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Abstract

The advent of significantly advancing computational power has brought with it a new
challenge to grapple with: the amount of data being circulated, stored, and processed globally
is increasing at unprecedented rates. While the demand for data storage has seen a clear rise,
advancements to the magnetic recording devices utilised have also improved dramatically
over the past few decades. Due to the limitations of conventional magnetic recording hard-
disk drives, reducing the size of the magnetic domains used to store information has become
a challenge, and is approaching a hard limit. In order to combat this, Heat Assisted Magnetic
Recording (HAMR) has shown great promise in overcoming the limitation in grain-size
reduction by exploiting the temperature dependent properties of materials such as FePt to
approximately quintuple the data storage density by the time HAMR is fully realised. In
order to more appropriately research the exact optimisations necessary for HAMR, atomistic
models are employed to simulate the recording process while having full control over the
inter-atomic interactions governing the process. The theoretical modelling of materials
such as FePt has shown inherent complexity regarding the treatment of the Pt atoms, as its
inclusion in FePt’s magnetisation properties exists as an induced moment, brought on by the
Fe exchange field. While the currently used atomistic model of FePt yields expected results,
it fails to detail the truly atomistic nature of its behaviour, due to elimination of the Pt degrees
of freedom. This thesis introduces the methods necessary to include maximal atomistic
degrees of freedom in FePt, and demonstrates the viability of such a model in investigating
the less looked at parts of theoretical HAMR, such as modelling the magnetisation of FePt
with respect to its inherent disordering.
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1

Introduction

1.1 The origins of magnetic recording

Magnetic recording is the process of storing data via harnessing magnetism in magnetic
materials. This usually manifests through the utilisation of technologies that allow to imprint
a set of magnetically aligned elements which translate to computational information when
read back. The first example of this was by Valdemar Poulsen in 1898, more than 100
years ago [1]. The idea behind this invention was a wire that had localised magnetic regions
imprinted by the electric signals produced via a telephone call. An evolution of the idea
by Fritz Pfleumer in 1928 allowed for the invention of a device known as the tape recorder,
specifically ones that utilised a non-magnetic tape coated in single-domain ferric oxide
particles that were able to take on the magnetisation of a desired recording pattern [2]. At
this point, considerations for the areal density (data stored per unit area) achievable in these
devices started to gain traction, when in 1956, IBM announced the move to a magnetic
recording disk storage architecture, which was used in a commercial product at the time
for data storage and retrieval in computational environments [3]. The particles used in
Hard-Disk Drives (HDDs) were still of a single domain nature, and composed of ferric
oxide. Upon further industry-wide demand increases and need for better solutions, HDD
magnetic recording technology quickly took off as a viable solution to enterprise-scale need
for data storage mechanisms [4]. This follows closely with what is known as Moore’s law,
which defines that in a general case, the amount of transistors and resistors on computational
microchips doubles every 2 years [5]. In more recent terms, it is quantified that the estimated
data generated per year is 175 ZB, whereas this was 33 ZB in 2018 [6]. This is prompted by
significant technological advancement in the space of larger data formats being used, more
accessibility to these data formats, and an overall trend showing that companies are migrating
to cloud (server) based data-storage solutions [7, 8].
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The fundamental principles behind conventional magnetic recording technologies utilised
in HDDs involves a hard disk, the medium upon which data is stored magnetically, which
allows for data to be imprinted and read by a magnetic recording head. This style of magnetic
recording allowed for a convenient read and write process, as the anisotropic magnetisation
of the particles on the media would allow for reorientation via a locally produced magnetic
field. From an efficiency standpoint, being able to "override" the magnetic state of the small
magnetic regions allowed for less error, as the previous magnetic state does not have to be
erased beforehand. Regions on the hard disk are imprinted with a magnetisation direction,
which would determine whether a "1" bit, or a "0" bit is recovered from the read signal. The
first iterations of HDD technology utilised an architecture known as longitudinal recording,
whereby the magnetic regions were aligned in plane to the disk, producing a "left" or a
"right" magnetic field to denote the two bit types [9]. This form of recording was later
revised, and the currently used iteration of HDD technology utilises an architecture known
as perpendicular magnetic recording (PMR). PMR was able to increase the areal density via
the adjustment that the magnetic regions responsible for storing bit sequences were placed
perpendicular to the plane of the disk, and thus by measuring "up" and "down" magnetic
fields, more bits could be placed onto the same area. Figure 1.1 illustrates the differences
between longitudinal recording and PMR [10, 11].

Longitudinal Perpendicular

Soft underlayer

Recording head

Recording head

Track direction

Track direction

Fig. 1.1 A schematic representation of longitudinal versus perpendicular recording
technologies. It is evident that in the perpendicular state, a more concentrated amount
of bits can be utilised, leading to a larger data storage density. The soft magnetic underlayer
amplifies the magnetic field via the creation of a return flux path.

The PMR architecture introduces a soft underlayer material below the layer containing
the recording data. This is to ensure that the write field produced is able to more easily focus
on precise regions (given they are now of a smaller size), and to minimise the stray field
produced. An additional constraint introduced in PMR is that the grains have to contain



1.2 Heat assisted magnetic recording 3

mechanisms to prevent exchange with each other in-plane if their anisotropy field is not high
enough. Minimising the exchange coupling between grains is necessary to prevent accidental
clustering of multi-grain domains [12].

In order to achieve larger areal densities, the grains (small cylindrical magnetic particles
forming PMR media) had to be reduced in diameter to be able to accommodate a larger
density. This is limited by the following competing forces: smaller grains are susceptible to
erroneous switching due to thermal fluctuations, thus require highly anisotropic behaviour
to overcome detrimental thermal effects. This is quantified as KV , which refers to the
anisotropy density K with relation to grain volume V . With comparison to temperature T , the
relationship KV ≈ 40kBT must hold, otherwise the system is error prone to thermal effects
[13]. This has an effect on the choice of recording head field strength, as now the write field
has to overcome the anisotropy energy [14]. The collection of these three competing forces
acting against each other illustrated in figure 1.2 and is referred to as the magnetic recording
trilemma [13, 15].

In order to combat the readily approaching limits to conventional magnetic recording,
research on Heat Assisted Magnetic Recording (HAMR) has had great success to further push
areal density limits [16]. The introduction of thermal effects introduces another component
to the conventional magnetic recording trilemma, which results in the magnetic recording
quadrilemma. This is introduced in more detail in chapter 3.

1.2 Heat assisted magnetic recording

Heat Assisted Magnetic Recording (HAMR) writing process occurs by modifying the original
recording head to include a near-field transducer (commonly with a Gold heating element),
which applies a persistent thermal field to local grains [17]. HAMR commonly utilises FePt
grains for its temperature-dependent anisotropy properties, which can be exploited by the
near-field transducer. The persistent thermal field heats up the materials underneath it with
the goal of reaching Tgrain = TC, at which point, the paramagnetic state of the grains makes
overcoming their otherwise strong anisotropy field much easier. As the grain cools, the data
remains stable in even smaller grains, as the anisotropy K of room-temperature FePt keeps
the magnetisation stable beyond thermal effects [16, 18]. With advancements on HAMR, it is
projected that the current areal density of 1 Tb/in2 is able to increase to 4 Tb/in2 using grain
diameters of Dgrain ≈ 5 nm with HAMR-based architecture [19]. Figure 1.3 describes the
Advanced Storage Technology Consortium’s projections for the implementation of HAMR
as a timescale.
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Trilemma

KV ≈ 40kBT

Thermal stability

Large write field

Maximum Hwr

Larger areal density

Dgrain < 5nm

K

Hwr

Dgrain

Fig. 1.2 A summarised description of the three factors competing in the magnetic recording
trilemma. While it is not possible to nullify the effects from either aspect, certain grain
configurations minimise their effects to a tolerable limit.

A constraint that is introduced via the thermal mechanisms of HAMR is that in practice,
manufacturing recording media will introduce a variance in grain size and volume, thus
creating a variance in TC and K(T ) in the case of FePt [21]. This is a challenge, because if
the same global temperature affects all grains in the same way, in some cases if Tgrain >> TC,
the additional temperature-dependent disordering introduced causes a reduction in anisotropy,
which reduces the probability for switching into the recording field direction [22, 23].
Additionally, it is expected that some clusters of disordered FePt (in the A1 phase) will
form naturally as a result of the recording media manufacturing process, which will cause
deviations in the natural easy-axis of the anisotropy [24]. Deviations in the natural easy-axis
of grains causes the grain anisotropy fields to contribute an unexpected in-plane component,
which can have consequences to the expected grain field direction when the reading process
takes place.
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Fig. 1.3 ASTC/ASRC defined future trends for magnetic recording technologies, showing
a clear trend towards developments of thermally variable recording architectures. Source:
excerpt from [20].

As a means of researching and further developing the understanding of how to best achieve
maximal areal density, theoretical computational models are often employed to simulate
HAMR [25–27]. Due to the nanoscale complexities that arise in such technologies, atomistic
modelling can be utilised as a form of discretising the HAMR process into individual atoms,
and computing the necessary interactions between them. Such atomistic modelling strategies
can be used to build full-scale simulations of the recording process, whereby the nanoscale
physics can more easily be calculated and understood. This thesis works towards building a
more locally-dependent atomistic model of HAMR, such that the physical effects arising from
even minute differences in crystal structure can be accounted for and calculated. This brings
the advantage of having fine control over determining properties of explicitly positioned
atoms, with significantly less overhead assumptions and averaging. Atomistic modelling also
brings an inherent advantage via its ability to more precisely customise the exact position
of each atom with relation to the bulk system. This means that modelling effects such
as disordering and alloying configurations are much more accessible, which is a crucial
component of understanding the nanoscale physics of magnetic materials.
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1.3 Atomistic modelling strategies

Atomistic modelling of magnetic materials is the strategy of calculating magnetic properties
via the evolution of spin degrees of freedom in a system under various conditions such as
variations in crystal structure, variations in temperature, or the influence of applied fields.
The nature of atomistic modelling relies on the assumption that the collective spin behaviour
of electrons can be approximately localised to each atomistic site in a crystal structure, and
via computing the interaction properties between the atoms, a system will naturally fall into
a favourable state due to correlation between the direction of the spins. By decomposing a
system into its atoms as the smallest building block, parallelised computational routines can
be developed that distributes the computation of spins as efficiently as possible, allowing for
massively scalable architectures [28, 29]. The scalability of the frameworks used is pivotal
in being able to run simulations that are larger in size and complexity to better emulate the
macroscopic effects of magnetic systems via a set of atomistic interactions.

1.4 Thesis outline

The realisation of Heat Assisted Magnetic Recording (HAMR) has garnered interest in
furthering its maximal potential, however in order to fully grasp the nanoscale nature of the
physics underpinning the interactions that govern it, this thesis aims to enhance the currently
employed methods of atomistic modelling, and to deepen physical understanding of the
magnetisation dynamics that take place via the Longitudinal Spin Fluctuations (LSF) model.
The development of such a model was crucial in extracting truly atomistic detail from a
commonly used material for HAMR: FePt, which has posed challenges in its simulation
due to the induced moment nature of the Pt sites. The level of additional detail provided by
the LSF model has allowed for full-scale atomistic simulations of HAMR with all atomistic
degrees of freedom, which can be used to model previously approximated factors such as
Pt moment growth, inherent disordering, or the introduction of a disordered phase in the
magnetic recording medium. The results of this thesis unlocks new ways to investigate
stoichiometric variations in HAMR recording media, which makes the process of developing
prototype HAMR technologies easier, with the aim to push the areal density limits.

Chapter 2 details the key derivations that were used in the atomistic modelling techniques
used in this thesis. A description of the Heisenberg Hamiltonian is shown, with the origins of
the exchange coupling interaction between spin sites which ultimately govern the correlation
between the spins in a magnetic system. Additionally, the generalised anisotropy energy
forms are discussed, in both uniaxial and cubic forms. The two-ion tensorial form of
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anisotropy is discussed, which is introduced in the context of FePt as per Mryasov et al [30].
The Landau expansion is highlighted, which is the basis for informing the Longitudinal Spin
Fluctuations (LSF) models that are utilised in this thesis to model moment size changes
via the energies determined by the material-specific Landau Hamiltonian. The integrator
schemes necessary to compute longitudinal behaviour are introduced and discussed, which
come in Landau-Lifshitz-Gilbert (LLG) and Monte-Carlo (MC) forms. The relation of the
longitudinal integrators are highlighted against the Landau-Lifshitz-Bloch (LLB) equation of
motion, which can be used to derive the LSF-LLG integrator scheme.

Chapter 3 shows the derivation and usage of the conventional FePt model, which uses
the aggregate effect of the Pt as a modification to the Fe moments, which are ultimately the
only degrees of freedom modelled in this formalism. Calculations were done to show the
temperature-dependent behaviour of the implemented FePt model, which replicated what is
expected through the experimentally measured Curie temperature and anisotropy scaling laws.
Calculations are shown for the HAMR single-grain switching process of L10 FePt grains, and
the consequences that different system dimensions has on switching viability. Fully atomistic
HAMR was also done as a calculation with this model, showing the atomistically-determined
process of magnetic recording by exploiting the variable anisotropy present in FePt systems.

Chapter 4 focuses on the initial implementation of the LSF model, where tests are done
on four common magnets Fe, Ni, Co, and Cr. The Landau coefficients for the four materials
were computed (acknowledgements to Lars Bergqvist) using DFT methods detailed in Pan
et al. which allowed for appropriate moment size changes to be modelled as a dynamic
parameter [31]. A justification to the adjustments made to the coefficients is also discussed,
so as to satisfy the equilibrium condition of spin length quantity |S|= 1 at T = 0 K. Further to
this, the implementation of the longitudinal LLG (LSF-LLG) integrator scheme is validated
via the use of the Heun and the notably more accurate fourth-order Runge Kutta (RK4)
solver. For the longitudinal Monte-Carlo (LSF-MC) integrator scheme, it is shown that
the longitudinal Boltzmann distributions recover the exact behaviour that was described
by the Landau Hamiltonian, validating the approach to using a combination of transverse
and longitudinal sampling spaces. The temperature-dependent magnetisation results are
highlighted, with the dependence of |S| with respect to T as a contributing factor to each
system’s normalised magnetisation. As a means of testing the dynamics of the LSF model,
a Ni system was subjected to an ultrafast laser pulse causing demagnetisation, showing
excellent agreement with experimental data.

Chapter 5 builds on the implementations introduced in chapters 3 and 4 by implementing
a longitudinally-dependent FePt model, which allows for the full discretisation of Pt spins.
By allowing moment size changes of the Pt spins, the induced behaviour via the Fe exchange
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field can be computed, and thus Pt degrees of freedom are included in the magnetisation
dynamics of FePt. Additionally, the conventional anisotropy model for FePt was reworked
to include local stoichiometric variation by utilising the Néel pair anisotropy of second and
fourth-order expansions. The variation of FePt’s uniaxial easy-axis anisotropy is shown
to follow the relationship measured by Okamoto et al. while the exact cubic symmetries
are recovered at the fully disordered A1 phase [32]. The newly reworked magnetisation
properties of FePt are demonstrated using the LSF model, showing the exact qualitative
behaviour that Pt gains an induced moment as a result of the Fe exchange field. This was
shown via system magnetisation against temperature calculations, along with the Fe and Pt
longitudinal Boltzmann distributions.

Chapter 6 collates the newly-localised LSF FePt model, and places it into the context
of full-scale HAMR simulations. Using the extra detail obtained allows for calculations of
anisotropy symmetries of grain structures with varying levels of disordering, which were
shown to scale as expected: increasing disordering leads to a clear reduction in uniaxial
anisotropy. Switching dynamics are shown for FePt grains with varying levels of disorder,
and it is demonstrated that the extra stoichiometric variation leads to inefficiencies in the
switching process. The single-grain structures were collected into fully atomistic models of
magnetic recording media, where HAMR simulations were conducted once again, this time
with full degrees of freedom in FePt. Additionally, the effects of disordering on the efficiency
of writing bit sequences is shown to significantly deteriorate the quality of the data written.
Finally, calculations were done to determine the easy-axis relaxation profiles of grains on a
magnetic recording medium with varying levels of disorder.

Chapter 7 highlights the key results obtained, from which conclusions are drawn. This
also includes any potential shortcomings or future improvements that could be implemented
to continue the research presented in this thesis.



2

Methods

2.1 The atomistic spin Hamiltonian

The atomistic spin Hamiltonian describes the total energies of a system via an averaged
description of their collective behaviour, attributed mainly to a configuration of outer-shell
electrons. A pivotal assumption is that their total spin contributions can be localised to each
site in a lattice environment. In magnetic systems, this leads to modelling spin systems
down to atomistic discretisation by defining a Heisenberg Hamiltonian that calculates the
dependence of each spin site with another neighbour via spin vector S. This represents a
vector defining the three-dimensional components of spin where |S|= 1 classically, however
in this thesis methods are introduced to remove this constraint on |S|. Resulting from this is
that each spin site carries with it a net local magnetic moment µs based on its singly filled
outer shell, meaning that in most cases this applies to d and f block elements [33]. It is
well established that the moment size of an atomistic site is able to change in magnitude in
various circumstances such as scaling with temperature, or inducing moments via alloying
[34–36]. This leads to natural questions regarding implementing this into a spin Hamiltonian
framework, while still maintaining the underlying computational assumptions of full moment
locality.

This chapter investigates the framework of the atomistic Hamiltonian used to simulate
magnetic materials in the conventional sense, along with a section on the longitudinally-
augmented Hamiltonian. The computational implementation of this work was done in
VAMPIRE, which is an open-source C++ based software package for simulating magnetic
nanostructures [28, 37].
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2.1.1 Collective electron spin representation and exchange

The exchange interaction arises from overlapping electron orbitals, and changes the
expectation value of the position of electrons dependent on neighbouring electron
wavefunctions. In order to define the exchange interaction, an example shown in [38] is
utilised, whereby exchange is proven for two electrons at different positions r1 and r2. The
incorporation of spin in this formalism is shown afterwards.

The joint wavefunction of two electrons in different states a and b is defined as
ψa(r1)ψb(r2). Exchange symmetry is disobeyed given such a definition, because the
resultant particle exchange would lead to ψa(r2)ψb(r1), a result which is not a multiple
of the initially defined wavefunctions ψa(r1) and ψb(r2). In order to obey symmetry or
antisymmetry in the electron wavefunction product states, one of the following equations
must hold true (showing symmetric and antisymmetric products respectively):

Ψ(r1,r2) = Ψ(r2,r1), (2.1)

Ψ(r1,r2) =−Ψ(r2,r1). (2.2)

The Pauli exclusion principle states that no identical electron can occupy the same quantum
state simultaneously. By expanding equations 2.1 and 2.2, the following is obtained:

Ψsym(r1,r2) =
1√
2
[ψa(r1)ψb(r2)+ψa(r2)ψb(r1)] , (2.3)

Ψasym(r1,r2) =
1√
2
[ψa(r1)ψb(r2)−ψa(r2)ψb(r1)] . (2.4)

The resultant equation where two identical electron wavefunctions are defined (Ψsym) can be
eliminated, as it requires an electron with position r1 to be in states ψa and ψb simultaneously,
which is prohibited by the Pauli exclusion principle. Hence, the only possibility is Ψasym.

The Heitler-London Approximation establishes a calculation for the total energy of this
two-electron system via a combination of their individual wavefunctions. This is given by

Etotal =
∫∫

Ψ
∗(r1,r2)HtotalΨ(r1,r2)δr1 δr2, (2.5)

where in this case, the Hamiltonian Htotal can be decomposed into the contributions shown
in the following:

Htotal = H1 +H2 +H1,2, (2.6)
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where H1 represents contributions for the position r1, H2 for position r2, and H1,2 for both
positions r1 and r2, which is the effective interaction energy between the two electrons. The
remainder of this derivation concerns the use of the Hamiltonian H1,2 (given interacting
electrons), which can be broken into two contributions shown in the following, representing
the classical Coulomb interaction and the quantum mechanical exchange interaction
respectively:

ECoulomb =
∫∫

ψ
∗
a (r1)ψ

∗
b (r2)H1,2ψa(r1)ψb(r2), (2.7)

Eexchange =
∫∫

ψ
∗
a (r1)ψ

∗
b (r2)H1,2ψa(r2)ψb(r1). (2.8)

The energy contribution responsible for the Coulomb interaction ECoulomb has a purely
classical basis, and thus is disregarded for the remainder of this derivation. The remaining
consideration is given to the quantum mechanical exchange energy Eexchange, whereby
exchanging the electron positions would have an immediate effect, unlike in the classical
case. To introduce the effects of electron spin, the individual wavefunctions ψa and ψb

can be described as the combination of two parts φ(r) and χ , representing spatial and spin
contributions respectively:

ΨS =
1√
2
[φa(r1)φb(r2)+φa(r2)φb(r1)]χS, (2.9)

ΨT =
1√
2
[φa(r1)φb(r2)−φa(r2)φb(r1)]χT. (2.10)

This is defined such that the total wavefunction of the electron still remains antisymmetric.
This is because in the case that there is spatial symmetry, the spin component is antisymmetric,
and if there is spin symmetry, the spatial component is antisymmetric. These two possible
combinations are labelled as S and T, which stand for singlet (symmetric spatially) and triplet
(antisymmetric spatially) states. Based on the alignment of spins, the singlet state has spin
quantum number s = 0, and the triplet state has s = 1. Next, the total energies for both states
are defined as the following:

ES =
∫∫

Ψ
∗
SH ΨS dr1 dr2, (2.11)

ET =
∫∫

Ψ
∗
TH ΨT dr1 dr2. (2.12)
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In order to consider the differences between the singlet and triplet states, the difference
between them can be defined according to

ES −ET = 2
∫∫

φ
∗
a (r1)φ

∗
b (r2)H φa(r2)φb(r1)dr1 dr2. (2.13)

Defining the spin operators at sites 1 and 2 in this system as S1 and S2, they can be joined to
get (S1 +S2)

2 = S2
1+S2

2+2S1 ·S2, with eigenvalues S(S+1). By noting that the eigenvalues
of both S1 and S2 is 3

4 (given that S(S+ 1) = 1
2 ·

(1
2 +1

)
), in the singlet case, the product

component S1 ·S2 yields
(
0− 6

4

)
· 1

2 =−3
4 , whereas in the triplet case

(
2− 6

4

)
· 1

2 = 1
4 . An

effective Hamiltonian according to the singlet and triplet product components can now be
written as

H =
1
4
(ES +3ET)− (ES −ET)S1 ·S2. (2.14)

This effective Hamiltonian follows the definition that if S1 ·S2 =−3
4 (singlet), then H = ES,

and vice versa for the triplet case. The first (spatial) term in equation 2.14 shows no
dependency with respect to spin, and thus is treated as a constant. As for the spin dependent
terms, the constant factor in front of S1 ·S2 is denoted by an exchange factor J. The exchange
integral can then be defined according to

J =
ES −ET

2
=

∫∫
φ
∗
a (r1)φ

∗
b (r2)H φa(r2)φb(r1)dr1 dr2. (2.15)

Finally, the effective spin Hamiltonian can be obtained by substituting equation 2.15 with
equation 2.14, and removing any constants. This gives:

Hexch =−2JS1 ·S2. (2.16)

Given a positive value of the exchange constant J, minimum energy is achieved in the triplet
state (s = 1), whereas the singlet state is the minimum for a negative J with s = 0. The
Heisenberg exchange spin Hamiltonian can then be written as the following for magnetic
systems, with multiple localised interacting spin sites (with interactions up to the first nearest-
neighbour):

Hexch =−∑
i< j

J1-nn
i j Si ·S j, (2.17)

where the first nearest-neighbour exchange coupling factor J1-nn
i j is a system dependent

constant for the coupling between sites i and j, with the factor-two being omitted so as to not
double count. For ferromagnetic systems that minimise energy via parallel spin alignment,
the exchange coupling value takes the constraint J1-nn

i j > 0, whereas in the antiferromagnetic
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case causing opposing alignment J1-nn
i j < 0. Figure 2.1 summarises the differences between

ferromagnetic, antiferromagnetic, and paramagnetic spin configurations assuming up to first
nearest-neighbour exchange interactions.

Ferromagnetic (J1-nn
ij > 0) Antiferromagnetic (J1-nn

ij < 0) Paramagnetic (J1-nn
ij = 0)

Fig. 2.1 Ferromagnetic, antiferromagnetic, and paramagnetic spin configurations. The
ferromagnetic case causes parallel alignment due to J1-nn

i j > 0, the antiferromagnetic case
causes opposing exchange between spin sites to nullify the effective field by having J1-nn

i j < 0.
Finally, the paramagnetic state shows no preferential alignment direction, and thus are fully
randomly oriented.

In a practical case, as a means of deriving the exchange coupling factor between spins in
a system, the mean-field approach applied to spin-waves was utilised [39], which describes a
relationship between the TC of a system and its nearest-neighbour configuration to extract a
value for J1-nn

i j . This is written as the following:

J1-nn
i j =

3kBTC

εz
, (2.18)

where kB is the Boltzmann constant, ε is a spin-wave correction factor, and z is the number
of first nearest-neighbours [39]. ε is a factor that corrects for spin waves in the Heisenberg
exchange interaction, and varies depending on the crystal structure of the system [40].

2.1.2 Anisotropy energy

With respect to the crystallographic orientation of spin sites in a lattice, a system is defined to
have an anisotropy energy if there are differences in the energy states for given spin directions
over others. The two main interactions governing the presence of magnetocrystalline
anisotropy are spin-orbit coupling, and the crystal-field interaction. The effects of spin-
orbit coupling arise from the electron spin in the presence of the crystal-field. This can be
interpreted as the electrons being under the influence of a local magnetic field from their



14 Methods

angular momentum being affected by the electric field near the atom [41]. The strongly
overpowering electrostatic crystal field within the presence of a lattice structure most times
leads to an insignificant orbital moment when compared to the effects of the spin moment.
This reduction of orbital moment is known as quenching. This relationship between the
configuration of the lattice and the inherently asymmetric electron orbital wavefunctions
leads to energies dependent on direction, which is defined as magnetocrystalline anisotropy.
In order to quantify and implement an anisotropic energy term from an atomistic perspective,
the uniaxial (alignment along a preferred axis) case is described as

Huniaxial =−ku ∑
i
(Si · êi)

2, (2.19)

whereby the energy value ku regulates the anisotropic energy contribution given a reference
spin S at site i with respect to the axis of preferential alignment (easy-axis) ê. An easy-axis
arises in L10 FePt for example due to a symmetry breaking interaction of the lattice along
the z-axis, which leads to a preference of spin alignment along the stacking plane of Fe and
Pt species. With respect to an azimuthal angle θ , a general form of the easy axis energies can
be defined in the form Huniaxial = ku sin2(θ) [42], where this energy is minimised at θ = 0°
and θ = 180°.

Given a cubic lattice, and no compression along the z-axis, oftentimes a cubic form of
anisotropy emerges, which in the case of disordered FePt, tends to be a significantly weaker
contribution than its uniaxial counterpart in an ordered state. Cubic anisotropies arise when
there is symmetry along all the cubic lattice faces, and thus the system has a preferential
alignment along multiple easy axes. Given a set of easy axes along [100], [010], and [001]
directions, one can describe the cubic anisotropies following the form seen in Kronmüller
[43]:

Hcubic =−kc

2 ∑
i

γ
4
i , (2.20)

where kc defines the cubic anisotropy energy for a sum of spins labelled by i. γi refers to
the dot products of the spin vector with the easy axes, γi = (Si · êi,x)+(Si · êi,y)+(Si · êi,z).
Given that the easy axes are orthogonal, one can use the expanded form of γi with equation
2.20 to get the equation governing cubic anisotropy interactions [28, 44]:

Hcubic =−kc

2 ∑
i
(S4

i,x +S4
i,y +S4

i,z), (2.21)

where Sx, Sy, and Sz are the directional spin components in the spin vector along the x, y, and
z axes.
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2.1.3 Two-ion anisotropy

The two-ion anisotropy energy arises due to a mechanism involving two different material
species in the same lattice that both simultaneously contribute to the anisotropy configuration
of a given atomistic site. In the case of L10 FePt, the addition of a two-ion anisotropy term
was introduced in Mryasov et al., and arises due to the anisotropic nature of the exchange
interaction [30]. The two-ion term is important here, as it determines the Fe energy assuming
Pt sites as an intermediary to this interaction. This requires a further expression from the
previous onsite and single-ion term seen in section 2.1.2, which includes the tensorial form
of the anisotropy energy represented by

H2-ion =−∑
i, j

ST
i ki jS j, (2.22)

where the summation determines the anisotropic energy via ki j with relation to the spin
unit vector S at sites i and j. ki j consists of diagonal and off-diagonal components for x, y,
and z directions, however according to Mryasov et al. in L10 FePt, the x and y directional
components are zero. To construct the total anisotropy energies in the generalised case for
L10 FePt, a combination of single-ion and two-ion terms are used:

Hani =−∑
i

k1-ion(Sz
i )

2 −∑
i, j

kz
2-ion

(
Sz

i ·S
z
j

)
, (2.23)

where k1-ion is the uniaxial single-site dependent anisotropy constant, and k2-ion is the first-
nearest neighbour dependent anisotropy contribution. The terms with the z superscript denote
that the non-zero z-component is being considered.

2.1.4 Applied magnetic fields

Applied magnetic fields affect the preferential direction of spins. A system will seek to
minimise energy by aligning spins along the direction of this applied field. To quantify the
applied field energies, the following form is used [45]:

Happlied =−µs ∑
i

B ·Si, (2.24)

where µs corresponds to the magnetic moment of spin Si within an applied field B. The
energy minimising behaviour for a magnetic moment in an applied field is what gives rise to
the atomistic modelling of Heat Assisted Magnetic Recording (HAMR), whereby this term
regulates the magnetic switching process of all the affected spin sites.
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2.1.5 The Landau expansion and longitudinal dynamics

A core focus of the simulation strategies developed in this thesis centre around the
development of a longitudinal spin dynamics model, which aims to more appropriately
describe the changes to the magnitude of the magnetic moment with temperature [46–48]. A
fundamental assumption of the atomistic Heisenberg model is that moments are perfectly
locally bound by lattice sites, and it fails to describe the nature of changes to the magnitude
of the magnetic moment at a given site. From a more physical perspective, electrons tend
to greatly vary in locality given changes to their nearest-neighbour configuration, which
changes the immediate net magnetic moment associated to a site.

In order to map the material specific moment size dependence to the energies of a system,
even powers of the Landau expansion are used as a basis for regulating longitudinal changes.
From a general standpoint, the Landau expansion describes continuous phase-transitions
with respect to a given ordering parameter. In this case, the associated ordering parameter
is the quantity |S|, and thus the longitudinal Landau Hamiltonian is given by the equation
[31, 46–50]:

HL = ∑
i

∑
α

Aα |Si|2 +Bα |Si|4 +Cα |Si|6, (2.25)

where Aα , Bα , and Cα are Landau coefficients that use α to denote their material dependence.
It should be noted that the Landau Hamiltonian in this case is an even function, and thus when
|S|= 0, the second-order coefficient will have to be Aα > 0, so as to form a new minimum at
the point where E = 0 [49]. As a consequence of this, when the system energy minimum is
defined at E < 0, Aα < 0 has to hold. It is not entirely clear if a Landau expansion including
odd-powers would work, however thus far the standard convention has been to include only
even powers of |S|.

The relationship between the scaling of |S| with respect to energy is purely determined
by the coefficients, which is in turn heavily informed by the system’s reference energy
states according to the values of J1-nn

i j , and ku. It is important to highlight that the exchange
contribution is orders of magnitude larger than the anisotropy contribution in most systems.
To represent these effects, the complete spin Hamiltonian with longitudinal contributions can
be written as:

Htotal =∑
i

∑
α

Aα |Si|2 +Bα |Si|4 +Cα |Si|6 −∑
i< j

J1-nn
i j Si ·S j − ku ∑

i
(Si · êi)

2. (2.26)

The justification for mapping the ordering parameter using |S| instead of the actual atomic spin
moment quantity µs is natural: when calculating the magnetisation energies corresponding
to a certain spin configuration, the quantity µs is combined with the spin vector quantity
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S, as a reflection of the magnetisation strength in a given species. Thus, varying |S| while
keeping the quantity µs constant has the intended effect, however it is numerically easier
to handle given that all materials are normalised to |S|= 1 at equilibrium, or in the case of
non-magnetic materials, they are normalised to |S|= 0. In order for longitudinal changes
to be naturally accounted for in the form of the spin Hamiltonian, the standard spin vector
which includes spin length changes is defined as S = Ŝ|S|, whereas in the more conventional
Heisenberg Hamiltonian, the vector S refers to a normalised unit vector quantity Ŝ, which
explicitly forces |S|= 1, hence no change occurs to the moment size.

It should be highlighted that the Landau expansion is not restricted up to the sixth-order
term |S|6, and equivalently does not require coefficients up to the sixth-order. Each coefficient
differently regulates the form of the longitudinal energy surface, and as a result different
materials will require different contributions from the terms in the expansion. As an example,
the Cα coefficient regulating the sixth-order term is only valid if a material requires a strictly
constrained maximum of |S|. Additionally, although this research has found that none of the
investigated materials warrant it, an |S|8 term is equally applicable for a generally shallow
longitudinal surface, that has an otherwise strict limitation on the growth of |S| beyond a
certain limit.

To quantify a material’s Landau coefficients, Density of States (DOS) Density Functional
Theory (DFT) calculations are employed to determine the energy with respect to moment size.
While the research done in this thesis does not include the computation of the coefficients, a
summary as to the general methods applied is provided. According to the Fixed Spin-Moment
(FSM) method, the DOS given a constant magnetic moment can be mapped according to
the Fermi energies of spin up and spin down states [51, 52]. The following two equations
describe the DOS calculations for the magnetic moment and number of electrons respectively
[49, 53]:

M =
∫

εup

−∞

D(E)dE −
∫

εdown

−∞

D(E)dE, (2.27)

N =
∫

εup

−∞

D(E)dE +
∫

εdown

−∞

D(E)dE, (2.28)

where M is the magnetic moment, and N is the number of d electrons. εup and εdown represent
the spin up and spin down Fermi levels. It is natural to pose a question about the physicality
of having unequal Fermi levels for the spin up and spin down states. The FSM method
requires that εup ̸= εdown, as this relation is how the energy for an arbitrary spin moment
magnitude can be calculated. This can be viewed as artificially constraining the spin up and
spin down DOS to be able to compute energies for magnetic moment sizes that are otherwise
impossible at the ground state.
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Given that the Stoner model describes energy bands according to Etotal = Eup +Edown −
1
4 IM2 which is the summation of spin up and spin down electron energies, along with a
Stoner parameter term I which accounts for two-body correlations between electrons, the
function Etotal can be mapped onto the Landau expansion while keeping its dependence on
M, the moment size [49, 53]. This yields the equation [49]:

Etotal ≈ E0(M)+aM2 +bM4 + cM6, (2.29)

where a, b, and c are coefficients that are directly proportional to Aα , Bα , and Cα . E0(M)

is an energy function that arises from the exchange and anisotropy energies in the system,
contributing to the total depth and position of the longitudinal energy surface. It can be
seen as a result, that the reference energy states in this process directly inform the Landau
coefficients. This means that variations in a system’s exchange energy reference state while
computing the coefficients vs. applying them in calculations will result in variability for the
equilibrium value of |S|, denoted by the minimum of the longitudinal energy surface. This
poses a challenge, as from a practical standpoint it is not feasible to compute a set of new
coefficients for minor changes in a system’s configuration. For example even changes in
system size will affect the average exchange coupling between spin sites, leading to a shift
away from the reference energy state the coefficients were computed with. A crucial method
of verifying that a system’s coefficients are valid is that at equilibrium, the value |S| = 1
holds, to appropriately reflect the size of its original moment µs.

Being able to map the moment size changes to a constrained potential energy calculation
enables for atomistic simulation of moments that are more itinerant in origin. A primary
focus of this thesis will be looking at the consequences of the calculation of the magnetic
properties of systems, where the total magnetisation is wholly affected by changes to the spin
length quantity |S|.

2.2 Atomistic integrator schemes

2.2.1 The stochastic Landau-Lifshitz-Gilbert integrator

Fundamentally the magnetization per unit volume, M, under the influence of a field will
tend to minimise energy via aligning its moments with the field via a torque density τ . This
motion is known as Larmor precession [42]. To represent this in an undamped case, whereby
the magnetic moment referenced will undergo precession, the following equation describes
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the time evolution [42]:
∂M
∂ t

=−γτ, (2.30)

where γ = 1.76× 1011 s−1T−1, and is the gyromagnetic ratio of an electron. The torque
density can be computed via the cross product of the magnetization M with magnetic field B
to give

∂M
∂ t

=−γµ0M×B, (2.31)

where µ0 is the permeability of free space. In an undamped case, the magnetic moment is
stuck in precession around a central axis determined by the field direction. This is because no
energy is lost over time, and thus its motion can be maintained. Once damping considerations
are introduced, an augmentation to equation 2.31 must follow, which is defined such that
as t → ∞, the moment will align exactly with the field direction. The following equation is
known as the Landau-Lifshitz (LL) equation, which defines this damped behaviour [54]:

∂M
∂ t

=−γM×H− γαM× (M×H), (2.32)

where α is the phenomenological damping constant, and the relation H = µ0B is used,
where the units of the effective field H is Teslas. The damping parameter regulates how
quickly energy is lost to the system via the inherent properties of the system such as lattice
environment, or the external factors present surrounding the system such as changes in
temperature. As a result of this, it is evident in the LL equation that the damping term
is system dependent. It was determined by Gilbert that the dissipation term arising due
to damping was not appropriately being scaled according to the time evolution of the
magnetization, ∂M

∂ t [55]. As a result, the following equation was constructed, which is known
as the Landau-Lifshitz-Gilbert equation:

∂Si

∂ t
=− γ

(1+λ 2)
[Si ×Hi +λSi × (Si ×Hi)], (2.33)

where a microscopic damping parameter λ is now used, and M can be rewritten according to
the identity M = µsS. Equation 2.33 is also written in the atomistic form (with reference to
site i), to demonstrate its implementation into an atomistic computational framework.

2.2.2 The Heun solver

As a means of the computational implementation and overall usage of the dynamic integrator
schemes detailed this thesis, a solution to the stochastic form of the equation of motion must
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be calculated. A key characteristic of the chosen solver is that it has to provide convergence
to the true value of the solved stochastic equation within a reasonable amount of steps. The
Heun scheme is a two-step second-order Runge-Kutta method, which calculates a solution
to the LLG equation via a predictor and a corrector step. As opposed to the single step
variant known as the Euler scheme, the computational sacrifice of committing two steps to a
single calculation of the gradient is significantly outweighed when considering how much
more accurate the calculated value is. This leads to the consideration that larger timestep
sizes can be used, which yields quicker simulation times overall. Given an equation of
motion to calculate the time evolution of a spin site, the initial predictor step defines the new
intermediate direction according to [56]:

S′
i = Si +∆S∆t, (2.34)

where ∆t refers to the size of the timestep, with the change in spin vector due to the equation
of motion as ∆S. In order to apply a correction to this within the same timestep, the following
corrector step is used:

St+∆t
i = Si +

∆t
2
[
∆S+∆S′] , (2.35)

where ∆S′ now refers to the change in spin vector due to the equation of motion having used
the intermediate spin position in equation 2.34. During this process, it is noted that the spin
fields are recalculated once at the beginning of each timestep, and once after the predictor
step. It is well established that convergence for the LLG is reasonably reached with ∆t = 1fs
for the LLG-Heun integrator, however given the introduction of longitudinal dynamics in
this thesis, additional confirmation is necessary for the newly implemented longitudinal LLG
equation of motion [28, 57]. As a result, the fourth-order variant of the Runge-Kutta solver
is also implemented.

The order of errors associated with the Heun scheme is quantifiably small: with a timestep
size of ∆t = 1 fs, and damping λ = 0.1, an error of magnitude 10−6 can be expected when
computing the precession of a single spin in an effective field [28].

2.2.3 Effective magnetic field

As a further development to the derivation of the LL (and subsequently the LLG) equation,
the effective field at site i given by Hi is a term referring to the collective effects of all
fields acting on the spin sites, which is parametrised according to the energies of the total
Hamiltonian. In order to compute the effective field contributions of the system’s energies,
the derivative with respect to spin vector Si is taken. The effective field calculation takes
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place according to

Hi =− 1
µs

∂H

∂Si
. (2.36)

While the standalone LLG equation describes a fully deterministic calculation, a
stochastic thermal noise term constructs a coupling mechanism to the system via a thermal
heat bath. This is based on Langevin dynamics, which in a general sense describes the effects
of a random force with relation to a thermodynamic system [58]. The complete form of the
effective field with the additional thermal noise term is described as

Htotal
i =− 1

µs

∂H

∂Si
+ΓΓΓ(t)

√
2λkBT
γµs∆t

, (2.37)

where ΓΓΓ(t) is a Gaussian distribution of mean 0 and width 1, kB is the Boltzmann constant, T
is the system temperature, and ∆t is the timestep size. The consequence of the thermal noise
term is that significantly larger random changes are made to the effective field as temperature
increases, which allows for the computation of disordered states at high temperatures. At
T = 0 K, no fluctuations are introduced to the system, and thus an ordered system prevails.
The choice of using a white noise representation of the stochastic nature of energy exchange
with the heat bath follows the assumption that the dissipation of energy is not correlated in
time. As a result, a commitment is made to introducing this behaviour via a stochastic term
[59, 60]. To visualise the relationship between the precession term, damping term, and the
thermal noise term, figure 2.2 shows a visual summary.

It should be noted, that the LLG equation assumes a fixed rotation around a unit sphere
(|S| = 1) and thus calculating the time-evolution of a system with longitudinal degrees
of freedom according to the atomistic Landau Hamiltonian would not be valid, as the
unconstrained spin length quantity would not be able to evolve.

2.2.4 The longitudinal Landau-Liftshitz-Gilbert integrator

In order to incorporate atomistic longitudinal dynamics into the LLG integration scheme,
the phase space of the conventional LLG must be augmented such that it accounts for a
variable unit sphere in the precession and dissipation terms. Ma et al. builds a relationship
between the Langevin equation for the motion of atoms and the Langevin equation for spins
[49]. Conventionally, the Langevin equation to model the motion of interacting atoms can be
described by

dpi

dt
=−∂U(xi)

∂xi
−λ

pi

m
+ fi, (2.38)



22 Methods

a b

c

e

d

f

Hi

Si

Si × Hi

Hi

Si

Si × Hi
Si × (Si × Hi )

Si

Si × Hi
th

Si × (Si × Hi
th

 )

Hi
th

Fig. 2.2 The LLG integrator broken down into different components, (a), (b) showing
undamped precession, (c), (d) showing the effects of the damping term, and (e), (f) showing
the application of stochastic thermal noise.

where pi represents momentum, U(xi) is the potential energy between the atomistic sites,
which varies with position xi, and fi represents a force due to random fluctuations. These
terms all are site dependent, in this case denoted by i. λ is the damping parameter, and m
represents the mass of the atom. The first term −∂U(xi)

∂xi
can be identified as a deterministic
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force. Additionally, the second dissipative term in equation 2.38 can be rewritten as [61]

−λ
pi

m
=−λ

∂H

∂pi
. (2.39)

Using the LLG form, equation 2.38 can then be rewritten in terms of the total spin vector Si,
and thus the following equation is obtained as follows:

∂SLSF

∂ t
=−γ

[
Si ×

(
−∂H

∂Si

)]
+ γλ

(
−∂H

∂Si

)
+ξξξ i, (2.40)

∂SLSF

∂ t
=−γ(Si ×Hi)+ γλHi +ξξξ i. (2.41)

ξξξ i is a stochastic thermal noise term, whereby it is considered via addition to the overall
equation of motion, rather than to the effective field vector H. ξξξ i is calculated according to
[49, 50]:

ξξξ i = ΓΓΓ(t)

√
2γλkBT

µs∆t
. (2.42)

The terms representing the motion of the spin with relation to dissipation due to
damping in equation 2.41 assumes strictly that λtransverse = λlongitudinal. While it enables the
construction of this equation of motion which consequently proves the fluctuation-dissipation
relationship (µs = 2λkBT ) when used with the Fokker-Planck equation found in Ma et al., it
is not assumed to be an accurate description of what occurs physically [49, 62]. Although
the equation of motion has changed compared to the conventional LLG, it is still valid to use
the same solver schemes to obtain a convergent solution when committing to calculations.
This is shown in chapter 4, where tests are carried out to ensure that the results converge to
the same values using both the Heun and fourth-order Runge Kutta solvers.

To extract the effective field components from the Landau Hamiltonian for use in the LSF-
LLG integrator scheme, the Landau Hamiltonian has to be expressed as effective field terms.
The identity Hi =− 1

µs
∇SiHL can be used to compute the longitudinal field contributions at

each timestep. The partial is considered with respect to Sx, Sy, and Sz, spin components, as the

quantity |S| is defined by the Sx, Sy, and Sz components according to |S|=
√

Sx
2 +Sy

2 +Sz
2.

The decomposed field terms are shown in the following equations:

HL
x =− Sx

µs

[
2A′

α +4B′
α

(
S2

x +S2
y +S2

z
)
+6C′

α

(
S2

x +S2
y +S2

z
)2
]
, (2.43)



24 Methods

Hi

Si

Hi

Si

|S|=1
|S|>1

|S|<1

a b LongitudinalTransverse

Fig. 2.3 The schematic differences between the conventional transverse-only relaxation of
a spin in (a) compared to the longitudinal variant in (b). The longitudinal LLG enables
longitudinal degrees of freedom as well as transverse as it removes the constraint of the unit
sphere.

HL
y =−

Sy

µs

[
2A′

α +4B′
α

(
S2

x +S2
y +S2

z
)
+6C′

α

(
S2

x +S2
y +S2

z
)2
]
, (2.44)

HL
z =− Sz

µs

[
2A′

α +4B′
α

(
S2

x +S2
y +S2

z
)
+6C′

α

(
S2

x +S2
y +S2

z
)2
]
. (2.45)

From these identities, the effective field H can be augmented to include these terms, which
will lead to changes in |S|.

Overall, figure 2.3 illustrates the allowed relaxation dynamics for conventional and
longitudinal dynamics cases.

2.2.5 The fourth-order Runge-Kutta solver

The newly developed LSF-LLG uses the Heun solver, however it is important to validate its
convergence to its calculated gradient within an expected number of steps. In order to do this,
a naturally more accurate (though more computationally demanding) extension would be to
implement the fourth-order Runge-Kutta solver, which has 4 intermediate steps as compared
to the Heun scheme. The larger number of slope calculations leads to an estimate with less
error in general. The RK4 yields 4 intermediate spin vectors via four calculations of the
gradient at different times denoted by S′

1, S′
2, S′

3, and S′
4. The weighted sum of these newly
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generated intermediate vectors gives the final new spin direction of the system for a given
timestep. The slopes are recalculated for every timestep, with a recalculation of the spin
fields taking place at the beginning of a new timestep, between S′

1 and S′
2, and between S′

3

and S′
4. The following equations show the calculation of the four steps [57]:

S′
1 = ∆S1 (Sinitial)∆t, (2.46)

S′
2 =

1
2

∆S2
(
S′

1
)

∆t, (2.47)

S′
3 =

1
2

∆S3
(
S′

2
)

∆t, (2.48)

S′
4 = ∆S4

(
S′

3
)

∆t. (2.49)

∆S1 (Sinitial), ∆S2 (S′
1), ∆S3 (S′

2), and ∆S4
(
S′

3
)

defines the calculation of the equation of
motion as a function of the intermediate spins. The four estimates taken are then combined
according to a weighted average written as the following equation:

St+∆t
i =

1
3

S′
1 +

1
6

S′
2 +

1
6

S′
3 +

1
3

S′
4. (2.50)

In order to demonstrate a visual comparison of the difference in convergence time between
the two solvers, figure 2.4 shows a sample equation of motion with the equivalent solutions
obtained by the Heun and RK4 methods. It can be seen that although both methods use more
than one gradient estimation step, the RK4 has a noticeably smaller error than the Heun
solver when looking at small timescales. To quantify, Lepadatu [63] computes this error to
be of the order 10−10 when computing the spin vector.

2.2.6 The Landau-Lifshitz-Bloch integrator

The Landau-Lifshitz-Bloch (LLB) integrator follows the LLG equation of motion with the
augmentation to allow an unconstrained unit sphere when employing the equation of motion.
This was done by keeping the precession and damping terms, while adding a longitudinal
motion term with its own characteristic damping parameter. This fully implies that the
transverse and longitudinal processes are operational on separate timescales, unlike the
longitudinal LLG form introduced in section 2.2.4 where λtransverse = λlongitudinal. While
this form introduces complexities with finite-size scaling effects of magnetisation against
temperature calculations, it is able to provide insight into an atomistic model that includes
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Fig. 2.4 An example comparison of the convergence behaviour between the (a) Heun and (b)
fourth-order Runge-Kutta (RK4) solvers. The RK4’s final gradient (light-blue) is calculated
via an averaging of all four gradients. It is clear that the RK4 converges to its result with even
larger timestep sizes, though the Heun scheme has shown effectiveness in all calculations
done in this thesis.

longitudinal dynamics as part of its equation of motion. The atomistic LLB takes on the
equation of motion described as [64–67]:

∂SLLB

∂ t
=−γ(Si ×Hi)+

γλl

S2 [S(Si ·Hi)]−
γλt

S2 [Si × (Si ×Htotal
i )]+ξξξ i, (2.51)

where an effective field Hi acts according to spin vector Si at site i. In this case, it is seen
that the LLB equation of motion distinguishes between transverse and longitudinal forms
of damping denoted by λt and λl respectively. It should also be noted that the transverse
component considers an effective field Htotal

i that has thermal white noise applied to it via
methods detailed in section 2.2.3. Finally, γ is the gyromagnetic ratio, and ξξξ i refers to
an additive stochastic noise term detailed in section 2.2.4. It is important to note that the
effective field in this case includes a zero-field equilibrium spin polarization term defined in
Evans et al. [65], in addition to its usual definition described in section 2.2.3. The purpose of
this extra effective field component is to regulate the length of the magnetic moment, playing
a similar role to the Landau Hamiltonian used in this thesis.

To get to the LSF-LLG form shown in equation 2.41, the LLB equation of motion can be
rewritten substituting the vector triple product form λHi = λ [S(Si ·Hi)− (Si ×Si ×Hi)]/S2

and λt = λl, giving the following [50]:

∂SLSF

∂ t
=−γ(Si ×Hi)+ γλHi +ξξξ i, (2.52)

which consolidates the methods used to obtain the LSF-LLG equation of motion seen in
section 2.2.4.
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2.2.7 The Monte-Carlo integrator

The Monte-Carlo integrator utilises a process whereby random sampling will provide a new
spin state within a fixed unit sphere constrained to |S| = 1 to every spin in a system, and
based on its free energy a probability evaluation takes place to determine if the random move
is taken or rejected. This follows the definition that given enough Monte-Carlo steps, the
probabilistic nature of all possible spin-vector configurations will emerge, according to a
Boltzmann distribution. The basis for the algorithm and the probability with which moves
are computed is given by [28]:

P = exp
(
− ∆E

kBT

)
. (2.53)

∆E is the difference in energy for the spin states Si and S′
i. The sampling algorithm to

determine S′
i at each timestep utilises a Gaussian distribution function which is described in

the following equation [28]:
S′

i = Si + f σgΓΓΓ, (2.54)

where ΓΓΓ defines a Gaussian distribution that has a width of 1 and a mean of 0 as a vector with
x, y, and z components. The term σg determines the sampling space of the algorithm, and
adaptive factor f is a factor used to adjust the size of the step taken as the simulation takes
place to ensure that the system tends to a 50 : 50 accept to reject ratio. A 50% acceptance rate
is crucial in ensuring that true thermal equilibrium has been reached, which is a requirement
ensured by a reversible and ergodic Monte-Carlo algorithm. Reversibility is demonstrated
as the Boltzmann probability is evaluated via ∆E, and thus P(Si → S′

i)+P(S′
i → Si) = 1.

Ergodicity is also demonstrated, as all the spin states within the unit sphere are explorable
[28]. After every timestep, the spin lengths quantity |S| is normalised in this form of the
Monte-Carlo scheme, which only includes transverse spin calculations. To calculate the
adaptive factor f , the following equation is used:

f =
0.5

Rreject
, (2.55)

where the rate of rejection at each timestep is redefined, and is given by Rreject. In order
to augment this to allow for longitudinal changes to be modelled, section 2.2.8 describes
methods used for a longitudinal form.

2.2.8 The longitudinal Monte-Carlo integrator

The longitudinal Monte-Carlo integrator follows discussions from Pan et al. and Ellis et
al. regarding a Monte-Carlo algorithm that uses the entirety of transverse and longitudinal
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sampling space to generate a sequence of spin changes [31, 50]. This can be done by
appending the Landau Hamiltonian which regulates longitudinal moves to the conventional
one, which has terms for exchange, anisotropy and applied fields. By sampling this collective
Hamiltonian, it is evident that the energies calculated to evaluate moves according to the
Boltzmann probability considers both longitudinal and transverse components. An additional
change that was necessary, was to lift the unit sphere sampling constraint, which in the
conventional Monte-Carlo restricted the spin length quantity to |S| = 1 via normalisation.
The longitudinal trial move function is written as:

S′
i = Si + f σgϒϒϒ, (2.56)

where Si defines the spin vector at site i, and ϒϒϒ defines a uniform sampling distribution of
mean 0 and width 1, which affects the width of a sampling cone σg that adapts according to
adaptive factor f . The vector ϒϒϒ has components for x, y, and z directions. The adaptive cone
width is described in section 2.2.7, whereby the general idea is to maintain an accept to reject
likelihood of around 50%, thereby adjusting the width of the sampled space to more easily
achieve this metric. The exact form of the longitudinal Monte-Carlo integrator is highly
debated due to some complexities encountered. Utilising a Gaussian distribution term as
per the conventional Monte-Carlo no longer guarantees ergodicity, namely because via this
form, sampling affects both longitudinal and transverse moves at the same time (sampling
the total spin vector which is the product Ŝ|S|). This means that if only either the longitudinal
or transverse phase spaces is at one point highly variate, while the other is not, a single
regulation to the width of the sampling cone will not properly realise the required moves to
be evaluated. The natural solution to this would be to create a form that decouples the moves,
whereby the transverse and longitudinal cone sizes can be varied and adapted independently.
A schematic of this is shown in figure 2.5. Splitting sampling like this while computationally
much more efficient leads to another problem: the phase space measure of the probability
evaluation function is no longer valid, as the modified phase-space (partly transverse and
partly longitudinal) would require an adjustment to the form seen in equation 2.53. It is
currently unclear what this formalism would entail, however uncovering the phase-space
metric for split moves in the longitudinal Monte-Carlo would greatly benefit its efficiency
[31].
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Fig. 2.5 Schematic diagram of allowing split Monte-Carlo moves in the LSF-MC integrator
scheme. The separation of transverse and longitudinal motion would allow for independent
control over both sampling functions.

2.3 Quantifying magnetisation properties

2.3.1 System magnetisation

The normalised macroscopic magnetisation of a system with atomistic discretisation can be
quantified by summing all spin vectors and taking an average according to the equation

m =
1
n

n

∑
i

µiSi, (2.57)

where n is the total number of atoms in the system, and µ and S describes its magnetic
moment and spin vector at site i. This metric is useful in obtaining the level of ordering or
disordering present in a system. For example, for a ferromagnetic system approaching TC, the
summation of all spin vectors S→ 0 occurs due to a summation of fully random S values from
-1 to 1. Additionally, when under the influence of an effective field, a paramagnetic system
would react and would accordingly lead to a change in spin direction towards H, which can
be quantified as an average of the system spin vectors. When calculating disordering due
to TC, the normalised magnetisation length quantity |m| can be calculated to determine the
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magnetic ordering state compared to saturation using

|m|= |∑i µiSi|
∑ µi

. (2.58)

At a fully ordered state, |m|= 1, while for fully disordered this would yield |m| ≈ 0. Outside
of conventional cases where the length of the vector |S| is not adjusted and remains as |S|= 1
throughout, unlocking longitudinal degrees of freedom for the spin vector quantity affects
the validity of this measure. In the examples covered in chapter 4, it is shown that without
the right longitudinal energy reference state, it is possible to have |m| > 1 at equilibrium
erroneously, which would yield incorrect calibration with respect to the value at the Curie
temperature.

2.3.2 Sublattice susceptibility

In order to determine a ferromagnetic system’s material dependent magnetic properties past
the paramagnetic regime TC, the calculation of magnetic susceptibility is often employed.
This calculation determines the tendency for the system to re-align towards a new general
spin direction given a field. At the Curie temperature, this quantity peaks as the paramagnetic
state overcome by high temperatures affords the possibility of re-aligning with for example
an applied field, rather than orienting according to its own magnetisation. This is known as
the Curie-Weiss law, and is described by

χ =
C

T −TC
, (2.59)

where χ is the material susceptibility, and C is the material specific Curie constant. This
relationship determines that there is a susceptibility peak at the exact moment when T = TC,
and is minimal in temperature regions outside of this region. In order to make use of
this calculation in the atomistic regime, and to offer material-specific discretisation as to
susceptibility calculations, the longitudinal sublattice susceptibility equation is employed,
and is given by [68, 69]:

χl =
∑i µi

kBT

(
⟨|m|2⟩−⟨|m|⟩2) . (2.60)

This form of the susceptibility calculations sums and averages the susceptibility measures in
all sublattices, which is dependent on the magnetisation of the system denoted by the |m|
parameter. The mathematical expression used to determine this quantity follows the simple
rule that the

(
⟨|m|2⟩−⟨|m|⟩2) term describes the variance of magnetic states between spins,

which in the paramagnetic state would be maximal due to fully random orientation. At this
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point, the value for χ would also be maximal. When there is minimal variance when T < TC,
χ also takes on a minimal value.

2.4 Summary

This chapter has covered the details surrounding the fundamental interactions of the spin
calculations being taken into consideration in the atomistic frameworks required for modelling
HAMR. This includes the fundamental interactions of exchange, anisotropy, applied field,
and moment size contributions via the Landau Hamiltonian. While the Landau Hamiltonian
allows for flexibility of customising the energy surface that regulates changes to the size of
the spin length to allow for a more physical representation of magnetic moments, it comes
with some disadvantages. Firstly, DFT calculations are required for computing them, and they
become invalid even if the system sees small variations to its total Hamiltonian. Secondly, its
currently presented form in even powers of |S| is unclear to be the best approach, as in theory
odd powers could also be included in the expansion.

The groundwork for the conventional integrator schemes was discussed, which allows for
development of integrator schemes that are compatible with the newly introduced longitudinal
dynamics model which has introduced changes to moment size via the Landau expansion. It is
important to highlight that the uncertainty about these integrator schemes is the forced setting
of the transverse and longitudinal damping constants to be the same. To fully investigate this
effect, a comparison of the results to the LLB integrator would be useful to investigate in
future work.





3

Atomistic simulations on the effects of grain size
in HAMR

3.1 Background

Heat Assisted Magnetic Recording (HAMR) is a method of magnetic data recording that
involves heating local grains involved in the writing process, writing a bit sequence, and
then allowing it to cool. The primary advantage of this method as compared to conventional
magnetic recording, where temperature-dependent magnetisation is not taken advantage
of, is it allows for a reduction in grain sizes, which means constructing recording media
with higher areal densities becomes viable [16, 70]. It is paramount for such technologies
to be developed, as the data density limits of conventional magnetic recording are soon
being realised. Additionally, increasing quantities of data are being used on a daily basis
internationally, and thus HAMR exists as a way to alleviate this demand. FePt demonstrates
a reduction in its uniaxial anisotropy as temperature increases, which is a crucial property
to ensure that data can be written without requiring impossibly large write fields. At low
temperatures, FePt maintains a high magnetocrystalline anisotropy, which ensures that
erroneous magnetic switching is very unlikely to occur. When data is being written, bringing
the local region to the Curie temperature TC reduces the anisotropy and by extension its
coercivity, making writing data viable [71]. In the L10 phase, FePt has a tetragonal crystal
structure, illustrated in figure 3.1, composed of exclusive layers of Fe and Pt sites situated on
top of one another, giving it a high anisotropy of K ≈ 107 J/m3. Pt belongs to the 5d series
of elements giving it a large spin-orbit coupling, while Fe being in the 3d series perturbs the
Pt sublattice through exchange splitting [30]. As a general rule, a high magnetocrystalline
anisotropy is achieved via similar combination of 5d and 3d elements.
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Fig. 3.1 The structure of L10 FePt consists of exclusive layers of Fe and Pt, with a high
uniaxial anisotropy preferring the stacking direction.

A crucial aspect of designing magnetic recording media is to investigate how much
the size of the magnetic grains can be reduced by for the largest possible areal density,
before a significant loss of stable recording capability is lost. This is a fundamental issue
seen in magnetic recording, and has been named as the magnetic recording trilemma (or
quadrilemma when looking at HAMR) [13, 72, 73]. Small grains are needed to maximise
areal density, leading to unwanted loss of magnetisation, which requires a higher anisotropy,
meaning larger write fields are necessary to flip the magnetisation direction. In HAMR,
it is additionally required that the high temperatures introduced do not accidentally affect
the magnetic state of the grains when magnetic switching is not taking place. Identifying
appropriate grain dimensions in HAMR recording media stands out as a primary area of
contention, due to how many factors need to be balanced simultaneously as explained by the
quadrilemma.

The research presented in this chapter aims to cover ground on the technicalities of
atomistic simulations methods of HAMR, and to further investigate the use cases of L10

FePt in HAMR by demonstrating key material properties that can be exploited to aid the
efficiency of such devices. Atomistic simulations have allowed preliminary investigations into
temperature-dependent magnetisation calculations, which has found the Curie temperature
of L10 FePt to be TC ≈ 700 K. Following this, it was verified that the expected exponent in
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K(T )∝ M(T )L was recovered, where L ≈ 2.1, which is a metric used to quantify temperature-
dependent anisotropy, a key feature that makes L10 FePt a viable candidate for HAMR
purposes. Cylindrical grains of L10 FePt were set up for atomistic simulations to determine
switching dynamics under HAMR conditions. By replicating the effects of a laser pulse
during the writing process, an applied Gaussian heat pulse raised the system temperature
until the spin moments were disordered, after which a magnetic field attempted to switch the
direction of the spins.

3.2 Theory

3.2.1 Atomistic Pt-modified Fe parameters

The conventional formulation used to atomistically model L10 FePt was described in Mryasov
et al., which assumes that the Pt moments are much smaller in magnitude than the Fe ones,
and thus the Hamiltonian described is done so in solely Fe degrees of freedom [30]. The
behaviour of Pt can be clearly identified using the ratio of a given exchange field H normalized
using its maximum in the ferromagnetic state, H0, to give Hnorm = H/H0. Increasing Hnorm

from 0 to 1 is what induces a spin moment in Pt sites, while Fe has the same persistent
moment throughout. From this it can be deduced that FePt consists of localised Fe moments,
and delocalized Pt sites. The Hamiltonian for the Fe sites takes the following form

Hlocalized = ∑
i< j

J1-nn
i j Si ·S j −∑

i
kFe(Sz

i )
2. (3.1)

Since the Pt moment varies greatly as it goes from a disordered to an ordered state, the Stoner
model can be used to describe the total energy of Pt sites, and is described by [30, 74]:

Edelocalized =
∫ EF

−∞

dε[nup(ε)+ndown(ε)]ε − 1
2

Im2 ≈ Ĩ
(

m
m0

)2

, (3.2)

where the first term represents the Stoner expression to compute the total energy based on
the density of states, m and m0 are the instantaneous and equilibrium moments respectively,
and I is the intra-atomic exchange, while Ĩ = 1

2 I(m0)
2. Following the ab initio calculations

done in Mryasov et al., the Pt moment can then be related to the exchange field from Fe, and
the Pt susceptibility given the equation [30]:

mPt = χPtHFe, (3.3)
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where χPt refers to Pt susceptibility, and is a measure to define how easily influenced a
material’s magnetisation is given an effective field, in this case the effective field produced by
the Fe exchange field, given by HFe. The Pt moment can further be expressed in a normalised
form according to (

m
m0

)
=

χPt

m0
∑

i
JiSi. (3.4)

It is crucial to note that this form now links a relationship between the Pt spin vector and the
Fe spin vector, Si, and the Fe exchange field, Ji. The effective exchange for FePt can then be
written as shown [30]:

Jeff, 1-nn
i j = J1-nn

i j + Ĩ
(

χPt

m0

)2

∑
ν

JiνJ jν . (3.5)

Decomposing the anisotropy terms for both Fe and Pt, in solely Fe degrees of freedom gives
a single-ion and two-ion anisotropy contribution, given by the following equations [30]:

d(1-ion)
i = kFe + kPt

(
χPt

m0

)2

∑
ν

J2
iν , (3.6)

d(2-ion)
i = kPt

(
χPt

m0

)2

∑
ν

JiνJ jν , (3.7)

where ν is a Pt site within its own sublattice. Following this, a full Hamiltonian can be
constructed including a combination of all localized and delocalized terms described in the
following:

HFePt = ∑
i< j

Jeff, 1-nn
i j Si ·S j −∑

i
d(1-ion)

i (Sz
i )

2 −∑
i< j

d(2-ion)
i

(
Sz

i S
z
j

)
. (3.8)

This spin Hamiltonian describes L10 FePt spin dynamics in purely Fe degrees of freedom,
via incorporating the effects of the delocalized Pt moments into the coefficients. While this
chapter uses this form of the Hamiltonian, a broader comparison can be drawn if the Fe and
Pt moments are modelled individually in their own degrees of freedom. Further chapters in
the work presented will highlight the introduction of atomistic simulations via both Fe and Pt
degrees of freedom, utilising the tendancy for Pt moments to fluctuate longitudinally, rather
than transversely.
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3.2.2 The conventional FePt Hamiltonian

The following equation describes the energies of FePt systems with respect to the spin unit
vectors Si and S j, representing sites i and j respectively:

H = ∑
i< j

J1-nn
i j Si ·S j − ku ∑

i
(Si · êi)

2 −µs ∑
i

B ·Si, (3.9)

where J1-nn
i j represents the Heisenberg exchange coupling, which is restricted solely to nearest

neighbour interactions. ku is the uniaxial anisotropy constant with êi representing the system’s
easy axis. B describes the energy changes with regard to an applied magnetic field, with
atomic spin moment µs, which is quantified as µs = 3.62 µB per atom for the Fe sites in
L10 FePt [28, 50]. It is important to note that this value of µs corresponds to the effects of
both Fe and Pt, as only Fe degrees of freedom are modelled. It should be noted that dipolar
fields are not considered in these calculations. The exchange energy term is defined by a
coupling constant between two spin sites and originates from overlapping electron orbitals.
The following describes the equation used to calculate J1-nn

i j using the mean-field approach:

J1-nn
i j =

3kBTC

εz
, (3.10)

where kB is the Boltzmann constant, TC is the Curie temperature, ε is the spin-wave correction
factor, which is given as ε = 0.719. z is the number of nearest neighbours, giving 6 for
the calculations in this chapter, as the non-magnetic Pt sites are disregarded as a degree of
freedom. Due to anisotropic exchange in FePt, solely using equation 3.10 would yield the
value for exchange energy along [100] and [010] directions (corresponding to Jx and Jy). To
get Jz, one must take the contributions of two-ion anisotropy into account, given by:

Jz = Jx −
k2-ion

z
, (3.11)

where k2-ion can be obtained from approximation that can be deduced from Mryasov et al.
that k2-ion ≈ 10ku [30]. Subsequently, the following describes how ku is calculated:

ku =
KuV

n
. (3.12)

Ku defines the macroscopic anisotropy constant, n is the number of atoms in each unit cell,
and the volume of the unit cell V = aac, given a compression along [001], with an otherwise
uniformly spaced crystal. For L10 FePt this is a = 3.861 Å and c = 3.788 Å [75]. Utilising
this calculation, a value of ku =−6.87×10−23 J (given that Ku = 107 J/m3) was obtained.
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It should be highlighted that ku is an in-plane anisotropy contribution, unlike k2-ion which
is out of plane. Using equations 3.10 - 3.12, the exchange constants are calculated to be
Jx = Jy = 6.30× 10−21 J and Jz = 6.42× 10−21 J. In these methods used, the single-ion
anisotropy term is considered in the Hamiltonian via equation 3.9, and the two-ion term
is deconstructed to be a modification to the isotropic exchange values. This method of
incorporating the two-ion anisotropy into the exchange is purely for computational efficiency.

3.3 Simulation methods

3.3.1 Crystal structure generation

To construct grains to simulate atomistic temperature-dependent magnetisation dynamics,
the system is required to have an exchange list that states the position of each spin moment
relative to one another, and the exchange energies respective to their neighbours. Figure 3.2
demonstrates a schematic for how L10 FePt systems are constructed as a simulated system.
Starting with a simple 4 atom structure (labelled by atoms 1-4 in (a)) a repeatable unit cell
can be constructed that can be added to indefinitely until a desired system has been achieved.
It should be noted that the Pt atoms exist solely for visualisation in these simulations, and
otherwise manifest their influence via changes to the Fe-Fe exchange parameters. Once a
simple unit cell is constructed, (b) shows the addition of neighbouring unit cells being added,
and the resulting exchange interactions Jx, Jy, and Jz that occur between each Fe site with a
nearest neighbour. The model employed for Heisenberg exchange for the calculations in this
chapter simply extend to the first nearest neighbour, however it should be noted that it this
simplification is not exactly reciprocated physically [30, 76].

Unit cells are added to the system until a cuboid with sides matching the diameter and
height of the grain is reached, at which point a cylindrical shape is cut out, resulting in a
single grain as seen in figure 3.3.

3.3.2 Simulation of HAMR media

To construct more large scale magnetic recording media, granular media are constructed by
first starting with randomly placed points, which will be referred to as seeds. From here, the
bisector between each seed point is calculated, which defines each grain’s boundary. This is
known as a Voronoi tessellation, and is employed as an approach to create randomised grain
sequences of varying sizes. To aid with realism, the grains are spaced apart by 0.5 nm, and
rounding is applied to them so they more closely resemble circular structures (when looking
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Fig. 3.2 (a) shows the purely visual construction of the L10 FePt unit cell, where Pt (orange) is
later stripped in (b) as only Fe (blue) degrees of freedom are being considered. Additionally,
the logic behind the exchange list can be seen to include Fe-Fe interactions, including for
spins in neighbouring cells, via Jx, Jy, and Jz.
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Fig. 3.3 The final product of an atomistically generated grain consisting of L10 FePt. Each
dot rendered corresponds to an individual atoms with its own spin degrees of freedom.

at them from above) rather than having multiple jagged edges. Although separation between
grains depends greatly on the average grain size, a separation of 0.5 nm was found to be
appropriate [77, 78]. In future work, it would be useful to investigate a range of separation
distances. A sample tessellation generated is shown in figure 3.4. On the granular media, a



40 Atomistic simulations on the effects of grain size in HAMR

Fig. 3.4 An example of grains generated using Voronoi tessellation used for simulating
HAMR atomistically. It can be seen that the random generation creates a size variance
between different grains.

bit sequence of constant size per bit is then imprinted via the application of a magnetic field,
and a local temperature pulse according to a Gaussian distribution. As the grains heat up,
the moments become more disordered, eventually leading to a reversal in spin direction. To
recognise that data has successfully been written as a result of HAMR, a cluster of contiguous
grains on the media will have a net spin direction which determines the sign of the bit. The
benefit of having smaller grains (and thus a larger areal density) is the ability to use grain
clusters to represent a bit that are overall smaller than what can be achieved with larger sizes.

3.4 Results and discussion

3.4.1 Verifying the temperature-dependent properties of FePt

A key property required to fulfil the conditions of HAMR is the reduction of temperature-
dependent anisotropy. This ensures that when the recording head produces a magnetic field,
the random orientation of the moments are easily aligned with the field. Simulations that
calculate normalised magnetisation and the torque of the system can be used to investigate
temperature dependence.

The constrained Monte-Carlo algorithm (CMC) [79] is utilised to compute the
instantaneous torque of a system with respect to temperature, which arises by setting an
angular constraint on the spins. The CMC utilises a system of sampling that acts on two
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spins at the same time, Ŝi and Ŝ j. The compensation spin, Ŝ j is rotated such that the
arbitrary constraining angle (set to θ = 45° in this case) gives rise to no change in the total
magnetisation of the system. Meanwhile, spin Ŝi is rotated as per the standard Monte-Carlo
methods, which uses a normally distributed sampling space on a unit sphere. This ensures
that the spin torque calculations can take place, while simultaneously keeping the normalised
magnetisation against temperature relationship unchanged. The probability evaluation of the
constrained Monte-Carlo according to the Boltzmann probability is calculated according to
the following expression [79]:

P = min

[
1,
(

Mz

M′
z

)2 |Ŝ jz|
|Ŝ′

jz|
exp

(
− ∆E

kBT

)]
, (3.13)

where exp(− ∆E
kBT ) is the Boltzmann probability factor, which is further modified by a

geometric correction dependent on the z component of the magnetisation and spin vector, Mz

and Ŝz respectively.
To compute the temperature-dependent anisotropy of FePt, simulations were done using

the CMC algorithm, with the condition of the constraint angle set to θ = 45° from the easy
axis, creating a torque τ . As temperature increases and the system enters an increasingly
disordered state, the following equation can be used to calculate the instantaneous torque:

τ = ∑
i

µiSi ×Hi. (3.14)

To cover a large range of grain dimensions, the temperature-dependent magnetisation
dynamics were calculated on grains with diameters between 3 nm to 12 nm. For each
diameter, a height of 5 nm and 10 nm was considered. The temperature dependence was
introduced by varying the system temperature from 0 K to 1000 K in 5 K increments,
with 50000 timesteps per temperature step. 10000 equilibration timesteps were also added
before the start of each new temperature regime, to allow for the system to fully relax
before recording magnetisation data. In order to more appropriately represent experimental
temperature scaling, a rescaling function was used to regulate the simulated spin temperature
according to an empirical constant α = 1.75 according to [80]:

Tsim

TC
=

(
Texp

TC

)α

, (3.15)

where Tsim is the simulated temperature, and Texp its experimental equivalent. Figure 3.5
describes the temperature-dependent magnetisation found in L10 FePt, obtaining a bulk
TC = 704.8 K. This is the point at which the mean magnetisation length goes to zero, as
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the spins are in a fully disordered state. To verify the scaling in this data is appropriate,
normalised anisotropy energy against magnetisation was plotted on a logarithmic scale to
get back the value of L ≈ 2.1, where K(T ) ∝ M(T )L [32, 81]. This data was fitted according
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Fig. 3.5 Normalised Magnetisation against temperature curve for L10 FePt. The calculated fit
using equation 3.16 gives a value of TC = 704.8 K, with L ≈ 2.1. The temperature-dependent
anisotropy demonstrated is a key property of being able to use FePt for HAMR.

to the following expression, which describes the temperature-dependent magnetisation via
empirical constant α and fitting parameter β :

m(T ) =
(

1−
(

T
TC

)α)β

. (3.16)

Table 3.1 shows the TC and temperature-dependent anisotropy data for the variety of grain
dimensions investigated. There is a clear increase in TC as the grain diameter increases which
is in expectation with the finite-size scaling law which demonstrates that larger systems will
tend towards a higher TC (where this scaling eventually falls off), as the ratio of sites on
the surface to sites in the bulk decreases with increasing volume [82–85]. This is because
the surface sites will always be more weakly exchange-coupled due to a lack of nearest
neighbours, thus a lower exchange contribution will lead to a smaller TC. It should be noted
finite-size scaling laws compete with a factor seen in Lyberatos et al., where it is shown
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that an additional contribution to grain TC values is an elongation factor Hgrain/Dgrain which
shows that the ratio of grain height to its diameter drastically alters its temperature-dependent
magnetisation scaling properties [86]. The temperature-dependent anisotropy scaling shows
clearly that given a fully disordered system near TC, the sum in equation 3.14 converges to
0, and thus a total reduction of the anisotropy component follows. In the writing process,
this highlights the importance of getting to a high enough temperature so that data can
be more easily imprinted before cooling begins. Finally, it was found that the anisotropy
scaling value L remains stable as the dimensions of the grain increases, showing that the
temperature-dependent anisotropy of the simulated L10 FePt systems have been implemented
appropriately, as the value L ≈ 2.1 is recovered.

Size [Diameter (nm), Height (nm)] TC (K) L

3, 5 668.7 2.128
3, 10 672.8 2.173
5, 5 676.2 2.142

5, 10 678.6 2.149
7, 5 678.3 2.151

7, 10 684.6 2.154
9, 5 683.9 2.162

9, 10 686.1 2.161
12, 5 684.0 2.173
12, 10 687.3 2.169

Table 3.1 Summary of data obtained for all simulated grain sizes for K against T simulations.
A distinct size dependency can be observed in the Curie temperature results obtained, which
follows expected behaviour.

3.4.2 Magnetic switching of FePt grains

To gain a nanoscale understanding of the physical phenomena at play during the magnetic
recording process, the atomistic simulation of single grains undergoing the switching process
is presented, where the small variation in grain sizes can be more easily investigated.

At the Curie point, FePt grains lose their temperature-dependent anisotropy, and the spin
moments become disordered, which allows them to easily yield to an applied field. The goal
is to write data via an applied field, and to induce the spins into changing direction to that
of the applied field, and for the grain to still maintain its newly defined spin configuration
some time after it begins to cool. There is a competing force at play here; if the temperature-
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dependent anisotropy is not reduced enough, or in the case of larger system, the applied
field is not large enough to reverse the direction of every spin in the system, a reversal
mechanism can override the intended write direction. By atomistically modelling L10 FePt
grains, different system dimensions can be put through the writing process to determine
what sizes show the most efficient switching pathways. The calculations done in this chapter
utilised the atomistic LLG integrator, which is detailed in chapter 2. It was parametrised
with ∆t = 1 fs, which is shown to be close to convergence for this integrator scheme [28].
As an extension to this work, it would be beneficial to compute the grains’ instantaneous
magnetisations after a fixed number of timesteps, while varying ∆t. This would determine
how small the timestep would have to be for each system in order to reach a converged result,
where it should be noted that smaller timesteps tend to achieve greater accuracy.

To simulate the conditions of HAMR, a Gaussian thermal pulse is applied to induce
thermal excitations. This comes in the form given by the equation

T (t) = Ta +[Tpeak −Ta]F(t), (3.17)

where T (t) represents the time dependent temperature gradient, with Ta = 300 K, which is
the ambient room temperature. The peak temperature is Tpeak = 700 K, equivalent to the
Curie temperature of L10 FePt. F(t) is represented according to equation:

F(t) = exp

[
−
(

t −3tpulse

tpulse

)2
]
, (3.18)

which defines a temperature maximum at 3tpulse, with a standard deviation of
√

2tpulse [27].
The system also assumes a persistent write field of 1 T in the [00-1] direction, which is
persistent in space and time. The calculations take place over 600 ps, with peak temperature
at 300 ps.

Figure 3.6 shows the temperature pulse and switching profiles for a 5 nm diameter and
10 nm height grain, which clearly demonstrates instability in the switching process. The
renders of the grain at the 50 ps, 300 ps, 420 ps, and 570 ps marks shows a domain wall
process occurring, whereby the grain is divided into two sections that oppose each other’s
magnetisation direction, leading to a fluctuating change in the overall spin direction [87–
89]. In general, domain walls more consistently formed in systems with more pronounced
elongation, or increased volumes. This is because larger magnetic systems have a higher
chance of forming segregated spin clusters that prefer certain orientations over others. More
specifically, this means that if the system size goes beyond the system’s exchange length,
the nucleation of domain walls becomes a possibility [90]. In order for the domain wall
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to be overcome, the applied field must be strong enough to re-orient the domains even
after beginning to cool. It is necessary to note that these fluctuations are detrimental to the
reliability of HAMR processes, as it increases the rate of error when recording is taking place.
Although in this case the thermal pulse coupled with the write field was enough to eventually
switch the system, using the same grain with a write head that travels faster (leading to a
smaller tpulse) could cause significant issues in writing data. Because of this, grain dimensions
play a delicate role in striking a balance with all components of the magnetic recording
quadrilemma.

Fig. 3.6 Magnetisation against time data showing unstable magnetic switching. A render
was generated at 350 ps seen next to the plot showing a domain wall process, which affected
the way in which magnetic switching takes place. The domain wall described occurs at the
t = 420 ps mark, and is distinctly identified by the light area towards the middle section of
the grain which is at the boundary of the blue (spins with changed magnetisation) and brown
(spins with their original magnetisation). This is for a grain of size 5 nm in diameter and
10 nm in height.
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An additional rendered example is seen in figure 3.7, whereby a smaller grain (Dgrain =

5 nm, Hgrain = 5 nm) to what is seen in 3.6 demonstrates greater efficiency in the switching
process, denoted by much shorter timescales to enter a fully switched state. The smaller
spin volume also contributes via having a lower TC, which contributes to entering the fully
paramagnetic state much more quickly, leading to earlier switching.

Fig. 3.7 Simulation data for a grain of 5 nm diameter and 5 nm height undergoing switching
due to a thermal pulse and an applied field of 1 T. The size of the system is small enough for
the thermal pulse to overcome the ordered spin state, and thus their direction reverses with
the application of the field.

Figure 3.8 demonstrates the largest grain dimensions tested undergoing the effects of a
thermal pulse, and a magnetic switching field in an attempt to reverse its spin orientation.
In this case, the large spin volume hinders its ability to take on the new spin direction, as
the proportionately smaller exchange length prevents any switching from occurring. As
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the system cools past the peak temperature, the temperature-dependent anisotropy recovers,
solidifying its previous spin orientation once again.

Fig. 3.8 Single grain (Dgrain = 12 nm, Hgrain = 10 nm) switching whereby the size of the
system is too large for the thermal field to overcome the ordered state of the spins, and then
to reverse their direction with the applied field.

Figures 3.9 and 3.10 shows various grains switching. In the 3-5 nm diameter variants,
switching took place with a clear transition between the magnetisation directions reversing,
albeit in the case where the grain aspect ratio is highly unusual at Dgrain/Hgrain = 3/10.
Recalling the magnetic recording quadrilemma [73], switching occurs in systems where the
temperature-dependent anisotropy scales adequately with the specifications of the laser pulse,
with the system having a strong enough magnetisation as it cools that it is able to re-orient
along a newly defined direction according to the applied field. For grain diameters 3-5 nm
with height fixed at 5 nm, the grain size is viable such that no significant domain walls form,
allowing for a straightforward switching profile. At the larger volumes and more inconsistent
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aspect ratios, the significant fluctuations in the grain magnetisation brought on by domain
wall processes become evident. While it can be said that the 5 nm height variants for 7 nm
and 9 nm diameter grains demonstrate switching capability, the timescales required for the
grain to enter a completely switched state becomes problematic, as for example a faster laser
pulse, or a less consistent field would in a lot of cases cause backswitching as the grain cools.
This is denoted by significant fluctuations even after 200 ps post the temperature peak. In the
case of the 12 nm grains, no evidence of switching was observed, and thus would not be able
to facilitate HAMR. The switching process between grain sizes also depends significantly
on their ability to reach a fully disordered state as measured by their TC, thus as a general
trend larger grain sizes may not enter a fully paramagnetic state as compared to their smaller
counterparts.

The complexity behind the switching mechanisms of FePt grains is significant, given that
the forces of the magnetic recording quadrilemma constantly influencing the temperature-
dependent magnetic capabilities of the investigated systems. Additionally, from the results
found it can be seen that the relative size of grains significantly influences both TC and
switching viability, given the effects of anisotropy and exchange, and the appearance of
domain wall mechanisms respectively. It should be noted that in these calculations, Tmax was
kept constant for all grain sizes, regardless of the changes in their TC. In reality, it would be
necessary to vary Tmax based on what grain geometries are being used. While the Mryasov
model of re-parametrising Fe sites to have considerations of Pt sites being nearby has given
significant insight into modelling HAMR atomistically, a further evolution of the treatment
of Pt is required, such that the Pt degrees of freedom are also modelled. This is introduced in
chapter 4, applied to FePt in chapter 5, and then used in switching and HAMR calculations
in chapter 6. Finally, To gain a clearer picture of the full scale of the switching mechanism,
grains were assembled into a magnetic recording medium to atomistically model the data
writing process via HAMR.

3.4.3 Fully atomistic HAMR

Verifying the single grain dynamics atomistically provides crucial insight into the way in
which exchange and anisotropy govern the process of switching. In order to provide a full
scale result that shows the practicalities of implementing FePt grains for the purposes of
reading and writing data, fully atomistic HAMR simulations were done on a variety of grain
dimensions.

Figure 3.11 shows the result of a bit sequence being written onto numerous 200 nm by
50 nm recording tracks, populated with grains of fixed height 5 nm, and diameter varying
between 3-8 nm. At 3 nm, the small anisotropy field is easily overcome by the temperature
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Fig. 3.9 Magnetisation against time data for grains with fixed height 5 nm, and variable
diameter (labelled). It can be seen that increasing the grain size from (a) to (e) shows gradual
difficulty in the ability to switch.

pulse and write field, causing a large amount of neighbouring grains to also switch erroneously.
This causes error when reading bits, as the boundaries between each one is less clear. On the
other hand, towards the 8 nm diameter grains, the write field does not as easily overpower
the anisotropy field. Additionally, different grain dimensions require a different Tmax in order
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Fig. 3.10 The magnetisation against time data for 10 nm height grains, and increasing
diameters from (a) to (e) as labelled. It is evident that the drastically larger aspect ratio of the
grains compared to the 5 nm height variant leads to the rapidly deteriorating ability to switch.

to compensate for the variations in TC values. Reaching the disordered state is crucial, as
otherwise there is a significantly reduced probability of switching due to L10 FePt having
high Ek below TC. In terms of the clarity of the boundaries between each bit, 4 nm grain
sizes are most clear, while still providing a significant areal density improvement from the
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Fig. 3.11 A render of all the full HAMR systems simulated atomistically, which consist of
3 nm to 8 nm diameter grains with a fixed height at 5 nm. The blue grains have undergone
magnetic switching whereas gold grains have remained in their original magnetic state.

currently used 8 nm grain sizes in traditional magnetic recording drives. It can be seen that
at 3 nm, while some bits are clearer than others, there are too many accidentally switched
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grains near the bit boundaries. Contrarily, at the 7-8 nm grain diameters, the bit regions are
not as clearly defined because it has become much more difficult to switch them under a fixed
Tmax, and the recording medium is far less discrete. In principle, the quantitative viability
of these grain sizes under large-scale HAMR operations could be determined via statistical
distributions across thousands of grains. This would also inform the necessary Tmax required
for a given grain geometry to switch consistently enough within a tolerable error-rate.

Overall, fully atomistic HAMR calculations reveal all the considerations of the magnetic
recording quadrilemma. Smaller grain sizes are required for a higher data-storage density,
which requires a larger temperature-dependent anisotropy to reduce erroneous writing.
Higher anisotropies require larger write fields to have consistency in the writing process.
Simultaneously it must be ensured that thermal backswitching does not erroneously undo the
changes of the switched direction. All these considerations have to be taken into account,
and are reflected in the results obtained for the attempted writing of the bit pattern shown in
figure 3.11.

As a means of further improving the experimental reproducibility of this model,
one potential improvement would be to incorporate a model of how the laser pulse
thermodynamically couples to the spin sites, and calculates an atomistically local
temperature gradient during the writing process. In addition to this, one could investigate
the effects brought on by including dipole-dipole interactions, which are impossible to
nullify in practice [91]. Finally, while qualitative conclusions can be drawn from the results
presented, it would be beneficial to investigate the statistical nature of switching. For
example, Meo et al. [27] computes the distribution of grain switching probabilities, which
would lead to a more quantitative understanding of this behaviour. In the following chapters,
the FePt model is expanded to include fully localised degrees of freedom, which has allowed
for a re-calculation of fully atomistic FePt HAMR in a fully discretized spin-interaction
framework, which allows for methods to investigate more clearly the effects of disordering
and surface interactions.

3.5 Summary

This chapter covers the groundwork of investigating HAMR simulations from a fully atomistic
standpoint. A detailed methodology breakdown is also provided for the spin interactions
governing the behaviour of L10 FePt, and how its electronic structure provides favourable
temperature-dependent anisotropy. This was modelled via the conventional atomistic
parameters of FePt, whereby the two-ion anisotropy interactions were considered, so as
to embed the atomistic effects of Pt being included in the bulk. A preliminary investigation
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was also done on the effects of TC and temperature-dependent anisotropy with regard to
grain size. It was found, that a grain height of 10 nm significantly promotes the appearance
of domain walls, and in turn reduces the reliability of switching in a timely and stable
manner. At 5 nm in height, the simulated grains showed viable switching behaviour up to
9 nm in diameter. A limitation of the results obtained is that the model introduced in this
chapter assumes that the magnetic behaviour of Fe and Pt spins are aggregated to just the Fe
sites, as the non-magnetic Pt is modelled via a modification to the standard Fe parameters,
additionally, it prevents the investigation of even minor forms of species disordering, as Pt
sites do not have their own degrees of freedom.





4

Longitudinal Spin Fluctuations in atomistic spin
models

4.1 Motivation

Atomistic modelling of magnetic materials has always had multiple compromises in relation
to a physical replication of the calculations that take place. With their reliability in being
able to model real-life technologies, and an overall greater accessibility to more advanced
computational strategies, atomistic modelling is being widely deployed, alongside its
predecessor, micromagnetic simulations [92–94]. Because the use of atomistic modelling
is varied and spans a large number of areas, specifically in the study of magnetism, the
development and improvement of these models is crucial to the progress of researching
new technologies for the future. In the research presented in this chapter, focus is placed
on the augmentation of two currently existing and widely utilised integration schemes, the
stochastic Landau-Lifshitz-Gilbert (LLG) and the Monte Carlo (MC) integrators, namely
by including an additional longitudinal degree of freedom. The research into the inclusion
of longitudinal fluctuations builds on the idea that currently modelling spin dynamics
induces changes in the spin vector, which is constrained to a sphere of fixed size. This
means that while the unit vector is allowed to vary, the system energy is being calculated
in an incomplete manner as the energy changes arising from longitudinal fluctuations are
neglected [95]. Khmelevskyi et al. [96] highlights a crucial example of the importance
of including LSF, namely that the Curie temperature calculations obtained via currently
used methods are unable to perfectly reproduce the correct values for Co, however upon
including longitudinal dynamics, this issue was ameliorated. This problem is generally not
seen as much in materials with highly localized spin structures such as Fe, but is crucially
evident in situations where delocalized spin structures are present, where thermal fluctuations
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are responsible for representing the full contributions of their magnetic moment [95, 97].
Additionally, chapter 5 demonstrates the value of including LSF in modelling further alloys
such as FePt, a notoriously complex magnetic system due to the Fe-induced Pt sites. An
example of a practical use case of the LSF model is presented in chapter 6, which focuses on
its importance in modelling Heat Assisted Magnetic Recording (HAMR).

A previous method of incorporating longitudinal degrees of freedom is the Landau-
Lifshitz-Bloch (LLB) model, which decouples transverse and longitudinal moves in its
equation of motion, and assigns different values for the critical damping parameter for both
processes [65, 64]. Although it has had some success, the separation of the transverse and
longitudinal timescales has lead to some unresolved complexities that arise from having a
singular equation of motion with two types of moves being made [65]. For the equation
of motion utilised in the LSF-LLG scheme, it is similar to the one of the LLB, with the
major difference being that transverse and longitudinal damping parameters are set to be
identical, which means that both types of motion effectively take place in the same instance
and timescale [49, 50]. It is not fully clear as to the resultant effects this has on the accuracy
of the LSF model, however this chapter goes at length to establish the validity of this
computationally, by utilising the LSF-LLG under two separate solver mechanisms: the Heun
scheme and the Runge-Kutta fourth-order (RK4) scheme. The two solvers implemented are
both based on Runge-Kutta methods, which end on different stages. The Heun scheme is an
extension of the second-order Runge-Kutta method, which is widely utilised due to its fast
convergence to the desired gradient calculation, while also maintaining low computational
overhead. The RK4 scheme on the other hand uses additional steps to get to its final gradient,
and thus is less efficient computationally, but is the more accurate of the two [57, 98].

The LSF integrator schemes create a longitudinal variation by appending a set of spin
length dependent energy terms to the conventionally used Hamiltonian. The combination
of these additional terms are known as the Landau Hamiltonian, as they follow the Landau
expansion with the ordering parameter being the atomistic spin length. Physically, it is
uncertain to assume that longitudinal and transverse moves operate at the same timescale,
which is an underlying assumption of the current LSF-LLG implementation. In order to
address this challenge such that this constraint can be navigated around, one possibility would
be to use the LSF-MC scheme established, and to further iterate on its formalism for fully
separated sampling of longitudinal and transverse moves. In the current implementation,
while much more inefficient, the moves are combined into a single sampling routine which
samples a sphere of variable radius for every spin site. Decoupling this step would allow for
finer control over the exact energetics and phase spaces that both transverse and longitudinal
moves can occupy.
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A current constraint of the LSF models developed is that with the current definition of
spin length being a property of spin sites in an atomistic system, it must be defined such
that at T = 0K, |S|= 1, in order to be calibrated with the default moment length a system
begins with. In a highly controlled and uniform system, this is simply a matter of correctly
parametrising the longitudinal energy surface to describe an energy minimum at |S|= 1. In
an average situation however, contributions from nearest neighbour exchange interactions
will move this initial longitudinal energy surface around, such that the equilibrium spin
length condition cannot be met. This frequently arises due to stoichiometric variations that
affect the exchange coupling in a system, which causes incorrect calculations of moment size
changes. The implementation described in this chapter provides a means of correcting for
this unwanted shift in longitudinal energy, via the re-fitting of the energy parameters, taking
into account the system-dependent exchange energy configuration.

An additional highlighted challenge with the LSF model is the requirement for an
exchange coupling re-adjustment. Ma et al. and Ellis et al. have clearly demonstrated
that the implementation of LSF schemes has consistently brought underestimations in the
value of the calculated TC and TN in materials. It is discussed that such models are required
to have a readjustment of the exchange coupling constants, which are now perturbed by
the evaluation of longitudinal energies. The idea that adding novel energy components
that directly interact with the heat-bath of the system causes unwanted alterations to spin
correlation has previously been shown in Böttcher et al [99]. As a result, we introduce a form
of correcting the exchange coupling constants J with respect to temperature via a coefficient,
which shows the necessity of such a correction as per the TC and TN results obtained.

Overall, this chapter highlights the details behind implementing the LSF model into a
wide range of systems with inherently different magnetic behaviours (Fe, Ni, Co, and Cr).
For each case, the exact constraint and alleviation of said constraint is shown, in order to
ensure applicability to the most number of cases as possible. The first part of the results show
the usage of the LSF-LLG integrator scheme with both the Heun and fourth-order Runge-
Kutta solvers, which have tested the convergence limits of the newly implemented integrator
scheme. Next, calculations are shown to demonstrate that the appropriate relationship of spin
length against temperature is recovered as expected by the Landau Hamiltonian, via the use
of longitudinal Boltzmann probability distributions. This showed clearly the dependence of
the longitudinal potential well with respect to the explorable longitudinal states in a given
material. The overall temperature-dependent magnetisation properties were computed, giving
values for TC that replicate experimental data. Additionally, the calculations show the effects
of a variable spin length during the heating process for the different materials. Finally, an
investigation into the ultrafast demagnetisation dynamics of Ni was conducted to determine
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the effectiveness of longitudinal schemes in sub-picosecond laser pulse calculations. The
importance of longitudinal variation has been demonstrated experimentally, and thus was
crucial to highlight as a test case in this chapter [100].

4.2 Theory

4.2.1 The atomistic spin Hamiltonian

The form of the atomistic spin Hamiltonian used in this chapter contains the energy
contributions for three main components: exchange, anisotropy, and applied fields, denoted
by Hexc, Hani, and Happ, and is described in full detail in chapter 2.

Out of the materials investigated in this chapter, Fe, Ni, and Co are parametrised
using ferromagnetic exchange coupling is denoted by exchange constants with J1-nn > 0,
whereas J1-nn < 0 corresponds to antiferromagnetic interactions seen in Cr. To emulate
the antiferromagnetic correlation of spins, Cr systems are defined as having two equivalent
sublattices, with the distinction between them that their exchange constants are J within the
lattice, and −J1-nn when interacting with the opposing lattice. It should be highlighted, that
in the form presented by the conventional Hamiltonian, the spin vector utilised is specifically
of a unit length meaning that the integrator schemes conventionally employed to compute
spin changes explicitly normalise |S|= 1. In order to remove the restriction on this quantity
to include longitudinal changes, the spin vector in the conventional Hamiltonian has to be
adjusted to use the form S = Ŝ|S|, as discussed in 2.1.5.

4.2.2 Equilibrium correction of Landau coefficients

In order to ensure that at equilibrium the Landau coefficients computed via DFT calculations
give a spin length of |S| = 1, a re-adjustment of the coefficients are required. The reason
for this is to ensure that the reference energy state of the calculated coefficients lines up
with the reference state of the simulated system, meaning that the total exchange and
anisotropy contributions have to be equal for both instances. It is assumed in the following
that the Landau coefficients for a given material are generally the same between minor
changes to the energy reference states that arise due to system size, or the minor addition
of disordering. From this assumption, the following equation describes the re-adjustment
process by introducing minor shifts to the energy surface, to redirect the energy minima to
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Parameter Fe (bcc) Ni (fcc) Co (hcp) Cr (bcc)
µs (µB) 2.22 0.61 1.72 0.50

J1-nn
i j (J/link) 7.050×10−21 2.757×10−21 6.064×10−21 2.306×10−21

ku (J/atom) 5.65×10−25 5.47×10−26 6.69×10−24 −
A′ (J) −6.404×10−20 −1.072×10−21 −5.698×10−21 −3.209×10−20

B′ (J) 3.082×10−20 7.457×10−21 7.499×10−22 1.191×10−20

C′ (J) 9.641×10−21 8.486×10−22 1.401×10−20 5.368×10−21

λ 0.1 0.1 0.1 0.1
Table 4.1 The collective simulation parameters utilised in this chapter for the materials
examined. The Landau coefficients were obtained outside the scope of this thesis using
methods from Pan et al [31]. The rest of the simulation parameters follows what was obtained
in Evans et al [28].

what was assumed by the DFT reference state:
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2,

(4.1)
where the material dependent temporary coefficient Dα can be determined by analytical
fitting, such that the minimum position of the Landau Hamiltonian must lie at |S| = 1. It
is important to note, that the terms for exchange and anisotropy have been included in this
definition so as to get a more complete picture of the energy reference state used to obtain the
Landau coefficients. After re-adjusting the longitudinal energy surface via Dα , data points of
this adjusted curve are computed, and the original Landau Hamiltonian in equation 2.25 is
re-fitted to the new data via contributions solely from coefficients Aα , Bα , and Cα (omitting
J and ku as fitting parameters). This refitting process now embeds the refitting modifications
introduced into the original coefficients, and thus the currently used energy reference state
has been fully accounted for. The new Landau Hamiltonian with augmented coefficients
is described according to the following expression, which can then be used with the LSF
integrator schemes:

H ′
L = ∑

i
∑
α

A′
α |Si|2 +B′

α |Si|4 +C′
α |Si|6, (4.2)

where A′
α , B′

α , and C′
α are the equilibrium-adjusted Landau coefficients. Following

readjustment, table 4.1 summarises the re-adjusted simulation parameters for the tested
material species. While this rescaling method fixes the fundamental issue of not having the
right equilibrium spin length, it should be highlighted that this also unintentionally affects
the curvature of the potential, which may not be desirable.
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a b
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Fig. 4.1 The longitudinal energy surfaces for Fe, Ni, Co, and Cr which depend on the
configuration of the Landau Hamiltonian coefficients. (a) shows the purely longitudinal
energy components, while (b) includes the effects of exchange energy.

Figure 4.1 shows the longitudinal energy surfaces with and without including exchange
energy contributions for the tested materials: Fe, Ni, Co, and Cr. It can be seen that there is a
variety of different longitudinal energy dependencies between the different material species,
which is greatly informed by the behaviour of its moment size. For example, Ni demonstrates
a very shallow potential well, meaning that even small changes in energy can be expended
to see drastic shifts in |S|. On the other hand, a material such as Fe sees very minor shifts
in |S| as it is prohibitively expensive energetically to undergo changes to |S|. This is due to
the highly localised nature of Fe’s d electrons, meaning a stiff moment is expected. Once
the exchange energy contributions are factored in, the re-adjusted coefficients are brought
to the appropriate spin length minima, as it can be seen that there is alignment with |S|= 1.
This means at T = 0 K for example, the initial moments of all the materials are exactly
their respective µs. It should be noted, that the Landau energies being included in the total
Hamiltonian means that as the magnitude of the exchange term ceases at higher temperatures
due to disordering, the amount by which the longitudinal energy surface shifts is variable,
and thus the value of |S| fluctuates accordingly. For example, at higher temperatures larger
fluctuations of the moment size occur.

Figure 4.2 shows the overall dependence between the longitudinal energy surface and
temperature, whereby it can be seen that a range of different longitudinal potentials are
obtained. This exact behaviour occurs due to the contribution of the exchange term having
different magnitudes with respect to temperature. A more disordered system is going to
have less correlation between spins, and thus the exchange energy term is significantly less
at T ≈ TC than at equilibrium. Therefore, with increasing temperature, the longitudinal
potentials are brought back closer to their exchange-less forms. Additionally, the first order
derivative of the total Hamiltonian is shown, which describes the evolution of the spin length
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Fig. 4.2 Figures (a), (c), (e), and (g) show the material specific longitudinal energy surfaces
with the temperature effects of exchange included, and (b), (d), (f), and (h) are the respective
first derivatives of the total Hamiltonian with respect to |S|. The exchange contribution at
each temperature was extracted via bulk calculations, and then analytically plotted using the
total LSF Hamiltonian.
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minima with temperature (at the points where E ′ = 0). Once again, this shows that different
material species will exhibit different scaling behaviour of |S| with respect to total energy.

4.3 Simulation methods

4.3.1 Temperature-dependent longitudinal dynamics

An area of particular interest is to be able to use the LSF model to recover the appropriate TC

and TN values of given materials. As a result, calculations were done on Fe, Co, Ni, and Cr
to compute the resultant temperature-dependent magnetisation properties while including
longitudinal degrees of freedom. An important aspect to note, is that the moment size can
now be modelled with respect to temperature, and thus a good indication can be obtained
to show the relative moment size with respect to system disordering or temperature. The
magnetisation against temperature data was calculated for 6 nm × 6 nm × 6 nm systems,
using the LSF-MC scheme. At every temperature increment, 5000 equilibration timesteps
were allowed, which ensured that the system reaches equilibrium before magnetisation
data is recorded. From there, 35000 loop timesteps were dedicated to collecting system
magnetisation data. It should be noted, that because Cr is modelled across 2 sublattices due to
its antiferromagnetic nature, the magnetisation properties quantified per Cr site is the average
of the two sublattices. In order to fit the TC or in the case of Cr the TN data, the following
equation was used [28, 80]:

m(T ) =
(

1−
(

T
TC

)α)β

, (4.3)

where the temperature-dependent magnetisation m(T ) is represented by a normalised scaling
of temperature T with respect to the Curie or Néel temperatures with two fitting parameters
as exponents. α is a system dependent parameter, while β is approximately 0.340 under
experimental conditions [80]. In addition to this, the longitudinal sublattice susceptibility
against temperature was plotted, which describes the transition to a paramagnetic state as a
singular peak. This was used as a measure to ensure the correct TC and TN was obtained. As
it was previously discussed in Ma et al. and Ellis et al. [49, 50] that an adjustment to the
exchange coupling parameter J was required under the LSF model, a temperature-dependent
scaling described as the following was used:

Jmodified = J(1−Fα(T/TC)), (4.4)
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where Fα describes a material specific exchange scaling factor. The inclusion of the exchange
readjustment is shown to be crucial, as it is consistent across all systems that TC and TN is
otherwise underestimated. The form of such an adjustment leading to an increase in J is
justified by the fact that the LSF model emulates a larger amount of electron mobility due to
the additional longitudinal degrees of freedom.

4.3.2 Ultrafast demagnetisation with longitudinal dynamics

To compute the ultrafast magnetisation dynamics of Ni, a sub picosecond demagnetisation
calculation was done via a two-temperature model to determine the effectiveness of the LSF
model in appropriately replicating the experimental results obtained [101]. The simulation
is set up such that a laser pulse creates temperature changes to the electron temperature Te,
which is then allowed to transfer heat to the lattice, governed by lattice temperature Tl . The
two systems are coupled via a coupling factor G, which controls the rate at which energy is
transferred between the two otherwise isolated systems. The equations governing the transfer
of thermal energy between Te and Tl are shown in the following [80]:

Ce
∂Te

∂ t
=−G(Te −Tl)+Γ(t), (4.5)

Cl
∂Tl

∂ t
=−G(Tl −Te), (4.6)

where Γ(t) is a Gaussian distribution function that has a FWHM of 60 fs, and C is the
heat capacity. In this simulation, G = 1.2×1018 Wm−3K−1, Ce = 8×102 Jm−3K−1, and
Cl = 4×106 Jm−3K−1 [102]. This demagnetisation process was calculated for an 8 nm ×
8 nm × 8 nm system of Ni, which was repeated with both the conventional LLG and LSF-
LLG integrators. This is because it was important to verify the qualitative and quantitative
differences brought on by the inclusion of longitudinal dynamics. An additional simulation
parameter that was included was a temperature rescaling function, which ensured that the data
obtained more appropriately followed experimental trends via the system dependent scaling
parameter α . The equation governing the temperature rescaling relationship is described as
[80]:

Trescaled

TC
=

(
Texpt

TC

)α

. (4.7)

This equation ensures that the actual simulated temperature at a given point is the Trescaled

quantity, which has a re-adjusted origin. In this case, Evans et al. finds that α = 2.322 for Ni
[80].
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4.4 Results and discussion

4.4.1 Single spin calculations

Single spin dynamics of the LLG schemes were verified by allowing a single spin to relax
from starting in the [100] direction to [001] via an applied field along the z-axis of 10 T. The
system was allowed to relax for 50 ps with a timestep size of ∆t = 1×10−16 s and damping
λ = 0.1, while its variation in S was computed. The associated error was also found via the
relationship (Scalculated −Sanalytical) using the following equations [28]:

Sx(t) = sech
(

λγH
1+λ 2 t

)
cos

(
γH

1+λ 2 t
)
, (4.8)

Sz(t) = tanh
(

λγH
1+λ 2 t

)
. (4.9)

Validating the single-spin calculation of the time-dependent LSF-LLG integrator scheme is
important to ensure that a convergent solution is obtained. As a result, both the Heun and
fourth-order Runge-Kutta (RK4) forms were tested with and without thermal fluctuations
(T = 0.1 K and T = 0.0 K respectively), to ensure that the timescales utilised in the
magnetisation calculations were able to resolve the spin motions appropriately.

Figure 4.3 shows the single spin dynamics of the implemented LSF-LLG models,
alongside the expected result computed using the LLG integrator. The LSF-LLG by default
assumes the Heun solver scheme, unless otherwise stated. It can be seen that there is a
deviation from the associated damping force that is visible between the LLG and LSF-
LLG integrators, whereby the Sx quantity does not overlap. This was determined to be
an entirely physical consequence of the LSF-LLG form, as it can be compared to what
is obtained using the fourth-order Runge-Kutta solver for the same simulation. The latter
is known to provide a much more accurate solution to integrating the equation of motion,
and thus the difference arising from implementation differences can be eliminated. The
exact nature of this apparently larger damping parameter in the LSF-LLG is attributed to
the following: a reformulation of the dissipation term to include longitudinal motion now
includes both transverse and longitudinal contributions, whereas the conventional LLG
only considers the transverse form. This means that the longitudinally-induced damping
couples to the transverse one, and thus λLLG < λLSF-LLG is obvious. The nature of this
behaviour is simply that to obtain the equation of motion for the LSF-LLG, one must use
the identity λtransverse = λlongitudinal, which means both are treated under the same timescales
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a b

c d

Fig. 4.3 (a) single spin LLG dynamics, and the error between analytical and calculated
results in (b). (c) shows the 0K dynamics for the LLG compared to the LSF-LLG and
LSF-LLG-RK4 schemes, while (d) is the 0.1K case. It can be seen that both Heun and RK4
solvers converge to the same result appropriately.

and dissipation terms. The validity of such an assumption is still unclear, and is left to future
work to explore further.

4.4.2 Boltzmann probability distributions

By employing the LSF-MC integrator scheme, the longitudinal probability distributions for
the tested systems can be obtained. A single spin at various temperatures will naturally
equilibrate to a variation of spin lengths which is described by the total Hamiltonian of
the system. Longitudinal Boltzmann probability distributions calculate the probabilities of
the given states of |S|, which can be used to verify that the correct temperature-dependent
longitudinal behaviour is attained. The |S| data was binned across 5×106 Monte-Carlo steps,
to ensure that all explorable states have been accessed. The following equation describes the
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Boltzmann function that recovers the expected spin length distributions:

P ∝ exp
(
− H

kBT

)
. (4.10)

The proportionality relation should be noted, as the exact height of the distribution will
depend on the number of MC steps which determines the maximal peak of the fit.

In figure 4.4, the longitudinal Boltzmann probability states are shown for Ni, with and
without the inclusion of the exchange energy term in the total Hamiltonian. The results
show an excellent agreement with the expected fit according to the Boltzmann probability
function, which evaluates the probability of a new spin state being explored according to
the LSF-MC integrator. It is clearly shown, that without exchange, the naturally shallow Ni
longitudinal energy surface tends towards a large width of |S| states, as is described by its
Landau coefficients. With respect to temperature, it can be seen that additional broadening
of the longitudinal states occurs, whereby the system has more free energy to explore a
larger range of states than what was previously available. Because Ni’s moment is greatly
influenced by its own exchange field, the moment exchange energy contributions are used in
the total Hamiltonian, a consequently significant narrowing of the distribution occurs. Firstly,
it is now centred around |S|= 1 at low temperatures due to the equilibrium re-adjustments
made to the Landau coefficients. Secondly, the effects of the exchange energy can be seen:
as T → T Ni

C , the exchange energy contribution follows the trend Eexchange → 0, which then
transforms the longitudinal distribution into the exchange-less form.

a b

Ni – no exchange Ni – with exchange

Fig. 4.4 Ni longitudinal Boltzmann distribution without (a) and with (b) exchange energy
included in the total Hamiltonian. It can be seen that there is a reduction in the broadening
of the distribution given an exchange field, indicating a strongly polarised moment. The
simulated points were fitted via equation 4.10.
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The full exchange-less Boltzmann probability distributions of the studied materials is
shown in figure 4.5. A clear relationship between the stiffness of a moment and the width
of the probability distribution can be observed. Systems such as Fe are tightly localised
moments, which means small changes are expected in the spin length quantity |S|, and thus it
assumes narrow distributions. Ni on the other hand has a significantly less localised moment,
which shows greater distribution width, and a tendency towards much higher spin length
values with increasing temperature. Co is also shown to be similarly shallow to Ni, though
this is quickly changed by the fact that once the exchange interaction is included, Co quickly
behaves as a stiff moment similar to what is seen in Fe. Finally, Cr is seen to be almost as stiff
as Fe, with a bit more distribution width. The Boltzmann probability distributions obtained
also validate the sampling algorithm used by the LSF-MC, as it can be seen that it reproduces
what was expected by the Landau coefficients for the four materials, and additionally is fitted
appropriately with the use of the Boltzmann probability function.

a b

c d

Fe
Ni

Co Cr

Fig. 4.5 Without the inclusion of exchange energy, the longitudinal Boltzmann distributions
are shown for Fe (a), Ni (b), Co (c), and Cr (d). The width of the distributions clearly increase
with larger temperatures, allowing for a larger number of unexplored longitudinal states to
manifest.
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4.4.3 Curie and Néel temperature calculations

a b

c d
MC

LSF-MC

LSF-MC |S|

Fe Ni

Co Cr

Fig. 4.6 The temperature-dependent magnetisation properties of Fe (a), Ni (b), Co (c), and
Cr (d). "MC" (dark-blue) corresponds to the Monte-Carlo integrator, "LSF-MC" (light-blue
and gold) corresponds to the longitudinal Monte-Carlo integrator. The "LSF-MC |S|" label
denotes the calculated spin-length using the longitudinal Monte-Carlo. It is clear that there is
a consistent underestimation of TC and TN given the LSF model, which leads to the conclusion
that an exchange coupling adjustment is mandatory.

The temperature-dependent magnetisation calculations for Fe, Ni, Co, and Cr are shown
in figure 4.6. Firstly, a direct comparison of the conventional MC and LSF-MC can be
discussed. It is evident overall that without adjustment, T LSF

C < T MC
C across all materials.

This was also shown to be the case in previous implementations of similar longitudinal spin
fluctuations models [49, 50]. Additionally to the normalised magnetisation metric, the value
for |S| can also be seen to vary with respect to temperature. Generally, the relationship for
|S| outside the paramagnetic regime is affected by exchange energy contributions, and thus a
consistent reduction in |S| can be seen until TC and TN. After the exchange contribution is
approximately 0 beyond this temperature, |S| is allowed to increase, as simply adding more
energy to the Landau energy surface allows for a broader range of energies to be accessed.
The case for Ni is particularly interesting, as this behaviour is amplified due to its shallow
potential well. Initially, the decreasing exchange causes a reduction in |S| as the spin length
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minima slowly returns to its equilibrium exchange-less minimum. As T increases beyond the
paramagnetic transition, the system is simply allowed to explore larger |S| quantities without
any further perturbations. While the other materials also show similar behaviour, they are not
as pronounced as in Ni. To more clearly define the value of TC and TN, the average sublattice
susceptibility is also shown alongside the normalised magnetisation data, which shows clear
peaks at the paramagnetic transition phase. For Cr, all data was an average across both of
its sublattices with equal and opposite exchange coupling constants, as it is simulated in an
antiferromagnetic configuration.

A summary of TC data collected is shown in table 4.2. It can be seen that upon applying the
exchange re-adjustment factor necessitated by the LSF schemes, there is good agreement with
experimentally obtained values of TC and TN. As the results show, there is clear viability in
the introduction of longitudinal degrees of freedom in determining the temperature-dependent
behaviour of magnetic materials. It should be noted, that in order to obtain the exchange re-
adjustment coefficients, prior knowledge as to the M(T ) behaviour of the material is needed.
While this clearly increases the complexity of such a model, for a given lattice orientation
of a material the factor Fα only has to be calculated once before it can be utilised in other
simulations or systems. It should however be noted, that the value for Fα is significantly
altered in the cases of alloying for example, where new material species are introduced, or
drastically different temperature to system coupling methods are included. The exchange
coupling interactions between the different species introduces additional complexities that
are not trivial to dissect, and thus an exact treatment of exchange re-adjustment in alloyed
systems is left to future work. It should be noted that the adjustment to the exchange can also
be introduced via changes to the initial DFT calculations for every system. It is currently
not evident what the most appropriate strategy is to introduce variability to the exchange
coupling.

TC/TN (K)
System Expt. MC LSF-MC Fα

Fe (bcc) 1043 1033 1037 0.13
Ni (fcc) 633 623 639 0.18
Co (hcp) 1388 1375 1356 0.22
Cr (bcc) 311 335 313 0.03

Table 4.2 The temperature-dependent calculations of the tested materials, drawing a
comparison between the LSF and conventional integrator schemes. Fα also shows the
necessary exchange coupling adjustment applied to each system. It can be seen that good
experimental agreement is obtained with this adjustment [103, 104].
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Ni

Fig. 4.7 The temperature-dependent magnetisation of Ni changes drastically given the
introduction of a temperature-dependent exchange adjustment. It can be seen that the
appropriate TC is reproduced with a necessary rescaling of the exchange coupling constant J.

A crucial highlight of the exchange re-adjustment process is shown in figure 4.7. The
calculations for the standard treatment of exchange and re-adjusted exchange show a
significantly different scaling in terms of exchange energy against temperature, which is
a requirement in including the longitudinal energy contributions according to the Landau
Hamiltonian. After adjustment, the TC of Ni is obtained to be T LSF

C = 639 K, which is in
good agreement with experimentally obtained T expt

C = 633 K. It should be highlighted that
because the exchange energy with respect to temperature goes to J = 0 at a slower rate, the
relationship between |S| against T is also affected. Appropriately, the behaviour of decreasing
|S| followed by its increase at the paramagnetic transition still remains as per the description
of its longitudinal energy surface. It is important to validate the exchange rescaling presented
in these calculations in other environments where different dynamic interactions play a role
in varying a given system’s magnetisation evolution. As a further area of application, the
sub-picosecond demagnetisation dynamics discussed in the next section cover the application
of exchange re-adjustment in Ni in a different type of calculation.
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4.4.4 Ultrafast demagnetisation of Ni

Figure 4.8 shows the sub-picosecond demagnetisation of a Ni system, via the emulation
of a laser pulse that regulates the temperature of the spins via a two-temperature model.
This was calculated using only the LLG and LSF-LLG integrator schemes, which was a
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Fig. 4.8 The ultrafast demagnetisation of Ni is calculated with both the LLG and LSF-LLG
integrator schemes, yielding similar results. It should be noted however that the longitudinal
contributions of Ni leads to a difference between the two results. It can be seen that there is
good experimental agreement.

requirement as explicit time-dependence cannot be introduced into the current form of the
LSF-MC. It should be noted, that a timestep size of ∆t = 1× 10−16 s was used for this
calculation with λ = 0.001. The system was allowed to equilibrate at T = 300 K for 200000
timesteps (t = 20 ps), and then a laser pulse was instantaneously applied, which influenced
the temperature of the system. The system was allowed to evolve for an additional 200000
timesteps after the introduction of the temperature pulse, to allow for thermal energy transfer
between the electron and lattice temperatures (Te and Tl respectively) which were coupled
to each other. After about 10ps past the introduction of the laser pulse, both systems are
in equilibrium with one another, and thus a constant magnetisation value is attained by
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the Ni spins. It should be highlighted, that the drastically different treatment of system
temperature in this case via the two-temperature model requires the use of Fα = 0.06 to
appropriately match the magnetisation calculated via the LSF-LLG to that of the initial
experimental magnitude before the pulse is applied. The demagnetisation calculation shows
that there is excellent agreement between the experimentally obtained data and what is
calculated by the LSF-LLG. This is attributed to the more strongly manifesting effects of
the damping parameter λ as seen in figure 4.3. As a result, it can be shown that longitudinal
degrees of freedom play an important role in modelling the energy dynamics that occur in
demagnetisation processes of an ultrafast nature.

4.5 Summary

The idea of merging moment size changes to conventional atomistic spin models continues to
show interest, given the continued development of models such as the LLB integrator. It has
been shown to be important in less localised moments such as Ni, whereby the magnitude of
µs is demonstrated to change significantly depending on the energy state of the spins. In this
chapter, we have implemented three longitudinal integrator schemes, the LSF-LLG-Heun,
LSF-LLG-RK4, and the LSF-MC, with each having slightly different characteristics to be
able to verify their implementations, and so that they remain applicable to a wide range
of calculations. In order to test the newly implemented models, the Landau Hamiltonian
was constructed via an equilibrium-adjustment form that ensures an equilibrium spin length
of |S| = 1 for Fe, Ni, Co, and Cr. Additionally, a challenge regarding the inconsistencies
in the calculated TC and TN of all the materials were reconciled via an exchange coupling
re-adjustment.

The results shown in this chapter were able to validate the implementation of the
equivalent damping assumption between transverse and longitudinal moves for the dissipation
term in the LSF-LLG, via the agreement of results between both the Heun and RK4 solvers
in a single spin system. Afterwards, it was shown that the Boltzmann distributions recovered
from the LSF-MC agreed with what was parameterised according to the Landau Hamiltonian
for each material, defining the differences in behaviour for softer moments such as Ni
amongst stiffer ones such as Fe. The exact temperature-dependent longitudinal spin length
relationship was also shown to vary due to drastic changes in the magnitude of the exchange
contribution under different temperatures. Additionally, the Boltzmann distributions verified
the LSF-MC sampling routine, given that the appropriate phase-space was being sampled to
recover the fitted Boltzmann probability function. The temperature-dependent magnetisation
calculations further verified what was obtained by identifying the systematic TC and TN
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discrepancy between the conventional and longitudinal integrator schemes. Additionally, the
exchange re-adjustment methods were shown to give excellent agreement with TC and TN data
measured experimentally. Finally, the ultrafast demagnetisation calculations of Ni proved
that the inclusion of longitudinal dynamics is compatible in sub-picosecond calculations,
giving good agreement with experimental results.

While the implementation of the LSF model has shown good agreement with expected
results in this chapter, some areas of improvement remain, and are left to future work. For
example, computing the Landau parameters for a larger variety of materials would aid in
the general usability of the implemented calculations, as every species in general requires
a recalculation of the Landau coefficients. Additionally, the LSF-MC integrator scheme is
currently sampling longitudinal and transverse space collectively, via a uniform sampling
scheme. This can be significantly more efficient via researching the appropriate phase-space
measure to implement a split move sampling architecture, whereby both transverse and
longitudinal moves can be independently tuned. Finally, while the LSF-LLG was shown
to have been implemented appropriately given the Heun and RK4 solvers, it is still unclear
whether the assumption of equal transverse and longitudinal damping parameters is valid.
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The role of longitudinal spin fluctuations in FePt

5.1 Motivation

The incentive to pursue atomistic modelling of the magnetisation dynamics of FePt is
important for the reason that it is a significantly used material in making magnetic recording
media for the purposes of Heat Assisted Magnetic Recording (HAMR). This is in part due
to its L10 phase which has an exceptionally high anisotropy energy because it exists as
exclusive layers of Fe and Pt stacked on top of one another. The delocalized Pt sites are
strongly polarised by the localized Fe exchange field, and this unique exchange coupling
arrangement contributes to this large anisotropy. The result of this is a breaking of cubic
symmetry, and a preference of alignment along the stacking direction, referred to as the
easy-axis [105]. The currently established atomistic modelling method employed to best
replicate the collective behaviour of Fe and Pt in the same system was described by Mryasov
et al., where the primary assumption made is to treat the Pt sites as ’non-magnetic’, and to
reconstruct the effective spin Hamiltonian in Fe degrees of freedom, with adjustments to the
anisotropy and exchange energies to accommodate the effects of Pt [30]. While this model
proposes a reasonable approach when it comes to modelling ordered FePt structures, where it
is guaranteed that every Pt site has equal access to the same amount of Fe nearest neighbours
to couple with, it raises questions regarding the effectiveness of applying a blanket treatment
of all Pt sites in systems where localized structure variations are random. The difficulty in
modelling Pt as individual spin moments is because the currently used atomistic Landau-
Lifshitz-Gilbert (LLG) and Monte Carlo (MC) integrator schemes both assume a fixed spin
vector magnitude of |S| = 1. While this is mostly inconsequential for highly localised Fe
sites, Pt sites show large degrees of delocalisation, manifesting as fluctuations in moment
length. Not including the longitudinal contributions returns an incomplete picture as to the
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magnetisation dynamics of FePt as a whole, as the Pt degrees of freedom cannot be modelled
otherwise.

The Longitudinal Spin Fluctuations (LSF) model introduced in chapter 4 was applied
to FePt, which allows for moment length changes in Pt, which in turn allows for atomistic
modelling of both Fe and Pt sites with their own degrees of freedom. The application of
such a model to FePt is natural: Fe sites remain rather stiff longitudinally, however crucially
provide a strong exchange field which polarises Pt sites, inducing longitudinal fluctuations,
which account for a significant portion of its magnetisation contribution. By modelling
the Pt degrees of freedom, considerations can also be made for site-dependent anisotropy
calculations, via the Néel pair anisotropy model [106]. Instead of assuming a fixed anisotropy
contribution determined by material species, a fully localised calculation of the anisotropy
contribution dependent on nearest neighbours can be employed. This leads to more bespoke
consideration of stoichiometric variations, especially at the surfaces of the simulated systems
where fluctuations of the number of nearest neighbours are noticeable. Including the LSF
model paves the way to atomistically modelling systems with any amount of disordering,
given each system now has access to fully localised energy calculation schemes. Figure 5.1
shows a schematic of the primary differences between the Mryasov FePt model, and the LSF
one.

The research presented in this chapter builds on the work in Mryasov et al. and makes
suitable adjustments to utilise the established fundamentals of FePt to construct a model
that enables the calculation of Pt degrees of freedom in order to realise a more physically
appropriate representation of the system [30]. To build a fully realistic treatment of Fe and
Pt, a Néel anisotropy model is derived, allowing for fully on-site calculations of anisotropy
energy, moment length, and exchange contributions. The results in this chapter highlight
temperature-dependent magnetisation changes that now correctly replicate TC while also
allowing Pt to behave as its own fluctuating moment. Finally, temperature-dependent
magnetisation calculations for the A1 phase are shown to give an overview of one of the
major strengths of the LSF model.

5.2 Longitudinal dynamics in FePt

5.2.1 The conventional FePt model

In order to build a holistic picture of the magnetic behaviour of FePt, the model introduced
in Mryasov et al. is considered [30]. As the theory of this is covered in chapter 3, section
3.2, a recap of the key findings will be included. A crucial starting point to establishing the
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Mryasov model LSF model

Fe (Pt modified) Fe Pt

Fig. 5.1 A schematic representation of the LSF atomistic modelling scheme governing FePt,
with the primary advantage of being able to include Pt degrees of freedom alongside Fe ones.
In previous models the Pt sites were not given their own degrees of freedom according to the
Fe exchange field.

Mryasov model for FePt begins by understanding the dichotomy of the behaviour of Fe and
Pt. The strongly localized Fe sites induce a magnetic moment in the Pt sites via exchange
coupling. As the Pt moments can be represented according to the effective field from the
Fe sites via its susceptibility χPt (mPt = χPtHFe), the augmented effective exchange (and by
extension anisotropy) parameters can be obtained by adding the Pt contribution to the Fe ones.
The augmented energy terms can then be combined to construct an effective Hamiltonian
that describes the energetics of L10 FePt in solely Fe degrees of freedom, given by:

HFePt = ∑
i< j

Jeff, 1nn
i j Si ·S j −∑

i
d(1-ion)

i (Sz
i )

2 −∑
i< j

d(2-ion)
i

(
Sz

i S
z
j

)
. (5.1)

It can be seen that this form of the effective Hamiltonian assumes that the Fe sites have equal
access to Pt atoms, and is accounted for as simple augmentation to the Fe parameters by
considering the total energy of Pt due to the Fe exchange field. This assumption is only
valid in the highly ordered L10 phase, and does not hold true in a disordered A1 phase. In
order to deal with any form of randomisation introduced to FePt, the Pt moments have to be
modelled as their own degrees of freedom, alongside the already magnetic Fe sites. In order
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to model Pt atoms it must be noted that Pt heavily relies on longitudinal degrees of freedom
to gain a moment via the Fe exchange field. This is because under the strongly polarising Fe
exchange field the otherwise non-magnetic Pt sites weakly react to directional changes in the
total system, however they exhibit an increased magnetic moment to compensate. While the
methods behind introducing longitudinal spin fluctuations has been introduced in detail in
chapter 4, a recap of the relevant equations will be shown in the following part.

5.2.2 The FePt Landau Hamiltonian

To model longitudinal degrees of freedom, the Landau Hamiltonian for FePt and is given by
the expression

H ′
L = ∑

i
∑
α

A′
α |Si|2 +B′

α |Si|4 +C′
α |Si|6, (5.2)

where A′
α , B′

α , and C′
α are Landau coefficients that describe a material specific relationship

between system energy and an ordering parameter, which in this case is the spin length
quantity |Si| at site i and material α . Given the band structure for Fe and Pt, the coefficients
can be individually calculated such that they adequately replicate the changes seen to their
moment length with respect to available system energy. It should be noted, that the exchange
and anisotropy interactions between spin sites contributes to longitudinal changes, and thus
should also be taken into consideration when forming the basis of the Landau coefficients.
The summary of the total Hamiltonian parameters used are shown in table 5.1.

Parameter Fe Pt
µs (µB) 2.86 0.36

J1-nn
i j (Fe, Fe) (J/link) 3.30×10−21 -

J1-nn
i j (Fe, Pt) (J/link) 1.07×10−21 -

J1-nn
i j (Pt, Fe) (J/link) - 1.07×10−21

J1-nn
i j (Pt, Pt) (J/link) - 2.83×10−23

A′ (J) −7.91×10−20 4.55×10−21

B′ (J) 3.03×10−20 -
C′ (J) 1.14×10−20 -

λ 0.1 0.1
Table 5.1 Summary of FePt parameters used in the LSF calculations [50, 107].

The usually non-magnetic Pt sites are allowed to have their own degrees of freedom
as a result of this model, as the direct contribution of the Fe exchange field will promote
longitudinal changes to Pt that reflect moment growth proportional to that of its access to
Fe nearest neighbours. As a result, the Mryasov model is extended from just modelling
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Fig. 5.2 Energy against spin length relationship for FePt. It can be seen that Fe is prominently
centred around |S| = 1, whereas Pt starts at |S| = 0 without the addition of the effects of
exchange. This approximation is attributed to Pt not having a magnetic moment in bulk,
while Fe does.

Fe degrees of freedom with slight changes due to Pt, to being able to model both species.
To visually represent the Landau coefficients used, figure 5.2 demonstrates the bulk, non-
interacting longitudinal potentials for both Fe and Pt. It is evident that the Fe species remains
a stiff moment, given a steep longitudinal potential well, while Pt is significantly shallow,
leading to significant longitudinal changes. From a physical standpoint, this allows for the
Pt potential to be perturbed by the Fe exchange field with ease. Additionally, without any
interacting systems in place, Pt resorts to a moment length of |S| = 0 given by the energy
minimum.

It is important to quantify the degree to which the Fe exchange field polarises Pt, resulting
in an increase to its moment size. Due to |S| being a normalised quantity (|S| = 1 at
equilibrium), the average exchange field affecting Pt sites should modify the Pt potential
accordingly. Variations in system stoichiometry will result in shifts to the equilibrium spin
length values, and thus the Landau parameters should be recalculated given a deviation
from the normalisation condition, with exact methods detailed in chapter 4. The joining of
exchange, anisotropy, and longitudinal components allows for the coupling of all system
energies to longitudinal fluctuations, which gives rise to moment length changes for both Fe
and Pt species. It should also be noted that to introduce such dependence, the spin vectors Si

and S j that configure exchange and anisotropy energies now take the form of the total spin
vector S = Ŝ|S| rather than solely the unit vector description Ŝ, which assumes a constant
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Fig. 5.3 The effects of the Fe exchange field on the Pt sites, shifting the energy minima going
from |S|= 0 to |S|= 1. At equilibrium, the Pt longitudinal energy surface is parametrised
such that the Fe exchange field gives it exactly |S|= 1 at T = 0 K.

spin length of |S| = 1. Without committing to the redefinition of the vector components,
the exchange and anisotropy interactions would not be able to interact with changes to the
moment length of spins, giving an incomplete depiction of the system.

To demonstrate the drastic change to longitudinal Pt energies given the presence of the Fe
exchange field, figure 5.3 shows the longitudinal potential for Pt inclusive of the Fe exchange
contribution. It can be seen that the normalisation condition is met, as with the exchange
field from the Fe sites, the energy minimum rests at |S|= 1. As the system receives more
available energy (via increased temperatures for example), it is allowed to explore more
longitudinal configurations, leading to fluctuations in moment length. For the case of Pt, it
exhibits strong fluctuations due to a shallow potential, which gives it access to a wide range
of favourable states with even a small increase in energy.

5.2.3 Simulation methods

The introduction of additional degrees of freedom via modelling Pt atoms now requires
re-configuring the simulated lattice environment, to accommodate the distinct features of
both Fe and Pt material species independently. The crystal structure is set up using an
FCC lattice, beginning with four unique sites that are initialised as Fe only. For the case of
modelling L10 systems, the two sites which are not in the same plane as the reference atom
are replaced with Pt, leading to exactly two Fe and two Pt in this simple unit. This is then
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repeated until the desired structure is generated. The flexibility of defining the system in this
manner is evident once disordered phases are being investigated. In the case of the A1 phase
for example, all four unique spin sites per lattice is given a 50% chance of being replaced
with a Pt atom, leading to a fully random system. This also allows for slightly disordered
phases, where each spin sublattice can have a percentage chance of being replaced with the
opposite species. The process of generating disordered systems is shown in figure 5.4.

Fully disordered FePtOrdered FePt

Fe/Pt (50% chance)Fe Pt

Fig. 5.4 Disordering can be introduced by including a probability of incorrectly swapping
atomistic sites for the opposite species.

The pairwise exchange constants J1-nn
i j defined in such a system depend on both the

reference spin site i, and the neighbouring spin site j. As a result, in a perfect bulk L10 case,
both Fe and Pt sites will have four in-plane neighbours of the same species, and 8 (4 above
and 4 below) out-of-plane neighbours of a strictly different species. The exchange constants
are implemented such that the computed TC value replicates the experimental counterpart
of T FePt

C ≈ 700 K, using values calculated in Ellis et al. for any Pt related interactions,
and the mean-field approximation for pairwise exchange regulating Fe-Fe interactions The
previously defined exchange adjustment methods in chapter 4 are not applied in this case, as
this combination of exchange interactions yields an approximately correct TC ≈ 700 K. In
future work, it would be beneficial to expand on exactly what the reasoning for this from an
electronic theory perspective, however given the complexity of the interactions between Fe
and Pt species in this system it is left to future work.
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5.3 Néel anisotropy model

In order to realise a fully localised calculation of the atomistic energies of FePt, the currently
used uniaxial anisotropy energy calculation must be expanded to a more general form:
utilising the nearest neighbour configuration to determine the anisotropy energies. This is a
departure from the two-ion formulation devised in Mryasov et al. for the reason that the Pt
moment has its own degree of freedom under the LSF model, and thus assumes no relationship
to the Fe spins other than coupling via the standard exchange and anisotropy interactions.
This becomes exceptionally crucial in magnetisation dynamics for high-temperature magnetic
switching (demonstrated in chapter 6), where the anisotropy energy determines the magnetic
orientation of a given system after relaxing from TC.

5.3.1 The Néel anisotropy model for FePt

The standard uniaxial anisotropy calculation assigns an onsite anisotropy energy ku to each
material species, which has a magnitude given assumption that it will consistently have
access to the same number of nearest neighbours. While in bulk L10 FePt this is the case, in
finite systems with proportionally more surface effects this model fails to describe accurately
the energetics of such a system. Additionally, any amount of disorder introduced would lead
to an inconsistent number of Fe and or Pt nearest neighbours at a given site, and thus the
averaged onsite anisotropy treatment is no longer valid.

The LSF model has the advantage of fully discretized treatment of individual spin sites
with respect to their species, it is important to revise the anisotropy model to also come
as fully localised energy calculation determined by access to nearest neighbours. This is
done via the Néel model, which introduces a calculation at each spin site, summing the
anisotropy energy contribution from individual neighbours. This gives rise to a variance of
the anisotropy calculations in a system given positioning, disorder, and species clustering.
The energy calculation according to the Néel pair anisotropy model is given by the following
equation [106, 108, 109]:

HNéel =−kNéel

2

zi

∑
i j
(Si · êi j)

2, (5.3)

where each spin site i has anisotropy energy from the sum of nearest neighbours j with total zi.
The value of kNéel describes the energy parameter associated with a single interaction of that
given site with another neighbouring spin. In the case of L10 FePt, the Fe species contributes
an in-plane anisotropy component, while proportionally Pt significantly overpowers this with
an out-of-plane component. To model this behaviour, interactions going from an Fe to a
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Pt site are considered to be negative, while Pt to Fe is positive. Utilising the Néel form of
anisotropy calculations allows for explicit accounting of missing interactions that occur due
to stoichiometric variations from site-to-site, and thus the calculations shown in this chapter
focus on the new-found effects of fully discretizing an FePt system in the case of moment
fluctuations, exchange coupling, and anisotropy energy.

5.3.2 Fourth-order Néel anisotropy

While equation 5.3 sufficiently describes uniaxial symmetries in systems, and retrieves the
correct magnitude for cubic anisotropy cases, it fails to replicate the rotational symmetries in
systems with cubic anisotropy. To verify for the disordered phases that the correct symmetry
is obtained (not the magnitude), one must expand the Néel anisotropy calculation to include
an additional term, defined by the following expansion [108]:

HNéel =−kNéel

2

zi

∑
i j

[
(Si · êi j)

2 +(Si · êi j)
4] . (5.4)

The complexity of equation 5.4 is further to that described, as introducing a fourth order
term requires that the proportion of its contribution is regulated with respect to the second
order form. The coefficients required are not calculated in the research presented, and is
left to future work. As a result of this, the calculation of the anisotropy energy will be
left to the form shown in equation 5.3, while equation 5.4 was used to verify the correct
symmetries are present in a given system. The comparison of only second-order vs. second
and fourth-order terms in a fully disordered bulk A1 FePt system is shown in figure 5.5. The
data was obtained by setting the azimuthal angle θ = 90°, and rotating the spins in-plane
(φ = 0° to 360°). It can be seen that the second-order form produces an in-plane easy-axis,
which in the disordered case without any lattice compression should not be able to occur. The
fourth-order variant of the same calculation reproduces the correct cubic symmetries, albeit
with an incorrect magnitude as the calculations did not include a coefficient that regulates this
additional symmetry term. Utilising the second order form in future calculations does not
pose a significant unaccountable difference in the results obtained, as in practical terms the
magnitude of the cubic anisotropy (as seen in the second order calculation) is significantly
smaller relative to the out-of-plane term in the more ordered phases of FePt [110]. The
majority of the interest with the Néel pair model applied to FePt in chapter 6 is for calculations
involving Heat Assisted Magnetic Recording, which make use of the much larger uniaxial
anisotropy component of FePt systems. It is worth noting, that there is a slight offset of
the minimum (and maximum) energy points in both second and fourth order calculations.
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This is because the exact proportion of Fe and Pt atoms is not exactly 50%, and thus some
misalignment is expected.

a b

c d

4th order2nd order

2nd order

4th order

Fig. 5.5 Comparison between second (a), (c) and fourth order (b), (d) Néel forms, showing
clearly that in order to extract the cubic symmetries in disordered FePt, a fourth order
Néel term must be employed, as the asymmetric second-order result does not reflect cubic
symmetries appropriately.

The value of kNéel and the 3D anisotropic symmetries for a given structure can be
calculated by forcing the spins into a range of specific orientations, such that the variation of
anisotropy energy against θ (azimuthal angle; between a range of 0° to 180°) and φ (in-plane
rotational angle; between a range of 0° to 360°) are fully realised. The coordinate convention
is spherical polar coordinates, and is defined in figure 5.6.

From Mryasov et al., DFT calculations show that the uniaxial anisotropy constants
(ku) for Fe and Pt in FePt are −1.55×10−23 J/atom and 2.28×10−22 J/atom respectively
[30]. In order to obtain the correct pairwise Néel coupling energy terms (kNéel), the angular
variation of the total anisotropy energy obtained via using the onsite terms must be equal to
the same calculation using the Néel anisotropy model. From this, a value for kNéel can be
obtained for Fe and Pt by comparing the energy configurations by material species. Figure 5.7
shows the energy differences with respect to azimuthal angle θ for both the onsite uniaxial
and Néel cases, and table 5.2 summarises the kNéel parameters obtained. This was done
for a bulk L10 FePt system. It can be seen that the calculations comparing Néel and onsite
anisotropy energy variations match exactly, which shows that the Néel pair calculations given
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Fig. 5.6 Schematic of spherical polar coordinate system employed in computing spin vectors
given the azimuthal and in-plane rotational angles.

the right coefficients exactly reproduces the findings in Mryasov et al. [30]. This enables the
extension of the Néel anisotropy model to disordered systems, as the LSF discretization of
FePt allows for consideration of all spin sites, which means a fully localised resolution of the
anisotropy energy can be calculated.

Parameter Fe Pt
ku (J/atom) −1.55×10−23 2.28×10−22

kNéel (Fe, Pt) (J/neighbour) −7.76×10−24 -
kNéel (Pt, Fe) (J/neighbour) - 1.14×10−22

Table 5.2 Summary of anisotropy parameters used for LSF FePt simulations.

5.4 Results and discussion

5.4.1 Disorder-dependent FePt anisotropy

A primary interest of FePt related research is the anisotropy energy relationship against the
chemical ordering parameter s, given by the expression

s = 1−2p, (5.5)
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a b

c d

Fe Fe

Pt Pt

Fig. 5.7 (a), (c) Anisotropy energy varying with the azimuthal angle for an onsite anisotropy
energy model. The maximal difference between the energy states was used as a reference to
obtain the Néel pair anisotropy values for both Fe and Pt in (b), (d).

where p is the probability of finding a Pt atom in an Fe site, or an Fe atom at a Pt site with
reference to a perfect L10 structure. This yields s = 0 for the fully disordered A1 state, and
s = 1 for the fully ordered L10 state. Disorder dependent anisotropy is crucial from the
practical standpoint, as it is shown that during the production of FePt media for magnetic
recording purposes, naturally occurring disorder manifests in the annealing process [24].
Thus far, the level of atomistic detail achieved for FePt was heavily limited by the suppression
of the Pt degree of freedom, such that the anisotropy configuration had to be considered as an
effective modification of the Fe parameters. This is hindered by the underlying assumption
that all Fe sites have consistent access to the same number of Pt sites. In a more localised
sense, all of the uniaxial contributions in FePt occur via the Pt → Fe (Pt in the presence of
Fe neighbours) Néel pair interaction, which means that there is a heavy reliance on how
dispersed or concentrated certain species clusters are. The Fe → Pt interaction on the other
hand provides the effective in-plane component, however this is significantly smaller than
the easy out-of-plane contribution.
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The L10 phase demonstrates uniaxial anisotropy because Pt is guaranteed 8 Fe neighbours
(4 each, in the planes immediately above and below it) located along the z-axis. As the
system tends towards a more disordered A1 structure, the guaranteed bonds are lost, along
with the directional bias along an axis, thus the exclusively uniaxial behaviour is converted
into cubic. Figure 5.8 illustrates this Néel bond loss process, with the number of bonds
denoted by nNéel.

L10 FePt A1 FePt

nNéel = 8 nNéel ≈ 6 

Fig. 5.8 A schematic diagram showing the Néel pair bond loss process that occurs when FePt
goes from an ordered to a fully disordered state. As the system tends towards a disordered
lattice, the average number of spin pairs that can be described drops from nNéel = 8 to
approximately nNéel = 6.

Figure 5.9 realises the full energy surface symmetries using the fully atomistic Néel pair
anisotropy model. This was done for a bulk system, with equal lattice constants a = 3.861 Å,
determined in Meyer et al. [75]. It can be seen that the L10 form expectedly has no
dependence with the angle φ , while the uniaxial easy-axis anisotropy manifests with respect
to θ . This demonstrates correct implementation of the ordered and disordered forms of
the pair anisotropy model. It should be noted that the magnitude of cubic anisotropies via
using the fourth-order Néel pair anisotropy model are significant, however this has shown
to not be the case in FePt, and thus the fourth-order results are simply used to verify the
angle-dependent symmetries of the disordered system [110]. The rest of the calculations
taking place will be solely using the second-order form, so as to obtain the expected uniaxial
out-of-plane magnitudes.

Figure 5.10 shows a more detailed relationship between the anisotropic energy behaviours
and s. In order to compute intermediate forms of disordering between the L10 and the A1
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a b

c dL10 Fe A1 Fe

A1 PtL10 Pte f

L10 FePt A1 FePt

Fig. 5.9 Anisotropy symmetries pertaining to the fully ordered (L10) (a), (c), (e) and fully
disordered (A1) (b), (d), (f) phases of FePt. The existence of a cubic phase is realised in
the disordered system and is otherwise absent in the ordered one. It should be noted that in
order to extract the correct symmetries, the fourth-order Néel pair model was used for the A1
system.

phases, bulk systems of varying s have their spin configurations varied from θ = 0° (spins
aligned with the direction vector [001]) to θ = 90° ([100] direction). By computing the
anisotropic energy difference between these two spin configurations, the energy per functional
unit (f.u) can be extracted, which shows a clearly increasing trend going from fully disordered
s = 0 to fully ordered s = 1. The resultant calculations agree well with what was obtained
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Fig. 5.10 The difference between the anisotropy energies of spin directions [001] and [100]
against chemical ordering parameter s, showing clearly that increasing disordering leads to a
significant penalty in uniaxial alignment. The data points calculated are in agreement with
low temperature (LT) experimental data from Okamoto et al [32]. The room temperature
calculations were collated in Wolloch et al [111].

experimentally by Okamoto et al. in the low temperature (LT; T = 10 K) regime [32].
Additionally, the room temperature (RT; T ≈ 300 K) experimental calculations compiled in
Wolloch et al. establish a reasonable trend with respect to the calculated data [111]. It should
be noted that the atomistic calculations done in this thesis related to anisotropy are purely
at T = 0 K, and thus some deviation is expected from RT measurements. It is estimated
that Eani per f.u decreases by approximately 20 to 30% going from LT to RT systems [111].
Verifying the experimental data from Okamoto et al. has been demonstrated a few times
via coherent potential approximation (CPA) calculations [112, 113]. The express advantage
of an atomistically resolved method demonstrated here is that it is more usable given small
variations of the same general system. CPA is also limited to smaller system sizes due
to computational constraints. An additional interest of research on FePt is the anisotropy
dependence with respect to varying the concentration of Fe and Pt in the system [114]. With
the clearly defined Néel pair anisotropy model that is in good agreement with experimental
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data as shown, calculations for different species concentrations can be done as an extension
to what is shown in this chapter in a fully atomistic framework.

5.4.2 Induced Pt moment behaviour in FePt

Using the longitudinal spin fluctuations model, the temperature-dependent magnetisation
properties of FePt can now be realised including both Fe and Pt degrees of freedom, as
is shown in figure 5.11. By calculating the species-dependent normalised magnetisation
against temperature for a 6 nm×6 nm×6 nm system using the LSF-MC integrator scheme,
with 5000 equilibration timesteps and 35000 loop timesteps, the appropriate Pt behaviour
is recovered. It can be seen that the Pt sublattice magnetisation follows exactly that of the
Fe sublattice with respect to increasing temperature, reflecting fully the physical nature of
FePt: the Fe exchange field strongly polarises the Pt sublattice, which is the source of its
moment. The induced moment nature of Pt means that as a result of the spin re-orientation
brought on by the disordered Fe sites, it has to grow significantly in spin length |S|, which
leads to M(T )Fe ≈ M(T )Pt. This behaviour is directly attributed to the longitudinal potential
well of Pt described by the Landau expansion, where Pt only has an Aα coefficient for the
second order spin length term |S|2. This means that as the Fe sublattice disordering increases
with increasing temperature, Pt loses its strong coupling to the Fe sites. As a result, the
longitudinal energy curve seen in fig 5.3 reverts back to the exchange-less form, with the
energy minima at |S| = 0. The increased system temperature however now allows more
states to be explored along the potential well than compared to equilibrium, and thus the Pt
spin length is forced to trend towards higher values past |S|= 1. It can be seen that the LSF
model now exactly replicates what is expected from theory, which is that the Pt species only
gains a moment according to the Fe exchange field, and this is reciprocated in the system
magnetisation calculation [30]. The temperature-dependent magnetisation results obtained
show good qualitative agreement with what was obtained by Ellis et al [50]. It should also
be noted that the Landau coefficients have undergone a correction at equilibrium as per the
methods highlighted in chapter 4, which is necessary as the equilibrium value for |S| must be
1 to ensure a normalised reference moment.

To ensure that the LSF-MC integrator scheme fully samples the required longitudinal
phase space as defined by the Landau Hamiltonian, the Boltzmann distributions of FePt were
computed in figure 5.12. This was done by isolating a single-spin of either Fe or Pt with
their respective Landau coefficients, and binning the evolution of their spin length states with
respect to temperature. This was done for 5×106 Monte-Carlo moves, which was enough
for all the possible states to become saturated.
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a b

Fe

Pt

Fig. 5.11 temperature-dependent magnetisation calculation via fully discretized atomistic
dynamics of Fe and Pt moments. It can be seen that both Fe and Pt sublattices exactly
overlap with regard to their temperature-dependent magnetisation values in (a), due to a
compensatory increase of the Pt |S| seen in (b).

a b

Fig. 5.12 Boltzmann distributions of Fe (a) and Pt (b) longitudinal energy states with respect
to temperature. The stronger Fe moment is shown to have a much smaller distribution width,
whereas Pt demonstrates drastic changes in |S| as it is considered to be more easily polarised.

It can be seen that the expected temperature-dependent longitudinal behaviour is
recovered exactly as per the Landau Hamiltonian, where it is seen that the steep Fe potential
well prevents significant motion outside of its equilibrium spin length, whereas Pt exhibits
behaviour that corresponds to low energy requirements to traverse longitudinal phase space.
The significant broadening of the Pt distributions with increasing temperature is validated
by the temperature-dependent calculations done in figure 5.11 (b), showing a significant
increase in moment length. While broadening also occurs for the Fe distribution, it is
significantly narrower than what is calculated for Pt.

The temperature-dependent calculations done under the longitudinal framework utilising
the Landau Hamiltonian allows for a new look at simulations of interest relating to
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Heat Assisted Magnetic Recording (HAMR). By modelling both Fe and Pt atoms and
crucially being able to extract their induced moments, new insight can be obtained into
the individualised contributions of Fe and Pt to the paramagnetic state at TC, which is
important in modelling more physically representative magnetic recording media that include
defects and intermixing of layers [115]. Chapter 6 employs the longitudinal spin dynamics
framework for HAMR calculations, fully realising the methods discussed in this chapter.

5.5 Summary

This chapter introduces the approaches taken to fully discretize the currently understood
behaviour of FePt, by firstly defining longitudinal degrees of freedom using the Landau
expansion, and secondly redefining the treatment of FePt’s anisotropy framework, which
relied on the two-ion form, alongside its usual inherently in-plane contribution in the case
of the L10 phase. The Néel form was introduced with both the second and fourth-order
expansions to be able to investigate the magnitude and symmetries of more disordered
phases. The Néel pair model was able to reproduce the expected symmetries in the fully
disordered A1 phase via the fourth-order expansion, however it is noted that the cubic
anisotropy energy reflects an incorrect magnitude due to the lack of a fourth-order coefficient.
Regardless, the second-order expansion was employed to compute the uniaxial easy-axis
anisotropy energy of FePt with respect to its disordering, and calculations recovered what
was measured experimentally. The temperature-dependent magnetisation properties of FePt
were investigated via the longitudinal spin fluctuations model, and the expected Pt behaviour
was recovered, whereby its induced moment nature means it is reliant on the Fe sites to
obtain a magnetic moment and thus a normalised magnetisation measure. The magnetisation
against temperature calculation confirmed this overall behaviour, and the moment growth of
Pt was demonstrated to have occurred according to its shallow longitudinal potential well,
which is easily shifted according to the Fe disordering.



6

Atomistic simulations of HAMR including
Longitudinal Spin Fluctuations

6.1 Motivation

A major constraint of HAMR in the practical capacity, is the challenges faced with ensuring
the magnetic recording medium produced is as uniform in nature as possible. The annealing
process required to produce L10 FePt has shown to accidentally introduce clusters of the
disordered A1 phase, or of more Fe or Pt than intended, which has a significant effect on the
variability of the TC and K of grains produced [24, 114]. Calculating the atomistic resolved
details of HAMR processes has garnered increasing interest over recent years, given the
computational capabilities to resolve such large systems in atomistic units [28, 115]. The
primary use of such simulations is to obtain information on the smallest-scale interactions
that occur to cause overall emergent behaviour regarding data-storage performance. A
shortcoming of currently established models for FePt recording media is the lack of a fully
atomistic framework that gives full degrees of freedom to both Fe and Pt sites. Thus far in
the thesis, the discussion has focused around moving away from a partly-atomistic model to
a fully discretized one, with the introducing of Pt degrees of freedom using the Longitudinal
Spin Fluctuations (LSF) model. The degree to which Pt gains a moment and thus contributes
to the overall magnetisation state of FePt grains is determined exclusively by the number
of Fe (and by extension Pt) neighbours a given site has. By including the fully localised
integration schemes tested and shown in chapter 4, and further developing the localised FePt
anisotropy model in chapter 5, atomistic simulations can be conducted into the macroscopic
effects of more nuanced stoichiometric variations. This is of particular interest, as previous
models were unable to provide this level of resolution in investigating the large-scale effects
that emerge from atom-level variations in grain structure.
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The investigation in this chapter begins by identifying the overall anisotropic energies
seen in individual grains with varying levels of disordering. This is crucial as it is used to
verify the correct finite-size implementation of the Néel pair anisotropy model implemented
in chapter 5, while providing a qualitative overview of the expected evolution of the uniaxial
energies with respect to system disordering. Afterwards, calculations were done to determine
the type of longitudinal behaviour that FePt undergoes during the magnetic switching process,
showing in particular the spin length evolution of Pt spins, as their induced moment nature
has not been calculated before during the dynamics of switching. Given the significant
effects that grain dimension variance has during the recording process, calculations of grain
easy-axis distributions were done in this chapter [22, 23]. While the size dependence of
grains has previously been investigated, HAMR systems are also strongly affected by their
grain easy axis distributions [83]. This is because the readout signal during the reading
process is less error-prone if there is consistently perpendicular alignment of the grains’
magnetic fields. Maximising the easy-axis angle to be as close to θ = 0° is important in
ensuring the grains do not interact with each other’s spin configurations, causing unwanted
domain formation. Lastly, fully atomistic HAMR calculations with both Fe and Pt moments
being modelled highlight the viability of the LSF model for use in parametrising HAMR for
future practical use. An example is shown without any disordering as a verification to the bit
pattern obtained in chapter 3, and a comparison is also shown between grains with different
levels of disordering to determine the effects of writing data with s < 1.0. The investigation
qualitatively ties into the aspects of the magnetic recording trilemma introduced in chapter 1,
and demonstrated via HAMR calculations in chapter 3.

6.2 Single grain anisotropy energies

The Néel pair model implemented for use in the LSF FePt model is detailed prior to this
chapter, however a recap of the key parameters for this model will be included here. The
computation of the Fe and Pt kNéel parameters were done in chapter 5 by comparing the bulk
uniaxial anisotropy energy per spin of both Fe and Pt for both the calculated kNéel values,
and what was obtained via only using ku from Mryasov et al [30]. This gave values of
kFe→Pt

Néel =−7.76×10−24 J/neighbour and kPt→Fe
Néel = 1.14×10−22 J/neighbour. The Pt → Fe

denotes that this value of kNéel is used when an interaction is defined to be from i = Pt to
j = Fe, and vice versa. It should be noted that this chapter only includes contributions from
the second-order form of the Néel anisotropy implementation.

Figure 6.1 shows the anisotropy energy calculations of grain systems with variable
diameters and heights, and additionally varied according to the chemical ordering parameter
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s. The calculation was done by calculating the anisotropy energies by varying θ between
0° to 90°, and computing the anisotropic energy difference between the two states. The
calculations show a strict reliance on the uniaxial energies present based on the disordering
parameter, which is expected. While the uniaxial anisotropy decreases dramatically with
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Fig. 6.1 Uniaxial anisotropy energy with respect to chemical ordering parameter s varied by
grain dimensions. Eani was computed as the difference between the anisotropy energies when
all spins are parallel and perpendicular to the easy-axis. There is good agreement between
the different system sizes.

small changes to s, the cubic symmetries are still fully present in the more disordered systems,
although their magnitude and effects are not fully realised in this data. At s ≈ 0, an effect can
be seen whereby the Eani per f.u data shows negative values. This was reproduced in Staunton
et al. and occurs due to a variation in the lattice parameters used in these calculations [113].
More specifically, in chapter 5 the bulk case of FePt was considered where the lattice constant
was set to be equal in all directions with the value a = 3.861 Å. In these finite systems, the
lattice constant was assumed to take the fully experimentally measured value of a = 3.861 Å
with a compression on the z-axis leading to c = 3.788 Å [75]. A detailed description of this
behaviour is left to future work.
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6.3 Longitudinal fluctuations in magnetic switching

Single grain switching calculations rely on simulating a single isolated grain undergoing
the HAMR recording process. This involves a temperature pulse thermally exciting the
spins, and with a persistently acting write field of 1T in the [00-1] direction, the reduction
of temperature-dependent anisotropy brought on by disordering causes a flip in the overall
magnetisation direction of the grain. It is useful to demonstrate switching capabilities in
the case of singular grains, as it allows for a more detailed look at the atomistic behaviour
across the recording process, which inevitably informs the performance of the simulated
full recording media. A grain of dimensions Dgrain = 5 nm and Hgrain = 5 nm was simulated
across 600 ps, with timestep size ∆t = 1×10−15 s. The time-dependent temperature pulse is
defined by the function

T (t) = Ta +[Tpeak −Ta]F(t), (6.1)

where Ta describes the ambient temperature at 300 K, and Tpeak is the peak temperature
which in this case was 700 K. The Guassian function F(t) is then defined as

F(t) = exp

[
−
(

t −3tpulse

tpulse

)2
]
, (6.2)

which becomes maximal at 3tpulse, with standard deviation
√

2tpulse. The Longitudinal Spin
Fluctuations (LSF) model introduced in this thesis significantly bolstered capabilities of
demonstrating its use in a fully atomistic model of FePt. The key factor of importance was
the significant longitudinal fluctuations that Pt undergoes, due to the strongly polarising Fe
exchange field, which effectively gives rise to its own moment and degrees of freedom. In
HAMR, a key demonstration would be to investigate the behaviour of the Pt moment as
changes in its moment size, as its participation in the overall switching process for FePt was
not currently known. Figure 6.2 shows the switching calculations using the fully discretized
FePt model, via the LSF-LLG integrator scheme.

The results of single grain switching show a trend that is clearly expected. Disordered
systems lead to less efficient switching, as with an increasing value of s, more instability
occurs. This is shown by the increased fluctuations in the magnetisation direction that tend
to manifest around the peak of the pulse at approximately 300 ps. It is interesting to note,
that the Pt |S| understandably starts at |S| ≈ 1.4, and quickly rises to |S| ≈ 1.6 shortly after
the pulse. This demonstrates that the maximal point of Pt’s moment is not as the switching is
occuring, but rather about 50 ps after. This can be attributed to Fe’s sublattice magnetisation,
which is minimal at the peak of the pulse.
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a b

c d

s=1.0 s=0.9

s=0.7s=0.8

Fig. 6.2 A demonstration of the spin length changes undergone by Pt sites for a grain with
Dgrain = 5 nm and Hgrain = 5 nm. The grains are simulated in a 300K environment, which
increases via a Gaussian function to a peak of 700 K at 300 ps. The ability to switch
efficiently is impacted with respect to increased disordering, as the Néel pair anisotropy
interactions are reduced as disorder increases, leading to smaller uniaxial contributions at the
peak temperature.

6.4 Easy-axis dispersion in disordered grains

A key property of magnetic recording media that must be kept minimised, is the dispersion
of the individual grains’ easy-axes. This is important, because in order to realise a fully
perpendicular system with no in-plane magnetisation, the anisotropy fields must be as
parallel to the z-axis as possible in order to have a clear readout signal. A primary cause
for misaligned easy axes is disordering, whereby clustering of certain material species can
interfere with the Fe and Pt stacking direction along z and cause diversions in the preferential
uniaxial direction. The LSF model being able to model disordering has importantly been
used in emulating different HAMR recording media under the effects of different levels of
disordering to determine its relationship with the average easy-axis position seen across
grains. By collating 229 grains of dimensions Dgrain ≈ 6 nm and Hgrain = 5 nm with 0.5 nm
spacing between them, a 200 nm by 50 nm recording medium was simulated. It is noted,
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that the average grain diameter will see some variance in diameter, as a random Voronoi
tessellation function is used in this process. After generating the system, it is set to T = 0 K,
while setting all initial spin positions to θ = 45° and φ = 0°. The system is then allowed
to relax under the LSF-LLG integrator, with damping parameter λ = 0.1, for a total of
t = 3 ns with timestep size ∆t = 1 ×10−15s. The result of the distributions of easy-axes is
shown in figure 6.3, where it is evident, that an ordering parameter of s = 0.4 is almost fully
aligned with the preferred easy-axis direction, while s = 0.5 has all grains configured with an
easy-axis at the direction [001], within a 5° margin. This calculation shows, that disordering
above s = 0.5 is already configured for a perpendicular easy-axis, with minimal in-plane
contributions and thus would have no issues with producing a clear readout signal during the
HAMR process. As for the grain distributions pertaining to s < 0.5, it is evident that a more
distributed and in-plane configuration is preferred, which would heavily hinder the ability
to use such systems in HAMR. It is interesting to note the rapid transition from a mostly
in-plane easy axis to a mostly out-of-plane one between s = 0.1 and s = 0.2, although the
large error margin in easy axes for these systems would still likely cause significant error
while recording.

Overall, the easy-axis distribution calculations for grain ensembles demonstrates that
using the information retrieved from these calculations, a value for s > 0.5 is shown to
be viable in HAMR. A significant flaw of these calculations however is that it does not
inform how likely it is that disordered grains switch at the intended conditions, but rather
it shows how likely a grain is likely to be locked into a specific direction once influenced
by a temperature pulse and write field. In addition to this, it would be useful to simulate
variations in not only the grain diameter, but height as well. It is evident in practice that
grains on HAMR media are not all of the same height [78].

6.5 Atomistic HAMR with Pt degrees of freedom

To fully realise the collective research presented in chapters 3, 4, and 5 of this thesis, fully
atomistic HAMR simulations were done combining the LSF-LLG integrator, the Landau
energies for FePt, the Néel pair anisotropy model for FePt, and the disordering calculations
done for FePt systems. Firstly, grains of sizes 3 nm to 8 nm with height 5 nm were assembled
with a spacing of 0.5 nm on 200 nm by 50 nm recording media. This is similar to the
calculations conducted in chapter 3, although this time with both Fe and Pt degrees of
freedom being simulated. It should be noted, that this first result is modelled using fully
L10 grains, with no disordering. A variable temperature pulse defined exactly as in the
single-grain calculations of this chapter was applied in a sequential order to write a sample
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Fig. 6.3 The easy axis distributions are shown for fixed grain size Dgrain = 6 nm and Hgrain =
5 nm on a magnetic recording medium. The chemical order parameter s shows the simulated
level of disordering present in the grains. It can be seen that at values of s> 0.5, a 5° tolerance
from the z-axis can be obtained, while with s < 0.5, the easy axis dispersion quickly diverges
to θ = 90°.

series of bits, which switched the magnetisation state of grains via a 1T field in either the
[001] or [00-1] directions. Figure 6.4 shows the culmination of the various grain sizes. It
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is clear that the LSF-LLG model recovers the expected bit patterns that were imprinted on
the media, showing clearly the evolution of data clarity across grain sizes. For example,
the 3 nm grains while containing a greater resolution per bit, they show much more areas
where accidental switching has occurred, which would lead to error in attempting to read
the magnetic field at a given region. Increasing the grain size to 8 nm also creates issues,
whereby the increased TC leads to more difficulty switching, which causes regions where it is
unclear what the written bit was intended to be. Overall, the results shown for the LSF full
HAMR simulation demonstrate similar trends to what was seen in chapter 3, whereby the 4
nm to 5 nm diameter grains are qualitatively the easiest to read back a bit sequence from for
a fixed peak temperature.

Next, results are shown for the HAMR process with variable levels of grain disordering
in figure 6.5. As a variation from the previous methodology of varying grain diameter,
a fixed diameter of 6 nm and height of 5 nm was considered, with increasing levels of
disordering from s = 1.0 down to s = 0.7. It can be seen that the moment some amount of
disordering is added at s = 0.9, the bit pattern immediately ceases to form clear boundaries,
and the writing process is greatly erroneous. At the s = 0.8 result, the bit clarity is almost
non-existent, however surprisingly, some clarity is recovered in the final s = 0.7 system.
The explanation for this is that as inherent disordering increases, counteracting the uniaxial
easy-axis anisotropy energy to switch the grains becomes dramatically easier. This means,
that while the earlier easy-axis dispersion result showed that the easy-axes are maintained
significantly well at disorders of s > 0.5, the fluctuations exposed to the system erroneously
cause switching to occur in unwanted grains. Referring back to the quadrilemma, This can
be due to a number of factors, such as the temperature pulse affecting neighbouring regions
causing spontaneous reversal of the overall grain magnetisation, or that after the data is
written and the grain cools, it still has enough thermal energy to switch back to its original
configuration. Regardless, this result obtained shows that even slight disordering at s = 0.9
causes drastic error in the writing of a sample bit pattern during HAMR.

To highlight the example discussed in the previous result, a close-up render of grains
in the s = 1.0 and s = 0.7 systems is shown, whereby it is clear that a larger number of
misaligned atoms exist within the grains themselves. This is denoted by the oppositely
coloured spins within the grains, which shows that there is a significant amount of small
clusters which are easily influenced by systematic fluctuations that are unavoidable in HAMR,
which make spontaneous backswitching a definite possibility.

The LSF model shows great promise in being able to bridge the gap between what is
possible to investigate theoretically using atomistic modelling for HAMR systems. The
HAMR media simulated using the fully discretized FePt model have allowed for a preliminary
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Fig. 6.4 A render showing the HAMR process for grains of fixed height 5 nm, with diameter
varied from 3 nm in (b) to 8 nm in (g) in 1 nm increments. The magnetic recording trilemma
is represented in these calculations, showing a clear trade-off between grain size and overall
error in the definition of bits.
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Fig. 6.5 Rendered bit pattern that is imprinted on HAMR media, with fixed grain dimensions
of Dgrain = 6 nm and Hgrain = 5 nm. Inherent disordering is also added to the system at
s = 1.0 in (b), s = 0.9 in (c), s = 0.8 in (d), and s = 0.7 in (e). It can be seen that even s = 0.9
creates a drastic reduction in the clarity of the bits due to a smaller energy barrier required to
switch their magnetisation direction. This means that random thermal fluctuations can more
easily induce unwanted reversal, leading to backswitching.
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Fig. 6.6 A close up render of HAMR system with s = 1.0 in (a) and s = 0.7 in (b). The
disordered grain systems create an environment which more easily accommodates for
oppositely aligned spin sites, leading to more spontaneous magnetisation reversal, which
significantly effects the reliability of the imprinted data being read.

investigation which used computational theoretical models as tools in understanding the
nanoscale physics that govern underlying data recording processes. It is still challenging to
establish the exact levels of disordering that a system can tolerate before HAMR becomes
completely non-viable. For example, even in the disordered cases calculated, disordering
with a different grain height might yield additional symmetries that did not manifest in
the calculations shown in this chapter, yielding a different set of disordering expectations.
Regardless, while the potential to investigate such issues is now possible, the results from
the calculations have shown that even small deviations from s = 1.0 will cause significantly
detrimental effects to the recording process, and thus disordering deviations should be
minimised during the manufacturing process.

As an area of future work, the models implemented in this thesis would also allow for a
full investigation into the composition dependence of HAMR processes, whereby moving
away from the exact 50:50 ratio of Fe to Pt would most likely lead to significantly altered
results. This would be an important classification to obtain, as from a practical standpoint
obtaining a perfect margin of Fe and Pt is near impossible, and will naturally have some
variance in the concentrations of both species.

6.6 Summary

This chapter highlighted the expectations brought on by HAMR under circumstances that
were previously not greatly considered, namely inherent system disordering in FePt systems.
The investigation done in this chapter successfully reproduced the adequate finite-size
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uniaxial anisotropy energy dependencies with respect to chemical ordering parameter s. Next,
the single-grain calculations with the LSF model revealed the nature of the Pt moment length
during the process of switching, which was qualitatively revealed to have a delayed reaction
time when compared to the timing of the peak of the temperature pulse. The culmination of
the previous chapters in this thesis has led to calculations about the effects that disordering
has on the HAMR process, namely by computing the expected distribution of easy-axes in
disordered grains. This was further iterated on by the results obtained for fully atomistic
HAMR simulations using the LSF model, which showed conclusively that even the smallest
amounts of disordering disturbs the applicability of such technologies.



7

Conclusions

Modelling the longitudinal degrees of freedom in spins is a necessity in appropriately
treating moment size changes, while still enabling magnetisation calculations within a fully
atomistic framework. For materials such as Pt (in FePt) and Ni, it can be concluded that
the induced moment behaviour has thus far been disregarded as a fundamental degree of
freedom, hindering the investigation towards the effects of disordered structures. This is
especially applicable in the context of Heat Assisted Magnetic Recording (HAMR), where
uncontrollable amounts of disordering can enter the manufactured recording media, and
cause behaviour that was previously hard to magnify. The conclusions for each chapter are
found to be the following:

Chapter 3 has highlighted the conventional atomistic treatment for FePt, and its
capability to model the fully ordered L10 phase via the 2-ion treatment of Pt, and the
subsequent modification to the Fe parameters. The atomistic form of FePt implemented
was able to appropriately reproduce the temperature-dependent anisotropy relationship
seen in experimental measurements, alongside an expected calculated TC ≈ 700 K. The
TC grain size dependence was demonstrated, showing clearly that the model reproduces
qualitatively the finite-size scaling law (the law that a larger grain volume leads to a larger
TC). Additionally, larger grain sizes lead to more difficulty in the magnetic switching
process, which determines the capability of a certain grain size to undergo the HAMR
recording process. More specifically, all the grains with Hgrain = 10 nm showed significantly
reduced chances of switching, due to the formation of more than one domain. Finally, the
full HAMR calculations have shown the intricate balances brought on by the magnetic
recording trilemma, however it is evident according to the results shown that grain sizes of
Dgrain ≈ 4 nm are certainly viable under the context of the simulated system.

Chapter 4 details the implementation of the Longitudinal Spin Fluctuations (LSF) model
is shown to have been successful, as testing on Fe, Ni, Co, and Cr have retrieved the expected
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results. This comes with a proposed equilibrium correction of the spin length quantity, so as to
ensure the material species tested have a spin length minima at |S|= 1. It was observed clearly
that the moment size in Ni fluctuates significantly with respect to the system’s exchange
energy and temperature, inducing stronger longitudinal fluctuations than what is seen in
a species such as Fe. This behaviour was further demonstrated in temperature dependent
magnetisation calculations, whereby the increased temperatures induced longitudinal changes
in Ni that were larger than that in Fe. The temperature dependent magnetisation calculations
for the tested materials agree excellently with experimental results given a mandatory
exchange constant adjustment, which was first discussed in longitudinal models by Ma
et al [49]. The validity of the newly developed integrator schemes were also tested, using the
Heun and fourth-order Runge-Kutta schemes which showed that the LSF-LLG converges
within a reasonable amount of integration steps. Finally, the longitudinally dependent
ultrafast demagnetisation dynamics of Ni were tested, showing a clear match in the trends of
experimentally obtained data.

Chapter 5 shows the successful implementation of a fully atomistic FePt model via the
Landau Hamiltonian to allow for Pt to gain a quantifiable induced moment. The results
were able to reproduce qualitatively the induced moment nature of Pt in this system, as
it can be seen in temperature dependent magnetisation calculations that the Pt spin length
approximately doubles at T = T FePt

C . The validity of this result was also obtained via the
longitudinal Boltzmann distributions, showing the significant moment length increase in Pt,
while Fe’s steep longitudinal potential well prevents drastic changes to |S|, and thus stays at
|S| ≈ 1. To localise the anisotropy energy calculations in this model, the Néel pair anisotropy
model was successfully implemented for FePt. The fourth-order form allowed for the correct
computation of the cubic symmetries observed in disordered FePt, while the second-order
calculations computed a very similar anisotropy against disorder scaling relationship found
in Okamoto et al [32].

Chapter 6 culminates the research and implementation shown in chapters 3 to 5, whereby
the push for a fully localised atomistic description of FePt has allowed for calculations of
the processes undergone to HAMR to be simulated using maximised atomistic degrees of
freedom. The uniaxial anisotropy energy against disordering calculations show that there is
no significant quantifiable difference in the anisotropy energies per functional unit between
different grain sizes with respect to disorder. Interestingly, it was shown that the compressed
lattice in the finite-size grain calculations of anisotropy against disorder exhibited the same
behaviour identified in Staunton et al., where DFT calculations reproduce the negative
Eani/f.u value at s = 0.0 exactly as per the atomistic calculations done in this chapter. Finally,
it can be seen that fully atomistic HAMR under the LSF model was successfully implemented,
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resulting in the reproduction within expectations of a custom bit pattern on the simulated
magnetic recording media. To further develop the influence disordering has on these results,
the calculations that fix grain diameter at Dgrain = 6 nm and vary disordering show a clear
loss of recorded data due to an overall loss of uniaxial anisotropy in the grains. Additionally,
the easy-axis dispersion results show that for grains of Dgrain = 6 nm, a value of s > 0.5
guarantees easy-axis dispersion to be within 5° of θ = 0°.

Overall, the results of this thesis have shown the viable implementation of the LSF
model, which now allows for more detailed customisation in the types of systems that can
be simulated undergoing HAMR. This aims to significantly aid the research process behind
this technology, as the physical expectations of the model have shown to agree with what
is expected to occur in experimental cases. The atomistic simulation of HAMR conducted
in this thesis has the ability to better inform the research and development decisions of the
future evolution of HAMR.

7.1 Further work

7.1.1 Split sampling scheme in the longitudinal Monte-Carlo

One of the main challenges in the implementation of the LSF-MC integrator scheme was its
computational efficiency: it currently only achieves ergodicity when combining transverse
and longitudinal sampling spaces, and further to this samples using a uniform distribution
mechanism. This was also discussed in Pan et al. where it is mentioned that a further
advancement is required in the implementation of such a scheme to achieve fully split
transverse and longitudinal moves [31]. This would require a reworking of the probability
evaluation function, and the overall architecture of the sampling mechanism.

Once achieved, the efficiency of the LSF-MC can be greatly improved. Firstly, the
sampling width in both longitudinal and transverse changes can be tuned independently, thus
the system would be able to reach equilibrium at independent rates. Secondly, there would be
a much faster equilibration time overall, as the move from uniform to a Gaussian sampling
process would eliminate a significant amount of rejected moves especially at low temperatures
where spin moves are less likely to be taken. Being able to separate the equilibration times
between both moves in general would be valuable to research and investigate.
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7.1.2 Modelling further induced moments longitudinally

The LSF model implemented in this thesis (specifically in the context of chapter 4) paves the
way for a significantly large number of future applications with regards to additional materials.
In particular, elements or alloys with clear induced moment behaviour would be interesting
to look at, as this model would be able to appropriately treat the instantaneous moment size
via a custom Landau Hamiltonian. A current constraint to the currently implemented model
is that it requires a priori knowledge of the simulated system to be able to determine the
effective Landau parameters and exchange adjustment factor. By conducting research on
further systems, a larger catalogue of understanding can be built for usage in future research.
The exact dependence on the exchange correction factor introduced is also something to be
investigated further, as no clear correlation was found with how large this value should be
with respect to system parameters.

7.1.3 Composition dependent behaviour of HAMR systems

Chapters 5 and 6 focus specifically on the implementation of modelling a more discretised
version of atomistic FePt, in order to pave the way for calculations relating to imperfect
lattice structures. As a further to the calculations done in these chapters, a natural extension
to this would be to look at the composition dependence of FePt, as this may greatly vary
during the manufacturing process [24, 114]. The LSF model provides enough discretisation
for such an investigation to take place, which would simply be a choice of swapping out
more Fe or Pt lattice sites with the opposing species to diverge from the 50 : 50 ratio seen in
this thesis. HAMR research in general shows an interest in being able to compute the optimal
material ratios for given alloys, and thus this would be a valuable investigation to conduct
[114]. Additionally, to investigate the complete symmetries of the generated structures, the
fourth-order form of the Néel pair anisotropy model would be valuable to investigate with
regards to the fourth-order coefficient. Determining the calculation for this would allow its
usage in larger scale atomistic HAMR simulations, whereby both uniaxial, and (although
small) cubic contributions can be investigated with respect to each quantity.

7.1.4 Atomistic LSF-LLB

The discussions around transverse and longitudinal damping remain to be resolved in future
work. In order to appropriately implement different damping parameters for both processes,
the LSF-LLG equation of motion would revert back to the LLB one [65], from where the
Heun or Runge-Kutta fourth-order solvers can be used to complete the integration scheme.
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LSF dynamics can be included via the addition of the Landau Hamiltonian. Such a model
would allow for a more intimate investigation into the relationship between λlongitudinal

and λtransverse, which would naturally lead into more thorough investigations into ultrafast
demagnetisation calculations. As a further extension, the LSF-LLB integrator can then be
extended to alloys such as FePt for magnetic recording research, whereby a different set of
material damping parameters for both move types may be allocated. Such a model would in
theory be able to replicate to a material specific resolution what is seen in Yamamoto et al
[116].
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