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`Das ist nicht leicht zu verstehen. Daÿ es für einen Menschen so wichtig sein kann, zu fragen

und eine Antwort zu bekommen, daÿ es wichtiger ist als alles andere.

[. . .]

Man kann es nicht verstehen. Man muÿ nachgeben und sagen: Es ist so. Daÿ sie wissen müssen.

Und zwar egal, was.'

- Peter Høeg in `Der Plan von der Abscha�ung des Dunkels'.

`It is not easy to understand. That it can be so important for a person to ask and receive an answer,

that it is more important than anything else.

[. . .]

One cannot comprehend it. One has to give in and say: That is how it is. That they need to know.

No matter what. '





Abstract

In this thesis we investigate cosmological perturbations around a quantum gravity

bounce from a model-agnostic perspective as well as from the viewpoint of group �eld

theory. Bounces provide a resolution to the Big Bang singularity and can be found in

theories of quantum gravity, such as group �eld theory and loop quantum cosmology.

They manifest in an e�ective Friedmann equation that is calculated directly from the

quantum theory and encodes quantum corrections to high curvature regimes. Going be-

yond the dynamics of the homogeneous background spacetime to include also cosmological

perturbations in a framework of quantum gravity is often a highly non-trivial task.

We investigate to what extent the separate universe framework can be used to extract

information about the dynamics of gauge-invariant perturbations on super-horizon scales

around a quantum gravity bounce. We �nd that for modi�ed Friedmann equations similar

to that of loop quantum cosmology, the conservation laws of general relativity continue

to apply. More generally, however, these perturbations can become dynamical, as is the

case in e.g. group �eld theory.

Independent from the cosmological setting, we make a more general proposal to recon-

struct an e�ective metric from group �eld theory. Our proposition relies on symmetries

that exist both in the classical as well as in the quantum framework. We promote the

resulting Noether currents of the quantum theory to operators and identify their expecta-

tion values with their classical counterparts. Applying this procedure to the cosmological

setting allows us to reconstruct expressions for e�ective metric perturbations from group

�eld theory directly and opens up the possibility to investigate gauge-invariant quantities.

While we can extract a �at Friedmann-Lemaître-Robertson-Walker metric at late times,

the e�ective perturbations we recover for our choice of quantum state do no exhibit the

dynamics of general relativity in the semiclassical regime.
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Preface

This dissertation is presented for the degree of Doctor of Philosophy from the School of

Mathematical and Physical Sciences at the University of She�eld. The project has been

supervised by Dr. Ste�en Gielen.

The work presented in this thesis was carried out in collaboration with Dr. Ste�en

Gielen and is partly contained in the following two publications:

� Ste�en Gielen and Lisa Mickel.

`Gauge-invariant perturbations at a quantum gravity bounce.'

Universe, vol. 9, p. 29, (2023). arXiv:2211.04500.

� Ste�en Gielen and Lisa Mickel.

`Reconstructing the metric in group field theory.'

Class. Quant. Grav., vol. 41, p. 165002, (2024). arXiv:2312.10016.

These form the basis of chap. 5 and chap. 6, respectively, whereas a publication regarding

the results of chap. 7 is still outstanding.

The thesis is divided in two parts. The �rst part introduces relevant background know-

ledge that the research results build on. It is structured as follows:

Chapter 1 gives an introduction to the core background concepts the rest of the thesis

draws from. This includes a succinct overview of the concepts of general relativity,

cosmology, and quantum theory. It establishes the need for a quantum theory of

gravity and provides an overview of approaches.

Chapter 2 contains the details of group �eld theory, which is the theory of quantum

gravity used in chap. 6 and chap. 7. It includes motivations for group �eld theory as

well as the explicit construction used later in the thesis.

http://arxiv.org/abs/2211.04500
http://arxiv.org/abs/2312.10016


Chapter 3 provides an overview over concepts of cosmological perturbation theory, in-

cluding the separate universe framework, which forms the basis of chap. 5. It also

includes the perturbative analysis of the classical system the results of chap. 7 are

compared to.

Chapter 4 combines previously discussed concepts to explain how bouncing cosmologies

arise in group �eld theory and which approaches to including cosmological pertur-

bations in the framework have been explored so far. This chapter also gives a short

overview over bounces within the �eld of loop quantum cosmology.

The second part of the thesis is dedicated to research results and contains original work

of the author. It consists of the following four chapters:

Chapter 5 explores how and whether the separate universe framework can be used to

extract information about the evolution of long-wavelength perturbations around a

quantum gravity induced bounce.

Chapter 6 contains a new proposal for group �eld theory operators that are constructed

based on Noether currents of the theory. It argues that these operators can be used

to extract an e�ective metric from group �eld theory.

Chapter 7 applies the proposal of chap. 6 to the cosmological setting. It compares the

resulting dynamics for the background as well as for scalar perturbations to those

of general relativity.

Chapter 8 concludes this thesis with a summary of our research results and points to-

wards further research directions.

The appendices contain the following supplementary information:

Appendix A contains a more detailed de�nition of a manifold and its tangent vector

space.

Appendix B gives explicit expressions for the gauge-invariant Einstein tensor for a ge-

neral choice of lapse and shows how gauge-invariant forms of the energy-momentum

tensor can be obtained.



Appendix C contains the calculations necessary for the analysis of scalar perturbations

in a relational coordinate system, which is the topic of sec. 3.4.2 and does not form

part of the standard literature. We compare the dynamics of group �eld theory

perturbations in chap. 7 to these equations.

Appendix D is supplementary to the results of chap. 5 and was already included in the

original publication [1].

Appendix E details the limit of the saddle-point approximation we use in chap. 7 to

obtain analytical expressions for the group �eld theory metric. It forms part of the

publication concerning the proposal of a group �eld theory metric [2].

Throughout this thesis we work in natural units

~ = c = 1 ,

where ~ denotes the reduced Planck constant and c the speed of light, leading to the

following relation between units of mass, length, and time

[mass] = [length]−1 = [time]−1 .

We denote units in terms of length L. For instance, for the scale factor a, which has the

unit of length, we write [a] = L.

We denote derivatives w.r.t. a time parameter in any coordinate system with a prime,

i.e. f ′ = df
dt
, where t is an arbitrary choice of time coordinate.

The metric signature convention used throughout the thesis is (−,+ ,+ ,+), also known

as the `East coast' convention. Greek letters are used to denote spacetime indices, e.g.

µ = 0, 1, 2, 3 and Latin letters are used for spatial indices, e.g. i = 1, 2, 3. A special set of

indices is given by A,B = 0, 1, 2, 3, which denote �eld labels. We use a, b = 1, 2, 3 in some

cases to denote spatial indices and in other cases to label `spatial' �elds. We do not use

hats ·̂ to denote operators in the quantum theory, the context should su�ce to clarify

whether a quantity should be understood as an operator.

Images for the title page of the thesis as well as title pages of the two parts are works

by Annemarie Baden-Wol� and taken from �Mit Tusche Sticken - mit Fäden Zeichnen�,

Kunstmuseum Dieselkraftwerk Cottbus, (2015). All other image sources are contained in

the respective captions.
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Part I.

Foundations





Chapter 1.

Introduction: Gravity, the cosmos,

and the quantum

`I wish to everyone a good trip in this strange but fascinating world.'

- Yvonne Choquet-Bruhat.

`Ich wünsche allen eine gute Reise in dieser wundersamen und zugleich faszinierenden Welt.'

Humanity's quest to understand the inner workings of the world has led to many dis-

coveries and technological advancements. Some questions are arguably as old as humanity

itself and, even though their answers might uncover practical wisdom during their pur-

suit, require no further justi�cation to be answered other than the limitlessness of human

curiosity. One of such questions is that of the beginning of our universe (a more concrete

form of the naive `Where do we come from?'). Clearly, such a question cannot be an-

swered in a mere thesis, but we will focus on a small piece in the cosmic puzzle that will

hopefully aid in bridging the gap between general relativity on the one, and the quantum

world on the other side.

As gravity is a purely attractive force (to the best of our knowledge) it dominates at

large scales despite its comparative weakness and therefore governs the evolution of the

cosmos. The concept of what we now call gravity took on various forms throughout

history, culminating in the formulation of Newtonian gravity in 1687 [3]1 In Newtonian

gravity, masses attract each other, where the strength of the attraction weakens with

1See [4] for a translation.
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increasing distance. This provided a satisfactory description of the gravitational force,

until the measurement of Mercury's perihelion deviated from the Newtonian prediction

[5][6, sec. 4.2]. Before this issue could be addressed directly, another crucial observation

forced us to abandon the notion of absolute time and space: light travels at a constant

speed, irrespective of the observer's motion [7]. This �rst led to the formulation of special

relativity in 1905 [8]2, which excludes gravity from its domain of validity, and �nally

to the theory of general relativity in 1915 [10�12]3 - our current model for the force of

gravity. The theory of general relativity could successfully resolve the discrepancy in the

measurements of Mercury's perihelion [13] and accurately predicted the bending of light

by massive objects, con�rmed during a solar eclipse in 1919 [14].

At the heart of general relativity (GR) lie the Einstein equations, which relate the

curvature of spacetime with the energy density of matter. Finding solutions to these

equations is far from straightforward, still, rather remarkably, the �rst solution, namely

the Schwarzschild solution [15, 16]4, was found shortly after Einstein's original publication.

A solution that we still assume to describe our universe today, namely the Friedmann-

Lemaître-Robertson-Walker (FLRW) metric, was developed in the 1920s-1930s [19�23]

and models the universe as homogeneous and isotropic, which should be accurate as-

sumptions at large scales. General relativity has withstood many years of observational

tests and we are yet to discover concrete experimental hints for its shortcomings. However,

the theory predicts its own incompleteness through the presence of singularities that can

e.g. be found at the centre of black holes, as well as at the beginning of our universe (Big

Bang): curvature becomes in�nite as one approaches a certain spacetime point, signalling

the breakdown of the theory.

The �eld of cosmology has made tremendous progress in establishing the evolution of

our universe. This relies on complementing the description of the homogeneous back-

ground by including small inhomogeneous perturbations, that ultimately give the seeds

for structure formation. The cosmic microwave background (CMB) is our experimental

window into the ancient universe. The CMB was emitted when electrons and protons

combined to form atoms, making the universe transparent and allowing photons to travel

uninhibited. Its release took place just 380 000 years after the Big Bang, where a common

estimate for the age of the universe nowadays is around 13.8 billion years [24]. In addition

to experimental evidence for isotropy in the early universe, the small �uctuations of the

2See [9] for a translation.
3See [9] for translations.
4For translations, see [17, 18].
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CMB allow to extract a tremendous amount of information regarding the processes that

took place before its release.

Simultaneously to the emergence of relativity forcing us to discard the notion of ab-

soluteness, another revolutionising theory began to manifest itself: quantum mechanics.

Quantum mechanics revealed that the world needs to be described as discrete and prob-

abilistic at small scales. However, it does not incorporate the principle of relativity and

therefore constitutes a remarkably accurate and useful theory at low energies only, similar

to Newtonian gravity. Special relativity could successfully be incorporated into quantum

mechanics in the form of quantum �eld theory (QFT) [25]. QFT describes three of the

four fundamental forces of nature, namely the electromagnetic, the weak, and the strong

force through the standard model of particle physics [26]. The standard model of particle

physics is constantly tested at particle colliders such as the LHC and continues to be in

alignment with measurements [27] despite its shortcomings [28].

The inclusion of gravity in the quantum description of the world remains elusive. This

is not due to a lack of e�ort, in fact, there is a multitude of research activities occupied

with the search for a theory of quantum gravity. One possible direction is to aim at

including gravity in a quantum �eld theoretic description where the background remains

�xed. Another is to follow the premise of general relativity that gravity is fundamentally

di�erent from the other forces and encoded in the structure of spacetime. This then

amounts to �nding a quantum description for the fabric of spacetime itself. Despite

admirable mathematical and technical progress, a common struggle of proposals for a

theory of quantum gravity is to make statements that are related to measurable reality.

Perhaps, this is not surprising. Firstly, such formulations often exhibit a high degree of

complexity, for instance, in the second avenue we mention above, a quantum theory has

to include the geometric degrees of freedom of each spacetime point. Secondly, if one is

to �nd signatures of quantum gravity, these should arise in extreme curvature regimes as

corrections to GR, which are hardly accessible in laboratories on Earth.

The origin of the universe is then a particularly interesting testing ground for proposals

of quantum gravity: in addition to high curvature extremes in the vicinity of the Big

Bang, the symmetries of cosmological spacetimes allow to drastically restrict the amount

of fundamental degrees of freedom that need to be included in the description of such

a system. If the background cosmology can be accurately captured within a sector of a

11
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full quantum gravitational theory, one can attempt to incorporate also a characterisation

of perturbations. A description of perturbations can help in connecting to cosmological

observations, but is often di�cult to include explicitly. The core concepts of cosmology

are explained later in this chapter and the theory of cosmological perturbations within

the framework of general relativity is the topic of chap. 3. We detail bouncing universes as

they might appear in cosmological applications of quantum gravity theories, speci�cally

in group �eld theory (GFT) and loop quantum cosmology (LQC), in chap. 4.

This brings us to the more concrete aim of this thesis, namely to explore avenues that

reveal possible e�ects of quantum gravity on cosmological perturbations. The description

of perturbations requires a notion of inhomogeneity in the quantum system. In approaches

that are based on a quantum description of spacetime, localising perturbations is generally

not straightforward and such a description needs to be established depending on the

structures available in a given theory.

To circumvent this di�culty, we take a step towards �nding a model independent de-

scription of modi�ed perturbation equations in chap. 5, which encompasses the results of

[1]. In this attempt, we focus on long-wavelength perturbations, such that we can work in

the separate universe framework, where the details of inhomogeneities can approximately

be neglected. We derive perturbation equations in the separate universe framework for a

general form of a modi�ed Friedmann equation. We then distinguish two cases of modi�-

cations: For the �rst, which is loop quantum cosmology-like, we can recover conservation

laws of general relativity for gauge-invariant perturbations on super-horizon scales. The

second case is more general and allows departures from the conservation laws of general

relativity. To illustrate the possibility of dynamics of such perturbations we consider the

example of a GFT bounce. We close with a comment on second order perturbation equa-

tions, and discuss how these do not provide further insights if one is limited to the strict

separate universe picture. The results presented in chap. 5 draw on the separate universe

framework introduced in chap. 3 and the concepts of quantum gravity bounces detailed

in chap. 4.

In addition to the model agnostic approach, we investigate perturbations within the

framework of GFT in detail. GFT is an approach to quantum gravity that takes seriously

the background independence of general relativity and the quanta of the theory are to be

interpreted as elementary spatial building blocks. Details of GFT are the topic of chap. 2.

The application of GFT to the cosmological context leads to a bouncing universe and the
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theory has the potential for rich phenomenology, while retaining a clear connection to the

fundamental theory.

The goal to extract cosmological perturbations from GFT will lead us to a more general

proposal: reconstructing an entire metric from the quantum theory. The details of this

construction are the topic of chap. 6 and have been published in [2]. We work in a relational

coordinate system comprised of four massless scalar �elds and make use of the fact that

this setup introduces symmetries in the classical system as well as at the level of GFT. We

propose an identi�cation of the classically conserved currents with expectation values of

novel GFT operators that are constructed from the translational symmetry of the scalar

�elds. We show that the classical conservation law holds also for the operators, irrespective

of the choice of quantum state. The relational setup that we use for our construction is

introduced in sec. 3.4.2 and has been employed in past studies of perturbation in GFT,

as we discuss in chap. 4.

Having the potential to initiate serious progress in the �eld if proven to be physically

useful, we consider the implications of this proposal in the cosmological context in chap. 7.

This requires to make a choice of cosmological state, where we use Fock coherent states

similar to previous GFT literature. We �rst study the dynamics of the homogeneous

background mode and show that it can be consistently interpreted as a �at FLRW metric

in the semiclassical regime and leads to a bounce. We then proceed to investigate the

dynamics of inhomogeneous modes which are interpreted as cosmological perturbations.

With the new operators, all perturbative quantities (including gauge-invariant ones) can

be reconstructed from the e�ective metric, where we limit our study to scalar perturba-

tions. We relate the dynamics of perturbations to the �ndings of the separate universe

picture, to the classical scenario, and to previous �ndings in the context of GFT. We �nd

that the dynamics we recover for perturbations from the quantum theory do not match

GR at late times. In addition to the construction of chap. 6, this chapter uses concepts of

GFT cosmology established in chap. 4 and compares to the classical perturbative analysis

contained in sec. 3.4.2.

The remainder of this chapter elucidates some of the basics of the concepts mentioned

above, whereas more speci�c details are explored in the rest of the �rst part of the thesis.

We �rst provide a brief synopsis of the main components of GR and introduce the Einstein

�eld equations (EFE) as well as the Hamiltonian formulation of GR in sec. 1.1. We then

turn to the application of GR to cosmology based on the homogeneity and isotropy of the

13



Chapter 1. Introduction: Gravity, the cosmos, and the quantum

universe in sec. 1.2. We provide some details on the Big Bang singularity and, in order to

provide a broader embedding of our later �ndings within the research �eld of cosmology,

give an overview of the constituents and steps in the evolution of our universe. The core

concepts of quantum mechanics and QFT are brie�y described in sec. 1.3. Finally, in

sec. 1.4 we turn to the topic of quantum gravity. We touch on three possible approaches

to this problem, before explaining loop quantum gravity and spin foam models in more

detail. We conclude in sec. 1.5.

1.1. General relativity

The theory of general relativity (GR) necessitates a paradigm shift of the very nature of

gravity: in GR, gravity is no longer described as a force, but instead manifests as the

curvature of spacetime. This curvature is caused by the presence of matter and in return

determines its movement through spacetime. This relation is described by the Einstein

equations. Here, `matter' refers to anything that carries energy, and in particular, light is

a�ected by gravity.

GR is formulated in the language of di�erential geometry and the two main principles

of GR are the covariance and the equivalence principle. Roughly speaking, the equiva-

lence principle states that gravity is a �ctitious force. Indeed, any freely falling observer

locally follows the laws of special relativity and gravity manifests itself only through the

geometry of spacetime, which in�uences the observer's trajectory. Covariance can be sum-

marised as the statement that `all coordinate systems are equal', which refers to the fact

that physical reality is invariant under the action of di�eomorphisms. General covariance

leads to di�culties in de�ning observable quantities in GR.

We �rst give a short synopsis of the quantities necessary to describe spacetime and its

properties in sec. 1.1.1. The Einstein �eld equations (EFE) give the relation between the

geometry of spacetime and matter and are the topic of sec. 1.1.2. We also introduce the

Hamiltonian formulation of GR in its original Arnowitt-Deser-Misner (ADM) formulation

as well as in terms of Ashtekar-Barbero variables and brie�y touch upon BF theories and

the Plebanski formulation of GR. In sec. 1.1.3 we discuss one of the main peculiarities

of GR: the occurrence of singularities. Furthermore, in sec. 1.1.4, we recount the issue
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1.1. General relativity

of observables in GR and how this has been tackled through the notion of relational

observables.

The content presented can be found in the many excellent introductory lectures and

books such as [29�33]; we point to more speci�c literature where needed.

1.1.1. A manifold, a connection, and a metric

In more mathematical terms, spacetime is a 4-dimensional manifold, consisting of one

time and three spatial dimensions, endowed with a Lorentzian metric.

We review the concept of a manifold and its structure and continue to introduce the

metric as well as the connection, from which additional information about the manifold's

properties, such as its curvature, can be extracted. The �eld of di�erential geometry is

rich and wonderful and we refer the reader to the literature for speci�cs [29, 34, 35]. Our

presentation relies on [29, 31].

Manifolds

Spacetime in general relativity is described by an n = 4 dimensional manifold. An

n−dimensional manifold M is a topological space that can locally be described by a

coordinate chart in Rn.

Points p on a manifold can be characterised via coordinates in a speci�c coordinate

system. We denote the coordinates of a point as xµ with µ = 0, 1, 2, 3. Furthermore,

one can consider curves on a manifold, which are used to de�ne the tangent vector space

TpM at each point. A vector X ∈ TpM can be decomposed as X = Xµ ∂
∂xµ

, where ∂
∂xµ

gives a basis of TpM and Xµ denotes the components of the vector in this basis. Under

a change of coordinate system xµ → x̃µ the vector X remains the same, but through a

change of basis the components Xµ take on a di�erent form in the new coordinate system.

Explicitly, we have

X = Xµ ∂

∂xµ
= X̃µ ∂

∂x̃µ
, X̃µ = Xν ∂x̃

µ

∂xν
. (1.1)

We make the notion of a manifold and its tangent vector space more precise in app.A.

We can furthermore consider the dual of the tangent vector space T ∗pM , whose ele-
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Chapter 1. Introduction: Gravity, the cosmos, and the quantum

ments are 1-forms we denote as ω. Similar to vectors, the elements of the dual space are

coordinate independent, but their components transform as follows:

ω = ωµdxµ = ω̃µdx̃µ, ω̃µ = ων
∂xν

∂x̃µ
, (1.2)

where dxµ gives a basis of T ∗pM .

We can also de�ne tensors, which are elements of the tensor product of an arbitrary

number of tangent and dual vector spaces. The type (r, s) of a tensor is determined by

the number r of vector spaces TpM and the number s of dual vector spaces T ∗pM in the

tensor product. For instance, a tensor T of type (2,1) is given by

T = T µνλ
∂

∂xµ
⊗ ∂

∂xν
⊗ dxλ , T ∈ TpM ⊗ TpM ⊗ T ∗pM . (1.3)

The transformation properties of components of a tensor Tα1...αn
β1...βm of type (n,m)

are as follows

T̃α1...αn
β1...βm =

∂x̃α1
∂xµ1

...
∂x̃αn

∂xµn
∂xν1

∂x̃β1
...
∂xνm

∂x̃βm
T µ1...µnν1...νm . (1.4)

According to the fundamental principle of covariance, coordinates are entirely unphysi-

cal and GR is invariant under coordinate transformations. As we saw, this does not imply

that components of tensors do not change, however, tensorial equations are valid in any

coordinate system.

Note that vectors and tensors live in their respective tangent vector spaces at a point

p on M . As such, we cannot `compare' tensors that belong to di�erent TpM and extra

care needs to be taken when de�ning derivative operators. We introduce two notions of

derivative, namely the Lie derivative and the covariant derivative, further below.

Metric

As already pointed out, the spacetime manifold needs to be equipped with a Lorentzian

metric. This provides a notion of distances on a manifold which in turn allows one to

de�ne a causal structure. A metric gµν is a symmetric tensor of type (0,2), and can be

denoted in the form of a 4× 4 matrix or the so-called line element ds2 := gµνdx
µdxν . It

acts as a bilinear two-form on tangent vectors: 〈X, Y 〉 = gµνX
µY ν . If a metric has at least

one eigenvalue with the value zero, we call it degenerate, otherwise non-degenerate. If all

eigenvalues of a non-degenerate metric have the same sign, we call the metric Riemannian;
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1.1. General relativity

if one eigenvalue has a di�erent sign, we call it Lorentzian. In this thesis we will use the

convention that a 4-dimensional Lorentzian metric has one negative and three positive

eigenvalues and set the metric signature to (−,+,+,+).

Connection and derivatives

On a general manifold, there is no straightforward relation between vectors at di�erent

points p as each vector is an element of a di�erent tangent vector space TpM .5 One then

requires the notion of a connection to make sense of derivatives. General relativity uses

the Levi-Civita connection, the components of which are called Christo�el symbols Γλµν

and are obtained from the metric as follows:

Γλµν =
1

2
gλα
(
∂νgαµ + ∂µgαν − ∂αgµν

)
. (1.5)

From the connection we can de�ne the covariant derivative ∇µ of a vector X or a dual

vector ω, which ful�lls the standard tensor transformation properties

(∇µX)ν = ∂µX
ν + ΓνµλX

λ , (∇µω)ν = ∂µων − Γλµνωλ . (1.6)

This generalises to arbitrary tensors of type (k, l) as

(∇µT )α1...αk
β1...βl

= ∂µT
α1...αk

β1...βl
+

k∑
i=1

ΓαiµλT
α1...λ...αk

β1...βl
−

l∑
j=1

ΓλµβjT
α1...αk

β1...λ...βl
,

(1.7)

where λ in the �rst sum is in the place of the ith upper index, and λ in the second sum

takes the place of the jth lower index. The Levi-Civita connection is the unique metric

compatible ∇λgµν = 0, torsion-free Γλµν = Γλνµ connection.

Another notion of a derivative is that of the Lie derivative. The Lie derivative £ of a

(k, l) tensor T along a vector �eld v is given by

£vT
α1...αk

β1...βl
= vλ∇λT

α1...αk
β1...βl

−
k∑
i=1

Tα1...λ...αk
β1...βl

∇λv
αi +

l∑
j=1

Tα1...αk
β1...λ...βl

∇βjv
λ .

(1.8)

5In special cases, e.g. for the Minkowski metric ηµν , the TpM at each point can be identical, such that
all vectors belong to the same vector space.
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Chapter 1. Introduction: Gravity, the cosmos, and the quantum

Curvature

The curvature of the spacetime manifold is encoded in the Riemann curvature tensor

Rλ
αµν , de�ned by

−Rλ
αµνX

α = ∇µ∇νX
λ −∇ν∇µX

λ . (1.9)

The components of the Riemann curvature tensor can explicitly be written as:

Rλ
αµν = ∂µΓλαν − ∂νΓλµα + ΓλµσΓσνα − ΓλνσΓσµα. (1.10)

One also de�nes the Ricci tensor Rµν , the Ricci scalar R (also referred to as scalar curva-

ture), and the Kretschmann scalar K as:

Rµν = Rα
µαν , R = gµνRµν , K = RλµανRλµαν . (1.11)

Distances between points and causality

The distance between two spacetime points or `events' Q,P , corresponds to the length

of the shortest curve connecting them. The length of a curve xµ(λ) parametrised by λ

between P and Q is given by the integral

` =

∫ Q

P

√
±gµν ẋµẋνdλ , (1.12)

where the dot denotes di�erentiation with respect to the curve parameter λ and the sign

is chosen such that the term under the square root is positive. A curve that minimises

(1.12) is called a geodesic and satis�es the following di�erential equation

ẍµ + Γµσν ẋ
σẋν = 0 , (1.13)

if λ is an a�ne parameter. Inertial observers, also referred to as `free' or `test' particles,

move through spacetime along geodesics.

The distance between two spacetime events contains information about their causal

relation. There are three possibilities, depending on the the nature of the geodesic xµ

connecting them:

� Time-like: gµν ẋµẋν < 0.

Two events are causally connected and any information that is exchanged travels

below the speed of light.
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1.1. General relativity

� Light-like: gµν ẋµẋν = 0.

Two events are causally connected and information connecting the two events travels

at the speed of light.

� Space-like: gµν ẋµẋν > 0

Two events are not causally connected. Only faster than light travel could lead to

information exchange between them.

1.1.2. The relation of curvature and matter

The dynamics of general relativity are governed by the Einstein �eld equations (EFE):

Gµν + gµνΛ = κTµν , (1.14)

where Gµν = Rµν− 1
2
gµνR is the so-called Einstein tensor, Λ ∈ R denotes the cosmological

constant, and κ = 8πG, where G is Newton's constant. The left-hand side encodes the

geometry of the spacetime manifold and Tµν encapsulates the energy-momentum tensor,

whose explicit form is determined by the matter content of the spacetime under consid-

eration. From the Bianchi identities it follows that ∇νG
µν = 0, such that ∇νT

µν = 0

follows from the Einstein equations, see e.g. [29, chap. 3]. Due to the symmetry of the

Einstein tensor, which only has 10 independent components, and the Bianchi identity,

which imposes four additional constraints, the EFE give six independent second order

di�erential equations. Solving the EFE for the metric is an extremely complicated task

and a limited number of exact solutions exist. Examples of such exact solutions are

� Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime [19�23]: This is the ho-

mogeneous and isotropic spacetime assumed to describe our universe. We will delve

deeper into its speci�cs in sec. 1.2.1.

� Bianchi models [36, 37]: These are generalisations of the FLRW metric that relax

the assumption of isotropy. While we have reason to believe that our universe is

indeed isotropic, these solutions are still of interest in cosmological studies [38].

� Schwarzschild black hole [15, 16]6: This is a static, spherically symmetric vacuum

solution that describes the exterior of a black hole. While black holes we observe

6See [17, 18] for a translation.
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Chapter 1. Introduction: Gravity, the cosmos, and the quantum

are usually of the Kerr-type, the Schwarzschild metric can still be a good enough

approximation to characterise certain observations of black holes [39].

� Reissner-Nordström black holes [40, 41]: These correspond to black holes that carry

a charge. While they are to the best of current knowledge not realised in nature,

they are interesting objects to study from a theoretical perspective.

� Kerr-Newman black holes [42, 43]: These describe rotating black holes (and would

also allow for black holes with charge). As such, they form the most general class

of black hole metrics and contain the former two. They give the most accurate

description of astrophysical black holes (which are rotating but uncharged).

The EFE, like several breakthroughs in physics, came about as an excellent physically

informed guess [12]. In hindsight, one can identify an action that encapsulates the geo-

metric content, namely the Einstein-Hilbert action SEH. The action of the full system,

where n denotes the dimension of the spacetime manifold, is then given as a sum of the

gravitational and matter part

S =
1

2κ
SEH + Smatter with SEH =

∫
dnx
√
−g(R− 2Λ) (1.15)

and the EFE can be derived by varying w.r.t. the metric tensor gµν . In particular, the

energy-momentum tensor is de�ned as

Tµν :=
−2√
−g

δSmatter

δgµν
. (1.16)

When considering paths to quantum gravity that aim for a direct quantisation of ge-

ometry, it has proven useful to consider alternative formulations of GR, which are more

amenable to quantisation. In particular, loop quantum gravity (LQG) originates from

a quantisation of the Hamiltonian Ashtekar-Barbero formulation of GR, and spin foam

models derive from a quantisation of BF theories with additional constraints (the so-called

Plebanski formulation). As we will motivate the construction of group �eld theory (GFT)

from LQG and spin foammodels in chap. 2, we give some insight into the Ashtekar-Barbero

formulation, which is constructed from the Arnowitt-Deser-Misner (ADM) Hamiltonian

formulation of GR, and BF theories in the following. Details of LQG and spin foam

models are discussed in sec. 1.4.2.
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1.1. General relativity

Hamiltonian formulation: Arnowitt-Deser-Misner and Ashtekar-Barbero

formalism

We �rst introduce the Arnowitt-Deser-Misner (ADM) Hamiltonian, which was the �rst

Hamiltonian framework established for GR [44] and is a direct reformulation of the

Einstein-Hilbert action. We will refrain from diving into technical details and focus on

the major ideas; our explanations are inspired by [45, 46] and we refer the interested

reader also to [29, app. E] for more details. Subsequently, we introduce Ashtekar-Barbero

variables, which rely on introducing an internal reference frame.

The starting point of the Hamiltonian formalism is to carry out a 3+1 decomposition

of the spacetime manifold M into 3-dimensional spatial hypersurfaces Σ of equal time,

endowed with the spatial metric qab , (a, b = 1, 2, 3), and a time direction. We thus

have M = Σ × R. The time evolution can be further decomposed into the lapse N and

shift vector Na, which intuitively give the components of time translation orthogonal

and parallel to the hypersurface, respectively. This 3+1 split is illustrated in �g. 1.1.

Covariance is a fundamental principle of GR and such a split might seem counter-intuitive

at �rst. One can however show that all foliations of spacetime are equivalent and lead to

the same physical predictions, thus, covariance is simply hidden. The spacetime metric

gµν decomposes as follows

gµν =

(
−N2 +NaNa Na

Na qab

)
, gµν =

(
−1/N2 Na/N2

Na/N2 qab −NaN b/N2

)
. (1.17)

The canonical variables in the ADM formalism are the spatial metric qab and its conjugate

momentum πab = ∂L
∂q̇ab

, which satisfy the Poisson brackets {qab(x), πcd(y)} = δc(aδ
d
b)δ

(3)(x,y).

The ADM Hamiltonian H is obtained from a Legendre transform and contains the so-

called Hamiltonian and di�eomorphism constraint denoted H and Ha, respectively

H =H[N ] +Ha[N
a] =

∫
Σ

d3x (NaHa +NH) , (1.18)

where the lapse and shift appear as Lagrange multipliers. GR is thus a fully constrained

system determined by the �rst class constraints H and Ha. Here we have focused only

on the geometrical Hamiltonian; in general, the matter action is of course non-zero and

gives additional terms in the Hamiltonian and di�eomorphism constraints.
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Chapter 1. Introduction: Gravity, the cosmos, and the quantum

Figure 1.1.: In the Hamiltonian formulation of GR the spacetime manifold M is foliated
into 3-dimensional hypersurfaces Σ. The time vector Tµ interpolating between the spatial
hypersurfaces can be decomposed into a component normal to the Σ, denoted as the lapse
N , and a component that lies in the surface called the shift vector Na. Image taken from
[46].

We now proceed to introduce the Ashtekar-Barbero formulation of GR [46�50]. The

advantages of this formulation when looking for a quantum theory of gravity are twofold:

�rstly, by introducing a connection variable one achieves a Yang-Mills like formulation

of gravity; secondly, the Hamiltonian constraint becomes a polynomial in the canonical

variables, whereas in the ADM case it contains the highly non-linear 3-dimensional Ricci

scalar. In the Ashtekar-Barbero formulation one introduces an internal �at reference

frame at each point of the spatial hypersurfaces. Here `�atness' refers to the fact that the

internal space is described by a metric of the form δij and internal indices can be trivially

raised and lowered. The internal frame is referred to as the `triad' frame (tetrad frames

as internal coordinate systems for a 4-dimensional spacetime were introduced already by

Einstein [51, 52]). The basis of the additional coordinate frame is given by triads eai , where

a is a spatial manifold index, whereas i = 1, 2, 3 denotes the internal index of the newly

introduced frame. The components Xa of any tangent vector of a spatial hypersurface

Σ can be decomposed over this triad basis as Xa = eakX
k and the inverse of the spatial

metric is obtained from the triads through qab = eai e
bi. The internal reference system

needs to be invariant under rotations, i.e. it contains an SO(3), or equivalently SU(2),

symmetry. The internal SU(2) symmetry is then encoded in the form of an additional,

so-called Gauss-constraint, whose explicit form we omit (see e.g. [46]).

Ultimately, a desirable property of the Ashtekar-Barbero formulation is that one of the

canonical variables is a connection. To de�ne the connection variable, we need to consider

some additional quantities �rst. Firstly, the connection in the internal frame spanned by

the triads is the su(2)-algebra valued spin connection Γia, which is determined by

∇ae
i
b := ∂ae

i
b − Γcabe

i
c + εijkΓjae

k
b = 0 , (1.19)
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1.1. General relativity

where Γcab are Christo�el symbols as de�ned in (1.5). Secondly, note that in the ADM

formalism the extrinsic curvature Kab of the spatial slices can be calculated from the

spatial metric, the lapse and the shift as

Kab =
1

2N
(q′ab − 2∇(aNb)). (1.20)

where the prime ′ denotes derivation w.r.t. the time coordinate. Its decomposition in the

triad frame reads

Kaie
i
b = Kab, (1.21)

The extrinsic curvature 1-form Ki
a also takes values in the su(2)-algebra. One then intro-

duces the Ashtekar-Barbero variables, namely the Ashtekar connection and the densitised

triad, at last, which are, respectively, given by

Aia = Γia + βKi
a, Ea

i =
√
qeai , (1.22)

where
√
q is the determinant of the spatial metric and β ∈ C/0 is the Barbero-Immirzi

parameter. In classical GR, all values of β are equivalent and the di�erent de�nitions of

the Ashtekar connection are related by a simple canonical transformation (in the quan-

tised theory, however, β carries physical signi�cance). The Ashtekar connection has the

properties of a connection due to its dependence on Γia, it is canonically conjugate to the

densitised triad due to the appearance of Ki
a. Indeed, we have the following non-vanishing

Poisson brackets

{Aia(x), Eb
j (y)} ={βKi

a(x), Eb
j (y)} = β κ δba δ

i
j δ

(3)(x,y) . (1.23)

It is then possible to rewrite the ADM Hamiltonian in terms of the Ashtekar-Barbero

variables, which at the classical level provides an equivalent description of GR. The goal of

the LQG programme, as we will discuss in sec. 1.4.2, is to attain a description of quantum

gravity by quantising the Ashtekar-Barbero formulation.

BF theories and the Plebanski formulation

Foreshadowing topics that will interest us in the discussion of quantum gravity approaches

in sec. 1.4.2 we brie�y sketch the main concepts of BF theories. These are topological �eld

theories that are amenable to quantisation; the two �elds appearing in the BF action are

denoted as B and F and give the theory its name. Our presentation is based on [53�56].
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Chapter 1. Introduction: Gravity, the cosmos, and the quantum

BF theories can be de�ned for arbitrary spacetime dimension and are purely topological

in any of them. They are hence not su�cient for a description of 4-dimensional Einstein

gravity. Furthermore, by imposing additional constraints on the basic variables of the

theory, 4-dimensional BF theories can be made equivalent to GR, which is known as the

Plebanski formulation [53, 57, 58]. It is then no wonder that BF-theories and their ex-

tension have been of much interest to quantum gravity enthusiasts.

While BF theories alone are inadequate to describe 4-dimensional gravity due to their

topological nature, they can reproduce GR in two and three dimensions (for speci�c

choices in their construction). This is because GR itself is purely topological in these

cases. What is meant by this statement is perhaps best illustrated by considering the

Einstein-Hilbert action (1.15) with Λ = 0 in two dimensions, i.e. one considers a 2-

dimensional manifold equipped with a metric with Lorentzian signature (−,+). One �nds

that the two-dimensional integral can be evaluated explicitly and reduces to the Euler

characteristic χE of the manifold in question, which is in turn determined by the genus h

(`number of holes') of the manifold:

SEH ∝ χE = 2− 2h . (1.24)

The Euler characteristic is a topological invariant and there are no local degrees of free-

dom in this theory; this is what we mean when we say gravity in two dimensions is purely

topological. (For a classical treatment of 2-dimensional gravity, see [59, 60].)

BF theories can be de�ned on any n−dimensional manifold M (n ≥ 2). In addition to

a manifold, one needs to specify a gauge group G, which can be any Lie group, and equip

the group algebra with a bilinear form. The phase space variables of the theory are given

by a connection7 A and an (n − 2)-form B, which takes values in the Lie algebra of G.

The action of the theory, which inspires its name, reads

SBF =

∫
M

tr(B ∧ F [A]) with F [A] := dA+ A ∧ A , (1.25)

where F encodes the curvature of the connection. The resulting �eld equations imply that

7One can formalise and generalise the notion of a connection we introduced earlier by de�ning connec-
tions on �bre bundles over manifolds. We will not concern ourselves with this further here and refer
the reader to e.g. [34, chap. 10].
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1.1. General relativity

the connection is �at, hence, these are topological theories. To obtain e.g. a formulation

of Lorentzian gravity in three dimensions, where the EFE simply state that the metric is

�at, one would choose G = SO(1,2); the Euclidean case it obtained for G = SO(3).

Evidently, in four dimensions gravity has local degrees of freedom. To obtain Lorentzian

GR from a BF theory one can choose G = SO(1,3) and impose additional constraints on

the theory

S =

∫
M

tr(B ∧ F [A]) + λaCa , (1.26)

where λa are Lagrange multipliers and Ca denote the so-called simplicity constraints,

which impose additional conditions on the form of B. For further details, we refer the

reader to [53�55].

1.1.3. Singularities

Singularities are a well-known problem of general relativity. The most intuitive notion of

a singularity is in terms of a divergence of one of the curvature scalars, as is the case at

the centre of black holes and at the origin of our universe (`Big Bang'). We will discuss

the latter in more detail in sec. 1.2.2. It is important to distinguish between physical and

coordinate singularities: components of e.g. the metric may diverge as a result of a poor

choice of coordinate system, as e.g. the Schwarzschild metric in spherical coordinates at

the black hole horizon, while curvature scalars remain �nite.

Singularities are often seen as the regime where general relativity `breaks down' as

in�nities in theoretical physics generally point to our ignorance (in�nities are not physical).

They then hint that a more complete theory of gravity, perhaps in the form of a quantum

gravitational theory, is needed. We would like to point out that, even though generally

understood to exist and posit a problem, de�ning the exact notion of a singularity is not

straightforward and neither is the proof of its existence. Omitting mathematical details,

we make the notion of a singularity slightly more precise, where our presentation is based

on [29, sec. 9.1, 9.5].

Firstly, a singularity is, strictly speaking, not a point in spacetime, as the spacetime

metric must be well-behaved on the entire spacetime manifold. We can therefore rather

think about a singularity as a `hole' or a boundary in spacetime.8. Secondly, the notion

of diverging curvature scalars as signalling a singularity, as is readily illustrated for e.g.

8This intuitive notion is also imperfect, see examples in [29, sec. 9.1].
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the Big Bang is not satisfactory in some cases: It is possible for the curvature scalars to

be vanishing, while the singularity is noticeable only in the divergence of the Riemann

curvature tensor [61].

A possible approach to a de�nition of a singularity is in terms of geodesic incomplete-

ness: If any geodesic parametrised by an a�ne parameter is inextendable in at least

one direction for a �nite value of the same a�ne parameter, it is called incomplete. A

spacetime is said to have a singularity if it contains at least one incomplete geodesic [62].

Singularity theorems provide us with the possibility to show that a spacetime is singular.

They build on properties of the spacetime, such as conditions on curvature which can

sometimes be rephrased in terms of energy conditions and causality as well as a choice

of boundary or initial conditions. For a review of singularity theorems, see [63, 64]. For

(original) literature regarding black holes please see [65, 66], whereas investigations of

cosmological singularities can be found in [67] and references therein.

1.1.4. Relational observables

Coordinate independence, or covariance, is an integral principle of GR and naturally leads

to the question which quantities are physically meaningful and can be observed by mea-

surements. The answer to what is measurable in any theory is: observables. Observables

are quantities that remain unchanged under symmetry transformations, as by de�nition

such transformations do not impact the physical reality, but are merely a degeneracy in

the system's description. The di�culty lies in identifying suitable observables of systems

that have such a gauge dependence.

Gauge transformations are generated by the constraints Ca in a Hamiltonian formula-

tion, and hence, so-called Dirac observablesO are quantities that weakly Poisson commute

with all constraints {Ca,O} ≈ 0. As Dirac observables are invariant under gauge trans-

formations they can be viewed as physical. The confusion of GR lies in the fact that the

gauge group includes all di�eomorphisms, i.e. spatial as well as time translations. Hence,

all Dirac observables are constants in space and time and therefore global quantities. Of

course, this does not mean that we cannot use general relativity to make measurable

predictions of a local nature (otherwise it would not be the successful theory it is today;

gravitational waves do indeed propagate in space and time), but that these measurement

outcomes depend explicitly on the coordinate system of the observer.

Formalising this apparent confusion and �nding Dirac observables for GR has been stud-

ied enthusiastically and from these studies, the notion of relational observables emerged
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[68�71]. Here, one distinguishes between partial and complete observables, which are

extensively discussed in [72]. We consider this framework �rst from a more intuitive

perspective, before outlining the idea more precisely with the notion of gauge orbits.

The core idea is that a partial observable is a measurable quantity (such as the reading

of a clock), whereas complete observables are quantities that can be predicted by a theory.

In particular, such a prediction will always be a relational statement: For example, one

may predict that a homogeneous quantity Q will take a certain value when a clock reads

a certain time t = τ ; or, forecast the value of an inhomogeneous quantity P at the top

of the Ei�el tower x = E at sunrise t = S. The values of P (S,E) and Q(τ) for these

speci�c events can be predicted, whereas, on their own P, Q, as well as t and x are partial

observables. Complete observables, or relational observables, are then based on the fact

that quantities can be unambiguously de�ned in relation to the value of another physical

quantity. A simple example that we will use throughout this thesis is the use of a scalar

�eld as a relational clock or coordinate. The intuitive notion is that if we have a function

of spacetime f(xµ) and a physical scalar quantity such as a scalar �eld χ(xµ) we can de�ne

a relational observable from f(χ(xµ)), i.e. consider the value of f given a value of χ.

To discuss the construction of local Dirac observables (complete observables) within

GR, we recall some structure of the Hamiltonian formulation of gauge theories. Firstly,

for a constrained system not all phase space points are physical. Imposing the constraints

Ca then reduces the phase space to the constraint surface S, which contains all phase space
points `allowed' by the physical system. In a system with gauge freedom, not all points in

S are physically distinguishable. Instead, the constraint surface contains gauge orbits αC,

where phase space points on a gauge orbit are related by gauge transformations generated

by one of the constraints C of the system. All points on a gauge orbit are physically

equivalent, and therefore, the entire gauge orbit is representative of a single `physical

scenario'. We can also consider the values of a phase space function f along gauge orbits,

αC(f). To construct relational observables, we need to include an additional phase space

function T , which takes on the role of a so-called `clock' variable. A relational observable

F[f ;T ](τ, x) that gives the value of a phase space function f with relation to T can be

constructed in the following manner: For any point x on the constraint surface S, �nd the

point on the gauge orbit αC(T ) that passes through x for which αC(T ) = τ . At this phase

space point, �nd the value of f . This then gives the value of the observable F[f ;T ](τ, x),

which indeed assigns to each point on the constraint surface a value unambiguously. An

important requirement for the clock �eld is that the phase space point where αC(T ) = τ
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is unique. If a system has M constraints, its gauge orbits are M−dimensional and one

needs to include M functions that take on the role of T in the description above.

This procedure to de�ne local Dirac observables is not always straightforward in practice

and can be rather involved. Particularly suitable clocks are dust �elds [73, 74], but also

scalar �elds have been of interest in the literature [75]. Relational coordinate systems

based on matter reference frames are furthermore useful in quantum gravity, where they

allow to evade the problem of time [76, 77], as well as providing a framework to construct

local quantities [78�80]. Relational coordinate systems have also been used in manifestly

gauge-invariant formulations of cosmological perturbation theory [81] and as a starting

point for canonical quantisation [82, 83].

Finally, let us point out that the problem of gauge dependence of a theory can also

be resolved by �xing a gauge. In e.g. perturbative systems it is generally possible to

describe gauge-invariant quantities up to a given order in perturbation theory. This is the

approach adopted in cosmological perturbation theory, were gauge-invariant quantities

play a crucial role for observations (see sec. 3.2). Relational observables as described

above have been constructed for a matter reference frame in the context of cosmological

perturbation theory and were compared to results retrieved in `standard' cosmological

perturbation theory [81]. It was found that results agree, up to small corrections [84].

We will make use of a relational coordinate system spanned by four massless scalar

�elds in sec. 2.2.3 and sec. 3.4 as well as in chap. 6 and only work with quantities that

are functions of these matter �elds. We will not explicitly construct Dirac observables as

detailed above, but instead gauge �x the coordinate system to that given by the physical

matter �elds.

1.2. Cosmology

This section describes how GR can be used to describe the evolution of our universe with

a Friedmann-Lemaître-Robertson-Walker (FLRW) metric. We will begin with a general

description of the universe's metric and matter types of interest in sec. 1.2.1, followed by

a discussion of the initial Big Bang singularity (sec. 1.2.2). We give a brief overview of

the evolution of our cosmos in sec. 1.2.3, including also a timeline of various processes

that came about as the universe expanded and thereby cooled. We also introduce the

basic concepts of in�ation, which comprises the current paradigm for the evolution of the

very early universe. Finally, we touch on the idea of cosmological perturbations, which
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we will revisit in chap. 3. A more thorough account of topics discussed in this section can

be found in the standard literature, such as [29, 85�88].

1.2.1. General relativistic description of the universe

Within GR, our cosmos can be described by a speci�c solution to the EFE as given in

(1.14): the Friedmann-Lemaître-Robertson-Walker (FLRW) metric [19�23]

ds2 = −N(t)2dt2 + a(t)2

(
1

1−Kr2
dr2 + r2dΩ2

)
, (1.27)

where N(t) is the lapse function corresponding to a choice of time coordinate, a(t) is the

scale factor of the universe, K gives the spatial curvature, and dΩ2 = dθ2 + sin2 θdϕ2 is

the line element of the unit sphere. The scale factor a(t) is the only degree of freedom

of the FLRW metric. Regarding units, one can assign units of length to the scale factor

and the lapse, or to the coordinates t and r. In the latter case, the curvature K has units

[K] = L−2, while in the former, K is dimensionless. Experimental evidence shows that

the curvature contribution to our universe is very small, possibly even exactly zero [89],

and it is widely assumed that our universe is indeed �at. However, we shall not withhold

that this premise has been questioned [90].

The Einstein tensor (1.14) for the FLRW metric reads (G0
i = 0 = Gi

i 6=j)

G0
0 =− 3(a′)2

a2N2
− 3

a2
K, Gi

i = − 2a′′

aN2
+

2a′N ′

aN3
− (a′)2

a2N2
− K

a2
. (1.28)

Here and throughout the prime ' denotes derivation w.r.t. the time coordinate in any

lapse N . We leave the lapse function general, as we will use a speci�c, non-standard

choice of time coordinate in later chapters. Popular lapse choices are cosmic time, N = 1,

and conformal time, N = a. It is useful to introduce the Hubble rate

H =
a′

a
, (1.29)

which characterises the evolution of the scale factor and thereby parametrises the rate of

expansion of the universe.

We can use the FLRW metric for the study of cosmology under the assumption that

our universe is homogeneous and isotropic on large scales. The isotropy assumption is

based on observational evidence: From the viewpoint of planet Earth the universe looks
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the same in all directions on su�ciently large scales. `Su�ciently large scales' can refer

to e.g. approximately 100 Mpc, 9 where the distribution of galaxies has been found to be

isotropic up to a few percent [86, 87, 91]. Together with the cosmological principle, which

states that our position in the universe does not correspond to a particularly special one,

homogeneity follows from isotropy at every spacetime point [92]. Without attempting to

give an overview of observational evidence for the symmetries of our universe, we men-

tion that the cosmic microwave background (CMB), which we will detail further below,

(mostly) supports the isotropy assumption [93, 94]. Given homogeneity and isotropy on

large scales one can still question whether the FLRW metric gives an accurate enough

description of the universe: as GR is a non-linear theory, considering the evolution of

averaged quantities might not su�ciently capture the true evolution. We discuss this

so-called averaging problem further in sec. 3.1.2.

Having determined the form of a suitable metric for the universe from symmetry consi-

derations, the question of the matter content remains, which, naturally, must be com-

patible with homogeneity and isotropy. This requirement is ful�lled by perfect �uids. A

perfect �uid can be completely characterised by its energy density ρ and isotropic pres-

sure P , which are related by an equation of state parameter w through P = wρ. The

energy-momentum tensor of a perfect �uid reads

T µν = (ρ+ P )uµuν + Pδµν . (1.30)

where uµ denotes the four velocity of the respective �uid, which satis�es uµuµ = −1. In

the �uid rest frame (ui = 0) we have

T µν = diag(−ρ, P, P,P ) . (1.31)

The continuity equation follows from ∇µT
µ
0 = 0 (see sec. 1.1.2):

ρ′ = −3H(ρ+ P ) . (1.32)

With a constant equation of state parameter, w = const., the continuity equation can

be integrated to give the following dependence of the energy density on the scale factor

9Approximately 3× 1021 km.
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(excluding the case w = −1),

ρ ∝ a−3(1+w). (1.33)

The equation of state parameter then fully characterises the evolution of a perfect �uid

in an FLRW spacetime.

In addition to the equation of state parameter w, it is useful to de�ne the adiabatic

sound speed c2
s = P ′

ρ′
. Together with the continuity equation (1.32), one �nds that

w′ = −3H(w + 1)(c2
s − w) . (1.34)

For a constant equation of state parameter we have w = c2
s.

Complementary to the description above, one often encounters universes �lled with

scalar �elds in the literature, which can be interpreted as perfect �uids with a dynamic

equation of state parameter and provide a convenient way to capture matter degrees of

freedom. The energy-momentum tensor of a canonical scalar �eld χ is given by

T µν = ∂µχ∂νχ−
(

1

2
∂αχ∂αχ− U(χ)

)
δµν , (1.35)

where U(χ) denotes the scalar �eld potential. The energy density and pressure of a scalar

�eld read

ρ =
(χ′)2

2N2
+ U(χ), P =

(χ′)2

2N2
− U(χ). (1.36)

The dynamics of the �eld are governed by the Klein�Gordon equation

χ′′ − N ′

N
χ′ +N2 dU(χ)

dχ
+ 3Hχ′ = 0 . (1.37)

Depending on the choice of potential U(χ) a scalar �eld can mimic a perfect �uid with a

constant equation of state parameter (in some cases such a behaviour is limited to certain

time scales of interest). The cosmological considerations we make in the second part of

the thesis will assume matter in the form of massless scalar �elds (U(χ) = 0 and hence

w = 1). The reasons for restricting our considerations to such a type of matter only will

become clear in our discussion of GFT in chap. 2 and the introduction to quantum gravity
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bounces in chap. 4.

The �rst and second Friedmann equation, respectively obtained from the purely time

and spatial components of the EFE for an energy-momentum tensor as given in (1.31),

read

3

(
a′2

a2
+K

N2

a2

)
−N2Λ =N2κρ , (1.38)

2
a′

a

N ′

N
−
(

2a′′

a
+
a′2

a2

)
− KN2

a2
+N2Λ =N2κP . (1.39)

Solving the Friedmann equation in general for a universe that (like ours) consists of multi-

ple matter components with a di�erent equation of state parameter is not straightforward.

However, as we saw in (1.33) di�erent components have a di�erent dependence on the scale

factor and as the universe evolves there will typically be various periods in which a single

component has a dominant contribution. For instance, the early universe is dominated

by radiation, which has ω = 1
3
, such that ρ ∝ a−4 and the curvature and cosmological

constant contribution can be neglected.

1.2.2. The initial singularity: It all started with a bang

`Big Bang' singularity is the name that has been assigned to the initial moment of ig-

norance in which the universe began and that has long evaded a complete theoretical

description. While, as we noted in sec. 1.1.3, �nding a precise de�nition of a singularity

is far from trivial, the singularity at the origin of an FLRW spacetime is undisputed.

The physicality of the Big Bang singularity was a topic of interest in the 1960s and it

was found that its occurrence is a rather general feature of cosmological spacetimes. For

instance, it could be shown that the singularity persists in homogeneous but anisotropic

spacetimes [95]. The idea (or maybe even hope) that small perturbations away from exact

homogeneity could render the universe non-singular in its origin proved to be futile, and

it could be shown that the physical singularity arises even in such cases [96]. In [67] it

was concluded that singularities occur for universes with Λ ≤ 0 as long as the following

conditions on the energy density and pressure components Pi hold:10 ρ +
∑

i Pi ≥ 0 and

ρ + Pi ≥ 0, where i = 1, 2, 3. As we mentioned, the early universe is dominated by ra-

diation and Λ plays a negligible role, such that the above conditions are satis�ed. For a

10The pressure components Pi correspond to the elements of the spatial diagonal of the energy-momentum
tensor in the �uid rest frame (which corresponds to the frame in which the energy-momentum tensor
is diagonal). These conditions are then more general than for a perfect �uid, where all Pi are equal.
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more detailed description of the Big Bang singularity see e.g. [63, chap. 3].

We shall not delve into the mathematical richness of singularity theorems, but illustrate

the occurrence of the initial singularity through the more intuitive notion of the divergence

of the Ricci scalar. In an FLRW spacetime described by (1.27) the Ricci scalar (1.11) is

given by

R = 6

(
K

6
− 1

N2

a′

a

N ′

N
+

1

N2

(
a′2

a2
+
a′′

a

))
. (1.40)

As we argued previously, in the presence of multiple �uids one can approximate the

Friedmann equation (1.27) by assuming dominance of a single component in certain

regimes. Furthermore, if w > −1
3
, the energy density of a �uid (1.33) will dominate

over the curvature contribution. If we additionally assume that the cosmological constant

is small, one can solve the Friedmann equation (1.38) and e.g. in cosmic time N = 1 we

�nd

a(t) ∝ t
2

3(w+1) . (1.41)

It follows that a′/a ∝ t−1 and a′′/a ∝ t−2, leading to a divergence of the Ricci scalar

(1.40) as t→ 0: we have found the Big Bang singularity.

1.2.3. A brief history of the universe

In the following, we brie�y illustrate the evolution history of the cosmos as we understand

it today. As this thesis is concerned with quantum gravity e�ects at the universe's origin,

we state only the basics, aiming to simply provide the broader context of what follows

after the extreme high curvature regime that will be of interest in later chapters.

It has long been manifest that we live in an expanding universe [97�100]; in fact, the ex-

pansion of the universe is accelerating [101�103]. We saw that within GR, we can describe

the expanding universe with an FLRW metric and several perfect �uid components. The

central question is then which matter types are contained in our universe and in which

relative abundance. It is observationally straightforward to establish that the universe

contains radiation and dust matter,11 which have equation of state parameters wrad = 1
3

11We will use the word `matter' to refer to any contribution to the r.h.s. of the Friedmann equation and
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and wdust = 0, respectively. Furthermore, there are possible contributions from the spatial

curvature K, as well as the cosmological constant Λ.

As the universe proceeds to expand, di�erent matter types dominate its energy density.

As can be understood from (1.33) and the Friedmann equation (1.38), at early times,

radiation dominates, followed by a period of dust matter domination. At later times,

the curvature term will take over, unless we live in an exactly �at universe. Lastly, the

cosmological constant will be all that is left to drive the expansion of the universe.

It is possible to observationally establish the relative abundance of di�erent matter

types in our universe today, which permits us to trace back the evolution history of these

components. Radiation contributes less than 10−3 % to the current universe's energy

budget; dust matter makes up around 30 % of our universe, and the cosmological constant,

also referred to as `dark energy', gives the dominant contribution with around 69 %.

Spatial curvature can only contribute up to a maximum of 1 %. For exact numbers and

more details see [86, sec. 2.4].

This touches on some of the unsolved mysteries that lurk within our current cosmolog-

ical model: Firstly, less than 5 % of the universe's total energy budget can be attributed

to baryonic matter (protons and neutrons, neglecting the mass of electrons) that we ob-

serve in galaxies or other structures [24]. The primary contribution comes from a matter

species unknown to us, �ttingly dubbed `dark matter': in order to describe observations

it is necessary to assume a type of matter that interacts gravitationally, but only weakly

through the other forces [104]. The true nature of the cosmological constant Λ is also an

area of active research. For a discussion of di�erent approaches to and viewpoints of the

cosmological constant, see [105, 106].

The ΛCDM model is the currently prevalent standard model of cosmology. Two of

its core ingredients are in the name: a non-zero cosmological constant Λ and cold dark

matter (CDM), where the term `cold' refers to the fact that it is non-relativistic. The

ΛCDM model assumes that the universe is �at (K = 0 in (1.27)). It builds on a general

relativistic description of gravity in the form of the FLRW metric and has six indepen-

dent parameters [24]. Three of these parameters that are determined by the background

evolution of the universe are related to the value of the Hubble constant, the dust matter

density (CDM and baryonic), and the baryon density. Another parameter is the inte-

refer to the speci�c contribution with w = 0 as `dust matter'. Note that in the literature, the latter
often referred to simply as `matter'. Dark matter is a form of dust (w = 0), whereas for baryonic
matter this is only true after it decouples from photons and electrons just after the surface of last
scattering (see below) [86].
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grated optical depth τ to recombination, which gives the integrated scattering probability

of photons and is thus a measure for the opacity of the universe [86, 89, 7.5]. The remain-

ing two are related to perturbations of the homogeneous background and we will come

back to these in sec. 1.2.4.

We proceed with a swift synopsis of the various processes that took place as the universe

expanded. Their description emanates from the behaviour of matter at various energy

scales, drawing on the standard model of particle physics, statistical physics, and atomic

physics. From the viewpoint of GR, nothing but the energy density of the various perfect

�uids that inhabit our universe are of importance. Still, the multitude of processes that

unfolded as the universe expanded and cooled are not only extremely interesting, but

their understanding also provides us with observational tests of the universe's evolution.

Our description is based on [86].

Leaving out the Big Bang and a possible in�ationary phase, which are discussed further

below, the �rst event that followed in the early universe was baryogenesis, which is the

term for the process that induced the observed disparity in the abundance of matter and

anti-matter in the universe. Then, at a temperature of around 1015 K electroweak sym-

metry breaking took place and the gauge bosons of the weak force (W± and Z bosons)

gained mass. At around 1012 K the universe had cooled down enough such that hadrons

could form (QCD phase transition). Neutrinos decoupled at energies of around 1010 K and

became free streaming relativistic particles. Finally, the universe cooled enough (109 K)

for the annihilation of positrons and electrons and the �rst elements were formed during

nucleosynthesis. At this point, we exit the era of radiation domination and enter the

era of dust matter domination. The next two processes are extremely important for our

understanding of the history of the cosmos, as they culminated in the event at the origin

of our earliest snapshot of the universe, namely the cosmic microwave background (CMB)

(see also sec. 1.2.4): At 3400K electrons and protons combined to form hydrogen atoms

for the �rst time, a process called recombination. Whereas the universe was a dense `soup'

of charged particles until this point, the formation of neutral atoms meant photons could

now stream freely. The surface of last scattering (2900K) marks the moment after which

the universe became completely transparent for photons and the CMB photons that we

measure today were emitted. Subsequently, stars and galaxies began to form. The �nal

event in our story is the moment in which the dust matter contribution became subdo-

minant to the cosmological constant, which since drives the universe's expansion. Today,
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our universe has a temperature of around 2.7K [24].

This picture that we have drawn does not come without its peculiarities, which are

mainly the necessity of extremely �ne tuned initial conditions. One of these is the fact

that the curvature parameter in the very early universe must have been extremely small

without vanishing entirely. This is known as the �atness problem. Another, known as

the horizon problem, arises due to the fact that, despite the observed homogeneity of

the CMB, the CMB photons could not have been in thermal equilibrium in the early

universe as they would not be causally connected if the universe began in a period of

radiation domination. Hence, their homogeneity must have been a (�ne tuned) initial

condition. In the following, we give a more detailed explanation of the horizon problem,

also because horizons play an important role in the study of perturbations, as we will see

in sec. 3.3. The �atness and the horizon problem can both be alleviated by an early phase

of accelerated expansion, which provides the main motivation for models of in�ation. We

will discuss the basic premise of in�ation at the end of this section.

The horizon problem

To understand the horizon problem we consider the causal structure of the FLRW space-

time. The particle horizon12 describes the furthest distance to particles whose light reaches

us today. These particles may long have receded away from us, such that we can never

observe them again, but the light they emitted in the past reaches us today.

From the comoving distance ∆r that light travels between time t1 and t2 we can calcu-

late the size of the (comoving) particle horizon rhor at a given time

∆r(t2, t1) =

∫ t2

t1

dt

a(t)
⇒ rhor(t) =

∫ t

0

dt

a(t)
=

∫ a(t)

a(0)

da

ȧa
. (1.42)

which assumes the universe `began' at t = 0. Note that physical distances d are obtained

from comoving ones through d(t) = a(t) r(t). In a period where the universe's matter

content is dominated by a perfect �uid, such that contributions from the curvature and

cosmological constant can be neglected, one �nds, using the Friedmann equation (1.38)

in conformal time H2 = κ
3
a2ρ and (1.33) (thus assuming a constant equation of state

12Not to be confused with the event horizon, which is unrelated to the horizon problem. The event
horizon is a horizon concerned with the future of an observer - all events outside the event horizon
cannot be in�uenced by the observer and are therefore causally disconnected.
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parameter), that the particle horizon is approximately given by the comoving Hubble

horizon (aH)−1. Therefore, the physical distance dhor of the particle horizon can be

approximated by the Hubble horizon RH :

rhor ∼
1

aH
⇒ dhor = a rhor ∼

1

H
=: RH . (1.43)

The horizon problem concerns the observed high level of homogeneity of the CMB,

which would be a natural consequence of thermal equilibrium in the early universe. How-

ever, if we consider the particle horizon at the surface of last scattering, where the CMB

was emitted, we �nd that not all regions could have been in causal contact at this stage,

assuming the universe began in an era of radiation domination. To make this more pre-

cise, if we compare the size of the surface of last scattering given by the distance CMB

photons have travelled since their emission ∆r(ttoday, tCMB), to the particle horizon of each

CMB photon at time of emission, rhor(tCMB), we �nd that rhor(tCMB)� ∆r(ttoday, tCMB).

Di�erent regions of the CMB photons are therefore not causally connected and without

introducing a phase that predates the radiation domination era, their homogeneity can-

not be explained through a thermalisation process that took place in the early universe.

Instead, to agree with observation, homogeneity must be imposed in the form of initial

conditions, which may be seen as a �ne tuning problem. An era of rapid expansion in

the early universe can resolve the horizon problem: The universe could initially be in

thermal equilibrium, while still reaching its size today. Alternatively, in any bouncing

universe, where the expanding phase we live in is preceded by an era of contraction, the

horizon problem does not exist, as causal contact and thermalisation can take place in

the contracting branch.

Early evolution: In�ation

In�ationary models lead to an extended phase of accelerated expansion a′′

a
> 0 in the

early universe, which solves the horizon problem and furthermore provides a mechanism

that leads to a naturally small value of the curvature density (thus resolving also the

�atness problem; for details we refer the reader to [86, 4.1.2]). (The Big Bang singularity

persists in simple in�ationary models.) A phase of accelerated expansion can be achieved

by assuming that the universe was dominated by a single scalar �eld with a potential that

ful�lls certain properties prior to the era of radiation domination. Such models are known
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as single �eld in�ation, where the �eld of the model is referred to as the in�aton, which

we will denote as φ.

In�ation has become a dominant paradigm today (although it is not perfect and many

extensions are continuously studied and proposed). We outline the basics of single �eld

in�ation below; our presentation is based on [87, sec. 1.5.2]. At the core of single �eld

in�ation lies the in�aton φ with a matter action given by

S = −1

2

∫ √
−g(∂µφ∂

µφ+ U(φ)), (1.44)

and energy density and pressure as given in (1.36). To attain a period of accelerated

expansion we require w < −1
3
. In slow-roll in�ation, one assumes that the scalar �eld

potential dominates over the kinetic term, such that w ≈ −1, and furthermore that the

kinetic term varies only slowly to ensure that the accelerated phase can last long enough.

These requirements are captured by the slow-roll conditions, which in cosmic time N = 1

read

1

2
(φ′)2 � U(φ) |φ′′| � 3H|φ′| . (1.45)

The latter follows from the Klein-Gordon equation (1.37), which governs the �eld dynam-

ics. As in�ation proceeds, the �eld gains kinetic energy and approaches the minimum

of the potential. In�ation ends and the in�aton decays to standard model particles in a

process known as `reheating', initiating the radiation dominated era of the universe.

Various potentials U(φ) can satisfy the conditions (1.45) and a plethora of in�ationary

models exists. In�ation appears to agree well with observations, however, it is not without

caveats and criticisms. For a review of successes and criticisms of in�ation in light of recent

data, please see [107].

With regards to the topic of this thesis, we point out that in some sense, one can

view in�ation as a coarse grained description for the happenings in the early universe, as

we have no concrete knowledge of the prevalent degrees of freedom. Also, it is unclear

whether the description of the universe's dynamics in classical terms is useful above the

Planck scale, which is reached at around 1019 GeV, or 1032 K, where one expects quantum

e�ects to become dominant. A satisfactory description of these regimes is expected only

within a theory of quantum gravity, which, as we will discuss in chap. 4, may induce a

bounce to replace the Big Bang singularity.
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1.2.4. Beyond homogeneity

Needless to say, the universe is not perfectly homogeneous as any look around us or into

the night sky reveals. In our universe today, matter has clumped to form structures, such

as planets and stars on smaller, as well as galaxies on larger scales. The formation of

structures can be modelled from the growth of initially very small inhomogeneities on top

of a homogeneous `matter soup'. These inhomogeneities are described by cosmological

perturbation theory; the mathematical treatment of perturbations in the early universe

will be discussed in detail in chap. 3.

As explained in sec. 1.2.3, the CMB can be seen as our window to the origin of our

universe. The CMB has been mapped in three successive experiments [108, 109], the latest

of which, the Planck satellite [24], reached unprecedented precision. Overall, the CMB is

well described by an (almost) perfect black body spectrum with a temperature of ∼ 2.7K.

The crucial information lies in the anisotropies, however. From these small anisotropies

one can extract a power spectrum, which encodes correlations in the anisotropies on a

given scale. Among other things, it can be used to test theories of the early universe and

it is this property that makes it interesting in the context of quantum gravity.13 It should

be noted that e�ects on the power spectrum are highly degenerate - many modi�cations in

the theory lead to the same e�ects. We can now name the �nal two ΛCDM parameters, As
and ns, which describe the amplitude and tilt of the CMB power spectrum, respectively

[86, 89].

The focus of this thesis lies on quantum gravity e�ects in the very early universe, specif-

ically, we will consider models that replace the Big Bang singularity with a bounce. Re-

garding the connection to cosmology, we may hope that such scenarios can make in�ation

super�uous, or consistently precede in�ation. How exactly a quantum gravitational the-

ory of the universe connects to cosmological measurements, can be brought in agreement

with them, and leaves observational imprints is a highly model dependent, non-trivial

task.

1.3. Quantum theory

Quantum mechanics fundamentally revolutionised the �eld of physics by revealing that

the world at small scales follows a set of laws that is completely distinct from our every-

13The anisotropies of the CMB encode far more than that, but these processes are not only outside of
the scope of this thesis, but also outside of the scope of knowledge of the author.

39



Chapter 1. Introduction: Gravity, the cosmos, and the quantum

day experience. Before proceeding to discuss approaches to quantum gravity, we brie�y

mention the concepts that have led to an accurate and well established description of

several quantum phenomena. We include the axioms of quantum mechanics in sec. 1.3.1

and outline the canonical quantisation as well as the path integral approach to quantum

�eld theory in sec. 1.3.2.

1.3.1. Quantum mechanics

The �eld of quantum mechanics was established through a string of experimental evidence

that culminated in an axiomatic formulation of the theory. The axioms of quantum

mechanics establish the link between the mathematical formalism and the real world.

They can be found in di�erent forms and in di�erent order in a multitude of places, such

as [34]. Here we give a short overview over these axioms.

� States: A physical state |ψ〉 is described as a vector of a Hilbert space H . Projection

of a state on a speci�c basis gives the wavefunction ψ, e.g. 〈x|ψ〉 = ψ(x).

� Operators: To every physically relevant quantity A there is associated a hermitian

operator A = A†.

� Commutators: Poisson brackets of phase space functions are replaced with commu-

tators of operators [A,B] = AB −BA.

� Dynamics: Time evolution is unitary. In the Schrödinger picture, evolution of the

wavefunction satis�es i d
dt
ψ = Hψ, where H is the Hamiltonian operator of the

system. In the Heisenberg picture, time evolution is obtained from the commutator

of an operator with the Hamiltonian i d
dt
A = [A,H].

� Measurement (Born's rule/ Wave function collapse): We can only make probabilistic

statements of measurement outcomes. The expected value, or expectation value, of

an operator for a speci�c state is given by 〈ψ|A |ψ〉. Upon measurement, the system

collapses into an eigenstate of the measured operator. Successive measurements

within short time intervals will give the same result.

Quantum mechanics works extremely well for all non-relativistic processes, such as

those found in atomic physics. In order to combine the quantum nature of small scales

with special relativity, quantum mechanics had to be extended to quantum �eld theory,

which is the subject of the next section.
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1.3.2. Quantum �eld theory

Quantum mechanics works extremely well at low energy scales, or equivalently, for slow

processes. With the advent of special relativity, however, it became clear that quantum

mechanics is applicable only in such regimes and an extension of the theory, which re-

spects Lorentz invariance and allows for particle creation and annihilation, is required. In

regimes with high energy, the equivalence of energy and matter allows for particle creation

and special relativistic e�ects can no longer be neglected. Quantum �eld theory (QFT) is

the framework in which such e�ects are accurately captured. It provides the theoretical

framework for the standard model of particle physics, which has so far stood the test of

time and continues to be con�rmed at particle accelerators [27]. The two main principles

of QFT are Lorentz invariance and unitarity and the main objects are quantum �elds

living on a �at spacetime described by the Minkowski metric. These �elds capture the

matter content of our universe. Their quantisation can be achieved in a canonical or a

path integral approach. Details of QFT can be found in e.g. [25, 110].

In canonical quantisation, one promotes the �eld of a classical �eld theory to an opera-

tor, where each �eld mode is quantised in the same fashion as a harmonic oscillator. For

a scalar �eld φ this leads to the following form of the �eld operator (x = (t, ~x))

φ(x) =

∫
d3p

(2π)3

(
ape

i(−ωt+~p~x) + a†pe
i(ωt−~p~x)

)
, (1.46)

where ~p denotes the three-momentum and ω the energy eigenvalue of each �eld mode.

The interpretation of the above is that the �eld operator acting on the vacuum φ(x) |0〉
creates a particle at position ~x and time t. The above form of φ(x) can be obtained by

�rst carrying out a Fourier decomposition in space and noticing that the Klein-Gordon

equation (∂2
t −∇2 +m2)φ = 0 imposes the dynamics of a harmonic oscillator on each �eld

mode. The procedure is then to quantise each �eld mode as a single harmonic oscillator

and introduce mode dependent ladder operators ap and a†p that satisfy the following

commutation relations

[ap, a
†
q] = δ(~p− ~q) . (1.47)

The probability of a particle to propagate from x to y can be calculated from the 2-point

correlation function or propagator 〈0|φ(x)φ(y) |0〉. In an interacting theory, one can ask
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more interesting questions, such as the likelihood to transition between two states with

given particle number and momenta. The transition amplitude between an initial state |i〉
at time ti and a �nal state |f〉 at time tf is denoted as | 〈f, tf |i, ti〉 |2. In particle colliders,

QFT predictions are compared to experimental results based on scattering amplitudes.

These are calculated from asymptotic transition amplitudes, which are encoded in the

so-called S-matrix S

〈f ;∞|i;−∞〉 = 〈f |S |i〉 . (1.48)

S-matrix elements can be related to n−point correlation functions through e.g. the LSZ

reduction formula. These higher order correlation functions in interacting theories can be

calculated from a perturbative expansion characterised by Feynman diagrams.

A particularly convenient technique for calculating n−point correlation functions arises

in the path integral approach to QFT. Here, they can be calculated from derivatives of

the generating functional Z[J ], also referred to as the partition function. For a scalar �eld

φ we have

Z[J ] =

∫
Dφ eiS[φ]+iJ [φ] (1.49)

where the action S contains a kinetic and an interacting term, J denotes the source term,

and
∫
Dφ stands for the path integral.

1.4. (The trouble with) Quantum gravity

Having outlined the basics of GR as well as QFT, one may now ask whether it is possible

to achieve a quantum description of gravity with QFT methods. The answer is not in the

a�rmative, at least not with the standard methods used by particle physics (otherwise

this thesis would be obsolete). We outline the reasons for this below and refer the reader

to [29, sec. 14.1] [56] for further details.

In an attempt to quantise GR as a �eld theory, the naive approach would be to promote

the metric to an operator. This however, leads to two conundrums: Firstly, as we saw

in the previous section, QFT is de�ned on a �xed Minkowski spacetime described by

gµν = ηµν . It is not clear how a formulation of QFT could be achieved where the metric,

which describes the background, is at the same time a quantum �eld in the theory.14

14One can however investigate QFT on a curved background spacetime, which is indeed an active research
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Secondly, the metric encodes causality of the spacetime, which is an integral part of the

formulation of QFT, and a quantum metric would render the causal structure ambiguous.

Maybe the most straightforward attempt to circumvent these issues is found by con-

sidering a perturbation around the Minkowski background gµν = ηµν + hµν , where the

�eld theory is still formulated on a �at spacetime and only the perturbation hµν is treated

as a quantum �eld. The gravitational force is then mediated by a spin-2 particle called

the graviton, corresponding to the excitation of hµν . Unfortunately, it turns out that

this theory is not renormalizable [112, 113] and should thus be viewed as a low energy

e�ective �eld theory [114]. (In our brief overview of QFT we did not touch on issues

of renormalizability, which concerns itself with absorbing in�nities that appear in the

theory in a suitable manner. The interested reader is referred to [29, sec. 14.1], which

contains a better overview of renormalisation than we could ever provide. A way out of

non-renormalizability is the inclusion of a non-Gaussian �xed point of the renormalisation

group �ow, which is the premise of the asymptotic safety approach [115].)

With straightforward methods proving futile, one may of course ask whether it might

not be possible that gravity simply needs to be described in a classical manner and

no quantum analogue exists. However, the EFE (1.14) give a precise relation between

matter and geometry, and we know very well that matter is quantum. Any `typically'

quantum behaviour of matter (such as the collapse of a wavefunction) then needs to be

mimicked by the metric.15 We have furthermore seen that general relativity predicts its

own breakdown in the form of singularities in sec. 1.1.3, which are hopefully resolved in

a quantum treatment. It is then not only unsatisfactory to have a quantum theory for

all forces but one, but a quantum description of gravity appears to almost be a physical

necessity. There is then an ongoing quest for a theory of quantum gravity to reveal how

the quantum nature of reality manifests in gravity.

This quest is a di�cult one and there exist a plethora of approaches, none of which, at

this point are complete from a theoretical viewpoint or can make veri�able predictions.

Di�erent approaches have vastly di�erent starting points and it is not at all clear how they

connect to each other - where connections between some are more apparent than between

others. Broadly speaking, approaches can be classi�ed as background dependent and

background independent. The former assumes an underlying Minkowski background and

�eld [111] that we touch on again in sec. 1.4.1.
15E.g., if matter is in a superposition of two locations, by the virtue of the EFE this would be re�ected by

the spacetime geometry. The collapse of the matter wave function would then induce an instantaneous
change also of the metric.
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constructs a quantum theory of gravity on top, where the apparent curvature of spacetime

described by general relativity is emergent. Background independent approaches, on the

other hand, aim to quantise gravity or spacetime directly.

We continue to give a rough overview of possible approaches in sec. 1.4.1. In this thesis,

we are particularly interested in GFT, which is a background independent approach to

quantum gravity and is related to the LQG and spin foams approach, such that we explain

the motivations behind these approaches and describe them in some detail in sec. 1.4.2.

GFT itself and its motivations will be the subject of chap. 2.

1.4.1. Approaches to quantum gravity

One can approach the problem of quantum gravity from di�erent viewpoints:

� Canonical quantisation

In the canonical quantisation approach, the goal is to �nd a suitable quantisation of

the Hamiltonian formulation of GR. A major obstacle in this approach is the fact

that the GR Hamiltonian H, which is responsible for time evolution, is a constraint

(see sec. 1.1.2). Hence, for any wave function Ψ, which satis�es the Schrödinger

equation i∂tΨ = HΨ, we �nd HΨ = 0 and thus no time evolution. This is known

as the problem of time. LQG is a candidate theory of quantum gravity that is

based on canonical quantisation and we will give further details on its formulation

in sec. 1.4.2.

� Path integral approach

In the path integral approach, one can attempt to de�ne a path integral over all

possible metrics, with a generating functional along the lines of Z =
∫
eiS[gαβ ]dµ[gαβ].

Here, dµ[gαβ] denotes a measure on the space of all possible metrics, the de�nition of

which is far from trivial. This approach can include transitions between metrics of a

di�erent topology. An example is the �eld of causal dynamical triangulations, which

is based on a path integral over all causality preserving triangulations of spacetime

[116, 117]. Spin foams are another path integral approach to quantum gravity and

the topic of sec. 1.4.2.

� String theory

In string theory, which is often hailed as the most promising approach to quantum

gravity, the notion of point particles is replaced with one dimensional strings, which
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can be either open or closed [118, 119]. The theory is otherwise formulated on

a classical Minkowski background and we therefore refer to it as a `background

dependent approach'.16 A great advantage of string theory is that it solves the

problem of renormalizability. String theory requires multiple (at least 6) additional

compact spatial dimensions. To be consistent with observations, the theory needs

to reduce to the four spacetime dimensions we live in the low energy limit. In

principle, the additional dimensions can have observable e�ects at higher energies,

which could potentially be found in particle colliders. An integral part of string

theory is then to construct the low energy limit in the form of e�ective �eld theories

(EFTs) and the aim of the so-called Swampland programme is to determine which

EFTs are incompatible with the world we observe [121]. Another possible ingredient

is supersymmetry, which predicts a supersymmetric partner for each standard model

particle; however, despite ongoing e�orts, these have evaded detection at any of the

particle colliders. Overall, string theory has a long history and has substantially

developed over the years, in particular, it has lead to mathematical advances. Still,

no observational evidence for string theory has been found.

Perhaps the most conservative approach that pushes the limits of our understanding

within the bounds of the well-established theories is that of QFT on curved spacetimes,

also known as the semi-classical approach [111, 122]. It sits at the boundaries of general

relativity and quantum �eld theory and relates the two through the semiclassical EFE as

a �rst approximation without introducing new physics. It is not a full theory of quantum

gravity, but instead should give direct and robust hints of its e�ects. A major result

within this framework was the (theoretical) discovery that a Schwarzschild black hole can

emit so-called Hawking radiation [123, 124].

At the heart of the semi-classical approach lie the semiclassical EFE, where the geomet-

rical, left-hand side is given by classical general relativity, whereas on the right-hand side

the energy-momentum tensor is replaced by the expectation value of a quantum operator

Gµν + gµνΛ = κ 〈Tµν〉 . (1.50)

The �rst step to study quantum e�ects in any spacetime is then to quantise the energy-

momentum tensor on a given curved background and establish its expectation value; the

16We do not wish to comment on whether and how string theory can be formulated in a background
independent manner and leave such a discussion to the experts. For a discussion of the AdS/CFT
correspondence and its consequences for background independence see e.g. [120].
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second is to investigate the backreaction problem, namely, the impact of quantum �uctu-

ations on the geometry. Though straightforward in philosophy, quantum �eld theory on

curved spacetime is technically and computationally rather involved.

In the following section we will delve deeper into the world of LQG and spin foams, as

these form the basis of GFT. We have omitted many fascinating approaches to quantum

gravity, and we want to point the curious reader to [125], where a more complete and

comprehensive overview can be found.

1.4.2. Loop quantum gravity and spin foams

Loop quantum gravity is a background independent approach to quantum gravity that

applies the canonical quantisation programme to the Ashtekar-Barbero formulation of

general relativity, which we described in sec. 1.1.2. Spin foam models aim for a path

integral formulation of quantum gravity and include sums over weighted triangulations of

spacetime. LQG and spin foams are fascinating approaches to quantum gravity in their

own right, but we give particular attention to their conceptual ideas because they form

the basis for the motivation of GFT in chap. 2.

Kinematical states of LQG: Spin networks

As we will explore in the next chapter, the elementary quanta of GFT can be interpreted

in close correlation to spin network states, which form the elements of the kinematical

Hilbert space of LQG. We therefore describe the construction of these states within LQG

in some detail here. The introduction to LQG of this section is primarily based on [46],

for further LQG literature we also refer the curious reader to [50, 126, 127].

The aim of the LQG programme is to achieve a canonical quantisation of general rela-

tivity and it relies on a quantisation of the Hamiltonian formulation in Ashtekar-Barbero

variables (see sec. 1.1.2). Recall that the Hamiltonian formulation relies on a splitting

of the spacetime manifold M into a spatial hypersurface Σ and a time direction, such

that M = Σ × R. The basic canonical variables of the theory are the densitised triad

Ea
i and the Ashtekar connection Aia. To circumvent the distributional nature of their

Poisson brackets (1.23), these variables are smeared in a suitable manner. Speci�cally,

the variables suitable for quantisation are obtained by smearing the Ashtekar connection
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along curves and the densitised triads along surfaces to obtain holonomies hjc and �uxes

En(S), respectively:

hjc =P exp

(∫
c

A(j)

)
with A(j) = Aia(c(t))ċ

a(t)τ
(j)
i , En(S) =

∫
S

Ea
i n

idSa .

(1.51)

The holonomies are elements of SU(2), hjc ∈ SU(2), and are labelled by the curve c the

Ashtekar connection is smeared over as well as a group representation label j. The terms

that enter hjc are as follows: c(t) gives a curve on a spatial hypersurface Σ parametrised

by t ∈ R and the dot denotes the derivative w.r.t. the curve parameter. The τ (j)
i are

su(2) generators in a speci�c representation. Finally, P denotes the path ordered expo-

nential. The �uxes En(S) are obtained by integrating over a two-dimensional surface S,

where the ni denote suitable test functions n : S → su(2). One can rewrite the Hamil-

tonian in terms of these variables and promote the holonomies and �uxes to operators.

While straightforward in philosophy, this procedure contains several ambiguities related

to operator ordering and a choice of regularisation procedure in practice.17

Kinematical states in LQG are commonly referred to as cylindrical functions Ψ. To be

more precise, a cylindrical function is a functional of the Ashtekar connection A de�ned

by a collection of curves on the spatial manifold, which we shall refer to as a `graph' Γ,

and a smooth function ψ that takes as input n holonomies f : SU(2)n → C. The tuple

(Γ, ψ) de�nes a cylindrical function ΨΓ,ψ(A) = ψ(hj1c1 . . . h
jn
cn) and the kinematical Hilbert

space is obtained from the collection of all cylindrical functions obtained from any Γ or ψ.

We can visualise cylindrical functions, which as we discussed are depend on holonomies,

which have been attained by smearing the Ashtekar connection along a curve. We can

draw this curve as a line, and add a representation or `spin' label j to have a pictorial

representation of a holonomy, and by extension, a cylindrical function.

Elements of the kinematical Hilbert space furthermore need to satisfy the SU(2) sym-

metry of the internal coordinate system spanned by the triads. Cylindrical functions that

are invariant under SU(2) transformations are called spin networks. Spin networks form

the basis of the discussions that follow below and we will encounter them again when

discussing the motivations for GFT in sec. 2.1. It turns out that SU(2) transformations

act on the ends of holonomies, and invariant states are obtained by contracting two or

17As we detail further in sec. 4.2 these ambiguities translate into di�erent phenomenologies in the context
of loop quantum cosmology (LQC).
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(a) A spin network can be depicted as
a graph with vertices labelled by spins ji
and vertices labelled by intertwiners ιi.

(b) The edges of a spin network can be associated
with quanta of area, whereas the vertices are associ-
ated with quanta of volume. This will become more
intuitive when we consider triangulations of mani-
folds. Image taken from [46].

Figure 1.2.: Spin networks can be represented as graphs, where each edge corresponds
to a holonomy embedded in a spatial hypersurface Σ and is labelled by a representation
label j. The vertices depict gauge-invariant gluings of holonomies at their edge points and
are labelled by intertwiners.

more holonomies with one another. Imposing invariance under SU(2) transformations

thus requires that a spin network does not contain holonomies with open edges; instead,

in the pictorial representation, they must be `glued' to one another at their open ends.

We can represent such a gluing by a vertex, thus obtaining a graph with vertices and

edges. These vertices are then labelled by so called intertwiners ι, which form a basis of

the subspace invariant under SU(2) transformations. In short, spin networks can be rep-

resented by graphs, whose edges represent holonomies and are decorated with SU(2) spin

indices ji, and whose vertices, which represent the gauge-invariant gluing of holonomies,

are decorated with intertwiners ι; see �g. 1.2a. Spin networks are eigenfunctions of the

holonomy operators and the �ux operators act as derivatives. We would like to point out

that through their smearing by functions on the spatial hypersurface Σ, spin networks are

explicitly embedded in Σ.

Geometrical quantities of the spatial surfaces are encoded by the spin networks and can

be obtained from the area and volume operator. These operators are obtained by �rst

discretising the classical quantities in terms of �uxes, and subsequently promoting these

to operators. A discretised version of the area of a surface S and the volume of a region
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R in terms of �uxes are given by

AS =
∑
i

√
En(Ui)En(Ui) , VR =

∑
i

VRi . (1.52)

Here, the area of a surface S is obtained by partitioning S into a �nite number of smaller

surfaces Ui and summing over (the square root of) the �uxes of each of the Ui. The non-

discretised area is recovered in the limit of in�nitely small Ui. Similarly, the discretised

volume of a region R is obtained by separating R into smaller regions Ri. The explicit

expression involves a square root over the product of three �uxes. Operator analogues

are obtained by promoting the above expressions to operators, which, due to the presence

of a square root is not a straightforward procedure. One �nds that quanta of area are

associated with the edges of a spin network and quanta of volume to its vertices �g. 1.2b.

Both give a discrete spectrum, where the eigenvalues are determined by the quantum

numbers associated with the edges and vertices. For both operators, the spectrum is

bounded from below and gives a minimum value for the area and volume on spatial

hypersurfaces. The spectrum of the area operator is included in most reviews, such as

[46], whereas for the spectrum of the volume operator we refer the reader to e.g. [128].

So far, we have constructed the kinematical Hilbert space of LQG. It remains to impose

the constraints and to identify the states in the kinematical Hilbert space that satisfy

the dynamics of the theory and are therefore physical. While the imposition of the

di�eomorphism constraint has been achieved, solving the scalar constraint is an ongoing

quest in LQG [129].

Loop quantum cosmology (LQC) applies LQG techniques to cosmological spacetimes

and is a �eld with rich cosmological phenomenology. The main idea is to restrict to the

cosmological setting before quantisation, and quantise only the cosmological sector, which

signi�cantly simpli�es the procedure. We include further details on LQC in sec. 4.2.

Spin networks and triangulated manifolds

In the following, we discuss the concept of triangulated manifolds and how they can be

encoded in spin networks. Spin foams, which we will discuss in the next section, are to be

interpreted in terms of triangulations of manifolds and the connection to spin networks

will become apparent shortly. The concept of a triangulation refers to the splitting of

a manifold into discrete building blocks. (In more formal terms, such a triangulation is
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(a) Triangulation of a shape
with triangles.

(b) Triangulation of a hammerhead shark with tetrahedra.

Figure 1.3.: Illustration of triangulations in two and three dimensions.

given by a simplicial complex, see e.g. [130, sec. 3].) We illustrate the idea of triangulated

manifolds with the following examples (see also �g. 1.3):

� A 2-dimensional surface can be triangulated by multiple triangles, which are glued

along their edges.

� A 3-dimensional manifold can be triangulated by tetrahedra, the higher dimensional

analogue of triangles. The boundary of a tetrahedron can be obtained by gluing four

triangles along their edges. If we were to consider 3-dimensional gravity, we could

then triangulate a spatial hypersurface with triangles and build a three dimensional

spacetime manifold by gluing triangles to obtain tetrahedra.

� A 4-dimensional manifold can be triangulated by the higher-dimensional analogue

of tetrahedra (4-simplices), which are di�cult if not impossible to be imagined by

humans. The boundary of a 4-simplex is obtained by gluing �ve tetrahedra along

their faces. 3-dimensional spatial hypersurfaces of a 4-dimensional manifold are tri-

angulated by tetrahedra.

The aim of the following is to illustrate how the graph of a spin network can be related

to a triangulation of a manifold. More speci�cally we introduce how triangulations of

spatial surfaces can be related to `abstract' spin network states. The term `abstract'

refers to the fact that, unlike in LQG, these spin networks are no longer embedded in a

spatial slice Σ, but live on triangulations of Σ instead. From a more philosophical point

of view, one might indeed hope that background independent approaches allow to replace

the notion of a manifold by a more fundamental combinatorial structure. We focus on
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(a) Three valent spin networks correspond to 2-
dimensional triangulations. Image taken from
[54].

(b) Four valent spin networks give triangula-
tions of 3-dimensional manifolds with tetrahe-
dra. Image taken from [131].

Figure 1.4.: Spin networks can be associated with triangulations of manifolds.

the more intuitive picture and omit technical details, since the primary purpose of the

following is to facilitate a more intuitive understanding of GFT and its motivations later

on. (E.g., we will be sloppy and use the term `spin network' for any state that can be

represented as a graph with edges and vertices labelled by group theoretic data.) More

details can be found in [54, 56].

To relate the concept of a triangulation to spin network states, we �rst consider the

triangulation of a surface encoded in a graph: For a graph with three-valent vertices

(3 edges at each vertex), we can associate a triangle to each vertex and each of the

edges corresponds to a side of the triangle. Then, a connected graph encodes glued

triangles, which represent a triangulation as depicted in �g. 1.4a. For a triangulation of a

3-dimensional hypersurface we restrict ourselves to graphs that consist only of four-valent

vertices. Such graphs can be related to a triangulation by assigning to each vertex a

tetrahedron (the basic building block of 3-dimensional space) and to each edge of the spin

network a face of the tetrahedron. Edges connecting two vertices then represent glued

faces of two tetrahedra, see �g. 1.4b. When discretising a gravitational spacetime, one

does not only consider a triangulation of the manifold, but the basic building blocks of

the triangulation are endowed with additional geometrical information. A spin network

is then not described solely by its graph, but carries spin and intertwiner labels on each

edge and vertex, respectively. Recalling the area and volume operators in LQG, we can

interpret these labels as encoding the geometric structure, such as the volume of the

tetrahedra and the area of their faces.
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Figure 1.5.: A spin foam interpolates between boundary spin networks and can be un-
derstood as a triangulation of spacetime encoded with additional geometric information
in the form of group theoretic information. Image taken from [46]

Spin foams

Spin foam models are a path integral approach to quantum gravity, where the idea is to

integrate over all possible metrics between �xed spatial hypersurfaces. We restrict the

presentation to the main conceptual ideas and refer the reader to [54, 56].

The main quantity of interest in spin foams are transition amplitudes between triangu-

lated spatial slices. These are calculated from a weighted sum over all possible triangu-

lations of spacetime that interpolate between the boundary states. The boundary states

representing triangulated hypersurfaces are given by abstract spin network states, as dis-

cussed in the previous section, with the generalisation that the graphs can carry group

representation data of more general groups and are not restricted to SU(2). While spin

networks encode triangulations of space, spin foams give triangulations of spacetime, and

their boundaries are given by spin networks. A spin foam is in essence a higher dimen-

sional analogue of a spin network: Where a spin network is a graph consisting of edges

and vertices decorated with group theoretic data, a spin foam is built from vertices, edges,

and faces, endowed with the same information, see �g. 1.5. (In the language of simplicial

geometry, the `graph' of a spin foam is a 2-complex.) In relation to quantum gravity, the

idea is that a spin foam is a triangulated manifold decorated with group representation

data.

To calculate the transition amplitude between two given spin networks, one sums over

all possible spin foams that could interpolate between them, where each spin foam is

assigned a certain weight. This weight is referred to as the spin foam amplitude. Which

spin foams are to be considered in this sum and their respective weight is what determines
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a speci�c spin foam model. The partition function of a spin foam model can be written

as:

Z =
∑

Γ

w(Γ)
∑
jf ,ιe

∏
f

Af (jf )
∏
e

Ae(jf , ιe)
∏
v

Av(jf ,ιe) , (1.53)

where the sum in Γ is over all 2-complexes weighted by w(Γ) and the products contain

amplitudes associated with faces Af , edges Ae, and vertices Av, respectively. These

amplitudes depend on the spins associated with faces jf and intertwiners associated with

edges ιe.

To obtain a spin foam model for a speci�c theory of quantum geometry, one dis-

cretises the action to obtain a prescription for the discretised partition function, e.g.

Z =
∫
DADB eiSBF and furthermore assigns a weight w(Γ) to possible triangulations.

For instance, the discretisation of the BF action in four dimensions with G = SO(4)

reduces the sum over 2-complexes in Z to a single element; it furthermore determines

which representations j are to be summed over and gives a prescription for the vertex

amplitude, see [56] for details.

We already mentioned BF theory as a topological theory. In four dimensions GR is

evidently not topological and we need to impose additional constraints to obtain general

relativity from the BF action. The implementation of these so-called simplicity constraints

at the spin foam level is the �nal step to a theory of quantum gravity within the spin foam

approach. Unfortunately, this is far from trivial and an ongoing research topic [132, 133].

We brie�y mention two approaches for a spin foam model for 4-dimensional gravity:

� Barrett-Crane model [134, 135]: Starting from a discretised 4-dimensional BF the-

ory, the Barrett-Crane model gives a prescription on how to impose the simplicity

constraints at the quantum level. This can be achieved by imposing restrictions on

the group representations that are associated with the triangulations of the bound-

ary states. In particular, the sum in the spin foam amplitude is limited to a speci�c

class of representations of the group. For the Lorentzian case, the quantum model

is based on representations of SL(2,C), which makes the study of such models more

complicated than in the Euclidean case where G = SO(4), due to non-compactness

of the group.

� EPRL model [133, 136, 137]: The EPRL model similarly imposes the simplicity con-

straints on a 4-dimensional BF theory at the quantum level, where in the Lorentzian

case the boundary networks are labelled by SL(2,C) representation data. The model
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introduces a projection from these boundary states to spin networks labelled by

SU(2) representation data, thus linking the boundary states of the EPRL model

back to LQG.

1.5. Conclusion: Back to the basics

In this chapter, we gave a broad overview of concepts that are related to the research aims

of this thesis. While some concepts might be well-known to a large number of physicists,

others may appear rather basic only within a specialised �eld of research. Speci�c back-

ground knowledge that interpolates between cosmology on the one hand and quantum

gravity on the other is found in the remainder of the �rst part of the thesis.

We began our journey with a quick survey of GR and its formulation in the language

of di�erential geometry. The Einstein Field Equations (EFE) encode the dynamics of GR

and can be derived from an action principle, where the geometrical part is given by the

Einstein-Hilbert action. As an alternative to the Lagrangian formulation, there exists also

a Hamiltonian approach to GR, where spacetime is decomposed into spatial hypersurfaces

and a temporal direction. One �nds that the Hamiltonian of GR is given by a sum of

constraints, namely, the Hamiltonian or scalar constraint, which gives time translation,

and the spatial di�eomorphism constraint, which generates translations within a spatial

slice. In the original Hamiltonian formalism by Arnowitt-Deser-Misner the spatial metric

gives one of the canonical phase space variables, whereas the Ashtekar-Barbero formula-

tion makes use of the triad formalism and introduces an internal reference frame. As the

canonical variables of the latter are more suitable for quantisation, this formulation forms

the basis of LQG. One can furthermore obtain GR from the action of a BF theory with

the correct choice of dimension and gauge group if one introduces additional constraints,

which forms the basis for spin foam models.

Despite its success, GR predicts its own breakdown in the form of singularities, which

manifest in the divergence of curvature scalars, but can more speci�cally be de�ned in

terms of geodesic incompleteness. Due to general covariance the de�nition of observables

requires some additional care in GR, where it is useful to make a distinction between

partial and complete observables. The latter are de�ned in relational terms in the sense

that any physical statements can only be made by relating the values of two physical

quantities. Much of this thesis will be concerned with matter reference frames made from
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four scalar �elds that allow to make statements in a relational coordinate system.

A homogeneous and isotropic solution that can be used to describe our universe is

the FLRW metric. We included a curvature term as well as a cosmological constant in

the discussion, but will only be concerned with the case of a �at FLRW spacetime with

vanishing cosmological constant from here onwards. The universe's matter content can

be described in the form of a perfect �uid. Another useful description is in the form of

a scalar �eld. From the EFE one obtains the Friedmann equations, which capture the

evolution of the scale factor and thereby the evolution of the cosmos. We keep the lapse

function general throughout, as we will require a speci�c choice of time coordinate when

considering quantum gravitational models. The Big Bang singularity naturally occurs in

a cosmological spacetime: GR cannot describe the origin of the universe, a gap in our

understanding that can hopefully and ideally be resolved by a theory of quantum gravity,

which is indeed the case for GFT cosmology and LQG as we discuss in chap. 4. In the

description of the universe's evolution and the particles contained within we have to deal

with an intricate interplay of particle, nuclear and statistical physics. Many of these

processes are experimentally constrained such that any alterations to the early universe

we consider in the quantum gravitational context are assumed to a�ect only regimes in

the extremely early universe.

The standard model of cosmology is not without troubles of its own. We focused

on the horizon problem for two reasons: Firstly, to introduce a relation between the

particle horizon, which plays the role of a scale that determines past causal relations,

and the Hubble horizon. This is of importance for the study of large scale cosmological

perturbations as we explain in sec. 3.3 and study further in chap. 5. Secondly, quantum

gravity bounces straightforwardly provide a solution to the horizon problem.

The evolution of the universe as modelled in GR by means of the FLRW metric to-

gether with a period of in�ation and di�erent types of perfect �uids agrees well with

various observations if we allow for small inhomogeneities. Importantly, �uctuations in

the early universe are imprinted in the CMB. Any quantum gravity theory needs to be

consistent with the CMB, therefore, in addition to the FLRW background, cosmological

perturbations provide important guidance for constructing quantum gravitational mod-

els. Possible quantum gravity e�ects on large scale perturbations will be investigated in

chap. 5 in a model independent manner, whereas chap. 7 concerns itself with perturbations

within the GFT framework.
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Aside from gravity, the other ingredient to quantum gravity is the `quantum'. The

requirement for a quantum theory of gravity is motivated not just from the occurrence

of singularities, but also from the fact that we know matter exhibits a quantum nature

which, due to the relation of matter and geometry, must carry over to the spacetime

description. While there are various pathways to approaching the problem of quantum

gravity, we focus on LQG and spin foams as a preliminary to the following chapter. LQG

is based on the Ashtekar-Barbero formalism of GR and variables suitable for quantisation

are obtained by smearing the classical phase space variables. One can identify a kinemat-

ical Hilbert space that satis�es the necessary gauge-invariance w.r.t. the internal triad

frame. The gauge-invariant states are called spin network states and are explicitly em-

bedded in a spatial hypersurface. Spin networks can be interpreted as graphs decorated

with group theoretic data and they allow to recover geometric quantities of spacetime via

area and volume operators. One can furthermore introduce a more abstract notion of spin

network graphs, where all vertices have the same valency. These can be interpreted as

triangulations of a spatial manifold. Based on the notion of triangulated spatial surfaces,

spin foams are a path integral formulation for quantum gravity. The aim of spin foam

models is to calculate transition amplitudes between triangulated manifolds as encoded

in spin networks and a given spin foam model determines how possible interpolations

between boundary spin networks should be weighted.

Having recalled the basics of the theories we know, and reiterated the need for a quan-

tum gravity theory, as well as detailing some possible approaches, we are now in a position

to introduce the quantum gravity theory we primarily focus on in this thesis: Group �eld

theory.

We would like to end this chapter with a more philosophical note: approaches to quan-

tum gravity are vast and at this moment in time, incomplete. The quantum gravitational

problem can be approached from the mathematical and more rigorous perspective, hop-

ing that a suitable theory can be found eventually if theoretical inconsistencies are taken

seriously and resolved. Alternatively, one may hope for phenomenological guidance by ap-

plying perhaps theoretically incomplete theories to simpler scenarios, such as cosmology,

in the hope to learn a) whether considerations made in the theory so far are compatible

with previous knowledge and/ or b) which alterations to the fundamental theory lead to
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(more) suitable models for reality. While the main curiosity of this thesis is to explore

the latter, we believe that ultimately progress is to be made by allowing both avenues of

inquiry to inform one another.
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Chapter 2. Group �eld theory

Chapter 2.

Group �eld theory

`Das Dreieck ist das Maÿ aller Dinge.'

- Jessica Volz.

`Triangles are the measure of all things.'

One of the core aims of this thesis is to illuminate a new path for extracting cosmolog-

ical phenomenology from group �eld theory (GFT), which is a background independent

approach to quantum gravity. GFTs �rst appeared in 1992 in a 3-dimensional quantum

gravity model introduced by Boulatov [138]. They have since been studied in the context

of LQG and spin foam models [139�143] and have developed into their own research �eld.

In particular, much progress has been made in the realm of homogeneous and isotropic

cosmology. The application of GFT to the cosmological context leads to a resolution

of the Big Bang singularity with a bounce [144, 145], which is a desirable feature of any

quantum gravity theory. Further studies have revealed that GFT can introduce additional

phenomenologically interesting features in the cosmological evolution [146�148] and the

GFT setting has been extended to include cosmological perturbations, which constitutes a

�rst step in bridging the gap to observations [149�152]. In GFT, the relation between the

cosmological sector and the full theory is straightforward, and it thus appears as a promis-

ing candidate to connect quantum gravity to cosmological phenomena. We introduce the

foundations and core concepts of the GFT approach in this section; the application of

GFT to the cosmological sector is discussed in the context of a later chapter can be found

in sec. 4.1. We �rst give a succinct overview of GFT and the speci�c formulation we use

later on before we proceed to motivate and explain the theory in more detail, such that

concepts that appear ad-hoc at �rst should become successively more clear. While we aim
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to give an overview that is su�cient to follow the research results of this thesis, the scope

will inevitably be limited and for further intriguing details of GFT, the reader is referred

to excellent reviews such as [130, 139, 153, 154] . For details regarding group theoretic

ideas used below we refer the reader to [155].

GFT, in its essence, is a �eld theory of one or multiple �elds on a group manifold,

together with an action. A speci�c GFT is then obtained by specifying a dimension for

the group manifold, a group, a kinetic and potential term for the GFT action, as well as

additional constraints on the group �eld. GFT does not presuppose a spacetime manifold,

instead, spacetime is dynamically emergent from a large number of GFT quanta, which

should be understood as the building blocks of spacetime. The setup of group �eld theories

has a wide range of �exibility and can accommodate a multitude of quantum gravity

models, depending on their concrete implementation. Most of the literature is concerned

with a scalar group �eld that obeys bosonic statistics and can be real or complex. We

also consider only scalar �elds; for considerations regarding fermionic �elds see [156]. For

a d−dimensional GFT, which should give a quantum theory for d−dimensional gravity,

the domain of the group �eld ϕ contains d−copies of a group G and n additional real

arguments (where n = 0 is possible):

ϕ : Gd × Rn → R or C . (2.1)

We will denote the group �eld as ϕ(gI , χ
A), where I = 1 . . . d, A = 0 . . . n − 1, the gI

denote the group elements, and the χA the real valued functions.1 The dynamics of the

�eld is governed by an action

S[ϕ] = K[ϕ] + V [ϕ], (2.2)

where K[ϕ] and V [ϕ] denote the kinetic and potential term, respectively. The choice of

the group G, the dimension of the GFT domain d, the coupling of real parameters χA,

the form of the kinetic and potential term, as well as additional requirements on the �elds

are all motivated by physical considerations. We stress that ϕ(gI , χ
A) is not de�ned on a

spacetime manifold, but on an abstract group manifold. One might rightfully ask about

the origin of the interpretation of GFT as a theory of quantum gravity. The excitations

1We start the index A at zero, in accordance with spacetime indices; later we will interpret χ0 as a
relational clock.
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in the quantum theory, which we refer to as GFT quanta or particles, are interpreted

as spatial building blocks from which a macroscopic geometry that can be related to the

classical spacetime structure of GR emerges in the limit of a large amount of quanta.

The picture is then that these quanta create spatial hypersurfaces and their collective

behaviour resembles that of a classic spacetime (in appropriate limits and for certain state

choices). How this interpretation arises from the relation to spin networks, spin foams and

triangulations of manifolds as discussed in sec. 1.4.2 and how this idea can be implemented

in practice will become clear in the remainder of this chapter. Ultimately, GFT can be

seen as a �eld theoretic formulation of a quantum gravity model that incorporates ideas

from LQG and spin foam approaches. Independent avenues to investigate how spacetime

could emerge from GFTs have progressively evolved, where the rigorous relation to the

spacetime description within GR is in some cases not so clear and poses an open research

question.

The rest of this chapter is structured as follows: The motivation behind interpreting

GFT as an approach to quantum gravity is the subject of sec. 2.1, where we relate its

quanta and formulation to spin networks and spin foam models. We detail the con-

struction of GFT in sec. 2.2, where we motivate the main choices that give a concrete

implementation of a GFT. We furthermore discuss how dynamics in GFT should be un-

derstood as a relational evolution with respect to a physical matter clock and examine

possible forms of the GFT action and the restrictions imposed by a matter clock �eld. In

sec. 2.2.3 we present quantisation approaches of GFT that have been established in the lit-

erature, with a particular focus on the Hamiltonian, or `deparametrised' formalism, which

we employ in the second part of this thesis. We dedicate sec. 2.2.3 to the concrete GFT

with four massless scalar �elds that was established in [78] and gives the construction we

use for the research conducted in chap. 6 and 7. Finally, we comment on further research

directions in sec. 2.3 and postpone the discussion of applications of GFT to cosmology to

sec. 4.1. We conclude with an overview of the material presented in this chapter in sec. 2.4.

For the hasty reader, we disclose already at this point that the research in chap. 6 and

7 will be concerned with a real group �eld ϕ that is a function of four copies of SU(2), as

well as four massless scalar �elds χA:

ϕ(gI , χ
A) = ϕ(g1, g2, g3, g4;χ0, χ1 , χ2, χ3), gI ∈ SU(2), χA ∈ R . (2.3)

For G = SU(2) the group �eld can be decomposed into Peter-Weyl modes, which simpli�es

60



2.1. Motivations and relation to other approaches

further calculations

ϕ(gI , χ
A) =

∑
J

ϕJ(χA)DJ(gI) , (2.4)

where J = (~j, ~m, ι) is a multi-index consisting of spins ~j = (j1, j2, j3, j4) that label ir-

reducible representations of SU(2), magnetic indices ~m = (m1,m2,m3,m4) with mi ∈
{−ji, − ji + 1, . . . , ji − 1, ji}, and intertwiner labels ι, which we already encountered

in the description of spin networks in sec. 1.4.2. We make this decomposition precise in

sec. 2.2 and the de�nition of DJ(gI) is given in (2.11). The theory can then be formulated

in terms of the modes ϕJ(χA). We restrict our analysis to an action consisting only of a

kinetic term, which takes on the following form

K[ϕ] =

∫
d4χ

∑
J

(
1

2
K(0)
J ϕ2

J −
1

2
K(2)
J

∑
A

(∂AϕJ)2

)
, (2.5)

where ∂A = ∂
∂χA

and K(0)
J and K(2)

J are mode dependent constants. The considerations

that motivate this particular choice of GFT action are laid out below and its construction

will speci�cally be the topic of sec. 2.2.3.

2.1. Motivations and relation to other approaches

The purpose of this section is to provide a heuristic interpretation of the GFT quanta

and the motivations behind the choices made to construct a speci�c quantum gravity

model. This should clarify in which sense GFTs are viewed as candidate theories for a

background independent approach to quantum gravity. LQG, spin foams and GFT are

actively developing �elds of research and one might hope that GFT might provide insights

also for the other approaches, and vice versa. We refer the reader to the description of

LQG and manifold triangulations given in sec. 1.4.2; we will assume knowledge of the

concepts introduced therein in what follows.

2.1.1. Interpretation of GFT quanta

This section discusses the interpretation of GFT quanta and how the dimension, gauge

group and constraint on the group �eld can be motivated from (abstract) spin networks.

The underlying idea is that the GFT quanta can be interpreted as open spin network
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vertices, where we recall that spin networks form the kinematical Hilbert space of LQG

and abstract spin networks can be related to triangulations of manifolds (see sec. 1.4.2).

More speci�cally, spin networks can be depicted as closed graphs decorated with group

theoretic data on their vertices and edges. If one restricts to graphs with d edges at

every vertex, each graph can be associated with the triangulation of a d− 1 dimensional

manifold. The group theoretic data encode geometric degrees of freedom, speci�cally, in

LQG we recall that they are related to the holonomies, which encode the connection. The

interpretation of GFT quanta as a spin network vertex of LQG then implies G = SU(2).

As we saw, due to the SU(2) gauge-invariance of the internal reference system, spin

networks contain no holonomies with open edges. Hence, in LQG, no open spin network

vertices exist, as they would break the rotational symmetry. If GFT �eld excitations

are to correspond to open spin network vertices, we then need to impose an additional

condition on the GFT �eld to satisfy the SU(2) symmetry, which is commonly done by

imposing right invariance of the group �eld under the action of the group, namely, for a

4-dimensional GFT,

ϕ(g1h, g2h, g3h, g4h) = ϕ(g1, g2, g3, g4) ∀h ∈ SU(2) . (2.6)

In the Peter-Weyl decomposition, GFT quanta can be interpreted as open spin network

nodes labelled by an intertwiner ι, where the edges are decorated with spin labels j

as well as magnetic indices m. Recalling the relation between abstract spin networks

and triangulations of manifolds, one can also interpret the GFT quanta as simplicial

complexes. In order to obtain triangulations of spatial slices in 4-dimensional gravity, we

can �x the dimension of the domain of the group �eld to d = 4 such that a GFT quantum

corresponds to a tetrahedron. These tetrahedra are then the fundamental building blocks

for triangulations of 3-dimensional spatial slices, consistent with the portrayal of GFT

quanta as `building blocks of space'.

We postpone the detailed discussion of quantisation approaches in GFT to sec. 2.2.3,

but independently of the approach, the Hilbert space of GFT is given by a Fock space

F =
∞⊕
n=0

H (n)
S , H (n)

S = S ⊗n H (1) , (2.7)

where H (1) is a single particle Hilbert space and H (n)
S denotes the symmetrised tensor

product of n single particle Hilbert spaces, as dictated by the bosonic statistics of the group
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�eld. In accordance with the interpretation that GFT quanta constitute the building

blocks of a spatial manifold, the Fock vacuum |0〉 is to be understood as a `no-space' state.

Each GFT quanta is endowed with the same group theoretic data as a spin network vertex

of the same valency and it was argued in [157] that the canonical formulation of GFT can

be understood as a second quantisation of LQG. The interpretation of GFT quanta as

spin network vertices allows us to import the area and volume operators, where we recall

that quanta of area are associated with the edges and quanta of volume to the nodes of

spin network states. Similarly, the GFT quanta then carry quanta of volume.

In the case where one considers a single group �eld with �xed dimension d = 4, the

Fock space includes only spin networks with four-valent vertices, whereas in LQG a spin

network can contain vertices with arbitrary valency. It is furthermore important to note

that while the GFT Fock space elements carry the same group theoretic data as spin

networks, they do not contain the same connectivity information and do not directly

correspond to a graph. In general, one can construct a GFT state inspired by a spin

network, but cannot uniquely reconstruct a spin network graph from a given GFT state,

see [154] for a more detailed discussion. (We comment on considerations that have been

made for connected states in GFT in sec. 2.3.)

Another main conceptual di�erence between GFT excitations and spin network states

is that, while the latter are embedded in a classical spatial surface of a spacetime and

can be related to the triangulation of said surface, in GFT we are concerned with �eld

excitations over a group manifold and spacetime emerges only in a many particle limit.

In this sense, the vertices created by the GFT quanta are more abstract than the spin

networks related to triangulations discussed in sec. 1.4.2. This is what we refer to when

we say GFT is a theory of, not on spacetime: before spacetime emerges through the

multitude of excitations, it is simply absent. The philosophy is then that in a GFT that

poses as a suitable candidate for a theory of quantum gravity, �uctuations in (geometric)

observables should be su�ciently suppressed for a multitude of GFT quanta, such that

the emergent spacetime exhibits semiclassical properties and can be described using the

methods of GR. This process is often compared to hydrodynamics: the parallel is drawn

by viewing the GFT quanta as water molecules, the multitude of which leads to the

emergence of a �uid, where the molecules (GFT quanta) are described by a di�erent set

of physical laws than the �uid (spacetime).

In light of these di�erences in the formulation of the GFT Fock space and the Hilbert

space of (abstract) spin networks, we would like to re�ect on the pictorial interpreta-
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tion of GFT on a more personal note: While it is of course helpful to associate abstract

concepts and elements of theories to visual representations that can allow to build an

intuitive understanding, one should be cautious in taking these at face value. GFT is a

rather abstract formulation of a rather abstract phenomenon (we have of yet no reliable

quantum gravitational implications for reality, let alone from GFT, after all) and the re-

lation to phenomena within our comprehension (i.e. classical spacetime physics) is to be

found in a suitable semiclassical limit. Perhaps a more playful alternative to the standard

interpretation as tetrahedra or spin network vertices that also emphasises that while well

motivated from these constructions, the GFT quanta are more abstract, can be given by

thinking of the quanta as four-legged spiders (or the little coal monsters `Susuwatari' in

Studio Ghibli's `Spirited Away'): each of the four legs would then carry a spin j and a

magnetic index m and the `body' would be associated with an intertwiner label ι. The

di�erent possible pictorial interpretations of GFT quanta are summarised in �g. 2.1.

This concludes our discussion of the interpretation of GFT quanta and the GFT Fock

space. The reader may use whichever interpretation they �nd most satisfactory. We

discussed the motivations behind setting G = SU(2), d = 4, and imposing right invariance

on the group �eld. Ultimately, GFT can be seen as a tool that can be utilised to simplify

calculations in other approaches, or establish new avenues to tackling the problem of

quantum gravity in a background independent manner. We proceed to describe how

GFTs naturally occur in spin foams, where they provide a machinery to calculate spin

foam amplitudes.

2.1.2. Spin foam amplitudes from GFT

We remind ourselves that the aim of spin foam models is to compute spin foam amplitudes,

which represent the probability to transition between quantum geometries on spatial

hypersurfaces (see sec. 1.4.2). More explicitly, they are obtained from a weighted sum

over spin foams that interpolate between boundary spin network states. If we restrict

to spin networks with a �xed number of edges, the boundary states can be interpreted

as triangulations of the spatial manifolds and the weighted spin foam in each term of

the sum corresponds to a triangulation of spacetime. For any given spin foam model,

this amplitude can be calculated from a GFT, provided one makes adequate choices for

the group, additional constraints, and action [141�143]. Speci�cally, for a suitable choice

of GFT action S[ϕ], a perturbative expansion of the partition function Z =
∫
Dϕe−S[ϕ]
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(a) GFT quanta as a four-
valent spin network vertex. The
intertwiner ι labels the vertex
and the spins ji are associated
with the edges.

(b) GFT quanta as a tetrahe-
dron. The intertwiner ι labels
the body of the tetrahedron and
the spins ji are associated with
the faces.

(c) GFT quanta as an abstract
Susuwatari. The intertwiner ι
labels the body the spins ji are
associated with the legs. Image
from `Spirited Away' by Studio
Ghibli (2001).

Figure 2.1.: Pictorial representation of the di�erent interpretations for GFT quanta sug-
gested in the text (where the last one is a light-hearted reminder that all visual represen-
tations are incomplete). The magnetic indices m are not shown, but are associated with
the ends of the open edges (and are therefore absent in LQG spin networks, which are
closed graphs).

generates all possible Feynman diagrams (which correspond to spin foams and thereby

triangulations) that interpolate between given boundary spin networks. GFT thus gives

a systematic way to compute transition amplitudes.

To illustrate this further, we consider spin foam models for 3- and 4-dimensional BF

theory. As mentioned already in the introduction to this chapter, the �rst occurrence of

GFT was as a 3-dimensional quantum gravity model, dubbed the Boulatov model [138].

The Boulatov model was extended to four dimensions by Ooguri [158] to yield a quantum

theory for 4-dimensional BF theory (which is still a purely topological theory). Both

the Boulatov and the Ooguri model are respectively formulated as a 3- and 4-dimensional

GFT with a bosonic scalar �eld, where the group for concreteness is assumed to be SU(2).

The action is chosen such that it generates triangulations of spacetime and both models

have a kinetic term that is local in the group elements. In the case of the Boulatov

model, the interaction term couples four copies of the group �eld ϕ4, which is pictorially

to be understood as a prescription to glue four triangles to obtain a tetrahedron. The

Ooguri model contains a quintic interaction, ϕ5. In this case, the GFT quanta can be

interpreted as tetrahedra, and the interaction term contains the prescription to glue �ve

tetrahedra to a four-simplex. Ultimately, through several interaction vertices one then

creates triangulations of spacetime. These triangulations are obtained in the form of

an expansion of the generating functional as Feynman graphs, following the standard
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procedure of QFT. The Feynman graphs are to be interpreted as 4-dimensional simplicial

complexes, which correspond to a triangulation of the 4-dimensional spacetime manifold,

and their weight is determined by the details of the respective triangulation. In this

manner, one creates a weighted sum over all triangulations allowed by the choice of action.

Recall that in GR, imposing the simplicity constraint on a 4-dimensional BF theory

turns the topological theory into a description of Einstein gravity (known as the Plebanski

formulation, see sec. 1.1.2). One can then hope to formulate a path integral for full

quantum gravity by imposing the simplicity constraint on the quantised 4-dimensional

BF theory, as is the aim of e.g. the EPRL model [133, 136, 137]. One can use insights

from the EPRL model to restrict the form of kinetic as well as the interaction term of

the GFT action (even though few explicit studies of interactions within GFT exist and

their role in cosmological applications has so far mostly been neglected). Furthermore,

the boundary states of the EPRL model are spin network states decorated with SU(2)

variables, akin to LQG. In general, the relation between GFT and spin foam models can

be used to infer desirable properties of the GFT action.

2.2. Constructing a GFT

Having explored the motivations behind the original formulation of GFTs, we now delve

deeper into the details of their construction. We recall that a speci�c GFT is determined

by the choice of gauge group, �eld type, dimension, additional constraints, and �nally,

the GFT action. We detail a GFT based on the aim to construct a quantum model for

4-dimensional gravity, using the relation to spin networks and spin foams discussed in the

previous section. After re-capping the choices for the above-mentioned main ingredients,

we introduce a mode decomposition of the group �eld. We proceed to explain how dynam-

ics in GFT are achieved by introducing a matter �eld as a clock and should be understood

as relational in the sense of relational observables as explained in sec. 1.1.4. The matter

clock imposes restrictions on the GFT action and we consider a concrete example for the

kinetic term, which will become relevant for the discussion of GFT cosmology and the

results of the second part of this thesis. We also comment on possible interaction terms.

Finally, we discuss quantisation techniques for GFT, where two di�erent approaches to

the quantum theory, which have been dubbed the `deparametrised' and `algebraic' ap-

proach by [148], have evolved. We focus on the deparametrised approach, which is the
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one relevant for the rest of this thesis, but provide a short introduction to the latter as well.

We choose a real bosonic group �eld ϕ in what follows; the construction with a complex

�eld follows the same steps. While the results of chap. 6 and chap. 7 are not tied to a

speci�c choice of gauge group, and in principle could be carried out for any compact group,

the relation to LQG would be less clear. For concreteness we then choose G = SU(2) in

the following. To obtain 4-dimensional gravity from GFT we include four copies of SU(2)

in the �eld domain, i.e. 2

ϕ : SU(2)4 → R , ϕ(gI) := ϕ(g1, g2, g3, g4) with each gI ∈ SU(2) . (2.8)

Akin to LQG, it is useful to carry out a decomposition of the group �eld into modes

labelled by SU(2) representation data. The Peter-Weyl theorem states that any (square

integrable) function on a compact group G can be decomposed as a direct sum over matrix

coe�cients of irreducible unitary representations, which form an orthonormal basis of

L2(G) [159]. Speci�cally, in the case of SU(2), such a basis is given by the Wigner D-

matrices [160, chap. 4]. A Wigner D-matrix Dj(g), g ∈ SU(2), is a unitary square matrix

labelled by an irreducible representation j of SU(2) and has dimension 2j + 1. For g =

R(α, β, γ) = e−iατxe−iβτye−iγτz and τi the generators of SU(2) in a speci�c representation

j, the matrix elements of Dj(g) are explicitly given by

Djm,m′(α, β, γ) = 〈jm′|R(α, β, γ) |jm〉 , (2.9)

where |jm〉 denotes the basis vectors of the 2j + 1 dimensional Hilbert space associated

with each spin, where m ∈ {−j,−j + 1, . . . , j − 1, j} and 〈jm′|jm〉 = δm′m. For details,

such as explicit calculations of these matrix elements see [160, chap. 4], [161, sec. 8], [155].

The GFT �eld ϕ(gI) ∈ L2(SU(2)4) can then be decomposed as a mode sum over products

of four Wigner D-matrices

ϕ(gI) =
∑
~j ~m~nι

ϕ~j ~mιI~j~nι
4∏
i=1

√
2ji + 1Djimini(gi) , (2.10)

where the indices in the sum mark di�erent modes and are referred to as `spins' ~j =

(j1, j2, j3, j4), `magnetic indices' ~m = (m1,m2,m3,m4) and ~n = (n1, n2, n3, n4), and `in-

2We will introduce real valued arguments of the GFT �eld as contained in (2.3) in a consecutive manner,
emphasising their motivations and implications for the construction.
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tertwiner labels' ι. While the spins label irreducible representations of SU(2), we have

mi, ni ∈ {−ji, − ji + 1, . . . , ji− 1, ji}. The intertwiner I~j~nι appears in the decomposition

when we impose gauge-invariance on the group �eld (2.6) and use the properties of the

Wigner matrices. The intertwiner label ι then again, just like in LQG, numbers the basis

of the subspace invariant under SU(2) transformations. For more details see, e.g., [162].

To ease the notational load, we introduce the multi-index J = (~j, ~m, ι) and the following

shorthand

DJ(gI) :=
∑
~n

I~j~nι
4∏
i=1

√
2ji + 1Djimini(gI) , ⇒ ϕ(gI) =

∑
J

ϕJDJ(gI) . (2.11)

The Peter-Weyl theorem holds for any compact group, and hence a similar decomposition

can be carried out for other choices of compact G. For non-compact groups, e.g. SL(2,C)

which is of interest in the construction of the Lorentzian Barrett-Crane model [135],

additional subtleties arise due to continuous representations. These additional technical

di�culties seem manageable, however, and the construction of GFT models based on

SL(2,C) has been considered in e.g. [151, 152].

2.2.1. A massless scalar �eld as a matter clock

Dynamics in GFT are usually described relationally with respect to a massless scalar �eld

clock, which we denote as χ0 [144, 154]. As disused in sec. 1.1.4, relational observables

are a useful tool in GR and its quantisation approaches, as they allow to evade the issue

of being limited to global observables. For a relational observable, one considers the

value of a quantity of interest w.r.t. another physical quantity, allowing for a coordinate

independent statement. In the case of time evolution, a good clock variable is then

typically given by quantity that evolves monotonically. Matter clocks make common

appearances in cosmology, maybe most famously in the form of pressureless matter �elds,

known as dust [76, 77, 81] as introduced by the Brown-Kucha° model [73]. Clock �elds

are also frequently used in quantum cosmology, where they allow to evade the problem

of time [163�165], as well as in LQG [82] and LQC [166, 167]. Similar to the GFT case,

LQC employs a massless scalar �eld as a clock. There are other possibilities, and one can

also consider evolution w.r.t. geometric quantities, such as the shear in Bianchi models

[168], or, for an example in GFT, an anisotropy parameter as de�ned in [148].

So far we have focused on a group �eld whose domain is given solely by (multiple

copies of) elements of the chosen gauge group. We already noted in the introduction of
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this chapter that it is possible to extend this domain to include real valued functions. The

massless scalar �eld that is to serve as a relational clock is included in GFT by extending

the domain of the group �eld [144]

ϕ : SU(2)4 × R→ R , ϕ(gI , χ
0) =

∑
J

ϕJ(χ0)DJ(gI) , (2.12)

and carries over as an argument of the Peter-Weyl modes ϕJ(χ0). When connecting to

GR, GFT quanta with the same scalar �eld value are then interpreted as belonging to

the same spatial slice, and evolution takes place w.r.t. the value of the scalar �eld. A

massless scalar �eld constitutes a suitable matter clock due its monotonicity. Its action

in a general relativistic spacetime reads

Sχ = −1

2

∫
d4x
√
−g gµν∂µχ0∂νχ

0 . (2.13)

Imposing that the shift χ0 → χ0 + ε and re�ection χ0 → −χ0 symmetries of the classical

scalar �eld action (2.13) are respected at the level of the GFT action reinforces the

interpretation of χ0 as a massless scalar �eld. As we will see below, these symmetries

signi�cantly restrict the permissible form of terms that can be included in S[ϕ].

In this thesis we treat the scalar �eld classically, however, this does not imply that

the scalar �eld cannot be included in the quantum system; see also the discussion in

sec. 2.2.3. One may raise the question about the e�ects of potential non-monotonicity of

a quantised scalar �eld. Quantum reference frames have been considered more broadly in

the literature [169�172], as well as speci�cally in the context of the relational dynamics

from a quantum �eld in GFT [173�175]. Following e.g. the results of [175], roughly

speaking, relational dynamics of GFT operators can be obtained by projecting on a clock

state. One should then view any observables of the quantum theory as conditioned on

the value of the clock �eld, in the sense that 〈Ô(χ0)〉 gives `the expectation value of Ô,
given that the measurement of the scalar �eld reads χ0'. The operators constructed in

this manner recover the same dynamics as when treating the �eld classical throughout

[175]. This viewpoint di�ers from scenarios where (the �uctuations of) a quantum �eld

are considered on a classical background � in such cases, quantum �uctuations can be

characterised in relation to a classical background variable.

The setup with a relational clock can be extended to include multiple massless scalar

�elds to establish a full relational coordinate system [79, 80, 83], which will be discussed
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in the context of GFT in sec. 2.2.3.

2.2.2. Action

The GFT action S[ϕ] consists of a kinetic K[ϕ] and an interaction term V [ϕ], where the

latter includes any terms that contain GFT �elds at higher than quadratic order,

S[ϕ] =K[ϕ] + V [ϕ] =

∫
dχ0L[ϕ] . (2.14)

(We also introduced the GFT Lagrangian, where we will drop the explicit group �eld

label in the following L := L[ϕ].)

As previously mentioned, one can take inspiration from spin foam models to restrict

the form of the GFT action [141, 144, 176]. In this picture, the Feynman graphs obtained

from GFT are interpreted as spin foams, which correspond to triangulations of spacetime.

Recall from sec. 1.4.2 that spin foam amplitudes are calculated from vertex and edge

amplitudes of spin foams. While the kinetic term in the GFT action is related to the

edge amplitude, an appropriate choice of the interaction term can reproduce the vertex

amplitude of any spin foam model [142].

It is moreover customary to demand invariance of S[ϕ] under the symmetries of the

matter �eld coupled to the group �eld, which allows one to constrain the form of the action

further [144, 145]. Such constraints are welcome as they provide physical motivations for

e.g. a speci�c form of the kinetic term. In principle, it is straightforward to couple scalar

�elds with a non-vanishing potential to the group �eld in (2.12). However, in addition

to possibly limiting the scalar �eld's suitability as a matter clock to �nite regions in

which it changes monotonically, general scalar �eld Lagrangians would violate the above-

mentioned shift and re�ection symmetries. Without imposing these symmetries on the

GFT action it is less clear from which physical principles its form should be restricted.

We �rst consider more concrete forms of the kinetic term based on these symmetry

arguments and comment on possible interaction terms further below.
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Kinetic term

The general form of the kinetic term reads

K[ϕ] =
1

2

∫
d4g d4g′ dχ0dχ̃0ϕ(gI , χ

0)K(gI , g
′
I ;χ

0, χ̃0)ϕ(g′I , χ̃
0)

=
1

2

∑
J

∫
dχ0 dχ̃0ϕJ(χ0)KJ(χ0, χ̃0)ϕJ(χ̃0) ,

(2.15)

where K(gI , g
′
I ;χ, χ

′) denotes the kinetic kernel and KJ(χ, χ′) its decomposition in Peter-

Weyl modes. We have skipped a step in carrying out this decomposition and in the second

line also imposed that KJ, J ′(χ0, χ̃0) ∝ KJ(χ0, χ̃0)δJ, J ′ . This assumes locality in the group

elements for the kinetic kernel and can be motivated e.g. from the EPRL spin foam model

[143, 144]. We note that in this case, di�erent J modes evolve independently from one

another, which would not be the case in more general models [154]. In its general form

as reported above, K[ϕ] is non-local in the scalar �eld, as the group �elds appear with

di�erent values of the matter �eld. If we impose that the translational as well as re�ection

symmetries of the classical matter action (2.13) hold for S[ϕ], KJ(χ0, χ̃0) can depend only

on the squared di�erence of the scalar �elds, i.e.

KJ(χ0, χ̃0) = KJ((χ0 − χ̃0)2) . (2.16)

For this form of K(χ0, χ̃0)J we can then perform a Taylor expansion of (2.15) around the

di�erence of the matter �eld values. Explicitly, we introduce χ̃0 = χ0 + ε and expand

ϕ(χ0 + ε) around ε = 0, which gives a kinetic term that is an in�nite sum of even

derivatives3 w.r.t. the matter �eld

K[ϕ] =
1

2

∫
dχ0

∑
J

∞∑
n=0

ϕJ(χ)K(2n)
J

(
∂

∂χ0

)2n

ϕJ(χ0) ,

with K(2n)
J =

∫
dε

ε2n

(2n)!
KJ(ε2) .

(2.17)

While this expansion in principle includes an in�nite amount of terms one needs to intro-

duce a truncation at �nite order in practice. A common choice in the literature [144, 177]

3Terms with odd powers in derivatives w.r.t. the scalar �eld need to vanish due to re�ection symmetry.
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is to consider only the �rst two terms, n = 0 and n = 1, such that

K[ϕ] =
1

2

∑
J

∫
dχ0ϕJ(χ0)

(
K(0)
J +K(2)

J

(
∂

∂χ0

)2
)
ϕJ(χ0) . (2.18)

Note that, while the non-local form of the kinetic term (2.16) is perhaps the most general

after imposing symmetry requirements on the �elds and leads to an expansion as given

above, some studies in the literature [178] do not see a second order kinetic term as given

in (2.18) as a truncation of a possibly in�nite sum.

We include a concrete form of the kinetic term that is frequently considered in the

literature and was introduced in [176]. Speci�cally, the mass term in the expansion (2.17)

is set as K(0)
J = µ+ ∆g , where µ ∈ R and ∆g :=

∑
i ∆gi is the Laplace-Beltrami operator

on SU(2)4 × R4, acting on the group elements gI . Including a Laplacian in the kinetic

kernel is also considered in [179] and further motivated by studies of renormalisation [180�

184]. The action of ∆g can be understood by considering the Peter-Weyl decomposition

of the �elds, where ∆gi acts as the Casimir on the Wigner matrices ∆giDjimi, ni(gi) =

−ji(ji+1)Djimi, ni(gi). We furthermore set K(2)
J = τ with τ ∈ R. The constants τ and µ are

independent of the J−mode, such that in this implementation, the kinetic term depends

only on the spins ~j of the Peter-Weyl mode. To summarise, the terms appearing in (2.18)

can be written as

K(0)
J = µ−

∑
i

ji(ji + 1) , K(2)
J = τ . (2.19)

We note however that many results, including the ones in later chapters, are independent

of these speci�c expressions and would hold also for a broader range of possible de�nitions.

We will detail in sec. 2.2.3 how the relative signs of K(2)
J and K(0)

J determine the dynamics

of the respective Peter-Weyl mode.

Interaction term

While we will neglect the interactions in the remainder of this thesis, we still want to

comment on potential forms.

Recall that the interaction term can be speci�ed to reproduce the vertex amplitude

of a given spin foam model. For triangulations of a 4-dimensional spacetime, where a

spin foam vertex represents a four-simplex, one would then expect a quintic interaction

term ϕ5, interpreted as the gluing of �ve tetrahedra [141, 158]. Furthermore, as the
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interaction is localised on a vertex, as is the clock �eld χ0 in the construction we consider,

one assumes that the GFT interaction term is local in χ0. With these considerations, the

GFT interaction takes on a form similar to [177]

V [ϕ] =

∫
dχ0

∑
~J

V ~J
5∏
i=1

ϕJi(χ
0) , (2.20)

where ~J := J1, J2, J3, J4, J5. Speci�cation of a particular spin foam model then induces

combinatorial constraints between the Ji labels (see e.g. [144] for an interaction term of

the EPRL model).

In cosmological applications of GFT, interactions are often neglected as a �rst approx-

imation. As GFT cosmology progresses, one might examine GFT interaction terms from

a purely phenomenological perspective [146, 185, 186], where we will discuss some results

in sec. 4.1.

2.2.3. Canonical quantisation and dynamics

Two canonical quantisation approaches for GFT have evolved, whose relation (and ideally,

equivalence) is still an open question. The original approach, titled as the `algebraic

approach' in [148], relies on Schwinger-Dyson equations derived from an action principle,

whereas the alternative `deparametrised' approach uses a GFT Hamiltonian and was �rst

introduced in [177]. The algebraic approach is still the one most commonly found in

the literature, even though increasing progress has been made also in the deparametrised

approach [2, 78, 148, 185, 187].

Below, we proceed to detail the deparametrised approach, which the work presented in

chap. 6-7 is based on. We give a short summary of the algebraic approach at the end of

this section. For a more in depth illumination of the similarities and di�erences of these

approaches, we refer the reader to [187], which contrasts the implementation of di�erent

classes of quantum states in the two approaches, and the introduction of [148].

Deparametrised approach

This approach was �rst introduced in [177] and is based on a GFT Hamiltonian that is

constructed from the GFT action through a Legendre transform w.r.t. the real valued

argument χ0 of the group �eld. The scalar �eld is thereby assigned the role of an evolution

parameter, in line with its interpretation as a clock �eld. The theory can be canonically

73



Chapter 2. Group �eld theory

quantised in a straightforward manner and operator dynamics can be obtained e.g. by

solving the Heisenberg equations of motion. Below we summarise the procedure and refer

the reader to the original paper [177] for further details.

Before we proceed, let us point out that there are di�erent ways to incorporate relational

coordinates in a quantum theory, see [169] for a detailed introduction. In the perhaps

simplest approach, one singles out a clock as an external parameter prior to quantisation.

This is the approach that was followed in the construction of the GFT Hamiltonian [177],

and we will adopt this viewpoint also here. For a discussion of deparametrisation for

many body systems in GFT at the classical and at the quantum level, see [188]. It is

often advocated that in the deparametrised approach the clock should be interpreted as

classical and does not form part of the quantum system. However, the investigations of

[172, 173, 175] show that such a viewpoint might be a bit simplistic. Instead, one should

interpret any observables of the resulting quantum theory as conditioned on the clock

reading, where the clock forms part of the quantum system. An alternative approach

is to carry out a clock neutral quantisation of the entire system and identify a suitable

clock variable afterwards [174]. There has been recent progress in the study of quan-

tum reference frames [172] and the results of [170, 171] suggest that consistent switching

between di�erent quantum clocks is possible (in cosmology). Furthermore, the relation

between the two approaches of incorporating a clock �eld in GFT was recently investi-

gated [175] and the authors �nd that for the cosmological case (which will be of interest

in the second part of this thesis and which is the most studied application of GFT with a

relational clock in the literature) the two procedures lead to equivalent e�ective dynamics.

To sketch the derivation of the Hamiltonian, let us start from a GFT action with a

kinetic term as given in (2.18). As a �rst step, one obtains a form of the GFT Lagrangian

that contains only �rst derivatives of the GFT �eld by integrating by parts and neglecting

boundary terms, (in the following we drop the explicit χ0 label ϕJ = ϕJ(χ0) and use

∂0ϕJ := ∂
∂χ0ϕJ)

L =
∑
J

(
1

2
K(0)
J ϕ2

J −
1

2
K(2)
J (∂0ϕJ)2

)
− V (ϕ) . (2.21)

This form of the Lagrangian is amenable to canonical quantisation. If we had included

higher order terms in the expansion of the kinetic term and thus encountered higher
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order derivatives in the Lagrangians, the quantisation would have to be carried out with

more involved methods, see e.g. [189]. To proceed with the construction, one de�nes the

momentum conjugate to a Peter-Weyl mode of the group �eld πJ = πJ(χ0),

πJ :=
∂L

∂(∂0ϕJ)
= −K(2)

J ∂0ϕJ . (2.22)

A Hamiltonian H for GFT is then obtained from a Legendre transform of (2.21) w.r.t.

the clock parameter

H =
∑
J

πJ∂0ϕJ − L =
∑
J

K(2)
J

2

(
− π2

J

|K(2)|2
+m2

Jϕ
2
J

)
+ V (ϕ) , (2.23)

where we introduced the parameter m2
J := −K

(0)
J

K(2)
J

. For quantisation, we promote the

GFT �eld and its conjugate momentum to operators that satisfy the standard canonical

commutation relations, which (in contrast to the algebraic approach) are de�ned on equal

time slices, i.e. for operators with the same value of the scalar �eld:

[ϕJ(χ0), πJ ′(χ
0)] = i δJ, J ′ . (2.24)

The dynamics are dictated by the Hamiltonian and working in the Heisenberg picture

yields operators that satisfy the following equations of motion

∂0πJ = −i [πJ ,H] = −K(2)
J m2

J ϕJ , ∂0ϕJ = − πJ

K(2)
J

. (2.25)

Despite the suggestive notation, m2
J can take on negative values, and its sign is solely

determined by the relative signs of the parameters of the kinetic kernel, namely K(0)
J and

K(2)
J . The sign of m2

J dictates whether the kinetic part of the Hamiltonian takes on the

form of a harmonic oscillator (m2
J < 0, which is the case if sgn(K(2)

J ) = sgn(K(0)
J )), or

alternatively, an inverted harmonic oscillator (m2
J > 0, i.e. sgn(K(2)

J ) 6= sgn(K(0)
J )). As

we will see in more detail below, the inverted Harmonic oscillator leads to exponentially

growing modes (2.44), which we will interpret as leading to a universe with unbounded

expansion in sec. 4.1. For the particular forms of the coe�cients in the expansion of the

kinetic term given in (2.19), we have m2
J =

∑
i ji(ji+1)−µ

τ
. The sign of m2

J then not only

depends on the choice of the parameters τ and µ, but also on the spins of the respective

J−mode. In particular we �nd that m2
J > 0 for a �nite number of modes only if µ > 0
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and τ < 0. In this case,
∑

i ji(ji + 1)−µ becomes positive for modes with large (enough)

spins ji such that these modes have m2
J < 0. The number of Peter-Weyl modes whose

dynamics are determined by a Hamiltonian with a kinetic term that resembles an inverted

harmonic oscillator and therefore grow exponentially for large χ0 is then �nite and limited

to small j modes [190], which might be desirable from a phenomenological perspective.

Conceptually, one might also expect an e�ective spacetime to emerge from a large number

of Planck-sized quanta, where the volume carried by the GFT quanta scales with their

spin labels if one uses the volume operator of LQG.

We describe the extension of this framework to include additional scalar �elds in the

next section, which will be the GFT formulation we use in the second part of the thesis.

Hamiltonian GFT with four massless scalar �elds

In this section we introduce the GFT model with four massless scalar �elds, which will

serve as the basis for our research results presented in chap. 6 and chap. 7. The motivation

to include three additional scalar �elds stems from the desire to extend the relational idea

of GFT dynamics, where any changes to the spacetime geometry happen w.r.t. the value

of the matter clock, to an entire coordinate system. In this cases, one �eld serves as rela-

tional clock, whereas the others pose as spatial rods, i.e. they take on the roles of spatial

coordinates. Together, the �elds are assumed to span a suitable coordinate system, at

least locally. Such an extension to the deparametrised approach [177] explained in the

previous section to the case of a GFT with four scalar �elds was proposed in [78]; similar

constructions were considered in [79, 80, 151, 152].

Analogously to (2.12) we extend the domain of the group �eld to include four massless

scalar �elds, which we label by A = 0, 1, 2, 3, such that we have

ϕ : SU(2)4 × R4 → R , (2.26)

ϕ(gI , χ
A) := ϕ(g1, g2, g3, g4;χ0, χ1 , χ2, χ3) with gI ∈ SU(2), χA ∈ R , (2.27)

and the �eld modes of the Peter-Weyl decomposition now depend on the values of all four

scalar �elds

ϕ(gI ,χ
A) =

∑
J

ϕJ(χA)DJ(gI) . (2.28)
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We emphasise again that in GFT there a priori exists no spacetime manifold. As-

sociating the matter �elds to GFT quanta allows us to de�ne hypersurfaces associated

with quanta with the same �eld value and in the limit where a spacetime has emerged

from a large number of GFT quanta, the relational coordinate system can be related

to a speci�c choice of coordinate system on a spacetime manifold within GR. In GR,

we can switch to the relational coordinate system spanned by the �elds by demanding

∂µχ
A ∝ δAµ . The assumption is then that these four �elds ful�ll the non-degeneracy con-

dition det
(
∂µχ

A
)
6= 0 , such that they locally span a Cartesian coordinate system. We

discuss this kind of coordinate system within GR further in sec. 3.4 and sec. 6.1.

The classical matter action is given by a simple sum over the Lagrangians of the �elds,

Sχ = −1

2

∫
d4x

∑
A

√
−g gµν∂µχA∂νχA . (2.29)

In addition to the shift and re�ection symmetry for each �eld separately, the above satis�es

an additional rotational symmetry between the di�erent �elds χA 7→ RA
Bχ

B (where RA
B

denotes the rotation matrix) i.e. the matter �elds are physically indistinguishable [78].

The action (2.29) is therefore invariant under the action of the Euclidean group E(4) on

the massless scalar �elds.

The additional �elds enter the GFT action as a natural extension of the single �eld

case, where we again focus on the kinetic term:

K[ϕ] =
∑
J

∫
dχA dχ̃AϕJ(χA)KJ(χA, χ̃A)ϕJ(χ̃A) . (2.30)

We again assume that the symmetries of the classical action (i.e. invariance under shifts

and re�ections of each of the scalar �elds separately, as well as rotations between the

�elds) carry over to GFT and use these symmetries to constrain the allowed terms in the

GFT action. In particular, this imposes that KJ(χA, χ̃A) = KJ(
∑

A(χA − χ̃A)2) and the

action can only depend on derivatives of the group �eld of even order. Similar to the

considerations made in sec. 2.2.2 we can then carry out a Taylor expansion of ϕ(χA + εA)
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around εA = 0 4

S[ϕ] =

∫
d4χ

(
1

2

∑
J

∞∑
n=0

K(2n)
J ϕJ(χA)∆nϕJ(χA)− V (ϕ)

)
, (2.31)

where ∆ =
∑

A

(
∂

∂χA

)2

is the Laplacian on R4 and the K(2n)
J take the same form as

in (2.17), with a multi-dimensional integral dε → d4ε. This leads to the following La-

grangian (using integration by parts and neglecting boundary terms), where we have

again restricted ourselves to the �rst two terms in the expansion

L =
∑
J

(
1

2
K(0)
J ϕ2

J −
1

2
K(2)
J

∑
A

(∂AϕJ)2

)
− V (ϕ) . (2.32)

For the de�nition of the Hamiltonian one needs to single out a �eld that will be used

as deparametrisation parameter, which is then to be interpreted as the clock �eld. As

hinted by the suggestive notation, we appoint χ0 to take on this role. The Hamiltonian

associated with the action (2.32) reads (b = 1, 2, 3)

H =

∫
d3χ

∑
J

K(2)
J

2

(
− π2

J

|K(2)
J |2

+m2
Jϕ

2
J +

∑
b

(∂bϕJ)2

)
+ V (ϕ) . (2.33)

The symmetry requirements used to constrain the kinetic term can also be imposed on the

interaction term. In our work we will neglect any GFT interactions and hence omit V (ϕ)

in what follows. With an increasing number of GFT quanta this assumption becomes

increasingly invalid [185].

Before quantisation, we carry out Fourier decomposition of ϕJ(χA) and πJ(χA) w.r.t.

the spatial �elds ~χ = (χ1, χ2, χ3), namely

ϕJ(χA) =

∫
d3k

(2π)3
ei
~k~χϕJ,k(χ

0), πJ(χA) =

∫
d3k

(2π)3
ei
~k~χπJ,k(χ

0) . (2.34)

By applying a Fourier transform, we have assumed absolute integrability 5 of the GFT

�eld and its conjugate momentum over spatial slices de�ned by the χa (a = 1, 2, 3), an

4In the expansion we use the same value of εA = ε for all �elds; the di�erences between the εA will
have the same order of magnitude as some higher power of εA and can be neglected in a truncated
expansion.

5Many discussions on Fourier transforms use square integrability as a condition instead. For a detailed
discussion on Fourier transforms and the required notion of integrability, see e.g. [191].
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assumption that, as discussed at length in [78], breaks the rotational symmetry between

the �elds. The reason for this is that general solutions to the GFT dynamics can grow

unboundedly in the direction of the clock �eld (which is what permits the interpretation

of the GFT cosmological sector as yielding an expanding universe). In such cases, a

change of clock parameter would violate the integrability condition. In short, once we

carry out a Fourier decomposition, we have �xed the clock parameter and the other �elds

are interpreted as spanning spatial hypersurfaces over which the GFT �eld is integrable.

In this decomposition (and for V (ϕ) = 0) the Hamiltonian (2.33) takes on the form

H =

∫
d3k

(2π)3

∑
J

K(2)
J

2

(
− 1

|K(2)
J |2

πJ,−k(χ
0)πJ,k(χ

0) + ω2
J,k ϕJ,−k(χ

0)ϕJ,k(χ
0)

)

=:

∫
d3k

(2π)3

∑
J

HJ,k ,

(2.35)

where we introduced ω2
J,k := m2

J +~k2. We conclude that, similar to the Peter-Weyl modes,

the Fourier modes develop independently of one another. The equal time commutation

relations (2.24) gain a dependence on the wavenumber associated with the spatial �elds

[ϕJ,k(χ
0),πJ ′,k′(χ

0)] = i δJJ ′(2π)3δ(~k + ~k′) , (2.36)

and the dynamics of each mode follow again from the Heisenberg equations of motion

∂0πJ,k = −i [πJ,k, H] = −K(2)
J ω2

J,kϕJ,k , ∂0ϕJ,k = − πJ,k
K(2)

. (2.37)

As proposed already in [177] and carried over for the case of four �elds in [78], it is

useful to introduce time-dependent creation and annihilation operators AJ,k(χ0), A†J,k(χ
0),

which are de�ned from the GFT �eld operator and its momentum via

πJ,k(χ
0) = −iαJ,k(AJ,k − A†J,−k) , ϕJ,k(χ

0) =
1

2αJ,k
(AJ,k + A†J,−k) ,

with αJ,k =

√
|ωJ,k||K(2)|

2
.

(2.38)

From (2.25) it follows that they satisfy the equal-time commutation relations

[AJ,k(χ
0), A†J ′,k′(χ

0)] = δJJ ′(2π)3δ(~k − ~k′) , (2.39)
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with all other commutators vanishing. As we work in the Heisenberg picture, we need

to distinguish between time dependent operators denoted by AJ,k(χ0), A†J,k(χ
0) and time

independent operators aJ,k, a
†
J,k, de�ned by aJ,k = AJ,k(0) and a†J,k = A†J,k(0), which obey

the same commutation relations

[aJ,k, a
†
J ′,k′ ] = δJJ ′(2π)3δ(~k − ~k′) . (2.40)

As we pointed out in the previous section and as explained thoroughly in [78, 177], the

Hamiltonian can take on two di�erent forms. In the case of a GFT with a single massless

scalar �eld, this is determined solely by the sign of m2
J , and hence through the signs of

K(0)
J and K(2)

J . For the Hamiltonian (2.35) we �nd that the type of the Hamiltonian now

depends on the sign of ω2
J,k, which in general depends both on the sign of m2

J as well as

the value of ~k2. In cases where ω2
J,k < 0 the mode Hamiltonian HJ,k written in terms of

the ladder operators6 is that of a harmonic oscillator

HJ,k =− sgn(K(2)
J )
|ωJ,k|

2

(
aJ,−ka

†
J,−k + a†J,kaJ,k

)
. (2.41)

In the alternative case, i.e. for modes with ω2
J,k > 0, we obtain a Hamiltonian that is of

squeezing type7

HJ,k = sgn(K(2)
J )
|ωJ,k|

2

(
aJ,kaJ,−k + a†J,ka

†
J,−k

)
. (2.42)

For both the oscillating as well as the squeezing case we can solve the Heisenberg

equations of motion for AJ,k and A†J,k explicitly (where we omit the explicit dependence

on χ0 from hereon). In the case of oscillating modes, i.e. for a Hamiltonian of the form

(2.41) we �nd

AJ,k = aJ,ke
i sgn(K(2))|ωJ,k|χ0

, A†J,k = a†J,ke
−i sgn(K(2))|ωJ,k|χ0

, (2.43)

6At the level of the Hamiltonian it is irrelevant whether the expression is given in terms of time-dependent
or time-independent operators.

7This form of the Hamiltonian is referred to as `squeezed Hamiltonian' due its similarity with squeezed
states that are commonly used in atomic optics. These are created from the Fock vacuum through
exp
(
ζ∗(a†)2 + ζa2

)
|0〉 , see e.g. [192].
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whereas a squeezing Hamiltonian (2.42) results in exponentially growing expressions

AJ,k = aJ,k cosh
(
|ωJ,k|χ0

)
− i sgn(K(2))a†J,−k sinh

(
|ωJ,k|χ0

)
,

A†J,k = a†J,k cosh
(
|ωJ,k|χ0

)
+ i sgn(K(2))aJ,−k sinh

(
|ωJ,k|χ0

)
. (2.44)

From these solutions to the Heisenberg equations of motion within the free theory, we can

obtain time-dependent expressions for any combinations of ladder operators, independent

of the choice of state.

The Hilbert space of the theory is given by the Fock space obtained from the aJ,k, a
†
J,k;

the a†J,k create quanta of geometry, a†J,k |0〉 =
∣∣∣J,~k〉, interpreted as fundamental building

blocks of space, and the aJ,k, annihilate the Fock vacuum |0〉. As already emphasized in

[177], the Fock vacuum need not be an eigenstate of the Hamiltonian; indeed, the squeezing

Hamiltonian (2.42) will excite the Fock vacuum and lead to an increasing number of

quanta.

Foreshadowing already the discussion on cosmological spacetimes emerging from GFT,

we mention that one typically uses Fock coherent states, as they have desirable semiclas-

sical properties,

|σ〉 = e−||σ||
2/2 exp

(∑
J

∫
d3k

(2π)3
σJ(~k)a†J,k

)
|0〉 , (2.45)

where σJ(~k) is a (complex) function, to obtain an e�ective evolution of our universe. One

then �nds that the case of a squeezing Hamiltonian gives an expanding universe, whereas

the oscillating Hamiltonian results in a scenario akin to a static cosmology. We will show

this more explicitly in sec. 4.1.3.

Algebraic approach

Here we brie�y summarise the algebraic approach to GFT, which is the original formula-

tion of the theory and used in most of the literature.

While in the deparametrised approach we considered a real group �eld, in the algebraic

approach one works with a complex �eld instead. We keep the rest of the construction

the same as previously, but couple only a single massless scalar �eld for simplicity, where
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there is no hindrance to consider also multiple scalar �elds (for studies with a relational

coordinate system see e.g. [151, 152]). Explicitly, we have

ϕ : SU(2)4 × R→ C . (2.46)

To quantise the theory, the group �eld is promoted to an operator and one imposes the

bosonic commutation relations

[ϕJ(χ0), ϕ†J ′(χ̃
0)] = δJ, J ′ δ(χ

0 − χ̃0) . (2.47)

In contrast to the equal time commutation relations (2.36) used in the Hamiltonian ap-

proach, where operators are seen as evolving in the Heisenberg picture, the ϕJ(χ0) with

unequal values of the clock �eld are treated as distinct operators in the algebraic approach.

The Hilbert space is given by a Fock space de�ned w.r.t. the �eld operators: The

�eld creation operator ϕJ(χ0)† acts on the Fock vacuum |0〉, which is annihilated by

ϕJ(χ0) |0〉 = 0, to create excitations of the GFT �eld

ϕ†J(χ0) |0〉 =
∣∣∣~j,~m, ι;χ0

〉
. (2.48)

The operators ϕ†J(χ0) can then be interpreted as creating open spin network vertices

labelled with SU(2) representation data.

To extract the physical sector of the theory from the kinematical Hilbert space, one

imposes dynamical relations. This can be achieved by demanding that physical states

satisfy

δS

δϕ†
|Ψ〉 = 0 , (2.49)

which is the case for the Fock coherent state we include below (2.52), as was pointed out

in [187].8 The majority of the literature however focuses on the simplest Schwinger-Dyson

equation [144] and requires that the equations of motion are satis�ed at the level of an

expectation value

〈Ψ| δS
δϕ†
|Ψ〉 = 0 . (2.50)

8However, one does not impose the conjugate equation δS
δϕ |Ψ〉 = 0, as this does not commute with

(2.49).
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In which sense this procedure can be understood as assuming that the kinematical Hilbert

space corresponds to the physical Hilbert space even before imposing dynamics is discussed

in [187].

To give an example we consider the same action as in the previous section (no interaction

term and a kinetic kernel truncated at second order), but for a complex �eld:

K[ϕ] =
1

2

∑
J

∫
dχ0ϕ†J(χ0)

(
K(0)
J +K(2)

J

(
∂

∂χ0

)2
)
ϕJ(χ0) + h.c. . (2.51)

A popular state choice in the literature is that of a Fock coherent state

|σ〉 = exp

(∑
J

∫
dχ0σJ(χ0)ϕ†J(χ0)

)
|0〉 , (2.52)

which satis�es the property ϕJ(χ0) |σ〉 = σJ(χ0) |σ〉 and results in the following equations

of motion using (2.50)

(K(0)
J +K(2)

J ∂2
0)σJ(χ0) = 0 , (2.53)

which can be solved to obtain an explicit solution for σJ(χ0). Note that this is equivalent

to the classical equations of motion for a GFT action of the form (2.51). Many of the

phenomenological results in GFT cosmology, which will be the subject of sec. 4.1.5, are

based on the algebraic approach.

At the level of mean �eld (coherent) states, one e�ectively solves the classical equations

of motion in both cases, such that, at leading order, the results of both approaches agree.

In the case of more general states as were investigated in [187] the relation between results

in the di�erent approaches is less clear.

2.3. Further directions

There are further research directions that go beyond the ideas presented in this chapter

and are outside the context of GFT cosmology, which is discussed extensively in sec. 4.1.

Despite their interesting nature, detailing these research avenues would be beyond the
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scope of this thesis. For the interested reader with a newly found enthusiasm for GFT,

we would nonetheless like to point out some additional ideas:9

� Coloured GFT models

These models are of interest from two perspectives:

1. In general, GFT Feynman diagrams can include triangulations with topolo-

gical singularities. In coloured GFT models one only creates triangulations of

(pseudo-)manifolds [193]. Coloured GFTs are often considered in the study of

renormalisation in GFT [180, 183].

2. We discussed ambiguities in the graph structure belonging to a GFT state in

sec. 2.1.1. Restricting to a coloured GFT reduces the ambiguity in the structure

of multiparticle states with connected GFT quanta. This idea was explored in

[194] to construct kinematical states with a given topology.

� Black holes

The idea of constructing kinematical states with a given topology from coloured

GFTs was applied to the black hole context in [195]. Here the authors construct

a Schwarzschild black hole spacetime by gluing shells with the correct topology

and propose to calculate the black hole entropy. The possibility of constructing a

relational coordinate system for a black hole spacetime in GFT was considered in

[80], where the authors focus on the shell volume of a Schwarzschild black hole.

2.4. Conclusion: The group �eld we build on

Group �eld theories are �eld theories on an abstract group manifold G. They were �rst

introduced as a useful tool to compute spin foam amplitudes, where a speci�c GFT action

can reproduce transition amplitudes for any spin foam model through a Feynman graph

expansion, but have since evolved into their own research �eld. The speci�cs of a GFT

that one hopes can be used to recover a quantum gravitational theory are inspired by

LQG and spin foams. One can however also dare to go beyond the construction of these

models and, for instance, explore new possible connections to classical space times, as we

will propose in chap. 6. As we saw, the GFT framework is rather �exible and one can

hope that by making progress within GFT one can also attain new insights into LQG or

spin foam models.

9This selection is explicitly incomplete and based on a personal choice.
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The quanta of GFT can be interpreted as spin network vertices (with their valency

determined by the dimension of the GFT), or similarly, as building blocks of the trian-

gulation of the spatial manifold (which is a tetrahedron in 4-dimensional gravity). GFT

quanta, unlike LQG spin networks, are not embedded in a spatial hypersurface but live

on an abstract group manifold. They themselves constitute the very building blocks of

space and the interpretation is that spacetime emerges in the limit of a large amount of

such quanta.

Just like the overwhelming majority of the literature, we use a scalar group �eld with

bosonic commutation relations, additionally, we assume the �eld to be real-valued. The

speci�cs of a GFT are determined by its action, dimension, choice of group as well as

additional constraints. As we are interested in 4-dimensional gravity we choose d = 4.

For a relation with LQG and the EPRL model, we choose G = SU(2) and impose right

invariance under group action.

To extract dynamics from the theory one can couple a massless scalar �eld that serves

as a relational clock, a strategy that is commonly employed in quantum cosmology. This

construction can be extended to include three additional matter �elds, which are inter-

preted as `rod' �elds and serve as spatial coordinates. One thereby obtains a 4-dimensional

relational coordinate system that can be used to relate GFT quantities to a spacetime

manifold. Together with the relation to EPRL models and imposing the classical sym-

metries of the scalar �elds on the GFT action one can then restrict the form of the GFT

kinetic term. Similar arguments can be applied to the interaction term, which will be of

no concern for the results in this thesis.

We detailed the formulation of the quantum theory in the deparametrised approach to

GFT. In this approach, a GFT Hamiltonian is constructed by deparametrising w.r.t. the

clock �eld as an evolution parameter. In the case of multiple �elds one needs to carry out a

Fourier decomposition w.r.t. the spatial �elds before quantisation and the rotational sym-

metry between the four matter �elds is broken. One can extract operator dynamics from

the Heisenberg equations of motion and �nds that there are two types of Hamiltonian:

one resembles a harmonic oscillator, the other corresponds to a squeezed Hamiltonian

akin to squeezed states in quantum optics. Which one is realised depends on the funda-

mental parameters appearing in the kinetic term and has important consequences for the

phenomenology of emerging spacetimes.

The crucial takeaway from this section, in addition to a broader understanding of the

motivations behind studying GFTs, is the Hamiltonian theory for GFT with four massless

85



Chapter 2. Group �eld theory

scalar �elds and the resulting dynamics for the creation and annihilation operators.
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Chapter 3.

Cosmological perturbation theory

`[. . . ] je mehr sich einer begrenzt, um so mehr ist er andererseits dem Unendlichen nahe [. . . ]'

- Stefan Zweig in `Die Schachnovelle'.

`[. . . ] the more one limits oneself, the closer on is, on the other hand, to the in�nite [. . . ]'

While the universe is homogeneous and isotropic on large scales and its overall evolution

can be well captured by a (�at) FLRW metric as introduced in sec. 1.2, these symmetries

are evidently broken at smaller scales. Deviations from these large scale assumptions are

modelled as small inhomogeneous perturbations of the FLRWmetric and the matter �elds.

These perturbations play an important role for the evolution of the cosmos: small density

�uctuations in the early universe ignited the aggregation of matter into larger structures

that ultimately allowed for the formation of stars, galaxies, and other structures (see [196,

chap. 1] and references therein.).

The �eld of cosmological perturbation theory started to emerge with [197] and it was

soon realised that the covariant nature of GR introduces a gauge dependence and com-

plicates the physical interpretation of inhomogeneous perturbations. This issue can be

overcome by introducing gauge-invariant variables [198] that give physical quantities and

ultimately allow to connect to measurements. The model of the early universe determines

the behaviour of perturbations and thereby the initial conditions for all further evolution.

The most direct observational access we have to this early era is the CMB, which carries

imprints of several phases of the evolution of the early universe up to decoupling, see

sec. 1.2.3. Ideally, gravitational waves, which can travel freely even before decoupling,

will lift the veil of opacity and reveal information about the universe that predates the
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CMB. First measurements of the stochastic GW background [199�202] have reinforced

such hopes.

The early universe is a pertinent environment to look for possible quantum gravita-

tional e�ects, since quantum corrections should become relevant in the vicinity of the Big

Bang singularity and ideally provide us with a more complete understanding of such high

curvature regimes. In addition to its e�ects on the initial singularity (ideally, in the form

of singularity resolution) and consistency with the cosmological background evolution in

the low curvature regime, a quantum gravitational theory can and should also be assessed

by its e�ects on perturbations in the early universe. Consistency with the CMB can then

be seen as an evaluation criterion in addition to theoretical consistency, making the study

of cosmological perturbations within such theories an important tool. In an ideal world,

the study of cosmological perturbations can furthermore point to possibly observable im-

prints of quantum gravity e�ects. The results presented in the second part of the thesis

aim at relating quantum gravity to the study of cosmological perturbations.

This chapter �rst gives an overview over standard cosmological perturbation theory in

sec. 3.1, where we discuss the perturbed metric. The issue of gauge-invariance, which is

crucial for relating perturbation theory to observations, is the topic of sec. 3.2. We then

introduce the separate universe framework as an approximation for the study of large-

wavelength perturbations in sec. 3.3. Finally, we give the details for perturbation theory

in a relational framework spanned by four massless scalar �elds in sec. 3.4, which is the

setup used in chap. 6 and chap. 7.

3.1. Perturbative principles

This section reviews the basics of cosmological perturbation theory, which is part of

standard literature and can be found in e.g. [85�88, 203].

As discussed in sec. 1.2, we assume that the background spacetime is described by a

�at (K = 0) FLRW metric (cf. (1.27)), which we can write in Cartesian coordinates as

ds2 = −N(t)2dt2 + a(t)2δijdx
idxj , i.e. gµν = diag(−N(t)2, a(t)2, a(t)2, a(t)2) . (3.1)

While the standard literature usually �xes the lapse and works with cosmic time N = 1

or conformal time N = a, we leave the lapse general in what follows. The motivation for

this is that our choice of matter reference frame will impose a speci�c, non-standard form
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3.1. Perturbative principles

of N (see sec. 3.4.1, chap. 6 and 7). As we are interested in the early universe we neglect

the contribution of the cosmological constant and set Λ = 0. The Friedmann equations

(cf. (1.38) and (1.39)) in this case read

3

(
a′2

a2

)
=N2κρ , (3.2)

2
a′

a

N ′

N
−
(

2a′′

a
+
a′2

a2

)
=N2κP . (3.3)

The premise of cosmological perturbation theory is to perturb around the homoge-

neous background at linear order. To model small inhomogeneities on top of an FLRW

universe, one makes a perturbative Ansatz and adds a small perturbation to each metric

component gµν(t)→ gµν(t) + δgµν(t, ~x), where gµν(t) encompasses the homogeneous back-

ground metric, and δgµν(t, ~x) the perturbations. The absolute values of the perturbative

components |δgµν(t, ~x)| are required to be much smaller than any non-zero component

of |gµν |. In principle, any homogeneous contribution to δgµν(t, ~x) could be reabsorbed in

the de�nition of the background metric. In the following we will write gµν = gµν(t) and

demand that only perturbed quantities contain inhomogeneities. The general form of the

perturbed FLRW metric then reads as follows

ds2 =−N(t)2
(

1 + 2Φ̃(t,~x)
)
dt2 + 2N(t)a(t)

(
∂iB(t, ~x)−BV

i (t, ~x)
)
dt dxi

+ a(t)2
(

(1− 2ψ(t, ~x))δij + 2∂i∂jE(t, ~x)

−
(
∂iE

V
j (t, ~x) + ∂jE

V
i (t, ~x)

)
+ 2ET

ij(t, ~x)
)
dxidxj .

(3.4)

Here, we have already included a division of the metric perturbations into scalar Φ̃, ψ, B,E,

vector BV
i , E

V
i , and tensor ET

ij parts. The vector components have vanishing divergence

and the tensor component is transverse and traceless:

δij∂jB
V
i = 0, δij∂jE

V
i = 0, δik∂kE

T
ij = 0, δijET

ij = 0 . (3.5)

Such a scalar-vector-tensor (SVT) decomposition [197] is commonly found in the literature

and is based on the transformation properties of the respective components under a change

of coordinate system. For details we refer the reader to e.g. [203]. One �nds that the

di�erent components dynamically decouple at the level of linear perturbation theory,

which signi�cantly simpli�es the analysis. The metric perturbations do not appear with
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raised indices in any of the expressions, e.g. the perturbed inverse metric component δg0i

is given by

δg0i =
1

aN

(
∂iB(t, ~x)−BV

i (t, ~x)
)
. (3.6)

Vector modes are irrelevant in the absence of vector matter perturbations (which can

appear e.g. in the form of anisotropic stress) and tensor modes correspond to gravitational

waves. We will focus on scalar perturbations since these are the most relevant when

connecting to CMB observations [24]. The perturbed metric for scalar perturbations

reads

ds2 =−N2(t)
(

1 + 2Φ̃(t, xi)
)

dt2 + 2N(t)a(t) ∂iB(t, xi) dt dxi

+ a2(t)
[(

1− 2ψ(t, xi)
)
δij + 2∂i∂jE(t, xi)

]
dxi dxj . (3.7)

A similar procedure as carried out for the metric above can be used to perturb other

quantities of the theory, such as the matter content. In the case of a scalar �eld χ, which

is the only type of matter we will consider, we similarly perturb the �eld around its back-

ground value χ(t)→ χ(t) + δχ(t, ~x).

When introducing linear perturbations above, we assumed that these are small w.r.t.

the background metric, a statement which might at �rst appear ambiguous in a covariant

setting. At the background level, despite general covariance, there exists a preferred coor-

dinate system due to the expansion of the universe, namely, the frame in which the metric

takes the form given in (3.1). It is in this coordinate system in which the metric pertur-

bations have to be small w.r.t. the background.1 There is a remaining freedom, however,

namely those coordinate changes that change δgµν only up to terms at the order of the

perturbations themselves [203]. It is these in�nitesimal coordinate transformations that

induce the gauge freedom in cosmological perturbation theory, which we discuss in sec. 3.2.

Finally, we point out that it is often useful to carry out the analysis of perturbations in

Fourier space, where the wavenumber k is related to the physical wavelength of perturba-

tions as λ ∝ a
k
. Due to the linear dependence of all expressions on perturbation variables,

1The situation is slightly di�erent in the study of gravitational waves, where no preferred coordinate
system exists [204].
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the Fourier decomposition is a straightforward step.2 For scalar perturbations we have

Φ̃(t, ~x)→ Φ̃(t,~k) , ψ(t, ~x)→ ψ(t,~k) ,

∂iB(t, ~x)→ i kiB(t,~k) , ∂i∂jE(t, ~x)→ −kikjE(t,~k) .
(3.8)

3.1.1. Dynamics of perturbations

Dynamics of the perturbations are governed by the perturbed EFE (we neglect the cos-

mological constant, Λ = 0)

δGµ
ν = κδT µν , (3.9)

which are calculated from the metric and matter content at linear order. We consider

only scalar perturbations in the expressions below.

As we will later work with a non-standard form of the lapse we include the expressions

for the perturbed Einstein tensor for a general lapse, which are not commonly found in

the literature (and were therefore rederived for this thesis; no sum over i in δGi
i):

δG0
0 =

6

N2

a′

a

(
a′

a
Φ̃ + ψ′

)
+

2

aN

a′

a
∇2B − 2

a2
∇2ψ − 2

N2

a′

a
∇2E ′ ,

δG0
i =− 2

N2
∂i

(
a′

a
Φ̃ + ψ′

)
,

δGi
i =

2

N2

(
(a′)2

a2
− 2

a′

a

N ′

N
+ 2

a′′

a

)
Φ̃ +

2

N2

a′

a
Φ̃′ +

2

N2

(
3
a′

a
− N ′

N

)
ψ′ +

2

N2
ψ′′

+ (∇2 − ∂2
i )

(
1

aN

(
2
a′

a
B +B′

)
+

1

a2
(Φ̃− ψ) +

1

N2

(
N ′

N
− 3

a′

a

)
E ′ − 1

N2
E ′′
)
,

δGi
6=j =∂i∂j

(
− 1

aN

(
2
a′

a
B +B′

)
− 1

a2
(Φ̃− ψ) +

1

N2

(
3
a′

a
− N ′

N

)
E ′ +

1

N2
E ′′
)
.

(3.10)

One can similarly obtain a perturbed stress-energy tensor, where its explicit form is of

course dependent on the speci�cs of the matter content. We �rst consider a description

of matter perturbations starting from a perfect �uid, whose energy-momentum tensor is

given by (1.30). We work in the �uid rest frame, where the spatial part of its velocity

vanishes ui = 0 and de�ne the velocity perturbation as δui =: N
a
vi.3 Focusing on scalar

2Assuming that the perturbation variables are (absolutely) integrable over spatial slices.
3This is a de�nition; the unusual index structure arises because we have δui = −aBi+avi. The velocity
perturbation v is not to be confused with the Mukhanov�Sasaki variable v introduced further below.
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perturbations again, we have vi → ∂iv. General matter perturbations away from the

perfect �uid can contain also anisotropic stress, which we encode in Σij := δT ij − 1
3
δikδT

k
j .

Just as for the metric perturbations one does not encounter expressions with raised indices

for Σij. Σij is traceless and we can again decompose it into scalar, vector and tensor

components, which ful�ll the same requirements as given in (3.5). The scalar part of the

anisotropic stress is given by (∂i∂j − 1
3
δij∇2)Σ, where Σ denotes a scalar function. We

then �nd for the perturbed energy-momentum tensor

δT 0
0 = −δρ, δT ij = δPδij + (∂i∂j −

1

3
δij∇2)Σ ,

δT 0
i =

a

N
(ρ+ P )(∂iB + ∂iv) , δT i0 = −N

a
(ρ+ P )(∂iv) .

(3.11)

One can furthermore separate the pressure perturbation into an adiabatic contribution

proportional to the energy density and a non-adiabatic term, where we de�ne the entropy

perturbations δS and the sound speed c2
s:

δP =c2
sδρ+ τδS with c2

s =
P ′

ρ′
. (3.12)

In later chapters we will be concerned only with scalar �elds as matter content. For a

single scalar �eld with energy-momentum tensor as given in (1.35) we obtain

δT µν =δgµα∂αχ∂νχ+ gµα∂αδχ∂νχ+ gµα∂αχ∂νδχ

−
(

1

2
δgαλ∂λχ∂αχ+ gαλ∂λχ∂αδχ−

dU(χ)

dχ
δχ

)
δµν .

(3.13)

For a scalar �eld that is homogeneous at background level s.t. ∂µχ ∝ δ0
µ, the above

simpli�es considerably. In chap. 7 we use a relational coordinate system made from four

massless scalar �elds for which the perturbed energy-momentum tensor takes an uncon-

ventional form. This set up as well as the perturbative analysis of the corresponding

energy-momentum tensor are explained in sec. 3.4.2.

The above expressions can be used to obtain and then solve the EFE. In particular,

one �nds the perturbed continuity equation

δρ′ = 3ψ′(ρ+ P )− 3H(δρ+ δP )− 2 k2

κ a2
(ψ′ +Hψ) , (3.14)

92



3.2. A question of gauge

where k2 denotes the wavenumber in a Fourier decomposition.

3.1.2. The averaging problem

The procedure we described above relies on the assumption that the description of a ho-

mogeneous background with small linear perturbations is a good approximation of the

full, inhomogeneous system. Modelling the universe with an FLRW metric and describing

the matter content as an averaged �uid averages over the `lumpiness' we plainly observe.

The EFE are expected to accurately describe the evolution of inhomogeneities at each

point in the universe and due to their high degree of non-linearity, taking the average

of the EFE is not the same as considering the EFE of averaged quantities, e.g. for the

Einstein tensor 〈Gµν [gµν ]〉 6= Gµν [〈gµν〉], where 〈·〉 denotes a generic averaging procedure.

The experimental success of cosmology gives good reason to trust the description of a

perturbed FLRW universe as a �rst approximation. As cosmological data becomes in-

creasingly accurate and tensions have begun to arise, it is however judicious to investigate

the in�uence of non-linear e�ects. In a more complete analysis, one may consider cor-

rections from the inhomogeneities to the equations of motion of averaged quantities [88,

sec. 5.1.4][205�208].

3.2. A question of gauge

In this section we discuss the gauge freedom introduced by in�nitesimal coordinate trans-

formations of the coordinate system of inhomogeneous perturbations. We �rst show how

perturbation variables transform under such a change of coordinates in sec. 3.2.1 and in-

troduce gauge-invariant combinations of perturbation variables in sec. 3.2.2. Here we also

comment on the physical degrees of freedom and brie�y outline how gauge-invariant per-

turbations can be related to observations. In sec. 3.2.3 we give some examples of common

gauge choices in the literature, paying special attention to the harmonic gauge which we

will use in sec. 3.4. While most of these calculations are standard in the literature, their

forms for an unspeci�ed lapse are not. For convenience we therefore report them explicitly

here.

93



Chapter 3. Cosmological perturbation theory

3.2.1. Perturbations and covariance

General covariance is one of the main principles of general relativity. As explained in

sec. 3.1, perturbative calculations in cosmology are carried out in a preferred background

coordinate system dictated by the evolution of the universe. There remains a freedom

in the choice of coordinate systems for the inhomogeneous perturbations: any coordinate

system in which perturbations remain small is permitted.

In order to establish the gauge dependence of perturbative quantities δQ, we identify

how they transform under such a change of coordinates xµ → x̃µ, which we characterise

by a four-vector ξµ. Explicitly, perturbed quantities in di�erent coordinate systems are

related by the Lie derivative £ as given in (1.8) (see e.g. [85])

xµ → x̃µ = xµ + ξµ ⇒ δ̃Q = δQ+ £ξQ , (3.15)

where Q denotes the background value of δQ.

A general coordinate transformation can mix scalar and vector components. For ξµ =

(ξ0, ξi) we can decompose the spatial part ξi into its scalar and vector components,

ξi =: ∂iξ + ξiV . In the case where we are interested in scalar perturbations only, as

we will be in the following, one restricts to those coordinate transformations that pre-

serve the scalar nature of perturbations. We thus have ξi = ∂iξ, where the unusual index

structure arises from the decomposition we used above.

The Lie derivative of the metric tensor simpli�es to £ξgµν = ξλgµν,λ+gµλ∂νξ
λ+gλν∂µξ

λ

and for an FLRW background metric (3.1) we �nd

£ξg00 =− 2N2

(
N ′

N
ξ0 + ξ0′

)
, £ξg0i = −N2∂iξ

0 + a2ξi
′
, (3.16)

£ξgii =2a2

(
a′

a
ξ0 + ∂2

i ξ

)
, £ξgi 6=j = a2(∂iξ

j + ∂jξ
i) = 2a2∂i∂jξ . (3.17)

From these we can deduce the transformation properties of the metric perturbation vari-
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ables 4

Φ̃→ Φ̃ +
N ′

N
ξ0 + ξ0′ B → B − N

a
ξ0 +

a

N
ξ′ ψ → ψ − a′

a
ξ0 E → E + ξ .

(3.18)

For a scalar �eld χ, we have

δχ→ δχ+ χ′ξ0 . (3.19)

3.2.2. Gauge-invariant variables

A natural consequence of the remaining coordinate freedom is that only quantities that

are invariant under such in�nitesimal coordinate transformations can be physical. We

present some common choices of gauge-invariant perturbation variables in the following.

Gauge-invariant versions of the perturbations Φ̃ and ψ are known as the Bardeen vari-

ables ΦB and ΨB [198] and are given by

ΦB = Φ̃ +
1

N

((
B − a

N
E ′
)
a
)′
, ΨB = ψ − a′

N

(
B − a

N
E ′
)
. (3.20)

In chap. 5 we will be concerned with the curvature perturbation on equal density hy-

persurfaces5 ζ and the comoving curvature perturbation6 R:

−ζ = ψ +
H

ρ′
δρ , R = ψ +

H

χ′
δχ . (3.21)

As we detail in sec. 3.3.1, these two variables are equal on scales larger than the Hubble

horizon and commonly used to calculate the primordial power spectrum. They can be

related to the Bardeen variable ΦB, which in turn can be related to the radiation density

and thereby ultimately to the CMB (see e.g. [87, 88]).

Another frequently encountered gauge-invariant quantity is the Mukhanov-Sasaki vari-

4The additional terms would have opposite signs if we were working in a di�erent metric signature
convention, i.e. (+,−,− ,−) instead of (−,+ ,+ ,+).

5Note that the use of the symbols ζ and R is not consistent across the literature. We use the same
convention as e.g. [86, 88], but opposite of [87].

6We give the expression for a single scalar �eld, as we assume in chap. 5. In general, R = ψ+H a
N (B+v)

[86].
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able [85, 209], which for a single scalar �eld reads7

v = a

(
δχ+

χ′

H
ψ

)
. (3.22)

The total perturbed action of the gravitational and matter system expanded at second

order in perturbation variables can be written purely in terms of the Mukhanov-Sasaki

variable (neglecting total derivatives) [85], namely

δS =
1

2

∫
d4x

(
(v′)2 − c2

sδ
ij∂iv∂jv +

z′′

z
v2

)
, (3.23)

where z = aχ
′

H
. The action thus takes the form of a scalar �eld with a dynamical mass

term. In a Hamiltonian analysis, the Mukhanov-Sasaki variable is naturally obtained

from a canonical transformation to the physically relevant scalar degrees of freedom as

was �rst discussed in [210]. (We will discuss physical degrees of freedom in cosmologi-

cal perturbation theory below.) When studying quantum perturbations, it is important

to quantise the physically relevant sector; furthermore (3.23) has a form amenable for

canonical quantisation.

It is possible to rewrite the entirety of the linearised EFE in a gauge-invariant manner

and work only with gauge-invariant quantities. We report the form of the gauge-invariant

Einstein tensor as well as that of the energy-momentum tensor in app. B.

Surveying the degrees of freedom

We depart on a short detour to discuss the physical degrees of freedom in cosmological

perturbation theory. We have introduced four scalar metric perturbations and the freedom

to change the coordinate system through ξ0 and ξ. From the transformation properties

(3.18) it is apparent that two of the metric variables can be set to zero by an appropriate

choice of the perturbed coordinate system. Furthermore, if matter is given by a scalar

�eld, one can similarly choose a coordinate system in which δχ = 0, as seen in (3.19).

A discussion of the physical degrees of freedom is most easily carried out within a

Hamiltonian description. In a Hamiltonian system the number of physical degrees of

freedom P of a system with a 2n dimensional phase space is given by P = n −M − S
2
,

where M denotes the number of �rst, and S the number of second class constraints. We

brie�y recall that the constraints reduce the system to the physical phase space and that

7See [85] for the derivation in the case of a perfect �uid.
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�rst class constraints are those whose Poisson brackets with all other constraints vanish

(weakly, i.e. when the equations of motion are satis�ed), see e.g. [211]. From the ADM-

formulation of GR introduced in sec. 1.1.2 we �nd that the Hamiltonian of GR (1.18) is

given by four �rst class constraints: the scalar or Hamiltonian constraint H and three

di�eomorphism constraints Ha. The phase space is spanned by the six components of

the spatial metric qab and their conjugate momenta. We thus have n = 6 ,M = 4 , and

S = 0, resulting in P = 2 physical degrees of freedom of the gravitational sector. These

are exactly the 2 degrees of freedom we �nd for gravitational waves. Matter then adds

additional degrees of freedom to the theory.

We can repeat the analysis above for an FLRW universe �lled with a single scalar

�eld. The Hamiltonian of a massless scalar �eld gives contributions to the scalar and

di�eomorphism constraint as [210]

Hmatter =
N

2

(
π2
χ√
q

+
√
qqab∂aχ∂bχ+ 2

√
qU(χ)

)
+Naπχ∂aχ (3.24)

and does not lead to additional constraints. Due to homogeneity the six degrees of freedom

of the spatial metric reduce to a single one. Furthermore, the di�eomorphism constraint

vanishes trivially and we have M = 1. The combined phase space with matter has n = 2,

such that we have a single physical degree of freedom P = 1.

A Hamiltonian analysis of cosmological perturbation theory was �rst carried out in

[210] and has since entered the literature [83, 212, 213]. Including perturbations of the

spatial metric and the matter content enlarges the phase space of the theory, as these

evolve separately from the background variables and are described by a perturbed Hamil-

tonian. The spatial metric perturbation can again be decomposed into scalar, vector and

tensor parts, and the Hamiltonians describing the di�erent perturbation types decouple.

Explicitly, one �nds the following: There are two vector components and two vector con-

straints; there are two tensor perturbations and no constraints; the scalar sector has two

metric components and two constraints. The two geometric degrees of freedom of GR

are contained in the tensor perturbations and the matter content introduces additional

degrees of freedom. For instance, in a universe �lled with a single scalar �eld, there is one

scalar degree of freedom on addition to the tensor perturbations.
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3.2.3. Gauge choices

Instead of working with gauge-invariant quantities, one can opt to �x the gauge instead,

which can considerably simplify calculations. Common gauge choices are

� Longitudinal or Newtonian gauge E = B = 0:

In this gauge the perturbed metric (3.7) becomes diagonal. Furthermore, in the

absence of anisotropic matter (Σ = 0 in (3.11)), we have Φ̃ = ψ from the Einstein

equations (3.10). The Bardeen variables (3.20) also simplify considerably, such

that in general scenarios this is arguably the simplest gauge for carrying out a

perturbative analysis.

� Comoving gauge δχ = 0 and E = 0 or B = 0:

There are di�erent implementations of this gauge. The idea is to be in the comoving

frame of the �uid and set δT 0
i = 0. (For a scalar �eld we have δT 0

i = ∂0χ
N2 ∂iδχ.) One

requires an additional condition and can set either E or B to zero [86, 88]. In this

gauge, the comoving curvature perturbation (3.21) takes on a simple form R = ψ.

We will use this gauge in chap. 5.

� Synchronous gauge Φ̃ = 0, B = 0:

This is the gauge used in the original literature on cosmological perturbations [197].

It however does not completely �x the gauge and one retains unphysical gauge

degrees of freedom in the formalism. Confusions related to this redundancy could

be clari�ed by introducing a gauge-invariant treatment of perturbations [198].

Harmonic gauge

The cosmological perturbations we extract from GFT in chap. 7 are obtained within a

coordinate system spanned by four massless scalar �elds, which induces a harmonic gauge.

For this reason, we discuss the harmonic gauge in some detail. The perturbative analysis

of such a system within GR is the topic of sec. 3.4.2.

In harmonic gauge, the coordinates each satisfy the wave equation

�xµ = gαβΓµαβ = 0 . (3.25)

This gauge plays a crucial role in the history of GR, as it was used to prove that the EFE

indeed give a well posed initial value problem [214] [29, sec. 10.2]. It has also been used in
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the study of perturbations through a non-singular bounce, as evolution equations remain

well de�ned throughout [215, 216].

Generally, the harmonic gauge condition (3.25) introduces conditions also at the back-

ground level: For an FLRW metric (3.1) the relevant Christo�el symbols are Γ0
ii =

aa′

N2 , Γ0
00 = N ′

N
and we �nd that (3.25) is satis�ed if

3H − N ′

N
= 0 . (3.26)

This restricts admissible lapse choices to cases in which N ∝ a3 .

Imposing (3.25) on the perturbative level (δ(gαβΓµαβ) = 0) leads to the following har-

monic gauge conditions, where we again restrict our discussion to scalar perturbations,

−2
HB

aN
− B′

aN
+

1

a2
(−Φ̃ + ψ +∇2E) =0 , (3.27)

2Φ̃

N2

(
N ′

N
− 3H

)
− 1

aN
∇2B +

1

N2
(−Φ̃− 3ψ +∇2E)′ =0 . (3.28)

The �rst term of (3.28) vanishes due to (3.26). Note that (3.25) continues to be satis�ed

under a coordinate transformation xµ → xµ + ξµ (with ξµ = (ξ0, δij∂jξ) as introduced

in sec. 3.2.1) as long as �ξ0 = 0 = �ξ. Hence, the harmonic gauge contains a residual

gauge freedom in the form of initial conditions for ξ0 and ξ. This freedom can be used to

initially set some perturbation variables to zero; whether such an additional gauge �xing

is conserved under evolution depends on the physical scenario. Indeed, recalling how the

metric perturbations transform under a change of coordinates (3.18), we see that (3.27)

remains valid if 1
N2 ξ

′′ + k2

a2
ξ = 0, whereas (3.28) is satis�ed as long as 1

N2 (ξ0)′′ + k2

a2
ξ0 = 0.

3.3. Separate universe framework

The separate universe framework is built on the idea that perturbations larger than the

Hubble horizon (1.43) appear homogeneous and gradient terms can be neglected in their

perturbative analysis [217, 218]. In this regime, the universe can be modelled as in-

dependent Hubble sized regimes, or `patches', over which perturbations can be seen as

homogeneous. We will make this notion more precise below.

The separate universe framework can be useful not only to simplify calculations, but

also to study beyond GR e�ects on perturbations [219, 220]. For quantum gravitational

theories, where including a full treatment of perturbations is often far from straightfor-
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ward, an analysis within the separate universe picture can already shed light on possible

imprints [221, 222]. We will investigate the e�ect of quantum gravitationally modi�ed

Friedmann equations on large scale perturbations in the separate universe framework in

chap. 5.

We begin this section by explaining the separate universe picture in more detail and

discussing the super-horizon evolution of gauge-invariant perturbations in sec. 3.3.1. In

sec. 3.3.2 we comment on the interplay between simpli�cations of the separate universe

framework and the choice of gauge.

3.3.1. Homogeneous perturbations

The following introduction of the separate universe idea is based on [217, 219].

The Hubble horizon or Hubble radius RH := 1
H

is a term often used interchangeably

with the particle horizon we de�ned in sec. 1.2.3. RH gives the length scale at which

spacetime events could have been in causal contact in the past. Perturbation modes whose

wavelength λ exceeds the Hubble horizon are approximately homogeneous for an observer

within, such that spatial gradient terms become inconsequential for their description. One

can then carry out an expansion around small gradients where the condition λ� RH gives

the expansion parameter | k
aH
| � 1. Such an expansion is useful to study the evolution of

perturbations on large scales and signi�cantly simpli�es their analysis. It naturally leads

to the separate universe picture, where the universe is modelled by a multitude of patches

approximately the size of the Hubble horizon. Di�erent patches of the universe separated

by RH or further are causally disconnected and each evolve independently in accordance

with the Friedmann equation. Long-wavelength perturbations, which is a term we reserve

for perturbation modes that satisfy λ� RH , can thus be treated as homogeneous within

a Hubble patch. For scalar metric perturbations (3.7), this implies

Φ̃(t, xi)→ Φ̃(t) , ψ(t, xi)→ ψ(t) , ∂iB → 0 , ∂i∂jE → 0 . (3.29)

The evolution of a long wavelength perturbations can be obtained by considering the

di�erence between its local parameter value in a patch and the average taken over all

patches. Consequentially, the local values of quantities in a single patch can be described
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3.3. Separate universe framework

as the average plus a homogeneous perturbation. For instance, the local values of the

lapse, scale factor, energy density, and pressure are respectively given by

Nloc = N(1 + Φ̃) , aloc = a(1− ψ) , (3.30)

ρloc = ρ+ δρ , Ploc = P + δP . (3.31)

This picture has two scales which are important: the �rst is the Hubble radius, which

gives the scale beyond which spatial gradients are subdominant and can be neglected. The

second is the scale of the overall background, i.e. the scale on which the averaging over

disconnected patches takes place. We will use the terms `super-horizon' scales and `long

wavelength' perturbation to refer to regimes in which spatial gradients can be neglected

and a separate universe description is applicable.

In the separate universe picture, the dynamics of some gauge-invariant quantities sim-

plify signi�cantly. Consider �rst the curvature perturbation on equal density hypersur-

faces, ζ (3.21). It was shown in [219] that ζ will be conserved on super-horizon scales for

adiabatic perturbations as long as energy conservation in the form of ∇µT
µ
ν = 0 holds,

independently of gravitational dynamics. Explicitly, the authors �nd that

ζ ′ = − H

ρ+ P
δPnad −

1

3
∇2(σ + v +B) , (3.32)

where δPnad encodes the non-adiabatic contribution to the perturbations, which in the

absence of anisotropies is given by τδS in our convention, σ denotes the shear, v the

perturbed 3-velocity of the �uid, and B the metric perturbation.

Furthermore, from the Einstein equations δG0
0 = κδT 0

0 and δG0
i = κδT 0

i , see (3.10),

one can relate the expressions of ζ and R by establishing a relation between δρ and δχ.8

Speci�cally, one �nds that they are related by a gradient term

δρ

ρ′
+∇2f =

δχ

χ′
⇒ R = −ζ +H∇2f . (3.33)

where f = 2
3

1
κ(ρ+P )

(
− 1
aN
B + 1

a2
1
H
ψ + 1

N2E
′) and will simplify further depending on the

gauge choice. Thus, on super-horizon scales −ζ = R are equally conserved. We will

revisit this result in chap. 5 and �nd that in some quantum gravity models this need no

8Once again we focus on the case with a single scalar �eld, but the calculation and result also apply to
more general matter content.
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Chapter 3. Cosmological perturbation theory

longer be the case.

3.3.2. Note on gauge choices

In the separate universe picture, the metric perturbations E and B can be neglected,

as they enter the metric only as spatial gradients (3.29). Furthermore, the o�-diagonal

elements of the perturbed Einstein tensor (3.10) are trivially zero, as again they contain

only gradient terms. In the separate universe framework with a single scalar �eld the sys-

tem is then characterised by the perturbation variables ψ, Φ̃, and δχ. The gauge freedom

of in�nitesimal gauge transformations of the perturbed coordinate system furthermore

reduces to the choice of ξ0, which in accordance with (3.18) and (3.19) can be used to

set one of the remaining variables to zero. For the counting of degrees of freedom we

can proceed as follows: on the gravitational side we have reduced the perturbed metric

phase space to a single variable, and the matter sector is unchanged. As already pointed

out, the di�eomorphism constraints are trivially satis�ed, such that one constraint, the

Hamiltonian constraint, remains. We thus recover a single degree of freedom.

The Newtonian gauge (see sec. 3.2.3) is a popular gauge in the literature in which one

�xes E = B = 0. Usually, from the o�-diagonal spatial components of the EFE and in

the absence of anisotropic stress this leads to

∂i∂jψ − ∂i∂jΦ̃ = 0 ⇒ Φ̃ = ψ . (3.34)

The equation ∂i∂jψ − ∂i∂jΦ̃ = 0 is however trivially satis�ed for negligible spatial gra-

dients. As we can see from these considerations, and as was further elaborated within

the Hamiltonian framework for cosmological perturbations in [212], the Newtonian gauge

does not lead to additional constraints for the perturbation variables in the separate uni-

verse framework. In [220], the authors then de�ne a pseudo-longitudinal gauge. Here,

the gauge is �xed in a limit where gradient terms contribute and the Newtonian gauge

is meaningful. Even if the system evolves through a regime where spatial gradients are

negligible, the relation Φ̃ = ψ then remains valid through the previous gauge �xing. In

[212] the authors rede�ne the Newtonian gauge to recover such a relation also within

the Hamiltonian framework, by introducing relations similar to the di�eomorphism con-

straint. We work within the separate universe picture in chap. 5 and will revisit these

considerations on suitable gauge choices.
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3.4. Analysis in relational coordinates

In the following, we will carry out a perturbative analysis of a �at FLRW spacetime

ds2 = −N2(t)dt2 + a2(t)δijdx
idxj (3.35)

for two cases: In the �rst, we assume that the universe is �lled with a single massless

scalar �eld that takes on the role of a relational clock with respect to which the evolution

takes place (sec. 3.4.1). In the second, the matter content is given by four massless scalar

�elds, which are assumed to span an entire relational coordinate system (sec. 3.4.2). We

introduced the notion of relational observables in GR in sec. 1.1.4. The concept of includ-

ing a massless scalar �eld as a clock in GFT was the topic of sec. 2.2.1 and we extended

this case to four �elds in sec. 2.2.3. The case of a single �eld su�ces when one is interested

only in the background evolution, as we discuss in chap. 4. The four �eld case becomes

of interest when searching for a description of inhomogeneities and thereby cosmological

perturbation theory in e.g. GFT, as this requires a complete matter reference frame. This

will be the aim of chap. 6 and chap. 7. In GFT, the necessity of using four massless scalar

�elds instead of e.g. dust �elds arises because such scalar �elds are the only matter type

that has been successfully included in the quantum theory at this point [144]. It then

comes as no surprise that we are interested in the equivalent classical scenarios. As we

will discuss further in chap. 4 and chap. 6, it is only in a relational coordinate system that

it is meaningful to compare GFT quantities to those of GR.

The settings we consider deviate from standard cosmological analysis, where it is com-

mon to work in conformal time, N = a, and the Newtonian gauge, E = B = 0, in order to

simplify the analysis. Instead, as we will see, the matter frame choice completely �xes the

lapse as well as the gauge in the perturbed coordinate system. In the following, we include

a background, as well as a perturbative analysis for both described cases of interest. In

chap. 7 we will compare our �ndings within the GFT framework to the general relativistic

evolution equations contained in what follows.

3.4.1. Relational clock

We �rst consider the case in which the matter content is given by a single scalar �eld χ0.

Demanding that the scalar �eld serves as a time parameter (relational clock) determines

the form of the lapse function. For a massless scalar �eld with an action as given by (2.13)
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one obtains its conjugate momentum as π0 = ∂L/∂(∂0χ
0) = a3∂0χ

0/N . In a coordinate

system in which χ0 takes on the role of time ∂0χ = 1, the lapse is then �xed to

N =
a3

π0

. (3.36)

As we are working within the relational clock frame, ′ denotes derivatives with respect

to χ0 in what follows. The units of the lapse and scale factor are [a] = [N ] = L2 and

[∂µχ
A] = L0.

The non-vanishing components of the energy momentum tensor (3.13) read (i = 1, 2, 3)

T 0
0 = − π2

0

2a6
, T ii =

π2
0

2a6
, (3.37)

thus corresponding to a perfect �uid with w = 1. The Friedmann equations (3.2) and

(3.3) for the lapse choice (3.36) are

H2 =
κ

6
, H ′ = 0 . (3.38)

These di�er from standard expressions in the literature due to the unusual choice of N .

For conformal time N = a, we would �nd H2 = κ
6

π2
0

a4
and H ′ = −2

3
κ
π2
0

a4
instead.

Perturbations

We proceed to carry out a perturbative analysis for the setting with a single relational

clock �eld; we will return to these results for the interpretation of our results in chap. 7.

We work with N = a3

π0
and in harmonic gauge (sec. 3.2.3). The harmonic gauge conditions

for our choice of lapse read

−2π0
HB

a4
− π0

B′

a4
+

1

a2
(−Φ̃ + ψ +∇2E) =0 ,

−π0

a4
∇2B +

π2
0

a6
(−Φ̃− 3ψ +∇2E)′ =0 ,

(3.39)

and can be combined to give

π2
0(−Φ̃− 3ψ +∇2E)′′ = a4∇2(−Φ̃ + ψ +∇2E) . (3.40)

The components of the perturbed Einstein tensor (3.10) for our lapse choice are explic-
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itly given by

δG0
0 =

6π2
0

a6
H
(
HΦ̃ + ψ′

)
+

2π0

a4
H∇2B − 2

a2
∇2ψ − 2π2

0

a6
H∇2E ′ , (3.41)

δG0
i =− 2π2

0

a6
∂i

(
HΦ̃ + ψ′

)
, (3.42)

δGi
i =

2π2
0

a6

(
2H ′ − 3H2

)
Φ̃ +

2π2
0

a6
HΦ̃′ +

2π2
0

a6
ψ′′ (3.43)

+ (∇2 − ∂2
i )

(
π0

a4
(2HB +B′) +

1

a2
(Φ̃− ψ)− π2

0

a6
E ′′
)
, (3.44)

δGi
6=j =∂i∂j

(
−π0

a4
(2HB +B′)− 1

a2
(Φ̃− ψ) +

π2
0

a6
E ′′
)
. (3.45)

The energy momentum tensor (3.13), which, due to the role of χ0 as a clock �eld, does

not contain explicit matter perturbations, i.e. δχ0 = 0 (which amounts to an appropriate

initial choice of ξ0), is given by 9

δT 0
0 =

Φ̃

N2
, δT 0

i = 0 , δT i0 =
1

aN
∂iB , δT ij = 0 , δT ii = − Φ̃

N2
. (3.46)

The perturbed EFE combined with the harmonic gauge conditions (3.39) give the follow-

ing (for details of the derivation please see app.C.1)

E ′′ − a4

π2
0

∇2E = 0 , Φ̃′′ − 4HΦ̃′ − a4

π2
0

∇2Φ̃ = 0 , −a
4

π2
0

∇2ψ + ψ′′ = 0 . (3.47)

Furthermore, we can obtain B from (3.39) and the di�eomorphism constraint HΦ̃+ψ′ = 0

needs to be satis�ed.

3.4.2. Massless scalar �elds as coordinates

We now consider a scenario in which four massless scalar �elds can be used to span an

entire coordinate system. This idea is not new: For instance, in [75] the authors discuss

scalar �elds that serve as harmonic coordinates in the Lagrangian and Hamiltonian for-

mulation of GR. In [83] the authors consider a system with four massless scalar �elds and

carry out a canonical quantisation with LQG techniques. These matter reference frames

have also been employed to study perturbations within GFT [79, 80, 151, 152] (we will

9These are the same expressions as recovered in e.g. [215]. To see this, set π0 = 1 above and P =
X , g = 0 in the expressions in [215].
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discuss these further in sec. 4.1.4). While some of the GFT models [151, 152] include a

�fth matter �eld that is assumed to dominate the other four frame �elds, thus e�ectively

recovering the single �eld case discussed in the previous section, we will assume that the

four reference �elds are the only matter content in our investigations in chap. 6 and 7.

While the perturbative analysis for this choice of matter frame is a straightforward ap-

plication of cosmological perturbation theory within GR, we present the results here in

some detail. They will be needed to interpret the results of chap. 7.

In a relational coordinate system spanned by four massless scalar �elds we identify

each of the scalar �elds χA with a spacetime coordinate xµ by demanding that surfaces

of constant χA are also constant surfaces of said coordinate. In such a coordinate system

we thus have ∂µχA ∝ δAµ , where A = 0, 1, 2, 3 denotes a label of the �elds (and is not a

spacetime index). We will use a = 1, 2, 3 to denote the spatial �elds and 0 for the clock

�eld. For such a relational coordinate system to be locally well-de�ned the �elds have to

satisfy the following non-degeneracy condition10

det
(
∂µχ

A
)
6= 0 . (3.48)

The relational coordinate system naturally gives a special case of the harmonic gauge

�xµ = 0 (see sec. 3.2.3) by virtue of the Klein-Gordon equation �χA = 0 satis�ed by

each of the �elds. While the harmonic gauge has a residual gauge freedom, �xing the

relational coordinate system as we do here �xes the gauge completely. We already saw in

the previous section how the lapse is �xed from the momentum of the clock �eld (3.36).

More generally, using an ADM decomposition of the metric (1.17) we obtain the following

relations between the canonical momenta of the scalar �elds πA = ∂L/∂(∂0χ
A) for the

action as given in (2.29) and the lapse N and shift Na vector (g0i = Na/N2):

π0 =

√
|q|
|N |

, πa = −Na

√
|q|
|N |

= −Naπ0 (a = 1, 2, 3) . (3.49)

The lapse and the shift are then determined by the spatial metric qab together with

the scalar �eld momenta. As Na vanishes at the background level for (3.35), so do the

conjugate momenta of the spatial �elds. The Klein-Gordon equation for the clock �eld

χ0 is then equivalent to the statement ∂tπ0 = 0.

10For a single scalar �eld χ0 acting as a clock, the equivalent condition is ∂0χ
0 6= 0.
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The setup we described is unusual from the viewpoint of standard cosmology, where

all quantities are usually assumed to be purely homogeneous at the background level, see

sec. 3.1. Purely homogeneous �elds, however, would evidently not function as suitable

coordinates. Importantly, only the gradients of the scalar �elds enter the free scalar �eld

action (2.29), therefore, as long as the gradients of the �elds are homogeneous quanti-

ties, no inhomogeneities appear in the EFE at the background level. For compatibility

with the FLRW background, the matter has to satisfy the requirement of isotropy. Thus,

three �elds that have homogeneous gradients and are related by rotations need to be

included. Altogether, we then have one �eld of the form χ0 = χ0(t) and three �elds with

χa = χa(xa), a = 1, 2, 3. As the gradients of the spatial �elds are homogeneous, but

non-vanishing, they contribute to the background dynamics, and in particular, the Fried-

mann equation, as we show below. Similar ideas have been discussed in the context of

solid in�ation, which considers a universe �lled with three scalar �elds with homogeneous

gradients [223].

To establish the background dynamics, we recall the form of the energy momentum

tensor T µν =
∑

A T
(A)µ

ν (3.13) and the background Einstein tensor (1.28). From the

space-time components (which correspond to the di�eomorphism constraint in a Hamil-

tonian analysis), G0
i = 0, it follows that

∑
A ∂iχ

A∂0χ
A = 0. Furthermore, from the

o�-diagonal space components Gi
6=j = 0 we have

∑
A ∂iχ

A∂jχ
A = 0. Additionally, since

all diagonal components of the Einstein tensor Gi
i are identical in a coordinate system

where ∂µχA = λA δ
A
µ , with λA ∈ R (no sum over A), it follows that all spatial gradients λa

must be equal. We set λA = 1 and assume ∂µχA = δAµ in the following, which evidently

satis�es the above conditions imposed by the EFE. We then �nd the following expressions

for the energy density and pressure

−T 0
0 = ρ =

1

2

(
1

N2
+

3

a2

)
=

(π0)2

2a6
+

3

2a2
, T ii = P =

1

2

(
1

N2
− 1

a2

)
=

(π0)2

2a6
− 1

2a2
.

(3.50)

The contribution of the spatial coordinate �elds appears as an additional term ∝ a−2

that would be equivalent to negative spatial curvature (1.38) and which we refer to as

gradient energy. For certain initial conditions where (π0)2

a4
� 1, the contribution of the

spatial �elds to the energy density can become negligibly small for a certain period of

time, e�ectively recovering the standard cosmological background scenario with a single
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massless scalar �eld. This limit can be achieved for su�ciently early times, depending on

the value of π0, but at late times the gradient energy will dominate. In general, we have

an equation of state parameter w = P/ρ =
1−a4/π2

0

1+3a4/π2
0
∈ (−1

3
, 1) and similarly for the sound

speed c2
s = P ′/ρ′ =

1−a4/(3π2
0)

1+a4/π2
0
∈ (−1

3
, 1).

The resulting �rst (1.38) and second (1.39) Friedmann equations read

H2 =

(
a′

a

)2

=
κ

6

(
1 + 3

a4

π2
0

)
,

a′′

a
=
κ

6

(
1 + 9

a4

π2
0

)
, (3.51)

where, again, the terms proportional to a4

π2
0
arise due to the spatial �elds and would not

appear in the case of a single (clock) scalar �eld, see (3.38). An alternative way of writing

the second Friedmann equation is H ′ = κ a
4

π2
0
.

Perturbations

We give the results for the perturbative analysis for the gauge �xed system with four

massless scalar �elds. Perturbations within models of solid in�ation, which include three

massless scalar �elds with homogeneous gradients have been investigated in the literature

[223]. Similar equations of motion appear in the perturbation analysis in harmonic gauge

and can be found in e.g. [215].

Our choice of coordinate system naturally limits us to the harmonic gauge and com-

pletely �xes the residual gauge freedom discussed in sec. 3.2.3. In particular, there are no

perturbations in the scalar �elds in the relational coordinate system where ∂µχA = δAµ .

The perturbed energy-momentum tensor (3.13) for four massless scalar �elds in the rela-

tional coordinate system then reads 11

δT µν =
∑
A

(
δgµαδAα δ

A
ν −

1

2
δgαλδAλ δ

A
α δ

µ
ν

)
, (3.52)

and we therefore �nd

δT 0
0 =

Φ̃

N2
− 1

a2
(3ψ −∇2E) , δT 0

i =
1

aN
∂iB = δT i0 ,

δT ij =− 2

a2
∂i∂jE , δT ii = − Φ̃

N2
+

1

a2

(
−ψ + (∇2 − 2∂2

i )E
)
.

(3.53)

With these, we can furthermore �nd explicit expressions for the gauge-invariant quantities

11We do not simplify further so the reader can follow the calculation with greater ease.
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ζ and R (3.21). Note that, unlike in the single �eld case (3.46), δT 0
i 6= 0 due to the sum

over spatial �elds in (3.52). This also implies that R 6= ψ in the relational coordinate

system, but instead, using R = ψ +H a
N

(B + v) together with (3.11) and (3.53), we �nd

−ζ = ψ +
1

3

π2
0

a4
Φ̃− (3ψ −∇2E)

1 +
π2
0

a4

, R = ψ +
π0

a2

HB

1 +
π2
0

a4

, (3.54)

where we used ρ+ P =
π2
0

a6
+ 1

a2
from (3.50). As for the background, the above reduces to

the single �eld case in the limit π2
0

a4
� 1. In particular, in this limit we �nd −ζ → ψ + Φ̃

3

and R → ψ.

From the perturbed Einstein equations, where δGµ
ν is given by (3.45), and the harmonic

gauge conditions (3.39) one can derive the following equations of motion for E and Φ̃

E ′′ − a4

π2
0

∇2E + 2κ
a4

π2
0

E = 0 , 4HΦ̃′ − Φ̃′′ +
a4

π2
0

∇2Φ̃ = 0 , (3.55)

and obtain ψ and B from

−2∇2ψ + 3κψ = −3κΦ̃ + 2
π2

0

a4
HΦ̃′ + κ∇2E , −2π0

a2

(
HΦ̃ + ψ′

)
= κB . (3.56)

In the above we made use of the background equations to replace H ′ = κ a
4

π2
0
. The details

of the derivation are included in app.C.2.

3.5. Conclusion: A matter of perturbations

A theoretical description of perturbations is of pivotal importance for interpreting and

understanding cosmological observations. Perturbations give insights into the evolution

of our universe and can be used to evaluate the viability of any alterations to our under-

standing of the fundamental nature of gravity.

In this chapter we reviewed the basics of the well-established �eld of cosmological pertur-

bation theory, which builds on the premise that deviations from a homogeneous isotropic

background cosmology can be captured through linear inhomogeneous perturbations. Af-

ter discussing the main concepts, we introduced the gauge freedom in the description

of these perturbations as a natural consequence of the covariance of general relativity.

Throughout the chapter, we mostly keep the lapse general and as a consequence include
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a more general version of perturbative equations than those frequently encountered in

the literature. We introduced some gauge-invariant quantities that are widespread in the

literature as they can be related to cosmological observations, in particular, the CMB.

We also included some common gauge choices, with a particular focus on the harmonic

gauge, which we will require for perturbative studies within GFT in the second part of

the thesis.

Furthermore, we detailed the separate universe framework, in which perturbations

whose wavelength exceeds the Hubble horizon are modelled as homogeneous quantities

across distinct Hubble patches. We furthermore pointed out ambiguities in gauge choices,

speci�cally, the Newtonian gauge, within this framework. Our results of chap. 5 are based

on the separate universe approach.

Finally, we detailed two scenarios where massless scalar �elds serve as relational co-

ordinates, namely, the single �eld case where the scalar �eld is employed as a relational

clock, as well as the four �eld case, where four such �elds give an entire coordinate system.

This is possible in the case of massless scalar �elds, as compatibility with homogeneity

requires only homogeneity of the �eld gradients, not the �elds themselves. We analyse

both cases at the background as well as the perturbative level. We �nd that in the latter

case, the spatial �elds contribute to the Friedmann equations through a term akin to

negative spatial curvature. The dynamics of perturbative quantities will become impor-

tant to interpret possible agreement and discrepancies of perturbative evolution equations

recovered within GFT in chap. 7.
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Chapter 4.

Quantum gravity bounces

`Ich bin ein Teil des Teils der anfangs alles war

Ein Teil der Finsternis, die sich das Licht gebar'

- Johann Wolfgang von Goethe in `Faust' .

`Part of the Part am I, once All, in primal Night

Part of the Darkness which brought forth the Light'
(translated by Bayard Taylor)

In this chapter, we consider how background independent approaches to quantum grav-

ity, speci�cally group �eld theory (GFT) and loop quantum cosmology (LQC), can lead

to a resolution of the Big Bang singularity by replacing it with a bounce. Furthermore, we

give a brief overview of ideas that have been developed to study cosmological perturba-

tions within these approaches. Particularly in the case of GFT this avenue is considerably

less established than the modi�cations to the cosmological background. While our main

focus lies on GFT, we include a brief overview of LQC for two reasons: Firstly, to illus-

trate how similar ideas can manifest in di�erent approaches, and secondly, because we

will discuss an LQC-corrected Friedmann equation in chap. 5.

We would like to emphasise that the procedure of reconstructing bouncing cosmologies

from GFT and LQC is entirely distinct from the route taken in classical approaches. One

can realise the latter by modifying the gravitational sector e.g. through f(R) models,

where the main structures of general relativity remain intact and it is only the Einstein-

Hilbert action that changes [224, 225]. Alternatively (and perhaps equivalently [226]) one

can consider alterations to the universe's matter content that avoid the Big Bang singu-

larity and give a bounce instead [224, 227]. Again, the structures of general relativity
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remain unaltered, one can trust and apply all the well-established tools of di�erential ge-

ometry, and relate such modi�ed theories to cosmological observations in a conceptually

straightforward (albeit possibly technically di�cult) manner. Here, on the other hand,

we are searching for a more fundamental theory of quantum gravity that reduces to gen-

eral relativity in a suitable classical limit (in a similar spirit to how Newtonian gravity

can be recovered from GR.) In such approaches the dynamics no longer follow from the

EFE (1.14) (or their modi�ed versions), instead, the underlying quantum theory dictates

the evolution. Below we will demonstrate explicitly how, in the context of cosmology,

the evolution of the scale factor is given directly by the quantum theory. We can use

such a solution for the scale factor to reconstruct a Friedmann equation in hindsight and

compare such an equation to GR. Ideally, we recover the Friedmann equation of GR in

the classical limit, which in the case of cosmology is expected to be realised at late times.

Modi�cations to the early universe dynamics, which we will see below introduce a bounce,

are then to be interpreted as quantum e�ects from a more fundamental underlying theory.

This chapter is organised as follows: We �rst introduce the application of GFT to cos-

mological spacetimes in sec. 4.1, where we detail how GFT quantities can be related to

GR and lead to a bouncing universe. Additionally, we discuss approaches to cosmological

perturbations within the GFT framework that have been presented in the literature. In

sec. 4.2 we give a brief overview of the LQC framework and sketch how a bounce is recov-

ered in this approach. Finally, we make a more general observation about cosmological

perturbations around a bounce in sec. 4.3, before concluding in sec. 4.4.

4.1. Group �eld theory cosmology: bounces and

beyond

After having introduced GFT as an approach for quantum gravity in chap. 2, we now

review its application to cosmology and the related phenomenological avenues that have

been explored in the literature. It should come as no surprise that also in GFT the �rst

phenomenological application was in the realm of cosmology. When introducing GFT

we emphasised that a classical spacetime emerges in the limit of a multitude of quanta

and suggested the analogy to hydrodynamics where a �uid emerges from the collective

behaviour of water molecules. We will make this notion more precise below and show ex-

plicitly how an e�ective evolution of the universe can be reconstructed from GFT. With
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the considerations we detail below, one can obtain a su�ciently simple system, whose

phenomenological implications can be studied. The aim of this section is to introduce the

setup and results of GFT applied to cosmology. It is structured as follows: We start by ex-

plaining how a classical spacetime can be reconstructed from the GFT volume operator in

sec. 4.1.1. In sec. 4.1.2 we discuss how a suitable state is chosen and how the cosmological

sector is implemented in GFT. Neglecting interactions, we show explicitly that a bouncing

universe can be obtained in the deparametrised framework and recover an e�ective Fried-

mann equation in sec. 4.1.3. Finally, we describe progress that has been made towards

incorporating cosmological perturbations in GFT in sec. 4.1.4 and summarise some results

that can be obtained by extending the framework in sec. 4.1.5.

4.1.1. Volume of the universe from GFT

Geometric quantities that can be interpreted as describing a semiclassical spacetime can

be recovered from GFT by considering expectation values of suitable operators. More

precisely, one is interested in the volume operator and its expectation value over suit-

able semiclassical states. (An alternative relation to classical quantities is introduced

in chap. 6.) The volume operator V is given as the sum over the volumes of individual

Peter-Weyl modes

V =
∑
J

VJ =
∑
J

vJNJ , (4.1)

where NJ = A†JAJ is the number operator of each mode and vJ denotes the volume

eigenvalue of the respective mode, usually assumed to be that of an LQG spin network

vertex labeled by J . To understand the reasoning behind this, we recall that the vertices

of an LQG spin network carry quanta of volume and in a scenario where GFT quanta

can be interpreted as spin network vertices, i.e. in the case where G = SU(2), it appears

natural to assign to the quanta the same volume eigenvalues as their LQG counterparts.

The volume operator gives the spatial volume of the entire system and should therefore

be interpreted as a global quantity. The equivalent quantity in a classical theory is the

volume of a spatial hypersurface, obtained by integrating the determinant of the spatial

metric. In the case of a �at FLRW universe (3.35) this leads to the identi�cation

〈V 〉
V0

= a3 , (4.2)
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where 〈V 〉 is the expectation value of the volume operator and we have introduced a scale

for the volume V0 ∈ R+. The appearance of a regulator is not unexpected: the scale

factor in cosmology does not allow to extract any information about the total volume of

the universe, whereas the volume operator V assigns a concrete volume to a collection

of quanta. A factor similar to V0 makes a common appearance in the LQC literature

[167, 228] and is known as the `�ducial cell'. It is usually not discussed within the context

of GFT, where one is usually interested in an e�ective Friedmann equation of the form

〈V 〉′ 2/〈V 〉2, which is independent of V0. We will set V0 = 1 in the following. To obtain

the so-called `e�ective' scale factor from (4.2) the expectation value has to be taken

over semiclassical states. If we recall that the spectrum of the LQG volume operator

is bounded from below, it is intuitively clear that the e�ective scale factor a = 〈V 〉1/3

cannot vanish.1 As we show explicitly in sec. 4.1.3 one can obtain a bouncing universe

from GFT. Moreover, one �nds an e�ective Friedmann equation that matches that of

general relativity at late times.

4.1.2. Cosmological sector

The cosmological sector is a particularly advantageous testing ground for quantum gravity

theories. This is due to its high degree of symmetry, which allows one to signi�cantly

restrict the number of degrees of freedom and retain manageable expressions.

The aim of this section is to demonstrate how such simpli�cations are implemented in

the case of GFT. In this endeavour we proceed as follows: We �rst identify a suitable state

for the cosmological scenario, where we include a historical motivation, and discuss the

implementation of homogeneity and isotropy. An additional assumption that is commonly

used in GFT cosmologies is to neglect interactions in the GFT action; we explain this

further at the end of the section.

A question of state

The purpose of the following is to motivate the choice of state that is used to extract

e�ective dynamics of the universe in the GFT literature. To cut straight to the chase, we

reveal that Fock coherent states give the foundation for most results in GFT cosmology

[154, 229] and we will use them to extract e�ective expressions for quantities of interest

in later chapters. We already gave the expressions for Fock coherent states in the de-

1Save for some �ne-tuned choices of initial conditions, which we do not discuss further.
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parametrised approach (2.45) as well as the algebraic approach (2.52) in sec. 2.2.3. The

motivation for using these states is simple: in order to extract e�ective dynamics from

GFT and connect to classical spacetimes, we are required to take expectation values over

semiclassical states. Only if the states we use exhibit su�ciently classical behaviour can

the identi�cation of expectation values with classical quantities (4.2) be justi�ed. Fock

coherent states are widespread in the literature, where they serve as excellent semiclassical

states due to saturating the Heisenberg uncertainty bounds. The notion of semiclassical-

ity in GFT cosmology is adjusted to requiring instead that the relative uncertainty of

operator expectation values is small, e.g., in the case of the volume operator we require

(〈V 2〉 − 〈V 〉2)/〈V 〉2 � 1. That this is indeed the case for Fock coherent states in GFT

was shown in [185] and we will give more details on this result toward the end of sec. 4.1.3.

We could end the discussion of state choices in GFT cosmology at this point, however,

we proceed with a more historical introduction of their appearance. The key idea is that

the cosmological scenario should be captured by a `condensate' regime in GFT, similar

to the description of Bose-Einstein-Condensates (BECs).

The idea that condensates can be used to describe an emergent classical spacetime

from a more fundamental quantum theory predates the studies of GFT cosmology [230,

231]. Since the term `condensates' is inspired by the study of BECs, let us brie�y recap

the fascinating nature of BECs: When a collective of bosonic atoms is cooled below its

critical temperature (as has been realised in laboratories [232�234]), a large number of

particles occupy the ground state of the system. Quantum mechanically, the multi-particle

state of the atoms in the ground state can be described as the product of an identical

single particle wavefunction, which is referred to as the `condensate wavefunction' or

`macroscopic wavefunction' [235]. This description would be exact for an ideal Bose gas,

where interactions between particles can be neglected, but even when weak interactions

are included this description remains valid.

This idea is imported to the context of quantum gravity: In a so-called condensate

phase, all fundamental geometric quanta are in the same state and can be described by

the same single particle `condensate' wavefunction, thus greatly reducing the degrees of

freedom required to describe the quantum state. The condensate phase then naturally

gives a coarse-graining procedure 2: when using condensate states, the behaviour of geo-

2Coarse graining is a process in which many degrees of freedom can be distilled into few quantities
that capture the essential properties of a system. This is most elegantly realised in statistical me-
chanics, where e.g. an ideal gas consisting of many molecules can be completely characterised by its
temperature, pressure, volume and number of particles.
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metric quanta is captured by a single particle wave function.

Condensate states were introduced for GFT in [176, 229], where the authors embed

GFT quanta, understood as tetrahedra, in a spatial manifold. The geometry of a spatial

hypersurface can then be probed by considering the geometric information of these tetra-

hedra. In order to be compatible with homogeneity, the geometric degrees of freedom of

each tetrahedron must then be identical - and hence the wavefunction of each quantum

the same.

Let us illustrate this concept more clearly by considering a general state with n GFT

quanta, using the framework of the deparametrised approach (sec. 2.2.3), and considering

only the k = 0 mode (or equally, a GFT with a single massless scalar �eld). We start

with a general state |Ψ〉 given by a sum of Peter-Weyl modes, where each n-particle state

in the sum below is associated with an n-particle wavefunction ΨJ1, ... ,Jn . In the case

where all particles are described by the same single particle wavefunction we then have

ΨJ1, ... ,Jn →
∏n

i ΨJi and get the following simpli�cation for the state

|Ψ〉 =
∑

J1, ... ,Jn

ΨJ1, ... ,Jn

n∏
i

a†Ji |0〉 → |Ψ〉 =
n∏
i

∑
Ji

ΨJia
†
Ji
|0〉 . (4.3)

(The a†J operators above correspond to the ladder operators of sec. 2.2.3 with k = 0.) In

cosmology, we want to allow for varying particle numbers and therefore consider states

that are a superposition of multi-particle states with di�erent n. There are of course

several ways to implement this, but perhaps the easiest (and most familiar) is to choose

a coherent state

|σ〉 = Nσ exp

(∑
J

σJa
†
J

)
|0〉 , (4.4)

where the single particle wave function is now encoded in σJ . A state of the form (4.4)

also ensures that the state ful�lls the requirement of semiclassicality, which would not

necessarily be the case if the exponential was replaced with a general function. There

exist proposals in the literature to consider also dipole condensates, which incorporate

two-particle interactions [154, 176].

This concludes the historical motivation for coherent states in GFT cosmology We

would like to close with some comments:
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� We started the discussion by drawing an analogy to BECs. We would like to point

out that this analogy reaches only so far as that both systems are captured by a single

particle state. In BECs, the condensate phase is reached through a macroscopic

occupation of the system's ground state (this is the condensation process), which

is not what happens in GFT cosmology. In GFT, one typically focuses on the free

action and neglects interactions, where we saw in sec. 2.2.3 that this leads to two

types of modes, namely oscillating and squeezed modes. The squeezed modes allow

the interpretation of a GFT condensate as an expanding universe, as we will see

explicitly below, but for such modes the concept of a ground state of the system

is obsolete. In [186] the authors consider an interacting Hamiltonian that results

in a Mexican hat potential. They �nd that in this case one can indeed recover a

process akin to condensation, provided one uses a coherent state with certain initial

conditions. It could be argued that a more suitable analogy would be coherent and

squeezed states that appear in quantum optics [192, 236].

� As mentioned in the beginning of this section from a purely phenomenological per-

spective, the only requirement on the wavefunction is su�cient semiclassicality.

While the concept of wavefunction homogeneity is intuitively clear and conceptu-

ally desirable, the relation to the scale factor is obtained from (the expectation value

of) the total volume operator (4.2). The e�ective scale factor is thus only sensitive

to the evolution of the collective volume of all quanta and oblivious to the distribu-

tion of geometric information among them. In essence, the Friedmann equation one

obtains from GFT encapsulates the behaviour of the total volume, irrespective of

the local geometrical properties such as homogeneity. Existing works on cosmolog-

ical perturbations in the GFT framework (see sec. 4.1.4) are also based on coherent

states, which are then no longer interpreted as spatially homogeneous despite having

wave function homogeneity. There are indeed no clear indications based on general

grounds that a simple coherent state should correspond to a purely homogeneous ge-

ometry (or another speci�c geometry for that matter). In order to make statements

about the possible geometries of the spatial hypersurfaces one needs to consider

additional operators. E.g., in [148] the authors de�ne an anisotropy operator, and

in chap. 6 we propose new operators that, as we further discuss in chap. 7, allow to

explicitly interpret the e�ective cosmological dynamics arising from GFT as a �at

FLRW metric.
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Homogeneity and isotropy

As we already mentioned, the intuitive idea of homogeneity is re�ected in the choice

of a Fock coherent state. However, in the case where one considers a GFT with four

massless scalar �elds, three of which are interpreted as spatial rods, one can instead think

of homogeneous quantities as being contained in the k = 0 mode. A homogeneous state

should then be peaked around this value, which is the viewpoint we take in chap. 7.

Isotropy is imposed by demanding that all edges of a GFT quantum carry the same spin

label j. In the picture where one interprets GFT quanta as a tetrahedron, this corresponds

to demanding that each side has the same area, 3 see �g. 2.1. The e�ect of relaxing this

assumption was studied in [148], the results of which we summarise in sec. 4.1.3.

Neglecting interactions

In chap. 2 we introduced the GFT action as a sum of a kinetic and interaction term (2.2).

In many cosmological applications of GFT, the interaction term is neglected and one

works with the kinetic term only [144, 154, 177]. The honest reason for this simpli�cation

is that it allows us to recover analytical solutions for the operator dynamics and thereby

the e�ective evolution of the universe. In general, one expects the structure of interactions

in GFT to be non-local (in the group elements) and rather complicated. The justi�cation

for why these results are of interest from a phenomenological point of view is that we are

typically interested in the extremely early universe only, where there is few enough GFT

quanta that interactions are subdominant.

Neglecting interactions then limits the time in which GFT cosmology can be seen as

valid. At which point in cosmic time this breakdown occurs is however unclear and

depends on the parameters of the theory. In general, the expectation of how GFT is

situated in the broader context of cosmology is that it gives corrections only to the very

early (pre-in�ationary) universe. One may then assume that a general relativistic regime

is reached before interactions become dominant and that GR accurately describes the

remainder of the cosmological evolution. In that sense, the premise is that interactions

are negligible for `long enough', where the timescale is determined by the strength of the

interactions. These arguments are rather on the philosophical side and should be clari�ed

once the theory has developed further. A �rst step in that direction was taken in [185]

and we will discuss these results further in sec. 4.1.3.

3This can also be seen from recalling that in spin networks the edges carry quanta of area, and the
spectrum of the area operator is determined by the spin carried by the edges.
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4.1.3. Bouncing universe

We proceed to show explicitly how a bouncing universe is obtained from GFT and how

the resulting e�ective Friedmann equation can be compared to GR. The notion of the

suitability of semiclassical states is made more concrete, and �nally, we give some results

that have been obtained for interacting GFTs.

We use the Hamiltonian construction, but emphasise that most cosmological GFT

studies in the literature use the algebraic approach (we outlined both approaches in

sec. 2.2.3). For the results presented in this section, the two approaches give very similar

results (even though they give a slightly di�erent form of the e�ective Friedmann equation

[148, 185, 187]). The expressions we use in the following were explicitly derived for the

case of four massless scalar �elds in sec. 2.2.3. Here we work with a single massless scalar

�eld only; the expressions for this case can be obtained from those in sec. 2.2.3 by setting

k = 0 and we write e.g. AJ,0 =: AJ .

Operator dynamics

We are now in the position to carry out explicit calculations within GFT cosmology and

investigate the resulting e�ective evolution of the universe. This serves as the �rst test

as to whether GFT allows us to recover a classical spacetime in the limit of large particle

number. As we will consider a universe �lled by a single massless scalar �eld, we do not

expect to recover a realistic evolution of the universe in the sense that it could accurately

describe our universe today (which is of course �lled with a much greater variety of matter

content) or in the era of radiation domination. However, if GFT can agree with GR for

FLRW with a single massless scalar �eld, it will pass its �rst test. How and whether this

can be embedded or extended into a more realistic description of cosmological evolution

is an open question.

We brie�y summarise the ingredients required for the calculation below: We work with

a group �eld ϕ : SU(2)4 × R → R that has been coupled to a single massless scalar �eld

χ0, restrict to the free GFT action (V [ϕ] = 0 and K[ϕ] as given in (2.18)) and use the

deparametrised framework (sec. 2.2.3). The �eld χ0 plays the role of a matter clock, as

explained in sec. 2.2.1. We work with a Fock coherent state |σ〉 [185]

|σ〉 = N e
∑
J (σJa

†
J−σ

∗
JaJ ) |0〉 , aJ |σ〉 = σJ |σ〉 , with σJ = AJ + iBJ , (4.5)
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where AJ ,BJ ∈ R and N is a normalisation constant.

We are interested in the e�ective evolution of the volume operator, 〈V 〉. Recall that the
form of the Hamiltonian depends on the factors appearing in the expansion of the kinetic

term (2.21), more speci�cally, their relative sign. These terms are mode dependent and

we can therefore have di�erent dynamics for di�erent J modes. For completeness, we will

consider both options.

We start with the case where the sign of the factors appearing in the kinetic term (2.21)

is the same, sgn(K(0)) = sgn(K(2)), and therefore m2
J < 0, which leads to the Hamiltonian

of a harmonic oscillator (cf. (2.41))

HJ =− sgn(K(2)
J )
|mJ |

2

(
aJa

†
J + a†JaJ

)
. (4.6)

We will dub modes that follow such dynamics `oscillating modes'. In the Heisenberg

picture, the dynamics of the ladder operators is given by

AJ = aJe
i sgn(K(2))|mJ |χ0

, A†J = a†Je
−i sgn(K(2))|mJ |χ0

. (4.7)

The number operator of each mode NJ = A†JAJ commutes with the Hamiltonian HJ for

harmonic oscillator modes and is hence trivially a constant; taking the expectation value

for the state given in (4.5) gives

〈NJ〉 = 〈A†JAJ〉 = |σJ |2 . (4.8)

If we consider only a single J mode of this type in the volume operator (4.1), we would

�nd no evolution in the e�ective scale factor 〈V 〉 = 〈VJ〉 = const. = a3. Thus, for a single

oscillating mode we recover a static universe.

For the alternative case with sgn(K(0)) 6= sgn(K(2)), and therefore m2
J > 0, on the other

hand, we �nd a squeezing Hamiltonian (cf. (2.42))

HJ = sgn(K(2)
J )
|mJ |

2

(
a2
J + (a†J)2

)
, (4.9)

and the operator dynamics read

AJ = aJ cosh
(
|mJ |χ0

)
− i sgn(K(2))a†J sinh

(
|mJ |χ0

)
,

A†J = a†J cosh
(
|mJ |χ0

)
+ i sgn(K(2))aJ sinh

(
|mJ |χ0

)
. (4.10)
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(a) Expectation value of the volume operator. (b) E�ective Friedmann equation.

Figure 4.1.: The evolution of the universe's volume for a single squeezed mode w.r.t. the
matter clock χ0. The Big Bang singularity of GR is replaced by a bounce. In the pre-
bounce regime the universe undergoes a period of contraction, whereas post-bounce the
universe expands. This expanding branch is interpreted as the universe we live in today
(marked by planet Earth in the plot). The volume expectation value V = 〈V 〉 is taken
over a Fock coherent state (4.5).

This gives the following dynamics of the number operator

〈NJ〉 = 〈A†JAJ〉 = C1,Je
2mJχ

0

+ C2,Je
−2mJχ

0 − 1

2
, (4.11)

where C1,J := 1
2
(AJ + BJ)2 + 1

4
and C2,J := 1

2
(AJ − BJ)2 + 1

4
. If we again restrict to

the contribution of a single mode in the volume operator and make the identi�cation

〈V 〉 = 〈VJ〉 = a3, for a squeezing mode we �nd that the scale factor grows for χ0 → ∞
(late times) and χ0 → −∞, and reaches a minimum at χ0

min = 1
4m

log
(
C2,J
C1,J

)
. We can

interpret this as a bouncing universe (�g. 4.1a): For χ0 < χ0
min the universe is in a con-

tracting phase, it bounces at χ0 = χ0
min and enters an expanding phase thereafter. This

expanding branch is then interpreted as the universe we live in. Indeed, as we detail

further below, the late and early time limit gives exponential solutions that are consistent

with GR.

As we saw, the volume expectation values of distinct Peter-Weyl modes, VJ = vJNJ ,

evolve di�erently. For squeezed modes (m2
J > 0) the growth rate of 〈NJ〉 is determined

by m2
J (4.11). If the values of m2

J are non-degenerate, the J mode with the maximum m2
J

will dominate at late times, such that in these regimes the contributions of other modes

to the total volume 〈V 〉 =
∑

J〈VJ〉 (and thereby to the scale factor) can be neglected, as
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was �rst pointed out in [190]. The sum includes the modes with m2
J < 0, which quickly

become subdominant away from the bounce.

There is a caveat: since in principle the total volume operator contains an in�nite sum

over J modes, one needs to ensure this sum is �nite (at least for χ0 < ∞). The hope

might be to achieve this with initial conditions in (4.5), however a squeezed Hamiltonian

as we �nd for m2
J > 0 will excite also an initially empty mode with σJ = 0. This issue

can be avoided by limiting the number of squeezed modes to a �nite amount and setting

initial conditions for oscillating modes such that they give a �nite contribution to the

total volume. To illustrate how this could be realised in practice, we recall the explicit

expressions we gave for K(0) and K(2) in (2.19), namely K(0)
J = µ −

∑
i ji(ji + 1) and

K(2)
J = τ . As we already discussed at the end of sec. 2.2.3, in the case where µ is positive,

K(0) > 0 for small spins ji and negative for large spins.4 To have a limited number of

squeezed modes we then need to demand that τ < 0, which �xes K(2) < 0.

We have then established the following picture for a bouncing universe from GFT: In

the free theory coupled to a massless scalar �eld we �nd two types of contributions to

the total volume operator. While some Peter-Weyl modes have an unchanging number of

quanta and hence give a constant contribution to a, the number in other modes changes

with time and leads to a bouncing universe. The number of dynamical modes can be

restricted to a �nite amount for speci�c choices of K(0) and K(2). We saw that a single

squeezed mode dominates at late times, which is the reason why most of the cosmological

studies in GFT focus on a single Peter-Weyl mode J = J0 only. We adopt this assumption

in all further discussions and in the results considered in chap. 7. We however would like

to point out that the validity of GFT cosmology is judged based on two aspects: the

occurrence of a bounce and the late time behaviour of the scale factor, neither of which

would be in�uenced by the other modes. Their contribution would certainly change the

evolution of the scale factor near the bounce, but in order to relate such e�ects to physical

consequences for the universe today, one needs to incorporate the study of perturbations.

E�ective Friedmann equation

To establish whether the late time behaviour of the e�ective scale factor recovered from

GFT can be brought into agreement with GR at late times, we proceed to consider an ef-

4The exact cuto� is determined by the value of µ, and if we wanted to be exact, we would have to
demand that µ > 3 to have at least one J mode with K(0) > 0, as the minimum spin value is j = 1

2 .
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fective Friedmann equation. From here on we will make use of the single mode assumption

and set J = J0. As we argued above and as �rst pointed out in [190], a single Peter-Weyl

mode will dominate the condensate dynamics at late times, which is the regime in which

one aims to connect with GR. In this case, the volume operator is directly proportional

to the number operator V =
∑

J VJ = VJ0 = v0NJ0 , where v0 is the volume eigenvalue of

the J0 mode. As we consider the contribution of a single mode only, we omit the J labels

in what follows.

We �rst recall the background dynamics of an FLRW universe �lled with a massless

scalar �eld as described in sec. 3.4.1. As the GFT setup includes a single massless scalar

�eld χ0 as only matter content of the theory, the energy density is given by ρ = (χ0 ′)2

2N2 =
π2
0

2a6

(where N = a3

π0
in this case denotes the lapse function, not to be confused with the number

operator). Furthermore, by using the massless scalar �eld as a relational clock we have

�xed χ0 ′ = 1, such that the Friedmann equation in this frame reads

H2 =
κ

3
ρN2 =

κ

6
, (4.12)

i.e. we �nd a constant Hubble rate. Using 〈V 〉 = a3, the Hubble rate H = a′

a
can be

obtained from expectation values of the volume operator from

H =
1

a

da

dχ0
χ0 ′ =

1

3

d〈V 〉
dχ0

1

〈V 〉
χ0 ′ =

1

3

d〈V 〉
dχ0

1

〈V 〉
⇒ H2 =

1

9

(
d〈V 〉
dχ0

1

〈V 〉

)2

. (4.13)

From the expectation value of the number operator of squeezed modes (4.11) we �nd(
d〈V 〉
dχ0

)2

〈V 〉−2 = 4m2

(
1 +

v0

〈V 〉
+
Y
〈V 〉2

)
= 4m2

(
1 +

v0

a3
+
Y
a6

)
, (4.14)

where Y = −v2
0 (A4 + B4 +A2 + B2 − 2A2B2) < 0. The typical evolution of the above is

depicted in �g. 4.1b. At late times, the r.h.s. of (4.14) goes to a constant, which agrees

with the Friedmann equation of GR (4.12) for m2 = m2
J0

= 3
8
κ . We have thus found that

we can match the late time behaviour of GR, where the value of m2
J0

(which we recall is

�xed by the kinetic terms in the expansion of the GFT action) determines the value of

the gravitational constant. The bounce occurs when 〈V 〉 = 1
2
(−v0 +

√
v2

0 + 4|Y|). One

of the phenomenologically desirable properties of quantum gravity theories is singularity

resolution (this is one of the physical puzzles that sent us down the path to �nd a quantum
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theory of gravity after all!) and we indeed �nd that the Ricci scalar (1.40) at the bounce

is �nite:

Rbounce =
1

N2

a′′

a
=

π2
0m

2

3 C1, J C2, J

, (4.15)

where we used a′′

a
|bounce = 4

3
m2 and abounce = 21/3(C1, J C2, J)1/6.

As we already discussed, including multiple modes in this discussion would not a�ect the

late time behaviour. However, additional modes would contribute to the early evolution

and could speci�cally change the value and behaviour of the Ricci scalar around the

bounce.

Assessing semiclassicality

As described in sec. 4.1.2, Fock coherent states are widespread in the GFT literature

and were originally motivated from the concept of a `condensate phase' in GFT cosmol-

ogy. However, ultimately, the essential criterion for suitable states is semiclassicality.

This notion was studied in detail in [185], where the authors introduced a measure for

semiclassicality and considered also more general classes of coherent states. We brie�y

summarise their �ndings in the following.

The authors make use of the fact that GFT cosmology as detailed above exhibits an

su(1,1) structure5 and, in addition to the well-known Fock coherent states, consider also

two types of su(1,1) coherent states: Perelomov-Gilmore and Barut�Girardello coherent

states. (For details on the de�nition of more general coherent states we refer the reader

to [185, 237].) The measure for the `quantumness' r of a state |Ψ〉 is calculated from the

relative uncertainty of operators of interest, and e.g. for the volume operator V , reads

r(V, |Ψ〉) =
〈Ψ|V 2 |Ψ〉 − 〈Ψ|V |Ψ〉2

〈Ψ|V |Ψ〉2
. (4.16)

Evidently, for a semi-classical state this quantity should be small. The asymptotic value

of r at late times can be made arbitrarily small for Fock and Barut�Girardello coherent

states, depending on initial conditions. The latter are however cumbersome for calcula-

tions due to the appearance of Bessel functions. Perelomov-Gilmore coherent states on

the other hand do not `classicalise' at late times and therefore do not qualify as semiclas-

5The algebra is formed by the following three operator combinations: 1
4 (a†a + aa†) , 12 (a†)2 , and 1

2a
2.

For more details we refer the reader to [185, app.A].
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sical states. Interestingly, the authors also �nd that for both, Fock and Barut�Girardello

coherent states, the asymptotic values of the relative uncertainty are generally not sym-

metric in the far pre- and post-bounce regimes. Therefore, a su�ciently classical phase

in the expanding branch of the universe does not imply a classical pre-bounce phase.

In [187] this analysis is substantially extended to a broader range of states. Speci�cally,

the authors consider generalised Gaussian states that include displacement, squeezing,

and thermal contributions.

A �rst look at interactions

As discussed in sec. 4.1.2, we will disregard interactions between GFT quanta in this

thesis. We would however like to mention two studies of interactions in the deparametrised

framework [185, 186]. Both of these consider a Hamiltonian of the form (and restrict to

the single mode case)

H = −m
2

(
a2 + (a†)2

)
+
λ

4

(
a+ a†

)4
, (4.17)

where [186] considers λ > 0 and [185] focuses on λ < 0. As it is no longer possible to derive

analytical solutions for an interacting Hamiltonian of this form, any dynamics need to be

solved numerically. The case with λ > 0 leads to a Mexican hat potential and a bounded

Hamiltonian, as already mentioned in the discussion of condensate phases in GFT in

sec. 4.1.2. This results in bound states that can be interpreted as static cosmologies. In

the case with λ < 0, one recovers a dynamically growing particle number, permitting

the interpretation as an expanding universe. The Friedmann equation at late times is

no longer constant as in (4.14), but (〈V 〉′/〈V 〉)2 increases with time. Furthermore, the

mean �eld approximation as used in the algebraic approach to GFT, in which equations

of motion are solved by replacing operators with their expectation values (resulting in the

classical equations of motion), was shown to quickly break down once interactions become

relevant.

In general, one can conclude that interactions can have a relevant impact on cosmolog-

ical dynamics and one needs to be cautious with approximations that are viable for the

free theory once interactions are no longer negligible.
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4.1.4. Approaches to cosmological perturbations

Having introduced the ideas and machinery behind homogeneous GFT cosmology, we

now turn to the considerations that have been made regarding perturbations. Recall

that a single Peter-Weyl mode dominates the evolution of the GFT volume operator at

late times, which is the region one matches to GR. While the presence of multiple modes

would considerably change the dynamics at the bounce, evidence of such alterations could

only be carried forward by perturbations. Furthermore, relating perturbations to condi-

tions imposed by cosmological measurements can give stringent restrictions on permissible

background dynamics. Including cosmological perturbations in a GFT description then

provides an additional test of the theory's viability and speci�cs of its construction (in a

cosmological context) as well as opening up the pathway to establishing whether quantum

gravity e�ects could manifest in observations.

As we pointed out already, in the majority of the literature the volume operator is the

only GFT operator used to extract information about the quantum geometry arising from

GFT. Thus, perturbations arising in GFT are analysed as perturbations of the volume

operator, which can be related to the spatial volume element of GR (4.2). In GR, the

perturbation of the spatial volume element of a �at FLRW spacetime (without gauge

�xing) reads

a3(t, ~x) ≈ a3(t)(1−∇2E(t, ~x)− 3ψ(t, ~x)) . (4.18)

Any connection of GFT perturbations to cosmological perturbation theory is then facili-

tated by this quantity, and in particular, for small wavelength perturbations one cannot

separate the combination of ψ and E, as would be necessary to study e.g. gauge-invariant

quantities (sec. 3.2). This will be substantially di�erent in the approach we introduce in

chap. 6 and we show explicitly in chap. 7 how our new approach can be used to extract

e�ective expressions of the scalar perturbation variables separately.

Furthermore, all research avenues detailed below make use of the algebraic approach,

neglect interactions in the GFT action, and use a second order kinetic term (see sec. 2.2).

They build on the notion of a coherent state as given in (2.52) with a mean �eld char-

acterised by σJ and the expectation value of the GFT volume operator of a single Peter-

Weyl mode J over such a state reads 〈VJ〉 = |σJ |2. We provide an overview of the results

achieved in GFT perturbations so far and preview how our construction in later chapters

will di�er.
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Ideas for including perturbations in GFT were already given with the introduction of

condensate states in [176]. A concrete extension of the condensate state was proposed

in [238] and is rather di�erent to the research directions that were explored thereafter.

In [238] the authors consider a single particle excitation on top of the condensate state,

which is to be interpreted as a perturbation. As there are no correlations between the

quanta, it is not possible to localise the perturbation over the condensate, resulting in a

homogeneous perturbation. Still, the excitation changes the quantum system by increas-

ing the available degrees of freedom. The interpretation of such a perturbation within

`conventional' cosmological perturbation theory is unclear.

In [149] the authors couple four massless scalar �elds to the group �eld for the �rst

time and establish the idea of a full relational coordinate system in GFT. These matter

�elds satisfy a shift and rotation symmetry separately as well as a rotational symmetry

w.r.t each other. In this process, the kinetic term is amended to include also second order

derivatives in the spatial �elds (see (2.33) and more generally the description in sec. 2.2.3

for the Hamiltonian setting). With a relational coordinate system, it is possible to include

inhomogeneities explicitly and this construction serves as the basis for further studies of

the perturbative regime.

Two di�erent suggestions to study volume perturbations δV = δVJ0 , where we again

restrict our attention to a single mode condensate, have been put forward. In the �rst, the

object of interest is the two-point function of the volume perturbations 〈δVkδVk′〉, which
arise from local quantum �uctuations of the volume operator [80, 149, 239] 6

〈δVkδVk′〉 = 〈VkVk′〉 − 〈Vk〉〈Vk′〉 . (4.19)

Here, k denotes the wavenumbers obtained from a Fourier decomposition of the spatial

�elds. The two-point function 〈δVkδVk′〉 is non-vanishing even for a purely homogeneous

mean �eld σJ0 = σJ0(χ
0), as is used to describe the homogeneous background cosmology

(2.52). In such a scenario, perturbations are generated by quantum �uctuations in space

itself and are not introduced as a perturbed quantity on top of a homogeneous background.

Overall, the open question is how these quantities can be related to gauge-invariant cosmo-

logical observables. A step in this direction is taken in [239], where the authors compute

the two-point function of the comoving curvature perturbation on equal density hyper-

6[239] uses a slightly di�erent convention.
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surfaces ζ (3.21) from �uctuations in GFT operators over a homogeneous background.7

The authors recover a primordial power spectrum with spectral index ns = 4, where the

amplitude is determined by a single free parameter. While evidently disagreeing with

observations (ns ≈ 1, [24]), this result matches the value obtained in a classical analogue

system. Speci�cally, this result is reproduced in classical cosmology with a single scalar

�eld (the contribution of the spatial �elds is neglected) and an LQC modi�ed background

leading to a bounce. Alternatively, one can consider perturbations directly in the mean

�eld σJ

σJ(χ0, ~χ) ≈ σJ(χ0) + δσJ(χ0, ~χ) , (4.20)

which translates into a perturbation of the volume operator8 V (χ0, ~χ) ≈ V (χ0)+δV (χ0, ~χ),

δV =
∑

J δVJ . The authors of [222] construct a separate universe framework (see sec. 3.3)

for GFT. The dynamics of the homogeneous volume perturbation over a single patch of

the separate universe framework can be compared to the equivalent GR dynamics in the

long wavelength limit. The authors �nd agreement between the two in the limit of large

background volume.

This idea was extended further in [151], where explicitly inhomogeneous quantities

localised by the relational �elds are considered, allowing to investigate also sub-horizon

dynamics. We note that, while the authors employ a reference frame consisting of four

massless scalar �elds, they additionally include a �fth (massless scalar) �eld, which is

assumed to dominate the energy density of the universe. Using the strategy given in (4.20),

the authors derive dynamics for the volume perturbation δV (χ0, ~χ), where the signature

of the equation of motion for the volume perturbation depends on initial conditions. The

authors �nd agreement of the dynamics of δV (χ0, ~χ) with GR at late times only in the

separate universe (k → 0) regime.

The discrepancy with could be mended for long wavelength perturbations in [152],

where the results of [151] are extended to include two types of GFT �elds: the quanta of

one of the �elds are to be interpreted as `space-like' tetrahedra, the other as `time-like'

tetrahedra. This idea has its origin in considerations regarding causality in GFT. The

main input for the phenomenology however is that the dynamics of the space-like �eld

7Recall that ζ is a gauge-invariant quantity that can be related to the CMB power spectrum in standard
cosmology; sec. 3.2.

8To make this precise, we need to mention that usually the mean �eld is decomposed as σJ = ρJe
iθJ ,

ρJ , θJ ∈ R, and the real and imaginary part are perturbed separately, ρJ → ρJ + δρJ , θJ → θJ + δθJ .
One then �nds δVJ ∝ ρJδρJ .
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depends only on the clock �eld, whereas the time-like �eld depends solely on the rod �elds.

The results also rely on a more involved state, namely, a coherent state with additional

two-body excitations, which are interpreted as perturbations. Studying the dynamics of

e�ective perturbations through the expectation value of the volume operator over such

a state then gives enough freedom to reconstruct the corresponding dynamics of GR for

long-wavelength perturbations. The authors de�ne an `almost' gauge-invariant quantity,

which approximates R as de�ned in (3.21) in the long wavelength limit (where the k2E

contribution in (4.18) becomes negligible). Again, as one is limited to studying perturba-

tions of the form (4.18), one cannot necessarily retrieve the dynamics of gauge-invariant

perturbations in all regimes of interest from a cosmological perspective.

As detailed in sec. 3.4.2, in general the rod �elds give a non-negligible contribution to

the background dynamics, as well as to the equations of motion for perturbations. All

approaches listed above either neglect the contribution of the spatial �elds to the energy

density based on physical considerations [222, 239], or include an additional �eld [151, 152]

to e�ectively recover GR with a single massless scalar �eld on the classical side.

4.1.5. Further results

Having used the simplest possible GFT construction to obtain a �rst phenomenologically

feasible result of a bouncing universe from GFT, one can now proceed to test the impli-

cations of certain aspects in the GFT construction on the evolution of the e�ective scale

factor. Indeed, there is rich literature on GFT phenomenology that relaxes some of the

assumptions made above. We summarise some of these avenues below, where we point

out that we make no claim of completeness.

� The authors of [240] approach GFT interactions from a phenomenological perspec-

tive and ask whether including certain interaction terms can lead to a cyclic universe

(i.e. a succession of bounces and re-collapses). They �nd that this can be achieved

by including two interaction terms, namely a ϕ5 and a ϕ6 term. The results are

obtained in the mean �eld regime of the algebraic approach, which, as we discussed

above becomes increasingly inaccurate in the presence of interactions.

� In [148], the assumption that all the spin labels j associated with a single GFT

quantum are the same is relaxed and anisotropic tetrahedra are included in the

analysis. The authors consider several squeezed modes as contributing to the volume
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of the universe with anisotropic spin labels and �nd that there is no alteration to

the late time Friedmann equation, as also here, a single mode dominates at late

times. Furthermore, they de�ne an anisotropy parameter and �nd that the universe

isotropises with its expansions.

4.2. Bouncing universe in loop quantum cosmology

The application of LQG techniques to cosmology has led to the development of the �eld

of loop quantum cosmology (LQC) [167, 241, 242]. The essential idea is to reduce the

full phase space of gravity in the Ashtekar-Barbero formulation of GR (sec. 1.1.2) to

the cosmological sector �rst, before carrying out the LQG quantisation programme as

outlined in sec. 1.4.2. This drastically simpli�es the system and the physical Hilbert space

can be constructed explicitly, which is an open question in full LQG [127]. One can then

study the evolution of physical states that have semiclassical properties, and in particular

extract the universe's dynamics from the expectation value of the LQG volume operator,

where the LQC description replaces the initial singularity with a bounce. The LQC

programme started in the early 2000s [243�246] and pre-dates results in GFT cosmology

by a considerable margin. LQC has since become a research �eld with rich phenomenology,

where methods have been developed to study perturbations and compute e.g. CMB power

spectra [247, 248]. However, the relation of LQC with the full theory of LQG remains

rather elusive [242].

In the following we will outline the basic ideas of LQC, referring back to the LQG setup

introduced in sec. 1.4.2. We then brie�y explain how a so-called `e�ective' description of

LQC has been established: E�ective models work in the classical framework and are based

on a modi�ed Hamiltonian that captures quantum corrections. It is this feature that al-

lows one to study LQC e�ects with the classical machinery, thus making LQC particularly

attractive from a phenomenological point of view.

The starting point of LQC is the description of a cosmological spacetime within the

Ashtekar-Barbero formalism, more speci�cally one focuses on a (�at) FLRW spacetime

with a massless scalar �eld χ0. The Hamiltonian constraint is then given by the sum of

the gravitational and matter part

H = Hgeom +Hmatter , (4.21)
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and the di�eomorphism constraint vanishes trivially. The geometric phase space, generally

characterised by the �uxes Ea
i and the Ashtekar connection Aia, reduces to a single pair

of canonical variables, c and p, that are related to the scale factor and its time derivative

as

Ea
i = a2δai =: pV

− 2
3

0 δai , Aia =
β

N
a′δia =: cV

− 1
3

0 δia, {c,p} =
κβ

3
, (4.22)

where N is the lapse, V0 is the �ducial cell in LQC, and β the Barbero-Immirzi parameter

(see (1.22)). The �ducial cell is an arbitrary regularisation parameter and additional care

needs to be taken to ensure that physical quantities are independent of V0.

With (4.22), the Hamiltonian takes on a rather simple form

Hgeom = − 3N

κβ2

√
|p|c2 , Hmatter = N |p|−

3
2
π2

0

2
, (4.23)

where π0 denotes the conjugate momentum of the scalar �eld χ0. The Hamiltonian in

(4.23) corresponds exactly to the description with GR and gives the same dynamics for the

universe as would be obtained from the EFE, albeit written in a di�erent set of variables.

In particular, solving this system leads to the well known Big Bang singularity. The

input from LQG enters by constructing operators corresponding to c and p from smearing,

speci�cally, one constructs holonomies by integrating c along curves. This process contains

the crucial ingredients of LQC: Firstly, one restricts oneself to three holonomies obtained

from curves in the x, y and z direction. This is motivated by homogeneity: any holonomy

of a di�erent curve on the homogeneous spatial manifold should be indistinguishable.

Still, this drastically reduces the spin networks contained in the kinematical Hilbert space.

Secondly, integration along a curve introduces a regularisation parameter, usually denoted

as µ, which should be understood as the length of the curve. Di�erent choices of µ can

lead to di�erent phenomenology and the so-called µ̄-scheme, where the regulator is phase

space dependent, has proven to be an attractive choice [249, 250]. This is because it

sets an initial condition independent regime in which quantum gravity corrections occur,

speci�cally, the upper curvature bound is independent of the �ducial cell V0. Explicitly,

the holonomies (1.51) of LQC are then constructed as follows (where the τi denote su(2)

generators and are related to the Pauli matrices σi as τi = − i
2
σi):

hx, µ = exp(−cµτ1), hy, µ = exp(−cµτ2), hz, µ = exp(−cµτ3) . (4.24)

To obtain the quantum Hamiltonian, one �rst needs to �nd a form of the classical
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Hamiltonian in terms of holonomies and �uxes, such that these can be promoted to

operators. This procedure induces the departure from GR and is not free from ambiguities,

as the symmetry reduction to the cosmological setting can be carried out at di�erent stages

of the construction. Indeed, di�erent quantisation procedures have been established and

depending on where this reduction is carried out, modi�cations to the general relativistic

setting di�er [242, 251, 252].

Upon quantisation, the scalar �eld momentum becomes a derivative operator Hmatter ∝
∂2
χ0 , such that physical states in LQC evolve w.r.t. the scalar �eld. Finally, one can

obtain an e�ective evolution of the volume operator 〈V 〉 by choosing a semiclassical state

in the physical Hilbert space and computing its expectation value. Usually, one recovers a

bouncing universe and the most commonly used form of the e�ective Friedmann equation

reads [167]

H2
LQC =

κ

6
N2ρ

(
1− ρ

ρc

)
, (4.25)

where ρ =
π2
0

a6
and ρc is a fundamental parameter, independent of initial conditions.

It was noticed in [253] that the expectation value 〈V 〉 follows a trajectory obtained from

a modi�ed Hamiltonian in the classical phase space, which has entered the literature as the

so-called `e�ective' Hamiltonian [167, 254, 255]. This e�ective Hamiltonian is obtained by

`polymerisation' of the classical Hamiltonian, where one makes the following replacements

c→ sin(µc)

µ
, Hgeom → Hgeom, effective = − 3N

κβ2

√
p

sin2(µc)

µ2
. (4.26)

The procedure we have outlined above can be summarised as follows: First reduce to

the phase space of the physical system in question and carry out a quantisation using

LQG techniques at the level of the reduced system. This requires a choice of holonomies,

regulators, and construction procedure for the Hamiltonian. To illustrate the signi�cance

of the latter, we note that one can e.g. recover an asymmetric bounce [252]. Due to

the stark reduction of degrees of freedom by �xing the holonomies, which is based on

(well-motivated) choices, the implications of LQC for LQG are unclear. For criticisms of

LQC we refer the reader to [256].

There exist several proposals to incorporate cosmological perturbations in LQC and

we refer the reader to [247] for a detailed analysis of these approaches and the current

state of connecting to observations. In some cases one can obtain explicit equations of
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motion for cosmological perturbations that match GR in the classical regime. This can be

achieved e.g. by quantising the background and perturbations separately [257], such that

the perturbations evolve on an e�ectively classical background with LQC corrections;

or by working in the e�ective framework entirely and ensuring that the algebra of the

modi�ed constraints is anomaly free [258]. Importantly, LQC alone cannot produce a

scale invariant spectrum for the CMB and must therefore be combined with an additional

early universe scenario, such as in�ation, in order to match observations. When coupled

with in�ation, the form of the CMB power spectrum can be recovered accurately, with

corrections appearing only for large scale multipoles, which are not strongly constrained;

see e.g. [248] for implications for the CMB from di�erent LQC quantisation schemes and

for di�erent treatments of perturbations.

4.3. Perturbations at a bounce

We have so far discussed two avenues to obtaining singularity resolution in the early uni-

verse from quantum gravity bounces. Here we comment more generally on the evolution

of the Hubble horizon w.r.t. the scale factor and thereby the behaviour of perturbations

around the bounce. We make use of these considerations in chap. 5, where we explore the

behaviour of long-wavelength perturbations for modi�ed gravitational dynamics around

a bounce.

We recall that in GR, the dynamical evolution of perturbations, in particular, of gauge-

invariant perturbations, is rather di�erent depending on the size of their wavelength rel-

ative to the Hubble horizon. The notion of the Hubble horizon was detailed in sec. 1.2.3,

and the behaviour of gauge-invariant perturbations was discussed in sec. 3.2. In the con-

tracting branch of a bouncing universe, all perturbations are inside the Hubble horizon

in the far pre-bounce regime. The Hubble horizon however decreases more rapidly than

the scale factor, such that modes exit the horizon as one approaches the bounce. At the

bounce itself, the Hubble horizon is in�nite and all perturbations are inside the Hubble

horizon, albeit for a short time only. Shortly after the bounce, all modes will again be

inside the horizon and exit as the universe expands further. This scenario is illustrated

in �g. 4.2.

The biggest `quantum' e�ect of quantum gravity bounces is that they resolve the clas-

sical singularity. Hence, around the bounce regime, quantum gravity e�ects are the
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strongest and would have the most impact on the evolution of cosmological perturba-

tions. As we just described, most perturbations will be in the super-horizon regime in the

vicinity of the bounce. The super-horizon regime considerably simpli�es the dynamics

of perturbations in GR and can be studied with e.g. the separate universe framework

(sec. 3.3).

Enter 

Sub -

Super -

Exit 

Scale factor Time

Bounce

Hubble horizon

q
u

a
n

tu
m

 c
or

re
c

ti
on

s

Figure 4.2.: Schematic diagram of the relative evolution of the Hubble horizon and scale
factor in a bouncing universe. The dotted line indicates the evolution of the scale factor,
which is representative of the evolution of the physical wavelength of perturbations λ = a

k .
The blue shaded region marks the super-horizon regime and we marked the exit and entry
points of the perturbations as the universe contracts and re-expands.

4.4. Conclusion: It all (re)started with a bounce

The aim of this chapter was to combine previously introduced concepts and show how

GFT and LQG techniques can be used to extract the evolution of our universe (and its

perturbations).

We saw that the application of GFT to cosmology allows us to recover a modi�ed

Friedmann equation that induces a bounce in the place of the Big Bang singularity,

which is a desirable feature of any quantum gravity theory. The e�ective evolution of the

scale factor is extracted from the expectation value of the volume operator and depends

on the form of the GFT action as well as the choice of state. The majority of the
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literature focuses on a GFT action that consists of a second order kinetic term and

neglects interactions. Regarding the choice of state, the most important criterion is that

it is su�ciently semiclassical in the limit of large quanta, which in this case is equivalent

to late times. Concretely, the most widespread state choice is that of a Fock coherent

state, which has semiclassical properties, but was originally motivated by considerations

regarding the implementation of homogeneity in GFT. Isotropy, on the other hand, is

encoded at the level of the GFT quanta, where one restricts to modes that carry equal

spin labels on their edges. We showed explicitly how the dynamics of the expectation value

of the volume operator are obtained in the Hamiltonian framework of GFT and used the

result to deduce an e�ective Friedmann equation. As the expectation value of the volume

operator is bounded from below, the Big Bang singularity is absent. Instead, we �nd

that the GFT e�ective dynamics result in a bouncing universe, where the expanding

branch is pre-dated by a contracting one. From the evolution of the volume operator it

is apparent that a single Peter-Weyl mode J0 will dominate the evolution at late times,

which motivates the often employed approximation to consider the dynamics of a single

GFT mode only. At late times, the e�ective Friedmann equation reduces to that of general

relativity if one �xes the constant mJ0 appearing in the kinetic term of the dominating

mode accordingly. We stress that the GFT dynamics are obtained w.r.t a matter clock

given by a massless scalar �eld, which �xes the choice of lapse. Hence, the Friedmann

equation takes on a non-standard form.

Having established the considerations that lead to a bouncing universe in GFT, we

elaborate how perturbations can be included in the framework. The main idea is that

three additional massless scalar �elds are included in addition to the clock �eld. These

�elds can be used to construct a relational coordinate system, such that perturbations

can then be localised in space w.r.t. the three additional spatial �elds. The e�ective

dynamics of perturbation variables are again obtained in the form of expectation values

over semiclassical states. These can be compared to the equations of motion within GR

in the relational coordinate system, where a possible agreement between the two depends

on the choice of GFT state, as well as the details of the GFT construction. Past stud-

ies are limited to considering the perturbed GR volume element, which is a combination

of classical scalar metric perturbations. This restricts the ability to obtain e�ective ex-

pressions of gauge-invariant quantities. Our results on cosmological perturbations within

GFT contained in chap. 7 di�er from these constructions in various ways: �rstly, we build

on new operators introduced in chap. 6 that allow to retain all scalar metric perturba-

135



Chapter 4. Quantum gravity bounces

tions separately; secondly, we work in a Hamiltonian framework; and we consider a �nite

width Gaussian coherent state that encodes both, the background dynamics as well as

the perturbations.

So far there is no matter content in GFT that corresponds to the constituents of a realis-

tic universe (see sec. 1.2). This can be recti�ed by limiting the validity of GFT cosmology

to the vicinity of the universe's origin, such that it may resolve the Big Bang singularity

and assuming that another mechanism (such an in�ation) takes over to connect to the

established description of the universe. Alternatively, one can hope that in the future, all

types of matter can be included in GFT and lead to a realistic cosmology.

We also touched upon another quantum bounce scenario, namely that of LQC. LQC is

obtained by applying techniques from LQG to the symmetry reduced sector of cosmology.

This allows one to carry out the loop quantisation programme in full, the result is however

dependent on certain choices made in the construction, which includes the restriction

to certain holonomies as well as the procedure to construct the quantum Hamiltonian.

Similar to GFT cosmology, the e�ective evolution of the scale factor is obtained from

the expectation value of the volume operator over suitable semiclassical states and one

can reconstruct an e�ective Friedmann equation. Due to the Hamiltonian structure of

LQC and the fact that, unlike GFT, it is a direct quantisation of classical GR, it can

be more easily related to cosmological perturbations. In connection with an in�ationary

phase, studies of LQC perturbations can be brought in agreement with the CMB power

spectrum.

A downside of LQC is that its connection to the full theory of LQG is rather unclear.

In the quest to establishing a full theory of quantum gravity, its potential to guide further

developments could therefore be seen as obstructed. The GFT formalism on the other

hand, has the advantage that the connections of the cosmological sector to the full theory

are apparent. Momentarily, the cosmological sector of GFT relies on a number of simpli-

�cations and ingredients (no interactions, single mode, simple choice of state), however, if

a connection to more physical scenarios, such as cosmological perturbations, can be made,

it might be possible to gather further insights into the fundamental theory.

One can debate how exactly a full quantum theory of gravity within the GFT frame-

work should behave. For instance, one could demand that such a theory should be de�ned

by a speci�c form of the GFT action and the physical scenario is determined solely by

the state choice. Alternatively, one could argue that di�erent GFT actions capture dif-
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ferent spacetimes. In the end, these are philosophical dreams, as momentarily, we are

just beginning to attain an understanding of how GFT can be used to describe realistic

cosmological spacetimes, which are arguable the simplest. If and how applications to

other physical scenarios are possible and how they can be related only the future will

show (some starting points for the study of black holes exist, as mentioned in sec. 2.3).

Finally, we ended this chapter on a more general remark about the behaviour of per-

turbations in a bouncing universe. Close to the bounce, most perturbations will be in the

super-horizon regime, in which spatial gradients can be neglected in their description. In

the next chapter we will make use of this fact in an attempt to study the behaviour of

perturbations around a quantum gravity bounce in a model independent manner.
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Chapter 5.

Quantum gravity e�ects on

super-horizon perturbations

`Nothing is static, nothing is �nal, everything is held provisionally.'

- Jocelyn Bell Burnell.

`Nichts ist statisch, nichts ist endgültig, alles ist provisorisch.'

This chapter contains the result of [1], which was published in Universe in December

2022.

We address a question that is simple in its nature: is it possible to make statements

about dynamics of gauge-invariant cosmological perturbations from a modi�ed Friedmann

equation alone? In a context where one wishes to understand quantum gravitational im-

plications for cosmological perturbations, this question arises naturally from the situation

described in chap. 4: While a speci�c approach to quantum gravity may permit to de-

rive corrections to the Friedmann equation, including inhomogeneous quantities can be a

rather non-trivial task which additionally is highly model-dependent.

Therefore, in what follows, we use the Friedmann equation as our starting point and

remain agnostic about its origin. As we begin with a homogeneous equation only, we can-

not reconstruct any information about gradients of cosmological perturbations; instead

we restrict our analysis to super-horizon perturbations and work in the separate universe

picture as described in sec. 3.3. As explained in sec. 3.3, in the separate universe picture

the universe is modelled as an ensemble of independent homogeneous patches and the dif-

ference between the value of relevant quantities in a local patch and the ensemble average
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is interpreted as a perturbation. Speci�cally, this results in homogeneous perturbations

across each patch. This approximation is only applicable to perturbations on super-

horizon scales, since these can be seen as approximately homogeneous inside the Hubble

radius. The procedure is then simple: Perturbing the modi�ed Friedmann equation at

linear order leads to a �rst order equation of motion for long-wavelength perturbations.

We additionally assume that the continuity equation remains una�ected by the changes

that lead to alterations in the Friedmann equation, which is the case for LQC and GFT

cosmology (see chap. 4).

If one considers modi�cations to the Friedmann equation that replace the Big Bang

singularity with a bounce in a similar fashion to the quantum gravity bounces we described

in chap. 4 (namely GFT and LQC), the evolution of the Hubble radius in relation to the

scale factor can be described as follows (see also �g. 4.2):

� In the far past of the contracting branch, the horizon is arbitrarily large; it shrinks

with the contraction of the universe.

� As the Hubble radius decreases faster than the scale factor, there exists a (wavenumber-

dependent) point in the contracting phase where perturbations exit the Hubble

horizon.

� At the bounce itself, the Hubble horizon is in�nite, so all modes are inside the

horizon, albeit for a very short time only.

� After the bounce, the majority of modes will again be outside the horizon and

re-enter only after the universe has expanded further.

As quantum gravity e�ects are expected to a�ect regimes of very high curvature, their

impact is strongest, and likely limited to, the region close to the bounce, where perturba-

tions are super-horizon (again, save for the bounce itself). It is then consistent (at least

as a �rst approximation) to model the dynamics of perturbations in the separate universe

picture.

We focus on two gauge-invariant variables that are widespread in the cosmological liter-

ature, namely the comoving curvature perturbation R and the curvature perturbation on

equal density hypersurfaces ζ as given in (3.21). All results for these variables rely on the

assumption that the same notion of gauge-invariance remains unaltered, despite the mod-

i�cations to the gravitational dynamics. The conservation of the curvature perturbation

142



on equal density hypersurfaces ζ on super-horizon scales for adiabatic perturbations de-

pends only on the continuity equation and therefore remains una�ected; for the comoving

curvature perturbation R however, we �nd that its conservation can only be guaranteed

for a certain class of modi�ed Friedmann equations and modi�cations are possible in gen-

eral.

This chapter is organised as follows: We �rst introduce a general form for a modi�ed

Friedmann equation that we will use throughout and derive the resulting perturbation

equations in sec. 5.1. We then turn our attention to the dynamics of ζ and R in sec. 5.2.

After re-deriving the conservation law for ζ, we show that the conservation law for R
continues to hold on super-horizon scales if the modi�cation to the Friedmann equation

is a function of the energy density only. We then consider an example of the more general

case, where a modi�cation as it can appear in GFT introduces dynamics in R around the

bounce and ζ is conserved only for adiabatic perturbations. Before concluding in sec. 5.4,

we comment on the relation of our approach to second order equations as are common in

the literature in sec. 5.3.

We denote the Hubble rate in any lapse by H and most of our results will be for general

choices of lapse. We focus on conformal time N = a in sec. 5.3 and denote the Hubble rate

in conformal time as H. Even though this is the same notation we use for the Hamiltonian

constraint of general relativity (1.18), no confusion should arise, as the constraint plays

no role in this chapter. For the most part, our results are for general types of matter; in

places where we speci�cally consider the case of a single massless scalar �eld, we denote

this �eld as χ.

We would like to point out that even though the overarching theme of this thesis is

to explore quantum gravitational implications for cosmological perturbations from the

perspective of GFT, the results presented in this chapter are not based on any details of

said theory, but are model agnostic. The speci�cs of the GFT bounce only enter in the

form of an example for a modi�ed Friedmann equation in sec. 5.2.2.
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5.1. Perturbation equations from a modi�ed

Friedmann equation

As a �rst step in our endeavour we introduce a general notation for modi�cations to the

Friedmann equation that could encode non-GR e�ects from any origin. We proceed to

derive �rst order perturbation equations from the modi�ed Friedmann equation, which

capture the dynamics of super-horizon perturbations.

Inspired by the form of modi�ed Friedmann equations in LQC (4.25) and GFT (4.14),

we introduce the following generic form of the modi�ed Friedmann equation:

H2

N2
=
κ

3
ρF , (5.1)

where any possible modi�cations are contained in the model-dependent function F . We

recover the Friedmann equation of GR in the case of F = 1, hence, for consistency with

GR in the low curvature limit we require F → 1 at late times (i.e. far away from the

bounce). For example, the concrete forms of F for the LQC (4.25) and GFT (4.14)

Friedmann equations introduced in chap. 4, which both assume the matter content to be

given by a single massless scalar �eld ρ =
π2
χ

(2a6)
, read

FLQC =1− ρ

ρc

, (5.2)

FGFT =1 +
v0

a3
+
Y
a6
. (5.3)

Importantly, ρc is a fundamental constant, and so is v0, i.e. these quantities remain

unperturbed, as they take on the same value in each patch. Y on the other hand is a

constant of motion, that di�ers across patches in the separate universe picture. This is

the reason FGFT falls in the second category of modi�ed Friedmann equations, which

we explore in sec. 5.2.2, whereas FLQC belongs to the family of modi�cations detailed in

sec. 5.2.1.

From the e�ective Friedmann equation one can derive an equation of motion for the

Hubble rate

H ′

H
=
N ′

N
+

1

2

(
ρ′

ρ
+
F ′

F

)
. (5.4)
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To obtain perturbation equations, we perturb the modi�ed Friedmann equation (5.1) at

linear order, which results in

Hψ′ =−H2

(
Φ̃ +

δρ

2ρ
+
δF
2F

)
=− κ

3
N2

(
ρF Φ̃ +

1

2
(Fδρ+ ρδF)

)
.

(5.5)

As mentioned in the introduction of this chapter, we assume that the continuity equation

(1.32) holds, leading to the following perturbed continuity equation (3.14) in each patch

of the separate universe picture

ρ′ + 3H(ρ+ P ) = 0 ⇒ δρ′ + 3H(δρ+ δP )− 3ψ′(ρ+ P ) = 0 . (5.6)

Taking the time derivative of (5.5), together with the above leads to the (perturbed)

Raychaudhuri equation

−ψ′′ =
(
−N

′

N
− F

′

2F
+ 3H

ρ+ P

ρ

)
ψ′ +H Φ̃′ +

H

2

(
δF ′

F
− F

′

F2
δF
)

+
κ

2
N2F(ρ+ P )

(
δρ

ρ
− δρ+ δP

ρ+ P

)
=− N ′

N
ψ′ +H Φ̃′ − κ

2
N2F(P + ρ)

(
(δP + δρ)

P + ρ
+
δF
F

+ 2Φ̃

)
+
H

2

F ′

F

(
−δF

2F
+
δρ

2ρ
+ Φ̃ +

δF ′

F ′

)
.

(5.7)

The di�erent forms of the perturbation equation are obtained by making use of the Fried-

mann equation (5.1) and (5.5). The perturbation equations reduce to those of general

relativity as reported in sec. 3.4.1 in the long-wavelength limit for F = 1 (and hence

F ′ = 0 , δF = 0 , δF ′ = 0).

Recall that if the universe's matter content is assumed to be a single scalar �eld χ the

energy density and pressure are given by (1.36)

ρ =
χ′2

2N2
+ U(χ) , P =

χ′2

2N2
− U(χ) (5.8)
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and the perturbed energy density and pressure read

δρ =
χ′2

N2

(
δχ′

χ′
− Φ̃

)
+

dU(χ)

dχ
δχ , δP =

χ′2

N2

(
δχ′

χ′
− Φ̃

)
− dU(χ)

dχ
δχ . (5.9)

As explained in sec. 3.2 it is possible to simplify the perturbative analysis by a suitable

choice of gauge, where we have not speci�ed a gauge choice so far. In the subsequent

analysis we will work in the comoving gauge (see sec. 3.2.3), for the following reasons:

� It is a particularly convenient choice when studying the comoving curvature pertur-

bation R (3.21), as in comoving gauge we have R = ψ (in the case where matter is

given by a single scalar �eld).

� When working with relational settings such as GFT, where the scalar �eld takes the

role of a physical clock [144, 177], the comoving gauge corresponds to the statement

that at an instant of time all patches of the separate universe picture have the same

clock value.

� We avoid subtleties related to the Newtonian gauge. As explained in sec. 3.3, the

metric perturbations E and B do not appear in the strict separate universe limit

and the Newtonian gauge would not lead to any simpli�cations of the equations of

motion.

In the comoving gauge, the lapse perturbation is directly related to the perturbation of

the energy density and pressure (5.9) for scalar matter, i.e.

δρ = −χ
′2

N2
Φ̃ = −(ρ+ P )Φ̃ = δP . (5.10)

We now proceed to analyse the dynamics of gauge-invariant perturbations, where we

consider separately the class of modi�ed Friedmann equations where F is a function of

the energy density only.

5.2. Dynamics of gauge-invariant perturbations

With the perturbation equations derived in the previous section we can proceed to study

the dynamics of gauge-invariant cosmological perturbations, where we focus on ζ and R,
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which are introduced in sec. 3.2. For convenience, we repeat their explicit forms:

−ζ = ψ +
H

ρ′
δρ , R = ψ +

H

χ′
δχ . (5.11)

In comoving gauge one �nds, using the de�nitions of R and ζ and the continuity equation

(5.6),

−ζ = R+H
δρ

ρ′
= R+

Φ̃

3
. (5.12)

In GR, R = −ζ on super-horizon scales. However, this equality depends on the dif-

feomorphism constraint and may therefore not hold for modi�ed gravitational dynamics.

Still, in scenarios where matter is given by a single scalar �eld and the scalar �eld po-

tential dominates over its kinetic term, as is the case in e.g. slow roll in�ation, one can

approximate

ρ =
χ′2

2N2
+ U(χ) ≈ U(χ) ⇒ ρ′ ≈ dU(χ)

dχ
χ′ , δρ ≈ dU(χ)

dχ
δχ (5.13)

and the equality of −ζ and R follows directly, independent of gravitational equations.

Before we proceed to analyse the dynamics of R as dictated by the modi�cation to

the Friedmann equation, we recall the well-known result (see e.g. [86, sec. 6.2.4]) that

the conservation law for ζ on super-horizon scales depends only on the validity of the

perturbed continuity equation (5.6) as long as perturbations are adiabatic, i.e. they

satisfy δP = P ′

ρ′
δρ. Explicitly, the equation of motion for ζ can be rewritten as

−ζ ′ = ψ′ +

(
H

ρ′
δρ

)′
= −

(
1

3(ρ+ P )

)′
δρ+

H(δρ+ δP )

ρ+ P
=

ρ′ + P ′

3(ρ+ P )2
δρ+

H(δρ+ δP )

ρ+ P
,

(5.14)

making use of (5.6). Using the adiabaticity condition δP = P ′

ρ′
δρ together with (5.6)

one then �nds that ζ ′ = 0 on super-horizon scales. We stress that details of the (mod-

i�ed) gravitational dynamics were not needed to derive this result. It is however valid

in the long-wavelength limit only, since the perturbed continuity equation (5.6) generally

contains gradient terms (see e.g. (3.14) for the perturbed continuity equation in general

relativity and sec. 5.3.1 for further discussion on this matter).
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5.2.1. Conservation laws for a special class of Friedmann

equations

In this section we focus on a speci�c class of modi�ed Friedmann equations, namely those

where the modi�cation depends on the perturbed energy density only. We show that the

conservation law for R continues to hold on super-horizon scales in this case.

In the case where F is a function of the energy density ρ only, F = F(ρ), its pertur-

bation takes the form δF = dF
dρ
δρ, which simpli�es perturbation equations considerably.

For convenience, we introduce the following quantities that we will make ample use of in

the calculations carried out below

Fρ :=
dF
dρ

, Fρρ :=
d2F
dρ2

, A := F + Fρ ρ . (5.15)

From the above, we obtain the following relations (using (5.6))

δF =Fρδρ , F ′ = −3H(ρ+ P )Fρ , A′ = −3H(ρ+ P )(2Fρ + ρFρρ) ,
δF ′

F ′
=
Fρρδρ
Fρ

+
δρ+ δP

ρ+ P
− ψ′

H
.

(5.16)

With this, the second Friedmann equation (5.4) and the perturbed equations of motion

(5.5) and (5.7) simplify for the F(ρ) class of modi�ed Friedmann equations:

H ′ − N ′

N
H = −κ

2
N2(ρ+ P )A , (5.17)

Hψ′ = −H2Φ̃− κ

6
N2A δρ , (5.18)

−ψ′′ = −κ
2
N2
(
A δP + 2(ρ+ P )A Φ̃ + (F + ρ(ρ+ P )Fρρ + (2P + 3ρ)Fρ)δρ

)
− N ′

N
ψ′ +HΦ̃′

= −κχ′A δχ′ −
(
Fρ +

ρ

2
Fρρ
)
κχ′2 δρ− N ′

N
ψ′ +HΦ̃′ .

(5.19)

All expressions are general save for the last line, which holds only when the matter content

is given by a single massless scalar �eld with ρ + P = (χ′)2

N2 . The above equations reduce

to those derived in [221] for LQC (A = 1− 2 ρ
ρc

and Fρ = − 1
ρc
) in conformal time N = a

and a Newtonian(-like) gauge ψ = Φ̃.
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In general relativity, we have access to the di�eomorphism constraint given by the

time-space components of the perturbed Einstein equations, δG0
i = κδT 0

i :

∂i

(
HΦ̃ + ψ′ − κ

2
χ′ δχ

)
=: ∂iD = 0 . (5.20)

In the strict separate universe limit, the above is trivially satis�ed, as all spatial gradients

need to vanish. If we however assume that GR holds in regimes where modi�cations are

small (i.e. in the far pre- and post-bounce regime in the case where F introduces a bounce,

as is the case for GFT and LQC), one can assume that D = 0 is satis�ed. (This assumes

that D is not just a function of time, i.e. that it is an inhomogeneous quantity, which

is consistent with the idea that perturbations contain inhomogeneous terms, whereas

homogeneous contributions can be absorbed into the background in standard cosmological

perturbation theory; see sec. 3.1.) To establish conservation laws for ζ and R below, we

will make use of the following: If the constraint holds in the general relativistic regime at

t = t0, i.e. D(t0) = 0 and the di�erential equation

AD′ +WAD −A′D = 0 (5.21)

holds throughout the evolution, i.e. also in the regions a�ected by modi�cations to the

gravitational dynamics, D = 0 will remain true in the regime where high curvature

corrections become relevant. In the case of bouncing cosmologies, this means that if

general relativity holds in the contracting branch, D = 0 throughout the bounce.

One caveat is that D itself might receive F -dependent modi�cations, as was found to

be the case for LQC in [221]. As the di�eomorphism analogue cannot be derived from

the modi�ed Friedmann equation in the separate universe picture, the altered form of D

needs to be assumed from an educated guess (and justi�ed in hindsight). Inspired by the

�ndings of [221], we propose that the alterations are contained in the term proportional

to δχ, i.e.

D = ψ′ + Φ̃H −Aκ
2
χ′ δχ . (5.22)

We proceed to show that (5.21) is indeed satis�ed forW = 3H− N ′

N
also for the regions

in which beyond GR e�ects become relevant. Here we conduct the calculation in comoving
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gauge1, such that we have

D = ψ′ + Φ̃H . (5.23)

From (5.18) and the expression for the perturbed energy density in comoving gauge (5.10)

it follows that

ψ′ = −HΦ̃ +
κ

6
Aχ

′2

H
Φ̃ , (5.24)

such that D takes on the following form in our gauge choice

D =
κ

6

χ′2

H
AΦ̃ . (5.25)

From the equation of motion for ψ′′ (5.19) and the relation between δρ and Φ̃ given

in (5.10), we �nd that the derivative of D in comoving gauge (where δχ′ = 0) can be

expressed as

D′ =
N ′

N
ψ′ +H ′ Φ̃ + κχ′2

(
Fρ +

ρ

2
Fρρ
)
δρ =

N ′

N
ψ′ +H ′ Φ̃− κχ

′4

N2

(
Fρ +

ρ

2
Fρρ
)

Φ̃ .

(5.26)

Inserting this as well as (5.24) and the equation for H ′ (5.17), into (5.21), and then

eliminating A′ using (5.16) leads to

AD′ +WAD −A′D =AΦ̃

(
H ′ − N ′

N
H +

κχ′2

6H

(
AN

′

N
−A′ +WA

)
− κχ′4

N2

(
Fρ +

ρ

2
Fρρ
))

(5.27)

=κχ′2A Φ̃

(
1

6H

(
AN

′

N
−A′ +WA− 3HA

)
− χ′2

N2

(
Fρ +

ρ

2
Fρρ
))

(5.28)

=
κχ′2A2 Φ̃

6H

(
N ′

N
+W − 3H

)
. (5.29)

Hence, for the choice W = 3H − N ′

N
, as long as D = 0 initially, ψ′ + Φ̃H = 0 holds

throughout the evolution.

1An explicit calculation for the longitudinal gauge is carried out in app.D for conformal time.
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We can now use the result that an analogue to the di�eomorphism constraint holds for

F = F(ρ) to infer conservation laws for ζ and R. As we already saw at the beginning of

this section, ζ is conserved on super-horizon scales for adiabatic perturbations, irrespec-

tive of the modi�ed gravitational dynamics (as long as the continuity equation remains

unaltered). In GR, a single scalar �eld cannot induce non-adiabaticities, irrespective of

its potential, which extends to the case in which modi�cations to the Friedmann equation

are of the form F = F(ρ) discussed in this section: From (5.9) it follows that in comoving

gauge we have δρ = −(ρ + P )Φ̃ = δP . As we have just shown, D = κ
6
χ′2

H
AΦ̃ = 0, and

hence δP
P ′

= δρ
ρ′
is trivially satis�ed. Therefore, ζ will always be conserved on super-horizon

scales for this class of modi�cations when the matter content is given by a single scalar

�eld. From the continuity equation (1.32), and again δρ = −(ρ + P )Φ̃ it furthermore

follows that

−ζ = R+H
δρ

ρ′
= R+

Φ̃

3
= R , (5.30)

where in the last step we used that D = 0 and hence Φ̃ = 0. The equality of ζ and R on

super-horizon scales therefore remains valid if modi�cations to the Friedmann equation

depend only on the energy density, and thereby the conservation law for R continues to

hold as well.

While we carried out the calculations in a speci�c gauge and intermediate steps have

gauge dependent expressions, we stress that the �nal result concerns gauge independent

variables and therefore holds in any gauge.

5.2.2. General case: a GFT example

Having established a class of modi�ed Friedmann equations for which the conservation

laws of general relativity for the two gauge-invariant perturbations ζ and R continue to

hold on super-horizon scales, we now turn to the more general case, F 6= F(ρ). For such

general modi�cations to the Friedmann equations it might not be possible to derive an

analogue to the di�eomorphism constraint D and the statements made for the F = F(ρ)

case need no longer be true. Speci�cally, there is the possibility that a single scalar �eld

with non-vanishing potential U(χ) introduces non-adiabaticities, which would invalidate

the conservation law for ζ (for a massless �eld as appears in LQC or GFT this is of course

not the case). Furthermore, −ζ and R need no longer be equal on super-horizon scales,

such that for adiabatic perturbations the conservation law for R no longer follows from
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ζ ′ = 0, but its dynamics are instead governed through (5.5), which in comoving gauge

reads

−R
′

H
= Φ̃ +

δρ

2ρ
+
δF
2F

= (1− w)
Φ̃

2
+
δF
2F

. (5.31)

We stress that the reverse is not applicable: for any speci�c form of F 6= F(ρ), the gen-

eral relativistic conservation laws may still hold; we can however not make any general

statements and these needs to be con�rmed on a case-by-case basis.

While the framework presented in this chapter is general, for the rest of this section we

consider a concrete example where a modi�ed Friedmann equation introduces dynamics

in R around the bounce. In line with the overarching theme of this thesis, we focus on

GFT cosmology and examine the dynamics of the comoving curvature perturbation R in

a GFT toy model as established in [185], which leads to an e�ective Friedmann equation

as speci�ed by (5.3).

The standard cosmological GFT framework assumes that the only, or at least the

dominant, matter contribution around the bounce is a single massless scalar �eld, that

also serves as a relational matter clock.2 For a single massless scalar �eld U(χ) = 0 we

can solve the Klein�Gordon equation (1.37) to obtain the following expressions for the

energy density and its perturbation

χ′ =
πχN

a3
⇒ ρ =

π2
χ

2a6
, δρ = 2ρ

(
δπχ
πχ

+ 3ψ

)
, ρ′ = −3H

π2
χ

a6
= −6Hρ ,

(5.32)

where the scalar �eld momentum πχ is a constant of motion. Furthermore, for a massless

scalar �eld, the relation between the lapse perturbation and the energy density perturba-

tion in comoving gauge as given in (5.10) reduces to δρ
ρ

= −2Φ̃ . One also obtains

ζ =
1

3

δπχ
πχ

, (5.33)

so that the conservation of ζ follows directly from the fact that πχ and its perturbation

2This di�ers from the construction we consider in the subsequent chapters, where the matter content is
instead given by four massless scalar �elds. This impacts also the classical analysis of the background
and perturbations, which were the subject of sec. 3.4.1 and sec. 3.4.2.
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5.2. Dynamics of gauge-invariant perturbations

δπχ are constants of motion.

We �rst introduce the details of the GFT construction and how super-horizon pertur-

bations can be obtained directly from the e�ective evolution of the GFT volume operator

studied separately in each patch of the separate universe picture. The GFT framework

is described in chap. 2, and details of GFT cosmology are given in sec. 4.1; we refer the

reader to these sections for details on the GFT results used in this section. Here we will

limit ourselves to recalling the form of the expectation value of the volume operator that

leads to the modi�ed Friedmann equation we use here. Subsequently, we turn to the

perturbative dynamics that follow from the modi�ed Friedmann equation as derived in

sec. 5.1 and compare the two outcomes.

Long-wavelength perturbations in GFT

Before applying the perturbation equations we derived to the GFT modi�ed Friedmann

equation, we consider the dynamics of perturbations as they arise directly from the quan-

tum theory in the separate universe picture. As is common in GFT cosmology, we restrict

our considerations to the free theory and neglect any interactions between GFT quanta.

In this regime, it is a widespread (and well motivated, see sec. 4.1) simpli�cation to study

a single �eld mode J = J0 only. To obtain the dynamics of long-wavelength perturba-

tions directly from a GFT cosmological model we follow the procedure demonstrated in

sec. 4.1.3: we use the expectation value of the GFT volume operator to deduce the e�ec-

tive dynamics of the scale factor (4.2) and hence obtain an e�ective Friedmann equation

(4.13). The evolution of the volume operator is determined by the details of the GFT.

Speci�cally, for a cosmological model as we consider here, the squeezing Hamiltonian (4.9)

determines the dynamics of creation and annihilation operators (4.10), which in turn de-

termine the dynamics of the number operator (4.11), which in the single mode case is

directly proportional to the volume operator 〈V 〉 = v0〈N〉. In order to relate the volume

expectation value to the scale factor one needs to work with a su�ciently semiclassical

state and we work again with a Fock coherent state as given in (4.5). This leads to the

following expression for the volume expectation value

V (χ) := 〈V 〉 = v0Ae
2mχ + v0Be

−2mχ − v0

2
, (5.34)

where A := C1,J0 and B := C2,J0 in comparison to (4.11).

Using the separate universe setup (see sec. 3.3.1) one can then de�ne a perturbation of
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Chapter 5. Quantum gravity e�ects on super-horizon perturbations

the scale factor as the di�erence between the local scale factor ap in a patch p and the

ensemble average abg, where dynamics of the perturbations are �xed from the operator

dynamics and initial conditions. We can calculate the perturbation of the scale factor

δap = −abgψp from the volume operator in each patch Vp = (ap)
3 = (abg)

3(1 − 3ψp) and

the ensemble average Vbg

ψp =
1

3

(
1− Vp

Vbg

)
, where Vbg :=

1

n

∑
p

Vp , (5.35)

and n is the total number of patches. From the analytical solution of V (χ) (5.34) the

evolution of ψp is readily calculated, as each patch has the same relational time parameter

in comoving gauge (as δχ = 0), making the comparison of the values of Vp(χ) straight-

forward (unlike in [222], where more general gauge choices were studied). Finally, we

quote the asymptotic values of ψp resulting for V (χ) given in (5.34), which give the initial

conditions for the comparison to the separate universe solution below. They read, in the

far pre- and post-bounce regime, respectively,

ψpre, exact =
1

3

(
1− Bp

Bbg

)
= −1

3

δBp

Bbg

, ψpost, exact =
1

3

(
1− Ap

Abg

)
= −1

3

δAp
Abg

. (5.36)

To illustrate possible evolutions of ψp we construct an ensemble of n = 16 patches with

perturbed initial conditions Ap and Bp that are determined through random �uctuations

in the initial conditions Re(σ) and Im(σ) of the state (4.5) as generated from a white

noise process. The resulting volume expectation value and resulting perturbation ψp in

each patch are depicted in �g. 5.1. The most sizeable relative deviation in the patches

occurs around the bounce of the ensemble average (given by the minimum of Vbg), where

the minimum volume of each patch is reached at di�erent χ values. Consequently, ψp
�uctuates around the bounce, but asymptotically approaches a constant value in the

far pre- and post-bounce regimes. Recalling that in comoving gauge we furthermore have

ψ = R, we conclude that for the GFT Friedmann equation (5.34), the comoving curvature

perturbation R is not conserved around the bounce, and the classical conservation law

holds in the early- and late-time regimes only.

Separate universe approach

Having established that the GFT modi�ed Friedmann equation introduces dynamics in

the comoving curvature perturbation R when considering dynamics as they arise directly
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(a) Evolution of the volume in
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(c) Evolution of ψp (5.35) as
determined by Vp and Vbg for
all patches.

Figure 5.1.: The evolution of the expectation value of the volume operator for
Fock coherent states V (χ) and the resulting dynamics for ψ in an example en-
semble with n = 16 patches and di�erent values of Ap , Bp in each patch, where
v0 = 1 . The values of initial conditions in di�erent patches (generated from a
white noise process) are given in the table below. Note that the behaviour pre-
sented above is generic and the speci�c values are only reported for completeness.
Ap 200.03 200.103 200.391 199.99 200.119 200.876 199.984 200.244 199.948 200.298 200.046 200.93 200.432 200.361 199.946 199.915
Bp 199.981 199.934 200.053 200.395 200.035 200.146 200.405 200.317 200.554 200.29 200.192 200.382 200.242 200.453 200.733 200.079

from the quantum theory, we now turn to the evolution ofR as it results from the modi�ed

perturbation equations established in sec. 5.1.

For this, we �rst solve the background dynamics arising from the modi�ed GFT Fried-

mann equation (5.1), which then allows us to �nd a solution for ψ′ from (5.5). We continue

to work in comoving gauge, such that the dynamics of R are given by (5.31). We will

see that the generalised perturbation equations accurately capture the evolution of R
through the bounce at linear order in the perturbations.

The background dynamics are determined by the modi�ed Friedmann equation,

which for the GFT cosmological scenario we consider is given by

FGFT = 1 +
v0

a3
+
Y
a6
, (5.37)

where the constant of motion Y is determined by the coe�cients in (5.34) as (see also

sec. 4.1.3)

Y =
v2

0

4
− 4 v2

0 AB < 0 . (5.38)

155



Chapter 5. Quantum gravity e�ects on super-horizon perturbations

For ease of comparison with the evolution of the e�ective volume as given in (5.34), we

solve the Friedmann equation for V = a3. For this, we rewrite H = da
dχ

1
a
χ′ = 1

3
dV
dχ

1
V
χ′ and

make use of the fact that the matter content is given by a single massless scalar �eld with

ρ =
π2
χ

2V 2 and we are working in relational time χ′ = πχN

V
. This leads to the following form

of the modi�ed Friedmann equation

H2 =
1

9

(
dV

dχ

1

V

)2(
πχN

V

)2

=
κ

3
N2ρF ⇒

(
dV

dχ

1

V

)2

=
3

2
κF , (5.39)

which has the solution

V (χ) =
C
4
e
√

3κ/2χ +

(
−Y +

v2
0

4

)
C−1e−

√
3κ/2χ − v0

2
. (5.40)

Here, C is an integration constant �xed by the initial condition for V and the value of Y
is determined by FGFT. If we compare to (5.34) we �nd that

A =
C
4
, B =

(
−Y +

v2
0

4

)
C−1 . (5.41)

The solution to the modi�ed Friedmann equation V (χ) as given in (5.40) then agrees with

the exact expression for Vbg obtained from (5.34) and (5.35).

Before proceeding with the analysis of the dynamics of perturbations, we comment on

averaging e�ects that arise as part of the separate universe treatment. The �rst comment

concerns the de�nition of F in the Friedmann equation, F = Fbg: In the separate universe

picture each patch follows the (modi�ed) Friedmann equation
(

dVp
dχ

1
Vp

)2

= 3
2
κFp, and the

background satis�es
(
dVbg
dχ

1
Vbg

)2

= 3
2
κFbg . For a de�nition of Fbg in analogy with that of

the background volume Vbg we have

Fbg =
1

Np

∑
p

Fp = 1 + v0

∑
p

1

Vbg + δVp
+
∑
p

Ybg + δYp
(Vbg + δVp)2

≈ 1 +
v0

Vbg
+
Ybg
V 2
bg

. (5.42)

The approximation in the last step ensures that Fbg as given in (5.37) is de�ned solely from
background quantities. It holds for small perturbations ( δVp

Vbg
� 1 , δYp

Ybg
� 1 ), i.e. in the

regime where linear perturbation theory is applicable. Secondly, there is an ambiguity in

the de�nition of Y = Ybg: One could de�ne it as the ensemble average Ybg = 1
Np

∑
p Yp or

as Ybg =
v20
4
− 4Abg Bbg, with Abg := 1

Npatches

∑
pAp and Bbg := 1

Npatches

∑
pBp (which again
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agree at the linear perturbation level). These are inequivalent due to the non-linearity of

Y . The background volume Vbg as given in (5.35) is obtained by replacing A,B with their

background values A,B → Abg, Bbg in (5.34), and hence we choose the latter

Y :=
v2

0

4
− 4AbgBbg . (5.43)

We note that the given alternative would not alter any of the qualitative statements

made, but would introduce non-linear averaging e�ects in Vbg around the bounce. The

perturbations are de�ned equivalently to all other perturbed quantities, δY := Yp−Ybg =

−4 v2
0 (δApBbg + δBpAbg + δAp δBp) . This failure of averaged quantities to capture the

true evolution is known as `the averaging problem' in standard cosmology and is discussed

in sec. 3.1.

We now turn to the perturbative dynamics and considerR = ψ. For a GFT modi�ed

Friedmann equation speci�ed by (5.37), the perturbed modi�cation reads

δF = 3
v0

a3
ψ + 6

Y
a6
ψ +

δY
a6

. (5.44)

Recalling that the matter content is given by a massless scalar �eld with w = 1 the

dynamics of R are determined by R′ = −H δF
2F , see (5.31). To avoid division by zero at

the bounce where F = 0, we use the following form of the equation of motion, and rewrite

in relational time similar to (5.39)

2Hψ′ =− κ

6
χ′2δF ⇒ dV

dχ

1

V

dψ

dχ
= −κ

4
δF . (5.45)

Note that this is independent of the explicit form of the lapse N , like the relational

Friedmann equation (5.39). The above gives the following solution:

ψ =
Cψ
(
C2e

√
6κχ − v2

0 + 4Y
)

+ 4
3
δY(

C e
√

3κ/2χ − v0

)2

− 4Y
, (5.46)

where we used the background solution (5.40) in (5.45) and Cψ is an initial condition.

The asymptotic values of the solution to the perturbation equations ψ = ψpert as given

in (5.46) are used to �x initial conditions, where we �nd in the far pre- and post-bounce
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regime, respectively,

ψpre, pert =
4δY

3 (v2
0 − 4Y)

− Cψ , ψpost, pert = Cψ . (5.47)

Setting the initial condition in the post-bounce regime from the exact values (5.36) ob-

tained for a GFT ensemble as studied in sec. 5.2.2, we have Cψ = ψpost, exact and thus,

inserting this into (5.47), we obtain

ψpre, pert =
1

3

Ap
Abg

(
1− Bp

Bbg

)
= −1

3

δBp

Bbg

(
1 +

δAp
Abg

)
= ψpre, exact +O(ε2) . (5.48)

Thus, if perturbations are of order ε, the discrepancy to the exact solution is second order

in perturbations and is negligible in linear perturbation theory; explicitly the mismatch

is determined by the magnitude of δAp δBp.

In Fig. 5.2 we explicitly show the the di�erence between the exact evolution of R as

obtained from (5.35) and the solution we obtain with the separate universe equations

(5.46) for a patch of the exemplary ensemble studied above (see �g. 5.1). They are in

excellent agreement as long as perturbations are small (which is a necessary prerequisite

for the equations derived in sec. 5.1). The validity of perturbation theory is based on the

relative smallness of perturbations, e.g. δF
F � 1, however, this condition breaks down at

the bounce where F = 0 but δF 6= 0 (see �g. 5.2c). Nonetheless, for small initial values

of ψ, the solution to the generalised perturbation equations (5.31) accurately traces the

exact solution and thereby the non-trivial dynamics of R around the bounce. For large

initial perturbations, this will no longer be the case, as is apparent from the comparison

of asymptotic values given in (5.48).

We conclude with a �nal comment on a possible confusion that may arise when con-

sidering perturbations at early and late times, away from the bounce, where beyond-GR

e�ects become negligible. We have established that the conservation of ζ on large scales

is unchanged for adiabatic perturbations independent of the type of modi�cation to the

Friedmann equation. In the general relativistic regimes (far from the bounce) we expect

−ζ = R, however, as we have shown the value of R can change through the bounce, lead-

ing to −ζ 6= R in either the pre- or post-bounce regime. This apparent discrepancy arises

from the non-conservation of D for general Friedmann equations where F 6= F(ρ): while

D is constant in each semi-classical regime, its value can change in the bounce phase,

introducing a constant shift between the two quantities. (Recall that D ∝ Φ̃ (5.24) and
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Figure 5.2.: ψ for a single patch of an ensemble with n = 16 (see also �g. 5.1) as given
in (5.46) (ψpert) compared to the exact solution (5.35) (ψexact). The di�erence between
the two solutions increases in the bounce region and asymptotically approaches a constant
value, but remains small throughout. Initial conditions are set in the post-bounce regime
at χ = 4. The asymptotic values of ψ are given by (5.36) and (5.48). While the qualitative
behaviour of the plots and the conclusions we draw in the main text are independent of
the speci�c choice of initial conditions, we quote the numerical values of parameters in
the solution of ψpert for reference: Abg = 200.226 , Bbg = 200.262 , Y = −160390 , C =
800.903 , δY = 35.0685 , Cψ = 2.75576 × 10−4 , v0 = 1 . The bounce time is χbounce =
1.47351× 10−5 and we set κ = 8π.

−ζ = R+ Φ̃
3
in comoving gauge (5.30)). The far pre- and post-bounce phases should there-

fore be seen as independent general relativistic regimes. Note that in the GFT example

considered here, there exists a special case in which the pre- and post-bounce asymptotic

value of R remains unchanged, despite ψ being dynamical around the bounce. This hap-

pens when the ratio Ap
Bp

is the same across all patches, such that all patches `bounce' at

the same value of χ .

5.3. Second order dynamics and the relation to

sub-horizon dynamics

The results of the previous two sections can be summarised as follows: We derived an

analogue to the di�eomorphism constraint for a speci�c class of modi�ed Friedmann

equations, where the modi�cation depends on the energy density only. We showed that

the relation R = −ζ remains valid on super-horizon scales in this case, and that a single
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scalar �eld cannot induce non-adiabatic perturbations, leading to the conservation of ζ.

We then turned to the more general case and considered a solution to the �rst order

equation in ψ for a speci�c GFT model, which introduces dynamics in R around the

bounce region and therefore leads to a violation of the conservation law. (For adiabatic

perturbations, ζ remains conserved independent of the modi�cation of the Friedmann

equation, as long as the continuity equation holds.)

In the GFT example of sec. 5.2.2, the �rst order equation (5.5) in ψ could be solved

directly and su�ced to determine the dynamics of R. This was possible due to a speci�c

choice of matter content that allowed to eliminate all perturbation variables but one. In

more general cases, one can still combine perturbation equations to obtain second order

equations in a single perturbation variable that can be solved directly. In this section

we discuss two possible approaches to second order equations that can be found in the

literature for the separate universe picture, namely, an equation for ψ (see e.g. [220]) as

well as for the Mukhanov�Sasaki variable v as in [259]. In order to relate our results to

some of the literature, we summarise the above-mentioned two second order approaches

of main interest in standard cosmology and comment how they would apply to the more

general types of cosmological dynamics we study in this chapter. Considering the second

order equations for ψ in sec. 5.3.1 and for the Mukhanov�Sasaki variable v in sec. 5.3.2,

we �nd that already in general relativity these two approaches lead to di�erent dynamics

for ζ in the strict separate universe limit. If one obtains its evolution from a second order

equation in ψ , ζ remains constant, in agreement with our considerations in sec. 5.2. On

the other hand, if one solves the long-wavelength limit of the Mukhanov�Sasaki equation,

the solution for ζ has a constant and a dynamical part, where the latter is particularly

important in the contracting branch. We comment how this can be understood as reveal-

ing the limits of the separate universe picture, which is fully agnostic about k−dependent
dynamics. In sec. 5.3.1, we consider general k−dependent modi�cations to the continuity

equation and �rst order equation of motion for ψ and derive the resulting k−dependence
in the dynamical equations for ζ.

To simplify calculations as well as facilitate comparison with the literature, we work in

conformal time (N = a and we denote the Hubble parameter as a′

a
= H) and longitudinal

gauge (E = B = 0 and ψ = Φ̃ , where we discussed the origin of the last relation in

sec. 3.3.2 ). We work with adiabatic perturbations, but do not assume a constant equation

of state parameter. In this gauge, the relevant linearised Einstein equations involving the
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perturbation variable ψ are (see, e.g., [85])

−k2ψ − 3H (Hψ + ψ′) =
κ

2
a2δρ , (5.49)

ψ
(
2H′ +H2

)
+ 3Hψ′ + ψ′′ =

κ

2
a2δP . (5.50)

5.3.1. Second order dynamics in ψ

To facilitate comparison with the literature, we �rst recap the general relativistic calcu-

lation, namely we solve the inhomogeneous second order GR equation for ψ and consider

the resulting expression for ζ. Subsequently, we consider how general k−dependent terms

could a�ect the dynamics of ζ.

In GR, for conformal time and longitudinal gauge, the combination of (5.49) and (5.50)

yields the following second order equation of motion for the variable ψ

3H2
(
c2
s − w

)
ψ + 3H(c2

s + 1)ψ′ + ψ′′ = −c2
sk

2ψ , (5.51)

assuming adiabatic perturbations, where c2
s = δP

δρ
= P ′

ρ′
and we made use of the back-

ground equation H′ = −1
2
H2(1 + 3w) . In the separate universe limit with k → 0 the

right hand side can be neglected and one obtains an equation equivalent to the combina-

tion of (5.5) and (5.7) in conformal time for F = 1. Solutions will therefore agree with

those found in the separate universe picture. An explicit solution to the separate universe

dynamics reads ψ(η) = H
a2

(
3
2
C1

∫
dη (a2 (w + 1)) + C2

)
with C1 and C2 k−dependent

constants (to con�rm that this indeed satis�es the above, use the background equations

H′ and H′′ as well as the continuity equation (1.34); see, e.g., [220, 260]).

To �nd an explicit form of ζ from this solution, note that, using the k−dependent
expression for the perturbed energy density (5.49) and continuity equation (5.6), ζ (5.11)

can be rewritten as

−ζ =
2k2

9H2(w + 1)
ψ +

3w + 5

3(w + 1)
ψ +

2ψ′

3H(w + 1)
(5.52)

and it follows from (5.51) and the background equations for H′ and w′ , that

−ζ ′ = 2 k2 (Hψ + ψ′)

9H2(w + 1)
, (5.53)
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resulting directly in ζ ′ = 0 for long-wavelength perturbations k → 0. Explicitly, with the

solution of ψ one obtains

−ζ(η) = C1 − k2 2C2 + 3C1

∫
dη (a2(w + 1))

9a2H(w + 1)
(5.54)

which is constant in the separate universe limit as the dynamical part of the solution can

be neglected.

Generalised inhomogeneous equations

We now investigate how k−dependent modi�cations a�ect the dynamics of ζ following the

same procedure as above. In GR, we obtained a second order equation for ψ by combining

the derivative of the �rst order equation with the perturbed continuity equation. If we

want to consider possible e�ects of inhomogeneous terms, both equations are required

to have inhomogeneous corrections in order to ensure a consistent GR limit. This is a

manifestation of the fact that changes to the gravitational dynamics must result in changes

to the matter dynamics. We make the following simple Ansatz on how inhomogeneities

enter the above-mentioned equations:

Hψ′ = −H2

(
ψ +

δρ

2ρ
+
δF
2F

)
+Gk , (5.55)

δρ′ = 3ψ′(ρ+ P )− 3H(δρ+ δP ) + Zk , (5.56)

where Zk and Gk are general functions that reduce to Gk → −k2

3
ψ and Zk → − 2k2

κa2
(ψ′ +

Hψ) in the classical limit. Furthermore, we impose that in the separate universe limit

(small k ) we have Zk → 0 and Gk → 0; this is required to ensure consistency with

previous results (i.e. the general perturbed equations of motion (5.5), (5.7) and the

perturbed continuity equation (5.6)).

With these general corrections, we obtain the following modi�ed second order pertur-

bation equation

3FH2(c2
s − w)ψ +

(
3FH(c2

s + 1)− F
′

2

)
ψ′ + Fψ′′ +

(
3H2(c2

s − w)−HF
′

F

)
δF
2

+HδF
′

2

= −κa
2F2Zk
6H

+Gk

(
(3c2

s + 1)F − F
′

H

)
+
G′k
H
F .

(5.57)
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This is derived from the derivative of (5.55) by inserting (5.56), the continuity equation

and replacing δρ as given by (5.55), as well as making use of the background equation

H′ = −1
2

(
H2(1 + 3w)−HF ′F

)
and the modi�ed Friedmann equation. A consistency check

reveals that this reduces to (5.51) in the classical limit (F → 1 , δF → 0 , F ′ → 0, δF ′ → 0

and Gk , Zk as given above). Note that (5.57) (and its long-wavelength limit) can depend

on other perturbations variables than ψ through the explicit form of δF and therefore

need not yield an explicit solution for ψ .

We again compute an expression for ζ by replacing δρ from (5.55) and inserting the

continuity and Friedmann equation in the de�nition of ζ (5.11)

−ζ = − 2Gk

3H2(w + 1)
+

(3w + 5)ψ

3(w + 1)
+

2ψ′

3H(w + 1)
+

δF
3F(w + 1)

. (5.58)

Its derivative reads (replace δρ′ from (5.56), δρ from (5.55) and use the background

equations)

−ζ ′ = − Zk
3(1 + w)ρ

= − κa2FZk
9H2(1 + w)

, (5.59)

which reduces to (5.53) in the classical limit and vanishes when spatial gradients can be

neglected. Hence, we see that the dynamics of ζ are governed by the k−dependence of

the continuity equation, as in GR. Furthermore, in agreement with the strict separate

universe picture employed in previous sections, the above leads to a conservation of ζ for

Zk → 0.

5.3.2. Limitations of the separate universe picture

As explained in sec. 3.1, the Mukhanov�Sasaki variable is a commonly used variable in

cosmological perturbation theory, as its action takes a convenient form for quantisation.

Speci�cally, it behaves like a scalar �eld in an expanding background, thus permitting

quantisation as a canonical scalar �eld (see, e.g., [261]). Here we focus on the dynamics

of ζ as obtained from the Mukhanov�Sasaki variable and comment on the related limits

of the separate universe picture.

First, consider the form of the Mukhanov�Sasaki variable as introduced in sec. 3.2.2 for

scalar matter content, v = a(δχ + χ′

Hψ) = zR , with z = aχ
′

H (in GR, it follows also that
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v = −zζ for adiabatic perturbations on super-horizon scales), and its equation of motion,

the so-called Mukhanov�Sasaki equation, in Fourier space [85]

v′′ + c2
sk

2v − z′′

z
v = 0 . (5.60)

The above can be derived from the matter and gravity actions (rewritten in terms of

v), or, in the separate universe picture, from algebraic manipulations of the homogenous

perturbations equations, as was done in [221] for LQC. In either case, the derivation

makes use of the constraint equation D = HΦ̃ + ψ′ − κ
2
χ′δχ = 0 (or its modi�ed version

(5.22)). As discussed in sec. 5.2.1 this comes from inhomogeneous terms in the Einstein

equations and is therefore not available in the strict separate universe limit. As we showed

in sec. 5.2.1, an alternative form can be derived for modi�ed Friedmann equations of the

form F = F(ρ), but not for the general case as e.g. in sec. 5.2.2. It is then only for the

former that one has the chance of recovering a long-wavelength analogue to (5.60).

Solving the long-wavelength limit (k → 0) of (5.60), which is derived for GR without

modi�cations, together with v = −zR leads to the following solution for R [85, 259]

R = V + S

∫
dη

z2
, (5.61)

where V and S are (k−dependent) constants and η denotes conformal time. In the super-

horizon limit and in the case of adiabatic perturbations we have R = −ζ and therefore

the above solution gives the dynamics for ζ as well. Unlike (5.53), the dynamical part of

the solution does not vanish for long-wavelength perturbations; instead, ζ is dynamical

even on large scales. Note that this dynamical part is negligible in an expanding phase

as e.g. in standard in�ation, but can dominate in a contracting phase, as is pointed out

in [221, 259]. Speci�cally, ζ ′ can increase as one approaches the bounce (i.e. −η → 0) in

cases where the dynamics take on the form ζ ′ ∼ k2(−η)−|p| (p ∈ R). In these cases, k has

to remain su�ciently small (k � H) for the separate universe picture to be applicable;

however, at the bounce point where H = 0 the separate universe limit cannot be consis-

tently applied. The dynamics in (5.61) arise because the long-wavelength limit is imposed

on the Mukhanov�Sasaki equation (5.60), instead of the dynamical equation for ζ (5.53).

This amounts to neglecting k−dependent terms in (5.60), but not in (5.53); indeed the

long-wavelength limit of (5.53) would impose S = 0, thus recovering a constant solution.

A solution such as (5.61) is therefore obtained by neglecting k−dependent terms in the

second order, but not in the �rst order equation, thus acknowledging that outside of the
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strict separate universe picture there are of course dynamics in ζ for small (but non-zero)

k values. Hence, deriving the Mukhanov�Sasaki equation (and its possible modi�cations)

requires knowledge of inhomogeneous dynamics, which are not available in the separate

universe picture in general. It then becomes apparent that for a full treatment one would

need to understand the �nite theory: it seems necessary to verify any statements made

about the dynamics of perturbations in the separate universe limit around the bounce

region against the full dynamics including gradient terms. Furthermore, note that from

R′ = 0 (which is the case in the separate universe limit for a range of modi�ed Friedmann

equations as we have shown in sec. 5.2.1) it immediately follows that the Mukhanov�

Sasaki equation (5.60), which can be rewritten as (zR′)′ + z′R′ = 0, is trivially satis�ed,

irrespective of the choice of z.

The LQC case di�ers from the general considerations we are concerned with here: In

LQC there exists an e�ective Hamiltonian that allows one to study perturbations also

outside the strict k → 0 limit. Taking into account inhomogeneous contributions, one

can then derive an analogue to the Mukhanov�Sasaki equation as was done in [258].

The authors �nd that the LQC modi�cations impact only the k2−term, such that the

Mukhanov�Sasaki equations remains unchanged for long-wavelength perturbations (while

the background dynamics are LQC-corrected). Moreover, it is possible to algebraically de-

rive a Mukhanov�Sasaki like equation making use of a modi�ed di�eomorphism constraint,

as was done in [221]. In the model-agnostic approach with only a modi�ed Friedmann

equation, it is uncertain whether an algebraic derivation of an equation like (5.60) is pos-

sible in absence of a di�eomorphism constraint. It then follows that the applicability of

(5.60) to a scenario with a modi�ed Friedmann equation is far from clear and a similar

equation needs to be established from the full dynamics for a speci�c model in question to

make further progress on this matter. We saw that, already in GR, the dynamics of the

strict separate universe picture are not necessarily identical with the dynamics arising in

the separate universe limit of equations of motion that are derived using non-homogeneous

dynamics. In this sense, the applicability of the separate universe picture has its limits.

One has to assume that the wavelength of perturbations is always large enough (with

respect to the Hubble horizon) for it to hold, however, as one approaches the bounce, at

which the Hubble horizon diverges, this assumption breaks down.

Concluding the considerations of the above, we see that second order equations as are

used in standard cosmology do not provide additional insight into the evolution of gauge-
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invariant perturbation variables for general theories with a modi�ed Friedmann equation

when the full (model-dependent) dynamics are unknown. They may nonetheless be useful

for speci�c theories where additional information is available.

5.4. Conclusion: To evolve or not to evolve

In this chapter we examined the e�ects of alterations to the Friedmann equation on long-

wavelength scalar perturbations. Modi�cations to the Friedmann equation may arise from

various alterations to gravity, including quantum gravitational theories, such as LQC or

GFT cosmology.

Our approach is model agnostic, such that the results have a broad range of applicabil-

ity. To this extent, we worked in the separate universe framework, where one considers

the universe as a collection of homogeneous independent patches, and perturbations are

understood as the deviations between a variable's value in the patch and its average over

the ensemble of patches. They are thus homogeneous in each patch and all spatial gradi-

ents vanish. We make two assumptions that would need to be checked in scenarios where

the underlying theory allows: Firstly, we posit an unaltered continuity equation; secondly,

we import gauge-invariant variables from general relativity and therefore require that the

modi�ed gravitational dynamics do not a�ect the notion of gauge-invariance.

We focus on the two gauge-invariant variables ζ and R, which are commonly found

in the cosmological literature due to their relation to the CMB power spectrum, and

due to the second assumption stated above retain their physical meaning. From the

continuity equation it directly follows that ζ is conserved on super-horizon scales as long as

perturbations are adiabatic, which is a statement that carries over from general relativity.

The equations of motion for perturbations in the separate universe picture are obtained

by perturbing the modi�ed Friedmann equation at linear order. We derive these equations

in general, however, when considering the two classes of possible Friedmann equations in

detail, we focus on scenarios where the matter content is given by a single massless scalar

�eld, as can be found in LQC 3 and GFT cosmology.

We could extend results obtained for scalar perturbations in the separate universe

regime in LQC [221] to a wider class of modi�ed Friedmann equations for which one can

3At least for the quantum theory; in e�ective studies of the phenomenological implications of LQC one
often assumes a scalar �eld potential that leads to an in�ationary phase, see e.g. [254].
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recover the conservation laws of general relativity for the gauge-invariant variables R and

ζ. Speci�cally, we found that as long as the modi�cation to the Friedmann equation is a

function of the energy density only, F = F(ρ), such that δF ∝ δρ, one can demonstrate

that an analogue of the di�eomorphism constraint holds, which is necessary to obtain the

general relativistic conservation laws. With an analogue to the di�eomorphism constraint,

which in GR follows from the time-space components of the Einstein equations, we showed

that ζ is conserved for a single scalar �eld, irrespective of the scalar �eld potential. In

other words, a single scalar �eld can only induce adiabatic perturbations. One furthermore

recovers R = −ζ on super-horizon scales.

More general modi�ed Friedmann equations, on the other hand, can induce dynamics

in the comoving curvature perturbation R. An example for this class of models is a

Friedmann equation obtained from GFT, which we study in further detail to illustrate

the dynamics of R across the bounce. We furthermore show that the di�erence between

the evolution obtained from the perturbed equations of motion to that retrieved from the

expectation values of the GFT volume operator directly is second order in perturbation

theory.

Lastly, we establish whether second order equations as are commonly used in the lit-

erature, can give further insights. Neither of the approaches leads to further model-

independent insights about the evolution of perturbations. We discuss that already in

general relativity, a solution to the second order equation in ψ leads to di�erent dynamics

for ζ than the Mukhanov�Sasaki equation in the separate universe framework: the former

results in a conservation law, whereas the latter gives a dynamical ζ. We conclude that

this discrepancy can be seen as a limitation of the separate universe framework. For a full

treatment of perturbative dynamics around the bounce, knowledge of the full dynamics

is necessary, and it indeed seems that any dynamics obtained in the separate universe

picture would have to be veri�ed against the inhomogeneous dynamics. Another way

to put this is as follows: Separate universe dynamics for modi�ed Friedmann equations

show where dynamics might be introduced to otherwise constant quantities; one cannot

necessarily assume that constants in the separate universe picture remain constants on

large, but inhomogeneous scales, as can be the case for ζ in a contracting branch.

While our results are limited to the separate universe assumption, the dynamics in R
on super-horizon scales demonstrate the possibility of crucial departures from standard

cosmology for general modi�ed Friedmann equations. On the other hand, our results

show that this is of no concern for LQC-like scenarios. To overcome the limitations of the
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separate universe picture, details of the theory need to be known that allow to establish

speci�c dynamics for a certain model. In the following chapter we make a proposition

that allows us to extract inhomogeneous dynamics in GFT, and �nally, in chap. 7 we in-

vestigate the resulting dynamics for cosmological perturbations. We relate those �ndings

to the framework presented in this chapter in sec. 7.5.

As a �nal remark, we would like to comment on an ambiguity in the de�nition of ζ:

Here we assumed an unaltered de�nition of ζ also in the non-general relativistic regime.

It would instead be possible to take the viewpoint of [220] and interpret our modi�ed

Friedmann equation (5.1) as a modi�cation of the energy density ρeff = ρF , which would

carry over into the de�nition of curvature perturbation on uniform density hypersurfaces

ζeff . This would result in a modi�ed continuity equation ρ′eff = −3H(ρ+ P )F + ρF ′ and
thus a�ect the dynamics of ζ. This highlights the degeneracy of the Friedmann equation,

which does not permit conclusions on whether its alteration arises from the matter or

gravitational sector; instead, this input must be given by the theory that induces the

modi�cation in the �rst place. In the case of LQC and GFT, it is indeed the gravitational

sector that deviates from general relativity.
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Chapter 6.

Introducing an e�ective metric in

group �eld theory

`[. . . ] fascination with symmetries and groups is one way of coping with frustrations of life's

limitations [. . . ] '

- Pierre de la Harpe in `Topics in Geometric Group Theory'.

`[. . . ] Faszination mit Symmetrien und Gruppen is ein Weg mit den Frustrationen und Limitationen

des Lebens umzugehen [. . . ] '

The results of this chapter are contained in [2] and were published in Classical and

Quantum Gravity in July 2024.

In the previous chapter we explored a model independent approach to studying the

impact of modi�ed gravitational dynamics on cosmological perturbations. Due to the

generality of the approach we were limited to studying super-horizon perturbations in

the separate universe picture, as this does not require any information beyond the mo-

di�ed Friedmann equation. While it is possible to make some general statements, we saw

that knowledge of sub-horizon dynamics is required to gain more complete insights into

perturbative dynamics. As hinted at by the title of this thesis, our overarching goal is

then to investigate cosmological perturbations within the framework of GFT cosmology.

As detailed in sec. 4.1, there exist studies into perturbations in the GFT framework from

the separate universe perspective, and recently research e�orts have focused on studying

inhomogeneities in the quantum framework using a relational coordinate system spanned

by four massless scalar �elds. We will adopt this four �eld setup, where one �eld serves
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as a clock whereas the others pose as `spatial rods'. This allows us to introduce inhomo-

geneous quantities in GFT, thus generating a framework in which perturbations can be

studied. The main idea and construction of GFT, including the relational setup with four

scalar �elds, is contained in chap. 2. The details of GFT cosmology as outlined in sec. 4.1

are not important for this chapter, save for illustrating the conventional GFT route to

establishing an e�ective quantity that can be related to general relativity: The GFT op-

erator of interest has been the volume operator imported from LQG and in cosmology,

its expectation value over suitable semiclassical states1 is identi�ed with the scale factor

of the universe, 〈V 〉 ∝ a3.

In this chapter, we will introduce a new proposal for obtaining general relativistic

quantities from GFT. We de�ne novel GFT operators using symmetries of the GFT action

and show how these operators can be used to reconstruct an e�ective metric directly from

the quantum theory. Speci�cally, these new operators arise from the same symmetries as

classically conserved currents that are directly related to the metric components in the

relational coordinate system we are forced to employ in GFT. The expectation values of

said operators, that form the components of a GFT energy-momentum tensor, then relate

to the components of an e�ective metric, which replaces the identi�cation of the volume

operator with the spatial volume element of previous GFT works. As the metric forms

the central object of general relativity, the possibility of reconstructing an e�ective metric

directly from the quantum theory opens up the pathway to studying quantum corrections

of several quantities of interest and making contact with observations.

Here, we focus solely on the construction of these operators and the reasoning behind

an identi�cation with an e�ective metric. This construction is completely general and

could potentially be applied to a variety of spacetimes. As a �rst application to evaluate

the usefulness of our proposal, we study the e�ective GFT metric for a universe described

by a perturbed �at FLRW metric in the subsequent chapter, where we extract dynamics

of the scale factor and consider scalar perturbations. Exploring the consequences and

validity of the proposal detailed in this chapter beyond cosmology is left for future work.

This chapter is organised as follows: We �rst establish the classical Noether currents

that we �nd within GR for a spacetime with four massless scalar �elds in sec. 6.1. We con-

sider their form in the relational coordinate system spanned by these four massless scalar

�elds and notice that in this speci�c coordinate system, their components are directly

1What constitutes a `suitable semiclassical state' is detailed in sec. 4.1.
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related to the inverse metric. We then turn to GFT and use the symmetry of the GFT

action under translations of the scalar �elds to de�ne a GFT energy�momentum tensor

in sec. 6.2.1. We propose its relation to the classical Noether currents and establish the

components of the energy momentum tensor in terms of GFT operators, where we discuss

normal ordering and include their explicit dynamics. In sec. 6.2.2 we show explicitly that

the conservation law for GFT energy momentum tensor remains valid after quantisation.

We conclude in sec. 6.3.

6.1. E�ective metric from conserved currents

In this section, we will not be interested in GFT (yet), but focus solely on classical con-

servation laws that follow from symmetries of the scalar �eld action. We will consider

the Noether currents associated with the shift symmetry of massless scalar �elds in GR

and consider their form in a relational coordinate system such as the one utilised to study

inhomogeneities in GFT. For this choice of coordinate system, the classically conserved

currents are directly related to the inverse metric.

Recall that the standard action for a free massless scalar �eld χ on a curved background

with Lorentzian metric gµν is given by

Sχ = −1

2

∫
d4x
√
−g gµν∂µχ∂νχ . (6.1)

This action is invariant under constant shifts in the �eld χ 7→ χ+ ε (ε ∈ R) and by virtue

of Noether's theorem [262, 263] thereby implies the existence of a conserved current jµ

that satis�es a conservation law of the form

∂µj
µ = 0 , jµ = −

√
−g gµν∂νχ . (6.2)

Indeed, this conservation law gives the familiar Klein-Gordon equation �χ = 0 and the

canonical momentum πχ of χ is given by the time component of this current, πχ =

−
√
−g g0ν∂νχ = j0. For a diagonal metric we have πχ =

√
|q|/|N |∂0χ, where |q| denotes

the determinant of the spatial metric and N the lapse. (We included the absolute values

for the lapse to emphasise that the sign of the lapse function has no physical relevance

and is a convention, in the following we will simply write N = |N |, as we implicitly did
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in earlier chapters.) It follows that sgn(πχ) = sgn(∂0χ). In a coordinate system, where

∂0χ > 1, the scalar �eld momentum, and equivalently j0, is therefore always positive.

In the spirit of relational coordinate systems as were discussed in sec. 1.1.4 and sec. 3.4.2,

we consider the case of four massless scalar �elds χA, (with A = 0, . . . , 3), each described

by an action of the form (6.1), and use them to span a relational coordinate system. Each

�eld is then identi�ed with its respective coordinate xA such that ∂µχA = δAµ and we

impose the non-degeneracy condition (3.48), in order for the relational coordinate system

to be locally well-de�ned. We also remind the reader of the relation between the scalar

�eld momenta and the lapse and shift for such a choice of coordinates (3.49).

There then exists a conserved current for each of the relational �elds, which, in the

relational coordinate system, takes on the following form (cf. (6.2)):

(jµ)A = −
√
−g gµA . (6.3)

In the relational coordinate system, gradients of the scalar �elds are dimensionless, hence

the metric components have units of length4, [gAB] = L4, and for the conserved current

we �nd [(jµ)A] = L4. We could introduce an arbitrary dimensionful parameter ξ when

�xing the relational coordinate system, such that ∂µχA = ξδAµ , but as this resembles a

convention, we employ the simplest choice ξ = 1. From (6.3), it is apparent that in the

relational coordinate system, the components of each conserved current corresponding to

one of the relational �elds are directly related to the respective inverse metric components.

We can then de�ne a symmetric matrix �eld jAB :=
(
jB
)A

(B = 0, . . . , 3) and invert

(6.3) to de�ne the inverse metric components in terms of the conserved currents

jAB = −
√
−ggAB ⇒ gAB = −

(
− det

(
jAB

))−1/2
jAB . (6.4)

In short, knowing the conserved currents of all four massless scalar �elds allows us to

reconstruct the (inverse) metric in the relational coordinate system. Even though one of

the indices on the right hand side of (6.4) is a mere label whose positioning is determined

by convention, as long as there is no change of coordinate system and with the above

de�nition of jAB, we can intuitively think of A, B as contravariant indices. Due to its

direct relation to the metric, jAB for the scalar �eld action given in (6.1) is symmetric in its

two indices. (For more general scalar �eld actions, this might change and the construction

would not work as proposed here; we discuss this further in sec. 7.6.)

The relational coordinate system de�ned by the condition ∂µχA = δAµ represents a local
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gauge-�xing within the di�eomorphism-invariant theory of general relativity. It can be

seen as a speci�c case of the harmonic gauge condition �xµ = 0, which was already

discussed in sec. 3.4. As also discussed in sec. 3.4, unlike the harmonic gauge condition,

working in a relational coordinate system as we do here, which one might want to refer to

as `scalar �eld gauge', �xes the gauge completely (presuming (3.48)), such that there is

no residual gauge freedom. It does not de�ne which directions should be seen as time-like

or space-like, whereas the GFT construction of the next section requires to single out a

clock �eld.

At this point we include a small discussion of signs that appear in the de�nitions

above. The minus sign inside the bracket in (6.4) originates from having a negative metric

determinant (and thus det
(
jAB

)
< 0), i.e. working with a Lorentzian signature. Adopting

the convention where the metric gµν has one negative and three positive eigenvalues (the

`East Coast' signature convention) as we do here, leads to the overall minus sign of

the scalar �eld action (6.1), which propagates as an overall minus sign in (6.4). The

alternative `West Coast' signature convention would, in addition to �ipping the signs of

metric components, also introduce an additional minus sign in (6.3), leaving the signature

of (jµ)A unchanged (namely, (+−−−)). When the components of jAB are obtained from

GFT operator expectation values, as we propose below, it is a priori unclear whether one

can �x the metric signature. The results for and FLRW background metric described in

sec. 7.3 illuminate this more clearly.

The important insight of this section is the established link between the conserved cur-

rents of the scalar �elds that span the relational coordinate system and the inverse metric

components, (6.3). It then follows that in a quantum theory where one can establish

operator analogues to the components of jAB, their expectation values over suitable semi-

classical states can be used to reconstruct an e�ective metric through (6.4). Here one

should clearly distinguish between the notion of an e�ective metric emerging from the

expectation values of such operators and explicit metric operators. The e�ective metric is

calculated from expectation values of operators corresponding to the conserved currents

via (6.4) and it is not clear how an operator for gAB could be de�ned directly from (6.4)

due to the occurrence of the square root; questions about eigenvalues of the metric or

similar are then unde�ned. We propose instead that for suitable states the expectation

values of the conserved currents give information about the classical geometry and the

metric arises in the semi-classical regime. Hence, we refer to the metric as a purely e�ec-

tive quantity. A prerequisite for this construction is that the symmetry of jAB is respected
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by their operator analogues. In what follows we will explicitly construct such operators

for the free GFT action in the form of a GFT energy-momentum tensor.

6.2. GFT energy-momentum tensor

In this section we de�ne the GFT energy-momentum tensor and its corresponding oper-

ators. As detailed in sec. 2.2.1, dynamics can be introduced to GFT by coupling a single

massless scalar �eld that serves as a relational clock. Similarly, one can couple additional

scalar �elds to serve as spatial rods to the group �eld, such that altogether the �elds

span a four-dimensional relational coordinate system. The symmetries of the scalar �eld

action can then be used to constrain the kinetic and interaction term by imposing that

the symmetries of the classical action are preserved in GFT. We use the Hamiltonian

construction of GFT with multiple massless scalar �elds introduced in [78] and detailed

in sec. 2.2.3, where we have ϕ : SU(2)4 × R4 → R. We work with a Peter-Weyl decompo-

sition of ϕ, where our results depend only on the existence of such a decomposition and

are independent of the details of SU(2). They could therefore be applied for alternative

choices of a compact group. We assume a GFT action of the form (2.31)

S[ϕ] =

∫
d4χ L , L =

∑
J

(
1

2
K(0)
J ϕ2

J −
1

2
K(2)
J

∑
A

(∂AϕJ)2

)
, (6.5)

where we have neglected interactions, i.e. V (ϕ) = 0. Each Peter-Weyl mode of the group

�eld is a function of all four scalar �elds ϕJ = ϕJ(χ0, χ1, χ2, χ3) and the partial derivative

is taken w.r.t. the scalar �elds ∂A := ∂
∂χA

. (Note that to obtain the form of the Lagrangian

(6.5) we performed an integration by parts and neglected the boundary terms.)

After de�ning the GFT energy-momentum tensor from the Lagrangian and carrying

out its quantisation, we use the solutions to the Heisenberg equations of motion to obtain

explicit dynamical expressions for the operators of interest and discuss an appropriate

normal ordering procedure. We show explicitly that the conservation law of the GFT

energy-momentum tensor carries over to the quantised theory. For further details of the

Hamiltonian framework of GFT with four massless scalar �elds, including the Fourier

decomposition and solutions to the operator dynamics we use below, we refer the reader

to sec. 2.2.3.
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6.2.1. De�nition

The classical scalar �eld action (6.1) can be used to restrict the form of the kinetic kernel

by demanding that the GFT action exhibits the same symmetries. In particular, the GFT

action is invariant under translations of any of the scalar �elds χA 7→ χA+εA for arbitrary

constant εA. This symmetry leads to a conserved current ([25, 262, 263]), namely the GFT

energy-momentum tensor

TAB := − ∂L
∂(∂Aϕ)

∂Bϕ+ δAB L =
∑
J

(
K(2)
J ∂AϕJ ∂BϕJ

)
+ δAB L (6.6)

with the Lagrangian density given in (6.5). By construction, the energy-momentum tensor

satis�es the conservation law ∂AT
AB = 0. As TAB and jAB both represent the conserved

current arising from the shift symmetry of the scalar �elds, it appears to be a sensible

proposition to identify these two quantities with one another. As we have seen in sec. 6.1,

this directly implies that the GFT energy-momentum tensor is related to the inverse

metric through (6.4) and we thus obtain the desired GFT quantity required to complete

the construction of an e�ective metric by quantising TAB (see below). We would like to

stress again that we are not proposing that the novel operators we obtain upon quantising

the TAB should be interpreted as �metric operators� of any form; it is jAB whose operator

analogue we construct in this section. Indeed, from (6.4), we see that the inverse metric

components are related to jAB in a non-polynomial form, making the interpretation of

gAB as an operator unclear. Instead, it should be understood that an e�ective metric can

be obtained from the expectation values of jAB over semiclassical states, to be interpreted

as a macroscopic e�ective geometry emerging in the semi-classical regime. This implies

that quantum �uctuations are su�ciently small for this interpretation to be viable, see

also sec. 4.1 for a discussion of suitable semiclassical states in GFT. The emergence of

an e�ectively classical geometry is then similar to the reconstruction of an e�ective scale

factor from the expectation value of the volume operator in GFT cosmology, a3 = 〈V 〉.
A �nal note on the expression of TAB: Due to the E(4) symmetry of the GFT action the

positioning of the A,B indices does not matter at this point; they are raised and lowered

with the Kronecker delta δAB. This is of course not the case for jAB related to the inverse

metric as de�ned in the previous section, which needs to be kept in mind to enable a

sensible identi�cation of the two quantities.

The remainder of this section is dedicated to promoting the components of the GFT

energy-momentum tensor TAB to operators. The procedure goes as follows: We �rst
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write all components as de�ned by (6.6) in terms of the GFT �eld modes ϕJ and their

canonical momenta πJ and carry out a Fourier decomposition over the spatial �elds. The

resulting expressions can be quantised by promoting ϕJ and πJ to operators, which are

�nally replaced with ladder operators AJ , A
†
J and a normal ordering is imposed. We show

that the conservation law for TAB holds also at operator level in sec. 6.2.2. To ease the

notational load we restrict to a single J-mode and omit the J−label in the following. In

GFT cosmology, one often limits oneself to the study of a single mode, see e.g. [190], still,

phenomenologically interesting e�ects of considering multiple modes exist [147, 148, 240]

(for details, please refer to sec. 4.1.5). Extending the results to the multimode scenario

is straightforward, as we saw in sec. 2.2 that di�erent J-modes evolve independently and

the energy-momentum tensor is simply a sum over the various modes TAB =
∑

J T
AB
J .

In a �rst step we insert the expression for the canonical momentum πJ = −K(2)
J ∂0ϕJ to

obtain explicit expressions for the energy-momentum tensor, which depend on the clock

as well as the spatial �elds TAB = TAB(χ0, ~χ):

T 00 =
π2

2K(2)
− K

(2)

2

(
m2ϕ2 +

∑
b

(∂bϕ)2

)
,

T 0b =− π∂bϕ , T a6=b = K(2)∂aϕ∂bϕ ,

T aa = − π2

2K(2)
− K

(2)

2

(
m2ϕ2 − (∂aϕ)2 +

∑
b6=a

(∂bϕ)2

)
(no sum over a) .

(6.7)

As explained in sec. 2.2.3, before quantisation, we need to perform a Fourier transform

of the energy-momentum tensor TABk = TABk (χ0). From (6.7), this results in the following

combination of convolutions, where ϕk = ϕk(χ
0) and πk = πk(χ

0) denote the Fourier

transforms of ϕ(χ0, ~χ) and π(χ0, ~χ), respectively:

T 00
k =

1

2

∫
d3γ

(2π)3

[πγπk−γ
K(2)

−K(2)
(
m2 − ~γ · (~k − ~γ)

)
ϕγϕk−γ

]
,

T 0b
k =− i

∫
d3γ

(2π)3
γbπk−γϕγ , T a6=bk = −

∫
d3γ

(2π)3
K(2)γa(kb − γb)ϕγϕk−γ ,

T aak =
1

2

∫
d3γ

(2π)3

[
K(2)

(
−γa(ka − γa) +

∑
b 6=a

γb(kb − γb)−m2

)
ϕγϕk−γ −

πγπk−γ
K(2)

]
.

(6.8)

We can now proceed to quantise the above expressions by promoting the GFT �eld and
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its momentum to operators that satisfy

[ϕJ,k(χ
0),πJ ′,k′(χ

0)] = i δJJ ′(2π)3δ(~k + ~k′) . (6.9)

We will denote the operator equivalent to TAB as T AB. As detailed in sec. 2.2.3, it is

convenient to introduce (time dependent) ladder operators AJ,k(χ0), A†J,k(χ
0), that are

related to the time independent operators via aJ,k = AJ,k(0) and a†J,k = A†J,k(0) and

satisfy

[AJ,k(χ
0), A†J ′,k′(χ

0)] = δJJ ′(2π)3δ(~k − ~k′) . (6.10)

To avoid divergences we impose normal ordering on the level of time independent opera-

tors aJ,k, a
†
J,k. Normal ordering in terms of the time dependent operatorsAJ,k(χ0), A†J,k(χ

0)

would lead to the same normal ordering prescription as in the Schrödinger picture; how-

ever, as detailed in [78], the vacuum expectation value still diverges in this case and further

renormalisation is necessary. Such a procedure is then equivalent to the normal ordering

at the level of the aJ,k, a
†
J,k as we propose here. Note that the question of normal ordering

arises only in the case of the k = 0 mode, as operators for di�erent k−modes commute.

Using (2.43) and (2.44), one can now write the Fourier modes of the energy-momentum

tensor in terms of time-dependent functions of ladder operators ak and a
†
k, and implement

the normal ordering procedure, such that the expressions for the operators corresponding
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to the the energy-momentum tensor components read

: T 00
k : =

∫
d3γ

(2π)3

sgn(K(2))

4
√
|ωγ||ωk−γ|

[
2β+

k, γ : A†−γAk−γ : +β−k, γ

(
: A†−γA

†
γ−k : + : AγAk−γ :

)]
,

: T 0b
k : =

∫
d3γ

(2π)3

1

2

√
|ωk−γ|
|ωγ|

γb

(
: A†γ−kAγ : − : A†−γAk−γ : − : Ak−γAγ : + : A†γ−kA

†
−γ :
)
,

: T a6=bk : =

∫
d3γ

(2π)3

sgn(K(2))

2
√
|ωγ||ωk−γ|

γa (γb − kb)
(

: A†−γAk−γ : + : A†γ−kAγ :

+ : A†−γA
†
γ−k : + : AγAk−γ :

)
,

: T aak : =

∫
d3γ

(2π)3

sgn(K(2))

4
√
|ωγ||ωk−γ|

[
2(β−k,γ − 2γa(ka − γa)) : A†−γAk−γ :

+ (β+
k,γ − 2γa(ka − γa))

(
: A†−γA

†
γ−k : + : AγAk−γ :

)]
,

(6.11)

where we de�ned β±k,γ = −m2 +~γ · (~k−~γ)±|ωγ||ωk−γ|. Notice that only four independent

combinations of ladder operators are needed to de�ne all components of T AB. Recall

that we identi�ed two types of modes in sec. 2.2.3: oscillating (2.43) and squeezing modes

(2.44). The former arise in the case where ω2
k = m2 + k2 < 0 and for the latter we

have ω2
k > 0. If m2 < 0 and for ~γ2 < |m2|, Aγ and A†γ operators have the dynamics of

oscillating modes (2.43); for all other cases they follow the dynamics of squeezing modes

(2.44). Thus, all oscillating modes have m2 < 0, but for large enough k values, all modes

are of squeezing type. If we now consider the expressions appearing in (6.11), it is apparent

that there are three di�erent types of mode combinations that can appear, namely those

that contain only oscillating or squeezed modes, or those that are a product of operators

of that belong to di�erent mode types. The mixed case will inevitably arise for modes

with m2 < 0, since the integral over ~γ will include modes with ω2
k < 0 as well as those

with ω2
k > 0. In everything that follows we will provide the expressions for operator pairs

of the same mode type, i.e. only oscillating or only squeezed modes. The extension to the

mixed mode case is straightforward using (2.43) and (2.44). For purely oscillating modes
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(ω2
γ < 0 and ω2

k−γ < 0) we have (using (2.43))

: A†−γAk−γ : = a†−γak−γ ,

: A†γ−kAγ : = a†γ−kaγ ,

: A†−γA
†
γ−k : = a†−γa

†
γ−ke

−isgn(K(2))(|ω−γ |+|ωγ−k|)χ0

,

: AγAk−γ : = aγak−γe
isgn(K(2))(|ωγ |+|ωk−γ |)χ0

.
(6.12)

For purely squeezed modes (ω2
γ > 0 and ω2

k−γ > 0) we �nd (using (2.44))

: A†−γAk−γ : = a†γ−kaγ sinh
(
ω−γχ

0
)

sinh
(
ωk−γχ

0
)

+ a†−γak−γ cosh
(
ω−γχ

0
)

cosh
(
ωk−γχ

0
)

+ i sgn(K(2))
(
aγak−γ sinh

(
ω−γχ

0
)

cosh
(
ωk−γχ

0
)

− a†−γa
†
γ−k cosh

(
ω−γχ

0
)

sinh
(
ωk−γχ

0
) )

= A†γ−kAγ − sinh
(
ωγχ

0
)2

(2π)3δ(~k) ,

: A†γ−kAγ : = a†−γak−γ sinh
(
ωγχ

0
)

sinh
(
ωγ−kχ

0
)

+ a†γ−kaγ cosh
(
ωγχ

0
)

cosh
(
ωγ−kχ

0
)

+ i sgn(K(2))
(
− a†γ−ka

†
−γ sinh

(
ωγχ

0
)

cosh
(
ωγ−kχ

0
)

+ ak−γaγ cosh
(
ωγχ

0
)

sinh
(
ωγ−kχ

0
) )

= A†−γAk−γ − sinh
(
ωγχ

0
)2

(2π)3δ(~k) ,

: A†−γA
†
γ−k : = a†−γa

†
γ−k cosh

(
ω−γχ

0
)

cosh
(
ωγ−kχ

0
)
− aγak−γ sinh

(
ω−γχ

0
)

sinh
(
ωγ−kχ

0
)

+ i sgn(K(2))
(
a†−γak−γ cosh

(
ω−γχ

0
)

sinh
(
ωγ−kχ

0
)

+ a†γ−kaγ sinh
(
ω−γχ

0
)

cosh
(
ωγ−kχ

0
) )

= A†−γA
†
γ−k − i sgn(K(2)) sinh

(
ωγχ

0
)

cosh
(
ωγχ

0
)
(2π)3δ(~k) ,

: AγAk−γ : = − a†−γa
†
γ−k sinh

(
ωγχ

0
)

sinh
(
ωk−γχ

0
)

+ aγak−γ cosh
(
ωγχ

0
)

cosh
(
ωk−γχ

0
)

− i sgn(K(2))
(
a†−γak−γ sinh

(
ωγχ

0
)

cosh
(
ωk−γχ

0
)

+ a†γ−kaγ cosh (ωγ) sinh
(
ωk−γχ

0
) )

= AγAk−γ + i sgn(K(2)) sinh
(
ωγχ

0
)

cosh
(
ωγχ

0
)
(2π)3δ(~k) .

(6.13)

The normal ordering procedure only a�ects T 00 and T aa; the contributions arising

from the re-ordering vanish for the other components. Explicitly, the relation between

the normal-ordered operators and those before normal ordering depends on the type of
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mode through the sign of ω2
γ and is as follows

: T 00
k : = T 00

k − δ(~k)
sgn(K(2))

4

∫
d3γ |ωγ|(1− sgn(ω2

γ)) , (6.14)

: T aak : = T aak + δ(~k)
sgn(K(2))

4

∫
d3γ

(
|ωγ|(1 + sgn(ω2

γ))−
2γ2

a

|ωγ|

)
+ δ(~k) sgn(K(2))

∫
d3γ Θ(ω2

γ)

(
|ωγ| −

γ2
a

|ωγ|

)
sinh2(ωγ χ

0) . (6.15)

The additional terms are multiplied by delta distributions and vanish for k 6= 0. For

: T 00
k : the integral is only relevant if m2 < 0 and has non-vanishing contributions only

for |~γ| < |m|, recalling that ω2
γ = m2 + γ2. For m2 > 0 it vanishes entirely. For : T aak :

the terms multiplied by the delta distribution are divergent. The last term includes a

Heaviside function Θ(ω2
γ), and is relevant for squeezed modes only.

This concludes the construction of the operator expressions. We proceed to show that

the normal ordered operators continue to satisfy the conservation law ∂AT AB = 0. How

the procedure to reconstruct an e�ective metric from the T AB operators introduced in

this chapter works in practice will be illustrated in the next chapter, where we consider a

cosmological spacetime.

6.2.2. Conservation law

One would expect the conservation law for the GFT stress-energy tensor to hold also

at the level of the operators, such that ∂0T 0B
k + i

∑
a kaT aBk = 0. Any violation could

only arise from terms appearing due to operator re-ordering. In this section we discuss

that the conservation law remains una�ected and holds for the normal ordered operators

(6.11). This is most easily understood from the following: Any terms appearing from

operator reordering of the expressions appearing in (6.8) would be proportional to δ(~k)

(see (6.9)), such that alterations to the conservation law would be of the form ∂0T 0B
k +

i
∑

a kaT aBk = ∂0ξ
(0)δ(~k) + i

∑
a ξ

(a)kaδ(~k) = 0, where ξ(A) are independent of χ0. For

completeness we demonstrate the validity of the conservation law explicitly for the energy-

momentum tensor given in terms of the ϕk, πk operators, where we use the ordering given

in (6.8), and show that this calculation is una�ected by the normal ordering we enforce in

(6.11). For convenience, we quote the following property of convolutions, which we will
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use continuously below∫
d3γ

(2π)3
f(~γ)g(~k − ~γ) =

∫
d3γ

(2π)3
f(~k − ~γ)g(~γ) . (6.16)

The terms of the conservation law for the B = 0 component, ∂0T 00
k + i

∑
a kaT 0a

k = 0 ,

are explicitly given by

∂0T 00
k =

∫
d3γ

(2π)3

1

2

[(
∂0πγ
K(2)

+
(
m2 − ~γ · (~k − ~γ)

)
ϕγ

)
πk−γ

+ πk−γ

(
∂0πγ
K(2)

+
(
m2 − ~γ · (~k − ~γ)

)
ϕγ

)]
,

i
∑
a

kaT 0a
k =

∫
d3γ

(2π)3

1

2
~k · ~γ (πk−γϕγ + ϕγπk−γ + [πk−γ, ϕγ]) ,

(6.17)

where we have used (6.16) to rewrite the last line. Combining these terms, we obtain

∂0T 00
k +i

∑
a

kaT 0a
k

=

∫
d3γ

(2π)3

1

2

[(
∂0πγ
K(2)

+ ω2
γϕγ

)
πk−γ + πk−γ

(
∂0πγ
K(2)

+ ω2
γϕγ

)
+ ~k · ~γ[πk−γ, ϕγ]

]
= 0 .

(6.18)

In the �nal step we used the equation of motion for the operators (2.37) as well as the

commutator (6.9), [πk−γ, ϕγ] ∝ δ(~k). The last term indeed vanishes as we have ~k δ(~k) = 0.

In the case of the spatial components of the conservation law, ∂0T 0b
k + i

∑
a kaT abk = 0,

we have

∂0T 0b
k = i

∫
d3γ

(2π)3
γb

(
K(2)ω2

k−γϕk−γϕγ +
πk−γπγ
K(2)

)
,

i
∑
a

kaT abk = i
∫

d3γ

(2π)3

[(
−(kb − γb)~k · ~γ +

kb
2

(~k − ~γ) · ~γ − m2

2
kb

)
K(2)ϕγϕk−γ −

kb
2

πγπk−γ
K(2)

]
.

(6.19)

We see that the above contains no products of the form ϕ·π and therefore no commutators.

Still, we demonstrate how the conservation law can be shown. Namely, use the property
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(6.16) to add the expression with γ ↔ k − γ to itself and divide by two, to obtain

∂0T 0b
k =

i
2

∫
d3γ

(2π)3

[(
γbω

2
k−γ + (kb − γb)ω2

γ

)
K(2)ϕk−γϕγ + kb

πk−γπγ
K(2)

]
=

i
2

∫
d3γ

(2π)3

[ (
γb(~k − ~γ)2 + (kb − γb)~γ2 + kbm

2
)
K(2)ϕk−γϕγ

+ kb
πk−γπγ
K(2)

]
.

(6.20)

With this, we �nally �nd

∂0T 0b
k + i

∑
a

kaT abk =
i
2

∫
d3γ

(2π)3

[(
γb~k

2 − kb(~k · ~γ)
)
K(2)ϕk−γϕγ

]
= 0 , (6.21)

where the last equality follows from the fact that the integral can be transformed into

minus itself, again from (6.16).

Finally, we consider the additional terms that occur when imposing normal ordering to

obtain : T 00
k : and : T aak :, see (6.15). For : T 00

k : the additional term is time independent

and therefore does not contribute to the conservation law; for : T aak : we have a term

proportional to δ(~k), giving again a term of the form ~k δ(~k). Therefore, the conservation

∂0 : T 0B
k : + i

∑
a ka : T aBk : = 0 holds on the level of the normal ordered operators, and

is therefore independent of the choice of state. Recall that the conservation law for the

classical current ∂µ(jµ)A corresponds to the Klein-Gordon equation for each �eld (sec. 6.1).

The conservation law of T AB together with the identi�cation with jAB then guarantees

that the Klein-Gordon equation is exactly satis�ed also at the level of the quantum theory.

The conservation laws ∂0T 00
0 = ∂0T 0a

0 = 0 deserve some additional attention, as they

relate to the globally conserved charges discussed already in [78]. Speci�cally, the expec-

tation value of T 00
0 corresponds to the conserved momentum of the clock �eld χ0 in a

homogeneous cosmological setting, as we will discuss in the next chapter.

6.3. Conclusion: A metric from Noether currents

In this chapter we introduced a novel set of GFT operators that we propose can be

used to reconstruct an e�ective metric directly from GFT. This proposition goes beyond

the available GFT literature, which focuses predominantly on the volume operator (even

though other proposals for operators based on geometric quantities exist, see e.g. [148]).

It thus opens up a new route to investigate phenomenological implications of GFT that
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can hopefully give insight into the fundamental construction of the theory, as well as

possibly observable quantum gravity e�ects.

Our construction relies on a relational framework, where four massless scalar �elds are

coupled to the group �eld. One �eld takes on the role of a relational clock and the remain-

ing three serve as spatial rods that can be used to locally span a spatial coordinate system

(if the condition of non-degeneracy holds). We work in the deparametrised approach and

single out a clock �eld before quantisation. We carried out the quantisation of the GFT

energy-momentum tensor in the Hamiltonian approach to GFT, where the dynamics for

the simple free GFT action we use here can be solved independently of the choice of state.

The Hamiltonian in the deparametrised approach with a clock and three spatial �elds

was established previously [78], but in their work the authors focus on the globally con-

served charges resulting from the conservation law for the GFT energy-momentum ten-

sor. The construction of the local operators T AB was formerly unknown to the literature.

During quantisation, we imposed normal ordering at the level of time-independent ladder

operators to cancel any vacuum divergences and we showed explicitly that the conser-

vation law holds at the level of the T AB and is una�ected by operator re-ordering. As

pointed out in [78], depending on the sign of the fundamental parameters appearing in the

GFT kinetic term, as well as the magnitude of the wave number k, one obtains di�erent

dynamics for the operators, which can be classi�ed as oscillating and squeezed modes. In

both cases, the dynamics for the ladder operators can be solved explicitly and determine

the evolution of the T AB.

The GFT energy-momentum tensor arises from the conservation law associated with the

translational symmetry of the four massless scalar �elds, in accordance with Noether's

theorem. This shift symmetry is therefore crucial for the de�nition of TAB and while

its de�nition is not restricted to the free action of GFT with a kinetic term truncated

at second order, any additional terms, such as interactions would have to respect this

symmetry for the procedure proposed in this chapter to remain valid. The crucial point

is the identi�cation of TAB, a function on a group manifold, with the conserved currents

that arise on the spacetime manifold due to the same shift symmetry for each of the

scalar �elds (jµ)A. As the GFT construction relies on a relational coordinate system, this

identi�cation is valid only in a relational frame, where the scalar �elds serve as coordinates.

In this speci�c frame, the conserved currents (jµ)A can be used to identify a symmetric

matrix �eld jAB whose components are directly related to those of the inverse metric. It is

in that sense that the metric can be e�ectively reconstructed from GFT. Here, `e�ective'
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refers to the fact that, while we propose to interpret the T AB as an operator equivalent

to jAB the reconstruction of the metric happens only after the expectation values of said

operators have been taken over states that are su�ciently semiclassical. The conservation

law of T AB then directly implies that the Klein-Gordon equation (which is just ∂µjµ = 0

in GR, for each of the �elds) holds exactly, irrespective of the choice of state.

At this point, reconstructing an e�ective metric from GFT is merely a proposal, open-

ing up the path to exciting GFT phenomenology that goes substantially beyond previous

literature where one relies on the volume operator to extract geometric quantities. So far,

the operators we propose are general and not tied to a speci�c general relativistic space-

time. When reconstructing a metric one would expect that, details of a physical scenario,

such as the spacetime symmetries enter through the choice of state. The dynamics of

the GFT energy-momentum tensor, however, are �xed by the choice of the GFT action

in the deparametrised approach. Here, a mismatch with the dynamics of GR could lead

to insights for the construction of the fundamental theory. Overall, there are plentiful

directions in which our �ndings can be extended either in phenomenological applications,

or in understanding the viability of the proposal further at a fundamental level.

In the next chapter, we conduct a �rst test of our proposition and apply it to quantum

gravity's favourite example of homogeneous cosmology as given by a �at FLRW metric.

For this, we shall make a simple state choice based the requirements of respecting the sym-

metry of the spacetime (spatial homogeneity and isotropy) and su�cient semiclassicality.

We can already reveal that agreements as well as mismatches with general relativity arise,

especially at the level of cosmological perturbations (this might in some sense might be

expected from a �rst naive application of a proposal of this kind). Comments on further

extensions are also left for the subsequent chapter.

As a �nal note we remark that while the construction of the T AB operators is carried out

in the deparametrised approach to GFT, an extension to the algebraic approach sec. 2.2.3

is in principle straightforward. The main di�erence is that one would have a complex GFT

�eld, which would need to be re�ected in the de�nition of the GFT energy-momentum

tensor (6.6) by including an appropriate sum.
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Chapter 7.

Group �eld theory metric for the

universe

`Immer mit den einfachsten Beispielen anfangen.'

- David Hilbert.

`Begin with the simplest examples.'

The possibility to reconstruct an e�ective metric from GFT through the procedure we

introduced in chap. 6 appears attractive, as it gives a direct connection between the quan-

tum theory and general relativity. To test the validity of this bold and exciting proposal,

we investigate its application to the cosmological setting in this chapter. The analysis

of the FLRW metric reconstructed from GFT (parts of sec. 7.1, sec. 7.2 and 7.3) is con-

tained in [2], which was published in Classical and Quantum Gravity in July 2024. The

application to cosmological perturbations and possible extensions constitute unpublished

results.

Overall, the FLRW metric appears to be an accurate description for the cosmos (see

sec. 1.2), and in standard cosmology the universe is modelled as a (�at) FLRW spacetime

with small inhomogeneous perturbations. The details of cosmological perturbation the-

ory were given in sec. 3.1, including the analysis of the background cosmology as well as

perturbative dynamics in a relational coordinate system spanned by four massless scalar

�elds, which deviates from standard systems that are commonly found in the literature.

The application of our proposal for an e�ective metric from GFT to the cosmological sce-

nario is implemented through an appropriate choice of semi-classical state. As explained
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in sec. 4.1, it has been shown that for certain (well-motivated) choices of the kinetic term

in the GFT action, a single mode will dominate at late times, and thereby determine the

semi-classical limit that can be related to general relativity [190]. We therefore restrict

to the analysis of a single Peter�Weyl mode with J = J0 as is common in cosmological

GFT studies [151, 185]. As seen in sec. 6.2, considering multiple J−modes gives a sum of

the operators in question and is straightforward in principle.

This chapter is structured as follows: We �rst establish the relation between expecta-

tion values of the GFT energy-momentum tensor components and the perturbed FLRW

metric in sec. 7.1. For this, we calculate the components of jAB for a perturbed FLRW

metric and invert the resulting expressions to obtain background and perturbative quan-

tities in terms of the 〈: T AB :〉. In sec. 7.2 we introduce our choice of state that re�ects the

required symmetries of the cosmological setting. We proceed to calculate the expectation

values of the T AB operators introduced in the previous chapter. From the homogeneous

background mode, which is the subject of sec. 7.3, we establish an e�ective Friedmann

equation in the case of squeezed modes and point out di�erences of our approach to pre-

vious GFT studies. We include also the results for oscillating modes. Inhomogeneous

modes, which give the e�ective expressions for cosmological perturbations, are treated

in sec. 7.4 for squeezed as well as oscillating modes. We compare the resulting dynamics

of a suitable e�ective perturbative quantity, namely the scalar perturbation E, to classi-

cal equations of motion. In sec. 7.5 we compare the �ndings of the explicit perturbative

analysis in GFT established in this chapter to the results of chap. 5, which utilised the

separate universe picture. Before concluding in sec. 7.7 we make some comments on pos-

sible extensions of our setup in 7.6.

We drop the normal ordering symbol for the GFT energy-momentum tensor operators

in this chapter, it should be understood that we always use the normal ordered version,

i.e. 〈T AB〉 := 〈: T AB :〉, where we recall that normal ordering only in�uences the ~k = 0

mode. Otherwise we keep the notation of chap. 6.

7.1. E�ective metric components

As is apparent from the title of this chapter, and in accordance with the overarching

agreement that the holy grail of testing grounds for quantum gravity is cosmology, the
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7.1. E�ective metric components

�rst application of our proposed e�ective GFT metric is the perturbed FLRW metric. As

explained in sec. 3.2, including perturbations introduces an additional local gauge freedom

regarding the choice of the perturbed coordinate system, which is freedom completely �xed

in the relational coordinate system.

In this section we calculate the components of the symmetric tensor jAB de�ned in

sec. 6.1 resulting from the classically conserved currents for a perturbed FLRW metric.

These are de�ned only in the relational coordinate system spanned by four massless scalar

�elds, and this is the matter content of the universe we are thus forced to assume. Mak-

ing the identi�cation with the GFT operators 〈T AB〉 and inverting the expressions gives

metric quantities in terms of operator expectation values. Up to this point, one need not

assume any knowledge of the form of the GFT operators or the semiclassical state chosen

for such an identi�cation and the relations we present below are hence independent of

the concrete analysis that follows in the rest of this chapter. Needless to say that the

state choice as well as the GFT dynamics determine whether we can in fact interpret the

resulting e�ective metric as perturbed FLRW; the expressions below simply transcend

the state choice of sec. 7.2 and can be used for any alternative proposal. In the following

we use i, j to denote general spatial indices and a, b for spatial indices in the relational

coordinate system.

The general perturbed FLRW metric (as introduced in sec. 3.1) reads

ds2 =−N(t)2(1 + 2Φ̃(t,~x))dt2 + 2N(t)a(t)
(
∂iB(t, ~x)−BV

i (t, ~x)
)
dtdxi

+ a(t)2
(

(1− 2ψ(t, ~x))δij + 2∂i∂jE(t, ~x)

−
(
∂iE

V
j (t, ~x) + ∂jE

V
i (t, ~x)

)
+ 2ET

ij(t, ~x)
)
dxidxj,

(7.1)

where N denotes the lapse function, a the scale factor, and we have carried out a de-

composition of metric perturbations into scalar (ψ , Φ̃, E,B), vector (BV
i , E

V
i ) and tensor

(ET
ij) components, the properties of which are given in (3.5).

For the metric (7.1) and the standard matter action for four massless scalar �elds1 (6.1),

the classically conserved currents in the relational coordinate system take on the following

1We discuss k-essence models in sec. 7.6.2.
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form

j00 =
a3

N

(
1 + (−Φ̃− 3ψ +∇2E)

)
, j0a = a2(BV

a − ∂aB) ,

ja6=b = aN
(
2∂a∂bE − ∂aEV

b − ∂bEV
a + 2ET

ab

)
,

jaa =− aN
(

1 + Φ̃− ψ +∇2E − 2∂2
aE + 2∂aE

V
a − 2ET

aa

)
(no sum over a).

(7.2)

We have left the lapse function N general, but it should be understood that the identi-

�cation of the jAB components with the GFT energy-momentum tensor is only possible

in a relational coordinate system. From (3.49) we have N = a3/π0 and Na = −πa/π0,

where π0 and πa are the momenta of the clock and rod �elds, respectively. In particular,

in the case of scalar perturbations, we �nd ∂aB = −πa/a2.

The conserved current (7.2) for a �at FLRW universe (i.e. taking into account homo-

geneous background quantities only) thus takes the form

jAB =

(
π0 0

0 − a4

π0
δab

)
, (7.3)

where we recall that π0 > 0 in the relational coordinate system (see the discussion below

(6.2)). Notice that the signs of the components are �xed by the Lorentzian signature of

(7.1); in the case of a Euclidean signature, all entries would be positive.

Recall that the T AB operators constructed in chap. 6 are de�ned in terms of Fourier

modes of the spatial �elds and we therefore relate them to the Fourier modes of jAB. For

any classically perturbed quantity we have f(t,x) = f̄(t) + δf(t,x), where the background

quantity is given by f̄(t) =
∫
dxf(t,x) = fk=0(t). Hence, the k = 0 mode determines

the homogeneous part and the Fourier transform of the perturbation δf(t,x) is given by

δfk(t) = fk(t)− fk=0(t)δ(k). The conjugate momentum of the clock �eld and scale factor

are then determined by the k = 0 mode of the diagonal components of
〈
T AB0

〉
:

π0 =
〈
T 00

0

〉
, a4 = −

〈
T 00

0

〉
〈T aa0 〉 . (7.4)

If the o�-diagonal components of 〈T AB〉 vanish and all spatial diagonal components 〈T aa0 〉
are identical (which we will �nd to be the case for the state we consider below) the e�ective

metric can consistently be interpreted as �at FLRW.

The non-zero k-modes correspond to perturbations and in general, the 〈T ABk 〉 include
scalar, vector, and tensor modes (7.2). For our choice of state, which is the subject
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of the next section, we will see that the operator expectation values can consistently

be interpreted as containing only scalar perturbations and we neglect vector and tensor

perturbations in the expressions that follow. A more complete analysis that reveals which

types of state choices can give rise also to vector and tensor perturbations is left for future

work.

Considering only scalar perturbations, the identi�cation jABk = 〈T ABk 〉 leads to the

following:

〈T 00
k 6=0〉 =− a3

N
(Φ̃ + 3ψ + k2E), 〈T 0a

k 6=0〉 = −ia2kaB,

1

3
tr〈T aak 6=0〉 =− aN

(
Φ̃− ψ − k2

3
E

)
, 〈T a6=bk 6=0 〉 = −2aNkakbE.

(7.5)

Inverting the above gives expressions for e�ective perturbations (ka 6= 0, kb 6= 0):

Φ̃ =−
〈T 00

k 6=0〉N
4a3

−
tr〈T aak 6=0〉

4aN
, E = − 1

2aN

〈T a6=bk 6=0 〉
kakb

,

ψ =−
〈T 00

k 6=0〉N
4a3

+
tr〈T aak 6=0〉
12aN

+
k2

kakb

1

6aN
〈T a6=bk 6=0 〉 , B =

i
a2

〈T 0a
k 6=0〉
ka

.

(7.6)

With these identi�cations, it is possible to study also gauge-invariant perturbation vari-

ables as given in (3.20) and (3.54).

We make a �nal comment, risking repetitiveness: As these expressions are independent

of the GFT details and a result of identifying the expectation values of the GFT energy-

momentum tensor 〈T AB〉 with the conserved currents of a perturbed FLRW metric in a

coordinate system spanned by four massless scalar �elds, they can be used in alternative

state proposals as well (our state choice detailed in the next section should be understood

as a naive �rst guess). In some way, this illustrates the nature of the e�ective GFT

metric proposal: In itself, for any (suitably semiclassical) state an e�ective metric can

be reconstructed, however, the task is to interpret the resulting physical scenario. Here

we take the approach that we compare the e�ective metric to a speci�c solution of GR,

which re�ects our belief (or rather, hope) that we have found a state that will recover said

metric (in the semi-classical limit). How to interpret a general metric, without assuming

a classical counterpart from the beginning is less clear.
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7.2. Choice of state

To obtain explicit expressions for the operator expectation values, enabling us to con-

cretely reconstruct an FLRW metric as well as its perturbations from the identi�cations

(7.4) and (7.5), we have to make a choice of state. The goal is to select a state that

satis�es the condition of semiclassicality, such that the expectation values 〈T AB〉 can in-

deed be related to an e�ective metric. Furthermore, it must incorporate properties of

the cosmological spacetime, in this case are homogeneity and isotropy at the background

level.

We discussed the semiclassicality of states in sec. 4.1, and recall that Fock coherent

states satisfy the requirement of relatively small uncertainty in operator expectation values

throughout the evolution [185] (see also [187] for a more in-depth analysis of a broader class

of semiclassical GFT states). Even though the analysis in [185] focused on the expectation

value of the volume operator, we assume that this property will carry over to the GFT

energy-momentum tensor, since it contains similar operator combinations. We therefore

work with a Fock coherent state |σ〉 which is an eigenstate of the (time-independent)

annihilation operator aJ,k |σ〉 = σJ(~k) |σ〉:

|σ〉 = e−||σ||
2/2 exp

(∑
J

∫
d3k

(2π)3
σJ(~k)a†J,k

)
|0〉 , (7.7)

where |0〉 is the GFT Fock vacuum and ||σ||2 =
∑

J

∫
d3k

(2π)3
|σJ(~k)|2. In an FLRW back-

ground there exist only homogeneous quantities, and especially all components of jAB

are homogeneous. To re�ect this homogeneity in the quantum state, we choose a sharply

peaked Gaussian for σ(~k),

σJ(~k) = δJ,J0
A+ iB
cσ

e−
(~k−~k0)

2

2s2 , (7.8)

where A, B ∈ R, s determines the peakedness of the state, and we set the homogeneous

k = 0 mode as the initially dominantly excited Fourier mode, ~k0 = 0. The normalisation

factor cσ =
(

s
2
√
π

)3/2

is �xed for convenience regarding later calculations. The state

re�ects our restriction to a single Peter-Weyl mode; in the more general case of multiple

modes, the initial conditions, namely A, B and s, could be J−dependent. Whether and

how this would have phenomenologically interesting consequences for perturbations is left

for future work. We would like to point out the di�erence between this state choice and

190



7.3. Background

standard cosmological perturbation theory: While the Gaussian is strongly peaked on the

background mode, it has a �nite width, such that inhomogeneous modes will always be

excited. A strictly homogeneous state is reached in the limit of s → 0, corresponding

to an in�nitely peaked state, which would introduce divergences that are avoided for

0 < s � 1. In standard cosmological approaches, one usually assumes a delta-peak for

the background mode and �xes the initial spectrum for the perturbations by assuming

the Bunch-Davies vacuum, see e.g. [85]. This is conceptually di�erent to our proposed

state, which does not allow to excite solely the homogeneous background. The k 6= 0

modes are then to be regarded as inhomogeneous perturbations over said background

and are studied in sec. 7.4. Since we have chosen σ(~k) to be sharply peaked on the

background mode ~k = 0, the expectation value of the energy-momentum tensor (6.11)

will be determined by (low |~k|) squeezed modes for m2 > 0 and by (low |~k|) oscillating
modes for m2 < 0. Therefore, it appears su�cient to focus on explicit expressions for

the T AB that are either fully determined by squeezed or oscillating modes, as we did in

chap. 6. We consider the background metric, governed by the ~k = 0 mode, in sec. 7.3.

Whether this choice of state is well suited to obtain cosmological perturbations that agree

with the general relativistic treatment is a question we will revisit after concluding the

perturbative analysis in sec. 7.4.

7.3. Background

We can now determine explicitly the e�ective metric resulting from our proposal made

in chap. 6, having made a choice of state that for the reasons stated above re�ects an

FLRW spacetime with perturbations. Here, we consider only the background mode ~k = 0

and its resulting e�ective metric, which we will see does indeed correspond to a �at

FLRW spacetime for a speci�c range of initial conditions. The remaining ~k 6= 0 modes,

interpreted as perturbations to the homogeneous spacetime, are the subject of sec. 7.4.

The procedure to recover the e�ective metric is now as follows:

� Calculate the expectation values of T ABk=0 in our choice of state (7.7). For this choice,

the convolutions appearing in the operator expressions can be simpli�ed with the

saddle-point approximation to obtain explicit expressions for the components.

� Make the identi�cation 〈T ABk=0〉 = jAB for an FLRW spacetime and thereby recon-

struct the components of the inverse metric. This allows us to determine which
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initial conditions lead to a Lorentzian metric and one obtains the evolution of the

scale factor a and thereby an e�ective Friedmann equation that can be compared

to that of GR.

As discussed in chap. 6, the dynamics of T AB depend on the type of modes we are

considering - squeezed or oscillating. As we are interested in recovering an expanding

universe, our focus lies on squeezed modes m2
J0

= m2 > 0, which have a growing number

of quanta over time. We report the contribution to an e�ective metric from oscillating

modes m2 < 0 at the end of this section, on the one hand for completeness, on the other

to assess possible contributions in a scenario in which multiple J−modes are excited. We

will not be concerned with the special case m2 = 0 which requires a separate analysis

as carried out in [186], where the authors show that this scenario contains �ne-tuning

instabilities.

For squeezed modes, m2 > 0, the expectation values of the normal ordered components

of the GFT energy-momentum tensor (6.11) for the state de�ned in (7.7) and (7.8) are

given by

〈
T 00

0

〉
=

∫
d3γ

(2π)3
sgn(K(2))|ωγ|(B2 −A2)

e−γ
2/s2

c2
σ

≈ sgn(K(2))|m|(B2 −A2) ,〈
T 0b

0

〉
= 0 ,

〈
T a6=b0

〉
= 0 ,

〈T aa0 〉 =

∫
d3γ

(2π)3
sgn(K(2))

e−γ
2/s2

c2
σ

((
−|ωγ|+

γ2
a

|ωγ|

)(
(A2 + B2) cosh

(
2ωγχ

0
)

− 2 sgn(K(2))AB sinh
(
2ωγχ

0
))

+
γ2
a

|ωγ|
(A2 − B2)

)
≈− sgn(K(2))|m|

(
(A2 + B2) cosh

(
2|m|χ0

)
− 2 sgn(K(2))AB sinh

(
2|m|χ0

))
.

(7.9)

To carry out the integrals explicitly for 〈T 00
0 〉 and 〈T aa0 〉, we made use of the saddle-point

approximation ∫
d3x e−

(~x−~µ)2

s2 g(~x) ≈ g(~µ)

∫
d3x e−

(~x−~µ)2

s2 = g(~µ)(
√
πs)3, (7.10)

which holds for sharply peaked Gaussians such that g(~x) can be considered approximately

constant in the region |~x − ~µ| ≤ s and is applicable for our state choice due to σ(~k)

being highly peaked (7.8). Indeed, employing the saddle-point approximation at the

background level is equivalent to considering the limit in which σ(~k = 0) is given exactly
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by a delta-peak. (This approximation will become inaccurate for 〈T aa0 〉 at late times.

We investigate the limits of this approximation in more detail in app. E, demonstrating

that the saddle-point approximation is justi�ed for the times we are interested in in the

case of a su�ciently sharply peaked state.) Importantly, the o�-diagonal components,

i.e. 〈T 0a〉 and 〈T a6=b〉, vanish exactly due to the antisymmetry of the integrals, giving a

spatially �at metric. For the
〈
T 0b

0

〉
components this can be interpreted as the vanishing

of the canonical momenta conjugate to the spatial �elds χb, since j0b ∝ πb. Furthermore,

〈T 00
0 〉 is exactly constant in time, which is an important consistency check, since it shows

that π0 is exactly conserved at the background level for our choice of state.2 We know

that the energy-momentum tensor satis�es the conservation law ∂0T 0B + i
∑

a T aB = 0

independent of the state, and thereby that the Klein-Gordon equation must be satis�ed.

The conservation of π0 is exactly the Klein-Gordon equation for the classical FLRWmodel.

Before discussing the e�ective metric we recover further, we comment on the importance

and ambiguities of the signs appearing in the above expressions. Through the identi�ca-

tion (6.4) the signs of the components of the conserved current are directly related to the

metric signature: all entries of the conserved current will either have the same sign (Eu-

clidean case) or the spatial diagonal will have opposite sign of the j00 entry (Lorentzian

case). Given that sgn(〈T aa0 〉) = −sgn(K(2)) and sgn(〈T 00
0 〉) = sgn(K(2))sgn(B2−A2) (from

(7.9)), and a Lorentzian (Euclidean) e�ective metric is obtained when these expectation

values have the opposite (same) sign, the initial conditions A, B determine the signature

of the e�ective metric we reconstruct. The signature of the e�ective metric has so far not

been �xed and we can deduce that the Lorentzian case is found for B2 > A2, whereas

B2 < A2 results in a Euclidean metric.3 Let us now turn to the factor of sgn(K(2)). The

sign of the j00 component is determined by the overall sign of the matter Lagrangian in

(6.1), which is usually chosen such that π0 is positive (as we did in our case). This means

that if we had decided to work with a di�erent metric signature convention, i.e. `East

Coast' (+,− ,− ,−) instead of `West Coast' (−,+ ,+ ,+), we would have chosen a di�erent

sign for the Lagrangian in (6.1), and ended up with the same components for jAB as

given in (7.3). The sign in the identi�cation jAB = 〈T AB〉 is also pure convention and we

could equally have chosen jAB = −〈T AB〉, since the sign of TAB is arbitrary already in its

de�nition (6.6). Restricting to the Lorentzian case with B2 > A2, the requirement j00 > 0

2In fact, it is possible to solve the integral for 〈T 00
0 〉 explicitly to give a Tricomi con�uent hypergeometric

function. As the explicit form of 〈T 00
0 〉 would not aid in further illuminating our results, we omit it.

3The special case of B2 = A2 corresponds to vanishing momentum of the clock �eld and is therefore
excluded.
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then gives the following prescription4: For sgn(K(2)) = 1, identify jAB = 〈T AB〉, whereas
for sgn(K(2)) = −1, set jAB = −〈T AB〉. (The resulting expressions are independent of

this choice, but for concreteness we can choose the former, i.e. sgn(K(2)) = 1, in what

follows. We will leave sgn(K(2)) general in any expressions of expectation values and insert

its value only when identi�cations with classical quantities are made.)

Here we are interested in the Lorentzian case and therefore restrict to initial conditions

with B2 > A2. Comparison with the conserved current for the FLRW case as given in

(7.4) then gives the following identi�cations for the momentum of the clock �eld and the

scale factor in the case of squeezed modes

π0 =
〈
T 00

0

〉
= |m|(B2 −A2),

a4 =− π0 〈T aa0 〉 = m2(B2 −A2)
(
(A2 + B2) cosh

(
2|m|χ0

)
− 2AB sinh

(
2|m|χ0

))
=
m2

2
(B2 −A2)

(
(A− B)2e2|m|χ0

+ (A+ B)2e−2|m|χ0
)
.

(7.11)

If we were to consider a Euclidean signature instead, we would have to restrict to A2 > B2,

as all entries in (7.3) would then have the same sign. The above identi�cations would

then be given by π0 = |m||B2 −A2|, whereas a4

π0
= −〈T aa0 〉 is unaltered.

From the identi�cation (7.11) we obtain the following e�ective Friedmann equation

H2 =

(
a′

a

)2

=
1

4
m2

(
1− 4(A2 − B2)2

((A− B)2e2mχ0 + (A+ B)2e−2mχ0)2

)
=

1

4
m2

(
1− π4

0

a8

)
−→

late times

1

4
m2.

(7.12)

In addition to a constant Hubble rate at late times, the e�ective metric gives a bouncing

universe, with the bounce occurring at a4 = π2
0, or equivalently, 〈T aa0 〉

2 = 〈T 00
0 〉

2.

Recovering a constant Hubble rate in the late time limit is in agreement with all the

Friedmann equations previously obtained for GFT models with a single clock �eld (see,

e.g., [185] and sec. 4.1) as well as with the general relativistic Friedmann equation for

a single massless scalar �eld. We �nd a mismatch of the late time e�ective Friedmann

equation with general relativity with four massless scalar �elds, where the gradients of

the spatial �elds contribute. To see this more explicitly, recall that the general relativistic

4The opposite is true for the Euclidean caseA2 > B2: sgn(K(2)) = 1 → jAB = −〈T AB〉 and sgn(K(2)) =
−1 → jAB = 〈T AB〉.
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Friedmann equations for the case of a single and four massless scalar �elds, respectively

(see sec. 3.4), are given by

H2
single field =

κ

6
, H2

four fields =
κ

6

(
1 + 3

a4

π2
0

)
. (7.13)

In the four �eld case the contribution of the spatial �elds dominates at late times, ren-

dering a match with the e�ective Friedmann equation (7.12) we recovered unfeasible. In

fact, as the bounce happens at a4

π2
0

= 1 there is no (early time) regime in which their con-

tribution can be neglected with respect to that of the clock �eld while being away from

the GFT bounce. Instead, we recover the late time behaviour of general relativity with

a single scalar �eld if we �x m2 = 2
3
κ.5 Singularity resolution through bounce is a com-

mon feature of GFT cosmology (sec. 4.1). The explicit form of the Friedmann equation

we �nd here however di�ers due to recovering an e�ective GR regime through the GFT

energy-momentum tensor instead of the volume operator V , which is used in previous

works. Recall that for the single J mode case, the volume operator is proportional to

the number operator N = A†A. Explicitly, the dynamical solution for N in the case of

squeezed modes is found to be 〈N〉 = (A2 + B2) cosh(2|m|χ0)− 2AB sinh(2|m|χ0), which

we recognize from (7.9) and �nd 〈T aa0 〉 = −sgn(K(2))|m| 〈N〉. We emphasise that this

relation between the expectation value of the number operator and the spatial diagonal

components of the GFT energy-momentum tensor depends on the choice of state and the

implementation of the saddle-point approximation, and therefore does not hold in general.

We can contrast our result to those previously reported in the GFT literature in more

detail. For this, recall the calculation in sec. 4.1.3 to obtain an e�ective Friedmann equa-

tion in the deparametrised approach to GFT with a single clock �eld. The e�ective

expression for the number operator for squeezed modes (4.11) di�ers to the one above

only by an additional constant term. This term is absent in the scenario considered here

due to the normal ordering procedure we impose, as was already pointed out in [78]. We

consider a similar state to the one used in the calculation outlined in 4.1.3 and found

that the contributions from the spatial �elds are irrelevant for the ~k = 0 mode. It is then

rather expected that we recover a similar evolution of the number operator as previously.

From the relation of 〈T aa0 〉 and 〈N〉 that follows for our state choice as explained above,

5We discuss a possible alleviation of this discrepancy by considering k-essence models in sec. 7.6.2.
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we �nd that the Hubble rate is related to operator expectation values through (cf. (4.13))

H2 =
1

16

(
〈T aa0 〉′

〈T aa0 〉

)2

=
1

16

(
〈N〉′

〈N〉

)2

. (7.14)

The di�erence in the form of the e�ective Friedmann equation (7.12) in comparison to

previous results, such as (4.14), then originates from the di�erent identi�cation of classical

quantities with operator expectation values in GFT. In our new proposal, we assign a

di�erent power of the scale factor a to the same dynamical expression, leading to 〈N〉 ∝ a4

instead of 〈N〉 ∝ a3 as previously considered. Thus, our proposal suggests that the

number of excited GFT quanta is not directly proportional to the increase in classical

spatial volume, but grows more rapidly. This is in contrast to the usual physical picture

of Planck-scale quanta carrying �xed amounts of volume, where the combined volume of

all quanta amounts to the spatial volume in a suitable classical limit. While conceptually

interesting, the di�erent identi�cation of the scale factor does not alter the late time

Friedmann equation, indeed, one can identify the scale factor with any power of the

dynamical expression found in the Friedmann equation to obtain a constant Hubble rate

at late times. This would simply lead to a di�erent numerical value of |m| as �xed in the

late time limit.

The e�ective Friedmann equation introduces a bounce at a4 = π2
0, which resolves the

singularity found in a general relativistic FLRW spacetime. We saw in sec. 1.2.2 that the

Big Bang singularity can be seen in the Ricci scalar, which diverges as a→ 0 in a classical

FLRW setting, resulting in the singularity quantum gravity might be expected to solve.

For our choice of lapse the Ricci scalar reads R =
6π2

0

a6
(−2H2 + a′′

a
) and for the e�ective

Friedmann equation in (7.12) we �nd that the Ricci scalar (1.40) at the bounce (a′ = 0

and π0 = a2) is indeed �nite. It is explicitly given by

Rbounce = 6
m2

π0

, (7.15)

where we used Rbounce = 6a
′′

a3
and a′′bounce = m2abounce from (7.11). Its value is determined

entirely by the value of π0 and thus by the initial conditions A, B appearing in the choice

of coherent state (7.7) through (7.11), if m is �xed by requiring consistency with the late

time Friedmann equation of general relativity with a single massless scalar �eld.

Finally, we consider the expectation values for oscillating modes m2 < 0. Here σ needs

to be especially peaked, so that contributions from squeezing modes can be neglected in
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the integral and only the region near ~γ = 0 (which consists entirely of oscillating modes)

contributes; see also the discussion in chap. 6. If squeezed contributions can be neglected,

such that the dynamics of the time dependent ladder operators are given by (6.12), and

we again make use of the saddle-point approximation (7.10) we obtain from (6.11)

〈
T 00

0

〉
≈
∫

d3γ

(2π)3
sgn(K(2))

e−γ
2/s2

c2
σ

|ωγ|(A2 + B2) ≈ sgn(K(2))|m|(A2 + B2) ,〈
T 0b

0

〉
= 0 ,

〈
T a6=b0

〉
= 0 ,

〈T aa0 〉 ≈
∫

d3γ

(2π)3

sgn(K(2))

|ωγ|
e−γ

2/s2

c2
σ

×
(
γ2
a(A2 + B2) + (|ωγ|2 + γ2

a)
(
(A2 − B2) cos

(
2|ωγ|χ0

)
+ 2AB sin

(
2|ωγ|χ0

)))
≈ |m|

(
sgn(K(2))(A2 − B2) cos

(
2|m|χ0

)
+ 2AB sin

(
2|m|χ0

))
.

(7.16)

Through the identi�cation (7.4) this results in

π0 = |m|(A2 + B2) ,

a4 =− |m|2(A2 + B2)
(
(A2 − B2) cos

(
2mχ0

)
+ 2AB sin

(
2mχ0

))
.

(7.17)

The sign of π0 is independent of the initial conditions, and the sign convention for the

identi�cation jAB = ±〈T AB〉 should be adjusted depending on the sign of K(2). On the

other hand, the sign of a4 is not �xed and �uctuates throughout the evolution, thus, an

oscillating mode on its own cannot be reconciled with a viable cosmological interpreta-

tion6, such that they can only appear in conjunction with squeezed modes. In this case,

their presence would modulate the evolution of the scale factor found for squeezed modes

(7.11), an e�ect whose relative importance would diminish as the universe evolves. Phe-

nomenologically, the e�ects of oscillating modes are particularly interesting in the early

universe, close to the bounce. Outside the cosmological context, oscillating modes could

be interpreted as resulting in an e�ective spacetime with an alternating metric signature,

but this is to be clari�ed further. We emphasise that the result for oscillating modes sig-

ni�cantly di�ers to that found for the case where the connection to an e�ective classical

theory is made through the volume and thereby the number operator a3 = 〈V 〉 ∼ 〈N〉 (in
the case of a single mode). I these cases the scale factor remains constant and is always

6Unless one restricts to a very short evolution time in which a4 > 0, the motivation for which would be
unclear.
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positive for oscillating modes, as it follows the behaviour of 〈N〉.

This concludes the discussion of the cosmological background metric, which we recon-

structed from the ~k = 0 mode of the GFT energy-momentum tensor for a suitable state.

For a squeezed Peter-Weyl mode, we recover an e�ective expression for the scale factor

that leads to an e�ective Friedmann equation with a bounce. The interpretation of re-

covering a �at FLRW spacetime is substantially strengthened in our approach, since we

can explicitly consider metric components.

In the following we will extend the analysis also to inhomogeneous modes and compare

the results to cosmological perturbation theory.

7.4. Cosmological perturbations

We now focus on the ~k 6= 0 components of the T AB components for the state introduced

in sec. 7.2 that was used to determine the e�ective background metric in the previous

section. Recall that for this naive choice of state, even though it is highly peaked on

the homogeneous background mode, inhomogeneous modes will always be excited as well.

In the following we examine the dynamics that arise for cosmological perturbations if we

identify these inhomogeneous modes with inhomogeneities of the perturbed FLRW metric

(7.1). Maybe unsurprisingly, we �nd a strong mismatch with the general relativistic dy-

namics. Still, the following can be seen as a guidance to construct perturbative quantities

and may give hints which adjustments could lead to an agreement with general relativity

at late times.

Recall that all components of the GFT energy-momentum tensor (6.11) depend on the

same operator combinations. In particular, each term is a product of the time-dependent

ladder operators Ak and A
†
k. From the state choice (7.7) with (7.8) and the linear depen-

dence of Ak , A
†
k on the time-independent creation and annihilation operators (see (2.43)

and (2.44)) we �nd that each of the terms in the expectation values for 〈T ABk 〉 will be
proportional to e−

γ2

2s2 e−
(k−γ)2

2s2 . Similar to the background dynamics, we can then employ

the saddle-point approximation to obtain explicit dynamics for the 〈T AB〉 components.

For this, we rewrite the exponentials appearing in the integrals as

e−
k2−2kγ+2γ2

2s2 = e−
1
s2

(γ− k
2

)2e−
k2

4s2 , (7.18)

and �nd a Gaussian peaked on ~γ =
~k
2
, such that we have ~γ → ~k

2
after applying the

198



7.4. Cosmological perturbations

saddle-point approximation (7.10). This approximation, which requires s � 1, will not

hold for all times or for large (enough) values of k. Note furthermore that for our choice

of σ(~k) (7.8) we have Ak |σ〉 = A−k |σ〉 (and similarly for A†k) for oscillating as well as

squeezed modes, due to ωk = ω−k. Expressions for the operator expectation values (6.11)

then simplify to

〈T 00
k 〉 ≈

sgn(K(2))

4|ωk/2|
c2
σ

[
k2〈A†k/2Ak/2〉 − 2m2

(
〈A†k/2

2〉+ 〈Ak/22〉
)]

,

〈T 0b
k 〉 ≈

kb
4
c2
σ

[
〈A†k/2

2〉 − 〈Ak/22〉

]
,

〈T a6=bk 〉 ≈ − sgn(K(2))

|ωk/2|
kakb

8
c2
σ

[
2〈A†k/2Ak/2〉+ 〈A†k/2

2〉+ 〈Ak/22〉

]
,

〈T aak 〉 ≈
sgn(K(2))

4|ωk/2|
c2
σ

[
− (4m2 + k2

a)〈A
†
k/2Ak/2〉+

1

2
(k2 − k2

a)
(
〈A†k/2

2〉+ 〈Ak/22〉
)]

,

(7.19)

where the factor c2
σ enters from the integral over the exponential in the saddle-point

approximation (7.10) and is cancelled by our choice of state (7.8). We use equality signs

in the expressions that follow; it should be understood that statements below rely on the

applicability and su�cient accuracy of the saddle-point approximation.

As detailed in the previous section, recovering an FLRW background metric with a

single Peter�Weyl mode is only possible in the case of a squeezed mode. Since there is no

split between background and perturbations in the simple state choice we employ here,

perturbations are then also of squeezing type in the single mode case, J = J0. In the

more general case, where a minimum of two J−modes are excited, one of them can be

of the oscillating type, as this will not alter the background dynamics at late times. For

completeness we then also consider the perturbations arising from oscillating modes.

Cosmological perturbation theory in a relational coordinate system spanned by four

massless scalar �elds was the topic of sec. 3.4.2. Our choice of relational coordinate sys-

tem is a speci�c case of the harmonic gauge determined by �xµ = 0 or equivalently

δ(gµνΓλµν) = 0, which leads to the relations between perturbation variables given in (3.39).

As noted already in chap. 6, the Klein-Gordon equation is always satis�ed in our setup

and follows from the conservation laws for T AB, which hold at operator level. Hence,

199



Chapter 7. Group �eld theory metric for the universe

the harmonic gauge condition is ful�lled exactly for any choice of state, and since it de-

termines the choice of coordinate frame, satisfying the harmonic gauge condition at the

quantum level is an important consistency check.

From the relation of perturbation variables to operator expectation values as given in

(7.6) we can establish equations of motion for e�ective perturbations arising from the GFT

e�ective metric, in terms of the dynamics of operator expectation values, independent of

the explicit state choice. From the identi�cations in (7.6) we obtain

B′′ + 4HB′ + 2
(
H ′ + 2H2

)
B = i

〈T 0a〉′′

kaa2
,

E ′′ + 8HE ′ + 4
(
H ′ + 4H2

)
E =− π0

2kakba4
〈T a6=b〉′′ ,

Φ̃′′ + 8HΦ̃′ + 4
(
H ′ + 4H2

)
Φ̃ =−

(
H ′ + 4H2

) 〈T 00〉
π0

− 2H〈T 00〉′

π0

− 〈T
00〉′′

4π0

− π0 tr〈T aa〉′′

4a4
,

ψ′′ + 8Hψ′ + 4
(
H ′ + 4H2

)
ψ =−

(
H ′ + 4H2

) 〈T 00〉
π0

− 2H
〈T 00〉′

π0

− 〈T
00〉′′

4π0

+
k2π0〈T a6=b〉′′

6kakba4
+
π0 tr〈T aa〉′′

12a4
.

(7.20)

We proceed to analyse squeezed and oscillating modes separately, due to their di�ering

late time limits.

The perturbative analysis for a �at FLRW spacetime �lled with four massless scalar

�elds was completed in sec. 3.4.2. Due to its comparative simplicity, we will focus on

comparing the dynamics of the scalar perturbation E as obtained from the quantum

theory to those of GR. As the e�ective Friedmann equation derived in (7.12) has the

late time limit of general relativity with a single scalar �eld devoid of the spatial �eld

contribution, we compare the e�ective GFT perturbation equations to the single �eld

case as well. The classical equation of motion for E in a scenario with four �elds as well

as a single massless scalar �eld in GR read, respectively:

four �elds:
π2

0

a4
E ′′ + k2E = −2κE, single �eld:

π2
0

a4
E ′′ + k2E = 0 . (7.21)

In principle, one could carry out a comparative analysis for all scalar perturbation vari-

ables, however, as we will �nd a considerable mismatch between e�ective GFT dynamics

and general relativity, focusing on E should su�ce at this stage. The full analysis would
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7.4. Cosmological perturbations

become relevant once agreement with general relativity has been established in the late

time regime.

7.4.1. Squeezed modes

The inhomogeneous squeezed modes, which we recall have ω2
k > 0, have similar dynamics

to the background mode with additional k−dependent terms. In particular, all compo-

nents of 〈T ABk 〉 grow exponentially. To obtain explicitly their dynamics from (7.19) it is

useful to de�ne the following expressions (we assume ωk/2 > 0)

〈A†k/2Ak/2〉 =
1

2
e−

k2

4s2

(
(A− sgn(K(2))B)2e2ωk/2χ

0

+ (A+ sgn(K(2))B)2e−2ωk/2χ
0
)

=: nk(χ
0) ,

〈A†k/2
2〉+ 〈Ak/22〉 = 2 e−

k2

4s2 (A2 − B2) =: ck ,

(7.22)

in terms of which the expectation values for the GFT energy-momentum tensor (7.19)

read

〈T 00
k 〉 =

sgn(K(2))

2ωk/2

(
k2

2
nk(χ

0)−m2ck

)
, 〈T a6=bk 〉 = −sgn(K(2))

8ωk/2
kakb

(
2nk(χ

0) + ck
)
,

〈T aak 〉 =
sgn(K(2))

2ωk/2

[
−
(
m2 +

k2
a

4

)
2nk(χ

0) +

(
k2 − k2

a

4

)
ck

]
,

〈T 0b
k 〉 =

i sgn(K(2))

8ωk/2
kbn
′
k(χ

0) .

(7.23)

If then follows that 1
3

tr〈T aak 〉 = sgn(K(2))
2ωk/2

[
−
(
m2 + k2

12

)
2nk(χ

0) + k2

6
ck

]
, which will be a

useful expression in the following analysis. For our choice of state, nk(χ0) corresponds to

the expectation value of the number operator Nk =
∫

d3γ
(2π)3

: A†k−γAγ : (not to be confused

with the lapse function), i.e. nk(χ0) = 〈Nk〉. This relation is valid as long as σ(~k) (7.8) is

symmetric in k and we are within the range of validity of the saddle-point approximation.

In particular, the exact form of σ(~k) is irrelevant, as long as it is su�ciently peaked on

the ~k = 0 mode.

To analyse the dynamics of the energy-momentum tensor components we �rst note that
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nk(χ
0) satis�es the following equation of motion

nk(χ
0)′′ = 4ω2

k/2nk(χ
0) . (7.24)

As nk(χ0) fully governs the dynamics of the squeezed energy-momentum tensor, the 〈T ABk 〉
satisfy similar dynamics, namely

〈T 00
k 〉′′ =4ω2

k/2〈T 00
k 〉+ sgn(K(2))2ωk/2m

2ck ,

〈T a6=bk 〉′′ =4ω2
k/2〈T

a6=b
k 〉+ sgn(K(2))

kakb
2
ωk/2ck ,

〈T aak 〉′′ =4ω2
k/2〈T aak 〉 − sgn(K(2))ωk/2

(
k2 − k2

a

2

)
ck ,

〈T 0b
k 〉′′ =4ω2

k/2〈T 0b
k 〉 ,

(7.25)

from which it follows that 1
3

tr〈T aak 〉′′ = 4
3
ω2
k/2 tr〈T aak 〉 − sgn(K(2))ωk/2

k2

3
ck. They also

satisfy (ka 6= 0, kb 6= 0)

〈T 00
k 〉′ = −2 i

k2

ka
〈T 0a

k 〉, 〈T a6=bk 〉′ = 2 i ka〈T 0b
k 〉, 〈T aak 〉′ = 2 i

(
4m2 + k2

a

) 〈T 0b
k 〉
kb

,

(7.26)

where the index b on the right-hand side of the last expression can refer to any space-

time component of the energy-momentum tensor. Note in particular that due to the

exponential growth of nk(χ0), the constant terms in the expressions can be neglected at

late times, leading to closed second order equations for the 〈T ABk 〉 that are exactly those

of the number operator.

The comparison of (7.2) and (7.23) allows a naive identi�cation regarding the nature

of the perturbations focusing on the matching of factors of k, in particular, the 〈T AB〉
resulting from our state choice are consistent with purely scalar perturbations. We �rst

note that the overall factor of kb in 〈T 0b〉 is consistent with vanishing vector modes

BV
a = 0. Similarly, from 〈T a6=b〉 we �nd ET

a6=b = 0 and ∂aE
V
b + ∂bE

V
a = 0 (a 6= b); we

also get ∂aEV
a = 0 from 〈T aa〉. Finally, we conclude that ET

aa = 0 by noticing that the k2
a

terms in 〈T aa〉 give exactly the k2
aE term in jaa, using the identi�cation T a6=b = ja6=b. The

possibility of obtaining vector and tensor perturbations from the e�ective GFT metric we

construct here is should be clari�ed in future studies; in what follows we focus solely on

scalar perturbations.

We can then use the above results and the relations found in (7.6) to write down explicit
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expressions for the scalar metric perturbations arising from squeezed modes7

E =
1

16ωk/2

π0

a4
(ck + 2nk(χ

0)) ,

B =
1

8ωk/2

1

a2
nk(χ

0)′ ,

ψ =
1

16ωk/2

(
2
m2

π0

ck − nk(χ
0)

(
k2

(
π0

a4
+

1

π0

)
+

4m2π0

a4

))
,

Φ̃ =− 1

16ωk/2

(
ck

(
k2π0

a4
− 2m2

π0

)
+ nk(χ

0)

(
k2

(
−π0

a4
+

1

π0

)
− 12m2π0

a4

))
.

(7.27)

From the e�ective expressions above we can make some basic observations regarding the

behaviour of perturbations arising from squeezed modes:

� The magnitude of perturbations at the bounce, where we have a4 = π2
0, is determined

by their wavenumber. Recalling that the amplitudes of nk(χ0) and ck as de�ned in

(7.22) scale as e−
k2

4s2 , we conclude that there is a minimum value of k for which

perturbations can be assumed to be small at the bounce. This value is determined

by the value of s, which regulates the peakedness of the state (7.7), and can therefore

be made arbitrarily small. Nevertheless, for our state choice there are always small,

but non-zero k−modes that are of the same order as the background mode. This

di�ers from standard cosmological perturbation theory, where all perturbations are

assumed to be small w.r.t. the background, and is a �nite width e�ect of the state we

are considering; the situation of standard cosmology corresponds to the case of s→
0. An avenue to potentially reconcile our state choice with conventional cosmology

would be to include a range of k−modes, with a cut-o� scale determined by s, in

the GFT background. One would then have to establish how such a de�nition of

the GFT background could be translated appropriately to the classical context.

� As the universe expands, nk(χ
0) increases and hence the perturbations grow in

time. In particular, nk(χ0)/a4 grows (recall that at late enough times a4 ∝ e2mχ0

and nk(χ
0) ∝ e2ωk/2χ

0
), such that all perturbations increase and are smallest/ take

their minimum value at the bounce. This is undesirable from the perturbative point

of view, but can be reconciled by recalling that the free GFT theory as well as the

saddle-point approximation are applicable for a �nite time only and furthermore,

7Recall the discussion above (7.11), where we concluded that the sign of the e�ective expressions is
independent of sgn(K(2)), but for concreteness we can again choose sgn(K(2)) = 1 and jAB = 〈T AB〉.
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the perturbations are exponentially suppressed in k, i.e. the faster they grow, the

smaller their initial amplitude. At late times, the term proportional to k2

π0
nk(χ

0) will

be dominant in the expressions for Φ̃ and ψ.8 However, an approximation of the form

Φ̃ ≈ ψ ≈ sgn(K(2))
16ωk/2

k2

π0
nk(χ

0) would be invalid, as it violates (3.40), which is derived

directly from the harmonic gauge conditions. The harmonic gauge conditions are

equivalent to the conservation law ∂0T 0B + i
∑

a kaT aB = 0, which we showed holds

exactly at operator level in sec. 6.2.2.

� Using the above one can obtain explicit expressions for gauge-invariant perturbation

variables using (3.20) and (3.54). Recall that in the limit π2
0

a4
� 1 we have ψ → R.

� In the k → 0 limit, ψ and Φ̃ tend towards constants. The same applies to E,

however in the strict separate universe limit, E and B do not appear as they enter

the description only as terms proportional to the wavenumber (or, equivalently

spatial gradients, see e.g. (7.2)). The role of E and B in the separate universe limit

was also discussed in sec. 3.3; a comparison of the separate universe limit of (7.6)

to the results of chap. 5 will be the topic of sec. 7.5.

We proceed to analyse the concrete form of the equation of motion for the perturbation

variable E arising for squeezed GFT modes and compare to its classical counterpart. The

e�ective dynamics of the variable E can be written as (using (7.20) and (7.25))

E ′′ + 8HE ′ + 4(H ′ + 4H2 − ω2
k/2)E +

ωk/2
4

π0

a4
ck = 0 . (7.28)

In the late time limit we can neglect the ck−term as it falls o� as a−4, and approximate

H ′ ∼ 0 and H2 ∼ m2

4
(see sec. 7.3). If we also insert ω2

k/2 = k2

4
+m2, we �nd

E ′′ + 8HE ′ − k2E ∼ 0 . (7.29)

This can be simpli�ed further by considering the expression for E ′: At late times, we can

assume that E ∼ π0
8ωk/2a

4nk(χ
0), again neglecting the ck−term and make use of nk(χ0)′ ∼

2ωk/2nk(χ
0) (see (7.22)), leading to

E ′ ∼ −4HE + 2ωk/2E . (7.30)

8Here we have assumed that the saddle-point approximation is still applicable in this regime.
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For small wavenumbers k2

4
� m2 we furthermore have ωk/2 ∼ 2H, such that E ′ ∼ 0 and

the equation of motion for E simpli�es to

E ′′ − k2E = 0 . (7.31)

Comparing to (7.21) we �nd that the e�ective equation (7.31) has a Euclidean signature

instead of the Lorentzian one of GR and is missing a factor of π
2
0

a4
. It furthermore resembles

the general relativistic single �eld case instead of that of four massless scalar �elds, which

is similar to what we found for the e�ective Friedmann equation in sec. 7.3.

In previous works the signature of perturbations was found to be dependent on initial

conditions, where both the Lorentzian as well as the Euclidean case could be recovered

[151]. It is then evident that alterations to the setup we present here will be necessary to

recover agreement with Lorentzian general relativity, the dynamical equations we included

in (7.20) are general and can give guidance also for future work that might e.g. change

the construction of the model or look at di�erent states.

In the GR perturbation equations, the factor π2
0/a

4 more generally reads a2/N2, i.e.

depends on the ratio of the scale factor and the lapse, and would hence be absent in

the case of conformal time N ∼ a. The lapse is however determined by our choice of

coordinate system and the expression of the conjugate momentum of the clock �eld, such

that one would have to consider alternative matter actions to obtain a di�erent form of

N . For this reason, one might want to consider k-essence models that include a more

general function of the kinetic term in the Lagrangian for the four massless scalar �elds.

The challenge is then to obtain a model in which N ∼ a and H2 ∼ const. at late times;

we discuss an extension of our setup to k-essence models in sec. 7.6.2.

A discussion similar to the one we included for E above could be carried out for the other

three scalar perturbation variables. As these will generally su�er from similar deviations,

we leave this analysis for future work, once the discrepancies to GR have been better

understood.

This concludes the analysis of squeezed modes. In the following we repeat the analysis

of perturbative dynamics for the case of oscillating modes.

7.4.2. Oscillating modes

We follow the equivalent procedure for oscillating modes, which occur when ω2
k/2 < 0.

Recall that for the action used for our construction (6.5) and the de�nition of ω2
k = m2+k2
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this will only hold in the case where m2 < 0 and for su�ciently small wavenumbers. In

particular, as the saddle-point approximation reduces all frequencies to ωk/2, we only �nd

oscillating modes for k2 < 4m2. For the operator expectation values appearing in (7.19)

we obtain

〈A†k/2Ak/2〉 = e−
k2

4s2 (A2 + B2) =: dk ,

〈A†k/2
2〉+ 〈Ak/22〉 = e−

k2

4s2

(
(A− iB)2e−2isgn(K(2))|ωk/2|χ0

+ (A+ iB)2e2isgn(K(2))|ωk/2|χ0
)

= e−
k2

4s2 2
(
(A2 − B2) cos

(
2|ωk/2|

)
+ 2sgn(K(2))AB sin

(
2|ωk/2|

))
=: fk(χ

0) ,

(7.32)

which leads to

〈T 00
k 〉 =

sgn(K(2))

4|ωk/2|

[
k2dk − 2m2fk(χ

0)

]
,

〈T 0b
k 〉 =

ikb
2
e−

k2

4s2
[
(A2 − B2) sin

(
2|ωk/2|χ0

)
− 2AB cos

(
2|ωk/2|χ0

)]
,

=− ikb
8|ωk/2|

fk(χ
0)′

〈T a6=bk 〉 = − sgn(K(2))

8|ωk/2|
kakb

[
2dk + fk(χ

0)
]
,

〈T aak 〉 =
sgn(K(2))

4|ωk/2|

[
− (4m2 + k2

a)dk +
1

2
(k2 − k2

a)fk(χ
0)

]
.

(7.33)

The dynamics of oscillating modes are governed by fk(χ
0), which satis�es

fk(χ
0)′′ = −4|ωk/2|2fk(χ0) . (7.34)

This leads to the following equations of motion for the GFT energy-momentum tensor

〈T 00〉′′ =− 4ω2
k/2〈T 00〉+ sgn(K(2))|ωk/2|k2dk,

〈T a6=b〉′′ =− 4ω2
k/2〈T a6=b〉 − sgn(K(2))|ωk/2|kakbdk,

〈T aa〉′′ =− 4ω2
k/2〈T aa〉 − sgn(K(2))|ωk/2|

(
4m2 + k2

a

)
dk ,

〈T 0b〉′′ =− 4ω2
k/2〈T 0b〉 .

(7.35)

Note that this mimics the dynamical equations of squeezed modes, with an opposite
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sign, which hints at the possibility to recover a Euclidean signature in the perturbation

equations.

The expressions for the perturbation variables are those of the squeezing case (7.27),

with ck → fk(χ
0) and nk(χ

0) → dk, which is clear from comparing (7.22) and (7.32);

explicitly we have (sgn(K(2)) = 1)

E =
π0

16|ωk/2|a4
(fk(χ

0) + 2dk) ,

B =
1

8|ωk/2|a2
fk(χ

0)′ ,

ψ =− 1

16|ωk/2|

(
−2

m2

π0

fk(χ
0) + dk

(
k2

(
π0

a4
+

1

π0

)
+ 4m2π0

a4

))
,

Φ̃ =− 1

16|ωk/2|

(
fk(χ

0)

(
k2π0

a4
− 2m2

π0

)
+ dk

(
k2

(
−π0

a4
+

1

π0

)
− 12m2π0

a4

))
.

(7.36)

Importantly, there are no growing terms in the perturbations (they are called oscillating

modes after all!), such that terms proportional to dk cannot be neglected at late times.

The only applicable late time limit is that the amplitude of terms proportional to a−4

decreases. In particular, this implies that E and B decay whereas ψ and Φ̃ oscillate

around a set value.

Using (7.20) together with (7.35) we �nd for oscillating modes

E ′′ + 8HE ′ + 4E(4H2 +H ′) = −4ω2
k/2E +

|ωk/2|π2
0

2a4
dk . (7.37)

The late time limit is di�erent to the squeezed case, in particular, the last term propor-

tional to dk
a4

is of the same order as E and cannot be disregarded. At late times we have

4H2 ∼ m2 and H ′ ∼ 0 leading to (using ω2
k/2 = k2

4
+m2)

E ′′ + 8HE ′ + 32H2E = −k2E +
|ωk/2|π2

0

2a4
dk . (7.38)

While we recover a Lorentzian signature, the discrepancy of the a4/π2
0 factor remains,

furthermore, unlike in the squeezed case, the H2E term does not cancel with the m2−
dependent part of the ω2

k/2-term. Lastly, as no terms can be neglected at late times, E ′

cannot be simpli�ed and we are left with additional terms that are absent in GR.

This concludes the analysis of scalar perturbations within our proposal to extract an
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e�ective metric from GFT for a �rst naive state choice. We proceed by comparing these

results to those obtained from the separate universe methods we used in chap. 5.

7.5. Separate universe considerations

In chap. 5 we derived dynamics for super-horizon perturbations from a modi�ed Fried-

mann equation making use of the separate universe picture, which allows us to remain

agnostic about �nite k dynamics. As discussed in sec. 5.3.2 the separate universe picture

has its limits and to fully comprehend the implications of modi�ed gravitational dynam-

ics for cosmological perturbations in any given model, information about inhomogeneous

dynamics is required. In what follows, we compare the evolution of ψ obtained through

the methods of chap. 5 to the explicit solutions given in sec. 7.4.1.

We brie�y summarise the main idea of chap. 5: For perturbations with su�ciently

large wavelengths, gradients can be neglected and perturbations can be modelled in the

separate universe picture, where the universe is modelled as a collection of independent,

homogeneous patches. Perturbations in a single patch are then given by the di�erence

between the value in the patch and the ensemble average and perturbation equations can

be obtained by perturbing the background equations.

As discussed in sec. 7.3, the e�ective Friedmann equation (7.12) we recover from an

e�ective GFT metric has the late time limit of general relativity with a single massless

scalar �eld. The method of chap. 5 pre-supposes that the modi�ed Friedmann equation

agrees with general relativity at late times, and therefore we neglect rod �eld contributions

to the energy density, such that ρ =
π2
0

2a6
.

Using the results of chap. 5, for the general Ansatz that the Friedmann equation is given

by H2 = κ
3
N2ρF , which in the case of a single massless scalar �eld that serves as a clock

reduces to H2 = κ
6
F , we have the following equation of motion for ψ (5.31):

−ψ′ = H
δF
2F

. (7.39)

From (7.12) we have F = 1− π4
0

a8
and δF = −4

π4
0

a8

(
δπ0
π0

+ 2ψ
)
, with δa = −aψ. Note that

this di�ers from the e�ective Friedmann equation that was used as an example in sec. 5.2.2

due to the normal ordering procedure employed for the T AB operators and the di�erent

identi�cation of the scale factor, which here is obtained from the GFT energy-momentum
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tensor. Note also that we can write the right-hand side of the e�ective Friedmann equation

(7.12) as a function of the energy density, namely F = 1− (2 π0 ρ)4/3. We reiterate that,

as the clock �eld momentum π0 does not constitute a fundamental parameter but is

determined by initial conditions, the GFT e�ective Friedman equation belongs to the

more general class of modi�ed Friedmann equations with F 6= F(ρ).

The equation of motion for ψ (7.39) can be solved, using the e�ective solution for a

(7.11), namely we obtain

ψ = −δπ0

2π0

+

(
1− π4

0

a8

) 1
2

cψ , (7.40)

where cψ ∈ R. At the bounce, where a4 = π2
0 we have ψ = − δπ0

2π0
, whereas in the far pre-

and post bounce regime, where π2
0/a

4 small, we have ψ = cψ− δπ0
2π0

. The e�ective Friedmann

equation (7.12) hence leads to the special case where the evolution of ψ around the bounce

is symmetric, which is rather di�erent from the exemplary evolutions displayed in �g. 5.1c.

The second term in (7.40) introduces dynamics of ψ in the vicinity of the bounce.

In the limit k2 � m2, the expression for ψ as given in (7.27) reads

ψ ∼ −e−
k2

4s2

(
1

2
+
k2

m

(
1 +

a4

π2
0

))
. (7.41)

Note that for the e�ective GFT expressions, ψ in the k → 0 limit is exactly constant

throughout the evolution, whereas any k 6= 0 mode (which is strictly speaking required for

a perturbation) would exponentially grow at late times. This instability is related to the

Euclidean signature that we �nd for perturbations and we conclude that for exponentially

growing solutions the separate universe limit is not applicable beyond the k = 0 mode.

For the k = 0 mode agreement with the separate universe analysis (7.40) is then found

only at late times.

To summarise, in the separate universe picture, we �nd that ψ is dynamical around

the bounce point, which does not agree with the small k solution of ψ as found in the

relational GFT picture; instead, for non-zero k, ψ is minimal at the bounce and continues

to increase outside the bounce region . This mismatch is unsurprising, as the separate

universe analysis demands that general relativity is recovered at late times, which is how-

ever not the case for the explicit perturbative expressions we found in our setup.

It would not be meaningful to carry out a separate universe analysis for oscillating
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modes: Their background dynamics to not lead to a general relativistic Friedmann equa-

tion at late times, and in the case were they `live' on a background determined by squeezed

modes, their dynamics are independent from the modi�ed Friedmann equation that dic-

tates the evolution of the background, thus making the separate universe procedure in-

applicable.

7.6. Possible extensions

In our analysis of the e�ective GFT metric recovered for the cosmological setting, we

encountered two main discrepancies:

1. The e�ective Friedmann equation disagrees with that of general relativity with four

massless scalar �elds at late times. Instead, consistent with previous literature,

the Hubble rate (in the coordinate system where χ0 serves as a clock) becomes

approximately constant and resembles the case of a single scalar �eld as the universe

expands.

2. E�ective dynamics of perturbations do not agree with those of GR. In particular, we

�nd a Euclidean signature for e�ective perturbations in the case of squeezed modes

and a factor of a4/π2
0 is missing from the equations of motion.

It is then apparent that in order to recover a suitable semiclassical regime for cosmology,

alterations have to be introduced to the setup described above. In this section we consider

two routes to such alterations that focus on the manner in which the scalar �elds are

included in the theory and restrictions imposed by the setup. In particular, we consider

including the clock and spatial scalar �elds di�erently in the GFT action. On the classical

side, we consider alternative scalar �eld actions in the form of k-essence models. We �nd

that both cases are restricted by symmetry requirements on the form of the GFT energy-

momentum tensor and the conserved classical currents. We present both considerations

separately, whether and in which way k-essence models could be related to more general

GFT actions is left for future work.

7.6.1. Extensions of the GFT action

In the construction of the GFT action with four massless scalar �elds, one imposes the

symmetries that are ful�lled by the classical scalar �eld action in GR, namely, shifts,
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rotations and re�ections (sec. 2.2.3). The Laplacian on R4 in the GFT action (2.31)

ful�lls the above-mentioned symmetries. In particular, the derivatives w.r.t. the scalar

�elds enter with the same pre-factor to preserve the rotational symmetry. As the E(4)

symmetry is broken upon singling out a clock �eld for quantisation in the deparametrised

approach to GFT, one might want to impose an E(3) symmetry between the spatial �elds

only and allow for a di�erent factor in front of the derivatives w.r.t the clock �eld in the

GFT action, as was considered already in [149]. This more general Laplacian would then

read ∆ =
(

∂
∂χ0

)2

+ ca
∑

a

(
∂
∂χa

)2

, where ca ∈ R, and lead to the free action (truncated at

second order):9

S =

∫
d4χL, L =

∑
J

(
1

2
K(0)
J ϕ2

J −
1

2
K(2)
J

(
(∂0ϕJ)2 + ca

∑
a

(∂aϕJ)2

))
. (7.42)

The action (6.5) used in our analysis so far is recovered for ca = 1.

Following the process of sec. 2.2.3 to construct a Hamiltonian from the GFT action,

it is apparent that the additional factor in front of the spatial gradient term enters the

de�nition of ωk, namely ω2
k = m2 +k2 → ω2

k = m2 + cak
2 (see (2.32), (2.33), and (2.35)).

Recall that we obtain a squeezing type Hamiltonian in the cases where ω2
k and the term

containing time derivatives (or, equivalently, the canonical momenta) of the GFT �eld

have a di�erent sign in (2.35), which is the case for ω2
k > 0. The opposite scenario (ω2

k < 0)

results in an oscillating Hamiltonian instead. If we consider the case with ca = −1, we �nd

that all modes with m2 < 0 are oscillating modes. For m2 > 0, we �nd squeezed modes

only in the cases where k2 < m2; all other modes are of oscillating type. (For ca = 1,

which we considered so far, a change in mode type occurs in the case of m2 < 0, where

all modes with k2 < m2 are oscillating modes, whereas for large k−values all modes are

of squeezing type.) This might be phenomenologically desirable as it limits the number

of squeezed (and therefore, exponentially growing) modes.

Despite this enticing feature, the symmetry requirements on the GFT energy-momentum

tensor (6.6) exclude such an alteration to the GFT action. In particular, in absence of

the E(4) symmetry the GFT energy-momentum tensor TAB is no longer symmetric, as

9We could have more generally also introduced an arbitrary parameter in front of the
(

∂
∂χ0

)2
term, but

this could be reabsorbed into K(2) below, so we omit it.
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TAB = TBA requires that

∂L
∂(∂Aϕ)

∂Bϕ =
∂L

∂(∂Bϕ)
∂Aϕ , (7.43)

for all A,B, i.e. the Lagrangian must be invariant under a re-labelling of the scalar �elds.

In the Hamiltonian framework, this symmetry is broken by making a choice of clock

�eld; but a priori this deparametrisation can be carried out with respect to any of the

�elds. Introducing the clock �eld on a di�erent footing in the Lagrangian would break

this symmetry and therefore negate the identi�cation of TAB with jAB in the relational

coordinate system (assuming the standard scalar �eld action (6.1)).

To uphold the premise of our proposal to identify the expectation values of the GFT

energy-momentum tensor with the respective classical currents, any generalisation of the

GFT action, must respect this symmetry. We can thus restrict the form of the action

to containing only symmetric combinations of second order derivatives of the group �eld

with respect to the χA. If one wanted to extend the GFT action to include e.g. higher

order derivatives w.r.t. the scalar �elds, such higher order terms must appear equally for

all four scalar �elds. Such a modi�cation will then inevitable a�ect also the background

dynamics and one cannot include additional terms solely for the spatial �elds (which

might have been desirable from a purely phenomenological perspective).

7.6.2. K-essence models

We now consider changes not on the side of GFT, but in the classical theory that we

would like to �nd agreement with. A priori, our construction within GFT assumes only

that the classical action of the scalar �elds contains the same symmetries as the GFT

action and makes no assumption about its speci�c form.10 In the following, we �rst in-

troduce a more general form of the classical scalar �eld action compatible with the GFT

construction and continue to assess how this would a�ect the e�ective dynamics of the

scale factor as recovered in sec. 7.3. Throughout this section, we assume that the GFT

action is of the `standard' form used throughout the thesis (6.5) and hence that the GFT

energy-momentum tensor is symmetric.

When positing four massless scalar �elds to be used as a relational coordinate system,

10One also needs to assume that the �elds are `good' coordinates. For instance, if the clock �eld does
not evolve monotonically overall, one needs to restrict to a time span in which it does.
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as is done in our work explained above [2], as well as in previous GFT works [78, 151, 152]

it seems natural to choose the standard Lagrangian for all four massless scalar �elds on

the classical side (A = 0,1,2,3)

Lχ = −1

2

√
−g
∑
A

gµν∂µχ
A∂νχ

A . (7.44)

As found in sec. 7.3, our proposal to reconstruct an e�ective metric from GFT gives a

mismatch already at the background level with the Friedmann equation for GR with

four massless scalar �elds, since the e�ective Friedmann equation resembles GR with a

single massless scalar �eld instead. Furthermore, the dynamics of perturbations studied

in sec. 7.4 reveal a similarity with general relativistic perturbation equations in conformal

time. The proposed setup requires only that the classical and quantum system exhibit a

shift symmetry in the Lagrangian and in the following we extend the classical analysis to

a more general Lagrangian that contains functions of the kinetic terms of the scalar �elds

and thereby respects the shift symmetry. In particular, we consider a Lagrangian of the

form

L =
√
−gP (X0, Xa), with X0 = −1

2
gµν∂µχ

0∂νχ
0, Xa = −1

2
gµν∂µχ

a∂νχ
a , (7.45)

where P denotes a general function. For a �at FLRW spacetime and in a relational

coordinate system with ∂µχ
A = δAµ we have X0 = 1

2N2 and Xa = − 1
2a2

. Models of this

type are referred to as k-essence models, see e.g. [264, 265]. For a Lagrangian as given in

(7.45), the energy-momentum tensor is given by 11

(χ)T µν = δµν P +
∑
A

∂P

∂XA

gµα∂αχ
A∂νχ

A = δµν P +
∑
A

∂P

∂XA

gµAδAν . (7.46)

and the classically conserved currents read

(jµ)A = −
√
−g

(
∂P

∂X0

gµ0δA0 +
∑
a

∂P

∂Xa

gµaδAa

)
, (7.47)

where we imposed relational coordinates ∂µχA = δAµ . If we consider the time-space com-

11We do not carry out the sum explicitly in the last step to avoid a confusing index structure.

213



Chapter 7. Group �eld theory metric for the universe

ponents of the currents, we �nd

(j0)a = −
√
−gg0a ∂P

∂Xa

, (ja)0 = −
√
−gg0a ∂P

∂X0

(7.48)

and therefore, in order to relate to a symmetric energy-momentum tensor on the GFT

side, we must demand j0a = ja0. This imposes ∂P
∂X0 = ∂P

∂Xa , i.e. the Lagrangian has to

include all �elds in the same manner,

L =
√
−gP (X), with X := −1

2

∑
A

gµν∂µχ
A∂νχ

A =
1

2N2
− 1

2a2

(jµ)A =−
√
−ggµA ∂P

∂X
,

(7.49)

where we assumed a �at FLRW background and a relational coordinate system for the

explicit form of X. (Note that the symmetry requirement strictly speaking only applies

when considering non-diagonal metrics, as in the diagonal case we trivially have j0a = 0 =

ja0; however, one might strive for a general construction that can hold for various metrics,

including their perturbed variants.) The clock �eld momentum is given by the following,

where in the last step we restricted to the �at FLRW case and assumed a Lagrangian of

the form (7.49)

π0 = −
√
−g ∂P

∂X0

g00 =
a3

N

∂P

∂X
, (7.50)

which upon �xing P gives an equation that can be solved for the lapse N . Recall that

in a relational coordinate system with the standard matter Lagrangian (7.44), the lapse

is �xed to be N = a3/π0. Importantly, as π0 corresponds to the j00 component it is

conserved also in this more general case, as long as gµν is diagonal (which is the case for

�at FLRW at the background level).

For (7.49) and the perturbed FLRW metric given in (7.1) the classically conserved
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currents in the relational coordinate system take on the following form

j00 =
a3

N

(
∂P

∂X

(
1 + (−Φ̃− 3ψ +∇2E)

)
+ δ

∂P

∂X

)
,

j0a =− a2

(
∂P

∂X
(−BV

a + ∂aB)

)
,

ja6=b =− aN
(
∂P

∂X

(
−2∂a∂bE + ∂aE

V
b + ∂bE

V
a − 2ET

ab

))
,

jaa =− aN
(
∂P

∂X

(
1 + Φ̃− ψ +∇2E − 2∂2

aE + 2∂aE
V
a − 2ET

aa

)
+ δ

∂P

∂X

)
.

(7.51)

In the following we consider the background dynamics for k-essence models of the form

(7.49), where we limit our attention to squeezed modes. We focus on two aspects: Firstly,

the impact of a changed matter action on the e�ective dynamics for the background

mode; secondly, whether the change in matter Lagrangian could lead to conformal time

and thereby aid in the mismatch of the perturbation equations.

At the background level, the identi�cation jAB = 〈T AB〉 leads to the following expres-

sions (the expectation values 〈T AB〉 are the same as in (7.9), as we assume that all GFT

related aspects remain unchanged; we also use sgn(K(2)) = 1)

〈T 00
0 〉 =|m|(B2 −A2) =

a3

N

∂P

∂X
,

〈T aa0 〉 =− |m|
(
(A2 + B2) cosh

(
2|m|χ0

)
− 2AB sinh

(
2|m|χ0

))
=− aN ∂P

∂X
,

〈T 0a
0 〉 =0, 〈T a6=bk=0 〉 = 0 .

(7.52)

For P = X we recover the expressions reported in sec. 7.3 and N = a3/π0 from (7.50). The

identi�cation with the operator expectation values (7.52) reveals that 〈T 00
0 〉 = a3

N
∂P
∂X

!
=

const. For an expanding universe, the value of the scale factor should be increasing and

as we have 〈T aa0 〉 ∝ e2mχ0
at late times, it seems justi�ed to demand that −〈T aa0 〉 =

aN ∂P
∂X

!∝ an (approximately) with n > 0.12 Furthermore, combining the expressions

above we obtain 〈T aa0 〉/〈T 00
0 〉 = N2/a2 and thus N2/a2 ∝ an, which excludes the case of

conformal time (N = a).

12Note that the exact value of n does not matter and will give a similar Friedmann equation with a
di�erent value of m, which is �xed by the late time limit.
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From (7.46) we can obtain the energy density and the Friedmann equation:

−ρ =(χ)T 0
0 = P +

∂P

∂X
g00, H2 ∝ ρN2 = −N2P +

∂P

∂X
. (7.53)

We can use these expressions for some general considerations on whether it would be

possible to recover a constant Hubble rate at late times, as we found in the GFT case (see

sec. 7.3). First we make the assumption that the lapse can be approximated as N ∝ aq, at

least in some regime. (In general, this need not be the case as the solution to (7.50) can be

more involved.) From the condition that N2/a2 ∝ an n > 0 we discussed above, it follows

that q > 1. If we furthermore consider the late time regime in which X ∝ a−2 (7.49) we

�nd that we obtain a constant Hubble rate at late times for P ∝ Xq. Speci�cally, we have

N2P → a2qa−2q ∂P

∂X
→ a−2q+2 , (7.54)

where the former term dominates the late time regime. As already mentioned, solving

(7.50) for P 6= X is rather complicated however, and in general does not lead to a simple

analytical relation of the desired form N ∝ aq. If we focus on the case with a single

scalar �eld instead, where we have X = 1
2N2 , and assume P ∝ Xq, a constant Friedmann

equation is obtained only for P = X, as H2 ∝ N−2(q−1) in such a scenario. This then

recovers the simplest case that was studied previously. Including the function P in the

classical setup therefore does not seem to aid the discrepancies in the late time Friedmann

equation that were found in sec. 7.3, at least not in a straightforward manner.

As a side note, we would like to point out that if we were only concerned with the

background dynamics and would not have to take the symmetry requirement that restricts

the general Lagrangian (7.45) to be of the form given in (7.49) into account, we could

obtain a constant Hubble rate within k-essence models. In such cases we would have the

freedom to choose e.g. P = (X0)u +
∑

a(Xa)
v, with u, v ∈ R, such that the conserved

currents at the background level read

j00 = π0 = u(X0)u−1a
3

N
=

u

2u−1

a3

N2u−1
, jaa = −v(Xa)

v−1aN = (−1)v
v

2v−1

N

a2 v−3
.

(7.55)

We assume again that N ∝ aq and use the expressions of the operator expectation values

(7.52) to restrict the values of u and v. Firstly, demanding a constant clock momentum

π0 = j00 = const. �xes q = 3/(2u− 1). Secondly, we saw that jaa grows exponentially at
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late times, such that we recover an expanding universe if jaa ∝ an, with n > 1. Together

with the above, this leads to q − 2v + 3 > 0. The energy density for this type of model

reads

−ρ = (1− 2u)
1

2uN2u
+ (1− 2v)(−1)v

3

2va2v
. (7.56)

The Friedmann equation H2 ∝ N2ρ then has two terms: the �rst scales as N−2u+2 ∼
a(−2u+2)q and the second as a−2v+2q. One then needs to �nd suitable combinations of u

and v that give a constant π0, an expanding universe, and a constant Hubble rate at late

times. An example is v = 2 and u = 5
4
, giving N ∝ a2. The discrepancy between the

GFT e�ective Friedmann equation and the GR Friedmann equation at late times for four

massless scalar �elds would be resolved in this type of model.

In summary, we considered a more general form of the classical matter Lagrangian that

retains the shift symmetry of the scalar �elds. We saw how for a non-diagonal metric,

the form of the matter Lagrangian is restricted by the symmetry of the GFT energy-

momentum tensor, assuming the GFT construction remains unaltered. By considering the

evolution of the expectation values of the GFT energy-momentum tensor, which determine

the scale factor and the value of the clock momentum, we could impose restrictions on

models that give desirable phenomenology, for instance we could conclude that N2/a2 6=
const. In the case where one is interested in a �at FLRW metric at the background level

only, where o�-diagonal components of the classical currents trivially vanish, we showed

that some k-essence models allow to recover a constant Friedmann equation at late times

even when the matter content is given by four massless scalar �elds, which agrees with

the e�ective Friedmann equation we found from GFT in sec. 7.3. As such models cannot

be extended to the perturbative analysis however, the impact of this result should be seen

as limited.

7.7. Conclusion: Insights from cosmology

The objective of this chapter was to reconstruct an e�ective metric from GFT for a uni-

verse described by a perturbed �at FLRW metric using the process proposed in chap. 6.

The interest in the outcome of this investigation is twofold: On the one hand, we wish to

establish the usefulness of the suggested e�ective GFT metric in connection to GR; on the

other, we are interested in any phenomenological results that may be found, particularly
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for cosmological perturbations.

After re-capping the classical scenario for a perturbed FLRW metric we gave explicit

expression for the general relativistic Noether currents and focused on the relation between

background and perturbative variables to the expectation values of the GFT energy-

momentum tensor.

While our proposal is very general, in the sense that an e�ective metric can be associated

with any state that is su�ciently semiclassical, such that operator expectation values can

be considered as e�ective quantities, the particular choice of state governs the speci�c

form of such a metric and its symmetries. For our analysis, we chose a Fock coherent

state highly peaked on the homogeneous ~k = 0 mode. Fock coherent states are commonly

used in the GFT literature as they satisfy the requirement of semiclassicality; peaking

around the background mode re�ects the spacetime symmetries that should be captured

by the e�ective metric.

We examined the e�ective background metric resulting from the k = 0 modes of the

GFT energy-momentum tensor. We found that the resulting canonically conjugate mo-

mentum of the clock �eld is conserved in time, as dictated by the Klein�Gordon equation,

and for squeezed modes the e�ective scale factor generates a bouncing universe, thus

resolving the singularity. Remarkably, only half of the possible space of initial condi-

tions lead to an e�ective Lorentzian metric, while the other half results in a metric with

Euclidean signature. This �nding is consistent with the fact that the fundamental assump-

tions underlying our GFT model (speci�cally, the choice of a compact gauge group and

the omission of interactions) would be compatible with both Lorentzian and Euclidean

models of quantum gravity. Furthermore, the signature of the metric cannot be deduced

from a Friedmann equation alone, which can take a similar form in both cases. At the

level of perturbations, the spacetime signature becomes apparent from the equations of

motion and in this context, the studies by [151, 152] similarly �nd that the e�ective sig-

nature is determined by the initial conditions rather than e.g. the choice of a compact or

non-compact gauge group.

Our expression for the scale factor results in an e�ective Friedmann equation that agrees

with general relativity coupled to a single scalar �eld at late times. We �nd a relation

between the number operator and the e�ective scale factor that di�ers from the literature,

namely 〈N〉 ∝ a4 instead of 〈N〉 ∝ a3. Squeezed modes give a bouncing universe similar to

previous studies. For the contributions arising from oscillating modes, we �nd that a4 can
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take negative values, therefore, it seems that such modes can only appear in conjunction

with one or more squeezed modes. While the e�ective Friedmann equation we recover

mirrors the standard GFT result for homogeneous cosmology, there are discrepancies

with the classical Friedmann equation: given that the spatial coordinate �elds have non-

vanishing gradient energy, they would be expected to contribute additional terms in the

energy density that can only be neglected when π2
0

a4
� 1. Such terms are not found in the

e�ective GFT dynamics, so that at best one might expect a matching between GFT and

classical cosmology for early times, where these terms do not yet dominate. However, we

found that the bounce occurs at π2
0

a4
= 1, meaning there is no such early-time regime in

the GFT setting we consider here.

In the relational coordinate system we employed in the construction in chap. 6 and

used in this section, the value of the Ricci scalar at the bounce is determined by initial

conditions, namely the value of π0, and unrelated to quantities like the ratio of the energy

density to the Planck density. This seems to imply that the bounce could occur at low

curvatures (somewhat reminiscent of what happens in the so-called µ0-scheme of loop

quantum cosmology [254]). Extending our setup to allow the spatial and clock �eld to

have unequal gradients in the relational coordinate system might allow for a bounce scale

that is independent of initial conditions.

There are various routes one might consider to remedy the tension between the two

Friedmann equations. If one focuses solely on the Friedmann equation (instead of the

full e�ective metric), one might be inclined to introduce a curvature term in the GR ex-

pressions, which would cancel the additional contribution from the spatial matter �elds,

thus leading to a consistent interpretation of the GFT scenario if the �atness assump-

tion is dropped. However, such an interpretation is only viable if one is limited to the

investigation of an e�ective Friedmann equation, whereas in our setup we have access to

all metric components, and since
〈
T ab0

〉
∝ δab, our choice of state clearly corresponds to

a �at metric. More generally, the mismatch seems to arise from a general di�culty to

include spatial gradients of the scalar �elds in the GFT construction. As we have seen,

spatial homogeneity implies that the mean �eld should be peaked around ~k = 0; indeed

we have neglected all �nite ~k contributions in our saddle-point approximation. These

assumptions then also entail that the canonical momenta (or, in other words, the kinetic

energy) of the spatial coordinate �elds must vanish. It would not be possible to introduce

non-vanishing canonical momenta without also departing from homogeneity, as discussed

from a slightly di�erent perspective in [78]. In our classical setup we had to assume that
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while the spatial coordinate �elds are not homogeneous in space (they would not be good

coordinates otherwise), their energy-momentum tensor is. It may be that in our GFT

scenario the imposition of spatial homogeneity by peaking on ~k = 0 actually imposes a

stronger condition of homogeneity on the matter �elds themselves, which would be incom-

patible with the presence of gradient energy, and imply an inconsistency in our starting

point of assuming that the matter �elds are good spatial coordinates.

Our results here are consistent with previous literature, in which the spatial coordinate

�elds are either simply assumed to be negligible at background level [151, 152], or where

e�ective Friedmann dynamics only show contributions from additional matter �elds if

one chooses a state peaked around ~k0 6= 0 [78]. Introducing gradient energy into the

e�ective Friedmann equation might require entirely di�erent types of states, for instance

states built from multiple Peter�Weyl modes. It might also require including the e�ects

of GFT interactions, which we neglected here; as stated in sec. 4.1.2, this assumption

usually applies to the early universe since interactions generally dominate at late times.

If the late-time limit of a suitably de�ned interacting GFT matches with the expression

for general relativity with four scalar �elds, this could be seen as a phenomenological

constraint on the allowed types of GFT interactions. A possible alternative to the model

we studied would be to introduce an additional scalar matter �eld as in [151, 152]. This

�fth �eld is not interpreted as a relational coordinate and has its own independent initial

conditions; if this �eld dominates over the coordinate �elds at some initial time, such

a scenario might yield an intermediate regime where the e�ective Friedmann equation

matches that of general relativity, before spatial gradient terms would be expected to

dominate. Whether this could be realised in our new approach needs to be studied in

more detail.

In succession to the study of e�ective background dynamics, we turned our focus to

the perturbations arising from an e�ective GFT metric. With our new proposal, we were

able to reconstruct expressions for all scalar metric perturbations explicitly for the �rst

time in the GFT literature. We established general equations of motion for scalar pertur-

bation variables in terms of the e�ective operator dynamics, which are independent of a

speci�c state choice. These can hence be used for any state proposal that goes beyond the

example we consider here, or for more general models with alternative operator dynamics

that can occur e.g. through modi�cation to the GFT action. Continuing with a con-

crete example, we used the same state as for the e�ective background metric, as non-zero
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k−modes, which we interpret as perturbations, will always be excited in addition to the

background mode. We again applied the saddle-point approximation, which restricts the

validity of our results to perturbations with su�ciently small wavenumbers. For our state

choice small wavelength perturbations are initially exponentially suppressed and neglect-

ing interactions limits the validity of our analysis to a �nite time. We considered the case

of oscillating and squeezed modes separately, where for both mode types the dynamics of

perturbations are naturally very similar to those we found for the background. Our choice

of state leads to expressions for the GFT energy-momentum tensor components that are

compatible with the interpretation of recovering only scalar perturbations, even though

in principle the 〈T AB〉 contain all perturbation types. The e�ective scalar perturbations

we found for squeezed modes grow away from the bounce, excluding a consistent inter-

pretation as small alterations to a homogeneous background after a certain point in the

evolution. Comparing the equation of motion for the perturbation variable E to those

obtained in GR for the case of a single, as well as four massless scalar �elds, revealed the

following discrepancies to the e�ective dynamics: Firstly, the dynamics of the e�ective

perturbation have a Euclidean signature instead of a Lorentzian one. Secondly, they re-

semble the general relativistic dynamics one might expect in the case of conformal time,

whereas in the relational coordinate system the GR expressions contain a relative factor

a4/π2
0. Finally, the late time limit of the e�ective dynamics for E resemble (save for the

aforementioned discrepancies) the single �eld case of GR, similar to what we found for

the e�ective Friedmann equation.

A comparison of the e�ective dynamics for ψ to those that would result from the

separate universe picture as studied in chap. 5 revealed that an agreement can only be

found for the k = 0 mode. This is maybe unsurprising, as the e�ective perturbations

exhibit exponential growth at late times and as such disagree with GR - an agreement

with GR in the classical limit is however a prerequisite for the applicability of the separate

universe procedure. To recover a bouncing universe at the background level, we saw that

at least one squeezed mode needs to be excited - for our state choice we then inevitably

encounter perturbations that are of squeezing type.

Oscillating modes on the other hand, remain �nite in amplitude throughout the evolu-

tion of the universe. While recovering a Lorentzian signature in the dynamical equations

for the e�ective perturbation E, we again encountered the same discrepancy regarding a

dynamical factor of a4/π2
0, moreover, additional terms which cancelled in the squeezing

case and are not present in the GR dynamics arise.
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To obtain e�ective dynamics that match GR alterations to the setup presented are nec-

essary. These can go in several directions. We considered extensions to the construction

proposed here in the direction of altering the GFT action or the action of the scalar �elds

in the GR setting. (These are studied separately, assuming in each case that the other

remains unchanged.) Both cases lead to interesting e�ects and are limited by symmetry

requirements on T AB and jAB, which are crucial to allow a consistent identi�cation of

these two quantities with one another. Adjusting how the derivatives w.r.t. the clock and

spatial �elds enter the GFT action has the potential to alter which values of ωk result

in oscillating or squeezed modes. Interestingly, it is possible to introduce a maximum

wavenumber for squeezed modes, such that all modes with larger k will be of oscillating

type. In the case of k-essence models we assessed whether it is possible to �nd a form of

the matter Lagrangian that gives conformal time and a constant general relativistic Fried-

mann equation at late times. The desired result can only be achieved if one is concerned

solely with the background metric (which, clearly, we are not, as we explicitly want to

study also the perturbations, the access to which makes the proposal of a GFT metric so

appealing). In this case, the clock and rod �elds can be included in the action in such

a way that one recovers a constant Friedmann equation in GR with four massless scalar

�elds, thus matching the result of the GFT case.

There is a plethora of possibilities to extend the results of this chapter in future studies,

some of which we mention below

� Alternative state choices. The state we considered here is characterised by a single

k−dependent function that determines both the background as well as the pertur-

bations. One might want to consider states that more closely resemble the scenario

of standard cosmology, e.g., one could consider a state in which σ(~k) is given by

a delta-peak for the background mode plus a small k−dependent contribution for

the perturbations, which can exhibit an entirely di�erent spectrum. As discussed in

sec. 4.1.4, such state choices have been considered in past studies of perturbations

in GFT [151, 152, 222].

� Changes to the operator dynamics. The dynamics of perturbations are directly

related to the dynamics of the components of the GFT energy-momentum tensor.

The dynamics of the T AB are determined by the GFT action and while the state

plays the important role of imposing homogeneity, the resulting physical system

is also dictated by the GFT dynamics. Including higher order kinetic terms or
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interactions in the GFT action might then lead to e�ective dynamics that are closer

to those of GR at late times.

� Including additional group �elds. In [152], the authors consider a GFT model which

includes two types of GFT �eld, a so-called `space-like' and a `time-like' one, which

enter the GFT action in a di�erent manner. Their interplay allows one to recover

dynamical equations for the perturbations of the spatial volume element that agree

with GR in a certain limit. Similar extensions would change the explicit form of

the GFT energy-momentum tensor and symmetry requirements would likely impose

certain conditions (and possibly limitations) on such a construction.

In conclusion, the e�ective metric we reconstruct here can consistently be interpreted

as a �at FLRW metric at the background level, which is a most welcome result. The

e�ective Friedmann equation di�ers from previous GFT literature, as the scale factor is

no longer recovered from a relation to the number operator (via the volume operator).

Furthermore, the e�ective Friedmann equation does not match that of GR in the case

of four massless scalar �elds, but rather recovers the single �eld case. The exceptional

advantage of having access to a reconstructed metric lies in the fact that we can explicitly

reconstruct any combination of perturbative quantities, in particular, we can construct

e�ective gauge-invariant perturbations. This is of particular interest as gauge-invariant

quantities are those that can be related to observations. Access to such quantities goes

beyond previous GFT literature, which was limited to the study of perturbations of the

volume operator. For the construction used here we �nd a mismatch between the dynamics

of e�ective perturbations and the evolution obtained in GR at late times for oscillating

as well as squeezed modes, which needs to be reconciled if one wishes to proceed with

a phenomenological analysis of quantum gravity e�ects on perturbations. Similarity to

previous GFT results for perturbations in a relational framework, which displayed similar

discrepancies at �rst [151] but could be resolved in later work [152], give hope that a

reconciliation is feasible. Indeed, as we have seen, possibilities to extend the results

presented here are plentiful.

Finally, we emphasise that the setup from chap. 6 is general and not limited to the

cosmological framework. The usefulness of the proposal to reconstruct an e�ective GFT

metric should be established by investigating its application also outside of the context

of homogeneous and isotropic cosmology. Here, anisotropic Bianchi models might be best

suited and black hole spacetimes would be of particular phenomenological interest. If
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proven suitable to obtain a variety of spacetimes, the e�ective GFT metric could pave the

way for a variety of fruitful future research directions.
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Chapter 8.

Conclusion and outlook

As all things, this thesis must �nd its end. We summarise our results and give modest

suggestions for further research directions.

8.1. Conclusion: Quantum gravity and the universe

`Sometimes the only scienti�c answer we can give is �We don't know".'

- Sabine Hossenfelder.

`Manchmal lautet die einzig wissenschaftliche Antwort auf eine Frage �Das wissen wir nicht�.'

Our quest for describing perturbations within a quantum theory of gravity sent us on

a journey that touched upon various topics and concepts of physics.

In chap. 1 we reviewed the main concepts of general relativity and discussed alternative

formulations in the form of Ashtekar-Barbero variables and the Plebanski formulation.

We also touched upon the di�culty of �nding observables in GR, which can be mended

by focusing on relational quantities instead. We detailed the application of GR to cos-

mology, where our universe is described by a �at FLRW metric, where we saw that for

standard matter types, one recovers the Big Bang singularity at the origin of the universe.

After brie�y reviewing the main concepts of quantum mechanics and quantum �eld the-

ory, we motivated the need for quantum gravity from the basic premise that the quantum

nature of matter is well-established and the Einstein equations posit an equivalence be-

tween geometry and matter. We focused on two background independent approaches to

quantum gravity, namely loop quantum gravity, which is based on the Ashtekar-Barbero
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formulation of GR, and spin foams, which rely on a path integral formulation. In both

frameworks, spin networks play a crucial role: they give the kinematical Hilbert space of

LQG and the boundary states for the path integral in spin foams. Spin networks can be

depicted as graphs which in turn can be interpreted as triangulations of spatial slices.

In chap. 2 we introduced the GFT framework and gave a detailed account of the speci�c

formulation of GFT we use in following chapters. We saw how GFT can be motivated

from loop quantum gravity and spin foams approaches, leading to an interpretation of

GFT quanta in terms of spin network vertices. However at this point, GFT has become

an approach of its own, especially with regards to cosmological applications. As GFT

is formulated on an abstract group manifold, there is initially no notion of spacetime,

instead, spacetime is emergent. The classical limit in which the theory should recover GR

is reached for a large number of GFT quanta, which are to be understood as the `building

blocks of space'. Dynamics are introduced to the theory by coupling a massless scalar �eld

that serves as a relational clock to the group �eld. We detailed the speci�c form of the free

GFT action used throughout this thesis before describing the two quantisation schemes

commonly found in the literature, namely the deparametrised and the algebraic approach.

The former is based on a GFT Hamiltonian and is the approach we use throughout. We

gave details of the Hamiltonian framework with four massless scalar �elds that are used to

span a local relational coordinate system as an extension to the relational time coordinate.

In chap. 3 we provided more details on the well-established �eld of cosmological per-

turbation theory, where one includes small deviations from exact homogeneity in the

description of the universe. Due to the ambiguity of the coordinate system these per-

turbations live in, this induces an additional gauge ambiguity, and only gauge-invariant

quantities can be related to observations. We introduced the separate universe frame-

work as a useful description for large-scale perturbations, which forms the basis of our

results in chap. 5. Finally, we carried out a perturbative analysis in a universe �lled with

one as well as four massless scalar �elds. Background independent approaches can be

supplemented with matter reference frames to allow to make statements about spacetime

events. In particular, a single massless scalar �eld can serve as a clock and four such �elds

can span a local Cartesian coordinate system. As such a system is rather uncommon

from a cosmologist's point of view, we included an analysis of the background cosmology

and perturbations in such a frame. The relational coordinate system leads to a speci�c
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lapse choice and imposes harmonic gauge conditions. The results of later chapters are

compared to these perturbation equations.

In chap. 4 we focused on the application of group �eld theory to cosmology. In past lit-

erature, an e�ective evolution of the universe could be reconstructed from the expectation

value of the volume operator, which is assumed to be directly related to the scale factor.

We gave a historical introduction behind the choice of a Fock coherent state as a semiclas-

sical state that is used to extract the e�ective evolution of the universe. We demonstrated

explicitly how an e�ective Friedmann equation is obtained from GFT, making use of the

deparametrised framework established in chap. 2. The GFT Friedmann equation intro-

duces a bounce that resolves the Big Bang singularity and agrees with general relativity

at late times. We provided an overview over past results regarding cosmological pertur-

bations in GFT. Additionally, we brie�y summarised how a bouncing universe can be

obtained within LQC, which applies LQG techniques to quantise the symmetry reduced

setting of cosmology. Finally, we made the observation that in the vicinity of such quan-

tum bounces, many perturbations are outside the Hubble horizon and can therefore be

described by super-horizon dynamics.

We began the second part of the thesis by investigating the behaviour of perturbations

around a quantum gravity bounce in chap. 5. Ideally, one would not have to �nd a way to

include perturbations in each quantum gravity proposal separately. We explored a more

general, model-agnostic approach by focusing on long-wavelength perturbations near a

quantum gravity bounce. We found that one can make limited statements about whether

conservation laws of GR that hold for gauge-invariant perturbation on super-horizon scales

carry over to a speci�c theory by considering only on a modi�ed Friedmann equation. We

�rst established perturbation equations for a general modi�ed form of the Friedmann

equation and continued to analyse the dynamics of gauge-invariant perturbation vari-

ables. We found that one can separate modi�ed Friedmann equation into two classes. In

the case where alterations depend only on the energy density, as e.g. in LQC, the conser-

vation laws of GR for super-horizon perturbations remain valid. This statement does not

carry over to the more general case and as an example for such a scenario we illustrated

how the comoving curvature perturbation R becomes dynamical around a GFT bounce.

The curvature perturbation on equal density hypersurfaces ζ on the other hand is always

conserved for adiabatic perturbations. While one cannot make more detailed statements,
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as no analogue to e.g. the Mukhanov�Sasaki equation can be derived for general theories,

this can still hint at crucial departures from general relativity. Our analysis assumed

that modi�cations arise in the gravitational sector, and the continuity equation remains

unaltered.

Having seen that information about inhomogeneities is required to make further progress

in the study of cosmological perturbations within quantum gravity, we set out to study

perturbations in GFT. Similar to previous approaches in the literature we make use of a

relational coordinate system spanned by four massless scalar �elds to localise perturba-

tions. We made a more general new proposal on how to extract classical spacetime physics

from GFT in chap. 6: The matter reference frame introduces conserved Noether currents

in the classical setting as well as in the quantum theory and we propose that these currents

should be directly related. Perhaps this can be seen as taking the idea that `physics is

in the symmetries' to the extreme. We �rst introduced the classical currents and showed

how they are explicitly related to the inverse metric in the relational coordinate system.

We then proceeded to construct the Noether currents on the GFT side in the form of an

energy-momentum tensor. We gave its de�nition in the deparametrised GFT framework,

imposed a normal ordering procedure and showed that the conservation law continues to

hold at operator level, independently of the choice of state. As the expectation values

of the GFT energy-momentum tensor are directly related to the classical currents, they

allow to reconstruct an e�ective metric from GFT for suitable semiclassical states.

In chap. 7 we applied our proposal to the cosmological setting. For this, we �rst es-

tablished the form of the classical currents for a perturbed �at FLRW metric. In order

to extract e�ective expressions for these currents from the quantum theory, we used a

coherent state characterised by a highly peaked Gaussian. The k = 0 mode corresponds

to the homogeneous background mode, whereas we interpret all other modes as pertur-

bations. At the background level, the e�ective metric we recovered is exactly diagonal,

strengthening the interpretation of GFT cosmology as giving a �at FLRW spacetime. We

obtained an e�ective Friedmann equation that has a di�erent dependence on the scale

factor in comparison to previous GFT results, while it induces a bounce and recovers the

same late time behaviour as previous GFT studies. However, on the GR side the spatial

�elds give a non-negligible contribution to the Friedmann equation, such that a mismatch

arises. We furthermore investigated perturbations, where the concept of an e�ective met-
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ric allowed us to obtain e�ective expressions for all scalar metric perturbations explicitly.

In principle, this would allow us to investigate also gauge-invariant quantities, which was

not possible in past GFT studies. However, we found that the dynamics of perturba-

tions as calculated in the GFT framework di�er from GR in substantial ways, such that

changes to the framework are required before such an investigation becomes worthwhile.

We considered two naive alterations to the framework we used. The �rst was concerned

with including the spatial �elds di�erently to the clock �eld in the GFT action, which is

however ruled out by symmetry demands for the GFT energy-momentum tensor. We also

considered k-essence models, which are similarly restricted by symmetry requirements.

In summary, starting from the application of quantum gravity to cosmology we aimed

to take a step towards establishing cosmological perturbations within such theories in

order to obtain an additional guiding principle in the ongoing search for quantum gravity.

8.2. Outlook: The search must go on

`Man merkt nie, was schon getan wurde, man sieht immer nur, was noch zu tun bleibt.'

- Marie Curie.

`One never notices what has been done, one only sees what remains to be done.'

Many studies of quantum gravitational theories aim to establish a �rst relation to GR

through the study of cosmological models. To achieve such a feat in a model independent

manner requires more advanced methods than the separate universe picture we used in

chap. 5. Further investigations in such directions would certainly be helpful, but their

starting point might be less clear.

Regarding GFT speci�cally, the perhaps rather optimistic proposal of reconstructing an

e�ective metric from the quantum theory as introduced in chap. 6 opens up the pathway

to a plethora of research directions and seemingly the hardest task will be to determine

which are worth pursuing. We have included here only the �rst naive application to a

physical scenario that is more complex than the �at FLRW background and encountered

rather fundamental deviations from the general relativistic system we hoped to capture.

There are several possibilities to alleviate these discrepancies, some of which we already

229



Chapter 8. Conclusion and outlook

detailed in sec. 7.7. Considering results that have been achieved in previous studies of

GFT perturbations, it might well be possible that an agreement with GR can be found.

In general, when considering more involved models it would be interesting to establish

general structures within the setup that we proposed. Speci�cally, one can try to address

questions such as: Does the concrete form of the GFT Noether currents as encoded in

the GFT energy-momentum tensor restrict the form of e�ective metrics? How do the

properties of a GFT state translate to properties of the reconstructed spacetime? Any

such further extensions could help to establish whether the notion of an e�ective metric

is a useful one.

In the end, it may be that GFT is another attempt at quantum gravity that like its

predecessors will evade the realm of veri�able claims, or prove su�ciently malleable to

account for any mismatches. One must then honestly acknowledge that the quest for

quantum gravity is a di�cult one and one cannot hope to build a theory in a day (or

decade), but ultimately is limited to chiselling away at the wall of the unknown one bit

at a time. Hopefully, the combined e�orts will reveal a more coherent picture one day.
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Appendix A.

De�nition of a manifold and its

tangent vector space

We include the de�nition of a manifold and detail how vectors are de�ned on a manifold,

where our description is based on [34]. This appendix is intended to complement the

introduction to general relativity we gave in sec. 1.1.

An n−dimensional manifold M is a topological space that can locally mapped to Rn.

To make this notion precise, consider a family of open sets {Ui}, whose union covers the

set M , i.e. ∪
i
Ui = M . To each Ui we can assign a homeomorphism ϕi : Ui → U ′i ∈ Rn,

i.e. an injective map with an open image in Rn. For a point p ∈ M we have ϕ(p) =

{x1(p), . . . , xn(p)}, where we refer to {xµ(p)} as the coordinate of p. In order to locate

points p on the ma- nifold we need to introduce a coordinate system, which is exactly the

role of the maps ϕi. The pair (Ui, ϕi) is referred to as a chart, and the set of all charts for a

manifold that have a smooth transition between coordinate system {(Ui, ϕi)} is called an

atlas. Concretely, the requirement of a smooth transition states that for any non-empty

intersection between coordinate neighbourhoods Ui ∩ Uj 6= ∅ the map ψij = ϕi ◦ ϕ−1
j is

(in�nitely) di�erentiable and surjective. We can now rephrase the de�nition of a manifold:

An n−dimensional manifold is a set M with a maximal atlas (an atlas that contains all

allowed charts).1

Having local charts, we can describe points on a manifold in their assigned coordinate

system. We can also consider curves c(t) on a manifold c : (a, b)→M , with (a, b) an open

interval in R. Let f : M → R be a function whose gradient we wish to consider along the
1Some care needs to be taken in the case of manifolds with boundaries, which we do not describe further
here.
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curve c(t) at a given point. For simplicity, we choose this point to correspond to t = 0

and demand that t ∈ (a, b). The gradient of f is given by

df(c(t))

dt

∣∣∣
t=0

=
∂ (f ◦ ϕ−1(x))

∂xµ
dxµ(c(t))

dt

∣∣∣
t=0

=:

(
Xµ ∂

∂xµ

)
f =: X[f ] (A.1)

i.e. we have de�ned a di�erential operator X that gives us the derivative of a function on

the manifold along a curve. As we can see from the de�nition above, this di�erential o-

perator is determined by the curve and its derivative at the given point, Xµ = dxµ(c(t))
dt

|t=0,

and hence all curves with the same value and �rst derivative at t = 0 de�ne the same

di�erential operator. X is then uniquely de�ned from this equivalence class of curves.

The di�erential operators that arise from all equivalence classes of curves at a given point

on M form a vector space, called the tangent vector space of M at point p, denoted TpM .

A basis for this vector space is given by ∂
∂xµ

and Xµ gives the components of a vector.

As we encountered in the de�nition of the manifold, charts can overlap and we can have

di�erent coordinate systems for the same region of a manifold. In this case, the vector X

remains the same, but clearly, since the basis takes a di�erent form in the new coordinate

system, the components Xµ transform under such a change. Explicitly, we have

X = Xµ ∂

∂xµ
= X̃µ ∂

∂x̃µ
, X̃µ = Xν ∂x̃

µ

∂xν
. (A.2)

Starting from the notion of a tangent vector space at each point on the manifold, we

can make use of the properties of vector spaces to de�ne further quantities. For instance,

one can consider dual vector spaces and de�ne tensors, for which we refer the reader back

to the main text in sec. 1.1.
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Appendix B.

Gauge-invariant Einstein equations

We reported the expressions for the perturbed Einstein tensor and energy momentum

tensor for a general lapse choice in sec. 3.1.1. In the situation we consider in the main text,

the gauge is explicitly �xed by a choice of relational coordinate system. For completeness,

we report gauge-invariant expressions for the Einstein tensor for a general lapse in the

following and show how a gauge-invariant energy momentum tensor can be obtained.

Recall that the transformation of a quantity under a change under the perturbed coor-

dinate system (3.15) is determined by the Lie derivative (1.8) and we have

xµ → x̃µ = xµ + ξµ ⇒ δ̃Q = δQ+ £ξQ , (B.1)

with ξµ = (ξ0, ξi).

Gauge-invariant Einstein tensor

The Lie derivatives of the components of the Einstein tensor Gµ
ν for a �at FLRW metric

read

£ξG
0
0 =

6

N2

(
(a′)2N ′

a2N
+

(a′)3

a3
− 6a′a′′

a2

)
ξ0 , (B.2)

£ξG
0
i =− 2

a2N3

(
aa′N ′ +N

(
(a′)2 − aa′′

))
∂iξ

0 , (B.3)

£ξG
i
i =

2

a3N4

(
−3a2a′(N ′)2 +N2

(
(a′)3 − a2a′′′

)
+ a2N (3a′′N ′ + a′N ′′)

)
ξ0 , (B.4)

£ξG
i
i 6=j = 0 . (B.5)
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We observe that the following combination of perturbations transforms conveniently under

a change of perturbed coordinate system, which follows directly from (3.18):

a

N

(
B − a

N
E ′
)

=: fB,E → fB,E − ξ0 . (B.6)

The components of the perturbed Einstein tensor (3.10) can then be made gauge-

invariant through the following combinations (δGi
6=j is una�ected by a change of perturbed

coordinate system; no sum over i below):

δG0
0

(gi) = δG0
0 +G0

0
′fB,E , δGi

i
(gi) = δGi

i +Gi
i
′fB,E ,

δG0
i
(gi) = δG0

i + (G0
0 −

1

3
Gk

k)∂ifB,E.
(B.7)

If we insert the Bardeen potentials (3.20), we �nally obtain manifestly gauge-invariant

expressions for the components of the perturbed Einstein tensor

δG0
0

(gi) =
2

a2N2

(
3aa′Ψ′B + 3(a′)2ΦB −

(
N2∇2ΨB

))
,

δG0
i
(gi) =− 2

N2
∂i

(
a′

a
ΦB + Ψ′B

)
,

δGi
i
(gi) =

1

a2N3

[
− 2aN ′ (2a′ΦB + aΨ′B) + 2N

(
a (a′ (3Ψ′B + Φ′B) + aΨ′′B) ,

+
(
2aa′′ + (a′)2

)
ΦB

)
+N3(∇2 − ∂2

i ) (−ΨB + ΦB)
]

δGi
i 6=j

(gi) =
1

a2
∂i∂j(ΨB − ΦB) .

(B.8)

Gauge-invariant stress energy tensor

The Lie derivatives of the background stress energy tensor are

£ξT
0
0 = T 0

0
′ξ0, £ξT

i
i = T ii

′ξ0, £ξT
0
i = (T 0

0 −
1

3
T kk )∂iξ

0, £ξT
i
6=j = 0 ,

(B.9)

such that one can obtain gauge-invariant expressions in equivalent fashion to the perturbed

Einstein tensor (B.7). One can then combine the gauge-invariant expressions to obtain

an equation of motion e.g. for the Bardeen variable ΦB.
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Perturbations in relational

coordinate systems

We explicitly include calculations to derive perturbation equations for a universe �lled

with a single and four massless scalar �elds, discussed in sec. 3.4.1 and 3.4.2, respectively.

Choosing one �eld as a clock, the lapse is �xed to N = a3/π0. We work in harmonic

gauge (see sec. 3.2.3) and for convenience we include again the harmonic gauge conditions

(3.39)

−π0

a4
(HB +B′) +

1

a2
(−Φ̃ + ψ +∇2E) =0 ,

−π0

a4
∇2B +

π2
0

a6
(−Φ̃− 3ψ +∇2E)′ =0 ,

(C.1)

and their combination (3.40)

π2
0(−Φ̃− 3ψ +∇2E)′′ =a4∇2(−Φ̃ + ψ +∇2E) . (C.2)

C.1. A single massless scalar �eld

We show explicitly the steps to derive the perturbative dynamics for a universe �lled with

a single massless scalar �eld that serves as a clock, working in harmonic gauge. This

system was discussed in sec. 3.4.1. This analysis is similar to the discussion of the single

�eld case in [151, 215].
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The space-time components of the Einstein equations δG0
i = κδT 0

i = 0 give the con-

straint

HΦ̃ + ψ′ = 0 . (C.3)

The spatial-diagonal δGi
j = κδT ij = 0 components give

−π0

a4
(2HB +B′)− 1

a2
(Φ̃− ψ) +

π2
0

a6
E ′′ = 0 , (C.4)

which together with the �rst harmonic gauge condition (C.1) leads to an equation of

motion for E

E ′′ − a4

π2
0

∇2E = 0 . (C.5)

Inserting this into (C.2) leads to

π2
0(−Φ̃− 3ψ)′′ = a4∇2(−Φ̃ + ψ) . (C.6)

Finally, (C.4) simpli�es the expressions for δG0
0 = κδT 0

0 and δGi
i = κδT ii , leading

respectively to

3H(HΦ̃ + ψ′) +
a2

π0

∇2B − a4

π0

∇2ψ −H∇2E ′ =
κ

2
Φ̃ , (C.7)

(2H ′ − 3H2)Φ̃ +HΦ̃′ + ψ′′ =− κ

2
Φ̃ . (C.8)

These simplify using the background equations as given in (3.38), namely 3H2Φ̃ = κ
2
Φ̃.

Inserting ∇2B = −π0
a2

(Φ̃′ + 3ψ′ −∇2E) from (C.1) into (C.7) we get

−a
4

π2
0

∇2ψ −HΦ̃′ = −a
4

π2
0

∇2ψ + ψ′′ = 0 , (C.9)

where we also made use of (C.3) and thus obtain an equation of motion for ψ, which is

equivalent to that of E. From (C.8) an equation of motion for Φ̃ can be derived using

(C.6) to replace ∇2ψ

Φ̃′′ − 4HΦ̃′ − a4

π2
0

∇2Φ̃ = 0 . (C.10)
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C.2. Four massless scalar �elds

Using the background solution a = a0e
Hχ, where a0 denotes a constant with [a0] =

L, explicit solutions for the perturbation variables can be found in the form of Bessel

functions:

E =b1J0

(
e2Htk

2Hπ0

)
+ b2Y0

(
e2Htk

2Hπ0

)
, ψ = c1J0

(
e2Htk

2Hπ0

)
+ c2Y0

(
e2Htk

2Hπ0

)
,

Φ̃ =d1e
2HtJ1

(
e2Htk

2Hπ0

)
+ d2e

2HtY1

(
e2Htk

2Hπ0

)
.

(C.11)

An explicit form of B then follows from e.g. the second gauge condition in (3.39). The dif-

feomorphism constraint (C.3) and the harmonic gauge conditions (C.1) impose additional

constraints on the initial conditions of the perturbation variables.

C.2. Four massless scalar �elds

In sec. 3.4.2 we reported the perturbation equations for the case of a universe �lled with

four massless scalar �elds χA that also serve as coordinates ∂µχA = δAµ . In the following

we include the calculations carried out to obtain those results.

The perturbed Einstein tensor can be found in (3.45) and the perturbed energy mo-

mentum tensor for the scenario with four massless scalar �elds is given in (3.53). The

constraint equation δG0
i = κT 0

i gives

−2π0

a2

(
HΦ̃ + ψ′

)
= κB . (C.12)

From δGi
j = κδT ij it follows that

−π0

a2
(2HB +B′)− (Φ̃− ψ) +

π2
0

a4
E ′′ = −2κE , (C.13)

which together with the �rst gauge condition (C.1) results in the following equation of

motion for E

E ′′ − a4

π2
0

∇2E + 2
a4

π2
0

κE = 0 . (C.14)
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The other two Einstein equations give the following relations

1

3
tr δGi

i =
2π2

0

a6

(
2H ′ − 3H2

)
Φ̃ +

2π2
0

a6
HΦ̃′ +

2π2
0

a6
ψ′′ +

4

3

κ

a2
∇2E

=κ

(
−π

2
0

a6
Φ̃− ψ

a2
+

1

3
∇2E

a2

)
,

δG0
0 =

6π2
0

a6
H2Φ̃− 2π2

0

a6
HΦ̃′ − 2

a2
∇2ψ = κ

(
π2

0

a6
Φ̃− 1

a2
(3ψ −∇2E)

)
,

(C.15)

where we inserted (C.14) and the expression for∇2B from (C.1). We can combine−δG0
0+

tr δGi
i to obtain

6π2
0

a6

(
2H ′ − 4H2

)
Φ̃ +

8π2
0

a6
HΦ̃′ +

6π2
0

a6
ψ′′ + 4

κ

a2
∇2E +

2

a2
∇2ψ = −κπ

2
0

a6
4Φ̃ , (C.16)

which results in an equation for Φ̃, if we use (C.2) to replace 3π2
0

a4
ψ′′ + ∇2ψ = −π2

0

a4
Φ̃′′ +

π2
0

a4
∇2E ′′ +∇2Φ̃−∇4E and (C.14):

6π2
0

a6
(H ′ − 2H2)Φ̃ +

4π2
0

a6
HΦ̃′ − π2

0

a6
Φ̃′′ +

∇2

a2
Φ̃ = −2κ

π2
0

a6
Φ̃ . (C.17)

Using the background equations of motion (3.51) we have H ′ = κ a
4

π2
0
, such that the above

simpli�es to

4HΦ̃′ − Φ̃′′ +
a4

π2
0

∇2Φ̃ = 0 (C.18)

and we retain the same equation of motion as in the single �eld case.

The combination δG0
0 + 1

3
tr δGi

i on the other hand leads to

4κ

a2
ψ +

2π2
0

a6
ψ′′ − 2

a2
∇2ψ = −κ 4

a2
Φ̃ , (C.19)

where we inserted the expression for H ′.

We can obtain an expression for ψ as a function of Φ̃ and E by using the equations of

motion for E (C.14) and Φ̃ (C.18) to simplify (C.2) and �nally inserting (C.19)

3π2
0

a4
ψ′′ +∇2ψ =− 2κ∇2E − 4

π2
0

a4
HΦ̃′ ⇒ 3κΦ̃− 2

π2
0

a4
HΦ̃′ − κ∇2E = 2∇2ψ − 3κψ .

(C.20)
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Solving the equations for E and Φ̃ then allow us to recover solutions for ψ from the above

and B from (C.1).

Note that due to the altered background dynamics in the case of four scalar �elds (3.51)

�nding explicit solutions for the perturbations is more involved than for the single �eld

case. One could e.g. consider a regime in which the background dynamics are dominated

by the single �eld such that a ≈ a0e
Hχ to circumvent this issue, however, we �nd that no

such regime exists for the GFT bounce we recover in sec. 7.3.
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Appendix D.

Constraint equation in Newtonian

gauge

This appendix forms part of [1] and complements the results of chap. 5. The calculation

below is included for completeness and does not impact the results of the main text.

In sec. 5.2.1 we showed that an analogue to the di�eomorphism constraint holds for

mo- di�ed Friedmann equations of the general form H2 = κ
3
N2ρF in the cases where the

modi�cation depends on the energy density only, i.e. F = F(ρ). This calculation was

carried out for a general lapse function in the comoving gauge. In the following, we carry

out a similar calculation in the longitudinal gauge ψ = Φ̃ and for conformal time N = a,

which is a direct generalisation of the results of [221]. To emphasise that we work in

conformal time we denote the Hubble parameter as H.

Inspired by the results in [221], we assume the following form of the constraint:

D := ψ′ +Hψ −Aκ
2
χ′δχ . (D.1)

We again show that an equation of the form (5.21)

AD′ +WAD −A′D = 0 (D.2)

holds, and hence, if initial conditions are set in a regime where D = 0, it follows that

D′ = 0 and the constraint equation holds throughout the evolution. We use the result

from chap. 5, where we showed that (D.2) is satis�ed for W = 3H − N ′/N = 2H in
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conformal time, so that the above reduces to

AD′ + 2HAD −A′D = 0 . (D.3)

To show that this holds, we use the generalised equations for the F(ρ) case as given in

(5.17)-(5.19) and �rst rewrite D′ as

D′ =ψ′′ +H′ψ +Hψ′ − κ

2
(A′χ′δχ+Aχ′′δχ+Aχ′δχ′)

=ψ′′ +H′ψ −H2ψ − κH
6H

a2A δρ− κ

2

(
A′χ′δχ− a2 dU

dχ
Aδχ− 2Hχ′Aδχ+Aχ′δχ′

)
=ψ′′ − κ

6
a2A δρ+

κ

2

(
−A′χ′δχ+ a2A δρ− 2χ′A δχ′ + 2Hχ′A δχ

)
.

(D.4)

In the �rst step we inserted the Klein-Gordon equation χ′′ = −a2 dṼ
dχ
− 2Hχ′ and ψ′ from

(5.18) and in the second made use of the background identity H′ − H2 = −κ
2
χ′2A and

used the expression for dU(χ)
dχ

δχ obtained from (5.9). If we then insert ψ′′ from (5.19), the

expression for D′ can be written as

D′ = κδρ

(
(Fρ +

ρ

2
Fρρ)χ′2 +

1

3
a2A

)
+
κ

2
δχ (−A′χ′ + 2Hχ′A) . (D.5)

Furthermore, making again use of (5.18), we can write D = − κ
6Ha

2Aδρ−Aκ
2
χ′δχ , such

that 2HAD −A′D reads

2HAD −A′D =
(
−A2κ

3
a2 +A′ κ

6H
a2A

)
δρ+

(
−HA2κχ′ +A′Aκ

2
χ′
)
δχ . (D.6)

Combining the above expressions, we �nally obtain

AD′ + 2HAD −A′D =κ
(
Fρ +

ρ

2
Fρρ
)
χ′2A δρ+A′ κ

6H
a2A δρ = 0 , (D.7)

where in the last step we inserted A′ as given in (5.16).

We have thus shown explicitly that a constraint equation holds also in longitudinal

gauge in the case where F = F(ρ). Note that in this gauge the conservation of R
is not immediately apparent from the constraint. While it can be shown explicitly, it

straightforwardly follows from R′ = 0 in comoving gauge, making use of the fact that R
is a gauge-invariant quantity.
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Appendix E.

Next to leading order saddle-point

approximation

In order to obtain analytical expressions for the expectation values of the GFT energy-

momentum tensor in chap. 7 we made use of the saddle-point approximation (7.10) to

approximate the convolutions that appear in the general expressions (6.11).

The saddle-point approximation relies on the fact that the integrand is dominated by

the contribution at the maximum of the exponential. However, the functions that appear

in the expressions for the energy momentum tensor generally evolve in time, such that

the validity of the saddle-point approximation is limited.

Here we consider the next to leading order contribution for the background mode with

k = 0 only. In general, the saddle-point approximation will become invalid for large values

of the wave number as well. The procedure to �nd such limits are the same as that given

below, but we leave a concrete analysis for future work. We note that the analysis for the

saddle-point approximation given below was part of the results published in [2].

Expressions contained in chap. 7 consider the leading-order term in the saddle-point

approximation only, e�ectively recovering the scenario of an in�nitely peaked Gaussian,

where only the ~k = 0 mode contributes to the e�ective dynamics. However, as pointed out

previously, in our construction this limit cannot be realised exactly and inhomogeneous

modes will inevitably contribute to what is usually understood as background dynamics.

In what follows we therefore include the next-to-leading-order term in the saddle-point

approximation and consider its implications for the e�ective dynamics. We also establish

the latest time at which the saddle-point approximation can be valid.

Including the next-to-leading-order term in (7.10), the saddle-point approximation
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reads ∫ b

a

d3x g(~x)e−λ(~x−~µ)2 ≈
√
π

λ

3(
g(~µ) +

1

4λ
∆g(~x)|~x=~µ

)
, (E.1)

where λ = 1
s2
> 0 and g(~x) is integrable, i.e.,

∫ b
a
|g(~x)|d3x < ∞.1 The saddle-point

approximation becomes increasingly accurate for λ → ∞. In our case, we have ~µ = 0.

For a derivation of the saddle-point approximation and its higher-order terms, see [266].

We apply the above to the components of the GFT energy-momentum tensor 〈σ|T AB|σ〉,
with σ speci�ed in (7.7) and the T AB operators given in (6.11). Recalling that the o�-

diagonal components
〈
T 0b
〉
and

〈
T a6=b

〉
are exactly zero, independent of the saddle-point

approximation, we need to consider only 〈T 00
0 〉 and 〈T aa0 〉.

For 〈T 00〉, we have g(~γ) = |ωγ| =
√
~γ2 +m2 and thus ∆g(~γ)|~γ=0 = 3

|m| . If we include

the next-to-leading-order correction to the expression in (7.9), we obtain a small constant

shift in the value of |π0| = 〈T 00
0 〉, namely

〈
T 00

0

〉
NLO
≈ sgn(K(2))

(
|m|+ 3

4|m|λ

)
(B2 −A2) . (E.2)

For the 〈T aa〉 component, on the other hand, we have more complex expressions that

include also a time dependence (see (7.9)):

g(~γ) =

(
−|ωγ|+

γ2
a

|ωγ|

)(
(A2 + B2) cosh

(
2|ωγ|χ0

)
− 2 sgn(K(2))AB sinh

(
2|ωγ|χ0

))
+

γ2
a

|ωγ|
(A2 − B2) ,

∆g(~γ)|~γ=0 =− 1

|m|
((
A2 + B2

)
cosh

(
2|m|χ0

)
− 2ABsgn(K(2)) sinh

(
2|m|χ0

))
− 6χ0

((
A2 + B2

)
sinh

(
2|m|χ0

)
− 2ABsgn(K(2)) cosh

(
2|m|χ0

))
+

2

|m|
(
A2 − B2

)
.

(E.3)

As λ is large, but �nite, g(~γ) as given above will dominate the integral (E.1) for late enough

times, leading to an inapplicability of the saddle-point approximation. To establish the

1Note that strictly speaking the integrals we consider are over the range (−∞,∞), with g(~x) increasing
monotonically with ~x. We then need to limit integration to a �nite range, which is tantamount to
excluding modes with very large wave numbers.
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maximum value of χ0 for which the saddle-point approximation is viable, we consider

the late-time limit where g(~γ) ∝ e2ωγχ0
. The integrand then behaves as e−λ~γ

2
g(~γ) ∝

e−λ~γ
2+2ωγχ0

. The saddle-point approximation is applicable at a maximum of −λ~γ2+2ωγχ
0,

which occurs at ~γ = 0 for χ0 < |m|λ. Additionally, the condition g(0) > 1
4λ

∆g(~γ)|~γ=0

needs to be satis�ed to ensure that g(0) remains the leading-order term throughout the

evolution. In the late-time limit, (E.3) translates to

g(0) ≈− |m|
2

(
A− sgn(K(2))B

)2
e2|m|χ0

,

∆g(~γ)|~γ=0 ≈−
(
A− sgn(K(2))B

)2
e2|m|χ0

(
1

2|m|
+ 3χ0

)
,

⇒ g(0) >
1

4λ
∆g(~γ)|~γ=0 ⇔ χ0 <

2

3
λ|m| − 1

6|m|
,

(E.4)

which gives a similar, but more stringent constraint on the latest time the saddle-point

approximation can be considered as valid.

Restricting to this regime, the expression for 〈T aa0 〉 then reads

〈T aa0 〉NLO ≈ sgn(K(2))
[A2 − B2

2λ|m|
+

(
|m|+ 1

4λ|m|

)(
2ABsgn(K(2)) sinh

(
2|m|χ0

)
−
(
A2 + B2

)
cosh

(
2|m|χ0

))
+

3χ0

2λ

(
2ABsgn(K(2)) cosh

(
2|m|χ0

)
−
(
A2 + B2

)
sinh

(
2|m|χ0

))]
.

(E.5)

If we recall that the above is related to the scale factor as a4 = −|π0| 〈T aa0 〉, it is apparent
that the additional terms will in�uence the form of the e�ective Friedmann equation, as

we have

a′

a
=

1

4

〈T aa0 〉
′
NLO

〈T aa0 〉NLO

=
1

4

g′(0) + 1
4λ

∆g′(~γ)|~γ=0

g(0) + 1
4λ

∆g(~γ)|~γ=0

. (E.6)

We �rst focus our attention on the implications of the next-to-leading-order terms in

the late-time limit, in which the expectation value (E.5) and its logarithmic derivative
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(E.6) simplify to

〈T aa0 〉NLO ≈ −sgn(K(2))e2|m|χ0 (A− sgn(K(2))B
)2
(
|m|
2

+
3χ0

4λ
+

1

8λ|m|

)
, (E.7)(

〈T aa0 〉
′

〈T aa0 〉

)2

NLO

≈ 16m2 (2λm2 + 3|m|χ0 + 2)
2

(4λm2 + 6|m|χ0 + 1)2 , (E.8)

where we neglected the subdominant constant term in (E.5).

For large values of χ0 we have
(
〈T aa0 〉

′ / 〈T aa0 〉
)2

NLO
→ 4m2 such that H2

NLO → m2

4
,

as we found for the leading-order saddle-point approximation in chap. 7. Note however

that at the end of the period of validity for the saddle-point approximation, one has

H2
NLO = 1

16
(2m + 3

4λm
)2, which is slightly larger than for the leading-order contribution

only.

To establish the e�ect of the next-to-leading-order term on the bounce behaviour we

consider the absolute di�erence between 〈T aa0 〉NLO and 〈T aa0 〉LO as well as the relative

di�erence of the leading-order and next-to-leading-order Hubble rate, de�ned as

∆H2, rel :=

((
〈T aa0 〉

′

〈T aa0 〉

)2

NLO

−
(
〈T aa0 〉

′

〈T aa0 〉

)2

LO

)(
〈T aa0 〉

′

〈T aa0 〉

)−2

LO

, (E.9)

where we correct for di�erent bounce times, such that both bounces occur at χ0 = 0.2

Both are depicted for di�erent values of λ in �g. E.1. The qualitative bounce behaviour

remains unchanged by the contribution of inhomogeneous modes. The relative error peaks

around the bounce, where H2 is minimal, and decreases with increasing χ0, as can also

be seen from (E.6). Overall, next-to-leading-order contributions have minimal impact on

the dynamics, demonstrating that they can be neglected as is done in chap. 7.

2For the leading-order term only, the bounce happens at χ0 = 1
2m ln

(
|A+sgn(K(2))B|
|A+sgn(K(2))B|

)
.

247



Appendix E. Next to leading order saddle-point approximation
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it is clear from (E.5) that the next-to-leading-
order expression is greater than the leading-
order expression alone.
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(b) Relative di�erence of H2, as given in (E.9).
The relative di�erence is largest around the
bounce. Taking the limit χ0 → 0 gives a �nite
value, as depicted above (e.g., ∆H2, rel ≈ 0.002
for λ = 10).

Figure E.1.: Comparison of dynamics arising from including also the next-to-leading-
order term, 〈T aa0 〉NLO, to those with the leading-order only, 〈T aa0 〉LO, for di�erent values
of λ, namely λ = 10 (red, full) , λ = 100 (blue, small dashed), λ = 1000 (green, large
dashed). The other parameter values are |m| = 4

√
π/3, A = 10, B = 20, sgn(K(2)) = 1.

The times were adjusted such that the bounces coincide and occur at χ0 = 0.
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