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Abstract

Alan G. HOODLESS

Intelligent Construction using Irregular, Untooled Rock

Current methods in the construction industry leave much to be desired in terms of
efficient material use and a result of this is high consumption of resources with high
greenhouse gas emissions. Traditional methods tend to involve the use of concrete
or steel. The increased awareness of the limited amount of resources has sparked a
desire to move away from these materials. It is suggested that earthen materials are
a suitable replacement as they have low energy requirements and are available glob-
ally. Furthermore, waste materials such as construction demolition waste or mining
rock that would otherwise go unused is suitable for geotechnical structures such as
drystone retaining walls or embankments. With the increased computational power
available there lies potential for improving techniques of construction using a high
intelligence, low resource method. Autonomous construction performed by robot is
an area gaining interest that utilises such capabilities. Previous work sees construc-
tion of drystone walls made from large boulders and construction demolition waste.
However, placement of the material is based on suitability for fitting a designed
shape and stability of the particle. Improvements can be found by determining po-
sition to optimise the shear strength of the structure.

The purpose of this thesis is to produce a packing technique that selects placement
on criteria derived from the shear strength of soil structures. Parameters are derived
from literature and based on commonly seen features in these systems. Low void
ratio, high contact area of a particle with other particles and coordination number
are all selected for the basis of an objective function to score placement. Additionally,
the centroid of the particle is considered as it is shown to be a sign of stability when
particles are located further down in a system indicating less potential energy.

The packing algorithm is designed to pack all particle shapes that can be defined
by a closed-loop coordinate system in clockwise order for both convex and concave
shapes. Two scenarios are tested to ensure this is the case, one based on the pack-
ing of irregular, untooled rock particles to replicate the autonomous construction
method. This is based in two-dimensions to keep the problem simplied and to re-
duce computational times. The other replicates the Tetris videogame. Tetris is seen
as a scenario where a clear objective to minimise void ratio is present for simpli-
fied, orthogonal shapes. As a result, it is adopted as a verification that the algorithm
works as intended. Results for particle placement in the Tetris scenario using an ob-
jective function based on the features of high shear strength soil structures is shown
to be an efficient method of packing. Minimal gaps between particles are observed
and when compared to the deepest-bottom-left method for bin packing it was found
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to outperform this heuristic. As such, it is suggested that this could be adapted to
be a novel approach for the bin packing optimisation problem with the further com-
parison to other bin packing solutions.

The packing of rock particles is also achieved and it is shown that structures can
be produced by the algorithm. Void ratio is thought to be a good indication of me-
chanical strength for systems of soil however it should not be taken as an individual
measure for this. Therefore the number of disrupted running joints was adopted as
an indication of shear strength of the structure. However, packing in the soil particle
scenario found that there is no correlation between disruption of running joints and
void ratio of the packing and therefore it was difficult to conclude on the efficiency
of the algorithm in terms of optimising shear strength. Results of the algorithm us-
ing rock particles presents well packed structures in a domain. From this visual
inspection it is determined that the algorithm could be adopted as a novel approach
for specimen generation for fields such as DEM modelling. Verification of strength
through rotating drum to measure angle of repose is suggested with structures of
high shear strength exhibiting higher angles of repose.

Keywords: Particle packing; untooled rock; precision structures; bin packing; Tetris
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Chapter 1

Introduction and Objectives

1.1 Background

In order to tackle the looming climate crisis, the need for a reduction in material
use and increase of low carbon construction techniques has become more promi-
nent. The construction industry accounts for nearly 30% of raw material use and
33% of related greenhouse gas emissions (Chau et al., 2015). As material resources
and CO2 emissions become increasingly expensive both economically and in terms
of environmental impact, modern developments in technology have led to high lev-
els of computing power available at low costs. Taking account of these factors, an
opportunity for a high intelligence, low resource construction method arises.

Current methods for reinforcement of soil tend to involve the use of concrete or steel,
for example, where soil masses may be held back by a concrete retaining wall. How-
ever, a transition away from these conventional materials is required for tackling
issues of climate impact. The production of cement contributes to roughly 8% of the
world’s CO2 emissions (Lehne and Preston, 2018). Additionally, developing coun-
tries have an ever increasing demand for construction materials due to their need
to build and improve infrastructure. Concrete is the predominant use of riverbed
sands, however such sands are also required for glass manufacturing and asphalt
roads (Cousins, 2019) and sand and gravel are the most extracted materials globally
(Torres et al., 2017). Due to the demand of materials that are created with sand, ille-
gal dredging along riverbeds and coastlines have occurred as a result of this short-
age causing the change in the shape of riverbeds and floodplains, affecting wildlife
habitats, as well as causing alterations to groundwater reserves and water quality
(Cousins, 2019; Koehnken and Rintoul, 2018). The irregular shape of riverbed sand is
what makes it desirable for concrete materials as grains from deserts are too rounded
and do not bind well in concrete mixes (Cousins, 2019). Because of these reasons, a
look away from current building techniques that use a high volume of concrete is
required.

Geosynthetics have arisen as a suitable solution for soil reinforcement. These can
take the form of geotextiles, geogrids or geonets (Patil et al., 2016). Geosynthetic
products have gained popularity due to their flexibility during processing, high spe-
cific stiffness and low cost (Pujari et al., 2017). Materials used for geosynthetics range
from low-modulus polymeric materials to high tensile strength metallic sheets (Bor-
doloi et al., 2017a; Bordoloi et al., 2017b). The synthetic materials made from poly-
mers are derived from petroleum which is widely known to be a non-renewable re-
source and considered detrimental to the environment, whilst metallic materials are
also non-renewable, can have a high energy cost to produce and can corrode which
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can be toxic to the surrounding environment (Gaw and Zamora-Palacios, 2010). The
use of natural fibres as a geosynthetic has emerged as an option (Gowthaman et al.,
2018). However, these materials readily degrade leading to shorter lifespans than
traditional materials (Balan, 1995; Nguyen and Indraratna, 2023).

It is accepted that materials sourced locally are perceived to have a lower embodied
environmental impact, since most of these materials have low-tech processing and
therefore require less energy to be prepared for use (Fernandes et al., 2019). Sev-
eral studies carried out by Fernandes et al. (2013), Melià et al. (2014), and Zabalza
Bribián et al. (2011) have quantitatively compared vernacular or natural materials to
conventional materials like concrete, steel and glass and confirmed that it is true that
vernacular materials have a lower impact on the environment. Additionally, locally
sourced materials reduce the environmental cost in terms of transportation if they
can be processed on or close to site or if they do not need to be processed to begin
with. Furthermore, Morel et al. (2001) and Ramesh (2012) concluded that using lo-
cal materials also has socioeconomic benefits such as reducing construction cost and
employing local labour forces.

Rock is a resource that is abundant. Historic constructions can be found world-
wide of rock being formed to create major structures which have stood the test of
time. Examples of these are the Incan retaining walls and cities in Peru, castles con-
structed in Japan in the 16th and 17th century, drystone walls which are found all
across Europe, and the carved stone blocks utilised in the Pyramids of Giza which
are found in Egypt. Such structures make use of the surrounding materials in the
environment and have stood for long periods of time. The precedent set by these
constructions should inspire modern research and, in combination with developing
technologies, a method for using irregular rock particles as a construction material
is entirely possible.

Rock material tends to have high compressive strengths when compared to concrete
although tensile strengths tend to be small (in the order of 0.1 times the compressive
strength, Vutukuri et al., 1974). Furthermore, constructions made of stone require
little maintenance despite possessing long lifespans. As well as having favourable
characteristics, the extraction of unprocessed rock from quarries is approximately
10% of the greenhouse gas emissions when compared to concrete or brick (Ham-
mond and Jones, 2006 as cited by Lambert and Kennedy, 2012) making it a very
sustainable alternative. However, the irregular shape of the material makes it diffi-
cult to construct with and requires specialised knowledge in how materials should
be placed which is reliant on the analysis of the shape of individual particles. This
differs when compared to regular shaped materials like brick where the construc-
tion pattern can always be predetermined. The necessity for expert knowledge of
construction with these irregular shapes requires skilled workers which in turn in-
creases cost.

In addition to rock, the use of waste materials such as construction demolition waste
(CDW) is another possibility for a low-carbon alternative. The construction industry
produced around 600 million tons of demolition waste in 2018 within the US alone,
mostly consisting of concrete materials (EPA, 2020). Taking advantage of these oth-
erwise waste materials can help recapture the embodied carbon within the material.
Clifford et al. (2018) champions the reuse of waste material from demolition and pro-
duced a full-scale prototype of a wall constructed in a similar method as the Incan
walls in Peru. Discarded rubble debris and stone offcuts were carved by a robotic
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arm to create flush fittings with minimal void ratio between stones. 73% of the se-
lected starting material is utilised in this process. Whilst tooling of the rock can be
beneficial for building of the structure, using the untooled material will lead to better
capture of the embodied carbon and minimal waste. Slight tooling of the stone can
be taken advantage of to make assembling these irregular shapes easier. However,
the scope of this research does not look at this additional variable.

Using materials that can be located on or near site opens up numerous possibilities
for in-situ construction. This can be seen by the research for in-situ building studied
by NASA for extraterrestrial environments (Lim et al., 2017). Launching materials
into space is very costly so therefore an entirely in-situ construction technique is de-
sirable. Robotic construction prevents the need to transport human workers along
with the required supplies and shelter to a given destination. Furthermore, struc-
tures such as embankments, erosion barriers, and walls where overall function does
not rely on exact shape can be built through a similar process with just in-situ or
minimal transported materials (Meer et al., 2005). Modern solutions to this problem
have emerged harnessing the ever increasing computational power available. As a
result, autonomous construction through robots has arisen as a solution.

Lambert and Kennedy (2012) produced a computer aided masonry design, analy-
sis and construction (CAMDAC) software application called Rocksolver. The study
was completed in two-dimensionals using a Simulated Annealing (SA) algorithm
technique and heuristics based on traditional methods for building a drystone wall.
Simulated Annealing is an optimisation technique which applies random changes to
parameters being optimised with these changes being larger at the start of the simu-
lation whilst decreasing as the algorithm runs. More detail is given on SA in Section
2.4.2. Unprocessed rocks are digitised and constructed virtually within a physics
simulator. SA is performed on the stone being placed in the structure to locate its
optimised position and this is repeated for each stone. Results of the final structure
then outputs a build-sequence for the user. Lambert and Kennedy (2012) describe
the work completed as the first proof-of-concept for CAMDAC software to fit ir-
regular rocks into a wall structure. However, no physical construction of the rocks
was completed, but testing of the wall to failure was completed within the physics
simulator.

Furrer et al. (2017) were one of the first to stack irregular stones using a robotic arm
on a desktop scale. Furrer et al. (2017) produced an algorithm that could stack a
subset of irregular objects from a population set. To do this, the best position and
orientation - defined as the "pose" in Furrer et al. (2017) - for the best object needs
to be found. This is done in Furrer et al. (2017) by placing each object on top of the
existing stack in a physics simulator. A valid pose is one which passes a stability
check completed by the pose-search algorithm. For this, the centre of mass of the
stone being placed must lie between where the below stones have contacts with
lower stones in the stack or the surface on which the tower is being constructed i.e.
if stacking is taking place on a table this would be the table surface. Additionally,
within the physics engine, the kinetic energy caused by the placement of the particle
onto the already placed particles is analysed and kept below a threshold value to
cause minimal motion in the existing stack. Multiple orientations are attempted
with a fixed initial position and a “goodness of fit” is determined which maximises
the contact area for which the object is supported on the previous stone as well as
other criteria described in Section 2.2.4. Goodness of fit is defined by a cost function
based on the placement criteria set out in Furrer et al. (2017). The position with
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the highest “goodness of fit” is deemed to have the best pose and is taken as the
object to be placed. 6 natural lime stones were used in Furrer et al. (2017) for testing
experimentally. Towers were created from the stones using a robot arm with three-
finger grasping end-effector for gripping and moving the stones. RGB-D (Red Green
Blue - Depth) images were taken of the object by a mounted camera on the robot
arm to create a 3D scan of the stones. RGB-D images provide information on colour
as well as the depth of an object from the camera using a depth map. Images are
taken for all stones to detect their features as well as location in the environment.
From this, point cloud data is obtained and stored with key features from the stones
obtained for tracking of the objects. Next, a pose location is determined for the next
particle to be placed. After this, the robot arm grasps the stone and moves it into the
desired position before detecting the stack and validating that the placement was
successful. Tests were conducted using sets of four stones to create eleven towers.
For two of the runs, all four stones were stacked successfully. Three stones were
stacked in six instances but failed on the fourth stone and in three cases the third
stone was not stacked successfully.

Liu et al. (2021) also proposed an algorithm for autonomous construction for irreg-
ular shaped objects. A greedy heuristic approach is taken to find the next best pose
from a set of feasible poses rather than the best pose as in Furrer et al. (2017). The
next best pose is tested to see if this will lead to better positions later on in the con-
struction of the stones. These poses are generated and tested in a physics simulator
to ensure that the position of the object is stable. If a wall structure is desired, the al-
gorithm aims to construct objects in a layer by layer system. Multiple RGB-D images
are used to create a point cloud dataset of an object from all angles which are fed into
the program and physics simulator. Experiments were conducted in Liu et al. (2021)
using a robot manipulator with two-finger grasping end effector to move and place
irregular objects from a selection of twenty-three shale stones to create towers and
walls. Each tower that was constructed within the physics simulator was aimed to
be at least six stones high and nine random towers were selected for construction.
All nine towers were constructed to be a minimum of three stones high. Of these
nine, three towers did not make it past the fifth stone. Three towers failed on the
seventh stone placement and one tower did not have a stone fall, although this was
one of the towers that was constructed to be six stones tall. For the stone walls, seven
of the thirteen walls were constructed successfully without collapse. Results showed
that errors in placement increased as the layer of wall increased with poor placement
of the stones increasing, whilst structural collapse of the wall (when more than one
stone falls down) does increase after the first layer where no structural collapse is
seen, but not significantly between subsequent layers.

Previously discussed literature has shown pilot studies with quite a limited num-
ber of particles being tested. Recently, Johns et al. (2023) has shown that automated
construction on site with the use of irregular stones is very much a reality. The
work in Johns et al. (2023) carries on from that conducted within Johns et al. (2020).
Large-scale stone walls and landscapes were constructed by a twelve ton robotic
excavation platform using natural and reclaimed materials. The fabrication of the
walls was conducted by an autonomous hydraulic excavator. This is described in
Johns et al. (2020) as a highly customised Menzi Muck M545 walking excavator and
is named HEAP (Hydraulic Excavator for an Autonomous Purpose). In Johns et al.
(2023), the drystone walls are built from boulders and CDW by method of detecting
stones in-situ, grasping, scanning and reorienting stones to then be placed in an op-
timised position as determined by an algorithm similar to Furrer et al. (2017) and Liu
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et al. (2021). Two full-scale walls were constructed from more than 1000 stones. The
first was a freestanding wall constructed on a flat concrete surface inside a facility
so as not to be influenced by outside disturbances. Therefore a human operator was
not used apart from a supervisor to ensure no unexpected failures occur. The other
wall was a retaining wall built on an active construction site. For this wall, a human
operator was placed inside the robot to ensure no accidents occurred due to needed
access to the site by workers. Picking, placing and scanning of the stones was all
autonomous and the human operator was there for driving the machinery between
tasks. LiDAR mapping was utilised to understand the environment for which con-
struction is being completed. This was mapped and segmented to discover stones
in the location and point clouds were created of these objects. Stones were each in-
dividually picked up by the robot grasper and scanned to get a whole 3D image
of the object before being returned to the ground. 20 to 40 stones were scanned to
build a subset of defined objects so that the planning of stone placement could be-
gin. Objects as well as the constructed wall are continuously digitised during the
construction process to allow for settling and ensuring robustness if a building el-
ement becomes damaged or unavailable for use. The process repeats once all of
the scanned stones are placed or no feasible placement can be obtained. The free-
standing wall was constructed of 109 unique elements of waste concrete and gneiss
boulders and was 10m in length and 4m in height with mean width of 1.7m. No
smaller particles were used as fill which is traditionally seen in the construction of
drystone walls.

As stated previously, the algorithm to detect potential poses and plan the geometry
of the wall is similar to that suggested by Furrer et al. (2017) and Liu et al. (2021).
However, when locating candidate positions an extra consideration is taken into ac-
count of placing stones above joints between two underlying stones. This comes
from traditional masonry techniques and is done to improve bonding and stability
(Vivian, 1976 and Environmental Action Foundation, 2019 as cited by Johns et al.,
2023). Additionally, a heuristic is introduced so that construction is performed in-
wards from the wall corners as suggested by Cramb (1992) (as cited by Johns et al.,
2023).

The precedent of the work completed by Johns et al. (2020) and Johns et al. (2023) is
an example that autonomous construction of irregular, untooled rock is an upcom-
ing possibility in the construction industry. These pieces of work are impressive and
the research lays out highly promising methods for which the process of building
with these sorts of materials can be achieved. Robots are beneficial to the construc-
tion industry as they fulfil requirement of labour meaning the need for labour can
be increased whilst not causing increased levels of fatigue and decreased levels of
safety to workers on site for what is already a dangerous and physical workplace
(Kohler et al., 2014). As demonstrated by Johns et al. (2023) , the use of autonomous
robotic construction provides solution to labour costs within the construction indus-
try as well as providing potential for creating structures using the irregular stones
and CDW that will lead to a decrease in CO2 emissions when compared to current
popular techniques of using concrete or brick. The need for skilled workers when
using irregular objects is overcome by intelligent algorithms adopted by the robot
to help determine particle placement. However, positioning of materials in Johns
et al. (2023) is judged with a focus on ensuring stability rather than providing func-
tionality. Whilst this is an important starting point, there is possibility of improving
these constructions through a differing approach to identifying the best position for
a stone to be positioned.
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In this thesis a new system for assessing the placement of irregular, untooled rock
within a construction is introduced. By use of a different heuristic, emphasis can
be placed on the requirement of the structure leading to more possibilities of what
could be constructed robotically. A focus on structures requiring high shear strength
is placed upon the analysis. However it is thought that for this designed algorithm
that if a different purpose for the structure is desired then the criteria for scoring
within the heuristic algorithm can also be adapted to produce an alternative build
sequence for the structure. Factors are determined by studying what is anticipated
to determine high shear strength within a geotechnical soil structure and adopting
these as ways to classify scoring placement of particles in a system through the use
of an objective function. The following work takes place on a two-dimensional scale
for simplicity of simulation but it is considered that this work could be extended into
three dimensions like that seen in Furrer et al. (2017), Liu et al. (2021), and Johns et
al. (2023). This construction could be carried out manually, but it is envisioned that
the process would be autonomously completed via robot making use of modern day
technologies and advancements.

1.2 Aims and Objectives

The primary aim presented in this thesis is to develop a new system for optimising
the placement of irregular, untooled rock within a construction with the emphasis
on producing structures with mechanical strength. The work in Johns et al. (2023)
sets an important precedent, yet the improvement on placement of particles is a key
aspect for development in this field of research. As such, the following objectives
were formulated.

1. Examine existing structures made from drystone and earthen materials as well
as factors that affect soil strength and optimal packing solutions to determine
considerations for particle positioning in a system that exhibits high shear
strengths.

2. Create an algorithm for packing of two-dimensional particles that represent
outlines of irregular, untooled rock.

(a) Describe an objective function that can score the placement of particles
by an algorithm that can assess the strength of the system without further
knowledge of sequential particle positions.

(b) Ensure that this algorithm works for other shapes represented in two di-
mensions. This is an outlined objective as it is envisioned that this method
could be taken into further areas of research outside of construction with
granular materials. To achieve this, shapes from the videogame Tetris are
used to verify the code with an objective for minimising void ratio.

(c) Verify the strengths of the structure to provide evidence that the algo-
rithm developed is achieving the objective set out by the user of possess-
ing high shear strength. This is accomplished through the development
of a laboratory testing method for the build sequence outputted by the
algorithm.

(d) Investigate the effect of placement error as it is rare for a particle to be
placed in its exact desired location especially if being placed by robot.
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3. Improve or suggest improvements to increase the speed of the algorithm as
computational time is seen as a limiting factor for this method.

1.3 Etymology

For better understanding to the reader, it is important to define the origin of the
words used throughout this thesis. In this section, words that are commonly found
throughout the methodology and results are described with their meaning in the
context of this research.

• Packing

The packing of a structure or the packing of soil particles is the arrangement of the
objects and how they are placed with respect to each other. If two structures made
up of the same particles are said to have different packings, then this means that the
particles are arranged in different positions when compared to one another. This
term could also be referred to as the fabric of the soil as commonly used when dis-
cussing DEM. The origin of this use comes from bin packing, the topic of which is
explored in Section 2.4.3.

• Particle

It is expected that in a thesis around the topic of soil or rock that the term particle
will be used frequently. In addition to the normal use of the term - to describe an
individual grain in a soil system or an individual sphere to circle in a DEM simula-
tion - “particle” is used within this thesis to describe the items that are in a system
of packed particles. For example, in Section 2.2.1 where drystone retaining walls
are discussed, the term "particle" refers to a stone within the system that creates the
wall. This may seem contrary to intuition as usually particle describes objects on the
microscale. Another term that could have been adopted here is "element".

For the work conducted in this thesis, the term particle describes an item being
packed in the creation of two-dimensional structures by the algorithm described
in Chapter 3. Specifically in Chapters 3-6, the use of “particle” directly correlates
to two different types of item. The first are tetrominoes which are those from the
videogame Tetris. These are made up of four squares in different arrangements to
create seven different shapes. The second type of item described as particles are
two-dimensional outlines that represent the outline of untooled rock. These outlines
are generated using the method described in Section 2.5.3. Packing of these outlines
are used rather than three-dimensional particles to directly relate to the example of
tetrominoes being packed as well as to reduce computational time of the algorithm
for packing.

• Candidate Poses

For the use of “candidate pose”, it is important to first describe the meaning of pose.
A pose can be considered the position of a particle in the structure or the way in
which it is sat on surface it is placed - whether this be the flat surface of a domain or
upon other already placed particles. The use of the term “pose” is frequently used
in the literature described in Section 1.1 and Section 2.2.4.

The addition of the term “candidate” describes that pose as one that can be consid-
ered for placement of the particle. In this way, a candidate pose meets all criteria
required for the particle to be positioned in the described location. For example,
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a condition that particles must be stable in their final positioning may be added
meaning that all poses that result in an unstable position cannot be described as a
candidate pose. Again, this term arises due to its use in the literature mentioned in
Section 1.1 and Section 2.2.4.

1.4 Layout

This thesis is separated into the following chapters. The layout of the chapters as
well as a description of each chapter is presented. All chapters are introduced with
the contents of that chapter stated so that the reader can easily navigate their way
through the material. At the end of each, the material is again summarised with key
details for each topic covered given. The chapters within this work are as follows:

Chapter 1: Introduction

This chapter provides the background and motivations for this thesis. The impor-
tance of developing the construction industry to take advantage of modern day ad-
vances is highlighted and the area of autonomous construction via robot is explored.
The aim and objectives of the project are laid out followed by defining words com-
monly used within the project that may cause confusion to the reader.

Chapter 2: Literature Review

Here, a wide variety of topics are reviewed with the intention of deriving the crite-
ria required for the autonomous construction of granular structures with an aim to
optimise shear strength. This begins by looking at earthen materials, before moving
to the finer detail of the structure of soils. Areas of optimisation with the purpose
of minimising void space is also explored for inspiration. The final section of this
chapter discusses methods of quantifying particle shape and the method of generat-
ing particle shapes from Fourier descriptors.

Chapter 3: Methodology for Particle Packing

An algorithm for packing particles that a robot designed for autonomous construc-
tion would follow is presented in this chapter. The algorithm was first developed in a
simplified scenario representing the Tetris videogame where orthogonal-sided tetro-
minoes are packed with the objective to minimise void space. Once this is achieved,
the algorithm is further developed to take into consideration the requirements for
packing irregular, untooled rock particles. Placement of particles is determined by
an objective function that uses scoring criteria derived from Chapter 2 to pick the
most optimal location. Weighting coefficients are given to each of these criteria. The
algorithm is summarised using a workflow chart and input parameters are stated
with indication to whether this is a fixed or varied value.

Chapter 4: Determining Sample Size and Weighting Coefficients

Confirmation of the required sample size for representing the whole population of
possible results is carried out here. Possible void ratios outputted by the algorithm
are analysed and a minimum sample size for collecting results is specified. Further-
more, the method of determining the weighting coefficients for the most optimal
solution is defined with the process of investigation stated.
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Chapter 5: Results of the Tetris Scenario

Results of the simplified instance of the Tetris Scenario are presented in this chapter.
The procedure defined in Chapter 4 is followed to determine the combination of
weighting coefficients that produce the optimal solution for packing tetrominoes.
These results are compared to other combinations of weighting coefficients as well
as control samples of packings produced by the deepest-bottom-left heuristic used
for solving bin packing as well as randomly placed tetrominoes.

Chapter 6: Results of the Soil Particle Scenario

In this chapter, results of particle outlines that represent irregular, untooled rock are
packed using the placement method. Different coefficients of weighting are trialled
as well as the optimal solutions determined in the Tetris Scenario. Again, control
scenarios are adopted by packing particles randomly whilst the deepest-bottom-left
heuristic is also tested against.

Chapter 7: Verification of Strength

The development of a method for verifying the strength of the structures packed
using the algorithm is introduced in this section. Experimental setup as well as the
procedure for testing are presented along with the expected results. This comprises
of measuring the angle of repose of the produced packings by use of a rotating drum
designed for testing two dimensional particles. A particle identification process is
also defined and an procedure for the investigation into the tolerance of errors is
given.

Chapter 8: Discussion

Chapter 9 discusses the many topics covered within this thesis. Results for the Tetris
Scenario and Soil Particle Scenario are discussed. After this, suggested methods
that could be adopted for improving shear strength of the packed systems are given
based on further techniques that were reviewed in Chapter 2. Enhancement of the
objective function utilised for scoring placement as well as how characterisation of
particle shape could be implemented are also discussed. Techniques for increasing
computational speed are introduced as it is recognised that the main limiting factor
of the method developed in Chapter 3 in the runtime of irregular particles defined by
many coordinates. Other areas of discussion include running joints as an additional
objective function criteria, the use of the algorithm as a bin packing solution or a
specimen generation approach, alternative areas of improvement of the autonomous
construction method and the work required for the current two-dimensional system
to be extended into three-dimensions.

Chapter 9: Conclusions and Future Work

This chapter summarises the key findings of the project. The aim and objectives pro-
duced in Section 1.2 are reviewed with work towards these objectives given. Find-
ings from the work carried out in this thesis are then stated. Finally, the required
future work for the advancement of this project is discussed.
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Chapter 2

Literature review

2.1 Introduction

A wide body of literature exists that is relevant to the task of determining the key
packing characteristics that can create high strength structures from irregular rock.
Thus in this chapter a large variety of research is explored, from current work in-
vestigating the use of soil as a construction material to topics that are far from tradi-
tional geotechnical engineering. As far as the author is aware, no heuristic approach
that scores particle placement through a criteria based on prioritising shear strength
exists within the literature.

Firstly, current examples of geomaterials in construction are reviewed in Section 2.2
to provide insight into historical and conventional building methods and to distil
any information concerning how particles are arranged for optimal performance.
This section includes discussion of drystone retaining walls typically made up of
large gravel, cobbles and boulders, Incan retaining walls found in South America
that are made up of huge tooled rock pieces, and 16th and 17th century castles lo-
cated in Japan. Furthermore, Section 2.2.4 examines the existing literature around
the topic of autonomous construction using rock materials. These projects are al-
ready introduced in Section 1.1 and are expanded on to give detail of how the algo-
rithms produced determine suitable placements of particles.

Section 2.3 then goes on to review parameters known to affect soil strength to give a
full understanding of which aspects should be focused on when designing a method
for intelligent construction with the aim to produce a structure with high angle of
shearing resistance. Firstly, Section 2.3.1 defines what soil strength is when dis-
cussing granular material. Examples of expected values for different soil strengths
are given. The parameters explored in the subsequent parts of Section 2.3 include
particle shape and roughness, particle size, coordination number i.e. the average
number of other particles that a given particle is touching, gradation as well as the
density of the soil, friction between particles, and void ratio. Section 2.3.8 sum-
marises each feature explored and concludes on which of these characteristics will be
considered in the continuation of the project. From this review, a better understand-
ing of the mechanisms that occur between soil particles is gained and will provide
guidance for which factors that should be considered to determine particle place-
ment.

Low void ratio is often associated with a high peak strength structure. Therefore in
Section 2.4, optimisation of object placement to achieve low voids is investigated.
First, packing structures found to minimise void ratio in a set of particles are inves-
tigated in Section 2.4.1. Secondly, deterministic and heuristic approaches to solving
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optimisation problems are described in Section 2.4.2 as well as the concept of non-
deterministic polynomial time complexity to explain why heuristic approaches are
normally adopted in optimisation for problems explored in Sections 2.4.3-2.4.5. The
concepts of simulated annealing and genetic algorithms are also described. Follow-
ing this, optimisation of the bin packing problem is considered as a method to pack
an empty space with minimal void left between items. Next, techniques for solving
jigsaws in the literature are reviewed as this is a traditional case of items being fitted
together to have no void present in the system. Finally, the classic videogame Tetris
is considered and relevant literature on optimising the space in the game and "beat-
ing" the computer to get the highest score possible are explored. These areas shed
light on the methods that could be developed to minimise the space between parti-
cles. Furthermore, placement heuristics and packing strategies are outlined that can
provide inspiration or be adopted within this project in Section 2.4.6.

Section 2.5 discusses different ways of classifying and quantifying particle shape.
Section 2.5.1 is present to define terms that are discussed further in Section 8.6 where
the possibility of selecting particles based on their characteristics is explored. The
terms defined in Section 2.5.1 are form, sphericity, roundness and irregularity and
are all used as morphological terms. Section 2.5.2 discusses how Fourier descrip-
tors can be achieved through Fourier transforms of the particle outline to express
two-dimensional particle shape in an alternative method with a discussion of what
each descriptor indicates. Section 2.5.3 takes the work discussed in Section 2.5.2
and uses it to generate particle outlines from Fourier descriptors, specifically D2, D3
and D8. This approach is adopted for generating particle outlines that represent ir-
regular, untooled rock particles in Section 3.6.1 using software provided in Mollon
(2023). Section 2.5.4 summarises Section 2.5 and highlights which terms of classifica-
tion could be used in this project for defining two-dimensional particle outlines for
purpose of selection of particles for packing which is then later discussed in Section
8.6.

In the final section of this chapter, important findings in the literature review are
highlighted. Section 2.6 discusses these findings and links the parameters outlined
in Section 2.3 with the methods described in Section 2.4 and information gained from
both the literature and visually in Section 2.2. The key parameters from Section 2.3
which will be adopted for weighted criterion in scoring using an objective function
in this project are then stated. Other key features which present potential useability
are highlighted from throughout the literature review and outlined in how they can
be presented in the produced algorithm for packing soil particles within a structure
to produce high angle of friction.

2.2 Examples of Geomaterials in Construction

2.2.1 Drystone Retaining Walls

Dry stone walls provide an example of a structure formed from geomaterials. A
drystone wall is made up of natural pieces of stone and are positioned in such a
way to form a free standing wall structure, traditionally built in horizontal layers.
Vivian (1976) states that the best wall stones for building drystone retaining walls
(DSRW) are hard shales and schists that have large flat sides due to cleavage during
metamorphosis whereas the hardest are those which are rounded. Stones of uni-
form thickness in a layer give a stronger and more aesthetically appealing structure
(Mundell et al., 2009), as seen in Figure 2.1. An extensive library of images giving
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examples of drystone walls can be found in Snow (2001) and it can be interpreted
that flatter stones are normally used in the horizontal layers and usually a low void
ratio is present in the structure with minimal gaps between wall pieces. Heights of
drystone retaining walls typically range between 2-4 meters, however are known to
be strong enough to be 10 meters or higher (Alejano et al., 2012). The use of mortar
is excluded in construction instead relying on friction and interlocking between par-
ticles for stability (Oetomo et al., 2016). A similar approach could be taken for this
research to try and avoid the use of mortar or a binding agent where possible. It is
thought that the materials are normally sourced locally, either from when the nearby
fields were first cleared or from local quarries (Thompson, 2007).

FIGURE 2.1: Example of a drystone walling © Christine Johnstone.
Photos used under the Creative Commons Attribution-Share Alike

2.0 license conditions (Creative Commons, 2011).

Vivian (1976) gives details on the construction of a stone wall by hand. Stones should
rest on at least two other stones to reduce the number of “runs” in the wall. A build
up of these runs is also known as a running joint (Adcock, 2012). Runs are stated to
decrease stability in the wall. Small stones are used within the interior to fill gaps
between the larger stones. Furthermore, Vivian (1976) states that the sides of a wall
should be vertical except for large walls which should have a slight inward slope.
For the corners of the wall, it is necessary to tie stones together. This is not with an
additional material like a rope but, as Vivian (1976) describes, is to alternate layers
like that seen at the corners of the walls of 15th-16th century castles found in Japan
later described in Section 2.2.3 and presented in Figures 2.9 and 2.10. Vivian (1976)
recommends to not align the edge of rocks being placed with the edge of any rock in
the course below apart from at the outer and inner faces.

Adcock (2012) states that a running joint can be classed as disrupted if a "significant
amount" of the placed stone covers the below run. Adcock (2012) explains that in
drystone walls, diagonal joints may appear for irregular stones (Figure 2.2a) as well
as "phantom" diagonal joints. A phantom diagonal joint is one which appears to
be running diagonally through the wall. However, the stone above is resting with
this "significant amount" over the running joint. Adcock (2012) does not state what
proportion of overlap is required for this. Additionally, Adcock (2012) describes
"zipped joints" which are those where a running joint may not be obvious in the
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(A) (B)

FIGURE 2.2: Examples of (a) diagonal joints and (b) zipped joints that
can occur in a drystone retaining wall system.

system but are present due to not enough material overlapping the below run. An
example of a zipping joint is presented in Figure 2.2b.

Research conducted on dry stone walls typically takes form as a retaining wall anal-
ysis. The first recorded experiments were presented in Burgoyne (1853) in which
6m high walls of granite were tested under the loading of a backfill of uncompacted
soil. The work examined the influence on the cross section of the wall. Burgoyne
(1853) has been highly valued in the research of dry stone walls and has been used
to validate studies in other work (Harkness et al., 2000), however the experiments
conducted can be classed as qualitative and lack essential data such as angle of fric-
tion of the backfill or contact friction between the blocks of the wall. Additionally,
the construction method and failure modes of the walls are not stated. Nevertheless,
the work is considered a good first step.

Mundell et al. (2010) tested four full-scale drystone retaining walls under loading
from a granular backfill to analyse bulging deformations from horizontal forces.
Each wall was constructed using different techniques. For example, test wall 1 was
constructed to replicate a well finished and tightly-packed DSRW whereas test wall
3 was designed to encourage bulging while limiting toppling. This was achieved
by including a tapering to the wall but using rougher build quality and utilising
comparatively smaller particles. The tests were conducted on walls with a height of
2.5m and a length of 12m and a platform to try and simulate the foundation of the
wall. As with Burgoyne (1853), Mundell et al. (2010) applied a horizontal load to
the wall. This was done in two ways. Firstly through the tilting of the platform on
which the wall stood so the face of the wall is lowered to simulate differential settle-
ment. Secondly, the application of a surcharge was applied to the backfill behind the
centre of the wall by a suspended hydraulic jack. The walls failed due to bulging, as
would be expected from the centralised loading case caused by the force from the hy-
draulic jack, and each showed horizontal displacements between 100mm to 200mm.
Although all walls were tested in the same way, each had a different failure mecha-
nism. Mundell et al. (2010) states that this means general material properties are not
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enough to predict failures of drystone retaining walls and that an understanding of
the internal configuration is needed.

Villemus et al. (2007) completed experiments to assess dry stone walls as a retain-
ing structure. Wall materials used were limestone from the local quarry and schist
from St. Germain de Calberte. Theoretical approaches are outlined, but Villemus
et al. (2007) goes on to state that a method based on experimental observations is
preferred. The paper is made up of three parts. The first presents the work con-
ducted in laboratory experiments completed on the material that makes up the wall.
The purpose of these experiments was to analyse the mechanical behaviour. Direct
shear box tests were conducted between two individual stones and between two
beds of stone at sizes of 6x6cm2, 30x30cm2 and 100x100cm2. All produced a simi-
lar shearing resistance leading to only the 6x6cm2 shear box test being performed
on the St. Germain de Calberte limestone due to the conclusions of the previous
tests. For completeness, this test could have been carried out using different shear
box sizes to ensure similar friction angles are produced. The next part describes the
theoretical model proposed by Villemus et al. (2007). The model takes the wall as a
homogeneous structure on a rigid foundation and differs from Burgoyne (1853) and
Mundell et al. (2010) as it considers the characteristics of the material. The third part
of the paper describes full-scale experiments used to validate this model. In-situ
loading was completed on three drystone walls of 2m height and two of 4m height.
Villemus et al. (2007) states that each was constructed by skilled masons using cur-
rent and traditional approaches. Therefore it can be assumed that there is minimal
error in construction when it comes to thinking about defects that could lead to areas
of low strength in the wall. Unfortunately, Villemus et al. (2007) does not describe
the difference between current and traditional methods, or go into detail over the
construction of the different test walls.

From the reported five retaining walls that were tested, only one example is re-
viewed in full in Villemus et al. (2007) with details from before and after experi-
mental testing. This wall is presented in Figure 2.3. Loading was completed using
a PVC-lined bag that was filled with water to apply a hydrostatic pressure behind
the wall. The use of water meant a more predicable loading case than the use of
granular backfill. Hence more focus could be placed on internal shear strength of
the drystone wall. Sensors attached to the wall were used to measure displacement.
Given the time in which it would take to construct each wall, the limited number
of tests completed is a fair amount to validate the model. However, as stated in
Mundell et al. (2009), the use of short, free-standing test sections may have caused
an issue with the behaviour of the walls due to the end effects of the structure. The
analysis in Villemus et al. (2007) describes the internal mode of failure by shear and
explains that this occurs by rotation of the stone particles to create a failure slope in
the wall at which slip failure occurs. Of the measured walls, the theoretical failure
slope and stone rotations were similar, with the maximum difference being 2o and
the theoretical value always being less than the value measured in the experiment.

It can be understood that drystone walls are going to be strong in compression and
weak in shear. This is why the majority of research conducted on drystone walls
focus on shear strength along the horizontal plane of the wall. Shear strength out of
the horizontal plane has been tested using a tilting table method. Santa-Cruz et al.
(2021) tested drystone walls with a height of 1.5m, length of 6m and a trapezoidal
cross-section using a tilting platform. The aim of the research was to try and imitate
the typical drystone wall structures found in Latin America. Nine scale specimens
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FIGURE 2.3: An example of a constructed drystone wall from Ville-
mus et al. (2007) before loading (left) and then after (central and
right). Reprinted from Villemus et al. (2007) with permission from

Elsevier.

were built with regular cobblestone blocks and irregular stone blocks. Examples of
the specimens produced in Santa-Cruz et al. (2021) are presented in Figure 2.4. Rope
was used in tension at the ends of some stone block specimens to anchor the wall
and to replicate boundary restrictions when testing. Walls were loaded by gradu-
ally increasing the angle of the tilting platform from the horizontal by increments of
0.5o. Coordinates at the left, centre and right of the wall were recorded and the test
was continued until the wall collapsed. The regular cobblestone blocks collapsed at
angles at around 19o and, of the three tests, two of them presented a uniform 2D
behaviour and all failed by toppling. The irregular stone blocks collapsed at an an-
gle ranging from 13.5 - 15o and failed by bending, starting in one location before
extending along the wall. Tests undertaken with restricted ends had greater angles
of failure, ranging from 18 - 21.5o, and failed due to rotation of the blocks which led
to a bending-like behaviour. As stated by Santa-Cruz et al. (2021), this behaviour is
caused by contact forces and the lateral restrictions.

Other literature has covered testing a retaining wall using a tilting plate. Restrepo
Vélez et al. (2014) used a tilting table on scaled drystone masonry walls made of
marble. The research conducted found that the experimental mechanisms of failure
are much more complex than the theoretical ones predicted. Restrepo Vélez et al.
(2014) notes that for many cases explored, sliding and rotation of different sections
of the wall occur not only along clear, sharp single lines as implied by underlying
models, but also in a more distributed way. This is for both overturning facades and
in return walls. The testing of a return wall is presented in Figure 2.5. Additionally,
most of the failure mechanisms in Restrepo Vélez et al. (2014) are forms of hybrid
mechanisms rather than a single, distinct mechanism. This is due to the fact that
dry masonry walls have more internal kinematic degrees of freedom than what is
assumed in most theoretical models. Grillanda et al. (2021) used a tilting table on
essentially 2D problems using scale models of dry joint clay bricks. The tilting table
was used to test them under shear. It was found that imperfections on the bricks
(bricks with shapes not perfectly rectangular) resulted in less shear resistance due to
the contact areas being variable.



2.2. Examples of Geomaterials in Construction 17

(A)

(B)

(C)

FIGURE 2.4: Different specimens experimentally tested by tilting ta-
ble in Santa-Cruz et al. (2021). (a) Cobblestone block specimen with
unrestricted ends (b) Stone block specimen with unrestricted ends (c)
Stone block specimen with restricted ends. Reprinted from Santa-

Cruz et al. (2021) with permission from Elsevier.
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(A) (B)

FIGURE 2.5: Testing of a return wall as presented in Restrepo Vélez
et al. (2014) (a) before testing (b) during testing at failure © Taylor &

Francis with permission granted.

The typical cause of failure in a retaining wall comes from the lateral pressures im-
posed on the wall by the supported soil, any surcharge loads at the top of the struc-
ture, and hydrostatic pressures (Fontanese, 2007). One of the benefits that comes
with drystone walling is the ability for water to flow through the structure thanks
to the lack of mortar between stones preventing the build up of hydrostatic pres-
sure. As described by Warren et al. (2013), it is common to grout drystone walls
either to prevent movement of the wall or to protect the base from salt spray. Doing
so blocks the drainage paths meaning water cannot easily pass through the system
creating great loads on the back of the wall. Additionally, Warren et al. (2013) states
that grouting of a wall will also reduce its flexibility. From this, the wall cannot redis-
tribute load concentrations due to the reduced ductility of the structure. Hydrostatic
pressure buildup can lead to catastrophic failures of retaining walls. Typically for re-
taining walls that are not drystone, paths made of a free-draining backfill material
are utilised directly behind the wall for water to be directed through a weep-hole
(Fontanese, 2007).

2.2.2 Retaining Walls of the Incas

Examples of geotechnical structures made from granular material are commonly
found in the structures built by the Incas in South America. Areas like Machu Pic-
chu in Peru are well known for their sprawling retaining wall systems which are
constructed using tooled stone blocks. The age of these walls are more than 500
years old and many are still in good condition despite a lack of maintenance (Castro
et al., 2017). The most impressive of these structures is the fortress of Sacsayhuaman
which lies on the northern edge of Cuzco. The wall can be seen in Figure 2.6a. It is
thought that this was constructed during the reign of Pachacuti between 1438-1471
(Cartwright, 2016). The walls of Sacsayhuaman are made up of massive pieces of
stone shaped to fit together perfectly. The exact strength of these walls is not known,
but the longevity of the walls and the fact that they are still standing suggests a high
strength. The structure is created with minimal gaps between stones, suggesting
that a lower void ratio may lead to an increased shear strength. This is shown in
Figure 2.6b.
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(A) (B)

FIGURE 2.6: Retaining wall structures located at Sacsayhuaman (A) ©
Diego Delso (B) © Alison Ruth Hughes. Photos used under the Cre-
ative Commons Attribution-Share Alike 4.0 license conditions (Cre-

ative Commons, 2013c).

Fontanese (2007) describes the walls built by the Incas to be constructed with back-
filled layers of soil that increased in coarseness with depth. The increase of coarse-
ness is stated to prevent topsoil from washing away as the material acts as a filter.
The walls studied in Fontanese (2007) are drystacked walls that do not perfectly in-
terlock. However, Fontanese (2007) describes that those which do perfectly interlock,
such as the wall structures seen at Sacsayhuaman, were provided with weepholes to
allow for drainage of water and to prevent the build up of hydrostatic pressures. The
walls studied by Fontanese (2007) at the Incan site of Machu Picchu are described to
have several layers of soil as a backfill. These were made of a base of gravel beneath
a layer of fine sand and gravel. This is then capped with a topsoil for the growing of
crops. The stacked stones used to make up the wall stucture continue below grade
to act as a foundation system (Fontanese, 2007).

Vallejo and Fontanese (2014) analyses the stability of retaining walls built by the
Incas in the area of Moray by looking at sliding and overturning failures as these
are the two most common faults in retaining walls near the citadel of Machu Picchu
(Wright and Zegarra, 2000). Each wall ranged from a height of 1.5m to 7m and
are described by Vallejo and Fontanese (2014) to be made up of "prismatic stones
measuring each between 70cm to 1m in length, 30cm to 1m in height and 1m in
depth". Vallejo and Fontanese (2014) does not make it clear if this means all particles
are 1m in depth into the wall or if the depth ranges from 30cm to 1m. The latter is
assumed. The backfill consisted of crushed stones and sand. Vallejo and Fontanese
(2014) states that a large part of the stability from the retaining walls constructed by
the Incas is most likely due to the ability for water to flow with ease through the
granular backfill and between the stones in the wall due to their rough interfaces
between pieces. It should be noted that the walls assessed in Vallejo and Fontanese
(2014) are not tooled to fit together like those for Sacsayhuaman but are similar to
Fontanese (2007) where stones do not perfectly interlock. Another main reason for
stability is due to the large sizes of the stones and the weight of these helping prevent
against sliding and overturning.

Castro et al. (2017) analyses 10 Incan retaining walls through a DEM study. The
work was also repeated in Castro et al. (2019). The walls were located in the Lower
Agricultural Sector of Machu Picchu, Peru. Google Street View and Google Earth
Pro images were used to identify the composition of the stone blocks. It is not pos-
sible to test the materials used to make up the wall as they are protected structures.
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Therefore estimated values were adopted (taken from West, 2010 as cited by Castro
et al., 2017). The DEM approach was used to analyse sliding and overturning failure
mechanisms for one of the walls located at Machu Picchu. Figure 2.7 shows images
presented in Castro et al. (2017) of the wall tested and the DEM simulation. Due to
the large range in block sizes, the factors of safety calculated in Castro et al. (2017)
resemble those that are found in geotechnical design standards.

Obviously, there are questions about the accuracy of these results due to inability to
test the materials. However the outcome of this research demonstrates that the ar-
rangement of blocks in structures such as the walls found in Machu Picchu and Sac-
sayhuaman have high strength values. Castro et al. (2017) suggests that the retaining
walls are not only functional but also highly optimised because of the calculated fac-
tor of safety being close to 1.5. As referenced by Castro et al. (2017), this is the value
recommended for factor of safety in modern geotechnical design standards in North
America. This is most likely from a trial and error design procedure. From this case
study it can be concluded that reducing the amount of void space between particles
could potentially lead to a higher strength in a packing arrangement and may be a
favourable type of system to target.

FIGURE 2.7: (a) Incan retaining wall in an agricultural terrace and (b)
the DEM simulation of the wall. Red lines indicate the force paths
through the wall with the width of the line indicating the magnitude
as presented in Castro et al. (2017). Used under the Creative Com-
mons Attribution 4.0 license conditions (Creative Commons, 2013c).

As mentioned in Section 1.1, Clifford et al. (2018) investigates tooling construction
demolition waste (CDW) by robot to be constructed into a wall based on the tech-
niques found in the historic structures within Peru such as Sacsayhuaman. The aim
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of Clifford et al. (2018) was to reuse the waste material, or to “cannibalise” it back
into another architectural structure. Clifford et al. (2018) describes features of the
Incan structures. The first of these are bed joints. Clifford et al. (2018) explains these
to be horizontal joints carved into the rock underneath where a rock is to be placed.
The bottom of the yet to be placed rock is also carved to be horizontal so that when
it is put into position both rocks sit perfectly together with no gaps inbetween. An-
other of these features described in Clifford et al. (2018) are draft angles. These are
located when a stone is of trapezoidal shape and the outline of the sides tends away
from a vertically straight line. These can be located in a wall and are seen as starting
points for building of a layer. Clifford et al. (2018) states that these rocks not only
help describe the sequence of the wall but also the magnitude of the angle can de-
termine how the stone was placed. These features were taken into account to create
a prototype from scanned and digitally processed CDW. Rocks are placed within
a virtual simulator manually by a designer with the ability to change location and
orientation of the CDW. The virtual simulator creates polygons out of the stones
and can determine where carvings are required to cut the stone so that each piece
fits to create the wall. A stability check is performed as a final step. The prototype
within Clifford et al. (2018) is cut by a six-axis robotic arm upon a rotary table and
the pieces were assembled by a team of workers following the construction order
produced by the virtual simulator. No structural assessment was performed on the
wall but the prototype was able to support itself. As stated in Section 1.1, 73% of the
stock material was retained for construction (Clifford et al., 2018).

2.2.3 Japanese Castle Walls and Foundations

Walls and foundations of Japanese castles are good examples of other structures that
have used stone and rock pieces in a system with minimal void. These range from
being built in the 16th and 17th centuary and it is not uncommon for several of these
structures to have experienced earthquakes and still appear to be structurally sound.
Nishida et al. (2005) describes the walls of Japanese castles to be made up of stones
piled without any mortar or plaster. The size of the stones used ranges from small
to extremely large. For example, the wall near Cherry Blossom Gate at Osaka Castle
consists of a stone so large that it is not known how it was moved into position
(Fujioka, 1969). It is stated by Fujioka (1969) that the size of this stone provides no
real practical purpose. It could be that a stone this large was just used for aesthetic
reasons or ostentatious display.

Stones of the wall in the castles found in Japan tend to be inclined so that the major
principal axis is orthogonal to the local tangent of the curved profile to maximise
shear strength (Utili and Nova, 2007). Hikone castle is an Edo-period construction
located in Japan. It was built in the early 1600s and is said to have taken 20 years to
construct (Hikone Sightseeing Association, 2017). The castle sits on a raised founda-
tion made up of gravel and cobble pieces of various size. The placement of these are
an example of that described in Nishida et al. (2005) and particles are positioned so
that a minimum void ratio is achieved in the structure. As far as the author is aware,
there is no current literature discussing the foundations of Hikone castle. Images of
the castle and its foundations are presented in Figure 2.8. It is not known what is
behind the surface of the particles - whether this be a continuation of the pattern of
minimal void, some sort of backfill, or if this is a facade for a different structure or
a pre-existing rock foundation on which the castle was built. However, the founda-
tions have stood for 400 years and if it is assumed that this is due to the minimum
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amount of voids in the structure, it can be seen as similar to the structures discussed
in Section 2.2.2 such as Sacsayhuaman. The castles in Japan with their walls made
up of stone pieces are so renowned for their structural integrity that stone is used in
Japanese as a synonym for "strength" or "firmness" (Fujioka, 1969).

(A) (B)

FIGURE 2.8: (A) Hikone Castle and its foundations and (B) a closer
view of the foundations. (A) Photo by Philbert Ono. (B) Photo from
Japan Experta website Murselovic and Godefroid (2019). Both pho-
tos used under the Creative Commons Attribution-Share Alike 3.0

license condition (Creative Commons, 2014).

Nishida et al. (2005) specifically looks at Osaka castle as it has the tallest wall among
castles in Japan, standing at 32m tall at the maximum and 12km in length (Amano
et al., 2000 as cited by Nishida et al., 2005). The outside wall consists of a similar
makeup to the foundations of Hikone Castle with stones and rock creating a system
with minimal voids inbetween. Nishida et al. (2005) describes the structure to be
made from wall stones and cobbles with a backfill behind the wall and then the
original ground. This description is very similar to those given to the Incan retaining
walls in Vallejo and Fontanese (2014). It is to be assumed that this is the same for the
foundation walls of Hikone Castle. For Osaka Castle, the wall stones and cobbles
are made up of granite and the layout of the wall stones is described as "sangi-zumi"
at the corners. Nishida et al. (2005) explains that this is when the wall stones are
layered one above another in an alternative fashion. Figure 2.9 shows an example
of the sangi-zumi pattern using rectangular blocks and Figure 2.10 is an image of
Marugame Castle where this layout of stones is used at the corner of the castle walls.
This "sangi-zumi" effect is commonly seen in many UK masony structures as well as
in drystone walls as described by Vivian (1976) as discussed in Section 2.2.1.

The layering of stones above each other in the manner exhibited in Figure 2.9 and
Figure 2.10 creates a more stable structure that exhibits stability in three dimensions.
The overlaying pattern will mean more chance of particles interacting and interlock-
ing with each other rather than blocks flush against each other on the same layer.
An FEM analysis model was created to test the wall and it was found that the wall
surface was mainly subject to compression forces both in the vertical and horizontal
directions. Nishida et al. (2005) also presented work of field measurements on one
of these castle walls. This was possible due to the reconstruction of Margame Castle
wall that was rebuilt from its existing 15m to be 20m tall. Measurements were taken
during the construction period at heights of 6.5m and 15m from the base. The strain
readings from this study confirmed that the forces experienced in the wall were all
compressive and act in the longitudinal direction.
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FIGURE 2.9: Example of rectangular blocks in the sangi-zumi pat-
tern found at the corners of walls in Japanese Castles as described by

Nishida et al. (2005).

FIGURE 2.10: Example of castle walls meeting at a corner at
Marugame Castle. © Motokoka Photo used under the Creative Com-
mons Attribution-Share Alike 4.0 license condition (Creative Com-

mons, 2013c).
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Utili and Nova (2007) use the cross-sectional profile of Osaka castle wall from the
work produced by Nishida et al. (2005) and show that the shape of the wall mimics
that of a log-spiral profile which was found to be more stable than a plane slope.
However, it is thought that this matching of shape was more likely due to intu-
ition, experience and aesthetic purposes rather than a fundamental knowledge of
the problem (Utili and Nova, 2007). It should be noted that not all walls of Japanese
castles analysed in the work were found to fit the spiral profile.

As well, Utili and Nova (2007) state that as the stability of the walls rely on shear
resistance then these can be characterised by a Mohr-Coulomb failure. In addition,
it claims the masonry must also be characterised by an overall cohesion-effect which
results in a larger overall wall strength than would be expected in a purely frictional-
based structure. It is theorised that this is due to the finite size and prismatic shape of
the stones used and the dispersed nature in which these different sizes are found. As
with Utili and Nova (2007), Fujioka (1969) agrees that the knowledge of construction
for these impressive structures do not come from a technical knowledge but from ex-
perience. The layout of the stones in the wall appear random and haphazard, but the
consistency of this construction method suggests that was purposefully intended.

Fujioka (1969) describes Kumamoto Castle as an example of the engineering skill at
work in these constructions. It is stated that the main tower of Kumamoto Castle
has very gently curving slopes extending to their wide bases. However, the watch-
ing tower of Kumamoto Castle has steeper walls and is less curved. The difference in
these constructions are due to the fact the weight of the watching tower is much less
than the main tower of the castle which the builders have taken into consideration.
In addition, the main tower normally stands at the highest point and is therefore fur-
ther from the substratum compared to structures like a watching tower. Therefore,
the bases tend to be wider to help support the structure. Fujioka (1969) goes on to
conclude that the manner of construction of the stone walls can be used to determine
the firmness of the substratum below the castle.

2.2.4 Autonomous Construction of Irregular, Untooled Rock

Autonomous construction of irregular shaped particles is an area of research that has
already been mentioned in Section 1.1. Focus of this research has been on stacks of
stones or wall structures and particles used are all of similar size. As seen in Johns
et al. (2023) and discussed in Section 1.1, autonomous construction is becoming a
viable method for creating structures like drystone walls out of rock and gravel.
Furrer et al. (2017), Johns et al. (2020), Johns et al. (2023), and Liu et al. (2021) focus
on placement determined by identification of poses - stable positions detected on the
surface of already placed particles or starting surface - with the best position being
determined as that which has the highest “goodness of fit”. Placements are first
calculated in a physics simulator to ensure stability before moving to an experiment
replicating the patterns developed by the algorithms presented. For example, Furrer
et al. (2017) produces a cost function evaluating “goodness” of each pose based on
four criteria for the construction of stacks of single particles. These are

1. Contact area of the stone upon the surface it is being placed [C−1
i ]

2. Kinetic energy of the particle. While this is not specifically described in Fur-
rer et al. (2017) it is thought that this relates to the measured kinetic energy
from the movement of already placed particles caused by the placement of the
current particle [Ekin (Pi)]
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(A)

(B)

FIGURE 2.11: Images of (a) irregular lime stones stacked by (b) the
robotic arm with three-fingered gripped from Furrer et al. (2017) ©

2017 IEEE.

3. Length between newly placed object pose and the previous object placed as a
centroidal distance [

∥∥∥rPjPi

∥∥∥]

4. The deviation of the normal to the surface compared to the thrust line, which is
in the direction of gravity as self weight is the only force acting upon particles
[∥ni · vi∥]

and are represented as the cost function by the equation

f (Pi) = w1C−1
i + w2Ekin (Pi) + w3

∥∥∥rPjPi

∥∥∥+ w4 ∥ni · vi∥ (2.1)

Each criteria is given a weight, which in Furrer et al. (2017) are manually selected.
As described in Section 1.1, Furrer et al. (2017) stacked stones using robotic arm at
a desktop scale. The six stones used are presented in Figure 2.11a and the robotic
arm that experiments were conducted with is presented in Figure 2.11b. As stated
previously in Section 1.1, tests were conducted using sets of four stones to create
eleven towers. For two of the runs, all four stones were stacked successfully. Three
stones were stacked in six instances but failed on the fourth stone and in three cases
the third stone was not stacked successfully.
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Liu et al. (2021) takes the same system for scoring placement as Furrer et al. (2017)
with the use of a cost function. However, weightings were determined using a
Bayesian optimisation. Additionally, as stated by Liu et al. (2021), the deviation
of the normal to the surface compared to the thrust line decreases the cost function
as it increases. Therefore this criteria is edited to be represented by ∥ni · vi∥−1. Fur-
thermore, Liu et al. (2021) also simulated and then produced wall structures of the
stones. The heuristics of this are different to that of a tower of single stones which
will only require stability along the central axis. Instead, Liu et al. (2021) creates a
“hierarchical filtering approach” which applies conditions to each pose position for
which the pose must meet to be deemed a suitable pose. These conditions are as
follows and applied as filters to the potential pose locations in the order that they
are presented.

1. The slope of the top surface must be inward so that the widest part of the wall
is at the base

2. The deviation of the normal to the surface compared to the thrust line must be
above the mean from the results of all possible poses

3. The contact area of the particle with the surface must be above the mean of all
stable poses.

4. Unless the object being placed is a corner stone, the centroid height must be
lower than the average of the centroid heights of the corner stones and already
placed objects for the current layer being created. This is to ensure a layer by
layer construction.

5. The number of interlocking objects for the pose must be higher than the mean
number of interlocking for the other poses.

Liu et al. (2021) states that the use of a hierarchical filter heuristic rather than a scalar
cost function eliminates the need for relative weights. The assessment of each re-
quirement for the object being placed in isolation is less sensitive to the change of
the physical properties of the object.

In Johns et al. (2023), as discussed in the Section 1.1, drystone walls were constructed
autonomously by a HEAP platform robot with two-finger gripper. The work in
Johns et al. (2023) carries on from Johns et al. (2020) which built small sections of
drystone walls. Both Johns et al. (2020) and Johns et al. (2023) use the same tech-
nique and methods for construction and both use a HEAP robot. Similar to Furrer
et al. (2017) and Liu et al. (2021), Johns et al. (2020) and Johns et al. (2023) both
rely on detecting possible poses for placement of stones via LiDAR scanning of con-
struction material as well as the landscape and already positioned objects. Like Liu
et al. (2021), Johns et al. (2020) states that the work conducted in the research uses
heuristics from conventional stone masonry techniques. The scoring of placements
is ranked by minimising space between already placed stones and the outlined ex-
posed stone face and geometry of the wall to be constructed. Therefore the suggested
heuristic of avoiding the creation of runs from Vivian (1976) is excluded.

Candidate positions for placement of stones are found by searching the top-most
geometry of already placed stones and starting surface, referred to as the upper sur-
face in Johns et al. (2020). This upper surface is modelled as a single continuous
surface across the wall. Fits are counted as locations where the volumetric space for
the position is large enough for the stone to fit. These are attempted at different ori-
entations of the stone. These fits are taken forward and a simple stability heuristic
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(A)

(B)

FIGURE 2.12: Construction of wall in progress from Johns et al. (2020)
for (a) 2 stones placed and (b) 20 stones placed out of the 40 in the
experiment. Images used under Creative Commons Attribution 4.0

International License (Creative Commons, 2013c).
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FIGURE 2.13: Construction of the wall in Johns et al. (2020) with
placed stones with overlay of potential extension of structure. Image
used under Creative Commons Attribution 4.0 International License

(Creative Commons, 2013c).

is completed. If stones are placed on their narrowest dimension, these are deemed
likely to be unstable. Therefore, this stability check consists of ensuring the hori-
zontal dimension (d) and vertical dimension (h) are in a ratio greater than 0.5 (d/h >
0.5). After these checks, the actual position of the stone is located rather than a rough
estimate through RANSAC-based 3D plane fitting. A stability check is conducted in
the Bullet physics engine and solutions that cannot reach equilibrium are classed as
unstable and not carried forward. Finally, each position is scored using a combina-
tion of reducing volume below the stone between itself and the upper surface and
reducing the volume between the stone and the outline of the desired wall geometry.
The best match is that with the highest score and is sent to the HEAP robot for phys-
ical placement. In Johns et al. (2020), a 3m by 5m test wall was constructed using
40 gneiss stones. Figure 2.12 shows the construction of the wall by the HEAP robot
in process. Figure 2.13 presents the wall being constructed at a later stage, with an
overlay to demonstrate where further extension of the wall construction could take
place. As described in Section 1.1, the freestanding wall was 10m in length and 4m in
height and constructed using 109 gneiss boulders and CDW stones and the retain-
ing wall constructed was 65.5m long, consisting of 938 irregular stones and CDW
stones. Work in Johns et al. (2020) and Johns et al. (2023) prioritises minimising void
space between particles rather than any heuristic to try and quantify the benefits a
placement will lead to in terms of additional strength to the structure.

The robots that are adopted in the literature reviewed in Section 2.2.4 are all com-
pleted using a top-down approach by an anthropomorhpic arm. Particles are grasped
by a two or three finger gripper and are lowered to be placed in the desired location.
For this project, it is assumed that a top-down approach will also be adopted. This
assumption is highlighted here as this means there is no lateral movement of the
particle when being placed by the algorithm.

2.2.5 Summary of Section 2.2

This section gives an overview of the various examples of structures and construc-
tion processes using granular materials. Section 2.2.1 gives examples of a structures
constructed using gravel and larger stone pieces in the form of drystone walls. As
described, drystone retaining walls are very strong in compaction but have a much
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lower strength in the shear plane. However, the structures give an idea of how a
system could be created out of particles such as the stones and cobbles that make up
a DSRW and the sort of packing that could be utilised. Typical DSRW construction
techniques position particles in flat layers, building vertical with little interlocking
between these layers. A crossing-over pattern is exhibited at the corner of these
systems which was also found in Japanese castles and described as "sangi-zumi" as
described by Nishida et al. (2005).

Sections 2.2.2 and 2.2.3 further highlight this with examples of retaining structures
located in South America constructed by Incas and various historic castles found
in Japan. These structures have been present for hundreds of years and are still
standing, proving the quality of their construction methods. Incan retaining walls
are tooled so that pieces fit together with essentially no void between particles and
the walls present in Japanese castle constructions have soil particles placed so that
minimal void is present. Both of these would suggest that a beneficial technique
would be to minimise void ratio between particles in the construction of a structure
if the desired outcome is one of high strength.

Section 2.2.4 explores current work into the area of autonomous construction using
irregular particles by robot. The focus in these research projects has been using a
heuristic approach focused on optimising how well a stone fits into the upper surface
of the already placed particles. In addition to this, heuristics for the energy required
to move the placed particle, lengths between newly placed objects and previously
placed object and deviation of the normal to the particle contact from the thrust line
are considered as seen in Furrer et al. (2017). Further criteria were set out in Liu et al.
(2021) as filters for poses when designing for placement in a wall system as described
in Section 2.2.4. Johns et al. (2020) introduced a stability check that consisted of
ensuring the horizontal and vertical dimensions of a stone are in a ratio greater than
0.5 when considering a pose with any poses not meeting this criteria being discarded
to save on computational time. The work in Johns et al. (2023) provides evidence that
the autonomous construction of irregular rock particles by robot is indeed possible
and that the production of an algoirthm for scoring placement in order to optimise
shear strength is indeed a feasible solution to potentially improving these structures.

2.3 Parameters Affecting Soil Strength

2.3.1 Soil Strength

Shear strength of a soil is described as the ability of the soil to resist shear due to
the interparticle friction and interlocking grains in the material (Terzaghi and Peck,
1967). In a granular material that lacks cohesion, the shear strength can be charac-
terised by

s = σ′tan(ϕ′) (2.2)

where s is the shear strength, σ′ is the effective normal stress on the failure plane, and
ϕ′ is the effective stress angle of internal friction (Duncan et al., 2014). This is in ac-
cordance with Coulomb. Values for angle of internal friction can have a large range
depending on the material and many other factors that are going to be explored in
this section. Duncan et al. (2014) reviewed existing literature and collated results
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from experiments conducted. Ranges of 34-48o, 41-58o and 51-55o for ϕ were pre-
sented for sands, gravels and rockfill respectively. The purpose of this table was to
show reasonable values that would be expected from testing, and it is for this reason
that the data has been presented here. Terzaghi and Peck (1967) gave representative
values of ϕ and these are presented in Table 2.1.

Material Loose (o) Dense (o)
Sand, round grains, uniform 27.5 34

Sand, angular grains, well graded 33 45
Sandy gravels 35 50

Silty Sands 27-33 30-34
Inorganic silt 27-30 30-35

TABLE 2.1: Representative values of ϕ for sands and silts (Terzaghi
and Peck, 1967).

2.3.2 Particle Shape and Roughness

It is known that the particle shape has an effect on the shear strength of soil. For
example, Vallerga et al. (1957) states that shear strength appears to increase consid-
erably with angularity of the particles. However, it is stated part of the increase may
be due to a larger amount of surface roughness as the angularity was increased by
crushing of particles. Koerner (1970) also shows that granular materials containing
particles with an angular nature tend to have higher shear strength. Selig and Roner
(1987) and Li et al. (2013) found that an increase of flaky and angular particles in-
creases the shear resistance of a soil. Xiao et al. (2019) investigated the response of
sand mixtures of round and angular shapes using triaxial testing. It was reported
that an increase in overall regularity resulted in a reduction of both the peak-state
and critical-state friction angles, indicating shear strength increases if the particles
are more irregular.

Cho et al. (2006) used a large database of sand to look at the influence of particle
morphology on stiffness and strength. Particles were characterised using 2D images
of the sand. It was concluded that as particle irregularity increases, the critical state
angle of friction also increases. Alshibli and Cil (2018) expands on the work by Cho
et al. (2006), investigating glass beads and three types of silica sands and characteris-
ing these in 3D using high-resolution SMT images. Form, roundness and roughness
were investigated. As the particle gets more irregular (so form and roundness de-
crease and roughness increases), the critical state angle of friction increases, agree-
ing with Cho et al. (2006). Models were formed using the results of Alshibli and Cil
(2018) and predictors to analyse critical state friction angle (ϕcs), peak state friction
angle (ϕp) and dilatancy angle (ψ) were given as

ϕcs = 23 − 134.06Fs + 142.04IR − 21.02Rq − 0.861(
p′o

patm
) + 0.043DR (2.3)

ϕp = 23 − 62.90Fs + 67.00IR − 9.02Rq − 0.932(
p′o

patm
) + 0.160DR (2.4)
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ψ = 77.72Fs − 76.35IR + 12.77Rq − 0.486(
p′o

patm
) + 0.196DR (2.5)

where Fs, IR, Rq and DR represent form, roundness, surface texture (specifically the
root-mean-square of the surface texture found using an optical interferometry tech-

nique) and relative density respectively. (
p′o

patm
) represents mean effective stress nor-

malised by atmospheric pressure. These models give very good predictions when
compared to the experimental measurements presented in Alshibli and Cil (2018)
with the coefficients of determination being 0.93, 0.86 and 0.95 for ϕcs, ϕp and ψ re-
spectively.

Huu et al. (2017) conducted direct shear tests on silica sand and calcareous sand to
compare the two. Calcareous sands are described by Huu et al. (2017) to be very
angular and can exist at a higher void ratio than silica sands. Calcareous sands tend
to exhibit a higher shear strength (Brandes, 2011; Cabalar et al., 2013; Hassanlourad
et al., 2014) and show dilative behaviours at much lower relative densities than the
smoother silica sands (Safinus et al., 2013). Huu et al. (2017) describes this behaviour
to be due to the interlocking between aggregates created by their angular particle
shape. The restriction on rotation and movement on the particles lead to an increase
in shear strength which is a result of the increase in interparticle contacts (Brandes,
2011; Potticary et al., 2016).

At initial relative densities of both 40% and 80%, silica sand had lower shear strengths
and friction angles at the peak and residual states than calcareous sand which was
produced to have the same particle size distribution as the silica sands. Furthermore,
even though calcareous sands showed higher shear strengths, the silica sand tested
reached higher stresses at a small shear strain at the early stages of testing. Huu
et al. (2017) suggests that this is because the shearing is what causes the particles to
interlock with neighbouring particles which then initialises an increase in the shear
strength, especially during the dilation process of the sand. This does not really ex-
plain the described phenomena and Huu et al. (2017) does not go into any more de-
tail for the explanation beside what has already been stated. However, it is thought
that perhaps the particles in the more angular systems have more spacing between
them to move and rotate initially before becoming securely interlocked with each
other. Direct shear tests were also completed on samples of calcareous sand with
different values of sphericity. The results show that the residual shear strength and
friction angle decrease as sphericity increases. According to Rowe (1962), interparti-
cle friction, particle rearrangement and dilation - as well as crushing - all have major
contributions to shear resistance of granular soils. It can be envisioned that angular
particles at a higher density would have more interlocking between particles, which
would require more particle rearrangement and therefore more dilation of the as-
sembly.

Santamarina and Cho (2004) supports Huu et al. (2017) in terms of interlocking of
particles as they hypothesised that increased angularity will make it more difficult
for the particle to rotate. Additionally, roughness of the surface will prevent slip-
ping between grains. Both of these features would create a greater need for dilation
and contribute towards shear strength. Experimental evidence was presented in
Santamarina and Cho (2004) showing that the critical angle of internal friction, ϕcv,
decreases as roundness increases. Similarly, Yang and Luo (2015) conducted tests on
fujian sand and fujian sand mixed with either round glass beads or angular crushed
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glass beads. Shapes of the grains were analysed and ϕcv decreased as roundness
increased. Yang and Luo (2015) states that this is consistent with Cho et al. (2006)
and Rousé et al. (2008). Chan and Page (1997) also provides evidence for this as they
showed copper powders with a higher fractal dimensions had an increased angle of
internal friction.

Guo and Su (2007) conducted triaxial tests on Ottawa sands and crushed angular
limestone. Both samples were uniformly graded. Guo and Su (2007) concludes that
shear strength is increased by the interlocking of particles which is more likely to
occur in angular shaped soils. However, it should be noted that the particle sizes of
the samples were massively different with D50 values of 0.376mm and 1.640mm for
the Ottawa sand and the crushed limestone respectively.

Xiao et al. (2019) found that maximum dilatancy angle increased as overall regularity
increased, which contradicts the idea that more angular particles will interlock and
be harder to move. However, as stated in Xiao et al. (2019), these greater dilations
are experienced at smaller strains whereas assemblies with more spherical particles
dilate less overall at critical state compared with angular particles. Therefore these
spherical particles are more readily available to move and do not contribute as much
to the shear strength of the system. This is a similar explanation to the one suggested
for the phenomenon described by Huu et al. (2017).

Roughness of a particle refers to the small asperities of the surface and is thought to
have a major effect on interparticle friction. As stated in Rowe (1962), interparticle
friction is thought to have a large effect on shear strength of granular soils. San-
tamarina and Cascante (1998) conducted triaxial tests on ball bearings with varying
surface roughness and suggests that constant volume critical state friction angle, ϕcv,
increases with roughness. This agrees with Bishop (1954) who derived a relationship
for ϕcv and interparticle friction angle ϕµ,

sin(ϕcv) = 15 tan(ϕµ)/(10 + 3 tan(ϕµ)) (2.6)

This leads to having an effect on the shear strength, as

ϕmax = ϕcv + 0.8ψmax (2.7)

as presented in Bolton (1986), where ϕmax is maximum angle of shearing resistance
and ψmax is maximum dilatancy angle.

Li (2013) tested 200 materials using a triaxial compression test. Grain shapes were
characterised using two-dimensional angularity (A2D) as proposed by Lees (1964)
The materials were the same as those used in Miura et al. (1997b) which concluded
that an increase in angularity led to an increase in void ratio extent (emax - emin)
which represents the degree of possible change in the soil structure, as well as an
increase in crushability index and angle of repose. Miura et al. (1998) showed that
angle of internal friction at failure as well as ϕcv increased as A2D increased.

Additional, the information presented in Table 2.1 listing typical values of internal
friction angle for various sands and gravels shows that more angular materials (the
angular sand grains and sandy gravels) tend to express a higher ϕ value. Li (2013)
demonstrated that increasing elongation increases the constant volume friction an-
gle and increasing convexity decreases this value. It was also found in Li (2013) that
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samples with a high proportion of coarse fraction experienced dilation due to par-
ticle interlocking while samples with a high proportion of fine fraction experienced
volumetric contraction due to particle alignment and densification.

With the aim of producing a low cost solution in terms to the environment, it is
intended that this project will focus on using locally sourced material. Although
it is clear that angular particles tend to exhibit higher shear strength values than
more spherical particles, it will not be guaranteed that these particles can be sourced
locally. Therefore, selection of the particle by shape will not be considered for this
project. Rather, by measuring other factors than can be classed a result of particle
shape - which are discussed in the following parts of Section 2.3 - particle shape will
not need to be considered as an additional parameter of this study. It is possible that
particles could be characterised before selection so that only angular particles are
stockpiled for construction. This possibility is discussed further in Section 8.6.1.

2.3.3 Particle Size

There are many sources indicating that particle size has a direct influence on shear
strength. Wang et al. (2013) shows that angle of shearing resistance generally in-
creases as median particle diameter increases. Holtz and Gibbs (1956) tested differ-
ent mixtures of gravel and sand and concluded that shear strength increases with
gravel content greater than 50-60% by weight. Simoni and Houlsby (2006) found
that strength of sands mixed with gravel have higher strengths than pure sand, even
with low gravel fractions of 10-20%. Pakbaz and Moqaddam (2012) performed di-
rect shear tests on sands mixed with clay and Alias et al. (2014) carried out direct
shear tests on granular material described as a well graded gravel with sand. Both
presented that shear strength increases with particle size.

Contrary to the references stated, Winterkorn (1967) states that the influence of par-
ticle size on shear strength is negligible. Rather, the change in particle size results
in a change in surface characteristics and shape of the particle which in turn has an
effect on angle of internal friction. Winterkorn (1967) uses Herbst and Winterkorn
(1964) and Idel (1960) to support their argument. Additionally, Vallerga et al. (1957)
conducted tests on subrounded and angular gravel under a vacuum triaxial test. It
was found that uniformly graded materials did not appear to be affected by particle
size. Selig and Roner (1987) and Latha and Sitharam (2008) also report that changing
particle size gives no significant difference in shear strength. It should be noted that
Winterkorn (1967) is considering an idealised soil consisting of particles of uniform
size and shape. This is an unrealistic case, but does show that particle size does not
have a direct effect on angle of friction. This is assuming that the testing apparatus
is also scaled, as maximum particle size can have an effect on the results of the test
(Erlingsson and Magnusdottir, 2002) which can sometimes be an explanation for the
observed increase in shear strength with particle size.

As stated by Winterkorn (1967), a change in particle size can lead to a change in
shape of the particles. For silica sands, it is seen that larger particles are mostly
spherical whilst smaller particles have an increased angularity (Pettijohn and Lun-
dahl, 1943; Pollack, 1961). As discussed in Section 2.3.2, an increase in angularity
leads to an increase in soil strength. Results for different materials have shown no
unique relationship between grain size and grain shape (Barrett, 1980; Cho et al.,
2006; Das and Ashmawy, 2007).
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Another possible explanation for the effect on shear strength can be found in San-
tamarina and Cho (2004). Santamarina and Cho (2004) states that larger particles
have a higher probability of imperfections and brittle fracturing. Therefore, smaller
particles are stronger due to their lack of imperfections. However, this would sug-
gest the opposite of increasing ϕ values with particle size. Alternatively, a smaller
particle has a smaller mechanical momentum so it is less likely to induce surface
features when colliding with other particles. This same reasoning would mean that
larger particles tend to be rougher. Section 2.3.2 introduced Equation 2.6 from Bishop
(1954) and the work conducted in Santamarina and Cascante (1998) to show that an
increase in surface roughness leads to higher ϕ values.

Linero Molina et al. (2019) conducted discrete element simulations to investigate
the effect of scaling PSD for testing materials with particles too large to be tested
in traditional testing equipment. When particles were scaled down and kept their
original shape, the effect on shear strength was marginal. In comparison, a study
was conducted to simulate the change in particle shape that could occur when scal-
ing the PSD of a material. More elongated and thinner particles were used than the
spheres that replicated the same-shaped systems. It was found in the systems where
shape was altered, scaling of the PSD affects the shear strength of the system. It is
clear from this study that this is not an influence caused by the size of the parti-
cles but rather the shape, supporting the theory stated in Winterkorn (1967). Linero
Molina et al. (2019) assumes that all other parameters stay the same including mate-
rial strength and interparticle friction which may not be true in a physical study.

Ueda et al. (2011) shows a trend that angle of shearing resistance increases as the
number of larger particles increases. However, the simulations and experiments
were completed on binary mixtures of large and small particles. The increase in
strength is due to the increase in mean coordination number caused by the larger
particles being surrounded by the smaller particles (Oda, 1977). It should be noted
that even with lower fractions of smaller particles a dip in shear strength was de-
tected due to the prevention of the larger particles from touching leading each other.
As will be discussed in Section 2.3.4, a soil sample with high mean coordination
number will have a higher shear strength when compared to other soils with lower
mean coordination number.

2.3.4 Coordination Number

Oda (1977) states that mean coordination number of a system can be a good indi-
cation of the strength of the soil with a higher coordination number indicating a
higher internal angle of friction. Coordination number assists in transferring the
forces exhibited onto a particle to neighbouring particles and is important for the
development of force chains (Muir Wood, 2008). Particles with higher coordination
numbers are more likely to be involved in force chains (Fonseca et al., 2016) meaning
the force can be better distributed within the soil. This can take place through the
main networks of the force chain (called the strong networks) as well as through a
subset smaller networks (known as the weak networks) in the system. Additionally,
a lower coordination number can lead to a particle being unstable in the system.
As presented in Oda (1977), this will lead to a lower internal angle of friction. Oda
(1977) uses Ishigami et al. (1973) and Bjerrum et al. (1961) to highlight this. Coordi-
nation number is also important when it comes to crushing of the particles with a
higher coordination number meaning a higher survival probability (McDowell and
Bolton, 1998; Tong et al., 2019; Todisco et al., 2017)
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Thakur and Penumadu (2021) used X-ray computed tomography (CT) images of the
assembly of sand in a triaxial test set up and FEM analysis to investigate the inter-
particle friction and coupled effect of shape and size on triaxial shearing of poorly
graded sands. The sands used were rounded Ottawa sand and angular Q-Rok and
both are poorly graded samples. The 3D samples of the scanned sand were trans-
formed into a finite-element mesh and the sand grains were discretised into finite
elements using small strain triangular shell elements. The results of the tests found
that while the angular Q-Rok sand exhibited a higher peak friction angle, the mean
coordination number for the angular sand was lower than the mean coordination
number for the rounded Ottawa sands. This contradicts the idea that mean coordi-
nation number is a good indication of strength of a soil from Oda (1977). However,
the Q-Rok sand samples had a significantly higher number of grains with a coordi-
nation number less than 2. These are referred to as "rattlers" in Thakur and Penu-
madu (2021) as these are unstable particles that are not contributing to the shear
strength of the system. During shearing, 20-30% of the sand grains were rattlers for
Q-Rok while Ottawa sand had less than 5%, with an initial peak of 12% at the start
of testing. The mean coordination numbers of the Q-Rok system is being arbitrarily
lowered by inclusion of the coordination number of the rattler particles.

Looking at the rotation of the particles in Figure 2.14a, the Q-Rok grains tend to have
more rotation for the smaller particles. These are the rattlers in the sample moving.
Observing rotations for particles above a diameter of 0.6mm (where most particles
in the Q-Rok have a coordination number of 2 or more), the total rotation dramat-
ically drops and is much lower than that of the Ottawa sand. Therefore, it can be
determined that the particles that are interacting with the force chains in the sam-
ple for Q-Rok are not moving as much, explaining why the sample is experiencing
a higher shear strength. The rattlers in the sample contribute only by lowering the
mean coordination number giving the impression that the sample with the lower
coordination number is stronger.

As seen in Figure 2.14b the PSD for Ottawa sand shows that there were fewer par-
ticles with a diameter less than 0.6mm with over 95% being between 0.7mm and
0.9mm in diameter, whereas only 20% of Q-Rok lay between these values. This ex-
plains why there are less rattlers in the Ottawa sand sample compared to the Q-
Rok as there are less smaller sized particles to inhabit the spaces between the larger
grains. The angularity of the soil particles in Q-Rok is what governs its higher shear
strength when compared to Ottawa sands as the particles can interlock which stops
the grains from moving freely as discussed in Section 2.3.2.

Alexander (1998) states that for a system of rigid spherical particles to be in equilib-
rium a minimum average coordination number is required, CNmin. For frictionless
spheres CNmin=6 (Alexander, 1998), whereas for frictional spheres which undergo
no slip between particles CNmin=4 (Edwards, 1998). This is because the minimum
coordination number is directly related to internal degrees of freedom of the particle
structure. Higher values of contact friction lead to an increase in constraints on the
particle. At infinite interparticle friction with no rotation of the particles, both inter-
particle sliding and rolling are fully constrained and therefore the particles act as a
rigid block expressing infinite shear strength and shear stiffness (Suiker and Fleck,
2004). Hence, the minimum coordination number tends to zero as only a small num-
ber of contacting particles make up the force network. Therefore, for this project, the
minimum coordination number required for stability will depend on the determined
interparticle friction between soil grains.
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(A)

(B)

FIGURE 2.14: Figures from Thakur and Penumadu (2021) for (a) Vari-
ation in the rotation of individual grains with the size of grains for
rounded Ottawa sand and angular Q-Rok at 15% axial strain (b) Par-
ticle size distribution of Ottawa sand and Q-Rok. Permission of use

granted by American Society of Civil Engineers.
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2.3.5 Grading and Density

Winterkorn (1967) investigates grading as another parameter concerning the shear
strength of soils. Assuming minimum percentage of voids in the packing, the angle
of internal friction were essentially the same for systems consisting of different sized
components. Leslie (1969) shows that an increase of coefficient of uniformity, Cu,
caused peak shear strength to increase significantly. Bayat and Bayat (2013) agrees
with this and found that increasing Cu increased the shear resistance of pure sand
samples. Bayat and Bayat (2013) conducted tests on sand grains and Leslie (1969)
conducted tests on alluvial gravels which tend to be rounded.

Wang et al. (2013) completed triaxial tests on accumulation soil and yielded a range
of angles of internal friction between 37.2o and 50.7o and found that angle of internal
friction decreased as Cu increased. Accumulation soil is described to have character-
istics as somewhere between soil and rock. Therefore it is most likely that these are
more angular than the materials used in Bayat and Bayat (2013) and Leslie (1969),
although no detail of the material is given even though it is stated that the grains
of the soil were categorised using methods from Lees (1964). It could be that it is
not the grading of the sample that determines a higher shear strength of the soil, as
suggested by Winterkorn (1967), but rather other factors.

The angular particles may have a higher void ratio and less contacts with neigh-
bouring particles than the rounded particles tested due to the irregular shapes of the
grains. This is backed up by Chan and Page (1997) which conducted experiments
and found that copper powders with high fractal dimensions have a lower pack-
ing density. This lower density will mean a lower coordination number and area of
contact with neighbouring particles. In addition, Rousé et al. (2008) compiled data
from six different references and highlights a trend that emax and emin are higher for
angular particles than more rounded ones.

Azéma et al. (2017a) studied the effect of changing the size span and the shape of
PSD. The study was completed using DEM to find the shear strength of granular ma-
terials composed of unbreakable discs. The PSDs were modelled using a normalised
beta function and recreated expected soil PSDs with good results. It was shown that
shear strength is independent of size span and the shape of the distribution. Instead,
it is suggested that the change in shear strength when modifying the PSD of a real
soil is due to the change of particle characteristics such as shape, strength and inter-
action laws. This is also the conclusion of Linero Molina et al. (2019) as discussed in
Section 2.3.3. Azéma et al. (2017b) expands on the work produced in Azéma et al.
(2017a), agreeing with the findings in Azéma et al. (2017a) and discussing the effect
of the curvature of the PSD. A low curvature PSD, meaning one which has a much
higher proportion of larger particles, show much denser packings than PSDs with a
higher curvature. This creates large coordination numbers within the system, mak-
ing the contact network more isotropic. These larger particles tend to "capture" force
chains due to their increased coordination number, increasing branch lengths along
the principal stress direction. It is stated in Azéma et al. (2017b) that shear strength is
independent of the system’s connectivity. This mainly occurs due to packings being
made up of weakly connected networks composed of larger proportions of particles
and well-connected networks composed of low proportions of particles. This results
in the shear strength being roughly the same value for the scenarios investigated in
Azéma et al. (2017b).
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Material Gradation Shape ϕ ϵ1 f ϵv f σ3 R***
Oroville Dredger tailings well graded Rounded 43 6.5 1.5 120 [1]

Sand and gravel (dry) well graded Rounded 39 8 4.7 60 [2]
Basalt well graded angular 39 15 6 60 [3]
Basalt well graded angular 38 ** ** ** [2]
Basalt poorly graded angular 37 20 6.5 40 [1]

Conglomerate (dry) well-graded angular 37 13 4.5 20 [2]
Silicified conglomerate poorly-graded angular 36.5 14 5.5 30 [4]

Argillite poorly-graded angular 36.5 20 5.5 25 [1]
Diorite (dry) poorly-graded angular 35 15 10 25 [2]

Shale* well-graded angular 35 >14 >10 10 [2]
Shale* poorly-graded angular 33 >14 >10 5 [2]

Granite gneiss* well-graded angular 32 >14 6 20 [3]
Granite gneiss* poorly-graded angular 25 >14 >10 5 [3]

TABLE 2.2: Strength and deformation characteristics of large rock-
fill specimens from Marachi (1969), summarising their own work and
work from Marsal (1965), Marsal (1967b), and Marsal (1967a). All
tests done at 350psi confining pressure. ϵ1 f is principal strain at fail-

ure and ϵv f is volumetric strain at failure.
*test not carried out until failure

** data not presented
***Reference: [1] Marachi (1969), [2] Marsal (1967b), [3] Marsal

(1967a), [4] Marsal (1965)

An increase in relative density is thought to increase shear strength (Duncan et al.,
2014). Lee and Seed (1967) conducted triaxial compression tests on uniformly graded
Sacremento River sand at different relative densities. A value of ϕo of 35.2o and 45o

were reported for relative densities of 38% and 100% respectively. Huu et al. (2017)
found in their direct shear experiments that an increase in initial relative density
(tested at 40% and 80% relative density) led to an increase in peak shear stress for
both silica sands and calcareous sands. Higher densities are commonly considered
to be possible in samples that are well-graded and it is not unusual for void ratio
to be used to analyse gradation (Selig and Roner, 1987). Yan and Dong (2011) con-
cluded that the influence of grain size distribution on the shear strengths of soils
shows that well-graded sand gives a higher shear strength than uniformly graded
sand. As Duncan et al. (2014) states, the smaller particles in a well-graded soil should
fill the gaps between larger particles, hence it is possible to form denser packings
which should offer greater resistance to shear. However, as with grading, it can
be determined that the increase in shear strength found in higher density samples
relates to the mean coordination number increasing.

Marachi (1969) conducted tests on sands, gravels and rockfill materials. Results of
modeling the grain size distribution on the strength of rockfill materials are pre-
sented and discussed in the fourth chapter of the work. From the results, it is con-
cluded that a soil is stronger if it is denser and well-graded as all the materials show
a decrease of internal angle of friction as initial void ratio is increased. A comparison
with other literature was also completed in Marachi (1969), which is repeated here in
Table 2.2, and it was seen that well-graded materials tended to have higher strength
properties than poorly-graded materials.
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Packing type Relative Density, DR (%) SPT blow count, N ϕ′ (o)
Very loose <20 <4 <30

Loose 20-40 4-10 30-35
Compact 40-60 10-30 35-40

Dense 60-80 30-50 40-45
Very dense >80 >50 >45

TABLE 2.3: Relationship between relative density, SPT blow count,
and angle of internal friction for clean sands from research completed

by Meyerhof (1956) (Duncan et al., 2014).

Packing type Relative Density, DR (%) Cone resistance, qc ϕ′ (o)
Very loose <20 <20 <32

Loose 20-40 20-50 32-35
Compact 40-60 50-150 35-38

Dense 60-80 150-250 38-41
Very dense >80 250-400 41-45

TABLE 2.4: Relationship between relative density, CPT cone resis-
tance, and angle of internal friction for clean sands from research

completed by Meyerhof (1976) (Duncan et al., 2014).

Meyerhof (1956) and Meyerhof (1976) demonstrated the relationship between rela-
tive density and angle of internal friction with tests using SPT and CPT on sands
respectively. These results are found in Table 2.3 and Table 2.4. It can be seen from
the data that internal angle of friction increases as density of a sample increases as a
general trend.

The density of a packing relates to the voids in the structure, with a higher density
meaning less void spaces. A high value of Cu is typically a good indication of shear
strength but, as with Wang et al. (2013), this is not always true. It is understood that
a well-graded soil will be able to achieve higher densities as the smaller particles are
able to fill void spaces that would not be filled in a uniformly graded soil. However,
the soil strength should not be directly linked to density but rather to another factor.
It can be imagined that if a sample is very dense then that means that more particles
will be contact with neighbouring particles. As discussed in Section 2.3.4, the num-
ber of contacting particles is coordination number and a higher mean coordination
number typically leads to higher soil strengths.

2.3.6 Friction Between Particles

Thornton (2000) utilised a three-dimensional DEM program to prove that a larger
area of particle in contact with other particles reduce the pressure on that particle
and help distribute the force. Thornton (2000) also looked at the effect of interparti-
cle friction. It is stated that it is difficult to distinguish between effects of contact fric-
tion and particle shape in a real experiment, so the use of a numerical simulation is
favourable. The simulations conducted in Thornton (2000) show that increasing the
interparticle friction produces an increase in the dissipation of energy and decrease
in the sliding of contacts between particles showing that friction acts as a kinematic
constraint. Simulations of axisymmetric compression were also presented in Thorn-
ton and Sun (1993) using two different values of coefficients of interparticle friction,
µ=0.3 and µ=0.6 for both dense and loose soils. As interparticle friction increased,
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the shear strength for both systems increased and the ratio of sliding contacts de-
creased under equivalent forces. Also, the increased friction at contacts increases
the stability of the system and reduces the number of contacts with other particles
required to achieve a stable configuration. This was also found in Thornton (2000).

Skinner (1969) completed experimental tests on glass ballotini and suggests that the
value of critical state angle of internal friction, ϕcv, and interparticle friction are in-
dependent, which is contradicted by the work in Thornton (2000). Thornton (2000)
states that their work is more reliable as random assemblies of frictionless spheres
are unstable at contacts making it difficult to develop any stable force transmission
through the system. The results of Skinner (1969) also contradict multiple theoretical
approaches (Bishop, 1954 and Caquot, 1934 as referenced by Skinner, 1969, Horne,
1965), although it does state that rolling occurs in the experiments in Skinner (1969)
and, as Thornton (2000) states, these models tend to ignore the possibility of par-
ticle rotation. Skinner (1969) washed the glass balotini using water to increase the
frictional coefficient by 10 times before washing. Santamarina and Cascante (1998)
states that washing has no effect on the coefficient of friction on chemically clean
quartz surfaces. However, the presence of water causes coefficient of friction to in-
crease if the surfaces are not clean as surface chemicals which are acting as lubricants
between particles can be absorbed. As Santamarina and Cascante (1998) states, there
is no description of the surface condition in Skinner (1969). Therefore the change of
surface chemicals on the particles may be the reasoning for an observed increase
rather than the roughness of the material.

Suiker and Fleck (2004) performed DEM analysis on granular assemblies of spherical
particles to analyse the impact of friction on the system. Interparticle friction angles
of 4o, 14o, 24o and 34o were investigated for particles that could rotate and parti-
cles that were constrained in rotation. Suiker and Fleck (2004) shows that sliding
between contacts decrease as contact friction angle increases, with both the particles
that can rotate and constrained particles approaching a state where no sliding occurs
as friction angle approaches infinity. Results from the DEM simulations as well as
experimental triaxial tests on aggregate of steel spheres show an increase in macro-
scopic angle of friction for the assembly, with values from the DEM results asymp-
toting to 24o as contact friction increases to infinity. Frictionless particles collapse
under self-weight and hence have a macroscopic shear strength of zero. It is clear
from this work that friction has an effect on the shear strength of the system, which
is expected as a system with higher friction between particles would be stronger at
resisting shear than that with less friction. It should be noted that a larger area of
particle in contact with other particles, like those in Thornton (2000), will have more
opportunity to create friction resistance as friction can only be created if the particle
is touching another object.

2.3.7 Evidence for Lower Void Ratios Resulting in Higher Shear Strengths

From the previous sections, it can be seen that coordination number and internal
frictional forces are two contributors to shear strength of a soil. Ueda et al. (2011)
completed DEM modelling of disks and spheres in binary mixtures and showed a
high mean coordination number leads to a lower void ratio. Additionally, lower
void ratios will lead to more particles in contact with other particles, allowing for
more frictional forces between soil grains. Therefore it can be concluded that a low
void ratio can be take as an indication of high strength, although this will not always
be true as there may be scenarios where strong bridges in the soil structure form over
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voids. As stated in Mogami (1965), void ratio cannot be used on its own to describe
the properties of granular material and the distribution of void is also needed to be
known.

Mogami (1965) shows that angle of internal friction should be given as a function of
void ratio, e

sinϕ =
k

1 + e

where k is the strength coefficient relating to the granular material being tested. This
relationship suggests that angle of internal friction is a measure of the crowdedness
of the grains in the material. Mogami (1965) states that k is a measure of the avoid-
ance of a change in void ratio due to shearing deformation which suggests that a
stronger material would be more tightly packed as then more particles will interlock
and prevent the movement of grains. It can be noted that this is not always true. For
example, a system of frictionless rectangles laid out in a brick wall style pattern will
have no voids present. However, the shearing resistance of the wall will be minimal
as one layer may just slide over the other if pushed horizontally. Therefore, in this
case, void ratio is not enough to determine shear strength of a material - hence the
need for k, which is determined by the structure of the grains in the material. k is de-
termined experimentally as stated by Moroto (1982) from shear tests and the initial
void ratio using

k = sinϕ(1 + eo)

and averaging the values for multiple tests on that soil. Expected values determined
from experimental data are given in Moroto (1982) for k and are presented here in
Table 2.5. These agree with expected values of 0.6-1.5 suggested by Mogami (1965)
for no specific granular material type. These ranges show that k is varied meaning it
is not necessarily determined by material type alone, reinforcing that it is linked to
the structure of the particles and their packing arrangement.

Soil Type Sand Gravel Volcanic Ash Sand
k Value Range 0.9 - 1.1 0.7 - 1.3 1.0 - 2.0

TABLE 2.5: Values of k from experimental analysis in Moroto (1982).

Moroto (1982) went on to show that a material with a smaller initial void ratio has a
greater shearing strength at high confining pressure levels. Therefore, a sample that
is well packed has better shear resistance when movement of particles are restricted.
Moroto (1982) suggests that granular soils which are well graded and well rounded
have higher strengths than those which are uniformly graded and angular as they
can be more densely compacted. This contradicts the findings in Section 2.3.2 where
it was concluded that angular particles tend to lead to higher shear strength due to
interlocking between particles.

The tests analysed in Moroto (1982) are performed under high confining pressures.
As stated by Huu et al. (2017), a sample with greater particle angularity can provide
an interaction between particles so that particle movement is restrained when under
a low normal stress even if the void ratio of the sample is relatively high. Under a
higher confining pressure, particle movement increases due to the higher void ratio
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in the sample and particle polishing. For similar grain size distributions, samples of
angular particles will tend to have void ratios higher than their minimum void ratio
compared to rounded samples with the absence of compaction or vibration. This
again is shown in Huu et al. (2017) where samples of angular calcareous sands com-
pressed more easily compared to more rounded silica sand samples. Both samples
had been designed to have matching grain size distribution. Therefore, in the exper-
iments analysed by Moroto (1982), there was more space for particles to move into
and the high confining pressures in the experiments assisted in creating movement
of the particles. However, it is true that if rounded soil particles are tightly packed
and well graded then they are more likely to have a higher mean coordination num-
ber which has already been shown to be strongly linked to soil strength.

2.3.8 Summary of Section 2.3

Presented here is a summary of key findings from Section 2.3. As presented in Sec-
tion 2.3.2, particle shape is found to have an impact on the shear strength of a soil.
Particles of an angular nature tend to have a higher shear strength when compared
to more spherical particles due to the interlocking of grains limiting their ability to
rotate resulting in an increase in dilatancy. Roughness also has an effect on shear
strength. Rougher particle surfaces create higher amounts of friction through the
increased number of contacts, making it harder for slipping between grains to occur
as more energy is required to move particles. Additionally, in Section 2.3.3 it is de-
termined that particle size has no effect on the shear strength of a granular material
so long as the there is no difference in properties, defects, shape or surface character-
istics of the material as size changes. It also assumes that testing equipment is scaled
as maximum particle size can have an effect on the results of the test (Erlingsson and
Magnusdottir, 2002).

The review of literature within Section 2.3.4 found that the more particles in con-
tact with a given particle is usually an indication of higher shear strength. Systems
with higher mean coordination numbers typically exhibit higher shear strengths
than those with lower mean coordination numbers although an exception is seen
if rattler particles exist in the packing as seen in Thakur and Penumadu (2021). The
points of contact between particles helps assist with the transferring of forces and
prevent particles from being unstable in their position leading to them having no
contribution to the force chains in the material and no contribution towards strength.
Furthermore from Section 2.3.6, an increase in interparticle friction leads to a higher
resistance to shear. This can be concluded to be similar to an increase in roughness
of a particle - the increased amounts of friction between particles makes it harder for
slipping between grains to occur as more energy is required to move particles. As
stated, particles with larger areas of their surface making contact with other particles
will have more opportunity to create friction to prevent slipping. This may be more
prevalent in systems that have higher mean coordination numbers.

From the review in Section 2.3.5, it can be determined that grading and density of
a sample does have an effect on shear strength of the material but any observed
change can be attributed to other factors. Mainly, this difference is down to the co-
ordination number. If a sample is well graded then higher densities can be achieved
as the smaller particles are able to fill the void spaces that would not be filled in a
uniformly graded soil. This in turn can lead to higher coordination numbers for the
larger particles in the system helping to spread force chains through the structure.
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Additionally, more particles in contact with each other can lead to more internal
frictional forces.

The use of void ratio as a sign of high shear strength was discussed in Section 2.3.7
Although void ratio alone cannot be used as an indication of a high strength soil
structure, it can give signs that there is a high mean coordination number which is
linked to a higher shear strength.

From this summary, the factors that will be considered for creating structures that
have a high shear strength will be coordination number as well as the area of the
particle that is in contact with other particles and the boundary of the system. Par-
ticle shape will not be considered. As the method envisioned to create structures
is intended to use waste material, shapes of particles will not be specifically chosen
due to the variability that could come with the available particles from local or waste
sources. Void ratio will also be taken into account, but as a secondary sign of shear
strength rather than a guaranteed indication that the sample produced is strong as
void ratio is a good indication of shear strength but cannot be used on its own to
describe the properties of granular material.

2.4 Optimising of Placement

2.4.1 Spherical and Non-Spherical Particle Packing Structures

For a method where building of a structure is done autonomously by careful place-
ment of particles, it is required to consider how this can be optimised to get the best
packing arrangement. As shown in Section 2.3, a low void ratio in a system can be
a good indication of high shear strengths. Hence the discussion of efficient packing
structures is presented here.

The first study of particle packing was introduced by Graton and Fraser (1935) who
established four basic sphere packings: cubic, orthorhombic, tetragonal-sphenoidal
and rhombohedral. Graton and Fraser (1935) take layers of spheres in a square,
"simple" rhombic and special rhombic layer system to create unit cells which are
the smallest portion of the packing that can give a complete representation of the
system. Square layers have 90o angles between centres of circles, whereas simple
rhombic have 60o. Special rhombic layers describe all packings between the 60o and
90o angles. These three types of layers are presented in Figure 2.15. Only the square
and rhombic layers were considered in Graton and Fraser (1935) when determining
packings due to them "being adequate to represent the limiting types of systematic
packing actually encountered". It is stated that there are three geometrically simple
ways of stacking either the square layers or simple rhombic layers upon one another.
This would lead to six different packings which are presented in Figure 2.16. These
are described as Cases 1-6 and are summarised as

• Case 1 and 4 - spheres in the second layer positioned vertically above those in
first layer

• Cases 2 and 5 - spheres in the second layer horizontally offset with respect to
those of the first layer, by a distance R along the direction of one of the sets of
rows

• Cases 3 and 6 - spheres in the second layer horizontally offset with respect to
those of the first layer, in a direction bisecting the angle between two sets of
rows and by a distance of R

√
2 in Case 3 and R

√
1/3 in Case 6
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FIGURE 2.15: Types of layers that can be created from packing of
spheres determined in Graton and Fraser (1935). A, square layers;

B, "simple rhombic" layers; C, special rhombic layers.

FIGURE 2.16: Six cases of stacking simple layers Graton and Fraser
(1935)

where R is the radius of the sphere. It should be noted that Graton and Fraser (1935)
is looking at simple systematic packing arrangements of either the square layer or
simple rhombic layer and that there are other arrangements that would give interme-
diate packing structures with different values of void ratio present. These will not
give the maximum or minimum values of porosity and permeability that is being
investigated in Graton and Fraser (1935) and this is why they were not considered.
Instead, just the loosest and tightest packing structures are.

Graton and Fraser (1935) state two of the ways of stacking the square layers are
identical to the ways of stacking the rhombic layers if orientation in space is ig-
nored. Therefore, there are only four different simple packings: cubic (Case 1), or-
thorhombic (Case 2 and Case 4), rhombohedral (Case 3 and Case 6) and tetragonal-
sphenoidal (Case 5). However, it is later stated that the orientation of the packing
is important as a structure that has spheres higher up in the system will possess a
higher potential energy in these particles. Table 2.6 gives the calculated volume of
void and total volume of a unit cell, with a unit cell being the minimum amount of
particles required to describe the whole structure.



2.4. Optimising of Placement 45

Packing Structure Cubic Orthorhombic Rhombohedral Tetragonal-Sphenoidal
Case Case 1 Case 2, Case 4 Case 3, Case 6 Case 5

Volume of unit cell 8.00R3 6.93R3 5.66R3 6.00R3

Volume of unit void 3.81R3 2.74R3 1.47R3 1.81R3

Porosity 47.64% 39.54% 25.95% 30.19%
Void ratio 0.91 0.65 0.35 0.43

TABLE 2.6: Table of volumes in a unit cell and porosity from Graton
and Fraser (1935) with void ratio calculated for each packing system.

Graton and Fraser (1935) discuss the stability of the packings. It can be appreciated
that a system where spheres sit directly on top of each other - cubic as with Case
1 - will be less stable. Therefore a sphere could move in any direction. The sphere
would then find itself in a laterally stable position with four points of contact. Mean-
while, a system like the orthorhombic packing is also positioned on a pinnacle and
could topple in any direction. However, the sphere has less distance to fall before
finding a stable position and the final position is more laterally stable as it would
have six points of contact.

Additionally, a packing with a lower degree of stability will have a tendency to trans-
late into a packing with a higher degree of stability when subject to an external force.
As stated by Graton and Fraser (1935), a more stable packing will usually lead to the
system having a lower center of gravity and this is achieved by the falling of parti-
cles to decrease the height of the system. This also leads to lateral spreading of the
system. Graton and Fraser (1935) suggests that indications of the relative stability of
the packings described are

• Lower porosity in the system

• The number of neighbouring spheres each sphere touches is larger, otherwise
known as the coordination number

• The number of tangent neighbours in the underlying layer is larger.

• A lower centre of gravity that the body of the packing has i.e. the vertical
spacing in the layers are less

• A system where spheres occupy a position where they have lower potential
energy so are less likely to move.

White and Walton (1937) outlined that there are five simple ways for spheres of equal
diameter to be packed. These packings were exact to those outlined in Graton and
Fraser (1935). The five packings in White and Walton (1937) are named here and
paired with their corresponding packing in Graton and Fraser (1935). Figure 2.17
presents these packings. In the figure is also the packing of ellipsoids-cubical, which
is a packing system using ellipsoids rather than circles which White and Walton
(1937) also included within the figure in their work. The five packings are

• Cubical, which Graton and Fraser (1935) defined as Case 1 and Cubic.

• Single-staggered or cubic-tetrahedral, which Graton and Fraser (1935) defined
as Case 2 and Case 4 and orthorhombic.

• Double staggered, which Graton and Fraser (1935) defined as Case 5 and tetragonal-
sphenoidal.
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FIGURE 2.17: Packing structures of spheres (White and Walton, 1937)
© Wiley. Image used with permission under the Creative Commons

Attribution 3.0 license (Creative Commons, 2014)

• Pyramidal, which Graton and Fraser (1935) defined as Case 3 and rhombohe-
dral.

• Tetrahedral, which Graton and Fraser (1935) defined as Case 6 and rhombohe-
dral.

White and Walton (1937) also calculated the void ratio for each packing. These
corresponded to the same values from Table 2.6 as presented in Graton and Fraser
(1935). Notice the difference between the number of packings, with White and Wal-
ton (1937) outlining five different packings and Graton and Fraser (1935) outlining
six before narrowing these down to four different types by ignoring orientation in
space. As outlined, the height of the sphere in the system contributes to stability.
Therefore it is important to take the orientation in space into account. White and
Walton (1937) groups Case 2 and Case 4 together like Graton and Fraser (1935). This
ignores the spacing between layers being different with Case 2 and Case 4 having
spaces of R

√
3 R

√
4 between layers respectively, which again does not account for

the potential energy of the spheres higher up in the system.

Whilst Graton and Fraser (1935) groups Case 3 and 6 together, it is clear that these
systems do differ from examining Figure 2.16. Although both systems have the same
volume of unit cell and unit volume, the spacing of layers differs with values of
R
√

2 and 2R
√

2/3 for Case 3 and Case 6 respectively. Again, this will not take into
account potential energy of the spheres and the stability of the system. As Graton
and Fraser (1935) and White and Walton (1937) are not concerned with the stability
of the system but rather the minimisation of void, it is reasonable that they would
group cases together by ignoring the orientation of the packing system.

White and Walton (1937) go on to discuss how the minimum void ratio of 0.26 can be
further reduced by the inclusion of smaller spheres so long as these spheres are small
enough so they do not displace the existing primary spheres in the structure. These
spheres are referred to as the secondary spheres in the structure. The void ratio
can then be further reduced using tertiary spheres that fit between the primary and
secondary. This process can continue, although a point will be reached where the
reduction in void is negligible. Sohn and Moreland (1968) agreed with this statement
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FIGURE 2.18: Effects of fines on binary packing of spherical parti-
cles (Cubrinovski and Ishihara, 2002). L denounces the most dense
packing of the spherical particles without any fines. Figure used with

permission from author.

and found that an extended particle size distribution in a multiparticle system will
lead to an increase in density of the sample.

Smalley (1971) built on the work of Graton and Fraser (1935) and devised that there
were nine different simple packing structures for ideal spheres, a subset of which are
the four defined by Graton and Fraser (1935). Smalley (1971) defines the packings
using the Voronoi polyhedron method that can be drawn between the centre of each
sphere. Whilst the work completed by Graton and Fraser (1935), White and Walton
(1937) and Smalley (1971) is helpful to understand the features that can be used to
assess stability in a packing, the simple packing structures used are based on ideal
spheres. These sorts of shapes are not adopted in this research. As stated by Smalley
(1971), it is not possible to establish a real relationship with ideal models and real
materials which are more likely to have a random packing structure.

Cubrinovski and Ishihara (2002) investigated the packing of ideal spheres further
and looked at using a binary mixture. It was shown that the addition of finer ma-
terial would fill the voids of the structure, reducing the value of emin. This decrease
stops at a percentage fine fraction where the finer material starts to replace the al-
ready present solids which is shown on Figure 2.18 at point T. At Here emin begins
to increases again. Cubrinovski and Ishihara (2002) outlines that the smaller spheres
will only fill the gaps between particles if they are at least 6.5 times smaller than
the larger spheres. This was originally proved in Lade et al. (1998) which illustrated
the change in void ratio of a system of two spherical particles with varying ratio of
dlarge

dsmall
, where dlarge is the diameter of the larger sphere and dsmall is the diameter of

the sphere making up the fines. As seen in Figure 2.19, void ratio decreases sharply

from
dlarge

dsmall
=1 until approximately

dlarge

dsmall
=7, before starting to trend towards the the-

oretical minimum. The work in Cubrinovski and Ishihara (2002) and Lade et al.
(1998) agrees with White and Walton (1937) and Sohn and Moreland (1968) that a
well graded sample will lead to a lower void ratio, as the smaller particles can fill
the gaps which larger ones may not be able to.
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FIGURE 2.19: Minimum void ratios obtained for binary mixtures of
steel shot plotted versus ratio of large to small diameters as presented

by Lade et al. (1998) © ASTM.

Additionally, Cubrinovski and Ishihara (2002) reviewed existing experimental data
in the literature to investigate the effect of fines content in gap-graded soil mixtures
on emax and emin. Data for over 300 naturally sandy soils were analysed. It was ob-
served that both emax and emin initially decrease as fines content increases from 0%
to about 20% and at this stage it can be said that the fines are filling the voids in
the structure. Between 20% and 40% a transitional stage is seen. From 40% and up-
wards, the fines start to replace the larger particles and an increase in emax and emin
is exhibited. The minimum value for emax and emax are obtained in the transitional
zone somewhere between 20% and 40%. Alternatively, the effect of fines content was
investigated on natural sands with a range of fines from 0% to 70%. The relationship
between emax and the fines content is almost proportional whereas the relationship
between emin and the fines content shows only a slight increase. It is clear that the
relationship between fines content and minimum void ratio is different in naturally
occurring sands and gap-graded mixtures. This is most likely due to the gaps in
which the fines would fill not being as present in the structure for naturally occur-
ring sands. Cubrinovski and Ishihara (2002) shows that values for emax and emin of
sands are typically around 0.98 and 0.61 respectively.

Shergold (1953) outlines three important factors affecting the void ratio in an ag-
gregate. These are stated to be grading, compaction and particle shape which are
also outlined to affect void ratio in White and Walton (1937). The work in Sher-
gold (1953) was completed by measuring the void ratio for samples of very rounded
beached gravel and slightly rounded river gravel. The results presented showed
that the beached gravel had a lower percentage void compared to the river gravel.
Additionally, samples which were compacted more had a lower percentage void.
Lees (1964) disagrees with the findings in Shergold (1953) and states that nowhere
in their work do they prove that angularity is the only (or even main) property of an
aggregate controlling the porosity in a compacted condition. Lees (1964) argues that
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only a small number of samples were tested in Shergold (1953) . Furthermore, to add
agreement with Lees (1964), only samples using rounded particles and slightly less
rounded particles were trialled when angular gravel or fragmented particles could
have been tested.

Wakeman (1975) investigates the density of samples where fluidisation using air was
utilised to created looser packings. The research conducted in Wakeman (1975) sug-
gests denser packings can be achieved with angular particles compared to spherical,
as particles can tightly fit together into available void spaces given their range of
shapes. This contrasts the work done by Shergold (1953), further suggesting that
the study conducted was for two samples which can both be considered rounded
and that samples of angular or very angular particles should have been tested. Sher-
gold (1953) is mainly showing that rounded particles produce a better packing than
less-rounded particles, which could be due to their shapes not fitting together and
leaving more gaps compared to ideal spheres but does not necessarily mean this is
the case with very angular particles. Physically it makes sense that angular parti-
cles would be able to fit together better, however, it relies on the condition that the
angular particles are the correct shape to be able to slot between spaces.

From a study into particle size and shape, Cubrinovski and Ishihara (2002) found
that there is an increase in emax with increase in mean grain size and that this is more
pronounced in systems with fine grains. From the relationship between emax and
emin, it can be concluded that emin must increase as mean grain size increases. Ad-
ditionally, an increase in void ratio was experienced with an increase in angularity.
White and Walton (1937) agrees with this as it was found that water rounded sand
grains have 2-5% less voids than corresponding sharp grains because they form a
better packing. Therefore, the void ratio in an aggregate depends on the size of the
particle, the shape and the packing arrangement. However, it can be understood
that the samples tested were poured or tampered to get the particles into a state of
minimum void. It is more difficult for angular particles to rotate and find themselves
in a position where they can reduce the void in a structure. If the particles possess
shapes so that they can be fitted together so that each lie in the gaps between others,
then potentially a lower minimum void ratio can be obtained by individual place-
ment of particles like the approach seen in Johns et al. (2023). Therefore it is more
important how the particles are fitted together rather than the actual shape of the
grains.

2.4.2 Optimisation Approaches

Before exploring the optimisation of bin packing which is discussed in Section 2.4.3,
it is important to discuss different types of optimisation. Two types of optimisation
approach are explored: deterministic and heuristic. Both of these have been used to
provide solutions for the bin packing problem.

Deterministic optimisation algorithms reject solutions which do not meet conver-
gence conditions in different iteration steps (Yan et al., 2021). In this way, if a deter-
ministic algorithm receives the same input then it will give the same output without
need for communication required between other results (Ren et al., 2014). Determin-
istic approaches have less constraints upon them and are used to find an optimal
solution that is replicable. The disadvantage of deterministic algorithms is that they
can become trapped in a locally optimal solution (Yan et al., 2021). Additionally,
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there is no processing flexibility to reduce computational time due to the need for a
strong guarantee on results (Ren et al., 2014).

Yan et al. (2021) states that heuristic optimisation approaches have a given possibil-
ity to accept all solutions including those that do not meet convergence conditions,
enhancing the ability of the algorithm to escape from a locally optimal solution. In
other words, a deterministic approach is usually adopted to find an exact solution
whilst a heuristic approach is usually adopted to find an approximate solution but
at a faster computational time. Heuristic solutions have no guarantee on produced
an answer that is optimal but give a good estimation as to what an optimal solution
could be.

It has been shown that the the bin packing problem is NP-hard (Garey and Johnson,
1979; Zehmakan, 2015). NP (nondeterministic polynomial time) is a complexity class
used to classify decision problems. If a problem is NP-hard, then it can be said that
no algorithm that can solve the problem in polynomial time is known (Bellare and
Rogaway, 1995; Mann, 2017 as cited by Chen et al., 2021) and that the time to reach a
solution is undetermined. Therefore, this makes these problems difficult to solve in a
reasonable amount of time. Heuristic, meta-heuristics and hyper-heuristics are often
used for solving NP-hard problems (Chen et al., 2021). Many heuristic approaches
are explored in this literature review such as those in Section 2.2.4 as well as the ones
in Sections 2.4.3-2.4.5. Two heuristic optimisation techniques are defined here to aid
discussions that take place in Sections 2.4.3-2.4.5. These are simulated annealing and
genetic algorithms.

Simulated Annealing

Simulated annealing (SA) optimisation was introduced by Kirkpatrick et al. (1983).
Within it, an initial case is presented. Then a step is taken to apply a new state. The
new state is evaluated and if this new state improves the system in terms of towards
an aim or target then it is accepted and becomes the new design state. This can lead
to the chance of finding a local minima and taking that as a false minimum solu-
tion. Therefore, if the step does not improve the system in relation to the objective
function, it may still be accepted with a probability that is linked with an analogy of
annealing metals. The probability is calculated by

P = e
−

∆C
T (2.8)

where ∆C is the change in objective function due to the step and T is the current
temperature. This temperature decreases as time increases, simulating the cooling
that occurs in the annealing of metals. Hence the name for this optimisation method.
This leads to a broader exploration of the objective function to begin with.

Genetic Algorithms

Genetic Algorithms (GA) are an optimisation technique based on Charles Darwin’s
theory of evolution and natural selection. GA was first introduced by Holland
(1975). The idea behind GA is that a starting population is modified, or "evolved",
and over successive generations an optimal solution is formed. GA is generally com-
posed of two processes. The first is a selection of individuals from the population
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FIGURE 2.20: Flow chart of a GA system (Haldurai et al., 2016) ©
2016, IJCSE used under Creative Commons Attribution License (Cre-

ative Commons, 2013b).

for the production of the next generation. The second is manipulation of the selec-
tion in order to produce the next generation. There are two techniques in which
these are manipulated - crossover and mutation (Razali and Geraghty, 2011). A flow
chart of the different processes in GA is presented in Figure 2.20. Note, GA is a form
of evolutionary algorithm. GA focuses on representing the problem as forms of bit
strings whereas evolutionary algorithms can represent the problem using vectors of
real-valued numbers. Both work in a similar fashion.

As stated in Haldurai et al. (2016), the selection mechanism determines which indi-
viduals are chosen for reproduction as well as how many "offspring" each selected
individual produce. Individuals have a higher chance of being selected for repro-
duction if they are of a higher quality result, although there is still chance a lower
quality individual is chosen for reproduction. This process is in order to not lose
features which might actually lead to more optimal solution, and it is this feature
which stops the algorithm arriving at local minima. A good search technique must
find a balance between exploration (adopting poor solutions in order to explore the
search space) and exploitation (adopting food solutions for the next generation to
improve results) within the mechanism of selection (Beasley et al., 1993). Each in-
dividual is given a "fitness score" dependent on how well the individual meets the
objective criteria (Haldurai et al., 2016). The higher the fitness score, the higher the
chance that this individual will be chosen to produce offspring. For further detail on
different selection methods, see Haldurai et al. (2016).

The form of manipulation described as crossover is when two individuals "mate"
with each other to produce offspring. Two parents are taken and different operators
can be performed to produce offspring with a mixture of characteristics from both
individuals. An example of single point crossover is given in Figure 2.21 for two
individuals where characteristics are described in binary form. A point is made after



52 Chapter 2. Literature review

FIGURE 2.21: Crossover of two individuals to create offspring, with
a mutation occurring in one of the offspring (Beasley et al., 1993) ©

ORCA (2021).

the 4th term and two offspring are produced - one with the first four terms from the
first parent and six terms from the second parent and the other with four terms from
the second parent and six terms from the first parent. Other methods exist such as
two point crossover, uniform crossover and any other method specified by the user
(Haldurai et al., 2016).

The second form of manipulation is mutation of an individual to produce a new
set of characteristics. An example of this is also seen in Figure 2.21 where one of the
produced offspring mutates by the change of one of its binary terms. This can be per-
formed on offspring of individuals in a new generation or on parents without per-
forming crossover. However, the process is normally formed after crossover (Haldu-
rai et al., 2016). Mutation allows for a small amount of random search and prevents
areas of the search space having zero probability of being investigated (Beasley et al.,
1993).

Once the next generation is produced, survivor selection takes place. It is decided
by the user if individuals are taken from the current generation or if individuals
from older generations are taken forward additionally. The probability of survival
is also described by the user and if this is determined by fitness score or another
method. Once this is complete, individuals are again selected for producing the next
generation and this process continues until termination of the program.

By selecting the best individuals from a current generation and mating them, a new
generation is formed that contains a higher proportion of the characteristics pos-
sessed by individuals that score higher in the fitness score. In this way, "good" char-
acteristics can be spread through the population and are mixed with other "good"
characteristics. Favouring the mating of higher scoring individuals means that the
search space is explored in the more promising areas. If the GA has been designed
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well the population will converge to an optimal solution to the problem (Beasley et
al., 1993). GAs do not guarantee a global optimal solution to a problem but generally
will provide an acceptably optimal solution to problems at an acceptable computa-
tional speed (Beasley et al., 1993).

2.4.3 Bin Packing and Stock Cutting

Examples of an optimisation problem where packing of shapes to create minimal
void in an area are cutting and packing problems. Specifically, bin packing is the
process of filling containers or “bins” with a number of objects and cutting refers
to creating a number of items from “stock” materials. The general concept of these
problems is to find a solution that minimises the amount of wasted space, which is
normally taken to correlate to the minimisation of cost. This leads to the minimum
number of bins or the least amount of stock used. These problems are linked to
many industrial applications, such as the cutting of wood, glass or other materials
from larger sheets to smaller sections or the packing of transportation vehicles and
warehouses. Although bin packing and stock cutting are defined in different ways
using real life scenarios, the problem can be described as having the same basic
definition (Delorme et al., 2016). The user is required to cut/pack a given number
of items from/into the minimum number of stock/bins, fitting the shapes into the
dimensions of the bins. Further restraints can be added to the problem such as the
weight of the combined items cannot be over a given limit or only certain types of
cuts can be made. The bin packing problem is known to be NP-hard (Garey and
Johnson, 1979). Therefore, research has concentrated on approximation algorithms.

Eisemann (1957) was one of the first papers to look at solving the cutting stock prob-
lem. Eisemann (1957) investigated the cutting of smaller rolls of a material from a
large roll of the same width. This replicates the manufacturing of rolls of paper, tex-
tiles or metallic foil. The aim for the solution is to be able to cut the required rolls of
material using the minimum number of larger rolls, therefore reducing the leftover
trimmings to a minimum. Figure 2.22 shows an example of a stock with the place-
ment of cuts along the length to produce a subset of items and the trim left over
from the cutting. The problem can be considered one-dimensional as the diameter
of the stock (the large roll) is the same as the diameter of the subset of items (the
smaller rolls) so only the placement of cuts along the length of the roll is considered.
Eisemann (1957) defines the constraints to the problem such as the number of cuts
must equal the number of items created. This is demonstrated in Figure 2.22 as four
cuts are utilised to produce four items, with trim being left over. As well, in Eise-
mann (1957) the use of two machines is considered with the restraint that one must
not finish more than 2 hours after the other. The solution is calculated using linear
programming as the problem is set out by linear constraints and Eisemann (1957)
describes that this was produced in 5 minutes by computer. The paper was written
in 1955, so it is sensible to assume that this would be completed at a much faster rate
as computational powers have drastically improved since then. Gilmore and Go-
mory (1961) and Gilmore and Gomory (1963) expanded on the cutting problem and
determined that it was necessary to use dynamic programming to derive a solution.
A column generation approach was utilised to solve the problem, which generated
such an immense number of columns that dynamically generating the columns was
needed, hence the requirement for dynamic programming.
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FIGURE 2.22: Example of one-dimensional cutting stock problem.

Gilmore and Gomory (1965) suggested the first model to attempt to solve two di-
mensional packing problems by looking at cutting rectangles from larger rectan-
gular sheets. This built upon the column approach for one-dimensional problems
in Gilmore and Gomory (1961) and Gilmore and Gomory (1963) which provides
an enumeration of all the patterns of the items that are to be fit into the container.
Gilmore and Gomory (1965) states that if a column generation technique is used for
a two-dimensional problem then no economical method is known. Therefore, the
concept of "guillotine cuts" to apply more constraints to the problem is introduced.
A guillotine cut can be described as one which cuts all the way across the material
and must end at an edge - either the border of the material or where a slice has al-
ready been made. An example of stock being cut using guillotine cuts is displayed
in Figure 2.23. Restricting the number of cuts allows for a lower number of patterns
that can be produced reducing the complexity of the problem. This is a fair assump-
tion to make as methods in industry do use these styles of guillotines cuts but not all
problems can be simplified by introducing constraints, for example if the solution
required did not use guillotine cuts, so therefore a column generation technique is
not an optimal solution for two or three dimensional problems.

FIGURE 2.23: Example of two-dimensional cutting stock problem
with guillotine cuts.

Herz (1972) took the problem outlined by Gilmore and Gomory (1965) and the use of
guillotine cuts and produced a solution using a recursive tree search procedure. The
algorithm involves trying every possible first dissection line and retaining the one
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which gives the maximal total value for the two partial dissections. The number of
cuts is reduced by discretising the position of where cuts can occur by the abscissa
and ordinate of the rectangle being cut. Additionally, the item being cut from the
stock is forced to the left and bottom to minimise the number of positions a cut can
be made, as a cut cannot be made within the size of the item. Herz (1972) states
that recursive solutions are 20% quicker in computational time compared to itera-
tive techniques like Gilmore and Gomory (1965) but that iterative techniques give
optimal dissections to produce every subrectangle which the recursive method does
not lead to. Therefore, it is possible that a true optimal solution could be missed by
not testing all possible packing scenarios.

Beasley (1985) considered this cutting stock problem without guillotine cuts and
chose a binary depth-first tree search procedure to solve the problem. Two dimen-
sions were considered by using discrete coordinates at which items could be allo-
cated. Integer linear programming was used so that

xipq =

{
1 if item i is placed with its bottom left hand corner at (p, q)
0 otherwise

(2.9)

where i represents the item and p and q represent the coordinates at which an item
can be placed. The problem is trying to cut rectangular objects from a larger rect-
angular stock and the orientation is fixed. Beasley (1985) states that this assump-
tion can be removed by extending the problem formulation and solution algorithm
to cope with non-square pieces that can be oriented in either direction. However,
as rectangles are being created it is best to assume an orthogonal cutting pattern.
Beasley (1985) shows that a Lagrangian-based tree search is capable of solving non-
guillotine cutting problems with orthogonal cuts. However, as stated in De Cani
(1978), orthogonal cuts restricts the size that can be cut from stock items and there-
fore non-orthogonal cutting should be considered.

In can be understood that bin packing and cutting stock problems are very similar,
with both focusing on fitting smaller shapes into a larger shape. Focusing on bin
packing problems, there is a wide range of literature on this subject. Bin packing
algorithms can be described as "off-line" or "on-line". Off-line assumes the algorithm
has full knowledge of the whole input (Lodi et al., 2002) whereas on-line algorithms
pack every item using the information of that item and items already placed and
assumes no knowledge of subsequent items (Csirik and Woeginger, 1998). In on-
line packing, placed items cannot be repacked and their placed location is deemed
their final positioning in the system.

A common method for bin packing problems is to fill these bins from left to right
forming rows. These are called "levels". The height of these levels are determined by
the tallest item packed on the level below, and therefore items are placed in decreas-
ing height order. Lodi et al. (2002) gives a review for off-line bin packing problems.
In the work, it describes that there are three classical strategies for level packing.

• Next-Fit Descreasing Height (NFDH) - the item is packed to the left of the bin
on the current level starting on the first level. If it does not fit, a new level is
created and the item is then packed onto this new level.

• First-Fit Decreasing Height (FFDH) - the item is packed to the left of the bin on
the first level of which it will fit. If it cannot fit on a level, a new level is created.
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• Best-Fit Decreasing Height (BFDH) - the item is packed onto a level in which it
will fit. The placement which leaves the minimum horizontal space is priori-
tised. If it cannot fit on a level, a new level is created. For example, in Figure
2.24, item D could be placed on the first or second level. The placement of D on
the second level leaves the minimum distance between the item and the right-
hand side of the box, so this level is chosen. This provides a greater width on
the first level. As width is not decreasing, there is a likelihood that this greater
width is required.

FIGURE 2.24: Bin packing strategies of NFDH, FFDH and BFDH sug-
gested by Lodi et al. (2002) using a set of 6 items which are identical

for each case of packing strategy.

These methods are commonly used in strip packing, where the bin’s height has no
constraint other than it should be the minimum value possible. An example of where
these are used can be found in Coffman et al. (1980) where NFDH and FFDH algo-
rithms are analysed. It can be understood that these approaches would need some
sort of pre-processing step to sort the items into height order, therefore requiring an
off-line assumption.

Chung et al. (1982) introduced a two-phase algorithm for finite bin packing. Firstly, a
strip is packed using the FFDH method to give levels of items. These levels are then
packing into bins of finite size using another First-Fit Decreasing algorithm. This
algorithm was named Hybrid First-Fit (HFF). Berkey and Wang (1987) proposed a
similar algorithm called Finite Best-Strip (FBS) that worked in a similar fashion, but
used a BFDH strategy to create levels before packing these into bins using a Best-Fit
Decreasing algorithm. It can be envisioned that a variation of these methods based
on NFDH and then a Next-Fit Decreasing algorithm would be possible. As Lodi et
al. (2002) describes, this is essentially a one-phase algorithm as the bins have a fixed
height and choosing the next bin for the the levels in the order they are created is
equivalent to creating a new bin and packing the level there. Frenk and Galambos
(1987) tested this Hybrid Next-Fit (HNF) algorithm. The use of more bins can be
expected as there is no possibility to return to a previous bin or level once a new bin
or level is started.

Lodi et al. (1999a) and Lodi et al. (1999b) presented a two-phase algorithm solution
called the Floor-Ceiling (FC) approach. Rather than just using the floor of each level
to place items, the "ceiling" of the level was used which was the top of that current
level (or the base of the next level). Items packed on the floor were packed left to
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FIGURE 2.25: Results of an FC approach for bin packing.

right as with previous algorithms discussed. Items packed on the ceiling of each
level were packed from right to left. These levels were then packed into bins using
either a Best-Fit Decreasing algorithm or an exact algorithm for one-dimensional bin
packing problems.

Berkey and Wang (1987) presented several heuristic algorithms and compared these
with various test problems using rectangular bins and packing sets of randomly
generated rectangles. The aim of the tests was to produce the minimum required
number of bins. The algorithms developed are described in detail within Berkey
and Wang (1987) but a summary is given here. A HFF algorithm was also tested for
comparison. It should be noted that these are not two-phase algorithms as the items
are being directly packed into finite bins. All rectangular items were pre-sorted into
height order apart from the Finite Bottom-Left heuristic which was pre-sorted into
decreasing width. The algorithms developed were as follows.

• Finite Next-Fit (FNF)
For FNF packing, only one bin is available for packing at one time. Items are
packed using the NFDH level-oriented packing method. Once this bin is filled,
the next bin is created and this is packed. In this way, it is exactly the same as
the HNF method described by Frenk and Galambos (1987).

• Finite First-Fit (FFF)
FFF uses the FFDH method to pack bins using levels. However, whereas FNF
only packs one bin at a time, all bins that are created are retained and available
for packing. The packing is completed by checking the first bin at all levels.
If no space is available, the next bin is checked. If no space is available for all
bins, a new bin is created.

• Finite Best-Strip (FBS)
The FBS algorithm packs items into an infinitely long strip using the Best-Fit
packing approach to select the level for packing, like in Figure 2.24. These
levels are then turned into blocks with a height equivalent to the tallest item in
the level, which are then fitted to the bins using a best-fit algorithm. A binary
search tree structure is utilised for packing the blocks created from the first
phase which led to longer runtimes for small packings but showed increased
efficiency as the number of items to be packed increased.

• Finite Bottom-Left (FBL)
FBL algorithm searches each bin for the lowest and left-most location for which
the item can be placed. If no bin exists which the item can be placed in then
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a new bin is created. Each bin is represented as a linked list of vertices which
define the boundaries. In this method, an area which becomes closed off by
placed items is called a subhole and is described in Chazelle (1983). Possible
packing locations must be searched for all subholes of all bins. As shown by
Chazelle (1983), the searching for every subhole takes up computer processing
time, and it was found in Berkey and Wang (1987) that the memory space to
maintain the boundary of each subhole created was excessive leading to less
items being packed compared to the other methods. To overcome this problem,
a next bottom-left (NBL) heuristic was created which also packed bins using a
bottom-left algorithm. However once a new bin was created, subholes of the
previous bin were removed meaning essentially only one bin was active at a
time (like in the FNF method).

From the results in Berkey and Wang (1987), it was observed that FFF, FBS and HFF
led to the least number of bins suggesting the most efficient packing methods. The
FBL algorithm resulted in less efficient packing and the Next-Fit heuristics led to the
least efficient packing. In terms of computational time, FNF ran the fastest of all
the tests which is to be expected as only one bin is ever available at one time. FFF
and HFF were slow for large numbers of packed items whereas FBS was slower for
small numbers of items but quicker as the number of items to be packed became
larger. FBL and NBL took the most time out of all the packing methods.

Lodi et al. (1999a) proposed a new heuristic method that focused on creating patterns
not requiring guillotine cuts by packing items from left to right, then from right
to left in the lowest possible position and called it the Alternate Directions (AD)
algorithm. A lower bound, Lo, is found for the most optimal solution for packing
and the number of bins that this requires are initiated. A subset of items are packed
using a BFDH method into these Lo bins. The remaining items are then packed using
a BFDH method so that the item touches the edge of the previously placed item (or
the edge of the bin if the first item placed in that level) at the lowest location possible.
When an item cannot be placed moving from left to right, placement moving from
right to left is attempted. If the item can still not be placed, a new bin is initialised
and selected for placement. An example of this is in Figure 2.26. The 12 items for the
problem are displayed in height order and the lower bound value is found to be 2.
Therefore, two bins are initiated and the subset of items is packed (Item 1, 2, 3, 5, 6
and 7). The rest are then placed in the BFDH method moving from right to left. For
the 12th item, there is no vertical room for the item and this initialises a new bin for
placement.

Lodi et al. (1999a) also proposed a third method of the Touching Perimeter (TP) algo-
rithm. Items are first sorted into decreasing area of the item rather than decreasing
height and are configured to be horizontally orientated. Like AD, the lower bound
optimal solution is found and the number of bins required for this is initialised. The
first item in a bin is always packed to the bottom left of the bin. After this, packing
position is determined so that each item has its bottom edge touching the bottom of
the bin or the top edge of another item and its left-most edge touching the left edge
of the bin or the right edge of an item. Lodi et al. (1999a) states that each position
is given a score defined by the percentage of the item’s perimeter that touches the
edge of the bin or already packed items and this is stated to favour patterns that do
not trap small areas of space. The packing positions are analysed twice for two item
orientations and the position chosen is that which has the highest score. An example
of TP packing is repeated in Figure 2.27 with the 12 shapes used in the example of
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FIGURE 2.26: Example of AD bin packing approach.

AD packing in Figure 2.26. As the shapes are ordered into decreasing area, the new
packing order becomes {3, 1, 2, 4, 11, 12, 10, 8, 5, 6, 9, 7} rather than 1 through to 12.

FIGURE 2.27: Example of TP bin packing approach using the same
rectangles as Figure 2.26.

There are multiple techniques for calculating the lower bound of the solution for a
bin packing problem. The first and simplest for two-dimensional bin packing (2BP)
is the continuous lower bound solution (Lodi et al., 2002) which is used to solve a
lower bound value for rectangular items being packing into a rectangular bin size.
This is given as

Lo =
∑n

j=1 hjwj

HW

where Lo is the lower bound solution, hj and wj are the dimensions for each item
being packed and HW is the area of the bin. The use of a lower bound solution
will not be used in this project. The lower bound is used to calculate the minimum
number of bins required for a certain number of items. In this scenario, there will
only ever be one bin and the optimisation of placement is being examined. Although
a lower bound could be calculated to find the maximum number of items that could
fit into a bin giving an answer to the minimum void ratio possible, this will not
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necessarily lead to a maximum strength nor will it necessarily be an achievable void
ratio. This formula is shown as an example to help understand the process of AD
and TP. More information on lower bound solutions can be found in Martello and
Vigo (1998).

The methods that have been covered so far are off-line packing methods which have
full information on the whole problem. To consider an additive construction method
that uses cobbles/boulders as its material, it can be imagined that this would consist
of some sort of anthropomorphic arm placing particles whilst these are delivered
by a device such as a conveyor belt. The system would not have full knowledge of
every particle available for packing if the possibility of more particles arriving exists.
Therefore it is necessary to look at on-line algorithms for bin packing to find more
suitable solutions which would pack objects by an item by item basis. Csirik and
Woeginger (1998) gives a review on on-line packing algorithms.

On-line algorithms have similar methods based on the classical methods described
for off-line algorithms. These include Next-Fit (NF), First-Fit (FF) and Best-Fit (BF)
which follow the same method as NFDH, FFDH and BFDH but without the pre-
processing step of ordering the items as it is assumed that full information of the
problem is unknown. Johnson (1974) also introduces and describes the FF and BF
algorithms to be suitable for an "any fit" (AF) constraint, meaning that if a bin is
empty then an item will not be placed in this bin unless it cannot be placed in any
other bin. In addition, Johnson (1974) describes the "almost-any fit" (AAF) constraint
which follows that an item cannot be placed into the bin at the level with the most
space available unless the item does not fit into any other level. Johnson (1974) goes
on to describe two more algorithms, the worst fit (WF) that follows an AF constraint
and the almost-worst fit (AWF) that follows an AAF constraint. WF algorithms pri-
oritise packing an item into a non-empty bin with the largest gap, and creating a
new bin if the item does not fit into any bin. AWF does a similar process but chooses
the second-largest gap for the item to be packed. If the item does not fit into this
gap, it is placed into the largest gap providing it will fit and if this is not possible a
new bin will be initialised. Csirik and Woeginger (1998) also discusses the idea of
limiting the number of active bins that items can be placed and suggesting that once
a bin is "closed" it cannot be returned to for more packing of items.

In addition, scenarios which can be classified as semi on-line bin packing prob-
lems can occur. These problems arose in dynamic bin packing problems, where it
is thought that once a bin can no longer have an item placed within it, it is full and
closed permanently. This is to emulate scenarios such as a lorry being filled with
boxes that moves on once full to make space for the next lorry. Galambos and Woeg-
inger (1993) introduced a scenario where repacking of items in the currently active
bin is allowed. This repacking system means that the packer is allowed to take all
items out of the currently active bin and reassign them before packing the next item.
It can be envisioned that as the number of items in the bin increases then the increase
in computational time will be exponential. As stated by Csirik and Woeginger (1998),
the use of completely unlimited repacking leads to an off-line problem. As the last
item is packed, the whole system can be repacked. This is the same as off-line bin
problems for that bin as all items and their corresponding information that are to
be packed are known. Instead, Gambosi et al. (1990) suggested for every new item
that a small selection of repacking moves could be made. In this method, a single
or multiple items are removed from the current bin and packed into the next bin.
Gambosi et al. (1990) suggested two algorithms for this method, the first repacking
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three items per new item and the second repacking seven items per new item. Both
these cases were found to improve on the results of the classic model that does not
allow for any repacking of items (Csirik and Woeginger, 1998).

Research is not just limited to the packing of two-dimensional items, but also bin
packing of three-dimensional problems has also been explored. The three-dimensional
problem looks at packing items characterised by width wj, height hj, and depth dj
into bins characterised by width W, height H, and depth D. The three-dimensional
case is harder to tackle than the two-dimensional case, and the approaches for 2BP
problem cannot be extended for the three-dimensional case and still arrive at an
optimal solution (Crainic et al., 2008). Like with two-dimensional problems where
shelves of items are packed into an infinite strip and then later sorted into finite bins,
for example in Chung et al. (1982), three-dimensional problems can be solved in a
similar fashion by using a 2D algoirthm which can then be rearranged into three-
dimensional containers. George and Robinson (1980) introduced this approach for
the three-dimensional bin packing problem. The container is filled by a number of
layers across the depth of the container. This approach leads to the under-utilisation
of space in the containers as gaps are formed between layers.

Martello et al. (2000) introduced a new algorithm for 3D bin packing problems. This
was completed by separating items according to their depth into a subset Jo,...., Jq−1
where q = [log2Ddomain]. Item j is assigned to set Ji if

Ddomain

2i+2 < dj ≤
Ddomain

2i (2.10)

These items are then packed for each slice into the depth of the domain, Ddomain,
with the corresponding items in the subset that represents that depth. All bin slices
will have a width, W, and height, H. Thus, the slices can be combined to fill up the
bins from one end to the other. This was used by Martello et al. (2000) to find the
continuous lower bound solution.

Martello et al. (2000) goes on to develop a new algorithm which it named 3D-Corners.
In this, corner points are found to be where the shape of the envelope of the surface
of the packed items changes from vertical to horizontal. These are found in the 2D
slices as described before and an example of an envelope with corner points high-
lighted is found in Figure 2.28. These are determined for each slice and used as
possible locations for subsequent items to be placed. To prevent duplication of cor-
ner points upon items, corner points were removed if another lay "behind" it on
the same plane. A branch and bound strategy is then used to determine the optimal
placement of the items within the bin and whether a given set of items can be packed
into the bin or not. Boef et al. (2005) states that the algorithm in Martello et al. (2000)
only allows for "robot" packing and will therefore not be able to come up with a
truly optimal solution. A robot packing is described to be one which cannot place
an item in a location if there is another item in front of, right of or above the desired
placement. The term comes from the use of robot manipulators used for packing
and their limitations on placing of items. Thus, an extension of the algorithm was
developed in Martello et al. (2007) which allowed for items to be located to the right
of the object being placed. Crainic et al. (2008) states that even with this extension,
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FIGURE 2.28: Envelope of a 2D slice with corner points indicated
by black dots as would be determined by the method described in

Martello et al. (2000).

the algorithm still leads to a loss of space and the method relies on the sequence of
items as they are packed into the container.

Crainic et al. (2008) built on the idea of Corner Points in Martello et al. (2000) and in-
troduced the concept of Extreme Points (EP) in order to tackle the problem of under-
utilisation of space. If an item, k, with sizes wk, dk, and hk is packed into a bin with
its left-back corner in position (xk,yk,zk), then Extreme Points are generated where
additional items can be packed. These are generated at (xk + wk, yk, zk), (xk, yk + dk,
zk), and (xk, yk, zk + hk). If the item is the first to be placed these EP are generated
as the first three EPs. If the item is not the first to be placed in the bin, these points
are taken and projected through the other two axis (for example, at point (xk + wk,
yk, zk), a projection would be done in the Y and Z axis) to get two EPs, resulting in
a maximum of six EPs in total. Each point is projected on all items lying between
item k and the walls of the container in the respective direction, with the nearest one
in that direction of projection being chosen. See Figure 2.29 for an example of the
development of EPs by the placement of an item.

The use of EP and then a First-Fit Decreasing (FFD) or Best-Fit Decreasing (BFD)
approach to packing was combined to fill bins with rectangular items. The order in
which items are sorted to be decreasing can be determined by the user, whilst six
different approaches were tested. One example of these would be Volume-Height,
where the items are sorted into decreasing volume, with decreasing height being
used when two items have the same volume. These methods are very similar to
FFDH and BFDH methods used in the two-dimensional cases. However, it should
be noted that the scoring system for the BFD method was tested against several
different merit functions. These were

• Minimise the free volume left in the bin. In this way, it is the most similar to
the BFDH where the minimum amount of area on the shelf is prioritised

• Minimise the maximum packing size on the X and Y axes



2.4. Optimising of Placement 63

FIGURE 2.29: Example of the development of Extreme Points as sug-
gested by Crainic et al. (2008). Clear circles represent intial EPs and

black circles represent projected EPs.

• Level the packing on X and Y axes. This is a modified version of the previous.
If the packing size is increased by the placement of the item, the position that
minimises this increase is chosen like before. Otherwise, the position that min-
imises the distance between the side of the box envelope of the packing and
the side of the accommodated item is chosen.

• Maximise the utilisation of the EPs residual space. The residual space is the
distance from an EP, along each axis, from the bin edge or the nearest item.

A comparison between the use of EPs and Corner Points was conducted in Crainic et
al. (2008) and it was determined that the use of EPs give better results for negligible
computational effort. Indeed, from the comparison, it appears that the EP approach
either matched or outperformed the Corner Point approach for each test when using
an FFD heuristic. No comparison between the two was done for the BFD heuristics
introduced.

It should be noted that the packings looked at so far have all been packings of regu-
lar, rectangular items into a regular, rectangular bin. When it comes to soil particles,
these will not have rectangular shapes so it is required to consider packing with ir-
regular shape profiles. Irregular shape packing problems hold lots of challenges due
to the complex geometry which can massively increase computational time when
compared to rectangle bin packing (Abeysooriya et al., 2018). As a result, exact solu-
tions cannot be found in a reasonable amount of time and rather a heuristic approach
should be taken forward (Terashima-Marín et al., 2010).

Jakobs (1996) introduced the Bottom-Left (BL) placement heuristic designed for pack-
ing polygons of any shape. The item starts at the top-right corner of the bin. It then
slides vertically downwards until it hits another item or the bin’s edge. The item
then slides horizontally to the left as far as possible. This movement of down then
left repeats until the item can no longer be moved, as demonstrated in Figure 2.30(a).
Liu and Teng (1999) modified this to create the Improved-Bottom Left (BLLT) heuris-
tic. This worked it the same way as the BL-algorithm. However, from the vertical
movement downward, the item would then follow the contour of the already placed
items. Therefore, it moves in each direction for less distance horizontally and ver-
tically. Both of these methods were considered for rectangles in Jakobs (1996) and
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FIGURE 2.30: Example of (a) BL and (b) BLLT heuristics for the pack-
ing of 4 items in the order [1,2,3,4].

Liu and Teng (1999), but these methods can be used for irregular particles (BLI and
BLLTI) and can be extended to the BLR and BLLTR heuristics which take into ac-
count rotation of the item as well. The advantages of the BL and BLLT are their
speed and simplicity. However, the performance of this heuristic depends on the
initial ordering of the pieces (Terashima-Marín et al., 2010).

Hifi and M’Hallah (2002) introduced the Best Local Position (BLP) Method. This
method is used to place irregular polygons in a 2D bin. The first item is packed to
the bottom left of the bin. This then produces five possible locations where subse-
quent items can be packed: (xmax, 0), (0, ymax) (xmax, ymax), (xmin, ymax) and (xmax,
ymin) where x and y represent the horizontal and vertical coordinates of the item
placed. This repeats as items are placed, with generated coordinates of the piece to
be positioned that do no cause overlap with an already placed item retained as valid
candidate positions. The item is then translated to be in contact with an already
placed piece. Hifi and M’Hallah (2002) states the BLP method may be expensive in
terms of run time for concave shapes. Out of all the final positions, the best location
is chosen as the one that places the piece deepest in the system, to the bottom and to
the left. This is overruled in the special case that the item fills a hole that has been
formed. Terashima-Marín et al. (2010) built on the BLP heuristic by including the
four corners of the bin as candidate positions and called this the Constructive Ap-
proach (CA) while also rating placement for two other methods based on the mini-
mum area created when all shapes are fitted by a rectangular envelope and that with
the largest adjacency to other particles rather than the bottom-left-most placement.

Dowsland et al. (1998) introduced a new method that also tried different points in the
system of the bin. Rather than be created by already placed items, the bin is split into
coordinates by unit intervals. Each location is tested and deemed if it is a feasible
location for the item being placed. Once found, the item can be translated to be in
its left most position from that coordinate. The coordinate system can be changed
and an increased density of coordinates for positioning will lead to an increase in
run time. The advantage of using a system like the one proposed in Dowsland et al.
(1998) is that it can mean the utilisation of gaps created by concave particles which
other methods may not be able to detect.

Wang et al. (2010) describes the concepts of Deepest-Bottom-Left Fit (DBLF) and
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FIGURE 2.31: BLI packing of an item into a box with two items al-
ready placed, starting in the top-right location above the box.
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Maximum Touching Area (MTA) as a heuristic for packing of 3D items. The DBLF
is an adaption of the BL two-dimensional heuristic. Using this method, a face of the
item must touch another face of the already placed items or the edge of the bin. The
MTA heuristic places items into a bin so that the position maximises the total contact
area of the face with faces of other items or the edge of the bin. This is similar to the
Touching Perimeter method for two-dimensional cases. Wang et al. (2010) states
that both these methods mimic the method that vehicles are loaded which was the
problem proposed and investigated by Wang et al. (2010). Wang et al. (2010) goes on
to combine these methods and names this as the DMTS (DBLF+MTA Tabu Search)
algorithm which prioritises the MTA heuristic for each possible placement location
and then chooses the best location based on the DBLF heuristic.

Wang et al. (2010) used a tabu search algorithm for plotting the route taken by the
vehicle to minimise distance. The results were compared to a tabu search method
not using the DMTS heurisitcs, as found in Gendreau et al. (2006), as well as an ant-
colony optimisation method found in Fuellerer et al. (2010) which is another method
for minimising distance for the vehicle routing problem. The method suggest by
Wang et al. (2010) outperformed the other two methods for 22 out of 27 tests with
an average improvement of about 1.31% and was found to be significantly faster in
terms of run time for cases with more items. However, it appears the method for
plotting routes may differ between Wang et al. (2010) and Gendreau et al. (2006).
Wang et al. (2010) uses a method proposed by Clarke and Wright (1964). Gendreau
et al. (2006) also uses this method but adapts it for their work. Therefore, it is hard
to know if the difference in results is due to a change of heuristic for packing or
change of algorithm for routing the vehicle. Yet, the use of two heuristics to dis-
tinguish between multiple final positions could be of potential use if packing soil
particles and trying to rank their placement based on factors that do not just rely on
the minimisation of space.

Wang and Hauser (2019) looked at the offline packing of 3D irregular shapes into a
single container using a robot manipulator with consideration of stability and fea-
sibility of placement by the robot gripper. A box is filled with 3-5 items from what
might be considered a standard online shopping order. Placement of the items is
calculated and the items are packed by a robot gripper into the determined posi-
tions. For the tests completed in Wang and Hauser (2019), 100% of the 3-5 object
combinations were successfully packed into a small packing box. For stress testing
of large item orders, 80% were successfully packed, although this was completed in
a physics simulator rather than by the robot gripper. This improves on the standard
packing solver that was tested by Wang and Hauser (2019) under the same condi-
tions which had a success rate of 17%. No information is given about this standard
packing solver but it is thought that this relies on a minimum of two constraints
which were stated by Wang and Hauser (2019) to be each objective is placed without
collision of the domain or already positioned objects and all items are placed within
the container.

Stability was modeled using point contacts and a Coulomb friction model. Coef-
ficient of static friction and the mass of the items as well as center of mass were
known, so contact forces were required for stability to be calculated. Feasibility of
the placement by robot manipulator was checked by considering the shape of the
item and its initial position to ensure it was graspable so that it can be placed in
its desired pose. Additionally, collision with environmental objects was also taken
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into consideration. A top-down placement trajectory was used to ensure no colli-
sion with already placed items from a horizontal direction. The procedure for the
packing followed 4 steps:

1. Placement Sequence

2. Generate ranked transforms

3. Stability check

4. Manipulation feasibility check

Wang and Hauser (2019) stated that placement sequence can be user-specified or
generated by non-increasing volume of the item. The generated sequence can also be
adjusted if a solution is not found with the current order. The generating of ranked
transforms first searches the space in the bin to find likely positions the item can
be placed assuming the item cannot be manipulated by movement of the robotic
grasper. If no feasible solution can be found, then the search is repeated whilst allow-
ing for movement of the grasper so the item can be positioned using roll and pitch
movements. Once all possible positions are found, another search is complete taking
into account yaw movements of the item for an exact placement. Then, all collision-
free positions are scored using a heuristic. For example, the Deepest-Bottom-Left-Fill
(DBL) heuristic would score a placement based on

Z + c.(X + Y) (2.11)

where X,Y,Z are the position of the item in the X,Y and Z coordinates, and c is a small
constant. The placement with the "best" or highest score is chosen. The stability and
manipulation feasibility check are then completed to ensure the item can be placed
in this location. Wang and Hauser (2019) makes use of 2D height maps of the terrain
and the item being placed, with a top-down heat map of the bin and a bottom-
up heat map of the item being utilised. These are transposed onto each other to
determine possible locations of placement by building the pixels of the heat maps
upon one another.

Cagan et al. (1998) approached the packing of three-dimensional items using a sim-
ulated annealing algorithm for optimisation. Whilst not specifically looking at the
packing of items to utilise space, the work in this research is relevant. Cagan et al.
(1998) looks at many different objective functions. The two which are relevant to this
project are the maximisation of packing density (or the minimisation of gaps) and
the minimisation of the center of gravity. Additionally, Cagan et al. (1998) utilised a
multi-resolution method when modelling particles. Due to high computational time
in evaluating volume intersection of items in the bin, the items were decomposed to
have a smaller resolution. This leads to quicker runtimes at the expense of accuracy
of the result. But, with the use of the annealing optimisation process, the resolution
of items can be increased as T increases. This is an interesting technique that could
be taken forward in this project. A lower resolution soil particle (perhaps just rep-
resented by a rectangle or simple polygon) could be used to find initial placements,
before moving to a higher resolution particle being tested in those locations.

Liu et al. (2015) also used SA optimisation in their approach for the three-dimensional
bin packing problem called HAPE3D. In Liu et al. (2015), placement is ranked by
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minimum total potential energy, which is achieved by decreasing the centre height
of the item. Items are sorted into decreasing volume and a discrete set of points
are used for placement, like in Dowsland et al. (1998). As these points are discrete,
the item is then moved using an advance-or-retreat method both horizontally and
vertically. This is performed by moving the item by a designated distance, s. If the
item does not overlap with another item or the bin edge, it is moved by the distance
s again. If the particle does come into contact, the item moves back to its previous
location. The s value is then reset to be half of the current s value. The process is then
repeated until the value of s becomes less than the assigned error for the problem.
This helps achieve contact with other items without having to compute overlapping
volume between polygons. However, the large number of points tested and the iter-
ation process of finding locations with touching edges of items leads to much higher
runtime for the algorithm. Results from Liu et al. (2015) are presented in Figure 2.32
and Figure 2.33 for the packing of irregular shapes. Figure 2.32 shows the packing of
the same 36 particles which could rotated to make 8 different orientations for pack-
ing. Figure 2.32(a) is the results without the use of SA and Figure 2.32(b) is the results
with the use of SA. As can be seen, the packing in Figure 2.32(b) is much tighter and
as a result the maximum height, h, is reduced compared to Figure 2.32(a). However,
the time taken for the algorithm to run, t, is much greater for the case with SA.

FIGURE 2.32: Layout generated using HAPE3D where 8 orientations
of particles are trialled (RN=8) (a) HAPE3D (h=39.0 mm, t=16.1 s) (b)
HAPE3D with SA (500 iterations, h=31.2 mm, t=9637.5 s) (Liu et al.,

2015). Reproduced with permission from Springer Nature.
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FIGURE 2.33: Layout generated using HAPE3D when rotation is for-
bidden (RN=1) where n is the number of polyhedrons packed (a)
n=20, h=44.7 mm (b) n=30, h=62 mm; (c) n=40, h=79.9 mm; (d) n=50,
h=92.0 mm (Liu et al., 2015). Reproduced with permission from

Springer Nature.
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2.4.4 Jigsaw Solving

The idea of fitting particles of soil together to form a structure in a two-dimensional
sense can be related to the act of forming a jigsaw from the puzzle’s pieces. A range
of studies have been conducted in automatically solving jigsaw puzzles. It should
be noted that for this study, colours and visual patterns on the jigsaw surface influ-
encing the solving process are ignored as these are irrelevant when using particles of
soil. Hence, apictorial jigsaw puzzles are focused on for this section of the literature
review as these do not require an additional condition to satisfy image as well as
shape. Furthermore, it should be noted that random soil particles will potentially
never fit together perfectly unlike two jigsaw pieces which are designed to leave no
space between matching pieces.

Freeman and Garder (1964) presented the first algorithm to solve an apictorial jigsaw
which consisted of a 9-piece puzzle. This was completed using visual information
only. The process of solving the puzzle was based on the mating between pieces,
finding the two which would fit together with no voids. This is the luxury of solving
a jigsaw puzzle as it is known that no voids will be present once the end solution is
reached so this can be used as a condition of the solving algorithm. Solutions used to
solve jigsaw puzzles may not be relevant to this research, however the identification
process and moving and placing of pieces are ideas that can provide influence. A
chain-encoding scheme was adopted in Freeman and Garder (1964). The outline of
each piece was sketched upon a square grid and curve points are assigned at the
closest grid node closest to each intersection. Curve points are then connected by
straight lines, which can be one of eight directions (horizontal in two directions,
vertical in two directions or diagonal in four directions). This is called a "chain" and
is a straight-line approximation of the curve. These straight-line approximations are
broken down into "chainlets" for matching pieces together. A backtracking approach
is adopted as invalid matching can occur. Kong and Kimia (2001) stated that there
are not enough constraints used in Freeman and Garder (1964) to gain good partial
matches and therefore backtracking occurs often and the algorithm is not efficient.

Radack and Badler (1982) showed that it is possible to solve jigsaws using bound-
ary fitting methods for two-dimensional objects. Curve maxima and minima for a
puzzle piece are identified for each shape and these points are rated for their match-
ing with other puzzle pieces. An example of two objects being matched together is
presented in Figure 2.34. A pattern is created by measuring a sequence of distances
from a point on the boundary being matched to other boundaries of that piece. This
is completed along certain standard directions, usually multiples of a small angle. If
there is a fit between the two matching regions, identical pattern subsequences will
be obtained when plotting from the maxima/minima to points along the particle
boundary. The method is stated to be able to solve jigsaw puzzles, but is not used
for any puzzles above a maximum of four pieces in Radack and Badler (1982).

Woflson et al. (1988) developed an algorithm for assembling large jigsaw puzzles
and then solved a 104 -piece puzzles. The technique uses the Schwartz-Sharir curve
matching algorithm (Schwarz and Sharir, 1985) as well as an optimisation method
to match pieces and solve the order in which they should be positioned. As with
Freeman and Garder (1964), apictoral puzzles were used so the colour of the jigsaw
pattern was ignored. A commercial puzzle was used for the experiment and turned
upside down so the back of the puzzle (with no pattern on) was upwards facing
and a black and white camera photographed each image separately. Due to this,
there is expected noise from the imaging. As recommended by Schwarz and Sharir
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FIGURE 2.34: Pairing of two objects located at the maxima for the left
piece and minima for the right piece if curves are observed as particle
outlines. If there is a fit between the two matching regions, identical
pattern subsequences will be obtained. Reprinted from Radack and

Badler (1982) with permission from Elsevier.

(1985), a polygonal approximation of the shape is taken to reduce noise and smooth
the boundaries. The Schwartz-Sharir algorithm is used initially for local matching
of jigsaw pieces and this works by matching the curves of the sides of the jigsaw by
transforming each piece closer to each other until a minimal area between the pieces
is found. Curves were created between sharp corners of the pieces to created four
sides to each item. The best fit between the sides of two pieces will give the least
area.

Like a human might do when completing a jigsaw, Woflson et al. (1988) solves the
frame of the jigsaw first before solving the entire puzzle. The placement of pieces
are determined by an iterative, heuristic approach that is described in Fencl (1973)
as it is time efficient. Woflson et al. (1988) states that it should take a very small
number of iterations to arrive at the correct solution. Next, the interior of the jigsaw
is completed. All pieces which were not edge pieces are located at the corner using
all possible rotations and assigned a local matching score. A number of solutions,
K, are assigned as possible solutions and taken to the next stage. K is taken as 200
in Woflson et al. (1988) but it is stated that it may be possible to use a value of 10 as
the final solution usually lay among the 10 best solutions. The second corner is then
taken and this procedure is repeated for all partial solutions from the previous stage,
and K overall solutions are taken to the next stage. This is repeated iteratively for all
corners. No analysis of the solutions to the jigsaws are given, but it can be seen in
the paper that the algorithm can efficiently solve the 104 piece jigsaws presented.

Freeman and Garder (1964), Radack and Badler (1982) and Woflson et al. (1988) all
rely on extracting critical points from local border information. As described by
Webster et al. (1991), the problem with this method is the number of match seg-
ments can become many times the puzzle pieces which can lead to matching algo-
rithm having an excessive computation time. Webster et al. (1991) suggests the use
of isthmus critical points to prevent this. An isthmus point is found on each side
where a jigsaw piece can be connected to the other and is described as the midpoint
of the local minimum for each possible connection point. These connection points
are later called tabs in Goldberg et al. (2002) and will be called this from here on.
The endpoints of the line that stretches across the local minimum of the tab are the
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FIGURE 2.35: Example of (a) a positive isthmus critical point and (b)
a negative isthmus critical point, both of which match together.

isthmus critical points. This method relies on the shapes taking the shape of conven-
tional jigsaw pieces which soil particles do not tend to exhibit shapes of. A heuristic
algorithm is then used for matching. First, bad candidate matches are removed by
applying the condition that, for a possible placement, pieces must have a negative
isthmus distance larger than the positive isthmus distance as well as the condition
that the difference in size of each of the matched tabs cannot be greater than 50% of
the height/depth of the longer segment. In this way, for a 24-piece jigsaw puzzle,
a possible 2377 possible matches was reduced to 126 possible matches, greatly re-
ducing the computational time taken for the heuristic check. The placement is then
ranked based on the gap between the two pieces when matched. As stated before, it
is unlikely that isthmus points could be described upon the outline of a soil particle
and it is extremely unlikely that two soil particles will fit together perfectly to leave
no gap. However, the use of conditions to limit possible matches could be of use
when trying to limit the run time of any developed algorithm.

Goldberg et al. (2002) produced a method that did not rely on the condition that jig-
saw pieces could be broken down into four sides which are clearly defined by sharp
corners as a feature of the piece. Goldberg et al. (2002) follows the same principal
as Woflson et al. (1988) by solving the border and then moving to filling the interior.
However, the algorithm presented in Goldberg et al. (2002) differs in that it makes
use of the global geometry. The border is first constructed by scoring placements of
pieces next to each other using parallel lines between the two pieces. Parallel lines
can be used as the edge of the jigsaw gives reference to the direction in which the
piece must lie. For two jigsaw pieces to fit together, the distance between the two
pieces must be equal from the right edge of the left-most piece to the left edge of
the right-most piece when orientated in the correct plane for fitting, which is deter-
mined easily for the edge pieces by the straight edge. An example of this process is
presented in Figure 2.36. Allowing for error in the visualisation of particles for the
computer, if these pieces fit perfectly then the distribution of lengths should cluster
tightly around a median value and the score is determined as an average difference
to the median between lengths.

For the interior of the jigsaw, fiducial marker points were set up on the jigsaw piece
at indents (where pieces would slot in to fit next to the jigsaw piece) and outdents
(where the jigsaw piece would fit into an indent of another piece). The location of
these points were chosen by fitting an ellipse to each tab. The ellipse is fit from the
inflection and tangent points on the tab, indicated in Figure 2.37. Then, to align two
neighbouring pieces, a least-square fit was used to match curves together.
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FIGURE 2.36: Two edge pieces of jigsaw being matched together. (a)
Parallel lines between two pieces. Empty space between edges (bold
parts of line) add up to be of equal length. (b) Pieces put together. As

can be seen, they match and there are no gaps present.

FIGURE 2.37: Example of the three feature points on a tab (inflection
points, ellipse centers, and tangent points) used for matching. Figure
used with permission of ACM (Association for Computing Machin-
ery), taken from Goldberg et al. (2002). Permission conveyed through

Copyright Clearance Center, Inc.

Solving interior pieces leads to a more difficult matter as there is no straight line
present to aligning pieces. Therefore, a greedy algorithm, without backtracking or
branch-and-bound, is utilised. Eligible pockets - positions where jigsaw pieces can
be placed that have at least two existing pieces bordering it - are tested and the piece
is scored by how well it fits into that space based on the least-square fit between
the ellipses that make up the edge. Pieces with highest confidence are placed first.
For the larger 204-piece jigsaw, a one step lookahead method was used. If piece P
is placed, this creates some new eligible pockets around P. For each pocket, a new
piece is fitted. The score for P is then calculated with these pieces placed, meaning
that more information of the border is used to find a score for P. It is not specifically
stated, but it is believed that this was done to avoid multiple pieces that may have
an exact match with the adjacent sides to the eligible pocket but then would lead to
weaker matches for sequential placement.

Kong and Kimia (2001) uses curve matching to solve puzzles in both two and three
dimensions. For 2D puzzles, a matching algorithm based on Sebastian et al. (2000) in
which two curves are averaged and the deviation from this average for both curves
are found to see how well they match. The process was sped up by first using a more
coarse description of the curves to remove obvious non-matches before then using
a finer description. Matching is based on torsion and curvature functions as these
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are the same if the curves are the same. Kong and Kimia (2001) applies this princi-
ple when moving on three-dimensions whilst including torsion in the cost function.
A best-first search with backtracking algorithm is adopted, so that the best fit for a
match is done first and then continued. If this leads to an unfeasible solution, back-
tracking is completed. The algorithm was tested on puzzles of 18 and 25 pieces and
was successfully able to piece these back together - although these represented two-
dimensional problems. Three-dimensional fragments of a broken ceramic pot were
scanned and matched together with seven pieces being used. All matches except one
were picked out by this method, although three were chosen that were not correct
matches. Hence the need for backtracking.

Hoff and Olver (2014) also used a curve matching approach to solve apictorial jig-
saw puzzles. This matching process was based on the work in Hoff and Olver (2013).
Curves are decomposed into a finite number of bivertex arcs (which are arcs which
start and end at points of no curvature), circular arcs and straight line segments.
Bivertex arcs are then compared to determine if a fit is possible between the two
sides. The benefit of this method is that no assumptions are required for the shape
of the puzzle or the individual puzzle pieces. The algorithm is used to solve two
complicated commercial puzzles with non-traditional jigsaw shapes and final com-
pleted puzzle shapes that are non-rectangular. It is stated in Hoff and Olver (2014)
that the starting piece is not important, but a piece with many well-defined features
will maximise the chance of finding successful fits early on.

2.4.5 Tetris Optimisation

An example of a scenario where shapes are packed into an area with the objective
to obtain the least amount of void ratio as possible is the classic videogame Tetris.
Tetris was first programmed by Alexey Pajitnov in 1985 (Fahey, 2012) and involves
filling a domain or “cup” with puzzle pieces made up of four squares known as
tetrominoes. There has been some research in the area of strategies whilst playing
the Tetris videogame. In Tetris, the user plays within a 2D domain of width and
height equal to 10 squares and 20 squares respectively. Tetrominoes are placed sep-
arately, filling the area four squares at a time. Each tetromino can be shifted laterally
by a squares width across the width of the domain and rotated by 90o. However, the
tetromino being placed falls one block for a given time frame, adding a limit to how
long the user has to adjust the particle. This time frame decreases as the game goes
on so the blocks fall faster which increases the difficulty. If a row is completed, to say
that every square in that row is filled with squares of the placed tetrominoes, then
this row is deleted from the domain and all other rows above it shift downwards
whilst the top row will now be only empty squares.

Tetrominoes are delivered in a random order to the user. A "Tetris bag" with a "pull
from bag" method is utilised in versions of the game, although it is unknown when
this was first introduced. For this method, the seven different tetromino shapes are
listed. The first tetromino is selected at random and placed by the user, leaving the
remaining six. This process is repeated until there are no tetrominoes in the selection
bag after which the bag is restored with one of each tetromino ready to randomly
deliver the next particle. The aim of the game is to "delete" as many rows as possible
without filling the domain past the 20th row gaining a score for each row deleted.
Particles placed outside of the domain will result in the game ending.
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The first research to appear in this area was conducted in Brzustowski (1988). Brzus-
towski (1988) adopted what has now become known as “Standard Tetris”. This
adopts the traditional rules of the videogame, but assumes the player has unlimited
time for determining rotation and horizontal positioning before the shape falls into
place, removing the time limit that can be found in the videogame. The game still
ends when a cell above row 20 of the domain is filled. The seven tetrominoes that
are used within the Standard Tetris can be found in Figure 2.38. These are named by
Brzustowski (1988) as

1. Left elbow (LE)

2. Right elbow (RE)

3. Square (SQ)

4. Right kink (RK)

5. Left kink (LK)

6. Tee (T)

7. Bar (B)

FIGURE 2.38: Different tetrominoes which occur in the Standard
Tetris videogame.

Brzustowski (1988) shows that there are methods to play the game continuously
by filing the domain in order to remove rows so that the domain is never filled
above the 20th row. However, the paper focus on permutations of shapes that only
involve one or two of the tetrominoes and does not limit itself to the boundaries
of the seven shaped game by using non-traditional shapes such as a 3x3 square.
This is unrealistic in terms of playing the actual game, especially if the “pull from
bag” method is deployed for the particle selection. Additionally, it is unlikely that
in a real world situation using random particle shapes that the same particles will
be produced in a specific order to maximise packing and it could be said that this
tends towards masonry construction using bricks. Brzustowski (1988) concludes
that there are certain permutations of shapes that the machine can give making the
game impossible to win. Therefore, if the computer is aware of your moves and
able to react then Tetris is impossible to win. Burgiel (1997) agrees with Brzustowski
(1988) and shows that an alternating sequence of LK and RK will eventually cause
a loss for any gameboard with a width of 2n. Both these papers focus on just using
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one or two of the possible shapes in Tetris and look at failing at Tetris rather than
trying to optimise the placement.

Breukelaar et al. (2004) looks at an offline approach in the scenario of Tetris, with the
sequence of pieces to be dropped given in advance. Breukelaar et al. (2004) showed
that the problem of solving Tetris is NP-complete, meaning that for problems of a
larger size, an algorithm is unlikely to find a desired solution in a practical amount
of time. This includes the offline scenario when the order of particles that will be
produced is known. Like with Brzustowski (1988) and Burgiel (1997), Breukelaar
et al. (2004) looks at solutions using no more than five different shapes as well as
complicated initial gameboards that do not reflect the Tetris videogame scenario.

Kostreva and Hartman (2004) introduced a heuristic approach for determining place-
ment of Tetris shapes in the domain based on an objective solution. The objectives
of the solution are as follows

1. Minimise the number of empty cells created between the piece placed and the
contour associated with placement. This is based on observing human players
who are regarded at being “good” at the game.

2. Maximise the number of contacting cell walls resulting from placement.

3. Minimise the additional height added to the contour by the placed particle.

4. Maximise the number of rows cleared from the board as a result of the place-
ment.

Each objective is evaluated for all rotations and placement locations of the particle.
The four objectives are combined to give a single score for each possible placement
with the optimal placing being that with the highest score. The objectives are given
a weighted factor as each are not measured using the same scale. For the second and
fourth objective, positive weighting factors are given as it is desired to maximise
these factors, whereas negative weighting factors are given to the first and third ob-
jectives in order to minimise these factors. If a tie in the maximum score is found,
the best placement is chosen arbitrarily by the user. The work conducted in Kostreva
and Hartman (2004) is interesting and highlights the potential of using a weighted
criterion when placing soil particles if the criteria are based on factors that control
soil strength, given that a high soil strength is the objective of the system being cre-
ated. Kostreva and Hartman (2004) uses fixed values for the weightings throughout
the process, but suggests that these values could be dynamic as the placement of
particles is performed.

Another example of where a heuristic approach is adopted based on objectives out-
lined by the user is in Böhm et al. (2005). Böhm et al. (2005) uses a rating function,
R(b), to get results within a reasonable amount of time rather than using a back-
tracking algorithm, as the computation of finding the perfect move is NP-complete
as was demonstrated in Breukelaar et al. (2004). R(b) is based on the objectives out-
line in Böhm et al. (2005). These are reproduced here for completeness.

1. Pile height: the row of the highest occupied cell in the board

2. Holes: The number of unoccupied cells that have at least one occupied above
them.

3. Connected holes: same as holes above, however vertically connected unoccu-
pied cells only count as one hole
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4. Removed lines: the number of lines that were cleared in the last step to get to
the current board

5. Altitude difference: the difference between the highest occupied and lowest
free cell that are directly reachable from the top

6. Maximum well depth: the depth of the deepest well (with a width of one) on
the board

7. Sum of all wells (CF): Sum of all wells on the board

8. Landing Height (PD): The height at which the last tetromino has been placed

9. Blocks (CF): Number of occupied cells on the board

10. Weighted Blocks (CF): Same as blocks above, but blocks in row n count n-times
as much as blocks in row 1 (counting from bottom to top)

11. Row transitions (PD): Sum of all horizontal occupied/unoccupied-transitions
on the board. The outside to the left and right counts as occupied.

12. Column transitions (PD): As row transitions but count vertical transitions. The
outside below the game-board is considered occupied.

Objectives 1-6 were produced in Böhm et al. (2005) whereas 7-12 were from “Stan-
dard Tetris Application” originating from Colin Fahey and Pierre Dellacherie (Fa-
hey, 2012), indicated as CF and PD respectively in the above list. Initial runs in a
domain of 10x20 were conducted using objectives 1-6 and then runs including all of
the objectives were conducted in a domain of 6x12. This decrease of domain was to
decrease the computational time for the game to reach failure, as the domain would
be filled up quicker as there is less area to be packed.

An evolutionary algorithm was used to solve the value for the different weights for
each objective. It was found that the most important objectives (those with the high-
est weighting score) were Pile Height (1), Holes (2), Connected Holes (3) and Maxi-
mum Well Depth (6) for the runs completed using Objectives 1-6 only. In addition,
some weighting values become or approached zero meaning that these objectives
were not important in finding the best position for the tetrominoes, although the pa-
per does not state which objectives were assigned a zero value and it is stated that
this was not always the same in all evolutions of weighting values. For the runs
utilising all 12 objectives, Connected Holes (3) and Maximum Well Depth (6) were
the highest weighted criteria. However, it is thought that the evolutionary algorithm
settled in local maxima which it could not escape from. Böhm et al. (2005) states that
the performance of the evolved Tetris game-board rating function produced in the
research compares nicely with other reported results. A question lies in the changing
of the domain, as reducing the size of the width would give less positions for tetro-
minoes to be placed. No study was conducted on the change in domain size when
using all 12 objectives and if this changes the weighting for each objective, although
it is fair that the domain size was reduced as computational time was drastically re-
duced. Additionally, the program was rerun on the 6x12 domain size for Objectives
1-6 for fair comparison for when Objectives 7-12 were also included.

Kostreva and Hartman (2004) and Böhm et al. (2005) are both rule-based Tetris con-
trollers, in that they are given a set of rules which they apply when determining
the placement of the tetrominoes. These rules are given different weightings using
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an evolutionary process as the program learns more about their effect from differ-
ent runs of playing the Tetris video game. An alternative approach for solving Tetris
with a computer is to use a Reinforcement Learning technique. This technique learns
how to place tetrominoes by playing games and giving each run a value function.
From this, the program learns which policies it has previously used lead to the best
solution, derived from the value function, and employs these policies moving for-
ward. Bdolah and Livnat (2000), Driessens (2004), and Melax (2014) are all exam-
ples where Reinforced Learning has been used for finding an optimal Tetris solving
method.

Melax (2014), which was first published in 1990, played a simplified version of Tetris
in a width of six domain with infinite height using reduced tetrominoes. Although
the height was infinite, two levels were only ever active at one time. If the placement
of the reduced tetromino increased the height above two blocks, the lower levels
were discarded and a score was kept of how many levels were discarded. The best
performance was judged to have the lowest score. The reduced domain size and ran-
dom order of particles increases the likelihood of voids being formed as tetrominoes
are more likely to leave gaps due to there being less possible positions to be placed.
The introduction of discarding levels means that these gaps can never be returned
back to so filling at a later date is not possible. As described by Carr (2005), the agent
in Melax (2014) is effectively trying to reduce the height after every placement of a
tetromino rather than trying to reduce the height of the overall structure. This could
lead to policies never being discovered and a biased is placed on the policy to reduce
height for every step rather than for the final structure.

FIGURE 2.39: Reduced tetrominoes used in Melax (2014).

Bdolah and Livnat (2000) adopted the approach taken in Melax (2014) and extended
to introduce state space optimisations. This included only using the top contour of
the surface, so all information of gaps below are removed, rather than only using the
top two lines as possible placement locations. As well, the use of mirror symmetry
to reduce the state space was adopted to speed up the learning process as essentially
one scenario could now represent what would have been two separate scenarios in
Melax (2014). From the results in Bdolah and Livnat (2000), the policy produced
led to superior results than in Melax (2014) and at a faster rate of learning. This is
most likely due to the retention of more information of the surface leading to more
possible locations of placement and the use of mirror symmetry halving the number
of states required to describe the Tetris well.

Driessens (2004) applied relational reinforced learning to the full Tetris problem, re-
ferred to as Standard Tetris earlier. As described by Carr (2005), relational reinforce-
ment learning means that the relationship between elements in the environment is
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utilised in developing a reduced state space rather than storing every possible state
in a table to refer back to. These relationships are then stored in a decision tree struc-
ture. Carr (2005) goes on to state that Driessens (2004) actually led to poor results
compared to other algorithms and actually were quite poor when compared to hu-
man standards. The reason is described to be due to the use of Q-learning, which
relies on good estimates of future rewards to function properly. The stochastic na-
ture of Tetris limits the accuracy of these estimates. However, Driessens (2004) did
use a range of criteria when developing their instance based leaner. These included

• The height of individual columns

• The maximum, average and minimum height of the wall and the differences
between the extremes and average

• The height difference between adjacent columns

• The number of holes and canyons of width 1

• The average depth of holes

These are all features which could be considered when developing a heuristic for the
packing of tetrominoes, and this can be formed further into considering a policy for
a heuristic when packing soil particles as this will help lead to reducing void ratio.

Phon-Amnuaisuk (2015) differs from previous research using weighted criterion by
employing a GA and data mining process to automatically discover strategies to
play Tetris. This was completed through an evolutionary algorithm based on 145
different tetromino sequences of a size of 50, uniformly distributed from the seven
classic tetromino shapes. Each of the sequences were evolved using within 500 gen-
erations, taking the top 10% of results. The results of the program improved from
around 80 unfilled tiles to 20 unfilled tiles after the 500th generation. 44 concepts
were created to help with placing of shapes and Phon-Amnuaisuk (2015) states that
a human playing the same sequence of particles could not better the evolved strat-
egy produced by the algorithm. The objective function of the GA was to reduce
the presence of unfilled tiles, therefore reducing gaps. It is interesting that a simple
function is used rather than an extensive heuristic function like in Böhm et al. (2005).

2.4.6 Summary of Section 2.4

The information gained from the literature presented in Section 2.4 provides great
insight to factors that can lead to the reduction of void ratio and increase in stability
for a soil packing structure. As discussed in Section 2.4.1, lower porosity or void
ratio, coordination number, a lower center of gravity as well as a lower potential
energy are suggest to increase stability in a packing system by Graton and Fraser
(1935). Liu et al. (2015) (Section 2.4.3) also recognises lower potential energy as a
measure of stability as it uses this as a heuristic for their packing procedure. If it is
desired to reduce gaps in the system, the inclusion of a range of particle size should
lead to a decrease in void ratio so long as the inclusion of smaller particles do not dis-
place the existing particles (White and Walton, 1937; Sohn and Moreland, 1968; Lade
et al., 1998; Cubrinovski and Ishihara, 2002). Void ratio is also affected by grading,
compaction and particle shape (White and Walton, 1937; Shergold, 1953). While it is
suggested that angular particles lead to more voids, this is due to it being hard for
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them to lie into a position where the particles fit together snugly in traditional com-
paction methods. Fitting of the particle shapes together using individual placement
could potentially lead to overcoming this problem.

Section 2.4.2 describes the difference between deterministic and heuristic approaches
for optimisation. The main difference between the two is that deterministic ap-
proaches provide an optimal solution that is replicable if the same input is given
whilst heuristic approaches provide an estimated optimal answer but at a faster
computational time. It is described that problems such as bin packing are NP-hard
and therefore it is typical for heuristic, meta-heuristic, hyper-heuristic approaches
are often adopted. Two heuristic approaches are then described in Section 2.4.2 -
simulated annealing (SA) and genetic algorithms (GA) - as these terms are used in
later sections of the thesis.

The approach of off-line or on-line bin packing introduced in Section 2.4.3 is one that
is intriguing. Whilst it is clear off-line approaches will likely lead to better packing
structures, this will require multiple attempts at positioning the particles and could
lead to large computational times. The system taken forth by Galambos and Woeg-
inger (1993) could be a good one to follow, only repacking a small number of items.
This replicates the backtracking that is found in a tree-search algoirthm. Goldberg
et al. (2002) scored jigsaw edge matching based on fit and then uses a one step looka-
head as seen in Section 2.4.4. This reduces the total number of permutations by only
looking one step ahead rather than having information of the whole problem.

The use of a heuristic is present within a vast amount of the work in the bin packing
topic as well as for Jigsaw solving and Tetris optimisation. A large range of the
literature reviewed feature some sort of depth criteria and tend to be placed in the
bottom left of the domain. Within Section 2.4.3, Jakobs (1996) and Liu and Teng
(1999) positioned items by lowering them and sliding them to the left using BL and
BLLT approaches. Hifi and M’Hallah (2002) determined the best placement to be
the bottom left unless a hole can be filled by the item and Wang et al. (2010) also
prioritised the bottom-most position in their DBLF algorithm.

Another scoring method is based on the area of an item in contact with another item.
Lodi et al. (1999a) introduced the TP algorithm based on the item’s perimeter in con-
tact with other items. Terashima-Marín et al. (2010) scored the placement based on
the smallest envelope created around the placed particles which automatically looks
to place particles tightly together. Wang et al. (2010) looked at the touching area as
a heuristic for three-dimensional items. In the problem of solving jigsaws, place-
ments are scored by their fits to each other i.e. the minimum amount of gap between
edges. Many different variants of judging this match are done such as the straight-
line approximation of the curve in Freeman and Garder (1964), using curve maxima
and minima in Radack and Badler (1982) or isthmus critical points as suggested by
Webster et al. (1991) as discussed in Section 2.4.4. Both Kong and Kimia (2001) and
Hoff and Olver (2014) use curve marching to solve apictorial jigsaw puzzles which
minimise space between the matching edges.

Within these problems, taking multiple best solutions before moving to the next step
is common, like in Woflson et al. (1988) who took the 200 best solutions through to
the next step where then the next 200 best solutions were selected. Additionally, a
use of discarding obviously bad placements can be used like in Webster et al. (1991)
who discarded bad matches who had specified criteria for possible matches. This
would reduce runtime of the program.
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For optimisation of Tetris (Section 2.4.5), objective functions are defined with many
scoring criteria and usually a weighted function is utilised. Kostreva and Hartman
(2004) and Böhm et al. (2005) are two examples of the use of a weighted function
to score possible placements of tetrominoes in the Tetris problem. Of these criteria,
minimising gaps below the placed block, maximising the number of contacting cell
walls and minimising the height of the total structure stand out as those relevant
to the other areas of research covered in Section 2.4.5. Every possible location and
rotation are scored for placement and the best solution is selected. Driessens (2004)
also prioritised minimising height as well as the number and depth of holes created.
Phon-Amnuaisuk (2015) based their Genetic Algorithm on a criteria that reduced
the presence of unfilled titles.

A top-down approach is present in many papers, such as Jakobs (1996) and Liu
and Teng (1999). Tetris is inherently a top-down problem so most research based
on Standard Tetris use this approach. Wang and Hauser (2019) uses top down to
avoid collisions when placing items within the bin and even uses a feasibility check
to avoid knocking into other items and displacing them. The stability check used in
Wang and Hauser (2019) is also a process that should be taken note of as it would
be beneficial to make use of this in this project. The stability was modelled using
contact points and a Coulomb frictional model based on friction coefficient. This can
be easily adapted into this work.

The splitting of the domain into coordinates considered within Section 2.4.3 as adopted
by Dowsland et al. (1998) and Liu et al. (2015) is useful as it would help avoid gaps
in the system. However, if we are using an on-line method, then it will not be possi-
ble to go back to place items in gaps that are missed. The shifting used in Liu et al.
(2015) may also be used to ensure the touching of particles and to minimise gaps.
Both of these processes could lead to a much larger computational time. To over-
come this, the domain and items could be split into a smaller resolution for scoring
before being scored at a higher resolution, like in Cagan et al. (1998).

From Section 2.4.5, The use of a top contour of the surface for possible placements
in Bdolah and Livnat (2000) can be taken forward in this project. Unlike with Tetris,
rows of filled space will not disappear. If a top-down method is adopted as is sug-
gested in Section 2.2.4, then this will mean that any gaps below the surface will not
be able to be filled without the use of backtracking or an off-line approach. Therefore,
a surface contour for possible placements may lead to a reduction in computational
time in a developed program for soil particle packing.

2.5 Characterisation of Particle Shape

2.5.1 Classifications of Particle Shape

The term morphology of a particle can be used to describe the overall external ex-
pression and can be split into two expressions, shape and surface texture (Blott and
Pye, 2008). These describe the larger/medium scale and the small-scale features
of the particle respectively. To quantify the shape of a particle, this term has been
further split down into four aspects that contribute: form, sphericity, roundness,
and irregularity. In some literature, form and sphericity are grouped together with
sphericity being classed as a measure of form (Barrett, 1980). Here, they will be split
into two separate groups in this section.
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Three-dimensional shapes can be converted into two-dimensional shapes that rep-
resent the outline from a certain view of the particle. This can be achieved using
numerous methods. For example, Pettijohn (1949) (as cited by Yudhbir and Abedin-
zadeh, 1991) used silhouettes of the grains for the grouping of particles into classes.
Other methods involve taking images of the particles either by camera or microscope
and producing two-dimensional outlines from these pictures (Huu et al., 2017). The
outlines can be used to measure form, roundness, irregularity and sphericity without
taking into consideration of the third dimension. Obviously this has the disadvan-
tage of ignoring the third plane. If the third dimension is desired using these meth-
ods, the thickness of the particle is estimated by the shadow projection of the particle
(Huu et al., 2017). Following this, form, roundness, irregularity and sphericity are
described and methods of classifying particles or quantifying these measures are
discussed for both two-dimensional and three-dimensional shapes. Note, sphericity
for a two-dimensional shape is not possible but the term circularity can be adopted
for a similar description.

Form

Sneed and Folk (1958) explained that form describes a particle by its length (L),
breadth (I) and thickness (S). These are all measured orthogonally to each other.
It is standard practice to assign L as the longest dimension of the particle, I as the
longest dimension perpendicular to L, and S as the dimension perpendicular to L
and S (Krumbein, 1941). For a two-dimensional shape, it is assumed that S acts into
the plane and is of negligible size.

These three orthogonal dimensions can be plotted on charts to help define the parti-
cles. The first to do so was Zingg (1935) (as cited by Blott and Pye, 2008) which plots
breadth to length (I/L) and thickness to breadth (S/L) in a two-axis plot. Four terms
were used to describe the particles: flat, spherical, flat and columnar, and colum-
nar. These have also been referred to as disc-shaped, spherical, bladed and rod-like
(Krumbein, 1941). An example of the original form diagram proposed by Zingg
(1935) (as cited by Blott and Pye, 2008) is represented in Figure 2.40. Sneed and Folk
(1958) produced a triangular plot for describing particle shape, stating that a bivari-
ate diagram like that in Figure 2.40 is not sufficient to plot a feature determined by
three variables. The plot is presented in Figure 2.41. Sneed and Folk (1958) divided
the plot into ten fields, each with a different descriptive term. These are indicated in
the key in Figure 2.41.

Two parameters adopted to describe the form of a particle are platiness, α, and elon-
gation, ζ. Potticary et al. (2016) described these using Equation 2.12 and Equation
2.13

α =
2(I − S)
L + I + S

(2.12)

ζ =
L − I

L + I + S
(2.13)

Figure 2.42 presents the α-ζ plane as plotted in Potticary et al. (2015). Potticary et al.
(2015) states that the edges and corners of the triangle correspond to cases where
some of the dimensions are equal and/or zero. A sphere resembles the shape where
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FIGURE 2.40: Zingg Diagram adapted from Zingg (1935) (as cited by
Blott and Pye, 2008).

all values are equal, a circular disk resembles the shape where L and I are equal and
S is zero, whilst a needle resembles the shape where L is the only non-zero value.

Li et al. (2013) states that elongation measures the symmetry of the particle shape
and is calculated using Equation 2.14. Blott and Pye (2008) also suggests that elon-
gation is calculated in this manner. The absence of S for measuring elongation means
that this can be used to describe two-dimensional outlines with no consideration of
the dimension into the plane the shape is cast.

ζ =
I
L

(2.14)

Wentworth (1923) attempted to quantify particle form defined as the flatness index,
IF, calculated using

IF =
L + I

2S
(2.15)

This is sometimes referred to as the Callieux Flatness Index as it was adopted by
Cailleux (1945). IF is very clearly a three-dimensional factor as it requires thickness
to be a non-zero value. Several authors have used the ratio of thickness to length
(S/L) to measure flatness (Ballantyne, 1982; Barrett, 1980; Howard, 1992). How-
ever, particles with an S/L ratio of 0.2 can range from square, flat forms to highly
elongated forms. Illenberger (1992) considered S/L to be a measure of equancy and
recognises the parameter

I − S
L

(2.16)
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FIGURE 2.41: Form Diagram adapted from Sneed and Folk (1958)
with key for form terms.

FIGURE 2.42: Elongation and Platiness plane with description of
forms (Potticary et al., 2015).
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as an index of flatness. However, Blott and Pye (2008) states this was more a measure
of platiness and that true flatness is best described by the parameter S/I.

Alshibli and Cil (2018) defines form using S/L. This is equivalent to what Illenberger
(1992) considers equancy. The simplicity of the form calculation in Alshibli and Cil
(2018) shows that this is not a suitable measure as it completely ignores a lot of
features of the particle, especially I.

Barrett (1980) reviewed measures for classifying form and found that the use of three
orthogonal dimensions are not satisfactory for describing some forms. Triangular,
rectangular and pentagonal cross-sections were highlighted. Barrett (1980) states
that these forms can be distinguished by the number of sides that are present and
therefore the number of sides is an aspect of form and not roundness. However, ir-
regular, untooled rock shapes will have many sides and it will be hard to distinguish
a quantity for this. Barrett (1980) suggests that the way form is defined excludes
other aspects of shape such as roundness.

Circularity and Sphericity

Sphericity refers to the global form of the particle and reflects the similarity between
L, I, and S (Cho et al., 2006). When discussing sphericity, it is common to think that
a spherical shape is one which has equal dimensions in the three axis of breadth,
length and width. However, using this method would mean that a cube could be
described as spherical.

Wadell (1932) described the degree of sphericity of a particle, Ψ, as the ratio of the
surface area of a sphere with the same volume as the particle, sp, to the surface area
of the particle, Sp.

Ψ =
sp

Sp
(2.17)

Wadell (1933) (as cited by Blott and Pye, 2008) transforms this into a two-dimensional
quantification of a particle image using

Λ =
cp

Cp
(2.18)

where Λ is the degree of circularity, cp is the perimeter of a circle of the same area
as the particle shape and Cp is the actual perimeter of the particle shape. Measuring
of sphericity using this method is shown in Figure 2.47. The maximum values of Ψ
and Λ are 1, where such a value represents a sphere and circle respectively.

Barrett (1980) states a disadvantage of using the approach in Wadell (1933) (as cited
by Blott and Pye, 2008) to characterise a particle is that sphericity is not just a pa-
rameter of shape but is also affected by angularity. In addition, it is impractical to
measure the surface area of a soil particle, although this is much easier to do on the
two-dimensional projection of one. Wadell (1933) (as cited by Blott and Pye, 2008)
also suggested calculating circularity using a ratio of the diameter of a circle with the
same area as the particle to the diameter of the smallest circumscribed circle which
was named projection sphericity, ΛP.

Riley (1941) proposed an index to measure circularity which was termed the in-
scribed circle sphericity ΛI . In this method, the square root of the ratio of the largest
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inscribed circle diameter, Di, to the smallest circumscribed circle diameter, Dc, is
used as shown in Equation 2.19. An example of how this is determined is presented
in Figure 2.43 with an indication of each diameter given.

ΛI =

√
Di

Dc
(2.19)

FIGURE 2.43: Method for measuring inscribed circle sphericity as de-
scribed by Riley (1941) adapted from Blott and Pye (2008) with per-

mission from John Wiley and Sons.

Roundness and Angularity

Angularity, or roundness, describes the scale of major surface features (Cho et al.,
2006). It is typically estimated by measuring the sharpest corner or by obtaining
a measure of convexity in the particle outline (Yudhbir and Abedinzadeh, 1991).
Wadell (1932) described roundness as the curvature of the corners and edges of a
particle compared to that of the overall particle shape and states that it is indepen-
dent of sphericity. Initial studies into the roundness were made to make visual com-
parisons (Mackie, 1897 and Dunn, 1911 both as cited by Blott and Pye, 2008) but the
first attempts to quantify roundness was made by Wentworth (1919) on sedimentary
particles.

Wentworth (1919) suggested roundness was the ratio of the radius of curvature of
the most convex part of the particle to half the longest diameter through that point.
This is not necessarily the length of the particle. Wentworth (1922a) and Wentworth
(1922b) (as cited by Kuenen, 1956) later revised this method so that roundness was
calculated using the ratio of the radius of the sharpest corner to the mean radius of
the particle. This is a fair method to measure roundness, but the sharpness of a single
corner may not represent the grain as a whole, especially in fractured particles (Blott
and Pye, 2008). Other variants have been proposed that use the ratio of the diameter
of the curvature of the sharpest corner to the intermediate axis of the grain (Kuenen,
1956) or the diameter of the largest inscribed circle (Dobkins and Folk, 1970).
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FIGURE 2.44: Diagram to show how measurements to calculate par-
ticle roundness using method proposed in Wadell (1932) are taken
adapted from Blott and Pye (2008) with permission from John Wiley

and Sons.

Wadell (1932) stated that the maximum degree of roundness is reached when the
radius of curvature of a corner equals the radius of the maximum inscribed circle.
Wadell (1932) proposed that the average curvature of the corners can be calculated
by measuring the radius of all corners of a projection of the particle outline. The
formula is given to find degree of roundness as

R =
∑ (Dn

N )

Di
(2.20)

Where Di is the diameter of the largest inscribed circle, Dn is the diameter of curva-
ture of any corner and N is the number of corners. Figure 2.44 demonstrates how
this would be measured for a given particle outline. Each corner is analysed indi-
vidually before a mean is taken to give the degree of roundness. It is understandable
that the process of measuring the roundness of each corner can take time. Therefore,
many researchers have produced visual charts for comparing the roundness of par-
ticles using Wadell’s method to classify particles. These include Krumbein (1941),
Powers (1953), and Russell and Taylor (1937). Roundness can be extended to be a
three-dimensional measure by adopting spheres instead of circles for each corner
(Barrett, 1980).

Lees (1964) showed that the measure of roundness is not able to differentiate be-
tween truly angular corners of different angles, since the radius of curvature of a
circle fitted into an angular corner is nil irrespective of the size of the angle. Hence,
Lees (1964) proposed a measure for any corner in the projected outline of a particle
calculated using

A2D =
n

∑
i=1

(180o − ai)
xi

r
(2.21)
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FIGURE 2.45: Measurements for calculating A using Equation 2.21
taken from Blott and Pye (2008) with permission from John Wiley and

Sons.

termed the Degree of Angularity, A2D, where a is the angle between planes bounding
the corner, x is the distance of the top of the corner from the centre of the maximum
inscribed circle, r is the radius of the maximum inscribed circle, and n is the num-
ber of corners. Measurements taken to determine angularity are presented in Blott
and Pye (2008) and this is reproduced in Figure 2.45. The total degree of angular-
ity for a three-dimensional shape, A3D, is given by the sum of values A2D for all
the corners measured in each of the three orthogonal planes. Lees (1964) recognised
that this method is very time consuming. However, it can be appreciated for a two-
dimensional shape that the process is less so as only one plane is needed for this
measurement.

Irregularity

The term "regular" is used to describe a shape with straight or smooth, continuously
curving sides in two or three dimensions. The shape can be regarded as irregular
if there are significant concavities and convexities on the surface. A gravel or soil
particle can be described as irregular due to projections and indentations on the
surface which can either be rounded or angular. A measure of particle irregularity
has been developed to quantify the particle shape in two-dimensional images in
Blott and Pye (2008). This is called the irregularity index, I2D, and is found for a
two-dimensional shape using

I2D = ∑
y − x

x
(2.22)
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FIGURE 2.46: Measurements for calculating I2D using Equation 2.22
taken from Blott and Pye (2008) with permission from John Wiley and

Sons.

where x is the distance from the centre of the largest inscribed circle to the near-
est point of any concavity and y is the distance from the centre of the largest in-
scribed circle to the convex hull. A measure of this index can be calculated for three-
dimensions by summing the values of the projections of the particle from each or-
thogonal orientation, similar to angularity described by Lees (1964). This is referred
to as I3D. Figure 2.46 presents the method for calculating irregularity for a particle
outline.

Whalley (1972) stated that surface texture is not resembled in a projected outline of a
particle. However, Barrett (1980) states this is not true for crystalline rock particles.
Additionally, Cho et al. (2006) describes roughness as the surface texture of a particle
relative to the radius. It can be understood that a particle has a higher roughness if
it has more irregularities. Following Barrett (1980) and Cho et al. (2006), irregularity
is a measure of the roughness.

Convexity is another term used to describe the smoothness of a particle surface.
Convexity, C, is given in Equation 2.23 as described by Li et al. (2013) where phull
and pparticle are the perimeters of the convex hull and the particle respectively. Li
et al. (2013) states that convexity can range from 1 for a smooth particle and almost
zero for a very rough one .

C =
phull

pparticle
(2.23)

Yang and Luo (2015) describes convexity using a different method to Li et al. (2013).
In Yang and Luo (2015), convexity is found as the ratio of the area of the particle (A)
to the area of the convex hull that describes the particle (A+B). Figure 2.47 presents
a particle with this calculation being performed.

Alshibli et al. (2014) measured surface texture of sand particles using an optical inter-
ferometry technique that led to particles being described through three-dimensional
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pixelated images. Root-mean-square (RMS) texture, Rq is found using the following

Rq =

√√√√ 1
MN

M

∑
i=1

N

∑
j=1

Z2
ij (2.24)

where M and N are the number of pixels in the X and Y directions and Zij is the
surface height at a specific pixel relative to the reference mean place. Rq represents
the standard deviation of the surface heights (Alshibli et al., 2014). RMS texture is
measured rather than average as it gives more significance to valleys and peaks in
the image. Alshibli et al. (2014) successfully describes morphology of sand particles
as well as glass beads. However, Rq is a three-dimensional measure and does not
translate when analysing two-dimensional outlines.

Yang and Luo (2015) adopts four simplified shape parameters for characterising
sand mixtures. These were sphericity, aspect ratio (AR), convexity, and overall reg-
ularity (OR). Sphericity and convexity have already been defined up to this point.

AR is defined by Equation 2.25 and is the ratio between DFmin and DFmax. DF rep-
resents the Feret diameter, which is the distance between two tangents on opposite
sides of the particle. Hence, DFmin and DFmax represent the minimum and maxi-
mum Feret distances respectively. Figure 2.47 indicates how AR can be calculated
for a particle as presented in Yang and Luo (2015).

AR =
DFmin

DFmax (2.25)

Following the definition of AR, Yang and Luo (2015) goes on to define OR using the
three terms of sphericity, aspect ratio and convexity. These are combined as follows.

OR =
AR + Ψ + C

3
(2.26)

OR is used to try and characterise particle shapes in a collective manner and Yang
and Luo (2015) uses this method to characterise a mixture of sands. Such a term
could be adopted to describe two-dimensional particle shapes as each term can be
found for an individual plane of a three-dimensional shape and Ψ can be replaced
by Λ.

2.5.2 Fourier Descriptor Method

Ehrlich and Weinberg (1970) (as cited by Mollon and Zhao, 2012) proposes a method
to yield a mathematical model of a two-dimensional soil grain based on discrete
Fourier transforms in closed form. The contours of the grain are split into Np points

separated by a constant angle (θp, such that θp =
2π

Np
). Thus, each point is defined

by an angle, θi, and a radial distance, ri, which is the distance from a suitable centre
to that point. Using Fourier theory, ri(θi), can be represented by the following series

ri(θi) = r0 +
N

∑
n=1

[Ancos(nθ) + Bnsin(nθ)] (2.27)
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FIGURE 2.47: Definitions of aspect ratio (AR), convexity (C) and
sphericity (S) from Yang and Luo (2015) used with permission from

Elsevier.

where n is the number of the harmonic, N is the total number of harmonics, and An
and Bn are coefficients giving the magnitude and phase for each harmonic. However,
as stated by Bowman et al. (2001), the use of the closed form leads to the possibility of
re-entrant angles where the radius intersects the particle outline twice. An example
of this can be seen in Figure 2.48. As a result, two possible values of radius r are
obtained at a given angle θ

FIGURE 2.48: Example of re-entrant of the radius using Fourier
analysis in closed form on a particle outline (Bowman et al., 2001)
© Thomas Telford Ltd. Images used under Creative Commons
Attribution-Non-Commercial 4.0 International Copyright (Creative

Commons, 2013a).

Alternatively, Bowman et al. (2001) suggested the use of the Fourier descriptor method
that was introduced by Clark (1981) (as cited by Bowman et al., 2001).

xm + iym =
N/2

∑
n=−N/2+1

(An + iBn)

[
cos

(
2πnm

M

)
+ i sin

(
2πnm

M

)]

where x and y are coordinates of the particle outline, N is the total number of de-
scriptors, n is the descriptor number, M is the total number of coordinates describing
the particle, m is the index number of a point on the particle, A and B are coefficients
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for each descriptor and i denotes an imaginary number. Bowman et al. (2001) dis-
cusses how the Fourier descriptor method does not suffer from the re-entrant angle
problem and that an accurate location of a centroid is not required.

The number of descriptors produced by the Fourier analysis is determined by the
number of points chosen to describe the particle outline. Bowman et al. (2001) states
that for 128 points, there are a possible N=128 Fourier descriptors ranging from -
63<=n<=64. However, the value of these descriptors decays as these limits are ap-
proached and Bowman et al. (2001) suggests that the lower-order descriptors of n=-
1 and n=1-4 can be used to describe the particle morphology. Analysis on various
shapes conducted by Bowman et al. (2001) led to the effect of different shape de-
scriptors and defined "signature descriptors" to have an effect of particle shape as
listed in Table 2.7.

From this analysis, Bowman et al. (2001) refined their suggestion and stated that
although n=+2 and n=+3 give additional information, the maximum signature de-
scriptors required to approximate morphology are n=-1, -2, -3 and n=+1. Das (2007)
suggested that Fourier descriptors n=+3 to n=+8 define the main irregularities of
the particle contour whilst descriptors above n=8 can describe the roughness of the
particle. These are also included in Table 2.7

Descriptor, n Measurement of descriptor Reference
-3 Squareness Bowman et al. (2001)
-2 Triangularity Bowman et al. (2001)
-1 Elongation, i.e. aspect ratio Bowman et al. (2001)
0 Radius i.e. particle size Bowman et al. (2001)

+1 Asymmetry or irregularity Bowman et al. (2001)
+2 Second-order elongation term Bowman et al. (2001)
+3 Second-order triangularity term Bowman et al. (2001)

+3 to +8 Irregularities of the contour Das (2007)
>+8 Roughness Das (2007)

TABLE 2.7: Descriptors highlighted by Bowman et al. (2001) and Das
(2007) and the effect they measure.

Bowman et al. (2001) shows that the shape descriptor, n, can be calculated from the
amplitude of An and Bn. However, for comparison between differing sand grains,
Bowman et al. (2001) explains that each descriptor should be normalised by the first
descriptor value which is a measure of the radius of the particle. This normalised
amplitude, Dn, is given for each harmonic, n, by

Dn =

√
An

2 + Bn
2

r0
(2.28)

An and Bn can be found by applying a discrete Fourier transform to ri(θi) that will
give

An =
1
N

N

∑
i=1

[ri cos (i · θi)] (2.29)
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Bn =
1
N

N

∑
i=1

[ri sin (i · θi)] (2.30)

It can be understood that D0 will be equal to 1 as the amplitude of An and Bn will
equal r0 (Mollon and Zhao, 2012).

2.5.3 Generating Particle Shape from Fourier Descriptors

Mollon and Zhao (2012) reversed the concept of descriptors by using a spectrum to
generate random particles using prescribed particle shape descriptors. This is the
method that has been adopted in this research. Mollon and Zhao (2012) does this by
defining only three values for shape descriptors. As explained previously, Bowman
et al. (2001) and Das (2007) states that the most effective shape descriptors are within
the range of n=-3 to n=+8. From these, it is known that D0 is equal to 1. Mollon and
Zhao (2012) states that D1 corresponds to a shift of the grain contour with respect to
a position point, O, and that this can be set to zero if the position of O is properly
selected. D2 is described to be extremely important to define the elongation of the
particle. As for shape descriptors from D3 and upwards, these are determined using

Dn = 2α−log2(n/3)+log2(D3) for 3 < n < 8 (2.31)

Dn = 2β·log2(n/8)+log2(D8) for n > 8 (2.32)

which determine a spectrum of the descriptors defined using D2, D3 and D8. The
reasoning for this is that Meloy (1977) showed that descriptor number decreases
linearly when in a log-log scale in natural sands. The surface roughness of given
sand can thus be described by only a slope and an intercept. An example of the
sort of spectrum that would be produced is given in Figure 2.49. It should be noted
that this is not in a log-log scale but the values for Fourier descriptors does decrease
logarithmically. To simplify the analysis in Mollon and Zhao (2012), just descriptors
D2, D3 and D8 are taken for defining these slopes. α and β are values that describe
these slopes and in the work conducted in Mollon and Zhao (2012) are taken to
both equal -2. As deduced from information given in Bowman et al. (2001), Das
and Ashmawy (2007), and Mollon and Zhao (2012), D2, D3 and D8 represent Fourier
descriptors for elongation, irregularity and roughness respectively.

From the spectrum determined by D2, D3 and D8 and defined by Equation 2.31 and
Equation 2.32, the reverse operation can be conducted to generate two-dimensional
particle outlines with similar features. As features are described by the amplitude of
An and Bn, Mollon and Zhao (2012) applies a degree of randomness by considering
a phase angle, δn, for a given Dn defined by

δn = tan−1(
Bn

An
) (2.33)

To create a random particle, a randomly assigned phase angle can be applied to each
descriptor in the amplitude spectrum {Dn} where n is greater than zero. Mollon and
Zhao (2012) states that each of these random angles follows a uniform distribution
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FIGURE 2.49: Illustrative normalised amplitude spectrum as pre-
sented in Mollon and Zhao (2012) reproduced with permission from

SNCSC.

on the interval [−π;π]. The contour of the particle is found using Equation 2.27
where An and Bn are defined by

An = Dn.cosδn (2.34)

Bn = Dn.sinδn (2.35)

Placement of particles in a domain are determined by discretising the area into
Voronoi cells which is based on the Voronoi tessellation approach described by Tille-
mans and Herrmann (1995) (as cited by Mollon and Zhao, 2012). Each cell is filled
by a particle shape outline. An optimisation is conducted on how close each particle
fills the cell compared to the targetted solid fraction which can be described as how
much of the domain is made up of soil grains. From this, a layout of soil grains is
created using just three Fourier Descriptors, D2, D3 and D8. The effect that each of
these descriptors is presented in Figures 2.50 and 2.51 which can also be found in
Mollon and Zhao (2012).

Software for the generation of particles using the Fourier-Voroni method as de-
scribed in Mollon and Zhao (2012) has been developed by Guilhem Mollon and is
available from Mollon (2023). The programme is coded in MATLAB and generates
2D particle shapes, although a 3D version is readily available (Mollon and Zhao,
2013). The variety within the generated particles comes from the use of a random
phase angle with the specified descriptors to find An and Bn as described in Equa-
tion 2.34 and Equation 2.35. The model also uses the Voronoi cell technique to create
a realistic particle packing. It was considered that this could be adopted to create
a packing structure of particles in this work before refining the placement. How-
ever, the arrangement of the particles produced leaves quite a high amount of voids
between particles. Therefore this has not been adopted as a method for packing of
particle outlines. Instead, the arrangements are created using the Fourier-Voronoi
techniques and particle shapes are extracted. The Voronoi tessellation approach is
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FIGURE 2.50: Effect of D2 and D3 on particle shape as presented in
(Mollon and Zhao, 2012). Reproduced with permission from SNCSC.

FIGURE 2.51: Effect of D8 on particle shape as presented in Mollon
and Zhao (2012). Reproduced with permission from SNCSC.
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mentioned to outline the parameters adopted when creating shapes using the code
in Section 3.6.1 but not further explored as it is not relevant to the types of shapes
created.

2.5.4 Summary of Section 2.5

Section 2.5 describes different concepts for characterising particle shape as well as
a method for generating two-dimensional particle outlines. The characterisation of
particle shapes is beneficial for a selection process of particles for construction so
that particles whose shape will lead to lower shear strengths of the structure can be
discarded without an attempt to place them in the system. Meanwhile, the genera-
tion of two-dimensional particle shapes is beneficial as this is adopted to create the
outlines that are packed in the algorithm described by Chapter 3.

Section 2.5.1 defines morphology of a particle and states that four aspects can be used
to describe particle shape. These are form, sphericity, roundness, and irregularity.
Each are defined in Section 2.5.1 with different methods presented for both two-
dimensional and three-dimensional particle shapes.

Both Zingg (1935) and Sneed and Folk (1958) adopted plots to define the form of a
particle. The description of the particle depends on where it lies on the plot. Both re-
quire all three measurements of L, I and S and therefore cannot be used for defining
two-dimensional outlines unless thickness is assumed. Flatness again is a three-
dimensional term that requires the thickness of the particle, which normally would
be the parameter that is assumed for two-dimensional shapes. Potticary et al. (2016)
defined platiness and elongation to describe the form of a particle but again uses
L, I and S to define these parameters. However, Blott and Pye (2008) and Li et al.
(2013) both define elongation using Equation 2.14 which omits S. Therefore, this can
be adopted as a two-dimensional descriptor for the outline of particles.

Sphericity is inherently a three-dimensional shape as it compares particle shape to
that of an ideal sphere. However, circularity is a two-dimensional version of this
comparing particle shape to an ideal circle as defined in Wadell (1933) (as cited by
Blott and Pye, 2008). Circularity is calculated using Equation 2.18. Maximum value
of Λ is 1 with this representing an ideal circle. Wadell (1933) (as cited by Blott and
Pye, 2008) also defined circularity as the ratio of the diameter of a circle with the
same area as the particle to the diameter of the smallest circumscribed circle and
called this projection sphericity. Riley (1941) defined inscribed circle sphericity using
Equation 2.19. Both ΛP and ΛI can also be adopted to describe the circularity of two-
dimensional particle outlines.

Roundness can be described using Equation 2.20 as proposed by Wadell (1932). This
measures each corner of the particle and averages them to get the degree of round-
ness. This can be a time consuming process. As described by Barrett (1980), round-
ness can be extended to be a three-dimensional measure by adopting spheres instead
of circles for each corner. Lees (1964) measured angularity, or in other words how
far away from roundness a particle is, by the method described in Equation 2.21.
Again, this method is also described to be time consuming. However, with the use
of high-performance computational techniques, it is envisioned that the time to com-
plete these calculations would not be equivalent to the time that was required when
Wadell (1932) and Lees (1964) were published.
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Surface roughness or surface texture can be described by the irregularity of the par-
ticle. This is typically defined as its difference from a convex hull that described the
outline. These measures can be made for two-dimensional outlines of each plane
and then be converted into a three-dimensional value. Therefore, the methods are
suitable for describing two-dimensional particle outlines with the omission of the
conversion step. I2D is defined by Blott and Pye (2008) . Li et al. (2013) and Yang and
Luo (2015) both described the term convexity using different methods, presented
in Equation 2.23 and Figure 2.47 respectively. Aspect ratio is also defined by Yang
and Luo (2015) using Equation 2.25. Yang and Luo (2015) then goes on to combined
sphericity (or circularity), aspect ratio and convexity to describe overall regularity
which is meant to give a general term to describe the particle shape.

Derivation of Fourier descriptors from two-dimensional particle shapes are discussed
in Section 2.5.2. These can be adopted to describe the outline of a particle and are
seen as an alternative method to the methods described in Section 2.5.1. Further-
more, Section 2.5.3 describes the method in which Fourier Descriptors can be used
to generate particle outlines. This is described by Mollon and Zhao (2012) to create
two-dimensional particle outlines from just three Fourer Descriptors (D2, D3, and
D8). Software that utilises this method is available from Mollon (2023) and this had
been employed to create two-dimensional particle shapes that represent irregular,
untooled rock as described in Section 3.6.1.

2.6 Conclusions from Literature

Granular material based walls that use particle sizes of gravel, cobbles and boulders
as their construction material appear to be suitable for construction using earthen
materials if a high strength is required. Examples of these are given in Section 2.2 of
DSRW, retaining walls constructed by the Incans, and 16th-17th Centuary Japanese
castle walls. Particularly with the Incan retaining walls and Japanese castles walls,
minimal void is present in the structures with examples of these given in Figure 2.6b
and Figure 2.8b. Snow (2001) provides a wide range of different DSRW constructions
and a pattern of minimising voids in the structure is also clear from visual exami-
nation. These retaining walls rely on friction and interlocking for strength (Villemus
et al., 2007). Therefore the internal configuration is relevant (Mundell et al., 2010).
Unlike URE, water can flow through the rough interfaces (Vallejo and Fontanese,
2014) leading to minimal build up of pore water pressure. Also, the heavy particles
used provide strength from their weight to prevent against sliding and overturn-
ing. The curved profile of Japanese castle walls should be noted here as it is another
way to maximise shear strength (Utili and Nova, 2007). The heavier structures ex-
hibit higher curves in the wall profile as observed by Fujioka (1969) and the work in
Nishida et al. (2005) shows that this is to create compressive forces throughout the
wall. Although this knowledge will not be utilised in this project as the focus is on
2D problems, it is important if a 3D problem is investigated in the future.

Section 2.2.4 explores current work into the area of autonomous construction using
irregular particles by robot. These works tend to focus on the use of a heuristic to
determine placement by how well a stone fits to the upper surface of the already
placed particles (Furrer et al., 2017; Johns et al., 2020; Johns et al., 2023; Liu et al.,
2021). Additional heuristics for the energy required to move the placed particle,
lengths between newly placed objects and previously placed objects, deviation of
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the normal to the particle contact from the thrust line are considered as seen in Fur-
rer et al. (2017). Further criteria were set out in Liu et al. (2021) to filter the number
of candidate poses for testing to speed up computational time. These included en-
suring the slope of the top surface must be inward and making sure the centroid
height must be lower than the average of the centroid heights, as well as ensuring
the deviation of the normal to the surface compared to the thrust line, the contact
area of the particle with the surface, and the number of interlocking objects for the
pose must be above the mean of all possible results. Johns et al. (2020) introduced a
stability check that consisted of ensuring the horizontal and vertical dimensions of
a stone are in a ratio greater than 0.5 when considering a pose with any poses not
meeting this criteria being discarded to save on computational time. Furthermore,
heuristics can be added from the information in Vivian (1976) for the construction of
drystone walls by hand. The most important of these for this study is stones should
rest on at least two other stones to reduce the number of runs in the wall.

From the reviewed literature, it can be stated that more angular and irregular parti-
cles will lead to increased ϕ values (Alshibli and Cil, 2018; Chan and Page, 1997; Cho
et al., 2006; Koerner, 1970; Li et al., 2013; Miura et al., 1998; Selig and Roner, 1987;
Vallerga et al., 1957; Xiao et al., 2019; Yang and Luo, 2015). In addition Vivian (1976)
states that angular particles such as hard shales and schists that have flat sides due
to cleavage are easier to build DSRWs with than stones which are rounded. Huu et
al. (2017) showed that angular sands have a higher shear strength and show dilative
behaviours at much lower relative densities than smoother sands. This is caused
by the interlocking between aggregates created by their angular shape. The angu-
lar particles can be said to have a higher restriction on rotation and movement due
to an increase in interparticle contacts and this is what is leading to a higher shear
strength (Brandes, 2011; Li, 2013; Potticary et al., 2016). Santamarina and Cho (2004)
agrees stating that the increased angularity will make it more difficult for particles
to rotate. Guo and Su (2007) concluded that interlocking was more likely to occur in
angular particles and this leads to an increase in shear strength. Rowe (1962) agrees,
stating shear resistance is affected by interparticle friction, particle rearrangement,
dilation and crushing in granular soils.

Furthermore for a DSRW, Villemus et al. (2007) showed that rotation of particles
takes place when a wall fails. Interlocking of particles will prevent particle move-
ment and rotation. The sangi-zuma pattern at the boundaries of Japanese castle
walls (Figure 2.9) also provide evidence for this, as the overlaying pattern will mean
more chance of particles interacting and interlocking with each other rather than
blocks flush against each other on the same layer. It is envisioned that if waste rock
is used as a construction material then angular particles will be utilised. However, as
the construction material is limited by what is available if a focus on locally sourced
materials is enforced, then a choice of material shape may not be possible. Therefore,
selection of the particle by shape will not be considered for this project. Rather, by
measuring other factors that contribute to interlocking - such as coordination num-
ber or surface area of particles in contact with other particles - this will constitute for
not considering particle shape.

Higher mean coordination number of a system tends to lead to higher shear strengths
(Ishigami et al., 1973; Oda, 1977). This is seen in the Incan retaining walls and
Japanese castle walls. Utili and Nova (2007) stated the dispersed nature in which the
different sizes of particles are positioned in the foundation for Japanese castle walls
and foundations lead to the wall having a "cohesion" that is not normally found
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in granular material. This cohesion is created by the high coordination numbers
around the larger stones. The higher coordination number helps spread the force
through the system by providing more force chains (Fonseca et al., 2016; Muir Wood,
2008) as well as providing stability to particles (Alexander, 1998). As stated by Ueda
et al. (2011), a high mean coordination number tends to lead to a lower void ratio
and this is true in the Incan retaining walls and Japanese castle walls which have
high coordination number and very low void ratio. Furthermore, Vivian (1976) sug-
gests that in a DSRW stones should rest above at least two other stones when being
placed to prevent runs within the wall, suggesting higher coordination numbers in
the system will also prevent these runs from appearing.

Particle size will not be considered in this project. Although it is commonly reported
that particle size affects shear strength (Alias et al., 2014; Holtz and Gibbs, 1956;
Pakbaz and Moqaddam, 2012; Simoni and Houlsby, 2006; Wang et al., 2013), these
changes in shear strength are actually due to other changes of the surface character-
istics of the soil particles (Winterkorn, 1967). Many papers reported no significant
change to shear strength with a change in particle size (Latha and Sitharam, 2008;
Selig and Roner, 1987; Vallerga et al., 1957). The effect was especially highlighted in
Azéma et al. (2017a) and Linero Molina et al. (2019), where PSD of a material was
simulated but particle shape was kept consistent. Minimal effect on shear strength
was seen when original shape was retained. However, when the shape was changed
to more accurately represent change in particle shape that would occur for parti-
cles of the material in the scaled down size, the results gave a change in the shear
strength of the system. Although it is reported for the Incan retaining wall examples
that heavier particles lead to more stability due to their self weight, it is not known
that particles of such a large size would be produced as waste rock or available as a
locally sourced material close to site when constructing. Therefore, the use of much
larger particles for stability from self-weight is not included in this study.

An increase in interparticle friction leads to higher values of shear strength (Thorn-
ton and Sun, 1993). The energy is dissipated through the system more and there is
a decrease in sliding of the contacts between particles (Thornton, 2000; Santamarina
and Cho, 2004; Suiker and Fleck, 2004). Santamarina and Cascante (1998) showed
that surface roughness leads to an increase in critical state friction angle. From Equa-
tion 2.6 and Equation 2.7 it is known that this has an effect on maximum angle of
shearing resistance. It can be hypothesised that the higher percentage of the soils
surface in contact with other particles will lead to more chance of frictional forces
being created. The minimal amount of void in the constructions discussed in Sec-
tion 2.2.2 and Section 2.2.3 provides evidence of this theory as the high amount of
friction between particles adds to the strength of the system (Villemus et al., 2007).
More evidence is presented for this in Grillanda et al. (2021) and Santa-Cruz et al.
(2021) where walls made from regular, rectangular blocks performed better than ir-
regular blocks or blocks with imperfections in the bricks when tested by a tilting
table method. This is due to less shear resistance because of the varying contact
area. Additionally, the literature discussed in Section 2.2.4 (Furrer et al., 2017; Liu
et al., 2021; Johns et al., 2020; Johns et al., 2023) designed with a heuristic approach
that scored placement on its "goodness of fit", i.e. the maximum area of contact of the
particle with the already placed stones. It is known that a more tightly packed struc-
ture will lead to higher strengths (Mogami, 1965; Moroto, 1982). Lodi et al. (1999a)
and Wang et al. (2010) used the area of an item in contact with other items and the
domain edges as a scoring criteria in solving the bin packing problem. Lodi et al.
(1999a) states that this favour patterns that do not trap small areas of space which is
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also beneficial for reducing void ratio in the system. Solvers for jigsaws also relied
on maximising the touching perimeter of jigsaw pieces, as seen in Section 2.4.4. The
use of this as a scoring method for friction between particles can be adopted, as the
higher area a particle has in contact with other particles will mean more chance for
frictional forces to be produced.

High density and well-graded soils are typically considered to have high strength
values (Duncan et al., 2014; Huu et al., 2017; Meyerhof, 1956; Meyerhof, 1976; Yan
and Dong, 2011). However, as discussed in Section 2.3.5, the soil strength should
not be directly linked to density or grading. Rather, a high density soil system will
mean more particles are touching leading to a higher mean coordination number.
Additionally, a system being well-graded will not necessarily lead to a high shear
strength. If it is inferred that high density means low void ratio of a soil, it is known
that this is affected by grading, compaction and particle shape (White and Walton,
1937; Shergold, 1953), all of which can be configured to increase coordination num-
ber. White and Walton (1937), Sohn and Moreland (1968), Lade et al. (1998), and
Cubrinovski and Ishihara (2002) all proved that the inclusion of smaller particles
can reduce voids so long as the inclusion of smaller particles do not displace the ex-
isting particles. This will lead to higher coordination numbers as well as potential
for more frictional forces between particles. Therefore, low void ratio could be used
as a criteria for assessing strength of a system as it will tend to lead to features that
increase shear strength in granular materials. However, as stated by Mogami (1965),
void ratio cannot be used on its own to describe the properties of granular material
and the distribution of void is also needed to be known. Therefore void ratio alone
cannot be used to analyse particle placement in a packing algorithm for creating a
structure. Examples of heuristics trying to reduce void in a system are found in Sec-
tion 2.4.5. Phon-Amnuaisuk (2015) focused on minimising the presence of unfilled
tiles whilst Kostreva and Hartman (2004) and Böhm et al. (2005) minimised the gaps
below the placed block as part of their criteria for optimising the Tetris problem as
well as maximising the number of contacting sides of the tetrominoes. Both these
criteria will help reduce void ratio in addition to increasing coordination number
and interparticle friction.

Evidence for a particle being packed lower down in a system to increase stability
is presented in Section 2.4. When discussing packings of spheres in Section 2.4.1,
Graton and Fraser (1935) and Liu et al. (2015) both state that a sphere has a lower
potential energy when lower down in a system with regards to gravity. Within the
DSRW structures in Section 2.2.1, flatter stones are used for layers. By placing these
pieces with their width horizontal this is reducing the potential energy of that piece.
Additionally, heuristics for optimising space between particles in the bin packing
problem and Tetris optimisation problem take advantage of packing particles further
down in the system. Hifi and M’Hallah (2002), Jakobs (1996), and Liu and Teng
(1999) take a bottom left approach. Wang et al. (2010) also prioritised the bottom-
most position in their DBLF algoirthm. Kostreva and Hartman (2004) and Böhm et
al. (2005) prioritised minimising the overall height of the structure when fitting Tetris
shapes into a domain. This will naturally lower the potential energy of particles
placed. Therefore, the height of the placed particle will be taken forward as a criteria
for scoring particle placement. Stability of the system will need to be considered.
Reducing the potential energy of particles by reducing the height will lead to better
stability as well as reducing the creation of large wells of voids in the system as
creation of thin canyons of void should be avoided with the inclusion of this criteria.



2.6. Conclusions from Literature 101

The suggested problem in this thesis is similar to that of the bin packing problem
discussed in Section 2.4.3. This is shown to be NP-hard and this means that no al-
gorithm can solve the problem in polynomial time is known as described in Section
2.4.2. It is common for these sorts of problems to be solved using a heuristic al-
gorithm. Therefore an objective function with weighted criteria whilst following a
heuristic approach will be utilised in this project. Examples of these heuristic ap-
proaches are found in Sections 2.4.3-2.4.5. Kostreva and Hartman (2004) and Böhm
et al. (2005) are two examples of the use of a weighted function to score possible
placements of tetrominoes in the Tetris problem. For this approach, each positioning
and possible rotation is scored for placement and the best scoring result is taken for-
ward. Algorithms discussed in Section 2.4.4 also used a heuristic approach of scor-
ing each possible placement like in Woflson et al. (1988). With these scored heuristic
approaches, it is possible to use a lookahead like in Goldberg et al. (2002) or for the
offline approaches for bin packing. However, a large number of items will lead to
extensive computational times as the permutations of the items’ order of placement
will be massive. On the other hand, only allowing a small amount of items to be
packed at a time whilst testing all permutations of placement would greatly reduce
the number of possible permutations and with it computational runtime. Research
in the area of autonomous construction, discussed in Section 2.2.4, utilise heuristics
to score placements and choose the most optimal solution (Furrer et al., 2017; Liu
et al., 2021; Johns et al., 2020; Johns et al., 2023). Furthermore, Furrer et al. (2017)
and Liu et al. (2021) make use of a weighted function for this heuristic approach to
provide criteria that is deemed more suitable to the optimal solution. The position
with the highest score is taken forward.

The possible criteria for a weighted function that will produce structures of high
shear strength will be based on the discussed features that can affect shear strength.
These are particle shape, coordination number, particle size, interparticle friction,
void ratio, and height of placement in the system. Of those features, it has already
been stated that particle shape and size will not be assessed due to the ability of the
other features to describe their effect as well as the inability to predict the type of
material that will be used if sourced locally. Therefore, the criteria taken forward
will be

• Void ratio, or gaps created by placement of the particle in that position

• The potential energy, or height of the placement in the system

• Coordination number of the placed particle (at the time of placement)

• Area of contact of the particle with other particles and the domain edge, or the
potential for frictional forces between particles

These four criteria will be adopted as the basis of an objective function for scoring
placement of particles in a soil assembly with the purpose of creating a structure
with high shear strength. As far as the author is aware, there is no current literature
that provides a scoring heuristic for particle placement in a soil structure, either in
2D or 3D. The work in this project will take place in 2D but with the aim to enable it
to be used for 3D scenarios in future work.

As it is envisioned that this construction would be completed robotically, other fea-
tures highlighted in the literature review will influence the design of an algorithm
which takes into account this approach. The robots seen in the research reviewed
in Section 2.2.4 tend to use two or three-finger gripper to grasp stones and place
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items using a top-down approach. As such, the algorithm described in Chapter 3
will assume a top-down particle placement approach. A top-down method is also
adopted in Jakobs (1996), Liu and Teng (1999), and Wang and Hauser (2019). This
will help avoid collisions when placing particles. In addition, a stability check will
be introduced as it is in Wang and Hauser (2019). The stability was modelled us-
ing contact points and a Coulomb friction model based on friction coefficient and a
similar check can be completed in this project.

Furthermore, there is potential for the use of techniques to reduce runtime like in
Cagan et al. (1998) where the domain and items were split into smaller resolutions
for scoring before being scored at higher resolutions or Kong and Kimia (2001) where
a coarse description of the edges of pieces were used to remove obvious non-matches
before moving to a finer description. Alternatively, a top contour of the surface like
in Bdolah and Livnat (2000) or Melax (2014) can be adopted. Unlike with the Tetris
scenario, it is unlikely that rows of filled space will disappear. This, as well as the
use of a top-down method, will mean that gaps below the surface will not be filled
without the use of backtracking or an off-line approach. Therefore, a contour surface
will be used to describe the potential placements of particles and further information
below this may be disregarded when finding potential positions for particles.

Additionally, it is envisioned that there is potential to introduce a scheme that se-
lects particles based on their suitability for packing in the structure. For example,
if structure with high shear strength is required, particles that are angular may be
selected based on the findings in Section 2.3.2 that soils made up of more angular
particles tend to exhibit higher shear strengths due to interlocking. If this is the case,
there is a requirement to characterise particles in some manner. Further discussion
around this top can be found in Section 8.6. Section 2.5.1 explores these in detail for
four terms that describe particle shape. These are form, sphericity (or circularity in
the two-dimensional case), roundness and irregularity. Of the classification terms
discussed, elongation (Blott and Pye, 2008; Li et al., 2013), circularity (Riley, 1941;
Wadell, 1933 as cited by Blott and Pye, 2008), angularity (Wadell, 1932; Lees, 1964),
convexity (Li et al., 2013; Yang and Luo, 2015), and aspect ratio (Yang and Luo, 2015)
have potential to be adopted to describe two-dimensional shapes. There is also pos-
sibility for Fourier descriptors to be utilised which are introduced in Section 2.5.1
however this is not taken forward in this project. Alternatively, this concept can
be reversed to use Fourier descriptors D2, D3 and D8 to generate particle outlines
as described in Section 2.5.3 (Mollon and Zhao, 2012). This is done in this project
to generate two-dimensional outlines that represent irregular, untooled rock using
software provided in Mollon (2023). Section 3.6.1 presents the methodology for this
as well as particle outlines taken forward for packing by the algorithm described in
Chapter 3.
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Chapter 3

Methodology for Particle Packing

3.1 Introduction

3.1.1 Chapter Layout

Outlined in Section 2.4 were methods for packing items into a domain and the differ-
ent heuristic approaches for minimising void in scenarios such as bin packing and
Tetris playing methods. From the review, it is proposed that a packing algorithm can
be developed that uses an objective function that includes weighted criterion for the
scoring of placements of particles. In particular, a scoring system will be designed
to pack particles into a structure that exhibits high shear strength. The development
of such an algorithm is described in the following sections of this chapter. The work
conducted follows on from that in Hoodless and Smith (2023) where the algorithm
for placing irregular, untooled particles was not yet fully achieved. Further detail on
the covered areas in Hoodless and Smith (2023) is given in addition to the evolution
for the developed algorithm. A comparison between the methods here and those in
Hoodless and Smith (2023) can be found in Section 3.12.2.

The algorithm is developed in the vector graphics language Asymptote. A brief
description of Asymptote and its benefits is outlined in Section 3.2.1 with an ex-
planation for the choice of this language. The algorithm is designed to pack Tetris
particles for the Standard Tetris scenario described in Section 3.2.2. This is utilised
as a test scenario to set up the algorithm as it is a simplified case of particle packing.
In addition the aim for Tetris is to minimise the void ratio of the system which can
very easily be quantified for analysis. Afterwards, an extension to facilitate pack-
ing of 2D soil particle shapes is added and new features are introduced to cut down
on computational runtime as well as to include a stability check to ensure feasible
packing is completed. This new scenario is described in Section 3.2.3.

Weighted criteria in an objective function are used to score placements of particles
in the system, with the highest scoring placement determining where the particle
is packed. The criteria are based on the literature review in Section 2.3 for features
that affect shear strength in a granular material and those which are to be adopted
in this project are outline in Section 2.6. These are stated in Section 3.5 along with
a description and method for quantification in the algorithm. In this scenario, the
criteria to describe soil strength are utilised but theoretically any criteria could be
used as long as a way to quantify this is implemented into the program.

Section 3.6 describes the additional considerations that are implemented into the
algorithm when moving to outlines of soil grains. Post development of the algo-
rithm using the Tetris Scenario, the programme is taken forward to be utilised for
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shapes that represent outlines of irregular, untooled rock in the Soil Particle Sce-
nario described in Section 3.2.3. The method for generation of these particle outlines
is explored in Section 3.6.1. As rock particles are not confined to four orientations
and a defined spacing between positions like in the Tetris Scenario it is necessary to
redefine the orientations and spacings as well as the domain tests are conducted in
which are discussed in Section 3.6.3 and Section 3.6.2 respectively.

It is shown in Section 3.6.5 that computational runtimes for irregular particles are
massively increased compared to the simply defined tetrominoes. Therefore Section
3.7 introduces features which were implemented into the programme in order to
increase the computational speed. Section 3.8 discusses the complexity of the algo-
rithms. Additionally, Section 3.9 describes stability checks which were introduced
to prevent placement on particles in unsuitable locations within the system.

Section 3.10 discusses how the different scenarios will be quantified to judge the ef-
fect of the objective function. For the Tetris Scenario, Section 3.10.1 describes how
the void ratio of the system for the area underneath the placement surface can be
used to show the efficiency of packing to create minimal gaps in the domain. For the
Soil Particle Scenario, Section 3.10.2 considers how the shear strength of the system
can be assessed without experimentally testing the resulting packing. The disrup-
tion of runs between particles is chosen as a suitable result that can be determined
with a numerical value for comparison. The identification of runs and disruption
by placed particles is described. Section 3.11 discusses how the algorithm handles
finite-size and edge effects that can occur as well as irregular particles for packing.

Section 3.12 summarises the algorithm with the adopted features for the Soil Particle
Test. Input parameters are specified in Table 3.6. This is used to collect the data pre-
sented in Chapter 6. Section 3.13 summarises the whole of Chapter 3, highlighting
key points made in each section.

3.1.2 Outputs

With the production of an algorithm to produce soil structures of high shear strength,
it is important to outline the aims that were set out at the start of this work. These
are as follows

• Produce an algorithm that successfully packs particles into a domain. The par-
ticles and the domain can be specified to be any 2D shape so long as enough
information is provided by the user.

• Design the algorithm to pack particles of irregular, untooled rock with the in-
tention of designing a structure with a high shear strength. However, leave the
possibility for the program to be extended or changed to be able to design to
other criteria specified by the user if desired e.g. a high porosity structure for
good drainage.

• Use the program to pack tetrominoes into a domain with an objective function
targetting minimum void in the system as a test case. Carrying out this step
will help develop the programme and identify issues that may be missed when
just using soil particle shapes.

• Extend the program to move from packing simplified shapes such as the tetro-
minoes into being able to pack complex shapes such as soil particle outlines.
With this will come the inclusion of feasibility checks such as a stability check



3.2. Language and Testing Scenarios 105

to ensure soil particles will remain in the positioned location with no dramatic
collapse of the structure.

These aims were kept in mind whilst producing the program and it is hoped that
each one specified is fulfilled in the following methodology.

3.2 Language and Testing Scenarios

3.2.1 Asymptote Programming Language

The work presented was conducted in the open-source vector graphics language
Asymptote (Hammerlindl et al., 2014). Asymptote was developed to provide a
standard for producing mathematical figures and technical drawings while using
a high-level programming language (Bowman and Shardt, 2009) and has been cho-
sen in this research as it can simultaneously perform complex mathematical oper-
ations and produce high quality images to display the results. The language uses
syntax that is an adaption of C++ and Java so is easy to program in and also adopts
ideas from Python such as named function arguments and array slices (Bowman and
Hammerlindl, 2008). Inspiration is taken from an earlier drawing program called
MetaPost and LaTeX typesetting for labels to ensure consistency across the docu-
ment is also adopted (Hammerlindl et al., 2014). Asymptote is coordinate-based
(Hammerlindl et al., 2014) which makes it suitable for the two-dimensional outlines
of particle shapes that are described in Section 3.6.1 meaning the shapes can be easily
transformed using the inbuilt functions of the language or manual calculation. The
inbuilt functions are of use to this project - such as the intersectionpoints function
which returns all coordinates where two lines intersect with each other - and there-
fore will not require being reproduced as they already exist. It should be noted that
while this research is utilising Asymptote to produce 2D images, the language can
be used for 3D graphics and could be adopted in future projects if three-dimensional
particles are considered.

In summary, Asymptote has been chosen for this work because

• It is easy to use once an understanding of the language has been learnt.

• The language is coordinate-based which is suited for the two-dimensional out-
lines for particle shapes used in this research that are made up of coordinates.

• Complex mathematical operations can be performed in the script and there are
already in-built functions to perform operations that will be needed.

• Asymptote produces high quality images for presenting the results of the script.

3.2.2 Tetris Scenario

For the simplified packing algorithm, the Standard Tetris scenario as introduced by
Brzustowski (1988) will be taken forward. This is described in Section 2.4.5 but the
key aspects are repeated here. The aim of the videogame Tetris is to fill rows of the
domain and a score is achieved if a row is completed.

Tetrominoes are used as the particles for placement in the packing. These are made
of four squares and each type is represented in Figure 2.38 in Section 2.4.5 as well
as replicated here in Figure 3.1 along with the location of coordinates to create the
shapes’ outline. Particles are selected using the pull-from-bag technique as seen in
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the Tetris videogame. This is simulated by creating a list of the seven tetrominoes.
The first particle is selected at random and positioned in the domain before being
removed from the list of potential particles for placement. The process is continued
until all seven initial particles are placed. The bag is then refilled with the seven dif-
ferent tetrominoes and the process continues until the targeted number of particles
is placed or until the next particle cannot be placed in the domain. This was not
originally adopted in the Standard Tetris scenario described by Brzustowski (1988)
but is implemented into the work conducted here.

Each particle can be placed in four different rotational positions each separated by
90o angles and have a spacing of 1 unit square for possible locations in the domain.
This relates to the translations in the Tetris videogame. The program is given unlim-
ited time to place particles, as in Brzustowski (1988), and no falling of particles for a
given time frame is introduced.

Unlike with Tetris, completely filled rows will not be deleted in this scenario. When
it comes to packing with soil particles in a real life situation, rows of soil will not
miraculously delete themselves if there is no void in that row. Therefore, this is not
replicated in the present project but it could be introduced if the aim of this research
was to produce an optimised Tetris videogame playing method.

In the traditional Tetris videogame, a 10x20 square domain is used. However, in
this scenario a 10x10 square domain is utilised. This is just to speed up the com-
putational time as it will take less particles to fill the domain completely. The use
of reduced domain size is commonly seen in the literature reviewed in Section 2.4.5
to describe the size of the state space (Carr, 2005). The produced results by these
reduced domains are still good so therefore it can be taken forward in this project.
An investigation into domain size is completed in Chapter 4.

3.2.3 Soil Particle Scenario

For the Soil Particle Scenario, 2D outlines of irregular, untooled rock are required.
The generation of these outlines is described in Section 3.6.1. As particles are hy-
pothesised to be of irregular, untooled quarry rock or CDW it is hard to know what
shape these particles will be. Therefore a suitable selection will need to be deter-
mined qualitatively by visual inspection. Additionally, there is no defined number
of orientations for the stones to be rotated by or a known location spacing to trial
between potential positions. Domain size is also another unknown but a size that
simulates an equivalent to the Tetris Scenario is adopted to retain similarity between
the scenarios. These features are later discussed in Sections 3.6.3 and 3.6.2.

Unlike Tetris, rocks undergo gravitational forces through the centroid of the particle.
As such, stability checks and conditions are introduced to prevent unstable position-
ing of objects. Further information on these stability checks are given in Section 3.9.
As described in Section 2.2.4 a top-down approach is to be adopted which is equiv-
alent to the Tetris Scenario.

With Tetris, particle selection is limited to one particle after the other as the game
tries to catch out the player into placing tetrominoes in suboptimal positions. For
a robot completing autonomous construction, it is determined that particles will be
free for selection by the algorithm. Therefore more than one particle can be tested
at a time and the optimal particle can be selected for placement. If all particles are
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available due to the free movement of the robot then still a limited number of parti-
cles should be made available for analysis to reduce the number of candidate poses
as is seen in Johns et al. (2020) and Johns et al. (2023) where 20-40 stones are con-
sidered for placement at a time. Once all stones are placed or discarded, another
20-40 stones are scanned and placement for these is determined. Multiple particles
for selection are not made available for the work in this project, but this could be im-
plemented in future research. More discussion on this topic can be found in Section
8.4.1.

3.3 Tetris Scenario Initial Procedure

3.3.1 Defining Particles

Particles are defined by the user as a set of coordinates in the abscissa and the ordi-
nate. By using this method, the particles can be defined by any shape with no limi-
tations on being convex or concave. The coordinates are required to define a closed
loop, i.e. the first and last coordinates must be of the same value. Also, coordinates
of the outline are required to be listed in a clockwise order.

Tetris is chosen as the simplified method as these particles are only defined by a
small number of coordinates at the corners. However, in this example, coordinates
were used at each corner of the squares that made up the tetrominoes that lay on
the outline of the particle shape. Each tetromino is displayed in Figure 3.1 with the
coordinates that make up the outline of each shape. For irregular, untooled rock
stones, a much larger number of coordinates is required to describe the details of the
particles and to capture their surface features.

FIGURE 3.1: The 7 tetrominoes and the coordinates that describe the
particles.

3.3.2 Particle Splitting

As each particle is defined by coordinates, these coordinates are used for the dif-
ferent functions of the program. Therefore, to decrease computational runtime the
separation of the particle outline can be completed so only the coordinates that are
required are utilised. Each particle is divided into its top line and bottom line which
will help when it comes to the top down placement technique adopted for the testing
scenarios as highlighted as a requirement in Section 2.6. The top line is the outline of
the particle which is exposed at the top, i.e. no other section of the particle lies above
it and therefore if an object is dropped then it could potentially hit this surface. The
bottom line is the outline of the particle which is exposed at the bottom i.e. no area
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of the body of the particle lies below it and therefore if the particle was to be lowered
downwards then this part of the particle is free to make contact with another object.
In this manner, a convex particle outline is fully described by the top line and bottom
line.

The bottom line is configured in a preprocessing step separate to the main algorithm
of the program. The separation of the bottom line improves runtime as only the
coordinates of the particle base are required when determining positioning in the
domain. This is because of the top-down approach adopted for the construction
method. Each coordinate that makes up the total particle outline is tested. A line
is drawn vertically from the coordinate to an arbitrary line below the particle with
ordinate value Z. If there is no intersection between this line and the outline of
the particle, this coordinate is considered to be part of the bottom of the particle.
This is seen in Figure 3.2(a). If the line does intersect the outline of the particle, a
further check is required to see if this coordinate appears at a vertical edge-most
boundary of the particle with another coordinate lying beneath it. An example of
this is seen in Figure 3.2(b). This check is shown in Figure 3.3 for both Figure 3.2(b)
and (c). For a particle, j, if the position of the ith coordinate being measured is (xij, yij)
then two further vertical lines are drawn at (xij + a, yij) and (xij − a, yij) where a is
a value smaller than the horizontal distance between coordinates, named here as
the distance of separation. If one of these lines does not intercept the outline of the
particle - Figure 3.3(a) - then this can be considered an edge-most point and is classed
as part of the bottom line. If both intercept with the particle outline - Figure 3.3(b) -
then this is not considered part of the bottom line and is discarded, as would be the
result of the check for the coordinate in Figure 3.2(c). If it were to exist that a near
vertical edge that slopes outwards from top to bottom would occur, it is important
that a is less than the horizontal distance between these two coordinates otherwise
this coordinate will be falsely classed as a bottom coordinate when it does not make
up the bottom line. The process for determining the bottom line can be summarised
as

for p a r t i c l e j
for each coordinate of bottom l ine , i

CONNECT ( x ( i , j ) , y ( i , j ) ) to ( x ( i , j ) , y ( i , Z ) )
i f i n t e r s e c t i o n with p a r t i c l e o u t l i n e detec ted

CONNECT ( x ( i , j )+a , y ( i , j ) ) to ( x ( i , j )+a , y ( i , Z ) )
CONNECT ( x ( i , j ) −a , y ( i , j ) ) to ( x ( i , j ) −a , y ( i , Z ) )
i f one r e s u l t s with no i n t e r s e c t i o n of p a r t i c l e o u t l i n e

return as bottom l ine coordinate
end

else
return as bottom l ine coordinate

end
end

end

where Z is the ordinate value for the arbitrary line below the particle and x(i, j)
refers to the x position of the ith coordinate of the shape outline for the jth particle.
The result of this process is presented in Figure 3.4.
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FIGURE 3.2: Examples of coordinates being tested for bottom of the
particle detection.

FIGURE 3.3: Examples of the second step of check for coordinates that
intercept with particle outline to determine if edge-most coordinate.

The exact same method is then used to define the coordinates for the top line of the
particle but with the arbitrary line positioned above the particle. However, whereas
the bottom line was required for finding the position of the particle, the top line
is required so that it can be attached to the placement surface in the domain, the
reason for which is explained in Section 3.3.3. Because of this, an additional step
is required to "drop" the surface where overhangs might occur in particles. This
was not required for tetromino shapes rotated at 90o but would be required if the
particle was rotated by increments of 45o for example. Figure 3.5 shows an example
of a possible rotation of the "T" tetromino if increments of 45o are desired. As a top-
down method is being utilised, if a particle was being positioned on top of the T
tetromino it is clear that the particle being placed would not rest on any part of the

(A) (B)

FIGURE 3.4: Result of splitting of (a) T tetromino and (b) outline of
untooled rock particle with bottom line indicated by dashed line.
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tetromino apart from that which is outlined by the dashed line. Therefore the top
line is designed to describe this shape whilst allowing for overhangs in the particle.
Coordinates are listed in increasing abscissa for easy attachment to the placement
surface in the domain. The calculation of the top line is completed once placement
has been determined in the Tetris Scenario.

FIGURE 3.5: Example of the top line for a T tetromino with overhang-
ing edges.

3.3.3 Domain Setup

The domain is the area in which particles can be placed. The outline of the domain is
defined by coordinates that make up the shape similar to how particles are defined
explained in Section 3.3.1. A square domain was used in these simulations, but
it should be noted that any shape can be used so long as the area can be defined
by coordinates. As with Section 3.3.2, the domain is split up into top and bottom
outlines. As a square is used, it was not required for each coordinate to be tested as
the outline for each is quite apparent. For the square shaped domain, a minimum
coordinate is required as the designated point from which the domain is drawn and
for operations to be conducted. In this study, this was taken as (0,0) with positive
units reflecting translation along the width and height of the domain.

The bottom of the domain is described as the placement surface. The placement sur-
face represents the features of the bottom of the domain and is where particles can
be positioned for packing. Once a particle is placed, the top line of the particle is
attached to the placement surface. This describes a new boundary for which subse-
quent particles can be placed. Figure 3.6 shows this action happening. The particle
is in position to be placed above the domain and the distance that the particle needs
to be lowered is calculated. The particle is shifted vertically by the lowering distance
so that it is in position in the domain. The top line of the particle is then combined
with the placement surface to create a new placement surface for particles to be po-
sitioned.

The top of the domain is utilised to detect when a particle placement is outside of
the domain. If the particle intercepts with the top line of the domain, it is classed
as outside of the boundaries set by the program and that placement is considered
unfeasible.
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FIGURE 3.6: Particle being placed into a rectangular domain. The
placement surface is shown as a solid black line before the placement

of the particle and after the placement.

3.3.4 Initial Positioning

Another preprocessing step is to position the particle to be ready for positioning
into the domain. This is achieved by moving the particle above and to the left-
most position in the domain. An example of this is presented in Figure 3.6. The
T tetromino is above the domain and at its left-most location possible whilst still
being within the constraints of the domain’s border. Because of this preprocessing
step, the initial coordinates of the particle set out by the user are inconsequential so
long as they accurately describe the particle shape and are to scale with the domain.
The particle is then shifted along the abscissa by increments starting at an abscissa
value equal to that of the minimum coordinate defined during setup of the domain.
The position above the domain and the following positions after movement by these
increments is from which the particle is lowered into the domain. Each final pose is
scored using the heuristic described in Section 3.5.

3.3.5 Particle Order

A considered constraint on the algorithm is that full information of the all particles
will not be known as is seen in Johns et al. (2023) where 40 particles were scanned
and placed before moving on to the next 40 particles. Rather, a selection of particles
is presented for placement. In the Tetris Scenario, this selection of particles will only
ever consist of one particle as a player of Tetris cannot change particle and can only
place what is presented by the videogame. Therefore the algorithm is limited to one
particle and cannot place the next until the currently selected particle is positioned.

Particles are delivered in an order set out by the pull-from-bag technique as de-
scribed in Section 3.2.2. This delivers each of the seven particles as a list in a random
order. Using the pull-from-bag technique, no particle can be placed again within the
same set of seven. For example, the T tetromino will be placed once in the first 7
particle placements, twice in the first 14, and three times in the first 21. The place-
ment of the T particle is random within that set of seven so it is possible that two T
tetrominoes could be placed subsequentially as the 7th particle and the 8th particle.
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However, particles 9 through to 14 will not be a T tetromino as it has already been
pulled from that bag of particles. The particle generation order for both the Tetris
and Soil Particle Shape scenarios is arbitrary so long as this can be reproduced when
comparing variables within the programme.

A complete order of particles for placement is set out at the start of the programme.
The number of particles to be placed is set a maximum integer value. Lists of the
seven tetrominoes are produced in random orders repeatedly until this targetted
number is achieved. If this number is divisible by seven then each tetromino will
occur the same number of times. If the maximum number is not divisible by seven
then the number of tetrominoes taken from the last list produced will only equal
that which will achieve the maximum number of particles to be placed. An example
is set out as follows with Figure 3.7 providing visual aid. The method of ordering
particles is referred to as the Tetris bag method.

1. The maximum number of particles to be placed is set to 10.

2. The first list of tetrominoes is produced ordering them randomly. This is rep-
resented in Figure 3.7a by the list labelled (1).

3. As the required number for the order list is 10, all of the tetrominoes are added
to the order list in the order that they are generated.

4. The next list of the tetrominoes is produced, again in a random order. This is
represented in Figure 3.7a by the list labelled (2).

5. As the required number to be added to the order list is 3, the first 3 tetromi-
noes are taken and added to the order list. The rest are discarded. This is
represented in Figure 3.7b with the black particles being discarded.

6. The order list for delivery to the algorithm is now complete and consists of
10 tetrominoes in a random order. 4 of the tetrominoes will occur once and
3 of the tetrominoes will occur twice. Figure 3.7c shows an example of the
produced order list of the 10 tetrominoes.

3.4 Development of Placement Method

3.4.1 Positioning Particles

A top-down method approach is adopted as it is envisioned this is the approach a
machine or robot will place particles into position as suggested in Section 2.2.4. Ad-
ditionally, this is what occurs in the Tetris Scenario. Therefore, particles can only be
placed in a location where a clear vertical pathway can be followed for it to be low-
ered into. Lengths are measured between outlines similar to the method in Goldberg
et al. (2002) when testing fits between pieces for the border of the jigsaw as described
in Section 2.4.4. However whereas these were used to find a distribution of lengths
that cluster tightly together around a median value, here the maximum distance that
the particle can be lowered without overlap of the shapes is determined. These dis-
tances are determined between the bottom line of the particle and the top surface
of the already placed particles in the domain. The omission of other coordinates is
similar to Wang and Hauser (2019) where items were placed in a bin using a top-
down heat map of the upper surface of the bin and a bottom-up heat map of the
item, therefore ignoring features that are not required. Adopting only the placement
surface is also similar to methods seen in Bdolah and Livnat (2000) and Melax (2014)
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(A) Results of two order lists (1 & 2) produced from the pull-from-bag method
when creating an order list confined by a maximum number of 10 tetrominoes

(B) All 7 tetrominoes are taken forward for the order list from Bag (1). The first 3
tetrominoes are taken from Bag (2) to achieve a number of 10 particles and the rest

are discarded

(C) The final list of particles in the order they will be placed by the algorithm

FIGURE 3.7: Steps outlined for producing an order list using the Tetris
bag approach for 10 tetrominoes.

(see Section 2.4.5) where only the top contour in the Tetris domain were taken as
possible locations of placement therefore ignoring information below this point.

Particles are tested at each rotation for each possible positioning as defined by incre-
ments set out by the user. For tetrominoes, this will translate to up to a maximum
of ten horizontal placements for each of the four orientations of the particle given
that the width of the domain is 10 units. The first lowering position at the left-most
location above the domain is tested for placement. A score is given to this place-
ment and then the next lowering position is trialled and scored. This is repeated for
each position. The same process is then repeated for each orientation of the particle.
The best scoring position is chosen and the particle is placed at this location for the
determined orientation before the next particle is tested.

The sequence of steps for placement of the particle from it’s position above the do-
main are as follows

1. Lengths are measured from each coordinate that makes up the bottom line
of the particle to the placement surface. This is accomplished by finding the
intercept of a vertical line drawn from each coordinate to below the domain
with the placement surface line and calculating the distance.

2. Simultaneously, lengths are measured from the placement surface to the parti-
cle for all coordinates that fall below the particle. This is completed in a similar
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fashion, with a vertical line drawn from the placement surface to above the
particle.

3. Of all these lengths measured, the minimum value of these lengths is taken as
the distance that the particle can be shifted downwards so that it is touching
the base of the domain, and the particle is translated to this location.

4. The placement is scored using the Objective Function as described in Section
3.5.1

If Step 2 is not conducted, then details in the placement surface can be missed which
in turn means that there can be instances where tetrominoes are positioned over-
lapping the already placed objects. An example of this is in Figure 3.8. For Figure
3.8a, the particle is lowered with the admission of Step 2. As can be seen, the detail
of the bottom line is not detected and the particle is placed with an overlap of the
already placed particles. With the inclusion of Step 2 as shown in Figure 3.8b, the
detail of the bottom line is detected and the particle is placed without any overlap.
For particle shapes in the given Tetris Scenario described in Section 3.2.2, the inclu-
sion of defining the tetrominoes using coordinates at the outline for each square will
prevent features of the bottom line not being detected. However, as the algorithm is
desired to be used for particles of any shape designated by the user, it was important
to include this feature.

(A)

(B)

FIGURE 3.8: Placement of a particle following the placement proce-
dure (A) without the inclusion of step 2 and (B) with the inclusion of

step 2.

Particles are placed sequentially in the order specified. For the Tetris scenario, this
will be determined by the Tetris bag method described in Section 3.3.5. Each hori-
zontal position for each rotation of the particle is scored by the program using the
objective function. The steps can be described as
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for p a r t i c l e j
for each r o t a t i o n

for each h o r i z o n t a l p o s i t i o n i n g
for coordinates of bottom out l ine , i

MEASURE ( x ( i , j ) , y ( i , j ) ) to Placement Surface
end
dis tance1 == minimum d i s t a n c e measured
for coordinates of Placement Surface below p a r t i c l e , k

MEASURE (X( k ) ,Y( k ) ) to p a r t i c l e o u t l i n e
end
dis tance2 == minimum d i s t a n c e measured

i f dis tance1 < dis tance2
MOVE p a r t i c l e by dis tance1

e lse
MOVE p a r t i c l e by dis tance2

end
SCORE placement

end
CHOOSE p o s i t i o n with highes t score of each h o r i z o n t a l
p o s i t i o n as bes t score a t t h i s r o t a t i o n

end
CHOOSE p o s i t i o n with highes t score of each r o t a t i o n as
bes t score of t h i s p a r t i c l e

end
PLACE p a r t i c l e

for each particle, j, where (x, y) refers to the x and y coordinates of the bottom out-
line for particle j and (X, Y) refer to the coordinates of the placement surface. The
nature of this method leads to computation runtimes which rely on the number of
coordinates used to describe the particle and placement surface. As the definition of
the particle increases, the runtime also increases. Therefore, it is expected that sim-
ulations placing Tetris particles will be much faster than simulations placing shapes
that represent irregular, untooled rock. One of the driving factors for Tetris particles
being used as verification for the algorithm is due to these fast runtimes. Figure 3.9
provides evidence for this as it is shown that the computational time of the algorithm
increases as the number of coordinates used to describe the object being placed in-
creases. The times for Figure 3.9 were calculated by packing 50 square particles of
5x5 units into a domain of 50x50 units. An example of the resulting packing is pre-
sented in Figure 3.10a. The number of coordinates to describe the object outline is
the total quantity to define the whole perimeter of the square and includes left, right,
top and bottom sides with an equal number of coordinates designated for each side.

The process continues until the targeted number of particles specified by the user are
placed or the next particle cannot be placed. A particle cannot be placed if it is out-
side the boundaries of the domain. This is specified as outside of the domain rather
than touching, as it is possible for particles to be touching the edge of the domain
whilst still being classed as inside the domain. The check is performed by seeing if
the outline of the particle at its final positioning and orientation intercepts with the
line that describes the top of domain which is determined in the preprocessing steps
as described in Section 3.3.3. As the outline can be touching, a tolerance is set on the
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FIGURE 3.9: Times for the packing of squares of width 5 units in a
domain of 50x50units with no rotation enabled and a location spacing
of 1 unit. Times are calculated by running 30 simulations and taking
the average and number of coordinates represents the quantity used

to describe the perimeter of the square.

(A) (B)

FIGURE 3.10: (a) Outputted packing as produced by the Asymptote
code for 50 squares of 5x5 units packed into 50x50 units domain us-
ing DBL heuristic. (b) Example of a 5x5 unit square made up of 16

coordinates.
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coordinates to shrink the size of the particle very slightly. If the particle still inter-
cepts with the line that describes the top of the domain then the particle is classed as
outside of the domain and this position is classed as not viable.

For a square domain, it is possible to just state that the ordinates of the particle
must not exceed the top of the domain. However the algorithm is to be designed to
encompass any particle shape and any domain shape. Therefore it is necessary to
perform an outside of the domain check in the manner outlined as this allows for
the domain shape to be changed so long as coordinates can be used to describe the
domain and identification of the top of the domain and the bottom of the domain
are performed.

3.4.2 Straight Edge Corner Problem

An issue that arose when determining how far a particle should be lowered was
when straight edges were present. This was a very common occurrence when using
tetrominoes as it occurs when two corners meet when lowering the particle. Figure
3.11a shows an example of this where the particle does not fully lower to the bot-
tom line and instead rests on the corner of the already placed particle. Instead, the
particle should slide to be flush with the already placed particle. This is referred
to as the Straight Edge Corner problem or SEC problem. To counter this problem,
the distance the particle could be placed were found at (xij + a, yij) and (xij − a, yij)
just as when determining the top line and bottom line of the particle in Section 3.3.2.
Both distances are calculated and the largest of these distances is taken. The result
of this can be seen in Figure 3.11b

(A) (B)

FIGURE 3.11: Placement of a particle where SEC problems occurred
(A) without the inclusion of measuring either side of the coordinate
and (B) with the inclusion of measuring either side of the coordinate.

From the solution to the SEC problem presented in Figure 3.11a arose an additional
issue that is presented in Figure 3.12a. Within this problem, two corners are coming
into contact with each other. From the solution presented, the largest distance is
being taken. This leads to overlapping of the particles as the program prioritises the
most movement downwards without taking into account its own geometry.

The solution formed to overcome this was to shift the two starting coordinates for
the measurement lines from (xij + a, yij) and (xij − a, yij) in the vertical direction to



118 Chapter 3. Methodology for Particle Packing

(A) (B)

FIGURE 3.12: Placement of particle where SEC problems occurred
(A) with distances measured at (xij + a, yij) and (xij − a, yij) taking
the largest distance as suggested to solve the problem in Figure 3.11
and (B) with the inclusion of searching for intersection points when

measuring.

above the particle being placed. In this manner, the starting points would become
(xij + a, yij + Pj,max + 1) and (xij − a, yij + Pj,max + 1) where Pj,max is the maximum
height of the particle. The line is then drawn down to below the placement sur-
face. Intersections are calculated where the line crosses the particle outline and the
placement surface.

Minimum y value for intersection with the particle outline and maximum y value
for intersection with the placement surface are obtained and the distance is taken as
their difference. This allows for Step 1 in the placement process described in Section
3.4.1. It is again repeated for when a SEC problem is detected for Step 2 using the
same measurement lines. Providing a Cartesian coordinate system is in use and
the operations of the program take place in a positive coordinate range, below the
placement surface can be taken as x = −1 assuming that the domain is described by
positive coordinates. The workings of these calculations is performed by the steps

for p a r t i c l e j a t a given r o t a t i o n and h o r i z o n t a l p o s i t i o n
for each coordinate of bottom o u t l i n e i

CONNECT ( x ( i , j ) , y ( i , j ) ) to ( x ( i , j ) , −1 )
i f number of i n t e r s e c t i o n s with placement surface == 1

no SEC problem detected
e lse i f number of i n t e r s e c t i o n s with placement surface > 1

SEC problem detected
Distance1 = SEC( x ( i , j ) , y ( i , j ) , −1 , max ( y ( i , j ) ) )

end
end
for each coordinate in the placement surface below p a r t i c l e k

CONNECT (X( k ) ,Y( k ) ) to (X( k ) , max ( y ( j ) )
i f number of i n t e r s e c t i o n s with bottom l ine == 1

no SEC problem detected
e lse i f number of i n t e r s e c t i o n s with bottom l ine > 1

SEC problem detected
Distance2 = SEC(X( k ) , Y( k ) , max ( y ( j ) ) , −1)

end
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end
Lowering Distance = min ( Distance1 , Distance2 )

end

function SEC( x , y , b , t )
CONNECT ( x , t ) to ( x , b )
i f number of i n t e r s e c t i o n s with bottom o u t l i n e > 1

CONNECT ( x+a , t ) to ( x+a , b )
i f number of i n t e r s e c t i o n s with bottom o u t l i n e < 0

p = minimum y i n t e r s e c t i o n point with p a r t i c l e o u t l i n e
q = maximum y i n t e r s e c t i o n point with placement surface
MEASURE ( x , p ) to ( x , q )
d i s tance1 = abs ( p−q )
end

CONNECT ( x−a , t ) to ( x−a , b )
i f number of i n t e r s e c t i o n s with bottom o u t l i n e < 0

p = minimum y i n t e r s e c t i o n point with p a r t i c l e o u t l i n e
q = maximum y i n t e r s e c t i o n point with placement surface
MEASURE ( x , p ) to ( x , q )
d i s tance2 = abs ( p−q )

end
end
return min ( dis tance1 , d i s tance2 )

end

This is performed upon a particle for each rotation and horizontal position to find
the lowering distance with the inclusion of a check for SEC problems.

3.5 Scoring of Placement

3.5.1 Objective Function

Quantifying each candidate placement is required to determine the "best" position-
ing. This can be completed using a function that scores the placement based on the
designated objective of the overall structure. Examples of this for placing untooled
rock were seen in Furrer et al. (2017), Johns et al. (2020), Johns et al. (2023), Lam-
bert and Kennedy (2012), and Liu et al. (2021) and were discussed in Section 2.2.4.
Furthermore, heuristic functions were discussed that were used in the areas of bin
packing (Section 2.4.3), jigsaw solving (Section 2.4.4), and Tetris optimisation (Sec-
tion 2.4.5). A function of this style, named from now on as the Objective Function,
can be utilised for scoring of placements for this algorithm based on the key features
that will lead to the function that is desired.

Within this piece of work, it is desired that the structures produced are optimised for
their functionality when it comes to shear strength. Therefore, criteria for particle
placement used in the object function are based upon those discussed in Section 2.3
and highlighted in Section 2.6 that were stated to indicate a system that has a high
shear strength. These are summarised again for the reader:

• Void ratio, or gaps created by placement of the particle in that position

• The potential energy, or height of the placement in the system
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• Coordination number of the placed particle (at the time of placement)

• Area of contact of the particle with other particles and the domain edge, or the
potential for frictional forces between particles

It desired that a minimum set of parameters are required to describe the system. The
four adopted from Section 2.3 are seen as the minimum number. It could be argued
that void ratio is not required as coordination number and area of contact can help
describe this feature. However, as seen in Chapter 5 and Chapter 6, the quality of
results is affected by the removal of this criteria.

From these criteria, an objective function can be produced. As this is the first stage
of development for this heuristic approach, a first-order equation is adopted. Again,
this helps reduce the number of parameters needed to be determined. How the
objective function can be enhanced is discussed in Section 8.5. The objective function
is described as

Wij = CVV + CDD + CTT + CCNCN (3.1)

where Wij is the total weight (or score) for the ith horizontal position and the jth

orientation of the particle, V, D, T, CN are the scoring criteria for void ratio, po-
tential energy, contact area of the particle, and coordination number and CV , CD,
CT and CCN are weighting coefficients applied to V, D, T and CN respectively. The
objective function is applied to each position trialled. For the Tetris scenario, the
highest scoring position for each orientation was taken forward. If more than one
position possessed the highest score, the bottom-left most position was prioritised,
taking precedent from Berkey and Wang (1987), Jakobs (1996), and Wang et al. (2010)
who used a bottom-left or deepest-bottom-left heuristic when conducting binpack-
ing. Out of these four scores at different orientations, the highest scoring position
was taken again. Again, if multiple scores possessed the highest score, the bottom-
left most position was taken forward.

In Sections 3.5.2-3.5.5, each of these criteria are described and the method of scoring
is explained. All criteria are non-dimensional with the expectation that doing so
will mean that particles of different shapes and sizes or described using a differing
number of coordinates for the particle outline can be compared when scoring. Each
criteria is given a different weighting which changes the effect that is implied upon
particle placement. These were explored and suitable weightings were determined
for both the Tetris scenario and Soil Particle scenario. The methodology for this is
described in Chapter 4.

3.5.2 Void Ratio

Void ratio, e, in geotechnics is described as the ratio of volume of voids in a sys-
tem compared to the volume of solids. As stated in Section 2.6, a low void ratio in
the system tends to lead to other features that exhibit high shear strengths in soil
structures. From the 2D domain in this programme, the void ratio can be described
as

e =
AV

AS
(3.2)
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where AV is the area of voids and AS is the area of solids.

Each particle has a known area defined by the coordinates that make up the outline,
so these can be totalled to equate to AS. Calculations of AV were conducted using
the upper surface of the placed particles. The trapezium rule was utilised to find the
area underneath the upper surface curve described by the coordinates of the upper
surface. This gives the total area of the system, AT. Then AV can be determined by

AV = AT − AS (3.3)

The void ratio of the system could be calculated for each position as the geometries
of the particles and the upper surface are known. The criteria, V, is described as

V = 1 − e (3.4)

to reflect the relationship between void ratio and shear strength and produce lower
scores when higher void ratios occur. It is simple to check that the calculation of void
ratio is correct in the Tetris scenario as each square will relate to a fixed amount of
void ratio. By counting the squares of void ratio and squares of solids in the system,
a manual verification can be complete to ensure the correct values of void ratio are
being produced.

While straightforward, a problem can arise from the definition of AV in Equation
3.3. As the number of particles placed increases and the total area of solids increases
there will be a decreasing effect on the score V. This is due to the area of void
being created being kept to a minimum whereas the area of solid increases at a much
higher rate with each additional particle placed. An example of this is illustrated in
Figure 3.13. Due to this, two more methods for quantifying V were developed and
compared.

FIGURE 3.13: Example of decreasing effect of V as the number of
particles in the system increases. Void ratios, e, equal 0.2 (left) and
0.077 (right) for the same amount of void present in the system. Green

line represents placement surface under which e is calculated.

The first of these additional methods was to use a localised area of the system around
the position of the particle rather than the whole system for calculating void ratio.
From the minimum and maximum abscissa and ordinates, an extension is made to
create this localised area. For testing purposes a localised area of 1.5 units - equiva-
lent to 1.5 squares if a tetromino is made up of 4 squares - was taken. A distance of
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FIGURE 3.14: Example of a potential candidate placement of a tetro-
mino in the Tetris Scenario with indication of extension of 1.5 squares

from placed particle for the localised area calculation of void ratio.

1.5 squares was chosen so that gaps of a width of 1 square next to the particle being
placed can be detected to avoid canyons forming in the system. An example of this
is given in Figure 3.14. The area of investigation is created a distance of 1.5 squares
from each side of the tetromino. Using information from the placement surface, a
new area is created to describe the upper surface from the left-most side of the box
indicated on Figure 3.14 to the right-most side. This extends down to the lower limit
of the localised area, 1.5 squares below the lowest ordinate value. The area under
this new upper surface is taken to describe the area of solids in the system. There-
fore, the void present in the bottom-right of the localised area is not classed as void.
This is a fair assumption as the placement of the particle does not create this void,
only the void that is below its own placement. Therefore the scoring of the particle
being placed should be not be based on void that it does not create within the sys-
tem. A new score for a method using a localised area, VLE can then be calculated
by

VLE = 1 − AVLE

ASLE
(3.5)

where AVLE is the area of void created between the underside of the particle being
placed and the upper surface line, and ASLE is the estimated area of solids in the
localised extension from the tetromino, described by the total area under the upper
surface of the localised area.

The main note that should be added to this method is that any void created below
the particle that is outside of the localised area is ignored. Therefore if a chasm of
void is created by the particle through an overhang, the score is only based upon
the void that is present in the localised area and VLE will be higher than its expected
value.

The third method for analysing void ratio for scoring utilised a technique that took
the area of void created beneath the particle. To normalise this value, a ratio of the
area created to the area of the particle was calculated. This new scoring method, VAB
can be described as
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FIGURE 3.15: Example of a potential candidate placement of a tetro-
mino in the Tetris Scenario where a canyon would be created. The
length represented by A is the length for the area of void taken when
calculating VLE. Length A+B represents the length of the area of void

taken when calculating VAB.

VAB = 1 − AVP

AP
(3.6)

where AVP is the area of void created beneath the underside of the particle and the
upper surface of the already placed particles and AP is the area of the particle being
placed. Unlike the method to calculate VLE, this acknowledges all voids created
below the particle and therefore any overhangs or creation of canyons in the system
are accounted for. Figure 3.15 shows a case where canyoning occurs from placement,
indicating the localised area (length A) that would be utilised and the area of void
that would be excluded in the calculation of VLE (length B).

Figure 3.16 presents data of 100 simulations of the Tetris Scenario through the form
of violin plot. Figures 3.16a, 3.16c, and 3.16e are scored using an objective function
with only a non-zero value for CV out of the weighting coefficients in equation 3.1.
Figures 3.16b, 3.16d and 3.16f have non-zero values for CV and CD and the coeffi-
cients of weighting are of equal value. The violin plots represent the frequency of a
result by the width of the violin at that value of void ratio. Therefore, a wider width
of the violin indicates a higher number of simulations that produced the result for
that void ratio. Within the plots in Figure 3.16 are also the mean, median and quartile
values for void ratio from the 100 simulations for each of the six scenarios. Figure
3.16e, although increasing in width from e=0 to e=0.1, has a shorter tail to its violin
plot and has a lower mean value than objective functions using V or VLE. Addition-
ally, with the inclusion of D, lower void ratios are exhibited at a higher consistency
than the other results. Therefore the use of VAB is adopted in this work.

3.5.3 Depth of Placement

Many of the research papers explored previously in this thesis have taken the heuris-
tic as suggested by traditional techniques of drystone wall construction to create
structures in a layer by layer method (Johns et al., 2020; Johns et al., 2023; Liu et al.,
2021). Furthermore it was shown in Section 2.6 that reducing the potential energy of
the object being placed will increase stability (Furrer et al., 2017; Graton and Fraser,
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FIGURE 3.16: Violin plots with inset boxplots from Hoodless and
Smith (2023), each representing results of 100 simulations for the
Tetris Scenario using the different methods of quantifying the void
ratio score using (a) V (b) V with D included in the objective function
(c) VLE (d) VLE with D included in the objective function (e) VAB (f)

VAB with D included in the objective function.

1935; Liu et al., 2015). In terms of helping to reduce void ratio, research in the areas
of bin packing and Tetris optimisation took a bottom-left approach which priori-
tises placing the object towards the lowest depth possible (Hifi and M’Hallah, 2002;
Jakobs, 1996; Liu and Teng, 1999; Wang et al., 2010). Böhm et al. (2005) and Kostreva
and Hartman (2004) aimed to keep the height of the structure to a minimum for the
Tetris Scenario and by introducing a scoring heuristic that prioritises the maximum
depth it is thought that this can be achieved.

Criteria for scoring of depth, D relies on giving the object a higher score for being
further down in the system. As such, this can be achieved by

D =
Dparticle

Ddomain
(3.7)

where Dparticle is the depth of the particle in the domain measured by the distance
from the top of the domain to the centroid of the particle and Ddomain is the distance
from the top of the domain to the bottom of the domain, i.e. the height of the domain.
The ratio of Dparticle to Ddomain was used to ensure dimensionless criteria so that
comparison can be drawn between particles defined in different manners.

Initial runs of the programme indicated that towers of tetrominoes were created
as leftmost positions were favoured if the score was equivalent to other candidate
placements. The inclusion of D in the scoring criteria prevented these towers form-
ing so long as CD is large enough in relation to the other weighting coefficients to
influence placement.

Like with the V having less of an effect on Wij as more particles are placed, D will
have less of an effect overall as the domain becomes full as Dparticle will tend towards
zero. Other methods of quantifying D were considered. However, as the domain it is
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important that particles placed lower in the system are prioritised to ensure a layer-
by-layer construction approach and to minimise the difference in height between
the lowest and upmost points of the placement surface. The quantification of D is
discussed in Section 8.5 and the effect that the chosen method had on results. As
the domain is relatively small, it is thought that the calculation of D using method
stated in Equation 3.7 is reasonable.

3.5.4 Contact Area

The contact area of the particle with other objects and the domain was highlighted as
a potential scoring heuristic for a system where high shear strength is the objective
in Section 2.6. More tightly packed structures will lead to higher strengths (Mogami,
1965; Moroto, 1982) and high amounts of friction adds to the strength of the system
(Villemus et al., 2007). It is hypothesised that a larger area of contact between the
particle and external surfaces will increase the chance for friction to occur. However,
it is true that friction is caused by the roughness of the particles being used when
packing and this is the main contributing factor to create friction. It can be under-
stood that the more contacts a particle has with other particles and the domain the
less area created beneath it and therefore less void initialised in the system.

Contact area was taken as the number of coordinates of the particle’s outline in con-
tact with the upper surface and the outline of the domain. Given that the lowering
process of the particles stops as soon as the particle makes contact with the upper
surface, often only a single direct contact is achieved. Tetrominoes did produce more
than one point of contact creating a surface of contact between particles due to the
touching faces being flush with each other but this was an unlikely scenario when
moving to other shapes such as those representing untooled rock. Therefore a con-
tact distance error, ϵ, was introduced. An extension from coordinates away from the
particle was made. If this extension intersected with the upper surface or the do-
main then this point was classed as a contact point. Following the check for contact
points, the score for contact area, T, was obtained by the process outlined here. The
number of contact points is first found by

c o n t a c t points = 0
for p a r t i c l e j a t a given r o t a t i o n and h o r i z o n t a l p o s i t i o n

for each coordinate of bottom o u t l i n e i
i f x ( i , j ) , y ( i , j ) i n t e r s e c t s placement surface
or x ( i , j ) , y ( i , j ) i n t e r s e c t s domain o u t l i n e

c o n t a c t points = c o n t a c t points + 1
e lse i f x ( i , j )+CDE, y ( i , j ) i n t e r s e c t s placement surface

or x ( i , j )+CDE, y ( i , j ) i n t e r s e c t s domain o u t l i n e
c o n t a c t points = c o n t a c t points + 1

e lse i f x ( i , j ) −CDE, y ( i , j ) i n t e r s e c t s placement surface
or x ( i , j ) −CDE, y ( i , j ) i n t e r s e c t s domain o u t l i n e

c o n t a c t points = c o n t a c t points + 1
e lse i f x ( i , j ) , y ( i , j )+CDE i n t e r s e c t s placement surface

or x ( i , j ) , y ( i , j )+CDE i n t e r s e c t s domain o u t l i n e
c o n t a c t points = c o n t a c t points + 1

end
end

end
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where CDE represents ϵ. Checks are made downwards as well as left and right of
coordinates to check each possible direction a contact could be located. For the Tetris
Scenario, ϵ was set to be 0.1. However, it should be stated that when ϵ was taken as
0 the same number of contact points were located due to contacts always sitting on
the upper surface. T is then calculated by

T =
nT

nb
(3.8)

where nb is the number of coordinates in the bottom outline of the particle being
placed and nT is the number of coordinates in the bottom outline in contact with
other particles and the domain. Intersection with the top of the domain was not
classified as a contact point due to this top-down approach as well as this support
not providing any resistance against particle slippage due to the direction of gravity.
By totalling the number of contacts, this can be classed as an "area of contact". This
value is made non-dimensional by creating a ratio to the total number of coordinates
that make up the bottom outline, or the "area of the bottom of the particle", as shapes
that are defined by more coordinates will naturally produce a higher nT value for the
same placement for two sets of coordinates that describe the same shape outline. nb
is taken rather than the total number of coordinates for the particle outline as only
the bottom of the particle is utilised for placement as explained in Section 3.3.2 due
to the top-down approach. Although T is referenced to as "area of contact" in this
study, recognise this is actually a measure of the perimeter due to being performed
in the two-dimensional plane.

It is expected that the higher number of contact points for a particle being positioned
will indicate less void being created below the particle, especially in the Tetris Sce-
nario. Therefore it is possible that T may be a secondary indication of VAB. However,
there is no consideration of the size of the void created below the particle. Instead,
a contact point is indication of if void is directly below a coordinate with a higher
score describing less coordinates that have void beneath them.

3.5.5 Coordination Number

Coordination number is the number of particles that are in contact with the par-
ticle being placed. The literature reviewed in Section 2.3.4 as well as the analysis
of Incan retaining walls and Japanese castles in Section 2.2 provide evidence that a
higher mean coordination number of a system of granular material leads to higher
shear strengths exhibited. Therefore we introduce the parameter CN to the objective
function.

Calculation of the coordination number was done by expanding the shape of the
particle to be 5% larger in area around the centroid whilst in the placed position. If
the outline of the expanded particle intersects with surrounding particles that are
already placed in the system then these are deemed as touching and are totalled to
be the coordination number. See Figure 3.17 for an example for a tetromino being
positioned in a domain with already placed tetrominoes. The particle is surrounded
by five others and gains a score of CN=5. Furthermore, the domain is classed as a
placed particle and intersection with the outline of the domain is classed as a unique
contact increasing the coordination number. Intersections are found using the inbuilt
intersectionpoints function within Asymptote.
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FIGURE 3.17: Example of the calculation of CN for a particle being
placed (the hashed particle). The expanded particle outline is repre-
sented by the dashed line and touching tetrominoes are indicated by

a black dot.

As CN is already a dimensionless number, this is taken as the unweighted score. It
was considered to divide the coordination number by the number of particles in the
surrounding area using a similar method to the localised area described in Section
3.5.2. However, it was considered that this penalised the particle for being near
more particles rather than rewarding it for having a higher coordination number.
For example, if a particle was near 10 particles but only had a coordination number
of 2, it would score a value for CN of 0.2. If a particle was near 2 particles but only
had a coordination number of 1 then this would score a value of 0.5 for CN even
though a smaller coordination number is obtained.

As coordination number is calculated using the inbuilt intersectionpoints function
in Asymptote it was necessary to lower the number of times this function is called to
reduce computational time. In order to achieve this, the domain is split up into equal
areas in a grid-like pattern as presented in Figure 3.18. When a particle is placed, the
grids that it resides in is determined and the presence of the particle is recorded. For
the next particle, the check for coordination number using the intersectionpoints is
only completed for the grids within which the expanded particle shape sits in for
that position, therefore omitting any particles that will definitely not contribute to
coordination number.

Within Figure 3.18 there are already placed objects of a right elbow, left elbow and
square tetrominoes. It is clear that the RE tetromino is positioned within grid loca-
tions of A1 and B1 for the specified naming system on the figure. The SQ tetromino
resides only in the grid location D1. For the LE tetromino, the object clearly is situ-
ated in C1 and D1. However, the border of the tetromino sits on the border between
grids B1 and C1. The particle could technically be classed to be in B1 as it is possi-
ble that other particles placed in B1 could lie next to the left elbow tetromino. Yet,
as the expanded particle shape is utilised, the tetromino is not classed as within
B1. If a tetromino placed in B1 does indeed touch the left elbow tetromino then
the expanded particle shape will count as present in C1 and an intersection will be
identified when analysing this area of the domain.

Figure 3.19 presents the cumulative time against the number of simulations ran for
the Tetris Scenario for various separation of the domain into grids for storing parti-
cle location. These grid sizes are 1x1 (where no separation occurs), 2x2, 4x4 and 8x8
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FIGURE 3.18: 10x10 square domain with split into equal areas of a 4x4
grid. Tetrominoes are placed for examples of scale and positioning.

sized grids. Each simulation is ran until the domain is "full" otherwise defined as the
next tetromino to be placed has no viable position to fit without being outside of the
domain. As the number of grids introduced increases the computational runtime
also increases. It is clear that the time saved by not calculating intersections with
each particle does not outweigh the time taken to store the particle information in
each grid. However, it is thought that as the number of particles placed increases the
time to find intersections with every particle will also increase. Therefore this step
is introduced for future scenarios where the quantity of particles in the structure is
much larger. The time to run an instance for a domain size of 100x100 squares plac-
ing 1000 tetrominoes is presented in Figure 3.20 for different numbers of separation
of the grid. It is clear that the introduction of sectioning the domain does increase
the computational speed when large number of particles are being analysed. For the
current Tetris Scenario case, the gridsize can be set to 1 in the programme which will
mean that no separation of the domain is completed.
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FIGURE 3.19: Cumulative time to run simulations up to 100 simula-
tions. Tetris Scenario in a 10x10 square domain for varying separation
of the domain into grids for storing particle location. Around 20 par-

ticles are placed in each simulation.

FIGURE 3.20: Cumulative time to place 1000 tetrominoes in a 100x100
square domain for varying separation of the domain into grids for
storing particle location. Tetrominoes follow the same rules as Tetris
Scenario with 4 orientations trialled at location spacings of 1 square.
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3.5.6 Weighting Coefficient Values

Sections 3.5.2-3.5.5 describe the methods in which the criteria in Equation 3.1 are
derived. The Tetris Scenario aims to create structures with minimal void ratio in the
system. As such, in the objective function the weightings for each criteria can be
adjusted to produce suitable results. In the previous work set out in Hoodless and
Smith (2023), coefficients were tested manually by varying their value and running
100 simulations before analysing the resulting data by violin plots. Although results
were achieved that exhibited low void ratios, it is not thought that an optimised
value was achieved. A packing produced by this method is presented in Figure 3.21.
A parametric study is conducted for CV , CD, CT, and CCN as explained in Chapter 4
and the values of these weighting coefficients are presented in Chapter 5.

Values for VAB, D and T are all ratios that will range between 0 and 1. CN is defined
by the number of surrounding particles and is therefore always an integer. Addi-
tionally, the value for CN is always a minimum value of 1 due to placement of a
particle consistently being on either an already positioned particle or the base of the
domain. This results in values of CN being greater than the other scoring criteria in
the objective function. Therefore the expected value of CCN is to be small relative to
CV , CD and CT. This would follow the work in Hoodless and Smith (2023) where
coefficient values of CV=5, CD=1.25, CT=0.4 and CCN=0.01 were determined.

FIGURE 3.21: As presented in Hoodless and Smith (2023), single
result of Tetris Scenario using coefficient values of CV=5, CD=1.25,
CT=0.4, CCN=0.01 with the order of placement represented on top of

each particle, the first placed particle indicated by 0
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3.6 Soil Particle Scenario

3.6.1 Generating Particle Shape Outlines

Although the Tetris Scenario is useful for testing, the full use of a heuristic algorithm
for determining placement of irregular, untooled rock can only be achieved if the
simulated particles can represent real particle shapes. As the algorithm is currently
designed to pack shapes in two-dimensions, the generation of particle outlines that
have the characteristics of soil particles when presented as a two-dimensional shape
is required.

Partice shapes for this research have been created using the Fourier-Voronoi method
from Mollon and Zhao (2012) that is described in Section 2.5.3. Software is available
from Mollon (2023). The code is based in MATLAB and is simple to use. It is possible
to create different types of shapes using different combinations of Fourier descrip-
tors. The effects of the shape descriptors were presented previously in Figures 2.50
and 2.51. From information in Bowman et al. (2001), Das and Ashmawy (2007), and
Mollon and Zhao (2012) it is expected that D2, D3 and D8 represent Fourier descrip-
tors for elongation, irregularity and roughness respectively.

A further study was completed to produce the shapes that can be created by the
code with different Fourier Descriptor input values. Results for some of the combi-
nations trialled are presented in Figure 3.22-3.24. As expected, when D2, D3 and D8
are all set to be zero (Figure 3.22) an arrangement of circles is produced in locations
determined by the Voronoi tessellation approach. The target solid fraction - the tar-
getted proportion of each cell covered by the particle - was set to be 0.7. This value
is recommended to be less than or equal to 0.7 otherwise difficulties arise due to the
biggest radius of the particle shape being greater than the smallest radius in the cell
from the centre as described by Mollon and Zhao (2012).

FIGURE 3.22: Products of the Fourier-Voronoi MATLAB code pro-
vided by Mollon (2023) for Fourier Descriptor values D2 = D3 = D8 =

0.

As presented in Figures 3.23 and 3.24, an increase of the Fourier descriptors have the
effects on the particle shape described in Mollon and Zhao (2012). An increase in D8,
represented by Mollon and Zhao (2012) in Figure 2.51, creates more noise to describe
the particle edge increasing the roughness of the surface. From Figure 3.23c it can
be seen that when D8=0.04, the noise around the edge is very exaggerated. A value
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(A) D2 = 0.1, D3 = 0.1, D8 = 0.015 (B) D2 = 0.1,D3 = 0.1, D8 = 0.02

(C) D2 = 0.1, D3 = 0.1, D8 = 0.04 (D) D2 = 0.1, D3 = 0.2, D8 = 0.015

FIGURE 3.23: Products of the Fourier-Voronoi MATLAB code pro-
vided by Mollon (2023) for different Fourier Descriptor values.
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(A) D2 = 0.1, D3 = 0.3, D8 = 0.015 (B) D2 = 0.2, D3 = 0.2, D8 = 0.015

(C) D2 = 0.3, D3 = 0.2, D8 = 0.015 (D) D2 = 0.3, D3 = 0.3, D8 = 0.015

FIGURE 3.24: Products of the Fourier-Voronoi MATLAB code pro-
vided by Mollon (2023) for different Fourier Descriptor values.
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of D8=0.02 (Figure 3.23b) is still quite exaggerated for the representation of quarry
rock and stones that are envisioned for the use of this algorithm. D2 increases elon-
gation in the shape as described by Mollon and Zhao (2012) and shown in Figure
2.50. Past a value of D2=0.2, the elongation of the particles becomes too high for rep-
resenting untooled, rock particles. Increasing D3 leads to a decrease from sphericity
of the particle with the shapes generated possessing peninsula-like outcrops from
the centre of the particle. An increase of D2 in combination with D3 (Figure 3.24b
compared to Figure 3.23d) lessens this effect for D2=D3=0.2 but past this value the
particle outlines start to exhibit peninsula-like outcrops again (Figure 3.24d where
D2=D3=0.3).

Fourier Descriptor values of 0.2, 0.2, and 0.015 for D2, D3, and D8 respectively were
adopted when generating particles. This analysis has been completed by eye, how-
ever as discussed in Section 8.6.4 an improvement on this study would be to charac-
terise untooled, irregular rock sampled from a quarry or mining facility to compare
these shapes to or derive Fourier descriptors from.

An example of a distribution of particles produced can be seen in Figure 3.24b. These
Fourier Descriptors were chosen as the particle shapes produced were irregular and
therefore would test the method produced in Section 3.4 whilst also resembling the
shapes of untooled rock stones. The target solid fraction (TSF) is the proportion of
the cell created by the Voronoi tessellation that is filled by a generated particle and
was set to 0.7 as recommended by Mollon and Zhao (2012). A value of 0.7 is given
as an upper limit by Mollon and Zhao (2012) for generating particles. Values higher
than this may not be reached due to fitting of the particle shape into a cell. This value
had no effect on the types of particle produced apart from their size. Each particle’s
size is only related to the other particles as the sizes of the particles or of the domain
can be scaled in the algoirthm. Therefore a value of TSF of 0.7 was selected as this
produced the most particles in the MATLAB code provided by Mollon (2023). The
value for TSF is given so that the study can be replicated if desired.

D2 D3 D8 TSF
0.2 0.2 0.015 0.7

TABLE 3.1: Values taken forward in this study for producing particle
outlines using the MATLAB code provided by Mollon (2023).

Particle Selection

To dismiss any particles that were undersized or oversized, an arbitrary radius limit
between 3 and 7.5 units was chosen as this provided a good supply of particles from
the outlines produced. An alternative could have been to take particles of unsuitable
size and scale these to be within the suitable range. However, 500 soil grain outlines
were generated by the Fourier-Voronoi code and it was also possible to produce
more particles through more runs. Therefore this was not adopted in the method. Of
the 500 particle outlines produced, 168 particle outlines were filtered by the radius
limit. The first 100 of these 168 were taken forward to be used in the Soil Particle
Scenario. Four particles produced for packing are presented in Figure 3.25 at the
orientation given by the programme.
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FIGURE 3.25: Outlines of particles selected for packing at the given
orientation when produced by the MATLAB code provided by Mol-

lon (2023).

3.6.2 Domain

The domain in which the algorithm described in Section 3.4 is utilised in outlines that
represent two-dimension irregular soil grains is a 50x50 units square. The length of
50 units roughly equated to ten particles being placed in one course. This is similar
to the width of the Tetris Scenario which allows for 10 squares width for placement
of tetrominoes. In order to achieve this size of domain, the domain height was set
to 50 and the domain width was set to 50 in the algorithm. Originally testing was
conducted in a domain of size 75x75 units. This size was reduced to 50x50 units to
reduce the runtime as less positions are trialled across the width of the domain.

3.6.3 Orientations and Spacings

Within Tetris, it is known that tetrominoes should be rotated by 90o and a defined
spacing of 1 square between potential positions should be adopted as set out by the
scenario described in Section 3.2.2. For irregular, untooled rock shapes there is no
determined number of orientations or distancing between placement with the num-
ber of potential positions ever increasing as the required definition of these values
increases. Therefore the number of orientations and distance between placements
will depend on the accuracy required for the placement. To start, the number of
orientations was varied between 8, 16 and 32 and a location spacing of 1 unit was
trialled. In Section 3.7.3, a new system for locating positions was introduced which
change the way in which the number of orientations and spacing of locations are
defined. As described in Section 3.5.4, a contact distance error, ϵ, of 0.1 units was
adopted for determining contacts with the upper surface.

3.6.4 Particle Order

Particle order is again generated using the Tetris bag method described in Section
3.3.5. Given that 100 particles are taken forward from those generated using the
method in Section 3.6.1 and the domain size described in 3.6.2, it is expected that 100
particles is an upper limit and that this number of particles will not be placed with
roughly 50 particles predicted for placement in a domain of 50x50 units. Therefore,
the particle order generated will be a list of 100 unique particles and none will be
repeated in placing. However, the Tetris bag method is adopted for occasions where
more than 100 particles are used, say if an investigation is conducted on increasing
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the domain to a size which can fit more than the 100 particles available for selec-
tion when packing. Again, the particle generation order for the Soil Particle Shape
scenarios is arbitrary so long as this can be reproduced when comparing variables
within the programme. Improvements on the algorithm would be to create a particle
order that considers delivering particles based on the characteristics of the particle
shape. This is further discussed in Section 8.6.3.

3.6.5 Computational Time

The computational time for the Tetris Scenario is quick, especially considering ev-
ery potential position for each orientation is trialled. Table 3.2 presents the system
information for the computer used in this study and Table 3.3 compares the com-
putational runtime for packing in both scenarios. Comparing the time it takes to
place 20 particles, the Soil Scenario takes significantly larger computational times
compared to the Tetris Scenario. This is expected as not only does the Soil Scenario
consider more candidate poses for each particle but also the number of coordinates
to describe the untooled rock shape is vastly increased. In turn this leads to larger
numbers of coordinates to describe the placement surface as particles are positioned
in the system. The times currently outputted by the programme are too large for
a real situation where a robot is placing stones. Realistically, the algorithm should
not take 17 minutes to determine the location of 20 stones in a structure. Therefore
methods to increase the computational speed of the programme are introduced in
Section 3.7.

System Manufacturer Dell
System Model OptiPlex 7050
System Type x64-based PC

Processor Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz
Cores 4

Logical Processors 8
RAM 16GB

Operating System Microsoft Windows 10

TABLE 3.2: System information of the computer used in this study.

Scenario No. particles No. simulations Total Time Time per 20 particles
Tetris 20 100 257s 2.5s

Soil Particle 60 1 3061s 1020s
Soil Particle 20 4 3216s 804s

TABLE 3.3: Times to run simulations of Tetris Scenario and Soil Par-
ticle Scenario in a domain of 50x50 units for 16 orientations and loca-

tion spacing of 1 unit.

Note, the computational runtime per 20 particles is quicker for placing 20 soil par-
ticle outlines than it is 60. This is because the placement surface increases in the
number of coordinates it is described by. The inbuilt Asymptote "intersectionpoints"
function - which is used when finding the distance to lower the particle - takes more
time to perform when trying to intersect lines described by larger numbers of coor-
dinates. Running four simulations of 20 particles is quicker per 20 particle due to the
placement surface being reset to be described as two coordinates at the start of each
simulation. For the scenario placing 60 particles the algorithm is continuing to place
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another 40 particles on a placement surface described by many more coordinates
as the placement surface is now described by the top surface of the already placed
particles. This is further explored in Section 3.7.2.

Table 3.2 is included to give context to the computational times presented in this
thesis. It is clear that using a higher performing computer would lead to improved
computational speeds. Indeed, it is expected that if this research is taken any fur-
ther that a highspeed computer would be utilised. Other methods for improving
computational speeds overall are given in Section 8.7.

3.7 Increasing Computational Speed

3.7.1 Particle Definition

Particles generated from the code provided by Mollon (2023) produce particles de-
scribed by 129 coordinates for the outline of the shape. Each individual coordinate
that is deemed to describe the bottom line or the top line are utilised when finding
the lowering distance during placement. Therefore, the use of every single of these
coordinates to describe the shape is a main cause of computational time in the sys-
tem. Furthermore, the accuracy of describing a particle with such definition may
not correlate to the level of accuracy that a machine may be able to visualise such a
particle.

A method adopted to reduce the computational time of the algorithm is to use less
coordinates to describe the particle shapes whilst still allowing for them to represent
untooled, irregular rock. This was previously proven in Figure 3.9 of Section 3.4.1
Doing so allows for the speed to increase greatly when placing soil particles by the
algorithm. This is discussed further in Section 6.2 and Section 6.3.

Figure 3.26 shows the outline of a particle represented by different quantities of co-
ordinates. Figure 3.26a is the outline represented by all 129 coordinates that are orig-
inally produced by the particle shape generating code (Mollon, 2023). The outlines
in Figures 3.26b-3.26f are represented by a decreasing amount of coordinates. As is
seen in Figure 3.26, the general particle shape is well represented up until about 14
coordinates ( 10% of original) to describe the outline. Figure 3.26f uses 7 coordinates
( 5% of original) and the resulting outline is not recognisable to the original with a
large section in the bottom right missing. Figure 3.26d and Figure 3.26e still resem-
ble the outline of the particle. However, the features of the particle surface begin to
lose definition which may be key is trying to depict the roughness of the particle.
This roughness provides more precision for placement to ensure stability which is
desired to be retained when representing the particle.

Going forward representing untooled, irregular rock shapes, a third (44) of the coor-
dinates originally used to represent the outline will be adopted like in Figure 3.26c
to ensure both the general outline of the particle and the finer surface details are
retained. The use of non-dimensional criteria in the objective function means that
this reduction in coordinates should not lead to a change to how particles are scored
on placed. However, there will be some change to how particles are placed due to
stability checks where perhaps locations of contact are not present when they would
be if all coordinates were utilised to describe particle shape. A reminder is made
that particles should be described by an enclosed loop and therefore it was ensured
that the first and last coordinates in the vector describing the particle shape were
equivalent.
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(A) 129 coordinates (B) 66 coordinates (C) 44 coordinates

(D) 33 coordinates (E) 14 coordinates (F) 7 coordinates

FIGURE 3.26: Outline of particle shape represented by (a) All the
available coordinates for description (b) half of the coordinates (c) a
third of the coordinates (d) a quarter of the coordinates (e) 10% of the
coordinates. Each outline has the number of coordinates used to rep-

resent the shape displayed beneath.

3.7.2 Placement Surface Look Up Table

The computational time to place one particle appears to increase as the number of
already placed particles increased up until the 10th particle placement. From a vi-
sual inspection, this tended to be when the first course at the bottom of the domain
had been filled. With each particle placed, the number of coordinates making up the
placement surface increases as the outline of the particle is attached, with the orig-
inal number of coordinates for the placement surface being two for the rectangular
domain as described in Section 3.3.3. The reasoning for the increase in computa-
tional time is the use of the in-built intersectionpoints function in Asymptote. The
use of this function detects where two paths intersect with each other. In order to do
this, the function checks between every coordinate of the path leading to increasing
computational times with the more coordinates being used to define the path. Once
10 particles are placed and the first course of the domain is full, the placement sur-
face is described by an upper limit of coordinates and will not greatly increase past
this value. Therefore the time taken to place a particle plateaus past this point.

To increase computational time it is clear that the path to describe the placement
surface underneath the particle when being positioned needs to be shortened or the
number of coordinates needs to be reduced. Therefore the placement surface was
split up into partitions with equal numbers of coordinates and an upper and lower
value for the abscissa. This was stored in a Look Up Table, a structure of data that
the algorithm could easily access the information from. For the placement of a par-
ticle, the maximum and minimum abscissa for the object are taken. The sections of
the surface that the object lies between are extracted from the Look Up Table and
adopted as the placement surface for lowering the particle using the method de-
scribed in Section 3.4.1. Figure 3.27 is an example of the separating of the placement
surface with a particle about to be tested for placement in the top left above the do-
main. For this particle, coordinates for the two left-most partitions would be taken
from the Look Up Table as it sits above these sections.
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FIGURE 3.27: Example of the placement surface being split into dif-
ferent partitions and a particle about to be tested for placement in the
top left above the domain. Notice the width of each partition is not
uniform as it depends on the number of coordinates rather than the

abscissa values.

Originally it was thought that there would be an optimal number of partitions made
in the placement surface. Figure 3.28 shows the computational run times in seconds
for a different number of partitions in the placement surface. The scenario that this
test was conducted in was the soil particle scenario for a domain of 50x50 units plac-
ing 20 particles at 32 different orientations and a location spacing of 1 unit. As can be
seen in Figure 3.28, the number of partitions decreases until it plateaus at around a
value of 40 before increasing. However, Figure 3.29 show results for similar set ups
but for a 25x25unit domain and a 75x75unit domain. Although full testing of the
75x75unit domain was not complete due to the computational time, it is clear to see
that these times plateau at different values than the number of partitions equalling
40 - at around 20 partitions for Figure 3.29a and around 50 partitions for Figure 3.29b.
Therefore, the optimal value must depend on a different factor.

An investigation was completed into the size of each partition given that the compu-
tational speed of the intersectionspoints function depends on the number of coordi-
nates. Figure 3.30 shows results of the average time placed per particle after the 10th

particle has been placed and the average number of coordinates in each partition.
Average time after the 10th particle was chosen as this was when the bottom coarse
was filled and the placement surface should be at an upper limit of coordinates in
length. The coordinates were split up to have an equal quantity in each partition so
this average was calculated by dividing the number of coordinates in total by the
number of partitions in the surface.

From Figure 3.30 it can be determined that there is an optimal number of coordi-
nates in each partition for the optimisation of the number of partitions. This value
is around 10 coordinates per partition. Therefore, the separation of the placement
surface was changed. Rather than specifying a number of partitions, the number of
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FIGURE 3.28: Total computational run time for 50x50unit domain
placing 20 particles at 32 orientations and a location spacing of 1 unit
in the Soil Particle Scenario for different numbers of partitions made

in the placement surface.

partitions is determined by the number of coordinates in the placement surface. A
section of the placement surface made up of 10 coordinates is put into each partition
and then taken from the Look Up Table when the particle is being placed above this
section. Figure 3.31 compares the computational time for splitting the placement
surface into sections of 10 coordinates to the original scenario without this imple-
mented. It can be determined that the computational speed is vastly increased as
the time is 20% that of the original.

3.7.3 Reducing Candidate Positions Tested

The computational runtime of the algorithm is heavily influenced by the number
of positions and orientations attempted for finding the optimal placement. A lower
number of orientations and a higher value of location spacing can be adopted to
increase speed but at the expense of the accuracy of placement. Instead, it is pos-
sible to use smaller resolutions for scoring before moving to higher resolutions like
in Cagan et al. (1998) or use a coarse description of the object’s outline to remove
obvious non-matches as described in Kong and Kimia (2001). These were discussed
in Section 2.4.3 and Section 2.4.4 respectively. As such, a method to reduce the res-
olution was adopted. Both the next selected particle and the domain with positions
of already placed particles are discretised into binary matrices for which size de-
pended on the specified resolution. An example of this is given in Figure 3.32. A
resolution value is set in the programme. If this was a value of 0.5, a domain of
50x50 units would be converted into a 100x100 matrix and a particle with maximum
width and height of 6 and 7 would be converted into a 12x14 matrix. In the matrix,
squares which have no presence of a particle are classed as empty and given a value
0 whereas squares which do are classed as full and given a value of 1. An example
of the discretised domain with two particles already placed is represented in Figure
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(A)

(B)

FIGURE 3.29: Total computational run time placing 20 particles at
32 orientations and a location spacing of 1 unit in the Soil Particle
Scenario for different numbers of partitions made in the placement
surface for (a) a 25x25unit domain and (b) a 75x75unit domain with

zoomed in part of data inset into the figure.
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FIGURE 3.30: Average computational speed to determine particle po-
sition past the 10th particle placed against the average number of co-
ordinates in each parition for domain sizes of 25x25units, 50x50units
and 75x75units. Soil Particle Scenario adopted for 20 particles at 32

orientations and a location spacing of 1 unit.

FIGURE 3.31: Computation speed to place 20 particles. Soil Particle
Scenario in a 50x50unit domain at 32 orientations and a location spac-
ing of 1 unit for (a) no splitting of placement surface and (b) splitting
of placement surface optimised to have 10 coordinates in each parti-

tion.
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(A) (B)

FIGURE 3.32: (a) Discretisation of particle at a resolution of 0.5 units
per square (b) Result of discretisation

FIGURE 3.33: Example of domain with two particles placed discre-
tised. Information is stored in binary form with designations of 0
(black squares) and 1 (white squares) for empty space and filled space

respectively.

3.33 The matrix of the particle is tested along the placement surface within the do-
main to locate possible positions for the particle. Fittings are classed as suitable if
the product of both matrices is equal to zero. If the particle does not fit, the resulting
product will be a non-zero value and this location is omitted. By doing this process,
the number of possible placements is reduced as it automatically excludes positions
where the particle will not fit. The discretised matrix of the domain is expanded to
include the edge and these are classed as filled material and equal to 1. The size to
represent the border is specified. For example, if a size of 2 is selected for resolution
of 0.5, a 50x50 unit domain would be converted to a 104x104 matrix where the cen-
tral 100x100 squares represent the domain and the perimeter of 2 squares represent
the border.

The approach adopted to discretise the particles into squares of filled and unfilled
space creates a new problem for when should a square that has some material within
it be classed as filled. It is common within mathematics to adopt an approach that
states that if more than or equal to half the area of the square is filled that the square
should be classed to be filled. In this work, it is adopted that if the square has any
material within it it is classed as filled. The accuracy of the placement algorithm will
come down to the accuracy of the equipment used to image material. By accepting
all squares with material in as filled a tolerance is allowed for any inaccuracies of
measurements and will prevent extremely tight placements being tested when it
may be that in reality the object will not be able to be positioned in the determined
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location due to unregistered dimensions. Additionally, it should be considered that
the method of placement by robot will involve some form of gripper. Whilst the
addition of the gripper on the sides of the stones have not been considered when
lowering the particle, taking the conservative approach for filling discretised squares
with any amount of material in them accounts for this slightly.

By completing the previous step, there are still a large number of candidate positions
for different orientations of the particle to be placed. To further reduce this, a filtering
system can be introduced like the one in Johns et al. (2020) where a minimum ratio
of width to height for a particle at a given orientation was set to 0.5 as discussed
in Section 2.2.4 and any poses not meeting this criteria are discarded to save on
computational time. Furthermore, the use of a hierarchical filtering approach as
seen in Liu et al. (2021) can be adopted. However, rather than filtering out potential
positions, an order list is created by prioritising different features of the position.
These ordering list criteria are described as the following.

Discretised particle score

Particles are evaluated using the objective function discussed in Section 3.5 with
criteria of void ratio, depth of placement, contact area, and coordination number.
This is complete whilst in their discretised form so this is thought to be a rough
estimate and not the final score for the placement. Each criteria is calculated using
the stated method and a weighting coefficient is applied to each score.

• Void Ratio: the discretised number of squares that are empty between the par-
ticle and the placement surface are counted (AVP). This is put into a ratio with
the number of filled squares that make up the discretised particle (AP). As

with the scoring for void ratio in Section 3.5.2, VAB is determined by 1 − AVP

AP
as seen in Equation 3.6.

• Depth of placement: the number of squares the particle is lowered in the dis-
cretised domain is converted to a length which is taken as Dparticle. D is then
determined using equation 3.7 in Section 3.5.3 taking Ddomain as the length of
the domain in squares excluding the perimeter representing the boundaries.

• Contact area: the perimeter of the discretised object is located and checked to
see if this is touching a filled square in the discretised domain. If it does, then
this is marked as a contact point. T is calculated as a ratio of number of contact
points to the number of squares that make up the perimeter in the discretised
particle.

• Coordination number: as with contact area, the perimeter of the discretised
object is located. If a contact point is located then this is compared to a matrix
of the domain where each different particle is given a unique number greater
than 1 as its value to indicate a full square. If the value in this matrix is non-zero
and a number that has not been detected before, this is counted as contact with
a "new" particle. Coordination number, CN, is the total number of contacts
with "new" particles. The boundary of the domain is also taken into account
and given a value of -1.

These scores are applied to Equation 3.1 with their corresponding weighting and a
score can be given to each placement for each orientation trialled. The candidate
positions are ordered into decreasing score for this ordering criteria.
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Depth in the system

The ordering criteria for depth in the system sorts placements into increasing dis-
tance from the bottom of the domain to the centre of the particle, with the lowest
depth being prioritised. The depth of placement is determined as previous with the
discretised length lowered converted into a distance value. This ordering criteria is
adopted if positions are jointly scored on the discretised particle score.

Left-most position

The left-most position ordering criteria sorts placements into increasing location in
the abscissa and therefore prioritises the left-most location in the domain out of the
poses. This is adopted if positions possess the same discretised particle score and
depth in the system criteria.

Area beneath the particle to width ratio

Area beneath the particle is calculated as the amount of empty space below the par-
ticle for a given orientation to a horizontal line below the particle. This does not take
into account the placement surface for where the particle is being positioned. How-
ever, it is a quick way of judging how much void will be created without having to
clearly define the placement surface in the discretised system. The area beneath the
particle is then defined as a ratio with the particle width to prevent slender particles
being prioritised as this would create a smaller amount of void than wider parti-
cles. It is thought that this ordering criteria will mainly prioritise orientations which
are mainly flat and parallel to the horizontal, aligning to the suggested method of
building a drystone wall in Vivian (1976) which recommended using flatter stones.
Again, the ordering criteria described here is only adopted if positions have joint
values for all previous ordering criteria.

Width to height ratio

As with Johns et al. (2020) a width (d) to height (h) ratio criteria is applied such that

d
h
> 0.5 (3.9)

Any orientations that possess a d
h value below 0.5 are discarded and not considered

a candidate position. Additionally d
h is adopted as the final ordering criteria, with

those orientations that have a higher width-to-height ratio being prioritised. This
ordering criteria is required if two or more possible placements are joint for all other
criteria.

The number of candidate positions considered

From the application of the above criteria, an order list of candidate positions is
provided. Taking the whole list of candidate positions would take massive compu-
tational times. For example, a particle being placed in the Soil Particle Scenario at a
resolution of 0.5 at 32 orientations produced over 35,000 potential positions which
would require scoring. It is considered that only the "best" candidate positions can
be taken forward for positioning like seen in Woflson et al. (1988) who took the 200
best solutions through to the next step for trialling when fitting jigsaw pieces.
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To determine the number of candidate positions to be taken forward for consider-
ation, a study was conducted with what is thought to be an oversized amount of
candidate numbers tested. Initially, the first 100 positions produced by the order list
after applying a hierachical filtering approach are tested. Next, 1000 positions from
the order list being tested was trialled. This was completed in the Soil Particle Sce-
nario for 16 and 32 orientations using a resolution value of 0.5. Figure 3.34 shows the
cumulative frequency for the numerical position in the order list of the final chosen
candidate position for both 100 and 1000 candidates tested. For each tested scenario,
the cumulative frequency for the numerical position in the order list increases at a
higher rate at lower numerical positions. For 100 positions, the gradient of the lines
is always quite steep whereas for 1000 positions the rate of increase does start to de-
cline as the numerical position in the order list becomes greater. It should be noted
that for 100 positions tested, the number of particles placed was set to 50 whereas for
1000 positions tested the algorithm was set to place particles until the next particle
could not be placed within the domain and this is why the cumulative frequency for
these results is larger.

Figure 3.34 suggests that testing up to a numerical position in the order list of around
80 would be optimal as this is when the rate of increase for cumulative frequency
starts to decline for the scenario where 1000 positions were trialled. However, using
this many trials will lead to long computational times. In the scenarios where 100
positions were trialled, computational runtimes of 4.6 hours and 3.6 hours for 16
orientations and 32 orientations respectively were outputted. The reasoning for 32
orientations taking less computational time is discussed in Section 3.7.4. Instead, the
number of candidate positions analysed for placement will be reduced to 30 where
the decline in rate of increase for cumulative frequency is not as pronounced but the
effect on computational runtimes is not as large.

3.7.4 Improving Accuracy of Placement

Initially, the number of orientations is limited for values between 8, 16 and 32 differ-
ent orientations and location spacing as 1 unit between horizontal positions across
the domain. This was due to the computational runtimes exhibited by the algo-
rithm. However, by limiting to these smaller resolutions of placement, positions for
placement may be missed and more gaps may appear between materials. The in-
troduction of the discretised search results in less locations being tested. Therefore,
an increase in accuracy of placement can be made. Again, this will speed up com-
putational runtime and becomes a question between accuracy of placement and the
required speed at which the algorithm will need to run.

As such, a refined orientation of the particle and location spacing are introduced
when analysing the candidate positions. The orientations for each position is set
to a small angular value at which the particle is rotated by. For an example of the
initial number of discretised rotations being 4 and the refined angular value being
10o, the starting particle orientation can be classed as having being rotated at 0o for a
candidate position. As the number of discretised rotations is 4, the particle is tested
at a difference of 90o. Therefore, the particle is rotated a further 10o from the 0o until
it reaches a rotation of 90o from its original orientation. In this manner, the particle
will be tested at 10 different orientations (0o, 10o, 20o, 30o, 40o, 50o, 60o, 70o, 80o, 90o).

The refined location spacing is required to be that of a value that is lower than the
spacing between squares when the particle is discretised. For example, if a resolution
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FIGURE 3.34: Cumulative frequency for the numerical placement in
the order list of positions for the final position chosen by the algo-
rithm. Resolution adopted in test is 0.5 with weighting coefficients of

CV = 6, CD = 2, CT = 1, CCN = 0.05.

is set to be 0.5, each square is a width of 0.5 units. Thus, the refined location spacing
is limited to a maximum value of 0.5. More than this and the spacings will be greater
than that trialled in the discretised scoring described in Section 3.7.3. The number of
horizontal locations trialled will depend on the resolution, the width of the particle
and the domain size, as well as the value of refined location spacing.

3.7.5 Improved Computational Runtime

For the studies in this thesis, a resolution of 0.5 was adopted as this was found to be
a good level between still describing the particle shape whilst reducing the runtime
of the algorithm. A resolution of 0.5 describes each unit length of the particle being
described by two squares in the discretised form. Therefore, some level of overall
shape is still present rather than particles just being described by a simple rectangle.

Figure 3.35 presents runtimes for the algorithm (with some steps to reduce computa-
tional time not get added) for packing 30 soil particles into a domain of 50x50 units.
The number of rotations trialled in the discretised step is seen to reduce run time as
its own value is increased. Multiple differences between orientation are specified as
MO and values for 5.625o, 10o and 11.25o were tested. As the number of rotations
is increased, the computational time decreases. This is due more orientations being
trialled in the discretised method which is much faster and less accurate approach
to scoring placement. This means less rotations are scored when positioning the par-
ticle described by coordinates and larger MO values means fewer orientations that
are trialled.
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FIGURE 3.35: Run time for different rotations in the discretised form
for the Soil Particle Scenario packing 30 particles at a discretisation
resolution of 0.5 and defined location spacing of 0.1. Multiple values
for defined angle of orientation are shown and reference to as MO in

the legend.

The fastest speed is seen at the number of rotations equalling 64. This would describe
a difference of 5.625o between rotations in the discretised scoring approach, meaning
that only one orientation is tested when trialling candidate poses. As stated, the
discretised method is less accurate for scoring particles and therefore it is required
to reduce the number of rotations applied to the discretised particle. As a result, the
number of rotations applied is chosen to be 16 as this gives a good balance between
utilising the more accurate scoring method whilst using the discretised system to
speed up computational speeds. This allows for a defined angle of orientation of
5.625o and a defined location spacing of 0.2 to be selected to precisely locate positions
for particles.

The computational runtime for the Tetris Scenario remains unchanged as the new
features described for the Soil Particle Scenario were not implemented into the code
for packing tetrominoes. For a 10x10 square domain being packed until the next
particle delivered to the algorithm cannot be placed the computational runtime was
seen to be on average 3.7 seconds with roughly 30 particles being packed.

For the Soil Particle Scenario using

• 0.5 resolution for discretisation

• 16 rotations of the discretised particle

• 5.265o for the defined rotation

• 0.2 units for the defined location spacing

• trialling 30 candidate poses for locating positioning

the total runtime to place 40 particles is found to be 2670 seconds. Taking the time
for 30 trialling candidate poses and extending, testing of all 35,000 candidate poses
for the example seen in Section 3.7.3 would take 36 days to complete. This highlights
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Scenario Particles packed Total Runtime Runtime per particle
Tetris ∼30 3.7s ∼0.12s

Soil Particle Scenario 40 2670s 67s

TABLE 3.4: Runtimes for the Tetris Scenario and Soil Particle Scenario
with the introduction of techniques to increase computational speed
for the Soil Particle Scenario. Time for Tetris Scenario taken from av-
erage of 100 runs, time for Soil Particle Scenario taken from average

of 25 runs.

the importance of introducing the reduction of candidate poses trialled and the use
of the hierarchical filter.

3.8 Computational Complexity

The computational complexity of the Soil Particle Scenario algorithm can be de-
scribed to be affected by multiple input variables for the programme. Specifically,
the input variables that affect computational runtime are given in the list below.

• The number of particles to be placed in the system

• The number of coordinates used to define the particle

• The width of the domain

• The number of rotations for which the particle is tested in the discretised sys-
tem

• The resolution at which the discretised fitting is tested

• The angle of orientation at which the particle is rotated for positioning in the
defined method

• The location spacing between tested positions of the particle in the defined
method

• The number of candidate positions considered

All these variables change the computational runtime and it is expected that each
increases the computational runtime linearly as the variable is increased. This is due
to the brute force nature of the code with the number of operations being repeated
depending on the variable. For example, if the number of particles placed in the
system is increased then the code is repeated an equivalent number of times to the
increase in the number of particles. If the number of coordinates used to define
each particle is decreased, the number of times the operations for calculating how
far the particle can be lowered in the system also decreases linearly to the decrease
in coordinates. Equivalently for the Tetris Scenario, this is expected to also exhibit
a linear relationship for the variables that relate to this stage of the algorithm. A
reminder that the Tetris Scenario omits the discretised search seen in the Soil Particle
Scenario algorithm. Therefore, the variables that apply for the Tetris Scenario are the
number of particles placed, the number of coordinates used to define the particles,
the width of the domain, the number of rotations of the particle and the location
spacing between tested positions.

Attention should be brought to how the number of candidate positions considered
affects computational runtime. It is true that this would follow a linear relationship
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as an increase in candidate positions tested leads to an equivalent number of op-
erations having to be repeated in the algorithm. However, if no viable candidate
position is found then more candidate positions are tested until a viable solution is
found. It was determined in Section 3.7.3 that a suitable number of candidate posi-
tions to be trialled could be taken to be 30. However, in the worst case scenario, the
whole list of candidate positions may need to be tested before a suitable positioning
is found. In this case, it can be described that the algorithm is not being affected
by the suggested number of candidate positions tested. Rather, this number is de-
termined by the input variables of the resolutions and the number of orientations
tested in the discretised system. Note that this is for the worst case scenario and for
typical use of the code that the computational time should increase linearly with an
increase in the number of candidate positions trialled.

The main limitation of the algorithm is the large computational times to determine
where a particle should be placed. This is due to the brute force nature of the al-
gorithm, testing each position (or the number of candidate positions suggested for
testing) and choosing the best option. Methods for increasing the computational
speeds are suggested in Section 8.7. Additionally, the use of a high-performance
computer compared to the hardware used in this study (see Table 3.2) would mean
faster runtimes can be achieved.

3.9 Stability Checks

3.9.1 Introduction

Placements of individual particles in a precision structure relies on the particle stay-
ing in that position once placed. Therefore, a stability check was introduced to try
and ensure this. The Tetris Scenario did not require a stability check as tetrominoes
do not experience normal gravitational rules and there was no intention to test these
shapes experimentally. Rather these shapes were for initial validation of the code.
The stability checks introduced checks for sliding and for toppling of the particle by
rotation as described in Section 3.9.2 and Section 3.9.3 respectively. Section 3.9.4 de-
scribes how particles that are close to being unstable are detected and also omitted
as a solution for position.

3.9.2 Sliding

A sliding check was first introduced for this algorithm in Hoodless and Smith (2023).
In this work, sliding was assumed to occur above an angle of 31o as an estimate
for the supposed material according to Buffington et al. (1992). However, a more
sophisticated approach is required as sliding will depend not only on the friction
between particles but also the weight of the particle being placed. A mechanics
analysis of an object on a slope can be used to find the force due to weight in the
direction of the slope and the frictional force acting in the opposite direction. Figure
3.36 shows this with the forces acting on the object. If the weight of the object, W, is

W = mg (3.10)

where m is the mass of the object and g is the gravitational acceleration experienced
by the object, then the forces due to weight in the direction of the slope and per-
pendicular to the slope can be known to be equal to Wsinθ and Wcosθ respectively.
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Wsinθ is the magnitude of the force acting in the direction the particle will slide if
unstable and can be described as F

F = mgsinθ (3.11)

where θ describes the angle of the slope. Frictional force, Fr on the object can then be
described to be

Fr = µWsinθ (3.12)

where µ is the coefficient of friction for the interface between the object and the slope.

FIGURE 3.36: Mechanical analysis of a box on a slope and the forces
that the box experiences.

If F>Fr, then the force acting on the particle is deemed enough to create a sliding
failure. An example of sliding failure between two particles is presented in Figure
3.37a. The gradient of the slope means that the value of F is greater than the friction
between the two particles and the particle slides down the system. Figure 3.37b
presents a case where the particle would be stable. It can be understood that the
value of θ is much less than the previous example and therefore the value for F will
significantly decrease. In this scenario, Fr>F and the particle is stable in its position.

Locations for contacts for determining θ were taken from the method for detecting
contact in Section 3.5.4 where a contact distance error, ϵ was introduced. Contact
locations were split into two - left and right of the centre of the particle - and ranked
by how close they were to the centroid. The closest to the centroid but greater than a
distance of 2ϵ away were taken as coordinates for determining the slope of the angle.
This was then taken forward for the sliding check in the stability calculations.

The coefficient of friction for the system depends on the friction between the two
interfaces. This was difficult to determine without performing laboratory tests on
trial materials. Instead, a study of the literature was conducted for modelling of
particles. Table 3.5 shows the values that are used in various projects where DEM
has been used to model particle interaction. These vary from 0.35 to 0.5 for particle-
to-particle interaction. Note, the citations that have used 0.35 as a value come from
journals that are concerned with powder mechanics looking at the behaviour of ag-
glomerates, whereas the others come from areas of research to do with soils and
geotechnics. Hence, a coefficient of friction of 0.5 has been adopted in this study.
For laboratory tests to verify the algorithm described in Chapter 7, coefficient of
friction between particles will need to be determined before collecting results of the
algorithm to ensure particles are placed in stable positions.
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(A) Case where placed particle fails by sliding

(B) Case where particle is in a stable final position and does not fail by sliding

FIGURE 3.37: Examples of sliding checks for a particle placed on top
of another.

In Johns et al. (2020) and Johns et al. (2023), gneiss boulders were used for construc-
tion of the walls. Assuming a similar material is used in this study, a particle density
of 2900kg/m3 can be taken. This value is derived from those reported in literature
(Dorren and Seijmonsbergen, 2003; Oldenburg et al., 2017; Smithson, 1971; Subrah-
manyam and Verma, 1981; Tenzer et al., 2011). As the present study is conducted
in two-dimensions, it is required to convert this density to a two-dimensional value
to ensure forces of weight of the particle are correctly estimated in the programme.
As there are no particles of known weight, the stones used in Johns et al. (2020) are
taken to help with this study. The mass of the stones used in Johns et al. (2020) are
described have an average mass of 757 kg between a range of 230-1584kg. From this
information, a 2D conversion factor can be calculated from

c f =
757
ρAm

(3.13)

where c f is the conversion factor, 757 represents the average weight from Johns et
al. (2020), ρ is the particle density (taken as 2900kg/m3 to represent gneiss stones),
and Am is the median area of the 100 particle shapes generated using methods de-
scribed in Section 3.6.1. A value of c f =0.0113m was determined given the variables
presented. In the algorithm, the weight of each particle is then determined by

Wp = c f ρgAp (3.14)

where Wp is the weight of particle and Ap is the area of that particle.
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Reference µ Simulation Dimensions
Cundall and Strack (1979) 0.45 for disc-to- disc Circular discs 2D

0.17 for disc-to-wall
Thornton et al. (1996) 0.35 Circular discs 2D

Cheng et al. (2003) 0.5 Spheres 3D
McDowell and Harireche (2002) 0.5 Spheres 3D

Mishra and Thornton (2001) 0.35 Spheres 3D
Yan and Dong (2011) 0.5 for Spheres Spheres 3D

0 for Wall Boundaries

TABLE 3.5: Values of µ in DEM from various sources in the literature.

3.9.3 Toppling

A stability check within this algorithm for toppling of the particle was also first in-
troduced in Hoodless and Smith (2023). Again, contact points of the particle with the
placement surface were split into two categories of being positioned to the left of the
centroid or to the right of the centroid. If all contacts were in one of these categories
with no contact points in the other, then this could be taken as an unstable position
and described to fail by toppling. An example of a toppling is presented in Figure
3.38a. The contact points both lie to the right of the centroid. If there was a contact
point to the left of the centroid, as seen in Figure 3.38b, then the particle would be
unable to topple and would be stable in this position.

3.9.4 Avoiding Close-to-Unstable Positions

Figure 3.39 presents a particle positioned on a flat surface. The centroid of the parti-
cle is indicated by the circle inside of the object’s outline and the position of this in
the horizontal axis is indicated by a dashed line. For this object at this position and
orientation, the placement would be deemed stable according to the stability checks
described in Sections 3.9.2 and 3.9.3. However, it is clear that the particle could very
easily fail by toppling if a slight force is placed upon the particle. Indeed, the accu-
racy of placement by a robot or human may not even be able to balance the particle
in this position. This positioning of the particle can be deemed as "close-to-unstable".
In order to avoid scenarios like the one presented in Figure 3.39, two more criteria
when conducting the stability check for toppling are introduced.

The first of these criteria is to ensure that the contact points are distanced away from
the centroid of the particle. A lower bound limit of 5% of the maximum particle
width for distance away from the centroid was set for contact points to be suitable.
5% of the particle width gave a good improvement when looking at final positions
of particles in the system. The value was taken as a percentage of particle width as
this ensured that smaller particles would not face an issue of not having a suitable
location due to their width being less than any fixed value set. The second criteria
was to ensure that the distance between the left and right contact for the particle
between the surface was at least 20% of the maximum particle width. Again, this
was to try and avoid positions like that seen in Figure 3.39 and to prevent top-heavy
orientations being placed. Additionally, the ordering of decreasing H/L as a place-
ment filter described in Section 3.7.3 also acted as additional measure for avoiding
these close-to-unstable positions.
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(A) Case where particle fails by toppling

(B) Case where particle is placed in a stable position and does not fail by toppling

FIGURE 3.38: Examples of toppling checks for a particle placed on
top of another

FIGURE 3.39: Example of particle that passes toppling stability check
but be an unstable or close-to-unstable particle positioning
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3.9.5 Results of Stability Checks

If a candidate pose passes all stability checks it is deemed as a suitable final position
and is scored using the objective function. If one of the stability checks is failed, the
position is classed as not suitable. As described in Section 3.7.3, only the first 30
candidate positions in the filtered ordering list are trialled to increase the computa-
tional speed of the programme. Although unlikely, it is possible that all candidate
positions fail the stability checks outlined. In this case, the programme will con-
tinue to test candidate poses from the ordered list of positions until a position and
orientation which passes the stability checks is found. If all positions for all orien-
tations are failed, then the particle is discarded and the next particle is trialled. Due
to the high number of candidate poses, this could output very large computational
times. However, a suitable position is usually determined with the first 30 candidate
positions trialled. For future work it may be necessary to discard the particle after
a certain number of positions are tested rather than testing all possibilities as the
particle being analysed may be unsuitable. This is discussed in Section 8.4.2.

3.10 Quantifying Results

3.10.1 Tetris Scenario

As stated in Section 3.2.2 the aim of the videogame Tetris is to fill rows of domain
whilst the player receives a score when each row consists of only blocks of the tetro-
mino shapes. Therefore, it can be stated that the aim of the game is to produce the
least amount of voids in the system as possible. Due to rows not being deleted in
the system when complete in this study, the void ratio of the final structure is suit-
able for judging the packing ability of the algorithm with a specified combination of
weighting coefficients.

Void ratios for each simulation of packing are recorded for the Tetris Scenario. Re-
sults are produced for different combinations of weighting coefficient. The mean of
these values is taken for a given sample size, the number of which is discussed in
Chapter 4, for comparison between other coefficient combinations. Void ratio is de-
termined as the ratio of the area of voids located beneath the placement surface to
the area of placed tetrominoes in the domain.

3.10.2 Soil Particle Scenario

For the Soil Particle Scenario, the objective function is designed to achieve structures
which exhibit high shear strengths. Section 2.3.7 provides evidence that low void
ratio in a soil structure can indicate higher shear strengths. However it is stated
that void ratio alone is not suitable. Additionally, as void ratio is a variable in the
objective function to then use this as a final measure of shear strength may lead to
the oversizing of CV . Instead a new measure needs to be adopted to help quantify
shear strength when comparing combinations of weighting coefficients.

A way in which shear strength may be quantified could perhaps be derived from a
suggestion for the construction of drystone walls in Vivian (1976). As stated in Sec-
tion 2.2.1, Vivian (1976) recommends to place stones above where two in-situ stones
meet to reduce the number of runs in the system. Not only will this help prevent ro-
tations of particles in the system but it can be understood that it will naturally result
in higher coordination numbers. Coordination number tends to lead to higher shear
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strength as shown in Section 2.3.4 as forces are more readily transferred meaning
better distribution in the soil system (Fonseca et al., 2016; Muir Wood, 2008) whilst
particles with low coordination numbers can be unstable and not contribute to the
overall strength (Oda, 1977). Disrupting runs is not included within the objective
function yet the inclusion of T and CN should encourage placements of particles as
they lead to larger coordination numbers and areas of contact with already placed
particles.

The formation of running joints are identified in the algorithm when two particles
are placed next to each other. If the edges of the particles are within sufficient dis-
tance of each other, this is classed as a run. However, it is difficult to determine what
is "sufficient distance". There is a balance required between a particle creating runs
with other particles when it is clear that another particle may be placed between
them and runs not being detected when particles are placed. Particles between 3
and 7.5 units were selected for placement as discussed in Section 3.6.1. Therefore, a
maximum gap of 3 units was adopted for a gap to be considered a run. Any larger
than this, and a particle would not be able to be placed above it and rather could
be placed inbetween, creating two potential runs with the surrounding particles. At
the same time, the original run could be classed as disrupted when really it should
not have existed to begin with. If the number of disrupted runs is adopted as a
method to quantify the fit of the structure, it is important to not gain false readings
such as what would occur in this scenario. From visual inspection of the results, this
maximum gap value located runs which could be filled by particles either by their
narrower side or just part of the particle. Therefore the maximum gap was reduced
to 2 units as this gave more reliable identifications of runs.

An example of a particle being placed in the domain is presented in Figure 3.40. The
start of running joints are indicated as circles on Figure 3.40 and the horizontal po-
sition is indicated by a dashed line. As can be seen, the particle interrupts two runs
between already placed particles in the system. The run which lies at the middle of
the particle is clearly underneath the to-be-placed particle and can be classed as dis-
rupted. The run that lies to the left of the particle is only disrupted by a fraction of
the particle’s area and is very close to the left-most border. The particle here would
not provide much resistance against this running joint progressing up through the
structure. Therefore, it is required to include a condition to ensure enough of the
particle lies above the run for it to be classed as disrupted. Therefore the condition

0.75 >
xpl − xr

xpl − xpr
> 0.25 (3.15)

is introduced where xr is the abscissa of the run and xpl and xpr are the left-most
and right-most abscissa of the particle being placed in the domain. This condition
follows from the need for a "significant amount" of overlap from placed particles on
below runs as stated in Adcock (2012). From this condition, it is required that 25% of
the particle’s width must lie over the run to count as disrupted. This is an estimate of
what a "significant amount" of overlap would be as no value was stated by Adcock
(2012). If the particle overlaps the run outside of the condition in equation 3.15 then
the run is considered to be continued up to the nearest side of the particle to the run.
This is shown in Figure 3.40 as the running joint is relocated to be to the left side of
the recently placed particle.
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In the algorithm, when particles are placed, runs will either be recorded between
in-situ particles in the course as the middle distance between the two, discarded if
the to-be-placed particle disrupts the run or shifted to be to the side of the placed
particle it is closest to if Equation 3.15 is not satisfied. Similar to the location of
particles described in Section 3.5.5, locations of runs are stored in relation to where
they are located in the domain and loaded when the particle placement is in that
section.

(A) (B)

FIGURE 3.40: Placement of particle in a domain with the locations of
running joints between particles indicated as circles with unfilled and
filled circles representing undistrubed and disrupted running joints
respectively and dashed line representing horizontal location of run-
ning joints. The domain is displayed (a) before the particle is placed
(represented by unfilled particle) and (b) after the particle is placed.
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3.11 Effects of Domain and Particle Size

As the algorithm is essentially solving a bin packing problem that is based on ge-
ometry rather than any physical calculations, it is thought that minimal edge effects
will arise in the programme. This might be the case if the domain that particles are
packed into has a big effect on any of the weighting criteria. For example, if a do-
main made up of many coordinates is allowed to contribute to T then this will lead
to particles tending to be packed next to the edge of the domain if a non-zero value
for CT is chosen. As a result, the way in which criteria are measured is set to not
be greatly affected by the domain. VAB is based on space underneath the placement
surface and is therefore not affected by the domain as the shape of the domain does
not change from its original definition. Again, D is based on the depth of the particle
in the domain and is therefore not affected by the domain as the shape of the domain
does not change. T is calculated without consideration of the edges of the domain
by only considering the placement surface and rather is affected by how the particle
is defined. CN allows for the domain to be classed as a coordination for the placed
particle but only up to a maximum value of 1.

Touching of the sides of the domain also allows for contact points of the particle to
be detected for the stability check. This can be removed to simulate packing of an
area that is not a box where contact with edges cannot be found if required. For
these simulations, detection of contact points with the sides of the domain remains
to allow for more stable positions for particles.

The size of the domain is explored for the Tetris Scenario in Section 4.3.4 where it is
shown that increasing the domain size from 10x10 squares to 20x20 squares has little
effect to the method of packing by the algorithm. A similar study is not completed
for the Soil Particle Scenario due to computational times required to do this, but
it is thought that the size of the domain is suitably large to avoid any finite-size
effects. From visual inspection of the results in Chapter 6 it is concluded that these
did not occur. It is thought that the given reasons above will help avoid these sorts
of problems from occuring.

It is possible that if the size of the particle is large or irregular, this may mean in-
creased amounts of void occurring at the edges of the domain where particles can-
not fit properly. Therefore, this will lead to other placements being prioritised if CV
is a non-zero value and it will be unlikely that these placements are chosen. In this
case, the algorithm is being affected as it may lead to suitable placements near the
edges of the domain not being detected due to the size of the particle being too large
for the given domain size.

If the particle can fit within the domain at a suitable location, the size of the particles
should also have no effect on the packing algorithm. This is due to the algorithm
being based on geometrical calculations rather than any physical parameter. If these
particles are made up of more coordinates, then this will mean that a longer com-
putational time will be required to find a suitable particle placement. However as
VAB, D and T are calculated using ratios, placement is determined by a method that
allows for any size particle to be placed so long as it fits within the domain. CN is cal-
culated as the number of surrounding particles to the placed particle. Therefore, if a
bigger particle is placed then a larger CN value is possible due to this increased size.
However as shown in Section 2.2.2 and Section 2.3.4, a larger coordination number
assists in the transfer of forces in a system and is a desired feature in the system if
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the function of the packing is to have a high shear strength. CN also depends on the
number of other particles that are already packed in the system.

In future scenarios it may occur that unusual and very irregular shapes may want to
be adopted for a study using the algorithm. For example, particles which have gaps
in the middle of the particle as can be seen in Figure 3.41. As the algorithm packs in
two-dimensions using a top-down approach this means that there should not be a
problem so long as the particle is correctly defined by a top line and bottom line. In
effect, the hollow middle of particle can be ignored. However, a new characteristic
for the particle would need to be developed indicating how much of the particle is
made of void for calculating the final void ratio of the system if these hollow sections
are to be taken into account.

FIGURE 3.41: Example of irregular particle shape with hole in centre.

3.12 Summary of Algorithm

3.12.1 Algorithm Description

The algorithm set out in Sections 3.3-3.10 is finalised and a summary is given here.
Set up of the algorithm is completed using tetrominoes and outlines that represent
irregular, untooled rock. However it is envisioned that any two-dimensional shape
can be packed so long as the outline is described by a closed-loop of coordinates in
clockwise order of the abscissa and ordinate. The algorithm is written in Asymp-
tote to take advantage of the coordinate-based language and produce high quality
images for presenting the results.

For the Soil Particle Scenario, particles that represent irregular, untooled rock are
generated by the Fourier-Voronoi method which is described in Section 2.5.3 using
the MATLAB code sourced from Mollon (2023). The code outputs these shapes as
coordinates of the outline. Investigation into the shapes that are produced can be
found in Section 3.6.1. The Fourier Descriptors and Target Solid Fraction adopted
are D2=0.2, D3=0.2, D8=0.015, and TSF=0.7. Particle diameters of 3 to 7.5 units were
selected which led to 168 possible particles for placement. Out of these, the first 100
were chosen for packing by the algorithm. Tetrominoes were specified as a set of
coordinates manually for each of the seven different shapes.

Figure 3.42 is a workflow chart of the algorithm showing the order in which each
step is conducted. Input parameters are presented in Table 3.6 with either the value
used in this study for the Soil Particle Scenario or an example value if the parameter
is not fixed. Placements are scored using the objective function, which is repeated
here in Equation 3.16 and is based on void created in the system by the placement,
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depth of placement, touching area of the particle with other particles and the do-
main boundary, as well as coordination number. VAB is adopted for scoring the void
created in the system.

Wij = CVVAB + CDD + CTT + CCNCN (3.16)

Placements are scored twice, once as a discretised particle as a quick scan for can-
didate positions. These are ranked and the top 30 candidate positions are taken for
testing. If these finalised placements are unsuitable, further candidate positions are
taken until a suitable solution is found. Then further placements are scored with
a refined location spacing between laterial positions and further orientations of the
particle outline tested. The best scoring position is taken as the solution for place-
ment of that particle, and the next particle is tested. The programme ends when the
specified number of particles are placed or no viable solution is identified.

Parameter Value Fixed or varied Section
Domain height 50 Varied 3.6.2
Domain width 50 Varied 3.6.2

Number of particles to be placed 50 Varied 3.6.4
Number of particles available 100 Fixed 3.6.4

Initial number of orientations of particle 16 Varied 3.6.3
Minimum domain coordinates (0,0) Fixed 3.3.3

Particle permutations 1 Fixed 8.4.1
Defined location spacing 0.2 Varied 3.7.4

Defined angle of orientation 5.625o Varied 3.7.4
Expanding factor 5% Fixed 3.5.5

Contact Distance Error, ϵ 0.1 Fixed 3.5.4
Grid size 1 Fixed 3.5.5

Stability Check Activated "Yes" Fixed 3.9
Coefficient of friction 0.5 Fixed 3.9.2

Particle density 2900kgm3 Fixed 3.9.2
c f 0.0113m Fixed 3.9.2

Gravitational acceleration 9.81 ms−2 Fixed 3.9.2
Height to width ratio 0.5 Fixed 3.7.3

Percentage from touch 5% Varied 3.9.4
Resolution for discretisation 0.5 Varied 3.7.3

Size of border in the discretised domain 2 Fixed 3.7.3
Number of candidate positions tested 40 Varied 3.7.3

CV 1 Fixed 3.5.2
CD 1 Varied 3.5.3
CT 1 Varied 3.5.4

CCN 1 Varied 3.5.5

TABLE 3.6: Table of input parameters for the algorithm with a sug-
gested value, whether this was fixed or varied during testing for the
Soil Particle Scenario and the section of the thesis where this parame-

ter is discussed.
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FIGURE 3.42: Workflow chart for the algorithm packing two-
dimensional shapes using the methods described in Chapter 3.
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3.12.2 Comparison to Previous Work

Method of Previous Work

Hoodless and Smith (2023) previously investigated the Tetris Scenario to determine
the optimal combination of weighting coefficients for packing tetrominoes. Values
of weighting coefficients were activated individually and tested by trial and error.
Tetrominoes were packed into a 10x10 square domain until the next tetromino can-
not be placed. 100 simulations were completed for each coefficient combination.

Coefficients were activated individually by being set to a value of 1 starting with CV .
Next, CD was activated. This value was then raised and lowered to see the effect of
outputted void ratios. Values of CV were not fixed to 1 like they are in this study.
Therefore CV was increased rather than adopting smaller values of CD, CT, and CCN .
The method for determining coefficients of weighting is further explored in Section
4.6.

Differences

Results from Hoodless and Smith (2023) were found using a version of the algorithm
which worked in a same manner to the one described in Chapter 3, however with a
less-defined manner for determining the stability of particles. Methods described in
Sections 3.3.1-3.5.1 are equivalent to that described in Hoodless and Smith (2023).

As stated, the way in which stability of particles is determined in Hoodless and
Smith (2023) is less developed method as to that described in Section 3.9. In Hood-
less and Smith (2023), a sliding angle is given and any contacts between particles
that exceeds this angle is deemed unstable. This differs from that in Section 3.9.2
which uses a mechanics analysis to determine the force on the particle due to grav-
ity and the frictional force between particles. This is relevant for the investigation
into soil particles and does not have an effect on the results for Tetris particles as
stability checks were not performed for these objects.

3.12.3 Examples of Packing Outputs

Results for both the Tetris Scenario and Soil Particle Scenario are presented here to
give examples of what is achieved by the algorithm for both cases. The coefficients
selected are those that are determined using the methods described in Chapter 4.
Full exploration on how these results were achieved are described in Chapter 5 and
Chapter 6 for the Tetris Scenario and the Soil Particle Scenario respectively.

Tetris Scenario

Figure 3.43 presents two examples of packing for the Tetris Scenario using coeffi-
cients CV=1, CD=1.6, CT=0.4 and CCN=0.045. This is found in Chapter 5 to be the
optimal coefficient combination for the Tetris Scenario. The packings for the two re-
sults create minimal void. Locations where void occurs are in positions where the
next particle in the sequence could not be placed without creating void. For exam-
ple, Particle 0 in Figure 3.43b would create void beneath it no matter the location or
rotation of the particle. As stated, further discussion of the results from the Tetris
Scenario are presented later in this thesis.

Similar to bin packing, the Tetris Scenario represents a case where items are being
packed into a domain with the aim to minimise void space. Potential arises for the



3.12. Summary of Algorithm 163

Tetris Scenario to be adopted as a method for solving the bin packing problem. This
topic is further explored in Section 8.9.1.

Soil Particle Scenario

Figure 3.43 presents two examples of packing for the Tetris Scenario using coeffi-
cients CV=1, CD=6, CT=0.5 and CCN=10. Note that this combination of coefficients is
not deemed to be the optimal solution in Chapter 6. Again, further discussion of the
results from the Soil Particle Scenario are presented later in this thesis.

As with the results for the Tetris Scenario presented in Figure 3.43, the results for
the Soil Particle Scenario in Figure 3.44 also present a scenario where items are being
packed into a domain. The purpose for this could be to minimise void ratio, however
in this case the objective function is to try and maximise the strength of the structure.
However, it could be considered that the algorithm could be used as a bin packing
solution for irregular shapes with some fine tuning. Furthermore, the outputted
results represent the packing of soil particles. Hence, it should be highlighted that
this approach has potential to be adopted for specimen generation of soil particles.
This topic is discussed in Section 8.9.2 with reference to DEM modelling research.

(A) e=0.011 (B) e=0.023

FIGURE 3.43: Packings for the Tetris Scenario using coefficients CV=1,
CD=1.6, CT=0.4 and CCN=0.045.

(A) Running joints disrupted=25, e=0.017 (B) Running joints disrupted=26, e=0.020

FIGURE 3.44: Packings in the Soil Particle Scenario for coefficients
CV=1, CD=6, CT=0.5, CCN=10.
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3.13 Summary of Chapter

The development of a method for packing tetrominoes and in turn outlines of parti-
cles that represent untooled, irregular rock is described in Chapter 3. This placement
algorithm is to be adopted and results are presented in Chapter 5 and Chapter 6 for
the Tetris Scenario and Soil Particle Scenario respectively. Desired aims for the al-
gorithm are described in Section 3.1.2 with an emphasis put on adaptability of the
program. For example, it is desired that any type of 2D particle could be packed
whilst allowing for the objective function to be changed to allow for other criteria
for scoring as specified by the user. The language that the program is developed
in is Asymptote, an open-source vectors graphics language adapted from C++ and
Java. Asymptote and the benefits of its use are briefly described in Section 3.2.1.
Following this, the two packing scenarios are described in Section 3.2.2 and Section
3.2.3. These are the Tetris Scenario (packing of tetrominoes to emulate the Tetris
video game) and the Soil Particle Scenario (the packing of 2D outlines that represent
irregular, untooled rock).

Section 3.3 describes initial steps that are performed before the placement of parti-
cles is completed. Defining particles using a system of coordinates describing the
abscissa and ordinates is described in Section 3.3.1. The algorithm allows for both
convex and concave particles to be described so long as the particle is a closed loop
and that first and last coordinates identical whilst being described in a clockwise or-
der. Section 3.3.2 describes the splitting of the particle into the bottom line and top
line in order to increase computational speed when performing the placement pro-
cess. Setting up of the domain, again by a description of coordinates in the abscissa
and ordinates, is described in Section 3.3.3 whilst the requirement of positioning par-
ticles above the domain to the top-left before placement is performed is described in
Section 3.3.4. In the final part of Section 3.3, determining the order of placement for
the particles is described in Section 3.3.5. This adopted the "pull-from-bag" method
that is found in the Tetris videogame.

Section 3.4.1 focuses on the placement method adopted by the algorithm. A top-
down method is adopted as specified by the conceptual design in Section ??. This
consists of calculating the maximum distance a particle can be lowered without over-
lapping existing particles or the boundaries of the domain. This utilises the bottom
line of the particle as well as the placement surface below the particle. As a result,
larger number of coordinates to describe the particle results in larger computational
times as shown in Figure 3.9. With the placement of tetrominoes, Straight Edge Cor-
ner (SEC) problems occur where overlapping of particles takes place. Section 3.4.2
investigates these and two solutions are found.

The placement method finds multiple locations for the particle to be situated. There-
fore a method to score each option is required leading to the production of the ob-
jective function in Section 3.5.1. Equation 3.1 describes the objective function and
this is based upon the four criteria of void ratio, potential energy, coordination num-
ber, and area of contact as derived from the literature review in Section 2.3. Each
of these is assigned a weighting coefficient parameter that is required to be found.
As each additional parameter will require derivation, it is important to try and keep
the number of parameters to a minimum. Therefore the equation is kept to be a first-
order equation whilst only four criteria are specified for scoring. The four criteria are
explored in Sections 3.5.2-3.5.5. Each criteria is non-dimensional so that the scoring
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method could be used for any type of particle described by a set of coordinates in a
closed loop.

As discussed in Section 3.5.2, Traditional methods for calculating void ratio using
the area of void in the system compared to the area of solids leads to the scoring of
V to have less of an impact as more particles are placed. Therefore, a new method
for scoring the void in the system is adopted that utilises AVP and AP. This ensures
that the effect of V does not diminish as the quantity of particles increases. Section
3.5.3 shows that the inclusion of a depth parameter is beneficial to the packing of
tetrominoes for reducing final void ratio and that this can be normalised by the total
height of the domain. The method for scoring T is described in Section 3.5.4. This is
done by quantifying the area in contact with other particles and domain by totalling
the number of coordinates in the bottom line that are in contact with already placed
particles as well as the domain boundaries. This is normalised by the total number
of coordinates that make up the bottom line. It should be noted that as T indicates
the area of the particle in contact with other objects that this can also be taken as a
secondary sign for void created below the particle, although without any considera-
tion of the area of void created. Furthermore, coordination number and how this is
quantified is discussed in Section 3.5.5. This is completed by increasing the area of
the particle in-situ and finding intersection points with surrounding particles. Co-
ordination number is already a non-dimensionalised criteria. Due to this, CN is
expected to be a much larger value that V, D, and T and therefore it is expected that
CCN will be a smaller value compared to the other weighting coefficients.

Section 3.6 begins to discuss the placement of irregular, untooled rock particles. The
features previously described in Chapter 3 are sufficient to pack tetrominoes in the
Tetris Scenario. However, it was discovered that additional features were required
for the Soil Particle Scenario to improve the algorithm.

The procedure for generating particle outlines by the Fourier-Voronoi method using
the MATLAB code provided by Mollon and Zhao (2013) is outlined in Section 3.6.1.
It is desired that these particles are to represent untooled rock. From visual analy-
sis, Fourier Descriptors of 0.2, 0.2, and 0.015 for D2, D3, and D8 respectively were
adopted. An improvement for this study would be to derive the Fourier Descriptors
from actual untooled rock particles as discussed in Section 8.6.4. A TSF value of 0.7
was used within the code when generating the particles. From the produced parti-
cles, those with a radius limit between 3 and 7.5 units were selected for the packing
process. This produced 168 particles. From this, the first 100 were taken as this was
a sufficient amount of particles for packing within the domain, which was set to be
50x50 units as described in Section 3.6.2.

Differences between the Tetris Scenario and Soil Particle Scenario were highlighted
in Section 3.6.3 and Section 3.6.4. The particle order will no longer require a Tetris-
bag method as 100 particles is seen to be much larger than the required particles
to fill the domain although this feature is kept for scenarios where this may not be
the case. Additionally, Tetris only requires for particles to be rotated by 90o with a
defined spacing of 1 square in a domain of 10 square width. For the Soil Particle
Scenario, numerous orientations and spacings between placement locations are pos-
sible. As a result of this, it was required to increase the computational speed which
Section 3.7 explores. Decreasing the number of coordinates defining the particle and
partitioning the placement surface into smaller sections of coordinates are both de-
scribed in Section 3.7.1 and Section 3.7.2 respectively. It was shown that partitioning
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the placement surface into groups of 10 coordinates each was optimal for increasing
computational speed.

An additional method for reducing the computational speed is to reduce the number
of positions and orientations trialled for final placement in the algorithm. Section
3.7.3 investigates reducing the number of candidate positions similar to the work in
Kong and Kimia (2001) (discussed in Section 2.4.3) whilst using a coarser description
of the domain and particle which was highlighted as an approach used in Cagan et
al. (1998) (discussed in Section 2.4.4). This was completed by discretising the domain
and particles into binary matrices, the size of which is given by a specified resolution.
In this discretised method, particles are scored using the criteria from the objective
function with less accuracy than the non-discretised method. From this, poses are
ordered using a filtering approach as seen in Johns et al. (2020) and Liu et al. (2021).
The order in which the candidate poses are ordered are

1. Objective function score determined in the discretised system

2. Depth in the system

3. Left-most position

4. Area beneath the particle to width ratio

5. Width to height ratio, with particles at an orientation where the width to height
ratio is less than 0.5 considered unsuitable for placement and being discarded

From this list, it was determined from Figure 3.34 that the optimal number of can-
didate positions to trial for placement using the method described in Section 3.4.1 is
30. This is where a decline in rate of increase for cumulative frequency can start to
be seen whilst the effect on computational runtimes from the number of candidate
positions taken forward is not as large.

Section 3.7.4 discusses the ability to trial more refined orientations and spacings be-
tween placement locations to improve the accuracy of results in the Tetris Scenario
due to the increase in computational times of the program. In Section 3.7.5 it is de-
scribed that a good balance between increased speed and number of orientations
trialled using the more developed scoring method rather than doing this in the dis-
cretised system is needed. It is suggested that this comes by testing 16 orientations
in the discretised system at a resolution of 0.5 whilst using a defined location spacing
and defined angle of orientation of 0.2 units and 5.625o respectively.

The introduction of removing particles with a width to height ratio less than 0.5 adds
an aspect of stability when placing particles. However, it is required for stability of
the final position to be tested to ensure that particles will not collapse immediately
after placement. The stability checks that are performed when placing particles are
described in Section 3.9. These include sliding (Section 3.9.2), toppling (Section 3.9.3)
and the avoidance of particles that are deemed close-to-unstable (Section 3.9.4). A
requirement of this was to define the coefficient of friction, µ, as well as the density
of the untooled rock particles and a 2D conversion factor for converting the density
of rock into a two-dimensional representation. Gneiss boulders were assumed to
be the material as this is the printing material used in Johns et al. (2020). Therefore
the density of the material is taken as 2900kg/m3. From the average weight of the
boulders used in Johns et al. (2020), a value of c f =0.0113m was determined and hence
the weight of the particles used for placement can be calculated following Equation
3.14.
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The method for quantifying results is described in Section 3.10. The results of the
Tetris Scenario can be quickly analysed using the void ratio of the system as stated
in Section 3.10.1 as this is the main objective of the Tetris videogame. Due to rows not
being deleted in the system when complete in this study, the void ratio of the final
structure is suitable for judging the packing ability of the algorithm with a specified
combination of weighting coefficients. As discussed in Section 3.10.2, the Soil Par-
ticle Scenario has an objective to maximise the shear strength of the structure. Is is
difficult to quantify without testing of the structure either numerically or physically.
Due to the large number of results that will be produced, it is required to have some
sort of method to quantify the shear strength. As a measurable value the number of
runs disrupted by particles being placed is adopted. This is derived from the sug-
gestion by Vivian (1976) for the construction of drystone walls indicating that the
presence of running joints leads to faults in the structure. Additionally, void ratio is
taken as a secondary measure as this tends to indicate higher shear strengths as dis-
cussed in Section 2.3.7. The way in which the formation of runs are identified in the
structure during placement as well as the disruption of running joints are described
in Section 3.10.2.

In Section 3.12, the main aspects of the Soil Particle Scenario algorithm are sum-
marised for the reader. This is done with the aid of Figure 3.42 which is workflow
chart showing the order in which each step is conducted. Table 3.6 presents input
parameters for the program with suggested values. Whether this value was var-
ied or fixed is also indicated. Section 3.12.3 presents example outputs of the algo-
rithm for the Tetris Scenario and the Soil Particle Scenario with suggestion that these
approaches could be adopted as bin packing solutions and a specimen generation
method. This is further discussed in Section 8.9.1 and Section 8.9.2 respectively.
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Chapter 4

Determining Sample Size and
Weighting Coefficients

4.1 Introduction

Along with producing results for packings of tetrominoes and soil particles, the
problem arises of knowing how many simulations are required to accurately rep-
resent a true result of the method. Running a large number of simulations for a
given scenario will lead to a more accurate representation of the range of results
that can be achieved. However, computational time will be increased. Alternatively,
decreasing the number of simulations will lead to faster runtimes at the expense of
accuracy and too few simulations may give an incomplete understanding of any out-
puts. The aim of this chapter is to understand and reflect on initial data received by
the placement method described in Chapter 3. Statistical analysis will be performed
to determine the number of simulations suitable when trying to determine the op-
timal set of coefficients for the weighted objective function described in Section 3.5.
Furthermore, it is desired that a methodology for determining the combination of
weighting coefficients that provide optimal solutions for the Tetris Scenario and Soil
Particle Scenario can be described. It is envisioned that these procedures can be
followed to reliably find values of coefficients that result in values for scoring crite-
ria which bring forward the most optimal packing structures relating to the overall
objective for the structure.

To determine the effect of the number of tests on the confidence of results, two sce-
narios will be tested and are described in Section 4.2. Simulations will be completed
based on the Deepest Bottom Left (DBL) heuristic as outlined by Wang and Hauser
(2019). Later, the weighted objective function outline in Section 3.5 will be imple-
mented and a broader understanding of the variability of results will be analysed
using all objective function parameters.

Section 4.3 discuses how the sample size required to accurately represent the popula-
tion data will be determined. This is completed by firstly discussing statistical rules
around the subject before looking at the confidence interval and distributions of the
results from the simulations outlined in Section 4.2. Additionally, an investigation
into the effect of domain size used is completed in Section 4.3.4.

Section 4.4 discusses the methodology adopted when determining weighting coef-
ficients. This is completed by taking a broad range of coefficients before analysing
located areas where a minima may occur. Section 4.4.2 investigates the effect of using
a fixed seed for generating particle order for each combination of weighting coeffi-
cient compared to randomly generating new particle orders for each simulation. In



170 Chapter 4. Determining Sample Size and Weighting Coefficients

Section 4.4.3, the mean filter and Gaussian filter are introduced for smoothing the
datasets of mean void ratio generated by the algorithm in the Tetris Scenario. Sec-
tion 4.4.4 and Section 4.4.5 investigate the effect of applying Gaussian filter on the
search areas for determining the optimal solution as well as the effect on the values
located at the edges of the dataset.

Carrying on from Section 4.3, Section 4.4.6 investigates the effect of sample size on
the variation of results between different weighting coefficient combinations. The
sampling frequency, otherwise known as the size of the increments between coef-
ficient values, is also explored. Higher sample size and sample frequency are de-
scribed to increase the accuracy of the obtained results at the expense of higher com-
putational speeds.

A procedure for locating the optimal solution for the Tetris Scenario and Soil Particle
Scenario is described in Section 4.5 providing information on initial investigations
that should be considered before refining the search in areas of interest where opti-
mal solutions may be located. A suitable starting range of coefficients to investigate
are given with suggested sample size to be utilised. The procedure is followed in
Chapter 5 and Chapter 6 where results of the Tetris Scenario and Soil Particle Sce-
nario are presented respectively.

The conclusions from this study into determining the required sample size when
investigating weighting coefficients are summarised in Section 4.7. The sample sizes
that will be utilised when running simulations and analysing the results are stated as
well as key points to take forward for the Tetris Scenario and Soil Particle Scenario
results. Further studies for the Soil Particle Scenario are highlighted to be taken
forward for the work conducted in Chapter 6.

4.2 Testing Scenarios

4.2.1 DBL

The DBL Scenario describes the packing of objects in the deepest-bottom-left heuris-
tic. In this method, the deepest location in terms of height will be selected with the
left-most location being selected if positions have equivalent height. The depth for
a given placement is quantified by the depth of the centre of mass for that particle.
The DBL heuristic was outlined by Wang and Hauser (2019) and discussed in Section
2.4.3.

4.2.2 Weighted Objective Function

Packing of tetrominoes using the weighted objective function described in Section
3.5 utilises the criteria set out for creating structures with a high shear strength. As
the coefficients of weight are not yet determined, the method for determining is con-
ducted on tetrominoes because of the quicker computational speeds before moving
to shapes that represent untooled rock. The decreased runtime for tetrominoes is
due to the minimal number of coordinates utilised to describe the outline. This sce-
nario follows that set out in Section 3.2.2 for the standard Tetris scenario using 4
orientations of the particles with a location spacing of 1 square in a 10x10 square
domain. However, variations on the domain size are used when conducting the
investigations in the Section 4.3.
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4.3 Determining Sample Size

4.3.1 Rules for Determining Sample Size

Determining the require sample size is a key part to any study, with the size selected
being able to accurately represent the whole population of possible results. Sample
size in this discussion is the number of simulations or runs of the algorithm to com-
pare the results rather than the number of particles. In this case, the accuracy of the
results is weighed against the cost of run time for the data collection. It is impossible
to have a true understanding of population of data without performing a full "cen-
sus" or, in other words, by performing a mass of tests to try and produce all forms of
results possible. From central limit theorem, the mean of a sample of data will have
a higher precision for estimating the mean of that actual population as the sample
size increases.

A rule of thumb in statistics is that a sample size of 30 is seen as the minimum num-
ber to represent the whole of a population (Chang et al., 2006). Hogg et al. (2014)
states that generally a sample size greater than 25-30 will give good approximations
of the population data and if the distribution of data is symmetric, unimodal, and of
the continuous type, then a sample size of 4 or 5 can yield an adequate approxima-
tion. However, the variability of the results produced by the algorithm in Chapter 3
is very great and can depend entirely due to the number of variables being investi-
gated or the sequence that particles are presented.

4.3.2 Confidence Interval

Confidence Interval (CI) was introduced by Neyman (1937) and is the probability
(P) that a result will fall between a set of values for a certain percentage chance.
Benefits of confidence intervals are described in Hazra (2017) to be that it is more
dependable than forming conclusions based on the P value and an indication of the
precision of the observation is acquired. The narrower the CI of a sample statistic, the
more reliable is the estimation of the underlying population parameters. Confidence
Interval can be calculated using the formula

CI = z ∗
σp√

n
(4.1)

where CI is confidence interval, z is the confidence level, σp is standard deviation of
the population (or if this is unknown, the standard deviation of the sample distribu-
tion), and n is the sample size . A confidence interval of 95% is the most commonly
used in the field of science (Hazra, 2017). This is traditionally described to be two
standard deviations above and below the mean value in a population that can be
represented by a normal distribution. A confidence level for a CI of 95% is deter-
mined to be 1.96 for a normal distribution, as determined in confidence level tables
which were first produced by Kramp (1799).

The confidence interval for tests using the Deepest-Bottom-Left heuristic, as outlined
in Section 4.2.1, for the Tetris scenario is plotted for different sample sizes in Figure
4.1 using Equation 4.1. The population size consisted of results from 1000 runs of
different permutations of tetrominoes from the Tetris bag. Void ratio of the system
created using the Deepest-Bottom-Left heuristic is taken as the final output to anal-
yse the packing structure. The mean and standard deviation of the population was
0.1036 and 0.0350 respectively. A z value of 1.96 was taken to represent a confidence
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level of 95%. The distribution of this data is presented in Figure 4.2. It can be un-
derstood from Equation 4.1 that, although values of CI may differ in magnitude, the
shape of the plot will not change if z and σp are of different values. The exponen-
tial curve on the plot shows that there are diminishing returns with increasing the
sample size, whereas an increase leads to a large reduction of CI to begin with. Past
the inflection point at n=15 the decreases in CI is at a much slower rate. From the
plot in Figure 4.1 it can be determined that past a sample size of 50 there will be no
beneficial gain from an increase in sampling when considering the increase in com-
putational time that this will lead to. It is clear that a sample size of 30 adheres to
the rule of thumb number of samples taken. Past sample size n=9, the gradient for
reduction in CI is a lot less steep. Therefore, if quick and less accurate results are
desired, it may be good to use a sample size of 9 for this. For example, if a general
idea of the effects of the parameters are desired, it may be best to use a value of n=9
before refining this in areas of interest with a larger sample size of n=30.

FIGURE 4.1: Confidence Interval for Tetris scenario using Deepest-
Bottom-Left heuristic.

4.3.3 Distribution Shape and Sample Distribution

To determine the required sample size, a population of data was necessary to com-
pare these results to. Placement of particles with randomised particle selection us-
ing the Tetris bag method (described in Section 3.3.5) were ran to simulate 1000 tests
to ensure a full range of possible results greatly exceeding the suggested value of
n=30 from Section 4.3.1. Figure 4.2 is the distribution of 1000 simulations of the DBL
heuristic. The distribution in Figure 4.2 can be described as normal. However, in
this heuristic there is no weighting for minimum void present. For weighting coeffi-
cients in the objective function that prioritise minimum void, it is expected that this
would create a skewing of the data. Indeed this is true as is represented in Figure
4.3 which is the distribution of 1000 runs for the coefficients CV=1, CD=0.75 CT=0.3
and CCN=0.045. The mean of the data in Figure 4.3 is 0.0317 and this can be viewed
as the population mean. The majority of results tend towards a void ratio of 0 as
this is what the objective function is trying to achieve. Therefore the data cannot be
described as a normal distribution.
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FIGURE 4.2: Distribution of tetrominoes packed using the DBL
heuristic in a 10x10 square domain for 1000 simulations.

However, as the mean of the data is being used in the analysis, it is possible to
achieve an accurate result from a sampling distribution. This is achieved by taking
n samples from the population of Figure 4.3 multiple times. This will produce a
normal distribution of possible mean values that can be achieved from the popula-
tion data for that sample size. Figure 4.4 is an example of the sample distribution,
showing the distribution of results for 5000 instances of random samplings for a
sample size of n=30. From visual inspection, the data can clearly be described by a
normal distribution. The mean of Figure 4.3 is 0.0316, which closely represents the
population mean of 0.0317. As the data in Figure 4.3 is normal, it is possible to now
analyse the data using Gaussian descriptors such as standard deviation. Note, these
descriptions now refer to the mean of the values rather than being a description of
the actual data set.

Values of n were varied from n=4 to n=100. n results were taken randomly from the
population data to create a sample dataset. The mean value of the sample dataset
is calculated and this is repeated 5000 times for each value of n. Figure 4.4 is the
results of the 5000 samples for n=30 from the dataset displayed in Figure 4.3. Ran-
dom sampling was completed 5000 times because, as central limit theorem states,
the distribution of data will tend to a normal distribution with the more repeats of
sampling leading to higher accuracy compared to a "true value" of the population
mean. Inspection of Figure 4.4 confirms this. Figure 4.5 shows results of the sam-
ple dataset means for n=4 to n=100 with all 5000 acquired means plotted for each n
value. As n increases, the values of the sample dataset become closer to the mean
value of 0.032 for the population (which is indicated by the horizontal dashed line).
These values oscillate with each simulation of data sampling giving a large variety
of results. This variance decreases as n increases as indicated by the onset upper and
lower limits which represent the range in which 95% of values lie for the given n
which is equivalent to the CI being considered. Once again, the confidence interval
is the range in which a value has a probability - the confidence level - for falling
between. A CI of 95% can be predicted using ±2σp from the mean.
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FIGURE 4.3: Distribution of data of 1000 tests ran with coefficients
CV=1, CD=0.75 CT=0.3, and CCN=0.045 for resulting values of void

ratio, e, in a domain of 10x10 squares.

FIGURE 4.4: Distribution of mean e values for n=30 samples from
data presented in Figure 4.3 repeated 5000 times.
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FIGURE 4.5: Mean value of each distribution of data like in Figure 4.3
for each value of n from n=4 to n=100. Onset are values that show
the range that 95% of values lie between and a horizontal line that

represents population mean.

FIGURE 4.6: Standard deviation as percentage of the total void for
different sample sizes, n, for Tetris Scenario with coefficients CV=1,

CD=0.75 CT=0.3, and CCN=0.045 in a domain of 10x10 squares.
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FIGURE 4.7: Standard deviation as Tetris squares of void in percent-
age for different sample sizes, n, for Tetris Scenario with coefficients
CV=1, CD=0.75 CT=0.3, and CCN=0.045 in a domain of 10x10 squares.

Figure 4.6 indicates the standard deviation of the sample as a percentage of the total
void in the system determined by

σ% =
σp

AV
∗ 100 (4.2)

where AV is the area of voids in the packed structure below the placement surface.
For n=30, a σp of 0.0046 was calculated. This is 14.5% of the total void that is present
in the system. If a confidence level of 95% is desired then 2σp either side of the mean
leads to CI being 0.0317 ± 0.0092. This would mean that the CI would lie between
a range of 58% of the void in the system. This appears to be a large variance from
the mean value and can lead to high amounts of uncertainty. However, in the Tetris
scenario, the minimum amount of void that can be created when a particle is placed
(without the value being zero) is 1 squares worth of void. If the void in the system
is considered as squares of void, a different picture of the scenario is created. The
mean value of void for the data from Figure 4.4 is approximate to 3.7 squares of
void present in the final packing structure. This is a very small value of the system,
given that the maximum number of squares in the domain is 100. Additionally, from
Figure 4.7, it can be determined that the standard deviation now becomes a value of
0.46 squares leading to a CI of 3.7± 0.92 squares. Alternatively, this could be viewed
as there is a 95% probability that the mean of a sample for n=30 will lie in the range
of 2 squares (when rounded to the nearest square) around the actual mean value. As
it is not possible to have a change from void ratio smaller than 1 square in the Tetris
scenario, this appears to be more than sufficient for the range of CI.

A check was completed to ensure that the confidence interval was correctly predict-
ing 95% of the mean values achieved from sampling. For the full 5000 means from
sampling for each n value, the 2.5th and 97.5th percentile was calculated. The range
for these values are presented in Figures 4.8 and 4.9. The determined range for the
confidence interval for a confidence level of 95% is 56% of the total void, or 1.77
squares. This compares nicely to the CI range of 58% or 1.84 squares gained from
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FIGURE 4.8: Range for which 95% of mean values lie when 5000
samples are taken with a sample size of n as percentage of the to-
tal void for Tetris Scenario with coefficients CV=1, CD=0.75 CT=0.3,

and CCN=0.045 in a domain of 10x10 squares.

Figures 4.6 and 4.7. In comparison, n=9 shows CI range of 3.7± 1.6 squares mean-
ing a range of around 3 squares for 95% of values to lie between. For the increased
computational speed that running 9 simulations of a sequence of coefficients brings
compared to 30 it could be worth using n=9 and then using more simulations (n=30)
when more acccurate results are required.

n σ% σsquare CI (squares)
5 36.2 1.1 ±2.3
9 26.7 0.85 ±1.6
15 20.6 0.65 ±1.3
20 17.5 0.55 ±1.1
30 14.6 0.46 ±0.92
40 12.3 0.39 ±0.76
50 11.0 0.35 ±0.68
100 7.7 0.24 ±0.48

TABLE 4.1: Standard deviation for the resulting means of the 5000
sample datasets with different values of n for Tetris Scenario with
coefficients CV=1, CD=0.75 CT=0.3, and CCN=0.045 in a domain of

10x10 squares.
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FIGURE 4.9: Range for which 95% of mean values lie when 5000
samples are taken with a sample size of n as Tetris squares of
void for Tetris Scenario with coefficients CV=1, CD=0.75 CT=0.3, and

CCN=0.045 in a domain of 10x10 squares.

4.3.4 Domain Size

It is required to confirm that the domain size of 10x10 squares is sufficient to lead to
all possible results for voids created when packing and that the size of the domain is
not a limiting factor. The DBL packing heuristic was repeated for a domain of 20x20
squares to see if there is any change to the distribution produced. The histogram of
results for 1000 packings is presented in Figure 4.10. In the previous simulations for
a 10x10 square domain, the number of particles placed was set to 35 as this greatly
outnumbered the total number of particles that could fit into the domain. For the
20x20 square domain, this particle limit had to be increased to 100. As can be envi-
sioned, the computational runtime of the simulation was increased dramatically as,
not only were more positions trialled, but also more particles had to be placed. Table
4.2 presents computational runtimes for the different domain sizes. The distribution
of the results again take the form of a normal distribution as can be seen in Figure
4.10.

Domain size Number of simulations Time Time per simulation
10x10 1000 41 mins 2.5s
20x20 1000 522 mins 31.3s

TABLE 4.2: Time to complete packing for different domain sizes un-
der the Tetris Scenario using the DBL heuristic.

Table 4.3 presents mean values and σp for the distributions investigated for a change
of domain size. The void ratios produced from the packing of the 20x20 square
domain are lower than presented in Figure 4.2. This is most likely due to there being
a wider domain base lead to more possible positions for particle placement. The
placement of the particle is being scored on the position of the centre of mass of
the tetromino, so a larger base - e.g. T shape tetromino when the three squares of
that make up the top of the T are faced downwards - will lead to a lower centre
of gravity. The wider the domain, the more chance there will be a (3-square width
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Heuristic Domain Size / squares Mean Void Ratio σp
DBL 10x10 0.1036 (10.4 squares) 0.0350 (3.5 squares)
DBL 20x20 0.0774 (30 squares) 0.0137 (5.5 squares)

Objective Function 10x10 0.0317 (3.2 squares) 0.0254 (2.5 squares)
Objective Function 20x20 0.0082 (3.3 squares) 0.0079 (3.2 squares)

TABLE 4.3: Statistical data from 1000 simulations of DBL-heuristic
and the objective function with weighted coefficient values of CV=1,
CD=0.75 CT=0.3, and CCN=0.045 for 10x10 domain and 20x20 domain.

FIGURE 4.10: Distribution of tetrominoes packed using the DBL
heuristic in a 20x20 square domain for 1000 simulations.

for the T shape) position for this particle to be placed. However, the DBL heuristic
does not prioritise minimising void, so therefore the mean void ratio from the 20x20
domain DBL simulations is not vastly smaller than the 10x10 domain as filling gaps
is not being prioritised. σp for the 20x20 square domain is much smaller than that
of the 10x10 domain. The order of particles will have a greater effect on the 10x10
domain as there are limited placements for the particle to be positioned so it is more
likely that a void will be created beneath the particle.

In addition, a comparison for weighting coefficients in the objective function of CV=
1, CD=0.75 CT=0.3, and CCN=0.045 was completed for a domain of 10x10 squares and
a domain of 20x20 squares. The data for the domain of 10x10 squares has already
been discussed in Section 4.3.3 and Figures 4.3-4.9. 1000 simulations filling a domain
of 20x20 squares was completed for comparison. Figure 4.11 presents the resulting
void ratios obtained from these simulations. As can be seen, the mode value has a
much higher frequency than in the previous data set. The likelihood for this is that
the bigger domain leads to more potential positions for particles similar to the DBL-
heuristic case. The range in particle shape only varies to be seven different options
all of which are orthogonal. Therefore, the chance that a placement can be without
leaving void below the particle is much more achievable than with irregular shapes.
This is also demonstrated by the much lower values of void ratio seen in the results
for Figure 4.11. The process of creating the sample distribution was repeated for
the data in Figure 4.11 and this produces the histogram presented in Figure 4.12.
Void ratios are much closer to zero due to the volume of total solids in the system
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FIGURE 4.11: Distribution of results for 1000 runs using weighted co-
efficients CV= 1, CD=0.75 CT=0.3 and CCN=0.045 for resulting values

of void ratio, e, in a domain of 20x20 squares.

being much higher as there is a larger number of placed particles. Figure 4.13 takes
a very similar shape to Figure 4.5. Therefore it can be determined that the sample
distribution of results for both domain sizes each have a reduction in variability for
the mean value as sample size increases.

From examining the standard deviation of the sample distribution for n=30 for a
domain of 20x20 squares, it can be seen that σp is equivalent to 1.38x10−3. This is
equivalent to 16.9% of the total void of the system or 0.55 squares of void as derived
from Figure 4.14 and Figure 4.15. When compared to the standard deviation of 1000
simulations in the 10x10 domain of 14.5% and 0.46 squares, it can be seen that these
values are alike. Given the increase in runtime between the two scenarios, any ac-
curacy gained from increasing the domain size does not outweigh the additional
computational cost considering the similarity between the results. Therefore, the
domain size of 10x10 squares is taken as a sufficient representation of the packing
procedure. This also nicely lines up with the domain width being equivalent to the
10 square width found in Standard Tetris case.

The domain size for the Soil Particle Scenario is set to be 50x50 units large. From
initial packings, it was seen that around 10 particles are placed at the base of domain.
As soil particle outlines are fairly uniform it can be assumed to be simulated in the
Tetris Scenario as a SQ tetromino. Therefore, this 50x50 unit domain in the Soil
Particle Scenario can be said to represent a 20x20 square domain for the equvialent
size in the Tetris Scenario. Taking this whilst also attempting to not fill the domain
by more than half the volume means it can be assumed that a 50x50 unit domain size
is suitable.
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FIGURE 4.12: Distribution of mean e values for n=30 samples from
data presented in Figure 4.11 repeated 5000 times.

FIGURE 4.13: Mean value of each distribution of data like in Figure
4.12 for each value of n from n=4 to n=100. Onset are values that
show the range that 95% of values lie between and a horizontal line

that represents population mean.
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FIGURE 4.14: Standard deviation as percentage of the total void for
different sample sizes, n, in a 20x20square domain packing using

weighting coefficients of CV=1, CD=0.75 CT=0.3, and CCN=0.045.

FIGURE 4.15: Standard deviation as Tetris squares of void for differ-
ent sample sizes, n, in a 20x20square domain packing using weight-

ing coefficients of CV=1, CD=0.75 CT=0.3, and CCN=0.045.
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4.3.5 Summary

In Section 4.3.2, examining Figure 4.1 led to the conclusion that for quick, broad test-
ing of lots of coefficient combinations then sample size n=9 is suitable with a sample
size n=30 being used for more accurate analysis in areas of interest. This agrees with
the rule of thumb of using n=30 to represent a dataset (Chang et al., 2006; Hogg et
al., 2014) as discussed in Section 4.3.1. Section 4.3.3 presents an investigation into
the DBL scenario and Tetris scenario using weighted coefficients. The DBL heuristic
exhibited a normal distribution of results whereas the weighted coefficients did not
due to their objective to achieve minimal void ratio. However, a normal distribution
was achieved with the mean result of sampled data. It was shown that for n=30, a
95% CI could be represented by 3.7± 0.92 squares. As the smallest possible non-zero
value of void that can be created is 1 square, this is definitely a reasonable range for
results to lie between.

The investigation into the size of the domain being sufficient enough not to cause
limitations on the results from simulations was conducted in Section 4.3.4. Pack-
ings conducted in a domain of 20x20 squares exhibited similar distributions for both
the DBL and the use of an objective function with weighting coefficients of CV=1,
CD=0.75 CT=0.3, and CCN=0.045. For results using the objective function, it was
shown that both the mean and 95% confidence interval are of equal measure in terms
of percentage of the total area and Tetris squares of void created. As these are sim-
ilar, any accuracy gained from increasing the domain size does not outweigh the
additional computational cost.

The results of from Section 4.3 provide proof that a value of n=30 is a suitable sample
size to take when investigating the coefficients of weight for the objective function.
As stated, this leads to a suitable representation of the possible population data.
However, as shown in Section 3.6.5, computational runtimes for the Soil Particle
Scenario are much larger than for tetrominoes in the Tetris Scenario. Therefore, a
lower n value will be used to get a broad understanding of the effects of coefficients.
As determined in Section 4.3.2 and Section 4.3, n=9 is a suitable sample size for this
in the Tetris Scenario.

4.4 Investigation of Weighting Coefficients

4.4.1 Representation of Results

To determine the weighting coefficients within the objective function, an optimised
value is required. It is possible to do this for the Tetris Scenario by varying the co-
efficients of weight and following a minimum value of mean void ratio (MVR) from
the test result. However, this can lead to resting in a local minimum. To avoid this, a
wide range of coefficients are investigated. The methodology for this process is anal-
ysed in this section to give reasoning and justification for the process completed. As
discussed in Section 4.3.3, a sample size of 30 is reasonable to take forward when it
comes to computational time versus the confidence that the outputted values repre-
sents the population of results that could be exhibited by the simulations. However,
as a wide range of coefficients are tested to begin with, a lower sample size will
be desired such as n=9. In Section 4.4, it will be explored as to whether the use of
a lower sample size can reasonably represent the whole picture of the data before
using a higher sample size to narrow down on an exact result.
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Three-dimensional surface plots of mean void ratio from n samples for different
weighting coefficients are investigated for the Tetris scenario described in Section
3.2.2. As the objective function consists of four criteria each with a weighting, CV
was set to a fixed value. Surface plots for fixed values of CD are then used to repre-
sent the data.

4.4.2 Fixed Seed vs Random Seed

During the investigation of determining the correct weighting coefficients for the
Tetris Scenario, it became apparent that there were two methods that could be adopted
for the investigation. The first was to completely randomise the particle order gen-
erated by the Tetris bag method whereas the second was to set the seed at the begin-
ning of each set of weighting coefficients so that the order of particles were the same
for each set of weighting coefficients investigated. Figure 4.16 are the results of mean
void ratio for varying weighting coefficients for CT and CCN between values of 0 to 1
by increments of 0.1 with a sample size of n=9. Three plots are represented as CD was
varied from 0 to 1 with increments of 0.25. These plots are for results where CD=0,
CD=0.5 and CD=1 in Figures 4.16a, 4.16b and 4.16c respectively. No seed for random
number generation was set in the programme and the particle order is unique for
each simulation.

Figure 4.17 is a replication of this procedure. However, for these tests, a seed for
the generation of particles from the Tetris bag was set before the investigation into
each set of coefficients. This ensured that each set of 9 tests would have the same
9 permutations of particle delivery order. For example, if the first test for weight-
ing coefficients CV=1, CD=1, CT=1, CCN=0.5 has particles delivered in an order of
1,2,3,4,5,6,7 (with each number indicating a different type of particle) and then the
second test had particles delivered in the order of 7,6,5,4,3,2,1 then the first and sec-
ond test of all other sets of coefficients (e.g. CV=1, CD=1, CT=1, CCN=1) would have
identical orders delivered for the respective tests.

From the comparison of Figure 4.16 and Figure 4.17, it can be seen by fixing the par-
ticle delivery order that the surface plot becomes much more consistent for slight
changes to the combinations of weighting coefficients and there is less variability
between datasets which are closer to each other in terms of space on the plots. Fig-
ures 4.18 and 4.19 are replications of the same scenarios with a sample size of n=30
for a randomised generation of particles and a fixed seed respectively. Comparison
between these figures produces the same observation that using a fixed seed pro-
duces much more similar data for coefficient values that are close to each other. This
is because changing the particle order introduces a new variable that can affect the
results of the tests. The order that particles are delivered is important as voids will
only be filled if the shape of the tetromino can fit into any gaps. It is best to keep this
consistent when comparing different coefficients of weight. Therefore, the investiga-
tion of coefficients will be conducted using a fixed seed to remove an extra element
of unpredictability.
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(A) CD = 0

(B) CD = 0.5

(C) CD = 1

FIGURE 4.16: Surface plot for different coefficients and the resulting
mean of the void ratios for a sample size of 9 with randomised gener-

ating Tetris bag particle ordering.
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(A) CD = 0

(B) CD = 0.5

(C) CD = 1

FIGURE 4.17: Surface plot for different coefficients and the resulting
mean of the void ratios for a sample size of 9 with fixed seed for gen-

erating Tetris bag particle ordering.
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(A) CD = 0

(B) CD = 0.5

(C) CD = 1

FIGURE 4.18: Surface plot for different coefficients and the resulting
mean of the void ratios for a sample size of 30 with randomised gen-

erating Tetris bag particle ordering.
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(A) CD = 0

(B) CD = 0.5

(C) CD = 1

FIGURE 4.19: Surface plot for different coefficients and the resulting
mean of the void ratios for a sample size of 30 with fixed seed for

generating Tetris bag particle ordering.
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4.4.3 Smoothing of the Surface Plots

Even with a fixed seed for randomising the particle order for each new set of coeffi-
cients, the curve of the surface plot is still undulating and it is difficult to distinguish
true minima and maxima. This is seen in Figure 4.17 and Figure 4.19. As a result,
smoothing of the surface plot was conducted using a mean filter and Gaussian filter
method. These filters are applied to the surface of the plot and calculate new mean
void ratio values using a weighted function applied to a sample area around the dat-
apoint selected. Results of the filters applied to the data in Figure 4.17 are displayed
in Figure 4.22 for the application of a mean filter and Figure 4.23 for the application
of a Gaussian filter.

The mean filter, or box filter, is one of the most commonly used filters in graphics
(Pharr et al., 2016). The filter works by averaging all values in a sampled square
around the selected datapoint. The filter applied is shown in Figure 4.20 and it can
be seen that an equal weighting is given to datapoint being analysed and each sur-
rounding value.

FIGURE 4.20: Mean Filter applied to curve for smoothing.

The Gaussian filter is similar to the mean filter in terms of use. However, rather
than averaging the sample values, the Gaussian kernel represents that of a Gaus-
sian distribution (Fisher et al., 2008). The calculation for a Gaussian distribution is
completed using Equation 4.3 (Sorenson and Alspach, 1971) where x and y are co-
ordinates in space on the filter and σp is the standard deviation of the distribution,
taken as 1 in this case. Equation 4.3 is used to create the filter values which are ap-
plied as a weight to the relevant sample values. The weights in the filter are divided
by their sum. This is also known as the Gaussian sum approximation.

G(x, y, σp) =
1

2πσ2
p

e
− x2+y2

2σ2
p (4.3)

For the mean filter, the larger the filter the more influence values that lie further away
from the datapoint being analysed will have on the filtered result. For example, if
a mean filter of size 5x5 is chosen for application on the dataset in Figure 4.17 then
all values in this 25 square grid will be multiplied by 1

25 . Therefore it is best to tend
towards a smaller filter otherwise values may become too similar to each other once
filtered and the shape of the surface plot becomes less meaningful. As the Gaussian
filter is based on a Gaussian distribution, values lying further from the datapoint
being analysed will have less effect on the filtered result. Due to this, a mean filter
of size 3x3 (Figure 4.20) was adopted whilst a Gaussian Filter of size 5x5 is utilised
due to the decreasing effect for values from the centre to the edge of the filter.

A problem occurs when applying the filter at the edge of the datasets and there is
not a credible value for every square in the filter. When this occurs, zero-padding
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(A) (B)

FIGURE 4.21: Surface plot of MVR results for n=50 when CV=1 and
CD=0 with CT and CCN ranged from values of 0 to 10 by increments
of 1. Shown is (a) the data with no filter applied and (b) Data with the
Gaussian filter applied without the application of Equation 4.4 and

therefore zeropadding is present.

is used at the boundaries of the matrix. For example, if the filter in Figure 4.20
was being applied to the left side of the dataset in Figure 4.19c then it does not
have valid numerical results for the left side of the filter. These values would be
take as zero values. This allows the filter to be applied to the whole dataset and
return a matrix of the same size but it should be noted when considering values that
are calculated using this "fix" in the analysis. However, values where zero-padding
occurs are under predicted especially at corners where the majority of values the
filter is applied to are null. Figure 4.21 presents an example of this where Gaussian
filter is applied to the dataset in Figure 4.21a. The resulting surface plot in Figure
4.21b have values at edges which are much lower than the actual values at edges
before filtering.

To avoid the problem of zeropadding leading to ignoring edge values, the convolu-
tion of the filter and the dataset for a given surface plot can be adapted using

M ∗ G
J ∗ G

(4.4)

where M is the matrix of MVRs for that surface plot and J is a unit matrix of equiv-
alent size to M where every value in J is equal to one. Following Equation 4.4, J ∗ G
indicates the portion of the Gaussian filter than is being applied to a datapoint in M.
As the sum of all values in G equals one, the ratio of the portion of G applied to M
can be taken to find an equivalent value assuming filter values scaled up to total one
were utilised. This results in a value that better represents the edges of the surface,
although care is still required at these points as a high level of approximation is seen.
Comparing Figure 4.22 and 4.23 shows the effect of Equation 4.4 as edge values are
no long much lower than other datapoints in the surface plot.

From Figures 4.22 and 4.23 compared to Figure 4.17, the smoothing of the curve
leads to easier analysis of the total shape of the curve and the location of minimum
when following the surface of the plot. From visual inspection, the Gaussian filter
and mean filter both produce curvature for the plots with good effect. Out of the
two, the Gaussian filter is selected to be taken forward with the investigation into
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determining the weight coefficients to give the optimal solution for the Tetris Sce-
nario. The reason for this is the layout of the filter applying a decreasing effect from
the centre of the filter towards the edge spaces when compared to the mean filter
which applies the same value to each datapoint. Using the Gaussian filter will lead
to less effect from datapoints which have large spikes away from values exhibited in
other weight coefficients.

It is thought that no filter will be taken forward for the results of the Soil Particle
Scenario in Chapter 6. This is due to the increased computational times meaning
a smaller frequency of datapoints tested for different coefficients of weighting. As
stated, zeropadding occurs when filters are applied to areas of no values which may
produce negative effects on the surface plots of the search areas. If a large number
of datapoints are available for collection and a filter can be applied, a Gaussian filter
is adopted in the approach.
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(A) CD = 0

(B) CD = 0.5

(C) CD = 1

FIGURE 4.22: Surface plot for different coefficients and the resulting
mean of the void ratios for a sample size of 9 with fixed seed for gen-
erating Tetris bag particle ordering with mean filter applied for curve-

smoothing.
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(A) CD = 0

(B) CD = 0.5

(C) CD = 1

FIGURE 4.23: Surface plot for different coefficients and the resulting
mean of the void ratios for a sample size of 9 with fixed seed for gen-
erating Tetris bag particle ordering with Gaussian filter applied for

curve-smoothing.
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4.4.4 Effect of Gaussian Filter on Results

As the Gaussian filter accounts for data in a given area rather than just a single point,
the location of the minimum MVR for search areas with the filter applied represents
a region in which multiple values are low. When the data is taken without the filter,
it is identifying locations where the minimum MVR is achieved but these can occur
where surrounding values are still relatively large. Therefore, the data in these areas
are sensitive to change in the coefficients of weighting.

An example of the sensitivity in results for non-filtered data is shown in Figure 4.25.
Figure 4.25a and 4.25b present surface plots for combinations of CT and CCN for
CD=0 with fixed value CV=1 and their resulting MVR for packing in the Tetris Sce-
nario. Coefficients were varied from values of 0 to 10 at increments of 1 and a sample
size n=50 was adopted. The point highlighted in Figure 4.25a of CT=8 and CCN=1 is
the location of the lowest MVR for all coefficient combinations when CD=0 as indi-
cated on Figure 5.11b and MVR=0.055 at this point. This located value can be con-
sidered sensitive as demonstrated by Figure 4.24a. A change in the coefficient values
can considerably change the value of MVR produced. In comparison, the same loca-
tion is identified for the data with Gaussian filter applied whose plot is presented in
Figure 4.25b. From Figure 4.24b, it can be seen that the change in results are much
less sensitive in comparison. Therefore it can be concluded that applying the Gaus-
sian filter may mean that an absolute minimum value is missed but the outputted
coefficients of weight will be less sensitive to slight changes in their value.

(A) (B)

FIGURE 4.24: Central value indicates the value of MVR produced by
the algorithm in the Tetris Scenario for a sample size n=50 for weight-
ing coefficients CV=1, CD=0, CT=1, and CCN=9. Surrounding values
indicate the values when an increase or decrease of 1 is applied to co-
efficients CT and CCN in datasets where (a) no filter is applied and (b)

the Gaussian filter is applied.

Another example of sensitivity in results is presented for the Tetris Scenario with
sample size n=50. Surface plots for combinations of CT and CCN for CD=5 with fixed
value CV=1 are shown in Figure 4.26 for unfiltered MVR results and MVR results
with Gaussian filter applied. In Figure 4.26a it can be determined that the lowest
MVR is achieved at CT=2 and CCN=0. However, for the results once Gaussian filter-
ing has been completed, the lowest MVR is achieved at CT=4 and CCN=0 The differ-
ence in MVR between (CT=2,CCN=0) and (CT=4,CCN=0) for Figure 4.26a is relatively
large compared to differences in other locations with the MVRs for these locations
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(A)

(B)

FIGURE 4.25: Surface plots of MVR results for n=50 in the Tetris Sce-
nario for different CT and CCN values varied from 0 to 10 at incre-
ments of 1 with CV=1 and CD=0 for (a) the unfiltered MVR results

and (b) the MVR results with Gaussian filter applied.
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being 0.037 and 0.045 respectively. Therefore, if (CV=1, CD=5, CT=4, CCN=0) was
chosen as the optimal weighting combination, this would be an incorrect solution
for producing the minimum amount of voids in the Tetris Scenario. This is the risk
of using the Gaussian filter.

However, values closer to the datapoint being analysed should affect the calculated
MVR more due to the Gaussian style distribution of values in the filter. By selecting
the lowest MVR for Gaussian filtered data, it is thought that a weighting combina-
tion will be selected that is closest to the optimal solution whilst being less sensitive
to changes as seen in Figure 4.25. A check on unfiltered data can be completed to en-
sure this is the case. Additionally, increasing the sampling frequency for the search
area will result in more datapoints around any optimal solution that may be missed.
If these results are similar to this value, then the increase area of results closer to an
optimum will still be able to be located even with the application of a Gaussian filter.
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(A)

(B)

FIGURE 4.26: Surface plots of MVR results for n=50 in the Tetris Sce-
nario for different CT and CCN values varied from 0 to 10 at incre-
ments of 1 with CV=1 and CD=0 for (a) the unfiltered MVR results

and (b) the MVR results with Gaussian filter applied.
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4.4.5 Effect of Gaussian filter at the Surface Edge

An issue occurs with the data at the edges of the surface plots due to zero-padding
when applying the Gaussian filter as described in Section 4.4.3. An example of this is
can be seen between Figure 4.30a and Figure 4.31a located in Section 4.4.6. The value
at (CT=0, CD=0) in Figure 4.30a drops suddenly and indicates a trend towards a min-
imum value. This value of MVR for the equivalent location in Figure 4.31a does not
have as much variance from other values and as a result the drop in the surface is
not as pronounced. At edges and corners where the trend of the surface plot is de-
creasing, the surrounding higher values leads to an overprediction for the datapoint
due to the scaling of their effect to avoid zero-padding. As a result, the lowest MVR
value may occur at these edges but is unable to be located when Gaussian filter is
applied.

It is important to consider these values at the edge as for most of the search areas
this can represent where at least one of the coefficients of weighting is zero mean-
ing the omission of that criteria from the objective function. There are two possible
solutions. The first is to increase the frequency around the edges of the surface so
that there are more values of a similar magnitude when applying the Gaussian filter.
However, this will increase computational time.

The second is to expand the datasets to include negative coefficients of weighting
values. Figure 4.27 shows an example for the minimum MVR value located for
search area where CV=1 and CD=3.5 and CT and CCN were ranged between 0 to
10 at increments of 0.5 and n=9. The surface plot for these results are presented in
Figure 5.13a in Section 6. Figure 4.27 extends the search area into negative values
for coefficients of weighting as the minimum MVR was located at an edge point.
A clear channel has formed in Figure 4.27a for CCN=0 with a big increase in values
of MVR for negative CCN . These values are taken into account when the Gaussian
filter is applied, and actually the MVR for this region is larger than that displayed
in Figure 5.13b for the equivalent location. Therefore, including negative coefficient
values whilst still applying the Gaussian filter is not the solution to the problem of
analysing values at the edge of the dataset.

Instead, the raw data should be analysed separate to data with Gaussian filter ap-
plied for coefficients around the edge of datasets, especially those with zero values
for coefficients. Visual inspection of unfiltered datasets are conducted for these areas
to ensure that omission of criteria in the objective function is sensible. If a value is
located at a non-zero edge, the search area can be expanded to see if the surface plots
continue to trend towards an optimal solution outside of the investigated range.
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(A)

(B)

FIGURE 4.27: Surface plots of MVR results for n=30 in the Tetris Sce-
nario for different CT and CCN values varied from -1 to 3 at incre-
ments of 0.5 with CV=1 and CD=3.5 for (a) the raw MVR results and

(b) the MVR results with Gaussian filter applied.
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4.4.6 Varying Sample Size and Sampling Frequency

Discussed in Section 4.3 is the sample size required to accurately estimate the popu-
lation data when conducting simulations of packing particles for determining weight
coefficients. It was concluded that n=9 can be adopted to get a broad visual of the
plots of coefficients whilst n=30 can be adopted for more accurate results areas of
interest.

Figures 4.28-4.33 present surface plots of results for mean void ratio for weighted
coefficient values of 0-10 for CD, CT, and CCN increasing by increments of 1. Three
results for CD are included for values of 0, 5 and 10. CV is equal to 1 and is kept
constant. Figure 4.28, Figure 4.29 and Figure 4.30 present data for n=9, n=30 and
n=50 respectively with no filter applied to the surface whilst Figure 4.31, Figure 4.32
and Figure 4.30 present data for n=9, n=30 and n = 50 respectively with the Gaus-
sian filter described in Section 4.4.3 applied. The difference between n=9 and n=30
suggests that as the sample size is increased, more features of the surface plot are
observed. This is further proved as n is increased to 50. When the Gaussian filter is
applied, these features are smoothed and the plots appear more similar. It is clear the
minimum void ratio is located in approximately the same area with a trend towards
the location (CT=1, CCN=10) for each plot. As these minimum are located in similar
areas, it is justified to use a lower sample size of n=9 for locating the rough area of
minima. Any minima missed will be spikes in data. To locate these spikes would
require higher sample sizes which in turn leads to longer computational times.

Figure 4.34 and Figure 4.35 show the effect of increasing the sampling frequency.
The conditions for sampling are equivalent to the results in Figure 4.28 and Figure
4.31 but with increments of 0.5 between coefficient values. For Figure 4.34 where
no smoothing filter is applied to the data surface, more spikes in values from com-
pared to surrounding values are apparent. Applying the Gaussian filter, as shown in
Figure 4.35, smooths these spikes and represents data that is more similar to Figure
4.31 with minima being located in roughly the same area again. However, there are
more surface features present. From this analysis, it can be concluded that a higher
sampling frequency leads to more accurate descriptions for varying weighting coef-
ficients. Again, the increased sampling frequency will lead to longer computational
times as more simulations are required due to the larger number of weighting coef-
ficient combinations.
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(A) CD = 0

(B) CD = 5

(C) CD = 10

FIGURE 4.28: Surface plot for different coefficients and the resulting
mean of the void ratios for n=9 with fixed seed for generating Tetris
bag particle ordering with no filter applied ranging from 0-10 for co-

efficient values.
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(A) CD = 0

(B) CD = 5

(C) CD = 10

FIGURE 4.29: Surface plot for different coefficients and the resulting
mean of the void ratios for n=30 with fixed seed for generating Tetris
bag particle ordering with no filter applied ranging from 0-10 for co-

efficient values.
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(A) CD = 0

(B) CD = 5

(C) CD = 10

FIGURE 4.30: Surface plot for different coefficients and the resulting
mean of the void ratios for n=50 with fixed seed for generating Tetris
bag particle ordering with no filter applied ranging from 0-10 for co-

efficient values.
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(A) CD = 0

(B) CD = 5

(C) CD = 10

FIGURE 4.31: Surface plot for different coefficients and the result-
ing mean of the void ratios for n=9 with fixed seed for generating
Tetris bag particle ordering with Gaussian filter applied for smooth-

ing ranging from 0-10 for coefficient values.
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(A) CD = 0

(B) CD = 5

(C) CD = 10

FIGURE 4.32: Surface plot for different coefficients and the result-
ing mean of the void ratios for n=30 with fixed seed for generating
Tetris bag particle ordering with Gaussian filter applied for smooth-

ing ranging from 0-10 for coefficient values.
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(A) CD = 0

(B) CD = 5

(C) CD = 10

FIGURE 4.33: Surface plot for different coefficients and the result-
ing mean of the void ratios for n=50 with fixed seed for generating
Tetris bag particle ordering with Gaussian filter applied for smooth-

ing ranging from 0-10 for coefficient values.
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(A) CD = 0

(B) CD = 5

(C) CD = 10

FIGURE 4.34: Surface plot for different coefficients and the resulting
mean of the void ratios for n=9 with fixed seed for generating Tetris
bag particle ordering with no filter applied ranging from 0-10 for co-
efficient values with sampling frequency of 0.5 between coefficients.
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(A) CD = 0

(B) CD = 5

(C) CD = 10

FIGURE 4.35: Surface plot for different coefficients and the resulting
mean of the void ratios for n=9 with fixed seed for generating Tetris
bag particle ordering with Gaussian filter applied ranging from 0-10
for coefficient values with sampling frequency of 0.5 between coeffi-

cients.
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4.4.7 Summary

Section 4.4 has described the methodology for the investigation of weighting co-
efficients in the objective function. The use of a consistent particle order for each
combination of weighting coefficients is required as shown in Section 4.4.2. This will
produce a random particle order from the Tetris Bag method for each simulation for
a set of weighting coefficients but ensure that simulations for all other coefficient
combinations are produced using identical particle orders. Implementation of this
method removes an extra variable as particle order effects the end result of the pack-
ing as particles are packed in the sequence they are delivered to the algorithm in the
Tetris Scenario.

Smoothing of the plot was investigated using mean filter and Gaussian filter in Sec-
tion 4.4.3. It was determined that a Gaussian filter will be adopted due to the de-
creasing effect of datapoints when moving away from the centre of the filter. The
Gaussian filter is described using Equation 4.3 and a 5x5 filter is adopted. If a mean
filter was to be adopted, it is suggested that a size of 3x3 is adopted due to each
datapoint being of equal weighting when applying the filter. The application of the
filter to the search area leads to zero-padding at the edges of these datasets where
values are massively underpredicted. As a result, a ratio of the convolution of the
MVR and the Gaussian filter to the convolution of a unit matrix to the Gaussian fil-
ter can be taken as presented in Equation 4.4. This scales the values in the Gaussian
filter for edgepoints so that the sum of filter values is equal to one negating the effect
from zeropadding. Section 4.4.4 and Section 4.4.5 explored the effect of the Gaus-
sian filter when applied to surface plots. Section 4.4.4 showed that by applying the
Gaussian filter, false optimums which may lead to a optimal solution but will be
very sensitive to any type of change to the packing can be avoided. This may lead to
missing locations of optimal solutions but it is thought that by increasing sampling
frequency these locations will be located. Meanwhile Section 4.4.5 described that
even though datapoints at the edge are a fairer visualisation of the actual value com-
pared to when Equation 4.4 is not applied, datapoints located on the edge are still
misrepresented and should be analysed by taking the unfiltered data for these areas
of the search area. Overall, it is concluded that the Gaussian filter of matrix size 5x5
can be adopted forward but care must be taken with application to the datasets in
certain scenarios.

Sample size and sample frequency are both explored in Section 4.4.6. From the anal-
ysis of Figures 4.28-4.35 it can be established that larger sample sizes at more fre-
quent intervals between coefficients will lead to a more accurate picture of the mean
void ratio surface plots for different combinations of weighting coefficients. How-
ever increasing these variables leads to an increase in computational time.

4.5 Process for Locating Optimal Weighting Coefficients

A procedure for the investigation into determining the optimal solution for combi-
nation of weighting coefficients for the Tetris Scenario and Soil Particle Scenario is
presented in this section to describe to the reader how coefficients of weighting can
be determined to find an optimal solution.

For the Tetris Scenario, the objective is to minimise void ratio of the system. There-
fore, results of the mean void ratio (MVR) of the packings are taken to indicate the
efficiency of the algorithm. The objective in the Soil Particle Scenario is to optimise
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packing so that a maximum shear strength is achieved. Whilst void ratio can be an
indication of shear strength of a structure it is stated it cannot be used to describe the
structure alone and that another measure is required (Mogami, 1965). The number of
running joints disrupted when filling the domain can be taken as a sign of strength
(Vivian, 1976) as discussed in Section 3.10.2. Therefore, both results for MVR and
mean number of running joints disrupted (MRJ) are examined for locating the op-
timal solution. A verification method for testing of shear strength for the produced
structures is explored in Chapter 7. Stated in Section 4.4.2 was that a fixed seed is to
be used for generating particle order. This is to ensure that packings are conducted
with the same particle order delivery to prevent this becoming a study into particle
order.

As determined in Section 4.3, a sample size of 30 gives a good estimation for the pop-
ulation of data as has been trialled with the Tetris Scenario. It has been suggested
that initial searchs when n=9 are used to explore the results of different combina-
tions of coefficients. Once areas of possible optimal solutions are located, a sample
size of n=30 can be utilised as this gives a better representation of the possible results
from packing. This is taken forward for the Tetris Scenario. However, the computa-
tional runtime for the Soil Particle Scenario is much greater. It is thought that taking
samples of nine packings for every combination of coefficients in the search areas
will lead to a vast amount of time required. Furthermore, taking n=30 to further
define the search area is unfeasible. Therefore, it is suggested a lower sample size
is adopted. It can be understood that the packing of tetrominoes will be affected
greatly by particle delivery order. For the Soil Scenario, this is not the case as most
outlines resemble a similar form and there are no drastic kinks or elbows in the over-
all shape. As a result, a sample size of n=3 is to be taken for the investigation into the
search areas with an increase to value of sample size adopted when locating optimal
solutions later on in the investigation.

Initial testing of the algorithm for each coefficient in the objective function is to be
completed. Doing so will give an understanding of the effect of each criteria in
relation to the overall packing. The method to determine this will be to set all values
of coefficients to zero. Then, each criteria can be activated individually by setting its
matching coefficient to a value of one. Furthermore, effects of the criteria when it is
the dominating parameter in the objective function can be explored by oversizing the
coefficient of weighting i.e. ensuring that the product of the criteria and its matching
coefficient (for example, CVVAB) is much larger than all other coefficient and criteria
products.

From here, the investigation into an optimal solution can begin. To achieve a broad
range of coefficient values, the search area from 0 to 10 for each coefficient that is to
be varied is explored using relatively large increments between coefficient values.
For the cases of the Tetris Scenario and Soil Particle Scenario, it is suggested that
a value of 10 is suitable to detect when a scoring criteria becomes dominant in the
objective function. Therefore larger values should not be required unless suggested
by the search area. If indication of an optimum solution at a larger value for the
coefficient is experienced, the range of coefficients past the maximum value will be
expanded to investigate this area. Note, CV is to be fixed at a value of 1 so that this
becomes an investigation into three parameters rather than four. Doing so allows
for three-dimensional surface plots to be adopted for analysing results. CV is chosen
to be fixed to a value of 1 due to the findings from Section 2.3.7 showing that a low
void ratio is an indication of high shear strength.
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Areas of interest where an optimal solution can be found are to be refined to better
locate this value. This is done in two ways. The first is to increase the sampling fre-
quency to help indicate any solutions that may have been missed due to increments
between values being too large. The second is to increase the sampling size so that
the MVR and MRJ become more accurate representations of the population. Again,
possible optimal solutions can be located in the search areas.

So far, values are searched between 0 to 10 whilst CV=1. If the score for VAB being
larger relative to D, T and CN in the objective function leads to an optimal solution,
it is required to explore values where CV is larger than CD, CT and CCN . Hence, the
search area between coefficient values of 0 to 1 is explored at an increment of 0.1
and MVR and MRJ values are investigated to locate if an optimal solution lies in
this range. Again, areas of interest where optimal solutions can be located should be
refined by adopting a higher sampling frequency and a larger sampling size.

Refinement in areas of suspected optimal solutions can be continued until a final
solution can be determined. The sensitivity between small changes in coefficient is
not yet known so the level of detail required is hard to say. However, from initial
studies for the Tetris Scenario it is suspected for Chapter 5 that resulting MVRs will
have high levels of sensitivity between coefficient combinations. It is suggested to
the reader than refinement can culminate when surround values of the search area
do not vary significantly from the optimal solution. In the Tetris Scenario, the min-
imum difference between the void in the system is one square which relates to a
difference of 0.011 if the rest of the domain is assumed to be filled with tetrominoes.
Therefore if surrounding values vary less than this, it is suggested that searching for
higher accuracies in the value representing coefficients of weighting has become an
exercise in superfluity.

Packings of the determined solution should be examined to determine if packings
produced do indeed appear to be optimal. A comparison between these and pack-
ings which are produced by random placement of particles can be done to show that
this does improve packing in terms of the objective. Furthermore, the results can be
compared to systems that are packed using the DBL-heuristic described in Section
2.4.3 as a binpacking solution. This will help analyse results against scenarios where
particles are placed following a differing controlling factor rather than the control-
ling factor being randomness. Doing so will provide evidence that the method for
packing suggested is an improvement on what exists already.

To summarise the following steps should be taken to conduct an investigation into
determining the weighting coefficients for the objective function.

1. Investigate each parameter in the objective function separately.

2. Search areas for coefficients between 0 to 10 at a smaller sample size (n=9 and
n=3 for the Tetris Scenario and Soil Particle Scenario respectively) whilst keep-
ing CV=1 as a constant.

3. Refine the search adopting either a higher sampling frequency or sample size
in areas of interest, investigating higher values of coefficients if the analysis of
the surface plots suggests an optimal solution could be located past the coeffi-
cients already investigated.

4. Search areas for coefficients between 0 to 1 similar to Step 1.

5. Again, refine the search in areas of interest for these plots.
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6. Identify possible optimal solutions in the search areas investigated and refine
in these areas further to distinguish locations of optimal solutions. It is sug-
gested that refinement can end when differences between surround values are
not significant

7. Analyse packing structures to ensure an optimal solution has been found and
compare these to results from other methods of packing

4.6 Comparison of Methods to Previous Work

Hoodless and Smith (2023) present results from a very early stage exploration into
the coefficients of weight for the developed algorithm for particle placing. As stated
in Section 3.12.2, results from Hoodless and Smith (2023) were found using a version
of the algorithm which worked in a same manner to the one described in Chapter 3,
however with a less-defined manner for determining the stability of particles.

The methods for determining weighting coefficients presented in Hoodless and Smith
(2023) differ from those in this chapter. One difference is the use of a fixed seed for
random number generation when creating particle order was not adopted. Section
4.4.2 explored the importance of having a fixed seed rather than a random seed.
However, as Hoodless and Smith (2023) completed 100 runs for calculation of the
final results, it is fair to assume that this represents the population of possible results
rather than just a sample of that population.

Another difference in Hoodless and Smith (2023) from that described here is the
method in which the coefficients of weighting are determined. In this chapter, the
methods described are going to be adopted whilst fixing CV to a value of 1. Hood-
less and Smith (2023) employs a method of initiating each coefficient value sepa-
rately and determining the effect on the resulting MVRs from 100 runs. Values were
changed to see if they have a positive effect on results. Rather than using a search
area to investigate the effect of different coefficients as described in Section 4.4, val-
ues were changed by small quantities until they no longer have a positive effect on
MVR.

Each coefficient is being introduced individually with the absence of a search area
of coefficient combinations explored. This created a sort of "settling" of coefficient
values around a certain area. For example, Table 5.1 in Section 5.2.2 shows the range
of coefficients explored for the results in Figure 5.1. As CD is activated, a value
of CV=5 is reached. Testing of values away from this number is not performed.
Therefore it is clear that the final combination of weighting coefficients being located
at a local minimum is possible. This is why the method of plotting MVR as a surface
plot as decribed in Section 4.4 with a wide range of coefficient values is adopted to
avoid local minima being reached.

Following this method, it is possible that local minima are reached rather than a true
minimum value. However, a higher level of precision can be used on the values of
weighting coefficient without massively increasing the number of weighting coeffi-
cient combinations to be explored. In the methods adopted in this chapter, a higher
level of precision is equivalent to increasing the sampling frequency for the surface
plots as seen in Section 4.4.6 which leads to longer computational times.
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4.7 Summary of Chapter

Determined in Section 4.3 was the methodology to use a combination of smaller
sample sizes to create a broad picture of the datasets for the different combination of
weighting coefficients before moving to a larger sample size to further analyse areas
of interest. Further proof for this is presented in Section 4.4.6 where it was shown
that, although larger sample sizes show more features to the surface plot, the general
shape of the plots are similar and tend towards a minimum value within the same
range of weighting coefficients. As stated in Section 4.3.1, it is common rule of thumb
in statistics to take a sample size of 30 to represent a whole population (Chang et al.,
2006). Section 4.3.2 investigated the confidence interval for the DBL heuristic and
determined in Figure 4.1 that a sample size of n=9 could be taken to gain a general
idea of the search area of solutions before refining to n=30. Section 4.3.3 further re-
inforced this by investigating the results of taking a sample distribution from results
of the Tetris Scenario where 1000 runs for the coefficients CV=1, CD=0.75 CT=0.3 and
CCN=0.045 were completed. For a 95% CI, n=30 will produce mean results ±0.92
squares of void away from the population’s MVR. n=9 produces mean results ±1.6
squares of void away from the population’s MVR. Therefore the determined ranges
for CI=95% is ∼2 and ∼3 squares of void produced in the structure for n=30 and
n=9 respectively.

Section 4.3.4 explored the effect on increasing the domain size for the Tetris Scenario.
Results for void ratio decreased but this is expected as the total solids in the system
is increasing whilst the algorithm is still trying to reduce the number of voids. Fur-
thermore, more possible positions leads to more chances of the placed particle not
creating voids in the system. Distributions for 10x10 square domains and 20x20
square domains exhibited similar shapes and therefore it is concluded that a 10x10
square domain is of sufficient size although an increase in σp is observed showing
that a wider variety of results are produced. Any missed features or boundary effects
are not necessarily worth the increase in computational time when a 10x10 square
sized domain is still suitable. For the Soil Particle Scenario, it is thought a 50x50 unit
domain will be large enough as this is roughly equivalent to a 20x20 square domain
in the Tetris Scenario.

For the determining of weighting coefficients, Section 4.4.2 showed that a consistent
particle order for each combination of weighting coefficients is required, with the
particle order being different for each simulation in that weighting coefficients com-
bination. By introducing this, the variable of particle order is removed. An investi-
gation into the particle order is a different focus to the work that is being complete
in this thesis and would involve more analysis on the particle shapes used for the
outlines that represent irregular, untooled rock.

Smoothing of the curve that represents the search area is completed in Section 4.4.3
through the application of a mean filter and a Gaussian filter. It is determined that
the Gaussian filter described by Equation 4.3 should be adopted in this study. The
size of this filter is to be a 5x5 matrix. Hence, this will be used when investigating
datasets of weighting coefficients. As shown in Section 4.4.3, zero-padding affects
the edges of the datasets analysed when a filter is applied. As a result, the convo-
lution of the MVR results and the Gaussian filter can be taken in ratio to the con-
volution of a unit matrix to the Gaussian filter as described by Equation 4.4. This
scales the values in the Gaussian filter for edgepoints so that the sum of filter values
is equal to one negating the effect from zeropadding. This resulted in values at the
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edge in search areas with Gaussian filter applied giving a better representation of the
values found in surface plots with no filter applied. The Gaussian filter will be taken
forward for the Tetris Scenario. However, it is considered that due to computational
times it may not be possible to provide enough datapoints for meaningful applica-
tion of the filter in the Soil Particle Scenario. If enough datapoints are available for
application of a filter, Gaussian filter will be selected. Otherwise, no filter will be
applied.

Section 4.4.4 and Section 4.4.5 investigated the effect of applying the Gaussian filter
to the surface plots of MVR results for the overall shape and at edgepoints in the
dataset respectively. As detailed in Section 4.4.4, application of the Gaussian filter
may lead to optimal solutions being missed if sampling frequency is set to be at
relatively large increments. However, application of the filter helps prevent locating
false optimums where there is high sensitivity of results due to slight changes of
coefficient value. With an increased sampling frequency, more datapoints in the
search area will lead to a clearer definition of the surface plot and optimal values
that may be missed when applying the Gaussian filter will be present. Furthermore,
Section 4.4.5 showed that for datapoints at the edge of surface plots the unfiltered
datapoint should be analysed as the values present in Gaussian filtered surface plots
are affected by a lack of information from the surrounding boundaries. Although
Equation 4.4 leads to a better representation of the value that can be found at edges,
the value is still a misrepresentation of the true result found at these locations.

As discussed in Section 4.4.6, increasing sample size and the frequency of points at
which solutions are found for the search area improves the accuracy of the results.
However, increasing these leads to a sacrifice on computational speed as many more
simulations of the algorithm are required. Therefore it can be stated that lower sam-
pling frequencies can be adopted when creating a broad picture of the dataset with
higher frequencies adopted in areas of interest. Additionally, initial studies can be
taken using a lower sampling size before moving forward with a larger sampling
size.

The process followed for locating optimal weighting coefficients is laid out in Section
4.5. Here it is described to start with an initial study between coefficient values of 0 to
10 with a smaller sample size and sampling frequency. From here, refinement can be
conducted at areas of interest where optimal solutions are suspected by increasing
sample and sample frequency. Additionally, coefficients between 0 to 1 should be
investigated due to CV being fixed to a value of one to investigate solutions when
CVVAB has a higher contribution in the objective function relative to other scoring
criteria. Again, areas of interest can be searched at a higher sampling frequency and
sample size to gain more information about these areas. An optimal solution can
be located through further refinement until a suitable solution is achieved. Packing
structures can then be analysed and compared to other results and heuristics such
as the DBL-heuristic or randomly placed particles.

The methodology outlined in this chapter differs from previous work presented in
Hoodless and Smith (2023). In Hoodless and Smith (2023) for the Tetris Scenario,
coefficients were varied individually and changed depending on their effect to MVR.
As stated it is likely that this falls into a local minimum which the method developed
here attempts to avoid.

To summarise the key points of this chapter
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• For the Tetris Scenario, sample size of n=9 will be adopted for quick results
to get an idea of the results from different weighting coefficient combinations.
n=30 will then be used for further details on areas of interest (which is where
local minima occurs for the Tetris Scenario).

• Smaller sampling frequencies (so larger increments between values of weight-
ing coefficients) will be used initially with the frequency being increased for
further details in areas of interest.

• It has been shown that a domain size of 10x10 squares is suitable for the Tetris
Scenario. As the Soil Particle Scenario is filled to halfway up the domain, it is
assumed that the equivalent domain size of 50x50 units will be suitable.

• A consistent particle order is used for each combination of weighting coeffi-
cients with each simulation in the combination having unique particle orders
(unless the particle order generated by the Tetris bag method is repeated). This
is achieved by fixing the seed for generating random numbers at the start of
the algorithm.

• A Gaussian filter will be used to smooth datasets for the Tetris Scenario when
analysing the results. Care is to be taken when identifying values at edge-
points.

• Investigation of the search area will start by investigating coefficients in the
range of 0 to 10 whilst CV=1 before refinement at areas of interest where an
optimal solution may lie. Additionally, the range between 0 to 1 where CVVAB
has more affect on the objective function are to be investigated and refinement
conducted in areas of interest.

It is anticipated that the increased computational runtimes of the Soil Particle Sce-
nario may not allow for a sample size of n=9 and n=30 to be adopted for the collec-
tion of results. Additionally, it is unlikely that the sampling frequency will allow for
a large range of datapoints in the search area. Therefore application of a filter may
be detrimental to analysing the results due to zeropadding and it is also anticipated
that this will be omitted from study in Chapter 6. If time allows, these sample sizes
will be taken forward and Gaussian filter will be applied to datasets.
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Chapter 5

Results of the Tetris Scenario

5.1 Introduction

In this chapter, results of the Tetris Scenario produced by the methods described in
Chapter 3 following techniques in Chapter 4 are determined and presented. Section
5.2 describes the results produced in Hoodless and Smith (2023) where combina-
tions of weighting coefficients were varied manually with a sensitivity study being
conducted. A minimum outputted void ratio for 100 runs were found for different
weighting coefficient combinations and it was determined weighting coefficients of
CV=5, CD=1.25, CT=0.4, and CCN=0.01 produced the lowest mean void ratio of all
tested combinations. Although this may be a valid result for the minimisation of
void ratio in the system, it is possible that this combination is a local minimum
and that there could be a more optimised solution. Therefore, the methodology
described in Section 4.4 is adopted for determining the optimal combination of co-
efficients. Whilst CV is kept constant, a broad range of different combinations of
weighting coefficients are tested and results of the mean void ratios are plotted using
three-dimensional surface plots for different values of CD. As determined in Section
4.4, initial samples of n=9 tests are taken before a sample size of n=30 is used for
more detailed analysis to find the optimised combination of weighting coefficients
for minimum void ratio. The results from Hoodless and Smith (2023) act as veri-
fication of the method and the Tetris Scenario is adopted to show that the packing
algorithm is effective on a simplified example.

Section 5.3 explores the effect of each scoring criteria in the objective function de-
scribed in Section 3.5.1. CV , CD, CT, and CCN are each investigated individually
in Sections 5.3.2-5.3.5 to determine their influence on placement either as a single
criteria or in combination with the other criteria when oversized. This shows the
influence of each step in the objective function when packing tetrominoes to min-
imise voids. The produced packing structures are shown and mean void ratios are
presented for the sample size n=30.

Section 5.4 begins the analysis of the produced mean void ratios (MVRs) for different
weighting coefficient combinations by ranging coefficients from 0 to 10 for CD, CT
and CCN as suggested in Section 4.5. CV is kept at a constant value of one. From here,
refinement of the search area is completed for the equivalent ranges by increasing
the sampling frequency. A potential area where an optimal solution may be located
is highlighted.

From the investigations conducted in the previous section, Section 5.5 refines the
sampling frequency down to determine the location of a solution to produce min-
imum void ratio in the Tetris Scenario. The area of interest is further investigated,
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as well as the search areas for coefficient values not considered such as much larger
(Section 5.5.2) and values where CVVAB has more of an effect in the objective function
by taking values of CD, CT, and CCN from between 0 and 1 (Section 5.5.4). Following
this, a combination of weighting coefficients is found as a solution to provide opti-
mal packing in the Tetris Scenario. Locations of an optimal solution are suggested at
the end of this section.

Section 5.6 displays the packing results of the weighting coefficient combination de-
termined to produce the best packing structures from tetrominoes by the method fol-
lowed in Section 5.4. These are compared to the packing results from Hoodless and
Smith (2023) using the weighting coefficients (CV=5, CD=1.25, CT=0.4, CCN=0.01) as
well as another potentially optimal solution that was located for different combina-
tion of weighting coefficients. Section 5.7 compares the packings to controls of the
DBL heuristic approach to packing and randomly placed particles to show that the
algorithm performs better than alternative approaches.

The chapter is summarised in Section 5.8 and the determined combination of weight-
ing coefficients to provide optimal packing structures in the Tetris Scenario is re-
peated.

5.2 Results of Previous Work

5.2.1 Introduction

Work on the optimal combination of weighting coefficients has been conducted al-
ready in Hoodless and Smith (2023). Differences between the method in Hoodless
and Smith (2023) and those proposed in Chapter 3 and Chapter 4 are previously
stated in Section 3.12.2 and Section 4.6 respectively.

The main difference between Hoodless and Smith (2023) and the work here is that
Hoodless and Smith (2023) employs a method of initiating each coefficient value
separately and determining the effect on the resulting MVRs from 100 runs. Values
were changed to see if they have a positive effect on results. Rather than using a
search area to investigate the effect of different coefficients as described in Section
4.4, values were changed by small quantities until they no longer have a positive
effect on MVR. As described in Section 4.6, this can lead to a higher precision for
the values of the coefficients. However, it is possible that the resulting weighting
coefficients provide results for a local minimum and that the true minimum has been
missed. Therefore, the methods described in Chapter 4 are adopted in this study to
try and avoid this possibility.

Section 5.2.2 discusses the results achieved in Hoodless and Smith (2023) for the
different coefficients of weighting explored. As stated, the combination of weight-
ing coefficients determined as the optimal solution was CV=5, CD=1.25, CT=0.4, and
CCN=0.01. This is most likely to occur at a local minimum and further study of the
search area is required.
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5.2.2 Weighting Coefficient Combination

Figure 5.1 presents the results from Hoodless and Smith (2023) as violin plots with
the mean, median and quartiles for the 100 runs indicated on the each plot. Table 5.1
indicates the relating combinations of weighting coefficients for each labelled plot.

As shown in Figure 5.1, the void ratios produced by just the inclusion of CV have a
much larger range than those with the inclusion of other weighting coefficients. By
also introducing a non-zero value for CD the maximum void ratios reached for the
100 simulations tested massively reduces. This is thought to be due to the decrease
in chance of canyoning during packing as is highlighted in Section 5.3.3

From analysis of Figure 5.1, it is determined in Hoodless and Smith (2023) that CV
is the largest coefficient of those explored followed by CD. CCN is the smallest of
the weighting coefficients. This is due to the fact that the score for D in the objective
function from coordination number is much larger compared to other contributors to
scoring of placement as this is measured by the number of touching particles whilst
the other scoring methods are measured as a ratio.

Hoodless and Smith (2023) determines that combination O is the optimal weight-
ing coefficient combination from those explored in the paper. As stated in Hoodless
and Smith (2023), combination O gave the highest frequency of results closest to
zero void ratio. This is represented by the overlying box plot that shows the mean,
median and lower quartile values being closer to zero void ratio than combinations
A-H. The mean is lower than values for the similar plots of combinations K-P. There-
fore, the determined coefficients are CV=5, CD=1.25, CT=0.4, and CCN=0.01.

Letter CV ,CD,CT,CCN Letter CV ,CD,CT,CCN
A 1,0,0,0 I 5,2,0.4,0
B 1,1,0,0 J 5,2,0.4,1
C 1,2,0,0 K 5,2,0.4,0.01
D 2,1,0,0 L 5,2,0.4,0.05
E 5,2,0,0 M 5,2,0.4,0.02
F 5,2,1,0 N 5,1,0.4,0.01
G 5,2,2,0 O 5,1.25,0.4,0.01
H 5,2,0.5,0 P 5,1.75,0.4,0.01

TABLE 5.1: Values of coefficients for data plotted in Figure 5.1.
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FIGURE 5.1: Violin plots for results of 100 runs for the packing of
tetrominoes for different coefficients of weighting combinations with
mean, medium and quartiles indicated on the plot. Results originally

presented in Hoodless and Smith (2023).

5.3 Effects of Changing Coefficient Values

5.3.1 Varying Coefficients

In this section, an investigation into the effect of each coefficient on the final void
ratio of the structures for the Tetris Scenario is investigated. The effect of each coef-
ficient is explored as a collective in Figure 5.2 which shows the results of mean void
ratio derived using a sample size of n=30. Separately, each coefficient of CD, CT, and
CCN is varied from 0 to 10 at increments of 1 whilst the other coefficients are kept at
a value of 1. For all the results in Figure 5.2, CV=1 and was set as a constant. The
results of each criteria in the objective function are discussed in relation to the other
criteria. MVR results of each variable when oversized - this is to say that the value
of the coefficient is set to be very large whilst all other coefficients remain constant
at a value of 1 - are expected to be where values plateau if Figure 5.2 was to continue
to infinity. These values are presented in Table 5.2.

Additionally, each criteria was tested independently with no effect of other criteria
to investigate their individual effect of determining placement of tetrominoes. This
is done by activating each coefficient individually by setting it to a value of 1 whilst



5.3. Effects of Changing Coefficient Values 221

all other coefficients are kept at a zero value. Results of these are presented in Figures
5.4-5.8 with the MVR for a sample size of n=30 presented for each in Table 5.2.

Variable activated MVR MVR (Oversized)
VAB 0.0797 0.0396
D 0.1067 0.0983
T 0.1564 0.1282

CN 0.3878 0.1275

TABLE 5.2: Mean void ratios for a sample size of n=30 for the indi-
vidual criteria of the objective function either as a single variable or
when the variable is oversized to be 100 whilst all other variables are

set to 1.

FIGURE 5.2: Values of mean void ratio for the varying of coefficient
values. Each value of coefficient varied from 0 to 10 at increments of
1 whilst the rest are fixed at a value of 1. CV=1 for all plots. Gaussian

filter applied to data.

5.3.2 Effect of VAB

It is planned that CV=1 is taken as a fixed value for all other coefficients to be stan-
dardised against. Therefore, it is required to ensure that CV has a positive effect on
minimising void ratio. Figure 5.3 shows the effect of CV by investigating resulting
mean void ratios for when CV is zero or a non-zero value. The MVR in Figure 5.3
indicates the lowest possible mean void ratio for each combination of weighting co-
efficients trialled when CV is fixed and CD is the value indicated by the x-axis. CT
and CCN were ranged from a value of 0 to 10 at an increment of 1 between coefficient
values. The coefficients for this resulting MVR are presented in Table 5.3. MVR is
consistently lower for the scenario where CV=1 and therefore it can be concluded
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that VAB has a positive effect in the objective function for minimising void ratio.
Clearly this is logical as it introduces a criteria for positioning that is equivalent to
to the desired outcome.

If VAB is separated to be the only variable in the objective function (i.e. CV=1 and
all other weighting coefficients are set to zero) then placements are being scored
only for creating no space beneath them. Figure 5.4 shows an example of this. In
the figure particles are numbered in the order for which they were placed with 0
indicating the first tetromino. From analysis of the particle order, voids appear in
the system where the tetromino being placed must create void regardless of the final
position in the domain. Although a different particle could have filled these spaces,
there is no permutation of particle sequence for the tetromino to be swapped for
another. Additionally, to the right of the domain it can be seen that canyoning has
occurred. As no particle fits within this canyon, placements that cap this area will
create void a large amount of void. Therefore, other positions are prioritised. As
the domain fills up with particles, this canyon on the right of the domain grows in
size to the point where a particle placement here will create a much greater amount
of void in comparison to being placed there earlier. A Bar tetromino would fill this
gap, but this is not the next particle to be produced in the particle order. Instead a LK
tetromino is attempted for placement which cannot fit in the remaining space. The
previous B-tetromino to be placed was Particle 11 which was used to fill the space to
the left of the domain where another canyon had formed. An additional heuristic is
required to fill these spaces and avoid this situation.

Note, a suitable placement of Particle 6 in Figure 5.4 would have been to the right
of Particle 5 and rotated by 90o as this would have filled this space whilst creat-
ing no voids. The Tetris Scenario was tested before the ordering of potential place-
ments was introduced (described in Section 3.7.3). Therefore, the identification of
the bottom-left most position has not been included in the code and rather the first
position to produce the lowest score is selected. This tends to be to the left of the
domain rather than towards the bottom and the first orientation tested is prioritised.
Introducing the bottom-left heuristic to determine between jointly scored positions
would produce better results to the programme as a Tetris solving algorithm. This
is equivalent to introducing a slight scored for D by making CD a non-zero value
which is much less than CV .

It was thought that the inclusion of D in the objective function will automatically
solve this issue as deeper locations will be chosen, however the case of all coeffi-
cients being of zero value except CV has highlighted that this will only be the case
if CD is a non-zero value. This is shown in Figure 5.5 where CD, CT, and CCN are
designated as a value of 1 and CV=100 to create an oversizing effect on VAB in the
objective function. The particle delivery order to the programme is identical to Fig-
ure 5.4. More particles are placed in the system as the programme ends when the
next particle cannot be placed (so Figure 5.4 terminated earlier than Figure 5.5). As
can be seen, the canyonying effect that is seen in Figure 5.4 no longer occurs. Ad-
ditionally, the decrease for MVR when n=30 presented in Table 5.2 shows that the
introduction of the other variables in the objective function have a positive effect on
creating low-void structures in the Tetris Scenario.



5.3. Effects of Changing Coefficient Values 223

FIGURE 5.3: Lowest MVR value from surface plots of coefficients CT ,
CCN and mean void ratio for different CD values with CV = 0 and
CV = 1 represented. CD, CT , CCN between 0 to 10 by increments of 1.

Gaussian filter is applied to results.

CV CD CT CCN MVR CV CD CT CCN MVR
0 0 10 2 0.0873 1 0 10 2 0.0728
0 1 10 2 0.0799 1 1 0 0 0.0637
0 2 8 1 0.0771 1 2 0 0 0.0604
0 3 8 1 0.00665 1 3 2 0 0.0592
0 4 9 1 0.0666 1 4 3 0 0.0562
0 5 5 0 0.0638 1 5 4 0 0.0554
0 6 5 0 0.0601 1 6 4 0 0.0521
0 7 7 0 0.00581 1 7 5 0 0.0512
0 8 7 0 0.00573 1 8 5 0 0.0508
0 9 6 0 0.00561 1 9 5 0 0.0493
0 10 9 0 0.0556 1 10 6 0 0.0480

TABLE 5.3: Combinations of weighting coefficients that resulted in
the lowest MVR values for the data presented in Figure 5.3 for unfil-

tered data (left) and Gaussian filtered data (right).
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FIGURE 5.4: Results of the algorithm in the Tetris Scenario for weight-
ing coefficients of CV=1 and CD=CT=CCN=0. Void ratio of the system

is 0.042.

FIGURE 5.5: Results of the algorithm in the Tetris Scenario for weight-
ing coefficients of CV=100 and CD=CT=CCN=1. Void ratio of the sys-

tem is 0.011.
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5.3.3 Effect of D

Figure 5.6 presents the results of packing a particle order produced by the Tetris bag
method equivalent to Figure 5.4 where D is the only variable activated in the objec-
tive function. As expected, tetrominoes are packed at the lowest point possible in
the domain. As depth is calculated by the centre of gravity of the particle, orienta-
tions of particles are selected which are "bottom heavy". For example, Particle 1 is a
T-tetromino placed with a base of 3 squares touching the base of the domain. This
is not due to any need to minimise void ratio but rather because the central point
of the particle is lower than the other three possible orientations. Additionally, B-
tetrominoes like Particles 6, 11 and 19 prioritise being placed flat rather than length
ways. Almost the opposite problem to Figure 5.4 is occurring as there is no possi-
bility of canyons forming. Therefore, B-tetorminoes will not get chance to fill these
sorts of gaps.

As indicated in Table 5.2, MVR is again reduced with the inclusion of other variables
with CD=100 set to oversize the effect of D. However, the reduction to void ratios
produced is not as dramatic as with VAB.

With relation to the other variables in the objective function, D appears to have a
positive effect in terms of minimising void ratio. Figure 5.2 indicates this as MVR
decreases between CD=0 to around CD=3. From here, the value fluctuates a little but
it can be determined by the value of MVR for when D is oversized in Table 5.2 that
MVR will tend to a value of 0.095.

FIGURE 5.6: Results of the algorithm in the Tetris Scenario for weight-
ing coefficients of CD=1 and CV=CT=CCN=0. Void ratio of the system

is 0.138.
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5.3.4 Effect of T

T in the objective function applies a score for positions that produce the most contact
area with other tetrominoes or the domain boundary. Figure 5.7 presents the results
for a case where CT=1 and CV=CD=CCN=0 for the equivalent particle order as Fig-
ure 5.4. Particles are placed in the system to optimise contact with other particles.
However, some positions clearly do not provide the most contact area.

For example, the placement of Particle 6. Particle 6 produces much more contact area
with Particles 1, 2 and 4 if rotated by 90o to its current orientation. The reasoning for
placements such as this are due to T being defined as the ratio of coordinates in
contact with the placement surface to the total coordinates that make up the bottom
of the particle. For Particle 6, its current position produces a value of T equivalent to
1 as all coordinates of the bottom outline are in contact with the placement surface. If
the particle is placed at the proposed rotation of 90o, an overhang will occur meaning
that the produced value of T is less than 1. In this way, T almost acts as another VAB
variable as if a T value of 1 is produced, then the value of VAB will also be 1 as no
void is created below the particle. This was previously suggested in Section 3.5.4.
In canyoning scenarios like that in Figure 5.4, T will not be able to account for the
area of void created below the particle, so it is more likely that a position above such
a canyon is selected. This could be beneficial as it may avoid canyoning occurring
in the system whilst a detrimental effect may occur if a particle is placed over the
canyon once it has built up.

Again, MVR is reduced with the inclusion of other variables when T is oversized by
applying coefficients of CT=100 and CV=CD=CCN=1. Although there is a noticeable
difference in the void ratios, the value is not reduced as much as with VAB. As
stated for VAB, the inclusion of the other variables counters the canyoning effect from
occurring. T does not have an issue with canyoning as the quantity of void created
below the particle is not took into account when scoring the placement. Therefore,
the reduction in MVR is not as significant as this issue is not being resolved in the
same way that it is with oversizing VAB.

Evidence for T acting as an alternative VAB value is present in Table 5.3. When
CV=0, higher values of CT are acquired for the combination that produces the low-
est MVR. Therefore it can be concluded that T is being used as a substitute version
of VAB in the objective function to result in lower void ratios. This would also ex-
plain why MVR values are higher when CV=0 due to, as previously discussed, T not
considering the quantity of void being created beneath the particle when determin-
ing placement. Therefore earlier on in the packing, tetrominoes may be placed that
avoid creating void but then later on cap these areas regardless of the size of void
created below.

When combined with the other variables in the objective function, Figure 5.2 shows
that MVR decreases as CT increases until a value of 8. From here, MVR starts to
increases slightly. It is thought from the oversizing of CT in Table 5.2 that this will
continue to increase until a value of around 0.12. This is due to the effect of T out-
weighing that of V in the objective function meaning that overhangs and capping of
canyons are more likely to occur. Initially, between CT=0 to CT=1, it appears that T
causes a slight increase in void ratio of the packed systems. It is thought that this
is due to V having more effect in the scoring of placement so more canyoning is
occurring before the effects of D, T, and CN overcomes this.
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FIGURE 5.7: Results of the algorithm in the Tetris Scenario for weight-
ing coefficients of CT=1 and CV=CD=CCN=0. Void ratio of the system

is 0.10.

5.3.5 Effect of CN

The effect of activating CN as a single variable in the objective function is shown in
Figure 5.8. Again, the particle order delivered to the algorithm is the same sequence
as that in Figure 5.4 The positioning of particles to prioritise coordination number
can be seen to be quite detrimental to the packing in terms of minimising void ratio.
Large gaps appear as particles are placed that give overhangs. This is partially due
to the lack of ordering potential placements and particles that have equivalent scores
are being placed by the first location found to produce that score.

As with CV , the inclusion of other variables in the objective function leads to much
improved results. Figure 5.9 presents the same packing for CCN=100 and CV , CT and
CCN set to values of 1 to create an oversizing effect for CN in the objective function.
Fewer gaps and overhangs are produced by the algorithm and it is presented in
Table 5.2 that the MVR is much lower when the other variables are included in the
objective function.

From Figure 5.2, it appears as though increasing the effect of CN has a detrimental
relationship on MVR produced. The value of MVR increases before becoming a
constant value of 0.115 for CCN=5 and higher. The constant MVR past CCN=5 is due
to CN having no larger impact on the objective function. It can be considered that
CN has become the dominant factor when determining positioning of the tetromino.
At some value for the coefficient, each of CD, CT, and CCN will become the dominant
factor in the objective function if all other coefficients are kept as 1. CN achieves
this at a lower value for CCN due to coordination number being a much larger value
than scorings for V, D, and T. Although the coefficient value for which this occurs
has not been investigated for each parameter, the score for MVR in Table 5.2 when
each coefficient is oversized individually gives the MVR that is produced when each
variable is dominant. It should be noted that the difference in values of MVR past
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CCN=5 and the value in Table 5.2 are due to the Gaussian filter being applied to the
data presented in Figure 5.2.

FIGURE 5.8: Results of the algorithm in the Tetris Scenario for weight-
ing coefficients of CCN=1 and CV=CD=CT=0. Void ratio of the system

is 0.426.

FIGURE 5.9: Results of the algorithm in the Tetris Scenario for weight-
ing coefficients of CCN=100 and CV=CD=CT=1. Void ratio of the sys-

tem is 0.119.
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5.4 Analysing Results for Different Weighting Coefficient Com-
binations

5.4.1 Initial Study

Presented in this section are results from surface plots of MVR for different com-
binations of weighting coefficients. As Chapter 4 involved analysing the nature of
these results, some additional information is already known when these tests may
not have been completed if the task was being started again. For example, data for a
sample size of n=50 were presented in Figures 4.30 and 4.33 in Section 4.4.6 when it
has been determined that a maximum sample size of n=30 is sufficient. Advantage
will be taken of this already produced data for determining the weighting coefficient
combination for producing minimum void ratios in the Tetris Scenario rather than
dismissing these trial tests.

As stated in Section 4.5, the study is to begin by conducting a search between coef-
ficient values of 0 to 10 for CD, CT and CCN whilst CV is kept to a constant value of
1. Figure 5.11 presents the lowest MVR achieved for different values of CD when CT
and CCN were varied between 0 to 10 at increments of 1 whilst CV is kept at a con-
stant value of 1. Results are presented for the data with Gaussian filter applied as
described in Section 4.4.3 as well as with the exclusion of the filter. Lower MVRs are
achieved earlier in the plot at lower values of CD for the data with no filter applied
whereas when the Gaussian filter is adopted the MVR tends to continue to decrease
as CD increases. It is clear from the unfiltered data that 10 is a reasonable range of
coefficients to go up to as the results show no signs of producing MVRs as low as
located at CD=1. However, a study into coefficients greater than this range is con-
ducted in Section 5.5.2 as proof of this theory. This is present for the Tetris Scenario
because of the faster computational speed for packings to be completed and is not
repeated for the Soil Particle Scenario.

The difference between MVR results in Figure 5.11a and Figure 5.11b suggest that
application of the Gaussian filter is leading to an optimal solution being missed in
the range of CD=1 which can be detected for the unfiltered data. Section 5.4.2 investi-
gates changing the sampling frequency for the whole of the already explored search
areas. However, it is to be highlighted that Figure 5.11a indicates a potential optimal
solution at CD=6 whereas none would be identified for an area around CD=1.

Results of for n=9, n=30 and n=50 for coefficients in the range of 0 to 10 whilst CV=1
have already been collected from the work done in Chapter 4 when determining a
methodology for the identifying the combination of weighting coefficients that lead
to an optimal solution. Consideration of the difference in value of MVR achieved
for sample sizes of n=9 and n=50 shows that results with n=9 are lower than those
for n=50. The explanation for this trend is that the particle orders produced in the
first nine tests is a sequence that leads to tighter packing on average compared to
the particle orders produced by the Tetris bag method after this. As n=50 is greater
than the determined value of n=30 for representing the population data, it can be
concluded that the MVRs produced in Figure 5.11b are a fairer representation of the
void ratios that can be produced than those in Figure 5.11a.

As for when n=30, Figure 5.10 shows the values of lowest MVR found in the surface
plots for this sample size. When compared to Figure 5.11b, it can be concluded
that the layouts are similar, especially for the Gaussian filtered data. Therefore, this
confirms that it is justified to take a sample size of n=30 as determined in Section 4.3.
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Table 5.4 contains the coefficients of weight for which these minimum MVR values
were found. These are equivalent to the coefficient combinations presented in Table
5.3, again confirming that n=30 is a reasonable sample size to employ.

Note that Figure 5.10 and Figure 5.11 show the lowest MVR value for surface plots
of different CD values in the same range of CT and CCN of between 0 and 10. These
lowest MVR values do not necessarily relate to being located at the same CT and
CCN and could in fact be located at opposite sides of the surface plot. Proof of this
can be seen in Table 5.4 where the location of the lowest MVR values for each surface
plot is presented. This is highlighted here as similar plots are seen throughout this
thesis when locating optimal coefficient values. Furthermore, on each figure two
results are presented. These are the lowest MVR values for when Gaussian filter is
applied and for when no filter is applied. It can be seen that the lowest MVR values
when Gaussian filter is applied are typically higher than when no filter is applied.
The nature in which the Gaussian filter affects the surface plots is to remove any big
spikes in data to avoid areas of sensitivity as described in Section 4.4.4. Therefore
it is expected that the lowest MVR value when Gaussian filter is applied would be
larger than when no filter is applied as the Gaussian filter is reducing the size of any
spikes in the data. Again, this is to prevent the optimum coefficients of weighting
location being determined in an area of high sensitivity where a slight change in
coefficient could greatly affect the produced results.
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CV CD CT CCN MVR
1 0 10 2 0.0711
1 1 0 0 0.0632
1 2 0 0 0.0590
1 3 2 0 0.0559
1 4 3 0 0.0539
1 5 4 0 0.0515
1 6 4 0 0.0490
1 7 5 0 0.0479
1 8 5 0 0.0471
1 9 5 0 0.0461
1 10 6 0 0.0448

TABLE 5.4: Combinations of weighting coefficients that resulted in
the lowest MVR values for the Gaussian filtered data presented in

Figure 5.10.

FIGURE 5.10: Lowest Mean Void Ratio achieved for different combi-
nations of weighting coefficients for CV=1 and CD, CT and CCN varied
from 0 to 10 at increments of 1. Data is presented as the lowest MVR

for the given CD value. Sample size of n=30.
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(A)

(B)

FIGURE 5.11: Lowest Mean Void Ratio achieved for different combi-
nations of weighting coefficients for CV=1 and CD, CT and CCN varied
from 0 to 10 at increments of 1. Data is presented as the lowest MVR
for the given CD value. Sample size of (a) n=9 and (b) n=50 for the
Tetris Scenario is presented for data with no filter applied and Gaus-

sian filter applied.
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5.4.2 Increasing Sampling Frequency

The lowest MVRs achieved for different CD values for a sampling frequency of 0.5
are seen in Figure 5.12. Coefficients CD, CT, and CCN were varied from 0 to 10 whilst
CV was kept at a constant value of 1. The produced MVRs are lower than that in
Figure 5.11a due to the higher frequency of datapoints. The greater number of so-
lutions investigated has led to definition of more of the search area and location
of lower MVRs have been found. Furthermore, the increase in datapoints leads to
the Gaussian filter being applied to surrounding values which are more similar to
the datapoint being analysed in terms of magnitude than previously as increments
between coefficients of weighting are smaller. With an increase in frequency it is ex-
pected that there is an increase in accuracy. The filter being applied to values which
are more similar will not affect the determination of suitable weighting coefficients.

FIGURE 5.12: Lowest Mean Void Ratio achieved for different combi-
nations of weighting coefficients for CV=1 and CD, CT and CCN varied
from 0 to 10 at increments of 0.5. Data is presented as the lowest MVR
for the given CD value. Sample size of n=9 for the Tetris Scenario is
presented for data with no filter applied and Gaussian filter applied.

In Figure 5.12, the lowest MVR appears at CD=1 for the data with no filter applied
whereas this occurs at CD=3.5 when a Gaussian fitler is applied. Figure 5.13 shows
the plots of coefficients CT and CCN for when CV and CD=1. As can be seen, the
lowest MVR for Figure 5.13a is located at a spike downwards for coefficients of
(CT=0.5,CCN=0). As discussed in Section 4.4.4, this sudden drop in results means
that this point is sensitive to any change. Additionally, the sample size of n=9 means
that this is not a full representation of the whole population data as discussed in
Section 4.3. A higher sampling size for the search areas presented in Figure 5.13 was
not complete due to computational times required to collect this data as the range of
coefficients is large.

The variability in results are highlighted in Figure 5.15a where the general trend
of the data is for MVR to decrease as CCN decreases. However, clear spikes in the
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results are present in this surface. Again, this is most likely due to a small sample
size of n=9 being selected. As demonstrated in Section 4.4.4 and Figure 5.15b, the
Gaussian filter accounts for these variabilities.

From analysis of Figure 5.12, it is suggested that the combination of weighting coef-
ficients that leads to an optimal scoring technique for packing tetrominoes to min-
imise void ratio is in the range of CD=3.5. Figure 5.14 presents the surface plots of
this coefficient range. Both Figure 5.14a and 5.14b have a minimum value located in
the same location at (CT=2.5,CCN=0). This agrees with the hypothesis proposed in
Section 4.4.4 that by selecting the lowest possible MVR for data with the Gaussian
filter applied then this should lead to a suitable result for the equivalent combination
of coefficients for the data with no filter applied. Therefore, values for CV , CD, CT,
and CCN of 1, 3.5, 2.5 and 0 respectively appear to be an optimal solution
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(A)

(B)

FIGURE 5.13: Surface plots of MVR results for n=9 in the Tetris Sce-
nario for different CT and CCN values varied from 0 to 10 at incre-
ments of 0.5 with CV=1 and CD=1 for (a) the raw MVR results and (b)

the MVR results with Gaussian filter applied.
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(A)

(B)

FIGURE 5.14: Surface plots of MVR results for n=9 in the Tetris Sce-
nario for different CT and CCN values varied from 0 to 10 at incre-
ments of 0.5 with CV=1 and CD=3.5 for (a) the raw MVR results and

(b) the MVR results with Gaussian filter applied.
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(A)

(B)

FIGURE 5.15: Surface plots of MVR results for n=9 in the Tetris Sce-
nario for different CT and CCN values varied from 0 to 10 at incre-
ments of 0.5 with CV=1 and CD=6.5 for (a) the raw MVR results and

(b) the MVR results with Gaussian filter applied.
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5.5 Identifying Coefficients for a Viable Solution

5.5.1 Introduction

As suggested in Section 5.4.2, values for CV , CD, CT, and CCN of 1, 3.5, 2.5 and 0 ap-
pear to be an optimal solution when using the packing algorithm for the Tetris Sce-
nario. Indeed, from the values presented in Table 5.4 it can be derived that CCN=0 as
all but one solution has a zero value for this coefficient. As discussed in Section 4.4.5,
it is required to analyse datapoints with a coefficient value of zero using no filter as
the effect of the filter can lead to these locations not being detected as minimums.

So far in Chapter 5, the range of weighting coefficients investigated have been be-
tween 0-10 at different sample sizes and sampling frequencies. It has been stated
that coefficient values above 10 are not required for investigation. Proof of this is
found in Section 5.5.2 where the value of CD is extended past the limit of 10 show
that coefficients larger than 10 do not lead in a trend towards an optimal solution.
Also, finer exploration and refinement of the search area for (CV=1, CD=3.5, CT=2.5,
CCN=0) is conducted in Section 5.5.3 to see if an optimal value lies in this range when
a higher sampling frequency is adopted. Furthermore, it is required to focus on the
search area where values are less than 1. The reason for such investigation is due to
fixing CV to a value of 1. In the cases explored so far, all coefficients have a bigger
impact on placement when compared to CVVAB in the objective function. Therefore
in Section 5.5.4, the search area around the smaller values are investigated.

5.5.2 Searching Larger Coefficient Values

It has been stated that values of coefficients greater than 10 will not lead to an opti-
mal solution for packing. Evidence for this is found in Section 5.3 where each scoring
criteria was oversized to be the dominant contributor in the objective function. None
of the produced MVR values lie below the lowest MVR values presented in Figures
5.10-5.15. However, it should be acknowledged that so far a limitation on the search
area has been set with no verification past these limits. Therefore, this section exists
to offer proof that this is true. Search of this area has been conducted in the Tetris
Scenario due to the increased computational time compared to the Soil Particle Sce-
nario. No investigation for the Soil Particle Scenario is to be completed unless the
produced data indicates an optimal solution past coefficient values of 10 for CD, CT
and CCN .

As seen in Figure 5.3, CD appears to have a decreasing effect on MVR as it is in-
creased. Therefore, to ensure reliability of results, larger values of CD were tested.
Figure 5.16 shows the lowest MVR achieved for each CD value from 0 to 25. Table 5.5
indicates the ranges of the coefficients investigated and the increment used between
values. As CD is increased, the lowest MVR value does not show any indication of
repeating a value similar to that experienced at CD=3.5. Therefore it can be stated
that this location is a viable solution when looking for minimum void ratio created
in a system for Tetris shapes and that a more optimal solution does not exist for
coefficients of CD greater than 10.

From Figure 5.11b, Figure 5.10, Figure 5.12 and Figure 5.16 it is determined that it
is very unlikely that a minimum MVR value is found for coefficient values past the
typical range explored of 0 to 10. Further evidence for this are the values of MVR
presented in Table 5.2 for the oversized coefficient values. MVR for when each coef-
ficient is oversized equates to a value greater than the lowest MVRs determined in



5.5. Identifying Coefficients for a Viable Solution 239

CD range Increments CT range Increments CCN range Increments
0-10 0.5 0-10 0.5 0-10 0.5

11-17 2 0-10 2 0-10 2
17-25 1 0-10 2 0-10 2

TABLE 5.5: Values of coefficient ranges and incremental steps used
between them for the data plotted in Figure 5.16.

FIGURE 5.16: Lowest MVR values detected in plots of CT and CCN for
different CD values. CV=1 for all plots. Sample size of n=9 is adopted.
Table 5.5 indicates the ranges of coefficients and incremental values

adopted.

the search areas investigated. It is expected that the optimal values of each coeffi-
cient are much less than 10 as suggested by Figure 5.12 and therefore the limitation
set of up to a coefficient value of 10 is reasonable.

5.5.3 Searching Coefficient Values Around the Current Result

Searching of results around (CV=1,CD=3.5,CT=2.5,CCN=0) is required to ensure that
this is a true optimum value. The search around this area was only completed
at a sample size of n=9 for sampling frequency of 0.5 increments in Section 5.4.2.
Here, the sample size is increased to represent the population of data fully. Table
5.6 presents the minimum MVR location identified in Figures 5.14 and the value
for MVR when the sample size is n=30. Gaussian filter is not applied to the val-
ues in Table 5.6 due to the locations being found at the edge of the dataset for
CCN=0. n=9 does not fully representing the whole population and the MVRs pro-
duced are slightly underpredicted as discussed in Section 5.4.1. In fact, from the
scan of n=30, the location of the minimum is actually determined to be located at
(CV=1,CD=3.5,CT=1.5,CCN=0). The MVRs for the different samples sizes for this lo-
cation are also presented in Table 5.6.

Another possible location for a solution at (CV=1, CD=1, CT=0.5, CCN=0) was found
in Figure 5.13a when the sample size was n=9. Further investigation into (CV=1,
CD=1, CT=0.5, CCN=0) with a sample size of n=30 was completed and the result for
this is presented in Table 5.6. The difference in MVR for the sample size of 30 is
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Coefficient combination MVR for n=9 MVR for n=30
(CV=1,CD=3.5,CT=2.5,CCN=0) 0.0268 0.0386
(CV=1,CD=3.5,CT=1.5,CCN=0) 0.0291 0.0302
(CV=1,CD=1,CT=0.5,CCN=0) 0.0178 0.0317

TABLE 5.6: MVR value for the given coefficient combination for n=9
and n=30. Gaussian filter not applied to data.

much greater than that of n=9. The value of MVR for this location when n=9 is
lower than for (CV=1,CD=3.5,CT=1.5,CCN=0) whilst at n=30 the opposite is found. It
is suggested that this is due to the particle delivery order of the first nine runs coin-
cidently leading to lower mean values for (CV=1, CD=1, CT=0.5, CCN=0) compared
to other combinations of weighting coefficients. Adopting n=30 leads to more accu-
rate representation of the population data. Although it is important to be careful for
combinations of weighting coefficients when one or more are of a zero value, it can
be shown that this sudden decrease is due to the sample size not being large enough
when collecting the data.

Figure 5.17 completes the investigation surrounding the location (CV=1, CD=3.5,
CT=2.5, CCN=0) where MVR was found to be minimum by exploring the search area
around this point. CV and CCN were kept constant at values of 1 and 0 respectively
whilst CD and CT were varied at increments of 0.1. A finer resolution than this was
not investigated due to the difference in MVR being small. It is thought that at this
point, the difference in packing is due to the combination of coefficients being more
suitable to the particle order of the 30 runs than more suitable for gaining low void
ratios regardless of particle order.

Figure 5.17a shows the results with no filter applied whereas Figure 5.17b presents
these results with the Gaussian filter applied. For Figure 5.17a, there is a spike of
minimum void located at (CV=1, CD=3.8, CT=2, CCN=0) with MVR=0.027. However,
this is surrounded by results which are relatively larger. As stated in Section 4.4.5, it
is necessary to take the results with Gaussian filter applied if the result does not lie
on the boundary of the plot.

From Figure 5.17b it can be determined that (CV=1, CD=3.3, CT=1, CCN=0) is the op-
timal set of coefficients from those investigated by the utilised sampling frequencies
and ranges explored. MVR value at this point is 0.316.
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(A)

(B)

FIGURE 5.17: Surface plots of MVR results for n=30 in the Tetris Sce-
nario for different CD and CT values varied from 2.7 to 4.3 and 0.7 to
2.3 respectively at increments of 0.1. CV=1 and CCN=0 for (a) the raw

MVR results and (b) the MVR results with Gaussian filter applied.



242 Chapter 5. Results of the Tetris Scenario

5.5.4 Searching Smaller Coefficient Values

It has been determined that a range of coefficients past values of 10 is not required
but it is also a necessity to check MVR values for coefficients where CV is in the same
order of magnitude. Following Hoodless and Smith (2023) it can be seen that if CV
is not fixed to a value of 1 then it tends to be larger than the other coefficients in the
objective function. Additionally, as the objective for the Tetris Scenario is to produce
packings which have minimum void ratio, it is clear that having CV as the main
contributor to scoring will potentially lead to a more optimum solution although
this is not necessarily true.

Figure 5.18 presents the lowest MVR values for different CD values when coefficients
are varied from 0 to 1 at increments of 0.1, whilst CV is fixed at a value of 1. The
values of the weighting coefficients and the resulting MVR when Gaussian filter is
applied is presented in Table 5.7 for both the unfiltered data and that with Gaussian
filter applied. For both, values of MVR are lower than that found at (CV=1, CD=3.3,
CT=1, CCN=0). Therefore, it is likely that the true optimal value lies in a range where
coefficients CD=3.3 and CT=1 are not as large as suggested. Additionally, CCN of 0.1
appears at the lowest MVR points for data with no filter applied. This suggests that
CN may have a positive effect on packing when trying to minimise void ratio and
CCN is in fact not of zero value. Instead the sizes of CCN investigated are too large
and leading to a negative effect as when CN is the dominating factor this leads to a
negative influence on void ratio as shown in Section 5.3.

It is important not to set false limits by only investigating this search area up to a
limit of 1 as has been done for the investigation of the search area for Figure 5.18.
Figure 5.20 presents the lowest MVR results for different CD values ranging from 0
to 2 increasing at increments of 0.25. The MVR results were found in plots of CT
against CCN where each were also ranged from 0 to 2 increasing at increments of
0.25. The resulting lowest MVR values seen in Figure 5.20 suggest that an optimal
solution may be around the search area for CD=1.5 as this is where the lowest MVR
value from the Gaussian-filtered data is located.

It should be noted that results in Figure 5.18 and Table 5.7 as well as Figure 5.20 con-
sist of being calculated from a sample size of n=9 and are most likely underestimated
as was found in Section 5.5.3. Figure 5.19 presents lowest MVR values for different
CD values when coefficients are varied from 0 to 1 for a sample size of n=30. CD was
increased by increment of 0.25 whilst CT and CCN were increased by increments of
0.1. Comparing Figure 5.18 and Figure 5.19 confirms that the value of MVR is be-
ing underestimated when n=9, however Figure 5.19 does still suggest that the true
optimal combination of weighting coefficients lies within a range away from (CV=1,
CD=3.3, CT=1, CCN=0) as values fall below an MVR of 0.316.

It is required that smaller values of each coefficient in relation to CV=1 are explored.
Figure 5.21 presents MVR results produced by varying CD from 0 to 1.5 by incre-
ments of 0.15, CT from 0 to 0.5 by increments of 0.05, and CCN from 0 to 0.1 by
increments of 0.01. This is produced by plotting the lowest MVR value obtained
from surface plots of CT and CCN for that value of CD. Table 5.8 contains the CT and
CCN values for the lowest MVR results for each CD value investigated for both the
unfiltered and Gaussian filtered results. From Figure 5.21, minimum values appear
at CD=0.6 and CD=1.5 for the Gaussian filtered MVR values, whilst CD=0.6 appears
to be a minimum when no filter is applied. Figure 5.23a and Figure 5.23a display
these surface plots respectively. From these plots and the coefficients presented in
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FIGURE 5.18: Lowest MVR values detected in plots of CT and CCN
for different CD values. CV=1 for all combinations investigated. CD,
CT , and CCN varied from 0-1 at increments of 0.1. Sample size of n=9

is adopted.

No filter Gaussian filter
CV CD CT CCN MVR CT CCN MVR
1 0 0.7 0.1 0.277 0.8 0.2 0.0464
1 0.1 0.4 0.1 0.270 0 0 0.0345
1 0.2 0.1 0 0.0166 0 0 0.0299
1 0.3 0.6 0.1 0.0196 0.1 0 0.298
1 0.4 0.2 0 0.0166 0.2 0 0.0275
1 0.5 0.1 0.1 0.0179 0.1 0 0.283
1 0.6 0.1 0.1 0.0179 0.2 0 0.0261
1 0.7 0.2 0.1 0.0218 0.3 0 0.0283
1 0.8 0.2 0.1 0.0218 0.3 0 0.0278
1 0.9 0.2 0.2 0.0230 0.4 0 0.0276
1 1 0.5 0 0.0178 0.4 0 0.0258

TABLE 5.7: Values of coefficients for lowest MVR for each CD value
investigated in Figure 5.18 for data with no filter and Gaussian filter

applied.
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FIGURE 5.19: Lowest MVR values detected in plots of CT and CCN
for different CD values. CV=1 for all combinations investigated. CD
varied from 0-1 at increments of 0.25. CT , and CCN varied from 0-1 at

increments of 0.1. Sample size of n=30 is adopted.

FIGURE 5.20: Lowest MVR values detected in plots of CT and CCN
for different CD values. CV=1 for all combinations investigated. CD,
CT , and CCN varied from 0-2 at increments of 0.25. Sample size of n=9

is adopted.
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FIGURE 5.21: Lowest MVR values detected in plots of CT and CCN
for different CD values. CV=1 for all combinations investigated. CD
varied from 0-1.5 at increments of 0.15. CT varied from 0-0.5 by incre-
ments of 0.05. CCN varied from 0-0.1 at increments of 0.01. Sample

size of n=9 is adopted.

Table 5.8, further inspection is required with an extension of the search areas. The
parameters used for this extended search are presented in Table 5.9.

Lowest MVR results for the coefficients explored in Table 5.8 are presented in Figure
5.22. Again, the results suggest a minimum value at CD=0.6. Figure 5.25 presents the
surface plots for CD=0.5, CD=0.6, and CD=0.7 from the search using coefficient ranges
outlined in Table 5.9. Inspection of the results identifies two areas of MVR val-
ues that approach a minimum. There are around (CT=0.15, CCN=0.09) and (CT=0.3,
CCN=0.02) A refined search of these areas is completed adopting a sample size of
n=30 for a better representation of the possible MVR results. The range of coeffi-
cients explored and the increments adopted are presented in Table 5.10. The range
selected encompasses both areas of interest and the sample size of n=30 selected will
provide MVR values that represent the population of data.

Additionally, the search areas for CD=0.8 to CD=1.7 adopting the coefficients in Ta-
ble 5.9 provided more areas of interest. These were mainly at (CT=0.5, CCN=0.1) and
(CT=0.2, CCN=0.02) for CD values above 1.1 and (CT=0.4, CCN=0.02) for CD values
below 1.1. From these, the ranges presented in Table 5.11 were investigated as it
encompasses the areas of interest. Again, n=30 is adopted to provide a better repre-
sentation of the population of data for MVR.

Figure 5.26a and Figure 5.26b show the lowest MVR results for the range of coeffi-
cients searched using parameters set out in Table 5.10 and Table 5.11 respectively.
The data suggests that an optimal solution can be found at CD=1.6 for Gaussian
filtered data and CD=0.6 for unfiltered data. Without further exploration, it could
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No filter Gaussian filter
CV CD CT CCN MVR CT CCN MVR
1 0 0.5 0.07 0.0272 0.5 0.07 0.0306
1 0.15 0.5 0.07 0.0208 0.05 0.06 0.0243
1 0.3 0.15 0 0.0166 0.5 0.06 0.0220
1 0.45 0.1 0.08 0.0179 0.2 0.07 0.0219
1 0.6 0.3 0.03 0.0152 0.15 0.1 0.0206
1 0.75 0.35 0.03 0.0179 0.35 0.03 0.0225
1 0.9 0.45 0.04 0.0179 0.45 0.04 0.0218
1 1.05 0.5 0.04 0.0186 0.5 0.04 0.0223
1 1.2 0.5 0.09 0.0179 0.5 0.09 0.0237
1 1.35 0.5 0.09 0.0179 1.5 0.02 0.0229
1 1.5 0.2 0.02 0.0177 0.2 0.02 0.0209

TABLE 5.8: Values of coefficients for lowest MVR for each CD value
investigated in Figure 5.21 for data with no filter and Gaussian filter

applied.

Coefficient Range Increments
CD 0.4-0.9 0.1
CT 0-0.75 0.05

CCN 0-0.18 0.01
CD 0.8-1.7 0.1
CT 0-0.7 0.05

CCN 0-0.1 0.01

TABLE 5.9: Coefficients adopted for further investigation of search
area for CD values ranging from 0.4 to 1.7. CV was kept constant at a

value of 1 and a sample size of n=9 was adopted.



5.5. Identifying Coefficients for a Viable Solution 247

(A) 0.4-0.9

(B) 0.8-1.7

FIGURE 5.22: Lowest MVR results for coefficients presented in Table
5.8.



248 Chapter 5. Results of the Tetris Scenario

(A)

(B)

FIGURE 5.23: smaller-further-cd=1.5.png

FIGURE 5.24: Surface plots of MVR results for n=9 in the Tetris Sce-
nario for different CT values varied from 0 to 0.5 at increments of 0.05
and CCN values varied from 0 to 0.1 at increments of 0.01. CV=1 and
Gaussian filter is applied to the search area. Plots present search areas

for (a) CD=0.6 (b) CD=1.5
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(A)

(B)

(C)

FIGURE 5.25: Surface plots of MVR results for n=9 in the Tetris Sce-
nario for coefficient values specified in Table 5.9. CV=1 and Gaussian
filter is applied to the search area. Presented are CD values of (a) 0.5

(b) 0.6 and (c) 0.7
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Coefficient Range Increments
CD 0.4-0.7 0.1
CT 0.2-0.6 0.05

CCN 0-0.12 0.01

TABLE 5.10: Coefficients of weighting for further search around sus-
pected optimal solution at CD=0.6 with range of coefficients investi-
gated and increments between values. CV=1 kept as constant value

and n=30 sample size is applied.

Coefficient Range Increments
CD 0.8-1.7 0.1
CT 0.2-0.7 0.05

CCN 0-0.1 0.01

TABLE 5.11: Coefficients of weighting for further search around sus-
pected optimal solution at CD=1.5 with range of coefficients investi-
gated and increments between values. CV=1 kept as constant value

and n=30 sample size is applied

be assumed that the solution at CD=1.6 should be taken forward. However, Fig-
ure 5.27 presents the surface plots of MVR for CD=0.6 between the range of CT and
CCN values specified in Table 5.10. The lowest value of MVR is located at (CT=0.25,
CCN=0.02). Because the Gaussian filter applied is a 5x5 sized square, the relatively
larger values experienced at CT=0 affect this result making it larger. Figure 5.28a is
a top view of the search area with values affecting (CT=0.25, CCN=0.02) when Gaus-
sian filter is applied. The MVR values for CT=0 - which are included when Gaussian
filter is applied - are relatively high compared to the rest of the surrounding val-
ues, as can be seen in Figure 5.27. This is not the case for the lowest MVR value
for CD=1.6 which was located at (CT=0.5, CCN=0.05) for the unfiltered data. Figure
5.28b indicates the position of (CT=0.5, CCN=0.05) and the datapoints affecting this
value in the Gaussian filter. Although relatively larger values of MVR are affect this
datapoint, these are not at a range where the coefficients are zero values. Therefore
the values affecting the datapoint are not large due to the omission of a criteria in the
objective function but rather due to the combination of coefficients producing larger
void ratios when packing tetrominoes.
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(A)

(B)

FIGURE 5.26: Values for lowest MVR at different CD values when
CV=1 and CT and CCN are ranged from parameters specified in (a)

Table 5.10 (b) Table 5.11.
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(A)

(B)

FIGURE 5.27: Surface plots of MVR values for CV=1 and CD=0.6 for
ranges of CT and CD specified in Table 5.10 (a) with no filter applied
(b) with Gaussian filter applied. Lowest value of MVR is indicated by

red circle.
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(A)

(B)

FIGURE 5.28: Surface plots of MVR values for (a) CV=1 and CD=0.6
for ranges of CT and CD specified in Table 5.10 with lowst MVR in-
dicated by circled point and the area of datapoints taken for applica-
tion of the Gaussian filter indicated by the surrounding box (b) CV=1
and CD=0.0.9 for ranges of CT and CD specified in Table 5.10 with
lowst MVR indicated by larger circled point and the area of data-
points taken for application of the Gaussian filter indicated by sur-

rounding smaller circles.
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Exploration around the point of (CV=1, CD=0.6, CT=0.25, CCN=0.02) is completed
with a finer resolution of datapoints around this location to prevent the effect of
CT=0. Increments between CT of 0.005 were utilised rather than 0.01 to increase the
number of datapoints between (CV=1, CD=0.6, CT=0.25, CCN=0.02) and the bound-
ary of the search area. The surface plot of these datapoints can be seen in Figure
5.29a. When Gaussian filter is applied without the exclusion of values for CT=0, the
resulting MVR is lower than that produced in Figure 5.27b. This investigation with
a refined resolution of datapoints was also completed for (CV=1, CD=1.6, CT=0.5,
CCN=0.05) to ensure equivalent resolutions have been performed on both locations
and the surface plot for CD=1.6 is presented in Figure 5.29b.

In Table 5.12 are the lowest MVR values located on Figure 5.29a and Figure 5.29b.
Similar to Figure 5.26, the lowest MVR is lower for CD=0.6 for the unfiltered data
and lower for CD=1.6 for the Gaussian filtered data. As discussed in Section 4.4.4
the Gaussian filter data should be examined for selection of an optimal combination
of weighting coefficients given that the result will be less sensitive to changes given
the utilisation of an area of results around the location. At CD=1.6 the lowest MVR
value for the Gaussian filtered data is actually located at (CV=0.4, CCN=0.045). As
stated, the Gaussian result should be taken as it is should be less sensitive to slight
changes as determined in Section 4.4.4.

Therefore, the solution taken forward for the Tetris Scenario for the combination
of weighting coefficients is (CV=1, CD=1.6 CV=0.4, CCN=0.045). The MVR for the
unfiltered data at (CV=1, CD=1.6 CV=0.4, CCN=0.045) 0.023833 is and for the Gaussian
filtered data is 0.024196. Results of the packings are presented in Section 5.6.

No filter Gaussian filter
CV CD CT CCN MVR CT CCN MVR
1 0.6 0.2 0.015 0.021133 0.2 0.015 0.024390
1 1.6 0.5 0.05 0.022567 0.45 0.04 0.024196

TABLE 5.12: Values of the lowest MVR and their location for surface
plots of CD=0.6 varying CT from 0 to 0.6 at increments of 0.05 and CCN
from 0 to 0.08 at increments of 0.005 and CD=1.6 varying CT from 0
to 1.7 at increments of 0.05 and CCN from 0 to 0.075 at increments of

0.005.
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(A)

(B)

FIGURE 5.29: Surface plot of MVR values when CV=1 for (a) CD=0.6
varying CT from 0 to 0.6 at increments of 0.05 and CCN from 0 to
0.08 at increments of 0.005 (b) CD=1.6 varying CT from 0 to 0.7 at

increments of 0.05 and CCN from 0 to 0.075 at increments of 0.005.
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5.6 Results of Weighting Coefficient Combinations

Figures 5.30a-5.44a presents packings of tetrominoes using the algorithm produced
in Chapter 3 under the Tetris Scenario. Coefficients of weighting are taken as (CV=1,
CD=1.6 CV=0.4, CCN=0.045). Equivalent packings for coefficients of weighting taken
as (CV=5, CD=1.25 CV=0.4, CCN=0.01) as per Hoodless and Smith (2023) are also
present in Figures 5.30b-5.44b with equivalent particle packing order produced us-
ing the Tetris bag approach.

For n=30, void ratio of the final packing for (CV=1, CD=1.6 CV=0.4, CCN=0.045) and
(CV=5, CD=1.25 CV=0.4, CCN=0.01) were equivalent for 11 cases. In 5 of the pack-
ings, (CV=5, CD=1.25 CV=0.4, CCN=0.01) from Hoodless and Smith (2023) produced
a lower void ratio than (CV=1, CD=1.6 CV=0.4, CCN=0.045). (CV=1, CD=1.6 CV=0.4,
CCN=0.045) produced lower void ratio for 14 of the cases.

For n=100, void ratio of the final packing for (CV=1, CD=1.6 CV=0.4, CCN=0.045) and
(CV=5, CD=1.25 CV=0.4, CCN=0.01) were equivalent for 29 cases. In 32 of the pack-
ings, (CV=5, CD=1.25 CV=0.4, CCN=0.01) from Hoodless and Smith (2023) produced
a lower void ratio than (CV=1, CD=1.6 CV=0.4, CCN=0.045). (CV=1, CD=1.6 CV=0.4,
CCN=0.045) produced lower void ratio for 39 of the cases.

In general, packings for (CV=1, CD=1.6 CV=0.4, CCN=0.045) outperform the result of
(CV=5, CD=1.25 CV=0.4, CCN=0.01) from Hoodless and Smith (2023) as indicated by
the results for MVR in Table 5.13 for n=30 and n=100. Although Section 4.3 found
that n=30 is a fair representation of the population data, here n=100 was taken to
further ensure that the population of data is being represented rather than just a
sample.

Location MVR (n=30) MVR (n=100)
(CV=1, CD=1.6 CV=0.4, CCN=0.045) 0.0223 0.0271
(CV=5, CD=1.25 CV=0.4, CCN=0.01) 0.0281 0.0283
(CV=1, CD=0.6 CV=0.2, CCN=0.015) 0.0211 0.0260

TABLE 5.13: Mean of void ratios results taken when a sample size of
n=30 and n=100 are adopted.

The number of instances for outperformance being relatively similar at 32 and 39
from packings when taking n=100 suggest that the two combinations of coefficients
perform at an equivalent level. Inspection of Figures 5.30-5.44 shows that for (CV=5,
CD=1.25 CV=0.4, CCN=0.01) there is tendancy for canyons to be created as was de-
scribed in Section 5.3.2 when VAB was the only activated criteria in the objective func-
tion. Figure 5.30b, Figure 5.33b, Figure 5.37b and Figure 5.44b are examples where
this has occurred either on a minor scale or with resulting relatively large canyon.
The want to not create void in the system from the effect of CVVAB in the objective
function means canyoning can occur. If a tetromino is to then later be placed above
this canyon (e.g. Particle 22 in Figure 5.30b or Particle 21 in Figure 5.44b) then this
leads to larger amounts of void being formed that if just a single block of void being
created earlier in the packing sequence.

Furthermore, the canyoning effect leads to instances like Figure 5.33b and Figure
5.37b where canyons have formed but there is not enough space for a particle to be
placed above it. As void ratio is calculated taking only the area below the surface
line, this leads to lower void ratios being reached. Take Figure 5.33b. If a square
particle was next to be delivered in the particle order and was placed to the left of
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Particle 21, this would mean an additional three squares of void would be included
in the void ratio calculation. Therefore, e=0.056 for the system suggesting that (CV=1,
CD=1.6 CV=0.4, CCN=0.045) has outperformed (CV=5, CD=1.25 CV=0.4, CCN=0.01)
rather than producing equivalent packings.

Additionally in Table 5.13, MVR for n=30 and n=100 is shown for (CV=1, CD=0.6
CV=0.2, CCN=0.015). From the values, it appears that this combination of coefficients
is actually the optimal solution for the Tetris Scenario. Packings produced using
this combination were equivalent for Figures 5.30-5.44 as indicated in Table 5.14 ex-
cept for Figure 5.38, Figure 5.41, Figure 5.42 and Figure 5.44. The packings for these
particle orders using coefficient values of (CV=1, CD=0.6 CV=0.2, CCN=0.015) are pre-
sented in Figure 5.45.

Figure Equivalent to (a) Equivalent to (b)
5.30 !

5.31 !

5.32 !

5.33 !

5.34 ! !

5.35 !

5.36 ! !

5.37 !

5.39 !

5.40 ! !

5.43 !

TABLE 5.14: Packing structure of (CV=1, CD=0.6 CV=0.2, CCN=0.015)
equivalent to packing structure of (a) (CV=1, CD=1.6 CV=0.4,
CCN=0.045) and/or (b) (CV=5, CD=1.25 CV=0.4, CCN=0.01) as indi-

cated by the relevent figure reference.

For n=100, void ratio of the final packing for (CV=1, CD=1.6 CV=0.4, CCN=0.045)
and (CV=1, CD=0.6 CV=0.2, CCN=0.015) were equivalent for 47 cases. (CV=1, CD=0.6
CV=0.2, CCN=0.015) produced a lower void ratio than (CV=1, CD=1.6 CV=0.4, CCN=0.045)
for 25 of the packings. (CV=1, CD=1.6 CV=0.4, CCN=0.045) produced lower void ra-
tio for 28 of the cases. These results suggest an equivalent level of packing as was
hypothesised when comparing (CV=5, CD=1.25 CV=0.4, CCN=0.01) to (CV=1, CD=1.6
CV=0.4, CCN=0.045).

Similar to (CV=5, CD=1.25 CV=0.4, CCN=0.01), Figure 5.45 shows instances where
canyoning is occurring in the packing structures for (CV=1, CD=0.6 CV=0.2, CCN=0.015).
Yet again where canyoning is present without the capping of a particle above it, this
void is therefore not included as below the surface line and is not included in the
void ratio calculation. This is arbitrarily lowering the MVR of the results. Further
proof of this is seen in Table 5.13. The MVR result is much lower for n=30 as com-
pared to n=100 for (CV=1, CD=0.6 CV=0.2, CCN=0.015). It is likely that the addi-
tional packings included for calculating MVR have more instances where canyons
are capped by a final particle and therefore voids are larger than experienced in the
first 30 packing structures.

From examination of the packings, it is determined that coefficients of weighting
(CV=1, CD=1.6 CV=0.4, CCN=0.045) are to be taken forward for the objective function
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(A) e=0.023 (B) e=0.043

FIGURE 5.30: Packing result for combination of weighting coefficients
(a) (CV=1, CD=1.6 CV=0.4, CCN=0.045) (b) (CV=5, CD=1.25 CV=0.4,

CCN=0.01).

for the Tetris Scenario. Packings produced are less likely to experience canyoning
when compared to (CV=5, CD=1.25 CV=0.4, CCN=0.01) and (CV=1, CD=0.6 CV=0.2,
CCN=0.015). It is thought that this is due to CD being a higher value relative to CV .
The positioning tends to try and position particles closer to the domain base rather
than avoiding creating any area of void. As a result, canyons are less likely to occur
later on in the packing.
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(A) e=0.011 (B) e=0.022

FIGURE 5.31: Packing result for combination of weighting coefficients
(a) (CV=1, CD=1.6 CV=0.4, CCN=0.045) (b) (CV=5, CD=1.25 CV=0.4,

CCN=0.01).

(A) e=0.011 (B) e=0

FIGURE 5.32: Packing result for combination of weighting coefficients
(a) (CV=1, CD=1.6 CV=0.4, CCN=0.045) (b) (CV=5, CD=1.25 CV=0.4,

CCN=0.01).
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(A) e=0.023 (B) e=0.023

FIGURE 5.33: Packing result for combination of weighting coefficients
(a) (CV=1, CD=1.6 CV=0.4, CCN=0.045) (b) (CV=5, CD=1.25 CV=0.4,

CCN=0.01).

(A) e=0.011 (B) e=0.011

FIGURE 5.34: Packing result for combination of weighting coefficients
(a) (CV=1, CD=1.6 CV=0.4, CCN=0.045) (b) (CV=5, CD=1.25 CV=0.4,

CCN=0.01).
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(A) e=0.036 (B) e=0.045

FIGURE 5.35: Packing result for combination of weighting coefficients
(a) (CV=1, CD=1.6 CV=0.4, CCN=0.045) (b) (CV=5, CD=1.25 CV=0.4,

CCN=0.01).

(A) e=0 (B) e=0

FIGURE 5.36: Packing result for combination of weighting coefficients
(a) (CV=1, CD=1.6 CV=0.4, CCN=0.045) (b) (CV=5, CD=1.25 CV=0.4,

CCN=0.01).
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(A) e=0.023 (B) e=0.036

FIGURE 5.37: Packing result for combination of weighting coefficients
(a) (CV=1, CD=1.6 CV=0.4, CCN=0.045) (b) (CV=5, CD=1.25 CV=0.4,

CCN=0.01).

(A) e=0.045 (B) e=0.023

FIGURE 5.38: Packing result for combination of weighting coefficients
(a) (CV=1, CD=1.6 CV=0.4, CCN=0.045) (b) (CV=5, CD=1.25 CV=0.4,

CCN=0.01).



5.6. Results of Weighting Coefficient Combinations 263

(A) e=0.023 (B) e=0.024

FIGURE 5.39: Packing result for combination of weighting coefficients
(a) (CV=1, CD=1.6 CV=0.4, CCN=0.045) (b) (CV=5, CD=1.25 CV=0.4,

CCN=0.01).

(A) e=0.045 (B) e=0.045

FIGURE 5.40: Packing result for combination of weighting coefficients
(a) (CV=1, CD=1.6 CV=0.4, CCN=0.045) (b) (CV=5, CD=1.25 CV=0.4,

CCN=0.01).
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(A) e=0.012 (B) e=0.034

FIGURE 5.41: Packing result for combination of weighting coefficients
(a) (CV=1, CD=1.6 CV=0.4, CCN=0.045) (b) (CV=5, CD=1.25 CV=0.4,

CCN=0.01)

(A) e=0.06 (B) e=0.095

FIGURE 5.42: Packing result for combination of weighting coefficients
(a) (CV=1, CD=1.6 CV=0.4, CCN=0.045) (b) (CV=5, CD=1.25 CV=0.4,

CCN=0.01).
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(A) e=0.011 (B) e=0.011

FIGURE 5.43: Packing result for combination of weighting coefficients
(a) (CV=1, CD=1.6 CV=0.4, CCN=0.045) (b) (CV=5, CD=1.25 CV=0.4,

CCN=0.01).

(A) e=0.022 (B) e=0.068

FIGURE 5.44: Packing result for combination of weighting coefficients
(a) (CV=1, CD=1.6 CV=0.4, CCN=0.045) (b) (CV=5, CD=1.25 CV=0.4,

CCN=0.01).
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(A) e=0.023 (B) e=0.023

(C) e=0.048 (D) e=0.024

FIGURE 5.45: Packing structures for weighting coefficients (CV=1,
CD=0.6 CV=0.2, CCN=0.015) for equivalent particle order to (a) Fig-

ure 5.38 (b) Figure 5.41 (c) Figure 5.42 and (d) Figure 5.44.
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5.7 Results of DBL Heuristic and Randomly Packed Struc-
tures

As stated in Section 4.5, it is required that results are compared to a control to ensure
the method of packing is an improvement on what already exists. Two controls are
produced for comparison with the obtained optimal solution using weighting coef-
ficients (CV=1, CD=1.6 CV=0.4, CCN=0.045) and the algorithm described in Chapter
3. These are the DBL-heuristic for bin packing and randomly packed tetrominoes
into the domain.

The DBL-heuristic is previously introduced in Section 2.4.3 and is used by Wang
and Hauser (2019) as a Deepest-Bottom-Left Fit for packing items into a bin. The
heuristic follows that items are to be packed at their the deepest location in the bin,
followed by the left-most location. A similar process has been adopted here for pack-
ing tetrominoes in the 10x10 square domain. The packing is conducted by locating
the tetromino in the deepest location, followed by the left-most location with an ad-
ditional clause that a rotation in this location should be prioritised if it produced no
void below the particle. This ensures that particles are not placed at a random orien-
tation and comply in some way to the objective of minimising void ratio. Therefore,
the heuristic is actually a DBL-R heuristic as it takes into account rotation of the
particle. However, this will referred to as the DBL heuristic from here on.

Randomly packed particles are done so by letting the algorithm select a position
for tetrominoes at any location at any orientation. Results of these packings exhib-
ited void ratios well above those seen for solutions using a heuristic. As a result,
another approach was taken scoring placement using the objective function with co-
efficients (CV=5, CD=1.25 CV=0.4, CCN=0.01) as were determined in Hoodless and
Smith (2023) and for coefficients (CV=1, CD=1.6 CV=0.4, CCN=0.045). However, a
random lateral location is selected and the highest scoring rotation is taken forward.
Coefficients equivalent to and different to the optimal solution were investigated to
see if this any similarities would lie between (CV=1, CD=1.6 CV=0.4, CCN=0.045) and
its random counter part which do not exist in random packings adopting (CV=5,
CD=1.25 CV=0.4, CCN=0.01). These random packings are referred to as

• RAND: The totally random technique where lateral position and rotation are
both random

• RAND-OF1: Where lateral location is randomised and objective function is
employed to score the best rotation for this location using coefficients (CV=1,
CD=1.6 CV=0.4, CCN=0.045).

• RAND-OF2: Where lateral location is randomised and objective function is
employed to score the best rotation for this location using coefficients (CV=5,
CD=1.25 CV=0.4, CCN=0.01) which were determined in Hoodless and Smith
(2023).

Table 5.15 presents the MVR results for the DBL heuristic and the randomly packed
structures RAND, RAND-OF1 and RAND-OF2 for sample sizes n=30 and n=100.
The results using the objective function and coefficients (CV=1, CD=1.6 CV=0.4, CCN=0.045)
are also repeated in Table 5.15 under Objective Function.

MVR results for (CV=1, CD=1.6 CV=0.4, CCN=0.045) are a massive improvement
on the structures which are constructed by random placements, RANDOF-1 and
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Heuristic MVR (n=30) MVR (n=100)
RAND 0.6343 0.6560

RAND-OF1 0.2589 0.2483
RAND-OF2 0.2267 0.2203

DBL 0.0700 0.0707
Objective Function 0.0223 0.0271

TABLE 5.15: MVR results for heuristics explored as controls for n=30
and n=100 with results for the objective function using coefficients

(CV=1, CD=1.6 CV=0.4, CCN=0.045) for comparison.

RANDOF-2 included. Additionally, the use of the objective function with these co-
efficients appears to improve on the packing following the DBL heuristic. Figure
5.46 and Figure 5.47 present packing results from the use of the DBL heuristic and
random selection of placement respectively.

5.8 Summary

Following the methodology presented in Chapter 4, a weighting coefficient combi-
nation of (CV=1, CD=1.6 CV=0.4, CCN=0.045) was determined. It has been shown
from comparison with results that are produced from the coefficient combination of
(CV=5, CD=1.25, CT=0.4, CCN=0.01) determined in Hoodless and Smith (2023) that
(CV=1, CD=1.6 CV=0.4, CCN=0.045) generally leads to better packing of the tetromi-
noes. Although MVR for n = 30 and n=100 is lower for coefficients (CV=1, CD=0.6
CV=0.2, CCN=0.015), this is due to canyoning occurring in the packing with the ab-
sence of a capping particle to include this void in the final void ratio of the system.

The effect of each criteria in the objective function was investigated in Section 5.3. In-
dependent to other criteria, VAB produced the lowest MVR values when compared
to D, T, and CN. In addition, when the value of the coefficient is oversized com-
pared to the others (e.g. CV=100 whereas CD=CT=CCN=1), VAB also exhibits the
lowest MVR values compared to the other criteria. This is reasonable as VAB scores
placements on minimising void ratio in the system. The introduction of D, T and
CN stop canyoning whilst packing as shown in Figures 5.4 and 5.5.

It was seen when VAB was not included in the objective function that values of CT
at the location of the lowest MVR was increased. This is due to T being defined by
a method where particles are scored higher if they have more area in contact with
other particles. As tetrominoes are flat-to-flat edges, this leads to almost having the
same effect as VAB, although T does not account for the size of the void created
beneath the particle. Therefore T acts as a substitute criteria for VAB.

The introduction of D and T in the objective function both have a positive influence
on MVR, producing lower values when included. From the investigation, CN has
a detrimental influence. However, as seen with the value of CCN=0.01 for the final
solution from Hoodless and Smith (2023), this may be due to the sampling frequency
not being defined enough to see effects when this value is much lower than the other
coefficients.

Section 5.4 begins the process of determining the optimal combination of weighting
coefficients by exploring CD, CT, CCN between the range of 0 to 10 whilst CV=1 is
kept as a constant. Results are analysed using MVR values for the unfiltered and
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(A) e=0.048 (B) e=0.022

(C) e=0.088 (D) e=0.048

FIGURE 5.46: Packing structures following DBL-heuristic for equiva-
lent particle order to (a) Figure 5.30 (b) Figure 5.31 (c) Figure 5.32 and

(d) Figure 5.33.
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(A) e=0.048

(B) e=0.022

(C) e=0.088

FIGURE 5.47: Packing structures following random packing deter-
mined by (a) RAND (b) RAND-OF1 (c) RAND-OF2.
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filtered data and the location of lowest MVR values found for each search area when
CD is varied are presented. n=9, n=30 and n=50 results were all presented as these
had already been collected from studies when determining the required sample size
in Chapter 4. These results provided further evidence that n=30 is a reasonable sam-
ple size to take to represent the whole population of possible void ratios when pack-
ing as was originally found in Section 4.3.

Refinement of the search area was conducted in Section 5.4.2 by increasing the sam-
pling frequency i.e. using smaller incremental values between the values of the co-
efficients. An incrememnt value of 0.5 was adopted for the same range of 0 to 10 as
seen in Section 5.4. Due to fast computational speeds of the algorithm for the Tetris
Scenario, it was possible to do this for the whole range already explored. Further
detail for the location of an optimal solution was obtained with values of MVR sug-
gesting this lies around CD=3.5 when analysing the Gaussian filtered data and CD
when analysing the unfiltered data. CD=3.5 was adopted for further exploration as
the value of lowest MVR for CD=1 was seen at a local minimum with relatively large
values for the surrounding datapoint meaning this combination is very sensitive to
change.

Section 5.5 furthers the refinement of the search area as well as exploring coefficients
of different magnitudes in comparison to CV . It has already been stated that coeffi-
cient values of 10 should be large enough to create dominant scoring criteria in the
objective function. Section 5.5.2 utilises the faster computational speeds when pack-
ing during the Tetris Scenario to provide evidence for this by increasing coefficient
values. No indication of a optimal solution is provided by this investigation as was
expected. This study is conducted here to provide evidence that this is not required
for the Soil Particle Scenario, where computational runtime is much larger.

Section 5.5.3 refines the search area around the suspected minimum in the range of
CD=3.5. A solution that provides the lowest MVR value is located at (CV=1, CD=3.3,
CT=1, CCN=0) where MVR=0.316 when n=30. Meanwhile, Section 5.5.4 explores
search areas where coefficients range from 0 to 1 to allow CVVAB to become more
dominant in the objective function. Values of MVR exhibited are much lower than
0.316 as determined at (CV=1, CD=3.3, CT=1, CCN=0). Therefore, it is known that an
optimal solution actually lies in this range and further exploration of the search area
around these points are conducted. Two possible optimal solutions are located for
the range of CD=0.6 and CD=1.5 which are studied further.

From the process of refining coefficient values by adopting a smaller increment, two
locations are determined that could potentially be optimal solutions for combina-
tions of weighting coefficients for packing tetrominoes with the objective to min-
imise void ratio. These are located at (CV=1, CD=0.6, CT=0.25, CCN=0.02) and (CV=1,
CD=1.6, CT=0.4, CCN=0.045) where MVR=0.0211 and MVR=0.0226 for the unfiltered
data. Of these, (CV=1, CD=1.6, CT=0.4, CCN=0.045) provides the lowest MVR for
the Gaussian filtered data, which was 0.0242 compared to 0.0244 for (CV=1, CD=0.6,
CT=0.25, CCN=0.02). Therefore it is suggested that this is to be the optimal solution
as it will be less sensitive to change as was discussed in Section 4.4.4.

Results for packings adopting coefficients of (CV=1, CD=1.6, CT=0.4, CCN=0.045) are
presented in Section 5.6 with the equivalent particle delivery order using coefficients
(CV=5, CD=1.25 CV=0.4, CCN=0.01) as was determined as the solution in Hoodless
and Smith (2023). The solution that is suggested in this work was shown to out-
perform that from Hoodless and Smith (2023). Figures 5.30-5.44 are the packings
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using both of these coefficient combinations. Furthermore, results of (CV=1, CD=0.6,
CT=0.25, CCN=0.02) were also presented using the equivalent particle order as Fig-
ures 5.30-5.44. It was found that packings for this combination matched those from
(CV=1, CD=1.6, CT=0.4, CCN=0.045) and (CV=5, CD=1.25 CV=0.4, CCN=0.01) as indi-
cated in Table 5.14 except for four of the packings presented. These can be found in
Figure 5.45.

Comparison of the number of instances that (CV=1, CD=1.6, CT=0.4, CCN=0.045) out-
performed, was outperformed or produced equivalent void ratio results with re-
gards to (CV=5, CD=1.25 CV=0.4, CCN=0.01) and (CV=1, CD=0.6, CT=0.25, CCN=0.02)
suggest that the packings overall have similar levels of efficiency. This was sug-
gested when looking at results for a sample size of 30 as well as a sample size of
100. However, results for (CV=5, CD=1.25 CV=0.4, CCN=0.01) and (CV=1, CD=0.6,
CT=0.25, CCN=0.02) showed canyoning in their packings without the presence of a
capping particle. Therefore, these gaps were not included in the final void ratio of
the system. It is determined that (CV=1, CD=1.6, CT=0.4, CCN=0.045) is a more suit-
able solution as canyoning was not present when viewing results produced by the
algorithm.

Controls for packing are produced in Section 5.7. These employ the DBL heuristic
as well as random placement of particles, either at a random orientation or orienta-
tion determined by the algorithm from Chapter 3 using coefficients (CV=1, CD=1.6,
CT=0.4, CCN=0.045) or coefficients (CV=5, CD=1.25 CV=0.4, CCN=0.01). Packings
analysed in Section 5.6 massively outperformed cases where particles are placed
randomly, even when scoring of the placement to determine orientation is used.
Packings using the DBL heuristic showed better results compared to random pack-
ings, yet MVR results were still much greater than those exhibited in Section 5.6.

To conclude, from the exploration of the search area for MVR results produced when
packing tetrominoes in the Tetris Scenario with the objective to minimise void ra-
tio, it can be stated that coefficient combination (CV=1, CD=1.6, CT=0.4, CCN=0.045)
provides the best results of all combinations investigated. Study of the packings
shows that these outperform other suggested combinations for optimal solutions
as well as control heuristics tested. For n=30 and n=100, values of MVR=0.0223
and MVR=0.0271 are produced with the omission of Gaussian filter to the search
area. (CV=1, CD=1.6, CT=0.4, CCN=0.045) was located in the search area with an
MVR=0.0242 when CD=1.6 and CT was ranged from 0 to 0.7 at increments of 0.05
and CCN was ranged from 0 to 0.1 at increments of 0.005.
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Chapter 6

Results of the Soil Particle Scenario

6.1 Introduction

In this section, results of packing in the Soil Particle Scenario are presented. MVR
is to be taken as an indication of high shear strength structures. However, as stated
by Mogami (1965), this cannot be taken alone and another parameter is required.
Therefore, the number of running joints disrupted in the system (MRJ) is also taken.
This was derived as a suitable quantity in Section 2.2.1. Results for both are analysed,
with MRJ being prioritised as indication of high shear strength.

The layout of the chapter is as follows. Section 6.2 describes the necessary changes
to the method from those stated in Chapter 4. This is due to the increased com-
putational speeds of the algorithm when defining irregular objects compared to the
simple tetromino shapes.

Section 6.3 investigates the effect of changing the coefficient values in the objective
function on the packing of the structures. Each variable in the objective function.
This is completed by changing the value of the coefficient. Each parameter is exam-
ined individually by setting its coefficient to a value of one and all other coefficients
to a value of zero. Furthermore, the oversized effect is investigated by setting the
coefficient for the parameter to be a value of 100 and all other values are set to 1.
Section 6.3.3 completes this study and presents packings for these cases.

The analysis of combinations of weighting coefficient is found in Section 6.4. Results
of MRJ and MVR are analysed and areas of interest are investigated further where
it is suggested optimal solutions may lie. From examining these packings, further
studies are found in Section 6.4.2 where the effect of CVVAB in the objective function
is increased.

In Section 6.5, packings using the coefficients obtained from Chapter 5 found to be
possible optimal solutions for the Tetris Scenario are produced. These are to be com-
pared to. Furthermore, control samples are produced in Section 6.6 to provide ev-
idence that the method of packing by the algorithm is suitable for positioning soil
particles in the domain.

6.2 Required Changes to Method

6.2.1 Sample size and Sampling Frequency

With the inclusion of additional rotations and a finer spacing between lateral loca-
tions tested as suggested in Section 3.7.4, the time to run a simulation of particle
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placement greatly increased. The computational runtime for a single run increased
to around 2.5 hours. Therefore, it is not feasible to do as many runs as previously
seen in Chapter 5. Therefore, in this section a sample sizes of n=3 are adopted. If
there were no time restraints for this project then sample sizes of n=9 to n=30 could
be investigated as suggested in Chapter 4.

Additionally, it is known that larger quantities of coefficients explored with a higher
frequency of data points will lead to higher accuracy of the results. Again, due to
time limitations this is not possible. If there were no time restraints for this project
then a higher sampling frequency could be adopted with a greater exploration of the
search area. Because of the reduced number of datapoints, this leads to omission of
the Gaussian filter. Such a method would lead to zeropadding on most results in the
search area.

6.2.2 Definition of Particles

To further reduce the computational time required, the number of coordinates used
to describe the particle was decreased. Originally, 129 coordinates were utilised for
the particle outline. However, it was found that the particle could be described
with a third of the coordinates whilst still resembling a similar shape so long as the
particle remains a closed loop. This was originally discussed in Section 3.7.1. The
use of non-dimensional criteria in the objective function means that this reduction
in coordinates should not lead to a change to how particles are scored on placed.
However, there will be some change to how particles are placed due to stability
checks where perhaps locations of contact are not present when they would be if all
coordinates were utilised to describe particle shape.

An example of this is seen in Figure 6.1. Both packings are of the same particle
order for when coefficients are set to zero values with parameters defined by the
values stated in Table 6.1. Positioning of the particles in their final placement differs
when comparing Figure 6.1a where outlines were defined using the total number
of coordinates to Figure 6.1b where outlines were defined using a third of the total
number of coordinates. As mentioned this is because less stable positions are able
to be identified by the reduction of coordinates. Contact of the particles with the
domain and other particles are determined at each coordinate of the particle and the
surface line. Therefore, the less coordinates that are utilised for defining particles
the less chance of identifying a stable position. This limits the number of possible
placements leading to lower efficiency at packing. For the current project, it is more
important to increase computational speed for an initial investigation rather than
producing very accurate and precise packings.

6.3 Effects of Changing Coefficient Values

6.3.1 Investigation Parameters

In this section, an investigation into the effect of each criteria in the objective function
described in Section 3.5.1 is carried out. Results of the void ratio of the structures for
the Soil Particle Scenario is investigated, similar to Section 5.3 for the Tetris Scenario.
As stated by Mogami (1965), void ratio cannot be used on its own to describe the
properties of granular material. Therefore the identification of runs in the structure
has been completed and the number of runs that are disrupted in the structure are
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presented such as described in Section 3.10.2. It is important to understand the ef-
fect of each criteria in the objective function to determine if the inclusion of these
parameters has a positive effect on resulting packings.

Input parameter values selected for the algorithm described in Chapter 3 that were
selected for the study in the investigation here are presented in Table 6.1.

Number of particles placed 40
Number of particles available for selection 100

Number of rotations in the discretised placement 16
Spacing between placement in the refined phase 0.2 units

Rotation applied in the refined phase 5.625o

Resolution 0.5
Number of candidate positions trialled 30

TABLE 6.1: Parameters adopted for the study in this chapter, as de-
termined in Section 3.7.5.

6.3.2 Zero Value for Coefficients

When particles are placed with no scoring of placement, i.e. coefficients of weighting
are all set to be zero values, the candidate positions that are trialled for placement
are based upon the remaining categories in the priority order analysed during the
discretised particle positioning in Section 3.7.3. These prioritise

1. the score achieved when completed for the discretised particle and domain -
for which this value is always zero as no criteria are activated in the objective
function

2. depth in the system

3. the left-most position

4. area beneath the particle to the width of the particle ratio

5. width to height ratio

in the order they are stated.

Therefore, a bottom-left heuristic is adopted followed by the prioritising of the mini-
mum amount of void created below the placement and then followed by the particle
being placed so that it’s height is minimised. After the discretised placement phase,
the refined placement phase will have no effect on placement except for removing
positions which are determined to be unstable via the method described in Section
3.9. The first stable position is chosen from the sorted candidate positions.

Figures 6.1-6.4 show some results of the placement of the rock particles with coeffi-
cients of weight set to equal zero values. 40 particles are placed in a domain of 50x50
units. The parameters used for the run are seen in Table 6.1. In total, 5 runs were
performed for the case where all coefficients were set to a zero using all available
coordinates for describing the shape outline. Particles are placed in courses such as
a bottom-left heuristic would attempt to follow, building up in a layer-by-layer pro-
cess. In this scenario it is clear that void beneath the particle is not being prioritised
with particles standing on just one point of their outline. This is especially high-
lighted in the lowest course in the domain, usually consisting of the first 9 particles
placed.
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The envisioned result here is that the particles would be flatter due to criteria 3 and 4
in the priorities list from the discretised particle scoring. It is believed that as priority
criteria 2 is trying to place the particle at the position with the lowest abscissa value
possible, this is causing particles to be stood tall as this results in the centre of gravity
to be closest to the left-hand side. Therefore the effects of priority 3 and 4 are being
ignored unless multiple rotations exist where the centre of mass is positioned at the
same x-coordinate. The results are reasonable for a DBL heuristic for bin packing,
but in terms of sensible packings of irregular, untooled rock particles the algorithm
suffers from a lack of placement scoring using the objective function.

Figure 6.1b is the packing of equivalent particle order to Figure 6.1a with particle
outlines defined by a third of the total coordinates available. Section 6.2.2 discussed
the difference between packings is due to fewer detections of contact points meaning
fewer stable positions are determined. However, it can be shown that the manner
in which the packing arrangements are achieved is through a similar fashion just
with the difference that the system in Figure 6.1b is less tightly packed compared to
Figure 6.1a. The packings investigated in Section 6.3 are defined using all available
coordinates. However, packings when completing exploration of the search area are
achieved adopting a third of coordinates to describe the particle outline. A com-
parison will be made in Sections 6.3.3 to determine if this changes the end result of
packings by the algorithm of equivalent coefficient values.

For the five simulations conducted taking all available coordinates MVR=0.2750 and
MRJ=21.6 as indicated in Table 6.2 where a packing with all coefficients of weighting
set to zero is indicated as "none".
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(A)

(B)

FIGURE 6.1: Packing of 40 rock particle outlines in a 50x50 unit do-
main with coefficients of weighting set to zero values for particles

represented by (a) all 129 coordinates (b) a third of coordinates.
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FIGURE 6.2: Packing of 40 rock particle outlines in a 50x50 unit do-
main with coefficients of weighting set to zero values.

FIGURE 6.3: Packing of 40 rock particle outlines in a 50x50 unit do-
main with coefficients of weighting set to zero values.
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FIGURE 6.4: Packing of 40 rock particle outlines in a 50x50 unit do-
main with coefficients of weighting set to zero values.

6.3.3 Impact of Coefficients

Here, the impact of each component is investigated individually. This is done by
setting each coefficient to a value of zero and activating one parameter by changing
the value of the coefficient for that parameter to a value of one. This is carried out
in each of Sections 6.3.4-6.3.7. Additionally, the effects of oversizing each coefficient
compared to the other coefficients is investigated similar to what was carried out in
Section 5.3 by equating a single coefficient value to 100 and the rest to a value of 1.
The results of the MVR and MRJ for both of these scenarios are presented in Table
6.2. Values were calculated from the mean of n=5 for each scenario. Results in Table
6.2 were calculated from packings using all available coordinates. The study was
repeated for packings using a third of coordinates, although MRJ was not recorded
for oversized coefficient packings. These are presented in Table 6.3.

Comparing values from Table 6.2 and Table 6.3, values for MRJ and MVR differ with
no pattern. Reducing the number of coordinates changes the way in which stable
positions are located, so therefore it is thought that candidate poses which were
deemed as acceptable are discarded in the scenario where particles are resembled
by a third of all coordinates. From analysis of the packings (Figure 6.10, Figure
6.17, Figure 6.23, Figure 6.32) the particles are still being packed in a similar fashion
when compared to the packings using all available particles. Additionally, changes
in MVR between the variable as a single criteria in the objective function and as an
oversized variable all show equivalent trends: reducing for VAB, staying roughly the
same for D, increasing for T and decreasing for CN. Therefore it is assumed that a
third of the coordinates can be taken and still be a fair representation of the packings
compared to if all coordinates were taken. The computational time is massively
reduced by doing so and therefore any negatives that are seen are outweighed by
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Variable Activated
Single Coefficient Oversized
MRJ MVR MRJ MVR

None 21.6 0.2750 - -
VAB 24 0.2629 25 0.1978
D 24 0.2143 23 0.2113
T 22.8 0.2260 22.2 0.2616

CN 22.4 0.2113 23.8 0.1954

TABLE 6.2: MRJ and MVR for sample size n=5 using all available
particles for the Soil Particle Scenario when a single coefficient is used
so the indicated variable is the only active criteria in the objective
function and for the oversizing of the variable where the coefficient
for the variable is set to 100 and all over coefficients are set to a value

of 1.

Variable Activated
Single Coefficient Oversized
MRJ MVR MRJ MVR

VAB 24.4 0.2085 - 0.1859
D 19 0.2222 - 0.2066
T 21.8 0.2567 - 0.2706

CN 21.8 0.2127 - 0.1989

TABLE 6.3: MRJ and MVR for sample size n=5 using a third of all
available particles for the Soil Particle Scenario when a single coeffi-
cient is used so the indicated variable is the only active criteria in the
objective function and for the oversizing of the variable where the co-
efficient for the variable is set to 100 and all over coefficients are set to

a value of 1.

the increased speeds. Therefore, from Section 6.4.1 packing done by the algorithm
adopts the use of a third of all available coordinates.

Figure 6.5 shows values for MRJ and MVR when coefficients are increased individu-
ally from 0 to 10 at increments of 2. Other coefficients are kept at a constant variable
of 2 and CV=1. Sample size n=3 was adopted and particles were represented by a
third of available coordinates. Each coefficient is explored individually in Sections
6.3.4-6.3.7 and Figure 6.5 will be referenced to.
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(A)

(B)

FIGURE 6.5: Values of (a) MRJ and (b) MVR for the varying of coef-
ficient values. Each value of coefficient varied from 0 to 10 at incre-
ments of 1 whilst rest are fixed at a value of 2. CV=1 for all plots.

Sample size n=30 and a third of available coordinates taken.
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6.3.4 Effect of VAB

Figures 6.6-6.9 show packings of particles when CV=1 and CD, CT, CCN are all zero
values. With the introduction of a non-zero value for CV , particles are placed so
that minimum amounts of void are created below them. This is highlighted in the
bottom row of Figures 6.6-6.9 where particles are placed with more of the particle in
contact with the domain base rather than with a single point with another resting on
the particle next to it to minimise the distance from the left-hand side.

Further up in the system, particles tend to be bunched closer together and, where
possible, the filling of canyons is avoided. Figure 6.8 and Figure 6.9 have gaps in the
system where it is expected particles may be able to fill. For example, either side of
Particle 21 in Figure 6.8 and beneath Particle 23 in Figure 6.9. It is thought that this is
because of particles not being able to fit in this location when performing the rough
discretised particle positioning which is then used to create a shortlist of candidate
poses. Perhaps with a finer resolution or more care when creating the discretised
particles (for example, not assuming all blocks are filled if some of the particle exists
in it like described in Section 3.7.3) a tighter packing would be exhibited in these
areas.

VAB is determined by the ratio of the area of the void created to the area of the
particle. Therefore, creating more void in the system will have a bigger effect than
if the void ratio of the whole system. Placements of Particle 26 in Figure 6.6 and
Particle 36 in Figure 6.8 go against what is expected from the objective function when
positions that would produce a lower score for VAB are possible. It is possible that
these positions are selected due to the reduced amount of candidate poses tested
with only 30 being trialled. Of the 30 positions trialled, this may be the best scoring
position which is also deemed stable by the stability checks described in Section
3.9. Extending the number of candidate positions would lead to the identification of
better positions for particles. However, this will lead to an increase in computational
time.

The avoidance of covering areas of void can lead to runs developing in the system.
Take for example Figure 6.6. Here, a run is detected between Particle 8 and Particle
17. Packing continues of particles and due to canyoning in the system no particle
is placed above this until Particle 33 resulting in a running joint between these two
locations. This running joint is not disrupted until Particle 37 is placed. Similar
instances of this occur in other packing structures where canyons can be identified
such as starting between Particle 0 and Particle 2 in Figure 6.8. Although MRJ when
VAB is activated is higher than for when T and CN are activated as indicated in Table
6.2, the length of the runs that form can becomes quite large before an interrupting
particle is placed.

Figure 6.10 presents the packing using a third of available coordinates for particle
delivery order equivalent to those in Figure 6.6 and Figure 6.7. Again a similar trend
is seen with particles bunching together as height of the structure increases. An
increase in situations where canyons are capped by a particle occurs. This is due to
fewer stable positions being detected leading to less alternative options. Examples
of this are seen for Particle 30 in Figure 6.10a and Particle 26 in Figure 6.10b.

The capping of canyons is more likely to occur due to less stable positions being
detected causing fewer potential positions. In turn, smaller lengths of running joints
form as the capping particle tends to disrupt the run. Running joints still tend to be
an issue in the structure, for example see Figure 6.10b where a run forms between
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Particle 10 and Particle 12 and is not disrupted until the placement of Particle 35, but
less so than experienced with packings using more defined shape outlines.

The investigation carried out in Section 5.3.2 for the Tetris Scenario saw the exclu-
sion of VAB as a parameter lead to higher MVR results in the packing as proven in
Figure 5.3. A similar investigation was trialled here. From the results presented in
Table 6.4 for CD=0 and CD=0.5 there does not appear to be much effect on the differ-
ence in MVR. When CD=0.5 the MRJ is increased from 24.4 when VAB is paired with
a coefficient of zero compared to 26.6 when VAB is activated suggesting a slight im-
provement in packing. However, when CD=1 the MRJ and MVR both improve with
MRJ increasing and MVR decreasing. Values from Table 6.4 suggest that packing is
improved when higher values of CD compared to CV are present. As the optimum
combination of coefficients determined to be (CV=1, CD=1.6, CT=0.4, CCN=0.045) in
Chapter 5 for the Tetris Scenario it is not unusual for this to be the case. Further
evidence for this is provided in Table 6.2 where the packing for an oversized CV
value (so some inclusion of D is involved) is suggested to perform better than an
objective function that just scores placement on VAB as determined by the improved
MVR and MRJ results. A packing structure for when CV is oversized is displayed in
Figure 6.11.

CD Value
CV=1 CV=0

MRJ MVR MRJ MVR
0 25 0.2251 25.6 0.2113

0.5 26.6 0.2106 24.4 0.2094
1 26.4 0.1843 24.4 0.2132

TABLE 6.4: Comparison of lowest MRJ and MVR values for Soil Par-
ticle Scenario for values of CD, CT and CCN ranged from 0 to 1 at

increments of 0.5.
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FIGURE 6.6: Packing of 40 rock particle outlines in a 50x50 unit do-
main with coefficients CV=1 and CD=CT=CCN = 0.

FIGURE 6.7: Packing of 40 rock particle outlines in a 50x50 unit do-
main with coefficients CV=1 and CD=CT=CCN = 0.



6.3. Effects of Changing Coefficient Values 285

FIGURE 6.8: Packing of 40 rock particle outlines in a 50x50 unit do-
main with coefficients CV=1 and CD=CT=CCN = 0.

FIGURE 6.9: Packing of 40 rock particle outlines in a 50x50 unit do-
main with coefficients CV=1 and CD=CT=CCN = 0.
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(A)

(B)

FIGURE 6.10: Packing of particles using a third of coordinates with
equivalent particle order for packings in (a) Figure 6.6 (b) Figure 6.7.
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FIGURE 6.11: Packing structure of equivalent packing order to Figure
6.9 with coefficient values of CV=100 and CD=CT=CCN=1.

6.3.5 Effect of D

Figures 6.12-6.15 present results where D is the only activated variable in the ob-
jective function. From the way this scoring criteria works, the centre of mass of the
particle is placed in the lowest possible position once candidate positions are filtered
by the priority criteria outlined in Section 6.3.2. As is shown in Figures 6.12-6.15, the
particles placed tend to be placed “flat” with the width-to-height ratio being max-
imised. This trend breaks where particles can be utilised to fill gaps in the courses
such as with Particle 7 in Figure 6.14.

An improvement in void ratio is definitely seen when compared to packings where
only VAB is activated which is confirmed from visual comparison between the pack-
ings as well difference in value between MVRs in Table 6.2. Table 6.2 suggests equiv-
alent packing efficiency when comparing MRJ for VAB and D when each is activated
and the other criteria in the objective function have coefficients set to zero. However,
as discussed in Section 6.3.4, the canyoning experienced in packings represented in
Figures 6.6-6.9 lead to longer running joints forming. Packings in Figures 6.12-6.15
have many cases where particles are stacked directly above each other without dis-
ruption of the running joint below (e.g. Particle 10 and then Particle 16 on top of
Particle 7 in Figure 6.13). However, these tend to not to be of equivalent length to
those experienced in Figures 6.6-6.9 due to the tendency for the particle to be placed
as far down the system as possible, leading to the filling divots where two arching
particle edges meet.

Comparison between Figure 6.15 and Figure 6.16 suggests that a slight inclusion of
other parameters with an oversized value of CDD in the objective function does not
have much of an effect on the packing. Furthermore this is shown by the MVR and



288 Chapter 6. Results of the Soil Particle Scenario

FIGURE 6.12: Packing of 40 rock particle outlines in a 50x50 unit do-
main with coefficients CD=1 and CV=CT=CCN = 0.

MRJ values presented in Table 6.2 with the values suggesting placement of particles
are slightly less suitable for disrupting runs in the system for when CD is oversized.

Figure 6.17 presents packings of CD=1 using a third of all coordinates. Compared
to Figures 6.12-6.15 a good similarity is seen between the two. More spacing is seen
between particles in Figure 6.17. This is due to less stable positions being found due
to the decrease in coordinates so particle placement is not as refined as previously.
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FIGURE 6.13: Packing of 40 rock particle outlines in a 50x50 unit do-
main with coefficients CD=1 and CV=CT=CCN = 0.

FIGURE 6.14: Packing of 40 rock particle outlines in a 50x50 unit do-
main with coefficients CD=1 and CV=CT=CCN = 0.
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FIGURE 6.15: Packing of 40 rock particle outlines in a 50x50 unit do-
main with coefficients CD=1 and CV=CT=CCN = 0.

FIGURE 6.16: Packing structure of equivalent packing order to Figure
6.15 with coefficient values of CD=100 and CV=CT=CCN=1.
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(A)

(B)

FIGURE 6.17: Packing of particles using a third of coordinates with
equivalent particle order for packings in (a) Figure 6.12 (b) Figure

6.13.
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6.3.6 Effect of T

Non-zero values of the coefficient CT enables scoring to be based on the area of the
particle touching already placed particles in the system. Figures 6.18-6.21 present
results where CT=1 and all over coefficients are zero values. In these figures, a ten-
dency to lean to one side is shown. This is unusual, especially as the priority criteria
gives preference to particles packed to the left in the domain and each packing in
Figures 6.18-6.21 lean to the right-hand side.

It is determined that this leaning effect is due to the first particle tending to be placed
in the righthand corner. As the particles are positioned in the structure, the objective
function is scoring based on the number of contact points touching in the bottom line
of the particle outline. Points of contact are more likely on the surface of particles
as these are described by more coordinates than the initial surface of the domain
which is defined by two coordinates to form the straight line. However, the question
remains why Particle 0 is positioned to be in the right-hand corner. Inspection of
Particle 0 for Figures 6.18-6.21 suggests that this is due to the scoring criteria in the
discretised step of the algorithm. This is completed by identifying points of solid
next to the whole of the outline of the particle. Therefore, this includes below as
well as to the left, right and above. Particle 0 for each initial packing is detecting
more points of contact with the domain on the right side and therefore the initial
placement of the first particle tends to be here. This also explains why gaps appear
between particles, as because contact points are scored using only coordinates of the
bottom line, this is not including the area of the sides of particle in contact with other
particles as part of the scoring for T.

As seen in Table 6.2, MRJ results for when T is the only activated variable in the
objective function and for when T is oversized in comparison to other variables are
similar. An increase in MVR is experienced for oversized CTT results. Figure 6.22
is the packing of particles using an oversized value of CTT for packing order equiv-
alent to that of Figure 6.21. When T is oversized, filling of gaps between particles
seems to be avoided especially if this will lead to less contacts with other particles.
An example of this is the position of Particle 35 in Figure 6.22. It is suggested that
this could have been placed in the gap to the right, like Particle 35 in Figure 6.21 and
this would lead to a more suitable packing as well as the disruption of runs below
the particle.

Packings using a third of available coordinates to represent particles (Figure 6.23)
share a similar style of packing to when all available coordinates are used. How-
ever, steeper sides are experienced for the slope. Again, like with other packings
using less coordinates, the decreased number of located stable positions causes less
particles to be able to be placed on the incline causing this increase in steepness.
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FIGURE 6.18: Packing of 40 rock particle outlines in a 50x50 unit do-
main with coefficients CT=1 and CV=CD=CCN = 0.

FIGURE 6.19: Packing of 40 rock particle outlines in a 50x50 unit do-
main with coefficients CT=1 and CV=CD=CCN = 0.
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FIGURE 6.20: Packing of 40 rock particle outlines in a 50x50 unit do-
main with coefficients CT=1 and CV=CD=CCN = 0.

FIGURE 6.21: Packing of 40 rock particle outlines in a 50x50 unit do-
main with coefficients CT=1 and CV=CD=CCN = 0.
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FIGURE 6.22: Packing structure of equivalent packing order to Figure
6.21 with coefficient values of CT=100 and CV=CD=CCN=1.

6.3.7 Effect of CN

Some results of packings of 40 particles when CCN is set to 1 and CV , CD and CT
are set to zero are presented in Figures 6.24-6.27. The inclusion of CN in the scoring
equation leads to particles trying to be surrounded by as many other particles as
possible, as well as the domain edge as touching this also counts towards the coor-
dination number. This gives the reason for why Particles 0 and 1 in Figures 6.24-6.27
are placed on opposite sides to begin with rather than being next to each other. These
placements lead to a coordination number of 2 as it is in contact with the side of the
domain and the bottom of the domain. The packings of the particles are completed
in a course-by-course order due to the discretised scoring list prioritising the particle
being placed at the deepest position in the system. However, when a particle can fit
between two particles, this placement is prioritised due to the increased coordina-
tion number. For example, this can be seen in the final placement of Particle 4 in
Figure 6.24 and 6.25.

It appears that CN minimises MVR results the most out of all of the parameters as
indicated in Table 6.2 for both when only CN is activated and when CCNCN is over-
sized in the objective function. MRJ values suggest that the positioning of particles
are not optimised for disrupting runs in the system. This is not as expected as it is
thought that particles would be placed in positions above where runs can be formed
as this would provide a higher coordination number compared to if the particle was
placed directly above another. However, the placement of particles do not appear to
have enough overlap to disrupt the formation of runs in the system. For example,
a run can form between Particle 11 and Particle 13 in Figure 6.24. Particles placed
above this location are Particles 16, 17, 23, 28, 29 and 34. Of all these particles none
of them disrupt the run as it carries on up through the structure and a zipping joint
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(A)

(B)

FIGURE 6.23: Packing of particles using a third of coordinates with
equivalent particle order for packings in (a) Figure 6.18 (b) Figure

6.19.
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forms.

CN is similar to VAB in terms of VAB scoring placement on minimising void whilst
scoring the highest for MVR. However, whereas the inclusion of the other parame-
ters whilst CVVAB is oversized improves the MVR result quite drastically, this does
not occur in the instance for CCNCN for MRJ. Instead the MRJ score improves but
only by 1.4. This is because none of the other parameters improve the positioning
of particles in terms of maximising MRJ based on the way they are scored. Mean-
while, D improves MVR results as it prevents canyoning occuring whilst T is has
been stated to passively measure the amount of void generated directly beneath the
particle whilst not accounting for the size of the void created (see Section 5.3.4).

Figures 6.24-6.27 suggest that CN is a useful parameter for keeping particles in the
system to a minimum height and packings are quite similar to those when D is the
only active parameter in Figures 6.12-6.15. Similar to when CDD is oversized, the
oversizing of CCNCN with the inclusion of other parameters does not have much of
an effect on the packing structures. Evidence for this exists in the similarity between
the values presented in Table 6.2 and the nature of the packings experienced in Fig-
ures 6.28-6.31 appearing similar to Figures 6.24-6.27. However, Figures 6.28-6.31 are
more tightly packed compared to Figures 6.24-6.27. It is considered that a tighter
packing where particles are closer to each other and void is minimised would lead
to the prevention of running joints in the structure.

Examining the results for disrupted runs in the 5 simulations for CN as the only ac-
tive variable and when CCNCN is oversized individually suggests that actually the
disruption of runs is improved further than initially thought. Out of the packing or-
ders (named PO1 to PO5 in Table 6.5) three of the five results improved quite signifi-
cantly with a reduction in MRJ by 4 disrupted runs for PO2 and PO5. The oversized
case for each PO are presented in Figures 6.28-6.31. It is difficult to determine how
much a change in the number of runs disrupted is due to the objective function for
placement compared to the particle order. It should be considered that smaller par-
ticles that are placed above runs are less likely to be able to disrupt them. Therefore
if a larger particle was earlier in the particle order and subsequently placed above
this run this will result in more prevention from runs forming.

Parameter type PO1 PO2 PO3 PO4 PO5 MRJ
CN only 20 22 22 22 26 22.4

CCNCN oversized 24 18 29 26 22 23.8

TABLE 6.5: Values of MRJ for different packing orders for CN as the
only active variable and CN as an oversized variable.

Packings using a third of all available coordinates resemble the packings in Figures
6.24-6.27 well and therefore it is assumed that these can be taken forward for further
studies. Reviewing the MRJ and MVR values from Table 6.2 to Table 6.3 the values
are fairly similar for CN and therefore this is justified.
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FIGURE 6.24: Packing of 30 rock particle outlines in a 50x50 unit do-
main with coefficients CCN=1 and CV=CD=CT = 0.

FIGURE 6.25: Packing of 30 rock particle outlines in a 50x50 unit do-
main with coefficients CCN=1 and CV=CD=CT = 0.
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FIGURE 6.26: Packing of 30 rock particle outlines in a 50x50 unit do-
main with coefficients CCN=1 and CV=CD=CT = 0.

FIGURE 6.27: Packing of 30 rock particle outlines in a 50x50 unit do-
main with coefficients CCN=1 and CV=CD=CT = 0.
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FIGURE 6.28: Packing structure of equivalent packing order to Figure
6.24 with coefficient values of CCN=100 and CV=CD=CT=1.

FIGURE 6.29: Packing structure of equivalent packing order to Figure
6.25 with coefficient values of CCN=100 and CV=CD=CT=1.
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FIGURE 6.30: Packing structure of equivalent packing order to Figure
6.26 with coefficient values of CCN=100 and CV=CD=CT=1

FIGURE 6.31: Packing structure of equivalent packing order to Figure
6.27 with coefficient values of CCN=100 and CV=CD=CT=1.
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(A)

(B)

FIGURE 6.32: Packing of particles using a third of coordinates with
equivalent particle order for packings in (a) Figure 6.24 (b) Figure

6.25.
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6.4 Analysing Results for Different Weighting Coefficient Com-
binations

6.4.1 Initial Study

Figure 6.33 displays lowest MVR and highest MRJ values from search areas of CT
and CCN varied from 0 to 10 at increments of 2 for CD values varied from 0 to 8 at
increments of 2. CV was kept at a fixed value of 1. Sample size n=3 is adopted for
the presented results. Table 6.6 shows the relevant CT and CCN values for which
each point was located. Recognise that values for MVR and MRJ are not located at
equivalent positions in the search area. It is determined that optimal solution will be
located where both MVR and MRJ are optimised - MVR is kept to a minimum and
MRJ is kept to a maximum - with MRJ being prioritised.

CV & CD MRJ MVR
CV CD CT CCN MRJ MVR CT CCN MRJ MVR
1 0 4 0 25.67 0.2246 0 2 21.333 0.1972
1 2 2 0 26.33 0.2244 0 4 24.667 0.1812
1 4 4 2 24.67 0.1974 0 0 22.667 0.1893
1 6 10 4 27 0.2300 0 2 23.667 0.1904
1 8 10 4 26.33 0.2100 0 0 21 0.1794

TABLE 6.6: Maximum MRJ and minimum MVR values located on
the search areas for values of CD varied from 0 to 8 by increments of
2 between CT and CCN values 0 to 10 increased by increments of 2.
n=3 and CV=1. Values are paired with their matching MRJ or MVR

for equivalent location in the alternate search area.

It can be seen that minimum MVR values are obtained with CT values of 0 for all val-
ues of CD. Throughout the surface plots, it is observed that MVR tends to be largest
when CT is 10. In Section 3.5.4, T was suggested to act as another indicator for void
beneath the particle but with no recognition of the void beneath it. However, this
was experienced with tetrominoes that have orthogonal sides that will always fit
flush together. For the soil outlines, less of the particle face is in contact with the
placement surface and it is possible for there to be only two points of contact. There-
fore, it is possible for particles to bridge over areas of void and still achieve a similar
score for T. It is thought that as CT increases, particles prioritise having a greater
surface area with other particles even if it means creating void below the particle.
As CTT becomes dominant over CVVAB in the objective function this begins to hap-
pen at larger values of CT. Additionally, the results of locations with more dominant
CTT values in the objective function resembled those studied in Section 6.3.6 with a
tendency to lean to the right-hand side. See Figure 6.34a for an example.

Maximum MRJ is located at (CT=4, CCN=0) for the CD=0 search area. Examining the
surface plot in Figure 6.35a, another relatively large maximum is located at (CD=0,
CT=10, CCN=10) which provides suitability for a potential optimal solution. How-
ever, the equivalent location for the search area of MVR (Figure 6.35b) has a much
larger value. Reviewing other locations at (CT=10, CCN=10) for the various CD val-
ues, it would appear that a shared feature is that results of a fairly high void ratio
compared with other results in the search area for MVR as presented by the values
in Table 6.7. Figure 6.36 presents examples of these packings and shows that gen-
erally particle placement is prioritised to the right suggesting CTT is dominant. An
exception is seen in Figure 6.36c, where a flatter system is experienced.



304 Chapter 6. Results of the Soil Particle Scenario

(A) (B)

FIGURE 6.33: Lowest values of (a) MRJ (b) MVR for the correspond-
ing CD value for plots of CT and CCN varied from 0 to 10 at increments

of 2 with sample size n=3.

(A) MRJ=26, MVR=0.2272 (B) MRJ=20, MVR=0.1889

FIGURE 6.34: Packings in the Soil Particle Scenario for coefficients
of weighting (a) (CV=1, CD=0, CT=4, CCN=0) (b) (CV=1, CD=0, CT=0,

CCN=4) with equivalent particle order.

CD MRJ MVR
0 25.33 0.20103
2 24.33 0.22637
4 23.667 0.2251
6 25 0.21769
8 26.33 0.21128

TABLE 6.7: Locations on the search area (CT=10, CCN=10) for different
CD values with results of MRJ and MVR presented for the Soil Particle

Scenario.
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(A) MRJ

(B) MVR

FIGURE 6.35: Surface plot for CV=1 and CD=0 for ranged from of
CT and CCN between 0 to 10 at increments of 2 for the Soil Particle

Scenario. Marker indicates the location (CT=10, CCN=10).
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(A) MRJ=24, MVR=0.1885 (B) MRJ=29, 0.2034

(C) MRJ=26, MVR=0.2128 (D) MRJ=29, MVR=0.2000

FIGURE 6.36: Packings in the Soil Particle Scenario for coefficients
of weighting (a+b) (CV=1, CD=0, CT=10, CCN=10) and (c+d) (CV=1,
CD=8, CT=10, CCN=10) with equivalent particle order for (a) and (c)

and equivalent particle order for (b) and (d).
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CV CD CT CCN MRJ MVR
1 4 0 0 22.667 0.18934
1 4 2 2 24.333 0.19313
1 4 2 4 24.333 0.19313
1 4 4 2 24.667 0.19735
1 6 0 2 25.333 0.20324
1 6 2 2 24.667 0.19286
1 6 2 4 24.667 0.19286
1 6 6 2 26 0.19564

TABLE 6.8: Values for MRJ and MVR at locations of interest in the
search areas presented in Figure 6.37 and Figures 6.38.

Figure 6.37 and Figure 6.38 present the search areas for CD=4 and CD=6. Both show
higher values of MRJ along CT=2 whilst MVR results are low in comparison to other
datapoints. The search area for CD=2 also experienced a right of high MRJ results
at CT=2 however relatively high MVR results in comparison to other search areas
were also experienced. Points of interest where MRJ and MVR values appear to be
optimal are listed in Table 6.8 with their relevant coefficient values.

From analysis of the results, it appears that higher values of MRJ typically have
higher values of MVR. Additionally, as CD increases the values of MVR appear to
increase but with larger MRJ values for those locations. For example, see Figure
6.39 for the search area of CD=8 where the MVR values tend to be above 0.2. This
is logical, as MRJ is an indication of particles above matings of the particles below.
Therefore, this will naturally be over a gap and therefore an increase in void ratio is
expected unless a smaller particle can be placed below.
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(A) MRJ

(B) MVR

FIGURE 6.37: Surface plot for CV=1 and CD=4 for ranged from of
CT and CCN between 0 to 10 at increments of 2 for the Soil Particle

Scenario.
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(A) MRJ

(B) MVR

FIGURE 6.38: Surface plot for CV=1 and CD=6 for ranged from of
CT and CCN between 0 to 10 at increments of 2 for the Soil Particle

Scenario.
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(A) MRJ

(B) MVR

FIGURE 6.39: Surface plot for CV=1 and CD=8 for ranged from of
CT and CCN between 0 to 10 at increments of 2 for the Soil Particle

Scenario.
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6.4.2 Increasing Effect of CVVAB

As Section 4.5 suggests, it is important to explore values of coefficients where CVVAB
can become dominant in the objective function. Coefficients were ranged between 0
to 1 at increments of 0.2 were explored whilst CV=1 was kept as a constant. The max-
imum MRJ and minimum MVR values observed in the search areas are plotted for
their corresponding CD value in Figure 6.40 and locations of these values are stated
in Table 6.9. Comparing Figure 6.40 to Figure 6.33, MRJ and MVR values achieved
between the range of 0 to 1 appear more optimal as they are higher MRJ and lower
for MVR. A peak value of MRJ appears at CD=0.4 and trough in the plot of MVR
is located at CD=0.2. Figure 6.41 presents packings of the coefficient combinations
for these peak and trough values. Tight packing structures are seen, with inclination
towards the right thought to be due to CTT.

(A) (B)

FIGURE 6.40: Lowest values of (a) MRJ (b) MVR for the correspond-
ing CD value for plots of CT and CCN varied from 0 to 1 at increments

of 0.2 with sample size n=3.

CV & CD MRJ MVR
CV CD CT CCN MRJ MVR CT CCN MRJ MVR
1 0 0.2 0 27.667 0.1899 1 0.2 26.667 0.1845
1 0.2 0.8 0.8 27.333 0.1944 0.6 0.2 25.333 0.1664
1 0.4 0.4 0.2 29 0.1789 0.6 0.2 25.667 0.1768
1 0.6 0.6 0.2 27.667 0.1924 0.8 0.2 23 0.1743
1 0.8 0.6 0.2 27.333 0.2002 0.2 0.2 22.667 0.1766
1 1 1 0 26.667 0.2123 0.4 0.8 24.667 0.1789

TABLE 6.9: Maximum MRJ and minimum MVR values located on
the search areas for values of CD varied from 0 to 1 by increments of
0.2 between CT and CCN values 0 to 1 increased by increments of 0.2.
n=3 and CV=1. Values are paired with their matching MRJ or MVR

for equivalent location in the alternate search area.

Figure 6.42 shows the search area for CD=0 when CT and CCN are ranged from 0 to 1
by increments of 0.2. As can be seen, there appears to be two possible peaks for MRJ
in Figure 6.42a. These are located at (CT=0.2, CCN=0) and (CT=0.8, CCN=0) and are
displayed in Figure 6.43a and Figure 6.43b respectively. Both suggest good packings
with a good level of runs prevented from occurring in the system. However, the lack
of contribution from CDD in the objective function means that towering can occur,
which is a feature of the packing in Figure 6.43b.
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(A) (B)

(C) (D)

FIGURE 6.41: Packings for the Soil Particle Scenario for weighting
coefficients (a+b) (CV=1, CD=0.2, CT=0.6, CCN=0.2) and (c+d) (CV=1,
CD=0.4, CT=0.4, CCN=0.4). Equivalent particle order for (a) and (c)

and equivalent particle order for (b) and (d).
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(A) MRJ

(B) MVR

FIGURE 6.42: Surface plot for CV=1 and CD=0 for ranged from of
CT and CCN between 0 to 1 at increments of 0.2 for the Soil Particle

Scenario.
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(A) MRJ=26, MVR=0.2272 (B) MRJ=20, MVR=0.1889

FIGURE 6.43: Packings in the Soil Particle Scenario for coefficients of
weighting (a) (CV=1, CD=0, CT=0.2, CCN=0) (b) (CV=1, CD=0, CT=0.8,

CCN=0) with equivalent particle order.

Three peaks of MRJ can be located in the search area for CD=0.2. One of these, lo-
cated at (CT=0.4, CCN=0) is in a similar location to the largest MRJ value for search
area representing data when CD=0.4. This is also the largest MRJ of all the datapoints
and is located at (CV=1, CD=0.4, CT=0.4, CCN=0.2). The further two peaks are indi-
cated by markers on Figure 6.44a with the corresponding points marked on Figure
6.44b. Their locations are (CT=0,CCN=0.2) and (CT=0.8,CCN=0.8) A similar pattern is
seen for when CD=0.4 where peaks are formed in similar locations. Again, the equiv-
alent locations are marked on Figure 6.45. Packings using the coefficient values for
these points are displayed in Figure 6.46 and it can be determined that an increase
in CD leads to the particles been packed closer together.

Figure 6.47 is the search area for CD=1 for CT and CCN in the range 0 to 1 and varied
by increments of 0.2. This are is examined to look at the upper limit of this range
of coefficients for D due to the fact that D causes particles to be packed lower down
in the system, which is beneficial for constructing and is recommended for DSRW
(Vivian, 1976). The MVR results tend to be higher than other surface plots, as is
suggested by the lowest MVR value in Figure 6.40 and Table 6.9. A wider base of
particles is established with steeper slopes on the sides of the structure. Figure 6.48b
and Figure 6.48c present the locations for highest MRJ and lowest MVR respectively,
the locations of which can be found in Table 6.40. Further points around these re-
sults are presented in Figure 6.48a and Figure 6.48d. The differences between Figure
6.48a compared to Figure 6.48b and Figure 6.48c compared to Figure 6.48d tighter
packings in the latter of each pair. The move from Figure 6.48a to Figure 6.48b is an
increase in CTT whilst the the move from Figure 6.48c to Figure 6.48d is a decrease
in CTT but with an increase in CCNCN. Both these scoring criteria benefit from par-
ticles being closer together as T scores placement on the number of contacts and CN
scores placement on the number of surrounding particles.
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(A) MRJ

(B) MVR

FIGURE 6.44: Surface plot for CV=1 and CD=0.2 for ranged from of
CT and CCN between 0 to 1 at increments of 0.2 for the Soil Particle

Scenario.
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(A) MRJ

(B) MVR

FIGURE 6.45: Surface plot for CV=1 and CD=0.4 for ranged from of
CT and CCN between 0 to 1 at increments of 0.2 for the Soil Particle

Scenario.
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(A) (B)

(C) (D)

FIGURE 6.46: Packings with equivalent particle delivery order for the
Soil Particle Scenario for weighting coefficients (a) (CV=1, CD=0.2,
CT=0, CCN=0.2) (b) (CV=1, CD=0.2, CT=0.8, CCN=0.8) (c) (CV=1,

CD=0.4, CT=0, CCN=0.2) (d) (CV=1, CD=0.4, CT=0.8, CCN=0.8).



318 Chapter 6. Results of the Soil Particle Scenario

(A) MRJ

(B) MVR

FIGURE 6.47: Surface plot for CV=1 and CD=1 for ranged from of
CT and CCN between 0 to 1 at increments of 0.2 for the Soil Particle

Scenario.
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(A) (B)

(C) (D)

FIGURE 6.48: Packings with equivalent particle delivery order for
the Soil Particle Scenario for weighting coefficients (a) (CV=1, CD=1,
CT=0.8, CCN=0) (b) (CV=1, CD=1, CT=1, CCN=0) (c) (CV=1, CD=1,

CT=0.4, CCN=0.8) (d) (CV=1, CD=1, CT=0.2, CCN=0.2).
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6.5 Coefficients Determined from Tetris Scenario and Fur-
ther Investigations

The coefficients determined as solutions for the Tetris Scenario are adopted here as
coefficients of packing to see the results when shapes are not orthogonal tetromi-
noes but instead irregular outlines. Furthermore, the additional step of reducing the
number of candidate poses may have an effect. Presented in Table 6.10 are the co-
efficients investigated and Figures 6.49-6.51 present these packings. Furthermore, it
was considered to attempt a packing adopting large coefficients but with a smaller
value of CT. Therefore, results and packings for (CV=1, CD=6, CT=0.5, CCN=10) are
also presented in Table 6.10 and are displayed in Figure 6.52.

From Chapter 5, combinations of coefficients (CV=1, CD=1.6, CT=0.4, CCN=0.045)
and (CV=1, CD=0.6, CT=0.2, CCN=0.015) were obtained from the work conducted in
this study as possible optimal solutions, with (CV=1, CD=1.6, CT=0.4, CCN=0.045)
taken as the optimal solution as it avoids canyoning in the system. (CV=5, CD=1.25,
CT=0.4, CCN=0.01) was determined in Hoodless and Smith (2023) and is utilised here
for comparison. Of the coefficient values from the Tetris Scenario, (CV=1, CD=0.6,
CT=0.2, CCN=0.015) appears to be the most optimal with higher number of runs dis-
rupted in the system and lower void ratio than the other packings. As can be seen
in Figure 6.51, the system does seem to be closely packed with less space between
particles.

The reasoning for attempting packing for location of (CV=1, CD=6, CT=0.5, CCN=10)
comes from analysis of results in Section 6.4.1. It was intended to see if results were
improved by oversizing CD compared to CT and CV to reduce the height of the struc-
ture as it is intended that a layer-by-layer construction process be utilised. CCN was
assigned a value of 10 as it was derived from Figure 6.36c and Figure 6.36d as well
as Section 6.3.7 that this helped contribute to keeping particles packed in close prox-
imity to each other.

Results between MRJ and MVR are very similar for most plots. There does not seem
to be a pattern between the two to determine a relationship for finding an optimal
solution. Results are similar and no clear path to follow for optimisation can be
detected. Figure 6.53 shows the results for coefficient combinations investigated in
Section 6.4.1 and Section 6.4.2. These are plotted as MRJ against their corresponding
MVR value for the equivalent location. As can be seen, there is no obvious cor-
relation with R2=0.024. The refinement for coefficient combination of an optimal
solution ends here. The reasoning for this is discussed in Section 8.3.

Coefficients MRJ MVR
(CV=1, CD=1.6, CT=0.4, CCN=0.045) 24 0.188
(CV=5, CD=1.25, CT=0.4, CCN=0.01) 25 0.194
(CV=1, CD=0.6, CT=0.2, CCN=0.015) 27.8 0.183

(CV=1, CD=6, CT=0.5, CCN=10) 25 0.184

TABLE 6.10: MRJ and MVR results for coefficients of weighting with
sample size n=5 taken.
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(A) (B)

FIGURE 6.49: Packings in the Soil Particle Scenario for coefficients
(CV=1, CD=1.6, CT=0.4, CCN=0.045).

(A) (B)

FIGURE 6.50: Packings in the Soil Particle Scenario for coefficients
(CV=5, CD=1.25, CT=0.4, CCN=0.01) with (a) equivalent packings to

Figure 6.49a and (b) equivalent packings to Figure 6.49b.
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(A) (B)

FIGURE 6.51: Packings in the Soil Particle Scenario for coefficients
(CV=1, CD=0.6, CT=0.2, CCN=0.015) with (a) equivalent packings to

Figure 6.49a and (b) equivalent packings to Figure 6.49b.

(A) (B)

FIGURE 6.52: Packings in the Soil Particle Scenario for coefficients
(CV=1, CD=6, CT=0.5, CCN=10) with (a) equivalent packings to Figure

6.49a and (b) equivalent packings to Figure 6.49b.
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FIGURE 6.53: Results of MRJ and MVR for packings for coefficients
when ranged from 0 to 10 by increments of 2 and 0 to 1 by increments

of 0.2.

6.6 Results of DBL Heuristic and Random Packings

As stated in Section 4.5, it is required that results are compared to a control to ensure
the method of packing is an improvement on what already exists. In this section,
results for randomly packed particles and the DBL heuristic are presented. For more
information on the DBL heuristic please refer back to Section 2.4.3 or Section 5.7. To
summarise, the DBL heuristic selects the deepest-bottom-left position in the domain
and places the particle there, as was used by Wang and Hauser (2019). If scores are
joint, the particle is selected by choosing the least amount of void created underneath
the particle. The DBL heuristic was taken as equivalent to the packing using the
algorithm with zero coefficients, as the hierarchical filter works in a similar manner
by prioritising positions near the bottom of the domain, followed by positions left-
most in the domain, followed by reducing void area underneath the particle.

Of the random control tests produced, they are defined as the following

• RAND: Completely randomly packed particles from the whole selection of
candidate poses determined in the discretised method, with the position and
rotation then randomly selected from all possible stable positions in that area
under the refined placement determination method.

• RAND-OF: Positions are scored in the discretised method adopting coefficients
CV=1, CD=1.6, CT=0.4 and CCN=0.045 as determined as solution for the Tetris
Scenario. From here, a random candidate pose from the 30 brought forward
after applying the hierarchical filter is selected and random orientation and
position are then randomly selected for the refined placement determination.

• RAND-F: Candidate poses are filtered with the removal of the scoring criteria
in the hierarchical filter. From the first 30 given, a random candidate pose is
selected and a random orientation and refined location are taken.

The results in Table 6.11 indicate that the packing of particles representing irregular,
untooled rock packed by the algorithm developed in Chapter 3 outperform those
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Control MRJ MVR
RAND 11 0.3607

RAND-OF 24 0.2273
RAND-F 18.6 0.3722

DBL 23 0.2327

TABLE 6.11: MRJ and MVR results for the different control tests spec-
ified, with sample size n=5 taken.

that are randomly packed. The best performing of the randomly packed particles
utilise the objective function to determine candidate poses, suggesting that the ob-
jective function is beneficial for trying to determine placement for a structure with
purpose of optimised shear strength.

Packings of the DBL heuristic are found in Section 6.3.2 in Figures 6.1-6.4. The pack-
ings by the algorithm utilising the objective function outperforms the DBL heuristic
when comparing MRJ, but MVR value calculated is lower for the DBL heuristic.

6.7 Summary

As can be seen from the results of the algorithm, further development is required to
determine an optimal solution for packing structures of high shear strength. Results
are similar and no clear path to follow for optimisation can be detected. Results of
packings are presented in Section 6.4. They show that the algorithm can pack par-
ticles but do not suggest a best answer. Towering and sloped sides in the packings
can be seen.

Section 6.2 describes the necessary changes to the method outlined in Chapter 4. This
was due to the increased computational times experienced. Sample size was reduced
to n=3 rather than n=30. Furthermore, the definition of the particles are reduced to
less coordinates to speed up runtime. Values for MRJ and MVR were seen to differ
with no obvious pattern when using reduced coordinates to describe the particle
and this was used as justification for this to be done. Frequency of sampling was
also reduced, and as a result this led to the omission of the Gaussian filter from
analysis.

The studying of coefficients is conducted in Section 6.3. Input parameters for the
study can be found in Table 6.1. Firstly results are presented for when all coefficients
in the objective function are set to a value of zero. This is thought to represent the
DBL-heuristic that is sometimes utilised as a solution for two-dimensional bin pack-
ing due to the priority list of the hierarchical filter. Particles are seen to be packed
on their edges with another point of contact with the particle to the left (or the do-
main edge). This is due to the particles prioritising left-most positions compared
to any criteria in the objective function. After this, the impact of the coefficients of
weighting on the packing are investigated in Section 6.3.3. This is done by fixing all
coefficients and raising them separately. Additionally, the parameters in the objec-
tive function are investigated as single variables as well as oversized as was done
for the Tetris Scenario. The effects for VAB, D, T and CN are reviewed in Sections
6.3.4-6.3.7. It was seen for VAB and T that particles stacked with sloping side whilst
for D and CN, particles were seen to be packed in flatter configurations.
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(A) (B)

(C) (D)

FIGURE 6.54: Examples of packing using (a) RAND (b) RAND-F (c)
and (d) RAND-OF.
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Section 6.4 begins by testing coefficient ranges of CT and CCN 0 to 10 and CD 0 to 8
with increments of 0.2 used for all coefficients. MRJ and MVR results are presented
and areas of interest are highlighted. No real correlation is initially seen so it is hard
to identify areas of optimal solution without analysing the structures. Section 6.4.2
continues the investigation by looking at coefficient values which allow VAB to have
more of an effect on packing. Results for MRJ are shown to be much larger whilst
MVR results are shown to be lower for these packings. However, still no correlation
is seen between the two. Again, packings which score high for MRJ appear to be
towering and have sloped sides. Tighter packings are seen when CT and CCN are
higher. This is sensible as these criteria reward particles for being closer to others
and for having more touching contact area.

Coefficients obtained from the Tetris Scenario in Chapter 5 study are analysed in
Section 6.5 to see if these provide suitable packings. The results present good quality
packings visually. Again, MRJ and MVR do not indicate an optimal packing out of
those investigated. Furthermore, coefficients (CV=1, CD=6, CT=0.5, CCN=10) were
trialled to see if an increased effect of D and CN compared to T improved packing.
Whilst the packing is conducted in more of a layer-by-layer process, it is hard to
conclude without verification of the strength. It is shown by plotting MRJ to MVR
for each location that there is no correlation for the relationship. This is further
proven by R2 for the data being a value of 0.024. As no clear path can be seen for
optimisation, the investigation into the Soil Particle Scenario is halted. This is further
discussed in Section 8.3.

Control samples for packing are presented in Section 6.6. These include randomly
packed samples. These are created by completely random packing (RAND); random
packing using the objective function to determine 30 candidate poses and then ran-
domly selection of one of these options and random defined location and orientation
selection (RAND-OF); application of the hierarchical filter to gain 30 candidate poses
for which one is selected randomly with defined location and orientation selected at
random. It is shown that the algorithm packs better than these random samples, as
would be expected. The DBL heuristic is assumed to be equivalent to that where
coefficients of weighting are equivalent to zero due to the hierarchical filter. There-
fore, this scenario is taken. The packings of the algorithm outperform these results
additionally.
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Chapter 7

Verification of Strength

7.1 Introduction

Part of the objectives set out in Chapter 1 was to verify the strengths of the structure
to provide evidence that the algorithm is indeed creating structures with high shear
strength as outlined by the objective function. Unfortunately due to unforeseen cir-
cumstances and timescale of the project, it was unable for this step to be completed.
Here it will be discussed the proposed method for testing the build sequence of two-
dimensional particles and the designed experimental procedure is described.

Section 7.2 discusses different methods that could be used to verify the strength of
the structure. These involve numerical and experimental testing processes. Section
7.2.2 discusses numerical verification methods and discuses DEM modelling and the
use of physics engines as seen in the literature discussed in Section 2.2.4. Experimen-
tal verification methods for a system that consists of two-dimensional particles are
explored in Section 7.2.3. Section 7.2.3 begins by discussing possible methods based
on traditional techniques for testing soil strength before moving on to discuss vari-
ous techniques for measuring of angle of repose. Angle of repose is a parameter that
has been linked to angle of internal friction (Coulomb, 1776 as cited by Al-Hashemi
and Al-Amoudi, 2018) and is adopted as a way to verify the shear strength of the
structures produced by the algorithm produced in Chapter 3.

The experimental set up that is planned to be used to verify shear strength of the
structures is presented in Section 7.3. This composed of a rotating drum where two-
dimensional particles cut from acrylic could be positioned. Figure 7.6 and Figure 7.7
present the rig that was designed for testing and the proposed method is described.
Section 7.4 describes the process in which particles could be identified and tracked
during the experiment. The purpose of particle identification was to find when par-
ticles start to move in order to pinpoint initial collapse of the system. Additionally,
it was thought that if certain particles tend to fail more readily than others then this
could be identified by their unique code.

Tolerance of errors are briefly explored in Section 7.5. This is brought about by the
recognition that a system constructing autonomously using a robot will lead to ex-
act placement of particles being unlikely. This is due to the level of detection that
the robot will possess as well as shifting of placement once the stone is released by
the end-effector. Section 7.5 discusses how this would have been tested using the
equipment described in Section 7.3.

Section 7.6 describes the expected results of the experiment in terms of initial angle of
repose as well as a mixed angle of repose that would be exhibited by the system once
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suitable rotations of the wheel have been performed to allow mixing of the collapsed
structure. Section 7.7 summarises the information presented in this chapter.

7.2 Verification Methods

7.2.1 Introduction

There are two ways in which the designed structures can be verified. These are nu-
merically and experimentally. Each approach is described and some suggestions are
made about how both of these could be carried out. In the project, it was antici-
pated that both methods could be adopted. However, the effect of COVID-19 led to
limitations on what was achieved.

7.2.2 Numerical Verification Methods

Discrete Element Method (DEM) was introduced by Cundall and Strack (1979) and
has commonly been used in the field of geotechnics for numerically simulating soils
where continuum methods are not able to capture the characteristics in need of
defining (O’Sullivan, 2011). However, in these methods the calculation time can be
great if a large number of particles are included (O’Sullivan, 2011; Sakai et al., 2014)
and simplifications of particle shapes are normally adopted. For example, spheres
may be used to represent soil particles in the simulation and therefore the effects of
angularity are ignored (Izadi and Bezuijen, 2015).

The rise of physics engines allow for simulations of many objects that interact with
each other to be completed in relatively short computational times. There are two
types of physics engine: high-precision physics engines and real-time physics en-
gines. Real-time physics engines are typically utilised in videogames and are less
expensive computationally whereas high-precision physics engines can deal with
much more complex models but require much higher computational power.

As described in Section 2.2.4, previous literature exploring autonomous construc-
tion of irregular objects have focussed on numerically verifying build sequences by
identifying potential poses in a physics simulator (Furrer et al., 2017; Johns et al.,
2020; Johns et al., 2023; Liu et al., 2021). Pybullet physics engine is used in Liu et al.
(2021) and Bullet physics engine in Johns et al. (2020) and Johns et al. (2023), whilst
Furrer et al. (2017) did not name the physics simulator used but does mention Open
Dynamics Engine specifically in their related works section.

Box2D is an example of a physics engine that can be used on two-dimensional parti-
cles and there is precedent of this being used to model frictional soils (Li, 2020; Pyt-
los, 2015; Pytlos et al., 2015). Dynamic interactions are simulated between discrete
bodies and their continuous motion is calculated through a time-stepping scheme.
At each time step, the rate of change of movements are found and the variables for
each body are updated.

Pytlos et al. (2015) highlights two advantages of Box2D over traditional DEM. These
are that the physics engine enables fast real-time simulations which translates to
faster computational speeds for large particle systems and that soil macro-scale be-
haviour can be controlled by particle shape, size distribution and the coefficient of
friction. These are all physical properties of the soil being modelled and can be de-
fined beforehand. Li (2020) compared Box2D and showed how the time step can be
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much larger than DEM and other numerical methods meaning simulations can be
conducted at a faster rate for Box2D.

For a physics engine to be adopted in this project it is envisioned that Box2D would
have been investigated further as a potential numerical tool. As with Li (2020) and
Pytlos et al. (2015), Box2D could be adopted for biaxial testing of structures packed
by the algorithm, or even be expanded to conduct shear tests or a tilting table test
like that seen in Grillanda et al. (2021), Restrepo Vélez et al. (2014), and Santa-Cruz
et al. (2021). One of the main limitations of Box2D is its incapability to model con-
cave shapes. As irregular particles are being investigated in this project, it is desired
to be able to model concave shapes to truly represent all possible irregular rock sil-
houettes. Concave objects can be simulated by “gluing” convex shapes together in
which the shapes are locked together and will move and rotate with equal values.
However, this would mean particles are simulated using multiple particles and po-
tentially increase the total computational runtime.

7.2.3 Experimental Verification Methods

Methods of Testing Experimentally

Difficulties arise when testing two-dimensional systems experimentally when nor-
mally this would be adopted to test those which exist in three-dimensions. Tradi-
tional soil testing methods of biaxial or shear box tests whereas a tilting test had been
used to test retaining walls as previously mentioned in Section 2.2.1 (Grillanda et al.,
2021; Restrepo Vélez et al., 2014; Santa-Cruz et al., 2021). As testing is completed
in 2D, a confined space will be required to support the structure with potentially
the surface being exposed. With biaxial and shear box tests, the top surface would
need to be the testing plane for a force to be applied. Problems occur with move-
ment of particles and dilation. As particle shapes would be made from acrylic, they
would not be able to compress and rather than the structures strength being tested
the result would be more a test of the material strength.

The tilting table method also requires supports for the sides of the structure but is
one which could suitably be adjusted to test the strength of particle system. This
method measures the angle at which the structure fails. This is also known as the
angle of repose, which is widely investigated in the field of powder mechanics.

Angle of Repose

Angle of repose can be defined as the angle that differentiates the transition between
phases of a granular material (Liu, 2011). More generically, the angle of repose in a
noncohesive granular material is the steepest slope of unconfined material that can
be sustained without collapse measured from the horizontal (Lowe, 1976). In terms
of soil mechanics, this means the angle of maximum slope inclination at which the
soil is barely stable (Day, 2010). Above this slope angle, the material starts to flow;
below this angle, the material is stable. Values range from 25o for smooth spherical
particles to 45o for rough angular particles (Carrigy, 1970; Pohlman et al., 2006).
Al-Hashemi and Al-Amoudi (2018) states that the definition of the angle of repose
should be application specific due to the different types and descriptions.

There is evidence that angle of repose and angle of internal friction are related. An-
gle of repose is often assumed to be equal to the residual angle of internal friction
(Das, 2014; Santamarina and Cho, 2004). In Coulombs theory, the internal friction
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angle was assumed to be equal to the repose angle (Coulomb, 1776 as cited by Al-
Hashemi and Al-Amoudi, 2018). Terzaghi (1943) defined the angle of repose as a
specific angle of internal friction that is acquired when the soil is in its loosest state.
Emphasis should be placed on loosest state here. As Metcalf (1966) stated, the as-
sumption of angle of repose and angle of internal friction being equal is not always
correct as granular soils under low confining pressure is notably different compared
to granular soil under zero confining pressure. In addition, Coloumb’s theory is
based on assumptions such as the frictional force being independent of the contact
area, frictional force is linearly related to normal force, and heaped materials form
perfect concical shapes which is not always the case (Rackl et al., 2017a). For ex-
ample, it has been reported a decrease in normal forces could be associated with an
increase in friction forces (Deng et al., 2012).

Angle repose can be given as static or dynamic. The static angle of repose forms just
before instability of the slope (and after once the slope has settled again) whereas
dynamic is observed when grains are moving continuously down an inclined plane,
and is given as the angle of this plane (Cheng and Zhao, 2017). Despite different
methods and guidelines existing, there are no standardised methods for measuring
angle of repose (Rackl et al., 2017b). Figure 7.1 is taken Geldart et al. (2006) in which
it is stated that these four methods are the most common. These are the fixed height
cone method, the fixed base cone (or hollow cylinder method), the tilting table (or
tilting box) method, and the rotating cylinder (or rotating drum) method. Different
testing methods are outlined as follows.

FIGURE 7.1: Different methods of measuring angle of repose (Geldart
et al., 2006). Reproduced with permission © Elsevier.

Granular material forms a conical pile when it is allowed to fall freely from an orifice
onto a flat surface. Advantage can be taken of this experimentally to measure the
angle of repose by allowing granular material to flow through a funnel at a certain
height onto a base with known roughness. Example of this can be found in Geldart
et al. (2006), Miura et al. (1997a), and Nelson (1955). The funnel can either be fixed
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or raised slowly to keep the distance from the bottom of the funnel to the top of the
conical pile formed constant to minimise the effect of falling particles (Al-Hashemi
and Al-Amoudi, 2018). Depending on the funnelling method, two angles of repose
can be expressed. These are the internal and external angles of repose which exist
above the funnel from where the material has fallen (internal) and on the pile of
the deposited material (external) (L. J. Johnston et al., 2009). Where these angles
are measured are represented in Figure 7.2. Cho et al. (2006) demonstrated that the
internal angle of repose is greater than the external.

FIGURE 7.2: Examples of (a) internal angle of repose and (b) external
angle of repose as suggested by L. J. Johnston et al. (2009).

Another experimental method is the tilting box method as described earlier. Granu-
lar material is placed in the box and titled gradually until the grains begin to slide.
The angle at which the board is to the horizontal when particles begin to move is
measured to be the angle of repose (Liu, 2011; Pitanga et al., 2009). However, as
stated by Al-Hashemi and Al-Amoudi (2018), this method provides the coefficient
of static friction rather than the angle of repose. Figure 7.3 is an example of this
experimental setup taken from Pitanga et al. (2009) where the angle of repose was
measured for a soil with a soil-geosynthetic interface as well as a soil-soil interface.

An alternate method that determines static angle of repose is the hollow cylinder
method (used in Al-Hashemi and Al-Amoudia (2018)). The steps of this method
are visualised in Figure 7.4. Granular material is poured into a cylinder resting on
a solid, rough base. The cylinder is then lifted at a rate less than 2ms−1 (Salawu et
al., 2013) until the cylinder is removed and the material has piled to form a conical
shape. The angle of the slope is the angle of repose (Al-Hashemi and Bukhary, 2016;
Lajeunesse et al., 2004; Liu, 2011).

The tilting cylinder method is another proposed technique to measure the angle of
repose of granular soils (Mitchell and Soga, 2005). Soil is poured into a water-filled
graduated cylinder which is then tilted before being restored to its vertical position
(Al-Hashemi and Al-Amoudi, 2018). The slope angle of the residual soil is taken as
the angle of repose.
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FIGURE 7.3: Inclined plane device used in Pitanga et al. (2009) for
tests on soil–geosynthetic (a) and soil–soil (b) interfaces. Presented

here with permission from Elsevier.

(A) (B) (C)

FIGURE 7.4: Hollow cyclinder method for measuring static angle
of repose as described by Al-Hashemi and Al-Amoudia (2018) and
Salawu et al. (2013). The figures represent (a) A hollow cylinder with
sand poured into it resting on a rough base (b) the cyclinder being
lifted (c) the cylinder clear of the sand which is now resting in a heap.
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(A) Upper (B) Lower

FIGURE 7.5: (a) Upper angle of repose at the beginning of an
avalanche (b) Lower angle of repose at the end of an avalanche with

original upper angle of repose indicated by dashed line.

Cheng and Zhao (2017) used a motor-driven rotating drum to measure angle of re-
pose. This can be described as a dynamic angle of repose. The inner diameter of
the drum was 28.90cm and had a depth of 11.50cm. The drum was transparent so
that the soil inside could be seen and a camera was positioned horizontally to record
the front of the drum. A video was recorded at a rate of 25 frames per second and
the duration of each video was so that at least 20 avalanches were captured. Black
paper was used as a background to give more definition between particle and air in
the video for detection. Three different angles of repose were identified. The upper
angle of repose formed at the inception of an avalanche, the lower angle of repose
at the end of an avalanche and the dynamic angle of repose characterised with con-
tinuous sediment transport down the slope. For each test the drum was half-filled,
no matter the diameter of the particle. Slope measurements were conducted under
both dry and submerged conditions. Upper and lower angle of repose are presented
in Figure 7.5.

At a low rotating speed, sediment grains in the drum moved together until the slope
reached its upper angle. This demonstrated that the material acts as a rigid body
(Cheng and Zhao, 2017). Increasing past the upper angle created an avalanche in
the material, transporting grains down the slope. It is stated that at the end of the
avalanche, a new slope formed at a lower angle. At a higher rotating speed, the slope
angle would approach a constant due to sediment grains continuously rolling down
the slope. This indicates the beginning of the rolling stage, and the angle observed
corresponds to the dynamic angle of repose. Under dry conditions, it was found
that a particle size of 1.29mm gave a lower angle of repose of roughly 35o and an
upper angle of repose of roughly 41o. Measurements show that the average of the
upper and lower angle of repose is approximately equal to the dynamic angle of
repose. (Xiao et al., 2005) also found this to be acceptable for other shapes of grains.
In addition, it was found that both upper and dynamic angle of repose increase
slightly with increasing grain diameter whereas lower angle of repose is not affected
and appears to remain constant.

For the use of this work, it is assumed that angle of repose is a good variable to



334 Chapter 7. Verification of Strength

measure the strength of the structure created. Evesque and Rajchenbach (1989) in-
vestigated factors that affect slope stability of granular materials and concluded a
factor governing the stability of the slope is angle of repose. While angle of repose
may not be directly related to internal angle of friction, it can give a good indica-
tion of the behaviour of the soil. Therefore, in the two-dimensional experiments
conducted in this research, angle of repose will be used to compare the strength of
two-dimensional packing structures.

7.3 Experimental Setup

The design and setup of an experiment for measuring angle of repose has been com-
pleted as part of this study. The hypothesis behind the experiment is to determine
the dynamic angle of repose of different packing structures of two-dimensional par-
ticle shapes made from acrylic. Of the methods for testing angle repose investigated
in Section 7.2.3, the rotating drum technique was seen as the most suitable for this
project. Use of the drum removes the need for supporting sides whilst a force is
exerted for testing. Instead, the supporting structure is able to move the system and
gravity acts as the force to create failure in the structure.

The equipment used for the experiment resembles that used in Cheng and Zhao
(2017) and has been made from acrylic plastic and laser cut using the facilities in the
Diamond Building at the University of Sheffield. The equipment consists of a 0.6m
diameter wheel with an internal diameter of 0.5m. The two outside plates are made
from 10mm thick acrylic and the inside ring is cut from 6mm thick acrylic. The wheel
sits on an axel that spins the equipment and is supported by a metal stand which can
tilt so the wheel can lie horizontally before being shifted to the vertical. The pieces
of the equipment are held together with wing nuts and can be detached from each
other. Figure 7.6 presents the rig with no particles loaded into the centre.

Particles are laser cut from acrylic in the shapes produced by the Fourier-Voronoi
method described in Section 3.6.1. Coordinates of the shape outline were exported
into an AutoCAD file. The laser has a diameter of 2mm which cuts the acrylic re-
moving 0.1mm of material at the edge. Therefore, the shapes in the AutoCAD file
were increased in size to allow for this. The plastic particles were cut from 6mm
thick acrylic - the same diameter of the inside of the wheel not including the wash-
ers between the internal pieces where wing nuts are located.

The rig can be adjusted to be tilted horizontally for the placement of particles as
demonstrated in Figure 7.7 and the front face removed. Particles are placed in the
desired arrangement before the face of the wheel is reattached and the rig can be
tilted back to be into the vertical plane. As the algorithm produces the build se-
quence of particles in a layout of coordinates, this can be exported to AutoCAD. It is
envisioned that this could then be printed to scale and placed beneath the back face
of the rig. Then particles can be placed in the exact position as designated by the
algorithm for testing of the produced structure.

To produce build sequences, the domain in the algorithm would need to be adjusted
to be circular. However, this would not be an issue as Asymptote has an inbuilt
function that can produce circles defined as a path which is required for the placing
stage described in Section 3.4.1. Furthermore, within the algorithm the coefficient
of friction is taken as 0.5 currently. Testing would need to be completed to find the
coefficient of friction between an acrylic-to-acrylic interface between the edges of the
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FIGURE 7.6: Image of the wheel setup used for the experiment.

FIGURE 7.7: Sequence of images demonstrating the filling procedure
of the rig.
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particle where laser cutting has been performed. This value could then be adopted
within the algorithm. If it is found to be greater than 0.5, a value of 0.5 could remain
to ensure collapse does not occur for the built structure before testing.

The rig is rotated by an attached motor that turns the whole system. The angle
of repose is measured by identifying when the system initially fails. This can be
described as when particles start to overturn at the top of the heap. It is thought
that two angles of repose will be experienced: an initial angle of repose before
an avalanche has occurred and an angle of repose when the particles have mixed.
Therefore it is important to ensure the duration of rotating for the experiment is
enough to record both these results. Cheng and Zhao (2017) suggests that twenty
avalanches are required to be able to measure both of these values.

Despite being the same thickness as the internal ring of the wheel, particles still move
when inside the wheel and rotation is applied. This is due to the washers between
the inner and outer pieces of the wheel. From initial testing of the experiment, it has
been determined that an acrylic-acrylic border located between the circumference of
the wheel and the particles leads to slipping of the structure as a unit mass rather
than the expected overturning of particles at the top of the heap. To counteract
this, Kinesiology tape is applied to this surface to create a rougher interface. The
higher friction exerted on the touching acrylic particles stops the slipping of the
structure as the wheel rotates and instead overturning of particles is exhibited. If this
experiment is carried out in the future, testing will be carried forward for different
possible materials (either the Kinesiology tape or perhaps a rubber interface) and
the coefficient of friction for the rough material to acrylic interface is required to be
determined. At this stage, it is thought that the Kinesiology tape is suitable as it
prevents slipping and is easy to apply to the inner circumference but the lifespan of
the tape and effect of long term testing is not known.

It is recognised that the interface between the faces of the wheel is most likely ex-
erting a frictional force on the inside particles. Further testing is required to investi-
gate this. To approach this problem, lubrication could be applied to create friction-
less boundaries. This may require additional thickness for the interior of the wheel
which could be created by adding washers between acrylic panels or readjusting the
inside ring to be cut from acrylic of increased thickness if a larger amount of space
is required.

The following describes the methods used for completion of the experiment.

1. The equipment will begin in the horizontal plane with the wheel lying flat.
The layout of a packing structure determined using the algorithm described in
Chapter 3 will be placed behind the rear side of the wheel. This can be attached
by blue tac so that it aligns with the edges of the wheel and lets the user know
the required location of particles.

2. The packing structure is built using the acrylic particle shapes. This will be
placed by hand and take up no more than half of the area of the wheel.

3. The front face of the wheel is reattached and the wing-nuts suitably tightened.
The equipment is then moved to the vertical position.

4. A highspeed camera will be used to record the experiment. It is to be ensured
at this stage that this is recording.
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5. The experiment will then be started and the wheel will be rotated by the at-
tached motor at the back of the rig.

6. The camera will record the movement and overturning of the particles in the
structure. As the particle moves, the packing structure will be lost. The exper-
iment is recorded for a minimum of 20 avalanches as suggested by Cheng and
Zhao (2017).

7. The experiment is stopped and once the wheel has become stationary it can be
returned to the horizontal position and the particles can be removed.

Repeatability is possible in this experiment so long as the particles are placed in
the same location. Therefore, care will be required to ensure particles are placed as
accurately as possible in the determined location. As part of a future study, pur-
posely placing particles with certain levels of inaccuracy to replicate error when
being placed by a robot or utilising a suitable robot to pack particles could be in-
vestigated to determine if there is an effect of the angle of repose.

7.4 Particle Identification

Each acrylic particle is designed with a unique pattern for detection so that parti-
cle movement and rotation can be analysed. Images from the camera can be anal-
ysed and the location and orientation of the particle detected using code written in
MATLAB that utilised the detection of circles function. The code is yet to be tested
on images from an experiment using the rig but has been tested on images using
a DSLR camera and a small selection of particles. The circles used for the unique
coding system were successfully detected and particles were identified positionally
between different images where they were positioned in different locations.

Each particle has a unique detection code engraved into the acrylic that is applied by
the laser printer at the same time as being cut. It has been found that colouring these
engravings in red helps with detection of these circles. Further testing is required to
see if this is true for the experimental set up and if the current engraved circles are
of a suitable size for identification. Furthermore, it is thought a black card should be
used as a background for the experiment to help with the detection of particles like
in Cheng and Zhao (2017). This may only be relevant if the particles are opaque as
with Cheng and Zhao (2017) rather than transparent like in this project.

Figure 7.8 gives an example of a particle generated using the Fourier-Voronoi method.
Lines have been indicated on the figure to better visualise the angles for particle
identification. The pattern is presented and red highlighter is applied for easier de-
tection by the camera. The largest circle is positioned at the centre of mass of the
particle and another is positioned at the closest edge to the centre. Smaller circles
are located around the largest circle. Circles are detected using the MATLAB func-
tion imfindcircles.

The orientation of the particle is determined by the placement of the circle at the
centre of mass and the circle at the closest edge. The particle can be said to be at its
“standard” orientation when these circles align so that the centre of mass is below
the closest edge point. Detection of the particle can let the orientation be determined
by the angle from this standard orientation determined by a clockwise angle.

The smaller particles around the edge of the centre of mass are used for identification
of the particle. Each represents a specific angle code. For example, Figure 7.8 has an
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FIGURE 7.8: Example of an acrylic particle shape whose shape is de-
fined by the Fourier-Voronoi method.

angle code of [135, 180]. This relates to the degrees that the smaller circles are located
in relation to the plane between the centre of mass circle and closest edge circle. From
the standard orientation, these circles are located at 135o and 180o from the vertical
plane between the closest edge and the centre of mass calculated clockwise. Figure
7.9 presents the possible locations for the angle codes on the particle with the angle
relating to each position around the centre of mass when at standard orientation.

The relationship between using this sort of pattern as the identification code relates
to

N = 2n (7.1)

where n is the number of identification circles and N is the number of possible com-
binations. From this, the total number of unique angle codes from the 8-circle design
in Figure 7.9 is to 256. Identification circles are known to belong to a certain centre of
mass as they are always closer to the centre than the circle that represents the closest
edge. Therefore, it is not possible for them to mistakenly be identified for a different
particle as they are always grouped to the centre circle they are closest to. Any circles
further away than the closest edge circle is disregarded as it is known this belongs
to a different particle.

For each image in the experiment, the orientation of the particle can be determined
and the specific angle code used to identify the particle. The differences in orienta-
tion between images from the experiment can help determine the rotation of parti-
cles. As the wheel is also being rotated, images from the camera are required to be
adjusted to allow for this. This can be done by using markers on the wheel face to
rotate images so that rotation of the whole system created by the wheel is nullified.
The location of the centre of mass of the particle in the image can be used to identify
any horizontal and vertical movements and determine when particles are toppling
in the system.

Additionally to being able to track when collapse first occurs and accurately deter-
mine the angle of repose, the unique code for each particle means that it can be
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FIGURE 7.9: Circle to indicate centre of mass surrounded by identifi-
cation circles for the angle code. Each identification circle is labelled
with its specific angle that its position relates to when at standard ori-

entation.

identified when certain particles tend to cause collapse above others. For example,
if a particle is very rounded and can normally only provide a limited number of
contacts with other particles, this might cause collapse in the system earlier than
if a more suitable particle was placed. Using this identification combined with a
characterisation of the particles that is described in Section 8.6 would highlight any
common features that arise in particles causing collapse in the system.

7.5 Tolerance of Errors

An objective for this study is to investigate the effect of placement error for particles
when being placed in the system. As with all techniques, there will be error whilst
this is being conducted. The robot adopted for autonomous construction of rock
materials will not be able to guarantee the placement of the stone in the exact location
and also a lot of the accuracy of the robot will depend on the accuracy with which
it is able to detect stones and the already existing structure. Furthermore, the use
of a gripper will mean the manipulation of the robot is not as capable as what can
be simulated in on a computer. Trouble may be had when placing and its possible
stones will move slightly during construction.

Therefore, within the verification of strength, a study into the tolerance of errors was
to be conducted. The purpose of this investigation is to find the tolerance of errors
for a robot that could pack particles and show that the effect of shear strength is neg-
ligible for that level of tolerance and therefore a system where a robot is employed
is reasonable for creating precision structures. Originally it was envisioned that this
could be done as a desk study using an anthropomorphic robot similar to Furrer
et al. (2017). However, instead of a gripper end-effector, a suction cup may be used
so that it is suitable for picking up the acrylic particles that would be used for the
experiments conducted using the methods in Section 7.3. This could be done as a
desk-level study where the robot could pack particles into the rotating drum in their
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desired location. Displacement from their intended position could be marked and
the structure could be tested. However, due to time limitations this was out of the
scope of this project.

If the study proposed in this chapter had been carried out, tolerance of errors could
have been tested by purposely displacing particles when packing by hand to repli-
cate what might occur when using a robot if a robot could not be sourced for use.
Displacement could be measured by the area of the particle displaced from the orig-
inally intended position. Different percentages of displacement could be tested and
all could be compared back to the structure with no displacement when positioning.
The use of a printed layout of the structure attached to the back of the wheel will
help ensure that particles are positioned where they are desired, and printouts can
be used of adjusted particle placement to guarantee the percentage of displacement
is predetermined.

Alternatively, it is thought that as the wheel is adjusted into the vertical position
that particles will shift due to the movement of the rig. Images of the structure can
be compared to the layout of the original particles expressed by the algorithm as a
layout of coordinates. From here, displacement can be calculated again by the area
of the particle displaced from the original position.

Percentage displacement would be found using

Displacment % =
Area of particles displaced

Original total area of the particle
(7.2)

Two methods can be adopted. Either all particles can be displaced slightly or a select
few particles can be displaced by large amounts from the original position.

It is expected that displacements of the particles would lead to lower initial angles
of repose, with the more displacement leading to lower differences compared to the
original angle of repose of the structure with no displacement. However, recognise
that if a particle was displaced into a more optimal position then this would actually
lead to a higher angle of repose.

7.6 Expected Results

The dynamic angle of repose can be found using the movements of particles in the
images. When suitable rotation and movement is seen in the structure, the angle
can be measured at which the structure has rotated from the original position to the
position at failure and avalanching has occurred. As stated before, an initial angle of
repose is to be measured as well as an angle of repose of the mixed particles.

It is hypothesised that the initial angle of repose is to be greater than that of the
mixed angle of repose, thus demonstrating that the packing arrangement would
exhibit a greater strength than particles randomly packed. Structures created using
the algorithm described in Chapter 3 are to be tested as well as weighting coefficients
which do not create suitable structures and randomly placed particles to compare
and verify that the algorithm is producing suitable results.

It is not known if there will be any key characteristics for particles that tend to cause
collapse in the structure or if there are any particles that will tend to cause specific
moments of collapse. The case may be that the first particles to fail are always those
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at the top of the structure with fewer points of contact or are placed in more unstable
positions. However, identifying particles which are the first to collapse and looking
at the characteristics of these particles will provide information if there is any link.
If there is, it is expected that the particles more suitable to packing will provide less
causes of collapse in the structure. These are the ones which suitably match the
features described in Section 2.3 that are suggested to lead to high shear strengths.
Of these features, less angular particle shapes could perhaps be those which are
involved in more collapsing events of the structure.

When studying the tolerance of errors as described by Section 7.5, it is expected
that the higher the error of placement (i.e. the greater the displacement percentage),
the greater the difference of initial angle of repose exhibited by the structure from
testing. It is thought that the more particles displaced from the designed position
produced by the algorithm in Chapter 3 with the objective function to express high
shear strengths will have lower angles of repose compared to the structure with less
no displacement. It is recognised that displacing a particle into a more optimal posi-
tion will lead to higher angles of repose. However, assuming the packing system of
the algorithm is efficient, displacing a particle should not lead to a more optimal so-
lution. It is expected that for the level of tolerance that would be seen when utilising
a robot in an autonomous construction scheme that the level of error in placement
would be a negligible amount which is the purpose of this study. Furthermore, is
thought that once the systems have experienced 20 avalanches in the system, the
mixed angle of repose will equal that for the packing with no displacement.

7.7 Summary

Although testing of the outputted structures from the algorithm described in Chap-
ter 3 was not completed, the method for verification of shear strength is presented
in Chapter 7. The described method remains as work to be completed in the future
as time limitations did not allow for it to be completed during this project.

Of the possible methods available, Section 7.2 discusses the potential options avail-
able for testing. These involve numerical verification methods such as DEM or the
use of a physics engine such as Box2D to model the two-dimensional particle shapes.
It is possible to perform biaxial testing (Li, 2020; Pytlos et al., 2015) of the structures
within Box2D or potentially shear tests or tilting table tests as seen in Grillanda et al.
(2021), Restrepo Vélez et al. (2014), and Santa-Cruz et al. (2021). However, Box2D is
incapable of modelling concave shapes. Therefore, particles would need to be con-
vex or adjusted to be made of convex shapes fixed together to create the concave
shapes produced by the code provided by Mollon (2023).

Experimental verification methods are also discussed in Section 7.2.3. As the parti-
cles to be modelled are two-dimensional, this causes issues with testing methods if
a biaxial or shear box test was adopted and a confined space would be required to
support the particles. A tilting table method is possible which would measure the
angle of repose. As stated, there is evidence that angle of repose and internal fric-
tion angle are related. As a tilting table measures the angle of repose of a structure,
additional methods of measuring angle of repose are discussed in Section 7.2.3. Of
these, a suitable solution would be that of a rotating drum for testing the structures
produced by the algorithm.
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Section 7.3 presents the experimental set up for the chosen rotating drum method.
This consists of a 0.6m diameter wheel with an internal diameter of 0.5m made of
10mm thick acrylic with a 6mm thick acrylic inside ring to provide spacing between
the panels. The wheel is spun on an axel supported by metal stand. The set up can be
found in Figures 7.6 and 7.7 shows the wheel being loaded with the two-dimensional
acrylic particles that would be used to represent the structure. As stated in Section
7.3, to produce a suitable build sequence the domain in the algorithm would need
to be adjusted to be circular. Additionally, the frictional coefficient for an acrylic-to-
acrylic interface would need to be determined and adopted as the frictional coeffi-
cient within the algorithm. The sequence for performing the experiment is described
in Section 7.3 by a seven step procedure.

Each acrylic particle is to be given a unique code. The coding system is presented
in Section 7.4 and an example is shown in Figure 7.8. Testing was performed using
a DSLR camera and it was confirmed that the circle system used could be detected
by the imfindcircles MATLAB function and that particles were identifiable between
images. Using the system of circles surrounding a centre circle, a potential 256 pos-
sible combinations can be produced for particle identification. Orientation as well as
location of the particles are to be measured to detect movement and to identify the
moment of initial collapse.

Section 7.5 describes the method in which the tolerance of errors of in placement
could be tested. It is envisioned that autonomous construction when done by a robot
will lead to differences in positioning compared to the designed position of the struc-
ture. The purpose of this study is to find the tolerance of errors for a robot and show
that the effect of shear strength is negligible for that level of tolerance. The method
for this would be to test structures with particles displaced and compare them to the
structures with no purposely induced displacement. Displacement can be measured
by the total area of particles outside of the area their intended positioning.

Expected results of the experiment are described in Section 7.6. The results that
should be found are

• the initial angle of repose of the system which is the angle at which the first
moment of collapse occurs

• the mixed angle of repose which is the angle of repose formed when particles
are fully mixed in the system (expected to be after 20 avalanches as suggested
in Cheng and Zhao (2017))

• characteristics of particles that tend to cause collapse in the structure if there
are any

• systems that experience displacement from the original position will exhibit
lower angles of repose compared to the structure with no displacement

• the level of error that causes a big shift from original angle of repose will be less
than that experienced when utilising a robot in an autonomous construction
method.

• the mixed angle of repose for the displaced tests will be equivalent to the angle
of repose of the same test with no displacement of particles

It is hypothesised that initial angle of repose of the structure will be greater than that
of the mixed angle of repose if the structure is designed to have high shear strength.
It is not known if there will be any key characteristics for particles that tend to cause
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collapse in the structure. However, if there are then these are suggested to be those
which suitably match the features described in Section 2.3 that are suggested to lead
to high shear strengths. Of these features, less angular particle shapes could perhaps
be those which are involved in more collapsing events of the structure.
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Chapter 8

Discussion

8.1 Introduction

The focus of this chapter revolves around the different aspects of the thesis and pro-
vides conversation on each topic. Firstly, the results of the Tetris Scenario and Soil
Particle Scenario are discussed in Section 8.2 and Section 8.3 respectively. These
state the selected solution for coefficients of weighting and compare them to control
values as well as other coefficient results. Discussion for the Tetris Scenario is had
around the topics of the domain size employed for packing (Section 8.2.3), the poten-
tial use of backtracking (Section 8.2.4) and the required accuracy of the coefficients
in the objective function (Section 8.2.5). Section 8.3 discusses the investigation con-
ducted for the Soil Particle Scenario. Aspects that are considered include MRJ and
its use as an indicator for strength (Section 8.3.1), the effects of reducing the number
of candidate poses in the discretised method (Section 8.3.2), improvements on the
stability check (Section 8.3.3) and a discussion around the results produced by co-
efficients of weighting determined to be the optimal solution for the Tetris Scenario
(Section 8.3.4).

Section 8.4 discusses methods which could be employed to improve results in terms
of optimising shear strength of the structure. These methods are adapted from work
found in the literature reviewed in Chapter 2. Section 8.4.1 discusses the use of us-
ing permutations of particle order delivered to the algorithm and testing multiple
configurations of these. The concepts of the Best Fit Method and All Permutations
Method are introduced with the increase in computational time to perform this con-
sidered. Section 8.4.2 considers discarding particles or adapting them by tooling
methods if they are deemed unsuitable for packing. This can either be due to par-
ticle shape or consistent rejection for placement in the system. Furthermore, the
placement of reinforcement strategically in areas of identified weakness can be em-
ployed to increase localised shear strength and therefore overall shear strength and
his is discussed in Section 8.4.3.

Enhancement of the objective function is focused on in Section 8.5. A focus on the
effect of D in the objective function as the particles fill the domain is made in Section
8.5.1. Furthermore, the choice of a first-order equation is discussed in Section 8.5.2.

In this project, particle shape is not considered as it is not known what type of mate-
rial may be available which may be locally sourced on or near-from site. However,
it has been shown that particle shape does affect the shear strength of the structure.
Therefore, the possibility of characterising and quantifying particle shape to inform
the algorithm for more intelligent material selection is introduced in Section 8.6.1.
Section 8.6.2 reviews the methods for classification introduced in Section 2.5 and
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determines from the review of the literature in Chapter 2 that parameters required
for consideration are circularity, elongation and convexity. Methods for quantifying
these are specified in Section 8.6.3.

Section 8.6.4 refers back to the particle outlines produced by the software provided in
Mollon (2023) in Section 3.6.1 and reflects on the fact that no comparison was made
with actual mining waste or rock particles. It is suggested this could be done through
the adoption of the parameters discussed in Section 8.6.3 or through determining the
Fourier descriptors using methods outlined in Bowman et al. (2001).

The main limiting factor to the work completed in this project is the extended com-
putational runtime exhibited when packing in the Soil Particle Scenario. Consider-
ation on methods to increase the computational speed is presented in Section 8.7.
These methods include parallelisation so that multiple positions in the system can
be trialled simultaneously, the use of bitwise operations for the packing of particles
in the discretised form as well as caching or memorisation of information to prevent
repeating calculations whilst packing.

The prevention of runs developing in the structure are highlighted as an important
factor for creating DSRW by Vivian (1976) and Adcock (2012). However, disrup-
tion of runs are adopted as a method for quantifying results rather than a scoring
criteria within the objective function. Section 8.8.1 discusses the inclusion of dis-
rupting runs in the objective function and introduces the term J and its relating
coefficient of weighting CJ . Moreover, Adcock (2012) highlights the problem with
multi-directional runs in the system - either at diagonals or in a zipped layout - and
identification of these running joints is introduced in Section 8.8.2.

The algorithm as a solution to the 2BP problem is considered in Section 8.9.1 as it
was seen that packings produced in Chapter 5 were seen to outperform the DBL
heuristic for solving bin packing problems. Use of the algorithm as a method for
specimen generation is also discussed in Section 8.9.2. Furthermore, alternate ar-
eas of improvement are explored in Section 8.10 discussing use of an autonomous
construction method on the backfill of a retaining wall as well as the inclusion of
hybrid materials. These are considered to highlight the possibilities when it comes
to autonomous construction.

Finally, a discussion is held in Section 8.11 around extending the algorithm into
three-dimensions to replicate packings of real-life scenarios. Consideration of what
is required for each scoring criteria as well as further heuristics that might be re-
quired.

8.2 Discussion of Tetris Scenario Results

8.2.1 Comparison of Results

Section 5.6 presented results for the combination of (CV=1, CD=1.6 CV=0.4, CCN=0.045)
as well as the determined solution from Hoodless and Smith (2023) at location (CV=5,
CD=1.25, CV=0.4, CCN=0.01). As previously stated in Section 5.6, the number of in-
stances of outperformance between the two results suggest similar levels of packing
in regards to minimising void ratio of the system for the different combinations of
weighting coefficient. However, it was determined from visual inspection that for
(CV=5, CD=1.25 CV=0.4, CCN=0.01) that canyoning is present in the system and final
void ratios are not a true reflection for some of the packings. Void ratio is calculated
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FIGURE 8.1: Violin plots for (a) (CV=1, CD=1.6 CV=0.4, CCN=0.045)
(b) (CV=5, CD=1.25 CV=0.4, CCN=0.01) (c) (CV=1, CD=0.6 CV=0.2,

CCN=0.015).

using the area under the placement surface and therefore canyons require a capping
particle to be reflected in the final result.

An alternative potential location for an optimal solution was also investigated in
Section 5.6. This was at (CV=1, CD=0.6 CV=0.2, CCN=0.015) and comparison between
this and (CV=1, CD=1.6 CV=0.4, CCN=0.045) was performed. Again, like with (CV=5,
CD=1.25 CV=0.4, CCN=0.01), an equivalent level of packing is suggested by the num-
ber of instances where each location out performed the other. Just like with (CV=5,
CD=1.25 CV=0.4, CCN=0.01), it was seen that canyoning was occuring in the systems
and a lack of capping particle was leading to void ratios not truly representing these
packing results

The range of void ratios produced by each coefficient of weighting combination in-
vestigated in Section 5.6 are plotted as violin plots in Figure 8.1. The frequency of re-
sults for (CV=5, CD=1.25 CV=0.4, CCN=0.01) and (CV=1, CD=0.6 CV=0.2, CCN=0.015)
closer to e=0 is higher compared to (CV=1, CD=1.6 CV=0.4, CCN=0.045). This is due
to the number of events being misrepresented where canyoning occurs without the
capping of that void with the placement of a final particle as already described.
Furthermore, the tail of violin plot for (CV=1, CD=1.6 CV=0.4, CCN=0.045) is much
longer. This is due to a single result of a packing producing a void ratio of e=0.138,
the structure of which is presented in Figure 8.2. From examining the packing, it can
be determined that the void created is unfortunate and if Bar-tetromino had been
produced by the particle order before Particle 18 or 19 then the void ratio of the sys-
tem would have finished with a much lower value. An equivalent hypothesis can be
made for how each packing could be improved for alternate particle delivery orders,
however the result presented in Figure 8.2 is unique in that it is the only one in this
range of values for (CV=1, CD=1.6 CV=0.4, CCN=0.045).

Table 8.1 includes the maximum void ratio for each coefficient combination as well
as minimum void ratio and quantile values Q25, Q75 and Q90. For the mimimum
value of e achieved, Q25 and Q75 values for each weighting coefficient combination
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FIGURE 8.2: Packing structure for weighting coefficient (CV=1,
CD=1.6 CV=0.4, CCN=0.045) for the particle order that produced the

largest value of e for the system. e=0.138.

is similar. At Q90, (CV=1, CD=1.6 CV=0.4, CCN=0.045) is lower than the other com-
binations. Furthermore, whilst the tail of the violin plot for (CV=1, CD=1.6 CV=0.4,
CCN=0.045) is longer, it is also thinner which indicates a lower frequency of void
ratios at a higher value. From this, it can be concluded that although the maximum
void ratio for (CV=1, CD=1.6 CV=0.4, CCN=0.045) is higher than (CV=5, CD=1.25
CV=0.4, CCN=0.01) and (CV=1, CD=0.6 CV=0.2, CCN=0.015), this is an outlier and
typically the packings produced by (CV=1, CD=1.6 CV=0.4, CCN=0.045) will lead to
better results. This confirms the proposal of (CV=1, CD=1.6 CV=0.4, CCN=0.045) as
the optimal solution of weighting coefficients investigated from Chapter 5.

Coefficients of Weighting Min e Q25 Q75 Q90 Max e
(CV=1, CD=1.6 CV=0.4, CCN=0.045) 0 0.011 0.036 0.057 0.138
(CV=5, CD=1.25 CV=0.4, CCN=0.01) 0 0.011 0.0395 0.0665 0.095
(CV=1, CD=0.6 CV=0.2, CCN=0.015) 0 0.011 0.036 0.065 0.080

TABLE 8.1: Different quantile values from void ratio results for a sam-
ple size n=100. Maximum and minimum void ratio also presented.

From the analysis here, it can be appreciated that a different method of quantifying
final void ratio to reflect the packing structure with the consideration of canyons
is needed. Therefore, it is suggested the void ratio of the whole domain area, in-
cluding above the placement surface, could be taken. This is referred to as et and
results are presented in Table 8.2 for n=30 and n=100 for the different combinations
of weighting coefficient investigated in Section 5.6 as well as the DBL heuristic.

Each value for et is similar for packings with placements scored by the placement
function with ∼22 particles being packed on average, with the DBL heuristic re-
sulting is higher et values as a result of 21 particles being packed on average. et is
another way of expressing the number of particles packed in the system, with Figure
8.3 showing resulting et values for the number of particles placed in a 10x10 square
domain. Therefore, total void of the system can not be employed to get a better un-
derstanding of the structure as if equivalent numbers of particles are packed then et
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FIGURE 8.3: Void ratio, et for the number of particles placed in the
domain.

will be of equal value. This is demonstrated by Figure 8.4 where it is seen that volin
plots of et for (CV=1, CD=1.6 CV=0.4, CCN=0.045), (CV=5, CD=1.25 CV=0.4, CCN=0.01)
and (CV=1, CD=0.6 CV=0.2, CCN=0.015) are almost indistinguishable.

Coefficient of Weighting et (n=30) et (n=100) Mean No. Particles
(CV=1, CD=1.6 CV=0.4, CCN=0.045) 0.1359 0.1322 22.08
(CV=5, CD=1.25 CV=0.4, CCN=0.01) 0.1326 0.1326 22.07
(CV=1, CD=0.6 CV=0.2, CCN=0.015) 0.1328 0.1308 22.1

DBL 0.166 0.179 21.2

TABLE 8.2: Void ratio, et, for the different results explored in Section
5.6 and DBL heuristic and the corresponding number of particles to

be placed in a 10x10 square domain to achieve et for n=100.

8.2.2 Comparison to the DBL Heuristic and Random Packing

Verification of the algorithm was conducted against control heuristics following DBL
rules and random packings using RAND, RAND-0F1 and RAND-0F2. Results of
these are located in Section 5.7. From the produced MVR results, it is clear that
all combinations of weighting coefficients explored in Section 5.6 outperform these
other heuristics. This suggests that the algorithm is efficient at packing particles
and that the objective function based on criteria that indicate a high shear strength
can be utilised to create structures with minimal space between then for packing
tetrominoes.

It was expected that random packing would produce MVR values extremely high.
For the DBL heuristic, MVRs were much lower but still roughly double the MVR
values of packings where positioning is chosen by Wij using the objective function
and almost triple MVR values of the most optimal solutions expressed in Section 5.6.
It is considered that the algorithm could be adopted as a solution for 2BP. Further
discussion around this topic is located in Section 8.9.1.
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FIGURE 8.4: Violin plots of void ratio, et, for packings using the
objective function for coefficient values (a) (CV=1, CD=1.6 CV=0.4,
CCN=0.045) (b) (CV=5, CD=1.25 CV=0.4, CCN=0.01) (c) (CV=1, CD=0.6
CV=0.2, CCN=0.015) and for packing governed by (d) DBL heuristic.

8.2.3 Limited Domain Size

The selection of (CV=1, CD=1.6 CV=0.4, CCN=0.045) as the optimal solution for the
Tetris Scenario is based on avoiding canyoning in the system. As described in Sec-
tion 5.6 for Figure 5.44b, canyoning leads to higher void ratios when these gaps are
capped by the next placed particle. Due to the domain size, capping of canyons
occurs as particles are always fit into the domain if possible regardless of the void
created in the system. Therefore, the results are greatly affected by particle order
towards the end of the packing and packings where less particles can be fit into the
10x10 square domain are inadvertently rewarded if this avoids capping a canyon.
Additionally, if the particle could be placed elsewhere and a Bar-tetromino placed in
the canyon, this solves the issue that has arisen.

By extending the domain, the Tetris Scenario better resembles that which is found
in the videogame. Figure 8.5 presents two results for the packing in a domain of
10x20 squares. Coefficients of weighting for this packing are (CV=5, CD=1.25 CV=0.4,
CCN=0.01) as this experienced canyoning due to its larger effect of CVVAB in the
objective function. Each domain is packed with 30 tetrominoes, as this was seen as
a upper limit that usually exceeded the available space of the domain when 10x10
squares. Figure 8.5 does not show the whole length of the domain as above the
placement surface is empty space. The heights that are represented are 14 squares
and 16 squares for Figure 8.5a and Figure 8.5b respectively.

From viewing Figure 8.5 it is determined that the more available space leads to less
voids created in the structure. This is due to particles that are placed towards the end
of the packing and are forced to cap voids in the system have more alternative loca-
tions to be positioned. Figure 8.5a presents what appears to be a very good packing
for the Tetris Scenario. Figure 8.5b scores low for void ratio, but it can be appreci-
ated that canyoning is still occurring and that this will lead to the maximum domain
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height being reached sooner, although it is envisioned that if the next tetromino is
Bar shaped this will be placed above Particle 14 to fill in the canyon.

Table 8.3 presents MVR results of packings into a 10x20 square domain using weight-
ing coefficients analysed in Section 5.6. With the extended domain, (CV=1, CD=1.6
CV=0.4, CCN=0.045) appears to actually perform worse than (CV=5, CD=1.25 CV=0.4,
CCN=0.01) and (CV=1, CD=0.6 CV=0.2, CCN=0.015). This is thought to be due to
canyoning not affecting the overall void ratio as it is likely that B tetromino will be
delivered by the particle order before the top of domain is reached.

Coefficients MVR (n=30) MVR (n=100)
(CV=1, CD=1.6 CV=0.4, CCN=0.045) 0.0135 0.0153
(CV=5, CD=1.25 CV=0.4, CCN=0.01) 0.0108 0.0133
(CV=1, CD=0.6 CV=0.2, CCN=0.015) 0.0116 0.0130

DBL Heuristic 0.0580 0.0598

TABLE 8.3: MVR results when n=30 and n=100 for different combi-
nations of weighting coefficients when packing is determined by the
objective function in a 10x20 square domain and results of packing

using the DBL heuristic.

Figure 8.6 shows packings of tetrominoes in a 10x20 square domain using weighting
coefficients (CV=1, CD=1.6 CV=0.4, CCN=0.045). Due to CDD in the objective function
having a greater impact on Wij compared to (CV=5, CD=1.25 CV=0.4, CCN=0.01) and
(CV=1, CD=0.6 CV=0.2, CCN=0.015), packings are formed with voids present as the
scoring prioritises positions at greater depth over the avoidance of creating gaps
in the structure. This is highlighted by Figure 8.6a and is the reasoning for higher
MVRs when packing is completed in a longer domain. Figure 8.6b shows no gaps
in the structure and e=0. This is due to the particle order being able to be packed by
the algorithm for these coefficients in a sequence that results in this. However, note
that near the top of the domain that canyoning is starting to occur (left of Particle 24
and left and right of Particle 23 and Particle 26).

Canyoning begins to occur in Figure 8.6b due to the weakening effect of CDD. D is
the ratio of the depth of the particle to the domain length. Therefore as the maximum
depth that particles can be placed decreases the maximum score provided by CDD
decreases. This had little effect when the domain size was 10x10 squares due to the
limited number of positions available towards the end of the simulation. However,
in the increased height case this has more of an effect. Towards the top of the packing
in Figure 8.6b, CVVAB is having more of an effect on positioning which leads to the
formation of canyons. Therefore for the Tetris Scenario, a new method for scoring D
should be implemented. This area is further discussed in Section 8.5.1.

From Section 5.6 it was determined that (CV=1, CD=1.6 CV=0.4, CCN=0.045) led to
the most optimal solutions of packing of tetrominoes in the Tetris Scenario. This is
due to the canyoning effect seen with (CV=5, CD=1.25 CV=0.4, CCN=0.01) and (CV=1,
CD=0.6 CV=0.2, CCN=0.015). (CV=1, CD=1.6 CV=0.4, CCN=0.045) prioritises depth
leading to particles being packed with less towers. This is beneficial for the 10x10
square domain where the height is limited. However, for the 20x20 square domain
when height is not limited, canyoning rather than creating gaps in the structure with
the expectation that these canyons will later be filled by B tetrominoes actually can
lead to lower void ratios. Therefore, for a 10x20 square domain (CV=5, CD=1.25
CV=0.4, CCN=0.01) and (CV=1, CD=0.6 CV=0.2, CCN=0.015) can be said to outperform
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(A) e=0 (B) e=0.017

FIGURE 8.5: Packing using coefficients (CV=5, CD=1.25 CV=0.4,
CCN=0.01) in domain size of 10x20 squares.

(CV=1, CD=1.6 CV=0.4, CCN=0.045). A discussion is to be had about these values as a
solution for the actual Tetris videogame where lines of filled space are deleted. This
can be found in Section 8.2.5.

8.2.4 Backtracking of Placement

Section 8.4.1 discusses the use of testing different permutations of particle order for
improved results. Additionally a backtracking method like that in Galambos and
Woeginger (1993) and Goldberg et al. (2002) could be adopted for the Tetris Sce-
nario. If void is created, the algorithm can backtrack by a a small number particles
and attempt the second-best location for those tetrominoes to be placed. This may
prevent a scenario where void is created in the system. As tetrominoes are required
to be placed in the particle order they are received, no permutation of particle order
is possible in this situation.

It should be recognised that adopting these methods would not fully represent the
Tetris Scenario. In the Tetris videogame, particles must be packed in the order that
they are delivered. Information of the next couple of particles is sometimes pre-
sented to the player so the placement of multiple particles at a time could be tested.
However, no form of backtracking or permutation of particle order can be imple-
mented into the playing style. Therefore if backtracking is used then the placement
method for the Tetris Scenario cannot be considered as a solution for optimising
Tetris. If permutations of particle order are adopted, the Tetris Scenario inherently
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(A) (B)

FIGURE 8.6: Packing using coefficients (CV=5, CD=1.25 CV=0.4,
CCN=0.01) in domain size of 10x20 squares.

becomes a 2BP problem for very irregular particles which are capable of being ro-
tated. Section 8.9.1 discusses the use of the algorithm described in Chapter 3 as a bin
packing heuristic further.

8.2.5 Tetris Scenario Sensitivity and Required Accuracy

Section 5.6 presents and analyses the packings produced by the algorithm described
in Chapter 3. Further to the discussion, it can be seen that the packings are greatly
affected by the particle order. Figure 8.2 highlights this as if particle order had been
slightly different the end void ratio would have been much lower than the final re-
sult. As a result, a high level of accuracy is required for the coefficients of weighting.

It is likely that if a higher sampling frequency was adopted with smaller increments
between coefficient values tested that a more optimal solution would be achieved.
However, the computational time to run these tests would have been massively in-
creased and it is not known what level of refinement is required for the true optimal
solution to be found. Therefore the level of accuracy that has been followed in this
chapter is acceptable for the study here, especially as this project aims to focus on
packing of two-dimensional soil particles. Differences in void experienced at the end
of the investigation of the search area was in a range between 1x10−2 to as small as
1x10−4 between neighbouring datapoints. This equates to a difference of between
0.01 square to 1 square of void in the packing.

It can be determined that the results are very sensitive for the Tetris Scenario. As a
bin packing solution where the aim is to completely minimise void this is problem-
atic as a reliable solution for reaching the objective is desired. However, as a solution
for playing Tetris it should be noted that the Tetris Scenario does not fully represent
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the Tetris videogame. The main difference is the deletion of rows when completely
filled. If this was introduced into the algorithm, voids that are created in the domain
would become exposed as rows are removed meaning that particles could be placed
in these gaps eventually. Even for Figure 8.2 these areas would have been filled, as
due to particle order being determined by the Tetris bag method either Particle 20
or Particle 21 is to be a Bar-tetromino. It could be considered that implementation
of this would reduce the sensitivity to particle order and the accuracy required for
weighting coefficient would be reduced. In addition, the increase in domain height
as investigated in Section 8.2.3 leads to more chance of gaps being filled and these
results become less sensitive as the main cause of sensitivity is generated when par-
ticles start to reach the top of the domain.

Hence, it can be considered that the packing algorithm could be adopted as an ap-
proach for solving "Standard Tetris" as proposed by Brzustowski (1988) and seen in
Böhm et al. (2005), Breukelaar et al. (2004), Burgiel (1997), and Kostreva and Hart-
man (2004). Doing so would introduce a new technique to this problem that accepts
all types of tetrominoes for packing and uses a unique heuristic for placement. Of
the coefficients investigated, (CV=1, CD=0.6 CV=0.2, CCN=0.015) or (CV=5, CD=1.25
CV=0.4, CCN=0.01) are most likely to provide the best results for minimising void
and scoring the highest when deleting rows of filled solids. This is because CVVAB
contributes more to the objective function when determining placement, which is
the main objective in Tetris. Issues when packing were seen when canyons occur.
However, with the deletion of rows and increased domain height, canyoning does
not cause the same issues as the 10x10 square domain and therefore a solution such
as combination (CV=1, CD=1.6 CV=0.4, CCN=0.045) is not required to prevent this.

8.3 Discussion of Soil Particle Scenario Results

8.3.1 Representation of MRJ and Improvement of Investigation

Chapter 6 ended the investigation of the coefficients of weighting for the Tetris Sce-
nario in Section 6.5. Part of the reasoning for this is given as there is no obvious
relationship between MRJ and MVR, as shown by R2 value of 0.024 for Figure 6.53.
It was expected that as MVR decreased, the MRJ value would increase due to tighter
packings and therefore more particles lying over where two particles meet. How-
ever, this was not found to be the case.

As was seen in the structures, piling of the particles with sloped sides occurred for a
lot of the resulting packings. Whilst the stability check should prevent very unstable
particles being placed, it is clear that in some instances this is not the case and this
is further discussed in Section 8.3.3. However, the largest and therefore considered
most optimal results for MRJ are found in packings which express this piling of
particles. This is not desired for the method of autonomous construction as it has
been stated that a layer-by-layer process is required. Furthermore, the differences in
height of the structures with particles being placed further up leads to the number of
running joints being disrupted increasing compared to systems with lower highest
points.

Therefore, the MRJ is not giving a true representation of the packing. It has some
indication, but systems that are taller end up having an unfair advantage to others.
The best example of this is seen in Figure 6.41c which is one of the packings for
location (CV=1, CD=0.4, CT=0.4, CCN=0.4). This datapoint in the search areas was
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the one found to express the highest MRJ value. The increase in height, which is
caused by the objective function trying to place particles closer together due to the
scores of CTT and CCNCN whilst CDD is having less of an effect.

To truly determine the best combination of coefficients, it is required for one of two
methods to be implemented. The first is to increase the importance of picking a
location closer to the domain base in the priority order. However, it is thought that if
this was the case then these positions would be picked over scoring by the objective
function meaning that the packing technique becomes more of a deepest-bottom
heuristic which then uses the objective function to determine between equally deep
locations.

The second is to introduce a "packing area". This is inspired by Johns et al. (2020)
and Johns et al., 2023 discussed in Section 2.2.4 which saw particles being fit into
a given area that was to represent the overall shape of the wall. An area could be
designated, either representing a slope if a wall structure is desired to be replicated
or the area could be what is determined to be the "bottom course" which could be
roughly three particles tall. The algorithm can then be demanded to fill this area
first, before moving up the wall. Doing so will prevent the height being increased.

It is recognised that increasing the value of CD will also prevent this from occurring.
The testing of coefficients (CV=1, CD=6, CT=0.5, CCN=10) was to see the sort of pack-
ing that occurred when CD has more impact on the packing positioning. This was
improved. However, an effect from increasing CD is that this begins to dominate
over other scoring criteria, diluting them in the objective function.

A different method for quantifying shear strength is required if it is found the MRJ
is not a good indication of this value. The work in Chapter 7 provides a method for
this, but it is clear that doing this for every packing would take a great deal of time.
The adoption of a physics simulator or DEM analysis would mean that this can be
done at desk level. Of these options, the physics simulator is advised as this can be
used to quickly check stability of placement.

8.3.2 Reduced Number of Candidate Poses

In the Soil Particle Scenario, candidate positions are filtered and the best 30 of these
poses are taken forward for full analysis. With the reduction in total positions tri-
alled by the particles, this reduces the total number of possible solutions and it is
likely a truly optimal position is missed. The reasoning for reducing candidate poses
was to increase computational time. With an improvement in computational speed,
more candidate poses can be tried and the results of this can be analysed. Methods
for reducing computational runtime are discussed in Section 8.7.

Within the packings, it is seen that spaces where particles could potentially fit are
not placed, leaving gaps and affecting subsequent packings. An example of this is
found in Figure 6.22 where a gap has formed. It is stated that potential Particle 35
could have been dropped into this gap, and as a result the positions of Particle 38 and
Particle 39 are not optimal, and actually are probably both unstable. Improvement
of the stability checks is discuessed in Section 8.3.3. It is thought that this occurs due
to the assumption of squares in the discretised method that have material in being
taken as full. This was done to replicate additional width that may be present due
to gripped of the robot performing autonomous construction.
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However, this is having a detrimental effect on positioning of these particles and
therefore subsequent particle positions. Furthermore it could be considered that the
gaps at the edges of the domain, where these slopes are occurring, are forming due
to particles being unable to fill these spaces in the discretised form. Due to this,
either large voids are being detected when checking this horizontal location when
scoring in the discretised method or, if this location is trialled, no stable position is
being found as it is attempting to do this at the point where the slope has already
begun. Testing of the packings with an improved method of discretising the shapes
is required. With an increase in candidate poses, this may lead to these positions
being trialled and actually a stable orientation may be detected.

8.3.3 Stability Improvement

It is seen that lots of the positions in the results may be deemed as unstable. This
mainly occurs when stacking is present. The best example of this is for the randomly
packed samples for RAND-F in Figure 6.54b. The stability checks implemented in
the code do not take account of subsequent packings that are placed upon the stone.
Therefore, precarious towers are allowed to form that visually can be detected as
unstable. The use of DEM or a physics engine would prevent this or a much more
improved stability calculation.

Furthermore, the filtering by d
h was introduced so that particles are placed to max-

imise their width. However, it is clear that this is not really taking effect. This is due
to its position in the hierarchical filter for candidate poses and other priorities such
as score in the discretised method are taking priority if a rotation where the width is
minimised outscores others. It is proposed that a system like that in Liu et al. (2021)
is used. This would require particles to have a contact area with other particles in
the surface above the mean of all stable poses. This removes chance of elongated
particles being placed on their thinnest side. Another method is also found in Liu et
al. (2021) where deviation of the normal to the surface and the thrust line is analysed
and positions that are larger than the mean are also not considered as final solutions.

8.3.4 Comparison to Coefficients Determined for Tetris

Section 6.5 presented results of packing using the coefficients determined as poten-
tial solutions in Chapter 5. The results of these packings appear to be of good ef-
fect, and these are displayed in Figures 6.49-6.51. Again, issues occur with sloping
at edges and towering. However, MVR values appear to be reduced and (CV=1,
CD=0.6, CT=0.2, CCN=0.015) in particular has a relatively large MRJ value of 27.8.

It is sensible that these coefficients produce low void ratios. The Tetris Scenario
found an optimal solution for packings where the objective was to reduce void ratio.
It is clear from the results in Table 6.10 that this has been achieved for soil particles
and if this was the objective then perhaps these coefficient ranges could be consid-
ered. However, the objective of packing is to maximise shear strength meaning a
change in objective. It is highly likely that this will mean coefficients of weighting
are different, and there has not been a study into whether coefficients of weighting
for the same objective will be equivalent for different particle shapes.

It is stated that void ratio can be taken as a good indication of shear strength. It is
possible that MVR can be adopted as the measure of determining packings that opti-
mise shear strength. However, without a verification of the strength of the structure
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this is left unknown. The methods set out in Chapter 7 would help determine if this
is the case.

8.4 Improving Results in Relation to Shear Strength

8.4.1 Permutations of Particle Order

In the results collected in Chapter 6, it is seen that particles are selected and placed
with no backtracking of the algorithm or changing of placement order. Particles were
placed in the order of delivery with no consideration of variation from the random
sequence in which they are generated. In reality, it is thought that the algorithm
would be able to try multiple different permutations of particle order of a select
amount of particles. This is seen in bin packing (Galambos and Woeginger, 1993)
and jigsaw solving (Goldberg et al., 2002) as discussed in Section 2.4.3 and Section
2.4.4 respectively.

It is envisioned that this would lead to higher quality packing results, as the permu-
tation that leads to the best packing can be selected. Two methods are highlighted
in which this could be a possibility.

1. A certain number of particles are placed as a group and every permutation of
that particle order is tested

2. A certain number of particles are placed individually and the best particle is
placed before moving on to the next particle from the group

Each method is described for a group of four particles as the following.

For the first method, which will be referred to as the All Permutations Method, Par-
ticle 1 from the group of four is placed in its best location as determined by the
placement algorithm. This is followed by Particle 2, Particle 3, and then Particle 4.
The placement is scored and then a different permutation of the particles is trialled,
for example Particle 2, Particle 1, Particle 3, Particle 4, and this order is then scored.
This is done for every permutation of particle order for the set of particles. The next
four particles are then placed using the same method.

The second method, which will be referred to as the Best Fit Method, Particle 1 from
the group of four is placed in its best location as determined by the placement al-
gorithm. Before Particle 1 is placed, Particle 2 is trialled for placement without the
presence of Particle 1. This is repeated for Particle 3 and Particle 4. Of these particles,
the best particle is chosen for placement. A new particle is then added to the group
and the process is repeated for these particles. It can be understood that it is not
necessary to retry all positions for previous particles tested but only in areas where
there has been a change to placement surface due to a previously placed particle.
Caching can be utilised, which is a topic discussed in Section 8.7.4. It is thought
that if a particle is repeatedly trialled for placement and is not placed - maybe due
to being unsuitable for placement - this can be removed after a certain number of
attempts to place before being replaced by a different particle.

Both of these methods were trialled at the early stages of development for the place-
ment algorithm. It was found that the relationships for the time taken to place a
particle, t could be described by the Equations 8.1 and Equation 8.2 for the Best Fit
Method and All Permutations Method respectively, where N is the size of the group
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N Time for Best Fit Method (mins) Time for All Permutations Method (mins)
1 1 1
2 4 2
3 9 6
4 16 24
5 25 120

TABLE 8.4: Time to place N number of particles for group size of
N using Best Fit Method and All Permutations Method for varying

particle order.

of particles selected for placement. Note, this is the time for a single position assum-
ing that this position is changed by the placement of a particle. With the use of the
memory of the computer (through caching as stated before which is discussed in Sec-
tion 8.7.4) placements for a particle previously explored that have not changed can
be stored and located when required. Without storage of this information, Equation
8.1 and Equation 8.2 would be the time for every position trialled by the algorithm.

t = N2 (8.1)

t = N! (8.2)

Initially, it is quicker to use the All Permutations Method. However, as N increases
this rapidly changes. This is highlighted in Table 8.4 where the time to place one par-
ticle for different sizes of N are presented for both methods. The results in the table
presume that it takes 1 minute to calculate for the given position by the placement
algorithm and that this time is equivalent for all particles.

For future work, trialling of these methods will require a much greater reduction
in computational time of the algorithm, especially if large numbers of particles are
trialled for the Soil Particle Scenario. Potential methods for speeding up computa-
tional runtime are explored in Section 8.7. The expected result of these methods will
be to improve the structure in regards to creating higher scores from placements.

8.4.2 Discarding or Tooling Unsuitable Particles

As mentioned with the Best Fit Method in Section 8.4.1, particles that are consis-
tently not chosen for placement could be discarded by the programme and removed
as an option for being the next particle to be positioned. This will save time be-
ing wasted on trialling candidate poses for this particle. Furthermore, it is possible
to discard particles that are not suitable for placement before trialling of candidate
poses begins. This can be done through a variety of methods.

The first of these methods is by setting a size limit on the particle. It was seen in
Section 3.6.1 that particles that had a radius below 3 units and above 7.5 units were
discarded. This was to try and emulate a consistent size of particle to that of un-
tooled rock. Similarly, all particles could have been kept and a feature of the devel-
oped algorithm could have been to automatically discard particles that were outside
of this range.
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Another method for discarding particles would be by characterising the particles.
This is discussed further in Section 8.6.1. Particles that are defined to be "unsuitable"
could be discarded. Such types of particles may be

1. very rounded causing difficulty when stacking particles on top of this

2. extremely thin, suggesting a weak particle that could be broken if force placed
against its longest side.

Discarding particles that are characterised and deemed as unsuitable will save on
time of trialling particles that may not be placed if a method such as the Best Fit
Method is adopted. Additionally, filtering particles for placement will avoid using
particles that overall make the final structure weaker (if the end objective is to create
a strong structure).

Section 1.1 states a main motivator behind the investigation into constructing using
irregular, untooled rock as wanting to reduce environmental costs of construction.
It is stated that this can be done by utilising locally sourced material, especially that
which is waste such as CDW or MW. If discarding particles leads to the requirement
of materials that are transported to site and/or manufactured at a high emissions
cost, then perhaps an alternative should first be sought. As seen in Clifford et al.
(2018) (discussed in Section 1.1 and Section 2.2.2), it is possible to introduce a method
of tooling materials to be used in construction. The robot in Clifford et al. (2018) used
a six-axis robotic arm to tool CDW for construction.

The tooling of material has not been considered in this project as it was out of scope
of the work presented here. Tooling material leads to needing to define how ma-
terials should be tooled as well as what is the desired shape and decision on when
materials should be shaped and when they should be left in their original shape. The
omission in the method for constructing structures from irregular, untooled rock fol-
lows similar methods such as Johns et al. (2023). However, Clifford et al. (2018)
shows that there remains possibility for this process to be added with the require-
ment of much more additional research.

8.4.3 Strategic Reinforcement

Reinforcement in soil structures is a common technique adopted for geotechnical
problems such as using geosynthetics which were discussed in Section 1.1. A benefit
of construction by a particle-by-particle process is the ability to intervene between
placements. By this manner, the possibility to place strategic reinforcement in areas
of identified weakness can be completed. This could either be by the application
of a geotextile mid-way through constructing the courses of the placed rock or by
applying a mortar or some sort of adhesive material to help stick particles together.

By modelling an outputted structure from the algorithm, either through DEM, a
physics engine like Box2D, or software such as LimitState: Geo, areas of weakness
can be found where high shear stresses occur in the construction. Targetting these
areas with strategic reinforcement will help to increase the strength of the struc-
ture. Identifying these areas of weakness means that the reinforcement may only
be required in these areas rather than throughout the structure. Thus, the amount
of reinforcement required will be reduced compared to a traditional method where
reinforcement is placed throughout the medium or in broad, targetted areas.
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8.5 Objective Function and Weighting Coefficients

8.5.1 Quantifying Depth of the Particle

As previously mentioned in Section 8.2.3, canyoning is seen further up the system
for coefficients of weighting (CV=1, CD=1.6 CV=0.4, CCN=0.045) even though it is
avoided lower down in the system. This is due to the effect of CDD decreasing as
the domain becomes filled. D is quantified using the whole depth of the domain
and therefore as the maximum depth particles can be placed reduces, the maximum
potential value for D decreases and this value tends towards zero for domains with
extreme heights. Figure 8.7 is a histogram of D values calculated for final positioning
of tetrominoes in the Tetris Scenario within a 10x20 square domain. The diminishing
effect is highlighted as frequency is (fairly) consistent across the values for D. This
is because D naturally gets smaller as the packing carries on. The high frequency
experienced near D=1 is due to the most amount of particles being packed in the
first level, whereas levels past this the number of potential positions are limited. The
lack of values at D=0 is because this would mean the centre of gravity of the particle
is being packed level with the top border of the domain, which is not possible.

The diminishing effect had on D was not seen to be a problem for a domain of 10x10
squares as the height is fairly limited. However, the purpose of this algorithm is to
be utilised for autonomous construction by a robot. Therefore, it can be assumed
that if this is employed that the heights of the structure will be large enough for the
tending of D towards zero to have an effect.

FIGURE 8.7: Frequency of produced D values for packings of tetromi-
noes in a 10x10 square domain following the Tetris Scenario adopting
n=100 and filling the domain until the next particle cannot be placed.

It is suggested that a new form of quantifying depth of the particle in the system
is formed, Dv. Dv is taken as ratio of the depth of the particle in the system to the
maximum depth of the placement surface, Dsur f ace, reflecting the minimum point in
which a particle can be placed.

Dv =
Dparticle

Dsur f ace
(8.3)
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It should be seen that Dparticle can be from the top of the domain to the centre of
gravity of the particle or to the contact with the surface. The former prioritises parti-
cles that lie flatter and therefore have a lower centre of gravity. Measurement to the
centre of the particle has been adopted for the study so far hence for consistency this
will be kept as the current method. Dv prevents the diminishing effect of D. Fig-
ure 8.9a presents the frequency of Dv values when packing with coefficients (CV=1,
CD=1.6 CV=0.4, CCN=0.045) when taking n=100 samples. It can be appreciated that
values do not range as widely from Dv=1 as before. However there still seems to be
some diminishing effect on Dv.

If a gap cannot be filled the minimum placement surface becomes fixed and there-
fore a diminishing effect can begin to occur as Dsur f ace becomes a fixed value. For
example, see Figure 8.8 where a gap between particles for which no other particle fits
has resulted in Dsur f ace becoming equivalent to Ddomain and remaining as a constant
value. This will not occur in the Tetris Scenario as spacings between tetrominoes
are fixed to be a width for which shapes can still fit. For the Soil Particle Scenario,
this may become an issue if it is seen that very slender canyons start to occur within
which particles cannot be placed. This effect can be prevented by taking the mean
of the placement surface as a marker to measure from. Particles placed below this
line can be awarded with a positive score for the depth whilst above the line can be
given a negative score. Such a method would look like

Dm =
Dparticle − Dms

Ddomain − Dms
(8.4)

where Dm indicates the depth score using the mean line and Dms is the depth at the
mean point of the placement surface. Figure 8.9b is the histogram of Dm values when
packing under equivalent conditions. The range away from 1 is much less than that
experienced in Figure 8.9a. Negative values exist due to the nature of how Dm is
scored relative to the position of the mean height in the placement surface.

FIGURE 8.8: Particle being packed into a domain in a possible two
locations with measurements of depths for calculating Dv and Dm

indicated.

From Table 8.5, it can be determined that packings using CDDv in the objective func-
tion produce results less efficient as CDD. Understand, coefficient values tested are
optimised using an objective function including D rather than Dv. As values of Dv
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stay around a consistent value when packing it means that CDDv is having more of
an effect on packing later on in the simulations. Referring back to Table 5.2 in Section
5.3, when D became a dominant factor in the objective function MVR results were
seen to be larger than when VAB is the dominant factor. In order to truly determine
whether Dm is an improvement in the objective function, a new study of search areas
is needed to be conducted. It is envisioned that the value of CD for the optimal solu-
tion for the Tetris Scenario will be a reduced value compared to the current CD=1.6
value.

Coefficients MVR (n=30) MVR (n=100)
(CV=1, CD=1.6 CV=0.4, CCN=0.045) 0.0172 0.0160
(CV=5, CD=1.25 CV=0.4, CCN=0.01) 0.0212 0.0214
(CV=1, CD=0.6 CV=0.2, CCN=0.015) 0.0183 0.0165

(CV=100, CD=0.6 CV=0.2, CCN=0.015) 0.0183 0.0165

TABLE 8.5: MVR values for packing different coefficient combina-
tions produced with Dv calculated by Equation 8.3 in the objective

function for the Tetris Scenario in 10x20 square domain.
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(A)

(B)

FIGURE 8.9: Frequency of produced for (a) Dv and (b) Dm values for
packings of tetrominoes in a 10x20 square domain following the Tetris
Scenario adopting n=100 and filling the domain until the next particle

cannot be placed.
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8.5.2 Use of First Order Equation

Section 3.5.1 introduced the objective function and stated that the more complex the
objective function for scoring, the more parameters would need to be derived when
determining the coefficients of weighting. As a result, four criteria were selected for
scoring placements. Additionally, it was stated that the objective function would be
kept as a first-order equation to keep the number of parameters required for deriva-
tion to a minimum. It is assumed that first-order terms are dominant and therefore
it is not required to define terms for orders higher than this.

If the objective function was described by a second or third order equation, it can
be understood that the effects of VAB, D, T and CN for the second or third order
terms will be small if differences in value for these parameters are small. This is
due to the square and cube of the values having little effect on the approximation.
The intention to keep parameters small was made by defining most as a ratio with
maximum possible value of 1. With the use of the objective function, values should
tend towards a certain degree as each criteria is beneficial to the packing. However,
CN was taken as the coordination number which has a minimum value of 1 and saw
up to a value of 6 for the Tetris Scenario whilst - as already presented in Figure 8.7 -
the values of D ranged across the spectrum of values due to the diminishing effect
which has been described in Section 8.5.1. As a result, it is possible that these may
need to be defined using an order of approximation greater than first-order.

Figure 8.10 presents the distributions of scoring criteria V, T and CN for packing in
the Tetris Scenario using coefficients (CV=1, CD=1.6 CV=0.4, CCN=0.045). Note, from
the possible values of VAB, the most void created beneath a particle was two squares
of void. The ranges presented suggest that a first-order equation is not justified for
the Tetris Scenario due to the wide range of values for CN. Therefore, it may be
required to investigate second-order or third-order terms in the objective function.
However, note that as CCN tends to be a much smaller value and for the weighting
coefficients used for producing results in Figure 8.10 the range of values in Figure
8.10c would be from CCNCN=0.045 to CCNCN=0.27 in the objective function.
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(A)

(B)

(C)

FIGURE 8.10: Frequency plots of values seen when packing for coef-
ficients (CV=1, CD=1.6 CV=0.4, CCN=0.045) in the Tetris Scenario for

domain 10x10 squares for (a) VAB (b) T (c) CN.
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8.6 Particle Characterisation

8.6.1 Particle Characterisation for Selection

In the algorithm described in Chapter 3 particles are selected randomly for place-
ment. It is thought that permutations of particle order could be trialled although
as discussed in Section 8.4.1 this was not tested due to the additional time that this
would take. Another method in which selection could have been refined is using
the characterisation of particles. Using this method, particles could be designated
a quanity to represent size, angularity, ellongation and such. From this, particles of
different descriptions could be trialled rather than similar particles as may be the
case with Section 8.4.1. Additionally, the characterisation of the particles would lead
to the ability to compare the produced shapes to actual irregular, untooled rock to
ensure that the shapes used are a fair representation of this material.

In this section, different methods of soil characterisation are explored (Section 8.6.2).
The methods in which these are calculated are described in Section 2.5 and it is un-
derstood that this could be implemented into the algorithm and stored as character
data for each particle or defined before the programme and stored on the computer
to be read when packing is being performed. Section 8.6.3 describes the relevant fea-
tures highlighted in Section 8.6.2 which could be selected in the programme when
choosing particles to trial.

This section differs than Section 8.4.2 as the characterisations are not being used
to identify removing unsuitable particles. Rather, the characterisation is to define
particles and ensure different types of shapes are being suggested for placement in
the case where a Best Fit or All Permutations Method is adopted.

However, as stated in Section 8.4.2, particles could be discarded if they are judged
unsuitable for placement. Angularity of a particle is highlighted as a key contrib-
utor to shear strength in Section 2.3 when the position of the particle is so that it
interacts with many of the surrounding particles. The use of a particle-by-particle
placement method allows for precise positioning of the material to maximise how
they will interact. With the introduction of characterisation of the particle, this cre-
ates opportunities to discard particles that have features like being very rounded as
suggested in Section 8.4.2. A limit to the minimum value of angularity (or maximum
value of roundness) can be placed on particles with those outside of this limit not
chosen from the stockpile for particle placement. Methods for how particles should
be characterised are discussed in Section 8.6.3.

Section 8.6.4 discusses the use of the parameters introduced in Section 2.5 as well as
Fourier descriptors to compare the outlines that represent irregular, untooled rock
produced in this project to that of material that is sourced from a quarry mining site.
Doing so would ensure that the shapes selected do in fact represent what is trying
to be achieved here and verify that the software provided in Mollon (2023) produces
reliable two-dimensional particle shape outlines.

8.6.2 Methods for Classification

From Section 2.5 there is a broad range of terms that can be adopted for classifying
and quantifying particles. These are presented in Table 8.6 with an indication as
to whether they can define two-dimensional or three-dimensional particle shapes.
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This repeats the findings that are summarised in Section 2.5.4. Although some pa-
rameters are stated as not being able to define three-dimensional particles, it can
be understood that all two-dimensional parameters can be used to describe a three-
dimensional shape by quantifying the parameter in three orthogonal directions like
that done for roundness and irregularity index in Wadell (1932) and Blott and Pye
(2008) respectively. Parameters that cannot describe two-dimensional particle out-
lines tend to require a measurement for thickness (S). Again, this can be assumed
and therefore using this method can be used to describe three-dimensional particles
although this is not recommended.

Parameter Symbol Reference 2D 3D
Platiness α Potticary et al. (2016) No Yes

Elongation ζ Potticary et al. (2016) No Yes
Li et al. (2013), Blott and Pye (2008) Yes Yes

Flatness Index IF Wentworth (1923) No Yes
Illenberger (1992) No Yes

Equancy Illenberger (1992) No Yes
Circularity Λ Wadell (1932) Yes No
Sphericity Ψ Wadell (1933)* No Yes

Inscribed Circle Sphericity ΛI Riley (1941) Yes Yes
Roundness R Wadell (1932) Yes No**
Angularity A2D Lees (1964) Yes No**

Irregularity Index I2D Blott and Pye (2008) Yes No**
Convexity C Li et al. (2013) Yes No

Yang and Luo (2015) Yes No
Aspect Ratio AR Yang and Luo (2015) Yes No**

Overall Regularity OR Yang and Luo (2015) Yes No**
RMS Texture Rq Alshibli et al. (2014) No Yes

TABLE 8.6: Parameters for characterising particle shapes defined in
Section 2.5.1 with relevant reference and indication if the parameter
can be used for two-dimensional or three-dimensional particle shapes

*as cited by Blott and Pye (2008)
**stated that 3D equivalent value can be found by taking measure-

ments in orthogonal planes in the literature

From Chapter 2, it can be determined that the most suitable particles for autonomous
construction of a structure such as a DSRW possess the attributes of being angular,
flatter and having higher surface roughness. This is determined from the following
statements.

• Section 2.3.2 discussed particle shape and found that an increase in angularity
lead to an increase in ϕ.

• Additionally, Vivian (1976) states that angular particles that have flatter sides
are easier to build DSRWs with than rounded particles.

• Higher interparticle friction in a granular system leads to higher values of
shear strength (Thornton and Sun, 1993) whilst Santamarina and Cascante
(1998) showed that higher surface roughness increases critical state friction an-
gle, as presented in Section 2.3.6.

• Villemus et al. (2007) presents that retaining wall structures rely on friction and
interlocking for strength. Interlocking occurs more frequently in systems with
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angular particles and higher friction between particles is expected in systems
where particles have an increased surface roughness. The discussion behind
this can be located in Section 2.2.1

For the characterising of two-dimensional particle outlines in this project, the pa-
rameters that are chosen for quantifying particle shape are

1. Angularity/Circularity

2. Elongation

3. Convexity

As stated by Lees (1964), angularity can be measured following Equation 2.21 in
Section 2.5. Calculation of angularity requires identification of corners in the shape
as well as measurement of planes that bound the corners. As stated by Lees (1964)
the process of measuring angularity can be a time consuming method. Furthermore,
with particle shapes that are complex and possess lots of convexities and concavities
it may be difficult to define what is a "corner" when using a computer algorithm.
Similar can be said when discussing roundess as described by Wadell (1932) which
also requires identification of corners in the shape.

Instead, it is recommended that circularity, Λ, is adopted for quantifying the angu-
larity of the particle. This is defined by Wadell (1933) (as cited by Blott and Pye,
2008) as the ratio of the cp and Cp (see Equation 2.18). As stated by Barrett (1980),
sphericity (and therefore circularity which is a two-dimensional form of sphericity)
defines not just the shape of the particle but is affected by angularity as well. There-
fore, this method for quantifying angularity is recommended as it is a method which
is simpler to perform.

Elongation is adopted rather than flatness as flatness requires the third dimension
of thickness to be defined. Two-dimensional outlines are utilised in this project and
therefore a parameter that can define two-dimensional shapes is required. Elonga-
tion defined by Li et al. (2013) and Potticary et al. (2016) is based upon L and I and
therefore can be used here.

As stated in Section 2.5, the work by Barrett (1980) and Cho et al. (2006) finds that
irregularity of a two-dimensional outline representing a particle is a measure of the
roughness of the particle. Whilst irregularity can be determined using I2D (Equation
2.22 suggested by Blott and Pye, 2008) or AR (Equation 2.25 suggested by Yang
and Luo, 2015), convexity is chosen as the parameter to measure irregularity and
therefore surface roughness. Convexity is formed by Li et al. (2013) from the ratio of
phull to pparticle with resulting values ranging from 1 for a smooth particle to almost
0 for a very rough particle. Of these suggested measurements to describe surface
roughness, convexity is classed as the one which best represents the different of the
particle perimeter to the convex hull that would describe the particle. I2D and AR
focus more on quantifying the overall irregularity of the global particle shape rather
than the irregularity at a surface level.

8.6.3 Features for Particle Selection in the Algorithm

As described in Section 8.4.2 and Section 8.6.1, particles can be discarded from selec-
tion automatically without trialling placement if they possess characteristics which
are found to be not suitable for packing in the structure. As suggested, angularity
is a good indication of this. Analysis of the particles before placement to define the
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shape and other features leads to the quantification of these features and the ability
to only select suitable particles. In this manner it is equivalent to discarding mate-
rials judged unsuitable if only suitable materials are put forward by the algorithm.
Outlined in Section 8.6.2 are the characteristics to be adopted for particle classifica-
tion. These are stated to be circularity, elongation and convexity.

Circularity can be defined using the methods outlined in Wadell (1933) (as cited by
Blott and Pye (2008)). This was presented in Equation 2.21 in Section 2.5 but is pre-
sented in Equation 8.5 here for completeness. Circularity is taken to be a method of
determining the angularity of the particle, and therefore the less circular the particle
the more angular it should be. Particles received by the algorithm will be chosen
based on circularity with a lower value indicating a more angular particle and an
increased chance of selection.

Elongation is taken to be a measure of flatness of the two-dimensional particle out-
line. Flatter particles are stated to be easier to pack (Vivian, 1976). Furthermore, this
increase in length should lead to higher coordination numbers and more chance of
overlapping runs in the system. The method for calculating elongation is that pre-
sented in Li et al. (2013) and Blott and Pye (2008) and can be found in Equation 2.14
in Section 2.5 as well as Equation 8.6 in this section. A minimum and maximum
value for flatness should be set. The maximum value will increase the number of
elongated particles selected by the algorithm. A minimum value will prevent parti-
cles that are extremely flat and having chance to break when loaded in the structure
from being selected. Research into the maximum and minimum values is required
to correctly determine what these should be and it should be noted that minimum
value will depend on the strength of the material.

Convexity is adopted as a measure of surface roughness as described in Section 8.6.2.
Equation 2.23 in Section 2.5 is the method for determining convexity from Li et al.
(2013). This is again repeated in this section for the reader in Equation 8.7. A value
closer to zero for C indicates a higher surface roughness. Therefore, particles with a
higher surface roughness will be prioritised for selection.

It is envisioned that from these parameters, angularity will be the most important
measure for particle selection. Therefore it is suggested that angular particles are
prioritised for selection, followed by classification of elongated particles and then
surface roughness. This priority list is to try and maximise the interlocking in the
structure, which has been shown to be important to shear strength (Section 2.3.2),
especially in DSRW structures (Villemus et al., 2007). Further investigation is needed
to verify this assumption.

Λ =
cp

Cp
(8.5)

ζ =
I
L

(8.6)

C =
phull

pparticle
(8.7)

Recognise that with angularity (circularity) there is the likelihood for a reduction of
flatter edges and increase in sharper corners. As particles become more irregular,
the placement surface that is made up of these particles will become more irregular.
If matching between particles cannot be achieved, it is possible that a reduction in
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shear strength is seen when constructing using these angular particles. It is hypoth-
esised that there will be a level of angularity which may lead to a decrease in shear
strength due to the inability to be packed in an efficient structure which can max-
imise interlocking when a force is applied. The study of the shear strength of pack-
ings in comparison to particles of different levels of angularity will help conclude
on this hypothesis. It is considered that if particles are too angular and a suitable
position cannot be detected for packing, these particles can be tooled or discarded
as described in Section 8.4.2.

8.6.4 Characterisation for Comparison to Untooled, Irregular Waste Rock

The work in this thesis aims to investigate a method for the packing of two-dimensional
outlines of particles that represent untooled, irregular rock. Section 3.6.1 describes
the method in which Fourier Descriptors were chosen for production of the particle
shapes and explains that this is done by visual inspection of the results of a variety
of particle shapes presented in Figure 3.23 and Figure 3.24. However, as previously
stated, this does not guarantee that these shapes do represent rock particles.

Verification of the particle shape could be completed from analysis of material sourced
from a mining site or quarry. From this, two-dimensional cast shapes of the figures
of the rock particles can be produced. Measurements for the parameters defined in
Section 2.5 and discussed in Section 8.6.2 can be found for castings of the sourced
material as well as the outlines of the shapes produced by the software in Mollon
(2023). A comparison between the two can be made to determine whether the out-
lines adopted in this project do correctly represent those of irregular, untooled rock.

Following Bowman et al. (2001) as described in Section 2.5.2, the outline of the
sourced material from mining site or quarry can be described to find the Fourier
descriptors of the materials. Specifically D2, D3, and D8 can be taken forward. These
can be compared to the values already chosen for packing to again determine if the
outlines chosen do represent irregular, untooled rock particles. This will provide
more of a measure of variation from the specificed value as each descriptor belongs
to different features of the particle. Other descriptors can also be investigated in
comparison with those that would be produced in Mollon (2023) to see if there are
any differences. These can be calculated following Equation 2.31 and Equation 2.32.
A further study would be to use the Fourier descriptors within the software to gen-
erate particles and verify that the shapes produced match the outlines gained from
casting shadows of the sourced material.

Furthermore, the outlines produced by the material sourced from a mining site or
quarry can be used for packing within the algorithm. However, it is possible only a
few samples are available rather than the 100 particles produced by the methods de-
scribed in Section 3.6.1. In this case, the derived Fourier descriptors can be inputted
into the MATLAB code sourced from Mollon (2023) to produce more particles to be
used in the algorithm.

8.7 Increasing Computational Speeds

8.7.1 Introduction

The main issue faced when producing results for this project is the computational
times of the algorithm. Ideally, the time to place a particle is desired to be kept



8.7. Increasing Computational Speeds 371

to a minimum so that the speed at which an autonomous construction could be
created does not grossly outweigh that of current construction methods or if the
procedure was to be completed manually. In this section, methods for improving
computational speed that were not investigated in the development of the algorithm
are described. These consist of the use of multiple processors by parallelisation,
adopting bitwise operations for the discretised fitting of particles, and caching and
memorization of results.

8.7.2 Parallelisation

The act of parallelisation in high performance computing allows for multiple pro-
cesses to be carried out simultaneously. In this manner, the code can have separate
parts running at the same time or multiple versions of the code running with differ-
ent set parameters. The primary motivation for Parallel Computing is performance
and the use of multiple computer processors leads to increased computational times.
In an ideal scenario, the use of four processors should increase the speed to be a quar-
ter of the original time of one processor but in reality this is hard to achieve Maclaren
(1997).

The introduction of parallelisation in this case could be used to simultaneously pack
different weighting coefficient combinations or different particle orders if multiple
runs are being investigated. Although using two processors may not speed up the
process to be twice as fast, this introduction will still lead to an increase in speed.

In the instance where coefficients of weight are already determined and particles
are being placed autonomously, multiple processors could be adopted to simulta-
neously score numerous positions for placement or different particles to help deter-
mine the best suited particle to be placed next if particle order is set to be variable.

8.7.3 Bitwise Operations

During the discretised fitting of particles as outlined in Section 3.7.3, particles are
converted to a binary matrix. It is possible for these binary matrices to be converted
to one or more 64-bit integer arrays where each bit corresponds to a square in the
original binary matrix. Using the AND bitwise operator (&) in Asymptote and most
other programming languages, bits can be compared. A value of 1 will be returned
if two squares both have a value of 1 present, whilst if the discretised particle can
fit in that space a 0 will be returned. This is similar to what is already happening in
Section 3.7.3 where fittings are classed as suitable if the product of both matrices is
equal to zero.

The benefit of using a bitwise operator is that it uses less memory and allows for
greater precision as well as reducing the use of a repetitive code sequence (Nicoli,
2019). It should be noted bitwise operations can only be used for integer data types
and bits numbering starts from right to left (Yordzhev, 2013).

Instead of using binary matrices to describe the discretised particles and areas of
domain where the particle is being fit as is done in Section 3.7.3, a binary vector can
be used that is a 16-bit integer array. If the particle is described by more than 16
squares, multiple arrays can be adopted. The matching portion of the domain can
also be described by multiple integer arrays and the & operator is adopted for quick
comparison resulting in a zero value if the particle fits in the trialled location.



372 Chapter 8. Discussion

8.7.4 Caching and Memorisation

The storage of information through caching and memorisation could be another po-
tential method to increase computational run times. A cache is simply a temporary
data store that holds data so that future requests for that data can be served faster.
Caching is the storage of data in the cache so that future requests for the same data
can be served faster. Storing data in a cache rather than recomputing data will typi-
cally reduce the computational time of the programme.

Memorisation is like caching, but rather than storing data temporarily, the results of
a function is stored for a certain combination of the input values. As the programme
runs, if a function is called with input values that have already been used, the return
value is called from storage without the need to repeat the calculations again.

Using this, the programme could be sped up in situations where equivalent inputs
are repeated when calling a function. This could be especially useful for the find-
ing of locations in the discretised fitting described in Section 3.7.3 as this is the most
likely scenario for patterns to be repeated, especially if a lower resolution for particle
description is adopted as particles will start to look similar to each other. Memori-
sation is useful when dealing with functions that require heavy computation, so a
check should be complete to see if the introduction of memorisation does indeed
improve the speed of the algorithm.

8.8 Running Joints

8.8.1 Inclusion in the Objective Function

In the objective function, criteria are derived from the findings in Chapter 2 based
on factors that affect the shear strength of a soil structure as well as the discussion
surrounding bin packing, jigsaw solving, and Tetris optimisation in Section 2.3 and
Section 2.4 respectively. These were V, D, T, and CN as stated in Section 3.5.

As seen in the Soil Particle Scenario, the quantifying of runs and their disrupting is
used as an objective outcome to help judge if a structure has a high shear strength.
This is based on Adcock (2012) and Vivian (1976) who discussed the construction
of drystone walls and the concept of running joints that can occur in the structures.
This can be found in Section 2.2.1. It can be argued that the inclusion of running
joints - more specifically the disruption of running joints - should be included in the
objective function if this is a factor that will help contribute to overall shear strength
of the structure.

Disruption of running joints was not included within the objective function as this
was used as a way of quantifying the expected shear strength of the structures pro-
duced by the algorithm. It is desired that this measure is to be a term separate from
scoring criteria for placement. By introducing this into the objective function, it may
cause systems to purposely place particles to create joints which can then be dis-
rupted later on, especially if different permutations of particles are tested like the
All Permutations Method described in Section 8.4.1 or a system of backtracking like
that in Galambos and Woeginger (1993) or Goldberg et al. (2002). However, in this
work where these are not present in the current algorithm, including a score for
particles placed that do disrupt running joints in the system could be beneficial to
outputted structures in terms of trying to maximise shear strength.
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Disruption of runs could be included into the objective function by adding a separate
term. Equation 8.8 shows an updated objective function with the terms J and CJ used
to represent the number of running joints disrupted and the coefficient of weighting
for this term respectively.

Wij = CVV + CDD + CTT + CCNCN + CJ J (8.8)

The term J represents a score given to the placement of a particle if it disrupts a
running joint. It is considered that a binary score could be given for J so that J=1 if
runs are disrupted by the placement whilst J=0 if no runs are disrupted. However,
this does not reward placements that disrupt multiple running joints. Instead J can
be quantified by giving a score of 1 for each running joint disrupted. Therefore,
if numerous running joints are disrupted the score is not limited to a maximum
cap. Similar to coordination number, this is already a non-dimensional number and
therefore does not need to be quantified in a ratio with other factors. Therefore
as with CCN it is expected that CJ would be much smaller than other weighting
coefficients in the objective function. This can be extended to include disruption of
diagonal joints, the detection of which is described in Section 8.8.2.

No inclusion of the number of joints present in the structure or number of joints
created by the particle should be included in the quantification of J. If this was
the case, particle placement will be affected negatively when particles are placed
close to each other as this is when joints are most likely to be created according
to the criteria set out in Section 3.10.2. As shown by the literature in Section 2.3,
the structure benefits from particles been tightly packed together as this increases
coordination number as well as areas of particles touching other particles in addition
to minimising void ratio. It can be understood that by introducing a term that may
cause prevention of the algorithm to place try to fit particles together will lead to a
negative effect on the overall packing.

With the addition of a new term in Equation 8.8, this provides a new problem of
needing to derive five parameters so that each weighting coefficient has a new value.
If this is adopted in the future, then a method using either SA or GA is suggested for
exploration of the search area to determine these values. Section 2.4.2 describes these
optimisation methods in more detail. This would mean that visual inspection of the
results is not required as is done in Section 4.4 where surface plots are examined to
determine areas of optimal solution.

8.8.2 Multi-directional Runs

Section 2.2.1 introduced the concept of diagonal runs in the structure of a drystone
wall (Adcock, 2012). Figure 2.2a gave an example of a diagonal run in the system
that would maybe be missed by a person constructing a drystone wall if only vertical
runs are taken into account. In Section 3.10.2, disruption of runs in the system is only
considered within the horizontal direction. An identification for diagonal runs and
ensuring that these do not occur in the structure should be implemented to prevent
them from occurring.

Diagonal runs can be detected by axis of the domain by 45o. This can be done either
by introducing a non-Cartesian coordinate system that is 45o to the normal, or by
rotating the system by 45o and using the Cartesian coordinate system. Figure 8.11
indicates how the later method would be accomplished. Figure 8.11a presents the
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domain at the original rotation with locations where runs are initialised as well as
locations where runs are deemed to be disrupted indicated on the diagram. Runs
are deemed to be disrupted when they match the criteria for Equation 3.15 set out in
Section 3.10.2 requiring an overlap of 25% of the particle width. To complete checks
for diagonal runs, the process for identifying runs as well as detecting when runs
are disrupted can be done for the domain rotated both clockwise and anticlockwise
by 45o. This is represented in Figure 8.11b and Figure 8.11c. Note, the direction in
which runs travel is still in the vertical direction for a Cartesian coordinate system
and does not also rotate with the domain.

Scoring the system in a similar manner as before but with the inclusion of these
rotated systems should prevent diagonal joints appearing in the structures. It could
be argued that more rotations of the domain should be tested to ensure no diagonal
joints in other directions, say at 60o angle to the horizontal. It is suggested that
by adopting the two scenarios at a rotation of 45o will be suitable to help prevent
diagonal joints running that are not exactly 45o to the horizontal as well. If it is
found that this is not the case, an increase in the amount of particle that needs to
overlap the running joint to disrupt it could be adopted for the criteria of disrupting
running joints and implemented to help prevent against these. Further examination
could be done using similar technique adopted for identifying horizontal running
joints in the system by rotating the domain by 90o for full analysis of the structure
and potential faults.

For the case of zipping joints, also described in Section 2.2.1, it is thought that the
condition for overlapping above the particle from Equation 3.15 should be suitable
to stop this occurring. The check described in Section 3.10.2 is for detecting vertical
running joints. Although zipping occurs not in an obvious vertical line, it is still a
running joint that travels in a vertical direction (or in a diagonal direction if it is a
diagonal zipping joint). Therefore, the criteria for overlap should help prevent zip-
ping joints. Is it is found to not be the case, the size of overlap to meet this condition
should be increased.
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(A)

(B) (C)

FIGURE 8.11: Example of checking for phantom joints by rotating
the domain by 45o for (a) domain at the original rotation (b) rotated
clockwise (c) rotated anticlockwise. White circles indicate where runs
are initially located after each particle is placed, black cirles repre-
sent where the underlying run is deemed as disrupted by the particle
placed above. Dashed lines indicate the direction in which runs are

being checked for disruption.
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8.9 Packing Solution

8.9.1 Bin Packing

From the investigation for the Tetris Scenario it has been shown that the algorithm
can efficiently pack two-dimensional objects into a domain whilst minimising the
gaps between particles. In Section 5.7, the placement method using an objective
function based on criteria that optimise shear strength in a soil structure were shown
to outperform the DBL heuristic when packing the seven tetromino shapes. MVR
for a sample size n=100 was 0.0707 for the DBL-heuristic compared to 0.0271 for an
objective function with coefficients (CV=1, CD=1.6 CV=0.4, CCN=0.045).

Potential lies in the approach suggested in Chapter 3 to be adopted as a solution
for 2BP. Comparison has only been made with the DBL heuristic adapted for a two-
dimensional system. For further study to take place, results of different heuristics
would be required to determine if scoring based on the objective function using
VAB, D, T and CN is an efficient method of packing. Other heuristics have been
described in Section 2.4.3 and it is thought that comparison could be drawn against
the BL and BLLT heuristics (Jakobs, 1996; Liu and Teng, 1999) as well as the BLP and
TP heuristic (Hifi and M’Hallah, 2002; Lodi et al., 1999a). The results in Chapter 5
show very low amounts of void are created when packing tetrominoes compared to
the DBL approach tested which indicates that this could be a promising solution for
2BP problem.

Different shapes to tetrominoes would need to be adopted, as these represent shapes
which can perfectly fit together and have defined minimum spacing and angles of
orientation as the thinnest part of a tetromino is one square and the orthogonal cor-
ners will best be fitted together when rotated by 90o. Therefore, irregular polygons
should be attempted. Use should also be made of the design for the method devel-
oped in Chapter 3 to be any particle shape whether that be convex or concave and
the shapes for packing should reflect this, which also increases the complexity. It
is possible that different coefficients of weighting will be required based on these
different shapes, which will need to be determined.

In the study, the intention was to maximise shear strength of soil particle structures.
Low void ratio is linked to be a good indication of higher shear strengths and there-
fore this was a key feature for analysis and developing of a packing algorithm. Con-
firmation of the method is required compared to other 2BP heuristics and with test-
ing on different particle shapes instead of tetrominoes and particle shapes. However,
the work in this study suggests the method adopted in Chapter 3 can be adapted to
be a solution to the 2BP problem. As far as the author is aware, there is no heuris-
tic solution for the 2BP problem that utilises weighted criteria that are derived from
the analysis of packing structures of soil with the intention of minimising void ratio.
Further investigation into this area may lead to a novel approach for 2BP.

8.9.2 Specimen Generation

From the results presented in Chapter 6, it can be seen that soil particles are success-
fully packed within the domain. Although an optimal set of coefficient values was
not obtained it can clearly be stated that the packing algorithm does successfully
place particle shapes to create a packing that can represent a soil structure. Within
geotechnical research, it is necessary to create structures of particles for testing via
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simulation. The most prevelent of these research areas is specimen generation in
DEM modelling of granular soils.

Multiple methods have been adopted for specimen generation such as random gen-
eration (Lin and Ng, 1997; Itasca, 1998) and triangulation based approaches (Cui
and O’Sullivan, 2003). It is difficult to obtain particles obeying a desired particle size
distribution using these algorithms. Additional, graviational positioning in which
particles fall into position has been adopted (Feng et al., 2003; Ferrez, 2001; Thomas,
1997). O’Sullivan (2003) describes the disadvantages of this approach including the
difficulties associated with obtaining homogeneous specimens, lack of control of the
specimen void ratio, and the interlocked stresses that are also easily induced. Fur-
thermore Cui and O’Sullivan (2003) states that the number of iterations required to
reach the equilibrium results in a very high computational cost.

Potential lies in the algorithm for the Soil Particle Scenario as a method for specimen
generation. The results seen in Chapter 6 give examples of homogeneous packings.
The use of the weighted criteria means that each particle is placed with the same
objective. The particle size distribution can also be controlled by selecting particles
to be placed that fit the desired distribution. Additionally, the overall objective func-
tion can be altered to adhere to the desired function of the structure. The method
differs to the graviational positioning methods as particles do not need to fall into
position providing that they are already placed in stable positions. Section 8.3.3 has
already discussed the need to improve the stability check in the algorithm but with
this improvement leads to the possibility of the use of this method.

Specimen generation was not an intended outcome of this research however it is
clearly a contribution that could be achieved using the method described in Chap-
ter 3. Testing of this method is required and comparison with existing specimen
generation methods should be completed. As far as the author is aware, there is no
current method that generates packings of particles using a weighted objective func-
tion. Therefore, it can be stated that using this method would be a novel approach
for speciment generation.

8.10 Alternative Areas of Improvement

8.10.1 Backfill

A precision method of autonomous construction by specific placement of individual
particles has been proposed for creating structures such as a DSRW. A key feature
of a retaining wall is the backfill behind it. As discussed in Section 2.2.1 the typical
cause of failure comes from lateral pressures on the wall. Therefore backfill behind
the wall being porous with the ability for water to flow through the medium (as
well as the structure either through spaces between particles or designed weepholes)
is beneficial to these structures. With the backfill requiring a key purpose to the
structure, a possibility to autonomously construct this medium exists.

The purpose of the backfill behind the retaining wall is to provide good drainage and
prevent build up of water pressure against the structure. If the methods proposed
in this thesis are adopted for constructing a system like this, it is clear that the objec-
tive function of the algorithm described in Chapter 3 would need adapting. Instead
of having an overall objective of maximising shear strength, a review on maximis-
ing porosity in the system is required. Without conducting a extensive examination
of the literature, it is expected that criteria in the objective function would include
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void ratio being maximised and minimising contact areas between particles. Further
study is recommended if designing a porous medium is to be carried out.

Fontanese (2007) described the backfill behind a retaining wall built by the Incas
at Machu Picchu. The backfill was made of several layers. These were a topsoil
layer for crop growth followed by a middle layer of fine sand and gravel before a
base layer of gravel. Underneath this was a continuation of the wall structure which
acted as a foundation base. It should be noted that the wall structure was not finely
packed together with minimal gaps like that seen in Figure 2.6 for Sacsayhuaman
but were drystacked walls with gaps between particles. Therefore, water can easily
flow through the structure.

If an autonomous construction approach is adopted for construction of the backfill
as well as a DSRW structure then it is possible to a layered system as described by
Fontanese (2007). Particles can be selected and placed in decreasing size order as
the process is done in a layer-by-layer approach. However it should be recognised
that if a robot similar to that seen in Johns et al. (2020) and Johns et al. (2023) is
adopted then this will not be able to grasp small particles and it is very unlikely
that this would be done for particles in the middle or top layer. These layers can
instead be constructed using traditional methods and therefore if this is going to be
done then perhaps it is not worth the expense of constructing the lower layers using
autonomous construction. To determine this further research is required in this area.

A question remains on whether precise construction of the backfill would be worth
the effort considering material can be placed behind the wall with assumptions
made to how it will affect the strength of the structure. The method will be very time
consuming considering the benefits gained. However for situations where build up
of water pressures may be a big issue, such as on flood plains or areas susceptible to
high levels of groundwater flow, a solution that maximises the porosity of the back-
fill whilst still supporting the retaining wall through an autonomous construction
process can be achieved.

8.10.2 Hybrid Structures

Potential lies in using an autonomous construction process with hybrid materials
rather than limiting to just granular gravels, cobbles or boulders. For example, finer
materials could be adopted in the structure for filling of the gaps. This is envisioned
to be a feature if structures are created for purposes such as housing or shelter. Fill-
ing gaps in the structure will prevent draughts and improve sound insulation.

Compaction of finer materials like that seen in rammed earth construction could be
performed by robot - either the same robot with a different end-effector that com-
plete compaction or another robot with the utilisation of a multi-robot process. Com-
paction would not take place on the structure as this may cause damage, but could
be done at ground level and then these materials can be placed in the desired loca-
tion in the structure. Rather than formwork, adjustable areas present in the robot
could be used as boundaries for compaction to take place and through this method
the size and shape of the material can be designed.

Note, with the inclusion of finer material between particles the porosity of the com-
bined material will decrease and water will not travel through the structure. This
is beneficial to a home but is detrimental if there may be a build up of water on the
structure that could then result in failure. Additionally, without use of some sort of
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reinforcement it is possible that material will become soluble or be washed away by
water flow on the structure.

Much more further work is needed for the investigation into hybrid structures max-
imising the whole of the materials that can be found locally to site. This section is
included to create discussion over the possibilities of the autonomous construction
method and where it limits may or may not lie.

8.11 Three-Dimensional Packing

The work in this project is conducted in two-dimensional space to simplify the prob-
lem. The aim of this study is to explore the feasibility of constructing through the
use of an autonomous system that follows an objective set out by the user. The ob-
jective explored in this work is an objective of maximised shear strength, which is
quantified by scoring positioning by VAB, D, T, CN. Although verification of the
strength of the structures has not been carried out, the results in Chapter 6 show the
production of tightly packed particles. For this project to be expanded further, it is
required that this two-dimensional heuristic be expanded into three-dimensions to
replicate real-life scenarios.

It is considered that the criteria specified in the objective function could be extended
to work in three-dimensions. VAB becomes a ratio of the volume of void created
compared to the volume of the particle, whilst T becomes area of contact compared
to surface area rather than a indication of the perimeter of the particle in contact.
D can remain a single value as the depth of the particle from a given height and
CN will remain a value indicating the number of particles surrounding the position.
D and CN are discussed in Section 8.5 about how these could be enhanced and it
is thought that these methods still can be extended to describe a three-dimensional
positioning.

A coordinate approach is adopted to describe the particles. Difficulty comes in rep-
resenting three-dimensional particles, but an extension of using a coordinate system
can be adopted to describe points. Such methods include scanning of particle to cre-
ate a mesh (Self and Vercruysse, 2017) or a cloud of datapoints (Furrer et al., 2017;
Johns et al., 2023; Larsson et al., 2019; Liu et al., 2021) that resemble the particle
shape. It is recognised that an issue with the work in this project was the computa-
tional runtime when excessive amounts of coordinates were adopted to describe the
particle. Therefore, a minimum number of coordinates will need to be found. Fur-
thermore, it is thought that the methods described in Section 8.7 can help alleviate
this issue so that construction in three-dimensions is a feasible option.

Further consideration of heuristics and conditions are required to be identified if
construction is to take place in three-dimensions. Firstly, stability will require an im-
proved method for detecting unstable particles as described in Section 8.3.3. Recog-
nition of stability in all planes will require analysis and particles will at a minimum
require three points of contact with the placement surface. As stated in Section 2.2.4,
Liu et al. (2021) adopted criteria to try and ensure stability of the particles such as
ensuring the deviation from the normal to the surface compared to the thrust line is
above a mean of all possible results. Similar methods could be adopted here, per-
haps stating a maximum angle that particles can deviate from.

Additionally, three-dimensional structures such as the heavier walls found in and
around 16th and 17th century Japanese castles exhibited curvature in their profiles
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(Fujioka, 1969; Nishida et al., 2005) as described in Section 2.2.3. Some profiles in-
clined so that the principal axis is orthogonal to the local tangent of the curved profile
and this was described to maximise shear strength (Utili and Nova, 2007). It is com-
mon practice to have a slight inward slope for larger drystone walls (Vivian, 1976).
This curved profile should be accounted for and the shape of a structure that is cre-
ated to maximise shear strength should aim to take this into consideration when
calculating placements. This can be achieved by designing structures to lie within
a designated volumetric space as seen in Johns et al. (2020) which was discussed in
Section 2.2.4 where candidate poses are rejected if particles overlap the given bound-
aries.

8.12 Summary

The discussions around different topics are summarised here. For the Tetris Sce-
nario, locations in the search area for (CV=1, CD=1.6 CV=0.4, CCN=0.045), (CV=1,
CD=0.6 CV=0.2, CCN=0.015) and (CV=5, CD=1.25 CV=0.4, CCN=0.01) are compared in
Section 8.2.1. It is concluded that due to the misrepresentation of canyoning in the
structure when particles are not capped by a final placement resulting to no inclusion
underneath the placement surface that final void ratio of the system is misleading.
Although (CV=1, CD=0.6 CV=0.2, CCN=0.015) has lower MVR results, (CV=1, CD=1.6
CV=0.4, CCN=0.045) is deemed to be the optimal solution for packing in the Tetris
Scenario for a 10x10 square domain as the high value of CDD in the objective func-
tion help prevent canyoning. Additionally, when results are analysed using Q90, it is
seen that the maximum void produced by (CV=1, CD=1.6 CV=0.4, CCN=0.045) is ac-
tually lower than other combinations and that the maximum MVR seen for sample
size n=100 is an outlier. When compared to the DBL heuristic and randomly packed
tetrominoes, packing using the algorithm and coefficients (CV=1, CD=1.6 CV=0.4,
CCN=0.045) clearly outperforms these in terms of minimising void ratio.

For the study, a domain size of 10x10 squares was selected due to the seen de-
creased domain sizes in literature. Section 8.2.3 investigates the effects of reduc-
ing the domain by examining results of the three combination coefficients brought
forward from Chapter 5 when packing particles into a 10x20 domain. Results for
(CV=1, CD=0.6 CV=0.2, CCN=0.015) and (CV=5, CD=1.25 CV=0.4, CCN=0.01) outper-
form (CV=1, CD=1.6 CV=0.4, CCN=0.045) due to canyoning not being a problem when
the height of the domain is not approached. Therefore if the objective of packing
was to be able to efficiently play the Tetris videogame, one of these solutions could
be deemed the optimal combination of weighting coefficients. Furthermore, the ac-
curacy required for coefficient values and the sensitivity of the Tetris Scenario are
explained in Section 8.2.5. It is stated that the sensitivity is caused by the domain be-
coming full leading to limited positions of particles towards the end of the packing.
In fact, if the Tetris videogame had been used for the Tetris Scenario then the do-
main height would be greater and filled rows would be deleted. With these features
implemented, it is thought that the problem would be less sensitive and any of the
proposed coefficients of (CV=1, CD=1.6 CV=0.4, CCN=0.045), (CV=1, CD=0.6 CV=0.2,
CCN=0.015) and (CV=5, CD=1.25 CV=0.4, CCN=0.01) would be suitable as a solution.

The investigation into the Soil Particle Scenario is discussed in Section 8.3. Section
8.3.1 begins by discussing MRJ and its use as an indicator of soil strength. As de-
termined, there is no correlation between MRJ and MVR with R2=0.024. This was
opposite to what was expected as void ratio would usually lead to tightly packed
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structures meaning more chance of overlap over running joints. Furthermore, MRJ
was found to be greater in structures that were taller. Therefore, the different di-
mensions of the structures was found to be affecting MRJ leading to this not being
a suitable measure. Instead, it is recommended that a physics simulator be taken
forward as this can also quickly calculate stability of the particle when being posi-
tioned. To prevent this, additional conditions are required to reduce the height of the
structure and ensure a layer-by-layer construction technique. It is also thought that
the number of candidate poses being reduced leads to problems for stability as well
as preventing optimal solutions from being found. It is described that an increase
in computational speed will lead to more candidate poses being tried. Section 8.3.3
discusses the stability checks performed in the Soil Tetris Scenario. It is clear that
this is not at a fully developed stage to be suitable from viewing packings in Chap-
ter 6. Therefore improvement is needed. Suggestions of ensuring a layer-by-layer
approach or introducing methods from Liu et al. (2021) are proposed. The final part
of this section discusses the results for packing using coefficients from the Tetris Sce-
nario. It was found that the results from these combinations appear to be of good
quality. However, without a testing method it cannot be confirmed if these lead to
high shear strengths of the structure.

Suggestions for improving results in terms of shear strength are made in Section 8.4.
The first of these is testing multiple permutations of the particle order rather than
packing in the exact list that is presented. It is envisioned that this would lead to
higher shear strengths as the most optimal particle can be placed in its most opti-
mal position of those available. Two methods are suggested: the All Permutations
Method where where every permutation is trialled and the Best Fit Method where
each particle is tested and the best particle is placed before each particle is tested
again with the addition of the new particle in the system. With this technique, if it is
found that a particle is not chosen for placement this can be discarded or tooled as
described in Section 8.4.2. Discarding the particle means that the shear strength will
improve as an unsuitable particle is not being forced into the structure, while tooling
means that the particle can be shaped so that it becomes suitable for its function.

Another method of increasing shear strength is the use of strategic reinforcement.
Section 8.4.3 states that because the placement of material is conducted particle-by-
particle this allows for addition of other materials at any point between packing. Use
of a numerical model such as a physics engine or DEM can be found for analysing
weak spots in a structure designed by the algorithm. Once identified, reinforce-
ment can be placed in just these areas. Doing so is expected to lead to higher shear
strengths as well as a reduction in material for if this reinforcement was placed in
less precise locations.

Methods of enhancement for the objective function are described in Section 8.5. The
way in which D is quantified is discussed in Section 8.5.1 and it is shown that as
the placement surface increases the effect of D diminishes due to its calculation as
a ratio of depth of the particle to domain height. Figure 8.7 demonstrates this as it
is seen that values of D are fairly uniform between values of zero and one for the
Tetris Scenario. Therefore, Dv was suggested as a solution taking the depth of min-
imum height of the placement surface for calculation rather than Ddomain. However,
it was seen for the Soil Particle Scenario that minimum height is often located at the
bottom of a canyon which is too small for a particle to be placed and this therefore
eventually becomes a fixed value. Instead, Dm is adopted that takes the mean height
of the placement surface and its definition is found in Equation 8.4. Values are taken
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as positive for positions below the mean surface and negative for positions above.
Figure 8.9 presents the values of Dm calculated for placing particle outlines in the
Soil Particle Scenario and the range of values is improved with a centroid value of
zero.

Section 8.5.2 describes the use of a first-order equation to define the objective func-
tion. As stated, it is thought that due to differences in values being small that first-
order terms will dominate the scoring. However, it is shown from the range of values
that this might not be the case for CN as this ranges from 1 to 6. It is seen that the
value of CCNCN in the objective function ranges from 0.045-0.27 when CCN=0.045
as was determined for the optimal solution in the Tetris Scenario. Further work is
required to conclude if the objective function should be described by a greater order
than a first-order equation.

Methods for characterising particles for selection are taken from the review of tech-
niques in Section 2.5 for quantifying form, sphericity, roundness, and irregularity.
These are summarised in Section 8.6.2 in Table 8.6. As previously stated, angular
particles are seen to exhibit higher shear strengths due to the interlocking of grains.
Meanwhile Vivian (1976) states particles with flatter sides are easier to construct
with whilst it is also considered that particles with rougher surfaces increase crit-
ical state friction angle (Santamarina and Cascante, 1998). From these statements,
the parameters chosen for characterising the particles are circularity, elongation and
convexity. Circularity defined by Wadell (1933) (as cited by Blott and Pye, 2008) is
taken as a measure of angularity whilst being easier to calculate compared to an-
gularity defined by Lees (1964) because of the omission of needing to locate every
corner in the particle shape. Elongation will give indication of the flatness of a par-
ticle and is found using L/I (Li et al., 2013; Potticary et al., 2016) so can therefore be
used for characterising two-dimensional particle shapes. Irregularity is measured
from the method of a ratio of the perimeter of the convex hull to the perimeter of the
particle around the particle as defined by Li et al. (2013). This is selected as it gives
good description of irregularity at surface detail. The envisioned importance for
each characteristic is given in the order of angularity, elongation, surface roughness.

With the methods of characterising particles comes the possibility of comparing the
particle outlines adopted in this project to actual mining waste material. As pre-
viously stated, the method for generating particles was adopted from Mollon and
Zhao (2012) and utilised software provided from Mollon (2023). Section 3.6.1 de-
scribes the method in which Fourier Descriptors were chosen for production of the
particle shapes. This was done by visual inspection and no verification of the shapes
to actual mining waste particles was completed. Taking the characteristics defined
in Section 2.5, it is possible to compare the produced shapes with mining waste if
two-dimensional castings of these materials can be sourced. Furthermore, Fourier
descriptors can be defined from these materials and compared to the Fourier descrip-
tors utilised in Section 2.5. Alternatively, these outlines can be adopted for packing in
the algorithm whilst the Fourier descriptors produced from analysis of the sourced
mining waste could be utilised to create further particle shapes if a limited number
of rocks are available.

A main restriction to the proposed method is the massive computational times ex-
hibited. Techniques that could be implemented to increase these speeds were dis-
cussed in Section 8.7. Parallelisation can be adopted so that multiple particles or
the same particle in multiple positions can be trialled for placement, reducing com-
putational runtime by allowing for the algorithm to do multiple processes at once.
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Bitwise operations tend to speed up operations in computer code, and it is thought
that these could be utilised for the process of fitting in the discretised stage of the al-
gorithm. Furthermore, caching and memorisation of results can be used for results
which are expected to be repeated. This speeds up the algorithm as it does not need
to replicate these calculations as the answer is already known.

Section 8.8 discusses the consideration of running joints. Running joints are utilised
as a method of quantifying the shear strength in the absence of testing either numer-
ically or physically. This was not included in the objective function due to wanting
to keep the numbers of weighting coefficients to a minimum and it was thought
that the criteria already specified would lead to higher numbers of running joints
disrupted in more optimal solutions. It is suggested in Section 8.8.1 that disruption
of running joints can be included in the objective function through the parameter
J with coefficient of weighting CJ applied to it. To prevent the creation of running
joints being classed as a part of a beneficial criteria (given that running joints are
an indication of weaknesses in the structure) J is classed as an integer value where
J=1 for each running joint disrupted by the particle placement. With the addition
of a new term, the most optimal coefficients for the objective function now becomes
a five parameter problem. Therefore, it is suggested optimisation techniques such
as SA or GA are employed to find this location in the search area. Additionally,
defining running joints at the diagonal is discussed in Section 8.8.2. It is stated that
running joints can be identified by rotating the domain by 45o both anticlockwise
and clockwise for analysis and these points represent the maximum limits at which
a run can be from the vertical position. Horizontal joints can also be analysed by
rotating the domain by 90o.

Section 8.9.1 discusses the potential of the algorithm as a bin packing solution. It
has already been shown that an objective function with coefficients of weighting
(CV=1, CD=1.6 CV=0.4, CCN=0.045) can outscore the DBL hueristic for tetrominoes
in the Tetris Scenario. Potential lies for the algorithm to be used as a 2BP solution.
However, comparison with other heuristics is required and a much more in depth
study with other object shapes. Nevertheless, if the algorithm is viewed as a bin
packing solution this introduces a novel approach to the 2BP problem. As far as
the author is aware, no heuristic for bin packing based on criteria derived from the
analysis of soil particle structures that exhibit high shear strength (VAB, D, T and
CN) has been utilised in an objective function. Furthermore, Section 8.9.2 discussed
the possibility of using the algorithm as a specimen generation method. This could
be adopted for areas of research such as DEM modelling where an initial packing of
particles is required. Again, as far as the author is aware, no specimen generation
approach based on a weighted criteria for determining particle position has been
utilised in this way.

The possible uses of the algorithm are further extended in Section 8.10 where the
use of the packing method is considered for the backfill of material behind a retain-
ing wall (Section 8.10.1) and the use of other materials with the granular particles
(Section 8.10.2) is discussed. The purpose of these sections is to highlight the possi-
bilities of the algorithm and that it is not necessarily restricted to constructing high
strength structures out of granular material. Section 8.10.1 states that new criteria
for objective function would need to be defined as the purpose of the backfill is to
be porous to prevent the build up of pore water pressures behind the retaining wall.
For this, review of these structures is needed as was required to derive VAB, D, T
and CN. Section 8.10.2 states that using finer materials like those seen in URE could
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lead to use of the method for constructing temporary inhabitable buildings with the
filling of gaps preventing drafts and potentially improving sound insulation.

Finally, for the method to resemble a real-life scenario it is required for packing to
be completed in three-dimensions. Section 8.11 recognises this and discusses how
the current two-dimensional version could be extended. The parameters in the ob-
jective function can be extended with ease and particles can be described by data-
point clouds so the technique adopted can remain relatively similar. However, three-
dimensional objects presents many more coordinate points which in turn leads to
increased computational times which is the main restriction to the method currently.
Furthermore, enhancement of the stability checks in the system is required as. One
such improvement could be influenced by Liu et al. (2021) where deviation of the
normal to the surface and the thrust line is analysed. With the move into three-
dimensional packing, it is required that more heuristics are defined. An example of
potential heuristic is the need for sloping of the structure. These were observed in
Japanese castle walls as discussed in Section 2.2.3 and are commonly seen for larger
drystone walls (Vivian, 1976).
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Chapter 9

Conclusions and Future Work

9.1 Introduction

This thesis discusses the work conducted on the area of intelligent autonomous con-
struction by robot with the objective to construct structures of irregular, untooled
rock that exhibit high shear strengths. Clarification of the required method of con-
struction is made and an algorithm for packing two-dimensional shapes that repre-
sent the material has been developed. The aim and objectives for the project were
outlined in Chapter 1 and commentary on the conclusions for these objectives are
made in Section 9.2.

Further findings of the study that are not directly linked to the aims and objectives
are discussed in Section 9.3. After this, suggested future work for the realisation of
such a construction technique is given in Section 9.4.

9.2 Reflection on Aims and Objectives

The primary aim of this project was to develop a new system for optimising the
placement of irregular, untooled rock within a construction with the emphasis on
producing structures with high shear strength. The aim has been met in terms of
being able to effectively pack two-dimensional shapes. The approach developed has
been tested on tetromino shapes based on the Tetris videogame with an objective
function set to achieve minimum void ratio in the system before moving on to pack-
ing outlines of soil particle shapes that are set to represent irregular, untooled stones
with an objective function prioritising shear strength. The strength of the packed
structure is then quantified by the number of running joints disrupted by particles
placed above them. The investigation into outlines that replicate irregular untooled
rock is inconclusive due to the lack of a heuristic that promotes a layer-by-layer
construction technique. Commentary on the objectives set out in Chapter 1 are as
follows:

1. The investigation into relevant literature conducted in Chapter 2 provided
support that the shear strength of a system and stability of placement of a
stone could be described by the following four criteria: void ratio, depth of
placement, contact area of the stone touching other objects, and coordination
number. As such, these were adopted into an objective function when scoring
placements in the algorithm. Furthermore, it was highlighted that stability of
the particle is important when constructing and that a stability check should be
implemented whilst prioritising placements towards the base of the structure
(Furrer et al., 2017; Graton and Fraser, 1935; Liu et al., 2015). Additionally, it
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was stated by Adcock (2012) and Vivian (1976) that runs in a drystone wall can
lead to instability of the structure. Therefore defining the creation of runs and
in turn the disruption of runs by placed particles was adopted as an analysis
method for the resulting packings from the algorithm.

2. An algorithm for packing two-dimensional shapes has been produced and is
described in Chapter 3. The distance the particle can be lowered from the top
of the domain to the placement surface is measured and each position and ro-
tation is given a score based on the objective function. This process was devel-
oped to place tetrominoes following rules similar to the Tetris videogame but
with a reduced domain height and unlimited time for placing of objects. Chap-
ter 6 demonstrates the efficiency of the packings produced. When compared to
random placement as well as the deepest-bottom-left binpacking heuristic, the
methods for placement described here produced much lower void ratios in the
system. The algorithm was extended to packing soil particles. However this
led to a very significant increase in computational time required. Therefore,
it was necessary to reduce the number of candidate poses tested for packing.
Chapter 6 demonstrates that this approach also works efficiently at packing,
as the results produced do have some appearance of fitting nicely together.
Unfortunately, as described later, a suitable combination of weighting coeffi-
cients was not defined. Nonetheless, the packing algorithm provides a novel
method for determining position of two-dimensional shapes in a domain with
the use of an objective function defined by parameters that are determined
from analysing the strength of soil structures.

(a) The objective function is set out in equation 3.16 scoring placements on
the criteria determined from Objective 1 and listed in Conclusion 1. Place-
ments are successfully scored in the system with each having unique val-
ues depending on their positioning. The score is independent of sequen-
tial packings of particles. A first-order equation was utilised as it is as-
sumed that these terms will be dominant in the calculation.

(b) Shapes of both tetrominoes and irregular, untooled rock outlines were
packed with effective measure with regards to the objective as void ra-
tio was minimised in the systems. Tetrominoes added geometrical as-
pects that needed consideration such as orthogonal corners which would
not have been highlighted if just soil particle outlines had been studied.
As a result, straight-edge corner problems for the tetromino shapes were
resolved. It can be concluded that the algorithm has the capability to
pack any shape so long as the shape can be described by coordinates in
clockwise order and is a closed loop with start and end coordinates being
equal. The use of a coordinate system and determining distance the ob-
ject can be lowered from a fixed height above the domain leads to packing
being performed on both concave and convex shapes.

(c) The use of quantifying the number of running joints has been utilised to
detect structures of high shear strength for packings of irregular, untooled
rock outlines. However, as determined in Chapter 6, this has not suitable
for determining structures of high shear strength. In the algorithm, there
is no limitation on height of particles or heuristic that insists on a layer-
by-layer process. Therefore, particles can tower above each other which
artificially increases the number of runs disrupted in the system. It is
recommended that if this study is taken forward, either a new method
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of verification or a restriction on height of the structure is introduced.
Furthermore, packing the domain until it is full would perhaps remove
this problem although it is still intended for particles to be packed in a
layer-by-layer approach. Verifying the strength of these structures can be
done by the method described in Chapter 7. This based testing for the
two-dimensional shapes on determining the angle of repose of the struc-
ture using a rotating drum method. It is stated that angle of repose can
be adopted as an indication of shear strength (Evesque and Rajchenbach,
1989). The equipment has been developed as is presented in Section 7.3.
Using this method, structures packed by the algorithm can be compared
to randomly packed structures to show that angle of repose is higher for
structures packed by the algorithm. Due to time limitations, this method
was unfortunately not fully tested in this project.

(d) Tolerance of errors for packings would also be tested using the equipment
proposed in Chapter 7 and this is discussed in Section 7.5. It is recognised
that placement by a robot will lead to errors in end location of the particle.
The purpose of this study would be to show that the error in placement
seen by the robot would be negligible to the overall strength of the struc-
ture. Methods for measuring effect of error is suggested to be measuring
angle of repose using the rotating drum for structures with different lev-
els of particle displacement from original position. The expected results
of this would be angle of repose decreasing as the percentage of the par-
ticle area displaced increases.

3. Computational runtime is seen as the biggest restriction of this method. Im-
provements of the algorithm were implemented to reduce this time as de-
scribed in Section 3.7. A reduced number of coordinates should be adopted
as excess amounts of coordinates that provide no use for the definition of the
shape massively leads to increased computational times. Particle outlines in
this study were reduced from 129 to 44 coordinates. Additionally, runtime
was reduced by only utilising the section of the placement surface above the
particle and filtering candidate poses using a discretised version of the object
and domain and only trialling the 30 best positions from this step. Further
techniques that can be introduced are discussed in Section 8.7 such as par-
allelisation, the use of bitwise operations and storing of results that may be
repeated using caching and memorisation.

9.3 Further Findings

Within the study, additional conclusions can be made away from the main objectives
set out in Chapter 1.

(CV=1, CD=1.6 CV=0.4, CCN=0.045) is determined to be the optimal solution for the
Tetris Scenario, mainly down to the prevention of canyons in the system. Analysis of
the packing and the lower MVR value for (CV=1, CD=0.6 CV=0.2, CCN=0.015) led to
the recognition that the reduced domain height causes issues as packings are filled.
The boundary of the top of the domain leads to sensitivity of results and either less
particles being packed or capping of a canyon of void in the system when particles
would otherwise be placed elsewhere. When a particle can not fit and the canyon
is no capped, this leads to void ratios much lower than other systems and has no
indication of the canyon in the structure. Extension of the domain height from 10
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squares to 20 squares better resembles the Tetris videogame. Doing so improves
the results of packings with VAB as the dominant criteria in the objective function.
However, the purpose of this study is to investigate construction of soil particles.
If a system where canyons can occur and towers of particles are a feature of the
structure, this would be unstable and unsafe. Therefore it is justified that the solution
for the Tetris Scenario has dominant CDD criteria in the objective function. It is also
recognised that if the objective was the most efficient packing solution for playing
the videogame Tetris, this would include the deletion of rows as they are filled with
blocks of particles. With this feature, the sensitivity of results would be much less
as created squares of void will later become exposed as rows are deleted and the
required accuracy of the weighting coefficients is not as high. It is concluded that
the packing algorithm could be taken as a new method for the optimisation of Tetris
and moving forward with this investigation would introduce a new heuristic that is
based on the features of soil structures that exhibit high shear strengths.

A Gaussian filter was applied to the results of MVR in the Tetris Scenario for de-
termining the optimal combination of weighting coefficients for minimising void
in the system. Care is to be taken at the edge of surface plots due to the effect
of zero-padding. It is shown that application of the filter helps reduce the sensi-
tivity of the result achieved, as is seen between the difference in results between
(CV=1, CD=1.6 CV=0.4, CCN=0.045) and (CV=1, CD=0.6 CV=0.2, CCN=0.015). Al-
though (CV=1, CD=0.6 CV=0.2, CCN=0.015) suggested better packing structures when
analysing the unfiltered data, this location was very sensitive to change of coef-
ficients for the surrounding datapoints. Analysis of the results shows canyoning
occurs in the system for these coefficients meaning that the addition of an extra par-
ticle to cap this area of void would lead to a massive increase in void ratio. Al-
though (CV=1, CD=1.6 CV=0.4, CCN=0.045) scored slightly higher in terms of void
ratio, canyoning did not occur thanks to the additional scoring of CDD in the ob-
jective function. Overall, the packings produced using coefficients (CV=1, CD=1.6
CV=0.4, CCN=0.045) was seen to outperform other combinations.

For the Tetris Scenario, T is detected to act as another method of quantifying the
void in the system. It was seen that when CV was made a zero value and therefore
negating the impact of VAB in the objective function that values of T increased for
the location of results of the lowest MVR value for equivalent CD values. As tetro-
minoes have orthogonal shapes, this is understandable as the number of contacts
the particle has with other particles and the domain means less change for void to
be created below the object. However, no recognition of the size of the void created
is enacted. Therefore if void is present below the particle then scoring of position is
equivalent for 1 square of void or a canyon of void equivalent to 1 squares width.
This is not the case for the Soil Particle Scenario as shapes are described by perfectly
orthogonal particles and therefore will not sit flush with each other. For the Tetris
Scenario, CVVAB tends to be more dominant in the objective function for more opti-
mal solutions compared to CTT and CCNCN whereas CDD is more dominant as it is
required to prevent canyoning in the system. However, it is recognised that D has a
diminishing effect as packing increases height of the placement surface due to being
a ratio to domain height. Section 8.5.1 presents a new method for quantifying depth,
Dm, and it is thought that adopting this parameter would reduce the required value
of coefficient CD.

The required sample size to represent the population data is determined to be n=30
in Chapter 4. This follows the rule of thumb generally seen in statistics. This is
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proven for the case of the Tetris Scenario but not for the Soil Particle Scenario. A
very small difference from the mean of the samples taken is shown to represent the
data with 95% confidence interval for n=30. A range of 0.92 squares of the void either
side of the mean void average value of 3.7 from a spectrum of results experienced
seen for packings produced by the algorithm can achieve this. This is very reason-
able given the minimum difference in void ratio possible in the Tetris Scenario is 1
square. A sample size of n=30 is not adopted for the Soil Particle Scenario due to
time limitations in the project.

Comparison of the algorithm with the deepest-bottom-left heuristic as a control mea-
sure leads to the conclusion that the algorithm is more optimal for packing tetromi-
noes. From this, it can be implied that the packing of by objective function based on
the features of high shear strength in soil could be an efficient bin packing solution.
Further research is required in this topic and different shapes compared to orthog-
onal tetrominoes is vital. On the other hand, introducing such a method would
be a novel approach for achieving solutions of 2BP problems. For the Soil Particle
Scenario, the reduced number of candidate poses creates issues with packing that
take away from this being a good bin packing solution. Further candidate poses are
needed to be trialled for this to be proven further. Also, potential lies that the algo-
rithm could be adopted as a specimen generation approach for such fields as DEM
modelling where an initial layout of particles is required. This would be a novel
approach when it comes to specimen generation.

From the review of the literature, it was also deduced that angular particles would
lead to stronger shear strengths in a soil structure as more interlocking is present
between particles when the force is applied. However, this was not included in the
consideration when packing as it is not known the sort of material that would be
accessible on site. Section 8.6.1 discusses selecting particles for packing based on
their angularity which could be implemented into the algorithm it is known that a
wide selection of material is to be available. Angularity can be determined using the
definition for circularity from Wadell (1933) (as cited by Blott and Pye, 2008). This
method is selected over others such as Lees (1964) due to removal of the need for
the algorithm to detect corners which is stated to be complex for shapes with lots of
convexities and concavities. Additionally, elongation (Li et al., 2013; Potticary et al.,
2016) and irregularity (Barrett, 1980; Cho et al., 2006) can also be used to quantify
the particle shape.

Inspiration for the method was taken from the study conducted in Chapter 2. A top-
down method for packing is seen in Jakobs (1996), Liu and Teng (1999), and Wang
and Hauser (2019) and it is clearly defined that this approach will be needed Further-
more, the inspiration for discretising the particle to attempt a quick method of fitting
is taken from Cagan et al. (1998) and Kong and Kimia (2001). This method with the
use of the hierarchical filtering of candidate poses led to much faster computational
speeds and the improvement of accuracy of placement of the particle. However, it is
found that the number of candidate poses selected - taken as 30 - should be increased
due to issues when packing in the Soil Particle Scenario.

Also concluded from the analysis of the literature was the need for a stability check
by the algorithm. This helps prevent against collapse of the structure whilst con-
struction is taking place. The stability check employed is based on that in Wang
and Hauser (2019) which uses a Coulomb friction model based on the coefficient
of friction. Points of contact of the particle with the placement surface are taken
and sliding is determined based on the weight of the particle, which is assumed to
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be Gneiss boulders. If the centre of gravity of the particle lies outside the contact
points with the surface it is shown that toppling will occur and an additional factor
of safety was applied to prevent close-to-unstable placements. A main recommen-
dation to the reader is an improvement on these stability checks to ensure unstable
positions are avoided. Liu et al. (2021) is cited to have approaches that could prevent
this by taking particles whose does not allow placement of particles who dismisses
positions where the deviation of the normal to the surface is greater than the mean
value. Additionally, particles whose contact area with other particles is lower than
the mean value are not taken into consideration. The hierarchical filter reduces can-
didate poses in the order of the discretised particle score, the depth in the system,
the left-most position, area beneath the particle, and the width-to-height ratio for
which any particles with a height greater than double the width being removed as
these are more likely to topple and therefore be unstable.

Results of the Soil Particle Scenario suggest that there is no relationship between
the number of running joints disrupted in the system and void ratio. This is true
as low void ratio does not necessarily mean overlapping of particles above where
other particles meet. However, it was thought that tighter packings would lead to
more occasions where this occurs in irregular particles. It is recommended that a
different measure of shear strength be found, perhaps through physics simulations
or discrete element modelling analysis. Of these, a physics simulator would allow
for easy calculation of stability of the particle.

The allowing of varying heights of the structure has led to the quantifying of mean
number of disrupted runs in the structure not have any real meaning of value. For
the future, a layer-by-layer packing process needs to be enforced using a better
method than increasing CD in the objective function. Using an outline of intended
final shape can be adopted. Alternatively, it is recommended that particles are only
allowed to be positioned in a layer of three particles high. Once this layer is filled
by a certain number area, the allowed packing zone increases and positioning can
continue up the structure.

Reducing the number of candidate poses for the positioning of particles has led to
further issues with packing. Less stable positions can be detected whilst the use of
the discretised method has led to positions being classified as unsuitable when they
may later lead to good fits. The number of candidate poses should be increased. This
highlights the vast need for an improvement in computational time for the method
to allow for this to take place.

9.4 Future Work

The impact of the construction industry on the environment is currently unsustain-
able with regards to greenhouse gas emissions and the consumption of finite re-
sources. Production of the algorithm in this thesis is intended to show that there
is scope for a more intelligent method that looks to minimise material use by op-
timising the fabric of the structure. A demand for techniques which reduce cost
to the environment is emerging. Work around this area has already shown that
such a method is indeed a possibility, with Johns et al. (2023) being an example and
precedent. However, the structures made in Johns et al. (2023) leave room for im-
provement of their function to truly minimise quantities of material by optimising
the placement of particles. The conclusions made in this report are far away from
providing a solution to the issue but present initial steps towards one.
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For the algorithm to truly optimise shear strength, further methods can be imple-
mented into the heuristics and analysis. The use of a backtracking method or simply
trialling multiple particles rather than placing in the given particle delivery order is
thought to improve overall shear strength as more optimal particles will be utilised.
Furthermore, characterisation of the particles with the intention of discarding those
deemed unsuitable or tooling them to become suitable is another step that would
improve the structures.

It is known that angular particles when packed tightly result in higher shear strengths
of a soil structure. Improved strengths result from the interlocking between parti-
cles and the restriction of movement without the need for dilation of the system.
On the otherhand, more angular particles may be hard to pack due to a reduction
in flatter surfaces and increase in sharp corners creating fewer stable positions for
packing. Further studies on the impact of particle shape in the system is required by
characterising the particles. Systems with very angular particles can be compared
to systems with less angular and rounded particles. From this, it can be deduced if
constructing with angular particles is feasible and to if there is a level of angularity
where the lack of matching edges between particles results in suffering of the over-
all strength. Through the methods discussed in Section 8.4.2, unsuitable particles -
perhaps due to being a level of angularity and irregularity so that fitting in the sys-
tem can not be achieved - can be discarded or tooled to become a shape that can be
utilised in the packing.

A piece-by-piece method of particle placement leads to possibility of strategic rein-
forcement in the system. From numerical analysis, areas of weakness in the packing
can be identified and the application of a reinforcement can be conducted. This can
either be through the use of a adhesive material such as concrete or placement of
a geotextile. Trialling of construction samples with reinforcement applied in areas
specified by the analysis will investigate this area and the suitability of including
this in the process of autonomous construction. Although it is desired to remove
the need for additional material, strategic reinforcement will reduce material use
compared to uniform reinforcement across a given area.

Currently the main restriction for the method is the computational time required
to determine packing by the algorithm. For packing in the Tetris Scenario where
particles were defined by a limited number of coordinates, runtime were seen to be
fast with time taken to pack 30 particles equating to roughly 3.7 seconds. For the
Soil Particle Scenario, much larger runtimes were experienced taking up to 50 min-
utes to pack 40 particles. Such lengths of time are unsuitable for real-time construc-
tion. Methods were implemented to reduce this runtime. However it is suggested
that further steps should be taken for this, especially for the extension from two-
dimensions into three-dimensions as this will add additional considerations and
particle form to be analysed. These are discussed in Section 8.7 and it suggested
further levels of computer programming are employed with the inclusion of paral-
lelisation as well as bitwise operations for fitting in discretised system and caching
and memorisation of results which are likely to repeat themselves.

With the increase in computational speeds, the extension of the algorithm to be
able to pack in three-dimensions can be applied and suggested packings can start
to resemble real-life scenarios. As a result, further heuristics for consideration when
packing in three-dimensions are required such as an improvement to stability checks
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to ensure stability in all directions as well as considering the shape of the three-
dimensional shape as it is seen that retaining wall structures tend to have sloped pro-
files. A more extensive review into these structures and their requirements and fea-
tures that contribute to shear strength will be needed for producing three-dimensional
heuristics.

The decision to use an objective function leaves possibility for the method to be
adapted for construction of structures where it is not designed for shear strength
to be maximised and instead another target can be set. For example, it is seen that
retaining wall structures tend to have backfill with purpose to increase permeability
to prevent the build up of water behind the structure. Section 8.10.1 discusses the
use of the packing method for designing such a matrix if the criteria in the objective
function are developed to represent features commonly seen in soil structures with
high permeability. It is suggested that an autonomous construction approach could
be used for these structures as well although this may not lead to improvements
on current methods for backfilling retaining walls. Nevertheless, this example is
given to highlight the possibilities that are presented by the investigation into an
autonomous construction method and open-endedness of such a technique.
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