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Abstract

Neuroimaging has become ubiquitous in the study of human brain anatomy, yet it con-

tinues to pose multiple statistical challenges, namely high-dimensionality and spatial de-

pendence. Functional data analysis (FDA) can address this by modelling observations as

functions, applicable to images. In this thesis we consider neuroimaging datasets where a

series of 3D images is captured over time, creating a 4 dimensional dataset for which there

are no FDA methods. We model these data using FDA, proposing a novel model that

preserves the spatial relations between voxels and simultaneously modelling the temporal

correlation whilst maintaining computational efficiency.

Whilst all images are captured on a regular, high-dimensional grid, the time dimension

can vary in density. This thesis considers two types of temporal data, densely collected

images in the form of fMRI and sparse data collected longitudinally in a large-scale

study. Current methods that model multi-dimensional functional data are limited to two

dimensions and cannot be applied to imaging. We begin by introducing a non-parametric

functional principal component model for the representation of spatio-temporal images as

a product of time-invariant basis functions and subject specific score functions that can

vary over time. We propose an estimation method that avoids calculating the covariance

matrix, making our approach computationally efficient. The performance of the model

and its estimation are studied via simulation. This method is applied to a task fMRI

dataset. The obtained score functions are used to model the associations between brain

activity and risk behaviour. In low dimensions we design a large simulation study to

compare the performance of our model to state-of-the-art functional models. The simu-

lation provides insight on appropriate use cases for the proposed model as well as shows

that it has comparable performance in such cases.
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The second type of functional data considered is on a sparse temporal grid. In this

case we adapt our methodology to consider a longitudinal dataset of MRI images with

missingness at several time points. In this application, the estimated score functions are

modelled with a random slope model which described a subject’s trajectory over time

associated with a PC. The random intercepts and slopes are used to associate with, and

later predict subject outcomes. Given that machine learning has become increasingly

prevalent in image analysis for outcome prediction, we propose a deep neural network for

disease state prediction. A framework for comparison between our proposed functional

principal component (FPC) model and the network is proposed.

In this thesis, we propose a novel model for dimensionality reduction of images over time

alongside an efficient estimation method. This method is investigated via simulation and

is used to analyse two imaging datasets over dense and sparse temporal grids. Data

analysis on fMRI and ADNI revealed that temporal variation plays an important role in

outcome association and prediction. Whilst machine learning methods, especially neural

networks, are frequently used in image analysis, FDA is particularly useful on small

and complex datasets. Our approach provides an efficient and interpretable approach of

modelling high dimensional data which can be used for association or prediction.
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Chapter 1

Introduction

1.1 Motivation

Technological advance increased the availability of high-dimensional data, recorded con-

tinuously or intermittently over time. Many types of data can fall into this category,

namely curves, images, shapes, or more general objects. The field of functional data

analysis (FDA) provides tools and theory for analysis of such data, where each datum

is regraded as a realization of a random function in the Hilbert space. Functional data

was first discussed in Ramsay, 1982, and grew in popularity with several books being

published on the topic making it widely accessible. Ramsay and Silverman, 2005 offers

an approachable introduction to core mathematical and computational concepts of FDA

whilst emphasizing its practical use on data. Ferraty and Romain, 2011 covers many of

the core topics such as functional regression models and the functional principal compo-

nents (FPC), but it also contains review papers with a focus on non-parametric methods

and mathematical theory. Horvath and Kokoszka, 2012 covers the same core topics as

Ferraty and Romain, 2011 but build on them with the construction of test statistics and

the relevant asymptotic theory, with an emphasis on models for dependent functional

data.

The first generation of functional data focused on a random sample of independent func-

tions X(t) on a bounded, compact interval T ⊂ R. These functions are assumed to

be square integrable, making them a stochastic process in the Hilbert space. Another

1



CHAPTER 1. INTRODUCTION 2

frequent assumption is one of smoothness, which can help with regularization. Despite

interest in understanding the underlying stochastic process and its properties, this pro-

cess is rarely directly observable; data are often collected discretely, either on a fixed

or random grid, which may be dense, sparse, or vary between subjects. Originally, this

grid was assumed to be dense with regular spacing, which is exemplified by data such

as signals from fMRI machines or curves from NMR spectroscopy. For many such cases,

FDA provides considerable flexibility combined with natural ordering of data points on

a domain that facilitate non or semi-parametric approaches.

In the last decade, a growing field of FDA focused on complex data objects, such as im-

ages or shapes (Wang et al., 2015). Simultaneously, medical and technical advances made

imaging a frequently used tool in research, where it has become a common protocol in

small and large multi-center longitudinal studies alike. Neuroimaging specifically has been

used to further understand human psychological responses and the onset of neurological

conditions. As part of this, a large number of publications began modelling neuroimaging

data as functional objects. FDA on neuroimaging data provides an intuitive approach to

modelling as if one treats the entire image as a function, the spatial correlations between

voxels are preserved as opposed to traditional methods. Functional methods also allow

for dimensionality reduction whilst maintaining spatial relations between voxels via func-

tional principal components or smoothing techniques that can achieve more parsimonious

representation of image data by using a basis expansion.

Images captured over time can be both found in the dense and sparse functional data

categories. In this thesis, we are motivated by two such datasets. One, obtained on a

dense temporal grid, is a set of fMRI images captured to understand the mechanisms

behind risk in financial decisions (Mohr et al., 2010a). The other, captured on a sparse

grid, is a set of T1 MRI images captured during a longitudinal study following a cohort

of patients to understand the brain matter volume changes as a result of ageing and

Alzheimer’s Dementia (Mueller et al., 2005). Existing dimensionality reduction tech-

niques for imaging, such as multivariate methods or machine learning, do not directly

incorporate the spatial structure between voxels and across time points in the model,

making them more suitable for large cross-sectional studies. They often require a large
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sample size, where the number of samples should be larger than the number of voxels in

an image. Instead, FPC models can be estimated for cases where the number of images

(n) is lower than the number of voxels (p). We aim to develop a dimensionality reduction

method for images captured over time using the functional data analysis framework that

can create summaries of such data as random variables over time which can be further

used for association with or classification of outcomes.

Models for functional data over time exist in cases of low dimensions, where one dimen-

sional curves are observed at several time points for subjects. These publications focused

on the previously not considered case of functional data correlated over two domains,

with the temporal domain being typically longitudinal. Initial models incorporated time

spacing of the measurements into the coefficients through a linear structure, relying on ad-

ditive assumptions (Greven et al., 2010). Later models introduced non-parametric models

for time-correlated functional observations by assuming the covariance and mean func-

tions to evolve smoothly over time (Chen and Müller, 2012; Park and Staicu, 2015). In

traditional FDA approaches that do not include time-correlated functional data, images

can be represented using b-splines and a covariance matrix can be estimated. However,

in the case of these models such a representation has a non-trivial solution and hence

neither of these models can be directly implemented on neuroimaging data, where the

covariance matrix would be 6 dimensional and for images over time it would have an

additional 2 dimensions.

Few publications in the field of functional data analysis model images over time. The ones

that do exist often consider the dense temporal case and model fMRI images as a time-

series with a semi-parametric model (van Bömmel et al., 2013; Park et al., 2009). In this

thesis, we consider a non-parametric approach to modelling high dimensional, functional

data correlated over space and time. We focus on the dimensionality reduction of images

into a linear product of time-invariant basis function varying over space s and subject

specific score function over t. This decomposition allows for a parsimonious representation

of images that can be further used to associate or predict outcomes via score functions.

Linear and non-linear dimensionality reduction methods that could be used alternatively

on such data do not consider the temporal correlation between observations. Addition-
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ally, they often require sample sizes larger than the number of voxels in an image and,

with the case of non-linear methods, may lack interpretability. Our methods provide

an explainable and intuitive approach using the FDA framework that can be applied

to small datasets and has a computationally efficient estimation. We provide several

improvements on existing literature within FDA. Firstly, we provide a non-parametric

approach for the dimensionality reduction of imaging data, where complete 3D images

are used. Secondly, the model can be estimated efficiently by avoiding the estimation of

the covariance matrix. Finally, our model can be used for association whilst existing ML

methods can primarily be use in prediction or classification.

Our work makes contributions in both statistical methodology and applications within

the field of FDA, specifically applied to neuroimaging datasets over time. In particular

we make the following contributions:

1. Current available methodology (Park and Staicu, 2015) can only model curves as a

sum of products of basis functions and time-varying scores in low dimensions. For

the representation of 3D imaging data over time, we developed a functional prin-

cipal component model as a product of time-invariant spatial principal component

functions and subject specific score functions over time.

2. A time and computationally efficient estimation method for fitting this model was

developed and implemented in R, avoiding the direct computation of the covariance

matrix and its performance was investigated via simulation.

3. In low dimensions, where other methods are available, we design a simulation to

compare the performance of our model to existing models as well as explicitly show

the computational advantage of our estimation method. The simulation varies in

designs, sample size and data dimensionality to account for multiple scenarios.

4. With our novel model, we studied the associations between brain regions and patient

outcomes in two datasets, one including dense time observations (fMRI) in a small

number of subjects and one including sparse time observations (longitudinal) in a

larger number of subjects. For the first dataset, we studied the association between

active brain regions and subject risk-averseness. For the second dataset, we found
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associations between brain regions and Alzheimer’s disease.

5. We propose a framework to compare the prediction performance and feasibility of

our functional model to a neural network that takes in full 3D images and is trained

to learn subject specific trajectories over time.

1.2 Structure of the Thesis

This thesis has eight chapters. This section provides an overview of how the chapters are

organized. The current is Chapter 1, which is a general introduction of the thesis.

Chapter 2 will provide an introduction to functional data analysis from the formulation

of functional data to functional principal component analysis and functional regression.

It includes all the elements that are necessary for the understanding of our contributions

in the field.

Chapter 3 introduces neuroimaging as well as common pre-processing steps that take

place prior to image analysis. We then introduce the two datasets used in later chapters

of the thesis as well as relevant previous analysis approaches. These datasets are a task

fMRI study to understand the brain regions responsible to risk decision making and

a longitudinal MRI dataset from the ADNI study, following elderly patients to better

understand the onset and progression of Alzheimer’s dementia.

Chapter 4 introduces a novel model using the FDA framework. We define a new func-

tional principal component model and an efficient estimation method that circumvents

calculating the high dimensional covariance matrix. Our model represents data using

spatial principal components whilst the score will contain temporal information. Our

novel contributions are as follows: firstly, we propose an algorithm capable of repre-

senting high-dimensional datasets captured in space and time. Secondly, the estimation

algorithm is computationally efficient by using singular value decomposition. Thirdly,

we will demonstrate that our parameter estimation method is accurate with a simulation

study. Finally, the data analysis will recover active brain regions and associate their

activity over time with subject’s risk attitude.

Chapter 5 focuses on the comparison of the model introduced in Chapter 4 to state of the
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art in literature. The simulation is done in lower dimensions to allow for this comparison.

Additionally, we investigate the effect of sample size, and data dimensionality on compu-

tation time required for model estimation. The simulation varies in design complexity,

number of samples and noise. We discuss the results as well as show the limitations of

our method within certain specific scenarios.

In Chapter 6, we extend our proposed model from Chapter 4 to sparse, longitudinal

imaging data. First, we study the effect of missingness in a simulation study, then we

apply the model to images from the ADNI dataset to model associations between regions

of the brain and the presence of dementia. The scores obtained for each subject are

assumed to follow a linear mixed model where each subject has a random intercept and

a random slope which can represent the subject’s temporal trajectory and can be used

in a logistic regression to associate with outcomes. Finally, we investigate model fit on

different subsets of the data.

Chapter 7 aims to compare our proposed model to a neural network, given that deep

learning has increased in popularity for image analysis. We adapt a published network

to fit our data. A framework is proposed for the comparison of networks by performing

cross validation to evaluate our methods in terms of outcome prediction.

The final chapter gives our conclusions, future work and possible extensions of the thesis.



Chapter 2

Introduction to Functional Data

Analysis

2.1 Introduction

Functional data analysis (FDA) considers each datum as a realisation of an infinite di-

mensional function defined over some set T , with leading publications being Ramsay and

Silverman, 2005; Horvath and Kokoszka, 2012; Hsing and Eubank, 2015; Ferraty and

Romain, 2011. Chapter 7 of Hsing and Eubank, 2015 highlights the two different per-

spectives on functional data. One considers functional data to be realizations of random

variables taken in the Hilbert space whereas the other considers functional data as sample

paths of a stochastic process with smooth mean and covariance functions. Both perspec-

tives provide the theoretical background of concepts like mean and covariance, as well as

the foundations for the tools used to analyse the variability of a sample. In this chapter,

we take the former approach and treat functional data as functions in the Hilbert space.

We introduce the mathematical concepts underlying FDA: smoothing, functional prin-

cipal component analysis and functional regression. This section is primarily influenced

by Horvath and Kokoszka, 2012; Ramsay and Silverman, 2005, and Hsing and Eubank,

2015.

7
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2.2 Foundations of Functional Data Analysis

2.2.1 The Space L2

The space L2[T ] is a separable Hilbert space of measurable real-valued functions f(·) for

which the integral of the square is finite i.e

∫
f 2(t)dt <∞. (2.1)

It is often assumed that T ⊂ Rd, and, without loss of generality, we can assume T = [0, 1].

The space is endowed with the inner product

⟨f, g⟩ =
∫
f(t)g(t)dt, (2.2)

and the norm

||f || =
( ∫

f 2(t)dt
) 1

2 , (2.3)

for any f, g ∈ L2[T ]. If f, g ∈ L2, then f = g means
∫ [
f(t)−g(t)

]2
dt = 0. Let L2 denote

the space of bounded operators (transformations on vector spaces) on elements of L2,

consider an operator Ψ[f(t)] → g(t) for f, g ∈ L2, with the norm

||Ψ||L = sup{||Ψ[f(·)]|| : ||f || ≤ 1}. (2.4)

An operator Ψ is said to be compact if there exist two orthonormal bases {aj(·)} and

{bj(·)} and a real, non-negative sequence {λj} converging to zero such that

Ψ[f(·)] =
∞∑
j=1

λj⟨f, aj⟩bj, for f(·) ∈ L2. (2.5)

In other terms, it could be said that every compact operator is an operator that can be

represented using singular value decomposition (SVD). The orthonormal bases {aj(·)}

and {bj(·)} are analogous to the unitary matrices in ordinary multivariate SVD and {λj}

would be the entries of the diagonal matrix.
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An operator is said to be symmetric if, for f(·), g(·) ∈ L2[T ],

⟨Ψ[f ], g⟩ = ⟨f,Ψ[g]⟩, (2.6)

positive-definite if ⟨Ψ[f ], g⟩ > 0 and positive semidefinite if ⟨Ψ[f ], g⟩ ≥ 0.

A compact operator with the real sequence {λj} satisfying
∑∞

j=1 λ
2
j < ∞ is a Hilbert-

Schmidt operator. A symmetric, positive semidefinite Hilbert-Schmidt operator admits

the decomposition from eq. 2.5 with {aj(·)} = {bj(·)} and {aj} is the set of eigenfunctions

satisfying: Ψ[aj] = λjaj.

Consider a bounded linear operator Ψ ∈ L2, defined as:

Ψ[f(t)] =

∫
ψ(t, s)f(s)ds, f ∈ L2, (2.7)

with the real kernel ψ(·, ·), that is a bivariate function in L2[T × T ]. Ψ is said to be

Hilbert-Schmidt if and only if

∫ ∫
ψ2(s, t)dsdt <∞, (2.8)

which leads to

||Ψ||2L =

∫ ∫
ψ2(s, t)dsdt. (2.9)

If ψ(s, t) = ψ(t, s) and for any f(·) ∈ L2[T ],
∫ ∫

ψ(s, t)f(s)f(t)dsdt ≥ 0 then the integral

operator Ψ is symmetric and semi-positive definite. Any symmetric and positive semi

definite operator in L2 has non-negative eigenvalues. This allows us to state the following

Mercer’s Theorem.

Theorem 1 (Mercer’s Theorem). Any symmetric and semi-positive definite operator Ψ

with a kernel ψ(·, ·) forms an orthonormal basis {vj(·)}l ∈ L2 that solves the eigendecom-

position problem:

Ψ[vj(s)] =

∫
ψ(s, t)vj(t)dt = λjvj(s). (2.10)
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Then, its kernel ψ(s, t) has the representation (Aizerman et al., 1964):

ψ(s, t) =
∞∑
j=1

λjvj(t)vj(s), (2.11)

where λj are positive eigenvalues of Ψ in decreasing order (λj ≥ λj+1) and vj are the

eigenvectors of Ψ.

Mercer’s theorem (Mercer, 1909; Riesz and Sz.-Nagy, 1956) follows from eq.(2.5). A

complete proof can be found in Ghojogh et al., 2021 and an illustration can be found

below.

Consider a Hilbert Schmidt operator Ψ defined by equation (2.7), where its kernel is

ψ(s, t), a symmetric and positive definite function in L2[T ]. Ψ is semi positive definite and

admits the decomposition from equation (2.5) with basis vectors satisfying the equation

Ψ[vj] = λjvj. (2.12)

We can then use it to show that:

λj⟨vj, vj⟩ = λj

∫
vj(s)vj(s)ds =

∫
λjvj(s)vj(s)ds =

∫
Ψvj(s)vj(s)ds ≥ 0, (2.13)

as ⟨·, ·⟩ is positive definite, λj ≥ 0. Define φj(t) ∈ L2[T ] by t 7→
√
λjvj(t). Then

∞∑
j=1

∫
⟨φj(t), φ(s)⟩f(s)ds =

∫ ∞∑
j=1

λjvj(t)vj(s)f(s)ds (2.14)

=
∞∑
j=1

λjvj(t)

∫
uj(s)f(s)ds (2.15)

=
∞∑
j=1

λj⟨f, vj⟩vj(t) = Ψf(t). (2.16)

Since the above holds for all f ∈ L2 then:

ψ(s, t) = ⟨φj(t), φ(s)⟩ =
∞∑
j=1

λjvj(t)vj(s). (2.17)
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2.2.2 Random functions in L2

Let X(t) be a random function in L2[T ]. We say that X is integrable if

E||X|| = E
( ∫

X2(t)dt
) 1

2 <∞. (2.18)

If E||X|| < ∞, then there exists a unique function µ ∈ L2 such that E⟨y,X⟩ = ⟨y, µ⟩

for any µ ∈ L2, which implies that µ = E[X(t)]. The expectation commutes with

bounded operators so for all bounded and continuous linear operators Ψ ∈ L, we have

E[Ψ(X)] = Ψ(E[X]).

If X is square integrable, i.e E||X||2 < ∞, then the second order variations of X are

encoded in the covariance function:

c(s, t) = E[(X(s)− µ(s))(X(t)− µ(t))], s, t ∈ T . (2.19)

The variance function is the case of c(s, t) where s = t. For simplicity, assume that

E[X] = 0, and consider the covariance operator C : L2[T ] → L2[T ] defined as:

C[f(t)] = E
[
⟨X, f⟩X

]
for f ∈ L2, (2.20)

which can be rewritten to include the kernel function c(·, ·):

Cf(t) =

∫
c(t, s)f(s)ds. (2.21)

The covariance function satisfies two properties: c(t, s) = c(s, t) as the expectation is

commutative, and

∫ ∫
c(t, s)f(s)f(t)dsdt =

∫ ∫
E
[
X(t), X(s)]f(s)f(t)dsdt

= E
[( ∫

X(t)f(t)dt
)2] ≥ 0.

Hence the covariance operator C is symmetric and semi-positive definite. Therefore, it

has non-negative eigenvalues denoted as λj and eigenvectors vj that satisfy the equation

C[vj] = λjvj. The functions vj are orthogonal and can be normalised to have unit norm
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so that they form an orthonormal basis in L2. Given {vj}, we can use Parseval’s identity

||X||2 =
∞∑
j=1

|αj|2||vj||2 =
∞∑
j=1

|αj|2 (2.22)

where αj = ⟨X, vj⟩/⟨vj, vj⟩ are the coefficients of X in the system {vj}. One can see that

E[αj] = λj and thus we have:

∞∑
j=1

λj =
∞∑
j=1

E
[〈
X, vj

〉2]
= E||X||2 <∞. (2.23)

A function that satisfies the above properties, meaning it is symmetric, semi-positive

definite and satisfies eq. (2.23) is a proper covariance function.

By Mercer’s Theorem, the covariance function has the form:

c(s, t) =
∞∑
j=1

λjvj(t)vj(s), (2.24)

with λj and {vj} eigenvalues and eigenvectors corresponding to the covariance operator

C.

Set the covariance function c(s, t) as the Mercer’s kernel to the covariance operator CX(t)

and let vj(t) be an orthonormal basis in L2 as in eq. (2.24). Then X(t) admits the

Karhunen Loéve expansion:

X(t) =
∞∑
k

ψkvk(t), (2.25)

where ψk =
∫
X(t)vk(t)dt are random uncorrelated weights with zero-mean and variance

λk E[ψk] = 0,∀k ∈ N and E[ψiψj] = δijλj, ∀i, j ∈ N with δij denoting the Kronecker

delta.

The Karhunen Loéve expansion converges uniformly in L2. To prove this, let XK(t) =
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∑K
k ψkvk(t) for some integer K, then

E
[
|X(t)−XK(t)|2

]
= E[X2(t)] + E[X2

K(t)]− 2E[X(t)X2
K(t)]

= c(t, t) + E
[ K∑

k

K∑
l

ψkψlvk(t)vl(t)
]
− 2E

[
X(t)

K∑
k

ψkvk(t)
]

= c(t, t) +
K∑
k

λkv
2
k(t)− 2E

[ K∑
k

∫
X(t)X(s)vk(s)vk(t)ds

]
= c(t, t)−

K∑
k

λkv
2
k(t)

which converges by Mercer’s Theorem.

2.2.3 Estimators and Assumptions

In practice we observe a set of n curves {Xi}i=1,...,n where each curve is a realisation of a

random function X(·) ∈ L2. The key assumptions made on the random variables are:

AS 1. X are independently and identically distributed (iid.),

AS 2. E[X] = 0,

AS 3. E||X||4 <∞.

These assumptions ensure the convergence of the sample mean µ̂(t), the sample covariance

function ĉ(s, t) and the sample covariance operator Ĉ : {L2} → {L2} defined as:

µ̂(t) =
1

n

n∑
i=1

Xi(t), (2.26)

ĉ(s, t) =
1

n

n∑
i=1

(
Xi(s)− µ̂(s)

)(
Xi(t)− µ̂(t)

)
, (2.27)

Ĉ
(
f(s)

)
=

1

n

n∑
i=1

〈
Xi(t)− µ̂(t), f(t)

〉(
Xi(s)− µ̂(s)

)
, for f(·) ∈ L2. (2.28)

If Assumption AS (1) holds, then the sample mean function exists and is unique. As-

sumptions AS (2, 3) assure the convergence of the estimated covariance operator to the

true one.

Let p ∈ Z denote the number of eigenvalues and eigenfunctions given by the solution
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to the equation Ĉ[vj] = λjvj, with Ĉ denoting the estimator of the covariance operator.

Typically, the eigenfunctions vj are normalized so that ||vj|| = 1. We assume that eigen-

values are in strictly decreasing order, i.e λ1 ≥ · · · ≥ λp > 0, making them identifiable.

The solution to this equation are the estimators for eigenvalues and eigenfunctions of the

population covariance operator, denoted as λ̂j and v̂j(s) for j ∈ {1, . . . , p}. The eigen-

functions v̂j(s) can be rescaled to have a unit norm. This ensures the functions form a

unique solution to the eigendecomposition problem. Both λ̂j and v̂j(s) are shown to be

consistent and unbiased estimators and v̂j(s) are identifiable up to a sign. By Mercer’s

Theorem, the estimators of the eigenelements solve:

∫
ĉ(s, t)v̂j(s)ds = λ̂j v̂j(t) (2.29)

for j = 1, . . . , p.

2.3 Functional Principal Component Analysis

Functional Principal Component Analysis is a tool for the reduction of an infinite dimen-

sional functional object to a finite one. It can be introduced in two ways, as a set of

basis vectors that maximise data variability or as an optimal orthonormal basis to reduce

the error between the true functional object and the one with reduced dimensions. For a

random function X(t) ∈ L2[T ], we want to find an orthonormal basis {uj}pj , for a fixed

integer p, that minimizes the expression:

S2 = E
∣∣∣∣∣∣Xi(t)−

p∑
j

⟨Xi, uj⟩uj(t)
∣∣∣∣∣∣2 (2.30)

This is analogous to maximising

V ar = E
∣∣∣∣∣∣ p∑

j

⟨Xi, uj⟩uj(t)
∣∣∣∣∣∣2. (2.31)

Given realizations Xi(t), i ∈ {1, . . . , N} of a random function X(t) ∈ L2[T ], S2 is ap-

proximated by:

Ŝ2 =
N∑
i=1

∣∣∣∣∣∣Xi −
p∑

j=1

⟨Xi, uj⟩uj
∣∣∣∣∣∣2 (2.32)
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by finding an optimal basis uj. If such a basis is found then we can replace the complete

curve Xi(t) with its approximation
∑p

j=1⟨Xi, uj⟩uj. This set of functions is called the

optimal empirical orthonormal basis.

The functions {uj}pj=1 minimizing Ŝ2 are equal (up to a sign) to the normalized eigen-

functions of the sample covariance operator (Bosq, 2000; Dauxois et al., 1982). Horvath

and Kokoszka, 2012 show this in Chapter 3 by setting p = 1. We want to find u s.t.

||u|| = 1 which minimises:

N∑
i=1

∣∣∣∣∣∣Xi − ⟨Xi, u⟩u
∣∣∣∣∣∣2 = N∑

i=1

||Xi||2 − 2
N∑
i=1

⟨Xi, u⟩2 +
N∑
i=1

⟨Xi, u⟩2||u||2

=
N∑
i=1

||Xi||2 −
N∑
i=1

⟨Xi, u⟩2

As this solution is unique, we conclude that u = v̂1. The same reasoning is applied for

the case where p > 1.

Therefore, the basis that minimises Ŝ2 is formed of the eigenfunctions of the covariance

operator. Thus, if we wish to use the representation of a random function X(t) as a

product of an orthonormal basis satisfying eq. (2.30), we can apply the Karhunen Loéve

Theorem set with the covariance function as the Mercer’s kernel. This yields the result:

Xi(t) = µ(t) +
∞∑
j=1

ψijvj(t), (2.33)

where ψij are the principal component scores equal to ⟨Xi(t), vj(t)⟩. It is also easy to

show that, given the relation Cvj = λjvj :

V ar(ψij) = E[⟨Xi(t), vj(t)⟩2] = ⟨[⟨Xi, vj⟩X], vj⟩ = ⟨Cvj, vj⟩ = λj. (2.34)

A similar approach can be utilised for the population variance:

E[X(t)2] =
∞∑
j=1

⟨[⟨X, vj⟩X], vj⟩ =
∞∑
j=1

⟨Cvj, vj⟩ =
∞∑
j=1

λj. (2.35)

Naturally, we cannot compute an infinite number of principal components so the summa-

tion is truncated after p components. The most frequent way of determining the number
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p is by the cumulative percentage of total variance (CPV ) explained by the first p PCs

as a proportion over all N available PCs:

CPV (p) =

∑p
j=1 λj∑N
j=1 λj

2.4 Smoothing

In FDA, smoothing is applied to the observed discrete data to obtain a noise-free estimate

of the underlying function X(t) that will be used in further analysis. In a large data

setting, smoothing can allow for a simpler representation of the raw data. Ramsay and

Silverman, 2005 provide a good overview of useful smoothing techniques that include

basis expansion or derivatives. For multi-dimensional settings, one can use tools such as

kernel or sandwich smoothers.

A common smoothing approach would be to represent a function by basis expansion. A

basis function system is a set of known functions {ϕk} that are mathematically indepen-

dent of each other. It is defined such that one can approximate any function arbitrarily

well by taking a weighted sum or a linear combination of a sufficiently large number K

of these functions (Ramsay and Silverman, 2005). These functions can take the form

of monomials, Fourier series, or more modern techniques such as b-splines and wavelets.

The choice of type and number of basis functions depends on the underlying raw data

structure and can affect the reconstruction of the original data as well as the results of

further analysis. Here we will go over Fourier and b-spline vectors, as they are used

further in the thesis.

Fourier basis functions

The Fourier basis is a periodic basis defined by the parameter ω defining the period 2π/ω.

The basis functions {ϕk}K are defined iteratively, where for any integer r < K/2:

ϕ0 = 1, ϕ2r−1 = sin(rωt), ϕ2r = cos(rωt)
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If the observations on t ∈ T are equally spaced and the period is equal to the length of

interval T , then the basis is orthogonal.

A Fourier basis is useful with functions stable over the whole domain with no strong

local features and where the curvature seems to be of the same order everywhere. It is

preferable that periodicity is also present in the raw data itself, examples of periodic data

include annual rainfall or gait data. Fourier series generally yield expansions which are

uniformly smooth. Properties and derivatives of the Fourier series are well known and

the fast Fourier transform makes the calculation of coefficients efficient.

Despite its advantages, this basis expansion could be inappropriate in cases where the

underlying data may have discontinuities. Ramsay and Silverman, 2005 summarise it

quite humorously: “a Fourier series is like margarine: it’s cheap and you can spread it

on practically anything, but don’t expect that the result will be exciting eating”.

B-splines

Splines are the most common choice for approximation of non-periodic functions as they

provide fast computation of polynomial fitting and have high flexibility. Whilst, there

are several splines that were introduced, the most common and the one that is used

throughout this thesis are b-splines. (DeBoor1978ASplines)

Splines are piecewise polynomial functions Bq
l (t) defined on some domain T of degree q

which are joined together at some points called knots, an increasing sequence of points

τ1 < τ2 < · · · < τL on the domain. The domain T is divided into L − 1 equal intervals

by L knots, where L ≥ q + 2. Each interval will be covered by q + 1 b-splines of degree

q. As the space of b-splines is a vector space, any linear combination of splines are again

splines. Eilers and Marx, 1996 provide general properties of splines for b-splines of degree

q:

• it consists of q + 1 polynomial pieces each of degree q,

• the polynomial pieces join at q inner knots,

• at the joining points, the derivatives up to the order of q − 1 are continuous,

• the b-spline is positive on a domain T , everywhere else it is zero,
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• at the boundaries, it overlaps with 2q polynomial pieces of its neighbours

• at a given t, q + 1 b-splines are non-zero.

B-splines can be constructed using the Cox–de Boor recursion formula. Given a set of L

knots, it starts with the B-splines of degree q = 0, i.e a piecewise constant polynomial:

B0
l = 1 if τl ≤ t < τl+1 and 0 otherwise. The higher order b-spline basis of degree q > 0

is given by the functions Bq
l (t) for l ∈ {1, . . . , L− 1}, defined recursively:

Bq
l (t) =

t− τl−q

τl − τl−q

Bq−1
l−1 (t) +

τl+1 − t

τl+1 − τl+1−q

Bq−1
j (t). (2.36)

B-spline basis functions have useful properties such as a compact support (see point 3

of general properties) and, for any point within the domain [τ1, τl], the basis functions

sum to 1. These features make b-splines (although not being orthogonal) appealing even

in large data settings, because the matrix containing the inner products of these basis

functions will be highly sparse.

The choice of degree q and the number of knots L are dependant on the application.

Typically the choice of degree is more restricted and most commonly natural splines are

used. Knots are most often spaced out evenly, a finer grid may allow for more detailed

data representation but it also increases the degrees of freedom. One way of dealing with

this is through applying roughness penalties in order to find a balance between bias and

the variance of fit (Chapter 4.5 of Ramsay and Silverman, 2005).

Fitting basis functions

Given observations Yi(tj) for i ∈ {1, . . . , n} and j ∈ {1, . . . , J} where tj ∈ T for all j, we

can represent them using the model:

Yi(tj) = Xi(tj) + εi(tj), (2.37)

where εi(tj) is the error term generally assumed to be normally distributed with mean

zero and with function covariance equivalent to Cov(Yi(tj), Yi(tj′)) for tj, tj′ ∈ T . We can
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then use a basis expansion for a set of basis vectors {ϕ(t)}k:

Xi(tj) =
K∑
k

cikϕk(tj). (2.38)

The coefficients cik can be estimated using ordinary or weighted least squares.

2.5 Functional Regression

Functional linear models, like their multivariate counterparts, are useful in a broad range

of applications and hence, are a heavily researched topic of FDA. There are three cases

of regression, in each one, the functional data takes on a different role in model: either

as a response variable or a regressor or as both. For simplicity we assume that the

responses and the covariates have mean zero and that the errors εi are independent of

the explanatory variables Xi.

The first is a functional response model or function-on-scalar, where which the responses

are curves, but the regressors are known scalars. It can be expressed as:

Yi(t) = β(t)Xi + εi(t), (2.39)

with εi(t) assumed to be a normally distributed with mean zero and with function co-

variance Cov(Yi(tj), Yi(tj′)) for tj, tj′ ∈ T .

The scalar response model or scalar-on-function regression, where at least one of the

regressors is functional and the response is scalar. It is written in the form:

Yi =

∫
β(s)Xi(s)ds+ εi (2.40)

where εi ∼ N(0, σ2).

The third type is the fully functional (function-on-function) model where the response

and predictor are functional. This takes the form

Yi(t) =

∫
β(t, s)Xi(s)ds+ εi(t) (2.41)
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where εi(t) defined as before.

In the cases where the mean of the response variable is non zero an additional term is

added that acts as an intercept, if the outcome is scalar then it is a coefficient α and it

the outcome is functional then it will be of the form β0(t).

It is useful to express both the functional regressor and coefficients as a linear combination

of basis functions {ϕ(·)}KX
k and {φ(·)}Kβ

k :

Xi(s) =

KX∑
k

xikϕk(s) (2.42)

β(s) =

Kβ∑
k

bkφk(s)

Consider the N × KX matrix x where each row is the vector xi = [xi1, . . . , xiKX
], and

vector b = [b1, . . . , bKβ
]T for the coefficients. The basis functions will be stored in matrices

ϕ(t) = [ϕ1(t), . . . , ϕKX
(t)]T , φ(t) = [φ1(t), . . . , φKβ

(t)]T . The response can be formulated

to be a vector of length N of functions Yi(t), i ∈ {1, . . . , N} or scalars Yi, and will be

denoted as Y (t) and Y , respectively. These matrix representations can be used to simplify

the regression equations.

For scalar-on-function regression, equation (2.40) would take the form:

Y =

∫
β(s)X(s)ds+ ε

=

∫ [ Kβ∑
k

bkφk(s)
][ KX∑

k

xkϕk(s)
]
ds+ ε

= xT
[ ∫

φk(s)ϕk(s)ds
]
b+ ε

= xTWϕφb+ ε.

One can define a matrix Z = [xTWϕφ] and then the model becomes Ŷ = Zb. Thus the

estimator for β(·) is defined as:

β̂(t) =

Kβ∑
k

b̂kφk(s) (2.43)
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where b̂ = (ZTZ)−1ZTY. Further approaches using the roughness penalty as a form of

regularization are discussed in section 15.4 of Ramsay and Silverman, 2005 or section 8.4

of Horvath and Kokoszka, 2012.

In the case of function-on-function regression, the response can be additionally repre-

sented as a linear combination of coefficients yil and basis functions {χ(t)}KY
l that can

be stored as a matrix χ(t) = [χ1(t), . . . , χKY
(t)]T . In this case, the functional coefficient

β(t, s), using {χ(t)}KY
l and {ϕ(s)}KX

k , can be expressed as a linear combination of the

basis vectors:

β(t, s) =

KY∑
k

KX∑
l

bklχk(t)ϕl(s) (2.44)

= ϕT (s)Bχ(t), (2.45)

where B is a KY ×KX matrix of coefficients. Chapter 8 of Horvath and Kokoszka, 2012

uses these representations to achieve an estimate for β(t, s). Let Z∗ be a N ×KX matrix

defined as Z∗ =
∫
X(s)ϕT (s)ds. Then equation (2.41) can be expressed using matrix

notation:

Y (t) = Z∗Bϕ(s) + ε(t) (2.46)

If we define a KY ×KY matrix J =
∫
χ(t)χT (t)dt, then we have:

∫
Y (t)χT (t)dt = Z∗BJ +

∫
ε(t)χT (t)dt. (2.47)

Multiplying by Z∗T and ignoring the error term gives:

Z∗T
∫
Y (t)χT (t)dt = Z∗TZ∗BJ. (2.48)

To solve for B, we rewrite this using the kronecker product ⊗:

(JT ⊗ [Z∗TZ∗])vec(B) = vec
(
Z∗T

∫
Y (t)χT (t)dt

)
. (2.49)
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then, if J and Z∗TZ∗ are non-singular, a unique solution exists

vec(B) = (JT ⊗ [Z∗TZ∗])−1vec
(
Z∗T

∫
Y (t)χT (t)dt

)
. (2.50)

An alternative approach to the estimation of β(t, s) discussed in Ramsay and Silverman,

2005, Chapter 16. This approach allows for large KX , KY and introduce a roughness

penalty.

The function-on-scalar regression equation (2.39) can be generalised to includes multiple

(p) covariates stored in a matrix X of dimension N × p. The coefficient function is fitted

to minimise the least squares criterion:

LS(β) =

∫ [
Y (t)− β(t)X

]T [
Y (t)− β(t)X

]
dt. (2.51)

The estimator for β(t) can be obtained by using a similar approach to the function-on-

function regression. Different approaches are discussed in section 12.4 of Ramsay and

Silverman, 2005.

When Xi(s) and Yi(t) have basis expansions: {ϕ(s)}KX
l and {χ(t)}KY

l . The coefficient

B(t, s) simplifies to equation (2.45). In this setting, FPCA for both Xi(s) and Yi(t) has

been used independently to reduce the dimensionality of the functional data Yao et al.,

2005. Functional partial least squares approaches are another way of functional regression

that takes into account the joint variability of the outcome and regressors (Preda and

Saporta, 2005; Preda et al., 2007).

2.6 Temporal and multidimensional FDA

Much of the early work in FDA was concerned 1-dimensional curvesX(t) for t ∈ I = [0, T ]

with T ∈ R observed on a regular grid. FPCA for such cases has been studied extensively

(Dauxois et al., 1982; Silverman, 1996; Besse and Ramsay, 1986; Bosq, 2000) and it was

explored for densely observed functional data in Rice and Silverman, 1991; Castro et al.,

1986.

Nevertheless, a growing interest is in more complex settings, where images with multidi-
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mensional domain are considered. (Wang et al., 2015) describe it as the second wave of

FDA, one focusing on voxel and shape analysis. As a result, many different approaches

rely on functional regression and FPCA.

With this in mind, two broadly described methodologies are used as a way to approach

the high-dimensionality of images. The first methods represent that raw data in terms of

a pre-determined system of basis functions, in such cases, the basis functions are carefully

chosen as part of the model. The second approach uses the raw data directly and relies

on transformations or properties of functions to allow for the estimation of parameters

directly.

Image Analysis

An intuitive approach to image analysis in high dimensions is to use a suitable basis

expansion which allows for the repurposing of methods originally designed in single di-

mensions. In this case, the observed raw data Yi(s) observed on a grid s ∈ S ⊂ R3 is

modelled with equation (2.37), and followed by the appropriate use of basis expansion as

either a first step in modelling or as an element of functional regression.

For multidimensional functional regression, Wang et al., 2014a use the tensor product of

one dimensional Haar wavelet functions to form a 3D basis for the representation of neu-

roimaging data. Haar wavelets provide a way of overcoming the issue of multicollinearity

caused by large spatial correlation among neighbouring voxels whilst modelling sparsity.

The choice of basis aimed to identify specific regions relating to an outcome. Their

following paper Wang et al., 2017 assumes the image to be piecewise smooth with un-

known jumps and edges. The functional regression model was adapted and the image

was assumed to be piecewise smooth with unknown jumps and edges, thus relaxing the

assumptions of their previous model. Additionally, the previous model was extended for

classification.

Park et al., 2016 approach regression in order to identify specific regions by defining

a structured way to partition the domain of the regression coefficient. The functional

domain selection effectively selects subregions of the brain associated with the outcome.

A sequential segmentation procedure based on an approximation of the spatial correlation
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is provided, then the selection algorithm is applied until the improvement in the cross-

validation prediction error becomes negligible.

An alternative approach to basis expansion would be to vectorise the image. Zipunnikov

et al., 2011a and Zipunnikov et al., 2011b propose a high-dimensional multilevel FPCA

model, aimed for densely-observed images recorded at multiple visits for each subject.

The images are vectorised, then the matrix containing subject measurements is parti-

tioned into blocks that then undergo SVD sequentially. A best linear unbiased prediction

then returns the estimates for scores at cross-sectional and longitudinal level. The method

is recommended for balanced designs with a moderate number of subjects and visits.

When data is stored as arrays, Li et al., 2019 propose an efficient method for the es-

timation of FPCA in 3 dimensional images. This method relied on the fact that the

inner product of the observations converges to the inner product of the principal compo-

nent scores. This approach offers an efficient way of estimating the model, especially in

high dimensional cases where the direct estimation of the covariance is impossible. An

additional benefit is that it does not require the prior basis representation. It is com-

pared against methods vectorising images a priori and has shown to retain more spatial

information than those.

Spatio-Temporal Modelling

Originally, the temporal elements of data, whether dense or sparse would be the do-

main where the principal components are defined. However, as functional data became

multivariate, there was an interest in modelling the relationships between functional ob-

servations captured at different time intervals. This is commonly called spatio-temporal

modelling, and the data could take the forms of curves over time captured at different

geographical locations. Previously we have looked at FPCA where the principal compo-

nents were functions and the scores were random variables. The models described here

deal with random functions X(s, t) defined on separate domains s ∈ S and t ∈ T . In

those cases, the principal components were defined over one domain, say S and the scores

took the form of a function ψ(t). This class of model can be broadly represented with
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the equation:

X(s, t) =
∞∑
j=1

ψj(t)ϕj(s), (2.52)

where ψj(t) would now be the random score functions varying over time. The definitions

of both functions vary depending on the approach proposed.

Greven et al., 2010 proposed a model for the case where ψj(t) = ζ0j + tζ1j where ζ0j, ζ1j

are random terms. The proposed model is a functional version of a mixed model so a

linear structure is imposed on the scores. The method is applied to a brain imaging study

designed to analyse differences and changes in brain connectivity in healthy volunteers

and multiple sclerosis (MS) patients.

If Cov
(
ψj(t), ψj(t

′)
)
= λjρj(t− t′; ν), then the model would follow Gromenko et al., 2012

and Gromenko and Kokoszka, 2013 for spatially indexed functional data. Notably, these

models were primarily interested in modelling the temporal curvature of the data and

capture the spatial correlation in the score functions. In this case ψj(t) were the principal

components and ϕj(s) = ⟨X(s, t)− µ(s, t), ψj(t)⟩ would have been the scores.

Chen and Müller, 2012 proposed a non-parametric score function that is represented as

its on KL decomposition: ϕij(t) =
∑

k ηijkζijk(t) with orthogonal basis functions ζijk(t)

and the corresponding coefficients ηijk. X(s, t) is represented as as a product of these

score functions and a time-varying orthogonal basis function ϕ(s|t) serves as the principal

components.

Park and Staicu, 2015 present a flexible model with non-parametric score functions as in

Chen and Müller, 2012 with the main difference in how they define the orthogonal basis

to act as principal components. They define it to be the eigenvectors of the marginal

covariance function of the random process together with a residual process.



Chapter 3

Neuroimaging Data Background

In this thesis, we model high dimensional data in the form of brain magnetic resonance

(MR) imaging. This chapter will introduce MR imaging by describing what it is, how it

is acquired and preprocessed. We will then discuss the two datasets used in the thesis

alongside previous analysis and ongoing research questions.

3.1 Introduction to Magnetic Resonance Imaging

Neuroimaging includes the use of various techniques to produce the image of the struc-

ture, function or pharmacology of the brain. These techniques include x-ray computed

tomography, magnetic resonance imaging (MRI) or position emission tomography (PET),

each specialised for a different purpose, with some being less invasive than others. In our

case, we are particularly interested in MRI, with the following introduction supported by

Prince and Links, 2015 and Poldrack et al., 2011.

The two modes MR imaging that are most pertinent to the thesis are structural imag-

ing and functional imaging. The former applies a host of pulse sequences to the brain

that allows for the observation of its structure facilitating tasks such as diagnosis of in-

tracranial disease. The latter measures an aspect of brain function, often with a view to

understanding the relationship between activity in certain brain areas and specific mental

functions. It uses oxygenation-sensitive pulse sequences to image blood oxygenation in

the brain with high oxygenation correlating to brain activity.

26
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Figure 3.1: Examples of structural MRI: (a)T1-weighted, (b) T2-weighted and (c) PD-weighted.
Elnakib, 2013

The parts of the brain that are often observed within structural imaging, are white matter,

grey matter and cerebral spinal fluid (CSF). White matter consists of the long axons of

neurons that conduct electrical signals to more distant regions of the brain and spinal

cord. Grey matter consist of neuronal cell bodies and their dendrites, which are short

protrusions communicating with neurons close by. In MRI, one can create different images

to highlight each tissue type by exploiting its NMR properties. Structural imaging can

thus be further subdivided into T1-weighted, T2-weighted and PD-weighted (PD standing

for proton density). These can be seen in Figures (3.1) and (3.2). T1-weighted MR images

provide a clear view of brain anatomy and structure, making them useful in analysing

soft tissue and identifying damage. T2-weighted images are used to measure white matter

and cerebrospinal fluid in the brain, thus they are more suited to measure fluid rather

than soft tissues.

Functional MRI can be further subdivided into two categories, task and resting state

fMRI. Task fMRI has patients perform tasks within an MRI scanner to learn how the

brain responds to various stimuli. Resting-state fMRI, as the name suggests, allows for the

patients to rest within the machine and instead of a response to stimulus, it allows to look

for spontaneous activity in the brain, are there any parts of the brain that are connected.

In both cases, however, the fMRI measures signals from the changes in oxygenation that

are referred to as the blood oxygenation level dependent (BOLD) signals.
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Figure 3.2: Examples of structural MRI: (a)T1-weighted, (b) T2-weighted and (c) PD-weighted.
Ashton and Du, 2004

Challenges in MR Image Analysis

The analysis of an MR image is subject to a number of factors. Firstly, on an individual

level, the data is liable to a number of artifacts, such as those caused by head motion or

fluctuations in signal sensing. Secondly, on a sample level, there are many sources of vari-

ability in the data, including variability between individuals and time within individuals.

Thirdly, the data is of rather high dimension. A T1-weighted MRI can be 250×250×250

voxels large, multiplied by the number of longitudinal observations and the number of

subjects can lead for the complete dataset to be tens if not hundreds of gigabytes.

Individual and sample level challenges most commonly include:

• Artifacts: Most common form of image distortion is geometric warping or complete

loss of signal (most commonly in fMRI), this arises when the gradient strength is

not uniform across the entire field of view.

• Signal-to-noise ratio: noise arises from statistical fluctuation of the signal sensed

by the receiver coils artifacts. This is present in all types of MR images.

• Subject variability: as each patient has unique anatomy, a voxel coordinate may

not correspond to anatomical features of the brain across multiple subjects images.

• Motion: MR acquisition time can take from 10 minutes up to an hour depending

on the specific type of imaging done. In both types of imaging, however, motion of

the head can reduce the quality of resulting images.
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Examples of movement related artifacts and signal-to-noise ratio can be seen in Figures

(3.3) and (3.4), respectively.

Finally, when analysing an image, one should be aware that voxels do not indicate the

tissue type directly, but they indicate tissue types relative to each other given the con-

trasting mechanism used (T1, T2 or PD). Voxel intensity often does refer to specific tissue

composition, however it does not measure brain matter volume directly.

Figure 3.3: Clean and motion-corrupted images of one representative participant. One axial and
one sagittal slice are presented for the standard (STAND) scan, and for scans with low (HM1)
and high levels of head motion (HM2). For this participant, the STAND scan was labelled as
good (score 1), the HM1 scan as medium (score 2), and the HM2 scan as bad (score 3) quality
image from the point of view of clinical diagnostic use. Narai et al., 2022

3.2 MRI Preprocessing Steps

Prior to analysis, images must go through a number of steps to either remove existing

image distortions, insignificant tissue and to account for variability in subject anatomy.

Many different preprocessing pipelines have been developed to suit multiple analysis goals,

and this step should be considered when interpreting results.

Whilst there are many software packages that can be used for brain MRI preprocessing,

the ones used in this thesis are FSL (Smith et al., 2004; Jenkinson et al., 2012) and

ANTs (Avants et al., 2009). Each software contains a collection of relevant tools that

are frequently used in a pipeline. The following section will go over the most pertinent

elements to the thesis.



CHAPTER 3. NEUROIMAGING DATA BACKGROUND 30

Figure 3.4: Examples of high and low signal-to-noise ratio in T1 MR images.

Bias Correction

Bias field signal is a low-frequency and smooth signal that corrupts MRI images and is

particularly prevalent in ones produced by old MRI machines (Juntu et al., 2008). An

example of a bias field can be found in Figure (3.5). It can be a potential confounder

in analysis tasks that depend on voxel values. A popular bias field correction method

was introduced initially Sled et al., 1998 and is based on fitting b-splines to represent the

bias field. It was later improved upon by Tustison et al., 2014 and this is included in the

current version of ANTs and was used in this thesis.

Registration

Brain registration is the act of aligning images across subjects using a variety of transfor-

mations such that for each image, a voxels location corresponds to the same anatomical

location between patients. Registration accounts for different rotations of the brain and

the variability of patient brains.

The transformations that make up registration can be simple rigid body and affine trans-

formations such as skews and shears along different axies. Non-linear transformations can

be subject to constraints such as basis functions, regularization and topology-preservation

(Ashburner and Friston, 2000).

Brain volume and other anatomical features heavily depend on age, gender and geographic

region and thus vary across populations. This heterogeneity could limit the generalizabil-

ity of many studies and is mitigated by mapping the images onto a common template.
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Figure 3.5: Intensity nonuniformity correction of a surface coil MR scan: (a) and (d) transaxial
and sagittal views of uncorrected data; (b) and (e) nonuniformity field estimated by the N3
method; (c) and (f) corrected data. Image from Sled et al., 1998.

These templates are often derived from a set of images obtained from a large study. Fonov

et al., 2011 introduced such a template from an atlas of images that averaged (over the

population) the intensity, average shape, left-right symmetry, high level of anatomical

detail and compatibility with previous atlases (Evans, 2006; Almli et al., 2007; Lancaster

et al., 2007; Mazziotta et al., 1995). This atlas is referred to as MNI152 and was used as

part of the ANTs software.

Image Normalization

Image or intensity normalization aims to standardise the relative contrast of the observed

pixels. It is an important step as many analysis methods make strong assumptions about

the underlying intensity ranges within an image what tissue they might correspond to.

Additionally, many methods assume the data to have been sampled independently and

identically distributed from a fixed distribution which is not always the case. These

variations can stem from differences in the protocols of various MRI scan acquisitions,

the different manufacturers and scanner-models, and also due to subject disease state.

One subjects image at different time points can have different tissue intensity.

Normalization addresses this problem by mapping the raw image intensity values into a

standardised range. This transformation results in a standard scale where intensities in

the transformed images have consistent tissue meanings and standard window settings

can be determined for different tissues. An example of normalized intensities can be seen
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Figure 3.6: An example of image intensities before and after normalization. Image sourced from
Reinhold et al., 2019

in Figure (3.6).

Different methods can be used to achieve a result and a useful tool in this thesis was

the repository of methods reviewed by Reinhold et al., 2019. The specific method used

was the piecewise linear histogram matching introduced and evaluated in Nyul et al.,

2000; Shah et al., 2011. This method addresses the normalization problem by learning

a standard histogram for a set of contrast images and linearly mapping the intensities

of each image to this standard histogram. It is particularly useful as it normalizes the

whole sample of images relative to each other.

Brain Extraction

Brain extraction is, as the name suggests, the process of differentiating the brain tissue

from non-brain tissue. It is most frequently used on high resolution magnetic resonance

(MR) images as they often depict non-brain matter such as eyeballs, bone and muscle.

In contrast, functional images, because of their rapid acquisition rarely depict non-brain

tissue. Where it is appropriate, then, removing non-brain matter will allow for the

analysis to focus on regions of interest.

There are many ways of approaching this problem. Lemieux et al., 1999 suggests a series

of thresh-holding and morphology steps, with each step carefully tuned to overcome

specific problems, such as the thin strands joining brain to non-brain after thresholding.

Whilst very accurate, this method proved limiting due to its narrow range of applications.

Dale et al., 1999 suggests fitting the image to a surface model composed of a triangular

mesh. Many other approaches were and continue to be developed (Stella Atkins and
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Figure 3.7: Example of iterative surface model development. The dark points within the model
outline are vertices. Image from Smith, 2002

Mackiewich, 1998; Wang et al., 2014b; Carass et al., 2011; Shattuck et al., 2001).

One method, which is frequently used – introduced by Smith, 2002 – uses a deformable

model that evolves a surface to fit the brain boundary by accounting for surface smooth-

ness and voxel intensity changes in the surface vicinity. An example of this surface

developing can be seen in Figure (3.7) This approach is used by the FSL software as

the Brain Extraction Tool and remains popular partially due to its low requirement for

human monitoring. In practice, one needs to choose a fractional intensity threshold in

the range [0,1] where smaller values give larger brain outline estimates.

Smoothing

Some images may be smoothed prior to analysis. This is mostly only used on functional

images to suppress spatially random noise and enhance the signal-to-noise ratio. Func-

tional MR analysis has special constraints due to the spatially varying nature over voxels

that can cause intrinsic autocorrelations. Friston et al., 2000 discusses how smoothing

ensures that the bias is small whilst maintaining a reasonable degree of efficiency.

Smoothing, then, is a common step in fMRI preprocessing and a Gaussian kernel, whose



CHAPTER 3. NEUROIMAGING DATA BACKGROUND 34

size and intensity is determined relative to the data, is often used. Smoothing is not the

only step that might be specific to fMRI as head motion may have a large effect on the

analysis of the series of images (van Dijk et al., 2012). Kassinopoulos and Mitsis, 2022

provide additional further details of evaluating suitable methods for fMRI preprocessing.

3.3 Decision fMRI

The following section will discuss the first of two datasets that are analysed in this thesis.

This task fMRI dataset, first published by Mohr et al., 2010b, was used to learn which

regions of the brain are active in risk-averse individuals.

3.3.1 Study Design

The data is sourced from a previous study (Mohr et al., 2010b) investigating the mecha-

nisms behind decision making and risk. The authors designed a investment decision task

that uses streams of (past) returns as stimuli to understand human responses to different

levels of risk, and to use their responses to investigate the two competing models for

risk in neuroscience. The experiment involved a cohort of 22 young subjects (age 18–35

years, equal gender distribution, native German speakers, right-handed and had no his-

tory of neurological or psychiatric disease). Three participants were excluded initially for

excessive head motion and a further two subjects were excluded for corrupted image files.

Each trial task consisted of two phases: the presentation of a return stream followed

by a decision or a subjective judgment task (Fig. 3.8). In the first phase, the return

stream consisted of 10 returns on a previous hypothetical investment giving information

about its past performance. Each individual return was presented for 2 seconds and the

total return stream takes 20 seconds to complete. During the experiment, each return

stream was independent of the others and described as the past performance of a new

investment. The streams were drawn from Gaussian distribution with varying means

(6 %, 9 %, and 12 %) and standard deviations (1 %, 5 %, and 9 %), resulting in nine

different combinations of means and standard deviations.

In the second phase, given the return stream, subjects were asked to do one of the three
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Figure 3.8: Risk Perception and Investment Decision Task Mohr et al., 2010a.

tasks, these were chosen to be able to investigate choice, perceived risk and subjective

expected return. They are:

1. Decision task: the subject has to choose between an investment with a 5% fixed

return (safe investment) and an investment represented by the return stream they

just saw (risky investment).

2. Expected return: The subjects would choose the subjective expected return to be

an integer value between -5% and +15%

3. Perceived risk: Subjects would give their perceived risk on a scale from 0 (no risk)

to 100 (maximum risk).

This was done without knowing which of the three tasks they would be performing before

the stream began. Subjects performed each task (decision, subjective expected return

and perceived risk) 27 times giving a total of 81 trials. Figure (3.8) summarises the study

design.

During the experiment, fMRI data were acquired on a 1.5 T Magnetom Sonata fMRI

system equipped with a standard head coil. A vacuum pad was used to minimize head

motion. Functional images were acquired using a BOLD-sensitive T2-weighted echo-

planar imaging (EPI) sequence. This resulted in 1400 observations of a 3-dimensional

(91× 109× 91) array that represents the Blood Oxygenation Level Dependent (BOLD)

signals. The data was initially pre-processed with FSL 4.0, which included motion cor-
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rection and slice-time correction. Additionally, images were normalized into a standard

space.

Below are the results for each of the tasks completed by the subjects. We want to use this

to help us in the analysis of the data. Table (3.1) shows the prevalence of risky choices

in all types of decision tasks. The first row will do this for expected return judgment and

the second row will do this for perceived risk judgment. Subject risk prevalence in task

types 3 and 4 is plotted using box-and-whisker plots and can be found in the appendix

as Table (A.1) and Table (A.2).

Task Type 1

Index 3 4 13 20 24 36 39 43 49 58 59 72 76 77
Risk % 0.8 0.6 0.53 0.13 1 0.53 0.93 0.2 0.86 0.8 0.86 0.26 0.86 0.13

Task Type 2

Index 5 15 18 23 32 34 37 52 54 62 64 71 79
Risk % 0.8 0.2 0.93 0.93 0.6 1 0.53 0.93 0.13 0.53 0.13 0.93 0.8

Table 3.1: The prevalence of risky labels in the two task types by task index.

3.3.2 Results from the Study

The subjects’ statements for perceived risk and subjective expected return were used to

identify which mathematical model best translates the 10 presented returns into predic-

tions for perceived risk and subjective expected return on an individual level. Thus, one

can use these models to predict perceived risk and subjective expected return during the

choice between the risky and the safe investment, where they are otherwise unobservable.

The data consists of brain fMRI images of 15 subjects, taken whilst they performed 81

financial decision-making tasks or experiments. The images were acquired every 2.5 s dur-

ing the investigation, providing each subject with a time series of 1360 three-dimensional

images representing their brain activity, an example of one subject’s image can be seen

in Figure (4.5). The images represent the BOLD signals. Each patient also received a

clinically-derived risk score at the end. In this study, all participants were risk averse.

Mohr et al., 2010a fitted the risk–return model with expected return and standard de-

viation in the same way we fitted the psychological risk–return model and also tested

how well the resulting risk weights could explain the choices if we assume a deterministic
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decision rule. It was able to predict on average 85% of the choices and found a signifi-

cant correlation between perceived risk and the BOLD response during decisions in right

anterior insula (aINS) and right OFC

3.3.3 Previous Analysis

This dataset was first published by Mohr et al., 2010b and subsequently analysed using

various FDA methods by van Bömmel et al., 2013, Chen et al., 2015 and finally by Li

et al., 2019. The aim of the aforementioned papers was to recover active brain areas that

are associated with risk assessment and to use elements of the model to predict on sub-

jects risk attitude parameter. Previous studies found correlations between risk attitude

Figure 3.9: Raw data slices for one patient. This represents the data Y1,(s1,s2,s3),t where t = 1,
s1, s2 ∈ [0, 91] and s3 ∈ {25, 30, 40, 45, 50, 55, 60, 65, 70, 80)}.

and risk-related brain activity in the lateral orbitofrontal cortex (lOFC) for risk-averse

individuals and in the medial orbitofrontal cortex (mOFC) for risk-seeking individuals

(Tobler et al., 2007). There, risk-averse individuals would weight the risk associated with

an investment to discount it’s overall value whereas risk-seeking individuals would have

a as negligible risk weight, meaning their perceived value of an investment was not al-

tered significantly by a change in risk. Another study (Mohr et al., 2010b) found that

inter-individual differences in decision-related brain activity in the lOFC and correlated

it with inter-individual differences in risk attitudes independent of the current level of

risk. The authors showed that the value signal in the ventrolateral prefrontal cortex

(VLPFC) increased with risk in risk-seeking individuals and decreased with risk in risk-

averse individuals, thereby reflecting the risk attitude. Additionally, Chen et al., 2015

have found the dorsolateral prefrontal cortex (DLPFC) and the anterior insula (aINS) to
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be correlated with decision making and risk.

van Bömmel et al., 2013 hypothesize that the temporal variability of components cor-

responding to factors in brain regions related to value processing is correlated with the

risk attitude of individuals. Based on this, we are interested if we can identify regions of

interest (ROIs) and relate their temporal activity to the clinical risk score given to each

patient. Given the fact that each patient completed multiple tasks, we would like to find

out if individual trends in behaviour would impact the assumption posed by Li et al.,

2019 stating that each task could be treated as an individual observation. Finally, we

are interested in developing a model that maintains the spatial relationships within each

image and can simultaneously represent the time series.

3.4 Alzheimer’s Disease Neuroimaging Initiative

The second dataset used in this project is a set of images published by the Alzheimer’s

Disease Neuroimaging Initiative (ADNI)(Petersen et al., 2010) which follows multiple pa-

tient cohorts over the course of years to study biomarkers related to Alzheimer’s Dementia

(AD).

AD is a chronic neurodegenerative disorder with progressive impairment of the memory

and other important mental functions. The condition is characterized by morphological

and molecular changes of the brain, ultimately leading to cognitive and behavioral decline.

As age is a major risk factor of the condition, it was increasingly important to study its

onset and progression due to an increase in life expectancy and an ageing population.

The first major study to do this over multiple sites was ADNI (Mueller et al., 2005). It

collected the genetic, neuroimaging and biochemical biomarkers on an elderly population

with the aim of improving diagnostic criteria and establishing relationships between dis-

ease onset and progression between a variety of biomarkers to better understand potential

treatments. The first cohort results were published by Petersen et al., 2010. The dataset

contains clinical, neuroimaging, and cognitive data, as well as biofluid samples. Since

the publication of the ADNI 1, several subsequent studies have been published: ADNI

GO (2009-2011), ADNI 2 (2011-2017) and ADNI 3 (2017-2022). Currently, there is a
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Month 0 6 12 18 24 36

CN 134 137 138 6 136 132
MCI 148 139 123 102 92 78
AD 97 106 121 40 153 72

Total 379 382 382 148 382 282
na 3 0 0 234 0 100

Table 3.2: Number of patient with each diagnosis at each visit time.

transition to a new study ADNI 4 (Weiner et al., 2023).

ADNI had a large impact on the establishment of multi-center, large scale trials (Weiner

and ADNI, 2013; Weiner et al., 2017) and has been used widely for method development.

Most recently, a review of publications between 2021 and 2022 Veitch et al., 2024 has

identified 1459 publications in that year using the dataset. This is part due to the many

collections of datasets that can be readily downloaded. The dataset of particular interest

to this thesis is the standardised 1.5T MRIs set (Wyman et al., 2013) following 382

subjects over 3 years with visits scheduled a 6 month intervals. For each visit, subject

data is available regarding their diagnosis, demographics, genetics and other. The number

of patients with each diagnosis sub-type (CN, MCI and AD) are summarised in Table

(3.2). Subjects’ age at screening divided by diagnosis is plotted in Figure (3.10).

3.4.1 Neuroimaging and Alzheimer’s Dementia

Structural MR imaging is used in the diagnosis process along with the monitoring of dis-

ease progression amongst patients. The onset of Alzheimer’s dementia has been associated

with accelerated atrophy is several brain regions, particularly in the medial temporal lobe

with concurrent expansion of the ventricles (Park and Reuter-Lorenz, 2009; Jack et al.,

1992; Fox et al., 1996). A volume reduction in the hippocampus, a sub-region of the

temporal lobe has been associated with dementia (Thompson et al., 2004). As such,

volume reduction in particular brain regions can be considered as an imaging biomarker

used to investigate the rate of brain deterioration. This has been quantified with different

techniques, one counting the neuronal cell loss (West et al., 1994) or by computing the

brain volume loss directly (Leong et al., 2017).
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Figure 3.10: Boxplots of ADNI subjects’ age at screening by diagnosis.

3.4.2 Analysis of ADNI Images

Given the importance of neuroimaging in AD diagnosis and monitoring, several initiatives

have sought to collect large datasets of images and other relevant clinical measurements

to obtain more insights about the disease progression. Such data has allowed us to model

the trajectory of the disease over time, helping develop methods for precise and early

diagnosis. We are interested in methods that fall into the categories of classification

of and prediction of diagnosis or future decline. We will consider both statistical and

machine learning (ML) approaches that work either on full images or on biomarkers

extracted from them.

Modelling of Longitudinal Data

MRI biomarkers are frequently modelled with mixed models to find associations between

patient profiles and disease outcomes (Chen et al., 2021). However linear mixed models

can have some limitations: (1) the parametric models can be limited when modelling

complex nonlinear trends of longitudinal data; (2) missing points can make the model

difficult to estimate or completely unidentifiable. Non-linearity is important with regards

to AD as many biomarkers have shown to have complex trajectories dependent on age

and genetic status (Jack et al., 2012). Furthermore as rate of decline is non-linear, using
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the diagnosis time or time of enrollment may not directly reflect the patients trajectory

(Milliken and Edland, 2000).

Nonlinearity has been addressed by several approaches. Some models include piecewise

models (Gerstorf et al., 2010), mixed effect change point models (Hall et al., 2000) or a

flexible sigmoidal model (Capuano et al., 2018). FDA provides a non-parametric solution

to the problem of modelling longitudinal data. One can use FPCA to model longitudinal

trajectories and relate them to subject specific scores (Shi et al., 2021; Yao et al., 2005).

Functional mixed models (Guo, 2002) have been extended to account for random vari-

ables over different domains (Happ and Greven, 2018) or to jointly model multivariate

functional data with survival outcomes (Li et al., 2022; Zou et al., 2023). The point

of sparsity has been addressed using a Bayesian approach, which has been applied both

in standard mixed models (Li et al., 2018) and functional approaches (Yao et al., 2005;

Thompson and Rosen, 2008).

Image Analysis

Predicting or classifying disease status from imaging is well established in the context

of Alzheimer’s Dementia. Imaging biomarkers have been widely used in predicting the

onset of dementia and many methods have been considered for this task, often extracted

features are used in a classification model to predict the presence of AD. This has been

achieved by both statistical and machine learning approaches.

Mofrad et al., 2021 provide a framework for the extraction of brain biomarkers and

applying them in a mixed model for the prediction of patient diagnosis at a given time. A

similar approach for the prediction of time to conversion was presented in Guerrero et al.,

2016. At the same time, extracted biomarkers can be used in non linear ML methods.

Review articles on this topic in the context of ADNI have been recently published by

Ansart et al., 2021; Fouladi et al., 2022; Rowe et al., 2021; Grueso and Viejo-Sobera,

2021. These publications highlight that support vector machines (SVMs) and neural

networks are the most common approaches. Methods using a complete image without

preprocessing are more recent, and mainly include NNs, specifically, convolutional neural

networks (CNNs) (Fouladi et al., 2022).
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Functional approaches could be broadly categorized into FPCA and functional regression.

Palma et al., 2020 uses a b-spline representation as a summary of the 3D image to then

estimate a quantile regression model for brain age. Another approach was functional

logistic regression Wang et al., 2017 on full FDG PET scans where the fitted coefficient

was composed of wavelet functions.

3.4.3 Data Structure and Preprocessing

The data was downloaded in the NIFTI format, which is a typical data structure for MRI

alongside DICOM. The data is then pre-processed using the clinica pipeline to first order it

in the BIDS format and then preprocess the images themselves. The image preprocessing

was done using the clinica t1-processing (Routier et al., 2021; Wen et al., 2020). More

precisely, bias field correction was applied using the N4ITK method (Tustison et al.,

2010). The images were aligned to a common imaging space that aligns each image such

that the anatomical regions of the brain corresponded to the same area in the image

space. This is done using affine registration via the SyN algorithm (Avants et al., 2008)

from the ANTs software (Avants et al., 2014) and the common imaging space is the MNI

space with the ICBM 2009c nonlinear symmetric template (Fonov et al., 2011). The

registered images were further cropped to remove the background resulting in images of

size 169×208×179, with 1 mm isotropic voxels.



Chapter 4

Spatio-Temporal Functional

Principal Component Analysis

4.1 Introduction

In this chapter, we are interested in an fMRI dataset collected on a dense time grid in-

troduced in Chapter 3. We propose a functional model using the FDA framework for

the dimensionality reduction of images observed over time. The model builds on previ-

ous work of Li et al., 2019, that had introduced an efficient estimation method for the

estimation of a standard FPCA model on images stored as arrays. It takes inspiration

from Park and Staicu, 2015 by using a double Karhunen-Loève expansion to achieve a

decomposition of the image into two functions: a time-invariant PC function and a ran-

dom, time varying score that can be used in further analysis. This work is motivated by

task fMRI data introduced in Chapter 3, where 15 healthy subjects performed financial

decision-making tasks and the response of interest was a subject’s financial risk propen-

sity. The model can be used to obtain subject specific score functions over time which

can be used further to relate active brain regions to a subject’s risk preference.

Task fMRI studies aim to find relations between activity in a particular brain region and a

subject response. Most commonly, such datasets are analysed with a per-voxel approach

which includes generalized linear models (GLMs), independent component analysis (ICA)

and time series models (Friston et al., 1995 and Monti, 2011). These methods tend to

43
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focus on the temporal correlation treating each voxel’s signal as spatially independent

from the others. From the very first application of ICA to fMRI there has been a discus-

sion on modelling spatial or temporal dependence (Mckeown et al., 1998; Petersen et al.,

2000). On one hand, ICA provides a model for brain activity over time at particular vox-

els and on the other, different dimensionality reduction methods, can model the spatial

dependence.

FDA methods are particularly useful as treating the image as a functional object inher-

ently models the spatial correlation of adjacent pixels. As such, modelling neuroimages

using FDA has grown in popularity (Wang et al., 2015). Many of these methods rely

on dimensionality reduction, such as FPCA, where the PCs form spatial latent variables

that represent some element of the variation in pixels and the random scores can be used

in further analysis such as association or prediction. In the case of fMRI, early implemen-

tation of functional methods was presented by Zipunnikov et al., 2011a, where the image

was vectorised to estimate a 2 dimensional covariance matrix. Another approach in Chen

et al., 2015 first represented the data using b-spline vectors which is a common method

in FDA also described in Chapter 8 of Ramsay and Silverman, 2005. Most recently, Li

et al., 2019 presented a new estimation method for FPCA on images stored as arrays.

However, these methods do not consider the temporal element of fMRI data and either

consider a single time point, as is the case for Zipunnikov et al., 2011a; Chen et al., 2015

or they combine multiple time points into one image by taking their difference as done

in Li et al., 2019.

Methods that do consider spatial dependence are often then limited by not consider-

ing time. Few methods consider both. One approach by van Bömmel et al., 2013 uses

methods introduced in Park et al., 2009 on patches of images, where the patch is de-

composed into a spatial component and an autoregressive model is fitted to the scores.

However this approach relies on parametric assumptions and is computationally expen-

sive. Other methods have been developed on low dimensional data and are not adapted to

images. Two non-parametric approaches that allow for flexible modelling include Chen

and Müller, 2012; Park and Staicu, 2015, however both are limited to 1-dimensional

curves over time and cannot be directly implemented to imaging data.
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In this chapter, we propose a functional model using the FDA framework for the dimen-

sionality reduction of images over time, with a dense temporal grid. The time-series of

images is decomposed into a linear product of time invariant principal components and

subject specific score functions that are allowed to vary over time. Our model is computa-

tionally efficient, as we propose an estimation method based on the algorithm introduced

in Li et al., 2019 that circumvents calculating the 8-dimensional covariance matrix. Our

novel contributions are as follows: firstly, we propose a model for dimensionality reduc-

tion of high-dimensional datasets captured in space and time. Secondly, we implement a

computationally efficient estimation algorithm using a singular value decomposition and

study its performance via simulation. The data analysis compares our approach with Li

et al., 2019 and recovers active brain regions and associate their activity over time with

subject’s risk attitude.

4.2 Methods

Define a random function X(s, t) where s ∈ S = [0, S1]× [0, S2]× [0, S3] forms a bounded

3-dimensional space, t ∈ T = [0, T ] and S ∪ T ⊆ R4. The function X(s, t) lies in

L2(S ∪ T ). As X(s, t) is integrable, there exists a unique function µ ∈ L2 such that

µ(s, t) = E[X(s, t)]. Hence, the function X(s, t) can be decomposed into the mean µ(s, t)

and some function U(s, t) ∈ L2(S ∪ T ) such that X(s, t) = µ(s, t) + U(s, t). If we were

to model this function using standard FPCA described in Chapter 2, X(s, t) would be

expressed as:

X(s, t) = µ(s, t) +
∞∑
l=1

ψlϕl(s, t) (4.1)

where ϕl(s, t) are the PCs and ψl would be the scores. However, we are interested a

representation where X(s, t) is a product of two functions, a time-invariant PC function

defined over s and a random score function over t. Existing models introduced by Park

and Staicu, 2015 cannot be estimated in high dimensions, due to lack of tools for eigen-

decomposition of 6 dimensional arrays, and are investigated in detail in Chapter 5. In

this section, we define a model for such a decomposition that can be estimated in high

dimensions.
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Consider the marginal function U(s) =
∫
U(s, t)g(t)dt where g(t) is the sampling density

function over t, g(t) is continuous and supt∈T (g(t)) < ∞. The function U(s) has a

covariance ν(s, s′) = E
[
U(s)U(s′)

]
which is the kernel to the covariance operator:

ς(f)(s′) = E
[
⟨U(s), f(s)⟩U(s′)

]
, (4.2)

for any functions f(s), g(s) ∈ L2(S). The covariance operator is symmetric as ν(s, s′) =

ν(s′, s) and positive semi definite, thus has strictly positive eigenvalues λl with
∑∞

l=1 λl <

∞. From the eigendecomposition problem:

ς(ϕl)(s
′) =

∫
S

ν
(
s, s′

)
ϕl(s)ds = λlϕl(s

′), (4.3)

the kernel of the covariance operator, ν can be written as:

ν(s, s′) =
∞∑
j=1

λjϕj(s)ϕj(s
′),

with ϕj(s) denoting the eigenfunctions. The eigenfunctions form a time-invariant or-

thonormal basis in L2(S) and optimise the minimisation of:

MSE(θ1(·), . . . , θK(·)) = E
∣∣∣∣ ∫ U(·, t)g(t)dt−

K∑
k=1

⟨
∫
U(·, t)g(t)dt, θk(·)⟩θk(·)

∣∣∣∣2.
= E

∣∣∣∣ ∫ U(·, t)g(t)dt−
K∑
k=1

∫ (∫
U(·, t)θk(·)d ·

)
g(t)θk(·)dt

∣∣∣∣2
= E

∣∣∣∣ ∫ (U(·, t)− K∑
k=1

(∫
U(·, t)θk(·)d ·

)
θk(·)

)
g(t)dt

∣∣∣∣2
=

∫
E
∣∣∣∣U(·, t)− K∑

k=1

(∫
U(·, t)θk(·)d ·

)
θk(·)

∣∣∣∣2g2(t)dt
since g(t) is deterministic

=

∫
E
∣∣∣∣Ui(·, t)−

K∑
k=1

⟨Ui(·, t), θk(·)⟩θk(·)
∣∣∣∣2g2(t)dt.

By applying Mercer’s theorem and the Karhunen-Loève theorem, the process U(s) can

be expressed as an infinite linear combination of the deterministic eigenfunctions ϕl(s) of
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ς(U)(s) with random uncorrelated weights ωl = ⟨U, ϕl⟩:

U(s) =
∞∑
l=1

ωlϕl(s). (4.4)

We propose this new ϕl(s) to be the basis function of new decomposition of U(s, t)

together with the random score functions ψl(t) = ⟨U(s, t), ϕl(s)⟩. They also have a

covariance function denoted as Gl(t, t
′) = Cov(ψl(t), ψl(t

′)) which is a smooth function

defined on T × T . Using Mercer’s Theorem, we can decompose it into the following:

Gl(t, t
′) =

∑
m≥1

κlmξlm(t)ξlm(t
′), (4.5)

where κk1 ≥ κk2 ≥ · · · ≥ 0 and {ξlm(t)} form an orthonormal basis in L2. By the

Karhunen-Loève theorem, we get the expression:

ψl(t) =
∞∑

m=1

ηlmξlm(t), (4.6)

where ηlm =
∫
ψl(t)ξlm(t)dt are random variables uncorrelated over m with zero mean

and variance equal to κlm. Putting this all together, we can represent U(s, t) as:

U(s, t) =
∞∑
l=1

ψl(t)ϕl(s) =
∞∑
l=1

∞∑
m=1

ηlmξlm(t)ϕl(s). (4.7)

Using the above decomposition, we define the population model:

X(s, t) = µ(s, t) + U(s, t); U(s, t) =
∞∑
l=1

ψl(t)ϕl(s), (4.8)

where ψl(t) =
∑∞

m=1 ηlmξlm(t) are the score functions and ϕl(s) are the time-invariant

PCs.

In reality, one cannot observe a continuous function and instead the observations are

discrete observations on a grid. Let Y(j1,j2,j3),k be a random variable at voxel index

(j1, j2, j3) and time k, where j1 ∈ {1, . . . , J1}, j2 ∈ {1, . . . , J2}, j3 ∈ {1, . . . , J3}, for

J1, J2, J3 ∈ Z and k ∈ {1, . . . , K} for K ∈ Z. For convenience we will shorten the voxel

indices to j and {J1 × J2 × J3} = J and for all j, sj ∈ S. Finally, for all k ∈ K, tk ∈ T .
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Denote the total number of voxels in Y as η = J1 · J2 · J3.

We have n copies of Yjk denoted as Yijk. These observations are discrete realisations of a

random smooth processes Xi(s, t) which are independent and identically distributed (iid)

copies of X(s, t) ∈ L2(S ∪ T ). This defined the model

Yijk = Xi(sj, tk) + εijk, (4.9)

where sj ∈ S, tk ∈ T are s, t evaluated on a discrete grid of points. The noise of the ith

subject, denoted as εijk, is independent and identically distributed (iid) with mean zero

and variance σ2
ijk at voxel j and time k. We assume the variance function of Xi(sj, tk) is

smooth and hence εijk has a smooth variance in the neighbourhood of j.

Combining results from equation (4.8) with model (4.9) yields:

Yijk = µ(sj, tk) +
∞∑
l=1

ψil(tk)ϕl(sj) + εijk. (4.10)

We assume that there exists a number of PCs, denoted L, that contains a sufficient

amount of variance explained so that any remaining information can be considered noise.

Hence, we simplify the infinite sum to propose the full model:

Yijk = µ(sj, tk) +
L∑
l=1

ψil(tk)ϕl(sj) + εijk. (4.11)

Note that despite similar notation, εijk in equations (4.10) and (4.11) are different. The

variance explained (VE) by the model is given by:

VE(L) = 1−
[∑n

i=1

∑K
k=1

∑
j

[
Yijk − µ(sj, tk)−

∑L
l=1 ψil(tk)ϕl(sj)

]2∑n
i=1

∑K
k=1

∑
j

[
Yijk − Y jk

]2 ]
(4.12)

Intuitively, the model can be interpreted as the principal components representing varia-

tion in space whilst the score functions relate the PCs to random observations and show

temporal variation as well. In further analysis, the PCs can be used to recover regions

most relevant to data variation and the scores can be used in further analysis such as

regression or clustering as they contain subject-specific information.



CHAPTER 4. SPATIO-TEMPORAL FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS 49

4.3 Parameter Estimation and Application

4.3.1 Estimation Methods

Traditionally, a covariance matrix would be calculated from which the PCs can be derived.

To compute such a matrix, for every pixel in the three-dimensional image at one time-

point, a covariance needs to be computed between it and the entire image again, creating

an 8 dimensional matrix. This poses a computational burden, and hence we propose a

new estimation method to avoid it outlined below.

We want to estimate ψil(t) and ϕl(s), the principal components and score functions. To

do this, we first estimate the mean across subjects denoted by µ(s, t), and the subject

specific mean and variance denoted by µi(s, t) and σ
2
i (s, t). The scores ψil(t) are estimated

by singular-value-decomposition and then the PCs ϕl(s) are estimated using regression.

The remaining subsections will go over each step in detail, but briefly, the steps of the

estimation algorithm are:

1. Per time point k, estimate the mean µ̂jk and σ̂2
ijk.

2. Estimate the raw score functions ψ̃il(tk). This is done per time-point k using the

eigendecomposition of the matrix made up of the inner product of Yijk with σ̂2
ijk

removed.

3. Regress the discrete data Yijk on ψ̃il(tk) to obtain an estimate of the components

ϕ̃l(s), smooth it over s to obtain ϕ̂l(s).

4. Regress Yijk on ϕ̂l(s) to update the loadings, denote the updated loadings as ψ̂il(t).

Note that steps 1 and 2 are done only once, whilst steps 3 and 4 can be repeated iteratively

to improve the estimation of the components and scores. The implementation of this

algorithm is available within the Spatio Temporal FPCA repository on GitHub.

Estimating the mean and variance

The estimation of the mean µ(s, t) is done by taking the average across subjects of all

voxels at all time points, using the matrix denoted µ̂jk ∈ MJ,T where each element

µ̂jk = 1
n

∑n
i=1 Yijk. To estimate the variance σ2

i (s, t) of εijk from equations (4.9) and
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(4.10), we exploit the smoothness property of Xi(s, t) which assumes X to have little

variance in the neighbourhood of s and hence any variance found in the neighbourhood

of j in Yijk is predominantly attributed to the noise.

At each time point k, partition Yik for subject i into h × h × h cubes, denoted with

mj′ where j′ = (j′1, j
′
2, j

′
3) and j′1 ∈ {1, . . . , ⌊S1/h⌋}, j′2 ∈ {1, . . . , ⌊S2/h⌋}, and j′3 ∈

{1, . . . , ⌊S3/h⌋}. For each mj′ there are h3 points j such that Yijk ∈ mj′ . Then we

estimate variance σ2
i (s, t) in neighbourhood j′ as σ̂2

ij′k = V ar(Yijk) with Yijk ∈ mj′ .

Given estimate of σ̂2
ijk, construct diagonal matrices Wσk, k ∈ K with dimensions n × n,

where the (i, i)th entry is equivalent to
∫
S
σ2
i (s, t)ds. As we have estimated σ2, each

diagonal entry is the discretization of the integral:
∑

j σ̂
2
ijk/η, where η is the total number

of voxels in one image.

Estimating Score functions

To estimate the score functions, we use the fact that the inner product of X(·) can be

written as a function of the scores ψl(tk). Since Yijk is a function of X(·), specifically

Yijk = Xi(sj, tk) + εijk we can use this alongside the representation of X(·) for the

estimation procedure.

Define the matrix WXk ∈ Mn,n and WY k ∈ Mn,n with their (i, i′)th entries denoted as

WXk(i,i′) and WY k(i,i′) as follows:

WY k(i,i′) = ⟨Yijk − µ̂jk, Yi′jk − µ̂jk⟩ = 1/η
∑
j

(
Yijk − µ̂jk

)
·
(
Yi′jk − µ̂jk

)
,

WXk(i,i′) = ⟨Xi(·, k)− µ(·, k), Xi′(·, k)− µ(·, k)⟩ =
∫
S

Ui(s, k)Ui′(s, k)ds.

Note that due to the fact that Ui(s, k), is a function of the scores, WXk(i,i′) can also be

written as: WXk(i,i′) =
∑∞

l=1 ψil(tk) · ψi′l(tk), by using the properties of the PCs. Given

this, the score functions ψij(t) can be estimated at the observed time points k. However,

as only discrete data Yijk have been observed, WXk will be estimated using WY k and the



CHAPTER 4. SPATIO-TEMPORAL FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS 51

population model (4.9).

WY k(i,i′) =
1

η

∑
J

(
Yijk − µ̂jk

)
·
(
Yi′jk − µ̂jk

)
=

1

η

∑
J

(( ∞∑
l=1

ψil(tk)ϕl(sj) + εijk
)
·
( ∞∑

l=1

ψi′l(tk)ϕl(sj) + εi′jk
))

=
1

η

∞∑
l=1

ψil(tk) · ψi′l(tk) +
1

η

∑
J

εijk · εi′jk

≈
∞∑
l=1

ψil(t) · ψi′l(t) +
1

η

∑
J

εijk · εi′jk

Therefore, we can derive the following:

WY k(i,i′) ≈


WXk(i,i) +

1

η

∑
j

σ̂2
ijk if i = i′

WXk(i,i′) otherwise,

which can be shortened to WY k ≈ WXk +Wσk.

For matrix notation, define Ψk ∈ Mn,L, where its ilth element is ψil(tk). Then the above

notation can be rewritten as WY k = ΨkΨ
T
k +Wσk. The score matrix Ψk can be computed

using the eigendecomposition of the matrix WXk ≈ WY k −Wσk = R̂P̂ R̂T where R is the

matrix where each column is an eigenvector of WY k −Wσk, and P is a diagonal matrix

containing the corresponding eigenvalues. Then

Ψ̃k = R̂P̂ 1/2, (4.13)

where each row of Ψ̃k corresponds to ψ̃il(tk) and given all K matrices they form the set

of first-estimate functions ψ̃il(·) at observed time points.

Estimating and Smoothing PCs

The PCs correspond to the relationship between the observed Yijk and the estimated

ψ̃il(tk). This relation will be estimated via regression of the scores over the image, however

as the images are high dimensional, we will vectorise Yijk per voxel j. The PCs will be

the estimated regression coefficients.
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Define Vijk = Yijk − µ̂jk to be the observations with the global mean removed. We then

vectorise Vijk and ψ̃il(tk). For each j ∈ J , let

vec(Vj) =
[
V1j1, V2j1, ..., V1j2, ..., VnjK

]
,

be the vector form of the data observed for all subjects and all time points at point j.

Similarly, form a vector of the estimated score functions

vec(ψ̃l) =
[
ψ̃1l(t1), ψ̃2l(t1), ..., ψ̃1l(t2), ..., ψ̃nl(tK)

]
.

The design matrix Ψ̃ = [1, vec(ψ̃1), ..., vec(ψ̃L)] is formed from each of the vectorised score

function where 1 denotes a vector of ones. This can be used to form the simple linear

regression:

vec(Vj) = βj0 + βj1vec(ψ̃1) + · · ·+ βjLvec(ψ̃L) + ϵj.

Estimating the coefficients is done using least squares, β̂j =
(
Ψ̃T Ψ̃

)−1
Ψ̃Tvec(Yj), where

β̂j =
[
βj0, βj1, . . . , βjL

]
. The above process is a point-by-point estimation of a functional

regression model which would be written as follows:

Vijk = β0(sj) +
L∑
l=1

βl(sj)ψ̃il(tk) + εijk (4.14)

where βl(sj) is the collection of the point-wise regression coefficient βjl. It follows that

for each j, ϕ̃l(sj) = βjl.

The first estimated PCs ϕ̃l(sj) are subsequently smoothed using a sandwich smoothing

method first introduced by Xiao et al., 2012. This approach applies smoothing matrices S1

and S2 to some matrix H to obtain a smooth matrix Ĥ: Ĥ = S1HS2. Each smoothing

matrix Si is a univariate matrix constructed using b-splines and differencing matrices

which will be defined later. The above equation can be rewritten using tensor products

and their properties so that it becomes

Ĥ = (S1 ⊗ S2)H.

This equation makes it simple to extend the smoothing method to any p-dimensional
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matrix, as described in Section 7 of Xiao et al., 2012.

To smooth ϕ̃l(sj) we define 3 smoothing matrices where each matrix Si is constructed as

follows for i = 1, 2, 3:

Si = Bi(B
T
i Bi + γiD

T
i Di)

−1BT
i .

Here, each Bi are the model matrices defined on each of the x, y, z dimensions using

B-spline basis vectors defined over each domain. Di is the differencing matrix, a matrix

representation of the difference operator ∆, which acts on some sequence aj, such that

∆aj = aj − aj−1. Both the construction of Di and Bi, and their use in smoothing, are

nicely explained in Eilers and Marx, 1996. The coefficient γ is added for continuous

control over smoothness of fit.

Given the three smoothing matrices S1, S2 and S3 and a matrix representation of ϕ̃l(sj)

denoted as ϕ̃l , the matrix estimate of the principal component is obtained as follows

ϕ̂l = (S3 ⊗ S2 ⊗ S1)ϕ̃l(sj).

Functional Regression of Images on the PCs

The estimated PCs will be used to create an updated version of the score functions. So

far, we have treated the estimated score function as discrete observations on a continuum.

We would like to update the score functions given the new estimated PCs and smooth

them to have a continuous function over time. This is done by functional regression of Vijk

on ϕ̂l(s) to update the scores, which uses basis functions to create estimated coefficient

functions. We denote the updated scores as ψ̂il(t).

Given Vijk as before, we want to find functions βil(t) such that

Vijk =
L∑
l=1

βil(tk)ϕ̂l(sj) + εijk,

where εijk is noise following N (0, σ̃2
ijk). We use tilde to separate σ̃2 from our estimated

variance σ̂2 from Section 4.3.1. Note that this process is done separately for each subject

as denoted with the index i.
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As we cannot directly estimate βil(t), this functional regression problem will be reworded.

Suppose {ζ1(·), ..., ζK(·)} is a set of pre-specified basis functions. The coefficient functions

can be expanded as:

βil(t) =
K∑

κ=1

bilκζiκ(·).

Then, the regression model from before can be expressed as:

Vijk =
L∑
l=1

ϕl(s)
( K∑

κ=1

bilκζiκ(t)
)
+ εijk, (4.15)

which thus reduces the problem to estimating the coefficients {bilk} where l ∈ {0, ..., L}, κ ∈

{1, ...,K}.

In practice, functions are observed on a discrete grid and hence we can represent the

above as a set of matrices. Let Vi be an S1×S2×S3×T array of the ith subject’s voxels

with the mean µ̂jk removed. Define Φl as an array of the function ϕj(sj) evaluated on the

same grid of points j1, j2, j3 where where j1 ∈ [0, S1]∩Z, j2 ∈ [0, S2]∩Z, j3 ∈ [0, S3]∩Z.

Let Z be the K ×K matrix whose columns correspond to the K basis functions ζik(tτ ),

for τ ∈ T , where tτ denotes the function is evaluated at discrete time points. Finally, let

Bi be the L × K matrix with jth row being the vector of basis coefficients for bilκ (the

first coefficient is omitted as Vijk is centered so we don’t need (L + 1)). Then equation

(4.15) can be expressed as:

Vi =
∑
l

ΦlBiZ
T + Ei, (4.16)

where Ei is the S1 × S2 × S3 × T array of error terms. This model can be posed as a

standard linear model. Let vec(V T
i ) be the vector formed by concatenating the rows of

Ui, and note that

vec
(
(ΦlBiZ

T )T
)
=
(
Φl ⊗ Z

)
vec
(
BT

i

)
,

where ⊗ represents the kronecker product of two matrices. Then the regression problem

takes the form:

vec
(
Vi
)
=
(
Φl ⊗ Z

)
vec
(
BT

i

)
+ vec

(
ET

i

)
, (4.17)

and the coefficients B can be estimated using least squares from vec
(
BT

i

)
.
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Finally, steps described in Sections (4.3.1) and (4.3.1) can be repeated to improve the

estimated PCs and score functions.

4.4 Simulation

The goal of the simulation is to evaluate our proposed estimation method in identifying

the true number of PCs, L, ability to recover score and PC functions and reconstructing

the data. To understand the effect of noise on the estimation performance, we considered

various noise settings. For fitting we use the true model and consider two data scenarios:

one where the simulated data agrees with the fitted model and one where it does not.

4.4.1 Design

The simulation designs vary in complexity. We first simulate two different scenarios

where the data generated adheres to the fitted model (Designs 1 and 2). In addition,

we fit L = 3 components when the underlying model is set to L = 2. We also run two

simulations where the data is generated with a model that deviates from the one that is

fitted. In this setting one design matches complexity from the models described in this

chapter whilst the second simulation increases the complexity. In all designs, we assume

the global mean µ(s, t) = 0 and we set the principal component number L = 2.

Simple Simulation (Design 1)

Define:

ψi1(t) = ai · cos(0.5πt), ψi2(t) = bi · sin(πt)

ϕ1(s) = ϕ1(s1, s2, s3) =
√
2 · cos(2πs1), ϕ2(s) = ϕ2(s1, s2, s3) =

√
2 · sin(2πs1),

where t ∈ [0, 1], s ∈ [0, 1] × [0, 1] × [0, 1], ai ∼ N(0, 2) and bi ∼ N(0, 0.5). The score

functions are evaluated on a grid of 20 equidistant time points denoted tk ∈ [0, 1], specif-

ically tk ∈ { 1
20
, . . . , 1}. The functions ϕl are evaluated on a 30 × 30 × 30 grid, where

sj1, sj2, sj3 ∈ { 1
30
, . . . , 1}, a point on this grid will be denoted sj. The functions form

simulated images on a 30 × 30 × 30 grid over 20 time points using the model equation
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(4.11):

Yi(sj, tk) =
2∑

l=1

ψil(tk)ϕl(sj) + εijk, (4.18)

where i ∈ {1, . . . , n} for n = 100 and εijk follows one of the distributions from the three

noise settings defined below.

Figure 4.1: True and estimated PCs from one replicate of a simulation with design 2 (no noise
and L = 2). The image represents a slice along the z-axis at z = 15 of a 3-dimensional object.
The error is the difference between the True and Estimated PCs along the slice.

Complex Simulation (Design 2)

Define:

ψi1(t) = ai · cos(bi · 0.5πt), ψi2(t) = ci · sin(di · πt)

ϕ1(s) = ϕ1(s1, s2, s3) =
√
2
3
· cos(πs1) · cos(πs2) · cos(πs3),

ϕ2(s) = ϕ2(s1, s2, s3) =
√
2
3
· sin(πs1) · sin(πs2) · sin(πs3),

ai ∼ N(0, 2), bi ∼ N(0.85, 0.25), ci ∼ N(0, 0.5), di ∼ N(1, 0.5)

where t ∈ [0, 1], s ∈ [0, 1]× [0, 1]× [0, 1]. The grid of points for tk and sj is defined as in

Design 1. Images are generated as in eqn. (4.18) and the sample size is set to n = 100.

The Design 1 and 2 simulation performance will be evaluated with each of the following
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noise settings:

1. εijk = 0,

2. εijk ∼ N(0, 0.1V ar(Yijk)),

3. εijk ∼ N(0, 0.2V ar(Yijk)).

Figure 4.2: True and estimated score functions from one replicate (Design 2). Each line corre-
sponds to the ith simulated image generated.

Interactions Between Space And Time (Designs 3 and 4)

In the following designs, we let the PCs depend on time as well as space. In contrast to

previous designs where scores and PCs were on completely separate domains, we would

like to understand the effect of more space-time interactions on the model.

For Designs 3 and 4, the scores and principal components will change their domain to

include or exclude time, which will cause the data to deviate from the underlying model

assumptions. In both designs, the principal components are defined to include time
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dependence as follows:

ϕ1(s) = ϕ1(s1, s2, s3) =
√
2
3
· cos(πs1) · cos(πs2) · cos(πs3),

ϕ2(s, t) = ϕ2(s1, s2, s3, t) =


√
2
3 · sin(πs1) · sin(πs2) · sin(πs3) if s1 > 0.5, t > 0.5

0 otherwise,

where s ∈ [0, 1]× [0, 1]× [0, 1] and t ∈ [0, 1]. These are displayed in Fig. (4.3). For Design

3, the first score will follow design 2 whilst the second one will be a scalar:

ψi1(t) = ai · cos(bi · 0.5πt), ψi2 = ci

ai ∼ N(0, 2), bi ∼ N(0.85, 0.25), ci ∼ N(0, 0.65),

where t is defined as above. For Design 4 both scores will be functions over time:

ψi1(t) = ai · cos(bi · 0.5πt), ψi2(t) = ci · sin(di · πt)

ai ∼ N(0, 2), bi ∼ N(0.85, 0.25), ci ∼ N(0, 0.5), di ∼ N(1, 0.5)

where t ∈ [0, 1]. The grid of points tk and sj is defined as before. For ϕ2(s, t), this means

it is equal to zero for sj3 < 15 and tk < 10.

Data for Design 3 and 4 are generated using:

D3 : Yi(sj, tk) = ψi1(tk)ϕ1(sj) + ψi2 · ϕ2(sj, tk) + εijk,

D4 : Yi(sj, tk) = ψi1(tk)ϕ1(sj) + ψi2(tk) · ϕ2(sj, tk) + εijk.

In both cases we set n = 100 and the noise is set to εijk ∼ N(0, 0.1V ar(Yijk)).

Models Fitted

For all designs, we fit the proposed model with L = 2. For D1 and D2 specifically,

we consider fitting an additional component. The score functions are estimated using

function-on-function regression described in Section 4.3.1. To avoid over-fitting whilst

still preserving the shape of the underlying functions, the scores are represented using 4

b-spline vectors of order 3.
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Figure 4.3: Principal Components for Designs 3 and 4 along sj3 = 15 slice.

Evaluation

Estimation accuracy for the model components is evaluated using integrated square error

(ISE) for the PCS and mean integrated squared error (MISE) for the scores. They are

defined as follows:

ISE(ϕ̂l(s)) =

∫
(ϕl(s)− ϕ̂l(s))

2 ds

MISE(ψ̂l(t)) =
1

n

n∑
i=1

[ ∫
(ψil(t)− ψ̂il(t))

2 dt
]
.

This will be done per replicate. Over the course of the full simulation, the mean and

standard deviation of the above errors will be used to summarize the estimation perfor-

mance across all the replicates. The overall reconstruction is evaluated using variance

explained (VE) from equation (4.12). In simulations where noise is present, we will also

compute VE where the estimated image Ŷi(sj, tk) (reconstructed from parameters that

were estimated with noisy image as input) is compared to Yi(sj, tk) without the addition

of noise. This will be referred as ’VE Clean’ (VEC).
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4.4.2 Simulation Results

Summary of Results for Design 1 and 2

The reconstruction error and VE for each simulation design are summarised in Table

(4.1). Table (4.2) shows the mean and the standard deviation of the ISE and MISE of

the estimated score functions and PCs across the replicates.

In Design 1, when no noise is present, the mean VE from a two PC reconstruction is

0.96(0.007). The total estimated VE decreases with increasing noise. VEC is 0.96 for

both noise settings of 10% and 20%. Looking at VE by individual PCs, estimated PC1

explains less VE (0.642) than by design, whilst PC2 explains more (0.318). This VE ratio

between the PCs did not change significantly with noise. Concerning the errors (Table

4.2), the PCs ϕ̂l(s) and score functions ψ̂il(t) had a consistent error over the course of

the simulations, and the MISE was not affected by different noise settings.

Variance Explained
Noise RE True Estimated

ϕ1(·) ϕ2(·) Total ϕ̂1(·) ϕ̂2(·) Total Clean

mean sd. mean sd. mean sd. mean sd.

D 1

0 % 0.878 0.790 0.210 1.000 0.642 0.033 0.318 0.029 0.960 0.007 na na
10 % 1.079 0.719 0.191 0.910 0.619 0.034 0.303 0.022 0.922 0.009 0.960 0.005
20 % 1.687 0.658 0.175 0.833 0.580 0.033 0.280 0.028 0.860 0.014 0.958 0.006

D 2

0 % 0.862 0.800 0.200 1.000 0.656 0.060 0.305 0.034 0.961 0.054 na na
10 % 2.387 0.727 0.182 0.910 0.619 0.030 0.281 0.028 0.905 0.086 0.927 0.007
20 % 4.362 0.667 0.167 0.834 0.589 0.033 0.270 0.029 0.859 0.125 0.925 0.010

Table 4.1: Average reconstruction reconstruction error (RE) and variance explained over 100
replicates. True VE is the proportion of variance the PC explains given a level of noise in the
data. VEC is comparing the reconstructed image to a true image with no noise. D1 and D2
refer to Design 1 and 2 respectively.

In Design 2 the average total VE is 0.96 with no noise in the data. Total VE decreases with

increasing noise, and the estimated sd. increases from 0.5 to 0.13. VEC is 0.93 for both

noise levels with sd estimated to 0.01. Similar to D1, estimated principal components

don’t contribute the same level of VE as per design. PC1 explains 0.656(0.060) and PC2

explains 0.305(0.034), these values decrease with noise but the ratio remains similar as

in D1. The average MISE over the replicates shown in Table (4.2) shows small errors for

simulation with no noise, but in all function error metrics, the error increases significantly
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with the presence of noise in the data.

Error Measurements over All Replicates

ψ1(t) ψ2(t) ϕ1(s) ϕ2(s)

D 1 mean sd. mean sd. mean sd. mean sd.
0 % 0.166 0.042 0.149 0.050 0.087 0.051 0.174 0.093
10 % 0.161 0.040 0.148 0.048 0.078 0.047 0.158 0.062
20 % 0.164 0.035 0.155 0.056 0.082 0.057 0.165 0.108

D 2
0 % 0.138 0.055 0.109 0.030 0.036 0.050 0.047 0.052
10 % 0.339 0.028 0.236 0.025 0.313 0.012 0.320 0.019
20 % 0.340 0.036 0.238 0.025 0.314 0.013 0.322 0.021

Table 4.2: The mean and standard deviation of MISE and ISE for the score functions and PCs,
respectively, over 100 replicates.

Figures (4.1) and (4.2) show the D2 estimated functions next to the true ones. Whilst

the estimated shape for the PCs appears to be well estimated, the score functions appear

to have different local minima and maxima over the domain. Furthermore, ψ̂2(t) at

t = 0 could not match the range of the true. Overall, the shapes were preserved in the

estimation, however exact function qualities have been changed.

Figure 4.4: An example of an estimated 3rd PC and score function from one replicate (design
2 with noise 20%).

Maximum of Principal Components

We first wanted to understand the estimation methods per se, next we would like to

evaluate the proposed methods ability to chose an appropriate number of components to

estimate. To do this, in simulation designs 1 and 2, we attempted to estimate 3 PCs when

then underlying number is 2. When no noise is present, the maximum level of possible
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estimated PCs is limited to 2. This is due to first estimate of score functions estimating

a negative eigenvalue in the matrix R from eq. (4.13) when attempting to evaluate the

(L + 1)th eigenfunction. Given this, only L score functions could be evaluated. In the

presence of noise the (L + 1)th eigenfunction in eq. (4.13) could be evaluated and hence

3rd score and PC functions were obtained. An example of such functions can be seen in

Fig. (4.4). Indeed, the third set of functions resembles noise. The scores are centered

around zero in the range [-0.01, 0.01] whilst the PC is a three-dimensional matrix of

noise. When added to VE these components provide no visible improvement or reduction

in estimated reconstruction of the data.

Simulation Results for Design 3 and 4

Table (4.3) shows the reconstruction error from the estimated model components in De-

signs where the data is generated using components that don’t satisfy our model assump-

tions. For D3, the total VE is relatively high at 0.93(0.05) and VEC 0.95(0.05). For D4,

with a more complex design, the VE is 0.74(0.02) and VEC is 0.90(0.03).

Variance Explained
Noise RE True Estimated

ϕ1(·) ϕ2(·) Total ϕ̂1(·) ϕ̂2(·) Total Clean

mean sd. mean sd. mean sd. mean sd.

D3: 10% 2.86 0.65 0.25 0.91 0.59 0.04 0.35 0.02 0.93 0.05 0.95 0.05
D4: 10% 1.34 0.79 0.21 0.91 0.63 0.04 0.11 0.02 0.74 0.02 0.90 0.03

Table 4.3: Average reconstruction error (RE) and variance explained over 100 replicates. True
VE is the proportion of variance the PC explains given a level of noise in the data. VEC is
comparing the reconstructed image to a true image with no noise. D3 and D4 refer to Design
3 and 4 respectively.

Table 4.4 depicts the MISE of the score and PC functions. Beginning with the scores,

to compare ϕ2 to ϕ̂2 we treat ϕ2 as a constant function over time. Overall, the error

in both designs is comparable with ψ1(t) in D4 having the largest average error over all

replicates. In all cases the sd for these metrics is low. Comparing these results with D2

(as the score function is the same), we find the average error and sd to be similar.

Looking at the PCs, the error for ϕ1(s) in both D3 and D4 is comparable to that in D2.

To estimate the error for ϕ2(s, ·) we consider three values, two errors are estimated at
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Error Measurements over All Replicates

ψ1(t) ψ2(t) ϕ1(s) ϕ2(s, 1) ϕ2(s, 11) ϕ2(s, t)

mean sd. mean sd. mean sd. mean sd. mean sd. mean sd.
D3: 10% 0.32 0.04 0.26 0.05 0.34 0.09 0.49 0.14 0.42 0.16 0.46 0.15
D4: 10% 0.39 0.03 0.24 0.04 0.32 0.047 0.46 0.07 0.38 0.05 0.43 0.06

Table 4.4: The mean and standard deviation of error metrics for the score functions and PCs
over 100 replicates. ISE for ϕ1(s), ϕ2(s, 1) and ϕ2(s, 11) integrate over s and ISE for ϕ2(s, t)
integrate over s and t.

two different stages of the function, the the third integrates over time completely. The

estimation error for PC2 is higher than for PC1 which is consistent with the fact that

the model had to interpolate between the two states of PC2 over time. This can be seen

in Figure (4.3). Overall the error for PC2 is high in both designs and much higher when

compared to the error in D2.

Simulation Conclusion

Looking at simulations where the fitted model matches the underlying one, we find that

overall, the estimation method can reconstruct the true functions well and consequently,

reconstruct the original image accurately. Estimated total VE matched the true VE when

accounting for noise and VEC remained above 0.90 for all but one simulation (D2 with

high noise). In short, VEC for D1 was more consistent regardless of noise, unlike D2

where the noise lowered CVE to 0.92. We can infer that the complexity of the underlying

true functions makes the model more susceptible to noise.

We found that the method had the ability to estimate the correct number of components

in setting without noise. When noise was present, the extra components were estimated

of noise itself. For the above reasons, it was easy to determine the underlying number of

components regardless of the noise setting.

In simulations when the underlying model deviated from the fitted one, we find that the

overall accuracy of the reconstruction decreases, and functions that specifically deviate

from model assumptions have worse estimations. The simpler deviation (D3) had higher

VE values than D4. This could be due to the fact that the temporal dependency in D3

is quite simple (the second component and score could be rewritten using an indicator

function) whilst this dependency is less straightforward in D4 with both PC2 and the
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score function having temporal variation.

In all designs, we find that the overall shape of the score functions was preserved as is

shown on Fig. (4.2). The choice of basis vectors in the functional regression has a high

effect of estimation accuracy. The choice of b-spline vectors has a limitation which can

be seen in Figure (4.2) where ψ̂2(t) there is more variation at time 0. Other choices such

as Fourier functions were considered, but they were not able to reproduce smooth curves

over t and they would not reproduce the starting point for ψ̂2(t) accurately. Finally,

basis vectors limit the ability to fully replicate the shape of the function, and hence we

see slight deviations in minima/maxima of the estimated functions compared to the true

ones. Overall, VE was good in all designs except for D4, we can clearly identify the right

number of components and the model functions were estimated well.

4.5 Data Analysis

4.5.1 Background

The data consists of brain fMRI images of 15 subjects, taken whilst they performed 81

financial decision-making tasks. Subjects were presented with a investment return stream

and then asked to perform one of 4 task categories that were related to risk perception

scoring and expected return prediction. The images were acquired every 2.5 s during the

investigation, providing each subject with a time series of 1360 three-dimensional images

representing their brain activity, an example of one subjects image can be seen in Figure

(4.5). The images represent the Blood Oxygenation Level Dependent (BOLD) signals.

Each patient also received a clinically-derived risk score at the end.

Our aim is to recover active brain areas found in previous literature to be associated with

financial decision making and to use the score functions in a logistic regression model to

quantify associations between these ROIs and subject risk prevalence. In addition, we

will compare our approach to the ones described in Li et al., 2019 where they approached

this task by fitting a standard FPCA model to one image without directly modelling

the time component. Each subjects’ fMRI series was divided by task and for each task,

the first 3 images were taken and concatenated into one. That is, if Yiqk ∈ MJ,K is
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the ith subject’s image for task q and time tk, their model is estimated on the array:

Ỹiq = (Yiq2−Yiq3)/2−Yiq1. This was done under the assumption that the most important

activity occurs at the begging of the task and taking the difference of the first three

images should account for this.

Figure 4.5: Raw data slices for one patient. This represents the data Y1,(s1,s2,s3),t where t = 1,
s1, s2 ∈ [0, 91] and s3 ∈ {25, 30, 40, 45, 50, 55, 60, 65, 70, 80)}.

Considering ROIs, previous studies found correlations between risk attitude and risk-

related brain activity in the lateral orbitofrontal cortex (lOFC) for risk-averse individuals

and in the medial orbitofrontal cortex (mOFC) for risk-seeking individuals (Tobler et

al., 2007). Another study (Mohr et al., 2010b) found that inter-individual differences

in decision-related brain activity in the lOFC and correlated it with inter-individual

differences in risk attitudes independent of the current level of risk. The authors showed

that the value signal in the ventrolateral prefrontal cortex (VLPFC) increased with risk

in risk-seeking individuals and decreased with risk in risk-averse individuals, thereby

reflecting the risk attitude. Additionally, Chen et al., 2015 have found the dorsolateral

prefrontal cortex (DLPFC) and the anterior insula (aINS) to be correlated with decision

making and risk.

4.5.2 Data Description and Pre-processing

The data is downloaded in a .mat format from the Humboldt University of Berlin website

in December 2021. It is transformed into a 4D array of size 91× 109× 91× 1360. Details

of preprocessing can be found in section The data was initially pre-processed with FSL

4.0, which included motion correction, slice-time correction and spatial smoothing using

a 8mm Gaussian kernel. Additionally, images were normalized into a standard space
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(Mohr et al., 2010b). Time is divided by using the point at which each task has started

(provided in milliseconds). Details of these procedures and the data itself are in section

(3.3). We work under the assumption that the first image was taken at time equal to zero.

Additionally, we only consider 15 images per task corresponding to 37.5 seconds, slightly

longer than the 30 seconds it takes to complete (Mohr et al., 2010b and van Bömmel

et al., 2013).

Data is first loaded into MATLAB as a complete series of three dimensional images for

each subject. This is done to subdivide the series into sub-series connected to each task.

Given that each task takes 30 seconds to complete, this corresponds to under 15 images.

Assuming the image series starts at time 0 in seconds, we used the list of all task starting

times (in milliseconds) to find the image corresponding to the start time, from there we

chose a series of 15 images including the starting image. This creates 81 sub-series for

each subject that correspond to each task.

The resulting sub-series are loaded into R. There are a few regions of the brain that have

muted or blank voxel values which can be attributed to them being potentially outside

the field of view, which is typically defined prior to the fMRI scan and should include all

parts of the brain relevant for the task. As fMRIs tend to have a quick acquisition time,

some areas outside of the field of view can be missed in the scans. We find missing voxels

towards the bottom along the z-axis of the images. As the missingness is different across

subject, the bottom 25 slices are removed. The resulting image is loaded into R as an

array of dimensions n = 60, S1 = 83, S2 = 100, S3 = 67, T = 15.

Preliminary analysis showed that all tasks had the same order of PCs. However, during

each task type the subjects would exhibit similar behaviour and hence including multiple

tasks of the same type in the model would not provide more information. For this reason,

we chose 4 different task types to be included in the data to be analysed. The task indices

were chosen to be 1, 3, 23 and 26. The image arrays corresponding to these tasks were

concatenated to create the full data array with n = 15× 4 subjects that can be denoted

as Yiqjk where i = 15 is the number of study participants, q is the index for the task, j is

the index over three spatial dimensions and k corresponds to time.
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ϕ̂1(s) ϕ̂2(s) ϕ̂3(s) ϕ̂4(s) ϕ̂5(s) ϕ̂6(s) ϕ̂7(s)
VE 0.130 0.116 0.088 0.083 0.072 0.072 0.071

ϕ̂8(s) ϕ̂9(s) ϕ̂10(s) ϕ̂11(s) ϕ̂12(s) ϕ̂13(s) ϕ̂14(s)
VE 0.051 0.044 0.041 0.037 0.037 0.031 0.028

Table 4.5: The Variance Explained of every estimated PC.

4.5.3 Implementation

We fit the model using the algorithm described in Section 4.3.1 to estimate 14 PCs and

their corresponding score functions. Fourteen is the maximum number of components

that could be estimated given the dataset, any following component estimated would

appear to resemble noise. First the mean µ̂j,k is estimated by taking the average pixels

across subjects. To estimate σ̂2
iqjk cubes of size 3× 3× 3 are chosen. When the PCs are

smoothed using 3D penalized smoothing, we adopt the cubic b-spline basis with 30, 35,

30 knots along the x, y, z axes, respectively. This approach is similar to that used in Li

et al., 2019. The penalty matrices for all directions are of order 2. Tuning parameters in

the penalized smoothing are selected by minimizing the GCV values computed as done

in Li et al., 2019. The scores are updated using functional regression with 10 b-spline

basis vectors. The number of splines used to reconstruct the score functions was chosen

to be as small as possible whilst still allowing for the representation of small variations

without over-smoothing.

We are interested in two sets of PCs and score functions: one set is to see how well the

model fits to the data and another set to identify the ROIs and their activity over time

in subjects. One set, which will be denoted as ϕ̂(sj) contains the complete estimated

PCs with the corresponding score functions and is evaluated in terms of reconstructing

the image. In the other set, the PCs are trimmed by the 0.1% and 99.9% quantile levels

for each component l such that for any voxel j in the quantile φ̂(sj) = 1, and φ̂(sj) = 0

otherwise.

Image Reconstruction

The complete estimated PCs and the score functions are used to reconstruct the original

data. The overall reconstruction is evaluated using VE estimated using equation (4.12).

Overall, using 14 PCs leads to VE of 90.1%.
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Figure 4.6: ROIs recovered from 5 different principal components: (a) ϕ̂3(s) with values in the
mOFC, (b) ϕ̂4(s) with values in the aINS, (c) ϕ̂13(s) with values in the parietal cortex, (d) ϕ̂5(s)
with values in the mOFC, VLPFC and DLPFC, (e) ϕ̂9(s) with values in the mOFC and the
parietal cortex.

Risk Score

For each task, the response was either a binary decision where the subject rates the stream

(risky or safe) or it was a numerical rating of either the expected return or the perceived

risk rating of the investment itself. We convert the responses into a binary result where 0

means the subject rated the investment return stream as low risk and 1 means they rated

it high risk. This binary is determined directly for tasks 3 and 23 as they have binary

outcomes. For tasks 1 and 26 we have divided the responses by the median. The risk

prevalence is each task is summarised in Table (4.6). Denote the resulting vector as R,

comprised of individual risk responses Riq. The scores estimated from the PCs containing

Task 1 Task 3 Task 23 Task 26
Risk prevalence 0.4 0.8 0.93 0.6

Table 4.6: Percentage of subject responses which classified the investment as risky.

the ROIs are shown in Fig.(4.7). Define ϑil = V ar(ψ̂il(t)) for l ∈ {1, . . . , 14} to be the

total variation over time for a score function. We assume that the tasks have different

risk prevalence by adding a coefficient stratifying based on tasks but we assume the ROIs

have the same effect size across task types. We set the general linear model (GLM) with
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the logit link function:

Pr(Ri = 1) = logit(β0 +
∑
l∈L

βlϑil). (4.19)

At first L is set to 14 and the model is estimated to determine significant covariates.

These are found to be ϑil for l ∈ {3, 4, 5, 9, 13} and they are used to estimate the final

logistic regression model as equation (4.19) where l ∈ {3, 4, 5, 9, 13} whose estimates are

summarised in Table (4.7). Overall, the most significant score functions were ϑi4 and ϑi5

which correspond to ϕ̂4(s) and ϕ̂9(s) which correspond the activity of aINS, mOFC and

the parietal cortex.

β1 β2 β3 β4 β5
l 3 4 5 9 13

Coef. -1.05 5.61 -0.43 -7.29 0.64
Pr 0.66 0.029 0.81 0.05 0.63

Table 4.7: GLM coefficients indexed by their order in the regression, the ℓ that indicates which
PC correspond to each coefficient and the p-values.

Figure 4.7: Score functions corresponding to the PCS from Fig 4.6. Blue represents weakly
averse and orange represents strongly risk averse subjects.

.

Regions of Interest

The locations where ϕ̂(s) have nonzero values are marked as red area in Fig. (4.6) which

presents the estimated PCs which have highlighted ROIs found previously in the literature

(superimposed over a mean subject image). Given the defined brain area we are able to
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analyse, we are able to recover all 5 regions associated with risk in the literature. These

are: mOFC, aINS, VLPFC, DLPFC and the parietal cortex.

β1 β2 β3 β4 β5
l 3 4 5 10 12

Coef. -0.049 -0.02 -0.07 -0.09 0.10
Pr 0.12 0.48 0.21 0.06 0.03

Table 4.8: GLM coefficients obtained for Li et al., 2019 by their order in the regression, the ℓ
that indicates which PC correspond to each coefficient and the p-values.

Method by Li et al., 2019

To compare our model with previous methods, the same dataset was analysed using the

approach introduced by Li et al., 2019. Their method did not directly consider the time

component but instead took the difference of the first 3 images to account for brain

activity at the beginning of a task. The code used for this comparison was sourced from

the github link available in their paper. The estimated FPCA model for this dataset

was able to recover at most 66.6 % VE with 30 PCs. The ROIs were extracted from

the estimated PCs by taking the upper and lower quantiles. These new trimmed PCs

representing the binary ROIs are used to estimate new scores υil which can be used

in a logistic regression as in equation (4.19), to associate regions with risk response.

Covariates that in univariate analysis were found to be significant were selected to be

υil for l ∈ {3, 4, 5, 10, 12} and their corresponding identified regions are shown in Figure

(4.8). The selected scores corresponding to the trimmed PCs were used in a GLM similar

to eq. (4.19) where the outcome variable is a binary risk score and another variable

accounting for task index was included. the results of this regression are shown in Table

(4.8) which have found PCs 10 and 12 to be most significant. These PCs correspond

mOFC, VLPFC and the parietal cortex. Two out of the three identified regions were

found using our approach, namely mOFC and the parietal cortex. Both methods were

able to recover the same key regions in this dataset, and were able to identify two of

the same significant regions. The difference being that our approach found aINS to be

significant, whilst Li et al., 2019 found VLPFC. Notably, the PCs and the ROIs as a

result of the trimmed PCs are different, as shown in Figures (4.8) and (4.6).
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Figure 4.8: ROIs recovered from the application of Li et al., 2019 (a) ϕ̂3(s) with values in the
parietal cortex and VLPFC, (b) ϕ̂4(s) with values in the mOFC (c) ϕ̂5(s) with values in the
VLPFC and parietal cortex, (d) ϕ̂10(s) with values in the mOFC and VLPFC, (e) ϕ̂12(s) with
values in the parietal cortex.

4.5.4 Data Analysis Conclusion

Overall, we were able to reconstruct the data with VE 90.1% given L = 14 estimated

components. This is one less than the number of individuals which suggests that inter-

personal variability is higher than that across tasks, as adding different tasks from the

same subject did not increase the available degrees of freedom.

Logistic regression was able to identify ROIs and associate them with risk propensity of

the subjects. We were able to recover all available regions in the data. These were aINS,

mOFC, VLPFC, DLPFC and the parietal cortex. Finally we created a model for the

association of said region to risk, and found aINS, mOFC and the parietal cortex to be

most significant is determining the risk preferences of subjects.

Comparison to Li et al., 2019 showed that our method outperformed theirs in terms of

VE, with their being able to explain 66.6% of data variation with more components, but

both were able to recover the same ROIs. Both methods found mOFC and the parietal

cortex to be significant regions contributing to a subject’s risk response.

4.6 Conclusion and Discussion

We introduced a spatio-temporal FPCA model applicable for any dense temporal brain

imaging stored in arrays. The model represents the data as a linear product of two func-

tions, one defined over space and the other defined over time. This approach preserved

the spatial structure and the relationships between areas within the array and can ex-

tract important features using a non-parametric dimensionality reduction. Each of the
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extracted elements can then be modelled for activity over time which has a particular

use case during fMRI studies.

This model is estimated with a fast method that circumvents the computational burden

of estimating a covariance matrix. We have designed a simulation study to evaluate the

estimation method in identifying the true number of components, ability to recover true

underlying functions and reconstructing the data.

In cases when the underlying model matched the fitted one, our method was able to

correctly estimate the score functions and PCs whilst also identifying the appropriate

number of components. The estimation accuracy would be lowered when more noise

was present and when the underlying functions were more complex themselves, however,

it remained above 90% for all but one simulation. In simulations when the underlying

model deviated from the fitted one, we find that the overall accuracy of the reconstruction

decreases, and functions that specifically deviate from model assumptions have worse

estimations. Throughout the simulation, we found that the choice of type and number

of basis vectors for the estimation of the score functions plays an important role in the

accuracy of the reconstructions.

For the data analysis, our model was able to reconstruct the data with VE 90.1% with 14

estimated components. This was consistent with our findings from the simulation study

and outperformed Li et al., 2019 on the same data in terms of VE. Considering results

presented in previous papers that do not model time dependency, we got a similar result

to Chen et al., 2014 got 94% with 20 PCs and Li et al., 2019 got 80% with 9 PCs. We

were able to identify all ROIs (aINS, mOFC, VLPFC, DLPFC and the parietal cortex)

and use the in a logistic regression to determine associations between risk-response and

brain activity in POIs. And with logistic regression we were able to find the strongest

associations to be in the aINS, mOFC and parietal cortex.

Comparing our method to the one introduced by Li et al., 2019 shows that we are able

to achieve a higher VE on a smaller dataset. Our inclusion criterion was different as

we sought to analyse the data that provided additional information and hence, we have

only considered 4 tasks. In their paper, the authors included all 81 tasks, which could

potentially be the reason for the discrepancy between the results in their paper and the
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ones presented here. Their approach introduced more complexity via taking the difference

of the first three images which could explain how they benefited from a larger sample

size. Our approach doesn’t require input regarding the temporal element and hence

the implementation is more straightforward but also resulted in different results, as we

have seen repeated behaviour patterns within subjects when doing the same task. Both

methods were able to recover the same ROIs however the PCs estimated were different.

Our analysis found that interpersonal variability plays a strong role in analysing behaviour

across tasks as each subject followed a specific pattern of behavior that limited the number

of tasks that were used for the analysis. This is different from methods that concatenate

multiple time points into one image, where this effect is lost. Our findings withing

the fMRI data matched the findings of previous analysis approaches in terms of region

identification. We approached the analysis differently on an individual task basis rather

than the whole study approach, as in our preliminary data analysis subject behaviour

was repeatable over time.

Our model and estimation method shows a new approach in analysing temporal data

using a non-parametric approach, suitable for use on fMRI data for association analysis.

We have not only shown that it is computationally efficient, but it outperforms existing

methods on small data and uncovers different trends that previous analysis. Studying the

behaviour of the estimated functions would help better understand the significance of each

of the estimated components. This model still lacks some of the usual elements such as

significant and confidence intervals which would help in the task of identifying ROIs and

understanding which elements in the estimated functions show important information.

The estimation method could be further improved by incorporating different regression

models. In particular, equation (4.14) assumed for each voxel in the raw estimate of the

PC to be independent prior to being smoothed, one could relax this assumption with a

different regression model.

In the chapter we have compared our method to ones available for image analysis, however

models that decompose functions over time and space are available in lower dimensions.

In the next chapter, we will investigate the performance of our model in lower dimensions

and compare them to existing methods to better understand the benefits and limitations

of our approach.



Chapter 5

Studying STFPCA Model

Performance in Low Dimensions

This chapter will describe three Functional PCA models and compare them in a simula-

tion study. We will look at their performance in estimation in various settings, computa-

tion time and other factors such as the number of basis functions used in the estimation

procedure as well as sampling density.

5.1 Introduction

In Functional Principal Component Analysis, a random function X(s, t) is decomposed

into a sum of random variables multiplied with a set of optimal basis functions that

each maximise the variation of X(s, t). This decomposition is achieved by applying the

Karhunen-Loève Theorem and takes the form:

X(s, t) = µ(s, t) +
∞∑
j=1

ψjvj(s, t), (5.1)

where vj(t) are the optimal basis functions, equal to the normalized eigenfunctions of

the sample covariance operator, and ψj are the principal component scores equal to

⟨X(t), vj(t)⟩.

FPCA can take different forms, however we are interested in decompositions that sepa-

rates the domains s and t. This category of models can be broadly represented using the

74
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equation:

X(s, t) = µ(s, t) +
∞∑
j=1

ψj(t)uj(s), (5.2)

where ψj(t) would now be the score functions varying over time and uj(s) would be the

principal components whose definition can vary.

Several models have been developed to approach this problem in the context of FDA.

Greven et al., 2010 proposed a model where the variation of functional data is decom-

posed into a baseline subject-specific variability, longitudinal subject-specific variability,

subject-visit-specific variability. Their proposed model can be viewed as the functional

extension of a longitudinal mixed effects model where random effects are replaced by

random processes. The time component is incorporated into the model through a linear

structure which relies on additive assumptions. In equation (5.2) it would take the form

ψj(t) = ζ0jr+tζ1jr where ζ0jr, ζ1jr are random terms. This linear structure can be limiting

when working on imaging and hence we do not consider it in this simulation.

Chen and Müller, 2012 propose a model without the additive assumptions of Greven et

al., 2010. The score functions take the form ψj(t) =
∑

k≥1 ζjkκjk(t) with κjk(t) orthogonal

basis functions and a random coefficient ζjk. This is achieved by a two-step Karhunen-

Loève expansion. However, their model uses time varying basis functions uj(s|t) and

proved to be an order of magnitude more computationally expensive and less accurate

compared to the model proposed by Park and Staicu, 2015, who propose a model we will

discuss in this chapter.

Park and Staicu, 2015 also applied a two step KL expansion for the scores without

assuming a parametric structure on the covariance matrices. Hence the score function

takes the same form as before, namely ψj(t) =
∑

k≥1 ζjkκjk(t). Their model assumes a

non-time dependant PC uj(s). In contrast to the two previous models and ours, they

assume the residual process to be a sum of a random square integrable function at a

discrete time point t, ε1t(s) with a covariance Covt(ε1t(s), ε1t(s
′)) and white noise denoted

ε2t(s).

Our proposed model imposes no parametric assumptions on the score functions and there-

fore is comparable to the latter two models. In contrast to Park and Staicu, 2015 who
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derive their PCs from the marginal covariance of X(s, t), we derive the PCs from co-

variance of the marginal process. As the model proposed Park and Staicu, 2015 have

outperformed Chen et al., 2015 in terms of accuracy and computation times, our simula-

tion will be comparing our model to FPCA and Park and Staicu, 2015.

We will further define the marginal process model from Chapter 4 and introduce the

model proposed by Park and Staicu, 2015. We will prove the theoretical properties of

the estimates and compare the models in a simulation study.

5.2 Model Description

The following section summarises the methods introduced in Chapter 4 and then describes

the model proposed by Park and Staicu, 2015.

5.2.1 Marginal Process Model

Consider a random function X(s, t) ∈ L2 defined on the bounded intervals S and T , with

s ∈ S, t ∈ T . We assume X(s, t) to be square integrable and hence it has a unique mean

functions µ(s, t) = E[X(s, t)]. We can decompose X into a sum of the mean and the

variation U(s, t):

X(s, t) = µ(s, t) + U(s, t), (5.3)

with U(s, t) ∈ L2 a random function with E[U(s, t)] = 0

To model U(s, t) Consider the marginal function U(s) =
∫
U(s, t)g(t)dt where g(t) is the

sampling density function over t, g(t) is continuous and supt∈T (g(t)) <∞. The function

U(s) has a covariance νt(s, s
′) = E

[
U(s)U(s′)

]
which is the kernel to the covariance oper-

ator ςt(U)(s) defined in eq. (4.2). The covariance function ν, the kernel of the covariance

operator can be expressed as the eigenfunctions ϕj(s) of the covariance operator (eq.

(4.3)) and so

ν(s, s′) =
∞∑
j=1

λjϕj(s)ϕj(s
′). (5.4)

The eigenfunctions form a time-invariant orthonormal basis in L2(S) and are different

from those in Park and Staicu, 2015 as they are optimized minimize the function S(θ(·))
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with vector θ(·) = ((θ1(·), . . . , θK(·))T containing K arbitrary basis functions θ(·):

Sp(θ(·)) =
∫

E
∣∣∣∣Ui(·, t)−

K∑
k=1

⟨Ui(·, t), θk(·)⟩θk(·)
∣∣∣∣2g2(t)dt.

By applying Mercer’s theorem and the KL theorem, the process U(s) can be expressed

as an infinite linear combination of the deterministic eigenfunctions ϕl(s) with random

uncorrelated weights ωl = ⟨U, ϕl⟩:

U(s) =
∞∑
l=1

ωlϕl(s). (5.5)

We propose this new ϕl(s) to be the basis function of new decomposition of U(s, t)

together with the random score functions ψl(t) = ⟨U(s, t), ϕl(s)⟩. They also have a

covariance function denoted as Gl(t, t
′) = Cov(ψl(t), ψl(t

′)) which is a smooth function

defined on T × T . Using Mercer’s theorem, it can be expressed as in eq. (4.5) with

where κk1 ≥ κk2 ≥ · · · ≥ 0 and {ξlm(t)} forming an orthonormal basis in L2. Using the

Karhunen-Loève theorem, the ψl(t) can be expressed using this basis {ξlm(t)} as in eq.

(4.6). Finally, we can represent U(s, t) as:

U(s, t) =
∞∑
l=1

ψl(t)ϕl(s) =
∞∑
l=1

∞∑
m=1

ηlmξlm(t)ϕl(s) (5.6)

Using the above decomposition, we define the population model:

X(s, t) = µ(s, t) + U(s, t); U(s, t) =
∞∑
l=1

ψl(t)ϕl(s) (5.7)

where ψl(t) =
∑∞

m=1 ηlmξlm(t) are the score functions and ϕl(s) are the time-invariant

PCs. If one chooses L and M PCs and basis functions of the scores to sufficiently

reconstruct U(s, t) the result is the truncated model:

U(s, t) =
L∑
l=1

ψl(t)ϕl(s) =
L∑
l=1

M∑
m=1

ηlmξlm(t)ϕl(s). (5.8)
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5.2.2 Marginal Covariance Model

We now introduce the model from Park and Staicu, 2015. Their paper specifically deals

with longitudinal observations however we will generalise their approach to a dense t.

Define X(s, t) ∈ L2 as before and consider its variation U(s, t) ∈ L2:

X(s, t) = µ(s, t) + U(s, t) + ε1(s, t) + ε2(s, t), (5.9)

with ε1(s, t), denoting a random function of variation not covered in U(s, t) with a co-

variance function Γt(s, s
′) = Cov(ε1(s, t), ϵ1i(s

′, t). White noise is denoted with ε2(s, t)

and Cov(ε2(s, t), ϵ2(s
′, t)) = σ2 for s = s′ and 0 otherwise. The covariance function of

U(s, t) is c((s, t), (s′, t′)) = E[U(s, t)U(s′, t′)] and the marginal covariance

ς(s, s′) =

∫
c((s, t), (s′, t))g(t)dt, (5.10)

where g(t) is the sampling density of t that is continuous and has an upper bound. If we

consider the bivariate processW (s, t) = U(s, t)+ε1(s, t), this has the marginal covariance

of the form

Ξ(s, s′) = ς(s, s′) + Γt(s, s
′). (5.11)

Consider the eigendecomposition problem:

∫
§
Ξ
(
(s), (s′)

)
φk(s)dtds = λkφk(s

′), (5.12)

where {φk(sr)} are the eigenfunctions that form a time-invariant orthonormal basis in

L2 positive and ordered eigenvalues λ. These functions optimise for the following mean

squared error:

Sc(θ(·)) =
∫

E
∣∣∣∣Ui(·, t)−

K∑
k=1

< Ui(·, t), θk(·) > θk(·)
∣∣∣∣2g(t)dt (5.13)

Applying the Karhunen-Loève Theorem yields:

X(s, t) = µ(s, t) +
∞∑
k=1

ψk(t)ϕk(s) (5.14)
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where φk(s) is a basis ∈ L2 from equation (5.12) and ψk(t) are the corresponding coeffi-

cients that are zero mean random functions that can be correlated over t with a smooth

covariance function Gk(t, t
′) = Cov(ψk(t), ψk(t

′)). Then by Mercer’s Theorem

Gk(t, t
′) =

∑
p≥1

κkpξkp(t)ξkp(t
′) (5.15)

where κk1 ≥ κk2 ≥ · · · ≥ 0 and {ξkp(t)} form an orthonormal basis in L2. Using the

Karhunen-Loève theorem we get the expression:

ψik(t) =
∞∑
p=1

ηikpξkp(t) (5.16)

where ηikp =
∫
ψik(t)ξkp(t)dt are random variables uncorrelated over p with zero mean

and variance equal to κkp. This is the final population model but can be written as

equation (5.14)

U(s, t) =
∞∑
k=1

∞∑
j=1

ηikpξkp(t)φk(s). (5.17)

Similarly to before, it is fair to assume that K and P of the PCs and score components

would explain a sufficient amount of the data, so this model as well has the truncated

form:

U(s, t) =
K∑
k=1

P∑
p=1

ηikpξkp(t)φk(s). (5.18)

5.3 Simulation

We have introduced three models that provide a way of representing a function defined

over two domains. These are the classic FPCA approach as in equation (5.1), the marginal

process model from equation (5.6) and the marginal covariance model from equation

(5.16). In the following simulations we will be comparing the truncated FPCA model of

the form X(s, t) = µ(s, t) +
∑J

j=1 ψjvj(s, t) with the truncated models from equations

(5.8) and (5.18) to refer to the marginal process model and the marginal covariance model,

respectively. We are interested in how these models perform on in different conditions,

so different simulation designs will reflect data where the underlying model is a product

of two functions set over two separate domains and ones where the underlying models
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include functions defined over two domains with a non-linear relationship. Design 1 will

reflect the former case case, whereas Design 2 will reflect the latter.

We will primarily focus on the marginal process and covariance models to evaluate their

reconstruction ability and computation time. This will be measured using Variance Ex-

plained (VE) and integrated squared error (ISE). Furthermore, we will investigate the

effect that the choice of basis vectors and sampling density has on the model estimation.

5.3.1 Designs

The data will be generated on s, t ∈ [0, 1] using the following functions:

ξ1i(t) = ai cos(5.5t) ξ2i(t) = bi sin(5t) ξ3i(t) = cos(dit)

ω1(s) = cos(6π · (s)) ω2(s) = sin(4π · (s)) ω3(s, t) = ci sin(6π · (st))

where ai ∼ N(1.5, 1.25), bi ∼ N(2, 1.5), ci ∼ N(1, 1.3), di ∼ N(2, 3).

Design 1

Both designs generate data that would fit the assumptions imposed by our models. De-

sign 1.1 will be a simpler design where the random variable is outside the trigonometric

function, whereas Design 1.2 will utilise ξ3i(t) which has the random element within the

function. The data will be generated as follows

Design 1.1: Xi(s, t) = ξ1i(t) · ω1(s) + ξ2i(t) · ω2(s) + εi(s, t)

Design 1.2: Xi(s, t) = ei · cos(s) · ξ3i(t) + εi(s, t),

with ei ∼ N(
√
3, 0.5) and where εi(s, t) is idiosyncratic noise that will vary between

settings.

Design 2

Design 2.1 follows Design 1.1 but includes an extra term that changes the way the data

is generated. Design 2.1 has a dependency on s and t together and Design 2.2 includes

a random term in the function defined over s which means that there is an unknown
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number of PCs. The data will be generated as follows

Design 2.1: Xi(s, t) = ξ1i(t) · ω1(s) + ξ2i(t) · ω2(s) + ξ3i(t) · ω3(s) + εi(s, t)

Design 2.2: Xi(s, t) = ei · cos(fis) · ξ3i(t) + εi(s, t),

with ei ∼ N(
√
3, 0.5) and fi ∼ N(1.5, 0.5) where εi(s, t) is idiosyncratic noise.

Evaluation

Our simulation will primarily focus on designs 1.1 and 2.1, and hence these simulations

will be run with more settings. Designs 1.2 and 2.2 are used for additional information

but will not be included in additional experiments described below.

For 1.1 and 2.1, we will vary the number of subjects n ∈ 50, 100, 1000 and the noise εijk

that can be one of three settings:

1: εijk = 0,

2: εijk = N(0, 0.162),

2: εijk = N(0, 0.322).

The functions are sampled at 60 equidistant points. Designs 1.2 and 2.2 will be run with

n = 1000 and the noise will be either 0 or sampled from one of the distributions N(0, 0.1)

and N(0, 0.2). Here these functions are sampled over equidistant 30 points.

Prior to the estimation of the model a mean function is estimated and removed from

the data and the remaining function will be denoted as Ui(s, t). The score functions for

the marginal process and marginal covariance models will be estimated using 11 b-spline

vectors as those have shown to be most effective in individual testing, yielding the highest

VE per basis vector.

We will use Designs 1.1 and 2.1 to further understand the model, looking specifically at

the effect of sampling density and the number of basis function representing ξ(t).

To understand the effect of the number of b-spline vectors on the reconstruction of the

scores, we will conduct a separate simulation where we vary the number of vectors to
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see how many are necessary for complete reconstruction. As the s domain is dense the

estimation of principal components is done without the use of basis vectors and hence

FPCA does not have this dependency. If a score function can be represented with vectors

as follows: ξ(t) =
∑P

p=1 cpbp(t) with bp(t) denoting b-spline vectors, we will vary P from 3

to 15. In this simulation, we set n = 100 and εi(s, t) ∼ N(0, 0.16) and run the estimation

procedure as normal. We will look at how the value of b affects the VE and what would

be the optimal choice of b meaning that any additional vector would not increase VE

significantly.

Finally, would like to understand how the sampling of curves can affect the estimation of

the model functions. Here we would create 60 sampling points along s that would be con-

sidered the full observed function, we will then ’observe’ either 30, 20 or 10 points along s

at equidistant points. So if the complete function ω1(s) is sampled at sj for j ∈ {1, . . . , 60}

and sj ∈ { 1
60
, . . . 1}. Then we will run 3 simulations where j ∈ {1, . . . , 30}, {1, . . . , 20}

and {1, . . . , 10}. This simulation will only run for D2.1 with n = 100.

Given a model with L computed PCs, it will be evaluated using VE:

VE(L) = 1−
[∑n

i=1

∫ ∫ [
Ui(s, t)−

∑L
l=1 ψil(t)ϕl(s)

]2
dsdt∑n

i=1

∫ ∫ [
Ui(s, t)

]2
dsdt

]
. (5.19)

We will also investigate the effect that the number of basis vectors chosen in the estimation

of a score function will have on the reconstruction. This will be measured using VE.

To understand how sampling a function over s affects the estimation procedure, we will

use VE and integrated root squared error:

IRSE(ϕ̂(s)) =

∫ √
[ϕ(s)− ϕ̂(s)]2ds (5.20)

We will evaluate the estimated PC functions in two ways: first, we will directly compute

the difference between the true and estimated function at the points we sample, second,

we will smooth the PC function and compute the full difference between the true and the

smoothed estimated function.

The simulations will run on the ARC4 computer with Intel Xeon Gold 6138 CPUs using
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their standard nodes and run time will be recorded and compared between models. For

each combination there will be 100 replicates. For each generated sample, we will estimate

three models: FPCA as introduced in the Chapter 3, the Marginal Covariance model from

Park and Staicu, 2015 and our introduced Marginal Process model.

Error V E1p V E1c
0 0.9419 (0.002) 0.9419 (0.002)

10% 0.9175 (0.004) 0.9175 (0.004)
20% 0.8779 (0.005) 0.8779 (0.005)

Table 5.1: D1.2 result: VE. The values in the table represent the mean and standard deviation
(in brackets) over 100 replicates. subscripts p and c refer to results obtained from the marginal
process and the marginal covariance models.

5.3.2 Results

We will now discuss the results from the simulation designs, subscripts p, c and f refer

to estimated functions or results obtained from the marginal process model, the marginal

covariance model and FPCA, respectively. We will discuss the reconstruction ability,

influence of the number of basis vectors and the density of sampling points.

Reconstruction Ability

We will first consider the cases of Designs 1.1 and 1.2, where the underlying models

match the fitted model. Table (5.2) has the variance explained for design 1.1 showing the

number of estimated components and the VE for each model. The standard deviations

can be found in the appendix (Table (A.1)). Overall, looking at Table (5.2), the marginal

process and covariance models have a similar cumulative VE with 2 principal components,

with the noise levels not changing their estimation largely. Both models, however, have

a slightly lower VE (0.997) than FPCA (1). It appears that the average VE over 100

replicates is not much altered by an increasing sample size (0.781 for n = 50 versus 0.786

for n = 1000). However, the sample size does affect the standard deviation, with it

becoming smaller as n increases (Table (A.1)).

Design 1.2 includes the random element within the trigonometric function which can

increase estimating difficulty for the score function, however it only had 1 PC to estimate.

The resulting VE from the models is shown in Table (5.1). In the case of design 1.2, both
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Noise Nr of PCs Variance Explained

Proc Cov FPCA Proc Cov FPCA

n=50 ϕ̂1(s) ϕ̂2(s) ϕ̂1(s) ϕ̂2(s) ϕ̂1(s) ϕ̂2(s)

0% 2 2 2 0.555 0.997 0.566 0.997 0.573 1
10% 2 2 2 0.510 0.909 0.520 0.910 0.529 0.913
20% 2 2 2 0.443 0.781 0.452 0.783 0.462 0.788

n=100

0% 2 2 2 0.557 0.997 0.563 0.997 0.569 1
10% 2 2 2 0.512 0.911 0.518 0.911 0.524 0.914
20% 2 2 2 0.444 0.783 0.450 0.784 0.456 0.787

n=1000

0% 2 2 2 0.566 0.997 0.566 0.997 0.569 1
10% 2 2 4 0.521 0.912 0.522 0.912 0.524 0.914
20% 2 2 20 0.454 0.786 0.455 0.786 0.456 0.787

Table 5.2: D1.1 result: average VE per PC (cumulative) over 100 replicates.

Error ψ̂p(t)− ψ̂c(t) ϕ̂p(s)− ϕ̂c(s)

0 0.2270 (2.898) 0.0070 (0.087)
10% -0.1275 (3.584) -0.0035 (0.107)
20% -0.1256 (3.603) -0.0035 (0.106)

Table 5.3: D1.2 result: MISE between scores and PCs from models (5.8) and (5.18). Values in
the table represent the mean and standard deviation (in the brackets) over 100 replicates.

models have the same VE up to 4 significant figures. To confirm that the estimated

functions are indeed different, the difference was taken and averaged over 100 replicates

shown in Table 5.3. Comparing this to the results from Design 1.1, we can see that for

the zero noise scenario, the VE was lower in D1.2 (0.942) than for D1.1 (0.997).

When looking at D2.1, let us look at Tables (5.5), (5.6) that show the number of com-

ponents estimated and the resulting VE, respectively. The standard deviations can be

seen in the appendix as Table (A.2). Both FPCA and the marginal process models are

able to identify 3 PCs whereas the covariance model is now estimating between 4 to

5 PCs. Considering the VE, we can see that FPCA is able to reconstruct data fully

without much difference across the sample size and noise level. The marginal covariance

model achieves lower VE than FPCA with more components but is still able to explain a

sufficient amount of variation (0.98 with no noise and 0.87 at the highest noise setting),

notably, this value is only slightly lower than for D1.1 where the model achieved 0.997 VE

with no noise present. Notably, the first and second estimated components correspond

to ω1(s) and ω2(s), and any following estimated functions make up ω3(st). Finally, con-



CHAPTER 5. STUDYING STFPCA MODEL PERFORMANCE IN LOW DIMENSIONS 85

Figure 5.1: Plots of the true and estimated PCs from both models with n=1000. The black
line is estimated with D2.1 and no noise, the blue lines are the other noise settings for D2.1.
Orange lines correspond to all D2.2 noise settings.

sidering the marginal process model we can see that it has the lowest cumulative VE and

can at best recover 0.87 of the variation compared to the covariance model that achieves

0.98. However, considering the performance with 3 PCs, both models have similar VE

(the marginal process model achieved between 0.77-0.87 and marginal covariance model

achieved 0.78-0.87).

The standard deviation was computed based on the cumulative VE up to some PC. The

general trend for the standard deviation (Table (A.2)) is that it goes down as the sample

size goes up. The standard deviation appears to be lower when the PC corresponds to less

VE. In practice, this means that as the PC index increases, the sd tends to go down. This

is very clearly shown for the marginal covariance and FPCA models. The only deviation

from this trend is the marginal process model for ϕ̂2(s), as the standard deviation there

is higher than for ϕ̂1(s) (for example for n = 50 with no noise sd for ϕ̂2(s) is 0.0308 and

for ϕ̂1(s) it is 0.0185). This could be explained by the fact that the second PC explains

more VE than the first, suggesting a change in PC order, which is seen in Figure (5.2).
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Error V E1p V E1c V E3p V E3c
0 0.6021 (0.016) 0.5881 (0.015) 0.9416 (0.002) 0.9417 (0.002)

10% 0.5844 (0.016) 0.5711 (0.015) 0.9129 (0.002) 0.9129 (0.002)
20% 0.5574 (0.014) 0.5447 (0.014) 0.8658 (0.005) 0.8658 (0.005)

Table 5.4: D2.2 result: VE. The values in the table represent the mean and standard deviation
(in brackets) over 100 replicates.

Figure (5.1) shows the estimated PCs for all the settings of the simulation. The marginal

covariance model displays less variation subject to the model fit and the noise, with both

PCs being able to recover their original shape relatively well. The marginal process can

recover the true shapes of the PCs but with slight errors subject to noise, one can see

that the blue line that depicts the estimates for D1 recovers the original shape but is

slightly skewed. However, in D2 the first PC is not matching the design, whilst PC 2 is

of appropriate shape but appears to have a slightly wider range.

Noise Variance Explained

Proc Cov FPCA

n=50 ϕ̂1(s) ϕ̂2(s) ϕ̂3(s) ϕ̂1(s) ϕ̂2(s) ϕ̂3(s) ϕ̂4(s) ϕ̂5(s) ϕ̂1(s) ϕ̂2(s) ϕ̂3(s)

0% 0.260 0.580 0.868 0.439 0.760 0.871 0.973 0.982 0.476 0.789 1
10% 0.251 0.560 0.836 0.424 0.732 0.840 0.938 0.947 0.461 0.763 0.965
20% 0.232 0.515 0.768 0.392 0.673 0.773 0.863 0.873 0.430 0.706 0.890

n=100

0% 0.257 0.581 0.868 0.435 0.760 0.872 0.973 0.982 0.465 0.776 1
10% 0.247 0.559 0.836 0.420 0.732 0.839 0.937 0.947 0.451 0.749 0.963
20% 0.228 0.514 0.768 0.388 0.673 0.772 0.862 0.871 0.420 0.694 0.887

n=1000

0% 0.258 0.581 0.868 0.437 0.759 0.871 0.973 0.982 0.463 0.777 1
10% 0.249 0.559 0.836 0.422 0.731 0.839 0.938 0.947 0.449 0.751 0.963
20% 0.229 0.514 0.770 0.390 0.673 0.773 0.864 0.873 0.419 0.695 0.887

Table 5.5: D2.1 result: average VE per PC (cumulative) over 100 replicates.

Finally for D2.2, where the function over s has a random component in it, we have Table

(5.4) that shows the VE for both models. Both methods are able to estimate the same

number of PCs (3) and achieve a similar VE with 3 PCs (0.94). The first PC seem to

explain a slightly different amount of VE (0.6 for marginal process versus 0.59 for marginal

covariance). This difference can be seen in Figure (5.2) with PC1 being different curves,

however, PC 2 and PC 3 appear to be similar. Both models have a similar VE and MSE

across the 3 noise settings, and comparing the results from D1.2 and D2.2, we can see

that in the simulation with no noise, the reconstruction was similar. Comparing Tables
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(5.1) and (5.4), both designs have a similar reconstruction (0.942 in D1.2 and 0.942 in

D2.2 for both models up to three significant figures).

Noise Nr of PCs
n=50 Process Covariance FPCA

0% 3 4.63 3
10% 3 4.72 3
20% 3 4.81 3

n=100

0% 3 4.57 3
10% 3 4.64 3
20% 3 4.85 3

n=1000

0% 3 4.98 3
10% 3 4.99 3
20% 3 5 12

Table 5.6: Design 2: Average number of estimated components for each model.

Table (5.7) shows the estimation times between the two models in seconds. The time

measured for the marginal process model is for the estimation of the marginal process and

the relevant covariance function. For the covariance model this represents the time taken

to estimate the covariance and to integrate it. The eigendecomposition of any covariance

function was not included in this time as it would be performing the same function on

the same dimensional object. Overall the marginal process was significantly faster than

the marginal covariance averaging values just above 0.2 seconds whereas the covariance

model would require 5 seconds or more.

Time To Estimate

Sample Size n=50 n=100 n=1000
Noise 0% 10% 20% 0% 10% 20% 0% 10% 20%

D1

Process 0.066 0.072 0.066 0.077 0.068 0.070 0.248 0.225 0.252
Covariance 2.522 2.858 2.522 2.696 2.445 2.466 5.460 4.990 5.281

D2

Process 0.077 0.064 0.072 0.067 0.075 0.074 0.242 0.236 0.242
Covariance 2.940 2.507 2.867 2.348 2.580 2.619 5.467 5.305 5.304

Table 5.7: Average computation time for the Marginal Process and Marginal Covariance models
over all designs in seconds (1 unit = 1 second).

Overall, the sample size does not have a large effect on the reconstruction ability of the

models, with exception of the fact that the FPCA model was able to estimate more

components to account for noise in both high noise settings with n = 1000.



CHAPTER 5. STUDYING STFPCA MODEL PERFORMANCE IN LOW DIMENSIONS 88

Figure 5.2: D2.2 result: The first three principal components for the decompositions of copies
of X(s, t) from D 1.2, simulated with εijk ∼ N(0, 0.2). The first row shows {ϕl(s)} and the
second shows {φl(s)}.

To summarise this section, we could see that overall the highest reconstruction ability

was seen in the FPCA model with often the lowest number of components. The marginal

covariance and marginal process models had similar performance in Designs 1.1, 1.2 and

2.2. However, the marginal process model was not able to fully recover the variation of

the data in Designs 2.1.

Figure 5.3: Plot of average VE over 100 replicates for different number of b-spline vectors from
3 to 15
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Choice of Basis Vector

In this simulation, we set n = 100 and εi(s, t) ∼ N(0, 0.16) and run the estimation

procedure as normal with the exception that the estimated score functions can be formed

of b ∈ {3, . . . , 15} b-spline vectors. We will look at how the value of b affects the VE

and what would be the optimal choice of b meaning that any additional vector would

not increase VE significantly. To define what the optimal number of basis functions was,

we denote VEb as the VE obtained from the PCs and score functions estimated with b

b-spline vectors. VE was calculated for each and if VEb − VEb+1 < 0.001 then b was

deemed the optimal number for said bases. For each replicate the vector VEb and boptim

were saved. The results for VEb are shown in Figure (5.3) for both models. They both

have logarithmic forms and for both models the optimal number of b-spline vectors was

9 across all replicates. In both models, there was no significant differences in how the

b-splines interfered with the VE.

Influence of Sampling Points

Motivated by the fact that in image processing, it is possible to downsize or down-

sample images to fit certain memory constraints, we would like to investigate the effect

of sampling over s and how it influences PC estimation and the reconstruction of the

image. During the simulation, we have kept track of both the discrete and the smoothed

versions of the PCs and reconstructions.

Table (5.8) shows the VE for all the simulation settings. In this table, the effect of

sampling is less visible than the effect noise has on the reconstruction. Both models

appear to have a similar cumulative VE however their VE for PC 1 alone is different,

where the difference ranges from 0.005 to 0.021. The highest difference in VE from PC 1

can be seen in the lower right quadrant with lowest sampling and considering the sampled

PC. It appears, when comparing the smoothed and sampled columns that smoothing can

slightly increase the VE. This improvement is not noticeable for sj ∈ with j ∈ {1, . . . , 30}

but can be noticed for j ∈ {1, . . . , 20} and {1, . . . , 10}.

Table (5.9) contains the PC error between the true and the estimated functions for both

models. Overall, we can see that as sampling becomes more sparse, the quality of the
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VE Smoothed PC VE Sampled PC

sampling Cov Proc Cov Proc

30 PC 1 PC 2 PC 1 PC 2 PC 1 PC 2 PC 1 PC 2

0% 0.561 0.995 0.555 0.995 0.561 0.988 0.555 0.988
10% 0.516 0.903 0.510 0.903 0.516 0.909 0.511 0.909
20% 0.449 0.783 0.443 0.782 0.448 0.776 0.442 0.776

20

0% 0.561 0.995 0.555 0.995 0.561 0.971 0.553 0.970
10% 0.516 0.909 0.510 0.909 0.516 0.886 0.508 0.886
20% 0.449 0.784 0.444 0.783 0.448 0.762 0.440 0.762

10

0% 0.561 0.995 0.555 0.995 0.557 0.862 0.535 0.862
10% 0.517 0.911 0.511 0.911 0.512 0.788 0.491 0.787
20% 0.451 0.787 0.445 0.786 0.444 0.677 0.425 0.676

Table 5.8: Variance explained for different sampling density over s displayed in the first column.
’Smoothed PC’ corresponds to PCs fitted with b-splines and ’Sampled PC’ refers to the PCs
computed from the grid sj .

estimation goes down. Between sampling density 30 and 20 we see a slight increase in

error, whereas the jump is much greater when going from sampling 20 to 10 points. of It

can be also seen that the marginal process model has consistently higher errors than the

covariance model, this is visible across all settings.

Data Size and Computation

We have previously shown that our proposed model based on the marginal process has

a computational advantage compared to more traditional approaches. In this section,

we wanted to compare three models with one simulation design, where the two variables

that were varied are the sample size and the image size, to better understand the effect

of data size on potential model estimation times.

We consider the simplest design, D1 and set the data to have no noise, as noise had

little effect on model estimation previously as shown in Table (5.7). We have considered

sample sizes (n ∈ {50, 100, 200, 500}) and image dimensions (20 × 20, 30 × 30, 40 × 40,

50× 50). For simplicity, we considered square images with equal number of pixels in the

rows and columns: 20, 30, 40 and 50. The increase in total number of pixels is non-linear

as the total image size increases exponentially from 202 to 502.

Table (5.10) shows the results of the simulation with the mean and standard deviation

over 100 replicates. The marginal process model was consistently faster than the other
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PC Error Smooth Sampled PC Error

sampling Cov Proc Cov Proc

30 PC 1 PC 2 PC 1 PC 2 PC 1 PC 2 PC 1 PC 2

0% 0.016 0.052 0.136 0.153 0.016 0.052 0.136 0.153
10% 0.016 0.052 0.137 0.153 0.016 0.053 0.138 0.154
20% 0.016 0.052 0.138 0.154 0.017 0.053 0.139 0.155

20

0% 0.017 0.093 0.136 0.179 0.017 0.093 0.136 0.179
10% 0.018 0.093 0.136 0.179 0.018 0.093 0.314 0.179
20% 0.018 0.093 0.137 0.180 0.018 0.093 0.138 0.180

10

0% 0.022 0.213 0.141 0.275 0.022 0.214 0.141 0.275
10% 0.022 0.214 0.141 0.275 0.022 0.214 0.142 0.276
20% 0.022 0.214 0.143 0.276 0.023 0.214 0.145 0.278

Table 5.9: Error between the true and the estimated PCs for different sampling density over
s displayed in the first column. ’Smoothed PC’ corresponds to PCs fitted with b-splines and
’Sampled PC’ refers to the PCs computed from the grid sj .

two models, with the FPCA model being slightly faster and the marginal covariance.

The marginal process model has an average 0.049 estimation time for an image of size

20 × 20 with n = 50. In this case, sample size increases had a small effect on the

computation time, with the time rising quite linearly for n = 100 (0.094) and n = 200

(0.180). A similar trend goes on for other data sizes, but the effect of sample size increases

gets larger the larger the image, as expected. In the end, for images of size 50× 50, the

computation time goes from 0.191 up to 1.256. The increase in image size has a slightly

larger effect on computation; in the case of n = 50, t goes up to 0.191 but for n = 200 it

jumps from 0.180 up to 0.561.

The marginal covariance model took significantly longer than the other two models in

estimation, with 4.008 at the lowest end (n = 50, 20 × 20) and 239.594 at the highest

(n = 500, 50 × 50). In this case, the sample size increases had a relatively models but

noticeable increase in computation time, going from 4.008 to 6.358 (20 × 20) or from

65.237 to 99.180 (40×40). The much more noticeable increase was caused by image size,

which follows a pattern that resembles an exponential one. For n = 100 the values go

from a modest 4.566 up to a 159.792.

The FPCA model falls in between the two previously presented models; however, it

remains considerable close to the lower end of estimation times. It again shows steady
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image size 20x20 30x30 40x40 50x50

n Process
50 0.049 (0.005) 0.087 (0.005) 0.141 (0.008) 0.191 (0.013)

100 0.094 (0.017) 0.145 (0.016) 0.226 (0.013) 0.287 (0.019)
200 0.180 (0.014) 0.261 (0.021) 0.391 (0.016) 0.561 (0.228)
500 0.195 (0.019) 0.613 (0.027) 0.909 (0.061) 1.256 (0.067)

Covariance

50 4.008 (0.083) 20.194 (0.263) 65.237 (0.504) 155.381 (1.818)
100 4.566 (0.112) 21.187 (0.138) 66.529 (0.366) 159.792 (3.453)
200 5.265 (0.179) 23.699 (0.134) 72.584 (1.763) 187.759 (2.835)
500 6.358 (0.082) 30.954 (0.126) 99.180 (3.758) 239.594 (3.821)

FPCA

50 0.135 (0.005) 0.281 (0.015) 0.504 (0.039) 0.756 (0.032)
100 0.278 (0.025) 0.546 (0.028) 0.947 (0.041) 1.422 (0.043)
200 0.606 (0.036) 1.155 (0.046) 1.938 (0.063) 3.136 (0.081)
500 1.945 (0.072) 3.084 (0.127) 6.381 (0.247) 9.546 (0.176)

Table 5.10: Computation time (in seconds) taken to estimate three types of models given
different sample size n and image sizes. The data was generated following equation for D1. The
main values are the average estimation time over 100 replicates and the values in brackets are
the standard deviation.

time increases with increases in sample size and larger but reasonable increases with the

increase of the images. The sample size increase has a close to linear effect on the time

which is most visible in the 30 × 30 case where the time for n = 50 is 0.281 and for

n = 500 it is 3.084. The change in estimation time with respect to image size appears to

be proportional to the number of pixels in the image.

5.3.3 Conclusion

We have introduced existing FPCA models that decompose a random function into the

product of two functions spanning different domains. We focused in particular on a

model introduced by Park and Staicu, 2015 that computed the PCs from the marginal

covariance function. As our aim is to apply FPCA to images, we introduce a model that

computes the PCs from the covariance function of a marginal process. This is moti-

vated by computational efficiency and ability to work in high dimensions. We investigate

the performance of these models in various conditions and compare them to traditional

FPCA.

Overall, we are able to see that when the model fits the data, all three models perform

similarly to each other. When the model does not fit the data, the covariance model can
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compensate and still reconstruct the data well, however, the marginal model might not

capture the additional variation. This is likely due to the fact that information can be

lost when we integrate at an early stage over the random function which can lead to a

loss of information which does not occur with the covariance model. There is potential

work in the future to determine this discrepancy and find a limit to the VE lost in such

a case. However, the marginal process model can show a sizeable advantage in terms of

computational burden as its estimation is less computationally expensive and quicker.

Choosing an appropriate number of vectors to represent the score function has an effect

on the reconstruction of the observations so it is still an important step in building the

model. A value too high may result in overfitting to the data and does not provide a

significant improvement in VE as the relationship between VE and the number of vectors

is logarithmic.

We have investigated the sampling density effect on estimation of the PCs and the recon-

struction of the image. It appeared that if the sampling had a higher density than the

periodicity of the observed wave then it did not impede the estimation of the function.

In practice, this would allow us to down-sample an observed function within reason if it

allows for computational efficiency.

In conclusion, we have shown that our proposed model works similarly to the Marginal

Covariance model when the data fits the assumptions. This provides a computational

advantage and allows for the estimation of the model in high dimensional cases. Park

and Staicu, 2015 provide a more flexible approach that would work on two dimensional

cases, that is more robust against different data structures.



Chapter 6

Extension of STFPCA to

Longitudinal Data

6.1 Introduction

Chapter 4 has introduced an FPCA model for high dimensional images over time and

Chapter 5 studied its performance and compared it to existing methods in a low di-

mensional simulation study. Thus far, we have considered functional data captured at

regular time intervals. This chapter will focus on a sparse data application to extend this

model to longitudinal data, specifically the ADNI dataset introduced in Chapter 3. Im-

ages remain fully functional objects, but in contrast to Chapter 4, where the scores were

functional, this section will model the scores using a mixed model to find associations

between brain regions represented by components and case control status.

From a functional data perspective, models for longitudinal data were originally intro-

duced in the early 2000s. Later publications introduced models for functional data

correlated over two domains, with the temporal domain being typically longitudinal.

These have been discussed in depth in Chapter 5, and, despite showing promising re-

sults, remain limited to lower dimensional data due to computation or methodological

challenges (Greven et al., 2010; Gromenko et al., 2012; Gromenko and Kokoszka, 2013;

Chen and Müller, 2012; Park and Staicu, 2015). Over the last two decades, an increase in

multi-center research initiatives have contributed to the availability of large longitudinal

94
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datasets such as ADNI (Mueller et al., 2005) and the UK Biobank (Sudlow et al., 2015;

Miller et al., 2016).

We are motivated by the ADNI dataset that follows patients at various stages of cognition

at 6 month intervals collecting T1 MRI images and cognitive test results. The onset

of Alzheimer’s dementia has been associated with accelerated atrophy is several brain

regions. Hence, volume reduction in particular brain regions can be considered as an

imaging biomarker used to investigate the rate of brain deterioration. A frequent and

straightforward approach to model longitudinal progression of patients is proposed in

papers such as Guerrero et al., 2016; Mofrad et al., 2021, where brain biomarkers were

first extracted and were used to estimate a mixed model. Mixed models continue to be

a common approach for longitudinal disease modelling as in addition to MRI biomarkers

they can model other covariates. Such methods often involve multiple steps in their

pipelines and are reliant on software such as FSL for the determining of regions of interest

(ROIs) for further analysis.

In this chapter, we adapt our proposed model from Chapter 4 to longitudinal data, ob-

served on a sparse temporal. First, we investigate the effect of missingness via simulation,

then we apply the model to T1 MRIs from the ADNI dataset to find associations be-

tween regions of the brain and case control status across patients. The scores obtained

at different time points for each subject are assumed to follow a random slope model.

The random intercept and the random slope can be interpreted as the subject’s status

at entry and their temporal effect, respectively. These can be used as summaries of a

subject’s trajectory over time and can be used to associate it with outcomes via logistic

regression. We investigate model fit by subset analysis and end with a discussion as well

as suggestions for future work.

6.2 Methods

This section describes the methods used, where the model from Chapter 4 is adapted for

a longitudinal case and the scores are no longer random functions. Instead, they form a

random vector of observations at different time points that correspond to how each PC

is represented in a subject’s image at some time point.
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Define a random function X(s, t) ∈ L2 where s ∈ S = [0, S1] × [0, S2] × [0, S3] forms

a bounded 3-dimensional space, t ∈ T = [0, T ] and S ∪ T ⊆ R4. Let Yi(sj, tk) denote

the random variable for subject i ∈ {1, . . . , n} at time point tk for k ∈ {1, . . . Ti}, where

Ti is the total observations for subject i and for all k, tk ∈ T . We assume that at least

some subjects i have at least 3 visits, that is Ti ≥ 3. Let sj denote a voxel at point

j = (j1, j2, j3) where for all j, sj ∈ S.

Yi(sj, tk) can be expressed as a function X(s, t) and noise εijk in the sample model:

Yijk = Xi(sj, tk) + εijk, (6.1)

The noise of the ith subject, denoted as εijk, is i.i.d. over i, with mean zero and variance

σ2
ijk at voxel j and time k. We assume the variance function of Xi(sj, tk) is smooth and

hence εijk has a smooth variance in the neighbourhood of j.

Given the model proposed for X(s, t) and equation (6.1), the random variable Yijk can

be expressed as:

Yijk = µ(sj, tik) +
∞∑
l=1

ψilkϕl(sj) + εijk, (6.2)

where µ(sj, tk) is the mean function, ϕl(sj) is an orthogonal basis functions, ψilk =

⟨Yijk, ϕl(sj)⟩ are the corresponding scores at different time points tik. Assuming that

there exists a number of PCs, L, containing a sufficient amount of variance explained the

above expression can be truncated:

Yijk = µ(sj, tik) +
L∑
l=1

ψilkϕl(sj) + εijk. (6.3)

In contrast to Chapter 4 where scores were functions ψil(tk), the scores ψilk form a random

vector of length Ti and follow a random slope model for each l ∈ {1, . . . , L}:

ψilk = β0l + β1ltik + a0li + a1litik + εij, (6.4)

where β0l, β1l are the population intercept and slope, a0li is a random intercept with

variance σ2
al0, a1li is a random slope with variance σ2

al1 and εij ∼ N (0, σ2
e) is error. The

covariance between the random slope and the random intercept is assumed to be zero
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Cov(a0li, a1li) = σal01 = 0, (the covariance of the estimates may be non-zero as we do not

enforce ortholinearity; however, it should be negligibly small).

The estimation method for model (6.3) follows the steps outlined in Section 4.3.1 except

for the score estimation. Whilst previously the scores were considered functions ψ(t), and

hence were estimated using function-on-function regression, here they are scalars observed

at separate time points and therefore are estimated using function-on-scalar regression.

The estimated scores ψ̂ilk follow a random slope model which is estimated using the lmer

function from the lme4 package (Bates et al., 2015) that obtains the estimates using

restricted maximum likelihood.

The scores model binary subject outcomes, denoted Ci ∈ {0, 1} via logistic regression.

The scores, expressed by equation (6.4), can be interpreted as each subject’s trajectory

relating to brain regions contained within each PC. Since they can be summarised by the

random effects a0li and a1li, these will be used in the logistic regression:

Pr(Ci = 1) = logit
(
α0 +

L∑
l=1

(
α2l−1 · a0li + α2l · a1li

)
+ α2L+1agei

)
. (6.5)

For large L relative to n, we will use LASSO to identify relevant parameters, which was

first introduced in statistics by Tibshirani, 1996. The penalization will only be applied

to parameters that correspond to PCs and not age. Let Ri = − log
( P (Ci=1)
1−P (Ci=1)

)
, then the

estimated parameters optimize the following equation:

α̂ = min
α0,α

{ n∑
i=1

(
Ri − α0 −

L∑
l=1

(
α2l−1) · a0li + α2l · a1li

))}2

(6.6)

subject to
2L+1∑
l=1

|αl| < h (6.7)

where h is a prespecified free parameter that determines the degree of regularization.

To obtain the penalised estimates we used the package glmnet with corresponding pub-

lication Friedman et al., 2010. Specifically, the function cv.glmnet set to be exclusively

LASSO. Implementation was done in R.
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6.3 Simulation

The purpose of the simulation is to evaluate the performance of the model and estimation

method from Chapter 4 in a sparse data setting with various levels of missingness to reflect

patients missing appointments over the course of a longitudinal study. We will consider

smooth objects in 3 dimensions captured at different time grids with increasing amount

of missingness.

6.3.1 Design

Elsewhere in the thesis we have evaluated the effect of the underlying data structure,

noise and number of observations on the model, in this case we only focus on sparse time

with missingness. We will measure the overall reconstruction ability as well as the ability

to estimate the underlying scores and principal components. We assume µ(s, t) = 0 and

the principal component number is set to L = 2.

Figure 6.1: An example visualization of the simulation designs, with missing time points being
selected at random.



CHAPTER 6. EXTENSION OF STFPCA TO LONGITUDINAL DATA 99

Define the following functions:

ψi1(t) = ai · cos(0.5πt), ψi2(t) = bi · sin(πt)

ϕ1(s) = ϕ1(s1, s2, s3) =
√

(2) · cos(2πs1), ϕ2(s) = ϕ2(s1, s2, s3) =
√

(2) · sin(2πs1),

where t ∈ [0, 1], s ∈ [0, 1]× [0, 1]× [0, 1], ai ∼ N(0, 2) and bi ∼ N(0, 0.5). The functions

ϕl are evaluated on a 30×30×30 grid, where sj1, sj2, sj3 ∈ { 1
30
, 2
30
, . . . , 1}, a point on this

grid will be denoted sj. The score functions are evaluated on a grid of K (with K = 10

or K = 7) equidistant points denoted tk ∈ [0, 1], specifically tk ∈ { 1
K
, . . . , 1}. For each

simulated series of 3D functions, the number of missing times points as well as the indices

k which are missing are chosen randomly. There are five ways this is configured, a quick

overview can be found in Figure (6.1). The designs are labelled through D1 to D5 and

each subsequent design involves fewer observations overall. In each case the number of

subjects with missing values are predetermined but the subjects are drawn at random.

For each subject, then one or two time points are drawn up randomly, in the case of D5

the same hold true except one sampling will correspond to two time points being removed

at once. Notably, D5 is a design that most closely resembles the case found in the ADNI

dataset.

The functions form simulated images on a 30× 30× 30 grid over K time points using the

model equation (6.3):

Yi(sj, tik) =
2∑

l=1

ψil(tik)ϕl(sj) + εijk, (6.8)

where i ∈ {1, . . . , n} for n = 100 and εijk ∼ N(0, 0.1).

Reconstruction accuracy will be evaluated using variance explained (VE) defined in Chap-

ter 4 as equation (4.12). The estimation accuracy of the components is evaluated using

integrated square error (ISE) for the PCS and mean integrated squared error (MISE) for

the scores. They are defined as follows:

ISE(ϕ̂l(s)) =

∫
(ϕl(s)− ϕ̂l(s))

2 ds

MISE(ψ̂il(t)) =
1

n

n∑
i=1

[ ∫
(ψil(t)− ψ̂il(t))

2 dt
]
.
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This will be done per replicate. The results of the simulation will be the mean and the

standard deviation of these values computed over the 100 replicates.

Figure 6.2: D5 simulation reconstruction.

6.3.2 Results

The variance explained and error between true and estimate principal component and

scores can be seen in Table (6.1). With the noise included, the total true VE from the

two PCs alone was 0.96.

It appears that as the missingness gradually increases, the VE decreases. We can see

that as the proportion of observed time points goes down, the total the VE goes from

0.923 to 0.859 (D1 to D5). Additionally, the standard deviation increases showing that

the VE can is more susceptible to variation due to the generated sample.

The principal components appear to be estimated with similar accuracy and are less

susceptible to error resulting from missingness. Whilst the errors vary between the dif-

ferent designs there does not appear to be a clear pattern in the average accuracy over

the replicates. The design of the principal components is the same as in Chapter 4 and

hence a cross-section of the PCs is the same as in Figure (4.1). The scores on the other
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hand appear to increase in errors in reconstruction as the missingness increases and their

standard deviation also increases. The score reconstructions from one replicate of D5

can be seen in Figure (6.2). As in the simulation from Chapter 4, the endpoints of the

functions are not as accurately estimated; this is likely due to the choice of b-spline basis

as those can struggle with the estimation of functions at their end-points. In addition,

the subjects whose endpoints happen to be missing have poor reconstructions and can

be seen in the figure as deviations from the expected pathway.

VE Error

ϕ1(·) ϕ2(·) ϕ̂1(·) ϕ̂2(·) ψ̂1(·) ψ̂2(·)
D1 0.615 (0.03) 0.923 (0.01) 0.611 (0.59) 0.579 (0.54) 0.533 (0.03) 0.377 (0.03)
D2 0.615 (0.03) 0.919 (0.01) 0.627 (0.59) 0.611 (0.56) 0.560 (0.04) 0.392 (0.03)
D3 0.600 (0.03) 0.914 (0.01) 0.617 (0.59) 0.726 (0.55) 0.571 (0.04) 0.424 (0.05)
D4 0.603 (0.04) 0.911 (0.01) 0.697 (0.58) 0.637 (0.57) 0.712 (0.06) 0.526 (0.06)
D5 0.601 (0.06) 0.859 (0.16) 0.702 (0.61) 0.654 (0.57) 0.723 (0.06) 0.539 (0.07)

Table 6.1: Cumulative VE and Integrated Square Error for the estimated functions. The values
represent the mean and the standard deviation over 100 replicates.

In conclusion, the simulation has shown that a gradual increase of missing time points

reduces our ability to estimate the underlying functions. In particular, subjects with

multiple missing time points in sequence have a lowest accuracy in reconstruction, which

can be attributed to the smoothing technique not making strong assumptions about the

underlying structure of the functions it estimates. A potential avenue to overcome this

would be to impute the missing data separately, prior to smoothing the functions. The

time invariant functions appeared to be less influenced by the missingness which can be

interpreted as the fact that the time-invariant basis can be more easily estimated whilst

being less susceptible to error as a result of sparse time points.

6.4 Data Analysis

Alzheimer’s Disease Neuroimaging Initiative is a large longitudinal study following pa-

tients over the course of years and collecting multiple biomarkers related to the onset

and progression of dementia. The data was sourced from the publicly available pre-

determined ADNI T1 MRI collection. The complete dataset contains 382 subjects across

three stages of cognition: CN, MCI and AD. The images were downloaded from the

ADNI (loni) website and preprocessed using the pipeline described in Section 3.4.3. The
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images uploaded to R using the oro.nifty package (Whitcher et al., 2011) and were

subsequently downsampled to sizes 85 × 105 × 95 and smoothed using a Gaussian blur

from the smooth3D function from the package aws (Polzehl et al., 2020) with the param-

eter h representing bandwidth set to 0.7 (in the case of Gaussian kernels it is measured

in half-power bandwidth).

Figure 6.3: Slice of estimated global mean µ(s, t) for a age restricted subset of 138 subjects.

We fit the model defined in equation (6.3), using the estimation method described

in Chapter 4. Like in the case of the simulation, the method was adapted to ac-

count for variation in the density function g(t) across subjects. First, the global mean

µ̂(s, t) was computed pixelwise across subjects, the mean at time point 1 is plotted

in Figure (6.3). The resulting centered function Vi(sj, tik) is then marginalised with

Vi(s) =
∫
TK
Vi(sj, tik)g(tk)dt.

Subject image variation σ̂2
iqjk is estimated by splitting the image into small 2×2×2 cubes

as described in Section 4.3.1. Principal components are estimated using regression and

are subsequently smoothed using 3D penalized smoothing, we adopt the cubic b-spline

basis with 42, 52, 45 knots along the x, y, z axes, respectively. The penalty matrices for

all axes are of order 2. Tuning parameters in the penalized smoothing are selected by

minimizing the GCV values. The scores are updated using function-on-scalar regression
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per time point.

Figure 6.4: Variance explained for the case-control group, the x-axis represents the cumulative
number of components.

6.4.1 Case-Control Group

We first consider the cohort of patients who have been consistently diagnosed as CN or

AD for the entire duration of the study, assuming that in the visit they have missed they

would have had the same diagnosis. Amongst the 382 subjects in the complete cohort,

123 are CN and 96 have an AD diagnosis for the whole study. The total of 219 subjects

have at most 5 visits and will be included in the following analysis. This data will be used

to estimate the STFPCA model and the scores will be used in a logistic regression model

to determine which components have an impact on healthy brain ageing contrasted with

dementia.

Results

Cumulative variance explained (VE) for each PC (defined in equation 4.12), is plotted

Figure (6.4). Whilst the model is able to identify 218 PCs, the first 10 PCs explain 55%

of VE, whereas the set of 30 PCs explains 65% of VE. Slices of the PCs are plotted in

Figure (6.5) where one can see that the highest values of PCs are centered around the

ventricles. We consider the first 10 PCs as any subsequent PC explains less than 1% of

VE. The corresponding scores are modelled with equation (6.4).
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To link the subject outcome with the score function, we use subject age as well as the

random effects a0li, a1li in a logistic regression from equation (6.5) with L = 10. The

outcomes are stored as a binary vector where 0 indicates a control and 1 indicates a

case. Including the intercept and age, there are 24 parameters to be estimated in the

logistic regression. We use LASSO to identify relevant covariates to be included in the

final model, with the penalization set to omit the age covariate. From this approach, 11

covariates have been identified that correspond to numerous PCs as seen in Table (6.2)

together with the penalised estimates. The scores identified in Table (6.2) are plotted in

Figure (6.6).

Figure 6.5: Slices along the z-axis (z = 45) for the first 10 Pcs of the case-control group (219
subjects).

Looking at Table 6.2, of the selected covariates, 8 correspond to random intercepts and 3

correspond to random slopes. This suggests that overall, the subject state at entry may

matter more in terms of determining their outcome. Looking at Figure (6.6), the scores

whose slopes were selected are indexed 2, 7 and 9 and it appears that the direction of

the slopes for two groups is different in the plotted figure. For example, in score 2, the

AD group seems to have a slight slope going upward whereas the CN group is flat. The

penalised coefficients for the slopes are larger than the intercepts, which corresponds to

the fact that the slopes have small values a1ℓi compared to a0ℓi and age. The influence

of age is relatively small, with age being positively correlated to AD. Notably, age is a

larger variable in the range of [60, 95] whereas other covariates included in the model
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are closer in range of [−1, 1]. Finally, the coefficients seem to increase as ℓ is higher,

which corresponds to the fact that the overall variation of the scores should go down as

ℓ increases.

α0 agei a0ℓi a1ℓi a0ℓi a0ℓi a0ℓi
ℓ 1 2 3 4 5

Coef. -4.46 0.06 -5.82 17.88 11.38 -1.69 1.80

a0ℓi a0ℓi a1ℓi a0ℓi a0ℓi a1ℓi
ℓ 6 7 7 8 9 9

Coef. -14.04 32.14 -162.26 -6.72 -39.56 380.65

Table 6.2: Penalised coefficients for the logistic regression model in the case-control group

6.4.2 Model Fit

We would like to further investigate model fit as we observe that the amount of variance

explained by 20 components is rather low, namely 60%. This suggests that our functional

model might not fit well. One reason might be that the images are too different due to

variation in severity of disease and in age of the participants. To investigate this, we now

consider more homogeneous group by taking a sub-sample of the original 382 subjects,

considering only those aged between 69 and 75 at screening. This group contains 138

subjects of which 55 are CN for all time points, 29 are AD and a further 29 are MCI, the

remaining subjects change diagnoses from CN to MCI at some points in the study.

Results

Model (6.3) is fitted as in the case-control group. The estimation method was able

to identify all 138 PCs with the first 22 explaining 70% of the total variation and the

first 50 explaining 80% of the variation. VE (defined in equation (4.12)) for each PC is

plotted Figure (6.7), where the x-axis represents the number of PCs and the y-axis is the

cumulative VE. The contribution of the first 20 PCs to VE can be seen in Table (6.3).

Slices of the PCs are plotted in Figure (6.8).

The scores are modelled with equation (6.4) and the random intercepts and slopes are

used to model the outcome variable in logistic regression. We fit the model described

in equation (6.5) with age excluded and L = 22. As before, we use LASSO to identify

relevant covariates from a total of 45. In this approach, 4 covariates were identified as
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Figure 6.6: Scores for the case-control group estimated from models 6.4 random intercept and
random slope a0li, a1li that were identified by the LASSO regression in 6.2.

shown in Table (6.4) which correspond to PCs 1,2,5 and 16. In this case, the random

intercepts for PCs 1,5 and 16 were selected and the random slope for PC 2.

In both subject groups, PCs 1 through to 5 appear to be very similar, with their inner

product being larger than 0.8. After this the PCs computed appear to be different, with

all inner products being below 0.5, which shows how the choice of sample can alter the

estimated model. Additionally, logistic regression covariates a01i, a12i and a15i were also

chosen for the case-control group so this is a consistent finding across subject groups.
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Figure 6.7: Variance explained.

ϕ̂1(s) ϕ̂2(s) ϕ̂3(s) ϕ̂4(s) ϕ̂5(s) ϕ̂6(s) ϕ̂7(s) ϕ̂8(s) ϕ̂9(s) ϕ̂10(s)
VE 0.361 0.075 0.060 0.058 0.022 0.017 0.011 0.011 0.010 0.008

ϕ̂11(s) ϕ̂12(s) ϕ̂13(s) ϕ̂14(s) ϕ̂15(s) ϕ̂16(s) ϕ̂17(s) ϕ̂18(s) ϕ̂19(s) ϕ̂20(s)
VE 0.008 0.007 0.007 0.006 0.006 0.005 0.005 0.005 0.005 0.004

Table 6.3: The Variance Explained for the first 20 PCs.

6.5 Conclusion and Discussion

Our proposed model and estimation method was able to identify all possible PCs in

this scenario, however the amount of variance explained with a reasonable amount of

components was dependent on the overall variability between subjects. In the case-

control group, the first 10 PCs explained 55% of variation whereas for the smaller, more

homogeneous group, the first 10 estimated PCs reached 63% VE. In both cases, PCs after

10 explain less that 1% of the variation. This suggests that the dataset still contains a

large amount of intra-subject variability with regards to age, disease state and other

factors.

Analysis on the scores identified relevant PCs that are most associated with subject

diagnosis. LASSO was used for parameter selection allowing us to identify PCs that are

most correlated with subject outcome. The indices of these PCs for both groups are

found in Tables (6.2) and (6.4). In both groups, the random intercept of scores 1 and

5, as well as the slope of score 2 were deemed as important predictors of outcome. For

scores 1 and 5, this suggests that different state upon entry can differentiate the outcome
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α0 a0ℓi a1ℓi a0ℓi a0ℓi
ℓ 1 2 5 16
Coef. -0.516 17.419 -5.610 -32.018 -1.44

Table 6.4: Penalised coefficients for the logistic regression model

Figure 6.8: ADNI principal component slices along z=45 for the age-subset (138 patients).

whereas for score 2, it suggests that the change over time is indicative of a diagnosis. The

PCs indexed 1,2 and 5 appear to correspond to ventricle size and seem to have an effect

on the diagnosis in the regression model. This is consistent with previous findings in the

literature (Thompson et al., 2004).

Whilst the number of longitudinal observations may be less of a limiting factor in our

model, the score functions could be modelled differently in the future. We have chosen a

simple approach that assumes the underlying structure of the score functions to be linear

but other modelling methods can be considered in the future that may include more

flexibility. Milliken and Edland, 2000 point out that the rate of decline is non-linear,

so using the diagnosis time or time of enrolment may not directly reflect the patients

trajectory. Using a pre-determined function such as a sigmoid or a more flexible model

could be more appropriate in the future. We have found that model fit is determined

by the heterogeneity of the data, the case-control group was able to reasonably estimate

components that explain 55 variation with L = 10. A model fitted on a smaller, more

homogeneous subject group could recover 63% of VE with 10 PCs, however these are
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Figure 6.9: ADNI image reconstruction along the axis z=45 and time point 1 for random
subjects from the age group.

still relatively low compared to our application in Chapter 4. This could be addressed by

potentially considering a large and/or a more homogeneous dataset.

In this chapter we have considered association between brain regions, represented by

PCs and binary subject outcomes. Much of the literature in this field, as discussed in

Chapter 3, is interested in using imaging for prediction and we would like to investigate

our approach in this context.



Chapter 7

Temporal Images for Prediction of

Dementia

7.1 Introduction

In all chapters of this thesis, we have considered FDA methods for the analysis of neu-

roimaging data. Chapter 6 extended the STFPCA model to longitudinal data and was

applied to the ADNI dataset, which has greatly contributed to methodological develop-

ment in multiple fields. Advancements in computation power have fueled the popularity

of machine learning techniques to analyse images and to use them to predict outcomes.

In this chapter, we are motivated by a method published by Sauty and Durrleman, 2022

that proposed a neural network to learn the representation of longitudinal images. We

propose a network inspired by their work and a framework for the comparison of networks

to the model discussed in Chapter 6.

Whilst much work has been done to predict disease status from imaging (discussed in

Section 3.4.2), relatively few ML methods exist where a series of images over time is

considered at once. We are motivated by Sauty and Durrleman, 2022 who propose a

variational autoencoder with a mixed model regulating the latent space such that each

latent variable represents a feature extracted from the image modelled on a longitudinal

trajectory. In contrast to our proposed statistical model, this method could potentially

find non-linear relations between voxels of an image and summarise them as a random

110
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vector of latent variables. On the other hand, NNs are known for lacking interpretability

and can be computationally expensive, with both training and testing taking a lot of

computing power.

In this chapter, we suggest an adaptation of the network proposed by Sauty and Durrle-

man, 2022, that can be more directly compared with our modelling approach from Chap-

ter 6. In our case, we will model the latent variables with a random slope model and use

the random intercepts and slope in a logistic regression to predict patient case-control

status. As the network is a non-linear approach, we are interested in its performance

compared to our model that relies on the linear addition of PCs to reconstruct the image.

We suggest a framework using cross validation for the comparison of this network and

the STFPCA model that uses the latent variables in logistic regression to predict patient

outcomes.

7.2 Background on Variational Autoencoders

Autoencoders are a standard network for non-linear dimensionality reduction, comprised

of an encoder qϕ(·) and a decoder pθ(·) that first reduce the input to a pre-determined

latent space and use this latent space to reconstruct the original image. Let Yi, i denoting

a subject, be a real-valued vector or matrix that can represent a set of covariates or an

image in Rd with d ∈ {1, 2, 3}. The function qϕ : Yi → zi is parameterised by weights

ϕ and maps the input Yi ∈ R, to a vector z ∈ R. The decoder pθ : zi → Ŷi maps the

latent space back to R3 to estimate the random variable. The parameters of the network,

often called weights, are updated via back-propagation where the loss function is the

reconstruction error denoted Lrecon.

Variational autoencoders (VAE), introduced by Kingma and Welling, 2014, extend the

autoencoder by treating the functions qϕ and pθ as estimations of the cumulative distri-

bution function. In this scenario, we assume that the random variables Y are generated

from a latent variable z that follows some unknown distribution p(z), and hence they

follow a posterior distribution p(Y |z). We assume that both functions can be parame-

terised by pθ(z) and pθ(Y |z), and that their PDFs are differentiable almost everywhere

w.r.t. both θ and z. However, both θ and z are unknown. This poses an intractable
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problem, as pθ(Y ) =
∫
pθ(z)pθ(Y |z)dz cannot be evaluated. To circumvent this issue,

the authors introduce a recognition model qϕ(z|Y ) which is an approximation of the

intractable true posterior pθ(z|Y ). From a coding perspective, qϕ(z|Y ) is treated as an

encoder and pθ(Y |z) as the decoder, and the parameters ϕ and θ will be estimated jointly.

The loss function includes another parameter LKL = DKL

(
qϕ(z|Yi)||pθ(z)

)
, which denotes

the Kullback–Leibler (KL) divergence.

In traditional VAEs, the latent space Z is made up of continuous random variables z

sampled from qϕ(z|Y ). As qϕ(z|Y ) cannot be computed directly, the authors introduce a

reparameterization trick. There, the random variable z is treated as deterministic with

z = gϕ(ϵ|Y ) where ϵ is an auxiliary variable with independent marginal p(ϵ) and gϕ(·) is

a vector valued function parametrised by ϕ. Kingma and Welling, 2014 provide various

options of defining ϵ and gϕ(·). Focusing on their example of a VAE, they define the

approximate posterior be a multivariate Gaussian with a diagonal covariance structure:

log qϕ(z|Yi) = logN (z;µi, σ
2
i I) (7.1)

where the mean and s.d. of the approximate posterior, µi and σ2
i , are outputs of the

encoding MLP. Then zi = gϕ(Yi, ϵi) = µi + σi · ϵi.

7.2.1 Motivation: Longitudinal VAE

Sauty and Durrleman, 2022 introduce a longitudinal VAE where the latent space elements

z follow the mixed effect model:

zij = p0 +
[
eξi(tij − τi)

]
v0 + wi + εij, (7.2)

where the random effects of the model are: eξi and τi, denoting the acceleration factor

and the onset age of patient i, respectively. Then wi is the space shift that encodes

inter-subject variability. They assume εij ∼ N (0, σ2
ε), τi ∼ N (t0, σ

2
τ ), ξi ∼ N (0, σ2

ξ ) and

wi ∼ N (0, 1). The parameters p0, v0, t0 are respectively a reference position, velocity and

time and describe the average trajectory. Together with the variances σ2
ε , σ

2
τ , σ

2
ξ , they

form the fixed-effects of the model.
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Their model is updated using a composite loss function

L = γ1Lrecon + γ2LKL + γ3Lalign where


Lrecon =

∑
ij ||Yij − Ŷij||2

LKL =
∑

ij DKL

(
qϕ(z|Yij)||N(0, 1)

)
Lalign =

∑
ij ||zij − ẑij||2

(7.3)

where ẑij denotes the estimate outcomes from model (7.2).

The latent variables are parameterised as simple normally distributed variables, i.e. ẑijk =

µk + σk · ϵijk. And hence, the KL loss penalises qϕ(z|Yij) for not adhering to a standard

normal distribution. Simultaneously, the alignment loss penalises the model for producing

latent variables that do not adhere to the mixed model. We believe that these two

functions cannot be optimised simultaneously as they both assume different things from

the latent variables zij. For this reason, we will introduce a VAE with a simpler model

for the latent variables, one that allows us to assume a specific structure on zij such that

both KL and alignment loss have the same optimization.

7.3 Methods

Denote Yij as a 3D image for subject i ∈ {1, . . . , n} with index j denoting the jth obser-

vation for the ith subject with j ∈ {1, . . . Ti}. Consider a VAE comprised of an encoder

qϕ(·) and a decoder pθ(·). The function qϕ : Yij → zij is parameterised by weights ϕ and

maps the 3-dimensional input Yij with values ∈ R3, to a vector zij ∈ Rk, where k denotes

the number of latent variables which is chosen prior to training and is set for all subjects.

The decoder pθ : zij → Ŷij maps the latent space back to R3 to estimate the image.

Whereas a standard VAE (Kingma and Welling, 2014) assumes all elements of the vector

zij to follow a normal distribution, we propose the following random slope model that

models the latent variable as a linear relation between constants, subject identity idexed

i and subjects visit time tij:

zij = β0 + β1tij + a0i + a1itij + εij, (7.4)
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where β0, β1 are the fixed effects, a0i is a random intercept with variance σ2
a0, a1i is a

random slope with variance σ2
a1 and εij ∼ N (0, σ2

ei) is error. We denote the covariance

between the random slope and the random intercept as Cov(a0i, a1i) = σa01. We can

write the covariance between two observations zij, zhl as Σ whose number of rows and

columns is the total number of observations ntot =
∑n

i Ti and is defines as:

Σ = Cov(zij, zhl) =


0 if i ̸= h

σ2
a0 + σa01(tij + til) + σ2

a1tijtil if i = h, j ̸= l

σ2
a0 + 2σa01tij + σ2

a1t
2
ij + σ2

e0 if i = h, j = l

(7.5)

This model still assumes that each zijk ∈ zij follows a normal distribution, however now

it has the form:

zijk ∼ N(β0k + β1ktij,Σk)

where the covariance matrix is structured as above. The subscript k is to denote each

element in the latent space as each would have its own model estimated.

The loss function would then have three elements: the reconstruction error Lrecon, KL

divergence LKL and alignment loss Lalign, which taken the difference between the true

and the estimated latent variables. They are defined as follows:

L = γ1Lrecon + γ2LKL + γ3Lalign where


Lrecon =

∑
ij ||Yij − Ŷij||2

LKL =
∑

ij DKL

(
qN0 ∥ N1)

)
Lalign =

∑
ij ||zij − ẑij||2

(7.6)

Each of these elements are further defined in next subsection.

7.3.1 Training

During training, there will be two phases. In the first phase, we will not be estimating

the mixed model and the network will train only with reconstruction loss to establish the

initial parameters for the encoder qϕ(·) and decoder pθ(·). In the second phase we will

include the KL and alignment loss functions as well as sample zij following the random
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slope model.

Prior to training we decide on the number of epochs we would like to train and the number

of batches. One epoch corresponds to the full dataset passing through the network and 1

batch is a subset of the data with nb elements. We denote the set of images in a batch as

Nb so that any existing image indexed (i, j) ∈ Nb means that image i at time j belongs

to this batch. Batches are randomised at each epoch so the sets Nb change.

Phase 1 of Training

Phase 1 of training is used only to pre-train the encoder and decoder to stabilise without

limitations on the latent space imposed by the other loss functions elements. In this

algorithm, we only use the reconstruction component of the loss function and sample the

latent variables from a standard normal distribution in the latent space. No KL loss is

used to standardise the latent space so the network is allowed to update more freely.

Phase 2 of Training

Once the encoder and decoder are pre-trained, we begin to impose the structure on the

latent space. In this section we will discuss how we estimate the random slope model and

how the model is used in the network. Here we introduce the model estimation, KL loss

and alignment loss.

Estimation of the Random Slope Model

The model from equation (7.4) assumes a structured covariance matrix Σ ∈ Mntot×ntot ,

which can be written as a linear combination of matrices multiplied by the covariance

parameters. Additionally, as each subject i is independent, we can look at each subject

covariance matrix Σi that is the covariance between all the observations for subject i

Σi(j, k) =


σ2
a0 + σa01(tij + tik) + σ2

a1tijtik if j ̸= k

σ2
a0 + 2σa01tij + σ2

a1t
2
ij + σ2

e0 if j = k
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Then each matrix Σi can be written as:

Σi = σ2
a0M1i + σa01M2i + σ2

a1M3i + σ2
eI (7.7)

where σ2
a0, σ

2
a01, σ

2
a1 are the unknown covariance and variances of the random effects and

will be estimated during the procedure. The matrices M1,M2,M3 are known Ti × Ti

symmetric matrices. I ∈ MTi×Ti
is a diagonal matrix, M1i is a matrix of 1s and the rest

defined as follows:

M2i(j, k) =


(tij + tik) if j ̸= k

2tij if j = k

M3i(j, k) =


(tij · tik) if j ̸= k

t2ij if j = k

To allow for the estimation of the unknown covariance parameters σ2
a0, σa01, σ

2
a1 and σ2

e

)
,

we can vectorise equation (7.7). Let vec(Σi) denote the vectorised version of Σi where all

its columns are stacked into one vector. The same applied to vectorised versions of M

matrices, vec(M1), vec(M2i), vec(M3i), vec(Ii). Then equation (7.7) can be written as:

vec(Σi) = σ2
a0vec(M1) + σa01vec(M2i) + σ2

a1vec(M3i) + σ2
e0vec(Ii) (7.8)

=
(
σ2
a0, σa01, σ

2
a1, σ

2
e0

)T
W, (7.9)

where W =
(
vec(M1), vec(M2i), vec(M3i), vec(Ii)

)
is an ntot × ntot matrix.

We want to estimate β0, β1, σ
2
a0, σ

2
a01, σ

2
a1, σ

2
e . We will use iterative Generalised Least

Squares:

1. Estimate β̂k
0 , β̂

k
1 using OLS that assumes Σ = σ2

eIn.

2. Compute the residuals z̃kij = zij − β̂k
0 − β̂k

1 tij .

3. Compute the product matrix z̃z̃T , with E[z̃z̃T ] = Σ where Σ is a structured covari-

ance matrix composed of sub-matrices Σi along the diagonal.

4. Express the relationship as a linear regression between vec(z̃z̃T ) and σ2
a0, σa01, σ

2
a1,

σ2
e . So vec(z̃z̃T ) ∼ (σ2

α0, σ
2
a01, σ

2
a1, σ

2
e)

TW + e with W being a n × 4 known matrix

defined in equation (7.8).
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5. Estimate using GLS (σ2
a0, σ

2
a01, σ

2
a1, σ

2
e)

T =
(
W TW

)−1
W Tvec(z̃z̃T ).

6. Use (σ2
α0, σ

2
α01, σ

2
α1, σ

2
e) to create the structured matrix Σ̂ defined as in equation

(7.5).

7. update β̂ =
(
XT Σ̂−1X

)−1
XT Σ̂−1z where z is the vector of zij and X is the matrix

of covariates.

Loss Functions

We would like to use KL loss that is specific to the normal distribution assumed by the

random slope model. The alignment loss would be defined as before.

Given two multivariate normal distributions of nb length random vectors, N0,N1 with

separate means µ0, µ1 and covariance matrices Σ0,Σ1. Their KL divergence can be written

as:

DKL (N0 ∥ N1) =
1

2

(
tr
(
Σ−1

1 Σ0

)
− nb + (µ1 − µ0)

TΣ−1
1 (µ1 − µ0) + ln

(
detΣ1

detΣ0

))
(7.10)

In the case of the network, N0 would be the distribution obtained by computing the

covariance matrix from qϕ(z|Yij) (aka. the zij straight from the encoder). Then this would

be compared against N1 which would have the covariance matrix from the estimated

random slope model. The KL loss would enforce a covariance structure on the random

variables without enforcing the mean.

The alignment loss is defined as:

Lalign =
∑
ij

||zij − ẑij||2 =
∑
ij

||zij − β̂0 + β̂1tij + a0i + a1itij||2 (7.11)

where couples (a0i, a1i)
T are sampled from a multivariate normal distribution with mean

zero and 2×2 covariance matrix [(σ̂2
a0, σ̂a01), (σ̂a01, σ̂

2
a1)]. The alignment loss would impose

the complete structure from the model including the mean β̂0+ β̂1 · tij and the structured

covariance Σ̂.

Putting this all together, the reconstruction loss ensures that the estimated image is

similar to the input, the KL loss enforces the covariance structure on the latent variables
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and the alignment loss imposes the whole random slope model.

7.4 Data Application

Images are downsampled to 45× 50× 45 as 3D convolution layers have many parameters

and a large size of a 3D image would increase the size of the network substantially.

The network was pre-trained using just the reconstruction loss for 30 000 and then the

mixed model was used. The results shown are after 45k epochs in total. the number of

latent variables is set to 32.

7.4.1 Image Reconstruction

The trained network was frozen, meaning that after any forward pass the weights would

no longer be updated through back-propagation. Images of certain subjects were passed

through to visually evaluate their accuracy as during the whole process, the reconstruction

loss should ensure that each subject’s reconstructed image should resemble the observed

one.

The original and reconstructed images for one subject over time can be seen in Figure

(7.1). Images for two different subject are presented in Figure (7.2). In each case, it

appears that the reconstructions are very similar and do not differentiate in time or

between subjects.

7.4.2 Discussion

The reconstructions have not worked yet on this case. There are many further approaches

that could mitigate this issue. Firstly, we use a relatively small dataset considering the

number of parameters in a 3D convolutional neural network, and hence the network might

not be able to fully learn the variations between subjects. Additionally, the issue may

lay within the network (encoder and decoder itself), we have seen that the model was

able to converge to the latent values correctly and estimate them relatively well (loss

went down) but that did not directly translate to the reconstructions being sufficiently

different between subjects.
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Figure 7.1: Output images from VAE for one subject at three time points, slice along the z axis
for z = 24.

Another issue may lie within the loss function itself and how each element affects the

overall training of the network. A potential step would be to do a large grid search

with various settings of hyperparameters γ1, γ2, γ3 to see which combination would have

a positive effect.

A lot more computational energy goes into training such a network, computing power is

much more extensive and fine tuning all the elements together is often done by trial and

error, in this case it took a lot of training iteration just to debug the code and to get it

working fully we would need to understand the relations between all the hyperparameters

as well as find a larger dataset for this specific application. If we do 3D convolutions on

382 subjects it’s difficult to evaluate our method working at all.

7.5 Cross-Validation

We propose a framework to compare the FPCA model from Chapter 6 and the aforemen-

tioned LVAE network, as both methods propose vary different modelling approaches to a
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Figure 7.2: Output images from VAE for two subjects at time point 5, slice along the z axis for
z = 24.

similar dataset. On one hand, the FPCA model is a suitable approach for small dataset

with linear assumptions in the decomposition. On the other hand, neural networks, which

have increased in popularity in the last decade, provide a flexible approach allowing for

the finding of non-linear relations between observed voxels but often can be difficult to

train and require large amounts data.

Both the FPCA model and the Longitudinal VAE aim to estimate subjects specific sum-

mary variables that can subsequently be used in prediction and reconstruction of the

original image. In the case of the FPCA model, it’s the score functions modelled with

a random slope producing a random intercept and a random slope that summarize the

patients trajectory over time. With the VAE, the encoder network is trained to produce

latent variables that follow a random effect model as well. As a result, both methods

produce a set of random variables which can be compared via the random effect model.

Then the parameters of this model can be used in a logistic regression for prediction.

This section aims to evaluate both methodologies with regards to their predictive per-
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formance of both models with cross-validation. We consider the case-control group from

Chapter 6 that consists of 219 subjects where 123 are diagnosed as CN and 96 as AD. This

group naturally lends itself for the task where the models will predict the case-control

status of each subject. Due to the potential heterogeneity of the data discussed in 6, we

consider a leave-one-out cross-validation (LOOCV) approach, to minimise the effect of

large groups missing on the performance.

The score functions from the FPCA model, ψil(tik), for each l ∈ {1, . . . , L}, follow the

random slope model defined as:

ψil(tij) = β0l + β1ltij + a0li + a1litij + εij, (7.12)

where β0l, β1l are the fixed effects, a0li is a random intercept with variance σ2
al0, a1li is a

random slope with variance σ2
al1 and εij ∼ N (0, σ2

e) is error. The covariance between the

random slope and the random intercept is assumed to be zero.

Similarly, each latent variable zijk for k ∈ {1, . . . , K} denoting the number of latent

components, is modelled as

zijk = β0k + β1ktij + a0ki + a1kitij + εij, (7.13)

where β0k, β1k, a0ki and a1ki are defined as above.

In both cases, the logistic regression that will be estimated in the cross-validation will

have the form

Pr(Ci = 1) = logit
(
α0 +

Q∑
q=1

(
α2q−1 · a0qi + α2q · a1qi

)
+ α2Q+1agei

)
. (7.14)

where q,Q can either be equal to k,K or l, L depending on whether this is for the VAE

or FPCA model. And parameters selected using LASSO with age being omitted from

penalization.
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Figure 7.3: ROC Curves for the FPCA model and the VAE, the left are curves from leave-one-
out CV and the right are the curves from predictions where the whole dataset was trained.

7.5.1 Design

FPCA

The FPCA model was estimated for the complete 219 subjects and the random slope

model was estimated for the score functions. This is considered the complete dataset that

will be used in leave-one-out CV. For each set of train subjects, a new LASSO model was

estimated to model their outcome as a result of their random intercepts/slopes from eq.

(7.12). The test group consists of only one subject for whom the outcome is predicted

and will be compared to their true diagnosis. This process is repeated until all subjects

have had their outcome predicted.

α0 agei a0ℓi a1ℓi a0ℓi a0ℓi a0ℓi
ℓ 1 2 3 4 5

Avg. Coef. -4.46 0.06 -7.52 -138.65 13.08 -6.47 4.51
sd. 0.145 0.002 0.269 15.381 0.497 0.683 0.883

a0ℓi a0ℓi a1ℓi a0ℓi a0ℓi a1ℓi
ℓ 6 7 7 8 9 9

Avg. Coef. -22.74 35.63 -924.79 -18.72 -54.70 884.48
sd. 0.900 0.993 61.486 1.379 1.197 33.120

Table 7.1: The average estimated coefficient over the course of LOOCV and their standard
deviation.
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LVAE

The LVAE network was trained on all 382 subjects in the dataset as it needs a larger data

size. The latent variables as well as the random slope and random intercept estimated

from the IGLS method are extracted for the 219 subjects. These are used in the CV in

the same manner as for FPCA, with a new logistic regression model being estimated with

LASSO used for parameter selection.

7.5.2 Results

The results of the CV for both methods are shown using ROC curves in Figure (7.3).

The first graph represents the prediction accuracy for the LOOCV where the prediction

for the test group, consisting of one patient, is compared to their true diagnosis. For this

case the AUC is 0.573. The accuracy for the complete model is 0.75 and for the LOOCV

the accuracy was 0.43.

The estimated coefficients for the model estimated on the full dataset can be found in

Table (6.2), for the LOOCV, Table (7.1) has the mean and the standard deviation of

model coefficients over the 219 different train/test splits. Looking at these tables, it can

be seen that some coefficients are quite similar across different folds, especially those that

correspond to the intercept, agei and a01i. These coefficients also seemed to be most stable

across the folds. Coefficient corresponding to a03i could be considered within reasonable

range of the original, but on the whole, the later coefficients have larger estimates than

those presented in Table (6.2). Coefficients that correspond to random effects are very

high and have the highest standard deviation, which could correspond to model instability

across the folds and the drop in AUC in LOOCV. Other coefficients that have a higher

ℓ have slightly higher standard deviation, but in general the s.d. seems to be lower than

1 for ℓ < 7 and for ℓ = 8 or 9 it is 1.379 and 1.197, respectively. A test LOOCV was

ran with the covariates that correspond to the slopes omitted and this did not result in

a significant change in AUC.

The second graph in Figure (7.3) represents the ROC curve of the predictions from the

logistic model trained on the full 219 subjects with an AUC of 0.837 for the FPCA model

and 0.518 for the VAE. For the VAE, the ROC curves were the same for the full estimated
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model and the LOOCV approach and had a low accuracy of 0.44.

7.6 Discussion

The results for the FPCA model suggest that the data is very heterogeneous, especially

when LOOCV was used and one subject missing can largely affect the resulting AUC,

going from 0.837 to 0.578, and the accuracy, lowering it from 0.74 to 0.43. For the

LVAE, we have seen previously that several elements could be improved in the training

that could affect both the reconstruction and prediction outcomes. As it stands, one

of the limitations of this project was the data size (for the VAE) and the heterogeneity

of the data which affects both methods. This can be seen with how coefficients vary

across different folds of the LOOCV with only a few corresponding well to the first model

estimated on the full dataset.

Given the current settings of the comparison, the FPCA model performed better but it

does not necessarily rule out the network approach. This comparison highlights where

each approach could be used and what its advantage and disadvantages are. As stated

throughout the thesis the functional approach is an efficient and interpretable approach

that could be applied to small datasets. In Chapter 6 we have shown that the hetero-

geneity of the data affects number of PCs required to fully reconstruct the data, but the

method was able to identify PCs which correlate most to case/control status. In contrast,

the neural network has the benefit of finding non-linear relations between observations

and can be applied to large datasets. This application may have been limited by the data

in both approaches, and future work can be focused on incorporating more data into the

analysis protocol.

This framework can be improved upon by training the individual FPCA and LVAE models

on different train/test datasets, but as this is a demonstration of the method and the

network needs further fine-tuning, this approach introduces a feasible comparison in the

future for prediction.

A very palpable element that differentiates deep learning from statistical analysis is the

requirement for computation. Although neural networks are widely used for the analysis
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of large medical image datasets, its usage is extremely energy-intensive (Garćıa-Mart́ın

et al., 2019; Georgiou et al., 2022). Apart from its massive financial cost, it incurs

high carbon emissions Strubell et al., 2019. This is visible in the suggested actions to

improve model performance in Section 7.4, where many steps are based on observations

and iterations. This is contrasted to the statistical approach, where the analysis plan can

be planned with minimal experiments prior.

Indeed the network cannot be directly compared to our model as several improvements

can be implemented in the future, however this framework can be used for the comparison

once the LVAE is trained on a sufficiently large dataset with appropriate hyperparameters

chosen. Nevertheless, we have shown that the FPCA model does well on small data and

can provide many insights when considering prediction and association, which are harder

to infer from network performance during training.



Chapter 8

Conclusion and Future Work

This chapter summarizes the main results of the thesis and includes suggestions, which

could improve some aspects of the research. Some future works are proposed as offshoots

of the research.

In summary: Chapter 1 gave a general introduction of and a motivation for the work

presented in this thesis. Chapter 2 provided background on FDA methods specifically

FPCA, functional regression and smoothing. Chapter 3 described the foundations of

neuroimaging data, its standard pre-processing steps and introduced the two datasets

that are used throughout the thesis. Chapter 4 introduced our proposed spatio-temporal

FPCA model and its estimation method which was evaluated in a simulation study. The

model was applied to a dense temporal dataset of fMRI images, compared to existing

methods and used in a association analysis between active brain regions and risk pref-

erence of the subjects. Chapter 5 described a simulation study to compare our model

in low dimensions to other methods that would otherwise not be applicable to imaging

data. Chapter 6 extended our model to a longitudinal data with sparse time points and

missingness. The score functions are modelled with a random slope model which can

be used in further analysis. The effect of missingness on model estimation is studies via

simulation and the model was applied to the ADNI dataset to find association between

brain regions and case/control status. Chapter 7 proposed a novel neural network ar-

chitecture inspired by previous publications and suggests a framework to compare two

methods on the same longitudinal dataset. We show a preliminary use case of this ap-
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proach to evaluate the performance of the FPCA model and the neural network in terms

of case/control status prediction. We discuss further improvements as well as the effect

of data heterogeneity on results in Chapters 6 and 7.

8.1 Summary of Results

From this thesis, we make the following conclusions:

1. In Chapter 4, we have shown that our proposed model performs well on densely

captured neuroimaging data, as it is able to recover high VE (90.1% with 14 PCs)

and the score functions can be used to associate ROIs to subject risk prevalence.

The estimation method is robust and allows for the estimation of our model in high

dimensions. In a simulation study, we have shown our proposed estimation method

can recover underlying functions with high accuracy. Additionally, we have shown

our method outperforms existing approaches, specifically one proposed by Li et al.,

2019, in both computational efficiency and VE for our dataset.

2. Chapter 5 designed a simulation study in low dimensions to show that our proposed

FPCA model fits well to multiple datasets and is comparable to existing state-of-the

art models available for lower two dimensional data. We show the computational

advantage of our approach and discuss our method’s limitations when the underly-

ing model generating data does not fit the estimated model. For cases where the

estimated model matched the underlying one, our performance measured by VE

and MSE of parameters was the same as other methods. For designs where the

underlying model did not match the estimated one, we still recovered a sufficiently

large VE with a lower bound of 75% and each of the PCs estimated by our model

had the same VE as other methods.

3. Chapter 6 has shown our method can be extended to sparse longitudinal data. A

simulation study has shown that our estimation method can recover underlying

functions when the observed data has missingness. Application of our model to the

ADNI dataset was able to show associations between brain regions whose atrophy

has been previously correlated with the onset of dementia. Chapter 7 has shown
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that the model has potential to be used in prediction, but the heterogeneity of the

dataset used affects the results of CV.

4. Chapter 7 has shown the advantages of using statistical methods on imaging data

compared to machine learning methods. Firstly, statistical approaches show an ad-

vantage in analysing small datasets and allow for multiple types of analysis which

include association, prediction or classification. It discusses the computational ef-

ficiency of model estimation compared to network training and hyper-parameter

searching, which is both time and energy consuming.

8.2 Publishable Material

The publishable material from the thesis is as follows:

1. Title: Spatio-Temporal Functional Principal Component Model for fMRI

Data . This paper is fully written and ready for review, this would be based on the

work presented in chapters 4 and 5. This would introduce the new model and esti-

mation method, show its performance via simulation and apply it to our described

dataset with association analysis.

2. Title: Functional Principal Component Analysis Model for Longitudinal

MRI Data . This paper would be based on chapters 6 and 7. It will contain our

proposed model, its extension for longitudinal data, the simulation study measuring

the impact of missing data on the estimation and the data analysis with both

association and cross validation results.

3. Title: Comparison of Statistical and Machine Learning Methods on Im-

age Datasets. This paper would be extension on the work presented on chapter

7 with a fully trained network and using the framework proposed to evaluate our

FPCA model against a VAE.

4. Title: Longitudinal Variational Autoencoder for T1 MRI Scans. This

paper would be suitable for a computer science conference presenting the network

from chapter 7 trained on a larger dataset with cross validation work to evaluate

how well it can predict patient disease status from images.
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8.3 Improvements and Future Work

Chapters 5 and 6 have demonstrated the importance of model fit. Firstly, Chapter

5 has shown how the underlying data structure can affect model estimation and the

resulting VE. Secondly, Chapter 6 has shown how data heterogeneity can have an effect

on the number of PCs required to reach a reasonable VE. Future work can study these

phenomena, understand when they occur specifically and potentially find upper bounds

for reconstruction ability for cases such as those in design 2 seen in Chapter 5.

In the low dimensional simulation in Chapter 5 we have shown that for the cases where

the underlying model does not fit the estimated one, Park and Staicu, 2015 can recover

a higher VE with the estimation of additional PCs. This method could potentially allow

to model heterogeneous data, however its implementation on imaging datasets in non-

trivial. A potential implementation could be based on the representation of images using

b-splines and deriving the structure of the covariance matrix as shown for a simpler

case in Chapter 8 of Ramsay and Silverman, 2005. This application could potentially

address the heterogeneity seen in the ADNI dataset and would provide an extension of

the low-dimensional model to images.

In Chapter 6 the score functions were not dependant on age, which was shown to be a

factor in the data due to the wide age range upon screening. Further work would be

to treat the score function not as beginning from time of screening but rather from the

subjects age. This could potentially address some of the heterogeneity issues we have

found and would allow for the usage of the full ADNI dataset.

Chapter 7 has presented a novel architecture for a neural network and a framework for

comparison, however the network was not trained fully to make a fair comparison. Further

work will be done in accordance with the discussion notes in this chapter to produce the

aforementioned publications. These are mainly related to hyper-parameter tuning, using

a larger dataset with at least a couple thousand images in total (compared to the current

dataset with 1998 images) and studying its reconstruction and predictive performance

in a full cross validation study where the network is trained on a train/validation/test

split dataset. These comments have been discussed in more depth in the final section of

Chapter 7.
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Noise Standard Deviation of VE

Proc Cov FPCA

n=50 ϕ̂1(s) ϕ̂2(s) ϕ̂1(s) ϕ̂2(s) ϕ̂1(s) ϕ̂2(s)

0% 0.0406 10−15 0.0406 10−15 0.0408 10−17

10% 0.0414 0.0173 0.0414 0.0173 0.0412 0.0175
20% 0.0381 0.0263 0.0381 0.0263 0.0380 0.0264

n=100

0% 0.0339 10−15 0.0339 10−15 0.0341 0
10% 0.0299 0.0141 0.0299 0.0140 0.0300 0.0142
20% 0.0283 0.0207 0.0282 0.02065 0.0283 0.0208

n=1000

0% 0.0097 10−15 0.0097 10−15 0.0097 0
10% 0.0093 0.0044 0.0093 0.0044 0.0093 0.0044
20% 0.0087 0.0072 0.0087 0.0072 0.0087 0.0072

Table A.1: D1.1 result: standard deviation of VE per PC (cumulative) over 100 replicates.

Noise Standard Deviation of VE

Proc Cov FPCA

n=50 ϕ̂1(s) ϕ̂2(s) ϕ̂3(s) ϕ̂1(s) ϕ̂2(s) ϕ̂3(s) ϕ̂4(s) ϕ̂5(s) ϕ̂1(s) ϕ̂2(s) ϕ̂3(s)

0% 0.0185 0.0308 0.0136 0.0343 0.0243 0.0129 0.0024 0.0016 0.0464 0.0373 0.0000
10% 0.0181 0.0351 0.0143 0.0373 0.0237 0.0139 0.0080 0.0078 0.0410 0.0342 0.0081
20% 0.0174 0.0327 0.0185 0.0348 0.0246 0.0182 0.0165 0.0170 0.0391 0.0344 0.0169

n=100

0% 0.0149 0.0266 0.0103 0.0286 0.0186 0.0100 0.0018 0.0010 0.0309 0.0265 0.0000
10% 0.0146 0.0279 0.0106 0.0280 0.0174 0.0103 0.0060 0.0055 0.0337 0.0265 0.0060
20% 0.0139 0.0264 0.0134 0.0264 0.0177 0.0132 0.0120 0.0115 0.0321 0.0266 0.0124

n=1000

0% 0.0036 0.0085 0.0035 0.0076 0.0063 0.0033 0.0006 0.0004 0.0100 0.0083 0.0000
10% 0.0036 0.0082 0.0037 0.0074 0.0061 0.0035 0.0018 0.0017 0.0098 0.0081 0.0018
20% 0.0035 0.0077 0.0048 0.0070 0.0065 0.0047 0.0039 0.0039 0.0094 0.0080 0.0040

Table A.2: D2.1 result: average VE per PC (cumulative) over 100 replicates.
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Figure A.1: Subject response prevalence in tasks of type 3 presented in box-plot form. The
responses are pseudo-continuous on a scale from 0 to 21.



APPENDIX A. APPENDIX 133

Figure A.2: Subject response prevalence in tasks of type 4 presented in box-plot form. The
responses are pseudo-continuous on a scale from 0 to 21.
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