truth fluid dynamics. Most of

the predicted paths align with the ground truth flow structures, indicating that the model

captures the global flow patterns effectively.

Vorticity Plots The vorticity plots, shown in Figure 5.25, provide an analysis of the ro-

tational characteristics of the fluid flow, representing the local spinning motion of the fluid.

Vorticity is particularly important in fluid dynamics as it highlights areas where the flow

exhibits circular or rotational behavior. The plots compare the vorticity fields of the ground

truth (target) and predicted simulations across five key frames: 1, 5, 10, 20, and 30. The

color map used is offering a clear visualization of the vorticity magnitude.

In the early frames (1 and 5), the predicted vorticity fields closely match the target, indi-

cating that the model is well-calibrated to the initial conditions and can accurately simulate

the early development of fluid flow, including the formation of initial vortices. However, as

the simulation progresses to frames 10, 20, and 30, discrepancies between the target and pre-

dicted vorticity fields become more pronounced. While the overall patterns of vorticity are

preserved, the exact magnitudes and positions of vortices begin to differ, especially in regions
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Figure 5.25: Vorticity plot for Rollout 0. The top row shows the target vorticity,

while the bottom row shows the predicted vorticity across frames 1, 5, 10, 20, and

30.

with complex interactions or high magnitude of velocity field.

By frame 30, the differences more noticeable, with some vortices in the predicted fields

either displaced or differing in intensity compared to the ground truth. This suggests that the

model, while effective in capturing general dynamics, may struggle with fine-scale details as

the simulation evolves, particularly in complex regions where small initial discrepancies can

amplify over time. The use of a single color bar across all frames enhances the comparability

between the target and predicted vorticity fields, making it easier to identify regions where

the model’s predictions diverge from the ground truth.

Overall Assessment The combined analysis from quiver, streamline, and vorticity plots

provides a comprehensive understanding of the surrogate model’s performance in simulating

fluid dynamics. The quiver and streamline plots demonstrate that the model captures the

global flow patterns effectively, maintaining coherence with the ground truth. The vorticity

plots, however, reveal areas where the model’s predictions deviate from the ground truth,

particularly in terms of rotational dynamics. These findings suggest that while the model is

generally effective, there is room for improvement, particularly in accurately capturing the

fine-scale rotational details of the fluid flow over time.
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Figure 5.26: Results for Rollout Tests 1 and 2 for curl noise simulation.
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Figure 5.27: Results for Rollout Test case 3 and 4 for curl noise simulation.
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Figure 5.28: Comparison of Conservation of Kinetic Energy of our proposed

model with relative to others surrogate models.

Benchmark: Energy Conservation

The plot on figure 5.28 compares the performance of different models in predicting the con-

servation of kinetic energy during a curl noise simulation using Test case T0. The y-axis

represents the predicted kinetic energy, while the x-axis shows the progression of the simula-

tion over time steps.

The green line represents our model OURS − T0, which shows the highest kinetic energy

values throughout the simulation. This indicates that it conserves kinetic energy better than

the other models. The curve is relatively flat, meaning that the kinetic energy does not

decrease as much over time, suggesting strong conservation properties.

The purple line, representing the GATConv, shows a moderate decrease in kinetic energy

over time. This model performs worse than OURS, but better than the GATv2Conv model.

Its ability to conserve kinetic energy is less robust compared to our model, with a slightly

steeper decline.

The yellow line corresponds to the GATv2Conv model, which demonstrates a slightly

faster decline in kinetic energy. This indicates that it does not conserve kinetic energy as

effectively as the GATConv model. The steeper decline suggests that this model may lose
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energy more quickly, potentially leading to less accurate predictions in the context of fluid

dynamics.

The pink line, representing the graphtransformer, exhibits the fastest decline in kinetic

energy among the models shown. This suggests that the graph transformer is the least effective

in conserving kinetic energy, which may result in a less accurate simulation of fluid dynamics,

particularly in scenarios where maintaining energy levels is critical.

Finally, the magenta line represents the graphnetwork. The performance of this model

falls between the graph transformer and the GATConv models. It has a moderate rate of

energy loss, but it is still worse than the GATConv models and our proposed model.

OUR proposed mode shows the best performance in conserving kinetic energy during the

curl noise simulation, maintaining a relatively stable kinetic energy level even over relatively

longer time steps.
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5.10 Conclusion

In this chapter, we explored the development and evaluation of a surrogate model designed

to conserve vorticity in Lagrangian fluid simulations. The key contributions included an in-

depth analysis of vorticity conservation methods, particularly focusing on the conservation

of angular momentum and energy in continuum simulations. The research highlighted the

importance of accurately modeling vorticity and introduced a novel network architecture

incorporating a Self-Supervised Graph Attention Operator. This architecture significantly

enhanced the model’s ability to capture the complex interactions between particles, ensuring

better preservation of vorticity.

Through rigorous evaluation, including tests on various datasets and comparisons with

other models, the proposed model proved to be robust, achieving lower mean squared errors

and better alignment with ground truth data. The model’s superior performance in conserv-

ing kinetic energy and predicting long-range behaviors further underscores its potential for

practical applications in fluid dynamics simulations.

While the chapter affirms the effectiveness of the proposed model in maintaining vorticity

conservation, marking a substantial advancement in the field of Lagrangian fluid simulation,

we acknowledge that vorticity conservation is still not perfect and that further improvements

are necessary. The insights gained from this research pave the way for future explorations into

more complex fluid dynamics scenarios and the continued refinement of surrogate modeling

techniques.



Chapter 6

Conclusions and Further

Investigations

6.1 Conclusion

Temporal Modeling One of the significant contributions of this thesis is the development

and application of advanced temporal learning techniques within the context of Lagrangian

continuum simulations. The methodologies explored in Chapter 3 provided a robust frame-

work for transforming Euclidean data into latent space representations, enabling neural net-

works to effectively model the intricate dynamics of fluid and deformable solid simulations.

This transformation process, coupled with a focus on optimizing efficiency and scalability, has

been essential in advancing the state-of-the-art in real-time and large-scale simulations.

Building on this foundation, Chapter 4 introduced an innovative approach to temporal

modeling by integrating Long Short-Term Memory (LSTM) Networks with Multi-Layer Per-

ceptrons (MLP). This hybrid architecture was specifically designed to address the challenges

of capturing complex interactions and long-term dependencies in multimaterial simulations.

Through rigorous comparisons with traditional time series prediction methods, the LSTM-

MLP model demonstrated superior performance, particularly in scenarios involving fluids and

deformable solids.

The advancements presented in these chapters have not only enhanced the predictive

accuracy of neural network-based surrogate models but have also provided valuable insights

into the design and evaluation of temporal models for continuum simulations. The successful

149
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implementation of these techniques marks a significant step forward in the pursuit of more

efficient, scalable, and accurate simulation methods, laying the groundwork for future research

and applications in this domain.

Conservation of Vorticity in Surrogate Models Chapter 5 addresses a key question

of this thesis: How can neural network-based surrogate models be enhanced to accurately

conserve vorticity in fluid simulations? The challenge of conserving physical properties such

as vorticity in Lagrangian simulations is critical for ensuring the accuracy and stability of the

models over long-term predictions.

The primary contribution of Chapter 5 is the introduction of the Self-Supervised Graph

Attention Operator (SuperGAT), a novel approach developed by Kim and Oh (2022) Kim

& Oh (2022), designed to preserve key physical properties, including vorticity and energy,

across simulated particles. This operator significantly improves the neural network’s ability

to make stable and accurate predictions in complex fluid and solid dynamics simulations. By

incorporating this Self-Supervised Graph Attention Operator within a Graph Neural Network

(GNS) framework, this approach addresses a key limitation found in existing models, which

often struggle to balance computational efficiency with the preservation of physical accuracy.

The novelty of SuperGAT lies in its self-supervised learning mechanism, which dynamically

adjusts the importance of neighboring nodes (particles) to focus on critical local interactions,

enhancing the model’s ability to conserve rotational dynamics and other key fluid properties.

Additionally, Chapter 5 enhances the training framework of the Graph-Based Simulator

by integrating both acceleration-based and velocity-based predictions. This dual approach

increases the model’s versatility, allowing it to capture a broader range of dynamic behaviors

within the simulated environment.

The chapter also introduces an extended loss function framework specifically designed

for Lagrangian-based simulations. This framework includes terms for acceleration, velocity,

position, density, divergence, and vorticity, ensuring a comprehensive understanding of the

dynamics being modeled. The enhanced evaluation framework proposed in this chapter rig-

orously assesses the surrogate model’s performance in conserving vorticity through various

methods, including Pearson correlation, residual analysis, and Kullback-Leibler (KL) diver-

gence. These methods provide a multi-faceted evaluation, highlighting the model’s strengths

in maintaining physical accuracy over time.
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The research conducted in Chapter 5 answers the posed research question by demonstrat-

ing that the integration of the Self-Supervised Graph Attention Operator and the extended

loss function framework can indeed lead to more accurate and stable predictions in fluid and

solid dynamics simulations. These advancements pave the way for future research to fur-

ther refine these models, ensuring their applicability in increasingly complex and real-time

simulation environments.

6.2 Further Investigations

Temporal Modeling The LSTM-MLP architecture developed in this thesis was imple-

mented as a Fully Connected Network. Despite its simplicity and effectiveness in simulating

multimaterial interactions, there is a need to extend its capabilities to handle a dynamic

number of particles. This can be achieved by incorporating convolutional operators into

the surrogate model, which would enhance its flexibility and applicability to more complex

scenarios.

Conservation of Vorticity in Surrogate Models One challenge identified in this re-

search is the accumulation of errors during long-term rollout predictions, which can deviate

the accuracy of the predictions over time. To address this, future work could focus on ex-

tending the loss function to incorporate averaged accumulated loss, which can be applied to

various physical loss terms. This extension would help maintain the accuracy of predictions,

particularly in preserving vorticity and divergence in fluid simulations.

Furthermore, there is a need to extend the problem setting from 2D to 3D domains to

further evaluate the capability of the surrogate models in predicting dynamics in 3D space.

This expansion would not only test the models’ robustness but also broaden their applicability

to real-world simulations involving complex phenomena such as vortex rings, vortex shedding,

and other three-dimensional fluid dynamics. Addressing these challenges in 3D environments

is crucial for ensuring the models’ effectiveness in more realistic and complex scenarios.
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