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Abstract

Polymer blends can exhibit a range of phase behaviour. During phase transitions,
the evolution of the microstructure can be monitored using small-angle scattering.
Information about the microstructure can be deduced from measurements of the
structure factor – a quantity directly proportional to the scattered intensity. While
the time evolution of the structure factor can be measured relatively easily, modelling
it has proved to be much more difficult. We believe the latter could be impeding
our ability to control the underlying phase transitions.

In this thesis, we are primarily concerned with thermally-induced polymeric spin-
odal decomposition and dissolution. The equation of motion for the structure factor
during these phase transitions is known to be unclosed, i.e. an infinite hierarchy
of coupled differential equations. Existing attempts to model the time evolution of
the structure factor during spinodal decomposition and dissolution have focussed on
deriving approximate equations of motion based on truncation schemes.

Arguably, the most advanced approximate equation of motion was derived by
Akcasu et al. We refer to this as the Akcasu equation. There is very little literature
aimed at testing the Akcasu equation. To rectify this, we tested the Akcasu equation
using synthetic structure factor snapshots derived from simulations. In the case of
dissolution, the Akcasu equation performed well at describing the time evolution
of the synthetic structure factor snapshots. In the case of spinodal decomposition,
we determined that improvements are required. We hope these respective findings
motivate further experimental testing and modelling work.

Embracing the duality between the fact the structure factor is hard to model
but relatively easy to measure, we investigated the application of system identifi-
cation techniques to the problem of modelling the time evolution of the structure
factor during spinodal decomposition. One technique we considered is dynamic
mode decomposition. We demonstrated the ability of dynamic mode decomposition
to make accurate future predictions of synthetic structure factor snapshots based on
the knowledge of previous ones. While further research is required, we believe our
findings could be promising for developing a system to control spinodal decomposi-
tion.

Dynamic mode decomposition is a linear and equation-free system identification
technique. This prompted us to investigate system identification techniques that
output parsimonious non-linear governing equations. We had mixed success in this
direction, demonstrating that one such technique could not be applied to the problem
while another showed promising signs. We provide a comprehensive outline of how
one could build on these findings.
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Chapter 1

Introduction

1.1 Context

Polymer blends, the polymer equivalent of metal alloys, offer the chance to develop
new materials with unique properties. In general, polymer blends are prone to phase
separating, leading to the formation of phase-separated microstructures, which affect
the properties of the resulting material [1]. Phase separation can be key to the
emergence of desirable properties - see, for example, [2–5].

In this thesis, we are primarily concerned with thermally-induced polymeric spin-
odal decomposition [6, 7] - the process of spontaneous phase separation following a
temperature change into the unstable region of the phase diagram. We also consider
dissolution [8, 9] - the process by which phase-separated microstructures dissipate.

Figure 1.1: The development of a co-continuous and a dispersed droplet microstruc-
ture captured at three times τ1 < τ2 < τ3 during simulations of spinodal decompo-
sition. Simulating spinodal decomposition is discussed in chapter 3.
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Depending on several factors, such as the temperature of the blend and the ratio
of the constituent polymers, spinodal decomposition can give rise to a range of phase-
separated microstructures, from dispersed droplets to co-continuous networks [10,
11]. Figure 1.1 shows the development of such microstructures during simulations
of spinodal decomposition. Polymeric materials with co-continuous microstructures
have generated significant interest over recent years, finding applications in many
industries, including renewable energy, membrane technology and metamaterials [2,
4,5,12–14]. Improving our ability to control spinodal decomposition and dissolution
could drive advances in these industries, as well as many others, by opening the
door to the development of tailored, tunable microstructures.

The development of the microstructure during spinodal decomposition and disso-
lution can be monitored in real time using small-angle scattering. Figure 1.2 shows
a schematic of a small-angle scattering experiment in the context of a polymer blend
undergoing spinodal decomposition. Information about the microstructure can be
deduced from measurements of the structure factor [15, 16] - a quantity that is di-
rectly proportional to the scattered intensity.

Figure 1.2: A schematic of a small-angle scattering experiment in the context of a
polymer blend undergoing spinodal decomposition. Small-angle scattering experi-
ments are outlined in chapter 2.

The equation of motion for the structure factor during spinodal decomposition
and dissolution is known to be unclosed [17–19]. In other words, it is an intractable
infinite hierarchy of coupled differential equations. Existing attempts to model the
time evolution of the structure factor have focussed on deriving approximate equa-
tions of motion based on truncation schemes. Of these approximate equations of
motion, perhaps the most commonly used is the linear Cahn-Hilliard-Cook Flory-
Huggins-de Gennes equation [20–26]. This equation has proved to be a useful tool
in the analysis of scattering data [2,10,27–29]. However, it is only applicable under
a restrictive set of conditions and assumptions [8,26,30]. Motivated to improve this
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situation, Akcasu et al. set out to derive a non-linear equation of motion [19,31,32].
We refer to this equation as the Akcasu equation. There is currently very little
literature aimed at testing the Akcasu equation [31].

There is a duality to the situation outlined above: the structure factor is rela-
tively easy to measure but hard to model. The nature of this duality is the driving
force behind recent developments in the field of system identification, which is con-
cerned with building models of dynamical systems from data [33].

1.2 Aims

We believe we lack an adequate model for the time evolution of the structure factor
during spinodal decomposition and dissolution. This could be impeding our ability
to control these processes: without an adequate model for the structure factor, it
will be hard to make future predictions of the structure factor - valuable information
for a control system. With this in mind, we set out to:

� Test the Akcasu equation for the time evolution of the structure factor

� Explore the application of system identification techniques to the problem of
modelling the time evolution of the structure factor

To allow us to have as much control as possible in our investigations, we worked with
synthetic time series of structure factor snapshots, which we generated ourselves.

1.3 Thesis structure

The remaining chapters of this thesis are structured as follows. In the next chapter,
we outline the theories and techniques underpinning our work. In chapter 3, we
detail how we generated the synthetic time series we used to obtain our results. In
chapter 4, we test the Akcasu equation. In chapter 5, we apply a linear system iden-
tification technique called dynamic mode decomposition to the problem of modelling
the time evolution of the structure factor during polymeric spinodal decomposition.
In chapter 6, we investigate the application of non-linear system identification tech-
niques. Finally, in chapter 7, we conclude the thesis by summarising our key findings
and potential directions for future research.
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Chapter 2

Background

2.1 Introduction

In this chapter, we outline the theories and techniques underpinning the work in
this thesis. We start, in section 2.2, by considering the phase behaviour of polymer
blends. Next, in section 2.3, we focus on the mechanisms of phase separation and
dissolution in polymer blends. Next, in section 2.4, we consider the application of
small-angle scattering experiments to polymer blends. Finally, in section 2.5, we
outline the field of system identification, focussing on the techniques pertinent to
this thesis.

2.2 Phase behaviour of polymer blends

2.2.1 Free energy of mixing

The phase behaviour of a polymer blend, or any mixture, can be predicted from
knowledge of the free energy [6], a thermodynamic potential that quantifies the
maximum amount of work a system can do on its surroundings at constant temper-
ature. The mathematical definition of the free energy depends on the constraints
imposed on the system by its surroundings. Assuming the volume of the system is
fixed, the free energy is defined as follows [34]:

F = U − TS, (2.1)

where U is the internal energy, T is the temperature and S is the entropy. This
form of the free energy is known as the Helmholtz free energy.

To illustrate why the free energy can be used as a predictor of phase behaviour,
we consider the first law of thermodynamics. This states that the change in the
internal energy of a system is equal to the sum of the work done on the system, dW ,
and the heat supplied to it, dQ [34]:

dU = dW + dQ. (2.2)

In words, energy is conserved. Depending on whether the heat is supplied reversibly
or not, dQ is related to the change in entropy, dS, via [34]

dQ ≤ TdS, (2.3)
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where the equality holds in the case of reversible heat supply. Combining equations
2.1 - 2.3, it can be shown that

dF ≤ dW. (2.4)

If the system were to be mechanically isolated from its surroundings, then dW = 0
and equation 2.4 becomes

dF ≤ 0. (2.5)

From this equation, we can infer that any process that might occur within the
system, e.g. phase separation, will occur if it causes the free energy to decrease, and
the equilibrium state is achieved by minimising the free energy. These inferences
suggest that we can predict the phase behaviour of a polymer blend when armed
with the knowledge of its free energy function.

Instead of considering the ‘full’ free energy, it is convenient to consider a quantity
called the free energy of mixing instead. For a binary blend, the free energy of mixing
is defined as the free energy change associated with forming a homogeneous blend
from pure samples of two different species, labelled A and B [6]:

Fmix = FA+B − (FA + FB), (2.6)

where FA+B is the free energy of the homogeneous blend of A and B, FA is the free
energy of the pure sample of A, and FB is the free energy of the pure sample of B.
The free energy of mixing tells us the free energy of the fully mixed state relative
to the fully unmixed state. Combining equation 2.1 with equation 2.6, we obtain

Fmix = Umix − TSmix, (2.7)

where Umix = UA+B − (UA + UB) is the internal energy of mixing and Smix =
SA+B − (SA +SB) is the entropy of mixing. As in equation 2.6, the subscript A+B
refers to the homogeneous blend of A and B, the subscript A refers to the pure
sample of A, and the subscript B refers to the pure sample of B.

2.2.2 Regular solution theory for small molecule mixtures

By virtue of its simplicity and the fact it can be applied semi-empirically, a commonly
used theory to calculate the free energy of mixing in polymer blends is the Flory-
Huggins theory [23, 24, 35, 36]. This theory, which was developed independently
by Flory and Huggins, is rooted in the regular solution theory for small molecule
mixtures [6, 37]. We outline the regular solution theory first [6, 23].

The regular solution theory is based on a lattice model of mixing, i.e. the
molecules of the constituent species are assumed to occupy a regular lattice, with
each molecule occupying a single lattice site at any discrete moment in time. Molecules
belonging to the same species are assumed to be indistinguishable from each other.
To calculate the free energy of mixing, the theory invokes the mean-field assumption
that the mixing is random. This means that, in the mixed state, the probability
of a given lattice site containing a molecule of A or B is independent of its nearest
neighbours. It is assumed that there are short-ranged energetic interactions be-
tween the constituent molecules. Collectively, the assumptions of random mixing
and short-ranged interactions are called the regular solution assumptions.
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With equation 2.7 in mind, we first consider the entropy of mixing. Making use
of Boltzmann’s relation for the entropy,

S = kB ln Ω, (2.8)

where kB is Boltzmann’s constant and Ω is the number of microstates, this can be
written as

Smix = kB ln
ΩA+B

ΩAΩB

, (2.9)

where ΩA+B is the number of microstates corresponding to a homogeneous mixture
of A and B, ΩA is the number of microstates corresponding to a pure sample of A,
and ΩB is the number of microstates corresponding to a pure sample of B. Under
the random mixing assumption, the number of microstates in the mixed state is
equal to the number of indistinguishable ways of placing nA molecules of A (or,
equivalently, nB molecules of B) on n = nA + nB lattice sites:

ΩA+B =
n!

nA!nB!
. (2.10)

In the unmixed state, ΩA = ΩB = 1. Substituting equation 2.10 and ΩA = ΩB = 1
into equation 2.9 gives

Smix = kB(lnn!− lnnA!− lnnB!). (2.11)

Using Stirling’s approximation, which is valid in the limit nA, nB >> 1, we can write

Smix = kB

(
nA ln

nA + nB
nA

+ nB ln
nA + nB
nB

)
. (2.12)

It is often desirable to work in terms of intensive (‘per lattice site’) variables. With
this in mind, we introduce the volume fractions of A and B, which are defined as

φA =
nA

nA + nB
(2.13a)

φB =
nB

nA + nB
. (2.13b)

Upon substituting equations 2.13a and 2.13b into equation 2.12 and rearranging, we
obtain the following equation for the entropy of mixing per lattice site:

Slat
mix ≡

Smix

n
= −kB(φA lnφA + φB lnφB). (2.14)

We now consider the internal energy of mixing. Under the assumption that
there are short-ranged interactions between the constituent molecules, we only need
to consider the nearest-neighbour interactions. Making use of the random mixing
assumption, a given molecule in the mixed state has, on average, zφA nearest neigh-
bours of type A and zφB nearest neighbours of type B, where z is the number of
nearest neighbour lattice sites. This corresponds to there being 1

2
nφAzφA ‘A − A’

interactions, 1
2
nφBzφB ‘B − B’ interactions and nφAzφB ‘A − B’ interactions in

the mixed state. The factor of 1
2

in the first two quantities prevents counting each
interaction twice. Denoting the interaction energy for each possible pair of nearest

13



neighbours as εAA, εBB and εAB, the internal energy in the mixed state per lattice
site is given by

UA+B

n
=
z

2
(φ2

AεAA + φ2
BεBB + 2φAφBεAB). (2.15)

In the unmixed state,

UA + UB
n

=
z

2
(φAεAA + φBεBB). (2.16)

Therefore, the internal energy of mixing per lattice site is given by

U lat
mix ≡

Umix

n
=
z

2
((φ2

A − φA)εAA + (φ2
B − φB)εBB + 2φAφBεAB). (2.17)

An implicit assumption in the regular solution theory is that the mixture is incom-
pressible. As a result, φA + φB = 1. Using this relationship, equation 2.17 can be
rewritten as

U lat
mix =

z

2
(−φAφBεAA − φAφBεBB + 2φAφBεAB) (2.18a)

= φAφBχkBT, (2.18b)

where

χ =
z

2kBT
(2εAB − εAA − εBB). (2.19)

The parameter χ is known as the interaction parameter since it encapsulates the
energetic interactions between the molecules in the mixture.

Inserting equation 2.14 and 2.18b into an intensive version of equation 2.7 yields
the regular solution equation for the free energy of mixing per lattice site in a binary
small molecule mixture

F lat
mix,RS

kBT
= φA lnφA + φB lnφB + φAφBχ. (2.20)

2.2.3 Flory-Huggins theory for polymer-solvent mixtures

Next, we outline how Flory and Huggins extended the regular solution theory to
polymer-solvent mixtures [23, 38]. Again, we adopt a lattice model of mixing and
make the same assumptions as listed at the start of section 2.2.2. We label the
polymer component as A and the solvent (small molecule) component as B. Given
that there are nA polymer molecules, each formed of N monomers, and nB solvent
molecules, the total number of lattice sites can be expressed in terms of the number
of monomers, polymers and solvent molecules as n = NnA + nB. In this case, the
volume fractions of A and B are defined as

φA =
NnA

NnA + nB
(2.21a)

φB =
nB

NnA + nB
. (2.21b)
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The monomers referred to above are defined such that they fit on the lattice sites.
Equating the volume of a lattice site with a solvent molecule and denoting this v0,
N is related to the number of actual monomers N̂ via [39]

N =
N̂v

v0

, (2.22)

where v is the volume of each actual monomer. We note that this is only an approx-
imate correction for dealing with differences in the monomer and solvent volumes.

With equation 2.7 in mind, we first consider the entropy of mixing. In the mixed
state, we must count the number of ways of placing nA polymers on the lattice. The
solvent molecules can be thought of as filling the gaps, therefore their placement
does not contribute to the total number of microstates. By considering the (j+ 1)th

polymer, a general, approximate, equation for the number of ways of placing a single
polymer can be derived. The first segment of the (j + 1)th polymer can be placed
on any of the n −Nj available lattice sites. The second segment can be placed on

z
(
n−Nj
n

)
lattice sites, where the fraction denotes the probability that a given lattice

site is free. The third and higher segments can be placed on (z − 1)
(
n−Nj
n

)
lattice

sites. For simplicity, the possibility that one of the nearest neighbour lattice sites
could be occupied by another monomer of the same polymer has been neglected.
Putting the above steps together, the number of ways of placing the (j+1)th polymer
is

ωj+1 = (n−Nj)z
(n−Nj

n

)(
(z − 1)

(n−Nj
n

))N−2

(2.23a)

≈ n(z − 1)N−1
(

1− Nj

n

)N
, (2.23b)

where the approximation holds for large N . The number of indistinguishable mi-
crostates is given by

ΩA+B =
ω1 × ...× ωj × ...× ωnA

nA!
(2.24a)

=
1

nA!

nA−1∏
j=0

ωj+1, (2.24b)

where the denominator accounts for the fact that the polymers are indistinguishable.
Making use of equation 2.8, the entropy of the mixed state is given by

SA+B = kB ln

nA−1∏
j=0

ωj+1

nA!
(2.25a)

= kB

nA−1∑
j=0

ln
ωj+1

j + 1
. (2.25b)

To evaluate this, we may replace the sum with an integral:
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SA+B = kB

∫ nA−1

0

dj
[

ln
(
n(z − 1)N−1

(
1− Nj

n

)N)
− ln(j + 1)

]
(2.26a)

= nkB

[−φA
N

ln(φA)− (1− φA) ln(1− φA) +
φA
N

(1 + ln(N)) + φA ln
(z − 1

e

)]
.

(2.26b)

As we saw in the small molecule mixture, the entropy of the unmixed solvent is
zero. However, this is not the case for the unmixed polymer, which we assume to
be disordered. Due to the connectivity, there are many different ways of placing
the polymers to fill the lattice in the unmixed state. Only in the situation where
the polymers align, forming a polymer crystal, is the entropy zero - deviations
from a crystalline structure are reflected in a non-zero entropy. The entropy of the
disordered unmixed polymer state can be calculated using equation 2.26b by setting
n = NnA, i.e nB = 0, and φA = 1. It follows that

SA = kB

(
nA(1 + ln(N)) +NnA ln

(z − 1

e

))
, (2.27)

or, in terms of φA (equation 2.21a),

SA = nkB

(φA
N

(1 + ln(N)) + φA ln
(z − 1

e

))
. (2.28)

Therefore, using equations 2.26b and 2.28, as well as SB = 0, we can write the
entropy of mixing per lattice site as

Slat
mix = kB

(−φA
N

ln(φA)− (1− φA) ln(1− φA)
)

(2.29a)

= −kB
(φA
N

ln(φA) + φB ln(φB)
)
, (2.29b)

where we used the incompressibility assumption to write φB = 1−φA. We note that,
in equation 2.29b, the entropic contribution of the polymer component is inversely
proportional to the degree of polymerisation. This can be interpreted as a reduction
in the number of configurations available to polymers in the mixed state compared
to small molecules [40].

We now consider the internal energy of mixing. For simplicity, we assume that,
on average, each monomer and solvent molecule in the mixed state has zφA monomer
nearest neighbours and zφB solvent nearest neighbours. This is an approximation
since each monomer in a linear polymer chain, excluding those at the ends, actu-
ally has z − 2 nearest neighbour sites available to form energetic contacts - each
monomer within a chain is covalently bonded to two other monomers. We note that
interactions between covalently bonded monomers are irrelevant since they are the
same in the mixed and unmixed states. Proceeding, nonetheless, without accounting
for the connectivity of the monomers, there are, on average, 1

2
nφAzφA ‘A-A’ inter-

actions, 1
2
nφAzφB ‘B-B’ interactions and nφAzφB ‘A-B’ interactions in the mixed

state to consider. It follows that the internal energy of mixing per lattice site in
the polymer-solvent mixture is given by equation 2.18b, i.e. the same equation for
small molecule mixtures, albeit with φA and φB defined in equations 2.21a and 2.21b
instead of equations 2.13a and 2.13b.
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Inserting equations 2.29b and 2.18b into an intensive version of equation 2.7
yields the Flory-Huggins equation for the free energy of mixing per lattice site in a
polymer-solvent mixture

F lat
mix,PS

kBT
=
φA
N

ln(φA) + φB ln(φB) + φAφBχ. (2.30)

2.2.4 Flory-Huggins theory for polymer blends

We are now in a position to generalise equation 2.30 to polymer blends. First,
we rewrite N as NA. Second, we replace the solvent with a second type of polymer
formed of NB ‘lattice site’ monomers. We must now modify equation 2.30 to include
NB, while ensuring we recover equation 2.30 when NB = 1. Indeed, based on the
previous generalisation from small molecule mixtures to polymer-solvent mixtures,
we expect that the volume fractions and the entropy of mixing term require modifi-
cation. It follows that the Flory-Huggins equation for the free energy of mixing per
lattice site in a polymer blend is given by [6]

F lat
mix,PP

kBT
=
φA
NA

ln(φA) +
φB
NB

ln(φB) + φAφBχ, (2.31)

where

φA =
NAnA

NAnA +NBnB
(2.32a)

φB =
NBnB

NAnA +NBnB
. (2.32b)

Only slightly unfavourable interactions between unlike pairs of monomers, which
correspond to small positive values of χ, can be tolerated before phase separation
occurs [6]. This is because the entropic contributions to the free energy of mixing
are inversely proportional to the degrees of polymerisation. We explore this concept
in more detail in sections 2.2.6 and 2.2.7.

2.2.5 Limitations of the Flory-Huggins theory

Limitations of the Flory-Huggins theory are well documented. To contextualise the
theory, we outline three limitations below:

� A single lattice is used to describe the distributions of the different constituent
species [23]. For this assumption to hold, the volumes and shapes of the
constituent species would need to be more or less identical, which is rarely the
case in reality.

� The lattice model of mixing does not allow for volume changes upon mixing
[41]. Such volume changes have been observed experimentally. If two species
have an unfavourable interaction, it may be energetically favourable for the
system to lower its density in places to reduce the number of unfavourable
contacts.
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� The conformations of the polymers are assumed to be random [42]. The effects
of energetic interactions, such as van der Waals forces or hydrogen bonds, on
the conformations are ignored. Other factors that may affect the conformations
include a volume change upon mixing and the local structure of the monomers,
which relate to the two limitations above.

Up to a point, one can overcome the limitations of the theory by treating the inter-
action parameter as an empirical parameter [41]. This is discussed further in section
2.2.8.

We note that the Flory-Huggins theory incorporates numerous simplifying math-
ematical approximations. However, as noted by Flory [23], the relative significance
of these compared with the limitations of the theory, such as those listed above, is
small.

2.2.6 Free energy curves

Equation 2.31 is perhaps best interpreted graphically [6, 7]. To illustrate this, we
consider a symmetric blend, i.e. NA = NB = N . In this case, the functional form
of F lat

mix,PP(φ), where φ = φA, depends on the value of Nχ. As shown in figure 2.1,
if Nχ < 2, the corresponding curves are concave up, while for Nχ > 2 they have
a double-well structure. The critical value χc = 2/N marks the transition between
these two functional forms. We examine the significance of each functional form
below.

Figure 2.1: The free energy curves corresponding to equation 2.31 with different
values of Nχ in the context of a symmetric blend (NA = NB = N). For Nχ < 2,
the free energy curves are concave up, while for Nχ > 2 they have a double-well
structure. The critical value χc = 2/N marks the transition between these two
functional forms. Redrawn from [6] with permission from The Licensor through
PLSclear. © Oxford University Press 2002.

First, let us denote the volume of the blend as V0 and the volume fraction of
species A within this volume as φ0. Under the assumption of incompressibility, the
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volume fraction of species B is 1 − φ0. A phase transition to some unmixed state
can be thought of as the formation of two volumes, V1 and V2, with volume fractions
of A denoted by φ1 and φ2, respectively. These distinct volumes are referred to
as phases or phase-separated regions, and the structure formed by two phases is
referred to as the phase-separated microstructure. The volume fraction of A (or B)
associated with a particular phase is referred to as the composition. Assuming the
total volume remains constant, i.e.

V1 + V2 = V0, (2.33)

and that material is conserved, i.e.

V0φ0 = V1φ1 + V2φ2, (2.34)

the free energy of an unmixed state per lattice site (relative to the fully unmixed
state) is given by

F lat
sep =

V1

V0

F lat
mix,PP(φ1) +

V2

V0

F lat
mix,PP(φ2). (2.35)

The value of F lat
sep can be determined by drawing a straight line between F lat

mix,PP(φ1)
and F lat

mix,PP(φ2) and reading off the value on the line at φ0. Figure 2.2 shows two
examples of this straight line calculation: one in the context of each free energy
functional form.

(a) (b)

Figure 2.2: The straight line calculation described beneath equation 2.35 applied
to the concave up (a) and the double-well (b) free energy functional forms. We
note that F (φ0) ≡ NF lat

mix,PP(φ0)/kBT and Fsep ≡ NF lat
sep/kBT . In the case of the

concave up functional form, one-phase blends of all compositions φ0 are stable - it
is always the case that F lat

sep > F lat
mix,PP(φ0). In the case of the double-well functional

form, one-phase blends with compositions φ1,coex < φ0 < φ2,coex are prone to phase-
separation since F lat

sep < F lat
mix,PP(φ0). The compositions corresponding to the minima

of the double-well, i.e φ1,coex and φ2,coex, are known as the coexistence compositions
- they define the limit of phase separation. Redrawn from [6] with permission from
The Licensor through PLSclear. © Oxford University Press 2002.

In the case of the concave up functional form (figure 2.2a), F lat
sep > F lat

mix,PP(φ0)
for all compositions φ0, φ1 and φ2. Therefore, when Nχ ≤ 2, one-phase blends are
stable: phase separation would increase the free energy.
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Figure 2.3: A close up view of the double-well free energy functional form with the
straight line calculation described beneath equation 2.35 applied in two different
regions. We note that F (φ0) ≡ NF lat

mix,PP(φ0)/kBT and Fsep ≡ NF lat
sep/kBT . Blends

with compositions in the concave up region (e.g., φa) are metastable, while blends
in the concave down region (e.g., φb) are unstable. A metastable blend is stable
with respect to small composition fluctuations, which would increase the free energy
(F lat

sep > F lat
mix,PP(φa)), but not large fluctuations. An unstable blend is unstable with

respect to small composition fluctuations, which would decrease the free energy
(F lat

sep < F lat
mix,PP(φb)). Redrawn from [6] with permission from The Licensor through

PLSclear. © Oxford University Press 2002.

In the case of the double-well functional form (figure 2.2b), F lat
sep < F lat

mix,PP(φ0)
for all compositions φ1,coex < φ0 < φ2,coex, where φ1,coex and φ2,coex - known as the
coexistence compositions - are located at the minima of the double well. It follows
that, when Nχ > 2, one-phase blends with compositions φ1,coex < φ0 < φ2,coex are
prone to phase separation. The coexistence compositions define the equilibrium
state of the blend and, therefore, the limit of phase separation. To understand how
one-phase blends with compositions φ1,coex < φ0 < φ2,coex phase separate, we need
to consider the shape of the wells in more detail.

Figure 2.3 shows a close up view of the double-well functional form with the
straight line calculation applied in two different regions. In the part of the well
that is concave up, meaning it has positive curvature, phase separation into phases
with compositions close to φa would increase the free energy (F lat

sep > F lat
mix,PP(φa)).

Therefore, one-phase blends with compositions in the concave up part of the well
are stable with respect to small fluctuations, i.e. small deviations away from φa.
Compositions fluctuations arise due to random thermal fluctuations (Brownian mo-
tion). Since the free energy could be lowered by phase separation to the coexistence
compositions, one-phase blends with compositions in the concave up part of the well
are unstable with respect to large composition fluctuations. Such fluctuations could
trigger the nucleation of droplets of the coexistence phases. Once nucleated, these
droplets will grow (if the initial radius is greater than or equal to a critical value),
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resulting in the formation of different phases. Phase separation via this mechanism,
called nucleation and growth, is an activated process since there is an energy barrier
associated with the nucleation - further details are provided in section 2.3.1. One-
phase blends with compositions in the concave up part of the well are metastable,
i.e. they are stable with respect to small composition fluctuations but not large
composition fluctuations.

In the part of the well that is concave down in figure 2.3, meaning it has negative
curvature, phase separation into compositions close to φb would decrease the free
energy (F lat

sep < F lat
mix,PP(φb)). Therefore, one-phase blends with compositions in the

concave down part of the well are unstable with respect to small composition fluctu-
ations. As a result of this, small composition fluctuations induce a spontaneous and
continuous phase transition to an unmixed state. Phase separation via this mecha-
nism, called spinodal decomposition, is spontaneous since there is no energy barrier
to the growth of fluctuations. Further details regarding spinodal decomposition are
provided in section 2.3.2.

2.2.7 Phase diagrams

The information about the phase behaviour of binary, symmetric polymer blends
contained in figures 2.1, 2.2 and 2.3 can be summarised in a phase diagram, which
allows one to visualise the state and stability of a blend as a function of the inter-
action parameter and the composition. The phase diagram of a binary, symmetric
polymer blend is shown in figure 2.4. The construction of a phase diagram is rooted
in the shape of the free energy curves [6, 7].

The line marking the boundary between the stable and metastable states in figure
2.4, referred to as the coexistence curve, is comprised of the points of common
tangent to the free energy curves for which Nχ > 2. These points satisfy the
condition that the chemical potentials of each phase are equal. Only in the case
of symmetric blends can the points of common tangent be determined analytically.
Here, the tangent is horizontal and so the points of common tangent correspond to
the minima of the free energy curves. These can be located using the condition that
dF lat

mix,PP

dφ
= 0. Rearranging for the interaction parameter gives

χcoex =
1

N(2φ− 1)
ln

(
φ

1− φ

)
. (2.36)

This equation is undefined at φ = 0.5, therefore the condition
dF lat

mix,PP

dφ
= 0 only

determines the minima at φ 6= 0.5 and not the maximum at φ = 0.5. There are no

solutions to
dF lat

mix,PP

dφ
= 0 when Nχ < 2.

The line marking the boundary between the unstable and metastable states,
referred to as the spinodal curve, is comprised of the points of inflection in the free
energy curves for which Nχ > 2. The points of inflection can be determined using

the condition
d2F lat

mix,PP

dφ2
= 0. Rearranging for the interaction parameter gives

χs =
1

2Nφ(1− φ)
. (2.37)

The point at which the spinodal and coexistence curves meet is called the critical
point. This can be determined using the condition ∂χs

∂φ
= 0, which corresponds to
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the lowest point on the spinodal curve. The critical point is given by

φc =
1

2
, χc =

2

N
. (2.38)

For χ < χc, blends are stable for any composition. For χ > χc, there is a miscibility
gap, meaning not all compositions are stable and therefore phase separation may
occur. The miscibility gap becomes larger as N increases, which explains why few
polymers with large degrees of polymerisation are miscible. As noted beneath equa-
tion 2.31, only slightly unfavourable interactions between unlike pairs of monomers
can be tolerated before phase separation occurs.

Figure 2.4: The phase diagram of a binary, symmetric (NA = NB = N) polymer
blend with a free energy of mixing described by equation 2.31. One-phase blends of
all compositions are stable when Nχ < 2. For Nχ > 2, there is a miscibility gap,
meaning not all compositions are stable and therefore phase separation may occur.
The coexistence curve marks the boundary between stable and metastable states,
while the spinodal curve marks the boundary between metastable and unstable
states. The point at which the spinodal and binodal curves meet is called the critical
point. Blends with a given composition can be moved into different regions of the
phase diagram by changing χ, i.e. the temperature. Inside the spinodal curve, the
mechanism of phase separation is spinodal decomposition, which is a spontaneous
process. Inside the region marked by the coexistence curve and the spinodal curve,
the mechanism of phase separation is nucleation and growth, which is an activated
process. Redrawn from [6] with permission from The Licensor through PLSclear.
© Oxford University Press 2002.

2.2.8 The interaction parameter, χ

The interaction parameter derived as part of the Flory-Huggins theory is purely
energetic in origin. It has a temperature dependence of T−1. This suggests that
phase separation occurs when the temperature is lowered. Blends that exhibit this
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behaviour are said to have an upper critical solution temperature. However, ex-
periments have shown that many blends have a lower critical solution temperature,
i.e. phase separation occurs when the temperature is increased [7]. Based on this
evidence, the interaction parameter must have a different temperature dependence
to simply T−1.

It has been shown that the interaction parameter is not purely energetic in
origin [7]. Instead, it includes an entropic contribution. This entropic contribution
is attributed to a non-combinatorial entropy, which may arise from the effects of
energetic interactions on the conformations of the polymers [42], for example.

In practice, the interaction parameter is often treated as an empirical parameter
[7, 41]:

χ = a+
b

T
, (2.39)

where a encapsulates the entropic contribution and b encapsulates the energetic
contribution. This empirical form can capture both upper and lower critical solution
temperature behaviour. Experiments have shown that the interaction parameter
often also depends on the composition [41]. This can be accounted for by using a
more complex empirical equation for the interaction parameter than equation 2.39.

Treating the interaction parameter as an empirical parameter allows one to over-
come some of the limitations of the Flory-Huggins theory. The ability to treat the
interaction parameter as an empirical parameter is one of the main reasons for the
sustained, wide-spread use of the Flory-Huggins theory. Despite its shortcomings,
the theory is a convenient parametrisation of the free energy [41].

2.3 Mechanisms of phase separation and dissolu-

tion in polymer blends

As mentioned in section 2.2.6, there are two mechanisms by which a polymer blend
can phase separate: nucleation and growth and spinodal decomposition. When
a phase-separated blend is brought back into the one-phase region, the phase-
separated structure will dissipate in a process called dissolution. In this thesis,
we are primarily concerned with thermally-induced spinodal decomposition and dis-
solution. Therefore, our discussion of nucleation and growth is minimal.

2.3.1 Nucleation and growth

Nucleation and growth [6, 7] occurs when a blend lies in the metastable region of
the phase diagram. Here, the blend is stable with respect to small composition fluc-
tuations but not large composition fluctuations, which could trigger the nucleation
of droplets of one of the coexistence phases. If the nucleated droplets have a radius
greater than some critical value, they will grow. Otherwise, they will dissipate. The
critical radius requirement stems from the fact that there is a free energy barrier
associated with the formation of droplets - this is explained by classical nucleation
theory, which we outline below.

When a droplet of one of the coexistence phases is nucleated, there are two
contributions to the net change in the free energy of the blend, one positive and
one negative. The negative contribution stems from the fact that the droplet phase
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has a lower free energy per unit volume than the metastable phase. The positive
contribution stems from unfavourable interactions between A and B molecules at
the interface of the droplet and an entropy cost due to the interface restricting
the number of configurations a polymer can adopt. Combining the positive and
negative contributions, the net change in the free energy of a blend associated with
the formation of a droplet of radius r can be written as [6]

∆F (r) =
4

3
πr3∆Fv + 4πr2γ, (2.40)

where ∆Fv is the negative free energy change per unit volume and γ is the interfacial
energy per unit area.

Figure 2.5: The functional form of the net change in the free energy of a polymer
blend associated with forming a droplet of one of the coexistence phases, ∆F (r),
during nucleation and growth. The net change in the free energy balances two
opposing contributions, which are plotted. The negative contribution stems from the
fact that droplets of the coexistence phases have a lower free energy per unit volume
than droplets of the metastable phase. The positive contribution is associated with
the formation of an energetically unfavourable interface. Redrawn from [7] with
permission from Springer Nature.

Figure 2.5 shows a plot of equation 2.40. The net change in the free energy is
maximum at rc, which corresponds to the critical radius. Droplets with radius r < rc
will dissipate since they would increase the free energy of the blend if they were to
grow. Conversely, droplets with radius r > rc will grow, leading to a reduction in
the free energy of the blend. The critical radius can be calculated from the condition
d∆F (r)
dr

= 0. The result is

rc =
−2γ

∆Fv
. (2.41)

Therefore, the energy barrier to forming a critical nucleus is given by
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∆Fc =
16πγ3

3∆F 2
v

. (2.42)

The probability of a fluctuation overcoming the energy barrier, and therefore the
rate of nucleation, is proportional to the Boltzmann factor, i.e. exp(−∆Fc/kBT ).

The phase-separated microstructure of a blend undergoing nucleation and growth
is characterised by dispersed droplets, which grow in time [10,43].

2.3.2 Spinodal decomposition and dissolution

Spinodal decomposition [6, 7] occurs when a blend lies in the unstable region of
the phase diagram. Here, the blend is unstable with respect to small fluctuations
in the composition. As a result of this, small composition fluctuations induce a
spontaneous and continuous phase transition to an unmixed state. The process
of dissolution [8, 9] is essentially the inverse of spinodal decomposition - there is a
spontaneous and continuous phase transition from an unmixed state to the mixed
state. The unmixed state can be obtained by either spinodal decomposition or
nucleation and growth.

Spinodal decomposition can be described in terms of a three stage model [6,44]:

� Early stage. Phase-separated regions begin to form as a result of the sponta-
neous amplification of composition fluctuations. Polymers move from regions
of low concentration to regions of high concentration. Fluctuations with a par-
ticular, optimal, wavelength grow fastest. This wavelength can be regarded as
the characteristic length of the system. Fluctuations with wavelengths greater
than the characteristic length grow too slowly because of the large distances
over which the polymers must diffuse. The free energy cost associated with
composition gradients (interfaces) suppresses the growth of fluctuations with
wavelengths smaller than the characteristic length - such fluctuations would
create too much interface.

� Intermediate stage. Fluctuations with different wavelengths begin to couple
and the characteristic length of the system increases - this has the effect of
reducing the interfacial energy. During the early stage, it is hard to distin-
guish between phase-separated regions and the interfaces. However, during the
intermediate stage, the two become distinguishable. There are now two im-
portant lengths: the characteristic length, which is correlated with the average
size of the phase separated regions, and the interfacial width. The composi-
tions of the developing, coarsening phase-separated regions tend towards the
coexistence values. The initially diffuse interfaces begin to sharpen.

� Late stage. The interfacial width is more or less constant. The character-
istic length continues to increase, i.e. the phase-separated regions continue
to coarsen. The characteristic length is once again the single time-evolving
length.

Figure 2.6 illustrates the above stages pictorially.
A symmetric binary blend is referred to as critical if φ0 = φc = 0.5, i.e. the

mixing ratio of the constituent species is 1:1. Otherwise, the blend is referred to
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Figure 2.6: A schematic diagram of the three stage model of spinodal decomposi-
tion highlighting how the composition profiles and important length scales evolve.
Redrawn from [6] with permission from The Licensor through PLSclear. © Oxford
University Press 2002.

as off-critical. The phase-separated microstructure resulting from spinodal decom-
position depends on the volume fraction ratio of the coexistence phases [11]. In
general, the phase-separated microstructure of a critical blend undergoing spinodal
decomposition is characterised by a random, co-continuous pattern, which coarsens
over time [6, 10, 11]. The pattern is random since it is initiated by composition
fluctuations caused by random thermal fluctuations. At a given point in time, the
widths of different regions of the co-continuous microstructure will be more or less
uniform. This is a result of the blend having a characteristic length scale. The
phase-separated microstructure of an off-critical blend undergoing spinodal decom-
position is usually characterised by dispersed droplets, which grow in time [10, 11].
We note that examples of the time evolution of co-continuous and dispersed droplet
microstructures during spinodal decomposition are shown in figure 1.1.

2.3.3 Cahn-Hilliard-Cook theory

Perhaps the most commonly used and successful theory for describing the time
evolution of spinodal decomposition and dissolution in polymer blends is the Cahn-
Hilliard-Cook Flory-Huggins-de Gennes (CHC-FHdG) theory [23–26]. This is an
extension of a theory called the Cahn-Hilliard-Cook (CHC) theory [20–22, 45, 46],
which applies to small molecule mixtures. To illustrate the key ideas underpinning
the CHC-FHdG theory, we first outline the CHC theory [20–22,45,46].

The key idea behind the CHC theory is that a generalised diffusion equation
can be used to describe both spinodal decomposition and dissolution. We note that
the theory assumes a coarse grained version of the lattice adopted in the regular
solution and Flory-Huggins theories [30]. A natural order parameter for this lattice
is the local volume fraction of one of the constituent species:
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φ(r) =
v0

L3

∑
i∈cell

ci, (2.43)

where ‘cell’ refers to a coarse-graining volume with side length L centred on r and
the value of ci depends on whether a lattice site within the cell contains a molecule of
A or not. Specifically, ci = 1 if a molecule of A is present and ci = 0 otherwise. The
value of L must be large in comparison to the lattice spacing to facilitate a continuum
description of the mixture while also small in comparison with the wavelengths of
the composition fluctuations [30]. To derive a generalised diffusion equation, we
begin with the following continuity equation:

∂φ(r, t)

∂t
= −∇ · J , (2.44)

where J is the flux of material. The flux is defined by a generalised version of Fick’s
first law:

J = −M∇(µA − µB), (2.45)

where M is the mobility and µA − µB is the exchange chemical potential per unit
volume, which we denote as µ. The mobility relates the response of the flux to
gradients in the exchange chemical potential. For simplicity, we take M to be
constant. In reality, M is often found to be dependent on the local composition
[17, 30]. The exchange chemical potential describes how the free energy changes
with the composition. Accounting for the fact that φ will vary in time and space,
we use the following definition

µ ≡ µA − µB =
δF{φ(r, t)}

δφ
, (2.46)

where F is the free energy of the system, expressed as a functional, i.e. a function
that depends on the functional form of φ(r, t), and δ/δφ represents the functional
derivative with respect to φ. We note that J , M and µ do not have ‘typical’ dimen-
sions because of how equations 2.44 - 2.46 have been formulated. Since equation
2.44 is a continuity equation in terms of the volume fraction rather than the con-
centration, J has dimensions of LT−1 instead of the usual L−2T−1. As will become
clear, since µ is defined in terms of a functional derivative, it has dimensions of
[energy]L−3 instead of [energy]. From the dimensions of J and µ, it follows that M
has dimensions of L5T−1[energy]−1 instead of L2T−1 [2].

Combining equations 2.44-2.46 yields a modified diffusion equation capable of
describing diffusion both along and against a composition gradient, i.e. dissolution
and spinodal decomposition, respectively, subject to the formulation of F :

∂φ(r, t)

∂t
= M∇2 δF{φ(r, t)}

δφ
. (2.47)

Both dissolution and spinodal decomposition involve phase-separated microstruc-
tures. An essential component of phase-separated systems is the interface between
the phases. Indeed, the interfacial energy must be accounted for when calculating
the free energy of the system. Under the assumption that the free energy of a region
of a heterogeneous system will depend both on the local composition and the com-
position of the immediate environment, Cahn and Hilliard proposed the following
phenomenological form of the free energy functional [20]:

27



F{φ(r, t)}
kBT

=

∫
V

d3r
(f(φ(r, t))

kBT
+ κ(∇φ(r, t))2

)
, (2.48)

where f is the free energy density of some small homogeneous region around r and
κ is the ‘square gradient coefficient’. The integrand approximates the free energy
density of an infinitesimal region of the mixture as the sum of two contributions.
The first contribution is the free energy density that the region would have if it was
homogeneous. The second contribution is due to the interface. These contributions
are the leading terms in a generalised Taylor expansion of the free energy density
of a heterogeneous mixture. Therefore, the interface contribution can be thought of
as the lowest order correction to the homogeneous free energy density required to
describe a heterogeneous system.

In the case of a regular solution, we can substitute the following into equation
2.48 [20]:

f(φ(r, t)) =
F lat

mix,RS(φ(r, t))

v0

(2.49a)

κ =
χλ2

v0

, (2.49b)

where λ is the interaction distance between molecules. We note that F lat
mix,RS is the

regular solution free energy of mixing per lattice site given by equation 2.20. The
square gradient coefficient is purely energetic in origin. As a result of composition
gradients, molecules will sense a different number of like and unlike molecules in
their environment than the local composition would indicate. There is no entropic
part to the square gradient coefficient since the combinatorial entropy depends solely
on the local composition and so it is captured by f(φ(r, t)).

The functional derivative of equation 2.48 is given by [47]

δF{φ(r, t)}
δφ

=
∂f(φ)

∂φ
− 2κkBT∇2φ. (2.50)

Upon substituting equations 2.49a and 2.49b into equation 2.50, we obtain, after
some calculations,

δF{φ(r, t)}
δφ

=
kBT

v0

(
ln(φ)− ln(1− φ) + (1− 2φ)χ− 2χλ2∇2φ

)
. (2.51)

Combining equations 2.47 and 2.51 yields the Cahn-Hilliard equation for small
molecule mixtures

∂φ(r, t)

∂t
=
MkBT

v0

∇2(ln(φ)− ln(1− φ)− 2χφ− 2χλ2∇2φ). (2.52)

A major shortcoming of the Cahn-Hilliard equation is that it is deterministic.
It neglects the effects of thermal fluctuations (Brownian motion), which give rise to
composition fluctuations - the essential ingredient for initiating spinodal decomposi-
tion. Cook rectified this problem by including a stochastic term ξ(r, t) to model the
composition fluctuations [22]. The resulting equation, called the Cahn-Hilliard-Cook
equation, is given by
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∂φ(r, t)

∂t
=
MkBT

v0

∇2(ln(φ)− ln(1− φ)− 2χφ− 2χλ2∇2φ) + ξ(r, t). (2.53)

The noise is assumed to have a Gaussian distribution described by the following
moments [17,22,30]:

< ξ(r, t) > = 0 (2.54a)

< ξ(r, t)ξ(r′, t′) > = Bδ(r − r′)δ(t− t′), (2.54b)

where B is an operator - the form of which ensures any change in φ(r, t) due to
ξ(r, t) is balanced by the correct flux. In other words, B ensures no material is
created or destroyed. To determine B, it is assumed that the system will evolve to its
equilibrium state over a sufficiently long time period. Non-linear Langevin equations,
such as equation 2.53, are hard to solve analytically. The most practical approach
to deal with them is to construct the corresponding Fokker-Planck equation, which
describes the time evolution of the probability distribution of the order parameter
[48,49]:

∂P ({φ(r)}, t)
∂t

=

∫
d3r

δ

δφ

[
−M∇2 δF

δφ
P +

B

2

δP

δφ

]
. (2.55)

As t → ∞, the solution approaches the equilibrium solution. Equilibrium thermo-
dynamics tells us this should be a Boltzmann distribution, therefore [48]

B = −2MkBT∇2. (2.56)

Specifically, it is the factor of ∇2 in B that ensures material is conserved. We discuss
this point further in appendix A - see equation A.7 and the text beneath it.

2.3.4 Cahn-Hilliard-Cook Flory-Huggins de Gennes theory

We are now in a position to turn our attention to polymer blends. For simplicity,
we assume equal ‘lattice’ degrees of polymerisation and Kuhn (statistical segment)
lengths [6, 40], i.e. NA = NB = N and σA = σB = σ, respectively.

To extend the Cahn-Hilliard-Cook equation to polymer blends, de Gennes mod-
ified the Cahn-Hilliard free energy functional [25]. Specifically, he proposed setting

f(φ(r, t)) =
F lat

mix,PP(φ(r, t))

v0

(2.57)

and modifying the square gradient coefficient to become

κ(φ(r, t)) =
χλ2

v0

+
1

36v0

[ σ2

φ(r, t)
+

σ2

1− φ(r, t)

]
. (2.58)

We note that F lat
mix,PP is the Flory-Huggins free energy of mixing per lattice site given

by equation 2.31. The square-gradient coefficient is comprised of two contributions:
one purely energetic in origin, i.e. χλ2/v0, and the other entropic. The former was
discussed above in the context of small molecule mixtures. In the case of polymer
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blends, λ is the interaction distance between monomers. The entropic contribution
captures costs to the free energy due to the formation of composition gradients,
which impose constraints on the number of configurations available to the polymers
in the blend [6]. De Gennes derived the exact form of equation 2.58 to be consistent
with his random phase approximation for the static structure factor in one-phase
blends [50,51], which we discuss in section 2.4.9. Often it is found that the entropic
contribution to the square gradient coefficient is much larger than the energetic
contribution, therefore the energetic contribution is often neglected in the treatment
of polymer blends [25,26]. We adopt this convention.

As well as the modifications mentioned above, De Gennes suggested that the
connectivity of polymers manifests itself in a non-local relation between the polymer
flux and the gradient of the exchange chemical potential [25]:

J(r) = −
∫
d3r

Λ(r − r′)
kBT

∇µ(r′), (2.59)

where Λ(r−r′) is an Onsager coefficient. This equation states that the flux at a given
point depends on its environment because of the connectivity. When considering
length scales larger than the chain scale, one may consider a local relation similar
to equation 2.45 instead of equation 2.59 [52]. For simplicity, we set Λ(r − r′) =
kBTMδ(r − r′) [26], which recovers equation 2.45 exactly when substituted into
equation 2.59.

In the case of a square gradient coefficient that depends on φ, the functional
derivative of equation 2.48 is given by [47]

δF{φ(r, t)}
δφ

=
∂f(φ)

∂φ
− kBT

∂κ(φ)

∂φ
(∇φ)2 − 2kBTκ(φ)∇2φ. (2.60)

Upon substituting equations 2.57 and 2.58 into equation 2.60, we obtain, after some
calculations,

δF{φ(r, t)}
δφ

=
kBT

v0

[ 1

N
ln(φ)− 1

N
ln(1− φ) + χ(1− 2φ)

− σ2

18

( 1

φ(1− φ)

)
∇2φ+

σ2

36

( 1− 2φ

(φ(1− φ))2

)
(∇φ)2

]
.

(2.61)

Combining equations 2.47 and 2.61 and accounting for composition fluctuations with
a stochastic term yields the CHC-FHdG equation for polymer blends:

∂φ(r, t)

∂t
=
MkBT

v0

∇2
[ 1

N
ln(φ)− 1

N
ln(1− φ)− 2χφ

− σ2

18

( 1

φ(1− φ)

)
∇2φ+

σ2

36

( 1− 2φ

(φ(1− φ))2

)
(∇φ)2

]
+ ξ(r, t).

(2.62)

In its current form, equation 2.62 can only be solved numerically. To make it
analytically tractable, we must linearise it [25, 26]. Upon making the substitution
φ(r, t) = φ0 + δφ(r, t), where φ0 is the average (overall) volume fraction and δφ is a
fluctuation, performing a power series expansion and neglecting all non-linear terms
in δφ(r, t), we obtain
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∂δφ(r, t)

∂t
=
MkBT

v0

[
2(χs − χ)∇2δφ− σ2

18

( 1

φ0(1− φ0)

)
∇4δφ

]
+ ξ(r, t), (2.63)

where χs = 2
4Nφ0(1−φ0)

is the value of the interaction parameter on the spinodal. We
refer to equation 2.63 as the linear CHC-FHdG equation. It is valid for small δφ.
Therefore, in the case of dissolution, we expect the linear CHC-FHdG equation to be
valid when the composition fluctuations are small from the beginning of the process
[8, 31], which depends on how developed the initial phase-separated microstructure
is. In the case of spinodal decomposition, we expect the linear CHC-FHdG equation
to be valid during the early stage, i.e. when the composition fluctuations are small
[8, 45]. Upon comparing equation 2.63 with Fick’s second law, we can identify the
mutual diffusion coefficient of the blend as [2]

D =
2MkBT (χs − χ)

v0

. (2.64)

In the case of dissolution, D is positive. Therefore, diffusion occurs along the com-
position gradient, which leads to mixing. In the case of spinodal decomposition, D
is negative. Therefore, diffusion occurs against the composition gradient, or ‘uphill’,
which leads to phase separation.

The solution to equation 2.63 without noise is given by [45]

δφ(r, t) =
∑
q

exp(R(q)t)(A(q) cos(q · r) +B(q) sin(q · r)), (2.65)

where A and B are the initial amplitudes of the composition fluctuations present in
the sample, and

R(q) = −MkBT

v0

[
2(χs − χ)q2 +

σ2

18

( 1

φ0(1− φ0)

)
q4
]

(2.66)

is a q-dependent amplification factor. The symbol q denotes the wavenumber of a
composition fluctuation, which is related to the the wavelength via λ = 2π

q
.

The functional form of R(q) is shown in figure 2.7 for both dissolution and
spinodal decomposition. In the case of dissolution, R(q) is negative for all values
of q, which means composition fluctuations of all wavelengths decay. In the case of
spinodal decomposition, R(q) is positive for q < qc and negative for q > qc, where
qc is the critical wavenumber at which R(q) = 0. This means that composition
fluctuations with wavelengths λ > 2π

qc
will grow, while those with wavelengths λ < 2π

qc

will decay. Composition fluctuations with a wavelength λm = 2π
qm

will grow fastest,

where q = qm is the wavenumber at which R(q) is maximum. The wavelength λm
corresponds to the initial value of the characteristic length scale of the blend during
the early stage of spinodal decomposition.

The linear CHC-FHdG equation has been shown to quantitatively capture the
early stage of spinodal decomposition in polymer blends [2, 27, 28, 30]. Beyond the
early stage, the non-linear CHC-FHdG equation qualitatively captures the dynamics
of the process [45, 53]. For example, it captures coarsening and can be used to
generate simulated morphologies that are representative of spinodal decomposition.
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(a) (b)

Figure 2.7: The functional form of the amplification factor, R(q), in the case of
(a) dissolution and (b) spinodal decomposition. In dissolution, R(q) is negative for
all values of the wavenumber q. In spinodal decomposition, R(q) is positive for
0 < q < qc and negative for q > qc, where qc is the critical wavenumber at which
R(q) = 0. The maximum value of R(q) occurs at q = qm. Redrawn from [6] with
permission from The Licensor through PLSclear. © Oxford University Press 2002.

2.3.5 Limitations of the Cahn-Hilliard-Cook Flory-Huggins-
de Gennes theory

To contextualise the CHC-FHdG theory, we outline three limitations below:

� In equation 2.48, composition gradients are assumed to be shallow [20, 30].
This assumption holds near the critical point and limits the range of systems
for which the theory is valid.

� The effects of hydrodynamics are neglected [54]. Generally, hydrodynamic
effects - induced by the interfacial tension between phase-separated regions -
become important during the late stage of spinodal decomposition. They play
an important role in coarsening.

� The composition dependence of the mobility is not fully understood [2,55]. To
apply the theory, one must make assumptions about the mobility, which may
undermine the validity of the theory.

Another limitation of the theory is that equation 2.62 cannot be solved analytically.
This complicates the analysis of experimental data. Furthermore, calculating the
numerical solution to the non-linear equation often requires a lot of computing power
[47,53,56].

2.4 Small-angle scattering

Small-angle scattering experiments are often used to monitor the time evolution of
composition fluctuations, i.e. the development of the microstructure, in polymer
blends [2,15,16,29]. A small-angle scattering experiment can be described in terms
of three steps [15,16]:
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� Radiation, typically in the form of X-rays or neutrons, is fired at a sample.

� The radiation interacts with the sample, causing the radiation to scatter.

� The intensity of the scattered radiation (structure factor) is measured as a
function of the scattering angle or magnitude of the scattering vector.

We note that a schematic of a small-angle scattering experiment in the context of a
polymer blend undergoing spinodal decomposition is shown in figure 1.2.

One can learn about the microstructure by analysing the structure factor [2,
15, 16, 57]. For example, in the case of spinodal decomposition, the characteristic
length can be determined from the peak. The structure factor is essentially the
power spectrum of the composition fluctuations, i.e. the product of the Fourier
transform with its complex conjugate. It is not possible to obtain full knowledge of
the microstructure from the structure factor.

Small-angle scattering is used to measure relatively large structures, i.e. struc-
tures on a scale of roughly 10− 100 nm when X-rays or neutrons are scattered and
100− 1000 nm when light is scattered [15, 16, 29]. The reciprocity between lengths
in real space and Fourier space means that information relating to structures on
these scales is contained in the part of the structure factor corresponding to small
scattering angles, hence the name small-angle scattering.

X-rays and neutrons are well suited to probing the structure of materials since
they have wavelengths around 1 Å, which is of a similar magnitude to typical in-
teratomic spacings [15, 16]. In what follows, we specialise to small-angle neutron
scattering. A benefit of small-angle neutron scattering over small-angle X-ray scat-
tering is that the strength of neutron-nuclei interactions varies in a seemingly random
way with the atomic number [15, 16]. The strength of X-ray-electron interactions
increases with the atomic number. Therefore, neutrons are sensitive to as many light
elements as they are heavy elements. X-rays, on the other hand, struggle to detect
light elements. Furthermore, deuterium and hydrogen interact very differently with
neutrons. This opens the door to deuterium labelling, in which deuterium can be
substituted for hydrogen in specific molecules to highlight them [15,16].

2.4.1 Scattering off a single particle

We wish to derive the key equations describing the scattering of neutrons off a
polymer blend. To do this, we follow the treatment in [16]. We note that another
good source of information on the subject is [15].

First, we consider the simple case of scattering off a single particle, which allows
us to introduce and define some key terms. Figure 2.8 shows a schematic of the
scattering off a single particle. A plane wave is incident on the particle. The flux of
the wave, i.e. the energy transferred per unit area per second, is denoted J0. The
incident plane wave scatters off the point particle as a spherical wave. We assume
that the detector is placed far enough away that the scattered wave appears as a
plane wave, although its amplitude will have decreased inversely proportionally to
R, the distance between the particle and the detector. To ensure that the flux of the
scattered wave, J , is independent of R, it is defined slightly differently to J0, namely
as the energy transferred per unit solid angle per second. Fluxes are proportional
to the square of the wave amplitude, denoted A in the case of J (or A0 in the case
of J0):
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J = |A|2 = AA∗. (2.67)

The detector measures a quantity called the differential cross section,

dσ

dΩ
=
J

J0

, (2.68)

which can be thought of as the number of particles scattered into a unit solid angle
in a given direction per second divided by the number of particles fired at the sample
per unit area per second. Indeed, the differential cross section is a function of the
scattering angle. From now on, we refer to the differential cross section as the
intensity.

Figure 2.8: The basic geometry of a scattering experiment in the context of scat-
tering off a single particle. Redrawn from [16] with permission from The Licensor
through PLSclear. © Oxford University Press 2000.

2.4.2 Scattering off two particles

Adding a layer of complexity, we now consider the scattering off two particles. This
situation is shown in figure 2.9. The incident plane wave propagates along the z-axis
with wavevector qi and scatters off the particles situated at O and B. Given that
it has frequency f and wavelength λ, the amplitude of the incident plane wave is
given by

A(x, y, z, t) = A0 cos
(

2π
(
ft− z

λ

))
(2.69a)

= A0 cos(ωt− qiz), (2.69b)

where z is the position of the plane wave along the z-axis. In complex notation,
which is helpful for the ensuing maths, the amplitude is given by

A(x, y, z, t) = A0 exp(i(ωt− qiz)), (2.70)
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where the real part recovers the original equation.
A detector is situated far away from the particles. We assume the scattering

is coherent and elastic. The scattered wave emanating away from B has to travel
further to the detector than the one emanating from O. This results in there being a
phase difference at the detector, which gives rise to interference. The phase difference
is given by

δϕ =
2π

λ
(|AB| − |OC|) (2.71a)

= (q · rOB), (2.71b)

where |AB| =
(
qi
|qi| ·rOB

)
, |OC| =

(
qf
|qf |
·rOB

)
and q = qi−qf . The latter quantity

is referred to as the scattering vector. It is related to the scattering angle via

|q| = q =
4π

λ
sin
(θ

2

)
. (2.72)

We note that the relationship between qi, qf and q is shown in the bottom right of
figure 1.2.

Figure 2.9: The scattering of a plane wave off two particles. The scattered wave
emanating from the particle B has to travel further to the detector than the scat-
tered wave emanating from O. This results in there being a phase difference at the
detector, which gives rise to interference. Redrawn from [16] with permission from
The Licensor through PLSclear. © Oxford University Press 2000.

The amplitude of the scattered spherical wave emanating from O can be written
as

A1(x, y, z, t) = A0b exp(i(ωt− qiz)), (2.73)

where A0 is the amplitude of the incident plane wave and b is the scattering length,
which describes the strength of the neutron-nucleus interaction. Similarly, the scat-
tered spherical wave emanating from B can be written as

A2(x, y, z, t) = A0b exp(i(ωt− qiz)) exp(−iq · rOB). (2.74)

The combined wave at the detector is given by

A(x, y, z, t) = A0b exp(i(ωt− qiz))(1 + exp(−iq · rOB)). (2.75)
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The flux of the combined wave is

J(q) = A2
0b

2(1 + exp(−iq · rOB))(1 + exp(iq · rOB)), (2.76)

therefore we can write

A(q) = A0b(1 + exp(−iq · rOB)). (2.77)

This equation reveals that the combined scattering amplitude at some point on the
detector specified by the scattering vector q only depends on the relative positions
of the particles rOB.

2.4.3 Scattering off many particles

In the case of N identical scatterers, equation 2.77 becomes

A(q) = A0b
N∑
j=1

exp(−q · rj), (2.78)

where rj is the position of the jth scatterer relative to some arbitrary origin. If the
scattering centres are continuously dispersed, we can generalise further to get

A(q) = A0b

∫
V

d3r η(r) exp(−iq · r), (2.79)

where η(r) is the local number density of the scatterers at r. The amplitude is
proportional to the three-dimensional Fourier transform of η(r).

Typically, in a many-body system, there will be random variability in the scat-
tering length b at different points due to the presence of isotopes and spin states.
This gives rise to an incoherent component of the scattering signal, which can be
thought of as background noise since it contains no structural information. In con-
trast to this, the coherent component contains structural information through its
dependence on the relative positions of the scattering centres. Ignoring the incoher-
ent component of the scattering, we can write the normalised coherent scattering
amplitude for a sample containing multiple species as

A(q) =

∫
V

d3rρ(r) exp(−iq · r), (2.80)

where A(q) has been redefined as A(q)/A0 and ρ(r) is the coherent scattering length
density distribution ρ(r) =

∑
α bαηα(r). The subscript α refers to the different

species present in the sample.
Using equation 2.80, we can write equation 2.68, i.e. the intensity, as:

I(q) =< |A(q)|2 >=
〈∫

V

d3rρ(r) exp(−iq · r)

∫
V

d3r′ρ(r′) exp(iq · r′)
〉

(2.81)

where we introduced the time average < ... > to reflect the finite measurement time
of a detector. It is instructive to write this in a slightly different form. Upon making
the substitution u = r − r′ and rearranging, we obtain
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I(q) =

∫
d3u
(∫

d3r′ρ(r′ + u)ρ(r′)
)

exp(−iq · u), (2.82)

where the factor in the brackets is the autocorrelation function of ρ(r). This is
related to the average of ρ(r)ρ(r′) throughout the sample for some fixed u, i.e.

< ρ(r)ρ(r′) >=

∫
d3r′ρ(r′ + u)ρ(r′)∫

d3r′
. (2.83)

In calculating the average of ρ(r)ρ(r′), positional information is lost - there is no
unique way to recover ρ(r). The objective of scattering is thus to obtain as much
structural information as possible from measurements of I(q).

2.4.4 Scattering off polymer blends

We are now ready to specialise the discussion of scattering to polymer blends. First,
we must make some assumptions. Namely, for each species of polymer in the blend,
we assume that each segment, i.e. monomer or Kuhn segment, acts as a scattering
centre, and each of these segments has the same segmental scattering length b̂ - this
is the sum of the scattering lengths of the constituent atoms in the segment.

The scattering amplitude of a system containing a single type of polymer can be
written as

A(q) = b̂

∫
V

d3rη(r) exp(−iq · r). (2.84)

Generalising to a two-polymer mixture,

A(q) =

∫
V

d3r(b̂AηA(r) + b̂BηB(r)) exp(−iq · r). (2.85)

It follows that the scattering intensity in a two-polymer mixture is given by

I(q) =
〈
b̂2
A

∫
d3r

∫
d3r′ηA(r)ηA(r′) exp(−iq · (r − r′))+

2b̂Ab̂B

∫
d3r

∫
d3r′ηA(r)ηB(r′) exp(−iq · (r − r′))+

b̂2
B

∫
d3r

∫
d3r′ηB(r)ηB(r′) exp(−iq · (r − r′))

〉
.

(2.86)

To write this more compactly, we can introduce quantities called partial structure
factors:

Sαβ =
〈vαvβ

V

∫
d3r

∫
d3r′ηα(r)ηβ(r′) exp(−iq · (r − r′))

〉
(2.87a)

=
〈vαvβ

V

∫
d3u

∫
d3r′ηα(r′ + u)ηβ(r′) exp(−iq · u)

〉
, (2.87b)

where the vα(β) factors are the volumes of each type of polymer segment. In terms
of Sαβ, the intensity can be written as

I(q) = V (%2
ASAA(q) + 2%A%BSAB(q) + %2

BSBB(q)), (2.88)
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where the %α are scattering length densities defined by %α = b̂α
vα

.
Noting that vαηα(r) = φα(r), the partial structure factors can be rewritten as

Sαβ(q) =
〈 1

V

∫
d3u

∫
d3r′φα(r′ + u)φβ(r′) exp(−iq · u)

〉
. (2.89)

The scattering depends on fluctuations in the scattering length distribution ρ(r).
This allows us to write the above in terms of fluctuations of the volume fraction:

Sαβ(q) =
〈 1

V

∫
d3u

∫
d3r′δφα(r′ + u)δφβ(r′) exp(−iq · u)

〉
. (2.90)

Assuming the mixture is incompressible, it follows that δφA(r) = −δφB(r), therefore
SAA(q) = SBB(q) = −SAB(q) = −SBA(q). We refer to S(q) ≡ SAA(q) as the
structure factor. Inserting S(q) into equation 2.88, the intensity can be written as

I(q) = V (∆%)2S(q), (2.91)

where ∆% = %B − %A. The intensity is directly proportional to the structure factor.
In isotropic systems, I(q) and S(q) depend only on the magnitude of q. Indeed,
polymer blends are generally isotropic. In an experimental context, S(q, t) is often
calculated as the radial average of S(q, t) [15, 53].

2.4.5 The time evolution of the structure factor

There is a duality concerning the time evolution of the structure factor during spin-
odal decomposition and dissolution: it is relatively easy to measure but much harder
to model [17, 18]. Specifically, the full equation of motion for the structure factor
during these processes is unclosed. We demonstrate this below.

First, we note that the structure factor can be written compactly as

S(q, t) =
1

V
< δφ(q, t)δφ(−q, t) >, (2.92)

where δφ(q) =
∫
d3r δφ(r) exp(−iq · r). To aid the next chapter, we take this

opportunity to introduce the power spectrum of φ(r):

P (q, t) = δφ(q, t)δφ(−q, t). (2.93)

The structure factor is related to the power spectrum via

S(q, t) =
1

V
< P (q, t) > . (2.94)

Differentiating equation 2.92 with respect to time, we obtain the following equa-
tion of motion for the structure factor in terms of ∂δφ(q,t)

∂t
:

∂S(q, t)

∂t
=

1

V

〈∂δφ(q)

∂t
δφ(−q)

〉
+

1

V

〈
δφ(q)

∂δφ(−q)
∂t

〉
. (2.95)

We can use the CHC-FHdG equation to write down the equation of motion for
δφ(q, t), i.e. ∂δφ(q,t)

∂t
. For simplicity, we assume that the square gradient coefficient

is constant. In this case, the time evolution of the volume fraction is given by
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∂φ(r, t)

∂t
= M∇2

(∂f(φ)

∂φ
− 2κkBT∇2φ

)
, (2.96)

where we have combined equations 2.47 and 2.50. Upon making the substitution
φ(r, t) = φ0 + δφ(r, t) and performing a power series expansion, we obtain

∂δφ(r, t)

∂t
= M∇2

(∂2f

∂φ2

∣∣∣
φ0
δφ− 2κkBT∇2δφ+

∞∑
n=3

1

(n− 1)!

∂nf

∂φn

∣∣∣
φ0
δφn−1

)
. (2.97)

In Fourier space, this becomes

∂δφ(q, t)

∂t
=−Mq2

(∂2f

∂φ2

∣∣∣
φ0
δφ(q) + 2κkBTq

2δφ(q)

+
∞∑
n=3

1

(n− 1)!

∂nf

∂φn

∣∣∣
φ0

∫
d3r δφ(r)n−1 exp(−iq · r)

)
.

(2.98)

Upon substituting equation 2.98 and its complex conjugate into equation 2.95,
we obtain, after rearranging,

∂S(q, t)

∂t
=− 2Mq2

(∂2f

∂φ2

∣∣∣
φ0
S(q) + 2κkBTq

2S(q)

+
1

2V

∞∑
n=3

1

(n− 1)!

∂nf

∂φn

∣∣∣
φ0[ ∫

d3r

∫
d3r′ < δφ(r)n−1δφ(r′) > exp(−iq · (r− r′))

+

∫
d3r

∫
d3r′ < δφ(r)δφ(r′)n−1 > exp(−iq · (r− r′))

])
.

(2.99)

The terms in the square brackets cannot be written in terms of S(q, t) - this can be
shown using the cross-correlation theorem [58]. Trying to write down the equations
of motion of the terms in the square brackets leads us to discover an infinite hierarchy
of coupled differential equations. Therefore, equation 2.99 is unclosed [17,18]. This
can be traced back to the non-linear terms in the CHC-FHdG equation. We note
that full knowledge of δφ(r) is only possible in a computational setting since, as
mentioned earlier, positional information is lost when measuring the structure factor
experimentally.

A truncation scheme is required to make equation 2.99 tractable.

2.4.6 The linear Cahn-Hilliard-Cook Flory-Huggins-de Gennes
equation

Arguably, the simplest and most commonly used truncation scheme is based on
the linear CHC-FHdG equation (equation 2.63) [17,18,26], which, in Fourier space,
becomes

∂δφ(q, t)

∂t
= −MkBTq

2

v0

[
2(χs − χ) +

σ2

18φ0(1− φ0)
q2
]
φ(q, t) + ξ(q, t) (2.100a)

= R(q)δφ(q, t) + ξ(q, t). (2.100b)
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Upon substituting equation 2.100b and its complex conjugate into equation 2.95,
we obtain

∂S(q, t)

∂t
= 2R(q)S(q, t) +

1

V
C(q), (2.101)

where C(q) =< ξ(q, t)δφ(−q, t) + ξ(−q, t)δφ(q, t) >. The variable C(q) appears in
the definition of the covariance of the noise term in Fourier space [59] (see reference
for proof):

< ξ(q, t)ξ(−q, t′) >= C(q)δ(t− t′). (2.102)

Therefore, C(q) can be calculated by mapping equation 2.54b to Fourier space

< ξ(q, t)ξ(−q, t′) >=− 2MkBTδ(t− t′)∫
d3r

∫
d3r′∇2(δ(r − r′)) exp(−iq · (r − r′)) (2.103a)

=− 2MkBTδ(t− t′)∫
d3r

∫
d3r′δ(r − r′)∇2 exp(−iq · (r − r′)) (2.103b)

=− 2MkBT (−q2)δ(t− t′)∫
d3r

∫
d3r′δ(r − r′) exp(−iq · (r − r′)) (2.103c)

=2MkBTq
2V δ(t− t′), (2.103d)

where we applied integration by parts twice to get from equation 2.103a to equation
2.103b. Using equation 2.103d, we can identify C(q) = 2MkBTq

2V .
Putting everything together, we obtain the linear CHC-FHdG equation for the

time evolution of the structure factor:

∂S(q, t)

∂t
= 2R(q)S(q, t) + 2MkBTq

2. (2.104)

The amplification factor can be written as [60]

R(q) = −MkBTq
2S−1

T (q), (2.105)

where ST is the stationary solution to equation 2.104:

ST (q) = v0

[
2(χs − χ) +

σ2

18

( 1

φ0(1− φ0)

)
q2
]−1

. (2.106)

In dissolution, ST coincides with the small-q limit of de Gennes’ random phase
approximation for the static structure factor [50,60]. In spinodal decomposition, ST
coincides with the small-q limit of the ‘virtual’ structure factor [50, 60]. Rewriting
the final term on the right-hand side of equation 2.104 as ‘− 2R(q)ST (q)’, equation
2.104 can be solved using separation of variables to get [60]

S(q, t) = (S(q, 0)− ST ) exp(2R(q)t) + ST (q). (2.107)

From this solution, a fitting relationship can be established to calculate R(q) from
experimental (or simulated) data [2]. This provides a means of testing the linear
CHC-FHdG equation, which, as we mentioned earlier, has been shown to quantita-
tively capture the early stage of spinodal decomposition in polymer blends.
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2.4.7 The Akcasu equation

Indeed, the linear CHC-FHdG equation for the structure factor is only valid during
the early stage of spinodal decomposition, i.e. while composition fluctuations are
small. Therefore, the validity of the linear CHC-FHdG equation is limited. Moti-
vated to improve this situation, Akcasu et al. set out to develop an approximate,
tractable, non-linear equation of motion [19,31,32]. Their equation is based on that
of Langer, Bar-on and Miller [61], who worked on the same problem but in the
context of small molecule mixtures.

The derivation of the equation of motion developed by Akcasu et al., which we
refer to as the Akcasu equation, is quite long. To the best of our knowledge, it has
not been published in its entirety. We provide the full derivation in chapter 4. For
now, we simply quote the result in its simplest, most interpretable form:

∂S(q, t)

∂t
= 2R(q)S(q, t)[1 + Z(q, t)]− 2R(q)Seq(q)[1 + Zeq(q)], (2.108)

where Z(q, t) is a non-linear mode-coupling term, Zeq(q) is the equilibrium value
of Z(q, t), and Seq(q) is the equilibrium value of S(q, t). The mode-coupling term
describes the coupling of composition fluctuations with different wavelengths. The
term after the minus sign on the right-hand side is the noise term, which ensures
the correct long-time (equilibrium) behaviour of S(q, t). As a result of the closure
approximations introduced by Akcasu et al., the noise term here is, in general,
different to that in equation 2.104.

There has been no reported comparison between the predictions of the Akcasu
equation and numerical or experimental measurements of the structure factor in
the case of spinodal decomposition. In the case of dissolution, a comparison with
experimental data was performed by Akcasu et al. [31]. The comparison revealed
a quantitative discrepancy between theory and experiment, which worsened as the
dissolution time increased. Akcasu et al. used best-guess values of molecular and
thermodynamic parameters to solve their equation because some of the parameters
are hard to measure. It is unclear whether the Akcasu equation failed as a result of
the equation being inadequate or incorrect parameter values being used.

2.4.8 The small-q limit

Both equations 2.104 and 2.108 are only valid in the small-q limit. This is a conse-
quence of using the modified form of the Cahn-Hilliard free energy functional pro-
posed by de Gennes (see equations 2.57 and 2.58) to derive them. As we mentioned
beneath equation 2.58, the square gradient coefficient was derived to be consistent
with the random phase approximation for the static structure factor. We should
now be more specific: the square gradient coefficient was actually derived to be
consistent with the small-q (or ‘long wavelength’) limit of de Gennes’ random phase
approximation [50, 51, 60], which we outline in the next section. The small-q limit

is defined as qRg << 1 [51, 60], where Rg =
√

Nσ2

6
is a representative radius of

gyration for the polymers in the blend.
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2.4.9 The random phase approximation for the static struc-
ture factor

In the context of polymer physics, the random phase approximation (RPA) was
developed by de Gennes to characterise composition fluctuations due to thermal
fluctuations (Brownian motion) in a one-phase blend [38, 50]. The result is an
equation for the static structure factor. We outline the RPA theory below [26,
38,41,50].

In the context of the lattice model introduced in section 2.2.2, let us consider a
binary polymer blend in which the constituent polymers, labelled A and B, have de-
grees of polymerisation NA and NB, respectively. To describe the local composition,
we use the local volume fractions φA(r) and φB(r), where φA(r) = 1 (φB(r) = 1)
if the lattice site located at r is occupied by a segment of polymer A (B), oth-
erwise φA(r) = 0 (φB(r) = 0). We assume the blend is incompressible, therefore
φA(r) + φB(r) = 1 for all r.

Local fluctuations in the composition can be defined as δφA(r) = φA(r) − φ0,A

(and similarly for φB(r)), where φ0,A is the average (overall) volume fraction of A.
These fluctuations are characterised by the following correlation functions

SAA(r − r′) =< δφA(r)δφA(r′) > (2.109a)

SBB(r − r′) =< δφB(r)δφB(r′) > (2.109b)

SAB(r − r′) =< δφA(r)δφB(r′) > . (2.109c)

Under the incompressibility assumption,

SAA(r − r′) = SBB(r − r′) = −SAB(r − r′) = −SBA(r − r′), (2.110)

i.e. only one correlation function is required to characterise the fluctuations, S(r −
r′) ≡ SAA(r − r′).

We wish to calculate S(r − r′) or, as we shall see, its Fourier transform. To
do this, we turn to linear response theory [34]. This requires us to introduce two
weak external potentials, uA(r) and uB(r), which act respectively on the segments
of A and B. The source of these external potentials could be, for example, an
external electric field, but the theory does not require we specify this. Indeed,
the external potentials could be viewed as a tool for facilitating the use of linear
response theory. Under the external potentials, the averages of φA(r) and φB(r)
deviate from φ0,A and φ0,B, respectively. In terms of φA(r), we denote this deviation

as δφA(r) =< φA(r) >ext −φ0,A. Linear response theory allows us to relate δφA(r)
to the perturbing potentials via the correlation function S(r − r′), which, in this
context, is often referred to as a response function:

δφA(r) =
−1

v0kBT

∫
d3r′S(r − r′)[uA(r′)− uB(r′)]. (2.111)

We note that the integral should be a sum since we are considering a lattice model
of mixing, however approximating the sum with an integral simplifies the ensuing
maths. The factor of 1/v0 keeps the dimensions consistent following this approxi-
mation.
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To make progress, we assume we can derive an alternative equation for δφA(r)
using an ideal mixture in a randomly mixed state as a base and adding complexities,
such as molecular interactions, as perturbations. For the ideal randomly mixed base
state, we have the following non-zero correlation functions due to chain connectivity:

S0
AA(r − r′) =< δφA(r)δφA(r′) > (2.112a)

S0
BB(r − r′) =< δφB(r)δφB(r′) > . (2.112b)

In contrast, S0
AB(r − r′) =< δφA(r)δφB(r′) >= 0. We now estimate the effects of

molecular interactions, excluded volume effects and external potentials using linear
response theory and the aforementioned perturbation assumption:

δφA(r) =
−1

v0kBT

∫
d3r′S0

AA(r − r′)[uA(r′) + wA(r′) + V (r′)] (2.113a)

δφB(r) =
−1

v0kBT

∫
d3r′S0

BB(r − r′)[uB(r′) + wB(r′) + V (r′)], (2.113b)

where wA(r′)+V (r′) and wB(r′)+V (r′) are mean-field potentials comprised of fields
relating to molecular interactions and excluded volume effects. The fields relating
to molecular interactions are given by

wA(r) = −z[εAA < φA(r) >ext +εAB < φB(r) >ext] (2.114a)

wB(r) = −z[εBA < φA(r) >ext +εBB < φB(r) >ext]. (2.114b)

Equations 2.113a and 2.113b constitute a pair of simultaneous equations for
three unknowns: δφA(r), δφB(r) and V (r). A third simultaneous equation can be
obtained from the incompressibility assumption:

δφA(r) + δφB(r) = 0. (2.115)

Expressing the solution to these simultaneous equations in the form of equation 2.111
would allow us to to determine S(r− r′). It is convenient to solve the simultaneous
equations in Fourier space, which allows us to make use of the convolution theorem.
The result of solving the simultaneous equations in Fourier space is

δφA(q) =
−1

v0kBT

[ 1

S0
AA(q)

+
1

S0
BB(q)

− 2χ

v0

]−1

(uA(q)− uB(q)). (2.116)

Upon comparing equation 2.116 with the Fourier transform of equation 2.111, we
can identify

1

S(q)
=

1

S0
AA(q)

+
1

S0
BB(q)

− 2χ

v0

. (2.117)

We now need to determine the ideal correlation functions, which we can do using
thermodynamic relations. We are guided by the following result, which applies to
polymer blends in the one-phase region and can be derived independently of the
RPA [15,40]:
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1

S(q = 0)
=

1

v0kBT

∂2F lat
mix,PP

∂φ2
=

1

kBT

∂µ

∂φ
. (2.118)

We note that we have included the factor of 1
v0

in the definition of µ to ensure con-
sistency with equation 2.46, which applies in the presence of composition gradients.

Equation 2.118 motivates us to calculate how the local composition of a blend
changes in response to a change in the local chemical potential. To begin, we consider
an ideal blend (χ = 0) and assume the volume under consideration is large relative to
the size of the constituent polymers. In large volumes, the mean-square magnitude
of composition fluctuations is small - the composition is indistinguishable from the
average composition. This means we can use equation 2.31 to write the chemical
potential of species A as

µA =
1

v0

∂F lat
mix,PP

∂φA
=

kBT

NAv0

ln(φA). (2.119)

It follows that the change in the local composition of species A in the volume in
response to a change in the local chemical potential is

∂φA
∂µA

=
φAv0NA

kBT
. (2.120)

A similar response function can be obtained for species B:

∂φB
∂µB

=
φBv0NB

kBT
. (2.121)

We can combine equations 2.120 and 2.121 to obtain the following equation for the
change in the exchange chemical potential:

δµ = δµA − δµB = kBT
( δφA
φAv0NA

− δφB
φBv0NB

)
. (2.122)

Assuming the blend is incompressible, we can then write

∂φ

∂µ
=

1

kBT

( 1

φv0NA

+
1

(1− φ)v0NB

)−1

. (2.123)

For small volumes, i.e. on the scale of or smaller than the size of the constituent
polymers, composition fluctuations are significant. Equation 2.123 needs to be gen-
eralised before it can be applied to such volumes. In Fourier space, the response
functions given by equations 2.120 and 2.121 can be generalised by introducing a
q-dependence via the (dimensionless) form factor of a polymer chain:

∂φA(q)

∂µA(q)
=
φAv0PA(q)

kBT
(2.124a)

∂φB(q)

∂µB(q)
=
φBv0PB(q)

kBT
. (2.124b)

Form factors are related to the size and shape of individual molecules [15]. Using
equations 2.124a and 2.124b, we can generalise equation 2.123 as
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∂φ(q)

∂µ(q)
=

1

kBT

( 1

φv0PA(q)
+

1

(1− φ)v0PB(q)

)−1

. (2.125)

Upon comparing equations 2.125 and 2.117 (setting χ = 0 in the latter), we can
identify the non-interacting structure factor

S−1
n.i.(q) =

1

S0
AA(q)

+
1

S0
BB(q)

=
1

φv0PA(q)
+

1

(1− φ)v0PB(q)
. (2.126)

Substituting this relation into equation 2.117 yields

1

S(q)
=

1

φv0PA(q)
+

1

(1− φ)v0PB(q)
− 2χ

v0

. (2.127)

To proceed, we need to insert the appropriate form factors, PA(q) and PB(q), into
equation 2.127. We know from equation 2.126 that PA(q) is related to S0

AA(q) and
PB(q) is related to S0

BB(q). Since S0
AA(q) and S0

BB(q) correspond to the randomly
mixed base state, PA(q) and PB(q) must describe Gaussian chains, i.e. polymers
that are described by random walk statistics. The form factor of a Gaussian chain
is given by [15,16,38]

PA(q) = NAfD(qRg,A), (2.128)

where

fD(qRg,A) =
2

(q2R2
g,A)2

(q2R2
g,A − 1 + exp

(
−q2R2

g,A

)
) (2.129)

is known as the Debye function. In the small-q limit, the Debye function can be
expanded as

fD(qRg,A) ≈ 1−
q2R2

g,A

3
. (2.130)

Upon substituting equations 2.128 and 2.130 into equation 2.127 and simplifying,
we obtain the small-q limit of de Gennes’ random phase approximation for the static
structure factor:

1

S(q)
=

1

φv0NA

+
1

(1− φ)v0NB

− 2χ

v0

+
q2

18v0

(σ2
A

φ
+

σ2
B

(1− φ)

)
. (2.131)

This coincides with equation 2.106 when we set NA = NB = N and σA = σB = σ and
write φ = φ0 (indeed, in equation 2.131, φ = φA corresponds to the overall volume
fraction of monomers of type A, which is equivalent to φ0 in equation 2.106).

The small-q limit of de Gennes’ random phase approximation for the static struc-
ture factor can be derived from a free energy functional in the form of equation 2.48,
allowing for the square gradient coefficient to depend on the composition. For a free
energy functional of this form, the chemical potential is given by equation 2.61.
Upon linearising the chemical potential, we obtain

µ =
∂f

∂φ

∣∣∣
φ0

+
∂2f

∂φ2

∣∣∣
φ0
δφ− 2kBTκ(φ0)∇2δφ. (2.132)
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In Fourier space this becomes

µ(q) =
∂f

∂φ

∣∣∣
φ0
δ(q) +

∂2f

∂φ2

∣∣∣
φ0
δφ(q) + 2kBTq

2κ(φ0)δφ(q). (2.133)

It follows that

∂µ(q)

∂φ(q)
=
∂2f

∂φ2

∣∣∣
φ0

+ 2kBTq
2κ(φ0). (2.134)

Upon substituting equation 2.57 into equation 2.134 and simplifying, we obtain

∂µ(q)

∂φ(q)
= kBT

( 1

NAv0φ0

+
1

NBv0(1− φ0)
− 2χ

v0

+ 2q2κ(φ0)
)
. (2.135)

Comparing this equation with equation 2.131 (writing φ0 = φ), we can identify the
entropic component to the square gradient coefficient given in equation 2.58. We
note that the RPA theory does not yield the purely energetic component of the
square gradient coefficient. Although this term is commonly neglected, it can be
recovered by including a correction term in equation 2.127 [26,47].

2.5 System identification

Dynamical systems are ubiquitous in a wide range of fields. In many of these fields,
there is a duality between abundant measurement data and elusive governing equa-
tions [33], i.e. differential equations describing a process of interest. Embracing this
duality, the field of system identification, concerned with building models of dynam-
ical systems from measurement data, has emerged as an alternative to traditional
theory-driven modelling [33].

Broadly speaking, existing system identification techniques can be categorised
into three groups based on the type of models they give rise to [33,62]:

� Black box models

� Linear models

� Parsimonious non-linear models, i.e. non-linear models with few terms

Examples of black box techniques include NARMAX [63], time-lagged autoen-
coders [64] and LSTM networks [65]. While many black box techniques have demon-
strated the ability to make accurate predictions for complex systems, they are lacking
in terms of generalisability and interpretability. Typically, generalisability and in-
terpretability are important considerations in the development of scientific theories.
For this reason, we subsequently focus on system identification techniques that give
rise to linear or parsimonious non-linear models.

2.5.1 Motivating linear system identification

We first motivate linear system identification, which is often a logical first port of call
when modelling dynamical systems [33, 66]. There are several reasons for this. For
example, linear models are straightforward to interpret and simulate. Furthermore,
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many techniques exist for controlling systems described by linear models. Other
motivating factors are outlined below.

Linear models of dynamical systems can be represented as follows:

dx

dt
= Ax, (2.136)

where x ∈ Rn is the state of the system, i.e. a vector comprised of variables of
interest, and A ∈ Rn×n is a matrix. Unlike non-linear models, linear models always
admit a closed-form solution, specifically:

x(t0 + t) = exp(At)x(t0). (2.137)

The dynamics described by linear models are encoded in the eigenvectors and
eigenvalues of A, which are defined by the following relationship, i.e. the eigende-
composition of A:

AT = TΩ, (2.138)

where T is a matrix comprised of the eigenvectors appended column-wise and Ω is a
diagonal matrix containing the corresponding eigenvalues. One can use T to define
a transformation z = T−1x into eigenvector coordinates. In this coordinate system,
the dynamics of each transformed variable zj are decoupled, giving rise to simple
models of the form

dzj
dt

= ωjzj. (2.139)

Using equation 2.137, we can write the discrete analogue to equation 2.136 as

xk+1 = Axk, (2.140)

where A = exp(A∆t) and xk is a snapshot of the system, i.e. a snapshot of the
state vector, at time t = k∆t. The eigenvectors and eigenvalues of A are contained
in T and Λ = exp(Ω∆t), respectively.

2.5.2 Dynamic mode decomposition (DMD)

Developed by Schmid [67] in the field of fluid mechanics before being developed
by others [33, 66, 68], dynamic mode decomposition (DMD) is a algorithm for cal-
culating the leading eigenvectors and eigenvalues of the best-fit linear operator A
that approximately describes the dynamics of a high-dimensional, non-linear, spatio-
temporal system. A purely data-driven technique, DMD only requires snapshots of
the system as an input. We outline DMD below [33,66].

DMD is formulated based on the following equation (c.f. equation 2.137):

X′ ≈ AX, (2.141)

where X and X′ are data matrices comprised of snapshots xk appended column-wise.
Given m snapshots sampled every ∆t in time, the data matrices are given by
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X =

x1 x2 ... xm−1

 (2.142a)

X′ =

x2 x3 ... xm

 . (2.142b)

One might wonder about the point of using DMD to calculate the eigendecom-
position of A when they could calculate A directly using least-squares regression
instead:

A = argmin
A
||X′ −AX||F = X′X†, (2.143)

where F denotes the Frobenius norm and † denotes the Moore-Penrose pseudoinverse
[69]. The motivation for the approach adopted in DMD is that the calculation in
equation 2.143 can prove problematic if A is high-dimensional. Given that each
snapshot contains n elements, A will contain n2 elements. Therefore, if n is large,
just representing A could be problematic, let alone performing calculations involving
it.

To circumvent any calculations that directly involve A, DMD makes use of di-
mensionality reduction through singular value decomposition (SVD), a data-driven
technique for matrix factorisation. The SVD factorisation is structured in such a
way that a low-dimensional, or low-rank, approximation to the original matrix is
often easy to obtain. To illustrate this, we consider the SVD of X. Given that the
snapshots xk contain n elements, meaning X ∈ Rn×(m−1), the SVD of X is given by

X = UΣV∗, (2.144)

where U ∈ Rn×n and V ∈ R(m−1)×(m−1) are unitary matrices with orthonormal
columns and Σ ∈ Rn×(m−1) is a diagonal matrix with real, positive entries, collec-
tively referred to as singular values. The symbol ∗ denotes the complex conjugate
transpose. The columns of U are referred to as proper orthogonal decomposition
(POD) modes. These modes are a superposition of patterns or signals in the data.
When POD modes are constructed, temporal information is largely ignored - typi-
cally, patterns or signals that oscillate at different frequencies are mixed. The rows
of V∗ describe the time evolution of the POD modes. The singular values in Σ are
ordered hierarchically. The magnitude of a given singular value ranks the relative
importance of the corresponding POD mode in U for describing the data in X, i.e.
the first POD mode is more important than the second and so on. Therefore, to
calculate a low-rank approximation to X, one can simply choose to keep the leading
r̃ columns of U, rows of V∗ and singular values in Σ, discarding everything else:

X ≈ ŨΣ̃Ṽ
∗
, (2.145)

where Ũ ∈ Cn×r̃, Ṽ ∈ C(m−1)×r̃, Σ̃ ∈ Rr̃×r̃, and r̃ < m−1. Choosing the rank r̃ is an
important, albeit often subjective, part of this dimensionality reduction procedure.
A heuristic approach is to locate ‘elbows’ in an ordered plot of the singular values.
The resulting reduced SVD defines a low-dimensional, orthogonal coordinate system
in which the data in X can be represented. Functions for calculating the SVD
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are standard in most programming languages. References regarding the numerical
implementation of the SVD can be found in [33].

We are now in a position to outline the DMD algorithm. The first step is to
calculate the reduced SVD of the data matrix X, which is given by equation 2.145.

The second step is project A onto the POD modes in Ũ:

Ã = Ũ
∗
AŨ = Ũ

∗
X′ṼΣ̃

−1
. (2.146)

The reduced matrix Ã has the same nonzero eigenvalues as the full matrix A. It is
this step that enables one to circumvent calculations that directly involve A.

The third step is to calculate the eigendecomposition of Ã:

ÃW = WΛ, (2.147)

where W contains the eigenvectors of Ã, appended column-wise, and Λ is a diagonal
matrix containing the eigenvalues.

The final step, developed by Tu et al. [33, 68], is to construct the eigenmodes of
A from W:

Φ = X′ṼΣ̃
−1

W. (2.148)

We subsequently refer to these modes as DMD modes.
With knowledge of Φ and Λ, one can use the following equation, which can be

deduced from equation 2.137, to reconstruct the data in X and make predictions of
future snapshots:

xk ≈ Φ exp(Ωk∆t)b, (2.149)

where Ω = ln(Λ)/∆t and b is a vector of coefficients. The vector b can be calculated
in two ways: either directly using b = Φ†x1 or indirectly using a projection onto
the POD modes. In contrast to POD modes, DMD modes consist of patterns or
signals in the data that oscillate, with growth or decay, at the same frequency.
The oscillatory behaviour is described by the corresponding eigenvalue. In general,
the eigenvalues are complex. The real part encapsulates growth or decay, while
the imaginary part encapsulates periodic behaviour. Eigenvalues with a modulus
greater than or equal to one are unstable, limiting how far one can use equation
2.149 to accurately and reliably predict into the future.

There are several extensions to the ‘base’ DMD algorithm outlined above. These
include dynamic mode decomposition with control (DMDc) [70], which can disam-
biguate between the natural and forced components of the dynamics in an actuated
system, and bagging, optimised DMD (BOP-DMD) [71], which overcomes two key
weaknesses of DMD: sensitivity to measurement noise and a lack of uncertainty
quantification. Measurement noise has been shown to cause DMD to calculate a
spurious eigendecomposition of A [71, 72]. Another pertinent limitation of DMD is
its inability to handle translations and scaling [33,66]. Inherent to the application of
SVD is the assumption that the spatial and temporal dependencies of the dynamics
can be decoupled. In systems where this is not the case, for example, travelling
waves, SVD, and therefore DMD, breaks down.

Examples of applying DMD and its extensions, including code, can be found
online [73].
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2.5.3 Sparse identification of non-linear dynamics (SINDy)

While linear models have their advantages, many systems exhibit dynamics that
require the construction of non-linear models. Over the last couple of decades, there
have been major developments targeted towards non-linear models in the field of
system identification. Seminal work in this area used symbolic regression to learn
non-linear governing equations from data [74, 75]. A key limitation of symbolic
regression is that it is computationally expensive. Brunton et al. proposed an al-
ternative, more computationally efficient, approach to learning governing equations
from data called sparse identification of non-linear dynamics (SINDy) [76]. We
outline SINDy below [76].

SINDy was developed in the context of non-linear ODEs, i.e. models of the form

dx(t)

dt
= f(x(t)), (2.150)

where f(x(t)) is a non-linear function comprised of basis functions that depend on
x(t). At the heart of SINDy is the assumption that f(x) only contains a few terms,
i.e. it is sparse (parsimonious) in the space of possible basis functions. This as-
sumption is valid for many physical systems in an appropriate basis. Under the
assumption of sparsity, SINDy frames the problem of model discovery in terms of
sparse regression. SINDy models, therefore, balance model accuracy with complex-
ity, avoiding over-fitting and increasing the chances of generalisability.

The first step of SINDy is to collect snapshots of the system of interest and
assemble them into a data matrix of the form

X =


xT (t1)
xT (t2)

...
xT (tm)

 =


x1(t1) x2(t1) . . . xn(t1)
x1(t2) x2(t2) . . . xn(t2)

...
...

. . .
...

x1(tm) x2(tm) . . . xn(tm)

 . (2.151)

Similarly, a data matrix of first order temporal derivatives must also be assembled:

Ẋ =


ẋT (t1)
ẋT (t2)

...
ẋT (tm)

 =


ẋ1(t1) ẋ2(t1) . . . ẋn(t1)
ẋ1(t2) ẋ2(t2) . . . ẋn(t2)

...
...

. . .
...

ẋ1(tm) ẋ2(tm) . . . ẋn(tm)

 . (2.152)

The derivatives can either be measured directly or calculated from the snapshots in
X.

The second step is to construct a library of candidate basis functions that may
appear in f(x). For example,

Θ(X) =
[
1 X X2 . . . sin(X) . . .

]
. (2.153)

Here, sin(X) denotes the element-wise operation of sin on X, and X2 denotes all the
quadratic terms that can be formed from the elements in X, considering one row at
a time, i.e.
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X2 =


x2

1(t1) x1(t1)x2(t1) . . . x1(t1)xn(t1) x2
2(t1) . . . x2

n(t1)
x2

1(t2) x1(t2)x2(t2) . . . x1(t2)xn(t2) x2
2(t2) . . . x2

n(t2)
...

...
. . .

...
...

. . .
...

x2
1(tm) x1(tm)x2(tm) . . . x1(tm)xn(tm) x2

2(tm) . . . x2
n(tm)

 . (2.154)

The construction of Θ(X) is down to the user, who may be informed by prior
knowledge of the system under consideration. If there is little or no prior knowledge,
there are general best-practice principles one can follow [33,77–81].

The third step is to form the following linear system of equations (c.f. equation
2.150):

Ẋ = Θ(X)Ξ, (2.155)

where Ξ =
[
ξ1 ξ2 . . . ξn

]
is a (sparse) matrix of coefficients to be found. Denot-

ing the columns of Ẋ as ẋk, we can write

ẋk = Θ(X)ξk, (2.156)

therefore each vector ξk contains the active terms in the equation of motion for xk,
i.e. the kth variable in x.

The final step is to find a sparse solution to equation 2.155. Based on its com-
putational efficiency and robustness to noise, Brunton et al. [76] advocate using
sequential threshold least-squares (STLS), which imposes the assumption that f(x)
is parsimonious. STLS can be summarised as follows:

� Calculate the least squares solution for Ξ.

� Threshold all coefficients smaller than ε, which is a hyperparameter.

� Calculate a new least squares solution for Ξ using only the non-zero coeffi-
cients.

� Threshold all coefficients smaller than ε.

� Repeat the above two steps until all non-zero coefficients converge.

An optimal value of ε can be determined using cross-validation techniques. It is
likely to be beneficial to normalise the columns of Θ(X) before applying STLS. It
may also be necessary to filter X and Ẋ if the data is contaminated with a significant
amount of noise.

A key limitation of SINDy is that it requires the state vector is represented in
a coordinate system that enables a sparse representation of the dynamics. More-
over, SINDy requires that the library of candidate functions is overcomplete, i.e.
it contains the correct sparse model. While prior knowledge of the system might
help inform the choice of coordinate system and library of candidate functions, these
things are otherwise difficult to determine. That being said, there is an extension
to SINDy that opens the door to the joint discovery of coordinates and governing
equations [82]. We discuss this in chapter 6. Indeed, the simple formulation of
SINDy as a regression problem has enabled the development of many extensions to
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the technique. A summary of these extensions can be found in [33]. Pertinent to
this thesis is the extension of SINDy to systems described by parametric partial dif-
ferential equations [83], i.e. partial differential equations (PDEs) with non-constant
coefficients. This extension relies on an intermediate extension of SINDy to systems
described by PDEs with constant coefficients [84,85], which we outline first. Before
doing so, we wish to note that excellent guidance for applying SINDy can be found
online [77–81], as can examples of applying SINDy, including code [86,87].

2.5.4 Partial differential equation functional identification
of non-linear dynamics (PDE-FIND)

Independently of each other, Rudy et al. [84] and Schaeffer [85] generalised the
library of candidate functions in SINDy to include partial derivatives and devel-
oped new algorithms to solve the ensuing sparse regression problem, enabling the
identification of PDEs with constant coefficients, i.e. models of the form

∂u(x, t)

∂t
= f(u, ux, uxx, ...), (2.157)

where, for simplicity, we have only considered a single variable u(x, t) ∈ R and a
single spatial dimension, represented by x.

Below, we outline the technique developed by Rudy et al. [84], which is called
partial differential equation functional identification of non-linear dynamics (PDE-
FIND). In keeping with equation 2.157, we only consider a single variable.

Similarly to SINDy, in PDE-FIND, snapshots of the system, i.e. snapshots of
u(x, t), must be collected to form a linear system of equations. For a system in
which u(x, t) is measured at n discrete grid points over m time steps, an example
linear system of equations is as follows:

ut(x1, t1)
ut(x2, t1)

...
ut(xn, tm)


︸ ︷︷ ︸

Ut

=


1 u(x1, t1) ux(x1, t1) . . . u2uxx(x1, t1)
1 u(x2, t1) ux(x2, t1) . . . u2uxx(x2, t1)
...

...
...

. . .
...

1 u(xn, tm) ux(xn, tm) . . . u2uxx(xn, tm)


︸ ︷︷ ︸

Θ(U)

ξ, (2.158)

where Ut a column vector containing first order time derivatives of u(x, t), Θ(U)
is a library matrix comprising functions of spatial derivatives of u(x, t) and ξ is a
(sparse) column vector of coefficients to be found. If the snapshots of u(x, t) are
clean, finite differences can be used to calculate the partial derivatives. Otherwise,
polynomial interpolation is an option.

In contrast to SINDy, a different approach to STLS is used to find a sparse solu-
tion to equation 2.158. A weakness of STLS is that it often fails to identify a sparse
solution when the columns of the library matrix are highly correlated. Augmenting
least squares with a regularising term can help avoid this issue. Therefore, Rudy et
al. [84] advocate using sequential threshold ridge regression (STRidge), i.e. STLS
with the least squares component replaced by ridge regression. In ridge regression,
l2-regularisation is used to penalise non-zero coefficients in the least-squares solution,
driving the values of some coefficients towards zero. There are two key hyperpa-
rameters associated with STRidge: the tolerance ε and a tuning parameter λ. The
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latter determines the strength of the regularisation. As with STLS, normalising the
columns of Θ(U) is likely to be beneficial when applying STRidge.

An intrinsic limitation of PDE-FIND is related to the challenge of accurately
calculating the numerical derivatives of the snapshots. For example, when the snap-
shots are noisy or low resolution, the task of accurately differentiating the data
using numerical methods becomes increasingly difficult. As with SINDy, another
limitation of PDE-FIND is that it requires the variable of interest to be measured
in a coordinate system that enables a sparse representation of the dynamics. PDE-
FIND is also limited by the requirement that the library of candidate functions is
overcomplete.

Examples of applying PDE-FIND, including code, can be found online [86–88].

2.5.5 Parametric PDE-FIND

After developing PDE-FIND, Rudy et al. [83] generalised the technique further by
incorporating the concept of group sparsity, enabling the identification of parametric
PDEs, i.e models of the from of equation 2.157 but with coefficients that depend on
time or space. The resulting technique is called parametric PDE-FIND.

The task at hand when applying parametric PDE-FIND is more complex than
before. Instead of calculating the correct value of each non-zero coefficient, the
correct value of each non-zero coefficient at each time step or grid point must be
calculated. A slightly different approach to the one taken in PDE-FIND is required.
We outline parametric PDE-FIND below [83].

To outline parametric PDE-FIND, we assume that the coefficients have a spatial
dependency. For a system in which u(x, t) is measured at n discrete grid points over
m time steps, the data measured at each grid point must be considered separately
to construct n linear systems of equations

U
(j)
t = Θ(U (j))ξ(j), j = 1, ..., n, (2.159)

where, for an example library based on the one in equation 2.158,

Θ(U (j)) =


1 u(xj, t1) ux(xj, t1) . . . u2uxx(xj, t1)
1 u(xj, t2) ux(xj, t2) . . . u2uxx(xj, t2)
...

...
...

...
1 u(xj, tm) ux(xj, tm) . . . u2uxx(xj, tm)

 . (2.160)

Next, the n linear systems of equations need to be assembled into a single hierarchical
linear system of equations with a block diagonal structure

U
(1)
t

U
(2)
t
...

U
(n)
t


︸ ︷︷ ︸

Ut

=


Θ(U (1))

Θ(U (2))
. . .

Θ(U (n))


︸ ︷︷ ︸

Θ


ξ(1)

ξ(2)

...
ξ(n)


︸ ︷︷ ︸

ξ

. (2.161)

To identify a parametric PDE from this system of equations, a sparse solution
must be calculated such that each ξ(j) shares the same sparsity pattern - this concept
is called group sparsity. To achieve group sparsity, a modified version of STRidge
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called sequential grouped threshold ridge regression (SGTR) can be applied. SGTR
groups the columns in 2.161 according to the basis function they represent and
thresholds whole groups at a time. Mathematically, for n grid points and d candidate
monomial functions, the groups are defined by G = {j + d · i : i = 0, ..., n− 1 : j =
1, ..., d}. SGTR is outlined in algorithm 1, which we have reproduced from [83]
with permission from SIAM. As the algorithm shows, the l2-norm of the n spatially
dependent values of each coefficient is measured. If the l2-norm is below a threshold
value, then the corresponding coefficient is set to zero at all grid points. Once the
active terms, i.e. the terms with non-zero coefficients, in the equation have been
identified, an unbiased estimate of the coefficient values at each spatial point is
obtained using least squares. Since SGTR evaluates the importance of terms that
appear in the PDE based on the l2-norm of their parametric coefficients, differences
in the scale of the functions in the library must be taken into account. For this
reason, each U

(j)
t and column of Θ must be normalised before SGTR is applied.

Algorithm 1 SGTR(A,b,G,λ,ε,maxit,f(x) = ||x||2)

# Solves x ≈ A−1b with sparsity imposed on groups g in G
# Initialise coefficients with ridge regression
x = arg minw||b−Aw||22 + λ||w||22
# Threshold groups with small f and repeat
for iter = 1, ...,maxit:

# Remove groups with sufficiently small f(x(g))
G = {g ∈ G : f(x(g)) > ε}
# Refit x for groups g in G (note this sets x(g) = 0 for g /∈ G)
x = arg min w||b−

∑
g∈GA(g)w(g)||22 + λ||w||22

# Get unbiased estimates of coefficients after finding sparsity
x(G) = arg min w||b−

∑
g∈GA(g)w(g)||22

There are four hyperparameters associated with SGTR: the tuning parameter,
λ; the tolerance, ε; the maximum number of iterations, maxit; and the relevance
function, f(x). The choice of these hyperparameters will affect the output of the
SGTR algorithm, giving rise to the problem of model selection. To select the optimal
model from a collection that have been configured with different hyperparameters,
Rudy et al. suggest evaluating each model on a hold-out test data set using the
following loss function:

L(ξ) = N ln

(
||Θξ −Ut||22

N
+ ν

)
+ 2k, (2.162)

where N is the number of rows in Θ, k is the number of non-zero coefficients and ν
is a small floor term to avoid overfitting.

When it comes to finding suitable values of the hyperparameters, λ, ε and maxit
lend themselves to either a grid or random search. In the case of ε, an exhaustive
range of values to search between can be defined using

εmax (min) = max (min)
g∈G

||ξ(g)
ridge||2, (2.163)

where ξridge denotes the ridge regression solution to the normalised version of the
linear system of equations in equation 2.161. By definition, εmin is the minimum

54



tolerance that has any effect on the sparsity of the PDE and εmax is the minimum
tolerance that guarantees all terms to be equal to zero. The choice of f(x) could
be informed by expected or desired attributes of the coefficients. For example, one
might expect the coefficients of the terms in a PDE describing a physical system to
have a certain level of smoothness. Setting f(x) = ||x||2 as in algorithm 1 is a good
starting point.

A limitation of parametric PDE-FIND is that it does not yield an equation for
the temporal or spatial dependency of the coefficients. Other limitations of the
technique are the same as those that affect PDE-FIND.

Examples of applying PDE-FIND, including code, can be found online [89].

2.6 Summary

In this chapter, we outlined the key theories and techniques in relation to the work
in this thesis. We considered the following:

� The phase behaviour of polymer blends, including the free energy of mixing,
the Flory-Huggins theory, free energy curves and phase diagrams

� Mechanisms of phase separation and dissolution in polymer blends, focussing
on spinodal decomposition and dissolution through the lens of the CHC and
CHC-FHdG theories

� Small-angle scattering, including the relationship between the scattering inten-
sity and the structure factor, the difficulty of deriving an equation of motion
for the structure factor, the approximate linear CHC-FHdG and Akcasu equa-
tions of motion for the structure factor, and the random phase approximation

� The field of system identification, including DMD, SINDy and parametric
PDE-FIND
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Chapter 3

Generating time series of synthetic
structure factor snapshots

3.1 Introduction

We used three time series of synthetic structure factor snapshots to obtain the results
in chapters 4, 5 and 6. In this chapter, we detail how we generated the time series.
We include a discussion of how we determined suitable values of the discretisation
parameters, ∆x and ∆τ , upon which the generation of credible time series hinges.
The aim of this chapter is to provide context for our results and support their
credibility.

3.2 Overview and key equations

An overview of the method we used to generate each time series of synthetic structure
factor snapshots is as follows:

� We simulated polymeric spinodal decomposition or dissolution using a finite
difference scheme, namely a non-dimensionalised and discretised version of the
CHC-FHdG equation (equation 2.62).

� During the simulations, we calculated snapshots of the power spectrum using
a modified version of equation 2.93.

� After running several repeat simulations, we calculated snapshots of the struc-
ture factor by applying a modified version of equation 2.94 to the power spec-
trum snapshots we accumulated.

There are three key equations: the finite difference scheme and the equations we
used to calculate the snapshots of the power spectrum and the structure factor. We
present these equations below. In the interest of orderliness, we defer the derivations
of the equations to appendix A.

Finite difference scheme

To simulate polymeric spinodal decomposition and dissolution, we applied the fol-
lowing finite difference scheme - a non-dimensionalised and discretised version of
equation 2.62 - to a simple cubic lattice with periodic boundary conditions:
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φm+1
j,k,l =φmj,k,l +

∆τ

2∆x2

∑
nn

[ χc
2|χ− χs|

ln
( φmj,k,l

1− φmj,k,l

)
−

2χφmj,k,l
|χ− χs|

+
1

36

( 1− 2φmj,k,l
(φmj,k,l(1− φmj,k,l))2

) 1

4∆x2

∏
nn

φmj,k,l

− 2
( 1

36φmj,k,l(1− φmj,k,l)

) 1

∆x2

∑
nn

φmj,k,l

]
+
v

1/2
0 |χ− χs|1/4

σ3/2

1

∆x

[
ηm1;j+1,k,l − ηm1;j,k,l + ηm2;j,k+1,l − ηm2;j,k,l + ηm3;j,k,l+1 − ηm3;j,k,l

]
,

(3.1)

where m denotes the number of dimensionless time steps, ∆τ is the duration of
a dimensionless time step, j, k and l denote the coordinates of each lattice site,
∆x is the dimensionless length of each lattice site,

∑
nn and

∏
nn are short-hand

operators, and η1, η2 and η3 are dimensionless Gaussian random variables. The
shorthand operators are defined as

∑
nn

fj,k,l = fj+1,k,l + fj−1,k,l + fj,k+1,l + fj,k−1,l + fj,k,l+1 + fj,k,l−1 − 6fj,k,l (3.2a)

∏
nn

fj,k,l =f 2
j+1,k,l + f 2

j−1,k,l + f 2
j,k+1,l + f 2

j,k−1,l + f 2
j,k,l+1 + f 2

j,k,l−1−

2(fj+1,k,lfj−1,k,l + fj,k+1,lfj,k−1,l + fj,k,l+1fj,k,l−1).

(3.2b)

The first and second moments of the Gaussian random variables are given by

< ηmn;j,k,l >= 0 (3.3a)

< ηmn;j,k,lη
m′

n′;j′,k′,l′ >=
∆τ

∆x3
δn,n′δj,j′δk,k′δl,l′δm,m′ . (3.3b)

The dimensionless variables we used to obtain equation 3.1 are as follows:

x =
|χ− χs|1/2

σ
r (3.4a)

τ =
2MkBT |χ− χs|2

σ2v0

t (3.4b)

ξ̃(x, τ) =
σ2v0

2MkBT |χ− χs|2
ξ(r, t). (3.4c)

These dimensionless variables are inspired by those in [53]. They relate to the
fastest growing wavelength and its growth rate during the early stage of spinodal
decomposition.

In the context of lattice sites in the top row of a cubic lattice, periodic bound-
ary conditions mean that the nearest neighbours in the vertical direction are the
corresponding lattice sites in the bottom row. The nearest neighbours to the left of
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lattice sites in the left-most row, to the right of lattice sites in the right-most row,
and below lattice sites in the bottom row follow analogously.

For later reference, we denote the total number of time steps in a simulation as
mmax.

Snapshots of the power spectrum

To calculate snapshots of the power spectrum during the simulations, we used

P̃m
n;d = ∆x6

〈Ns−1∑
j=0

Ns−1∑
k=0

Ns−1∑
l=0

δφmn;j,k,l e
− 2πi
Ns

(aj+bk)
Ns−1∑
j′=0

Ns−1∑
k′=0

Ns−1∑
l′=0

δφm
′

n;j′,k′,l′e
2πi
Ns

(aj′+bk′)
〉
R
,

(3.5)
where n allows one to distinguish between repeat simulations, Ns is the number of
lattice sites in each dimension of the cubic simulation lattice, a and b are integers in
the range −(Ns−1)

2
≤ a, b ≤ Ns−1

2
, and < ... >R denotes a radial average. The radial

average can be written explicitly as

< fa,b >R≡ fd =

∑
a,b s.t. round(

√
a2+b2)=d fa,b∑

a,b s.t. round(
√
a2+b2)=d 1

, (3.6)

where d is an integer in the range 0 ≤ d ≤ Ns−1
2

.

Snapshots of the structure factor

After implementing Nr repeat simulations, we calculated snapshots of the structure
factor using

S̃md =
1

NrN3
s∆x3

Nr∑
n=1

P̃m
n;d. (3.7)

Throughout the remainder of the thesis, we express snapshots of S̃md as S̃(k, τ),
where k = 2π

Ns∆x
d and τ = m∆τ . The symbol k denotes the magnitude of the

dimensionless scattering vector, i.e. k = |k|.
We note that equations 3.5 and 3.7 are non-dimensional and discrete, consistent

with equation 3.1. The non-dimensionalisation was performed using equation 3.4a
and the dimensionless variables below:

k =
σ

|χ− χs|
1
2

q (3.8a)

S̃(k, τ) =
|χ− χs|

3
2

σ3
S(q, t). (3.8b)

3.3 Parameter values and initial conditions

Out of the three time series we used to obtain our results, we generated one by
simulating dissolution and two by simulating spinodal decomposition. The only
parameters we altered between simulations were φ0 and χ. It follows that each
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time series corresponds to a unique combination of φ0 and χ values. For ease of
reference, we devised a name for each time series based on these values - see table
3.1. There are two values of χ listed for the dissolution time series because of how
we generated the initial composition when simulating dissolution - we discuss this
below. We implemented five repeat simulations (Nr = 5) for each combination of
φ0 and χ values. During the simulations, we calculated snapshots of the power
spectrum after the first and every 400th time step, i.e. when m = 1, 400, 800, 1200,
etc. The values of the other parameters we used in the simulations were ∆x = 0.25,

∆τ = 6.25×10−5, Ns = 257, mmax = 8×105, N = 2700, and σ =
√

20v
1
3
0 , where the

factor of
√

20 is the square root of the characteristic ratio, C∞ = σ2/v
2
3
0 . In the case

of the dissolution and the critical shallow time series, the value of χs corresponding
to N = 2700 is χs = 0.000741, while in the case of the off-critical deep time series,
it is χs = 0.000814. We based the values of N and χ on those used in [90–92]. The
value of C∞ corresponds to a relatively stiff polymer [93] - we found using larger
values of C∞ increased the stability of the simulations. We used trial and error to
determine suitable values of ∆x and ∆τ , i.e. values of ∆x and ∆τ that can be
used in the simulations to generate time series that are independent of these values.
Further details on this are provided in section 3.6. To put ∆x = 0.25 into context,
table 3.2 contains the value of ∆r/Rg corresponding to each time series, where ∆r
is the dimensional equivalent of ∆x (see equation 3.4a). The ratio ∆r/Rg relates
the size of a lattice site to the size of the polymers.

Time series name φ0 χ

Dissolution 0.5 0.000765→ 0.000716
Critical shallow (spinodal decomposition) 0.5 0.000765
Off-critical deep (spinodal decomposition) 0.35 0.000937

Table 3.1: The values of φ0 and χ corresponding to each time series we generated.
The terms ‘shallow’ and ‘deep’ refer to the relative quench depth (χ−χs) represented
by the value of χ.

Time series name ∆r/Rg

Dissolution 2.41
Critical shallow (spinodal decomposition) 2.41
Off-critical deep (spinodal decomposition) 1.06

Table 3.2: The value of ∆r/Rg corresponding to each time series we generated.

In the simulations of critical shallow and off-critical deep spinodal decomposi-
tion, we set the initial composition at each lattice site equal to the corresponding
value of φ0. After the first time step, the Gaussian random variable term in equa-
tion 3.1 introduced random fluctuations into the composition, initiating spinodal
decomposition. In the simulations of dissolution, we generated the initial composi-
tion, i.e. the composition at the time dissolution is initiated, by simulating spinodal
decomposition with φ0 = 0.5 and χ = 0.000765 for the first 1.6×105 time steps. We
then initiated dissolution by making a step change to χ = 0.000716. The functions
of |χ − χs| in equation 3.1 are a result of the non-dimensionalisation. To avoid
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the scaling between the dimensionless and real variables changing between the two
stages of the dissolution simulations, we chose the initial and final values of χ such
that |0.000765− χs| = |χs − 0.000716|.

3.4 Implementing the simulations

We implemented the simulations in Julia [94]. To keep the computation time to a
minimum, we made use of the CUDA.jl package [95]. This allowed us to implement
equation 3.1 on a graphics processing unit (GPU), which we accessed on the Uni-
versity of Sheffield’s high-performance computer, Stanage. The code we developed
to implement the simulations is available on GitHub [96]. Text files from which the
time series can be calculated using equation 3.7 are also located there.

3.5 Conforming with the small-k limit

As we have already mentioned, equation 3.1 is non-dimensionalised and discretised
version of equation 2.62. Since equation 2.62 is only valid in the small-q limit (see
sections 2.4.8 and 2.4.9), it follows that equation 3.1 is only valid in the correspond-
ing small-k limit. The small-k limit is somewhat ambiguously defined as krg << 1,
where rg is the dimensionless radius of gyration. To determine whether to truncate
the snapshots of the synthetic structure factor we generated to conform with the
small-k limit when obtaining our results, we attempted to quantify the small-k limit.

We determined inequalities that specify the small-k limit corresponding to each
time series. We then compared these inequalities with the k-values associated with
the constituent snapshots. In the case of the dissolution and critical-shallow time
series, we determined the small-k limit corresponds to k < 5, and in the case of
the off-critical deep time series, we determined k < 3. We outline the calculations
we performed to determine these inequalities in appendix A. Given that we used
Ns = 257 and ∆x = 0.25 in the simulations, each snapshot of the synthetic structure
factor we generated consists of 129 values, with the 129th value corresponding to
k ≈ 12.5. Therefore, we concluded that truncating the snapshots is necessary to
conform with the small-k limit.

3.6 Choosing suitable values of ∆x and ∆τ to use

in the simulations

3.6.1 Background

When using finite difference simulations to generate data, one must be careful in the
selection of ∆x and ∆τ values [53,56,97]. A guiding principle for choosing a suitable
value of ∆x is that it needs to be much less than the smallest physical length scale
modelled in the system. The value of ∆x places an upper limit on the value of ∆τ .
In general, one can be confident they have used small enough values of ∆x and ∆τ
when the data generated by a simulation is independent of these values, i.e. it does
not change when smaller values are used.
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3.6.2 Methodology

We used trial and error to choose the values of ∆x and ∆τ listed in section 3.3.
To facilitate this, we generated different versions of the dissolution, critical shallow,
and off-critical deep time series using several combinations of ∆x, ∆τ , Ns and mmax.
For each ‘type’ of time series, i.e. dissolution, critical shallow, and off-critical deep,
we compared the time evolution of the synthetic structure factor snapshots corre-
sponding to each combination of ∆x, ∆τ , Ns and mmax. We looked for consistent
overlap between snapshots to determine which values of ∆x and ∆τ could be used
to generate time series that are independent of these values. The specific combina-
tions of ∆x, ∆τ , Ns and mmax we investigated are listed in table 3.3. We chose the
values of Ns and mmax to fix the size of the system and dimensionless timespan of
the simulations, respectively.

Label ∆x ∆τ Ns mmax

A 1 1× 10−3 65 5× 104

B 0.5 2.5× 10−4 129 2× 105

C 0.25 6.25× 10−5 257 8× 105

D 0.25 3.125× 10−5 257 1.6× 106

E 0.2 4× 10−5 321 1.25× 106

Table 3.3: The combinations of discretisation parameters we used to search for
suitable values of ∆x and ∆τ to use in the simulations. The labels are provided to
make the table easier to refer to.

3.6.3 Results

First, we focus on the different versions of the dissolution time series. Figure 3.1
compares the time evolution of the synthetic dissolution structure factor snapshots
corresponding to each combination of ∆x, ∆τ , Ns and mmax listed in table 3.3. For
ease of reference, we use the labels in table 3.3 to distinguish between the different
versions of the time series. The snapshots corresponding to B, C, D and E overlap
at each value of τ . For τ < 20, there are discrepancies between these snapshots and
the snapshots corresponding to A. These observations suggest that the versions of
the dissolution time series corresponding to B, C, D and E are independent of the
corresponding values of ∆x and ∆τ , while the version corresponding to A is not.

We mention in passing that dissolution provides a straightforward opportunity to
verify that we derived and coded equations 3.1, 3.5 and 3.7 correctly. The synthetic
structure factor snapshots should approach the curve given by equation 2.106, i.e.
de Gennes’ equation for the static structure factor, or, more specifically, a version of
equation 2.106 that has been non-dimensionalised consistently with equations 3.1,
3.5 and 3.7. In figure 3.1f, the non-dimensionalised static structure factor is plotted
alongside the synthetic structure factor snapshots. The static structure factor curve
overlaps with the synthetic structure factor snapshots. This observation would be
unlikely if we made a mistake in deriving or coding any of equations 3.1, 3.5 and 3.7,
therefore it indicates no mistakes were made. For τ > 15, the synthetic structure
factor snapshots exhibit fluctuations. We believe this effect stems from the Gaussian
random variable term in equation 3.1.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: A comparison between snapshots of the synthetic structure factor gen-
erated using different combinations of ∆x, ∆τ , Ns and mmax in the simulations of
dissolution. In panel (f), a non-dimensionalised version of de Gennes’ equation for
the static structure factor (equation 2.106) is plotted. In the simulations of dissolu-
tion, dissolution was initiated at τ = 10. The data in the figure corresponds to times
that lag behind the onset of dissolution by 0.25, 2, 4, 8, 16 and 32 dimensionless
time units, respectively.
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We now focus on the different versions of the critical shallow time series. Figure
3.2 compares the time evolution of the synthetic critical shallow structure factor
snapshots corresponding to each combination of ∆x, ∆τ , Ns and mmax listed in
table 3.3. Again, we use the labels in table 3.3 to distinguish between the different
versions of the time series. The snapshots corresponding to C, D and E overlap at
each value of τ . For τ < 5, there are discrepancies between these snapshots and
the snapshots corresponding to B, and, for all values of τ , there are discrepancies
between these snapshots and the snapshots corresponding to A. These observations
suggest that the versions of the critical shallow time series corresponding to C, D
and E are independent of the corresponding values of ∆x and ∆τ , while the versions
corresponding to A and B are not. We obtained similar findings for the different
versions of the off-critical deep time series.

To conclude, we found the following combinations of ∆x and ∆τ values can be
used to generate versions of the dissolution, critical shallow and off-critical deep
time series that are independent of these values: ∆x = 0.25 & ∆τ = 6.25 × 10−5

(C), ∆x = 0.25 & ∆τ = 3.125× 10−5 (D) and ∆x = 0.2 & ∆τ = 4× 10−5 (E).

3.7 Summary

In this chapter, we detailed how we generated the time series of synthetic structure
factor snapshots we used to obtain our results. We provided the following:

� An overview of the method we used to generate each time series.

� The key equations on which the method is based.

� The parameter values and initial conditions we used in the method.

� A link to the code we developed to implement the bulk of the method.

� An explanation as to how we conformed with the small-k limit.

� A discussion of how we determined suitable values of ∆x and ∆τ to use in the
simulations.

In appendix A, we outline the derivations of the key equations and the calculations
we performed to determine the small-k limit inequalities.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: A comparison between snapshots of the synthetic structure factor gen-
erated using different combinations of ∆x, ∆τ , Ns and mmax in the simulations of
critical shallow spinodal decomposition.
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Chapter 4

Testing the Akcasu equation for
the time evolution of the structure
factor during polymeric spinodal
decomposition and dissolution

4.1 Introduction

In sections 2.4.6 and 2.4.7, we introduced two equations for modelling the time
evolution of the structure factor during polymeric spinodal decomposition and dis-
solution: the linear CHC-FHdG equation (equation 2.104) and the Akcasu equation
(equation 2.108). Since its development, the linear CHC-FHdG equation has been
widely adopted to analyse scattering data [2, 10, 27–29]. However, while it has
certainly proved useful, it is only valid under restrictive conditions and assump-
tions [8, 26, 30]. This situation motivated Akcasu et al. to develop their equation
of motion, which is non-linear [19, 31, 32]. The Akcasu equation is an approximate
one. Including non-linear terms in the equation of motion for the structure factor
causes it to become unclosed [17–19]. Therefore, the ‘full’ equation of motion is an
intractable hierarchy of coupled differential equations, and a truncation scheme is
required to solve it.

In contrast to the linear CHC-FHdG equation, the Akcasu equation has not
been widely adopted to analyse scattering data. We believe this is because of insuf-
ficient testing. There has been no reported comparison between the predictions of
the Akcasu equation and numerical or experimental scattering data in the case of
spinodal decomposition. In the case of dissolution, a comparison with experimental
data was performed by Akcasu et al. [31]. The comparison revealed a quantitative
discrepancy between theory and experiment, which worsened as the dissolution time
increased. Akcasu et al. used best-guess values of the molecular and thermodynamic
parameters to solve their equation since some of the parameters are hard to mea-
sure. It is unclear whether the Akcasu equation failed as a result of the equation
being inadequate or incorrect parameter values being used. In this chapter, we shed
light on this question by comparing the numerical solution to the Akcasu equation
applied to dissolution with synthetic structure factor snapshots from the dissolution
time series. We also test the Akcasu equation applied to spinodal decomposition
using synthetic structure factor snapshots from the critical shallow time series.
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4.2 Derivation of the Akcasu equation

To the best of our knowledge, the derivation of the Akcasu equation has not been
published in its entirety. In this section, we reproduce the derivation as detailed
in [19,31,32], including additional details where appropriate.

The starting point of the derivation is the CHC-FHdG equation (equation 2.62).
Upon writing φ(r, t) = φ0 + δφ(r, t), performing a power series expansion up to and
including third order non-linearities, and gathering terms, we obtain

∂δφ(r, t)
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∇2
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As in the linear theory, to derive an equation of motion for the structure fac-
tor, we must map equation 4.1 into Fourier space. Before doing this, it is con-
venient to express equation 4.1 in terms of the Fourier components of δφ(r) =

1
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d3qeiq·rδφ(q) [51]. After simplifying, we obtain
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Next, mapping equation 4.2 into Fourier space, making use of the result∫
d3r e(i(

∑
j qj)·r) = (2π)3δ(

∑
j qj) [51], and simplifying, yields
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From equation 4.3, the following vertex functions can be defined
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The vertex functions capture the coupling between composition fluctuations with
different wavevectors, i.e. the coupling between different fluctuation modes. As
it stands, Γ2 and Γ3 are incomplete. The vertex function Γ2 should capture the
coupling between pairs of fluctuations modes with wavevectors that add up to q. As
such, Γ2 must be a symmetric function of q1 and q2. Similarly, the vertex function Γ3

should capture the coupling between triplets of fluctuations modes with wavevectors
that add up to q. As such, Γ3 must be a symmetric function of q1, q2 and q3. The
complete vertex functions are the average over all possible permutational pairs of
the relevant wavevectors. For example, in the case of Γ2:
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Setting q = q1 +q2 and making the substitution q1 ·q2 +q2 ·q1 = q2− q2
1− q2

2 yields
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Similarly, in the case of Γ3(q, q1, q2, q3), we obtain
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In terms of these complete, symmetric vertex functions, equation 4.3 becomes
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where we identified the coefficient of δφ(q) as the amplification factor, R(q) (see
equation 2.66). Substituting equation 4.8 and its complex conjugate into equation
2.95 yields the following equation of motion for the structure factor
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Equation 4.9 is not closed, as discussed in section 2.4.5. Calculating the time
evolution of the structure factor using equation 4.9 would require us to solve an
infinite hierarchy of coupled differential equations. To obtain a tractable equation
of motion for the structure factor, Akcasu et al. approximated the composition
fluctuations in Fourier space as a Gaussian process with zero mean. Making use of
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Isserlis’ theorem [98], the third-order correlation function can then be set equal to
zero and the fourth-order correlation function can be written in terms of the second-
order correlation function, i.e. S(q, t). Specifically, making use of the permutational
symmetry of the integrals in equation 4.9:

< δφ(q1)δφ(q2)δφ(−q) >= 0 (4.10a)

< δφ(q1)δφ(q2)δφ(q3)δφ(−q) >= 3(2π)6S(q, t)S(q2, t)δ(q−q1)δ(q2 +q3). (4.10b)

Substituting equations 4.10a and 4.10b into equation 4.9 yields
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Upon integrating, making use of the result δ(0) = 1
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can be written more compactly as

∂S(q, t)
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= 2R(q)S(q, t)[1 + Z(q, t)] +

1

V
C(q), (4.13)

where we have made use of the fact that that polymer blends are, in general, isotropic
by writing S(q, t) as S(q, t). The product R(q)[1 + Z(q, t)] can be thought of as a
modified amplification factor.

To determine C(q), we consider the t→∞ limit of equation 4.13, requiring that
S(q, t)→ Seq(q), hence

C(q) = −2V R(q)Seq(q)[1 + Zeq(q)], (4.14)

which allows us to calculate C(q) in terms of Seq(q) consistently with the closure
approximations. The equilibrium structure factor must be specified by independent
calculations. At this point in the derivation, we must specialise to either dissolution
or spinodal decomposition.

4.2.1 Dissolution

In dissolution, Seq(q) can be set equal to de Gennes’ random phase approximation for
the static structure factor. In the small-q limit, this is given by equation 2.106. With
an equation for Seq(q), we can proceed with the calculation of Zeq(q) to complete
the specification of the noise term. We start with the equation for Z(q, t), which, in
full, is given by
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Writing the integrals in terms of spherical polar coordinates and simplifying yields
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where the upper limit qcut is introduced to ensure the integral is convergent at
all times. The physical significance of qcut is that only fluctuation modes with
wavenumbers between 0 and qcut are coupled together. Akcasu et al. advocate
setting qcut ≈ qc, where qc is the inverse correlation length
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The inverse correlation length is defined by expressing equation 2.106 in the form
Seq(q) = S(0)

(1+( q
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)2)
. Akcasu et al. introduced the parameter α = qcut

qc
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of the range of mode coupling. This is treated as an adjustable parameter in the
theory. Rewriting the integrals in equation 4.16 in terms of q̃ = q
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In the limit t→∞, replacing S(q, t) with Seq(q), we obtain
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0

dq̃2 q̃
4
2 (1 + q̃2

2)−1
}
.

(4.19)

Upon evaluating the integrals, we arrive at

Zeq(q) =
−MkBTq

2q3
c

2π2R(q)

( 1

φ3
0

+
1

(1− φ0)3

)
(2χs − 2χ)−1

{( 1

N
+
σ2q2

18

)
(α− tan−1(α)) +

σ2q2
c

18

(1

3
α3 − α + tan−1(α)

)}
.

(4.20)

Substituting equations 2.66, 2.106 and 4.20 into equation 4.14, the noise term in the
case of dissolution is given by

C(q) =2MkBTV q
2
[
1 +

q3
cv0

8π2

( 1

φ3
0

+
1

(1− φ0)3

)
(χs − χ)−2

(
1 +

( q
qc

)2)−1

{( 1

N
+
σ2q2

18

)
(α− tan−1(α)) +

σ2q2
c

18

(1

3
α3 − α + tan−1(α)

)}]
,

(4.21)

70



where we made use of equation 2.105.
Putting everything together, the Akcasu equation applied to dissolution is given

by equation 4.13, where R(q) is given by equation 2.66, Z(q, t) is given by equation
4.18, and C(q) is given by equation 4.21.

The linear CHC-FHdG equation applied to dissolution is recovered from the
Akcasu equation when we set Z(q, t) = Zeq(q) = 0.

4.2.2 Small temperature jump spinodal decomposition

In the case of spinodal decomposition, Akcasu et al. argued that the static structure
factor at the final temperature is unknown [99, 100], meaning equation 4.14 cannot
be applied. They suggested a workaround for this in the case of small changes in
χ, i.e. small temperature jumps. Namely, assuming we know the value of χ in the
one-phase region before the initiation of spinodal decomposition, denoted χi, we
could make the approximation C(q, χf ) ≈ C(q, χi), where χf is the value of χ inside
the spinodal.

Since χ = χf > χs in spinodal decomposition, we must define the inverse cor-
relation length in a different way to equation 4.17. Following Akcasu et al., we
define

qc,2 =

√
36(χ− χs)(φ0(1− φ0))

σ2
. (4.22)

Putting everything together, the Akcasu equation applied to spinodal decompo-
sition under the assumption of a small temperature jump is given by equation 4.13,
where R(q) is given by equation 2.66 with χ = χf , Z(q, t) is given by equation 4.18
with qc = qc,2 and χ = χf , and C(q) is given by equation 4.21 with χ = χi.

The linear CHC-FHdG equation applied to spinodal decomposition is recovered
from the Akcasu equation when we set Z(q, t) = Zeq(q) = 0.

4.2.3 General spinodal decomposition

Contrary to Akcasu et al., we argue that, in the case of spinodal decomposition,
the static structure factor is known at the final temperature. The equilibrium state
consists of two coexisting phases with compositions given by the coexistence curve
[6, 101]. This situation is shown on a phase diagram in figure 4.1. The coexisting
phases are stable, hence the random phase approximation for the static structure
factor can be applied to each phase and the overall static structure factor is the
average of the two:

Seq(q) =
1

2
(Seq(q, φA′) + Seq(q, φA′′)). (4.23)

We have assumed that the contribution of the interface to the scattering is negligible
in a fully phase-separated system. Making use of equation 2.106, we obtain

Seq(q) = v0

[
2(χ′s − χ) +

σ2

18

( 1

φA′(1− φA′)

)
q2
]−1

, (4.24)

where χ′s = 2
4NφA′ (1−φA′ )

is the value of the interaction parameter on the spinodal

at the coexistence compositions. In line with equation 4.17, we define the inverse
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correlation length as

q′c =

√
36(χ′s − χ)(φA′(1− φA′))

σ2
. (4.25)

Putting everything together, the Akcasu equation applied to general spinodal
decomposition is given by equation 4.13, where R(q) is given by equation 2.66,
Z(q, t) is given by equation 4.18 with qc = q′c and χs = χ′s, and

C(q) =2MkBTV q
2[(

(χs − χ) +
σ2

36

( 1

φ0(1− φ0)

)
q2
)(

(χ′s − χ) +
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( 1
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)
q2
)−1

+
q′3cv0

8π2

( 1

φ3
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(1− φ0)3
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(
1 +

( q
q′c

)2)−1

{( 1

N
+
σ2q2

18

)
(α− tan−1(α)) +

σ2q′2c
18

(1

3
α3 − α + tan−1(α)

)}]
,

(4.26)

which follows from substituting R(q), Seq(q) (equation 4.24) and the corresponding
equation for Zeq(q), i.e. equation 4.20 with qc = q′c and χs = χ′s, into equation 4.14.

The linear CHC-FHdG equation applied to spinodal decomposition is not recov-
ered from the Akcasu equation when we set Z(q, t) = Zeq(q) = 0. We refer to the
resulting linear equation as the linear Akcasu equation applied to general spinodal
decomposition.

Figure 4.1: A phase diagram illustrating the evolution of the average composition
of a critical, binary, symmetric polymer blend during spinodal decomposition. The
black dot denotes the state of the blend at the start of spinodal decomposition. The
compositions φA′ and φA′′ define the equilibrium state of the blend and, therefore,
the limit of phase separation.
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4.3 Methodology

To test the Akcasu equation applied to dissolution, we compared its numerical solu-
tion with synthetic structure factor snapshots from the dissolution time series and
the numerical solution to the linear CHC-FHdG equation applied to dissolution. To
test the Akcasu equation applied to spinodal decomposition under the assumption
of a small temperature jump, we compared its numerical solution with synthetic
structure factor snapshots from the critical shallow time series and the numerical
solution to the linear CHC-FHdG equation applied to spinodal decomposition. Fi-
nally, to test the Akcasu equation applied to general spinodal decomposition, we
compared its numerical solution with synthetic structure factor snapshots from the
critical shallow time series and the numerical solution to the linear Akcasu equation
applied to general spinodal decomposition.

4.3.1 Dimensionless equations

In order to compare their numerical solutions with the synthetic structure factor
snapshots, we substituted the dimensionless variables in equations 3.4b, 3.8a and
3.8b into the aforementioned equations.

Dissolution

The dimensionless Akcasu equation applied to dissolution is given by

∂S̃(k, τ)

∂τ
= r(k)S̃(k, τ)[1 + Z(k, τ)] + C(k), (4.27)

where

r(k) =
−2k2

|χ− χs|

(
(χs − χ) +

|χ− χs|k2

36φ0(1− φ0)

)
(4.28a)

Z(k, τ) =
−k2

2π2|χ− χs|r(k)

( 1

φ3
0

+
1

(1− φ0)3

)
{( 1

N
+
|χ− χs|

18
k2
)∫ kcut

0

dkk2S̃(k, τ) +
|χ− χs|

18

∫ kcut

0

dkk4S̃(k, τ)
}

(4.28b)

C(k) =
v0|χ− χs|

1
2 k2

σ3

[
1

+
v0q

3
c

8π2(χs − χ)2

( 1

φ3
0

+
1

(1− φ0)3

)(
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|χ− χs|k2

36(χs − χ)φ0(1− φ0)

)−1

{( 1

N
+
|χ− χs|

18
k2
)

(α− tan−1(α)) +
σ2q2

c

18

(1

3
α3 − α + tan−1(α)

)}]
.

(4.28c)

The upper limit in the integrals is given by kcut = αkc, where kc is related to qc via
equation 3.8a.

In the dimensionless linear CHC-FHdG equation applied to dissolution, r(k) is
given by equation 4.28a, Z(k, τ) = 0 and C(k) is given by equation 4.28c but with
the second term, i.e. the term after the plus sign inside the square brackets, set
equal to zero.
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Small temperature jump spinodal decomposition

In the dimensionless Akcasu equation applied to spinodal decomposition under the
assumption of a small temperature jump, r(k), Z(k, τ) and C(k) are given by

r(k) =
−2k2

|χ− χs|

(
(χs − χf ) +

|χ− χs|k2

36φ0(1− φ0)

)
(4.29a)
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0
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(4.29c)

The upper limit in the integrals is given by kcut = αkc,2, where kc,2 is related to qc,2
via equation 3.8a.

In the dimensionless linear CHC-FHdG equation applied to spinodal decompo-
sition, r(k) is given by equation 4.29a, Z(k, τ) = 0 and C(k) is given by equation
4.29c but with the second term set equal to zero.

General spinodal decomposition

In the dimensionless Akcasu equation applied to general spinodal decomposition,
r(k), Z(k, τ) and C(k) are given by

r(k) =
−2k2

|χ− χs|

(
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)
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(4.30c)
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The upper limit in the integrals is given by kcut = αk′c, where k′c is related to q′c via
equation 3.8a.

In the dimensionless linear Akcasu equation applied to general spinodal decom-
position, r(k) is given by equation 4.30a, Z(k, τ) = 0 and C(k) is given by equation
4.30c but with the second term set equal to zero.

4.3.2 Solving the dimensionless equations

To calculate the numerical solutions to the dimensionless equations, we made ap-
proximations consistent with those used to solve equation A.2. Namely, we approxi-
mated continuous time as a series of discrete time steps of duration ∆τ and the con-
tinuous wavenumber as k = 2π

N∆x
d, where d is an integer in the range 0 ≤ d ≤ Ns−1

2
.

We approximated the time derivative as a forward finite difference scheme and cal-
culated the integrals using the trapezoidal method. The numerical solutions to the
resulting discretised equations were calculated by integrating both sides of the equa-
tions over a single time step, approximating the integration as a Riemann sum with
a single term. We ensured the numerical solutions were independent of the value of
∆τ .

We set N = 2700, φ0 = 0.5 and σ =
√

20v
1
3
0 , and we investigated three different

values of α: 0.5, 1 and 1.5.
In the equations corresponding to dissolution, we set χ = 0.000716. The initial

condition was the snapshot corresponding to τ = 10 in the dissolution time series.
We note that in the simulations of dissolution used to generate the dissolution time
series, dissolution was initiated at τ = 10.

In the equations corresponding to spinodal decomposition under the assumption
of a small temperature jump, we set χi = 0.000716 and χf = χ = 0.000765. In the
equations corresponding to general spinodal decomposition, we set χ = 0.000765
and φA′ = 0.348. We calculated the value of φA′ using a phase diagram. For both
sets of spinodal decomposition equations, the initial condition was the snapshot
corresponding to τ = 6.25 × 10−5 in the critical shallow time series, i.e. the first
snapshot in the time series.

4.4 Results and analysis

4.4.1 Dissolution

We now present our findings from testing the Akcasu equation applied to dissolution.
Figure 4.2 compares synthetic structure factor snapshots from the dissolution time
series with the numerical solutions to the dimensionless Akcasu equation and the
dimensionless linear CHC-FHdG equation. Three solutions to the Akcasu equation
were calculated, corresponding to α = 0.5, 1 and 1.5. These values of α relate to
kcut = 1.5, kcut = 3 and kcut = 4.5, respectively.

The Akcasu equation describes the time evolution of the synthetic structure
factor snapshots more accurately than the linear CHC-FHdG equation for 10 <
τ < 18: there is more overlap between the synthetic structure factor snapshots and
the solutions to the Akcasu equation than there is between the synthetic structure
factor snapshots and the solution to the linear CHC-FHdG equation. For τ ≥ 18,
the solutions to the Akcasu equation more or less coincide with the solution to the
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: A comparison between synthetic structure factor snapshots from the
dissolution time series and the numerical solutions to the dimensionless Akcasu
equation applied to dissolution and the linear CHC-FHdG equation applied to dis-
solution. Three solutions to the Akcasu equation were calculated, corresponding to
α = 0.5, 1 and 1.5. These values of α relate to kcut = 1.5, kcut = 3 and kcut = 4.5,
respectively. We note that in the simulations of dissolution used to generate the
dissolution time series, dissolution was initiated at τ = 10. The data corresponds to
times that lag behind the onset of dissolution by 0.25, 0.75, 1, 2, 8 and 40 dimen-
sionless time units, respectively.
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linear CHC-FHdG equation. We infer that the increased accuracy of the Akcasu
equation compared to the linear CHC-FHdG equation for 10 < τ < 18 is a result of
the mode-coupling term, Z(k, τ), in the former, which is the distinguishing feature
between the two equations.

Mode-coupling affects the rate at which the solutions to the Akcasu equation
grow and/or decay: in equation 4.27, the product r(k)[1 + Z(k, τ)] can be thought
of as a modified amplification factor. Figure 4.3 compares the time evolution of
the modified amplification factors associated with the different solutions in figure
4.2. There is only a short period for which the different amplification curves do
not overlap. This suggests there is only a short period for which mode-coupling
has an appreciable effect on the dynamics predicted by the Akcasu equation. The
idea that mode-coupling becomes less appreciable during dissolution is consistent
with the fact that dissolution causes the magnitudes of the composition fluctuations
to decrease. As can be verified using figure 4.2, the effect of mode-coupling is to
enhance the decay rate of the solutions to the Akcasu equation, and, up to α = 1,
the decay rate increases with α. The latter of these findings suggests that, during
the period that mode-coupling is appreciable, only the coupling between modes with
0 < k < kc (kc = 3) affects the decay rate.

(a) (b)

(c) (d)

Figure 4.3: A comparison between the amplification factors associated with the
different solutions in figure 4.2 at various values of τ .
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Turning our attention back to figure 4.2, we can see that, around τ = 12, the
three solutions to the Akcasu equation coincide. Later on, around τ = 18, these
solutions coincide with the solution to the linear CHC-FHdG equation. We think
the most probable explanation for this phenomenon is that the noise term, C(k),
begins to dominate the dynamics predicted by the Akcasu equation. Consider the
equation that results from substituting equation 4.14 into equation 4.13. As the first
term on the right-hand side approaches the second term on the right-hand side, the
rate of change of the solution will decrease. Based on the data in figures 4.2 and 4.3,
we propose that this will happen earlier for larger values of α, allowing the curves
corresponding to the other solutions to ‘catch up’. In this context, we can think of
the linear CHC-FHdG equation as the Akcasu equation in which α = 0.

We believe the idea that the noise begins to dominate the dynamics predicted
by the Akcasu equation might also explain the temporary discrepancy that develops
between the peaks of the synthetic structure factor snapshots and those of the
solutions to the Akcasu equation around τ = 12. We are not entirely sure how
we could reduce this artefact. Including more mode-coupling terms in the Akcasu
equation seems unlikely to help. This would mean including more terms in the power
series expansion in equation 4.1. We expect higher-order terms can be ignored as τ
increases.

Both the Akcasu equation and the linear CHC-FHdG equation accurately predict
the locations of the peaks of the synthetic structure factor snapshots, i.e. km(τ).
Furthermore, as expected, both the Akcasu equation and the linear CHC-FHdG
equation capture the correct equilibrium behaviour.

The Akcasu equation performed much better here, when tested using synthetic
structure factor snapshots, than it did when tested using experimental scattering
data by Akcasu et al. [31]. Since the parameter values corresponding to the syn-
thetic structure factor snapshots are known, this suggests that part of the reason
for the experimental discrepancy could be poor estimates of the hard-to-measure
thermodynamic and molecular parameters.

4.4.2 Spinodal decomposition

Under the assumption of a small temperature jump

Next, we present our findings from testing the Akcasu equation applied to spinodal
decomposition under the assumption of a small temperature jump. Figure 4.4 com-
pares synthetic structure factor snapshots from the critical shallow time series with
the numerical solutions to the dimensionless Akcasu equation and the dimensionless
linear CHC-FHdG equation. Three solutions to the Akcasu equation were calcu-
lated, corresponding to α = 0.5, 1 and 1.5. These values of α relate to kcut = 1.5,
kcut = 3 and kcut = 4.5, respectively. For τ > 5, the solution to the linear CHC-
FHdG equation is not plotted since it grows exponentially.

During the early stage of spinodal decomposition, i.e. up to about τ = 0.2,
both the Akcasu equation and the linear CHC-FHdG equation describe the time
evolution of the synthetic structure factor snapshots fairly accurately. As expected
in this regime, the Akcasu equation reduces to the linear CHC-FHdG equation:
the solutions to both equations overlap. Just after τ = 0.2, the solutions to both
equations start to diverge from one another, and both equations over-predict the
synthetic structure factor snapshots, but, in the cases where it was solved with
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: A comparison between synthetic structure factor snapshots from the
critical shallow time series and the numerical solutions to the dimensionless Akcasu
equation applied to spinodal decomposition under the assumption of a small temper-
ature jump and the linear CHC-FHdG equation applied to spinodal decomposition.
Three solutions to the Akcasu equation were calculated, corresponding to α = 0.5, 1
and 1.5. These values of α relate to kcut = 1.5, kcut = 3 and kcut = 4.5, respectively.
For τ > 5, the solution to the linear CHC-FHdG equation is not plotted since it
grows exponentially.
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α = 1 and α = 1.5, the Akcasu equation does so less dramatically. We infer that
this improvement of the Akcasu equation over the linear CHC-FHdG equation is
rooted in the mode-coupling term of the former. At a time τ > 1, the solutions to
the Akcasu equation calculated with α = 1 and α = 1.5 coincide and begin to under-
predict the synthetic structure factor snapshots. Later on, these solutions coincide
with the solution calculated with α = 0.5. Interestingly, the curves corresponding
to the α = 0.5 solution decrease and move towards the curves corresponding to the
α = 1 and α = 1.5 solutions. While we believe this behaviour to be unphysical, it
can be explained by considering the modified amplification factor.

Figure 4.5 compares the time evolution of the modified amplification factors
associated with the different solutions in figure 4.4. The x-axis is truncated at π
to aid the distinguishability of the amplification curves. For a while after the onset
of spinodal decomposition, the amplification curves corresponding to the α = 0.5
solution to the Akcasu equation overlap with the amplification curves corresponding
to the solution of the linear CHC-FHdG equation, i.e. r(k). This suggests that,
during this period, the coupling between modes with 0 < k < 0.5kc (kc = 3) has
no appreciable effect on the dynamics predicted by the Akcasu equation. Contrary
to this, the amplification curves corresponding to the α = 1 and α = 1.5 solutions
to the Akcasu equation shift below r(k). As can be verified using figure 4.4, the
effect of the mode-coupling is to slow the growth rate of the α = 1 and α = 1.5
solutions to the Akcasu equation. Furthermore, we note that the mode coupling
enhances the decay rate of these solutions at larger k-values. Around τ = 5, the
amplification curve corresponding to the α = 0.5 solution to the Akcasu equation
shifts below those corresponding to the α = 1 and α = 1.5 solutions, with the
former having a larger range of negative k-values (associated with decay). Based on
equation 4.29b (Z(k, τ) depends on S̃(k, τ)), we believe the reason for this shift is
that the initial unconstrained growth of the α = 0.5 solution to the Akcasu equation
eventually leads to appreciable mode-coupling between modes with 0 < k < 0.5kc.
As a result, the α = 0.5 solution to the Akcasu equation tends towards the α = 1
and α = 1.5 solutions, eventually coinciding. As this happens, the amplification
curve corresponding to the α = 0.5 solution to the Akcasu equation shifts towards
and eventually coincides with the amplification curves corresponding to the α = 1
and α = 1.5 solutions.

The fact that the different solutions to the Akcasu equation end up coinciding
(as do the corresponding amplification curves) implies that the range of k-values for
which the effects of mode-coupling are appreciable on the dynamics predicted by the
Akcasu equation shifts to 0 < k < 0.5kc. This is consistent with coarsening, which
causes km(τ) to shift to smaller values. Indeed, the Akcasu equation captures this
effect of coarsening fairly accurately - a well-known pitfall of the linear CHC-FHdG
equation.

Unlike in the case of dissolution, the noise term does not begin to dominate
the dynamics of the solutions to the Akcasu equation as τ increases. Instead, the
solutions to the Akcasu equation continue to grow, albeit at a slower rate than
the synthetic structure factor snapshots. We believe this slower growth rate to be a
consequence of mode-coupling. It seems that the approximation C(k, χf ) ≈ C(k, χi)
under the assumption of a small temperature jump does not apply to the critical
shallow time series.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: A comparison between the amplification factors associated with the
different solutions in figure 4.4 at various values of τ . The x-axis is truncated at π
to aid the distinguishability of the amplification curves.
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Relaxing the assumption of a small temperature jump

Finally, we present our findings from testing the Akcasu equation applied to general
spinodal decomposition. Figure 4.6 compares synthetic structure factor snapshots
from the critical shallow time series with the numerical solutions to the non-linear
and linear versions of the dimensionless Akcasu equation. Only one solution to the
non-linear equation was calculated, corresponding to α = 1. This value of α relates
to kcut = 3.

(a) (b)

(c) (d)

Figure 4.6: A comparison between synthetic structure factor snapshots from the
critical shallow time series and the numerical solutions to the linear and non-linear
versions of the dimensionless Akcasu equation applied to general spinodal decom-
position. A single solution to the non-linear Akcasu equation was calculated, corre-
sponding to α = 1. This value of α relates to kcut = 3.

Clearly, both the non-linear and linear versions of the Akcasu equation com-
pletely fail to describe the time evolution of the synthetic structure factor snap-
shots. There is no overlap between the synthetic structure factor snapshots and the
solutions to the non-linear and linear Akcasu equations. Moreover, the solutions
to the non-linear and linear Akcasu equations both contain negative values, which
is unphysical. We believe the source of the problem must lie in the noise terms of
the respective equations. This is because both equations fail in a similar fashion,
which suggests the source of the problem does not lie in the mode-coupling term
of the non-linear equation, or at least it does not lie solely with the mode-coupling
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term. Figure 4.7 compares the noise terms in the non-linear and linear equations.
The noise terms are more or less identical, which implies that Zeq(k) ≈ 0 in the
non-linear equation. This is consistent with the assumed equilibrium state consist-
ing of two stable coexisting phases. More significantly, the noise terms are negative
at k-values in the approximate range 0 < k < 3. Therefore, we believe that when
we solve the non-linear and linear equations, the negative values in the noise term
cause the solutions to the equations to be negative at the corresponding k-values.

Figure 4.7: A comparison between the noise terms in the linear and non-linear
versions of the dimensionless Akcasu equation applied to general spinodal decom-
position.

We hypothesise that the noise term might need to be time-dependent for the
Akcasu equation applied to general spinodal decomposition to accurately describe
the time evolution of the synthetic structure factor snapshots. Initially, the noise

term should be C(k) = v0|χ−χs|
1
2 k2

σ3 such that the linear Akcasu equation coincides
with the linear CHC-FHdG equation, which we know describes the early stage of
spinodal decomposition fairly accurately. In the t → ∞ limit, we believe the noise
term should tend towards equation 4.30c for the reasons outlined in section 4.2.3.

4.5 Summary

We tested the Akcasu equation applied to dissolution and spinodal decomposition us-
ing synthetic structure factor snapshots and the linear CHC-FHdG equation. Based
on different assumptions, we defined two versions of the Akcasu equation applied
to spinodal decomposition: the Akcasu equation applied to spinodal decomposition
under the assumption of a small temperature jump and the Akcasu equation applied
to general spinodal decomposition. In the case of dissolution, the synthetic struc-
ture factor snapshots came from the dissolution time series. In the case of spinodal
decomposition, they came from the critical shallow time series.

For the most part, the Akcasu equation applied to dissolution accurately de-
scribed the dynamics of the synthetic structure factor snapshots, outperforming the
linear CHC-FHdG equation. The increased accuracy of the Akcasu equation over
the linear CHC-FHdG equation can be traced back to the mode-coupling term in
the former. We hope these findings motivate further testing of the Akcasu equation
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applied to dissolution using experimental data. Contrasting our results, obtained
using synthetic structure factor snapshots, with those of Akcasu et al. [31], obtained
using experimental scattering data, we note that a pre-requisite of any test using
experimental data will be the ability to accurately determine the molecular and
thermodynamic parameters contained in the equation.

While the Akcasu equation applied to spinodal decomposition under the assump-
tion of a small temperature jump did not accurately describe the dynamics of the
synthetic structure factor snapshots, it did capture some important qualitative fea-
tures. For example, the decrease in the growth rate of the synthetic structure factor
snapshots after the early stage and coarsening. The ability of the Akcasu equation
to capture these features can be traced back to the mode-coupling term. In con-
trast to the Akcasu equation, the linear CHC-FHdG equation predicts the structure
factor to grow exponentially and does not predict coarsening.

The Akcasu equation applied to general spinodal decomposition completely failed
to describe the dynamics of the synthetic structure factor snapshots. We believe
the problem with the equation lies with the noise term. For the Akcasu equation
applied to general spinodal decomposition to accurately describe the time evolution
of the structure factor, we hypothesise that the noise term might need to be time-
dependent, shifting between two limiting values. We hope our findings from testing
the Akcasu equation applied to spinodal decomposition motivate further theoretical
work aimed towards the development of an approximate equation of motion for the
structure factor during spinodal decomposition. As far as we know, these are the first
reported findings for testing the Akcasu equation applied to spinodal decomposition.
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Chapter 5

Modelling the time evolution of
the structure factor during
polymeric spinodal decomposition
using dynamic mode
decomposition

5.1 Introduction

In the previous chapter, we showed that one cannot use the Akcasu equation to
accurately model the time evolution of the structure factor during polymeric spin-
odal decomposition. Coupled with the fact that the full equation of motion for the
structure factor is unclosed, this illustrates that the time evolution of the structure
factor is difficult to model using traditional, theory-driven modelling. In contrast to
this, the structure factor can be measured relatively easily using small-angle scat-
tering. Embracing this duality, we propose the application of system identification
techniques to the problem of modelling the time evolution of the structure factor
during spinodal decomposition.

In this chapter, we investigate the use of dynamic mode decomposition (DMD)
to predict future snapshots of the structure factor during spinodal decomposition
based on the knowledge of previous snapshots. Using synthetic structure factor
snapshots from both the critical shallow and off-critical deep time series, we assess
the accuracy and range of the predictions obtained using DMD, and we investigate
the hyperparameter choices required to construct good models.

5.2 Methodology

Two features of DMD that appealed to us are its simple formulation in terms of a
best-fit linear model and its computational efficiency. We believe these features make
it a good choice of technique to benchmark other, more complex techniques against.
In addition to these features, the fact that no knowledge of governing equations or
system parameters is required suggests that DMD has the potential to work well
in a control system. Indeed, among the many extensions of the DMD algorithm is
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dynamic mode decomposition with control (DMDc) [70], which can disambiguate
between the natural and forced components of the dynamics in an actuated system.
Another extension of interest is bagging, optimised DMD (BOP-DMD) [71], which
overcomes two key weaknesses of DMD: sensitivity to measurement noise and a
lack of uncertainty quantification. Measurement noise has been shown to cause
DMD to calculate a spurious eigendecomposition of A (defined in equation 2.141)
[33, 66, 71, 72]. The synthetic structure factor snapshots used in this thesis are free
of measurement noise, but this is unlikely to be the case for experimental data.

Another pertinent limitation of DMD is its inability to handle translations and
scaling [33, 66]. It is well known that snapshots of the structure factor measured
during spinodal decomposition translate and grow, while also changing shape, as the
phase-separated microstructure coarsens [15,44,102]. It might then seem ill-judged
to use DMD to model the time evolution of the structure factor. However, our
rationale for doing so is that the slow dynamics of polymeric spinodal decomposition
might lead to the localised decoupling of time and space, potentially opening the
door for DMD to be applied recursively to make predictions of the structure factor
at different points in time.

Using synthetic structure factor snapshots from both the critical shallow and
off-critical deep time series, we trained and tested two batches of 50 DMD models
- one to predict the snapshot of the synthetic structure factor at each integer value
of τ in the range 1 ≤ τ ≤ 50. We implemented the training and testing of the
DMD models using MATLAB code adapted from [66]. The performance of DMD
depends on the careful selection of several hyperparameters [33, 66]: the number of
snapshots, m; the (dimensionless) time between the snapshots, ∆τ ; the rank of the
reduced SVD, r̃; and the predictive horizon, τph. Based on trial and error, we used
m = 10, ∆τ = 0.025, r̃ = 3 and τph = 0.75 to obtain the majority of our results. We
also present results obtained using different values of τph. We chose r̃ = 3 since this
value seemed to be the most consistent for accurately predicting the time evolution
of the synthetic structure factor snapshots. To put the listed hyperparameter values
into context, the DMD models were trained on ten uniformly synthetic structure
factor snapshots in the range τ − 1 < τ ′ ≤ τ − 0.750, and the predictions they
made extended beyond the last training snapshot by three times the length of the
training range. For example, the model that predicted the snapshot of the synthetic
structure factor at τ = 9 was trained on the snapshots at τ = 8.025, 8.050, ..., and
8.250.

To quantify how well the DMD models were able to predict the synthetic struc-
ture factor snapshots, the percentage errors associated with each prediction were
calculated as a function of the wavenumber using

PE(k, τ) =
|S̃(k, τ)− S̃DMD(k, τ)|

S̃(k, τ)
× 100, (5.1)

where S̃(k, τ) is the value of the synthetic structure factor snapshot to be predicted
and S̃DMD(k, τ) is the prediction of the corresponding DMD model. To analyse the
errors, box plots describing the summary statistics of PE(k, τ) at different values of
τ were plotted and compared.

In section 3.5, we argued that the small-k limit in the case of the critical shallow
time series corresponds to k < 5, while in the case of the off-critical deep time series,
it corresponds to k < π. For simplicity, we used the latter limit when working with
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both time series. This corresponds to only using the first 33 k-values associated with
each synthetic structure factor snapshot in the time series.

Compared to fields such as fluid dynamics [33,66], the synthetic structure factor
snapshots we used to obtain the results in this thesis are not high-dimensional. Given
the small-k limit and the size of ∆x required to perform accurate and discretisation-
independent simulations, it is hard to generate high-dimensional synthetic structure
factor snapshots using the method outlined in section 3.2. Nevertheless, we were mo-
tivated to apply DMD because of the increased likelihood of our findings generalising
to higher-dimensional snapshots compared with simply applying linear regression.
Furthermore, successfully demonstrating DMD might open the door to applying ex-
tensions of the algorithm, which could shift the focus of research towards working
with experimental data and perhaps even the control of phase separation.

5.3 Results and discussion

We now present our results from using DMD to model the time evolution of the
synthetic structure factor snapshots from the critical shallow and off-critical deep
time series. We obtained similar results using the two time series. In light of this,
we only present the results corresponding to the critical shallow time series in this
chapter. The results corresponding to the off-critical deep time series can be found
in appendix B.

Figure 5.1 compares synthetic structure factor snapshots from the critical shallow
time series with those predicted by DMD models for values of τ in the range 1 ≤
τ ≤ 10. The hyperparameters used in the DMD models are listed in section 5.2.
We opted not to use a log scale on the y-axis since this makes the curves less
distinguishable. However, without a log-scale on the y-axis, it is hard to see how
good the predictions are at k-values where the values of the synthetic structure
factor snapshots are small. Therefore, the same comparison is presented with a
log-scale (base 10) on the y-axis in figure B.1. For τ ≤ 3, there is a low level
of agreement between the synthetic structure factor snapshots and those predicted
by the DMD models. The level of agreement improves for 4 ≤ τ ≤ 10. These
observations are confirmed by figure 5.2, which shows a box plot of the percentage
errors associated with the predictions of each DMD model. The solid blue line shows
the time evolution of the mean percentage error, which starts off high for τ ≤ 3 but
decreases over 4 ≤ τ ≤ 10, eventually reaching a plateau around 3− 5%.

Another comparison between synthetic structure factor snapshots from the crit-
ical shallow time series and those predicted by DMD models is shown in figure 5.3,
this time for values of τ in the range 10 ≤ τ ≤ 50. Again, the hyperparameters used
in the DMD models are listed in section 5.2. The same comparison is presented
with a log-scale (base 10) on the y-axis in figure B.2. For all values of τ , there is a
high level of agreement between the synthetic structure factor snapshots and those
predicted by the DMD models. This is confirmed by figure 5.4, which shows a box
plot of the percentage errors associated with the predictions of each DMD model.
The mean percentage error line is more or less flat, fluctuating between values of
1− 5%.

From figures 5.1-5.4, we infer that, with the exception of τ < 3, DMD can be used
to accurately model the time evolution of the synthetic structure factor snapshots.

To investigate whether more accurate predictions of the synthetic structure factor
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Figure 5.1: A comparison between synthetic structure factor snapshots from the
critical shallow time series and those predicted by DMD models for values of τ in
the range 1 ≤ τ ≤ 10. The hyperparameters used in the DMD models are listed in
section 5.2.

Figure 5.2: Box plots of the percentage errors associated with the predictions of
each DMD model in figure 5.1. In each box plot, the red line shows the median, the
blue box outlines the interquartile range, the black dotted lines extend beyond the
box by 1.5 times the interquartile range, and the blue circles denote outliers. The
solid blue line shows the time evolution of the mean.
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Figure 5.3: A comparison between synthetic structure factor snapshots from the
critical shallow time series and those predicted by DMD models for values of τ in
the range 10 ≤ τ ≤ 50. The hyperparameters used in the DMD models are listed in
section 5.2.

Figure 5.4: Box plots of the percentage errors associated with the predictions of
each DMD model in figure 5.3. In each box plot, the red line shows the median, the
blue box outlines the interquartile range, the black dotted lines extend beyond the
box by 1.5 times the interquartile range, and the blue circles denote outliers. The
solid blue line shows the time evolution of the mean.
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snapshots could be made for τ ≤ 3, we tested the predictions of several DMD models
with values of τph < 0.75 at τ = 1 and τ = 3. Figure 5.5 compares the predictions
of these models with the corresponding synthetic structure factor snapshots. The
figure reveals that the level of agreement between the synthetic structure factor
snapshots and those predicted by the DMD models increases as the value of τph

decreases. A greater reduction in the value of τph is required at τ = 1 than at
τ = 3 to achieve this effect. These findings suggest that there is a trade-off between
the accuracy and extrapolation of the DMD predictions. Furthermore, the trade-
off seems to be coupled to the value of τ for which a prediction is made: to make
accurate predictions at smaller values of τ , one is constrained by having to use a
smaller value of τph.

Figure 5.5: A comparison between synthetic structure factor snapshots from the
critical shallow time series and those predicted by DMD models with values of
τph < 0.75 at τ = 1 (top panel) and τ = 3 (bottom panel). The values of the other
hyperparameters used in the DMD models are the same as those listed in section
5.2.

To test whether the trade-off between the accuracy and extrapolation of the DMD
predictions is indeed time-dependent, we tested the predictions of DMD models with
values of τph > 0.75 at τ = 20, 30, 40 and 50. We used increasingly large values of
τph to predict the synthetic structure factor snapshots corresponding to increasingly
large values of τ . Figure 5.6 compares the predictions of these models with the
corresponding synthetic structure factor snapshots. The figure reveals that there
is a high level of agreement between the synthetic structure factor snapshots and
those predicted by the DMD models. This is confirmed by figure 5.7, which shows
a box plot of the percentage errors associated with the predictions of each DMD
model. The percentage errors in figure 5.7 are comparable with those in figure 5.4.
The results in figures 5.6 and 5.7 verify that the trade-off between the accuracy and
extrapolation is time dependent. Specifically, the trade-off is more important early
on and becomes less important as τ increases. In other words, as τ increases, one
can maintain a certain level of accuracy while predicting further into the future.

The time-dependent accuracy-extrapolation trade-off can be linked to the growth
rate of the structure factor during spinodal decomposition, which is a diffusion-like
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Figure 5.6: A comparison between synthetic structure factor snapshots from the
critical shallow time series and those predicted by DMD models with values of
τph > 0.75 at τ = 20 and 30 (top panel) and τ = 40 and 50 (bottom panel). The
values of the other hyperparameters used in the DMD models are the same as those
listed in section 5.2.

Figure 5.7: Box plots of the percentage errors associated with the predictions of
each DMD model in figure 5.6. In each box plot, the red line shows the median, the
blue box outlines the interquartile range, the black dotted lines extend beyond the
box by 1.5 times the interquartile range, and the blue circles denote outliers. The
solid blue line shows the time evolution of the mean.

process. Early on in the process, the growth rate of the structure factor is rapid
(indeed, it is exponential for a short period at the start). As time goes on, the
growth rate decreases. To capture the rapid early growth of the structure factor, the
eigenvalues of A must be highly unstable, which means the resulting DMD models
are only suitable for very short-term predictions. This is exemplified in figure 5.8,
which compares the eigenvalues of the DMD models used to make the predictions
of the synthetic structure factor snapshots at τ = 3 and τ = 10 in figure 5.1. The
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Figure 5.8: The eigenvalues of the DMD models used to make the predictions of the
synthetic structure factor snapshots at (a) τ = 3 and (b) τ = 10 in figure 5.1.

model corresponding to τ = 3 has eigenvalues that extend beyond the unit circle
further than those belonging to the model corresponding to τ = 10. This indicates
that they are more unstable.

As mentioned in section 5.2, DMD models with r̃ = 3 seemed to be the most
consistent at accurately predicting the time evolution of the synthetic structure
factor snapshots. We believe that the DMD models with r̃ < 3 often did not capture
enough of the dynamics, while models with r̃ > 3 had an increased likelihood of
containing unstable eigenvalues.

The practicality of DMD in an experimental setting depends on how the di-
mensionless time used to demonstrate the technique scales to physical time. Using
equations 3.4b and 2.64, one can estimate a range of values of the mutual diffusion
coefficient, D, for which the technique is likely to work well. Using equation 3.4b,
it can be seen that for one dimensionless time unit to correspond to more than one
second, M < v0σ2

2kBT (χ−χs)2 . Substituting this inequality into equation 2.64, one ob-

tains |D| < σ2

(χ−χs) . In the case of the critical shallow time series, σ = 20
1
2v

1
3
0 and

(χ − χs) ≈ 2 × 10−5. A typical value of v0 is 10−28 m3 [2, 31]. Substituting these
values of σ, (χ − χs) and v0 into the inequality for |D| yields |D| < 10−13 m2s−1.
For a meaningful comparison between this value and an experimental value of the
mutual diffusion coefficient to be made, the experimental blend should be analogous
to the synthetic blend. Specifically, the Kuhn lengths, degrees of polymerisation,
average volume fraction and quench depth (χ−χs) associated with the experimental
blend should be similar to the synthetic blend. We searched the literature to find a
suitable blend to compare with but did not find anything satisfactory. For the time
being, we used the representative data in [2] to calculate the following ‘experimental’
value of the diffusion coefficient: |Dexp| ≈ 10−16 m2s−1. This compares favourably
with |D| < 10−13 m2s−1, which is an encouraging sign.

Given the results above, we propose combining DMD with the technique we pre-
sented in [57] to predict the future characteristics of phase-separated microstructures
as they evolve. DMD lends itself to real-time usage due to its low computational
cost. Real-time predictions of the structure factor and microstructure character-
istics during spinodal decomposition could be useful in a control system, affecting
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the quench depth based on microstructure requirements, for example, thus opening
the door to the control of phase separation as a means of tailoring and tuning the
microstructures of materials derived from polymer blends.

5.4 Summary

Using DMD models constructed from batches of synthetic structure factor snapshots
from the critical shallow and off-critical deep time series, we modelled the time evo-
lution of the structure factor in two simulated polymer blends undergoing spinodal
decomposition. Apart from early on in the process (τ < 3), the DMD models were
able to make accurate future predictions of the synthetic structure factor snapshots
that extended beyond the last training snapshot by three times the length of the
training range. We identified a trade-off between the accuracy and extrapolation of
the DMD predictions. The trade-off was coupled to the value of τ for which the
prediction was made, i.e. the trade-off was more important early on, decreasing
in importance as τ increased. Using smaller values of τph to make predictions of
the synthetic structure factor snapshots at τ = 1 and τ = 3, we showed that one
could improve the accuracy of the predictions at these times. We also showed that
one could maintain the accuracy of predictions made at later times, specifically at
τ = 20, 30, 40 and 50, while increasing the value of τph. We sought to explain
the accuracy-extrapolation trade-off by making a connection with the diffusion-like
nature of spinodal decomposition and the eigenvalues required by the DMD models
to capture the dynamics of the synthetic structure factor snapshots. The practical-
ity of DMD in an experimental setting will likely depend on the mutual diffusion
coefficient of the blend in question.

We believe our results are promising for the development of an experimental
technique to predict structure factor snapshots and microstructure characteristics
corresponding to materials derived from the phase separation of polymer blends in
real time. Such predictions could be useful in a control system. Of course, this will
hinge on being able to replicate our results using experimental data. A limitation
of our investigation is that we used idealised synthetic structure factor snapshots.
To address this, a logical next step should be to demonstrate whether our findings
can be replicated with more realistic synthetic structure factor snapshots, which, for
example, could be corrupt with external noise, have missing values or be sampled
irregularly. There is an extension to DMD for dealing with noise, BOP-DMD, which
might be appropriate to consider. BOP-DMD also offers the ability to quantify the
uncertainty in the predictions, which could make DMD more practical to use in an
experimental setting. It would also be interesting to work with data from multi-
step spinodal decomposition [9, 101,103]. Multi-step spinodal decomposition would
mimic a process in which the temperature is changed by a control system in response
to predictions of the structure factor and microstructure characteristics. One might
also consider investigating the application of DMDc to such a system, i.e. one with
actuation. Finally, since DMD is equation-free and linear, it would be interesting
to apply algorithms that offer the opportunity to learn a non-linear equation of
motion for the structure factor during spinodal decomposition. We have made some
progress in this direction. This is the focus of the next chapter.
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Chapter 6

Towards modelling the time
evolution of the structure factor
during polymeric spinodal
decomposition using parsimonious
non-linear system identification
techniques

6.1 Introduction

In the previous chapter, we showed that DMD can be applied recursively to accu-
rately model the time evolution of the structure factor during polymeric spinodal
decomposition. A natural way to build on this work would be to investigate the ap-
plication of parsimonious non-linear system identification techniques. In this chap-
ter, we investigate the application of parametric PDE-FIND and SINDy combined
with the SVD. The relevant sections for each investigation feature tailored intro-
ductions, so we will not go into any more details here. The work in this chapter is
focussed on building foundations and we hope it will provide a solid starting point
for future research.

6.2 Parametric PDE-FIND

6.2.1 Introduction

At first glance, parametric PDE-FIND [83] might seem to be a promising technique
for modelling the time evolution of the structure factor during polymeric spinodal
decomposition. However, after some thought, two issues become apparent:

� To apply parametric PDE-FIND, the structure factor must be represented in a
coordinate system that enables a sparse representation of the dynamics. This
is not the case in the experimental coordinate system since the full equation
of motion is unclosed.
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� The Akcasu equation [19] suggests that integral basis functions are more appro-
priate than differential basis functions. This raises the question as to whether
parametric PDE-FIND can be used to identify parametric integro-differential
equations.

Naively, we began by neglecting the first issue. Instead, we set out to investi-
gate whether parametric PDE-FIND can be used to identify parametric integro-
differential equations. Our hope was that we might be able to apply the resulting
modified technique to learn an accurate approximate equation of motion for the
structure factor. In hindsight, we now know that learning approximate equations
is outside of the scope of parametric PDE-FIND. In the case of PDE-FIND, there
is evidence of spurious terms being identified when the library of candidate basis
functions is incomplete [84].

6.2.2 Methodology

In theory, modifying parametric PDE-FIND to identify integro-differential equations
is straightforward: one simply needs to construct the library of candidate basis
functions out of integral functions instead of differential functions. The functions
we considered for inclusion in the library are shown in table 6.1.

Number Function

1 S̃(k, τ)

2 S̃(k, τ)
∫ kcut

0
dk′ k′2S̃(k′, τ)

3 S̃(k, τ)
∫ kcut

0
dk′ k′4S̃(k′, τ)

4 1

5 S̃(k, τ)2

6 (S̃(k, τ)
∫ kcut

0
dk′ k′2S̃(k′, τ))2

7 (S̃(k, τ)
∫ kcut

0
dk′ k′4S̃(k′, τ))2

8 S̃(k, τ)2
∫ kcut

0
dk′ k′2S̃(k′, τ)

9 S̃(k, τ)2
∫ kcut

0
dk′ k′4S̃(k′, τ)

10 S̃(k, τ)2
∫ kcut

0
dk′ k′2S̃(k′, τ)

∫ kcut

0
dk′ k′4S̃(k′, τ)

11 S̃(k, τ)(
∫ kcut

0
dk′ k′2S̃(k′, τ))2

12 S̃(k, τ)(
∫ kcut

0
dk′ k′4S̃(k′, τ))2

13 S̃(k, τ)
∫ kcut

0
dk′ k′2S̃(k′, τ)

∫ kcut

0
dk′ k′4S̃(k′, τ)

Table 6.1: The candidate integral basis functions we considered for inclusion in the
library matrix when applying parametric PDE-FIND. Functions 1 and 4 appear in
the linear CHC-FHdG equation for the structure factor during spinodal decomposi-
tion. Function 4 corresponds to the noise term. Functions 1 - 4 appear in the Akcasu
equation applied to spinodal decomposition. Functions 4 - 10 are the squares and
cross terms of functions 1 -3 . Functions 11 - 13 are inspired by the derivation of
the Akcasu equation. Specifically, they are truncated higher-order terms.

We tested the modified technique on several tasks, each increasing in complexity:

� Identify the linear CHC-FHdG equation for the structure factor during spin-
odal decomposition with an exact library, i.e. a library containing only the
terms that appear in the linear CHC-FHdG equation
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� Identify the linear CHC-FHdG equation with an overcomplete library, i.e. a
library containing the terms that appear in the linear CHC-FHdG equation
and terms that do not

� Identify the Akcasu equation applied to spinodal decomposition under the
assumption of a small temperature jump with an exact library

� Identify the Akcasu equation with an overcomplete library

To facilitate the above tests, we constructed a time series out of snapshots of
the numerical solution to the dimensionless Akcasu equation applied to spinodal
decomposition under the assumption of a small temperature jump - we refer to
this time series as the equation learning (EQL) time series. We calculated the

numerical solution using N = 2700, φ0 = 0.5, σ =
√

20v
1
3
0 , α = 1, χi = 0.000716,

χf = 0.000765, Ns = 257, mmax = 400000, ∆x = 0.25 and ∆τ = 0.00001. The
initial condition was the snapshot corresponding to τ = 6.25 × 10−5 in the critical
shallow time series, i.e. the first snapshot in the time series. The EQL time series
comprises snapshots of the numerical solution corresponding to the first and every
125th time step.

Figure 6.1: Snapshots of the numerical solution to the dimensionless linear CHC-
FHdG for the structure factor during spinodal decomposition and the dimensionless
Akcasu equation applied to spinodal decomposition under the assumption of a small
temperature jump (EQL time series) at τ = 0.2, 0.5 and 0.75. The time at which
the two sets of snapshots begin to diverge corresponds to the end of the early stage
of spinodal decomposition. We determined this to be around τ = 0.25.

In the case of trying to identify the linear CHC-FHdG equation, we only used
snapshots corresponding to the early stage of spinodal decomposition. To determine
the time at which the early stage ends, we compared snapshots from the EQL time
series with snapshots of the numerical solution to the dimensionless linear CHC-
FHdG equation for the structure factor during spinodal decomposition. The time at
which the two sets of snapshots begin to diverge corresponds to the end of the early
stage. We determined this to be around τ = 0.25. Figure 6.1 compares a selection
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of snapshots from the EQL time series with those of the numerical solution to the
linear CHC-FHdG equation.

6.2.3 Results and discussion

First, we set out to identify the linear CHC-FHdG equation for the structure factor
during spinodal decomposition with an exact library. We constructed the library
such that it only contained functions 1 and 4 in table 6.1. With this library, we
applied parametric PDE-FIND to the first 200 snapshots in the EQL time series.
Figure 6.2 compares the best predictions of the coefficients made by parametric
PDE-FIND with the true values. The figure reveals an excellent match between the
predicted and true values.

(a) (b)

Figure 6.2: A comparison between the theoretical (‘true’) values of the parametric
coefficients in the dimensionless linear CHC-FHdG equation for the structure factor
during spinodal decomposition and the best values calculated by parametric PDE-
FIND (‘predicted’) using an exact library and the first 200 snapshots in the EQL time
series. Frames (a) and (b) correspond to functions 1 and 4 in table 6.1, respectively.

Next, we set out to identify the linear CHC-FHdG equation with an overcomplete
library. We constructed the library such that it contained all of the functions in table
6.1. With this library, we applied parametric PDE-FIND to the first 200 snapshots
in the EQL time series. Only the correct functions were identified as having non-zero
coefficients. Again, there was an excellent match between the predicted and true
values of the coefficients.

Next, we set out to identify the Akcasu equation applied to spinodal decompo-
sition under the assumption of a small temperature jump with an exact library. We
constructed the library such that it contained functions 1 - 4 in table 6.1. With
this library, we applied parametric PDE-FIND to all of the snapshots in the EQL
time series. Figure 6.3 compares the best predictions of the coefficients made by
parametric PDE-FIND with the true values. The figure reveals an excellent match
between the predicted and true values.

Finally, we set out to identify the Akcasu equation with an overcomplete library.
We constructed the library such that it contained all of the functions in table 6.1.
With this library, we applied parametric PDE-FIND to all of the snapshots in the
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(c) (d)

Figure 6.3: A comparison between the theoretical (‘true’) values of the parametric
coefficients in the dimensionless Akcasu equation applied to spinodal decomposition
under the assumption of a small temperature jump and the best values calculated
by parametric PDE-FIND (‘predicted’) using an exact library and the EQL time
series. Frames (a), (b), (c) and (d) correspond to functions 1,2,3 and 4 in table 6.1,
respectively.

EQL time series. The correct functions were identified as having non-zero coeffi-
cients, however so were some incorrect functions, namely functions 11 - 13. This
result was reproduced for a range of hyperparameter combinations. We note that
the incorrectly identified functions are linearly dependent with some of the correct
functions, specifically functions 1 - 3. This linear dependency makes the sparse re-
gression problem difficult to solve accurately, likely resulting in misidentified terms.

The issue of linear dependency between functions in the library suggests that
parametric PDE-FIND cannot be used to reliably and accurately identify integro-
differential equations. We believe the most promising work around for this issue
is transforming the time series into a coordinate system in which the dynamics are
described by linearly independent basis functions. A good coordinate transformation
would also enable a sparse representation of the dynamics, addressing the first issue
highlighted in section 6.2.1.
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6.3 SINDy combined with the SVD

6.3.1 Introduction

With regards to parsimonious non-linear system identification, coordinate transfor-
mations have the potential to kill two birds with one stone, relieving the issue of
linear dependency between basis functions and enabling a sparse representation of
the dynamics.

In general, the SVD is a good technique to start with when considering coordinate
transformations in the context of dynamical systems [79]. As outlined in section
2.5.2, the reduced SVD allows one to approximate spatio-temporal time series in
terms of a few dominant modes (patterns) whose amplitudes evolve with time. SVD
modes are orthogonal and optimally tailored to the time series.

When the underlying governing equation is known (we note that this is not a
requirement), one can perform a Galerkin expansion with the reduced SVD - a
process in which one converts the governing equation (a non-linear PDE) into a
non-linear ODE in terms of the mode amplitudes [33]. This motivates using SINDy
to model the time evolution of the reduced SVD mode amplitudes in cases where the
Galerkin expansion is unknown. Combining SINDy with the SVD was demonstrated
in the original SINDy paper [76].

A prerequisite to using SINDy to model the time evolution of reduced SVD mode
amplitudes is understanding how well the reduced SVD captures the time series
under consideration. As previously discussed in section 2.5.2, SVD is known not to
handle translations and scaling well. This is at odds with the fact that snapshots of
the structure factor measured during spinodal decomposition are known to translate
and grow, while also changing shape, as coarsening occurs. Not wanting to leave any
stones unturned, we set out to investigate how well the synthetic structure factor
snapshots in the critical shallow and off-critical deep time series can be reconstructed
using the reduced SVD.

6.3.2 Methodology

We calculated the SVD of the critical shallow and off-critical deep time series, one
time series at a time. For various ranks r̃, we compared reconstructions of the
snapshots in each time series with the originals. We visually assessed the accuracy
of the reconstructions.

To facilitate the construction of sparse SINDy models, we looked for accurate
reconstructions with low ranks. As the number of modes required to accurately
reconstruct the time series increases, so too does the number of variables to model
with SINDy.

6.3.3 Results and discussion

First, we calculated the SVD of the critical shallow time series and investigated
a five-mode reconstruction of the synthetic structure factor snapshots. Figure 6.4
compares the reconstructed snapshots with the originals at integer values of τ be-
tween 1 and 5. In the interest of orderliness, we present supplementary results in
appendix B. Figures B.9a and B.9b present the same comparison at earlier and later
times, respectively. We note that the snapshots in the figures are presented with a
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log scale on the y-axis to make it easier to assess the accuracy of the reconstructions
at k-values where the values of the synthetic structure factor snapshots are small.
The figures reveal that the level of agreement between the reconstructed and original
snapshots is low, although it does seem to improve for higher values of τ .

Figure 6.4: A comparison between the five-mode SVD reconstruction of synthetic
structure factor snapshots from the critical shallow time series and the originals at
τ = 1, 2, 3, 4 and 5. The snapshots are presented with a log scale on the y-axis.
Some of the reconstructed values were negative. These values are not plotted.

Figure 6.5: A comparison between the 25-mode SVD reconstruction of synthetic
structure factor snapshots from the critical shallow time series and the originals at
τ = 1, 2, 3, 4 and 5. The snapshots are presented with a log scale on the y-axis.
Some of the reconstructed values were negative. These values are not plotted.

Next, we investigated a 25-mode reconstruction of the synthetic structure factor
snapshots in the critical shallow time series. Figure 6.5 compares the reconstructed
snapshots with the originals at integer values of τ between 1 and 5. Figures B.10a

100



and B.10b present the same comparison at earlier and later times, respectively.
Again, we note that the snapshots in the figures are presented with a log scale on
the y-axis. The figures reveal a much improved level of agreement between the
reconstructed and original snapshots relative to the five-mode reconstruction. This
finding is an indicator of a translation and scaling-induced breakdown of the reduced
SVD [33,104].

A rudimentary fix for the scaling is to take the log of the time series before
calculating the SVD. We first applied this fix to the critical shallow time series and
investigated a five-mode reconstruction of the synthetic structure factor snapshots.
Figure 6.6 compares the reconstructed snapshots with the originals (now the log
(base 10) of the synthetic structure factor snapshots in the critical shallow time
series) at integer values of τ between 1 and 5. Figures B.11a and B.11b present
the same comparison at earlier and later times, respectively. The figures reveal
an improved level of agreement between the reconstructed and original snapshots
relative to the five-mode reconstruction where the scaling was not accounted for.
These findings generalise to the off-critical deep time series. In this case, figure 6.7
compares the reconstructed snapshots with the originals (now the log (base 10) of
the synthetic structure factor snapshots in the off-critical deep time series) at integer
values of τ between 1 and 5. Figures B.12a and B.12b present the same comparison
at earlier and later times, respectively.

Figure 6.6: A comparison between the five-mode SVD reconstruction of the log (base
10) of synthetic structure factor snapshots from the critical shallow time series and
the originals at τ = 1, 2, 3, 4 and 5.

Due to time constraints, we did not attempt to construct SINDy models for
the reduced SVD mode amplitudes corresponding to the log of the critical shallow
and off-critical deep time series. For context, figure 6.8 shows the time evolution of
the mode amplitudes corresponding to the reconstructed synthetic structure factor
snapshots in figures 6.6, B.11a and B.11b. If an appropriate SINDy model can be
identified, this would suggest that the reduced SVD enables a sparse representation
of the dynamics. However, there is no guarantee that the SVD will enable a sparse
representation of the dynamics.
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Figure 6.7: A comparison between the five-mode SVD reconstruction of the log (base
10) of synthetic structure factor snapshots from the off-critical deep time series and
the originals at τ = 1, 2, 3, 4 and 5.

Figure 6.8: The time evolution of the mode amplitudes corresponding to the snap-
shots in figures 6.6, B.11a and B.11b.

When applying parsimonious non-linear system identification techniques, if a
given coordinate system does not enable a sparse representation of the dynamics,
the task at hand is not simply model discovery but rather the joint discovery of
suitable coordinates and a model. To address this, Champion et al. developed the
SINDy autoencoder (AE) [82] - an extension of SINDy that combines the SINDy
optimisation procedure with the optimisation of an autoencoder. The role of the
autoencoder is to discover a coordinate transformation that enables a sparse repre-
sentation of the dynamics. The SINDy model is constructed in terms of the latent
variables of the autoencoder (the middle layer). An autoencoder can be thought of
as a non-linear generalisation of the SVD [79]. Like the SVD, there is no guarantee
an autoencoder will learn a suitable coordinate transformation when trained in iso-
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lation. Hence, the innovation of SINDy AE is the joint optimisation of the SINDy
model and the autoencoder. This is facilitated by a combined loss function, which
promotes an accurate autoencoder reconstruction and a sparse, accurate dynamical
model. We believe the application of SINDy AE to the problem of modelling the
time evolution of the structure factor during polymeric spinodal decomposition to
be a promising avenue of future research.

Whether using SINDy combined with the SVD or SINDy AE, an important con-
sideration is ensuring that the resulting dynamical model is generalisable. In the
case of SINDy AE, the structure of the SINDy model has the potential to generalise
to new time series corresponding to different system parameters (thermodynamic
and molecular parameters in the context of polymer blends). However, the coor-
dinate transformation, i.e. the autoencoder, is unlikely to generalise. To remedy
this, one can retrain the autoencoder using a new time series while keeping the
structure of the SINDy model fixed. This optimisation problem is more straightfor-
ward than the original joint optimisation problem and should, therefore, be quicker
to solve [82]. Retraining the autoencoder is analogous to redefining a coordinate
system when drawing free-body diagrams. For example, Newton’s laws are equally
applicable to objects on a flat or an inclined plane, but for each type of plane, it is
convenient to define a different coordinate system. In the case of SINDy combined
with the SVD, we are not entirely sure how one might go about ensuring that the
resulting dynamical model is generalisable. It would be interesting to see whether
the ideas outlined above can be applied, i.e. perhaps a SINDy model structure can
be identified with one time series and then refit to a new time series - recalibrating
the coefficients. Here, instead of retraining an autoencoder, one would calculate
a new SVD. If there is any success applying SINDy combined with the SVD or
SINDy AE, it would be interesting to investigate the possibility of characterising
the coefficients in the SINDy model in terms of the molecular and thermodynamic
parameters corresponding to each time series.

To end this discussion of potential avenues for future research, we wish to high-
light that we only addressed the scaling of the synthetic structure factor snapshots in
the time series and not the translation phenomena. Since accounting for the scaling
of the snapshots led to such an improvement in the five-mode SVD reconstructions,
we are inclined to believe that the scaling was the main issue regarding our initial
attempts at reconstructing the snapshots, i.e. the effects of translations were not as
detrimental. However, if it is deemed that the effects of translations need addressing,
a potentially useful technique might be Unsupervised Travelling Wave Identification
with Shifting and Truncation (UnTWIST) [104]. This technique automatically iden-
tifies and shifts travelling waves such that they appear stationary in a new reference
frame. The technique also allows one to learn an interpretable model describing the,
in general, non-constant speed of the reference frame. Shifting the travelling wave
snapshots should aid one in obtaining accurate low-rank SVD reconstructions of the
snapshots.

6.4 Summary

We investigated the application of two parsimonious non-linear system identification
techniques - parametric PDE-FIND and SINDy combined with the SVD - to the
problem of modelling the time evolution of the structure factor during polymeric
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spinodal decomposition.
The application of parametric PDE-FIND to the problem is not well-founded.

This technique requires that the state vector is represented in a coordinate system
that enables a sparse representation of the dynamics and that the library of can-
didate functions is overcomplete. Clearly, in the experimental coordinate system,
this is not possible - the full equation of motion for the structure factor during
spinodal decomposition is unclosed. Naively, we neglected this and sought to inves-
tigate whether parametric PDE-FIND can be used to identify parametric integro-
differential equations. We were motivated by the idea of learning an approximate
equation of motion for the structure factor during spinodal decomposition. The
Akcasu equation suggests that integral basis functions are more appropriate than
differential basis functions, hence our interest in parametric integro-differential equa-
tions. We found that the linear dependency between integral basis functions makes
the sparse regression problem difficult to solve accurately.

To make progress, we believe the use of coordinate transformations will be vital.
Coordinate transformations have the potential to enable a sparse representation of
the dynamics in terms of linearly independent basis functions. In this direction, we
considered SINDy combined with the SVD. We sought to investigate how well the
synthetic structure factor snapshots in the critical shallow and off-critical deep time
series can be reconstructed using the SVD - a prerequisite task for using SINDy
to model the dynamics of the structure factor in the space spanned by reduced
SVD modes. A successful application of SINDy combined with the SVD would
likely require accurate SVD reconstructions using as few modes as possible. We
found that many modes were required to reconstruct the synthetic structure factor
snapshots. Noting that the SVD breaks down when there are translations and
scaling, we addressed scaling in the time series by taking the log of the constituent
snapshots. We found that fairly accurate low-rank reconstructions of the snapshots
are possible when the scaling of the snapshots has been accounted for in this way.

A natural next step would be to try to construct SINDy models for the reduced
SVD mode amplitudes corresponding to the log of the critical shallow and off-critical
deep time series. If this fails, a promising technique to consider is SINDy AE, which
combines both coordinate and model discovery via the joint optimisation of an
autoencoder and a SINDy model in terms of the latent variables of the autoencoder.
We are excited to see how this work develops in the future, especially as the field of
system identification grows and matures. Indeed, we believe this problem could be
a stimulating test bed for future system identification techniques.
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Chapter 7

Conclusions and future work

The time evolution of the structure factor during polymeric spinodal decomposition
and dissolution is relatively easy to measure but hard to model. We believe the
latter could be impeding our ability to control these processes, preventing us from
tailoring and tuning the microstructures of materials derived from polymer blends.
In an attempt to rectify this, we set out to

� Test the Akcasu equation for describing the time evolution of the structure
factor

� Explore the application of system identification techniques to the problem of
modelling the time evolution of the structure factor

To allow us to have as much control as possible in our investigations, we worked
with synthetic time series of structure factor snapshots. In chapter 3, we detailed
how we generated these time series. The method we used involves a finite difference
scheme for simulating polymeric spinodal decomposition and dissolution. When
using finite difference simulations, one must be careful in the selection of ∆x and
∆τ values. We discussed how we chose suitable values of ∆x and ∆τ , demonstrating
that the time series we generated are independent of these values. Furthermore, we
showed that the snapshots in the dissolution time series tend towards de Gennes’
random phase approximation for the static structure factor, indicating our method
for generating the time series was derived and implemented correctly. The code and
data we developed is available on GitHub [96].

In chapter 4, we tested the Akcasu equation. One of our aims was to shed light
on the quantitative discrepancy between the predictions of the Akcasu equation and
experimental scattering data reported by Akcasu et al. [31] in the case of dissolution.
It was unclear whether the Akcasu equation failed as a result of the equation being
inadequate or incorrect parameter values being used. We found that the Akcasu
equation applied to dissolution performed much better when tested on the synthetic
structure factor snapshots in the dissolution time series than it did when tested
using experimental scattering data. Since the parameter values corresponding to the
synthetic structure factor snapshots are known, this suggests that the experimental
discrepancy could have been due to incorrect parameter values. We hope these
findings motivate further testing of the Akcasu equation applied to dissolution using
experimental data.

Based on different assumptions, we defined and tested two versions of the Ak-
casu equation applied to spinodal decomposition: the Akcasu equation applied to
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spinodal decomposition under the assumption of a small temperature jump and the
Akcasu equation applied to general spinodal decomposition. The former captured
some important qualitative features of the dynamics of the synthetic structure factor
snapshots in the critical shallow time series but lacked accuracy. The latter com-
pletely failed to describe the dynamics of the synthetic structure factor snapshots.
We traced this failure back to the noise term and hypothesise that this term may
need to be time-dependent, shifting between two limiting values. We hope our find-
ings from testing the Akcasu equation applied to spinodal decomposition motivate
further theoretical work aimed towards the development of an approximate equa-
tion of motion for the structure factor during spinodal decomposition. As far as we
know, these are the first reported findings for testing the Akcasu equation applied
to spinodal decomposition.

In chapter 5, we turned our attention towards the application of system identi-
fication techniques to the problem of modelling the time evolution of the structure
factor during spinodal decomposition. Specifically, we investigated the use of DMD
to predict future snapshots of the synthetic structure factor based on the knowl-
edge of previous snapshots. For both the critical shallow and off-critical deep time
series, DMD was able to accurately model the time evolution of the synthetic struc-
ture factor snapshots when applied recursively. We identified a trade-off between
the accuracy and extrapolation of the DMD predictions, which seemed to be time-
dependent: as spinodal decomposition proceeds, it becomes less important.

We believe our findings are promising for the development of an experimental
technique to predict structure factor snapshots and microstructure characteristics
during spinodal decomposition. Such predictions could be useful in a control sys-
tem. A limitation of our DMD investigation is that the synthetic structure factor
snapshots we used are idealised. To address this, we propose that future research
should aim to demonstrate whether our findings can be replicated with more realistic
(e.g. noisy and incomplete) synthetic time series of structure factor snapshots and,
eventually, experimental scattering data. Extensions to DMD, such as BOP-DMD,
which was developed to handle noise, might need to be considered.

In chapter 6, we investigated the application of parametric PDE-FIND and
SINDy combined with the SVD to the problem of modelling the time evolution
of the structure factor during spinodal decomposition. Contrary to DMD, which
is linear and equation-free, parametric PDE-FIND and SINDy combined with the
SVD output parsimonious non-linear governing equations.

We determined that the application of parametric PDE-FIND to the problem is
not well-founded. Among several issues is that parametric PDE-FIND requires the
structure factor to be represented in a coordinate system that enables a sparse repre-
sentation of the dynamics - this is not the case in the experimental coordinate system
since the full equation of motion is unclosed. To make progress, we believe the use of
coordinate transformations will be vital, which led us to consider SINDy combined
with the SVD. The reduced SVD allows one to approximate spatio-temporal time
series in terms of a few dominant modes whose amplitudes evolve with time. SINDy
can be used to model the time evolution of the reduced SVD mode amplitudes.

Before applying SINDy to model the time evolution of the reduced mode ampli-
tudes, a prerequisite task is to investigate how well the reduced SVD can reconstruct
the synthetic structure factor snapshots under consideration. For both the critical
shallow and off-critical deep time series, we found that fairly accurate low-rank re-
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constructions of the synthetic structure factor snapshots were possible when the
scaling of the snapshots was accounted for by taking the log of the snapshots. Due
to time constraints, we did not attempt to construct any SINDy models for the time
evolution of the reduced SVD mode amplitudes. This would be a natural next step.
If this were to fail, we identified SINDy AE as a promising technique to investigate.
SINDy AE combines both coordinate and model discovery via the joint optimisa-
tion of an autoencoder and a SINDy model in terms of the latent variables of the
autoencoder.

As far as we know, our work in chapters 5 and 6 is the first to attempt applying
system identification techniques to the problem of modelling the time evolution of
the structure factor during spinodal decomposition. We believe this problem could
be a stimulating test bed for future system identification techniques, and we hope
our findings provide a solid starting point for future research.
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Appendix A

Supplementary information for
chapter 3

This appendix contains supplementary information for chapter 3 and is split into
two sections. In section A.1, we derive equations 3.1, 3.5 and 3.7. In section A.2,
we attempt to quantify the small-k limit of equation 3.1.

A.1 Deriving the key equations

Finite difference scheme (equation 3.1)

To begin the derivation, we nondimensionalise equation 2.62. We make use of the
dimensionless variables in equations 3.4a - 3.4c. Upon substituting these dimension-
less variables into equation 2.62, we obtain, after rearranging,

∂φ(x, τ)

∂τ
=

1

2
∇̃2
[ χc

2|χ− χs|
ln
( φ

1− φ

)
− 2χφ

|χ− χs|
+

1

36

( 1− 2φ

(φ(1− φ))2

)
(∇̃φ)2

− 2
( 1

36φ(1− φ)

)
∇̃2φ

]
+ ξ̃(x, τ). (A.1)

Next, we write equation A.1 in a slightly different form. A rescaled dimensionless
noise term ν(x, τ) = σ3/2

v
1/2
0 |χ−χs|1/4

ξ̃(x, τ) can be identified by substituting equations

3.4a - 3.4c into equation 2.54b. Upon substituting ξ̃(x, τ) =
v
1/2
0 |χ−χs|1/4

σ3/2 ν(x, τ) into
equation A.1, we obtain

∂φ(x, τ)
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1
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ln
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)
− 2χφ
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+
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(φ(1− φ))2

)
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− 2
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]
+
v

1/2
0 |χ− χs|1/4

σ3/2
ν(x, τ). (A.2)

The first and second moments of ν(x, τ) are given by

< ν(x, τ) >= 0 (A.3a)

< ν(x, τ)ν(x′, τ ′) >= −∇̃2δ(x− x′)δ(τ − τ ′). (A.3b)
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We note that a common simplification to equation A.2 used in previous theoretical
and computational studies of spinodal decomposition is to set v0 equal to unity
[26,53,105,106]. Similarly, in some studies, σ has also been set equal to unity [90–92].

Ultimately, we want to write down the numerical solution to equation A.2.
Therefore, following [53], we introduce some discretisation approximations. Specifi-
cally, we approximate continuous time as a series of discrete time steps of duration
∆τ and continuous space as a simple cubic lattice (with periodic boundary condi-
tions) comprising N3

s lattice sites of length ∆x. We label the lattice sites with the
indices (j, k, l) and the time steps with the index m. To approximate the spatial
derivatives, we use central finite difference schemes. After integrating the result-
ing discretised equation over a single time step, we write the numerical solution
as [53,107–109]

φm+1
j,k,l =φmj,k,l +

∆τ

2∆x2

∑
nn

[ χc
2|χ− χs|

ln
( φmj,k,l
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−
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+
1

36

( 1− 2φmj,k,l
(φmj,k,l(1− φmj,k,l))2

) 1
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) 1

∆x2
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φmj,k,l

]
+
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σ3/2
Mm

j,k,l,

(A.4)

where
∑

nn and
∏

nn are the short-hand operators in equations 3.2a and 3.2b and

Mm
j,k,l =

∫ τ+∆τ

τ
ν(x, τ)dτ . We approximated the integral of the term with the square

brackets as a Riemann sum with a single term.
To make use of equation A.4, we must specify how to implement Mm

j,k,l. Following
[108,109], we use equation A.3 to compute

< Mm
j,k,l >= 0 (A.5a)

< Mm
j,k,lM

m′

j′,k′,l′ >= −∇̃2δ(x− x′)δm,m′∆τ. (A.5b)

Approximating the Laplacian using central finite differences and δ(x−x′) as
δj,j′δk,k′δl,l′

∆x3
,

we obtain

< Mm
j,k,lM

m′

j′,k′,l′ >= − 1

∆x2

∑
nn

(δj,j′δk,k′δl,l′
∆x3

)
δm,m′∆τ. (A.6)

It can be shown that

< Mm
j,k,lM

m′

j′,k′,l′ >=


6∆τ
∆x5

if (j, k, l) = (j′, k′, l′) and m = m′

−∆τ
∆x5

if (j, k, l) and (j′, k′, l′) are NN and m = m′ ,

0 otherwise

(A.7)

where NN is an abbreviation for nearest neighbours. When m = m′, the second line
on the right-hand side of this equation reveals the covariance of Mm

j,k,l is negative for
lattice sites that are nearest neighbours. Therefore, positive values of Mm

j,k,l at one
lattice site, which correspond to an increase in φmj,k,l, are compensated by negative
values at the neighbouring lattice sites and vice versa. It follows that material is
conserved. Ultimately, this conservation property stems from the presence of ∇2
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in equation 2.56. Replacing ∇2 in equation 2.56 with a numerical factor results in
the covariance term in the second line of equation A.7 becoming zero. In this case,
material would no longer be conserved.

To generate values of Mm
j,k,l in accordance with equations A.5a and A.6, we

follow [97,105,108] in defining

Mm
j,k,l =

1

∆x

[
ηm1;j+1,k,l − ηm1;j,k,l + ηm2;j,k+1,l − ηm2;j,k,l + ηm3;j,k,l+1 − ηm3;j,k,l

]
, (A.8)

where the ηn are independent Gaussian random variables with the following statis-
tical properties:

< ηmn;j,k,l >= 0 (A.9a)

< ηmn;j,k,lη
m′

n′;j′,k′,l′ >=
∆τ

∆x3
δn,n′δj,j′δk,k′δl,l′δm,m′ . (A.9b)

Finally, upon substituting equation A.8 into equation A.4, we obtain equation 3.1.

Snapshots of the power spectrum and the structure factor (equations 3.5
and 3.7)

To begin the derivation, we nondimensionalise equation 2.92. We make use of the
dimensionless variables in equations 3.4a, 3.8a, and 3.8b. Upon substituting these
dimensionless variables into equation 2.92, we obtain, after rearranging,

S̃(k, τ) =
1

Ṽ

〈∫
d3x e−ik·xδφ(x, τ)

∫
d3x′ eik·x

′
δφ(x′, τ)

〉
, (A.10)

where Ṽ = V |χ−χs|
3
2

σ3 . We note that the expression inside the angle brackets is the

dimensionless power spectrum P̃ (k, τ), i.e. a dimensionless version of equation 2.93.
Next, consistently with the derivation of the finite difference scheme, we in-

troduce discretisation approximations into equation A.10. Most significantly, we
approximate the Fourier transforms as discrete Fourier transforms. The resulting
discretised equation can be expressed in two parts:

S̃md =
1

N3
s∆x3

< P̃m
d > (A.11a)

P̃m
d =∆x6

〈Ns−1∑
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δφm
′
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2πi
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(aj′+bk′+cl′)
〉
R
,

(A.11b)

where a, b and c are integers in the range −(Ns−1)
2

≤ a, b, c ≤ Ns−1
2

, and < ... >R

denotes a radial average. The radial average can be written explicitly as

< fa,b,c >R≡ fd =

∑
a,b,c s.t. round(

√
a2+b2+c2)=d fa,b,c∑

a,b,c s.t. round(
√
a2+b2+c2)=d 1

, (A.12)
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where d is an integer in the range 0 ≤ d ≤ Ns−1
2

. We introduce the radial average

since P̃ (k, τ) depends only on the magnitude of k - we expect polymer blends to be
isotropic during dissolution and spinodal decomposition. The integers a, b and c are
related to k via k = 2π

Ns∆x
(a, b, c). The integer d is related to k = |k| via k = 2π

Ns∆x
d.

Next, we propose approximating c ≈ 0 to make equation A.11b consistent with
a small-angle scattering experiment. This corresponds to approximating qz ≈ 0,
where qz is the z-component of q, and reduces the three-dimensional discrete Fourier
transforms in equation A.11b to two-dimensional discrete Fourier transforms:

P̃m
d = ∆x6

〈Ns−1∑
j=0
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k=0
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〉
R
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(A.13)
The radial average becomes

< fa,b >R≡ fd =

∑
a,b s.t. round(

√
a2+b2)=d fa,b∑

a,b s.t. round(
√
a2+b2)=d 1

. (A.14)

Our logic behind approximating qz ≈ 0 is as follows. Consider figure 1.2, which shows
a schematic of a typical small-angle scattering experiment. Defining the z-axis to be
parallel to the incident beam, the scattering vector of an arbitrary scattering event
is given by

q = qf − qi =

qf,xqf,y
qf,z

−
 0

0
qi,z

 =

 qf,x
qf,y

qf,z − qi,z

 . (A.15)

Assuming that the scattering is elastic (therefore |qi| = |qf |), it can be deduced
using trigonometry that

qz = |qf |(cos(θ)− 1). (A.16)

By definition, the scattering angle in small-angle scattering is small, therefore

qz = |qf |
(

1− θ2

2!
+
θ4

4!
− ...− 1

)
≈ 0. (A.17)

Finally, for simplicity, we propose neglecting the time average represented by
< ... > in equation A.11a. Instead, noting that the sizes of simulated blends are
significantly smaller than the sizes of blends studied experimentally, we propose
taking < ... > to mean an ensemble average [15, 16]. This allows us to model the
scattering throughout a ‘large’ experimental blend using Nr simulations of ‘small’
blends:

S̃md =
1

NrN3
s∆x3

Nr∑
n=1

P̃m
n;d (A.18a)

P̃m
n;d = ∆x6

〈Ns−1∑
j=0

Ns−1∑
k=0

Ns−1∑
l=0

δφmn;j,k,l e
− 2πi
Ns

(aj+bk)
Ns−1∑
j′=0

Ns−1∑
k′=0

Ns−1∑
l′=0

δφm
′

n;j′,k′,l′e
2πi
Ns

(aj′+bk′)
〉
R
.

(A.18b)
These equations are equivalent to equations 3.7 and 3.5, respectively.
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A.2 Quantifying the small-k limit of equation 3.1

The small-k limit of equation 3.1 stems from deriving the square gradient coefficient
to be consistent with the small-q limit of de Gennes’ random phase approximation
(see section 2.4.9). Specifically, instead of using complete Debye functions in the
derivation of the square gradient coefficient, de Gennes used its linear expansion,
which is only valid in the limit qRg = krg << 1. We attempt to quantify this limit
below.

The dimensionless radius of gyration is given by

rg =

√
N |χ− χs|

6
. (A.19)

Therefore, the limit krg << 1 can be written as

k

√
N |χ− χs|

6
<< 1. (A.20)

Substituting N = 2700 and the values of χ and χs corresponding to each time series
into equation A.19, we determine that

� rg ≈ 0.10 =⇒ k << 10 in the case of the critical shallow and dissolution
time series

� rg ≈ 0.24 =⇒ k << 4.2 in the case of the off-critical deep time series

In an attempt to quantify what is meant by ‘<<’, we turn to the Debye function
and its linear expansion:

fD(x) =
2

x2

(
x− 1 + e−x

)
≈ 1− x

3
, (A.21)

where x = (qRg)
2 = (krg)

2. Figure A.1 shows the percentage error between the
Debye function and its linear expansion as a function of x. At x = 0.5, the percent-
age error is approximately 2.22 %, which suggests the linear expansion is a good
approximation to the full Debye function when x ≤ 0.5. Using x ≤ 0.5 and the
values of rg listed above, we determine the following small-k limit inequalities:

� k < 7 in the case of the critical shallow and dissolution time series

� k < 3 in the case of the off-critical deep time series
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Figure A.1: The percentage error between the full Debye function and its linear
expansion as a function of x = (qRg)

2 = (krg)
2.
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Appendix B

Supplementary results for
chapters 5 and 6

B.1 Supplementary results for chapter 5

B.1.1 Critical shallow time series

Figures B.1 and B.2 present the same comparison as figures 5.1 and 5.3, respectively,
but with a log scale (base 10) on the y-axis.

Figure B.1: A reproduction of figure 5.1 with a log-scale (base 10) on the y-axis.

114



Figure B.2: A reproduction of figure 5.3 with a log-scale (base 10) on the y-axis.

B.1.2 Off-critical deep time series

Figures B.3 and B.4 compare several synthetic structure factor snapshots from the
off-critical deep time series with those predicted by DMD models. The snapshots in
figure B.3 correspond to values of τ in the range 1 ≤ τ ≤ 10, while the snapshots in
figure B.4 correspond to values of τ in the range 10 ≤ τ ≤ 50. The hyperparameters
used in the DMD models are listed in section 5.2. Figures B.5 and B.6 show a box
plot of the percentage errors associated with the predictions of each DMD model
in figures B.3 and B.4, respectively. From figures B.3 - B.6 we infer that, with the
exception of the early stage of the process (τ < 3), DMD can be used to accurately
model the time evolution of the synthetic structure factor snapshots.

Figure B.7 compares the predictions of DMD models obtained using values of
τph < 0.75 at τ = 1 and τ = 3 with the corresponding synthetic structure factor
snapshots. Figure B.8 compares the predictions of DMD models obtained using
values of τph > 0.75 at τ = 20, 30, 40 and 50 with the corresponding synthetic
structure factor snapshots. The results in figures B.7 - B.8 illustrate the trade-off
between the accuracy and extrapolation of the DMD predictions, which is coupled
to the value of τ .

Overall, the results presented in this section, which we obtained with the off-
critical deep time series, are consistent with the results presented in section 5.3,
which we obtained using the critical shallow time series.
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Figure B.3: A comparison between synthetic structure factor snapshots from the
off-critical deep time series and those predicted by the DMD models for values of τ
in the range 1 ≤ τ ≤ 10. The hyperparameters used in the DMD models are listed
in section 5.2.
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Figure B.4: A comparison between synthetic structure factor snapshots from the
off-critical deep time series and those predicted by the DMD models for values of τ
in the range 10 ≤ τ ≤ 50. The hyperparameters used in the DMD models are listed
in section 5.2.
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Figure B.5: Box plots of the percentage errors associated with the predictions of
each DMD model in figure B.3. In each box plot, the red line shows the median, the
blue box outlines the interquartile range, the black dotted lines extend beyond the
box by 1.5 times the interquartile range, and the blue circles denote outliers. The
solid blue line shows the time evolution of the mean.

Figure B.6: Box plots of the percentage errors associated with the predictions of
each DMD model in figure B.4. In each box plot, the red line shows the median, the
blue box outlines the interquartile range, the black dotted lines extend beyond the
box by 1.5 times the interquartile range, and the blue circles denote outliers. The
solid blue line shows the time evolution of the mean.
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Figure B.7: A comparison between synthetic structure factor snapshots from the
off-critical deep time series and those predicted by DMD models with values of
τph < 0.75 at τ = 1 (top panel) and τ = 3 (bottom panel). The values of the other
hyperparameters used in the DMD models are the same as those listed in section
5.2.

Figure B.8: A comparison between synthetic structure factor snapshots from the
off-critical deep time series and those predicted by DMD models with values of
τph > 0.75 at τ = 20 and 30 (top panel) and τ = 40 and 50 (bottom panel). The
values of the other hyperparameters used in the DMD models are the same as those
listed in section 5.2.
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B.2 Supplementary results for chapter 6

In the case of the critical shallow time series, figures B.9a and B.9b compare the five-
mode reconstruction of synthetic structure factor snapshots with the originals at τ =
0.25, 0.5, 0.75, 1 and τ = 10, 20, 30, 40, 50, respectively. Similarly, figures B.10a and
B.10b compare the 25-mode reconstruction of synthetic structure factor snapshots
with the originals at τ = 0.25, 0.5, 0.75, 1 and τ = 10, 20, 30, 40, 50, respectively. We
note that the snapshots in the figures are presented with a log scale on the y-axis.

(a) (b)

Figure B.9: A comparison between the five-mode SVD reconstruction of synthetic
structure factor snapshots from the critical shallow time series and the originals at
(a) τ = 0.25, 0.5, 0.75, 1 and (b) τ = 10, 20, 30, 40, 50. The snapshots are presented
with a log scale on the y-axis. Some of the reconstructed values were negative.
These values are not plotted.

(a) (b)

Figure B.10: A comparison between the 25-mode SVD reconstruction of synthetic
structure factor snapshots from the critical shallow time series and the originals at
(a) τ = 0.25, 0.5, 0.75, 1 and (b) τ = 10, 20, 30, 40, 50. The snapshots are presented
with a log scale on the y-axis. Some of the reconstructed values were negative.
These values are not plotted.
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In the case of the log (base 10) of the critical shallow time series, figures B.11a and
B.11b compare the five-mode reconstruction of synthetic structure factor snapshots
with the originals at τ = 0.25, 0.5, 0.75, 1 and τ = 10, 20, 30, 40, 50, respectively. In
the case of the log (base 10) of the off-critical deep time series, figures B.12a and
B.12b compare the five-mode reconstruction of synthetic structure factor snapshots
with the originals at τ = 0.25, 0.5, 0.75, 1 and τ = 10, 20, 30, 40, 50, respectively.

(a) (b)

Figure B.11: A comparison between the five-mode SVD reconstruction of the log
(base 10) of synthetic structure factor snapshots from the critical shallow time series
and the originals at (a) τ = 0.25, 0.5, 0.75, 1 and (b) τ = 10, 20, 30, 40, 50.

(a) (b)

Figure B.12: A comparison between the five-mode SVD reconstruction of the log
(base 10) of synthetic structure factor snapshots from the off-critical deep time series
and the originals at (a) τ = 0.25, 0.5, 0.75, 1 and (b) τ = 10, 20, 30, 40, 50.
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