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Abstract

Glioblastoma is the most aggressive primary brain tumour; despite maximal oncological manage-

ment, median survival is at most 17 months, rising to 19 months if there is methylation of 6-O-

Methylguanine-DNA Methyltransferase (MGMT) promoter (15 months otherwise) [1]. Presently,

imaging biomarkers (IBs) used for prognostic stratification at the time of pre-operative, and sus-

pected, diagnosis of glioblastoma are limited, principally, to the characteristics of the tumour on

T1-weighted post-contrast (T1CE) magnetic resonance imaging (MRI) and the presence or ab-

sence of multifocal lesions [2]. There is also a paucity of clinically-applicable prognostic imaging

biomarkers (IBs) that characterise the peritumoural tumour habitat of glioblastoma, which is not

typically the target of surgical debulking. Radiomics, a quantitative high throughput approach to

image analysis, combined with machine learning (ML) analysis, has shown great promise in non-

invasively characterising the whole (enhancing and non-enhancing) tumour volume in glioblastoma

[3, 4]. However, the translation of radiomics-based models has been hampered by several factors

including data heterogeneity due to multi-centre MRI acquisition.

This PhD thesis outlines three studies undertaken to address some of the concerns regarding trans-

lation barriers of multi-centre radiomics models in Glioblastoma. (1) A systematic review of the

evidence surrounding intensity standardisation techniques (ISTs) of MRI prior to the extraction

of radiomic features was conducted. (2) A resampling study was conducted to investigate tumour

volume as a prognostic radiomic IB in Glioblastoma, and examine whether non-linear transforma-

tion or sample size might contribute to heterogeneous results in other studies. (3) A modelling

study was conducted to investigate the impact of ISTs and also of ComBat, a statistical model

for realigning multi-centre radiomic features, on the performance of prognostic models. This in-

cluded assessment of model stability and calibration, which are typically not assessed in proposed

Glioblastoma survival models.

The main findings from the studies included: (1) Three techniques, WhiteStripe (WS), Nyul’s

histogram matching (HM) and Z-Score (ZS) were the most commonly applied ISTs in the studies

(n = 12) included in the systematic review. There was no consensus on the optimal IST. (2)
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In a multi-centre cohort of patients with glioblastoma (n = 259), whole tumour volume (WTV)

and tumour diameter were found to be prognostic of overall survival (OS) in multivariable Cox

proportional hazards models. Log-transformation of WTV and increasing sample size increased

the chances of detecting a prognostic relationship during the bootstrap resampling experiment.

(3) Increased batch size for ComBat realignment improved discrimination, relative model fit and

explained variation of clinical and radiomic prognostic models. However, the calibration accuracy

and model stability deteriorated. HM and WS tended to improve discrimination, fit and explained

variation.

There was limited evidence from the published literature for an optimal IST. In our multi-centre

dataset HM and WS tended to improve some model performance metrics but this was inconsis-

tent and model stability and calibration were not improved. ComBat also improved prognostic

model performance but required larger batch sizes, which discarded a large proportion of data in

this heterogeneous real-world dataset, and degraded model calibration and stability. Resampling

experiments also suggest that variation in sample size and ignoring the possibility of non-linear

relationships could be two reasons that prognostic studies show inconsistent prognostic relationship

for tumour size and this could also be the case for other radiomic IB discovery studies. Future work

will focus on exploring prognostic radiomic IBs in large, multi-centre and heterogeneous imaging

data and evaluate any potential IBs across multiple performance metric including stability and

calibration.
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CHAPTER

ONE

INTRODUCTION

1.1 Overview

Glioblastoma (Figure 1.1) is a highly aggressive brain tumour and patients have up to 17 months

median survival from diagnosis [1]. First line treatment consists of maximal safe surgical resection,

adjuvant radiotherapy (60 Gray in 30 fractions) with concomitant temozolomide (TMZ) chemother-

apy followed by further six cycles of adjuvant TMZ (‘Stupp protocol’) [2]. Resection, or biopsy if

debulking is not feasible due to the tumour location or patient fitness, provides the tissue necessary

for classifying tumour type, which includes identification of diagnostic and prognostic molecular

markers [3, 4].

Multiparametric MRI (mpMRI) is a key assessment tool in the patient’s journey; they will usually

have imaging to aid diagnosis, plan surgery, assess the extent of resection and extent of residual tu-

mour, plan radiotherapy and monitor for treatment response and/or disease progression, the latter

potentially leading to second- or third-line chemotherapeutic agents. MRI also characterises the

tumour beyond the surgically-targeted core. Many qualitative and quantitative imaging biomarkers

1
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(IBs) using structural or advanced MRI sequences have been proposed to non-invasively characterise

glioblastoma at these stages of the patient journey [5]. The putative IBs could act as surrogate diag-

nostic and prognostic indicators when surgery is contraindicated, or they may provide information

predicting disease response or progression [5]. Despite a myriad of research, robust and clinically-

translated IBs in glioblastoma are lacking and this limits individualised patient management and

the potential for personalised risk estimation.

Figure 1.1: Representative images of key milestones in the treatment pathway of a patient with
glioblastoma. Top row – T2-weighted MRI, bottom row – T1-weighted MRI post-contrast. RT –
radiotherapy. Column (a) pre-operative assessment : establishes the likely diagnosis of a primary
high grade neoplasm, determines key features that will impact surgical management such as tumour
location and extent, including proximity to eloquent structures and number of lesions (multifocal or
unifocal tumour). (b) Post-operative assessment: extent of surgical debulking, including determin-
ing the extent of residual tumour, and allows planning of radiotherapy treatment volumes. (c & d)
Post-adjuvant chemoradiotherapy: Following adjuvant radiotherapy with concomitant chemother-
apy and further adjuvant chemotherapy, regular surveillance (at 3-monthly intervals in first year and
6-monthly thereafter) imaging helps assess baseline appearances and monitor for signs of response,
progression or recurrence of tumour. (e) recurrence: Despite maximal therapy, glioblastoma will
eventually recur. In this case with new enhancement posterior to the surgical resection margin.

There has been much interest in augmenting medical imaging through artificial intelligence (AI) and

quantitative image analysis, which may yield novel IBs. This thesis aims to examine how radiomics,

a process of high throughput extraction of large numbers of quantitative imaging features with the

purpose of creating mineable datasets [6], has the potential to provide novel prognostic IBs in

glioblastoma. The translation from promising results in retrospective studies of radiomic IBs, to

clinically-applicable prediction models has so far been lacking, and this PhD aims to examine
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some of the key image processing and statistical decisions that are crucial for producing stable and

robust prognostic models for future validation studies. During this opening chapter, I will introduce

important topics that link this research, namely (1) glioblastoma – diagnosis and classification, (2)

radiomics and (3) how statistical modelling, including machine learning (ML) can be used to produce

prognostic IBs in glioblastoma. Finally, research questions will be addressed.

1.2 Adult-type diffuse glioma

1.2.1 Primary neoplasm of glial cells

Adult-type diffuse glioma (henceforth referred to as ‘diffuse glioma’), of which glioblastoma is the

most aggressive type, is a primary brain malignancy which shares certain histological, functional

and molecular characteristics in common with glial cells [7]. Glia or glial cells, along with neurons,

form one of the main constituent cell types within the brain and are subdivided into astrocytes,

oligodendrocytes, NG2 cells and microglia. These cells have a key role in normal brain development

and function including homeostatic and defensive functions [8].

Diffuse gliomas were once thought to arise from fully differentiated glial cells, for example an

oligodendroglioma originating from differentiated oligodendrocytes [9]. However, the discovery of

multipotent, self-renewing neural stem cells (NSCs) and glial progenitor cells (GPCs), which can

produce astrocytes and oligodendrocytes within various locations of the adult human and mam-

malian brain have changed this perspective [9]. Evidence points to the NSCs in the subventricular

zone as the cell of origin of glioblastoma in humans - shared mutations were observed between

tumours and NSCs remote from the tumour epicentre [10].

1.2.2 Heterogeneity

Each patient with a diffuse glioma will have unique genetic and microenvironment features in their

tumour, which will result in physiological and structural differences between a patient population



-4-

with a nominally equivalent diagnosis. This is termed ‘intertumour’ heterogeneity. Within each

tumour there will be spatially distinct areas of malignant cells and stroma, termed ‘intratumour’

heterogeneity. Intratumour heterogeneity can change over time in natural evolution, in response to

therapy and with relapse [11, 12]. Therefore, a single glioma may be composed of different cancer

cell populations, each with varying sensitivity to a particular treatment and may have the capacity

to develop resistance and recurrence [13, 14]. Two different models of tumourigenesis have been

proposed to explain how cellular heterogeneity develops.

A clonal evolution model describes a process whereby different genetic and epigenetic modification

occurs within clones at random, and through a process of natural selection, fitter clonal populations

outgrow their competitors [15]. Selection pressures may include changes induced by treatments and,

although ‘fitter’ clones may proliferate more, the result is a diverse population of cells. Alternatively

in a cancer stem cell (CSC) model, a hierarchical pattern of tumourigenesis describes how CSCs

asymmetrically divide to maintain their population and to generate differentiated daughter cells,

which make up the tumour bulk but do not have the capacity to proliferate [16]. Such CSCs

have been isolated from diffuse gliomas, including glioblastoma, and appear relatively resistant to

treatments such as radiotherapy and chemotherapy [17, 18]. Additionally, phenotypic alterations

that arise from the response of tumour cells to their microenvironment, for example variations in

oxygen tension, from changes induced by non-tumour cells or local growth factors is another source

of heterogeneity [19].

Heterogeneity is evident in the identification of distinct subtypes of glioblastoma based on gene ex-

pression profiles: classical, mesenchymal and proneural subtypes using bulk ribonucleic acid (RNA)

sequencing techniques [11, 12, 20]. The classical subtype exhibits high levels of epidermal growth

factor receptor (EGFR) expression, higher likelihood of point (vIII) mutation of EGFR and chromo-

some 7 amplification alongside chromosome 10 loss. The mesenchymal subtype is characterised by

low expression or focal deletion of the region containing the neurofibromin 1 (NF1) gene, and higher

proportion of necrosis and inflammatory infiltrates. High expression of platelet derived growth fac-

tor receptor A (PDGFRA) paired with focal amplification at the gene’s locus is associated with
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the proneural type. The proneural subtype is more commonly present in tumours with isocitrate

dehydrogenase 1 (IDH1) mutation, a gene with important diagnostic and prognostic significance in

glioblastoma, see below) [11, 21].

Methylation of deoxyribonucleic acid (DNA) cytosine-guanine dinucleotide pairs (CpG), an epige-

netic modification that typically occurs in sections of DNA with higher CpG concentration (CpG

islands), can affect the levels of gene expression when this occurs within gene promotor regions

[22]. Genome-wide analysis of DNA methylation patterns in gene promotor regions of glioblastoma

samples have allowed the identification of genes that are hypo and hypermethylated compared to

normal controls, and allowed grouping of glioblastomas based on distinct genome-wide methylation

profiles [23]. Distinct clusters of DNA methylation [24] and transcription profiles have been demon-

strated across patients [25] and different gene expression and genome wide methylation subtypes

of glioblastoma have been shown to co-exist within the same tumour, with cells changing from one

type to another over time [11, 26, 27].

Single cell RNA sequencing studies have contributed further evidence of heterogeneity in glioblas-

toma; using 430 cells isolated from five patients, diverse populations of cells from different expression

subtypes were identified within each tumour [28]. Highly heterogeneous tumours or tumours with

more mesenchymal expression signatures were associated with reduced survival compared to those

with proneural signatures. Features associated with aggressive tumour behaviour such as necrosis

and microvascular proliferation have also been correlated with a mesenchymal molecular profile

and this may contribute to the relatively poor prognosis of this pattern [29]. Multiple expression

subtypes co-exist throughout a single glioma specimen, with varying proportions of each demon-

strated depending on whether the sample is taken from the leading edge of the tumour, in a site of

microvascular proliferation or from pseudopallisading cells around areas of necrosis [11, 29].

1.2.3 Invasion

Diffuse gliomas are not only heterogeneous, they are also highly invasive and therefore challenging

to control with localised treatments such as resection and radiotherapy. Using immunohistochemi-
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cal staining of autopsy specimens from patients with glioblastoma, microscopic tumour cells could

be detected in remote regions (ie. including contralateral brain and in different lobes not connected

to the tumour epicentre by any macroscopic abnormalities) of the brain parenchyma that appeared

macro- and microscopically otherwise normal [30]. Despite evidence of diffuse microscopic brain

invasion in glioma, most recurrences occur at the surgical margins, even following complete resec-

tion of enhancing tumour and Stupp protocol adjuvant treatment [31]. This discrepancy may be

explained by a greater density of glioma cells in the region closest to the enhancing component

(‘peritumoural’ zone) [32] and the interaction of tumour cells and growth promoting signalling

factors in the microenvironment [33].

The invasiveness of diffuse glioma, and glioblastoma in particular, is thought to be driven by

complex interactions between the tumour cells and the tumour microenvironment (TME), with

the other non-cancer cellular constituents of tumour, and other pro-migratory changes occurring

in the extracellular matrix (ECM) [34]. Tumour-associated macrophages (TAMs) represent one

of the largest group of non-neoplastic cells within the TME [35]. TAMs can promote invasion

through release of epidermal growth factor [36], stress-inducible protein 1 [37], interleukin-6 [38],

and transforming growth factor-β [39]. It has also been suggested that TAMs in the leading edge

of glioblastoma have a anti-inflammatory effect, with the degree of anti-inflammatory pathway

expression in these TAMs correlating with worse survival [40].

Glioma cells may express or upregulate processes that increase motility and invasiveness as well as

remodel the ECM [34]. For instance, tenascin C is an ECM protein that promotes invasion through

activation of cellular motility, and has been shown to be produced by glioma cells at the tumour

margin [41]. The marginal tumour cells have demonstrated differences in the subunits of integrin

molecules at their surface, a protein that manages cell-cell and cell-matrix interactions and activates

cellular motility [42]. Glioma cells also demonstrate increased proteolysis capacity, which helps to

degrade the ECM and promote invasion. Proteases such as matrix metalloproteinases, cathepsin

B and urokinase plasminogen activator help to remodel and breakdown the ECM and facilitate

tumour invasion [43].
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Knowing the constituency of the tumour core and peritumoural zone in glioblastoma allows specu-

lation of the macroscopic and cellular variation in the tumour which causes variation in MR signal

intensity and change in imaging phenotype, which could form the basis of imaging biomarkers (IBs).

MR resolution is typically measured in millimetres, rather than the micrometre scale used in light

microscopy and therefore it is unlikely that signal is composed of just cellular variation across a

tumour, and instead features such as cellular density, necrosis, microhaemorrhage will influence the

MR signal returned from each voxel [44]. The described changes in the ECM and the volume of

TAMs in the tissue for example, could influence the macroscopic appearances of the tissue, which

then impact on MR signal. Studies have, however, correlated certain radiomic features with varia-

tions in bulk tumour gene expression profiles between patients [45], but if there is a biological link

between image phenotype and tumour gene expression, the change is most likely to be evident on

a macroscopic level.

The invasive potential of glioma cells, facilitated by the complex interplay between tumour and

TME, suggests that there is potential prognostic information contained within the peritumoural

zone, and that biomarkers that characterise the whole tumour volume (WTV) may provide a

more personalised prognostic model. Heterogeneity is another characteristic of diffuse glioma, and

biomarkers that help to capture and quantify inter and intra-tumoural heterogeneity, as well as

changes over time could also play a key role in better risk stratification for patients. Having

discussed the biological characteristics of glioblastoma, the next section will outline key issues

regarding the classification and diagnosis.

1.2.4 Integrated diagnosis and classification

The classification of diffuse glioma and glioblastoma has changed over the past decade, and succes-

sive iterations of the World Health Organisation (WHO) Classification of Tumours of the Central

Nervous System (CNS) reflect the shift from solely histological to a combination of phenotypic, ge-

netic and molecular characteristics [4, 46]. Before 2016, the classification of diffuse glioma was based

on light microscopy resemblance to one of the differentiated glial cells. For example, astrocytomas
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resemble astrocytes, and oligoastrocytomas contain a mixture of cells that resemble astrocytes and

oligodendrocytes [47].

Grading, from 2 to 4, with increased aggressiveness and worse prognosis, was based on histological

features that signify dedifferentiation and increased proliferation such as increased mitotic activity,

cellular atypia and anaplasia, microvascular proliferation, and necrosis. The change to this classi-

fication system was driven by a number of factors that included increasing bodies of evidence that

showed diagnostic and prognostic significance of genetic and molecular alterations, the variable

prognosis within diagnostic groups, and interobserver variability when histological diagnosis alone

is used [48, 49].

The 2016 and 2021 updates to the WHO CNS classification of tumours integrated a host of genotypic

and molecular alterations; the diagnostic process for several adult-type diffuse astrocytic tumours

are outlined in Figure 1.2.

Assessment of the IDH mutation status distinguishes glioblastoma from the IDH mutant (IDHm)

astrocytomas. IDH1 and IDH2 encode the cytoplasmic and mitochondrial subtypes of IDH, re-

spectively [50] and the normal function of wild type IDH (IDHwt) is the conversion of isoci-

trate to α-ketoglutarate, a reaction within the Krebs cycle. IDHm converts α-ketoglutarate to

2-hydroxyglutarate (2HG), resulting in inhibition of dioxygenases including histone demethylases

and leads to methylation of CpG islands in the genome-wide DNA promoter. This results in the

silencing of some and increased expression of other genes that promotes oncogenesis [21].

IDHm has also been associated with the “Glioma CpG Island Methylation Phenotype” (G-CIMP),

a distinct subgroup of glioma, with widespread hypermethylation at multiple loci, leading to an

undifferentiated cellular state [51] and characterised by a younger age of tumour onset [21]. The

most common IDH mutation is a missense mutation of IDH1 at arginine 132 to histidine (R132H)

and the mutated protein can be detected by H09 antibody immunohistochemical staining [50]. IDH

status also has a prognostic role, with significantly higher survival in those with IDHm diffuse

gliomas compated to their IDHwt counterparts [50].

IDHwt plays an important role in promoting the aggressive clinical phenotype of glioblastoma
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Figure 1.2: Outline of the diagnostic pathway for integrated diagnosis of the major adult-type
diffuse astrocytic gliomas. IDH – Isocitrate dehydrogenase, ATRX – alpha thalassaemia/mental
retardation syndrome X-linked gene, CDKN2A/B – cyclin dependent kinase inhibitor 2A/B, TERT
– telomerase reverse transcriptase, EGFR – epidermal growth factor receptor. H3.3 G34R/V –
glycine to arginine or valine at codon 34 of the H3F3A histone gene, H3 K27M – lysine to methionine
substitution at codon 27 in histone genes H3F3A or HIST1H3B/C, H3K27me3 – trimethylation at
H3K27. Figure 1.2 is reproduced under Creative Commons CC BY license [3].
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[52]. IDH1 was overexpressed in most glioblastomas, and had higher activity than other enzymes

responsible for the production of NADPH, a molecule used in fatty acid synthesis and scavenging

of reactive oxygen species (ROS), in analysis of glioblastoma samples by The Cancer Genome Atlas

(TCGA) Consortium [53]. IDH1 expression was also higher in glioblastoma specimens compared to

tumours diagnosed as lower grade IDHwt astrocytomas according to the 2016 WHO classification

[53]. Accepting that some of these other IDHwt might now be reclassified as IDHwt glioblastoma

if they harboured the necessary molecular alterations, the evidence still supports the concept that

IDH1 expression may be linked to biological aggressiveness of these tumours. Immunosuppressed

murine models that received glioma-initiating cells with reduced IDH1 expression had reduced

tumour growth and increased survival, supporting the role of IDH1 overexpression in progression

of glioblastoma [53]. IDH1 expression can also increase after ionizing radiation, and its silencing

increases radiosensitivity of in vitro and xenograft glioblastoma models [54].

Proliferation under hypoxic conditions is also an important feature of glioblastoma, which may be

facilitated through IDH1 upregulation; in vitro studies have shown reduced cell proliferation under

hypoxia if IDH1 was silenced [55]. Branched-chain amino acid transaminase 1 is also overexpressed

in IDH1wt gliomas [56], which can lead to increased excretion of glutamate by tumour cells, which

promotes progression and invasion of tumour cells and may also play a role in seizures experienced

by patients with glioblastoma [57]. IDH2 and IDH3 (an IDH subtype also found in mitochondria),

are thought to help tumour cells to continue proliferation in the face of respiratory chain disruption

(important in ATP synthesis) or oxidative stress induced by chemo- or radiotherapy [52]. IDH2 can

help cells survive and proliferate under hypoxic conditions, and IDH3 increases nucleotide synthesis

and DNA methylation in vitro and in murine models [58, 59]. All three IDH subtypes, therefore,

can play a crucial role in oncogenesis, as well as promoting progression, protection against hypoxia

and treatments such as radio- or chemotherapy.

As well as making IDH mutation status more central to the diagnosis of glioblastoma, the 2021 WHO

classification also introduced a new ’molecular’ diagnosis of glioblastoma [4]. In IDHwt adult diffuse

astrocytic tumours, three molecular alterations can now confer grade 4 status regardless of whether
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there is microvascular proliferation or necrosis on histological examination: (i) telomerase reverse

transcriptase (TERT) promoter mutation, (ii) amplification of EGFR or (iii) whole chromosome 7

gain with loss of chromosome 10 (+7/- 10) [4, 60].

Telomere shortening occurs after each mitosis, and after continuous cell division, this eventually

promotes cells to cease proliferation or to undergo apoptosis. Gliomas overcome this by reactivating

the telomere lengthening enzyme, TERT. TERT promoter mutations are more common in IDHwt

tumours and associated with aggressive behaviour [60]. EGFR is a cell surface receptor tyrosine

kinase, which promotes cell proliferation and its gene or expressions is frequently amplified in

glioblastoma [61, 62]. The vIII variant (EGFRvIII), capable of ligand-independent activation,

is also frequently associated with amplification of EGFR and is associated with more aggressive

phenotype [63, 64]. The genes for EGFR and phosphatase and tensin homolog (PTEN), a tumour

suppressor gene are located on chromosomes 7 and 10 respectively [65].

1.2.5 Demographics characteristics and prognosis

Glioblastoma is the most common type of primary brain malignancy in adults. English National

Cancer Registration Service (NCRS) and Hospital Episode Statistics data from 2007-2011 reported

an average annual incidence of glioblastoma of 4.64 per 100,000 people [66] and US incidence is

estimated at 3.2 per 100,000 people annually [67]. More recent NCRS data has demonstrated an

increase in the incidence of glioblastoma in England [68, 69] - incidence of glioblastoma, across all

ages, increased from 2.39 per 100,000 in 1995 to 5.02 per 100,000 in 2015, for example [68]. Improved

imaging and diagnostic pathways, improved registration and reporting of cases and changes to

classification schemes have been put forwards as possible explanations for the rise [68, 69].

At diagnosis, patients with glioblastoma have a median age of 64 years and there is a male and

Caucasian predominance [70, 71]. The majority (> 90%) of glioblastoma occur in supratentorial

locations, within the frontal lobe most commonly [70, 72]. Known predisposing factors are limited

to previous exposure to ionising radiation; radiation-induced glioblastoma occurs mostly within

20 years following the exposure to therapeutic doses [73, 74]. A tiny fraction of patients with
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diffuse glioma has a predisposing hereditary condition such as neurofibromatosis 1 or 2, tuberous

sclerosis, Li Fraumeni or Turcot syndrome, genetic conditions which increase the individual’s risk

of developing malignancies [71].

Oncological management according to the ‘Stupp protocol’ has been shown to extend median overall

survival (OS) by 2 months, and increase 5-year survival by a factor of 5 compared to adjuvant

radiotherapy only [2, 75]. TMZ is an DNA-alkylating agent that interferes with cell division and

whose efficacy is altered by methylation of the 6-O-methylguanine-DNA methyltransferase (MGMT)

gene promoter [76, 77]. Hypermethylation of the MGMT promoter results in reduced expression of

the gene products, which are involved in the repair of DNA damage caused by TMZ [76] and it is

therefore unsurprising that MGMT promoter methylation predicts response to TMZ chemotherapy.

A retrospective study of trial data demonstrated increased median progression free survival (PFS) in

patients with IDHwt glioblastoma and MGMT promoter methylation who received chemotherapy

(27 months) compared to patients with unmethylated promoters (PFS 9 months) [78]. Patients

that received radiotherapy alone also showed no difference between groups stratified by MGMT

promoter methylation [78].

Despite maximal treatment, median OS for patients remains poor; historically quoted at around

12-15 months median survival [2, 75], and more recently 17 months (19 months if MGMT promoter

is methylated, 15 months otherwise) in trial patients [1]. Median OS is typically lower depending

on the type of study. It ranges between 6 - 13 months in observational, less selective cohorts that

necessarily include patients that would not be fit for intervention [66, 79, 80], and it is suggested

that the poor outcomes could be due to the intra- and intertumour heterogeneity and tissue invasion

outlined above.

Recent observational cohorts of patients diagnosed with glioblastoma according to 2021 criteria

confirm this picture, and also demonstrate a wide range in OS for patients, for example between

0 and 80 months [79]. Hence there has been much interest in developing potential prognostic

models for patients with glioblastoma, which incorporate clinical, genetic, oncological and imaging

characteristics of the patient and tumour to try to risk stratify patients and attempt to tailor risk
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prediction to the individual [81, 82]. Such information may help patients and clinicians make more

informed decisions from the outset, with entry into pre-surgical/neoadjuvant therapy trials, more

aggressive resection or even palliation. With this in mind, IBs in patients with glioblastoma will

be explored in the next sections.

1.3 Imaging biomarkers in patients with glioblastoma

1.3.1 Imaging biomarkers

A biomarker is “a characteristic that is measured as an indicator of normal biological processes,

pathogenic processes or responses to an exposure or intervention, including therapeutic interven-

tions” [83, 84]. Biomarkers must be measurable, but they can be numerical or categorical and can

be derived from measurements from imaging and they can be used at any point along a patient’s

treatment pathway [85]. Biomarkers used in neuro-oncology can be categorised based on the infor-

mation they provide. For example, susceptibility biomarkers indicate increased risk to developing

disease and include presence of germline mutation in genes such as the tumour suppressor gene p53,

which increases the chance of developing malignancy. Other types of biomarker include diagnostic

(detects or confirms presence of a disease), monitoring (used serially to assess the status of a dis-

ease), prognostic (indicates the likelihood of an event), predictive (indicates if a patient might be

higher risk of developing unwanted effects of an agent), response (indicates that a particular biolog-

ical response has occurred) or safety biomarker (indicates presence or degree of toxicity following

an agent) [85]. An example of a diagnostic biomarker is the presence of IDH mutation and 1p/19

co-deletion in a histologically confirmed glioma, indicating that it is a oligodendroglioma [4], and a

prognostic biomarker could be the presence of MGMT promotor methylation.

O’Connor et al., however, stipulate a more constrained definition of IBs that need to be distinguished

from modality, technique, and image signal, which describe the methods or processes related to

image acquisition. Their definition of IBs consist of specific measurements derived from the image

acquisition process [84]. For instance, MRI is an imaging modality that is based upon the imaging
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signal derived from the physical process of free induction decay of protons within the body. Diffusion

weighted imaging (DWI) is an MRI technique, which indicates the diffusivity of water molecules in

the body.

A putative IB might be derived from the mean apparent diffusion coefficient (ADC) value in a

defined portion of an image (for example a tumour) and the mean ADC value above or below a

prespecified threshold may have a prognostic or diagnostic implication for a patient. ’Putative’

in this context is taken to mean IBs that have only been used in research settings and that have

not been validated or translated to clinical practice. IBs henceforth will be used to refer to both

putative and validated IBs.

Biomarkers can be quantitative, measurable on an interval or ratio scale and expressed as a quantity

value such as tumour diameter, which may be used in a staging system such as Tumour, Node and

Metastasis (TNM) staging, or the measurement of maximum standardised uptake value (SUVmax)

on positron-emission tomography (PET) for example [84]. Quantitative IBs can be expressed on

a continuous scale, with each unit change in the IB value being meaningful in terms of predicted

outcome or therapeutic response, or they can be expressed as a categorical IB. Cagney et al.

suggest that tumour histology is an example of a qualitative diagnostic biomarker, and such as

tumour staging in non-small cell lung cancer (NSCLC) TNM staging [86]. TNM staging itself is an

example of a categorical, prognostic biomarker by Cagney et al.’s definition given it can be "used

to identify likelihood of a clinical event, disease recurrence, or progression" [85].

Qualitative IBs cannot be expressed as a quantity value and examples include the presence of

mediastinal invasion in a NSCLC, which would upstage a tumour to T4 according to current TNM

staging [86] or the American College of Radiology Breast Imaging Reporting and Data System, a

structured mammography reporting system with a ordinal five point score that positively correlates

to the risk of breast malignancy [87].
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1.3.2 IBs used to characterise glioblastoma

As discussed in preceding sections, patients with diffuse gliomas, and particularly glioblastoma,

have a poor prognosis in part due to the highly invasive nature of the tumours and high levels of

heterogeneity. Routine clinical assessment is performed with multiparametric MRI (mpMRI, com-

bining several different MRI techniques into a single scan episode), and radiological examination will

typically include an assessment of tumour location, measurement of size and assessment of selected

qualitative features [88]. Figure 1.3 shows the typical radiological appearances of glioblastoma,

with an area of enhancement in the right frontal lobe, which is thought to represent the tumour

core, with central areas of non-enhancing necrotic tumour, and is surrounded by high T2W signal

that is labelled ’peritumoural tissue’.

A commonly used diagnostic, qualitative IB is the presence or absence of enhancement on T1-

weighted post-contrast MRI (T1CE), which is a marker of breakdown of the blood brain barrier,

and is a predictor of higher grade tumours [8, 89, 90] and therefore also a prognostic IB. The

specificity of this IB is reduced by the association between lower grade diffuse gliomas, especially

those with oligodendroglial histology, and intra-tumoural enhancement [91], but it nevertheless

represents one of the most important IBs in patients with diffuse glioma and glioblastoma [89].

The widely used qualitative descriptors of imaging in patients with glioblastoma, such as presence

of enhancement, tumour location, side of tumour, presence of satellite or multifocal lesions have

been investigated for their association to patient prognosis in glioblastoma through retrospective

cohort studies [92–94]. Some potential pitfalls with relying solely on qualitative analysis might be

inter-observer variation in application of descriptors and also variation in the meaning ascribed to

descriptors such as ’extensive perilesional oedema’ or ’predominantly necrotic tumour’ for example.

In an attempt to standardise qualitative assessment and also explore the association between de-

scriptor of glioblastoma with outcome, the Visually AccesSAble Rembrant Images (VASARI) feature

set was developed by neuroradiologists. The VASARI feature set consists of 24 imaging characteris-

tics derived from standard anatomical MRI, including T1-weighted imaging pre- (T1W) and T1CE,
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Figure 1.3: Representative images from T2-weighted (top) and T1-weighted post-contrast (bottom)
MRI sequences in a patient with glioblastoma. There is a right frontal irregularly rim-enhancing
tumour with central non-enhancing necrosis, together taken to represent tumour core. This core is
surrounded by high T2 signal peritumoural tissue, and beyond that, radiologically normal tissue is
seen in the right parietal lobe and left cerebral hemisphere.
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T2-weighted imaging (T2W), which may include Fluid Attenuated Inversion Recovery (FLAIR) se-

quences, and also DWI [95]. The aims were to provide a controlled, easy to use lexicon that would

allow easier comparison between research study findings, be robust to inter-observer variation in de-

scriptions, and provide prognostic relevance for patients with glioblastoma [88, 95]. The VASARI

features are a combination of qualitative features, for example tumour location, side of tumour

epicentre or involvement of eloquent brain, but also categorical, ordinal IBs such as proportion of

enhancing tumour (Figure 1.4).

Figure 1.4: From left to right, representative MRIs that typify four ordinal categories of the propor-
tion of tumour that enhances, one of the VASARI features. The proportion of each patient’s tumour
that enhances is determined by comparing the volume of enhancing tumour, which is assessed on
the T1-weighted post-gadolinium (T1CE) image (bottom image of each image pair) to the overall
volume of tumour using the Fluid Attenuated Inversion Recovery (FLAIR) sequence (top image of
each image pair).

The inter-observer concordance for VASARI features such as proportion of enhancing tumour has

been shown to be moderate to high, although other features such as calvarial remodelling or cortical

involvement had low concordance [88]. The proportion of enhancing tumour has been associated

with poorer OS in glioblastoma, after adjusting for Karnofsky Performance Status (KPS) - Hazard

Ratio (HR) 7.75 95% Confidence Interval (CI) 1.14 - 52.87 [88]. The presence of synchronous tumour

sites, unconnected by any high T2 signal - ’multifocal’ glioblastoma [8] - is another prognostic IB

associated with lower median OS (median OS 8 months typically for multifocal glioblastoma [96]).

Midline, or bilateral unifocal lesions, and tumours or peritumoural tissue extending into deep brain
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structures such as the brain stem are also associated with poor relative outcomes [94, 97]. Hence,

many IBs that qualitatively capture the radiological phenotype of glioblastoma on anatomical MRI

have been shown to be prognostic IBs.

This overview on IBs in glioblastoma has focused on ’conventional’ MRI sequences, T1CE or FLAIR

for example, which provide anatomical macrostructural information about tissues and are distin-

guished from ’advanced’ sequences, such as DWI or perfusion-weighted imaging, which characterise

cellular or microscopic tissue properties [90]. DWI, for example, semiquantitatively measures the

diffusivity of extracellular water molecules and its voxel intensities are measured in units such as

mm2/sec, whereas ’conventional’ MRI intensity is an arbitrary scale measured relative to other

tissues and structures in the image rather than to some estimated biophysical property [90].

VASARI does include one DWI feature, although this is a qualitative assessment of whether there is,

or is not, reduced diffusivity within the tumour relative normal grey matter and not a quantitative

measurement of DWI signal [88]. This project will focus solely on ’conventional’, anatomic MRI, not

due to its perceived superiority over advanced MRI or positron emission tomography [90, 98, 99],

but due to the ubiquity of conventional MRI in clinical practice [100] and as a substrate for radiomic

analysis. Extracting quantitative IBs from sequences that are typically qualitatively assessed has

been one of the key motivators for radiomic IB development [101].

1.4 Development of novel IBs with radiomics

1.4.1 Radiomics

Radiomics is a process of high throughput extraction of large numbers of quantitative imaging

features, creating mineable datasets from standard of care medical images that can be used for

IB discovery and ultimately improve clinical decision making [6]. Quantitative radiomic imaging

features may be combined with clinical and laboratory information to provide clinical decision

support [101]. Radiomic features (RFs) may provide good substrates for novel IBs in oncology,
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as it is thought that the features may quantify the heterogeneity of the imaging phenotype in

glioblastoma (’multiforme’ was dropped from the nomenclature in the WHO 2021 classification but

attested to the variety of macroscopic appearances) and this may correlate with the considerable

intra- and intertumoural heterogeneity demonstrated on a microscopic, genetic and epigenetic level

[101, 102].

Glioblastoma can be divided into physiologically distinct regions or ’habitats’ that are possible to

visualise on MRI (Figure 1.3) - (1) the necrotic core (central region of high T2 and low T1W,

surrounded by enhancing margin), (2) enhancing rim (high T1CE) and, (3) non-enhancing peritu-

moural tissue (high T2W beyond the enhancing rim). The shape, signal intensity, proportions of

each habitat to one another, the heterogeneity of the signal across the habitat can all be quantita-

tively described through the mineable radiomic data extracted from these habitats on conventional

MRI sequences [103]. By potentially capturing the heterogeneity of the radiological phenotype, it

has been suggested that links can be derived between tumour biology and macroscopic appearances,

which have traditionally thought to be more feasible only with advanced MRI sequences or PET

[90, 101, 102].

The process of extracting RFs from MRI and developing novel IBs can be broken down into discrete

steps: 1) image acquisition, 2) image processing and segmentation of the region or volume of

interest (ROI, VOI respectively), 3) intensity standardisation, 4) RF extraction including grey-

level discretization, 5) post-extraction feature realignment (typically using ComBat realignment),

6) feature selection and modelling and model assessment (Figure 1.5).

1.4.2 The radiomics workflow

1.4.2.1 Acquisition

Most referral systems for tertiary neurosciences centres in England operate using a ’hub-and-spoke’

model. Initial diagnostic imaging for patients with (suspected) glioblastoma is acquired across mul-

tiple, geographically different sites before referral to a central treatment centre in the region. This
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Figure 1.5: Panels 1-6 outline the main steps of the workflow: 1) The acquisition of MRIs usually
occurs across multiple geographic sites and pre-processing includes registration, skull stripping and
field inhomogeneity reduction; 2) Intensity standardisation of MRI signal intensities using one of
three popular techniques (WhiteStripe, Nyul’s histogram matching or Z-score); 3) Radiomic feature
extraction, including calculation of shape, intensity and higher level features; 4) post-extraction
realignment of multi-centre radiomics using ComBat; 5) Application of multiple feature reduction
techniques to reduce the dimensionality of the data; 6) Calculation of results and data analysis.
GLCM = grey level co-occurrence matrix, GLDM = grey level dependence matrix, GLRLM = grey
level run length matrix, GLSZM = grey level size zone matrix, LASSO = Least Absolute Shrinkage
and Selection Operator, NGTDM = neighbouring grey tone difference matrix, T1 = T1-weighted,
T1CE = T1-weighted, contrast-enhanced, T2 = T2-weighted.
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lends itself to heterogeneous acquisition protocols, at least before care is transferred to the neuro-

science centre. Because large imaging datasets are often analysed retrospectively, harmonisation of

image protocols in such referral systems can be challenging [104]. MRI is the mainstay of glioblas-

toma characterisation (Figure 1.1), and, for the purpose of most radiomics studies, consists of at

least four anatomical sequences - T1W, T2W, FLAIR and T1CE. Recommended acquisition proto-

cols for these sequences in the context of brain tumour imaging have been published, highlighting

the importance of homogeneous data for subsequent analyses [105, 106].

Protocols can vary significantly between sites, not least by slice thickness, field strength, voxel size,

echo and repetition times and all these parameters have an impact on RF values [104, 107–109].

Some radiomics analyses choose to limit their approach by only including patients imaged using

the same protocol or site [110] but this can lead to data loss, particularly with diverse acquisition

across a hub-and-spoke imaging model. By limiting radiomic analyses to imaging acquired only

at one centre, a more homogenised acquisition protocol can be obtained, but this can result in

an oversimplification of diagnostic imaging acquisition. Whilst subsequent data analysis is made

easier, the generalisability and applicability of the models derived from homogeneous datasets is

more challenging [104].

IBs need to be widely available across geographical locations to be translated to clinical use [84],

and therefore it may pose a challenge to radiomic IBs if they are heavily dependent on homogenised

imaging protocols. Even with harmonised imaging protocols across sites, it has been shown that

scanning the same patient at the same site but at different times (within minutes or days) using

the same protocols can also introduce detectable differences into the images (and RFs) that will

need to be removed or adjusted for through image processing or statistical techniques [111, 112].

1.4.2.2 Pre-processing and segmentation

MRI preparation for brain tumour radiomics extraction requires file conversion, and often requires

additional preprocessing steps to prepare the images so that they can be segmented using auto-

mated or semi-automated approaches. MRI is acquired as Digital Imaging and Communications
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in Medicine (DICOM) images, which are first converted to Neuroimaging Informatics Technology

Initiative (NIfTI). Images are often rigidly co-registered to one another, and often to a standard-

ised brain atlas. Image registration also spatially resamples voxels, and an isotropic voxel size of

1mm3 is commonly used [113], although there is no consensus position on whether upsampling or

downsampling of the native image resolution is preferable [114, 115]. Magnetic field inhomogeneity

within the image is reduced [116], and the skull voxels removed to improve subsequent processing

by segmentation algorithms.

Accurate segmentation of the tumour VOI can be performed manually or with the assistance of

deep-learning (DL) segmentation models with or without manual correction. Even with the use

of expert segmentors, manual mask delineation will vary, and the task is time intensive [117].

Hence, the use of automated or semi-automated methods using accurate and fast DL networks has

increased in popularity, making the annotation of large datasets more feasible [118]. Variability of

segmentations between two (or more) observers or DL models can be a benefit to radiomics as it

allows assessment of RF reproducibility; i.e. the consistency of the IB to changes in experimental

settings [84]. Multiple segmentation has also been incorporated as a criterion in the radiomics

quality score (RQS), a 36-point checklist for assessing the quality of a radiomics study [119, 120].

1.4.2.3 Intensity standardisation

As conventional MRI signal intensity is relative and measured in arbitrary units [90], changes in

scanner parameters, vendors, models can all impact the image intensity and therefore RF values

[111]. Prior to RF extraction, the intensity of MRI can be standardised, so that there is a simi-

lar range and distribution of values across patients. There are many approaches available; three

commonly used intensity standardisation techniques (ISTs) in glioblastoma are WhiteStripe (WS),

Z-score (ZS) and Nyul’s histogram matching (HM) [111, 121].

Nyul’s HM is a two-step process: (i) an average intensity histogram is developed from a sub-set of

images, and (ii) the intensity values in all images are linearly mapped to the average histogram, per

decile of the intensity range [122, 123]. To produce the standard histogram scale, the intensity values
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of the training images are averaged at set percentiles (the default percentiles are 1, 10, 20,...90, 99)

of the intensity range. The intensities below the 1st and above the 99th centiles are discarded to

minimise the impact of outliers. To transform each image, a histogram of its signal intensity is

calculated, the intensity range divided into deciles and the voxels that fall into each intensity decile

are transformed separately. For each decile, the corresponding voxel intensities are mapped linearly

to the standardised ’training’ histogram and the intensity altered (Figure 1.5, panel 2). ZS and

WS standardisation adjust the signal intensity of images by subtracting the mean and dividing by

the standard deviation of either the whole image or of normal appearing white matter, respectively

[111, 124]. All three of the ISTs could be applied to single images at the point of testing, including

HM, but HM requires a ’training’ step as outlined before a standardised histogram can be created

and therefore, ZS and WS can work on a per image basis in both training and testing steps.

ISTs have been applied to brain and other body imaging with promising results for the techniques

described. HM and WS improved the segmentation of multiple sclerosis lesions [123, 125], WS

increased the consistency of intensities across brain MRIs in public datasets of healthy volunteers

[124], and all three ISTs described, increased the performance of DL networks that synthesise T2W

or FLAIR from T1W images [126]. Despite the promise of each technique, it is not clear whether

there is an optimal approach in brain MRI standardisation [127].

1.4.2.4 Radiomic feature extraction

Four categories of RF can be extracted from the tumour VOI:

1. Size and shape features such as volume, surface area, sphericity

2. First-order or intensity features - derived from the histogram of the VOI intensities

3. Second-order or texture features - describe the relations of discretized voxel intensities to their

neighbours

4. Filtered features - different image filters can be applied to the image, for example edge-

enhancing filters, and spatial patterns can be extracted.
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A comprehensive description of RFs and their calculation can be found in the Image Biomarker

Standardisation Initiative (IBSI) documentation [114]. IBSI’s aim is to improve the reproducibility

of IB research by providing reference feature definitions, image processing workflow and verification

methods for radiomics extraction software [114].

Size and shape features are calculated from a mesh created from the VOI, and features such as the

mesh volume, surface area and surface area to volume ratio are derived. Intensity or first-order

features are calculated from the histogram of all the intensity values in the VOI and include sum-

mary statistics of the histogram distribution such as mean, median, interquartile range, standard

deviation and range. The shape of the histogram is described by the kurtosis and skewness and the

homogeneity of intensity values is described by the uniformity [128].

Second-order features are calculated after ’intensity discretization’, a process of dividing the in-

tensity range of the VOI into discrete, non-overlapping bins and assigning each voxel to a bin.

Discretization can either be ’relative’, using a fixed number of bins, or ’absolute’ whereby the bins

have a fixed width. Discretization serves to reduce the impact of noise on feature calculation (and

reduces computation time) and may reduce the multi-centre effects on MRI signal intensity varia-

tion [111], but it also leads to loss of image detail. For images with arbitrary intensity units such

as conventional MRI, IBSI recommends a relative discretization (fixed bin number) approach [114].

Texture features describe the heterogeneity in the grey-levels throughout the VOI, and this is

achieved through the calculation of various matrices, such as the grey level co-occurrence matrix

(GLCM). GLCMs describe the probability that voxels of specific intensities are found in neighbour-

ing voxels for each of the unique 13 angles of travel that are possible in 3-dimensions. The matrices

are used to calculate the texture features [114]. Finally, filtered features are created by first pass-

ing the image through a image convolutional filter, such as one that enhances edges and RFs are

then extracted in the same manner as non-filtered images. Examples of filters that can be applied

include fractal analyses (patterns added to the image and elements of a certain intensity value are

evaluated), Minkowski functionals (assesses patterns of voxels above a certain intensity threshold)

and wavelets (apply a filter of radial or linear waves to the image and then extract features) [101].
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These features, which can be prespecified and calculated using known formulae are distinguished

from a related but distinct set of features that are extracted from the images using a convolutional

neural network (CNN), a type of DL model, in a process called ’deep radiomics’ [44]. The main

point of difference between these approaches is how and when the extracted features are defined and

calculated, with ’traditional’ radiomics approaches using predefined equations and deep radiomics

using the outputs from a DL model and how the images are prepared. For traditional radiomics

approaches, the image preprocessing and segmentation steps outlined above are typical, whereas

the CNN used for deep radiomics-based approaches typically will not require tumour segmentation

or intensity standardisation [44].

1.4.2.5 Feature realignment - ComBat

Once extracted, RFs can be harmonised using ComBat, a statistical model that was first applied in

the field of genomics, and that helps to realign imaging features extracted under different experi-

mental settings or ’batches’ [110, 129]. The batch effects can include, but are not limited to, hospital

site, scanner manufacturer, vendor, MR acquisition protocol, or tumour segmentation method [130].

Underlying the method is a linear model, which assumes the following relationship:

yij = α + Xijβ + γi + δiεij

Where y is the measured RF, i is the experimental setting, for example scanner, vendor or geographic

site, j is the measurement used to derive the image feature, for example VOI for RF calculation, α

is the average value of the RF of interest, γi is an additive batch effect, δi is a multiplicative batch

effect and εij is an error term [130–132]. This form of the ComBat (also referred to as neuroComBat)

equation also includes biological co-variates, where X is the matrix for the biological co-variates,

and β is the regression coefficient for each co-variate. The original implementation of ComBat did

not account for these biological effects, whereas the neuroComBat approach used in this project

(henceforth referred to as ComBat) will use biological covariates. It is important to take into
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account any clinical variables that might confound the values of the RFs between batches.

Imaging sites that vary by geographic location could have different compositions of patient and

tumour type, for example the grades of tumour may vary significantly between a tertiary centre

and district hospital. Tumour grade is a confounder as it could impact radiological phenotype, and

hence RF values, so it needs to be accounted for if batch effects are to be accurately estimated

[130].

ComBat has been shown to reduce the effects of multi-centre acquisition in radiomic studies with

promising results [104, 127, 129], but it does have limitations. The distribution of each feature

is assumed to be similar across sites, adjusting for biological co-variates, and the only difference

should be shift or spread of the data, which can be judged by visual inspection of histograms. For

this to be accurately assessed, a sufficiently large sample size is required. If covariates are to be

included, the sample size should be increased; 20-30 patients per site, per covariate is suggested

[130].

In the context of multi-centre glioblastoma prognostic radiomic studies, in which many clinical

predictors might impact on OS, and there may be a multitude of experimental settings, it would

be difficult to amass enough data in one tertiary referral centre to accurately estimate the batch

effects for every scenario. Some have suggested as few as five patienwts per experimental setting

might be enough to accurately estimate batch effects [104]. However, additional public datasets or

longer data collection periods would be beneficial to create adequately powered studies that can

produce accurate radiomic feature distributions. Modified versions of ComBat have been suggested,

which allow users to shift the radiomic feature values to a reference location, rather than averaging

the results of all centres and this may be beneficial if operating in a hub-and-spoke referral system

[133]. Also, data acquired from a new site, not included in the initial ComBat model, might require

recalculation of the ComBat model coefficients and batch effects if the feature distribution is felt to

be different to those used in the original model building process [130]. If the new centre happened

to use very similar protocols for image acquisitions, and the patient and feature distributions were

similar to the original cohort, then the original model may still perform well but there may be
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unadjusted batch effects that have not been adequately removed.

1.4.2.6 Feature selection, modelling and machine learning

Hundreds, potentially thousands of RFs could be extracted from one image and hence feature

selection strategies are needed to reduce the chance of overfitting and feature redundancy [134,

135]. Radiomics does not necessarily require the use of ML, but ML feature reduction methods

are commonplace [136]. Unlike clinical prediction models, it is difficult to specify a priori a set of

RFs to include in a model based on the results of previous studies, as the field is afflicted by a lack

of reproducibility, and there are many experimental differences between studies that influence the

measurement of features [111, 135].

Most radiomic studies are examples of exploratory prognostic factor research [137], which aim to

narrow down many features into a select few, which are combined to create a putative radiomic

IB that needs further validation in larger, external datasets. When conducting such exploratory

studies, many more features are typically considered for inclusion into the final model than is

recommended, greatly increasing the chance of overfitting [138]. Typically when building prognostic

models using clinical predictors, statistical literature recommends that the number of features that

ought to be considered for inclusion into the final model ought to be specified prior to analysis

and be based on the number of events (the effective sample size) in the dataset and the results of

previous models published in the field [138, 139]. In ML analyses and in DL models, this is often

not possible or even desireable as neural networks, for instance will generate many thousands of

features within an image and use their relationship with the outcome to learn patterns of data that

help to predict an outcome. In this context, what is most important is how the model behaves in

training, testing and unseen external validation datasets, rather than how many features were used

to build the model [44].

This thesis will focus on time-to-event analysis using Cox proportional hazards models, and the

discussion of feature selection strategies will be limited to those used in the project but many others

are available. Strategies can be divided into two major categories - supervised or unsupervised [136].
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Supervised strategies include regression models with forwards or backward stepwise elimination or

with least absolute shrinkage and selection operator (LASSO) penalty and random forests (RFo),

which all choose predictors based on their association with the outcome of interest and the data

labels, which need to be supplied to the feature selection model.

Unsupervised models, conversely, are not supplied with labelled data and determine the structure of

the dataset, for example by collapsing multiple predictors into a single predictor, clustering similar

features or removing features highly correlated with other features. Examples of unsupervised

learning include principle component analysis (PCA) or hierarchical clustering [136].

Stepwise selection methods consider the addition (forwards selection), or the removal (backwards)

of one feature at time from either a ’null’ model, which contains no predictors (forward) or the

’full’ model, containing all candidates (backwards) [140]. Features are included/removed based

on a prespecified rule, which may be based on the significance result of the model (p < 0.05), or

minimisation of the Akaike Information Criterion (AIC). AIC is a relative measure of how well the

model fits the data and it also penalises the model for addition of extra predictors [140].

Backwards elimination is generally preferred over forwards, as it allows estimation of the regression

coefficients after adjusting for all the other variables, and stepwise selection in general is popular

because it is easy to implement, produces relatively consistent results for similar datasets and

generally shrinks models to a small number of features [140]. Disadvantages are that it relies

on multiple hypothesis testing, can lead to overfitting, inflated regression coefficients and model

instability [137, 140].

Cox regression with a LASSO penalty can shrink predictor coefficients to zero and thus eliminate

redundant features [137]. The optimal value for the penalty (referred to as lambda or L1) needs

to be estimated by data resampling (typically with cross-validation). LASSO also has the benefit

of shrinking all regression coefficients in the model, thereby reducing the optimism of the model

(the difference between prediction accuracy in training versus test data) [137], but there is still the

potential for overfitting and instability in small datasets [140].

RFo are a type of decision tree, which are similar in structure to clinical guidelines; starting at
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the top of the tree, the prediction is determined using a set of simpler rules based on the available

predictors, resulting in binary choices, and leading to an end point or leaf [136]. The advantage of

RFo over simple decision trees is that multiple trees are built by only considering a random sample

of the available data to make each tree. Novel predictions are based on the consensus result from

all trees, and therefore less likely to be overfit. RFos also allow variables to be ranked in terms of

their ’importance’ by considering the difference in accuracy of trees built with and without that

particular predictor [141], and therefore can be used for both prediction and feature selection.

Unsupervised feature reduction can be performed using PCA and hierarchical clustering. PCA is a

dimensionality reduction technique that explains the maximum variance in the dataset using linear

combinations (’principle components’) of the original predictors. The most important principle

components, those that explain most variance in the data, can then be examined to determine

the contribution (’loadings’) of the original predictors, and thereby allow reduction to the most

important features for determining data variance without using the outcome or data labels [142].

Hierarchical clustering examines the distance between the feature values for individual patients;

patients with similar RF values are grouped closer than those with differing ones, and by iteratively

reordering the patients, groups with very similar feature values can be observed [136]. The features

that vary most between the groups or clusters can then be determined to select the most important

features for explaining variation across the population.

Once the optimal number of features have been chosen, Cox proportional hazards models can be

trained with either the RFs, clinical features or both and then compared to see if there is any

benefit of adding the novel IBs [134, 135]. Performance of such models can be assessed by the

ability to split patients into prognostic groups (discrimination), which is measured using Harrell’s

concordance index (C-index) or Royston and Sauerbrei’s D-statistic [143]. Calibration of the model

compares the predicted risk from the model against the observed risk, and can be assessed with

calibration plots and the slope of the curve [137]. These were the most commonly assessed metrics

of glioblastoma prognostic model performance in a recent literature review of prognostic models for

glioblastoma survival prediction [81], however the relative goodness of fit, measured by the AIC,
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and the relative explained variation, measured with the model R2 value also give complementary

information and allow comparison of multiple competing models [144].

Model stability, the variability of the model performance due to differences in the patient population,

is infrequently assessed but is also important [145]. This can be assessed with resampling of the

training data, for example using bootstrapping or repeated cross-validation, and including as many

of the model building steps as possible within the random subsample. Each resampled dataset is

used to build a training model, and the performance tested against held back ’test’ data. Thus, many

test predictions are created and the variation in the accuracy across all of them allows researchers

to assess the how predictions vary according to small changes in the input data [145].

To summarise, glioblastoma is a condition with poor outcome and published prognostic models try

to stratify the risk of survival based on clinical predictors and also IBs derived from conventional

MRI such as tumour focality, location, presence and extent of enhancement. Novel IBs might be

able to quantify the intra-tumoural heterogeneity of the glioblastoma phenotype using a process of

high throughput quantitative analysis, radiomics. The workflow of typical radiomics discovery or

exploratory studies involves multiple steps and results in many, potentially thousands of putative IBs

that then need to be reduced into a final model that can then be tested and potentially validated in

other datasets, once a certain (smaller) number of features have been selected. RFs are then assessed

for any added benefit when combined with clinical features used in traditional prognostic models.

Many studies have suggested that there is evidence in favour of using RFs for prognostication and

the next section will discuss reasons why this has not translated to clinical practice thus far.

1.4.3 Evidence of prognostic role for radiomic IBs

Many studies have reported prognostic value of RFs in survival prediction for patients with glioblas-

toma. Sun et al. used a Cox regression model with LASSO penalty in institutional and public data

from The Cancer Imaging Archive (TCIA), to derive a 13-feature radiomic signature (train n = 132)

using anatomical MRI sequences (T1W, T1CE, FLAIR and T2W) [146]. A dichotomised radiomics

risk score demonstrated HR 3.7 (95% CI 2.1 - 6.5) in the test set (test n = 66). A radiogenomics
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risk score was also developed (train n = 95) by correlating RNA-sequencing data with the 13 RFs.

The combined (radiomics-genomics) risk score was dichotomised to label patients as either low- or

high-risk and the combined score showed prognostic stratification in external test data (test n = 78)

- HR 2.0 (95% CI 1.2 - 3.4) and C-index 0.60, although no comparison with a clinical model or

assessment of calibration or model stability was performed [146]. 12% of cases were also IDHm

tumours.

Kickingereder et al. (n = 181) demonstrated improved prognostic performance of Cox models

for OS prediction in patients with glioblastoma (all IDHwt) using an 8-feature radiomic signature

when combined with clinical predictors (age, KPS, extent of resection, adjuvant treatment, MGMT

methylation) [147]. The integrated Brier score of the combined model in the test data (n = 61)

reduced to 0.103 (0.133 for clinical only model); a lower score indicates better performance.

Choi et al. (n = 120, 14% IDHm) showed that including RFs into their prognostic model improved

the integrated area under the receiver operator curve (AUC), which allows sensitivity and specificity

calculation from censored survival data, from 0.65 (95% CI 0.64 - 0.69) for a clinical (age, gender,

type of surgery, tumour location and post-operative treatment) and genetic (IDH mutation and

MGMT methylation) model to 0.75 (95% CI 0.70 - 0.76) for a combined radiomic, genetic and

clinical model (test n = 35) [148]. Chen et al. found similar results in 127 patients with glioblastoma

(TCGA and TCIA data), with increased AUC of the combined clinical (age, KPS, radiotherapy

status) and radiomic model 0.851 in the test set (n = 42) compared to the clinical only model (AUC

0.75) [149].

Using 119 patients from TCIA, Hajianfar et al. used RFs from filtered pre-operative T1CE and

FLAIR sequences to produce a number of ML models to predict OS and reported a mean C-index

in the test data (test n = 36) of 0.77 [150]. They did not compare this to a clinical only model

or assess any other metrics of model performance. Verduin et al. demonstrated that a combined

clinical, radiomics and VASARI feature model developed in 95 patients had a calibration slope of

0.79 in the external test data (n = 38), although no curve was presented for visual analysis and the

slope of the clinical model was also not provided [151].
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Rathore et al. used RFs to derive a three-category phenotypic classification of glioblastoma (discov-

ery n = 208), which improved prognostic separation over using IDHm status alone in the test set

(test n = 53, C-index 0.752 versus 0.559) [152]. In a separate comparison, the radiomic subtypes

improved OS prediction when combined with patient age and tumour location (combined C-index

0.741 versus 0.671 or 0.608 for age and location alone, respectively). Hence, there are indicators

that radiomics could have an additive prognostic relationship with OS, which may improve the

accuracy of risk stratification in patients with glioblastoma. Attention now turns to the difficulties

faced when translating radiomics to clinical practice.

1.5 Difficulties translating radiomic IBs

1.5.1 Robust biomarker development

1.5.1.1 Robustness

In order to translate into the clinic, IBs need to undergo technical, biological and clinical validation

[84]. Technical validation means that an “IB measurement can be performed in any geograph-

ical location, whenever needed, and given comparable data” and requires assessment of the IBs

repeatability, reproducibility, and availability [84]. Repeatability and reproducibility are part of a

spectrum of steps used to determine IB precision and refer to consistency of measurements made

in the same subject, using the same methods (equipment, processing, software) in a short space of

time (repeatability) and consistency of measurement in different subjects, using different methods

such as using different sites, scanners and software (reproducibility).

Availability could refer to feasibility and safety of a technique, or in the context of radiomics, could

refer to the availability of a particular MR sequence used in a predictive signature or the ability

to apply the radiomics signature across heterogeneous imaging acquisition, including differences in

image quality (for instance, images degraded by artefact). Other steps before translation include

biological and clinical validation, which assesses whether there is any relationship to an underlying
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biological mechanism and to a clinical outcome, respectively and it is also important to assess

potential clinical utility [84].

Cagney et al. suggest that biological validation is not strictly necessary, that amassing evidence of

biomarker association with a therapeutic outcome or other endpoint, in the context of randomised

clinical trials can be sufficient show that it is ready for clinical use [85]. Predictive power and

evidence of accurate and generalisable model performance in multiple datasets could be sufficient

to show that the biomarker should be used in the clinic, and this might be an attractive proposition

for DL-based models, in particular as the underlying imaging features that form the basis of the

model’s output are more opaque than in radiomic analysis [153]. For DL networks, saliency maps,

which highlight key areas of the input image that were used to inform the model prediction, may

help with providing a biological surrogate, as these parts of a tumour, for instance, can be correlated

with histopathological analysis or macroscopic changes in the tumour that might help explain the

pattern of the network’s predictions[153]. Others have suggested that IBs might be correlated

with certain biological features such as gene expression profiles in a tumour and that the biological

pathways that are up or downregulated can be correlated with IBs to obtain a surrogate marker of

an IBs relationship to increased aggressiveness or shorter patient survival for instance [154].

Information from each of these steps can be collected and the risk and benefit profile of a biomarker

can be determined for any given clinical scenario. In general, when an IB has amassed enough

evidence, it can be said to have crossed a ‘translational gap’, either for use in hypothesis testing in

medical research, or for making a treatment decision on a patient [84].

1.5.1.2 Barriers to repeatability and reproducibility

Despite the promising findings in exploratory studies of novel radiomic IBs in glioblastoma prognos-

tic modelling, there has been a lack of clinical translation; many radiomic IBs lack repeatability and

reproducibility [155, 156]. Radiomic IBs outside of neuro-oncology are, however, showing promise

and clinical translation with commercially available tools now available. Software for determining

the risk of malignancy associated with pulmonary nodules is undergoing trial evalaution in the
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UK and is also being used across the US [157]. Outside of oncology, perivascular fat attenuation

is the basis for an AI platform that has demonstrated improved accuracy of cardiovascular event

prediction in patients without obstructive coronary artery disease in over 40,000 patients [158, 159].

RF values extracted from MRI are highly dependent upon acquisition and processing parameters

including the manufacturer, vendor, geographic site, and even vary for the same person despite

controlling all the aforementioned factors [111, 112, 127, 160]. Hence, multi-centre acquisitions

will necessarily have a bearing on reproducibility of radiomics, unless imaging protocols can be

homogenised [110].

The Quantitative Imaging Biomarker Alliance [161] and the European Imaging Biomarker Alliance

[162] are trying to make IBs more robust by standardising image acquisition. If, however, retrospec-

tive or heterogeneous imaging data is to be used for RF analysis, reproducibility across sites and

protocols, especially for intensity and texture features, is going to be hampered by arbitrary MRI

signal intensity units, which lack a direct mapping to a physical tissue property [129]. Heterogeneity

in data acquisition might help model building, as models will need to have greater generalisability

to other datasets in the training phase, rather than just being produced from homogenous and

identical images.

ISTs are usually applied to conventional MRI before RF extraction, so that the scale and distribution

of intensities is more homogeneous across all the images (per sequence) acquired across different

settings [111]. Although IBSI, which aims to improve RF reproducibility, discusses and provides

reference instructions for most image pre-preprocessing steps [114], ISTs and discussion of the

optimal approach for MRI is currently beyond the scope of the initiative. Accordingly, there is a

lack of consensus on the optimal IST strategy and there are a number of options [111, 127, 163].

1.5.1.3 Inconsistent prognostic modelling

Inconsistent findings between radiomic studies could also be due to choices made during statistical

modelling [137]. Dichotomisation of continuous predictors (for example age, tumour volume, RFs

or risk scores) is neither necessary nor beneficial, as it reduces statistical power and is usually based
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on an arbitrary value (such as the median) or one found through ’data-mining’, which is likely to be

optimistic and thus harder to replicate [137]. These should be kept as continuous predictors, and

if necessary modelled as linear or non-linear variables, either through log-transformation or using

spline functions [164].

RFs are often selected based on a statistically significant relationship to outcome (p < 0.05) using

supervised feature selection techniques such as univariable screening [146], but this leads to a

potentially exaggerated estimation of their effects, as they are likely included in the model because

they are at a randomly high value [137].

Univariable screening is also problematic because predictors may change their prognostic effect

after adjustment for other variables, and therefore univariable selection may discard important

predictors, as well as leading to multiple hypothesis testing and exaggeration of their coefficients.

The hypothesis test is also greatly dependent on the available sample size, and important predictors

might be discarded (type 2 error) or included (type 1 error) due to inadequate statistical power.

Univariable screening also greatly increases the minimum sample size requirements. Several meth-

ods exist for calculation of the minimal sample size required based on the number of predictor

variables [139] and these assume that the number of predictors in the calculation are all those that

are considered for entry into the model and not just the ones that end up in the final model. Hence,

by testing multiple features against the outcome, supervised strategies require a much higher mag-

nitude of patients to avoid overfitting [139]. An unsupervised feature reduction strategy is therefore

generally recommended in these settings, particularly when sample size is limited [137].

Stability, first mentioned during the discussion of feature selection, is also relevant to discussions on

reproducibility because assessment of model stability should include as many of the model building

steps as practically possible [145]. Feature scaling, selection, removal of correlated features and

application of ComBat harmonisation for example ought to be considered as part of the model

building process. In practice however, this is rarely applied and as a result lead to the creation of

optimistic findings that are less easily reproduced [165]. Stability is akin to the term ’generalizabil-

ity’, which is more commonly found in ML literature and refers to the performance of a model on
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’unseen’ data [44]. A more generalizable model would have higher stability.

Calibration of models is often not reported in glioblastoma prognostic studies, and if it is, a cali-

bration curve not presented [81, 146, 166]. Examining a calibration slope value (ideal value 1), or

using a hypothesis test such as the Hosmer-Lemeshow test is not advised as neither inform about

potential miscalibration or its extent for certain risk groups. Studying a calibration curve, on the

other hand, and the stability of calibration across resampling is generally preferred and gives an

easily interpretable result that does not require hypothesis testing [145].

Stability and calibration are also possible to assess in DL model performance. Classification accu-

racy (i.e. from a confusion matrix), for example, can be used to compare predicted and observed

outcome (calibration) using a calibration curve, in a similar manner to evaluating calibration ac-

curacy for survival or time-to-event models. Variability of AUC or any other model performance

metric when input data is modified using bootstrapping or data resampling can be used to assess

DL model stability.

A recent multicentre study by Dai et al. used approximately 35,000 brain MRIs and their radiology

reports to train a DL model that could accurately classify the MRIs into 15 conditions or normal

labels and they used bootstrap resampling (with 10,000 repetitions), to assess how changes in the

input dataset affected the results of the model and to compute 95% CIs of model performance [167].

The network classified external test data with AUC 0.91 (95% CI 0.88 − 0.93) and appeared well

calibrated for multiple classification labels when visually assessing the calibration plots.

1.6 Project Aims

glioblastoma is a heterogeneous tumour, which has a poor but variable prognosis and accurate

prognostic stratification may be helpful for individualised management. MRI is routinely used to

characterise glioblastoma throughout a patient’s journey and novel IB development using conven-

tional MRI is an intense area of research interest. Extraction of and mining of RFs from conventional

MRI has shown promising results for over a decade but has failed to move beyond exploratory, ret-
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rospective studies. Recent, DL models have shown the ability to increase the accuracy of outcome

prediction in retrospective and prospective data for patients with glioblastoma, albeit not with

continuous outcome prediction [168]. Multi-centre, heterogeneous imaging may be one of the key

barriers to this lack of reproducibility; MRI signal intensity standardisation and ComBat harmon-

isation could play a key role in tackling some of the inconsistencies introduced by variation in scan

acquisition. Choices made in prognostic modelling stages may also hamper the ability to replicate

findings and assess models adequately.

1. To systematically review the literature regarding the use of ISTs in the processing of diffuse

glioma and glioblastoma MRI prior to the extraction of RFs, and determine the optimal

strategy for this context.

2. To examine prognostic effect of tumour size, given it is one of the simplest quantitative imaging

feature, in a large institutional cohort of patients with glioblastoma. A secondary aim will be

to examine the effect of varying sample size and non-linear transformation will be assessed on

the ability to reproduce these results.

3. To build on steps 1 and 2 and combine radiomic and clinical prognostic models to assess

the impact of ISTs and ComBat realignment on prognostic model performance. Model per-

formance will be assessed using various metrics including calibration, and model stability,

explained variation and model fit.

Aims 1, 2, and 3 are addressed in Chapters 2, 3 and 4 respectively. Chapter 5 discusses the outcomes

generated through Chapters 2-4 and examines the direction of future work.
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CHAPTER

TWO

INTENSITY STANDARDISATION OF MRI PRIOR TO

RADIOMIC FEATURE EXTRACTION FOR ARTIFICIAL

INTELLIGENCE RESEARCH IN GLIOMA – A SYSTEMATIC

REVIEW

2.1 Abstract

2.1.1 Background

Radiomics is a promising avenue in non-invasive characterisation of diffuse glioma. Clinical trans-

lation is hampered by lack of reproducibility across centres and difficulty in standardising image

intensity in MRI datasets. The study aim was to perform a systematic review of different methods

of MRI intensity standardisation prior to radiomic feature extraction.
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2.1.2 Methods

MEDLINE, EMBASE, and SCOPUS, were searched for articles meeting the following eligibility

criteria: MRI radiomic studies where one method of intensity standardisation was compared with

another or no standardisation, and original research concerning patients diagnosed with diffuse

gliomas. Using PRISMA criteria, data were extracted from short-listed studies including number

of patients, MRI sequences, validation status, radiomics software, method of segmentation and

intensity standardisation. QUADAS-2 was used for quality appraisal.

2.1.3 Results

After duplicate removal, 743 results were returned from database and reference searches and from

these, 12 papers were eligible. Due to a lack of common pre-processing and different analyses, a

narrative synthesis was sought. 3 different intensity standardisation techniques have been studied:

histogram matching (5/12), limiting or rescaling signal intensity (8/12), and deep learning (1/12) -

only two papers compared different methods. Histogram matching produced the highest area under

the receiver-operator curves but these studies lacked direct comparison to other methods.

2.1.4 Conclusion

Multiple methods of intensity standardisation have been described in the literature without clear

consensus. Further research that directly compares different methods of intensity standardisation

on glioma MRI datasets is required.

2.2 Introduction

Radiomic evaluation of glioblastoma and other adult-type diffuse gliomas has thus far failed to

translate to clinical practice in part due to non-biological, scanner-dependent variation in image

signal intensity [1–4]. Signal intensity for structural MR, such as T1W or T2W MRI, does not map
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easily to a physical tissue property, in contrast to CT, and shows variation between timepoints,

vendors, magnetic field strengths and acquisition settings [5–8]. RFs are highly sensitive to the

values of the signal intensities in the image, and non-biological alteration must be standardised; the

range and distribution of voxel intensity must be similar across patients, prior to radiomic analysis

to ensure that the results are reproducible [1]. Despite this, there is a lack of consensus as to

the optimal method when characterising diffuse glioma. Although not a specific diagnosis, diffuse

glioma is a useful grouping, as they often share the same radiomics pipeline and are a commonly

studied group of related tumours [3, 6].

The aim, therefore, was to perform a systematic review of the literature examining the efficacy of

different MRI ISTs prior to the extraction of RFs in the setting of adult-type diffuse glioma.

2.3 Materials and Methods

2.3.1 Search strategy and selection criteria

This systematic review was undertaken according to the ‘Preferred Reporting Items for Systematic

Reviews and Meta-Analysis’ (PRISMA) statement [9]. A search of MEDLINE, EMBASE and

SCOPUS databases was performed on 5th October 2021 using the following concepts, linked by the

“AND” operator, including synonymous terms that were linked with the “OR” operator: (1) MRI,

(2) radiomics, artificial intelligence or deep learning, (3) intensity standardisation, and (4) glioma.

Full search strategy and PRISMA checklist are available in section 2.7.

No limit was placed on the date, language, location, or type of study. Inclusion criteria were:

original research article, adult (≥ 16 years old) patients with diagnosis of adult-type diffuse glioma,

application of IST to imaging prior to extraction of RFs, comparison of the effect of one IST

to either no standardisation or another IST, and RFs extracted from images. Exclusion criteria

were: non-human studies, not regarding adult-type diffuse gliomas, non-original research, non MR

radiomics, no mention of IST, or no assessment of the effect of an IST (compared to another or to



-57-

no standardisation).

Records were managed using citation management software, and automatic duplicate removal was

used to screen the results. Two reviewers independently and manually reviewed the titles and

abstracts and subsequently the full texts to determine if they satisfied the inclusion and exclusion

criteria. Any disagreement was resolved by consensus. References in the included articles were

manually reviewed.

2.3.2 Data-extraction

The primary outcome for the study was assessment of the efficacy of ISTs. The measurement of

efficacy was not restricted to any statistic or method due to lack of an agreed standard. If studies de-

veloped a predictive or diagnostic model, any reported model performance statistics were extracted.

For any studies that did not develop a predictive model, the reported efficacy of standardisation

was extracted. All effect measures were agreed by consensus between three reviewers.

Meta-analysis was precluded by heterogeneity of the included studies and therefore a narrative

synthesis was presented. In the narrative synthesis, the studies were grouped based on chosen IST.

No preparation or processing of data within the included studies was undertaken – results of studies

were included as they appeared in published manuscripts.

Since a meta-analysis was not conducted, additional methods such as sensitivity analyses or sub-

group analyses were not performed. Similarly, the impact of missing results was not relevant as we

included any outcome measure presented in the studies. No additional methods were used to assess

certainty or confidence in the outcome, other than qualitative assessment of each study during the

narrative synthesis. The systematic review was not prospectively registered.

2.3.3 Quality assessment

Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) was used to assess the risk of

bias [10]. QUADAS-2 was used because the objective was to evaluate performance of any given IST,
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when compared to either no standardisation or to another IST. QUADAS-2 assesses four domains:

(1) patient selection – description of how patients were recruited such as inclusion and exclusion

criteria, (2) index test – how the index test was conducted and interpreted, (3) reference standard

– how the reference test was conducted and interpreted, and (4) flow and timing – patients that did

not have the index or reference test or were excluded from final analysis. Each domain was assessed

for risk of bias and the first three domains were also assessed for applicability and categorised as

either low risk, high risk, or unclear. The index test was taken to be the IST under investigation, and

the reference test was either no standardisation or an alternative IST. Two reviewers independently

reviewed each study and any disagreement resolved by consensus.

2.4 Results

2.4.1 Search results

After duplicate removal, 741 results were returned from database searches (Figure 2.1). Following

title and abstract screening, full text screening was undertaken for 60 articles and 12 articles met

the inclusion criteria. Two studies by Florez et al.[11, 12] were both included as separate studies as

one used only RFs from FLAIR sequences [12], whereas the other extracted features from mpMRI

[11] and this may have an impact upon the results of any IST.

2.4.2 Quality assessment

Risk of bias was assessed for each of the four domains and applicability assessed for the first

three domains in the QUADAS-2 framework [10]. Apart from the patient selection domain and

applicability concern for the index test, all other domains were low risk for all studies (Table

2.1). 10 studies were deemed to have unclear risk due to lack of information on how patients were

selected. It was unclear whether institutional patients were selected consecutively or randomly or,

if publicly available datasets were used, it was unclear whether any inclusion or exclusion criteria
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741 records identified through
database searches

744 records screened

60 records sought for full−text
screening

12 studies included in the review

3 records identified through
reference searches

684 records excluded

17 − Normalisation method not stated
or not compared
12 − No radiomic analysis
6 − Not diffuse glioma
4 − Review article
2 − Non−MRI studies
2 − Animal studies
3 − Duplicates
2 − Conference abstracts

Figure 2.1: Flow chart illustrates the study selection for the systematic review of intensity stan-
dardisation techniques of MRI in diffuse glioma radiomic studies.
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Table 2.1: Summary of the risk of bias and applicability concerns for the 12 studies included in the
systematic review.

Risk of Bias Applicability Concerns

Study Patient
Selection

Index Test Reference
Standard

Flow and
Timing

Patient
Selection

Index Test Reference
Standard

Chen et al.
2019

UNCLEAR LOW LOW LOW LOW LOW LOW

Zhao et al. 2020 UNCLEAR LOW LOW LOW LOW LOW LOW
Reuze et al.
2018

UNCLEAR LOW LOW LOW LOW HIGH LOW

Um et al. 2019 UNCLEAR LOW LOW LOW LOW LOW LOW
Upadhaya et al.
2016

UNCLEAR LOW LOW LOW LOW HIGH LOW

Florez et al.
2018

UNCLEAR LOW LOW LOW LOW LOW LOW

Florez et al.
2018

UNCLEAR LOW LOW LOW LOW LOW LOW

Hu et al. 2021 UNCLEAR LOW LOW LOW LOW LOW LOW
Hoebel et al.
2021

LOW LOW LOW LOW LOW LOW LOW

Vils et al. 2021 LOW LOW LOW LOW LOW LOW LOW

Carré et al.
2020

UNCLEAR LOW LOW LOW LOW LOW LOW

Orlhac et al.
2020

UNCLEAR LOW LOW LOW LOW LOW LOW

were used to select patients.

For applicability concerns of the index test, two studies [13, 14] were deemed high risk because it

was not possible to isolate the effects of standardisation from other pre-processing. Two studies [15,

16] were low risk in all domains. Two studies by Florez et al.[11, 12] also included patients with

meningioma, but were not thought to be at risk of bias or an applicability concern as the results

for the glioblastoma patients were presented separately.

2.4.3 Characteristics of included studies

Significant heterogeneity in the pre-processing steps and in analysis methodology (Table 2.2),

precluded a meta-analysis and a narrative synthesis is presented.
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Table 2.2: Summary of studies included in the review

First Author Study aims Sample size

(train/test)a

MRI

sequences

Standardisation

method

Image

processing

Segmentation Radiomics

software

Results Conclusions

Chen et al.

2019

Assess the impact of

HSASR

standardisation on

glioma grading

accuracy using

radiomics

521

(416:105)

T1CE HSASR method Skull

stripping

and spatial

resampling

Manual Pyradiomics Glioma grading AUC

with HSASR =

0.9934 (0.8512

without). AUCs with

HSASR generally

increased 15%.

Multicentre data

processed by HSASR

standardisation

improves grading and

has value for clinical

prediction.

Zhao et al.

2020

Assess the impact of

HS-GS

standardisation on

glioma grading

accuracy using

radiomics

693

(554:139)

T1CE HS-GS method Skull

stripping

and spatial

resampling

Manual Pyradiomics Glioma grading AUC

with HG-GS = 0.956

(26.96% higher than

without)

HS-GS improves

accuracy of radiomics

diagnostic models for

glioma grading.

Reuze et al.

2018

To assess intensity

rescaling on

robustness of

multicentre radiomic

analysis

190 (n/a) T1CE Intensity

rescaling

Spatial

resampling

and grey

level dis-

cretisation

Manual LIFEx freeware 11/31 texture

features were robust

after

the standardisation.

Standardisation was

not sufficient for

correcting the

differences between

images.

Um et al.

2019

Assess the impact of

pre-processing

methods on MRI

radiomic feature

robustness across

multi-institutional

datasets

161 (111: 47) FLAIR,

T1W, and

T1CE

Histogram stan-

dardisation

Co-

registration

Semi-

automatic

Computational

Environment for

Radiotherapy

Research

Histogram

matching had the

greatest impact on

robustness as shown

by a significant

decrease of Matthews

correlation coefficient.

Histogram standardi-

sation had the biggest

contribution on

reducing feature

dependence on

scanner variability.



-62-

Upadhaya et

al. 2016

Impact of

pre-processing steps

on the prognostic

accuracy of a binary

classification model

(survival above and

below median of 12

months)

58 (58:58)b T1W, T2W,

T1CE, and

FLAIR

Dynamic

intensity

limitation

Bias field

correction,

skull

stripping, co-

registration,

spatial

resampling,

and grey

level dis-

cretisation

Automatic Not identified Prognostic model

sensitivity and

specificity

respectively increased

with pre-processing

to 93% (79% and 86%

without, respectively)

Acquisition methods

from different MR

scanners can influence

the accuracy of

prognostic models

and pre-processing

steps can help reduce

this.

Florez et al.

2018

To assess the

accuracy of radiomic

features in

differentiating GTV

from oedema and

differentiating

vasogenic oedema

from tumour cell

infiltration

17 (17;n/a) T1W, T1CE,

T2W,

FLAIR and

ADC

1%-99% normali-

sation

Segmentation Semi-

automatic

MatLab version

2016a

T1CE with

1%-99% normalisa-

tion had the highest

accuracy for tumour

classification with an

AUC 0.97.

Only a small subset

of the many radiomic

features extracted,

showed ability to

classify tumour tissue.

Florez et al.

2018

To assess the ability

of FLAIR radiomic

features to

distinguish oedema

and infiltrative

tumour

20 (20;n/a) FLAIR 1%-99% normali-

sation

Segmentation Semi-

automatic

MatLab version

2016a

AUC with

standardisation =

0.87 (0.84 without)

Small number of

texture features can

discriminate oedema

from tumour.
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Hu et al.

2021

Impact of

MIL standardisation

on tumour

segmentation

accuracy and on the

accuracy of glioma

grading and IDH1

status classification

using RFs

800

(533:267)

T1W, T1CE

and FLAIR

for all of the

datasets

(and T2W

for

the BraTs dataset,

n=285)

CycleGAN MIL stan-

dardisation

Automatic Not identified MIL standardisation

improved the AUC of

pathological grading

and IDH1 status

prediction by 32%

and 25% (p<0.001)

respectively. Grading

AUC with

standardisation =

0.89 (0.69 without)

and IDH1 mutation

AUC with

standardisation =

0.91 (0.70 without).

MIL standardisation

results in higher

quality data for

radiomic analysis.

Hoebel et al.

2021

To assess the impact

of z-score and

histogram matching,

and grey level

discretization on the

repeatability and

reproducibility of

features extracted

from a scan-rescan

GBM cohort

48 (n/a) T1CE and

FLAIR

Z-score and

histogram

matching

Segmentation,

registration,

bias field

correction

and whole

brain

extraction

Manual Pyradiomics Z-score and histogram

matching improved

the repeatability of

FLAIR radiomics

(p=0.003 for z-score

and p=0.002 for

histogram matching

compared to

baseline). T1CE

radiomics did not

show a significant

result.

Standardisation

methods improved

repeatability for

FLAIR images but

less for T1CE images,

and may be due to

differences in timing

of contrast injection.



-64-

Vils et al.

2021

To assess the ability

of radiomic features

to predict clinical

outcome and

molecular

characteristics such

as MGMT status

118 (69:49) T1CE Linear intensity

interpolation

Segmentation

and manual

extraction of

brain tissue

Manual Z-Rad MGMT status

prediction using

radiomic with

standardisation

showed diagnostic

accuracy in an

independent cohort,

AUC = 0.670 (95%

CI 0.5341-0.8056).

The proposed model

may be a non-invasive

approach to predict

patient response to

chemotherapy.

Carré et al.

2020

Impact of three inten-

sity standardisation

methods and grey

level discretization on

glioma grading

263 (195:48) T1CE and

FLAIR

Nyul, WhiteStripe and

Z score normali-

sation method

Bias field

correction,

spatially

resampled,

skull-

stripping,

co-

registration

and

segmentation

Manual Pyradiomics Glioma grading using

T1CE radiomic

features was improved

using histogram

matching (AUC 0.82),

WhiteStripe (0.79)

and z-score (0.82)

compared to no

standardisation

(0.67). Relative

discretization made

intensity

standardisation of

second-order features

unnecessary.

Models based on

second-order features

do not need intensity

standardisation, if

relative discretization

is adopted
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Orlhac et al.

2020

To assess the impact

of intensity

standadrisation and

post-extraction

realignment

(ComBat) on the

statistical

distribution of

radiomics from

diffuse gliomas

18 T1CE and

FLAIR

Hybrid

WhiteStripe (and

ComBat)

Co-

registration,

bias field

correction,

spatial

resampling

Manual LIFEx freeware WhiteStripe reduced

the number of

features that were

significantly different

between acquisitions

(88% reduced to 69%

for normal white

matter, and 98% to

60% for tumour

radiomic features).

Intensity

standardisation

results in similar

intensity values in

images, but

significant scanner

dependent changes

remain.

ADC = Apparent Diffusion Coefficient; AUC = Area under the receiver-operator curve; BraTs = Brain Tumor Segmentation; FLAIR = Fluid Attenuated Inversion Recovery; GAN = generative ad-

versarial network; GBM = Glioblastoma; GTV = Gross Tumour Volume; HSASR = Histogram-specification with automatic selection of reference; HS-GS – Histogram-specification grid search; IDH1 =

Isocitrate dehydrogenase 1; MGMT = 6-O-Methylguanine-DNA Methyltransferase; MIL = Modality incompleteness modality incompleteness, uneven intensity distribution and inconsistent layer spacing;

RF = radiomic feature; T1W = T1-weighted MRI; T1CE = T1-weighted MRI gadolinium contrast-enhanced; T2W = T2-weighted MRI a Train/test numbers are only stated for any predictive model

developed in the study; ‘n/a’ stated if no model was developed b Model developed using leave one out cross-validation, according to stated references in the study
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All studies were retrospective, although two studies [15, 16] utilised prospectively acquired trial

data. Eight included multicentre data, and for one [13], it was unclear whether data comprised

single or multicentre data. Six studies used a publicly available multicentre dataset from TCIA

[17], or competition data from the brain tumour image segmentation benchmark (BraTs) [18], with

five of these also using institutional data. Only one study[13] used solely public data.

Aims of the studies could be divided into two groups:

1. To assess the impact of intensity standardisation on the reproducibility and repeatability of

RFs, and/or

2. To assess the impact of intensity standardisation on a predictive radiomics model.

Nine studies assessed the impact of intensity standardisation on a predictive model. Five studies

assessed the impact of standardisation on feature robustness (two studies included both aims).

Three groups, Hoebel et al. [16], Carré et al. [3], and Orlhac et al. [4] used a ‘scan-rescan’

method, scanning the same patient after a short interval at different field strengths[3, 4], to test

reproducibility, or using identical acquisitions [16], to test RF repeatability. Reproducibility is

the consistency of a feature across different experimental settings, whereas repeatability refers to

consistency under identical parameters [19]. Two other studies, Um et al. [20] and Reuze et al. [14],

assessed differences in the feature distribution between paired scanners or the ability of a classifier

to distinguish patients scanned internally versus externally [20].

The three main approaches to intensity standardisation can be categorised as histogram matching,

deep-learning, or limiting or rescaling the signal intensities. Most of the included studies evaluated

one method, however Carré et al. [3] and Hoebel et al. [16] used two or more.

2.4.4 Histogram matching

Histogram matching linearly transforms the signal intensities of an image to produce a match

between the histogram of the reference and transformed image [21, 22]. The reference histogram is
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calculated by averaging the intensities of training images, at pre-specified intensity landmarks [22].

The image to be transformed is divided into deciles of signal intensity and each decile is linearly

mapped to the new intensity using the reference histogram.

Um et al. [20] assessed RF robustness after the following pre-processing steps: 8-bit rescaling, bias

field correction, histogram matching, and isotropic resampling. A Random Forest classifier was

used to predict whether images were from internal or external datasets and classification accuracy

was measured using the Matthews correlation coefficient. A value of 1 means perfect prediction

and 0 no better than chance, and therefore no scanner-dependency and > 0.2 was taken to mean

that images could still retain scanner-dependence. Multiple classes of features were extracted. For

edge features, different image filters (Sobel, Laplacian of Gaussian, Gabor, wavelet) were applied

and first order features extracted. Haralick features were calculated from the GLCMs. For baseline

images, the Matthews correlation coefficients were 0.36, 0.22 and 0.39 (measured from the provided

bar chart) for Haralick and the Sobel and Laplacian of Gaussian features, respectively. Histogram

matching significantly decreased these to 0.191, 0.170, and 0.140 respectively (p < 0.01).

Zhao et al. [23], used histogram specification-grid search (HS-GS), and Chen et al. [24] used

histogram specification with automated selection of reference frames (HSASR), which automatically

select the training histogram. Zhao et al. compared the predictive ability of standardised compared

to unstandardised images for glioma grading and demonstrated an AUC of 0.956, 27% higher than

without standardisation. Using HSASR, Chen et al. achieved 0.9934 AUC for grading (AUC 0.8512

without). These were the highest achieved for glioma grading, although a direct comparison to other

ISTs was not presented, therefore limiting the ability to draw comparisons between approaches.

2.4.5 Deep learning

Hu et al. [25] describe ‘MIL’ pre-processing and intensity standardisation that corrects: modality

incompleteness (M), uneven intensity distribution (I), and inconsistent layer spacing (L) in mpMRI

datasets of T1W, T1CE, T2W and FLAIR sequences. Modality incompleteness is the absence of

MRI sequences (referred to as ‘modalities’), for example T1CE. Intensity unevenness is MRI signal
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intensity variation introduced by variance in acquisition, and inconsistent layer spacing refers to

differences in slice thickness between image sets. Effect of MIL normalisation on accuracy of ra-

diomics models for glioma grading and for IDH1 prediction, and on tumour segmentation accuracy

was assessed. A cycle-consistent adversarial network (CycleGAN) standardised signal intensities,

and a deep learning network synthesised any missing MRI sequences using a encoder (a modified U-

net) and separate decoder. Slice thickness was standardised using interpolation software, Statistical

Parametric Mapping 12 (SPM12). AUC 0.693 (95% CI 0.613-0.772) was reported for a radiomics

model for pathological grade prediction without any MIL normalisation. Accuracy increased fol-

lowing synthesis of missing sequences (AUC 0.838, 0.772-0.904), intensity standardisation (0.704,

0.626-0.783), and layer space normalisation (0.716, 0.639 – 0.793). Combining 3-steps produced

the best performing model (0.89, 0.838 – 0.941). Similarly, the IDH1 mutation prediction model

increased from AUC 0.701 (0.623 - 0.779) without MIL to 0.908 (0.863 - 0.954) with all three

components of MIL normalisation.

2.4.6 Limiting or rescaling signal intensity

Reuze et al. rescaled the signal intensity between 0 and 32767 per patient and concurrently re-

sampled to 0.5mm3 resolution and assessed the impact on feature robustness on images from 11

MRI scanners [14]. From 31 textural features, 11 were found to be robust amongst differing mag-

netic field strength post-normalisation (p > 0.05 on Wilcoxon paired test). Results from intensity

standardisation alone were not presented.

Upadhaya et al. assessed the effect of pre-processing steps on the accuracy of a support vector

classifier for OS prediction [13]. Patients were divided in to short- or long-term survivors by the

median (12 months). Baseline pre-processing steps included bias field correction, skull stripping, and

registration, with additional spatial resampling, intensity quantisation (or grey-level discretization),

and standardisation. Intensity standardisation ignored any values outside of the range: (µ−σ, µ+σ),

where µ and σ are the mean and standard deviation, respectively of the intensity values within the

VOI. If the model utilised additional sequences and pre-processing steps, sensitivity improved from
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79% to 93% and specificity from 86% to 93%. The effect on prognostic model performance of only

applying intensity standardisation was not presented.

Florez et al. evaluated intensity standardisation on differentiation of tumour volume and oedema

in 17 and 20 glioblastoma patients using a logistic regression model with least absolute shrinkage

and selection operator penalty [11, 12]. 1% - 99% normalisation, where only intensities within the

1st and 99th centiles of the intensity histogram are included, was compared to no standardisation.

Standardised T1CE sequences produced the best classification accuracy with an AUC> 0.97 (0.85

without standardisation) [11]. The performance of standardised T2W images decreased - AUC of

0.85 (standardised) compared to AUC 0.91 (without). In a separate study, utilising only FLAIR,

standardisation reduced AUC for discriminating tumour and oedema (AUC without 0.87, AUC

with standardisation 0.84) [12].

Vils et al. assessed the impact of linear intensity interpolation on predictive model performance in

118 patients with recurrent glioblastoma [15]. OS, progression free survival and MGMT methylation

status were the outcomes for each model. The linear intensity interpolation model used the intensity

of ROIs within normal contralateral white matter and the vitreous body:

Intensitystandardised=Intensityoriginal
500

Intensitywhitematter−Intensityeye
+800− 500Intensitywhitematter

Intensitywhitematter−Intensityeye

A radiomic model for prediction of MGMT promotor methylation following standardisation achieved

an AUC of 0.673 (95% CI 0.4837 – 0.8618) on the validation set, whereas the model without

standardisation could not be validated (AUC 0.660 in training data).

Orlhac et al. assessed the impact of hybrid WhiteStripe standardisation on the distribution of

features from normal white matter and tumours in 18 patients with diffuse glioma that had been

scanned and rescanned at different field strengths [4]. WhiteStripe subtracts the mean and divides

by the standard deviation of normal appearing white matter intensity [26]. WhiteStripe reduced

the number of significantly different features in normal white matter (88 to 69%) and tumour (98
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to 60%) between the images from different field strengths, demonstrating some improvement but

considerable residual scanner dependency.

2.4.7 Comparison of techniques

Carré et al. [3] and Hoebel et al. [16] both used histogram-matching and z-score. Z-score normal-

isation subtracts the mean signal intensity from each voxel and divides by the standard deviation

of the ROI [3]. Carré et al. also used WhiteStripe.

Hoebel et al. assessed the repeatability, using the intraclass correlation coefficient (ICC), of

RFs extracted from a set of scan-rescan T1CE and FLAIR images of 48 patients diagnosed with

glioblastoma [16]. Z-score and histogram matching improved repeatability of intensity features on

FLAIR but not T1CE. Histogram matching improved repeatability of texture features on FLAIR

(p = 0.003), whereas Z-score did not and neither technique improved the repeatability of texture

features on T1CE.

Carré et al. [3], assessed the impact of intensity standardisation on feature robustness and the

prediction of glioma grading. Using a scan-rescan dataset of 20 patients with low-grade glioma,

histogram matching was found to produce the highest number of robust first-order features on

both T1CE and FLAIR images (ICC > 0.80, 16 and 8 features out of 18 respectively). Regarding

glioma pathological grade prediction using T1CE images, and only robust features from the first

scan-rescan experiment, the average balanced accuracy increased from 0.73 to 0.81, 0.79, and 0.81

for histogram, WhiteStripe, and z-score respectively.

2.5 Discussion

The aim of this review was to evaluate the published literature and compare the efficacy of different

ISTs prior to the extraction of RFs in the setting of adult-type diffuse glioma. A multitude of IST

were used in the 12 studies reviewed, however there were significant differences in image processing
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Table 2.3: Limitations of literature and opportunities for the future

Limitation Opportunity
1. Assessing the effect of
multiple preprocessing steps
simultaneously

Effects of preprocessing steps presented
independently of others so their effect on the result
can be determined.

2. Investigating the effect of
only one intensity
standardisation technique

Impact of more than one standardisation method
on a predictive model or feature robustness could
be evaluated.

3. Lack of scan-rescan data
used to test the repeatability of
radiomic features

Increased availability of datasets that have
rescanned a patient with a diffuse glioma within a
short time interval (i.e. days) in public databases.

4. Single-centre studies used
to assess standardisation
techniques

Use of multi-centre datasets in assessing the efficacy
of standardisation techniques and repeatability of
radiomic features.

and methodology that did not allow quantitative analysis. Although on face value, studies using

histogram matching produced the highest AUC values within the included studies [23, 24], these

studies lacked a comparison method and therefore we could not confidently produce a consensus on

the optimal IST for this context.

To be clinically useful, radiomics needs to be validated [19], and there are unique challenges to

evaluating radiomics-based predictive models [27]. For MRI radiomics, a key challenge to assessing

repeatability and reproducibility, is to remove the scanner-dependent signal intensity changes [1].

This study confirms that intensity standardisation improves RF repeatability and improves most

predictive models, and therefore that there needs to be awareness of this crucial step in any radiomics

predictive modelling study. Variation in methodology precluded the direct comparison of results

across studies and this review has highlighted potential areas of improvement, which may improve

translation of radiomic models into the clinical setting (Table 2.3).

In two studies[13, 14], the effects of intensity standardisation were difficult to differentiate from other

pre-processing, and authors could have reported separately the impact of different pre-processing

steps on feature robustness or model performance. Hu et al. [25] presented all possible combinations

of pre-processing steps, with separate AUC results, so the impact of each step was identifiable.

Only two studies [3, 16] performed a comparison of one or more IST. Given the number of methods
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and lack of consensus, more studies that directly compare techniques are required as it makes the

interpretation of results such as those of the two histogram-specification studies [23, 24] difficult.

The AUC for glioma grading was the highest reported out of all classifiers for this outcome across

all the included studies, however it is unclear how if other ISTs would have produced similar results

on the same data and with the same model building approach. Li et al. [6] compared multiple ISTs

and post-feature extraction correction with ComBat, a statistical model for batch-effect correction

in genomics that has been applied successfully to RFs in retrospective analyses [1, 4]. Intensity

standardisation was insufficient to remove scanner-dependency, but ComBat could remove scanner-

dependent information from extracted features [6], similar to the findings of Orlhac et al [4].

Three studies used scan-rescan data, where patients were scanned multiple times with a short

delay (hours or days) and either using the same or varied acquisition parameters, thereby providing

the opportunity to assess RF reproducibility and repeatability. Although a tumour may change

microscopically within several days, these radiomic studies assume that if the imaging phenotype

remains identical, then the RFs ought to as well [3, 4, 16]. Test-retest data, along with phantom

studies [6], and comparison of RFs extracted from normal structures provides a useful paradigm to

compare ISTs. Open access to such data in a public repository may help further validate different

ISTs.

Limitations to this review include not being able to retrieve full-text articles for two conference

abstracts. Based on the abstracts, it is unlikely they would have been included. Their potential

omission will have had a limited impact as a narrative synthesis would still have been required.

QUADAS-2 is not specifically designed for assessing the efficacy of MRI ISTs but was considered

the only option given the absence of a more specific alternative. The scope of this review was

to assess MRI intensity standardisation in the context of diffuse glioma, which will have led to

inevitable omission of studies of other organs, brain pathologies and healthy volunteers.
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2.6 Conclusion

No clear consensus emerged as to which approach is the most reliable IST. In order to translate

radiomics to the clinic, more studies that assess the effects of multiple ISTs on predictive model

performance or RF robustness are required. The impact of any intensity standardisation step should

be clearly reported and determined independently from the effects of other image manipulation.

Collation and sharing of scan-rescan datasets would facilitate production of radiomic models in

diffuse glioma and greatly improve the development of clinically translatable models.
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2.7 Search protocols and PRISMA checklists

The following search strategy was used to search Medline and then EMBASE, both of which were

accessed via OVID on 05/10/2021. No limits or filters were applied.

1. MRI.ab,sh,ti.

2. magnetic resonance imaging.ab,sh,ti.

3. 1 or 2

4. AI.ab,ti.

5. Machine learning.ab,sh,ti.

6. Neural network.ab,sh,ti.

7. “Neural network*“.ab,ti.

8. “Radiomic*“.ab,ti.

9. “radiogenomic*“.ab,ti.

10. deep learning.ab,ti.

11. Advanced neuroimaging.ab,ti.

12. Artificial intelligence.ab,sh,ti.

13. 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12

14. “intensity standard*“.ab,ti.

15. “intensity harmon*“.ab,ti.

16. (intensity adj10 standard*).ab,ti.

17. (intensity adj10 harmon*).ab,ti.

18. “image preprocess*“.ab,ti.

19. feature extraction.ab,ti.

20. extracted feature.ab,ti.

21. radiomic feature.ab,ti.

22. texture feature extraction.ab,ti.

23. “harmon*“.ab,ti.

24. “standard*“.ab,ti.
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25. 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24

26. Glioma.ab,sh,ti.

27. Glioblastoma.ab,sh,ti.

28. glioblastoma multiforme.ab,sh,ti.

29. GBM.ab,ti.

30. Low grade.ab,ti.

31. Grade II.ab,ti.

32. 30 or 31

33. 26 and 32

34. High grade.ab,ti.

35. Grade III.ab,ti.

36. Grade IV.ab,ti.

37. 34 or 35 or 36

38. 26 and 37

39. “Glial cell tumo*“.ab,ti.

40. “Astrocytoma*“.ab,ti.

41. “Oligodendroglioma*“.ab,ti.

42. “Oligoastrocytoma*“.ab,ti.

43. brain cancer.ab,ti.

44. Neuro-oncology.ab,ti.

45. 26 or 27 or 28 or 29 or 33 or 38 or 39 or 40 or 41 or 42 or 43 or 44

46. “normali*ation”.ab,ti.

47. 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 46

48. 3 and 13 and 45 and 47

The following strategy was used to search Scopus on 05/10/21. No limits or filters were applied.

(TITLE-ABS ( mri ) OR TITLE-ABS ( magnetic AND resonance AND imaging ) )

AND
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( TITLE-ABS (artificial AND intelligence ) OR TITLE-ABS ( ai ) OR TITLE-ABS ( machine AND

learning ) OR TITLE-ABS ( neural AND network ) OR TITLE-ABS ( radiomic* ) OR TITLE-

ABS ( radiogenomic* ) OR TITLE-ABS ( deep AND learning ) OR TITLE-ABS ( advanced AND

neuro-imaging ) ) AND ( TITLE-ABS-KEY ( intensity AND standard* ) OR TITLE-ABS-KEY (

intensity AND harmon* ) OR TITLE-ABS ( intensity AND adj10 AND standard* ) OR TITLE-

ABS ( intensity AND adj10 AND harmon* ) OR TITLE-ABS-KEY ( image AND preprocess*

) OR TITLE-ABS ( feature AND extraction ) OR TITLE-ABS ( extracted AND feature ) OR

TITLE-ABS ( radiomic AND feature ) OR TITLE-ABS ( texture AND feature AND extraction

) OR TITLE-ABS-KEY ( harmon* ) OR TITLE-ABS ( standard* ) OR TITLE-ABS-KEY (

normali*ation ) )

AND

( TITLE-ABS ( glioma ) OR TITLE-ABS ( glioblastoma ) OR TITLE-ABS ( glioblastoma AND

multiforme ) OR TITLE-ABS ( gbm ) OR TITLE-ABS ( low AND grade AND glioma ) OR

TITLE-ABS ( grade AND ii AND glioma ) OR TITLE-ABS ( high AND grade AND glioma ) OR

TITLE-ABS ( grade AND iii AND glioma ) OR TITLE-ABS ( grade AND iv AND glioma ) OR

TITLE-ABS ( glial AND cell AND tumo* ) OR TITLE-ABS ( astrocytoma* ) OR TITLE-ABS

( oligodendroglioma* ) OR TITLE-ABS ( brain AND cancer ) OR TITLE-ABS ( neuro-oncology ) )
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Table S2.1: Abstract compliance with Preferred Reporting Items for Systematic Reviews and Meta-
Analysis (PRISMA) guidelines

Section Item Description Reported

TITLE

Title 1 Identify the report as a systematic review. Yes

BACKGROUND

Objectives 2 Provide an explicit statement of the main

objective(s) or question(s) the review addresses.

Yes

METHODS

Eligibility criteria 3 Specify the inclusion and exclusion criteria for the

review.

In main

text

Information

sources

4 Specify the information sources (e.g. databases,

registers) used to identify studies and the date when

each was last searched.

Yes

Risk of bias 5 Specify the methods used to assess risk of bias in the

included studies.

Yes

Synthesis of results 6 Specify the methods used to present and synthesise

results.

In results

RESULTS

Included studies 7 Give the total number of included studies and

participants and summarise relevant characteristics

of studies.

Yes

Synthesis of results 8 Present results for main outcomes, preferably

indicating the number of included studies and

participants for each. If meta-analysis was done,

report the summary estimate and confidence/credible

interval. If comparing groups, indicate the direction

of the effect (i.e. which group is favoured).

Yes

DISCUSSION
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Limitations of

evidence

9 Provide a brief summary of the limitations of the

evidence included in the review (e.g. study risk of

bias, inconsistency and imprecision).

In main

text

Interpretation 10 Provide a general interpretation of the results and

important implications.

Yes

OTHER

Funding 11 Specify the primary source of funding for the review. Main text

Registration 12 Provide the register name and registration number. N/a
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Table S2.2: Study compliance with Preferred Reporting Items for Systematic Reviews and Meta-
Analysis (PRISMA) guidelines

Section Item Description Reported

TITLE

Title 1 Identify the report as a systematic review. Title

ABSTRACT

Abstract 2 See the PRISMA 2020 for Abstracts checklist. See other

checklist

INTRODUCTION

Rationale 3 Describe the rationale for the review in the context

of existing knowledge.

Introduction

Objectives 4 Provide an explicit statement of the objective(s) or

question(s) the review addresses.

Introduction

METHODS

Eligibility criteria 5 Specify the inclusion and exclusion criteria for the

review and how studies were grouped for the

syntheses.

Methods

Information

sources

6 Specify all databases, registers, websites,

organisations, reference lists and other sources

searched or consulted to identify studies. Specify the

date when each source was last searched or consulted.

Methods

Search strategy 7 Present the full search strategies for all databases,

registers and websites, including any filters and limits

used.

Full

protocol in

appendix

Selection process 8 Specify the methods used to decide whether a study

met the inclusion criteria of the review, including

how many reviewers screened each record and each

report retrieved, whether they worked independently,

and if applicable, details of automation tools used in

the process.

Methods
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Data collection

process

9 Specify the methods used to collect data from

reports, including how many reviewers collected data

from each report, whether they worked

independently, any processes for obtaining or

confirming data from study investigators, and if

applicable, details of automation tools used in the

process.

Methods

Data items 10a List and define all outcomes for which data were

sought. Specify whether all results that were

compatible with each outcome domain in each study

were sought (e.g. for all measures, time points,

analyses), and if not, the methods used to decide

which results to collect.

Methods

10b List and define all other variables for which data

were sought (e.g. participant and intervention

characteristics, funding sources). Describe any

assumptions made about any missing or unclear

information.

Methods

Study risk of bias

assessment

11 Specify the methods used to assess risk of bias in the

included studies, including details of the tool(s) used,

how many reviewers assessed each study and whether

they worked independently, and if applicable, details

of automation tools used in the process.

Methods

Effect measures 12 Specify for each outcome the effect measure(s) (e.g.

risk ratio, mean difference) used in the synthesis or

presentation of results.

Methods

Synthesis methods 13a Describe the processes used to decide which studies

were eligible for each synthesis (e.g. tabulating the

study intervention characteristics and comparing

against the planned groups for each synthesis (item

#5)).

Methods

13b Describe any methods required to prepare the data

for presentation or synthesis, such as handling of

missing summary statistics, or data conversions.

NA

13c Describe any methods used to tabulate or visually

display results of individual studies and syntheses.

Table 2

13d Describe any methods used to synthesize results and

provide a rationale for the choice(s). If meta-analysis

was performed, describe the model(s), method(s) to

identify the presence and extent of statistical

heterogeneity, and software package(s) used.

methods
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13e Describe any methods used to explore possible causes

of heterogeneity among study results (e.g. subgroup

analysis, meta-regression).

NA

13f Describe any sensitivity analyses conducted to assess

robustness of the synthesized results.

NA

Reporting bias

assessment

14 Describe any methods used to assess risk of bias due

to missing results in a synthesis (arising from

reporting biases).

Methods

Certainty

assessment

15 Describe any methods used to assess certainty (or

confidence) in the body of evidence for an outcome.

Methods

RESULTS

Study selection 16a Describe the results of the search and selection

process, from the number of records identified in the

search to the number of studies included in the

review, ideally using a flow diagram.

Results

16b Cite studies that might appear to meet the inclusion

criteria, but which were excluded, and explain why

they were excluded.

Figure 2

Study

characteristics

17 Cite each included study and present its

characteristics.

Results,

Table 2

Risk of bias in

studies

18 Present assessments of risk of bias for each included

study.

Table 1,

results

Results of

individual studies

19 For all outcomes, present, for each study: (a)

summary statistics for each group (where

appropriate) and (b) an effect estimate and its

precision (e.g. confidence/credible interval), ideally

using structured tables or plots.

Table 2,

narrative

synthesis

Results of

syntheses

20a For each synthesis, briefly summarise the

characteristics and risk of bias among contributing

studies.

Table 1,

results

20b Present results of all statistical syntheses conducted.

If meta-analysis was done, present for each the

summary estimate and its precision (e.g.

confidence/credible interval) and measures of

statistical heterogeneity. If comparing groups,

describe the direction of the effect.

NA

20c Present results of all investigations of possible causes

of heterogeneity among study results.

NA

20d Present results of all sensitivity analyses conducted

to assess the robustness of the synthesized results.

NA
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Reporting biases 21 Present assessments of risk of bias due to missing

results (arising from reporting biases) for each

synthesis assessed.

NA

Certainty of

evidence

22 Present assessments of certainty (or confidence) in

the body of evidence for each outcome assessed.

NA

DISCUSSION

Discussion 23a Provide a general interpretation of the results in the

context of other evidence.

Discussion

23b Discuss any limitations of the evidence included in

the review.

Discussion

23c Discuss any limitations of the review processes used. Discussion

23d Discuss implications of the results for practice,

policy, and future research.

Discussion,

Table 3

OTHER

INFORMATION

Registration and

protocol

24a Provide registration information for the review,

including register name and registration number, or

state that the review was not registered.

Methods

24b Indicate where the review protocol can be accessed,

or state that a protocol was not prepared.

Search

protocol in

appendix

24c Describe and explain any amendments to information

provided at registration or in the protocol.

NA

Support 25 Describe sources of financial or non-financial support

for the review, and the role of the funders or sponsors

in the review.

Funding

statements

Competing

interests

26 Declare any competing interests of review authors. None

Availability of

data, code and

other materials

27 Report which of the following are publicly available

and where they can be found: template data

collection forms; data extracted from included

studies; data used for all analyses; analytic code; any

other materials used in the review.

Not

publicly

available.

Can be

provided

on request



CHAPTER

THREE

TUMOUR SIZE AND OVERALL SURVIVAL IN A COHORT OF

PATIENTS WITH UNIFOCAL GLIOBLASTOMA: A UNI- AND

MULTIVARIABLE PROGNOSTIC MODELLING AND

RESAMPLING STUDY

3.1 Abstract

3.1.1 Background

Published models inconsistently associate tumour size with survival in patients with glioblastoma.

Rather than build the best prognostic model, the purpose was to investigate the prognostic effect of

tumour size in a large cohort of patients diagnosed with glioblastoma and interrogate how choice of

sample size and consideration of non-linear transformations may impact on the likelihood of finding

a prognostic effect using univariable and multivariable analysis and data resampling.

85
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3.1.2 Methods

279 patients (mean age 61 years, 39% female) with IDH-wildtype unifocal WHO grade 4 glioblas-

toma and pre-operative MRI between 2014-2020 from a retrospective cohort were included. Tu-

mours were segmented using deep-learning with manual correction and manual diameter measure-

ments. Uni- and multivariable association between core volume, whole volume (CV, WV) and

diameter with OS was assessed with (1) Cox proportional hazard models +/- log transformation

and (2) resampling with 1,000,000 repetitions and varying sample size to identify the percentage of

models, which showed a significant effect of tumour size.

3.1.3 Results

Diameter or volume models adjusted for operation-type were significant, and diameter adjusted for

any clinical variable remained significant (p = 0.03). Multivariable resampling increased significant

effects (p < 0.05) of all size variables as sample size increased. Log-transformation also had a large

effect on chances of prognostic effect of WV. For models adjusted for operation-type, 19.5% of WV

vs 26.3% log-WV (n = 50) and 69.9% WV and 89.9% log-WV (n = 279) were significant.

3.1.4 Conclusion

In this large, well-curated cohort, multivariable modelling and resampling suggests tumour volume

is prognostic at larger sample sizes and with log-transformation for WV.

3.2 Introduction

Many proposed prognostic models for OS prediction in glioblastoma include IBs [1] as MRI is usedd

to assess patients throughout their treatment pathway and captures the entire tumour volume.

Radiomic features derived from MRI have gained popularity in published models [2], and can
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include features that assess tumour heterogeneity and intensity but also ’simple’ features such as

diameter and volume.

The diameter of the tumour core, which is commonly defined as the enhancing and necrotic portion

of the tumour [3], is also routinely evaluated in clinical practice and is amongst the most common

of the imaging predictors of OS to be investigated [4]. T1CE enhancing and T2W high signal areas

are also routinely evaluated as markers of prognosis [4]. There are now several methods available

for automated or semi-automated segmentation of the different tumour regions of glioblastoma that

are apparent on imaging [5], such as the enhancing and necrotic tumour and peritumoural ‘oedema’,

and it has therefore become more feasible to integrate various definitions of ‘tumour volume’ into

prognostic models, including in larger institutional datasets [4, 6, 7].

Intuitively, pre-treatment tumour size is expected to impact on patient outcome as it likely reflects

the number of tumour clonogens that require ablation by conventional cytotoxic treatments [8, 9].

Published modelling studies have, however, yielded inconsistent data regarding the prognostic effect

of tumour diameter and volume [4, 10–13]. Some of this may be due to sample size; large cohort

studies of glioblastoma have demonstrated a weak prognostic effect of tumour diameter [13], but

these larger cohort studies could not feasibly assess volume. Studies that have assessed tumour

volume [4, 14, 15] have not suggested a definite prognostic relationship to OS. As well as variation

in sample size, some of the inconsistency may reflect variations in handling continuous variables

during statistical modelling, for example leading to dichotomisation [16], assumptions of a linear

relationship to outcome [4] and use of univariable model significance to select predictors [17]. All

these choices are known to impact upon the modelling process and may impact on the ability to

determine accurate prognostic effects of the candidate predictors [18, 19].

There are a number of ways to select predictors for multivariable prognostic modelling and to

evaluate the uncertainty or instability that might arise from choosing predictors in small samples or

using univariable significance [18, 19]. This includes the use of internal validation strategies such as

data resampling (ie. bootstrapping) to estimate uncertainty in effect size and predictor selection,

however has been infrequently assessed in the prognostic modelling of glioblastoma survival despite
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its importance [1].

The hypothesis is that inconsistencies in the literature are secondary to varying sample size, predic-

tor selection strategies in multivariable modelling and consideration of data transformation. Rather

than build the best prognostic model, the purpose of this study was to investigate the prognostic

effect of tumour size in a large cohort of patients diagnosed with glioblastoma and interrogate how

choice of sample size and consideration of non-linear transformations may impact on the likelihood

of finding a prognostic effect using univariable and multivariable analysis and data resampling.

3.3 Materials and Methods

3.3.1 Ethical approval

This was a retrospective study and therefore informed patient consent was not feasible. Ethical

approval and institutional data access was approved via local ethical review committee (REC ref:

19/YH/0300, IRAS project ID: 255585, see section 5).

3.3.2 Patient selection and characteristics

All consecutive patients (16 years and over) with histologically proven glioblastoma according to

2021 WHO classification of central nervous system tumours treated at a single tertiary referral cen-

tre between 2014-2020 were identified retrospectively from neuro-oncology multidisciplinary team

(MDT) records. The catchment area includes 3.9 – 4.4 million adults, and over this period, 3046

new primary brain neoplasms were reviewed at MDT, with approximately 20% diagnosed with

glioblastoma or malignant glioma. Inclusion criteria were: MRI performed prior to any surgery,

unifocal tumour (as determined by consultant neuroradiologist with > 10 years experience), and all

four of the following MRI sequences acquired: T1W, T2W, FLAIR and T1CE sequences. Exclusion

criteria were: absence of pre-operative MRI, significant degradation of imaging due to artefact, or

tumours that were multifocal at presentation, documented IDH mutation on immunohistochemistry
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or cytogenetic testing. Patients with giant cell glioblastoma were excluded due to the small number

of patients affected and the much longer OS associated with this diagnosis [20].

Demographic, clinical and cytogenetic data were obtained from the electronic health records using

in-house software. Data included patient age, sex and type of operation. Histopathological and

cytogenetic data included histology, IDH1 and 2 mutation and MGMT promoter methylation.

Extent of resection was estimated by the same consultant neuroradiologist using the immediate

(48-72 hour) post-resection MRI, and grouped based upon the amount of contrast enhancing and

necrotic tumour resected – (i) 100%, (ii) ≥ 90% or (iii) < 90%. Adjuvant treatment was categorized

as (i) full Stupp protocol – 60 Gy in 30 fractions radiotherapy with concomitant and 6 cycles

adjuvant temozolomide; (ii) partial Stupp – 60 Gy in 30 fractions radiotherapy but temozolomide

discontinued during either concomitant or adjuvant treatment phase; (iii) non-Stupp – any other

treatment protocol. Other clinical information such as performance status, eligibility or entry into

clinical trials, socioeconomic status were not widely available due to the retrospective nature of the

data collection.

3.3.3 Data preparation

A summary of the data preparation and numbers excluded with reasons is shown in Figure 3.1.

DICOM image preparation was performed in python 3.9 [21]. DICOM images were retrieved from

the institutional picture archive and communication system and pseudonymised, and the image

acquisition parameters are summarised in Table S3.1. Images were converted to Neuroimaging

Informatics Technology Initiative file format using the dicom2nifti (v2.3.4) package [22].

3.3.4 Image pre-processing and tumour segmentation

Semi-automated tumour segmentations were produced using the Federated Tumor Segmentation

(FeTS) software, an open-source platform available for processing and segmentation of MRIs for

patients with glioblastoma [23]. A detailed description of the software, including packages and
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469 patients diagnosed with GBM
(2014 − 2020)

279 (59%) patients with unifocal
IDHwt GBM

Image acquisition:
DICOM images converted to NIfTI

Images processed:
N4 correction, skull strip

co−registration performed
using FeTS software

Segmentation:
Deep−learning network
with manual correction

Statistical Analysis
Diameter, core and whole

volume used in survival analysis

Excluded − 190 (41%)
− Unsuitable imaging (missing
modalities 75, no MRI 5
artefact 26)
− Ineligible tumour (multifocal
64, not IDHwt 17, giant cell 3Measure diameter:

Enhancing tumour core
measured on T1CE

Figure 3.1: CV = Core Volume, DICOM = Digital Imaging and Communications in Medicine,
FeTS = Federated Tumor Segmentation software, GBM = glioblastoma, IDHwt = isocitrate de-
hydrogenase wild-type, NifTI = Neuroimaging Informatics Technology Initiative, PACS = picture
archive and communication system, T1CE = gadolinium contrast-enhanced T1-weighted imaging,
WV = Whole Volume
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libraries used in FeTS is available elsewhere [23] and utilises the same pre-processing steps used in

the BraTs challenge [5], and the open-source software Cancer Imaging Phenomics Toolkit (CaPTk)

[24]. The key features are outlined below.

The T2W, T1CE and FLAIR sequences were rigidly co-registered first to the T1W sequence, then

to the SRI24 brain atlas [25] and also spatially resampled to 1 x 1 x 1mm voxel resolution using the

Greedy registration framework [26]. Images were then skull-stripped [27] and tumour segmentation

was performed with the ’nnU-net’ deep-learning network and pretrained model weights [28]. Tu-

mours were automatically segmented into three VOIs. The three VOIs were defined as: i) necrotic

tumour – fluid signal intensity showing very high T2W signal and reduced T1CE signal compared

to the same area on T1W images; ii) enhancing tumour – increased signal on T1CE compared to

the same area on T1W images and also increased T1CE signal compared to normal white matter

regions on T1CE images; iii) peritumoural oedema – high FLAIR and T2W signal of the entire

tumour, minus the necrotic and enhancing regions and not including ventricles or extra-axial cere-

brospinal fluid spaces [5]. Tumour masks were used to produce two tumour volumes per patient:

1) core volume (CV, cm3) – combination of necrotic and enhancing components; 2) whole volume

(WV, cm3) – CV combined with the peritumoural oedema (Figure 3.2). Although both WV and

CV will have included the necrotic portions of the tumour, the decision was made to include the

necrosis as it reduces the amount of manual correction of tumour segmentations, the enhancing and

necrotic portion of the tumour is often treated surgically as a whole target for debulking, and when

measuring tumour diameter, the enhancing and necrotic portion of the tumour is included in the

measurement.

The segmentations were checked manually and corrected using FeTS. All segmentations were

checked by a neuroradiology fellow (5 years radiology experience). Independently, 50 segmenta-

tions were also checked by a consultant neuroradiologist (> 10 years consultant neuroradiology

experience), and the inter-rater concordance compared using the dice similarity coefficient [29].

Tumour diameter was defined as the maximum axial or cranio-caudal diameter of the enhancing

tumour core and was measured using the T1CE sequence within imaging viewing software (Impax
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Figure 3.2: Selected MRI axial images: left – fluid-attenuated inversion recovery (FLAIR); middle
– gadolinium contrast-enhanced T1-weighted (T1CE); right – T1CE image with overlay of core
tumour segmentation (in green) and peritumoural oedema (yellow). Core volume (CV) defined as
the enhancing and necrotic component of the tumour (green), and whole volume (WV) defined as
the combination of core and peritumour oedema segmentation (green + yellow).

Version 6.5.3.3009, Agfa Healthcare) using in-built calipers on a submillimetre scale (mm - con-

verted to cm) by two radiology trainees (1 and 2 years radiology experience) and corrected by a

neuroradiology fellow (5 years radiology experience). All manual correction and measurement was

performed without knowledge of individual patient outcome.

3.3.5 Statistical analysis

All statistical analysis was performed in R version 4.2.2 (2022-10-31) and overseen by a highly-

experienced career statistician. Univariable association between CV, WV or tumour diameter with

OS was investigated using Cox regression modelling. HRs, concordance indices (C-indices) and

p-values for each model were used to assess performance.

Possible non-linear relationships between OS and size (volume or diameter) were explored using both

logarithmic transformation and penalised spline functions, the latter implemented using penalised

spline function within the ’survival’ package (v3.6-4) [30]. Penalised spline functions were used to

assess for any trends in the data that might not be seen with a linear fit, as splines allow a smooth
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curve to be fit to data [31]. Overfitting to the data points is discouraged by the inclusion of a

roughness penalty, and the implementation does not require any pre-specification of the number

of internal boundaries or knots. Model fits were assessed by plotting each tumour size parameter

against the log-HR.

Multivariable association of CV, WV or diameter to OS was also evaluated by (i) adjusting each

size variable for either age, sex, type of surgery, MGMT promoter methylation status or adjuvant

oncological treatment (i.e. size variable + one clinical variable in turn) and (ii) adjusting size for all

clinical parameters. As the aim was to assess the prognostic effect of tumour size, in multivariable

models this was assessed using the HR for each size parameter and the Wald test p-value for the

size variable’s coefficient rather than the overall model p-value. A post-hoc bonferroni correction

was considered but not applied, as the aim of the study was to examine the effect of the adjustment

on the significance of the Wald test, rather than to definitively conclude that size was a prognostic

variable. It is acknowledged that this increases the risk of type 1 error.

To assess the impact that either log-transformation and/or sample size could have on detecting

a prognostic effect of tumour size on OS, a resampling study was conducted. Using different

sample sizes (50, 100, 150, 200, 250, 258 or 279), bootstrapped samples were generated from the

original dataset with replacement. For any multivariable models that were adjusted for MGMT

methylation status, the maximum sample size was 258 (not 279) due to the number of cases with

a known result. Bootstrapping was carried out for 1,000,000 repetitions at each sample size and

for each of the tumour size variables and a Cox regression model for each tumour size variable,

both with and without log-transformation, was created. For univariable models, the percentage of

models in which the overall model Wald test p-value < 0.05, < 0.01 and < 0.001 was calculated

across the 1,000,000 repetitions per sample size. For multivariable models, the percentage of models

in which the Wald test p-value for the coefficient of tumour size < 0.05 was calculated (rather than

the overall model Wald test significance) across the 1,000,000 repetitions per sample size. Effect

of sample size was assessed with two-sided Kolmogorov-Smirnov (KS) tests to compare the p-value

distributions from resampling at varying sample sizes.
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3.4 Results

3.4.1 Demographics of the study population

279 patients were included - 39% (108/279) of patients were female and the median age was 62

years (interquartile range 31 – 85 years) (Table 3.1). 236 deaths occurred before the censor

date of 31/10/2020. Median OS was 12 months (95% CI 11 – 14 months), median follow-up time

was 45 months (maximum 70 months) and 26% (72/279) patients had a surgical biopsy of their

glioblastoma. 20% (57/279) of patients had 100% resection of tumour core and 21% (58/279)

completed the full Stupp protocol of adjuvant treatment. Median (IQR) CV was 28.1cm3 (12.6 –

50.3), WV was 103.3cm3 (45.6 – 160.1) and tumour diameter was 4.4cm (3.3-5.4cm). Histograms

of tumour size (Figure S3.1) showed that distributions of CV and WV were slightly positively

skewed and tumour diameter was normally distributed prior to any transformation. These data

confirm that this population is representative of patients diagnosed with glioblastoma in other

typical neurosciences centres [32].

3.4.2 Segmentations and Univariable Cox models of tumour size

The segmentation process explained above yielded 50 patients with two independent sets of con-

tourd, which were the product of manual correction by a fellow and independently a consultant

neuroradiologist, and these two segmentations per patient were compared for spatial overlap using

dice similarity coefficient (DSC). Accepting that there are myriad of segmentation comparison met-

rics [33], DSC was chosen as it is the only metric provided for a similar task in this context, that of

the BRATS segmentation dataset, in which multiple experts raters segment the same glioblastoma

images [5]. Hence the results of this experiment could be directly compared to the literature. The

mean (± standard deviation) DSC for the two independent segmentations for the core and oedema

regions was 0.94 ± 0.05 and 0.97 ± 0.03 respectively, which are equivalent to values published in

the Brats data [5].
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Table 3.1: Summary of patient demographics and treatment (n = 279)

Demographic Value
Age, years - median (IQR) 62 (55-68)
Gender - no. female (%) 108 (39%)
Surgical treatment – no. (%)a

Biopsy 71 (25%)
100% resected 57 (20%)
≥ 90% resected 86 (31%)
< 90% resected 65 (23%)

Adjuvant oncology treatment – no. (%)
No Stupp 150 (54%)
Full Stuppb 58 (21%)
Partial Stuppc 71 (25%)

MGMT methylation – no. (% of known)d 103 (40%)
Overall survival, months – median (95% CI) 12 (11-14)
Maximum tumour diameter, cm – median (IQR) 4.4 (3.3-5.4)
Core volume, cm3 - median (IQR) 28.1 (12.6-50.3)
Whole volume, cm3 - median (IQR) 103 (45.6-160)

IQR = interquartile range, MGMT = O6-methylguanine-DNA
methyltransferase, CI = Confidence Interval. a Percentage of con-
trast enhancing and necrotic tumour core removed
b Completed 60Gy in 30 fractions radiotherapy with concomitant
temozolomide and 6 cycles adjuvant temozolomide c Completed
60Gy in 30 fractions radiotherapy with concomitant temozolomide
and began adjuvant temozolomide d 258 cases with result known
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Table 3.2: Cox proportional hazards models for each tumour size parameter - whole volume, core
volume and diameter - for predicting overall survival (n = 279) without adjustment for other clinical
predictors. Each size parameter has been tested with and without log-transformation.

WV log(WV) CV log(CV) diameter log(diameter)

C (95% CI) 0.5 (0.46-0.54) 0.5 (0.46-0.54) 0.5 (0.46-0.54) 0.5 (0.46-0.54) 0.5 (0.46-0.54) 0.5 (0.46-0.54)
HR (95% CI) 1 (1-1) 1.1 (0.81-1.6) 1 (1-1) 0.95 (0.71-1.3) 1 (0.93-1.1) 0.94 (0.43-2)
p 0.784 0.475 0.539 0.704 0.745 0.875

C = Concordance index, CV = Core Volume, HR = Hazard Ratio, WV = Whole Volume.

Table 3.2 summarises the univariable Cox regression models for CV, WV and diameter, with and

without log-transformation. The results of the models derived from the institutional glioblastoma

images show limited evidence for a univariable prognostic relationship between tumour volume or

diameter and OS. C-indices for all models were 0.5, and all HRs crossed 1.

In Figures S3.2 - S3.4, each tumour size parameter (with and without log-transformation) was

plotted against the log-HR. The fit of a linear function to the data was compared with the use of

splines, and these suggest that there was limited evidence that the tumour size parameters had

a univariable prognostic relationship – the model closely followed the reference line for linear and

non-linear functions. These results show that within this cohort, there was no evidence to support

a univariable linear or non-linear prognostic relationship between OS and size.

In multivariable analyses, however, there was evidence of a prognostic association between size

and OS when adjusting for clinical variables. A summary of the association of size variables in

multivariable models with OS is shown in Table 3.3. CV, WV, log(WV) and diameter adjusted

for type of surgery showed a statistically significant association with OS. Although not significant at

the 0.05 level, the CIs for the HRs of log(CV) and log(diameter) were relatively wide, especially the

latter indicating uncertainty in the HR estimate. Similarly, for the model adjusted for all clinical

variables, only diameter remained statistically significant at the 0.05 threshold, however the HR

for log(CV), log(WV) and log(diameter) suggested a potentially prognostic effect with relatively

wider confidence intervals (and less certainty) for HR estimate of the latter two variables. The

univariable and multivariable prognostic associations of each clinical variable to OS is provided in

Tables S3.2-S3.3. Data from this cohort of glioblastoma patients therefore suggests that size was
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associated with OS in multivariable models and whilst several related parameters did not achieve

statistical significance there was supportive evidence of a potential prognostic relationship.
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Table 3.3: Prognostic effect of each tumour size parameter (whole volume, core volume and diameter) within multivariable Cox proportional hazards models
predicting overall survival that have been adjusted for selected clinical variables (n = 279). Each row of the table presents the results from models that include the
tumour size size variable specified by the column name (either diameter, core or whole volume or their log-transformed versions) and the clinical variable indicated
in the ’Variable’ column. The stated hazard ratios (and 95% confidence intervals) refer to the selected tumour size variable and not the clinical variable indicated
in the ’Variable’ column. The stated p-values refer to the Wald test for the regression coefficient of the tumour size variable and not the overall multivariable Cox
model significance/p-value

Tumour Diameter Whole Volume Core Volume

Diameter log(Diameter) Whole Volume log(Whole Volume) Core Volume log(Core Volume)

Variable HR (95% CI) p HR (95% CI) p HR (95% CI) p HR (95% CI) p HR (95% CI) p HR (95% CI) p

Age 1.01
(0.916-1.1)

0.91 0.857
(0.391-1.88)

0.7 1 (0.998-1) 0.9 1.09
(0.781-1.52)

0.61 1 (0.997-1.01) 0.56 0.926
(0.696-1.23)

0.6

Gender 1 (0.915-1.1) 0.93 0.874
(0.403-1.89)

0.73 1 (0.998-1) 0.99 1.09
(0.783-1.52)

0.61 1 (0.996-1.01) 0.71 0.915
(0.688-1.22)

0.54

Type of surgerya 1.14
(1.02-1.26)

0.016 2.39
(0.955-5.98)

0.063 1 (1-1) 0.013 1.9
(1.28-2.82)

0.0014 1.01 (1-1.01) 0.018 1.29
(0.927-1.79)

0.13

Adjuvant oncology treatmentb 0.996
(0.909-1.09)

0.93 0.818
(0.374-1.79)

0.61 1 (0.998-1) 0.99 1.05
(0.754-1.47)

0.76 1 (0.996-1.01) 0.67 0.922
(0.693-1.23)

0.58

MGMT methylationc 1.02
(0.926-1.12)

0.7 0.963
(0.426-2.18)

0.93 1 (0.998-1) 0.98 1.1
(0.779-1.54)

0.6 1 (0.996-1.01) 0.71 0.941
(0.704-1.26)

0.68

Age + Gender + Surgery +
Oncology + MGMTc

1.12
(1.01-1.25)

0.032 2.34
(0.914-6.01)

0.076 1 (0.999-1) 0.24 1.45
(0.985-2.14)

0.06 1 (1-1.01) 0.072 1.24
(0.889-1.73)

0.2

HR = Hazard Ratio, CI = Confidence Interval, CV = Core Volume, WV = Whole Volume, MGMT = O6-methylguanine-DNA methyltransferase. a Divided into biopsy only or resection (100,
≥ 90, or < 90 b Categorical variable: Full Stupp (completed 60Gy in 30 fractions radiotherapy with concomitant temozolomide and 6 cycles adjuvant temozolomide), partial Stupp (as per full
Stupp but either did not commence or did not complete adjuvant temozolomide), or other adjuvant therapy c n = 258, cases with known MGMT result
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3.4.3 Resampling study

The results of the resampling experiments using univariable and multivariable models, the latter

adjusted for operation type and all clinical variables, are shown in Table S3.4 and Table 3.4,

respectively. In univariable models of tumour size, for all size variables, higher percentages of

models with p < 0.05 were seen as the sample size increased, and for tumour volume (CV or WV),

the same was observed after log transformation, although the change was modest. For WV, 5.14

vs 5.60% (n = 50 vs n = 279), for CV 5.07 vs 8.60% and for diameter 5.43 vs 6.39% models had

p-values < 0.05 across all repetitions on non-transformed data. The distributions of p-values (across

all repetitions per sample size at n = 50 vs n = 279) differed significantly on two-sided KS testing

(test p-values < 0.0001). Tables S3.5-S3.6 also show the percentages of models with p < 0.01

and p < 0.001, and this shows the same overall trend for the tumour size parameters, but with

successively lower percentages of models as the p-value threshold was lowered.
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Table 3.4: Percentage of multivariable tumour size models with model p-values < 0.05 during the resampling study. The percentages in the table cells represent
the percentage of resamples in which Wald test p-value for the regression coefficient of the selected tumour size variable (each column) was < 0.05. The left side of
the table shows the results when each tumour size variable was adjusted only for type of operation (i.e. size and operation entered into Cox model), and the right
side of the table shows the results when size was adjusted for all clinical variables stated.

Adjusted for Operation Type Adjusted for Age + Gender + Surgery + Oncology + MGMT

Tumour Diameter Whole Volume Core Volume Tumour Diameter Whole Volume Core Volume

Sample size Diameter log(Diameter) WV log(WV) CV log(CV) Sample size Diameter log(diameter) WV log(WV) CV log(CV)

50 19.01 14.78 19.45 26.30 17.15 11.93 50 19.53 16.39 14.95 15.54 14.87 12.93
100 31.24 21.54 32.15 47.22 28.95 16.28 100 26.74 20.39 16.13 20.97 19.15 13.78
150 42.94 28.75 44.56 64.84 40.92 21.16 150 35.14 26.01 18.29 27.80 25.15 16.32
200 53.50 36.03 55.58 77.80 51.63 26.03 200 43.47 32.24 20.47 34.84 31.77 19.38
250 62.47 42.82 65.10 86.42 61.30 30.92 250 51.34 38.30 23.06 41.89 38.19 22.67

258a 67.16 46.66 69.87 89.94 66.05 33.61 258a 55.67 41.79 24.57 45.72 41.89 24.50

CV = Core Volume, WV = Whole Volume, MGMT = O6-methylguanine-DNA methyltransferase. a Maximum sample size limited to 258 due to number of cases with
a known MGMT result
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In the multivariable resampling experiment, increasing sample size increased the percentages mod-

els, either adjusted for operation type or all clinical variables, in which the tumour size variable’s

Cox regression coefficient had a Wald test p-value < 0.05. The impact of increasing sample size

was much greater than compared with univariable modelling. Again, the distributions of p-values

(comparing n = 50 vs n = 279) differed significantly on two-sided KS testing (all test p-values

< 0.0001). Log-transformation consistently increased the percentages of multivariable models with

WV regression coefficient Wald test p-values < 0.05 (Table 3.4).

Figure 3.3 show the distributions of the p-values extracted from models during the univariable

models in the resampling experiment. For CV and WV, but not diameter, there was a modest

downwards trend as sample size increased, suggesting that this increased the probability of seeing

a prognostic effect.

Figure 3.4 shows the distribution of p-values across resamples for the regression coefficients of

each tumour size variable within multivariable models, which have either been adjusted for only

operation type (Figure 3.4a, c & e) or adjusted for all clinical variables (Figure 3.4b, d &

f), at different sample sizes. These charts showed a much greater downwards trend for all size

variables, and the consistent effect of log-transformation in shifting the p-value distribution of

WV downwards in multivariable modelling. Overall, results from univariable and multivariable

resampling indicated that increased sample size for all size parameters and, in the case of WV,

log transformation increased the chances of showing a significant univariable and multivariable

association with OS.

3.5 Discussion

This study set out to explore the prognostic effect of tumour volume and diameter in this institu-

tional cohort of patients with glioblastoma, and specifically to examine how choice of sample size

and consideration of non-linear transformations may impact on the chances of detecting a prog-

nostic effect. Univariable models did not provide any evidence of a linear or non-linear prognostic
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Figure 3.3: Three sets of box plots showing the distribution of p-values (y-axis) extracted from
each univariable model for tumour diameter (a), whole volume (b) or core volume (c) vs overall
survival created across the 1,000,000 repetitions for each sample size (x-axis). Boxes outline the
interquartile range of p-values, with median values indicated by the central, thick black line. Tails
represent the range of the distribution. Models with and without log-transformation are shown
side by side (see figure legends). The dotted horizontal lines represents the p-value threshold for
statistical significance (0.05).
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Figure 3.4: Six sets of box plots showing the distribution of p-values (y-axis) for the Wald test
of the regression coefficient of tumour diameter (a & b), whole volume (c & d) or core volume (e
& f) in a multivariable Cox model vs overall survival created across the 1,000,000 repetitions for
each sample size (x-axis). Left column of graphs (a, c & e) show results from models including the
selected tumour size variable and operation type only, and right column (b, d & f) show results
from models adjusted for all clinical variables. Boxes outline the interquartile range of p-values,
with median values indicated by the central, thick black line. Tails represent 1.5× the interquartile
range of the distribution (outliers not shown). Models with and without log-transformation are
shown side by side (see figure legend). The dotted horizontal lines represents the p-value threshold
for statistical significance (0.05).
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relationship between size and OS, however the multivariable models and resampling experiments

showed that there is a prognostic role for tumour size, and that this is more likely to be detected

in larger samples. Tumour diameter was prognostic in multivariable models adjusted for operation

type and all clinical variables combined, whereas CV and WV were prognostic for the operation

adjusted model and showed evidence of potential prognostic effects in the combined multivariable

model as well as the resampling experiments.

For WV, log-transformation could also increase the probability of detecting a statistically significant

effect, potentially due to the positively skewed distribution. WV might play a role in prognostication

even when adjusted for extent of tumour core resection as illustrated in these multivariable models

and resampling experiments and this could be due to WV encompassing more of the infiltrated brain

tissue. However, WV is infrequently explored as a candidate prognostic variable in patients with

glioblastoma [4, 34–36]. In 65 patients, Iliadis et al. found no significant association between WV

and OS using univariable Cox modelling [35], and it is unclear if any log or other transformation was

considered. Palpan Flores et al. investigated the equivalent of WV in 44 IDH-wildtype glioblastoma

patients and found a significant effect of WV > 60cm3 in univariable and multivariable models

(adjusted HR 3.93 95% CI 1.23-10.2, p = 0.018) [36]. Other groups have investigated peritumoural

oedema alone, rather than WV, and these studies have shown mixed results [16, 34, 37–39]. Fuster-

Garcia et al. found no prognostic effect for peritumoural oedema volume in 84 patients [37], whereas

Wangaryattawanich et al. showed a statistically significant effect for peritumoural oedema when

dichotomising volume using a threshold of 85, 000mm3 in a cohort of 94 patients [16]. Although

the multivariable model adjusted for all clinical parameters in the complete cohort did not show a

statistically significant result for log-transformed WV, the confidence interval for its hazard ratio

was relatively wide, suggesting a higher degree of uncertainty in the result. Second, the results of

the multivariable resampling for the log(WV) full clinical model suggested that at the sample sizes

used in the above cited literature there is a lower chance of detecting the potentially prognostic role

than in this cohort study.

For tumour diameter and CV, which are more commonly investigated [1, 4], there are several studies
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in similarly sized institutional datasets that did not show a prognostic effect for either CV [12, 34,

40] or diameter [17, 41]. However, a small positive effect size has been shown in studies with larger

datasets [13, 14]. These findings support the initial multivariable model and experiment resampling

findings, which indicates that diameter does have a small multivariable prognostic effect and that

CV could potentially have prognostic effects, after adjustment for other clinical parameters and

in larger samples. Li et al. for example found that contrast enhancing tumour volume had a

small but statistically significant effect in a cohort of 1226 glioblastoma patients (HR 1.004 95%

CI 1.002-1.006, p < 0.001) [14]. Senders et al. also showed a small (relative survival rate per

centimetre increase in diameter - 0.99 95% CI 0.99-1.00) but significant effect of tumour diameter

in 16,656 patients [13]. Whilst it could be argued that such a small effect size is not clinically

significant, the aim of this study was not to produce a prognostic model for clinical use but to

identify the barriers to detecting potentially significant effects in glioblastoma prognostic models,

and suggest that resampling and data transformation can have a role in highlighting uncertainty

of predictor selection in relatively small datasets. Future studies would benefit from leveraging

multi-institutional networks [23] or online imaging repositories to further increase statistical power

for studying clinically relevant size parameters including volumetric assessments.

An important consideration in regression modelling is the inclusion of any non-linear transformation

of variables [42], although this is not routinely documented in prognostic modelling studies in

glioblastoma [1, 4]. The advantages include more flexible modelling of continuous variables that

might not have a simple linear relationship to outcome, but this comes with the drawback of

potentially overfitting a model to the development dataset. In this univariable resampling study,

logarithmic transformation led to a modestly higher rate of significant models for WV, and this effect

was much greater in multivariable models. The results of this resampling study point to a possible

explanation as to why some prognostic models that assume linear relationships between volume

and outcome return non-significant results, particularly in the case of WV. In the present study,

the WV shows a small positive skew and large range that might explain why log-transformation

increased the chances of detecting a potential prognostic relationship for WV.
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Bootstrapping (resampling with replacement) as a method for exploring model uncertainty has been

described elsewhere in the statistics literature [18, 19, 42] and was used in this resampling study to

demonstrate the variability in the prognostic effect of tumour size. By resampling a dataset multiple

times, researchers can identify the variability in multiple aspects of the model building process, such

as feature selection, internal validation of model accuracy and model stability [18]. There are other,

less computationally intensive, methods available for calculating 95% CIs such as using the standard

error of the statistical test, but this assumes a normal distribution of data, whereas bootstrapping

allows multiple steps of the modelling process to be included in the uncertainty estimate [19]. This

study suggests that when selecting one of these size variables in glioblastoma prognostic models

based on univariable model significance, there could be up to 5-10% uncertainty in whether they

might be statistically significant, and therefore included in a multivariable model if using this as

a selection criteria. The instability is shown to be even greater in the multivariable resampling

and there could be a large range in the certainty as to whether a variable is prognostic based

on a limited sample size. This is one of the reasons that this approach of univariable screening

of candidate predictors is generally not recommended for multivariable model building, and also

why a focus on p-values in multivariable modelling may lose some of the important information

in estimating prognostic effects [18, 19]. Preferred methods are to preselect variables for inclusion

using expert knowledge or using an unsupervised method, such as clustering or principle component

analysis, which do not rely on a significance test.

There are several limitations of this study. The MRI acquisition parameters were heterogeneous,

especially slice thickness, and this could have impacted upon the accuracy of volume measurements.

However, the spatial resampling of images to an isotropic 1mm3 voxel resolution should have re-

duced the impact of acquisition heterogeneity. Furthermore, the dataset represents a retrospective

real-world clinical dataset, which in this institution’s routine practice is likely to include different

imaging acquisitions due to patients being referred from other centres, with their own (varying)

MRI protocols. A proportion of the patients had to be excluded due to lack of the necessary MRI

sequences for the deep-learning segmentation algorithm. The efficiency of a semi-automated seg-

mentation approach outweighed the potential limitation of a reduced sample size. Only three size
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variables were investigated but there are many others described in the literature. Whilst this could

be deemed a limitation of this approach, the aim was not to provide a comprehensive study of the

prognostic role of all possible tumour size parameters in glioblastoma, but to investigate some of the

methodological issues affecting this question, and that could be applied to any of the other contin-

uous measures of tumour size in glioblastoma. Important prognostic factors for OS prediction were

not available in this dataset, such as performance status, second-line treatment or trial treatments

and it would have been useful to adjust for this in the modelling process given its importance to

clinical practice. However, the aim of the study was to illustrate important methodological factors

in prognostic factor modelling for tumour size and lack of a complete dataset does not detract from

the conclusions.

3.6 Conclusion

Univariable models derived from this large, well curated institutional dataset of patients with

glioblastoma showed limited evidence to support a linear or non-linear prognostic association be-

tween size and patient outcome, however the multivariable models did support a prognostic role

for tumour size. Diameter showed a significant multivariable association with survival, whereas

CV and log(WV) showed significant effects when adjusted for operation type and potential for an

effect in the full clinical model. Importantly, the resampling experiments demonstrate the impact

that increasing sample size and for WV, log-transformation, has in increasing the ability to detect

prognostic relationships in univariable and multivariable models.
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3.7 Supplementary Materials

Figure S3.1: Panels a,c and e show histograms of tumour diameter, whole volume and core volume,
respectively without any transformation. Panels b,d and f show histograms of these parameters
after log transformation.
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Figure S3.2: Top row shows models before and bottom row after log-transformation. The left
column illustrates a linear and the right shows a non-linear fit to the data points, the latter with
penalised splines; HR = hazard ratio.
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Figure S3.3: Top row shows models before and bottom row after log-transformation. The left
column illustrates a linear and the right shows a non-linear fit to the data points, the latter with
penalised splines; HR = hazard ratio.
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Figure S3.4: Top row shows models before and bottom row after log-transformation. The left
column illustrates a linear and the right shows a non-linear fit to the data points, the latter with
penalised splines; HR = hazard ratio.
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Table S3.1: MRI acquisition parameters per sequence

Sequence Parameter Summary
T1 Slice thickness 5mm (0 – 5mm), spacing between slices 5.5mm

(0.6 – 7mm), echo time 7.8ms (3.0 – 58ms), repetition time
550ms (7.0 – 3200ms), field strength 1.5T (1.5 – 3.0 T ), flip
angle 90° (8 – 150°)

T2 Slice thickness 5mm (1.2 – 7mm), spacing between slices 5.5mm
(0.6 – 7.7mm), echo time 98ms (25 – 171ms), repetition time
5268.6ms (660 – 6600ms), field strength 1.5T (1.5 – 3.0T ), flip
angle 150° (20 – 180°)

FLAIR Slice thickness 5mm (0.7 – 5mm), spacing between slices 5.5mm
(0.6 – 7mm), echo time 109ms (82 – 474ms), inversion time
2500ms (1660 – 2880ms), repetition time 9000ms (4610 –
14788ms), field strength 1.5T (1.5 – 3.0T ), flip angle 150° (90 –
180°)

T1CE Slice thickness 1.1mm (0 – 7mm), spacing between slices 5.9mm
(0.5 – 7.7mm), echo time 3.9ms (2.3 – 46ms), repetition time
700ms (7.5 – 3200ms), field strength 1.5T (1.5 – 3.0T ), flip angle
15° (8 – 150°)

Values for acquisition parameters are presented as median (range). FLAIR =
Fluid attenuated inversion recovery, T1CE = post-gadolinium contraste-enhanced
T1-weighted imaging.
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Table S3.2: Univariable association between clinical variables and overall survival

Clinical Predictor n Event n HR 95% CI p-value
Age 279 236 1.01 1.00 - 1.03 0.06
Sex 279 236

Female — —
Male 1.26 0.96 - 1.64 0.091

Operationa 279 236
Biopsy — —
100% resected 0.34 0.23 - 0.50 <0.001
≥ 90% resected 0.38 0.27 - 0.54 <0.001
< 90% resected 0.5 0.35 - 0.71 <0.001

Stupp 279 236
No Stupp — —
Full Stuppb 0.29 0.20 - 0.41 <0.001
Partial Stuppc 0.49 0.36 - 0.67 <0.001

MGMT 258d 219
Unmethylated — —
Methylated 0.56 0.42 - 0.74 <0.001

HR = Hazard Ratio; CI = Confidence Interval. a Percentage of
contrast enhancing and necrotic tumour core removed
b Completed 60Gy in 30 fractions radiotherapy with concomitant
temozolomide and 6 cycles adjuvant temozolomide
c Completed 60Gy in 30 fractions radiotherapy but stopped temo-
zolomide either during radiotherapy or adjuvant course
d Number of cases with known result
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Table S3.3: Adjusted prognostic effect of clinical variables

Clinical Predictor HR 95% CI p-value
Age 1 0.98 - 1.02 0.98
Sex

Female — —
Male 1.31 0.99 - 1.75 0.061

Operationa

Biopsy — —
100% resected 0.38 0.25 - 0.56 <0.001
≥ 90% resected 0.36 0.25 - 0.52 <0.001
< 90% resected 0.43 0.29 - 0.63 <0.001

Stupp
No Stupp — —
Full Stuppb 0.34 0.23 - 0.50 <0.001
Partial Stuppc 0.56 0.39 - 0.79 <0.001

MGMT
Unmethylated — —
Methylated 0.67 0.50 - 0.90 <0.001

HR = Hazard Ratio; CI = Confidence Inter-
val. Multivariable model included age, sex, op-
eration type, Stupp status, and MGMT methy-
lation. n = 258 (219 events) = cases with com-
plete results for all clinical variables.
a Percentage of contrast enhancing and necrotic
tumour core removed b Completed 60Gy in 30
fractions radiotherapy with concomitant temo-
zolomide and 6 cycles adjuvant temozolomide
c Completed 60Gy in 30 fractions radiotherapy
but stopped temozolomide either during radio-
therapy or adjuvant course
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Table S3.4: Percentage of total number of resamples (1,000,000), in which the univariable tumour
size models had a model p-value < 0.05.

Tumour Diameter Whole Volume Core Volume
Sample size Diameter log(Diameter) WV log(WV) CV log(CV)

50 5.43 5.95 5.14 5.20 5.07 7.07
100 5.60 5.94 5.12 5.94 5.73 7.57
150 5.84 6.00 5.21 6.93 6.53 8.00
200 6.05 6.04 5.35 8.00 7.32 8.36
250 6.25 6.07 5.53 9.04 8.15 8.68
279 6.39 6.13 5.60 9.70 8.60 8.94

CV = Core Volume; WV = Whole Volume.

Table S3.5: Percentage of total number of resamples (1,000,000), in which the univariable tumour
size models had a model p-value < 0.01.

Tumour Diameter Whole Volume Core Volume
Sample size Diameter log(Diameter) WV log(WV) CV log(CV)

50 1.12 1.31 1.05 1.06 0.91 1.66
100 1.16 1.26 1.03 1.26 1.13 1.91
150 1.26 1.31 1.05 1.57 1.39 2.12
200 1.34 1.33 1.09 1.90 1.66 2.26
250 1.40 1.34 1.15 2.29 1.93 2.39
279 1.44 1.33 1.16 2.51 2.08 2.49

CV = Core Volume; WV = Whole Volume.

Table S3.6: Percentage of total number of resamples (1,000,000), in which the univariable tumour
size models had a model p-value < 0.001.

Tumour Diameter Whole Volume Core Volume
Sample size Diameter log(Diameter) WV log(WV) CV log(CV)

50 0.11 0.15 0.11 0.11 0.08 0.21
100 0.12 0.14 0.10 0.14 0.10 0.27
150 0.14 0.14 0.10 0.18 0.14 0.30
200 0.15 0.15 0.11 0.22 0.18 0.34
250 0.16 0.15 0.11 0.30 0.22 0.36
279 0.17 0.15 0.12 0.33 0.24 0.39

CV = Core Volume; WV = Whole Volume.
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Table S3.7: Percentage of resamples in which the multivariable tumour size model adjusted for
patient age (ie. Age + tumour size in model) has a tumour size regression coefficient Wald test
p-value < 0.05

Tumour Diameter Whole Volume Core Volume
Sample size Diameter log(Diameter) WV log(WV) CV log(CV)

50 5.61 6.61 5.60 5.00 5.71 7.70
100 5.53 6.75 5.30 5.00 6.30 8.30
150 5.47 6.96 5.22 5.42 7.01 8.87
200 5.44 7.23 5.21 5.90 7.68 9.37
250 5.43 7.49 5.19 6.39 8.43 9.98
258 5.45 7.64 5.25 6.65 8.82 10.28

CV = Core Volume; WV = Whole Volume.

Table S3.8: Percentage of resamples in which the multivariable tumour size model adjusted for
patient gender (ie. gender + tumour size in model) has a tumour size regression coefficient Wald
test p-value < 0.05

Tumour Diameter Whole Volume Core Volume
Sample size Diameter log(Diameter) WV log(WV) CV log(CV)

50 5.40 6.63 5.58 4.74 5.33 8.30
100 5.30 6.65 5.28 4.78 5.54 9.08
150 5.27 6.78 5.19 5.10 5.77 9.82
200 5.24 6.95 5.12 5.57 6.07 10.62
250 5.27 7.15 5.07 6.03 6.32 11.39
258 5.20 7.28 5.10 6.33 6.48 11.90

CV = Core Volume; WV = Whole Volume.

Table S3.9: Percentage of resamples in which the multivariable tumour size model adjusted for
adjuvant oncology treatment (ie. oncology treatment + tumour size in model) has a tumour size
regression coefficient Wald test p-value < 0.05

Tumour Diameter Whole Volume Core Volume
Sample size Diameter log(Diameter) WV log(WV) CV log(CV)

50 9.50 9.74 7.59 6.94 7.41 10.43
100 9.30 10.10 6.97 6.65 7.68 11.08
150 9.18 10.48 6.72 6.65 7.92 11.73
200 9.08 10.96 6.51 6.67 8.23 12.30
250 9.08 11.42 6.50 6.83 8.53 12.94
258 9.03 11.77 6.42 6.94 8.77 13.22

CV = Core Volume; WV = Whole Volume.
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Table S3.10: Percentage of resamples in which the multivariable tumour size model adjusted for
MGMT methylation status (ie. MGMT methylation + tumour size in model) has a tumour size
regression coefficient Wald test p-value < 0.05

Tumour Diameter Whole Volume Core Volume
Sample size Diameter log(Diameter) WV log(WV) CV log(CV)

50 6.52 8.29 6.31 5.85 5.89 10.80
100 6.78 8.51 6.03 5.86 6.07 11.44
150 7.05 8.55 5.89 6.26 6.27 11.87
200 7.29 8.57 5.79 6.75 6.53 12.23
250 7.63 8.54 5.75 7.34 6.86 12.58
258 7.80 8.52 5.74 7.63 6.97 12.74

CV = Core Volume; WV = Whole Volume.
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IMPACT OF INTENSITY STANDARDISATION AND COMBAT

BATCH SIZE ON CLINICAL – RADIOMIC PROGNOSTIC

MODELS PERFORMANCE IN A MULTI-CENTRE STUDY OF

PATIENTS WITH GLIOBLASTOMA

4.1 Abstract

4.1.1 Background

To assess the effect of different ISTs and ComBat batch sizes on radiomics survival model perfor-

mance and stability in a heterogeneous, multi-centre cohort of patients with glioblastoma.
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4.1.2 Methods

Multi-centre pre-operative MRI acquired between 2014-2020 in patients with IDH-wildtype unifocal

WHO grade 4 glioblastoma were retrospectively evaluated. WhiteStripe (WS), Nyul histogram

matching (HM) and Z-score (ZS) ISTs were applied before radiomic feature (RF) extraction. RFs

were realigned using ComBat and minimum batch size (MBS) of 5, 10 or 15 patients.

Cox proportional hazards models for overall survival (OS) prediction were produced using five

different selection strategies and the impact of IST and MBS was evaluated using bootstrapping.

Calibration, discrimination, relative explained variation, and model fit were assessed. Instability

was evaluated using 95% confidence intervals (95% CIs), feature selection frequency and calibration

curves across the bootstrap resamples.

4.1.3 Results

195 patients were included. Median OS = 13 (95% CI 12-14) months. 12-14 unique MRI protocols

were used per MRI sequence. HM and WS produced the highest relative increase in model discrim-

ination, explained variation and model fit but IST choice did not greatly impact on stability, nor

calibration. Larger ComBat batches improved discrimination, model fit and explained variation but

higher MBS (reduced sample size) reduced stability (across all performance metrics) and reduced

calibration accuracy.

4.1.4 Conclusion

Heterogeneous, real-world glioblastoma data poses a challenge to the reproducibility of radiomics.

ComBat generally improved model performance as MBS increased but reduced stability and cali-

bration (i.e. overfit). HM and WS tended to improve model performance.
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4.2 Introduction

Translation of radiomics to clinical practice has been hampered by a lack of reproducibility linked to

variables introduced in multi-centre imaging [1–3]. Intensity standardisation (IS) homogenizes the

scale and distribution of MRI signal intensity, which is affected by imaging protocol [4], however,

there is no consensus on the best IST [5, 6].

Statistical realignment of radiomic features using ComBat, can also reduce the effect of the different

imaging acquisitions [7, 8]. ComBat requires sufficient data to estimate these ‘batch’ effects and the

minimum batch size (MBS) must be chosen to ensure accurate results [7, 8]. MBS choice not only

affects ComBat performance, but also discards some of the data within heterogeneous, real-world

images.

Inconsistent statistical modelling, which in glioblastoma, has tended to focus on prognostic separa-

tion (‘discrimination’) [5, 6] may also play a role in the lack of reproducibility. Model calibration

and stability are important but less well evaluated [9]. Calibration compares predictions to observed

survival and stability examines the consistency of model performance [10]. To date, the effect of

ISTs and ComBat MBS choice have not been thoroughly assessed on model calibration and stability

in a multi-centre setting. Thus, the aim of this study was to assess the effect of ISTs and ComBat

MBS choice on the calibration, discrimination, relative model fit and explain variation, and stabil-

ity of prognostic models in a heterogeneous, real-world cohort of patients with glioblastoma, rather

than producing the most accurate prognostic model for OS prediction in glioblastoma.

4.3 Materials and Methods

4.3.1 Ethical approval

This was a retrospective study and therefore informed patient consent was not feasible. Ethi-

cal approval and institutional data access was approved via local ethical review committee (REC
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ref: 19/YH/0300, IRAS project ID: 255585, see section 5). A completed Checklist for Artificial

Intelligence in Medical Imaging (CLAIM) [11] is provided in Table S4.1.

4.3.2 Patient selection and characteristics

A description of the patient cohort, selection criteria, data collection and image preparation has been

previously outlined in section 3.3.2 [12]. Inclusion criteria were: adults (≥ 16) with histologically

proven glioblastoma according to 2021 World Health Organisation classification of central nervous

system tumours treated between 2014-2020, MRI performed prior to any surgery, unifocal tumour,

and all four of the following MRI sequences acquired: T1W, T2W, FLAIR and T1CE sequences.

Exclusion criteria were: absence of pre-operative MRI, significant degradation of imaging due to

artefact, multifocal tumours at presentation and, IDH mutation.

4.3.3 Clinical predictors

Clinical predictors included patient age, sex and type of operation. Histopathological and cytoge-

netic data included histology, IDH1 and 2 mutation and MGMT promoter methylation. Maximum

axial or cranio-caudal diameter of the enhancing tumour core and was measured using the T1CE

sequence. Extent of resection was estimated using the immediate (48-72 hour) post-resection MRI

and grouped based upon the amount of contrast enhancing and necrotic tumour resected – (i) 100%,

(ii) ≥ 90% or (iii) < 90%. Adjuvant treatment was categorized as (i) full Stupp protocol – 60 Gy in

30 fractions radiotherapy with concomitant and 6 cycles adjuvant temozolomide; (ii) partial Stupp

– 60 Gy in 30 fractions radiotherapy but temozolomide discontinued during either concomitant or

adjuvant treatment phase; (iii) non-Stupp – any other treatment protocol.

4.3.4 Image preparation and tumour segmentation

A graphical illustration of the whole experiment is provided (Figure 4.1). As a tertiary referral

centre in the UK, it is standard practice for this institution to manage patients with glioblastoma
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from the surrounding region (with a catchment of approximately 4 million people), which includes

general hospitals (‘hub-and-spoke’ model). DICOM images were acquired across multiple centres

across the region and historically transferred to the local institutional picture archive and commu-

nication system (PACS) to facilitate routine patient care (acquisition parameters are summarised

in Tables S4.2-S4.5). DICOM image preparation was performed in python 3.9 [13]. DICOM data

was retrieved from PACS, pseudonymised and converted to Neuroimaging Informatics Technology

Initiative (NIfTI) file format.

NIfTI images were processed and segmented using the open-source platform FeTS software, designed

for performing these tasks on MRIs from patients with glioblastoma [14]. T2W, T1CE and FLAIR

sequences were rigidly co-registered to the T1W sequence, then to the SRI24 brain atlas [15], and

spatially resampled to 1 × 1 × 1mm voxel resolution [16]. Images were skull-stripped [17] and

tumours segmented using the ‘nnU-net’ deep-learning network with pretrained model weights [18].

Core volume (CV) was defined as enhancing and necrotic regions, and whole tumour volume (WTV)

defined as CV plus peritumoural high T2 signal. Necrotic portions of tumour were included as there

could be important quantitative signal captured in the proportion of tumour that has undergone

necrosis, whereas this information would be lost if only the enhancing portion were included.

Segmentations were checked manually and corrected by a neuroradiology fellow (5 years radiology

experience). Independently, 50 segmentations were also checked by a consultant neuroradiologist

(> 10 years consultant neuroradiology experience), and the inter-rater concordance compared using

the dice similarity coefficient (DSC) [19]. Corrections were carried out in the FeTS software package.

MR field inhomogeneity correction was performed with the N4ITK algorithm within the simple

ITK package (v2.1.1.2) [20] before applying one of three MRI intensity standardisation techniques

(ISTs).
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Figure 4.1: Panels 1-6 outline the main steps of the experiment: 1) The acquisition of MRI across
multiple sites within the region and pre-processing including registration, skull stripping and field
inhomogeneity correction; 2) Intensity Standardisation of MRI signal intensities; 3) Radiomic fea-
ture extraction, including calculation of shape, intensity and higher level features; 4) post-extraction
realignment of multi-centre radiomics using ComBat; 5) Application of multiple feature reduction
techniques to reduce the dimensionality of the data; 6) Calculation of results and data analysis.
LASSO = Least Absolute Shrinkage and Selection Operator, PCA = Principle component analysis.
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4.3.5 Intensity standardisation

Three ISTs that are commonly used in patients with glioblastoma [6] are WhiteStripe (WS) [21],

Nyul histogram matching (HM) [22, 23] and Z-score (ZS). Full details for each technique and its

implementation can be found online: https://github.com/jcreinhold/intensity-normalization.

Each IST was applied independent of the other, resulting in four separate images per sequence

per patient (Figure 4.2) - one per IST, plus the non-standardised images that served as control

(referred to a ‘RAW’ images hereafter).

4.3.5.1 Z-score (ZS)

For each standardised voxel (IZ−Score(x)), the initial intensity (I(x)) is standardised by subtracting

the mean intensity of all brain voxels (µbrain), and then dividing it by the standard deviation of all

the brain voxels’ intensity values (σbrain).

IZ−Score(x) = I(x) − µbrain

σbrain

4.3.5.2 WhiteStripe(WS)

WS standardises each voxel (IW hiteStripe(x)) by subtracting the mean intensity of normal appearing

white matter (NAWM, µNAW M ) and then dividing by the standard deviation of the intensity of

NAWM (σNAW M ) [21].

IW hiteStripe(x) = I(x) − µNAW M

σNAW M

4.3.5.3 Nyul histogram matching (HM)

Nyul’s piecewise linear HM process [22] requires a standard histogram scale to be produced by av-

eraging the intensity values from a subset of scans, using pre-defined intensity histogram landmarks
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Figure 4.2: FLAIR = Fluid Attenuated Inversion Recovery, GBM = Glioblastoma, HM = Histogram
Matching, IDH = Isocitrate dehydrogenase, LASSO = Least Absolute Shrinkage and Selection
Operator, PCA = Principle Component Analysis, RAW = no intensity standardisation applied to
images (control), T1 = T1-weighted, T1CE = T1-weighted, contrast-enhanced, T2 = T2-weighted,
WS = WhiteStripe, ZS = Z-Score.
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(step-one). The landmarks are defined as percentiles, ranging from 1-99% of the intensity range

(the default values are 1, 10, 20, 30, 40, 50, 60, 70, 80, 90 & 99%), such that outlier values are

ignored [23].

All scans are then standardised by dividing the histogram of the new image into deciles and per

decile, all voxels that fall into that range of intensities are linearly mapped using the standard scale

produced in step-one [22, 23].

4.3.6 Radiomics Feature Extraction

Pyradiomics (v3.0.1) [24] was used to extract RFs from the WTV (Figure 4.1). 384 features

were extracted from each image set (four sets, one per IST), including 18 first order, 24 gray-level

co-occurrence matrix, 16 gray-level run length matrix, 16 gray-level size zone matrix, 14 gray-

level dependence matrix and five neighbouring gray-tone difference matrix features from each MR

sequence, and 12 shape features extracted from the T1CE sequence.

Features were extracted in 3-dimensions (3D), using a voxel size of 1mm3. Four bin numbers (8, 32,

64, 128) were used to extract four unique sets of RF per image to determine if ISTs were dependent

on the bin number. A fixed bin number (FBN) was used rather than fixed bin size for intensity

discretization prior to texture feature calculation. Previous work in diffuse glioma has suggested

that a FBN may reduce the need for IST as it has a normalising effect. FBNs rescale the signal

intensity within the volume of interest [4] and the IBSI suggests this approach for MRI [25].

Pyradiomics is mostly compliant with the IBSI feature definitions. The definition of bin bound-

aries when using fixed bin sizes is different (not applicable to this study), Pyradiomics aligns its

resampling grid to the origin voxel (rather than to the centre), gray values are not rounded in

Pyradiomics and kurtosis is calculated as +3 compared to IBSI [25, 26]. Neither Pyradiomic’s nor

IBSI’s definition of features is necessarily better than the others’. It is important to acknowledge

the differences as IBSI is trying to standardize the extraction of features but there is no inherently

correct way to do this.
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4.3.7 Radiomic feature reproducibility

The 50 patients that had their whole tumour volume segmented independently by two observers were

used to measure the reproducibility of radiomic features. It is important to assess IB reproducibility

as features that vary significantly due to small changes in segmentations, as might be seen if two

independent readers segment the tumour, ought not to be used in the model building process

[27]. The two-way random effects ICC for each RF was measured by constructing a linear two-way

random effects model with patient and segmentor selected as random effects. Reliable measurement

of ICC assumes that the features are normally distributed; that features and model residuals follow

a gaussian distribution. If the residuals for a particular RF’s model did not follow a normal

distribution, the RF was power-transformed using the Box-Cox (or Yeo-Johnson if they contained

negative values), to attempt to shift their model residual distribution to a gaussian one. RFs were

excluded if, after a power transformation, the two-way random effects model residuals remained

non-gaussian. A list of all transformed features, the lambda used for power-transformation and

whether the transformation resulted in acceptance of the feature can be found in Table S4.7.

It is important to note that non-normal features are still retained and only a few features that

could not be coerced to a normal distribution using a power transformation are removed. It would

not be possible to be confident that these features had a high level of reproducibility between

segmentations.

4.3.8 ComBat realigment of multi-centre radiomics

ComBat is a statistical realignment process that aims to estimate the batch effects imparted onto

radiomic features by imaging acquisition and variability in patient demographics or clinical variables

between sites. To decide which biological co-variates to include in the ComBat model, all continuous

predictors were tested with one-way ANOVA and categorical predictors were tested with Fisher’s

exact test for significant differences (p < 0.05) across batches. This was a sub-optimal approach as

ideally, all clinical predictors would have been added to the ComBat model as biological co-variates

but this increases the sample size requirements for estimation of the batch effects [8], so a more
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pragmatic approach was adopted and only those with p < 0.05 on significance testing (patient

age) were included. Use of significance tests to variable is not generally advised, as discussed in

earlier chapters but a pragmatic approach was taken. ComBat realignment was performed per

MRI sequence, defining each batch not only on geographical site but also by homogeneity of scan

acquisition per site (batch definition and acquisition parameters provided in Tables S4.2 - S4.5).

Selecting the minimum batch size (MBS) represents a trade-off between increased performance of

ComBat realignment, providing a larger sample to estimate the ComBat model coefficients, against

discarding too much data. A minimum of five patients has been previously identified as the lower

limit for the MBS [7, 28]. Three MBS values were chosen: five, 10 or 15. Patients in smaller batches

were excluded (Figure 4.2) so 15 was the maximum chosen as this avoided excessive data loss.

Radiomic features without ComBat realignment were also included as a baseline assessment of the

effects of IST alone.

4.3.9 Statistical analysis and experimental settings

All statistical analysis was performed in R version 4.2.2 (2022-10-31) and overseen by a career

statistician. A summary of the statistical analysis is shown in Figure 4.2. Cox proportional

hazards (CPH) models for OS prediction (time from surgery to death, censor date 10/10/22) were

built. 96 different combinations of ‘experimental settings’ (Figure 4.2) were investigated; with

and without ComBat, four ISTs, each with four bin counts and three MBS for ComBat.

4.3.10 Model building and feature selection

Five feature selection (FS) methods were used to reduce dimensionality; four RFs were considered

for entry into the radiomics model based on sample size calculations, which are detailed in section

4.7.1. Each FS method was applied within each of the 1000 bootstrap resamples (Figure 4.2).

Correspondingly, five sets of RFs were selected per bootstrap resample. More detail about the steps

involved in the bootstrapping and modelling process is provided in Table S4.6.
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Unsupervised selection used PCA and hierarchical clustering using the package ‘FactoMineR’ and

default settings [29]. PCA is a linear data reduction technique that describes the variation in

the data using linear combinations of non-correlated features (principle components). Hierarchical

clustering classified the PCA results so that three to 10 clusters were formed. Four RFs that explain

the greatest variation between clusters were selected [29].

Prior to the four supervised feature selection strategies, highly colinear features were removed to

reduce redundancy. Features with an absolute Spearman correlation coefficient below 0.8 were kept

(i.e. > −0.8 and < +0.8). CPH models using backwards or forwards stepwise feature selection and

a p-value threshold of 0.1 was used until four features were included using the ‘stepAIC’ function

[30]. CPH model with a LASSO penalty [31] and the smallest value of lambda that would select only

four features was used. The optimal value of lambda was selected following 10-fold cross validation

applied within each bootstrap resample.

Random survival forests (RSFs) were used to select features using the package ‘RandomForestSRC’

[32]. Tuning of the optimum number of features to split at each node and the minimum size of the

terminal node, as well as calculating the importance of features to the models was done using the

in-built package functions. The four most important RFs were selected using this approach [32].

In all, three models were produced. Each set of RFs were used to train a radiomics-only model.

A clinical-only model was also trained as a baseline for results comparison using age, gender,

MGMT promoter methylation, extent of surgical resection, oncological adjuvant treatment, tumour

diameter and log-transformed WTV (prior analysis, chapter 3, indicated log-transformation was

an effective non-linear transformation of WTV [12]). Clinical and radiomics features were then

combined to produce a clinical-radiomics model.

4.3.11 Model performance

Evaluation of any proposed prognostic model requires assessment across (at least) four domains:

discrimination, calibration, relative model fit and relative explained variance.
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Calibration shows how closely predictions match observed events; if an individual is predicted to

have low risk of death, is the observed death rate also low for similar patients? This was assessed

with the calibration slope and calibration plots for 1 year survival prediction. The variability of

calibration of these predictions was evaluated; a model that produces highly variable predictions

after small alterations to training data indicates that the model or model building process is highly

unstable.

Stability of model calibration was assessed using calibration plots. To make the calibration plots,

the bootstrap resampling process outlined in Table S4.6 was followed to produce 1000 predictions

for patient survival probabilities at 1 year. Since the data is censored, observed survival times would

be potentially misleading and therefore estimated survival times were produced so that a smoothed

calibration plot could be drawn using the package ‘pseudo’ (v1.4.3) [33]. 200 curves were randomly

selected (from the 1000 possible) to enhance visualisation.

Discrimination informs how good the model is at dividing patients into high- or low-risk groups.

Harrell’s C-index (C) is the proportion of all pairs of individuals that can be ordered, in which

the person with higher predicted risk has a lower survival. A C of 1 is perfect discrimination and

0.5 indicates no discrimination. It has been suggested that comparing models using C is not very

informative despite its popularity in medical literature [9]. C does not give any weighting to the

magnitude of correct predictions and is simply a measure of ranking accuracy like Wilcoxon’s rank

sum test. Royston and Sauerbrei’s D-statistic (D), which starts at 0, with no upper bound was

also calculated – a higher value is better. Royston and Sauerbrei’s D-statistic (D) is the log-hazard

ratio for two equal sized groups that are split using the average (median) prognostic risk score.

This is more informative than C as the strength of correct predictions is rewarded.

Relative model fit provides an insight into which model (from all models built from this data),

contains more information relating to outcome whilst using the fewest variables to do so; a more

parsimonious model is generally a better one. Fit was measured with Akaike’s information criterion

(AIC) - lower values suggest better model fit [34].

Relative explained variation indicates which model best explains the variation in survival times for
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glioblastoma patients for competing models. Two measures of explained variation were calculated

- Royston and Sauerbrei’s R2 (R2
D) and Nagelkerke’s R2 (R2

N ) - higher values indicate better

performance [35].

Mean and 95% confidence intervals (95% CIs) were calculated across all 1000 bootstrap resamples

(Figure 4.2, Table S4.6). Bootstrapping rather than a random train-test split was used for

optimism adjustment as it is widely recommended in the statistical modelling literature [10, 36].

Heatmaps were created to graphically illustrate the impact of ISTs and MBS. The heatmaps of

discrimination, fit and explained variation were centered on the clinical-only model and scaled to

the standard deviation of models for each experimental setting to highlight the change in model

performance relative to the clinical-only model and allow comparison across settings [35]. For

example, results for WS standardised images, bin count of 64 and MBS 10 can be compared fairly

to ZS images, bin count 32 and MBS 15.

The impact of IST and MBS on feature selection stability was also assessed by measuring the

percentage of times across bootstrap resamples that the same four features were selected together

(feature co-occurrence).

4.4 Results

4.4.1 Study population

Cohort demographics are shown in Table 4.1 and are comparable to those in the scientific literature

[37, 38]. Median age was 61 years (IQR 55-68 years), 37% of patients were female, 23% had a

biopsy, and 22% had complete resection of their enhancing and necrotic tumour. 48% patients

underwent either full or partial Stupp protocol adjuvant treatment, 36% of patients had tumours

with methylated MGMT promotors and median survival was 13 months (95% CI 12-14 months)

following surgery, with 167 deaths (86%) occurring before the censor date.

Figure 4.3 shows the proportion of eligible data per ComBat MBS that was used for modelling
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Table 4.1: Patient demographics and treatment summary for radiomics modelling (n = 195)

Demographic Value
Age, years - median (IQR) 61 (55-68)
Gender - no. female (%) 72 (37%)
Surgical treatment – no. (%)a

Biopsy 44 (23%)
100% resected 42 (22%)
≥ 90% resected 62 (32%)
< 90% resected 47 (24%)

Adjuvant oncology treatment – no. (%)
No Stupp 102 (52%)
Full Stuppb 44 (23%)
Partial Stuppc 49 (25%)

MGMT methylation – no. (% of known) 70 (36%)
Overall survival, months – median (95% CI) 13 (12-14)
Maximum tumour diameter, cm – median (IQR) 4.4 (3.35-5.35)
Core volume, cm3 - median (IQR)d 1 (1-1)
Whole volume, cm3 - median (IQR)e 1 (1-1.01)

IQR = interquartile range, MGMT = O6-methylguanine-DNA
methyltransferase, CI = Confidence Interval. a Percentage of con-
trast enhancing and necrotic tumour core removed.
b Completed 60Gy in 30 fractions radiotherapy with concomitant
temozolomide and 6 cycles adjuvant temozolomide.
c Completed 60Gy in 30 fractions radiotherapy with concomitant
temozolomide and began adjuvant temozolomide. d Core Volume
includes all enhancing and necrotic tumour. e Whole Volume in-
cludes the tumour core plus all peritumoural high T2 signal.
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and the number of unique batches per MRI sequence (in-depth charts for each MBS are provided

in Figures S4.1-S4.3). 76% of eligible data was retained when MBS=5 compared to 50% when

MBS=15. The bar charts also illustrate the diversity of imaging that had to be harmonised to build

radiomic models in this real-world dataset.

Figure 4.3: Stacked bar chart in which each bar represents one MRI sequence, and the different
colours within each bar indicate a unique batch. A unique batch could, for example, indicate a
different geographic location or a different set of acquisition parameters within the same location.
The shaded regions indicate the proportion of imaging data that had to be excluded to meet the
minimum batch size. FLAIR = Fluid Attenuated Inversion Recovery, T1 = T1-weighted, T1CE =
T1-weighted, contrast-enhanced, T2 = T2-weighted.

4.4.2 Feature reduction

The mean (± standard deviation) DSC for WTV segmentations was 0.96 ± 0.03, which is equivalent

to values published in the BRATS segmentation dataset, in which multiple experts raters segment

the same glioblastoma images, and the segmentation concordance was therefore within the expected

variation of inter-rater agreement [39]. ICC values of radiomic features from the two independent

segmentations in the patients with two sets of tumour masks resulted in removal of between 110-136

features (range across all bin counts and ISTs). For supervised feature selection, a range of 32-72
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features remained following the removal of those with high co-linearity based on absolute Spearman

correlation coefficient.

4.4.3 Model performance - effect of ISTs and ComBat batch size

A summary of the model performance for all experimental settings is shown in Figure 4.4 and

Tables S4.8-S4.15.

Figure 4.4 shows that as MBS increased, the average calibration slope range decreased successively

from 1 and there was little influence of adding in ComBat. The heatmaps also demonstrated that

the results for average calibration slope for all ISTs compared to no standardisation (labelled ‘RAW’

in Figure 4.4) were similar.

Both IST and MBS had a small but appreciable effect on discrimination. MBS 10 and 15 increased

the range of z-score adjusted values compared to MBS 5, regardless of the use of ComBat. ComBat

had only a minor impact on values. At MBS 15 the range of z-score adjusted values (0 − 0.36) with

ComBat increased compared to without ComBat (0−0.34), which is reflected in the slight upwards

shift of the range of 95% CIs in the absolute values of Royston’s D. The 95% CIs increase from

0.83 − 1.2 to 0.86 − 1.5 without ComBat and up to 0.88 − 1.5 with ComBat. The greatest relative

improvement in discrimination was seen with LASSO or forwards stepwise feature reduction, HM

standardisation, 8 bins and MBS 10 patients (0.41), with or without the use of ComBat. Although

not strictly observed, overall, HM and WS standardised images tended to produce the highest

relative increase in discrimination compared with ZS.

4.4.4 Relative explained variance and model fit

The additional benefit of ComBat was best seen with MBS 10 or 15. For example, with MBS 10,

the max scaled increase was 0.29 with and 0.19 without ComBat. At MBS 15, the score was 0.33

with and 0.28 without ComBat. For MBS 5, the addition of ComBat degraded the scores. The
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Figure 4.4: Heatmaps show the mean result per model performance statistic (measured in the test
data, averaged across the 1000 bootstrap resamples) for the clinical and the combined radiomic and
clinical models across different selection procedures for all the experimental settings. The data for
discrimination, relative explained variance and model fit statistics have been centred on the mean
clinical value and scaled to the standard deviation across all models for that particular experimental
setting (ie. for each choice of minimum ComBat batch size, bin count and intensity standardisa-
tion) so that it represents change relative to the clinical only model and allows more meaningful
comparisons between different experiment settings. Lower values for Akaike’s Information Criterion
(AIC) show improved model performance, hence the colour bar shows better performance at the
bottom (the reverse of the other three colour bars). CmB = ComBat, HM = Histogram Match-
ing, LASSO = Least Absolute Shrinkage and Selection Operator, PCA = hierarchical clustering of
principle component results, RAW = no intensity standardisation applied to images (control), RSF
= Random Survival Forests, WS = WhiteStripe, ZS = Z-Score.
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largest increase in scores were seen for HM (range −0.03−0.26) and WS (−0.01−0.22) standardised

images and 8 bins.

Model fit showed similar findings; the greatest improvements relative to the clinical model with

the addition of ComBat compared to without it, was observed with MBS 15 (max scaled decrease

−0.36 and −0.34 respectively). A lower score indicates improved relative model fit.

At other MBS there was less benefit from ComBat realignment. RFs extracted with 8 bins, LASSO

or forwards feature selection and HM standardisation produced the largest improvements in model

fit (lowest AIC) and explained variation (highest R2). WS standardisation also performed well

across most bin counts. As observed for discrimination, this was not a strictly observed finding and

the result also depended upon which feature selection strategy was selected.

4.4.5 Model stability

The size of 95% CIs for model performance measures (Tables S4.8-S4.15), the frequency with

which the same radiomic features were selected (Table 4.2) and the 1-year event prediction cali-

bration plots (Figure 4.5) all showed a trend towards reduced stability with increased MBS. All

ISTs produced similar findings, as did models with and without ComBat realignment.

Stability of calibration plots for 1-year event prediction using PCA feature selection and a bin count

of 32 across all ISTs and ComBat batch sizes is illustrated in Figure 4.5 (calibration plots using

other feature selection methods are shown in Figures S4.4-S4.7 for bin count 32 - other bin counts

not included but illustrated similar findings). As the MBS increased, the stability of predictions

decreased, as evidenced by greater spread from the null line of the bootstrapped results (shown in

the paler colour). This was observed for all models and ISTs, with no IST clearly outperforming

any other.
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Figure 4.5: Calibration instability plots show the impact of different experimental settings on 1-
year survival predictions. ComBat was applied for columns 1 and 3, and without ComBat in
columns 2 and 4. Different minimum ComBat batch size were used (5 - columns 1 and 2; 15 -
columns 3 and 4) and different intensity standardisation techniques applied per row. Results show
predictions across the bootstrap resamples for models built using principle component analysis and
bin count 32. x-axes represent predicted and y-axes the observed survival at 1-year. The thin curves
represent the predictions from one bootstrap sample and the thicker curve, predictions based on
the original, non-bootstrapped data. Only 200, randomly selected, bootstrap results are shown in
each calibration plot. The grey dashed line represents the null line, with greater deviation from
this indicating worse calibration. Increased spread of the thin curves indicates lower stability of
that model building process. The calibration plots resulting from combined clinical and radiomics
models, with features selected using hierarchical clustering of principle component analysis results
(rows 2,3 and 4) are compared against the clinical only models (grey, top row). PCA = hierarchical
clustering of principle component results.
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Table 4.2: Percentage of bootstrap resamples in which the same four radiomic features were selected
for entry into the final model. Results are shown for radiomic features with ComBat realignment,
at all minimum ComBat batch sizes, bin counts and intensity standardisation techniques and all
five feature selection techniques. If one intensity standardisation technique performed better than
others, the result for that experimental setting is highlighted bold.

Percentage of resamples in which the same 4 radiomics features were selected

Minimum batch size for ComBat realignment

Minimum = 5 Minimum = 10 Minimum = 15

Feat Selecta ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW

Bin count 8
Backwards <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Forwards 2 1 1 <1 1 1 1 <1 <1 1 1 <1
LASSO 1 1 1 <1 <1 1 <1 <1 <1 <1 <1 <1
RSF 77 78 16 24 75 72 14 21 72 46 63 27
PCA 7 7 6 6 5 5 8 5 6 7 6 7

Bin count 32
Backwards <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Forwards 1 1 <1 1 1 1 <1 1 <1 <1 <1 1
LASSO 1 1 <1 1 <1 1 <1 <1 <1 <1 <1 <1
RSF 27 78 16 20 25 73 16 19 83 47 67 25
PCA 7 10 6 12 6 8 6 10 5 8 4 6

Bin count 64
Backwards <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Forwards 1 1 1 1 <1 1 <1 1 <1 <1 1 <1
LASSO 1 1 1 1 1 1 <1 1 <1 1 <1 <1
RSF 33 80 18 26 30 77 61 22 27 50 61 25
PCA 10 14 8 14 8 10 7 8 8 11 5 7

Bin count 128
Backwards <1 <1 1 1 <1 <1 1 1 <1 <1 <1 1
Forwards 1 1 1 1 1 1 1 1 1 1 1 2
LASSO 1 1 1 1 1 2 1 1 1 1 1 1
RSF 86 79 66 22 80 74 61 18 81 46 63 22
PCA 7 10 16 12 7 9 10 9 9 12 6 9

Minimum batch size refers to the smallest number of patients that had to be scanned in each batch to
be included in the ComBat realignment process (other data was excluded). HM = histogram matching,
LASSO = Least Absolute Shrinkage and Selection Operator, PCA = principle component analysis, RAW
= No intensity standardisation prior to radiomic extraction, RSF = Random Survival Forests, WS =
WhiteStripe standardisation, ZS = z-score intensity standardisation.
a Radiomic feature selection method. A maximum of four radiomic features was selected with the chosen
method within each bootstrap resample.

Similarly, the 95% CIs for model results (Tables S4.8-S4.15) showed a trend towards increased

confidence interval size, and hence lower stability, as the MBS was increased. Feature co-occurrence

(Table 4.2) did broadly show that ZS and WS resulted in higher feature co-occurrence for RSF

and PCA based selection methods but that MBS did not have a great impact on feature selection

stability.
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4.5 Discussion

The aim of this project was to assess the effect of MRI intensity standardisation technique and

ComBat minimum batch size on prognostic model performance including calibration and stability

in a real-world, multi-centre glioblastoma patient cohort. Results demonstrated worse calibration

and model stability as MBS increased, and hence sample size decreased, however discrimination,

explained variation, and model fit improved. HM and WS ISTs, overall, improved discrimination,

explained variation and model fit, which tended to occur at higher MBS, whereas choice of IST

did not impact upon calibration or stability. The relative improvement of ComBat was mostly

demonstrated at MBS 10 and 15, whereas there was little difference or even deterioration at lower

MBS in some domains. By comparing across multiple domains of performance a more thorough

assessment of ISTs and ComBat MBS was produced.

Previous studies that have compared the effect of ISTs on radiomics models [6] often show improved

OS prediction [5, 40] or accuracy in differentiating grades of diffuse glioma [4, 41, 42]. Based on

discrimination, relative fit or explained variation, performance improved through the choice of IST

and, consistent with other studies [5, 6, 43], the current results show that HM and WS produced

the highest relative improvements. However, for model calibration accuracy and model stability,

IST did not affect results following the application of ComBat to realign features.

Adding ComBat slightly improved performance only at MBS 15 for discrimination and model fit,

and at 10 and 15 for explained variation. This is explained by the likely increased accuracy of

ComBat model coefficients estimation [8]. Increments of 5 patients were enough to improve model

performance. The application of ComBat to real-world datasets, however, poses a challenge due to

the wide range of acquisitions and locations [7]. Previous studies have suggested that the MBS for

ComBat could be as low as five [7, 28], however others have suggested 20-30 minimum [8]. This study

used a compromise to minimize data loss. Reducing the available sample size, by using MBS 10 or

15, improved certain aspects of model performance but this also made them less stable, regardless

of whether ComBat feature realignment was performed. No other published studies have examined

this impact. For real-world datasets, where scanner protocols are difficult to standardise across a
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broad geographical range and many centres, restricting the sample size for ComBat may not be a

feasible option as it ignores heterogeneity of imaging data, and more importantly, prediction models

developed in this manner may not then be generalizable to sites with fewer patients. In this study,

results without ComBat were similar to those with realignment, and a more practical solution may

be to use fixed bin number discretization and IST without ComBat in such data. Unsupervised

clustering has been used to increase batch sizes [7, 44], grouping patients with similar RFs into

clusters for ComBat realignment batches. However, the clustering results were not validated, and

this approach would be difficult to validate with the sample size in this study.

This study demonstrated a mixed picture regarding the effects of ISTs and ComBat batch sizes

when considering multiple domains of model performance and model stability. A systematic review

of prognostic models in patients with glioblastoma reported that 10 of 11 time-to-event models

reported just the C-index [45]. A recent comparison of multiple ISTs in radiomics models in patients

with ‘primary’ and recurrent high-grade glioma reported on discrimination, using C-index, and

relative model fit (AIC), but did not comment on calibration or ComBat MBS [5]. The present

study also included a more in-depth assessment of model stability using bootstrapping, including

calibration instability plots [10], which was a useful way to identify consistency of model predictions.

Stability is important as it provides information on how well a model performs following variations

in input data, and not just how it performs on average [10].

This study has several limitations. Acquisition parameters were heterogeneous, including several

centres with relatively few patients scanned, which impacted on the ability to test larger batch

sizes for ComBat. This is a real-world dataset, and the restriction of larger batches would have

meant too few patients were included. The comparison of the relative impact of different ISTs

could still be assessed, and this represents a case where good intensity standardisation is required.

Public data could have been used to supplement institutional data, however the aim was to assess

the performance of combined clinical-radiomic models, and hence well-curated data on clinical

predictors were necessary. Future work could build on these results with additional public data.

Only three out of many ISTs available were chosen for evaluation, however these had previously
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been identified as the most popular choices in prior studies [12]. The supervised feature selection

strategies considered far more than the four radiomic features suggested as the maximum by event

per predictor calculation, however they are popular within the literature and the decision will not

have impacted upon the assessment of relative model performance due to IST and ComBat batch

size. Finally, measurement of IST impact on feature repeatability was not assessed, however to

the best of the author’s knowledge, a preoperative glioblastoma dataset with test-retest data is not

available publicly.

4.6 Conclusions

ISTs and ComBat MBS affected survival model performance in a heterogeneous multi-centre

glioblastoma cohort. HM and WS, overall, improved discrimination, relative explained variation,

and model fit, as did ComBat at higher MBS. However, calibration and model stability deteriorated

as MBS increased and resulted in more data being discarded from modelling. This has clinical

implications as referral systems such as the hub-and-spoke model in this study are hampered by

varied image acquisitions, and therefore require robust methods for harmonizing heterogeneous

datasets without compromising the model performance. Future work to demonstrate methods of

improving radiomic model performance in real-world datasets that also preserve model stability is

warranted.
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4.7 Supplementary Materials

4.7.1 Calculation of sample size and event per predictor

Given that this was an exploratory analysis, comparing ISTs and ComBat batch sizes on model

performance, rather than an exercise in producing the best prognostic model, all available data

was used rather than calculating sample size a priori. However, as the number of candidate ra-

diomic predictors was high, resulting in a low event per predictor parameter (EPP) rate, a number

of feature reduction strategies were adopted and it was useful to know the minimum EPP avail-

able for modelling and this was calculated using previously published methodology [1, 2]. Of the

glioblastoma prognostic models identified in a recent systematic review of glioblastoma prognostic

models [3], none had published the Cox-Snell R2 if the model had been applied in new data (ad-

justed Cox-Snell R2, R2
CS_adj), which is the ideal parameter required for sample size calculation in

time-to-event models [1, 2]. Therefore, this had to be estimated from the minimum C-index (C)

of models identified in the systematic review - 0.66 [3, 4]. The steps to estimating R2
CS_adj are

outlined below and further detail is found in the study from Riley et al. [1]. The calculations below

resulted in a minimum EPP of 22 for the present dataset, which meant that four radiomic features

were retained in the final candidate models, with suggested minimum sample size of 175.

First, Royston’s D can be estimated from C:

D = 5.50(C − 0.5) + 10.26(C − 0.5)2

Having estimated D from the reported C, R2
D_app can be derived:

R2
D_app =

π
8 D2

π2

6 + π
8 D2

R2
D_app is used as a proxy for R2

Royston_app to derive R2
O′Quigley_app:
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R2
O′Quigley_app =

− π2

6 R2
Royston_app

(1 − π2

6 )R2
Royston_app − 1

From R2
O′Quigley_app, the total number of events (E) used to derive the model (995)[4], the likelihood

ratio (LR) of the model can be estimated:

LR = −E ln(1 − R2
O′Quigley_app)

The apparent Cox-Snell R2 (R2
CS_app) can then be derived, where n is the sample size (1354)[4]:

R2
CS_app = 1 − exp(−LR

n
)

Next, the Van Houwelingen and Le Cessie shrinkage factor (SV H) can be derived, where p is the

number of candidate predictor parameters (ie. all predictors that were tested for inclusion):

SV H = 1 + p

n ln(1 − R2
CS_app)

Finally, the adjusted Cox-Snell R2 (R2
CS_adj) can be derived:

R2
CS_adj = SV HR2

CS_app

From the R2
CS_adj , the R-package ’pmsampsize’ [5] was used to calculate the minimum sample size

and event per predictor parameter (EPP), using an event rate of 0.5 events/year based on median

survival of patients with glioblastoma being 12 months [3, 6] and a timepoint of 1 year.
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4.7.2 Supplementary Figures and Tables

Table S4.1: Study compliance with Checklist for Artificial Intelligence in Medical Imaging (CLAIM)

Section Number Item Present

TITLE /

ABSTRACT

1 Identification as a study of AI methodology, specifying the category

of technology used (e.g., deep learning)

Y
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2 Structured summary of study design, methods, results, and

conclusions

Y

INTRODUCTION

3 Scientific and clinical background, including the intended use and

clinical role of the AI approach

Y

4 Study objectives and hypotheses Y

METHODS

Study Design 5 Prospective or retrospective study Y

6 Study goal, such as model creation, exploratory study, feasibility

study, non-inferiority trial

Y

Data 7 Data sources Y

8 Eligibility criteria: how, where, and when potentially eligible

participants or studies were identified (e.g., symptoms, results from

previous tests, inclusion in registry, patient-care setting, location,

dates)

Y

9 Data pre-processing steps Y

10 Selection of data subsets, if applicable Y

11 Definitions of data elements, with references to Common Data

Elements

Y

12 De-identification methods Y

13 How missing data were handled Y

Ground Truth 14 Definition of ground truth reference standard, in sufficient detail to

allow replication

Y

15 Rationale for choosing the reference standard (if alternatives exist) Y

16 Source of ground-truth annotations; qualifications and preparation

of annotators

Y

17 Annotation tools Y
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18 Measurement of inter- and intrarater variability; methods to

mitigate variability and/or resolve discrepancies

Y

Data

Partitions

19 Intended sample size and how it was determined Y

20 How data were assigned to partitions; specify proportions Y

21 Level at which partitions are disjoint (e.g., image, study, patient,

institution)

Y

Model 22 Detailed description of model, including inputs, outputs, all

intermediate layers and connections

Y

23 Software libraries, frameworks, and packages Y

24 Initialization of model parameters (e.g., randomization, transfer

learning)

Y

Training 25 Details of training approach, including data augmentation,

hyperparameters, number of models trained

Y

26 Method of selecting the final model Y

27 Ensembling techniques, if applicable Y

Evaluation 28 Metrics of model performance Y

29 Statistical measures of significance and uncertainty (e.g., confidence

intervals)

Y

30 Robustness or sensitivity analysis Y

31 Methods for explainability or interpretability (e.g., saliency maps),

and how they were validated

Y

32 Validation or testing on external data N/A

RESULTS

Data 33 Flow of participants or cases, using a diagram to indicate inclusion

and exclusion

Y

34 Demographic and clinical characteristics of cases in each partition Y

Model

performance

35 Performance metrics for optimal model(s) on all data partitions N/A

36 Estimates of diagnostic accuracy and their precision (such as 95%

confidence intervals)

Y
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37 Failure analysis of incorrectly classified cases N/A

DISCUSSION

38 Study limitations, including potential bias, statistical uncertainty,

and generalizability

Y

39 Implications for practice, including the intended use and/or clinical

role

Y

OTHER IN-

FORMATION

40 Registration number and name of registry N/A

41 Where the full study protocol can be accessed N/A

42 Sources of funding and other support; role of funders Y
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Table S4.2: Summary of patient, tumour and MRI acquisition characteristics for T1-weighted images. Values for age, diameter and volume represent medians
(range), and values for biopsy, gross resection, stupp and MGMT represent percentages of patients per batch. Values for acquisition parameters represent mean
(range) parameters per batch - ranges not stated for parameters that did not vary within the batch.

Patient and tumour characteristics Acquisition parameters

Cluster Count Gender Age Biopsy Gross

resectiona

Stuppb MGMTc Diameter

(cm)

Volume

(cm3 )d

Series Locatione Manufacturer Model Machine

IDf

Field

(T )

Pixel

size

(mm)

Slice

thick-

ness

(mm)

Slice

spacing

(mm)

OrientationRows Columns Bandwidth

(Hz)

Echo

time

(ms)

Echo

train

length

Inversion

time

(ms)

Repetition

time

(ms)

Flip

angle

(°)

Batch 1 28 57 65

(51-85)

20 29 61 43 4.3

(1.4-8)

120

(17-

230)

3D Fast

Spin Echo

Site 6 Philips Intera Random

ID 710

1.5 0.96

(0.9-

0.96)

0.96

(0-1)

1 AX 260

(260-

290)

260

(260-

290)

240 3.6

(3.5-

3.7)

200 - 7.7

(7.6-8)

8

Batch 2 39 64 59

(35-78)

30 13 41 41 4.6

(2-7.9)

100

(5.4-

250)

2D Spin

Echo

Site 8 Philips Achieva Random

ID 209

1.5 0.72 5 6 AX 320 320 140

(110-

160)

13

(12-15)

1 - 600

(570-

730)

64

Batch 3 12 50 60

(49-74)

40 25 50 25 4.4

(1.3-

6.6)

110

(8.9-

220)

3D Fast

Spin Echo

Site 5 Philips Ingenia Random

ID 294

1.5 0.89 0.92

(0.9-

1.1)

0.92

(0.9-

1.1)

AX 290 290 220 3.5

(3.4-

3.6)

220 - 7.8

(7.5-

7.9)

8

Batch 4 16 44 66

(48-74)

10 19 38 38 4.4

(2.3-

7.3)

98 (7.3-

250)

2D Spin

Echo

Site 2 Siemens Aera Random

ID 361

1.5 0.6 5 5.5 AX 380 340

(300-

360)

130 7.7 1 - 530

(400-

700)

86

(52-90)

Batch 5 21 52 61

(44-81)

10 24 57 52 4.4

(2.7-

7.5)

120

(19-

280)

PROPELLOR Site 3 Siemens Aera Random

ID 940

1.5 0.92

(0.9-

1.1)

4.2

(4-5)

5.4

(5.2-

6.5)

AX 260 260 360 46 15 1100

(710-

1300)

2700

(1600-

3200)

150

(140-

150)

Batch 6 7 71 63

(41-80)

40 0 29 14 3.8

(3.3-

8.5)

61 (46-

160)

3D Fast

Spin Echo

Site 4 GE Discovery

MR450

Random

ID 544

1.5 0.47 1.2 0.6 COR 510 510 240 12 24 - 600 90

Batch 7 13 85 71

(47-77)

8 31 31 54 4.9

(1.2-

7.4)

140

(17-

230)

2D Spin

Echo

Site 7 Siemens Aera Random

ID 679

1.5 0.72

(0.72-

0.75)

5 6 AX 320 270

(250-

320)

150 8.9 1 - 500

(410-

550)

90

Batch 8 17 65 65

(45-75)

40 18 41 35 4.3

(0.5-

5.9)

89 (6.5-

240)

3D Fast

Spin Echo

Site 4 Siemens Avanto

Fit

Random

ID 383

1.5 1 (0.98-

1.1)

1 - COR 260

(260-

320)

200

(180-

260)

750 11 63

(49-65)

- 690

(600-

700)

120

Batch 9 6 83 63

(55-68)

50 0 50 33 5.2

(2.4-

6.7)

95 (16-

130)

2D Spin

Echo

Site 2 Siemens Avanto Random

ID 118

1.5 0.6 5 5.5 AX 380 350

(310-

360)

130 8.1

(7.8-

9.4)

1 - 580

(500-

660)

80

(58-90)

Batch

10

15 67 56

(45-69)

7 40 67 33 5.7

(1.8-

7.8)

150

(13-

250)

2D Spin

Echo

Site 1 Siemens Avanto Random

ID 933

1.5 0.6

(0.6-

0.62)

5.1

(5-7)

5.6

(5.5-

7.7)

AX 380 350

(290-

350)

130 7.8 1 - 510

(450-

620)

86

(64-90)

Batch

11

31 55 57

(34-81)

20 26 55 39 4.8

(1.4-

7.4)

120

(8.4-

220)

2D Spin

Echo

Site 1 Siemens Avanto Random

ID 534

1.5 0.61

(0.6-

0.9)

5 5.5 AX 380

(260-

380)

340

(260-

350)

130 7.9

(7.8-12)

1 - 550

(450-

680)

85

(57-90)

Batch

12

20 70 59

(31-77)

20 25 40 20 3.9

(1.7-

6.1)

85

(9-240)

2D Spin

Echo

Site 2 Siemens Aera Random

ID 78

1.5 0.6

(0.6-

0.65)

5 5.5 AX 380 350

(310-

360)

130 7.7 1 - 520

(400-

660)

89

(82-90)

AX = axial, COR = coronal, GE = General Electric, MGMT = O6-methylguanine-DNA methyltransferase, PROPELLER = Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction, - = Not applicable or missing from DICOM header. a 100 b Completed 60Gy in 30 fractions radiotherapy with concomitant temozolomide and began adjuvant

temozolomide. c Percentage of patients per batch with methylation of the MGMT promoter. d Whole tumour volume (includes enhancement, necrosis and peritumoural high T2 signal). e Site identifiers such as scanner location and machine identifier were anonymised.
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Table S4.3: Summary of patient, tumour and MRI acquisition characteristics for T2-weighted images. Values for age, diameter and volume represent medians
(range), and values for biopsy, gross resection, stupp and MGMT represent percentages of patients per batch. Values for acquisition parameters represent mean
(range) parameters per batch - ranges not stated for parameters that did not vary within the batch.

Patient and tumour characteristics Acquisition parameters

Cluster Count Gender Age Biopsy Gross

resectiona

Stuppb MGMTc Diameter

(cm)

Volume

(cm3 )d

Series Locatione Manufacturer Model Machine

IDf

Field

(T )

Pixel

size

(mm)

Slice

thick-

ness

(mm)

Slice

spacing

(mm)

OrientationRows Columns Bandwidth

(Hz)

Echo

time

(ms)

Echo

train

length

Inversion

time

(ms)

Repetition

time

(ms)

Flip

angle

(°)

Batch 1 17 59 57

(45-76)

6 35 71 24 5 (1.8-

7.8)

110

(13-

250)

2D Fast

Spin Echo

Site 1 Siemens Avanto Random

ID 255

1.5 0.51 5 5.5 AX 450 390

(340-

390)

100 96 11 - 5400

(4900-

5800)

150

Batch 2 28 57 65

(51-85)

20 29 61 43 4.3

(1.4-8)

120

(17-

230)

2D Fast

Spin Echo

Site 6 Philips Intera Random

ID 140

1.5 0.45

(0.41-

0.57)

5 6.0 AX 530

(400-

640)

530

(400-

640)

200

(120-

210)

110

(110-

120)

20

(15-30)

- 5600

(4000-

6300)

90

Batch 3 37 65 59

(35-78)

30 14 43 41 4.6

(2-7.9)

100

(5.4-

250)

2D Fast

Spin Echo

Site 8 Philips Achieva Random

ID 882

1.5 0.45 5 6.0 AX 510

(260-

510)

510

(260-

510)

140

(100-

220)

100

(100-

110)

15

(12-23)

- 5100

(4900-

5500)

90

Batch 4 10 50 60

(49-74)

40 20 50 20 4.4

(2.9-

6.6)

110

(8.9-

220)

2D Fast

Spin Echo

Site 5 Philips Ingenia Random

ID 430

1.5 0.41

(0.4-

0.41)

5 6.0 AX 560

(560-

580)

560

(560-

580)

160

(150-

180)

100 15 - 4900

(4500-

5200)

90

Batch 5 16 44 66

(48-74)

10 19 38 38 4.4

(2.3-

7.3)

98 (7.3-

250)

2D Fast

Spin Echo

Site 2 Siemens Aera Random

ID 969

1.5 0.51 5 5.5 AX 450 370

(340-

390)

100 95 11 - 5600

(5400-

6100)

150

Batch 6 21 52 61

(44-81)

10 24 57 52 4.4

(2.7-

7.5)

120

(19-

280)

2D Fast

Spin Echo

Site 3 Siemens Aera Random

ID 943

1.5 0.55

(0.51-

0.6)

4 5.2 AX 450 330

(290-

360)

170 80 19 - 4000

(3400-

6600)

150

Batch 7 28 57 58

(34-81)

20 29 50 43 4.6

(1.4-

7.4)

130

(8.4-

220)

2D Fast

Spin Echo

Site 1 Siemens Avanto Random

ID 233

1.5 0.51

(0.51-

0.54)

5 5.5 AX 450 390

(340-

450)

100

(100-

130)

96 (90-

110)

11

(11-15)

- 5400

(4100-

6200)

150

(120-

150)

Batch 8 7 71 65

(55-68)

40 0 57 29 5.3

(2.4-

6.7)

110

(16-

160)

2D Fast

Spin Echo

Site 2 Siemens Avanto Random

ID 947

1.5 0.51 5 5.5 AX 450 380

(350-

390)

100 96 11 - 5500

(5400-

5800)

150

Batch 9 5 100 67

(41-80)

40 0 20 20 3.8

(3.3-

8.5)

61 (46-

160)

2D Fast

Spin Echo

Site 4 GE Discovery

MR450

Random

ID 721

1.5 0.45

(0.43-

0.47)

5 6.0 AX 510 510 200 98

(97-98)

24 - 5500

(5300-

5700)

160

Batch

10

8 88 72

(48-77)

0 25 25 25 4.7

(1.2-

5.8)

110

(17-

230)

2D Fast

Spin Echo

Site 7 Siemens Aera Random

ID 846

1.5 0.54

(0.39-

0.56)

3 3.3 SAG 450 450 190 92 (83-

110)

17 - 4300

(3800-

4700)

150

Batch

11

17 65 65

(45-75)

40 18 41 35 4.3

(0.5-

5.9)

89 (6.5-

240)

2D Fast

Spin Echo

Site 4 Siemens Avanto

Fit

Random

ID 669

1.5 0.57

(0.29-

0.65)

5 6.5 AX 430

(380-

770)

370

(290-

670)

130 120 13 - 5000

(4600-

5600)

150

Batch

12

22 68 59

(31-77)

20 23 45 23 4 (1.7-

6.1)

85

(9-270)

2D Fast

Spin Echo

Site 2 Siemens Aera Random

ID 901

1.5 0.51 5 5.5 AX 450 380

(350-

410)

100

(100-

190)

95

(95-96)

11

(11-17)

- 5600

(5300-

6100)

150

AX = axial, COR = coronal, GE = General Electric, MGMT = O6-methylguanine-DNA methyltransferase, PROPELLER = Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction, - = Not applicable or missing from DICOM header. a 100 b Completed 60Gy in 30 fractions radiotherapy with concomitant temozolomide and began adjuvant

temozolomide. c Percentage of patients per batch with methylation of the MGMT promoter. d Whole tumour volume (includes enhancement, necrosis and peritumoural high T2 signal). e Site identifiers such as scanner location and machine identifier were anonymised.
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Table S4.4: Summary of patient, tumour and MRI acquisition characteristics for fluid-attenuated inversion recovery (FLAIR) T2-weighted images. Values for age,
diameter and volume represent medians (range), and values for biopsy, gross resection, stupp and MGMT represent percentages of patients per batch. Values for
acquisition parameters represent mean (range) parameters per batch - ranges not stated for parameters that did not vary within the batch.

Patient and tumour characteristics Acquisition parameters

Cluster Count Gender Age Biopsy Gross

resectiona

Stuppb MGMTc Diameter

(cm)

Volume

(cm3 )d

Series Locatione Manufacturer Model Machine

IDf

Field

(T )

Pixel

size

(mm)

Slice

thick-

ness

(mm)

Slice

spacing

(mm)

OrientationRows Columns Bandwidth

(Hz)

Echo

time

(ms)

Echo

train

length

Inversion

time

(ms)

Repetition

time

(ms)

Flip

angle

(°)

Batch 1 10 80 56

(46-69)

10 30 60 10 5.9

(2.9-

7.8)

180

(29-

250)

2D Fast

Spin Echo

Site 1 Siemens Avanto Random

ID 732

1.5 0.45

(0.45-

0.47)

5.0 5.5 AX 510 450 130 110 21 2500 9000 150

Batch 2 24 62 64

(51-85)

20 25 58 42 4.3

(1.4-8)

130

(17-

230)

2D Fast

Spin Echo

Site 6 Philips Intera Random

ID 941

1.5 0.46

(0.41-

0.8)

5.0 6 AX 530

(290-

640)

530

(290-

640)

220

(200-

320)

140 28

(27-50)

2800 10000

(10000-

11000)

90

Batch 3 38 66 59

(35-78)

30 13 39 39 4.6

(2-7.9)

100

(5.4-

250)

2D Fast

Spin Echo

Site 8 Philips Achieva Random

ID 480

1.5 0.9 3.5 4.5 COR 260 260 370

(350-

370)

120 47 2800 11000 90

Batch 4 12 50 60

(49-74)

40 25 50 25 4.4

(1.3-

6.6)

110

(8.9-

220)

2D Fast

Spin Echo

Site 5 Philips Ingenia Random

ID 362

1.5 0.65 5.0 6 AX 350 350 390

(370-

420)

130 53 2800 11000 90

Batch 5 18 78 59

(31-72)

20 22 44 17 3.8

(1.7-

6.1)

91

(9-270)

2D Fast

Spin Echo

Site 2 Siemens Aera Random

ID 242

1.5 0.87

(0.45-

0.9)

5.0 5.5 AX 270

(260-

510)

230

(210-

420)

130 110 21 2500 9000 150

Batch 6 15 47 66

(48-74)

10 20 33 40 4.4

(2.3-

7.3)

100

(7.3-

250)

2D Fast

Spin Echo

Site 2 Siemens Aera Random

ID 210

1.5 0.9 5.0 5.5 AX 260 220

(190-

260)

150

(130-

360)

110

(98-

110)

22

(21-35)

2500 9000 150

Batch 7 21 52 61

(44-81)

10 24 57 52 4.4

(2.7-

7.5)

120

(19-

280)

2D Fast

Spin Echo

Site 3 Siemens Aera Random

ID 685

1.5 0.77

(0.72-

0.84)

4.0 5.2 AX 320 230

(200-

260)

180 84 17 1900

(1700-

2000)

5300

(4600-

5700)

150

Batch 8 5 40 57

(45-76)

20 60 60 40 2.8

(1.8-7)

25 (13-

190)

3D Fast

Spin Echo

Site 1 Siemens Avanto Random

ID 732

1.5 1.1 1.1 - AX 260 190 440 470 110 1800 5000 120

Batch 9 7 71 63

(41-80)

40 0 29 14 3.8

(3.3-

8.5)

61 (46-

160)

2D Spin

Echo

Site 4 GE Discovery

MR450

Random

ID 652

1.5 0.44

(0.43-

0.47)

5.0 6 AX 510 510 120 120

(120-

130)

1 2000 8000 160

Batch

10

13 85 71

(47-77)

8 31 31 54 4.9

(1.2-

7.4)

140

(17-

230)

2D Fast

Spin Echo

Site 7 Siemens Aera Random

ID 217

1.5 0.72

(0.72-

0.75)

5.0 6 AX 320 250

(240-

260)

190 82 19

(16-22)

2300

(1800-

2400)

7600

(5000-

8000)

150

Batch

11

16 62 66

(45-75)

40 19 38 38 4.4

(0.5-

5.9)

100

(6.5-

240)

2D Fast

Spin Echo

Site 4 Siemens Avanto

Fit

Random

ID 503

1.5 0.45

(0.43-

0.49)

5.0 6.5 AX 510 420

(380-

450)

130 110 21 2500 8800

(8000-

9000)

150

Batch

12

7 71 65

(55-68)

40 0 57 29 5.3

(2.4-

6.7)

110

(16-

160)

2D Fast

Spin Echo

Site 2 Siemens Avanto Random

ID 889

1.5 0.45 5.0 5.5 AX 510 430

(390-

450)

130 110 21 2500 8800

(7700-

9000)

150

Batch

13

25 60 59

(37-81)

20 24 44 40 4.8

(1.8-

7.4)

140

(8.4-

220)

2D Fast

Spin Echo

Site 1 Siemens Avanto Random

ID 534

1.5 0.45

(0.45-

0.47)

5.0 5.5 AX 510 440

(390-

450)

130 110 21 2500 8900

(8000-

9000)

150

(120-

150)
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Batch

14

5 20 54

(34-64)

20 40 100 40 3 (1.4-

5.4)

21 (14-

120)

3D Fast

Spin Echo

Site 1 Siemens Avanto Random

ID 534

1.5 1.1 1.1 - AX 260 190 440 470 110 1800 5000 120

AX = axial, COR = coronal, GE = General Electric, MGMT = O6-methylguanine-DNA methyltransferase, PROPELLER = Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction, - = Not applicable or missing from DICOM header. a 100 b Completed 60Gy in 30 fractions radiotherapy with concomitant temozolomide and began adjuvant

temozolomide. c Percentage of patients per batch with methylation of the MGMT promoter. d Whole tumour volume (includes enhancement, necrosis and peritumoural high T2 signal). e Site identifiers such as scanner location and machine identifier were anonymised.
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Table S4.5: Summary of patient, tumour and MRI acquisition characteristics for contrast-enhanced T1-weighted images. Values for age, diameter and volume
represent medians (range), and values for biopsy, gross resection, stupp and MGMT represent percentages of patients per batch. Values for acquisition parameters
represent mean (range) parameters per batch - ranges not stated for parameters that did not vary within the batch.

Patient and tumour characteristics Acquisition parameters

Cluster Count Gender Age Biopsy Gross

resectiona

Stuppb MGMTc Diameter

(cm)

Volume

(cm3 )d

Series Locatione Manufacturer Model Machine

IDf

Field

(T )

Pixel

size

(mm)

Slice

thick-

ness

(mm)

Slice

spacing

(mm)

OrientationRows Columns Bandwidth

(Hz)

Echo

time

(ms)

Echo

train

length

Inversion

time

(ms)

Repetition

time

(ms)

Flip

angle

(°)

Batch 1 27 59 65

(51-85)

20 30 63 44 4.3

(1.4-8)

110

(17-

230)

3D Fast

Spin Echo

Site 6 Philips Intera Random

ID 590

1.5 0.96

(0.9-

0.96)

0.98

(0.5-1)

0.98

(0.5-1)

AX 260

(260-

290)

260

(260-

290)

240 3.6

(3.5-

3.7)

200 - 7.7

(7.6-8)

8

Batch 2 39 64 59

(35-78)

30 13 41 41 4.6

(2-7.9)

100

(5.4-

250)

2D Spin

Echo

Site 8 Philips Achieva Random

ID 321

1.5 0.72 5 6 AX 320 320 160

(110-

160)

12

(12-15)

1 - 570

(540-

730)

64

Batch 3 11 45 61

(49-74)

50 18 45 27 4.4

(1.3-

6.6)

110

(8.9-

220)

3D Fast

Spin Echo

Site 5 Philips Ingenia Random

ID 358

1.5 0.89 0.92

(0.9-

1.1)

0.92

(0.9-

1.1)

AX 290 290 220 3.5

(3.4-

3.6)

220 - 7.8

(7.5-

7.9)

8

Batch 4 16 69 62

(31-77)

20 19 38 19 3.8

(1.7-

7.1)

85

(9-230)

3D

MP-RAGE

Site 2 Siemens Aera Random

ID 560

1.5 0.55 1.1 - AX 510 380 250 2.3 1 1100 1900 15

Batch 5 5 40 73

(45-76)

20 20 40 60 4.3

(1.5-

6.2)

90 (32-

190)

3D FLAIR Unknownh Siemens Aera Random

ID 180

1.5 1 (0.98-

1.1)

1.1

(1-1.2)

- AX 250

(230-

260)

240

(190-

260)

170

(150-

170)

4.4

(3.2-

4.8)

1 900 410

(9.6-

2000)

18

(8-20)

Batch 6 8 50 62

(50-74)

10 12 50 38 4.2

(3.5-

5.3)

150

(63-

180)

PROPELLER Site 3 Siemens Aera Random

ID 957

1.5 0.92

(0.9-

0.98)

4.9

(4.5-5)

6.3

(5.8-

6.5)

AX 260 260 360 46 15 840

(820-

900)

2000

(1900-

2100)

150

Batch 7 31 58 58

(34-81)

20 26 52 42 4.5

(1.4-

7.4)

120

(8.4-

220)

3D

MP-RAGE

Site 1 Siemens Avanto Random

ID 488

1.5 0.55 1.1 - AX 510

(480-

510)

380

(340-

380)

250 2.3 1 1100 1900

(1600-

1900)

15

Batch 8 7 71 63

(41-80)

40 0 29 14 3.8

(3.3-

8.5)

61 (46-

160)

3D Fast

Spin Echo

Site 4 GE Discovery

MR450

Random

ID 402

1.5 0.47 1.2 0.6 COR 510 510 240 12 24 - 570

(400-

600)

90

Batch 9 13 85 71

(47-77)

8 31 31 54 4.9

(1.2-

7.4)

140

(17-

230)

2D Spin

Echo

Site 7 Siemens Aera Random

ID 270

1.5 0.72

(0.72-

0.75)

5 6 AX 320 280

(250-

320)

150 9

(8.9-10)

1 - 500

(410-

550)

90

Batch

10

17 65 65

(45-75)

40 18 41 35 4.3

(0.5-

5.9)

89 (6.5-

240)

3D Fast

Spin Echo

Site 4 Siemens Avanto

Fit

Random

ID 24

1.5 1 (0.98-

1.1)

1 - COR 260

(250-

260)

200

(180-

260)

750 11 63

(49-65)

- 690

(600-

700)

120

Batch

11

15 67 57

(45-69)

10 40 67 27 5.7

(1.8-

7.8)

150

(13-

250)

3D

MP-RAGE

Site 1 Siemens Avanto Random

ID 989

1.5 0.55 1.1 - AX 510

(450-

510)

370

(280-

380)

250 2.3 1 1100 1900

(1600-

1900)

15

Batch

12

6 83 63

(55-68)

50 0 50 33 5.2

(2.4-

6.7)

95 (16-

130)

3D

MP-RAGE

Site 2 Siemens Avanto Random

ID 975

1.5 0.55 1.1 - AX 510 380 250 2.3 1 1100 1900 15

Batch

13

18 56 62

(46-73)

10 17 39 33 4.4

(2.3-

7.3)

110

(7.3-

240)

3D

MP-RAGE

Site 2 Siemens Aera Random

ID 388

1.5 0.55 1.1 - AX 510 380 250 2.3 1 1100 1900

(1600-

1900)

15
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Batch

14

11 45 58

(44-71)

20 36 73 64 4.4

(2.7-

7.5)

86 (19-

280)

PROPELLER Site 3 Siemens Aera Random

ID 957

1.5 0.94

(0.9-

1.1)

4 5.2 AX 260 260 360 46 15 1200

(910-

1300)

2900

(2100-

3200)

150

(140-

150)

AX = axial, COR = coronal, GE = General Electric, MGMT = O6-methylguanine-DNA methyltransferase, PROPELLER = Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction, - = Not applicable or missing from DICOM header. a 100 b Completed 60Gy in 30 fractions radiotherapy with concomitant temozolomide and began adjuvant

temozolomide. c Percentage of patients per batch with methylation of the MGMT promoter. d Whole tumour volume (includes enhancement, necrosis and peritumoural high T2 signal). e Site identifiers such as scanner location and machine identifier were anonymised.
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Table S4.7: List of radiomic features that were power-transformed using Box Cox transformation,
the lambda value used and whether the feature was retained after transformation.

Bin

Count

Intensity

Standardisation

Lambda Used

for Transfor-

mation

Feature Kept

after Trans-

formation

MRI sequence Feature

Class

Feature Name

8 Z-Score -0.5 Yes FLAIR gldm Small Dependence Low Gray Level

Emphasis

8 WhiteStripe -0.5 Yes FLAIR gldm Small Dependence Low Gray Level

Emphasis

32 Z-Score -0.7 Yes FLAIR gldm Large Dependence Low Gray Level

Emphasis

32 Z-Score -0.8 Yes FLAIR gldm Low Gray Level Emphasis

64 Z-Score -0.6 Yes FLAIR gldm Large Dependence Low Gray Level

Emphasis

64 Z-Score -0.6 Yes FLAIR gldm Low Gray Level Emphasis

64 Z-Score -0.7 Yes FLAIR glrlm Long Run Low Gray Level Emphasis

64 Z-Score -0.4 Yes T1 gldm Large Dependence Low Gray Level

Emphasis

128 Z-Score -0.4 Yes FLAIR gldm Large Dependence Low Gray Level

Emphasis

128 Z-Score -0.5 Yes FLAIR gldm Low Gray Level Emphasis

128 Z-Score -0.5 Yes FLAIR glrlm Long Run Low Gray Level Emphasis

128 Z-Score -0.1 Yes FLAIR glszm Large Area Low Gray Level Emphasis

128 Z-Score -0.3 Yes T1 gldm Large Dependence Low Gray Level

Emphasis

128 Z-Score -0.3 Yes T1 gldm Low Gray Level Emphasis

128 Z-Score -0.4 Yes T1 glrlm Long Run Low Gray Level Emphasis

128 Z-Score -0.2 Yes T1CE gldm Large Dependence Low Gray Level

Emphasis

32 WhiteStripe -0.7 Yes FLAIR gldm Large Dependence Low Gray Level

Emphasis

32 WhiteStripe -0.8 Yes FLAIR gldm Low Gray Level Emphasis

32 WhiteStripe -0.9 Yes FLAIR glrlm Long Run Low Gray Level Emphasis

64 WhiteStripe -0.6 Yes FLAIR gldm Large Dependence Low Gray Level

Emphasis

64 WhiteStripe -0.6 Yes FLAIR gldm Low Gray Level Emphasis

64 WhiteStripe -0.7 Yes FLAIR glrlm Long Run Low Gray Level Emphasis

64 WhiteStripe -0.4 Yes T1 gldm Large Dependence Low Gray Level

Emphasis

128 WhiteStripe -0.4 Yes FLAIR gldm Large Dependence Low Gray Level

Emphasis

128 WhiteStripe -0.5 Yes FLAIR gldm Low Gray Level Emphasis

128 WhiteStripe -0.5 Yes FLAIR glrlm Long Run Low Gray Level Emphasis

128 WhiteStripe -0.1 Yes FLAIR glszm Large Area Low Gray Level Emphasis

128 WhiteStripe -0.3 Yes T1 gldm Large Dependence Low Gray Level

Emphasis
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128 WhiteStripe -0.3 Yes T1 gldm Low Gray Level Emphasis

128 WhiteStripe -0.4 Yes T1 glrlm Long Run Low Gray Level Emphasis

128 WhiteStripe -0.2 Yes T1CE gldm Large Dependence Low Gray Level

Emphasis

32 Histogram Matching -0.6 Yes FLAIR gldm Large Dependence Low Gray Level

Emphasis

32 Histogram Matching -0.7 Yes FLAIR gldm Low Gray Level Emphasis

32 Histogram Matching -0.7 Yes FLAIR glrlm Long Run Low Gray Level Emphasis

64 Histogram Matching -0.5 Yes FLAIR gldm Large Dependence Low Gray Level

Emphasis

64 Histogram Matching -0.7 Yes FLAIR glrlm Long Run Low Gray Level Emphasis

64 Histogram Matching -0.5 Yes T1 gldm Large Dependence Low Gray Level

Emphasis

64 Histogram Matching -0.4 Yes T1 gldm Low Gray Level Emphasis

64 Histogram Matching -0.6 Yes T1 glrlm Long Run Low Gray Level Emphasis

64 Histogram Matching -0.1 Yes T1CE gldm Large Dependence Low Gray Level

Emphasis

128 Histogram Matching -0.4 Yes FLAIR gldm Large Dependence Low Gray Level

Emphasis

128 Histogram Matching -0.4 Yes FLAIR gldm Low Gray Level Emphasis

128 Histogram Matching -0.5 Yes FLAIR glrlm Long Run Low Gray Level Emphasis

128 Histogram Matching 0.0 Yes FLAIR glszm Large Area Low Gray Level Emphasis

128 Histogram Matching -0.4 Yes T1 gldm Large Dependence Low Gray Level

Emphasis

128 Histogram Matching -0.4 Yes T1 glrlm Long Run Low Gray Level Emphasis

128 Histogram Matching -0.2 Yes T1 glszm Large Area Low Gray Level Emphasis

128 Histogram Matching -0.2 Yes T1CE gldm Large Dependence Low Gray Level

Emphasis

128 Histogram Matching -0.3 Yes T1CE gldm Low Gray Level Emphasis

128 Histogram Matching -0.4 Yes T1CE glrlm Long Run Low Gray Level Emphasis

32 No standardisation -0.7 Yes FLAIR gldm Large Dependence Low Gray Level

Emphasis

32 No standardisation -0.8 Yes FLAIR gldm Low Gray Level Emphasis

32 No standardisation -0.9 Yes FLAIR glrlm Long Run Low Gray Level Emphasis

64 No standardisation -0.6 Yes FLAIR gldm Large Dependence Low Gray Level

Emphasis

64 No standardisation -0.6 Yes FLAIR gldm Low Gray Level Emphasis

64 No standardisation -0.7 Yes FLAIR glrlm Long Run Low Gray Level Emphasis

64 No standardisation -0.4 Yes T1 gldm Large Dependence Low Gray Level

Emphasis

64 No standardisation -0.5 Yes T1 glrlm Long Run Low Gray Level Emphasis

128 No standardisation -0.4 Yes FLAIR gldm Large Dependence Low Gray Level

Emphasis

128 No standardisation -0.5 Yes FLAIR gldm Low Gray Level Emphasis

128 No standardisation -0.5 Yes FLAIR glrlm Long Run Low Gray Level Emphasis

128 No standardisation -0.1 Yes FLAIR glszm Large Area Low Gray Level Emphasis
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128 No standardisation -0.3 Yes T1 gldm Large Dependence Low Gray Level

Emphasis

128 No standardisation -0.4 Yes T1 glrlm Long Run Low Gray Level Emphasis

128 No standardisation -0.1 Yes T1 glszm Large Area Low Gray Level Emphasis

128 No standardisation -0.2 Yes T1CE gldm Large Dependence Low Gray Level

Emphasis

glcm = gray level co-occurrence matrix, gldm = gray level dependence matrix, glrlm = gray level run length matrix, glszm = gray level size zone

matrix, FLAIR = Fluid Attenuated Inversion Recovery image, T1 = T1-weighted image, T1CE = T1-weighted post-gadolinium contrast-enhanced

image, T2 = T2-weighted image.
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Table S4.6: A step-by-step guide to how the bootstrap resampling process was conducted for
the study. Model performance statistics that were calculated during step 5 included measures of
concordance, model fit, explained variation and calibration.

Steps Description
1 Randomly sample patients (b) from the original development

dataset (O), allowing duplicates to be selected, until the sample
equals the size of original (sample size, n).

2 Apply one of five feature selection strategies until the required
number of radiomic features (four) is selected.

3 Create Cox proportional hazards models (i) using the selected
radiomic features in sample b (radiomics only model, Radb), (ii)
using only clinical variables in sample b (clinical only model,
Clinb), and (iii) a ‘combined’ model using the values of the
selected radiomic features and clinical variables in sample b
(Combb).

4 Use the models produced in bootstrap sample b (step 3) to make
survival predictions (p̂) for each patient in the original data at a
given time-point (1 year in this study). Hence, for each
bootstrap sample,b, n survival predictions (p̂) will be produced
(p̂b, where b is each bootstrap sample).

5 Measure the ‘test’ performance of the models produced in the
bootstrap sample b, by supplying the original dataset O to the
bootstrap models and calculate performance statistics Sb.

6 Repeat steps 1-5 for a large number of repetitions (B, B = 1000
for this study).

7 Steps 1-6 will result in a set (of size between 1 and B) of survival
predictions and model performance statistics for each feature
selection process. This set is used to calculate the mean and 95%
confidence interval of each model performance statistic.

8 Each of the predicted survival probabilities (p̂b) is plot against
the survival that is actually observed in the original data O at
1-year (or another time point) to produce a calibration plot.
Each bootstrap resample (between 1 and B) will result in a
unique calibration plot, and by overlaying these onto the same
plotting region (up to B lines on one plot), a calibration
instability plot can be drawn.
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Table S4.8: Mean and 95% confidence intervals of the performance measures are derived across the 1000 bootstrap repetitions in the ’test’ sample (ie. data withheld
from bootstrap resample, and not used to build initial/training model). Results are shown for 8 bin count, with ComBat feature realignment and all minimum
ComBat batch sizes. The models shown here are the clinical only and combined radiomics + clinical models, built using five different feature selection processes
to select the radiomic features

Calibration Relative Explained Variation Relative Model Fit Discrimination

Calibration Slope Nagelkerke’s R2 Royston Sauerbrei’s R2 Akaike’s Information Criterion Royston Sauerbrei’s D Concordance Index

Featsa Modelb ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW

5 patients per batch

Clin

C 0.82

(0.61

-

1.1)

0.82

(0.59

-

1.1)

0.81

(0.58

-

1.1)

0.83

(0.59

-

1.1)

0.27

(0.22

-

0.29)

0.27

(0.22

-

0.29)

0.27

(0.22

-

0.29)

0.27

(0.23

-

0.29)

0.21

(0.17

-

0.24)

0.21

(0.16

-

0.24)

0.21

(0.17

-

0.24)

0.21

(0.17

-

0.25)

1445

(1438

-

1456)

1445

(1438

-

1456)

1445

(1438

-

1456)

1444

(1438

-

1455)

1.1

(0.92

-

1.2)

1.1

(0.91

-

1.2)

1.1

(0.91

-

1.2)

1.1

(0.92

-

1.2)

0.72

(0.69

-

0.73)

0.71

(0.69

-

0.73)

0.72

(0.69

-

0.73)

0.72

(0.69

-

0.73)

Back

CR 0.76

(0.55

- 1)

0.76

(0.54

- 1)

0.76

(0.53

- 1)

0.77

(0.56

- 1)

0.27

(0.22

-

0.32)

0.27

(0.22

-

0.31)

0.27

(0.22

-

0.32)

0.28

(0.22

-

0.33)

0.23

(0.17

-

0.27)

0.22

(0.17

-

0.27)

0.22

(0.16

-

0.27)

0.23

(0.17

-

0.28)

1443

(1431

-

1457)

1443

(1432

-

1457)

1443

(1432

-

1458)

1441

(1428

-

1456)

1.1

(0.91

-

1.3)

1.1

(0.91

-

1.2)

1.1

(0.89

-

1.2)

1.1

(0.94

-

1.3)

0.72

(0.69

-

0.74)

0.71

(0.69

-

0.73)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

Forw

CR 0.7

(0.49

-

0.91)

0.7

(0.49

-

0.91)

0.7

(0.49

-

0.9)

0.7

(0.48

-

0.91)

0.27

(0.2

-

0.32)

0.28

(0.21

-

0.33)

0.28

(0.21

-

0.33)

0.29

(0.22

-

0.35)

0.22

(0.15

-

0.28)

0.23

(0.16

-

0.29)

0.23

(0.16

-

0.28)

0.25

(0.17

-

0.31)

1444

(1430

-

1463)

1442

(1426

-

1460)

1442

(1429

-

1460)

1438

(1421

-

1457)

1.1

(0.86

-

1.3)

1.1

(0.89

-

1.3)

1.1

(0.89

-

1.3)

1.2

(0.92

-

1.4)

0.71

(0.68

-

0.74)

0.71

(0.68

-

0.74)

0.71

(0.68

-

0.74)

0.72

(0.69

-

0.74)

LASSO

CR 0.72

(0.52

-

0.94)

0.72

(0.52

-

0.94)

0.72

(0.51

-

0.92)

0.73

(0.53

-

0.95)

0.27

(0.21

-

0.32)

0.28

(0.21

-

0.33)

0.28

(0.21

-

0.32)

0.3

(0.23

-

0.36)

0.22

(0.16

-

0.27)

0.23

(0.17

-

0.29)

0.23

(0.17

-

0.27)

0.25

(0.18

-

0.32)

1444

(1431

-

1460)

1441

(1428

-

1458)

1442

(1430

-

1459)

1436

(1419

-

1454)

1.1

(0.88

-

1.2)

1.1

(0.92

-

1.3)

1.1

(0.91

-

1.2)

1.2

(0.96

-

1.4)

0.71

(0.68

-

0.73)

0.72

(0.69

-

0.74)

0.71

(0.68

-

0.73)

0.72

(0.69

-

0.74)

RSF

CR 0.76

(0.56

-

0.99)

0.76

(0.55

- 1)

0.76

(0.54

- 1)

0.76

(0.53

- 1)

0.29

(0.23

-

0.32)

0.29

(0.24

-

0.33)

0.27

(0.22

-

0.31)

0.28

(0.23

-

0.32)

0.24

(0.18

-

0.28)

0.25

(0.2

-

0.28)

0.23

(0.17

-

0.27)

0.23

(0.17

-

0.27)

1440

(1430

-

1455)

1437

(1428

-

1451)

1443

(1432

-

1456)

1440

(1429

-

1454)

1.2

(0.96

-

1.3)

1.2

(1 -

1.3)

1.1

(0.92

-

1.2)

1.1

(0.94

-

1.2)

0.72

(0.7

-

0.74)

0.72

(0.7

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

PCA

CR 0.76

(0.55

- 1)

0.76

(0.55

- 1)

0.75

(0.53

- 1)

0.76

(0.56

- 1)

0.29

(0.23

-

0.34)

0.28

(0.22

-

0.33)

0.28

(0.22

-

0.33)

0.28

(0.22

-

0.32)

0.24

(0.18

-

0.29)

0.24

(0.17

-

0.28)

0.23

(0.16

-

0.28)

0.24

(0.18

-

0.28)

1439

(1425

-

1455)

1440

(1428

-

1456)

1441

(1428

-

1458)

1440

(1430

-

1456)

1.2

(0.95

-

1.3)

1.1

(0.93

-

1.3)

1.1

(0.91

-

1.3)

1.1

(0.94

-

1.3)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

10 patients per batch
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Clin

C 0.78

(0.53

-

1.1)

0.79

(0.54

-

1.1)

0.78

(0.53

-

1.1)

0.79

(0.53

-

1.1)

0.28

(0.23

-

0.31)

0.28

(0.23

-

0.31)

0.28

(0.23

-

0.31)

0.28

(0.22

-

0.31)

0.21

(0.16

-

0.25)

0.21

(0.15

-

0.25)

0.21

(0.15

-

0.25)

0.22

(0.15

-

0.25)

1139

(1132

-

1149)

1139

(1132

-

1150)

1138

(1132

-

1149)

1138

(1132

-

1150)

1.1

(0.88

-

1.2)

1.1

(0.85

-

1.2)

1.1

(0.87

-

1.2)

1.1

(0.87

-

1.2)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

Back

CR 0.71

(0.47

-

0.97)

0.72

(0.47

- 1)

0.71

(0.47

-

0.97)

0.72

(0.48

-

0.98)

0.29

(0.22

-

0.35)

0.28

(0.21

-

0.34)

0.29

(0.22

-

0.34)

0.3

(0.22

-

0.36)

0.24

(0.15

-

0.31)

0.23

(0.15

-

0.3)

0.23

(0.15

-

0.3)

0.25

(0.16

-

0.32)

1136

(1122

-

1150)

1137

(1124

-

1152)

1136

(1124

-

1150)

1133

(1119

-

1150)

1.1

(0.87

-

1.4)

1.1

(0.85

-

1.3)

1.1

(0.86

-

1.3)

1.2

(0.91

-

1.4)

0.72

(0.69

-

0.75)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.73

(0.69

-

0.75)

Forw

CR 0.65

(0.44

-

0.88)

0.65

(0.42

-

0.89)

0.65

(0.43

-

0.87)

0.67

(0.45

-

0.9)

0.3

(0.21

-

0.36)

0.29

(0.2

-

0.36)

0.3

(0.21

-

0.37)

0.33

(0.24

-

0.4)

0.25

(0.16

-

0.33)

0.24

(0.15

-

0.33)

0.25

(0.15

-

0.34)

0.28

(0.18

-

0.36)

1134

(1119

-

1152)

1135

(1118

-

1155)

1133

(1117

-

1153)

1126

(1109

-

1146)

1.2

(0.89

-

1.4)

1.2

(0.86

-

1.4)

1.2

(0.85

-

1.5)

1.3

(0.96

-

1.5)

0.72

(0.69

-

0.75)

0.72

(0.69

-

0.75)

0.72

(0.69

-

0.75)

0.73

(0.7

-

0.76)

LASSO

CR 0.66

(0.45

-

0.9)

0.68

(0.46

-

0.91)

0.68

(0.47

-

0.91)

0.7

(0.48

-

0.94)

0.29

(0.22

-

0.35)

0.29

(0.21

-

0.36)

0.3

(0.22

-

0.36)

0.33

(0.23

-

0.4)

0.24

(0.15

-

0.32)

0.23

(0.15

-

0.32)

0.24

(0.15

-

0.33)

0.28

(0.18

-

0.36)

1135

(1121

-

1151)

1136

(1120

-

1153)

1134

(1119

-

1150)

1126

(1109

-

1149)

1.2

(0.87

-

1.4)

1.1

(0.88

-

1.4)

1.2

(0.87

-

1.4)

1.3

(0.97

-

1.5)

0.72

(0.69

-

0.75)

0.72

(0.69

-

0.74)

0.73

(0.69

-

0.75)

0.73

(0.7

-

0.76)

RSF

CR 0.71

(0.48

-

0.98)

0.72

(0.49

- 1)

0.72

(0.49

-

0.98)

0.71

(0.47

- 1)

0.29

(0.22

-

0.33)

0.29

(0.22

-

0.33)

0.28

(0.21

-

0.32)

0.27

(0.2

-

0.31)

0.24

(0.17

-

0.3)

0.23

(0.16

-

0.27)

0.22

(0.15

-

0.27)

0.21

(0.15

-

0.26)

1136

(1126

-

1150)

1137

(1128

-

1150)

1139

(1129

-

1152)

1139

(1130

-

1155)

1.1

(0.93

-

1.3)

1.1

(0.91

-

1.2)

1.1

(0.87

-

1.2)

1.1

(0.84

-

1.2)

0.73

(0.7

-

0.75)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.68

-

0.74)

PCA

CR 0.71

(0.47

-

0.98)

0.73

(0.48

- 1)

0.71

(0.46

-

0.98)

0.72

(0.47

-

0.98)

0.3

(0.23

-

0.36)

0.3

(0.23

-

0.35)

0.29

(0.22

-

0.36)

0.3

(0.22

-

0.35)

0.24

(0.16

-

0.32)

0.24

(0.16

-

0.31)

0.24

(0.16

-

0.32)

0.25

(0.16

-

0.31)

1134

(1120

-

1150)

1134

(1121

-

1149)

1135

(1120

-

1151)

1134

(1121

-

1150)

1.2

(0.88

-

1.4)

1.2

(0.9

-

1.4)

1.1

(0.88

-

1.4)

1.2

(0.91

-

1.4)

0.73

(0.69

-

0.75)

0.72

(0.69

-

0.75)

0.72

(0.69

-

0.75)

0.73

(0.7

-

0.75)

15 patients per batch

Clin

C 0.74

(0.48

- 1)

0.74

(0.47

-

1.1)

0.75

(0.48

-

1.1)

0.74

(0.47

-

1.1)

0.27

(0.21

-

0.31)

0.27

(0.21

-

0.31)

0.27

(0.21

-

0.31)

0.27

(0.21

-

0.31)

0.21

(0.14

-

0.25)

0.21

(0.14

-

0.25)

0.21

(0.15

-

0.26)

0.21

(0.14

-

0.26)

884.1

(877.5

-

895.2)

884.2

(877.6

-

895.5)

884.1

(877.6

-

895.1)

884.2

(877.5

-

894.5)

1.1

(0.82

-

1.2)

1.1

(0.82

-

1.2)

1.1

(0.85

-

1.2)

1.1

(0.83

-

1.2)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

Back

CR 0.66

(0.42

-

0.95)

0.67

(0.41

-

0.96)

0.67

(0.42

-

0.96)

0.66

(0.42

-

0.96)

0.28

(0.2

-

0.35)

0.28

(0.2

-

0.34)

0.28

(0.2

-

0.35)

0.29

(0.21

-

0.36)

0.23

(0.13

-

0.31)

0.22

(0.14

-

0.3)

0.23

(0.13

-

0.31)

0.24

(0.15

-

0.32)

882.1

(870.4

-

896)

883.1

(871.6

-

897)

882.5

(870.1

-

897.1)

881.3

(868.6

-

895.2)

1.1

(0.8

-

1.4)

1.1

(0.81

-

1.3)

1.1

(0.8

-

1.4)

1.1

(0.84

-

1.4)

0.72

(0.68

-

0.75)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.75)

0.72

(0.69

-

0.75)
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Forw

CR 0.59

(0.37

-

0.85)

0.59

(0.35

-

0.84)

0.6

(0.37

-

0.84)

0.59

(0.37

-

0.85)

0.29

(0.18

-

0.38)

0.3

(0.18

-

0.39)

0.31

(0.2

-

0.4)

0.32

(0.21

-

0.4)

0.24

(0.13

-

0.34)

0.24

(0.13

-

0.36)

0.25

(0.14

-

0.36)

0.27

(0.16

-

0.36)

880.4

(864.4

-

899.4)

879.9

(862.5

-

899.2)

877.4

(860

-

896.7)

875.6

(859.7

-

895.3)

1.2

(0.8

-

1.5)

1.2

(0.78

-

1.5)

1.2

(0.82

-

1.5)

1.2

(0.88

-

1.5)

0.72

(0.68

-

0.75)

0.72

(0.68

-

0.75)

0.73

(0.68

-

0.76)

0.73

(0.69

-

0.77)

LASSO

CR 0.62

(0.39

-

0.87)

0.62

(0.38

-

0.9)

0.63

(0.4

-

0.89)

0.62

(0.39

-

0.88)

0.29

(0.2

-

0.36)

0.29

(0.19

-

0.37)

0.3

(0.22

-

0.38)

0.32

(0.22

-

0.39)

0.24

(0.14

-

0.33)

0.23

(0.13

-

0.33)

0.24

(0.16

-

0.34)

0.26

(0.17

-

0.35)

880.7

(867.9

-

896)

881.7

(865.9

-

897.8)

878.7

(864

-

894)

876.1

(861

-

893.8)

1.1

(0.83

-

1.4)

1.1

(0.8

-

1.4)

1.2

(0.88

-

1.5)

1.2

(0.92

-

1.5)

0.72

(0.69

-

0.75)

0.72

(0.68

-

0.75)

0.73

(0.69

-

0.75)

0.73

(0.69

-

0.77)

RSF

CR 0.66

(0.42

-

0.94)

0.68

(0.43

-

0.95)

0.68

(0.42

-

0.95)

0.66

(0.41

-

0.95)

0.29

(0.2

-

0.34)

0.29

(0.21

-

0.34)

0.28

(0.2

-

0.34)

0.27

(0.19

-

0.32)

0.23

(0.14

-

0.29)

0.23

(0.16

-

0.29)

0.22

(0.14

-

0.29)

0.21

(0.13

-

0.27)

881.7

(872.5

-

896.1)

880.5

(870.9

-

894.4)

883.1

(872.8

-

897.2)

884.5

(874.8

-

898)

1.1

(0.82

-

1.3)

1.1

(0.89

-

1.3)

1.1

(0.83

-

1.3)

1.1

(0.79

-

1.3)

0.73

(0.69

-

0.75)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

0.71

(0.68

-

0.74)

PCA

CR 0.66

(0.4

-

0.94)

0.66

(0.39

-

0.95)

0.66

(0.4

-

0.96)

0.66

(0.39

-

0.98)

0.29

(0.19

-

0.35)

0.29

(0.2

-

0.35)

0.28

(0.19

-

0.34)

0.28

(0.18

-

0.35)

0.23

(0.13

-

0.31)

0.23

(0.14

-

0.31)

0.23

(0.13

-

0.3)

0.23

(0.13

-

0.31)

881.5

(869.6

-

898.2)

881.7

(870.4

-

897.1)

882.5

(871.6

-

897.6)

882.7

(870.6

-

898.9)

1.1

(0.81

-

1.4)

1.1

(0.82

-

1.4)

1.1

(0.8

-

1.3)

1.1

(0.8

-

1.4)

0.73

(0.69

-

0.75)

0.72

(0.69

-

0.75)

0.72

(0.69

-

0.75)

0.72

(0.69

-

0.75)

Calibration slopes closer to 1 indicates better calibration. Relative explained variation ranges from 0 to 1; higher values are better. Lower relative model fit indicates a better performing model. Royston and Sauerbrei’s

D statistic indicates better discrimination as the value moves away from 0. C-index ranges from 0.5 to 1; 0.5 indicating no and 1 indicating perfect discrimination. Back = backwards stepwise feature elimination, Clin =

clinical features only, CI = confindence interval, Forw = forwards stepwise feature selection, HM = histogram matching, LASSO = Least Absolute Shrinkage and Selection Operator, PCA = principle component analysis

(with clustering of results), RSF = random survival forests, RAW = no intensity standardisation prior to radiomic extraction, WS = WhiteStripe standardisation, ZS = z-score intensity standardisation

a Maximum of four radiomic features selected with the chosen method b Clinical features only or a combination of both clinical and radiomic features in the Cox proportional hazards model. C = Clinical only, CR =

combined clinical-radiomics model.
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Table S4.9: Mean and 95% confidence intervals of the performance measures are derived across the 1000 bootstrap repetitions in the ’test’ sample (ie. data withheld
from bootstrap resample, and not used to build initial/training model). Results are shown for 8 bin count and all minimum ComBat batch sizes but without using
ComBat feature realignment. The models shown here are the clinical only and combined radiomics + clinical models, built using five different feature selection
processes to select the radiomic features

Calibration Relative Explained Variation Relative Model Fit Discrimination

Calibration Slope Nagelkerke’s R2 Royston Sauerbrei’s R2 Akaike’s Information Criterion Royston Sauerbrei’s D Concordance Index

Featsa Modelb ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW

5 patients per batch

Clin

C 0.82

(0.59

-

1.1)

0.83

(0.6

-

1.1)

0.82

(0.61

-

1.1)

0.83

(0.6

-

1.1)

0.27

(0.22

-

0.29)

0.27

(0.23

-

0.29)

0.27

(0.23

-

0.29)

0.27

(0.23

-

0.29)

0.21

(0.16

-

0.25)

0.21

(0.17

-

0.25)

0.21

(0.17

-

0.25)

0.21

(0.17

-

0.24)

1445

(1438

-

1456)

1445

(1438

-

1455)

1444

(1438

-

1456)

1445

(1438

-

1455)

1.1

(0.91

-

1.2)

1.1

(0.92

-

1.2)

1.1

(0.92

-

1.2)

1.1

(0.92

-

1.2)

0.71

(0.69

-

0.73)

0.72

(0.69

-

0.73)

0.72

(0.69

-

0.73)

0.72

(0.69

-

0.73)

Back

CR 0.76

(0.53

- 1)

0.76

(0.55

- 1)

0.76

(0.55

- 1)

0.77

(0.56

- 1)

0.27

(0.22

-

0.32)

0.27

(0.22

-

0.31)

0.27

(0.22

-

0.31)

0.28

(0.23

-

0.33)

0.22

(0.16

-

0.27)

0.22

(0.16

-

0.27)

0.22

(0.16

-

0.27)

0.23

(0.17

-

0.28)

1443

(1431

-

1457)

1443

(1433

-

1458)

1443

(1432

-

1457)

1441

(1428

-

1456)

1.1

(0.91

-

1.3)

1.1

(0.9

-

1.2)

1.1

(0.89

-

1.2)

1.1

(0.94

-

1.3)

0.72

(0.69

-

0.74)

0.71

(0.69

-

0.73)

0.71

(0.69

-

0.73)

0.72

(0.69

-

0.74)

Forw

CR 0.7

(0.49

-

0.93)

0.7

(0.46

-

0.92)

0.7

(0.5

-

0.92)

0.7

(0.49

-

0.9)

0.27

(0.2

-

0.32)

0.28

(0.2

-

0.33)

0.28

(0.21

-

0.32)

0.29

(0.22

-

0.35)

0.22

(0.15

-

0.27)

0.23

(0.15

-

0.29)

0.23

(0.16

-

0.27)

0.24

(0.17

-

0.31)

1444

(1430

-

1462)

1442

(1426

-

1462)

1442

(1430

-

1459)

1438

(1422

-

1457)

1.1

(0.86

-

1.3)

1.1

(0.85

-

1.3)

1.1

(0.89

-

1.3)

1.2

(0.92

-

1.4)

0.71

(0.68

-

0.74)

0.71

(0.68

-

0.74)

0.71

(0.68

-

0.74)

0.72

(0.69

-

0.75)

LASSO

CR 0.72

(0.51

-

0.95)

0.73

(0.52

-

0.96)

0.73

(0.52

-

0.96)

0.73

(0.55

-

0.97)

0.27

(0.2

-

0.31)

0.28

(0.21

-

0.33)

0.28

(0.22

-

0.32)

0.3

(0.23

-

0.35)

0.22

(0.15

-

0.27)

0.23

(0.17

-

0.29)

0.23

(0.16

-

0.27)

0.25

(0.19

-

0.31)

1444

(1432

-

1461)

1442

(1428

-

1458)

1442

(1430

-

1458)

1436

(1422

-

1453)

1.1

(0.85

-

1.2)

1.1

(0.93

-

1.3)

1.1

(0.89

-

1.3)

1.2

(1 -

1.4)

0.71

(0.69

-

0.73)

0.72

(0.69

-

0.74)

0.71

(0.69

-

0.74)

0.72

(0.69

-

0.74)

RSF

CR 0.76

(0.54

- 1)

0.77

(0.56

- 1)

0.77

(0.55

- 1)

0.77

(0.54

- 1)

0.28

(0.23

-

0.32)

0.29

(0.24

-

0.33)

0.28

(0.22

-

0.32)

0.28

(0.23

-

0.32)

0.24

(0.18

-

0.28)

0.25

(0.19

-

0.28)

0.23

(0.16

-

0.27)

0.23

(0.18

-

0.27)

1440

(1430

-

1455)

1437

(1428

-

1451)

1442

(1431

-

1456)

1440

(1430

-

1454)

1.1

(0.95

-

1.3)

1.2

(1 -

1.3)

1.1

(0.91

-

1.2)

1.1

(0.96

-

1.3)

0.72

(0.69

-

0.74)

0.72

(0.7

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

PCA

CR 0.76

(0.54

- 1)

0.77

(0.54

- 1)

0.76

(0.54

- 1)

0.77

(0.54

- 1)

0.29

(0.23

-

0.33)

0.28

(0.22

-

0.33)

0.28

(0.22

-

0.33)

0.28

(0.23

-

0.32)

0.24

(0.17

-

0.29)

0.24

(0.17

-

0.28)

0.23

(0.17

-

0.28)

0.24

(0.18

-

0.28)

1439

(1426

-

1455)

1440

(1428

-

1457)

1441

(1428

-

1457)

1440

(1429

-

1455)

1.2

(0.93

-

1.3)

1.1

(0.92

-

1.3)

1.1

(0.91

-

1.3)

1.1

(0.95

-

1.3)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

10 patients per batch
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Clin

C 0.79

(0.53

-

1.1)

0.77

(0.51

-

1.1)

0.78

(0.52

-

1.1)

0.78

(0.52

-

1.1)

0.28

(0.22

-

0.31)

0.28

(0.22

-

0.31)

0.28

(0.23

-

0.31)

0.28

(0.23

-

0.31)

0.21

(0.15

-

0.25)

0.21

(0.16

-

0.25)

0.21

(0.15

-

0.25)

0.21

(0.15

-

0.25)

1139

(1132

-

1150)

1139

(1132

-

1150)

1139

(1132

-

1150)

1139

(1132

-

1149)

1.1

(0.88

-

1.2)

1.1

(0.88

-

1.2)

1.1

(0.86

-

1.2)

1.1

(0.87

-

1.2)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

Back

CR 0.72

(0.48

-

0.98)

0.71

(0.46

- 1)

0.71

(0.48

-

0.96)

0.73

(0.47

- 1)

0.29

(0.21

-

0.35)

0.28

(0.21

-

0.34)

0.29

(0.22

-

0.34)

0.3

(0.23

-

0.37)

0.23

(0.15

-

0.32)

0.23

(0.15

-

0.3)

0.23

(0.15

-

0.31)

0.25

(0.16

-

0.33)

1136

(1122

-

1152)

1137

(1125

-

1152)

1136

(1124

-

1151)

1133

(1117

-

1148)

1.1

(0.85

-

1.4)

1.1

(0.86

-

1.4)

1.1

(0.85

-

1.4)

1.2

(0.9

-

1.4)

0.72

(0.69

-

0.75)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.75)

0.73

(0.69

-

0.75)

Forw

CR 0.66

(0.43

-

0.88)

0.64

(0.42

-

0.89)

0.65

(0.45

-

0.88)

0.67

(0.45

-

0.91)

0.3

(0.21

-

0.36)

0.29

(0.2

-

0.36)

0.3

(0.22

-

0.37)

0.33

(0.23

-

0.4)

0.25

(0.15

-

0.33)

0.24

(0.15

-

0.33)

0.25

(0.16

-

0.35)

0.28

(0.16

-

0.36)

1134

(1119

-

1153)

1135

(1120

-

1154)

1132

(1116

-

1151)

1126

(1108

-

1149)

1.2

(0.86

-

1.4)

1.1

(0.86

-

1.4)

1.2

(0.88

-

1.5)

1.3

(0.9

-

1.5)

0.72

(0.69

-

0.75)

0.72

(0.68

-

0.75)

0.72

(0.69

-

0.75)

0.73

(0.7

-

0.76)

LASSO

CR 0.68

(0.46

-

0.93)

0.67

(0.45

-

0.92)

0.68

(0.46

-

0.9)

0.69

(0.47

-

0.92)

0.29

(0.21

-

0.36)

0.29

(0.21

-

0.35)

0.3

(0.22

-

0.36)

0.33

(0.24

-

0.4)

0.24

(0.14

-

0.32)

0.23

(0.15

-

0.31)

0.25

(0.16

-

0.32)

0.28

(0.18

-

0.35)

1134

(1120

-

1153)

1136

(1121

-

1152)

1133

(1119

-

1151)

1126

(1109

-

1146)

1.2

(0.84

-

1.4)

1.1

(0.87

-

1.4)

1.2

(0.88

-

1.4)

1.3

(0.97

-

1.5)

0.72

(0.69

-

0.75)

0.72

(0.69

-

0.75)

0.73

(0.69

-

0.75)

0.73

(0.7

-

0.76)

RSF

CR 0.71

(0.49

-

0.98)

0.71

(0.47

- 1)

0.71

(0.48

-

0.97)

0.7

(0.46

-

0.98)

0.29

(0.22

-

0.33)

0.28

(0.22

-

0.32)

0.28

(0.21

-

0.32)

0.27

(0.21

-

0.31)

0.24

(0.17

-

0.3)

0.23

(0.16

-

0.27)

0.22

(0.15

-

0.27)

0.21

(0.15

-

0.26)

1136

(1126

-

1151)

1137

(1128

-

1151)

1139

(1129

-

1153)

1139

(1130

-

1154)

1.1

(0.92

-

1.3)

1.1

(0.9

-

1.3)

1.1

(0.85

-

1.2)

1.1

(0.84

-

1.2)

0.73

(0.69

-

0.75)

0.72

(0.68

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.68

-

0.74)

PCA

CR 0.72

(0.48

-

0.98)

0.72

(0.45

- 1)

0.71

(0.45

-

0.98)

0.71

(0.46

-

0.99)

0.3

(0.22

-

0.37)

0.29

(0.22

-

0.35)

0.29

(0.21

-

0.35)

0.29

(0.23

-

0.35)

0.24

(0.16

-

0.32)

0.24

(0.16

-

0.31)

0.24

(0.15

-

0.31)

0.24

(0.16

-

0.31)

1134

(1118

-

1150)

1134

(1121

-

1150)

1136

(1121

-

1152)

1135

(1122

-

1149)

1.2

(0.88

-

1.4)

1.1

(0.9

-

1.4)

1.1

(0.85

-

1.4)

1.2

(0.9

-

1.4)

0.72

(0.69

-

0.75)

0.72

(0.69

-

0.75)

0.72

(0.69

-

0.75)

0.73

(0.7

-

0.75)

15 patients per batch

Clin

C 0.74

(0.48

- 1)

0.74

(0.48

-

1.1)

0.75

(0.49

-

1.1)

0.74

(0.49

-

1.1)

0.27

(0.21

-

0.31)

0.27

(0.21

-

0.31)

0.27

(0.21

-

0.31)

0.27

(0.21

-

0.31)

0.21

(0.15

-

0.26)

0.21

(0.14

-

0.25)

0.21

(0.15

-

0.26)

0.21

(0.14

-

0.25)

884.2

(877.7

-

895)

884.4

(877.8

-

894.8)

883.9

(877.4

-

894.8)

884.1

(877.5

-

895.3)

1.1

(0.85

-

1.2)

1.1

(0.84

-

1.2)

1.1

(0.84

-

1.2)

1.1

(0.84

-

1.2)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.68

-

0.74)

Back

CR 0.66

(0.41

-

0.93)

0.66

(0.42

-

0.96)

0.68

(0.41

-

0.96)

0.67

(0.42

-

0.96)

0.28

(0.2

-

0.35)

0.28

(0.2

-

0.34)

0.28

(0.2

-

0.35)

0.29

(0.2

-

0.36)

0.23

(0.14

-

0.31)

0.22

(0.14

-

0.31)

0.23

(0.13

-

0.31)

0.24

(0.14

-

0.33)

882.2

(869.6

-

896.4)

883.4

(870.8

-

896.9)

882.1

(869.2

-

896.8)

880.8

(867.2

-

896.6)

1.1

(0.82

-

1.4)

1.1

(0.82

-

1.4)

1.1

(0.78

-

1.4)

1.1

(0.84

-

1.4)

0.72

(0.68

-

0.75)

0.72

(0.68

-

0.75)

0.72

(0.68

-

0.75)

0.72

(0.69

-

0.75)
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Forw

CR 0.59

(0.38

-

0.82)

0.59

(0.35

-

0.84)

0.6

(0.38

-

0.84)

0.59

(0.35

-

0.85)

0.3

(0.18

-

0.38)

0.29

(0.19

-

0.38)

0.31

(0.19

-

0.4)

0.32

(0.2

-

0.4)

0.24

(0.14

-

0.34)

0.24

(0.13

-

0.35)

0.25

(0.14

-

0.36)

0.26

(0.15

-

0.36)

880

(864.7

-

899.1)

880.1

(864.1

-

898.8)

877.3

(859.3

-

898.2)

875.8

(859.8

-

897.1)

1.2

(0.81

-

1.5)

1.2

(0.8

-

1.5)

1.2

(0.82

-

1.5)

1.2

(0.86

-

1.5)

0.72

(0.68

-

0.75)

0.72

(0.68

-

0.75)

0.73

(0.69

-

0.76)

0.73

(0.69

-

0.77)

LASSO

CR 0.62

(0.39

-

0.87)

0.61

(0.39

-

0.87)

0.63

(0.41

-

0.87)

0.62

(0.41

-

0.87)

0.29

(0.19

-

0.37)

0.28

(0.19

-

0.37)

0.31

(0.21

-

0.39)

0.31

(0.22

-

0.39)

0.24

(0.14

-

0.33)

0.23

(0.13

-

0.34)

0.25

(0.15

-

0.35)

0.26

(0.17

-

0.35)

880.6

(866.7

-

898.3)

882.5

(865

-

898.1)

877.9

(862.5

-

894.5)

876.4

(861.2

-

893.1)

1.1

(0.81

-

1.4)

1.1

(0.8

-

1.5)

1.2

(0.85

-

1.5)

1.2

(0.91

-

1.5)

0.72

(0.69

-

0.75)

0.72

(0.68

-

0.75)

0.73

(0.69

-

0.75)

0.73

(0.69

-

0.77)

RSF

CR 0.66

(0.43

-

0.93)

0.68

(0.45

-

0.97)

0.68

(0.43

-

0.95)

0.67

(0.43

-

0.98)

0.29

(0.21

-

0.34)

0.29

(0.22

-

0.34)

0.28

(0.2

-

0.33)

0.27

(0.19

-

0.32)

0.23

(0.15

-

0.29)

0.23

(0.16

-

0.29)

0.23

(0.15

-

0.29)

0.21

(0.13

-

0.27)

881.6

(871.9

-

894.7)

880.4

(871.5

-

893.7)

882.8

(873.2

-

896)

883.9

(874.8

-

897.4)

1.1

(0.87

-

1.3)

1.1

(0.89

-

1.3)

1.1

(0.85

-

1.3)

1.1

(0.8

-

1.2)

0.73

(0.69

-

0.75)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

0.71

(0.67

-

0.74)

PCA

CR 0.65

(0.4

-

0.92)

0.67

(0.42

-

0.96)

0.66

(0.38

-

0.93)

0.65

(0.36

-

0.95)

0.29

(0.2

-

0.35)

0.29

(0.2

-

0.35)

0.28

(0.18

-

0.34)

0.28

(0.19

-

0.34)

0.23

(0.13

-

0.31)

0.23

(0.14

-

0.3)

0.22

(0.13

-

0.3)

0.23

(0.14

-

0.31)

881.7

(869.8

-

896.9)

881.6

(870.5

-

896.2)

882.8

(871

-

899.5)

882.9

(871.6

-

898.3)

1.1

(0.8

-

1.4)

1.1

(0.82

-

1.4)

1.1

(0.81

-

1.4)

1.1

(0.83

-

1.4)

0.72

(0.69

-

0.75)

0.72

(0.69

-

0.75)

0.72

(0.68

-

0.75)

0.72

(0.68

-

0.75)

Calibration slopes closer to 1 indicates better calibration. Relative explained variation ranges from 0 to 1; higher values are better. Lower relative model fit indicates a better performing model. Royston and Sauerbrei’s

D statistic indicates better discrimination as the value moves away from 0. C-index ranges from 0.5 to 1; 0.5 indicating no and 1 indicating perfect discrimination. Back = backwards stepwise feature elimination, Clin =

clinical features only, CI = confindence interval, Forw = forwards stepwise feature selection, HM = histogram matching, LASSO = Least Absolute Shrinkage and Selection Operator, PCA = principle component analysis

(with clustering of results), RSF = random survival forests, RAW = no intensity standardisation prior to radiomic extraction, WS = WhiteStripe standardisation, ZS = z-score intensity standardisation

a Maximum of four radiomic features selected with the chosen method b Clinical features only or a combination of both clinical and radiomic features in the Cox proportional hazards model. C = Clinical only, CR =

combined clinical-radiomics model.
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Table S4.10: Mean and 95% confidence intervals of the performance measures are derived across the 1000 bootstrap repetitions in the ’test’ sample (ie. data
withheld from bootstrap resample, and not used to build initial/training model). Results are shown for 32 bin count, with ComBat feature realignment and all
minimum ComBat batch sizes. The models shown here are the clinical only and combined radiomics + clinical models, built using five different feature selection
processes to select the radiomic features

Calibration Relative Explained Variation Relative Model Fit Discrimination

Calibration Slope Nagelkerke’s R2 Royston Sauerbrei’s R2 Akaike’s Information Criterion Royston Sauerbrei’s D Concordance Index

Featsa Modelb ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW

5 patients per batch

Clin

C 0.82

(0.59

-

1.1)

0.83

(0.6

-

1.1)

0.82

(0.6

-

1.1)

0.82

(0.6

-

1.1)

0.27

(0.23

-

0.29)

0.27

(0.22

-

0.29)

0.27

(0.22

-

0.29)

0.27

(0.23

-

0.29)

0.21

(0.17

-

0.24)

0.22

(0.17

-

0.24)

0.21

(0.16

-

0.24)

0.21

(0.17

-

0.24)

1444

(1438

-

1455)

1444

(1438

-

1457)

1445

(1438

-

1456)

1445

(1438

-

1455)

1.1

(0.92

-

1.2)

1.1

(0.92

-

1.2)

1.1

(0.91

-

1.2)

1.1

(0.93

-

1.2)

0.72

(0.69

-

0.73)

0.72

(0.69

-

0.73)

0.72

(0.69

-

0.73)

0.72

(0.69

-

0.73)

Back

CR 0.76

(0.55

- 1)

0.77

(0.54

- 1)

0.76

(0.56

- 1)

0.77

(0.56

- 1)

0.28

(0.22

-

0.32)

0.27

(0.21

-

0.32)

0.27

(0.22

-

0.32)

0.28

(0.23

-

0.32)

0.23

(0.17

-

0.28)

0.23

(0.16

-

0.27)

0.23

(0.17

-

0.27)

0.23

(0.17

-

0.28)

1442

(1430

-

1456)

1443

(1431

-

1459)

1443

(1431

-

1457)

1441

(1429

-

1455)

1.1

(0.91

-

1.3)

1.1

(0.89

-

1.3)

1.1

(0.92

-

1.3)

1.1

(0.94

-

1.3)

0.72

(0.69

-

0.74)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

0.72

(0.69

-

0.74)

Forw

CR 0.7

(0.51

-

0.92)

0.7

(0.48

-

0.93)

0.7

(0.51

-

0.91)

0.7

(0.5

-

0.91)

0.28

(0.21

-

0.34)

0.28

(0.2

-

0.33)

0.28

(0.21

-

0.34)

0.28

(0.22

-

0.34)

0.23

(0.16

-

0.3)

0.23

(0.16

-

0.29)

0.23

(0.16

-

0.29)

0.24

(0.17

-

0.29)

1442

(1424

-

1459)

1442

(1427

-

1461)

1442

(1426

-

1460)

1440

(1426

-

1458)

1.1

(0.9

-

1.3)

1.1

(0.89

-

1.3)

1.1

(0.89

-

1.3)

1.1

(0.93

-

1.3)

0.72

(0.68

-

0.74)

0.71

(0.68

-

0.74)

0.71

(0.68

-

0.74)

0.72

(0.69

-

0.74)

LASSO

CR 0.72

(0.54

-

0.94)

0.73

(0.52

-

0.96)

0.73

(0.53

-

0.97)

0.72

(0.5

-

0.93)

0.27

(0.21

-

0.32)

0.28

(0.22

-

0.33)

0.28

(0.22

-

0.33)

0.29

(0.22

-

0.33)

0.23

(0.16

-

0.28)

0.23

(0.17

-

0.28)

0.23

(0.17

-

0.28)

0.24

(0.17

-

0.29)

1443

(1430

-

1458)

1441

(1428

-

1458)

1441

(1428

-

1456)

1439

(1426

-

1457)

1.1

(0.91

-

1.3)

1.1

(0.91

-

1.3)

1.1

(0.93

-

1.3)

1.1

(0.94

-

1.3)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

0.72

(0.69

-

0.74)

RSF

CR 0.76

(0.55

- 1)

0.77

(0.56

- 1)

0.77

(0.55

- 1)

0.76

(0.54

- 1)

0.29

(0.24

-

0.32)

0.3

(0.24

-

0.33)

0.28

(0.22

-

0.32)

0.28

(0.23

-

0.32)

0.24

(0.19

-

0.28)

0.25

(0.19

-

0.28)

0.23

(0.16

-

0.27)

0.23

(0.18

-

0.27)

1439

(1430

-

1453)

1437

(1428

-

1451)

1442

(1432

-

1457)

1440

(1430

-

1455)

1.2

(0.98

-

1.3)

1.2

(0.99

-

1.3)

1.1

(0.91

-

1.2)

1.1

(0.94

-

1.3)

0.73

(0.7

-

0.74)

0.72

(0.7

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

PCA

CR 0.76

(0.55

- 1)

0.77

(0.55

- 1)

0.77

(0.57

- 1)

0.76

(0.55

- 1)

0.3

(0.24

-

0.34)

0.29

(0.23

-

0.34)

0.29

(0.23

-

0.33)

0.28

(0.23

-

0.32)

0.25

(0.18

-

0.31)

0.24

(0.18

-

0.3)

0.24

(0.17

-

0.29)

0.23

(0.17

-

0.28)

1437

(1423

-

1452)

1439

(1426

-

1455)

1439

(1426

-

1455)

1441

(1430

-

1455)

1.2

(0.97

-

1.4)

1.2

(0.95

-

1.3)

1.1

(0.93

-

1.3)

1.1

(0.94

-

1.3)

0.72

(0.7

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

10 patients per batch
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Clin

C 0.79

(0.54

-

1.1)

0.79

(0.54

-

1.1)

0.78

(0.52

- 1)

0.79

(0.54

-

1.1)

0.28

(0.22

-

0.31)

0.28

(0.23

-

0.31)

0.28

(0.22

-

0.31)

0.28

(0.22

-

0.31)

0.21

(0.15

-

0.25)

0.22

(0.16

-

0.25)

0.21

(0.15

-

0.25)

0.21

(0.15

-

0.25)

1139

(1132

-

1150)

1139

(1132

-

1149)

1139

(1132

-

1150)

1138

(1132

-

1150)

1.1

(0.87

-

1.2)

1.1

(0.88

-

1.2)

1.1

(0.87

-

1.2)

1.1

(0.87

-

1.2)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

Back

CR 0.71

(0.48

-

0.99)

0.72

(0.48

-

0.98)

0.72

(0.48

-

0.98)

0.73

(0.49

-

0.98)

0.29

(0.22

-

0.35)

0.29

(0.22

-

0.35)

0.29

(0.22

-

0.34)

0.3

(0.23

-

0.36)

0.24

(0.15

-

0.31)

0.23

(0.15

-

0.3)

0.24

(0.16

-

0.3)

0.25

(0.17

-

0.32)

1136

(1123

-

1152)

1136

(1123

-

1151)

1136

(1124

-

1150)

1133

(1119

-

1148)

1.1

(0.88

-

1.4)

1.1

(0.87

-

1.3)

1.1

(0.89

-

1.3)

1.2

(0.92

-

1.4)

0.72

(0.69

-

0.75)

0.72

(0.69

-

0.75)

0.72

(0.69

-

0.75)

0.73

(0.69

-

0.75)

Forw

CR 0.66

(0.46

-

0.88)

0.64

(0.43

-

0.87)

0.65

(0.44

-

0.89)

0.66

(0.46

-

0.88)

0.31

(0.21

-

0.38)

0.29

(0.2

-

0.37)

0.3

(0.22

-

0.37)

0.31

(0.21

-

0.38)

0.26

(0.16

-

0.35)

0.24

(0.15

-

0.32)

0.25

(0.16

-

0.33)

0.26

(0.16

-

0.34)

1132

(1114

-

1153)

1135

(1118

-

1154)

1133

(1116

-

1151)

1132

(1114

-

1152)

1.2

(0.88

-

1.5)

1.1

(0.86

-

1.4)

1.2

(0.88

-

1.4)

1.2

(0.88

-

1.5)

0.73

(0.69

-

0.76)

0.72

(0.68

-

0.75)

0.73

(0.69

-

0.75)

0.73

(0.69

-

0.75)

LASSO

CR 0.68

(0.46

-

0.93)

0.68

(0.45

-

0.94)

0.68

(0.47

-

0.91)

0.69

(0.47

-

0.92)

0.3

(0.22

-

0.37)

0.29

(0.22

-

0.36)

0.3

(0.23

-

0.36)

0.31

(0.22

-

0.37)

0.25

(0.16

-

0.34)

0.24

(0.16

-

0.31)

0.25

(0.16

-

0.31)

0.26

(0.18

-

0.33)

1133

(1116

-

1151)

1135

(1120

-

1151)

1133

(1119

-

1148)

1131

(1117

-

1150)

1.2

(0.88

-

1.5)

1.1

(0.88

-

1.4)

1.2

(0.89

-

1.4)

1.2

(0.95

-

1.4)

0.73

(0.69

-

0.76)

0.72

(0.69

-

0.75)

0.73

(0.69

-

0.75)

0.73

(0.69

-

0.75)

RSF

CR 0.71

(0.48

-

0.98)

0.72

(0.49

-

0.98)

0.72

(0.48

-

0.96)

0.71

(0.48

-

0.98)

0.29

(0.22

-

0.33)

0.29

(0.23

-

0.33)

0.28

(0.22

-

0.32)

0.27

(0.2

-

0.32)

0.24

(0.17

-

0.3)

0.23

(0.17

-

0.27)

0.22

(0.16

-

0.27)

0.21

(0.14

-

0.26)

1136

(1126

-

1150)

1136

(1127

-

1149)

1139

(1129

-

1151)

1139

(1130

-

1154)

1.2

(0.92

-

1.3)

1.1

(0.92

-

1.3)

1.1

(0.88

-

1.2)

1.1

(0.83

-

1.2)

0.73

(0.7

-

0.75)

0.72

(0.68

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.68

-

0.74)

PCA

CR 0.72

(0.48

-

0.99)

0.72

(0.48

-

0.99)

0.71

(0.47

-

0.96)

0.72

(0.49

-

0.97)

0.31

(0.22

-

0.38)

0.3

(0.22

-

0.36)

0.3

(0.22

-

0.36)

0.29

(0.22

-

0.34)

0.26

(0.17

-

0.35)

0.25

(0.16

-

0.32)

0.25

(0.16

-

0.33)

0.24

(0.17

-

0.3)

1131

(1114

-

1150)

1133

(1119

-

1150)

1133

(1118

-

1150)

1135

(1124

-

1150)

1.2

(0.93

-

1.5)

1.2

(0.9

-

1.4)

1.2

(0.9

-

1.4)

1.2

(0.91

-

1.4)

0.73

(0.69

-

0.75)

0.73

(0.69

-

0.75)

0.73

(0.69

-

0.75)

0.72

(0.69

-

0.75)

15 patients per batch

Clin

C 0.75

(0.48

-

1.1)

0.75

(0.48

-

1.1)

0.74

(0.47

- 1)

0.74

(0.49

-

1.1)

0.27

(0.21

-

0.31)

0.27

(0.21

-

0.31)

0.27

(0.2

-

0.31)

0.27

(0.21

-

0.31)

0.21

(0.14

-

0.26)

0.21

(0.15

-

0.25)

0.21

(0.14

-

0.26)

0.21

(0.14

-

0.25)

884

(877.1

-

895.2)

884.2

(877.6

-

894.5)

884.2

(877.7

-

896.4)

884.3

(877.7

-

895)

1.1

(0.83

-

1.2)

1.1

(0.85

-

1.2)

1.1

(0.84

-

1.2)

1.1

(0.82

-

1.2)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

Back

CR 0.66

(0.42

-

0.95)

0.66

(0.43

-

0.94)

0.66

(0.42

-

0.96)

0.67

(0.42

-

0.96)

0.28

(0.21

-

0.35)

0.28

(0.2

-

0.34)

0.28

(0.2

-

0.34)

0.29

(0.2

-

0.35)

0.23

(0.14

-

0.31)

0.22

(0.14

-

0.29)

0.22

(0.14

-

0.3)

0.23

(0.14

-

0.31)

882.1

(869.2

-

895.5)

883.6

(872.7

-

896.5)

882.5

(871.2

-

896.6)

881.5

(869

-

896.6)

1.1

(0.84

-

1.4)

1.1

(0.82

-

1.3)

1.1

(0.83

-

1.3)

1.1

(0.82

-

1.4)

0.72

(0.69

-

0.75)

0.72

(0.68

-

0.75)

0.72

(0.68

-

0.75)

0.72

(0.68

-

0.75)
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Forw

CR 0.6

(0.36

-

0.87)

0.58

(0.35

-

0.83)

0.59

(0.36

-

0.85)

0.59

(0.36

-

0.85)

0.29

(0.18

-

0.38)

0.28

(0.18

-

0.36)

0.3

(0.19

-

0.38)

0.31

(0.19

-

0.4)

0.25

(0.13

-

0.35)

0.23

(0.13

-

0.32)

0.24

(0.14

-

0.34)

0.26

(0.14

-

0.36)

880

(863.6

-

899.7)

882.5

(867.7

-

899.9)

879.6

(863.7

-

897.9)

878

(859.5

-

898.8)

1.2

(0.81

-

1.5)

1.1

(0.79

-

1.4)

1.2

(0.82

-

1.5)

1.2

(0.82

-

1.5)

0.72

(0.68

-

0.76)

0.72

(0.68

-

0.75)

0.72

(0.68

-

0.75)

0.73

(0.68

-

0.76)

LASSO

CR 0.62

(0.4

-

0.88)

0.62

(0.4

-

0.89)

0.63

(0.41

-

0.9)

0.62

(0.42

-

0.87)

0.3

(0.21

-

0.36)

0.28

(0.2

-

0.35)

0.3

(0.2

-

0.37)

0.3

(0.2

-

0.38)

0.24

(0.15

-

0.32)

0.23

(0.14

-

0.3)

0.24

(0.15

-

0.32)

0.25

(0.15

-

0.33)

880

(866.9

-

895.1)

882.2

(870.5

-

897.2)

879

(866

-

895.8)

879.8

(864.1

-

896.8)

1.2

(0.86

-

1.4)

1.1

(0.82

-

1.3)

1.2

(0.86

-

1.4)

1.2

(0.87

-

1.5)

0.73

(0.69

-

0.75)

0.72

(0.68

-

0.75)

0.73

(0.69

-

0.75)

0.72

(0.68

-

0.76)

RSF

CR 0.66

(0.43

-

0.93)

0.67

(0.42

-

0.97)

0.67

(0.43

-

0.96)

0.66

(0.42

-

0.93)

0.29

(0.21

-

0.34)

0.29

(0.21

-

0.35)

0.28

(0.2

-

0.33)

0.27

(0.18

-

0.33)

0.23

(0.15

-

0.29)

0.23

(0.16

-

0.29)

0.23

(0.15

-

0.29)

0.21

(0.13

-

0.27)

881.6

(872.1

-

894.9)

880.3

(870.7

-

894.2)

882.5

(873.2

-

897)

884.4

(874.5

-

899.5)

1.1

(0.87

-

1.3)

1.1

(0.89

-

1.3)

1.1

(0.84

-

1.3)

1.1

(0.78

-

1.3)

0.73

(0.69

-

0.75)

0.72

(0.69

-

0.74)

0.72

(0.68

-

0.74)

0.71

(0.68

-

0.74)

PCA

CR 0.66

(0.42

-

0.96)

0.67

(0.4

-

0.95)

0.66

(0.41

-

0.95)

0.66

(0.42

-

0.93)

0.29

(0.21

-

0.36)

0.29

(0.21

-

0.35)

0.29

(0.2

-

0.35)

0.28

(0.19

-

0.35)

0.24

(0.14

-

0.31)

0.23

(0.15

-

0.3)

0.23

(0.14

-

0.3)

0.23

(0.14

-

0.31)

880.7

(867.7

-

895.6)

880.9

(870.3

-

895.7)

881.7

(869.3

-

896.8)

882.2

(870.4

-

898.1)

1.1

(0.84

-

1.4)

1.1

(0.85

-

1.3)

1.1

(0.83

-

1.4)

1.1

(0.84

-

1.4)

0.73

(0.69

-

0.75)

0.72

(0.69

-

0.75)

0.72

(0.68

-

0.75)

0.72

(0.69

-

0.75)

Calibration slopes closer to 1 indicates better calibration. Relative explained variation ranges from 0 to 1; higher values are better. Lower relative model fit indicates a better performing model. Royston and Sauerbrei’s

D statistic indicates better discrimination as the value moves away from 0. C-index ranges from 0.5 to 1; 0.5 indicating no and 1 indicating perfect discrimination. Back = backwards stepwise feature elimination, Clin =

clinical features only, CI = confindence interval, Forw = forwards stepwise feature selection, HM = histogram matching, LASSO = Least Absolute Shrinkage and Selection Operator, PCA = principle component analysis

(with clustering of results), RSF = random survival forests, RAW = no intensity standardisation prior to radiomic extraction, WS = WhiteStripe standardisation, ZS = z-score intensity standardisation

a Maximum of four radiomic features selected with the chosen method b Clinical features only or a combination of both clinical and radiomic features in the Cox proportional hazards model. C = Clinical only, CR =

combined clinical-radiomics model.
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Table S4.11: Mean and 95% confidence intervals of the performance measures are derived across the 1000 bootstrap repetitions in the ’test’ sample (ie. data
withheld from bootstrap resample, and not used to build initial/training model). Results are shown for 32 bin count and all minimum ComBat batch sizes but
without ComBat feature realignment. The models shown here are the clinical only and combined radiomics + clinical models, built using five different feature
selection processes to select the radiomic features

Calibration Relative Explained Variation Relative Model Fit Discrimination

Calibration Slope Nagelkerke’s R2 Royston Sauerbrei’s R2 Akaike’s Information Criterion Royston Sauerbrei’s D Concordance Index

Featsa Modelb ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW

5 patients per batch

Clin

C 0.81

(0.59

-

1.1)

0.82

(0.6

-

1.1)

0.82

(0.59

-

1.1)

0.82

(0.59

-

1.1)

0.27

(0.23

-

0.29)

0.27

(0.23

-

0.29)

0.27

(0.22

-

0.29)

0.27

(0.22

-

0.29)

0.21

(0.17

-

0.24)

0.21

(0.17

-

0.25)

0.21

(0.17

-

0.25)

0.21

(0.17

-

0.24)

1445

(1438

-

1454)

1444

(1438

-

1456)

1444

(1438

-

1457)

1445

(1438

-

1457)

1.1

(0.93

-

1.2)

1.1

(0.92

-

1.2)

1.1

(0.91

-

1.2)

1.1

(0.92

-

1.2)

0.72

(0.69

-

0.73)

0.72

(0.69

-

0.73)

0.72

(0.69

-

0.73)

0.72

(0.69

-

0.73)

Back

CR 0.76

(0.55

- 1)

0.77

(0.56

- 1)

0.76

(0.54

- 1)

0.76

(0.56

-

0.99)

0.28

(0.22

-

0.32)

0.27

(0.22

-

0.32)

0.27

(0.22

-

0.32)

0.28

(0.22

-

0.32)

0.23

(0.17

-

0.28)

0.23

(0.17

-

0.27)

0.23

(0.16

-

0.27)

0.23

(0.17

-

0.28)

1442

(1430

-

1456)

1443

(1431

-

1457)

1443

(1430

-

1458)

1441

(1429

-

1457)

1.1

(0.94

-

1.3)

1.1

(0.91

-

1.3)

1.1

(0.9

-

1.2)

1.1

(0.93

-

1.3)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

Forw

CR 0.7

(0.51

-

0.9)

0.7

(0.49

-

0.9)

0.69

(0.5

-

0.92)

0.7

(0.49

-

0.9)

0.28

(0.21

-

0.34)

0.28

(0.21

-

0.33)

0.28

(0.21

-

0.34)

0.28

(0.22

-

0.33)

0.23

(0.16

-

0.3)

0.23

(0.16

-

0.29)

0.23

(0.16

-

0.29)

0.24

(0.17

-

0.3)

1442

(1425

-

1460)

1442

(1427

-

1458)

1442

(1425

-

1460)

1440

(1426

-

1458)

1.1

(0.89

-

1.3)

1.1

(0.91

-

1.3)

1.1

(0.88

-

1.3)

1.1

(0.91

-

1.3)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

0.71

(0.68

-

0.74)

0.72

(0.69

-

0.74)

LASSO

CR 0.72

(0.53

-

0.95)

0.73

(0.53

-

0.94)

0.73

(0.51

-

0.96)

0.72

(0.51

-

0.94)

0.28

(0.21

-

0.32)

0.28

(0.22

-

0.33)

0.28

(0.21

-

0.32)

0.29

(0.23

-

0.34)

0.23

(0.16

-

0.28)

0.23

(0.17

-

0.28)

0.23

(0.16

-

0.28)

0.24

(0.18

-

0.29)

1442

(1429

-

1458)

1441

(1429

-

1457)

1441

(1429

-

1458)

1440

(1425

-

1455)

1.1

(0.9

-

1.3)

1.1

(0.94

-

1.3)

1.1

(0.89

-

1.3)

1.1

(0.95

-

1.3)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

RSF

CR 0.76

(0.55

- 1)

0.77

(0.55

- 1)

0.76

(0.54

- 1)

0.76

(0.55

- 1)

0.29

(0.23

-

0.32)

0.3

(0.24

-

0.33)

0.28

(0.21

-

0.32)

0.28

(0.23

-

0.32)

0.24

(0.19

-

0.28)

0.25

(0.19

-

0.28)

0.23

(0.17

-

0.27)

0.23

(0.18

-

0.27)

1440

(1430

-

1453)

1437

(1428

-

1451)

1442

(1432

-

1459)

1441

(1430

-

1455)

1.2

(0.98

-

1.3)

1.2

(0.99

-

1.3)

1.1

(0.91

-

1.2)

1.1

(0.94

-

1.2)

0.72

(0.7

-

0.74)

0.72

(0.7

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

PCA

CR 0.76

(0.55

- 1)

0.77

(0.55

- 1)

0.76

(0.55

- 1)

0.76

(0.55

- 1)

0.3

(0.24

-

0.35)

0.29

(0.23

-

0.33)

0.29

(0.23

-

0.33)

0.28

(0.22

-

0.32)

0.25

(0.18

-

0.31)

0.24

(0.18

-

0.29)

0.24

(0.17

-

0.29)

0.23

(0.17

-

0.28)

1437

(1422

-

1452)

1439

(1426

-

1455)

1439

(1426

-

1455)

1441

(1431

-

1457)

1.2

(0.96

-

1.4)

1.2

(0.95

-

1.3)

1.1

(0.93

-

1.3)

1.1

(0.93

-

1.3)

0.72

(0.7

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

10 patients per batch
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Clin

C 0.78

(0.53

-

1.1)

0.79

(0.53

-

1.1)

0.78

(0.53

-

1.1)

0.78

(0.52

-

1.1)

0.28

(0.22

-

0.31)

0.28

(0.23

-

0.31)

0.28

(0.22

-

0.31)

0.28

(0.23

-

0.31)

0.21

(0.15

-

0.25)

0.21

(0.16

-

0.25)

0.21

(0.15

-

0.25)

0.21

(0.16

-

0.25)

1139

(1132

-

1150)

1139

(1132

-

1149)

1139

(1132

-

1150)

1138

(1132

-

1149)

1.1

(0.85

-

1.2)

1.1

(0.88

-

1.2)

1.1

(0.86

-

1.2)

1.1

(0.89

-

1.2)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

Back

CR 0.71

(0.48

-

0.97)

0.72

(0.49

-

0.97)

0.71

(0.49

-

0.97)

0.72

(0.48

- 1)

0.29

(0.22

-

0.34)

0.29

(0.22

-

0.34)

0.29

(0.22

-

0.34)

0.3

(0.23

-

0.36)

0.24

(0.15

-

0.31)

0.23

(0.15

-

0.3)

0.23

(0.16

-

0.3)

0.25

(0.17

-

0.32)

1136

(1124

-

1151)

1136

(1125

-

1151)

1136

(1123

-

1151)

1133

(1119

-

1148)

1.1

(0.87

-

1.4)

1.1

(0.88

-

1.3)

1.1

(0.89

-

1.3)

1.2

(0.91

-

1.4)

0.72

(0.69

-

0.75)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.75)

0.73

(0.7

-

0.75)

Forw

CR 0.66

(0.43

-

0.89)

0.65

(0.43

-

0.9)

0.64

(0.44

-

0.88)

0.66

(0.45

-

0.9)

0.31

(0.2

-

0.39)

0.29

(0.2

-

0.37)

0.3

(0.21

-

0.38)

0.31

(0.22

-

0.38)

0.26

(0.15

-

0.34)

0.24

(0.15

-

0.32)

0.25

(0.15

-

0.33)

0.26

(0.17

-

0.34)

1132

(1112

-

1154)

1135

(1118

-

1154)

1133

(1115

-

1152)

1131

(1114

-

1150)

1.2

(0.86

-

1.5)

1.1

(0.84

-

1.4)

1.2

(0.86

-

1.4)

1.2

(0.91

-

1.5)

0.73

(0.69

-

0.76)

0.72

(0.68

-

0.75)

0.73

(0.69

-

0.75)

0.73

(0.69

-

0.75)

LASSO

CR 0.68

(0.46

-

0.93)

0.69

(0.46

-

0.94)

0.68

(0.47

-

0.9)

0.69

(0.46

-

0.93)

0.31

(0.22

-

0.38)

0.29

(0.21

-

0.35)

0.3

(0.23

-

0.37)

0.31

(0.24

-

0.37)

0.26

(0.16

-

0.34)

0.24

(0.16

-

0.31)

0.25

(0.16

-

0.32)

0.26

(0.18

-

0.33)

1132

(1115

-

1151)

1135

(1121

-

1152)

1132

(1117

-

1149)

1131

(1116

-

1147)

1.2

(0.9

-

1.5)

1.2

(0.9

-

1.4)

1.2

(0.9

-

1.4)

1.2

(0.95

-

1.4)

0.73

(0.7

-

0.76)

0.72

(0.69

-

0.75)

0.73

(0.69

-

0.75)

0.73

(0.7

-

0.76)

RSF

CR 0.71

(0.49

-

0.97)

0.73

(0.49

-

0.99)

0.71

(0.47

-

0.96)

0.71

(0.47

- 1)

0.29

(0.22

-

0.33)

0.29

(0.23

-

0.33)

0.28

(0.21

-

0.32)

0.27

(0.2

-

0.31)

0.24

(0.16

-

0.3)

0.23

(0.17

-

0.27)

0.22

(0.15

-

0.27)

0.21

(0.14

-

0.26)

1136

(1126

-

1151)

1136

(1128

-

1149)

1139

(1129

-

1152)

1139

(1130

-

1154)

1.1

(0.9

-

1.3)

1.1

(0.92

-

1.3)

1.1

(0.87

-

1.2)

1.1

(0.84

-

1.2)

0.73

(0.69

-

0.75)

0.72

(0.69

-

0.74)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

PCA

CR 0.72

(0.49

-

0.98)

0.73

(0.49

-

0.98)

0.71

(0.48

-

0.97)

0.71

(0.48

-

0.99)

0.31

(0.23

-

0.38)

0.3

(0.23

-

0.36)

0.3

(0.22

-

0.36)

0.29

(0.22

-

0.34)

0.26

(0.17

-

0.35)

0.25

(0.16

-

0.32)

0.25

(0.16

-

0.33)

0.24

(0.16

-

0.31)

1131

(1115

-

1148)

1132

(1119

-

1148)

1134

(1119

-

1151)

1135

(1123

-

1150)

1.2

(0.92

-

1.5)

1.2

(0.89

-

1.4)

1.2

(0.88

-

1.4)

1.2

(0.9

-

1.4)

0.73

(0.7

-

0.75)

0.73

(0.69

-

0.75)

0.73

(0.69

-

0.75)

0.73

(0.69

-

0.75)

15 patients per batch

Clin

C 0.74

(0.48

- 1)

0.74

(0.47

- 1)

0.74

(0.48

-

1.1)

0.74

(0.48

-

1.1)

0.27

(0.21

-

0.31)

0.27

(0.2

-

0.31)

0.27

(0.21

-

0.31)

0.27

(0.2

-

0.31)

0.21

(0.14

-

0.26)

0.21

(0.14

-

0.26)

0.21

(0.15

-

0.25)

0.21

(0.14

-

0.26)

884.2

(877.6

-

894.6)

884.4

(877.5

-

896.1)

884.3

(877.5

-

894.2)

884.1

(877.4

-

895.9)

1.1

(0.82

-

1.2)

1

(0.82

-

1.2)

1.1

(0.85

-

1.2)

1.1

(0.83

-

1.2)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

Back

CR 0.66

(0.41

-

0.96)

0.66

(0.41

-

0.91)

0.66

(0.42

-

0.95)

0.67

(0.42

-

0.97)

0.28

(0.2

-

0.35)

0.27

(0.18

-

0.34)

0.28

(0.2

-

0.34)

0.29

(0.2

-

0.35)

0.23

(0.14

-

0.3)

0.22

(0.13

-

0.29)

0.22

(0.14

-

0.3)

0.23

(0.14

-

0.31)

882.1

(869.9

-

895.7)

883.9

(872.7

-

899.1)

882.8

(871.1

-

896.6)

881.4

(869.6

-

896.3)

1.1

(0.82

-

1.4)

1.1

(0.78

-

1.3)

1.1

(0.82

-

1.3)

1.1

(0.84

-

1.4)

0.72

(0.68

-

0.75)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.75)

0.72

(0.69

-

0.75)
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Forw

CR 0.59

(0.35

-

0.84)

0.59

(0.35

-

0.85)

0.59

(0.35

-

0.83)

0.6

(0.36

-

0.84)

0.3

(0.18

-

0.38)

0.28

(0.18

-

0.36)

0.3

(0.19

-

0.39)

0.31

(0.19

-

0.4)

0.25

(0.13

-

0.34)

0.23

(0.13

-

0.32)

0.24

(0.13

-

0.34)

0.26

(0.15

-

0.36)

880

(863.8

-

899)

882.3

(867.4

-

899.1)

879.9

(862.6

-

897.7)

877.7

(860.1

-

898.6)

1.2

(0.8

-

1.5)

1.1

(0.79

-

1.4)

1.1

(0.8

-

1.5)

1.2

(0.85

-

1.5)

0.72

(0.68

-

0.76)

0.72

(0.68

-

0.75)

0.72

(0.69

-

0.75)

0.73

(0.68

-

0.76)

LASSO

CR 0.62

(0.38

-

0.88)

0.62

(0.38

-

0.87)

0.63

(0.41

-

0.88)

0.63

(0.41

-

0.87)

0.3

(0.21

-

0.37)

0.28

(0.2

-

0.34)

0.3

(0.21

-

0.37)

0.3

(0.2

-

0.38)

0.24

(0.15

-

0.32)

0.23

(0.14

-

0.29)

0.24

(0.14

-

0.32)

0.25

(0.14

-

0.33)

880

(866.6

-

895.7)

882.4

(871.2

-

897.3)

879.1

(866.5

-

895.3)

879.6

(864.5

-

896.5)

1.2

(0.85

-

1.4)

1.1

(0.83

-

1.3)

1.2

(0.84

-

1.4)

1.2

(0.83

-

1.4)

0.73

(0.69

-

0.75)

0.72

(0.68

-

0.75)

0.72

(0.69

-

0.75)

0.72

(0.68

-

0.76)

RSF

CR 0.66

(0.43

-

0.94)

0.67

(0.42

-

0.94)

0.68

(0.44

-

0.94)

0.66

(0.42

-

0.94)

0.29

(0.21

-

0.34)

0.29

(0.21

-

0.34)

0.28

(0.21

-

0.34)

0.27

(0.19

-

0.32)

0.23

(0.15

-

0.29)

0.23

(0.15

-

0.29)

0.23

(0.14

-

0.29)

0.21

(0.13

-

0.27)

881.8

(872.2

-

895)

880.5

(871.3

-

894.7)

882.5

(872.5

-

895.3)

884.2

(875.1

-

898)

1.1

(0.86

-

1.3)

1.1

(0.87

-

1.3)

1.1

(0.82

-

1.3)

1.1

(0.8

-

1.3)

0.72

(0.69

-

0.75)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

0.71

(0.67

-

0.74)

PCA

CR 0.65

(0.41

-

0.92)

0.67

(0.4

-

0.94)

0.66

(0.4

-

0.95)

0.66

(0.41

-

0.96)

0.29

(0.2

-

0.36)

0.29

(0.2

-

0.35)

0.28

(0.19

-

0.35)

0.28

(0.2

-

0.35)

0.23

(0.14

-

0.31)

0.23

(0.14

-

0.3)

0.23

(0.13

-

0.3)

0.23

(0.15

-

0.31)

881.3

(868.7

-

896.9)

881

(870

-

896.2)

882.2

(870.2

-

897.7)

882.2

(869.9

-

897.2)

1.1

(0.81

-

1.4)

1.1

(0.82

-

1.3)

1.1

(0.8

-

1.3)

1.1

(0.85

-

1.4)

0.72

(0.68

-

0.75)

0.72

(0.69

-

0.75)

0.72

(0.69

-

0.75)

0.72

(0.68

-

0.75)

Calibration slopes closer to 1 indicates better calibration. Relative explained variation ranges from 0 to 1; higher values are better. Lower relative model fit indicates a better performing model. Royston and Sauerbrei’s

D statistic indicates better discrimination as the value moves away from 0. C-index ranges from 0.5 to 1; 0.5 indicating no and 1 indicating perfect discrimination. Back = backwards stepwise feature elimination, Clin =

clinical features only, CI = confindence interval, Forw = forwards stepwise feature selection, HM = histogram matching, LASSO = Least Absolute Shrinkage and Selection Operator, PCA = principle component analysis

(with clustering of results), RSF = random survival forests, RAW = no intensity standardisation prior to radiomic extraction, WS = WhiteStripe standardisation, ZS = z-score intensity standardisation

a Maximum of four radiomic features selected with the chosen method b Clinical features only or a combination of both clinical and radiomic features in the Cox proportional hazards model. C = Clinical only, CR =

combined clinical-radiomics model.
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Table S4.12: Mean and 95% confidence intervals of the performance measures are derived across the 1000 bootstrap repetitions in the ’test’ sample (ie. data
withheld from bootstrap resample, and not used to build initial/training model). Results are shown for 64 bin count, with ComBat feature realignment and all
minimum ComBat batch sizes. The models shown here are the clinical only and combined radiomics + clinical models, built using five different feature selection
processes to select the radiomic features

Calibration Relative Explained Variation Relative Model Fit Discrimination

Calibration Slope Nagelkerke’s R2 Royston Sauerbrei’s R2 Akaike’s Information Criterion Royston Sauerbrei’s D Concordance Index

Featsa Modelb ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW

5 patients per batch

Clin

C 0.82

(0.6

-

1.1)

0.82

(0.6

-

1.1)

0.82

(0.59

-

1.1)

0.83

(0.59

-

1.1)

0.27

(0.23

-

0.29)

0.27

(0.23

-

0.29)

0.27

(0.22

-

0.29)

0.27

(0.23

-

0.29)

0.21

(0.16

-

0.25)

0.21

(0.17

-

0.25)

0.21

(0.17

-

0.25)

0.21

(0.16

-

0.24)

1445

(1438

-

1455)

1444

(1438

-

1455)

1445

(1438

-

1456)

1445

(1438

-

1455)

1.1

(0.91

-

1.2)

1.1

(0.92

-

1.2)

1.1

(0.91

-

1.2)

1.1

(0.91

-

1.2)

0.72

(0.69

-

0.73)

0.72

(0.69

-

0.73)

0.71

(0.69

-

0.73)

0.72

(0.69

-

0.73)

Back

CR 0.77

(0.56

- 1)

0.76

(0.55

- 1)

0.77

(0.55

- 1)

0.78

(0.55

- 1)

0.28

(0.22

-

0.32)

0.27

(0.22

-

0.32)

0.28

(0.22

-

0.32)

0.28

(0.23

-

0.33)

0.23

(0.17

-

0.28)

0.23

(0.17

-

0.28)

0.23

(0.17

-

0.27)

0.23

(0.17

-

0.28)

1442

(1429

-

1457)

1443

(1431

-

1457)

1442

(1430

-

1457)

1441

(1428

-

1455)

1.1

(0.91

-

1.3)

1.1

(0.91

-

1.3)

1.1

(0.92

-

1.3)

1.1

(0.93

-

1.3)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

Forw

CR 0.7

(0.5

-

0.92)

0.69

(0.46

-

0.92)

0.7

(0.48

-

0.94)

0.71

(0.5

-

0.92)

0.28

(0.2

-

0.34)

0.28

(0.21

-

0.33)

0.28

(0.2

-

0.34)

0.29

(0.22

-

0.34)

0.23

(0.15

-

0.3)

0.23

(0.16

-

0.29)

0.23

(0.15

-

0.29)

0.24

(0.16

-

0.3)

1441

(1424

-

1461)

1441

(1426

-

1460)

1441

(1426

-

1461)

1439

(1424

-

1457)

1.1

(0.88

-

1.3)

1.1

(0.88

-

1.3)

1.1

(0.86

-

1.3)

1.1

(0.89

-

1.3)

0.72

(0.68

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.68

-

0.74)

0.72

(0.69

-

0.74)

LASSO

CR 0.72

(0.52

-

0.95)

0.73

(0.51

-

0.95)

0.73

(0.51

-

0.95)

0.73

(0.52

-

0.94)

0.28

(0.21

-

0.33)

0.28

(0.23

-

0.33)

0.28

(0.21

-

0.33)

0.29

(0.23

-

0.34)

0.23

(0.16

-

0.29)

0.23

(0.17

-

0.28)

0.23

(0.16

-

0.28)

0.24

(0.17

-

0.29)

1441

(1427

-

1460)

1440

(1427

-

1455)

1441

(1428

-

1458)

1439

(1425

-

1455)

1.1

(0.9

-

1.3)

1.1

(0.93

-

1.3)

1.1

(0.9

-

1.3)

1.1

(0.94

-

1.3)

0.72

(0.68

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.75)

RSF

CR 0.76

(0.55

- 1)

0.77

(0.56

- 1)

0.76

(0.55

- 1)

0.76

(0.54

- 1)

0.29

(0.23

-

0.32)

0.29

(0.24

-

0.33)

0.28

(0.22

-

0.32)

0.28

(0.23

-

0.32)

0.24

(0.18

-

0.28)

0.25

(0.19

-

0.28)

0.23

(0.16

-

0.27)

0.23

(0.18

-

0.27)

1440

(1430

-

1454)

1437

(1428

-

1451)

1442

(1431

-

1457)

1440

(1430

-

1454)

1.2

(0.97

-

1.3)

1.2

(1 -

1.3)

1.1

(0.91

-

1.2)

1.1

(0.95

-

1.2)

0.72

(0.7

-

0.74)

0.72

(0.7

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

PCA

CR 0.77

(0.56

- 1)

0.77

(0.55

- 1)

0.77

(0.55

- 1)

0.77

(0.55

- 1)

0.3

(0.24

-

0.34)

0.29

(0.23

-

0.33)

0.29

(0.23

-

0.33)

0.28

(0.23

-

0.32)

0.25

(0.19

-

0.3)

0.24

(0.18

-

0.29)

0.24

(0.18

-

0.29)

0.23

(0.18

-

0.28)

1437

(1425

-

1452)

1438

(1426

-

1453)

1438

(1427

-

1454)

1441

(1430

-

1455)

1.2

(0.98

-

1.3)

1.2

(0.97

-

1.3)

1.2

(0.95

-

1.3)

1.1

(0.95

-

1.3)

0.72

(0.7

-

0.74)

0.72

(0.7

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

10 patients per batch
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Clin

C 0.77

(0.52

-

1.1)

0.79

(0.52

-

1.1)

0.79

(0.54

-

1.1)

0.78

(0.54

-

1.1)

0.28

(0.22

-

0.31)

0.28

(0.23

-

0.31)

0.28

(0.23

-

0.31)

0.28

(0.22

-

0.31)

0.21

(0.15

-

0.25)

0.21

(0.15

-

0.25)

0.22

(0.16

-

0.25)

0.21

(0.15

-

0.25)

1139

(1132

-

1151)

1138

(1132

-

1149)

1139

(1132

-

1149)

1139

(1132

-

1150)

1.1

(0.85

-

1.2)

1.1

(0.87

-

1.2)

1.1

(0.89

-

1.2)

1.1

(0.86

-

1.2)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

Back

CR 0.71

(0.48

-

0.99)

0.72

(0.47

-

0.99)

0.72

(0.51

- 1)

0.72

(0.48

-

0.99)

0.29

(0.22

-

0.35)

0.29

(0.22

-

0.35)

0.29

(0.22

-

0.34)

0.3

(0.23

-

0.36)

0.24

(0.16

-

0.31)

0.24

(0.16

-

0.31)

0.24

(0.16

-

0.3)

0.25

(0.16

-

0.32)

1135

(1122

-

1151)

1135

(1122

-

1151)

1136

(1123

-

1150)

1134

(1120

-

1149)

1.2

(0.88

-

1.4)

1.1

(0.88

-

1.4)

1.1

(0.9

-

1.4)

1.2

(0.9

-

1.4)

0.73

(0.69

-

0.75)

0.72

(0.69

-

0.75)

0.72

(0.69

-

0.74)

0.73

(0.69

-

0.75)

Forw

CR 0.66

(0.39

-

0.91)

0.64

(0.32

-

0.89)

0.66

(0.4

-

0.9)

0.66

(0.45

-

0.9)

0.31

(0.2

-

0.39)

0.29

(0.17

-

0.36)

0.3

(0.21

-

0.37)

0.31

(0.21

-

0.38)

0.26

(0.15

-

0.35)

0.24

(0.14

-

0.32)

0.26

(0.15

-

0.34)

0.26

(0.16

-

0.34)

1131

(1112

-

1154)

1136

(1119

-

1160)

1132

(1116

-

1153)

1132

(1115

-

1153)

1.2

(0.85

-

1.5)

1.1

(0.81

-

1.4)

1.2

(0.85

-

1.5)

1.2

(0.89

-

1.5)

0.73

(0.69

-

0.76)

0.72

(0.69

-

0.75)

0.73

(0.69

-

0.75)

0.73

(0.69

-

0.75)

LASSO

CR 0.68

(0.42

-

0.93)

0.68

(0.42

-

0.92)

0.68

(0.43

-

0.93)

0.68

(0.46

-

0.93)

0.31

(0.22

-

0.38)

0.29

(0.21

-

0.36)

0.31

(0.21

-

0.37)

0.3

(0.22

-

0.37)

0.26

(0.16

-

0.34)

0.24

(0.14

-

0.32)

0.26

(0.16

-

0.34)

0.26

(0.17

-

0.33)

1130

(1115

-

1151)

1135

(1120

-

1153)

1131

(1118

-

1152)

1132

(1117

-

1151)

1.2

(0.89

-

1.5)

1.2

(0.84

-

1.4)

1.2

(0.89

-

1.5)

1.2

(0.91

-

1.4)

0.73

(0.69

-

0.76)

0.72

(0.69

-

0.75)

0.73

(0.69

-

0.75)

0.73

(0.69

-

0.76)

RSF

CR 0.7

(0.48

-

0.96)

0.72

(0.5

-

0.98)

0.72

(0.49

-

0.98)

0.71

(0.47

-

0.97)

0.29

(0.22

-

0.33)

0.29

(0.23

-

0.33)

0.28

(0.21

-

0.32)

0.27

(0.21

-

0.32)

0.24

(0.17

-

0.3)

0.23

(0.17

-

0.27)

0.22

(0.15

-

0.27)

0.21

(0.15

-

0.26)

1136

(1126

-

1150)

1136

(1128

-

1149)

1139

(1129

-

1152)

1139

(1130

-

1153)

1.1

(0.93

-

1.3)

1.1

(0.92

-

1.2)

1.1

(0.86

-

1.2)

1.1

(0.85

-

1.2)

0.73

(0.7

-

0.75)

0.72

(0.69

-

0.74)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

PCA

CR 0.72

(0.48

-

0.98)

0.72

(0.48

- 1)

0.73

(0.5

-

0.99)

0.71

(0.48

-

0.98)

0.31

(0.24

-

0.37)

0.31

(0.23

-

0.36)

0.3

(0.23

-

0.36)

0.29

(0.22

-

0.34)

0.26

(0.18

-

0.33)

0.26

(0.18

-

0.32)

0.25

(0.17

-

0.32)

0.24

(0.16

-

0.31)

1132

(1118

-

1147)

1131

(1120

-

1148)

1132

(1120

-

1148)

1135

(1124

-

1150)

1.2

(0.94

-

1.4)

1.2

(0.95

-

1.4)

1.2

(0.93

-

1.4)

1.2

(0.91

-

1.4)

0.73

(0.69

-

0.75)

0.73

(0.69

-

0.75)

0.73

(0.69

-

0.75)

0.72

(0.69

-

0.75)

15 patients per batch

Clin

C 0.75

(0.49

-

1.1)

0.75

(0.48

-

1.1)

0.74

(0.48

-

1.1)

0.74

(0.48

-

1.1)

0.27

(0.21

-

0.31)

0.27

(0.21

-

0.31)

0.27

(0.21

-

0.31)

0.27

(0.21

-

0.31)

0.21

(0.14

-

0.25)

0.21

(0.14

-

0.26)

0.21

(0.14

-

0.26)

0.21

(0.14

-

0.26)

884.2

(877.3

-

894.6)

884.4

(877.7

-

894.8)

884.3

(877.4

-

894.9)

884.1

(877.3

-

894.8)

1.1

(0.84

-

1.2)

1.1

(0.84

-

1.2)

1.1

(0.82

-

1.2)

1.1

(0.83

-

1.2)

0.72

(0.68

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

Back

CR 0.67

(0.4

-

0.96)

0.67

(0.43

-

0.98)

0.66

(0.42

-

0.98)

0.67

(0.42

-

0.97)

0.29

(0.2

-

0.35)

0.28

(0.2

-

0.34)

0.28

(0.2

-

0.35)

0.29

(0.2

-

0.35)

0.23

(0.14

-

0.3)

0.22

(0.14

-

0.29)

0.23

(0.14

-

0.31)

0.23

(0.14

-

0.31)

881.8

(869.8

-

896.9)

883.1

(872.1

-

896)

882.2

(869.4

-

896.2)

881.7

(869.3

-

896.4)

1.1

(0.83

-

1.4)

1.1

(0.83

-

1.3)

1.1

(0.82

-

1.4)

1.1

(0.83

-

1.4)

0.72

(0.68

-

0.75)

0.72

(0.68

-

0.75)

0.72

(0.69

-

0.75)

0.72

(0.68

-

0.75)
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Forw

CR 0.59

(0.3

-

0.85)

0.58

(0.31

-

0.86)

0.59

(0.31

-

0.85)

0.61

(0.36

-

0.89)

0.29

(0.17

-

0.37)

0.28

(0.17

-

0.35)

0.3

(0.17

-

0.38)

0.3

(0.2

-

0.39)

0.24

(0.13

-

0.33)

0.22

(0.13

-

0.31)

0.24

(0.13

-

0.34)

0.25

(0.15

-

0.35)

880.4

(865.5

-

901.7)

883.3

(869.8

-

901.6)

879.9

(864.5

-

901.1)

878.4

(862.6

-

896.6)

1.2

(0.79

-

1.4)

1.1

(0.78

-

1.4)

1.2

(0.79

-

1.5)

1.2

(0.85

-

1.5)

0.73

(0.68

-

0.76)

0.72

(0.68

-

0.75)

0.73

(0.69

-

0.75)

0.73

(0.69

-

0.76)

LASSO

CR 0.63

(0.38

-

0.89)

0.63

(0.38

-

0.91)

0.63

(0.38

-

0.87)

0.63

(0.39

-

0.9)

0.3

(0.2

-

0.36)

0.29

(0.2

-

0.35)

0.31

(0.21

-

0.38)

0.29

(0.18

-

0.37)

0.25

(0.14

-

0.32)

0.23

(0.14

-

0.3)

0.25

(0.15

-

0.34)

0.24

(0.14

-

0.33)

879

(867

-

896.2)

881.9

(870.4

-

896.1)

878.1

(864.1

-

895.2)

880.3

(865.4

-

899)

1.2

(0.83

-

1.4)

1.1

(0.84

-

1.4)

1.2

(0.84

-

1.5)

1.2

(0.81

-

1.4)

0.73

(0.69

-

0.76)

0.72

(0.69

-

0.75)

0.73

(0.7

-

0.75)

0.73

(0.68

-

0.76)

RSF

CR 0.66

(0.43

-

0.96)

0.68

(0.45

-

0.97)

0.67

(0.44

-

0.96)

0.67

(0.42

-

0.95)

0.28

(0.21

-

0.34)

0.29

(0.22

-

0.34)

0.28

(0.2

-

0.34)

0.27

(0.19

-

0.33)

0.23

(0.15

-

0.29)

0.23

(0.16

-

0.29)

0.22

(0.14

-

0.29)

0.22

(0.13

-

0.27)

882.1

(872.4

-

895.5)

880.4

(871.2

-

894)

883.2

(872.8

-

896.3)

884

(874.4

-

897.9)

1.1

(0.86

-

1.3)

1.1

(0.89

-

1.3)

1.1

(0.83

-

1.3)

1.1

(0.8

-

1.3)

0.72

(0.69

-

0.75)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

0.71

(0.68

-

0.74)

PCA

CR 0.67

(0.42

-

0.98)

0.68

(0.41

-

0.98)

0.67

(0.39

-

0.95)

0.66

(0.41

-

0.95)

0.29

(0.21

-

0.36)

0.3

(0.22

-

0.35)

0.29

(0.21

-

0.35)

0.29

(0.2

-

0.35)

0.24

(0.15

-

0.31)

0.24

(0.15

-

0.31)

0.24

(0.15

-

0.3)

0.23

(0.14

-

0.31)

880.2

(868.8

-

894.3)

879.3

(869.1

-

893.4)

880.7

(870.2

-

895.7)

881.7

(869.8

-

896.9)

1.2

(0.87

-

1.4)

1.2

(0.87

-

1.4)

1.1

(0.85

-

1.3)

1.1

(0.81

-

1.4)

0.72

(0.69

-

0.75)

0.73

(0.69

-

0.75)

0.73

(0.69

-

0.75)

0.72

(0.69

-

0.75)

Calibration slopes closer to 1 indicates better calibration. Relative explained variation ranges from 0 to 1; higher values are better. Lower relative model fit indicates a better performing model. Royston and Sauerbrei’s

D statistic indicates better discrimination as the value moves away from 0. C-index ranges from 0.5 to 1; 0.5 indicating no and 1 indicating perfect discrimination. Back = backwards stepwise feature elimination, Clin =

clinical features only, CI = confindence interval, Forw = forwards stepwise feature selection, HM = histogram matching, LASSO = Least Absolute Shrinkage and Selection Operator, PCA = principle component analysis

(with clustering of results), RSF = random survival forests, RAW = no intensity standardisation prior to radiomic extraction, WS = WhiteStripe standardisation, ZS = z-score intensity standardisation

a Maximum of four radiomic features selected with the chosen method b Clinical features only or a combination of both clinical and radiomic features in the Cox proportional hazards model. C = Clinical only, CR =

combined clinical-radiomics model.
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Table S4.13: Mean and 95% confidence intervals of the performance measures are derived across the 1000 bootstrap repetitions in the ’test’ sample (ie. data
withheld from bootstrap resample, and not used to build initial/training model). Results are shown for 64 bin count and all minimum ComBat batch sizes but
without ComBat feature realignment. The models shown here are the clinical only and combined radiomics + clinical models, built using five different feature
selection processes to select the radiomic features

Calibration Relative Explained Variation Relative Model Fit Discrimination

Calibration Slope Nagelkerke’s R2 Royston Sauerbrei’s R2 Akaike’s Information Criterion Royston Sauerbrei’s D Concordance Index

Featsa Modelb ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW

5 patients per batch

Clin

C 0.82

(0.59

-

1.1)

0.83

(0.6

-

1.1)

0.82

(0.6

-

1.1)

0.83

(0.58

-

1.1)

0.27

(0.22

-

0.29)

0.27

(0.22

-

0.29)

0.27

(0.22

-

0.29)

0.27

(0.23

-

0.29)

0.21

(0.17

-

0.25)

0.21

(0.16

-

0.24)

0.22

(0.17

-

0.24)

0.22

(0.17

-

0.25)

1445

(1438

-

1456)

1444

(1438

-

1456)

1444

(1438

-

1456)

1444

(1438

-

1455)

1.1

(0.91

-

1.2)

1.1

(0.91

-

1.2)

1.1

(0.91

-

1.2)

1.1

(0.92

-

1.2)

0.72

(0.69

-

0.73)

0.72

(0.69

-

0.73)

0.71

(0.69

-

0.73)

0.72

(0.69

-

0.73)

Back

CR 0.76

(0.55

- 1)

0.77

(0.55

- 1)

0.76

(0.55

- 1)

0.78

(0.56

- 1)

0.28

(0.22

-

0.32)

0.27

(0.22

-

0.32)

0.28

(0.22

-

0.32)

0.28

(0.23

-

0.32)

0.23

(0.17

-

0.28)

0.23

(0.17

-

0.27)

0.23

(0.17

-

0.28)

0.23

(0.17

-

0.28)

1442

(1429

-

1457)

1443

(1431

-

1457)

1442

(1429

-

1456)

1441

(1429

-

1454)

1.1

(0.92

-

1.3)

1.1

(0.91

-

1.3)

1.1

(0.92

-

1.3)

1.1

(0.94

-

1.3)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

Forw

CR 0.7

(0.49

-

0.91)

0.7

(0.49

-

0.95)

0.7

(0.51

-

0.92)

0.71

(0.51

-

0.93)

0.28

(0.2

-

0.34)

0.28

(0.2

-

0.33)

0.28

(0.2

-

0.33)

0.29

(0.22

-

0.34)

0.23

(0.15

-

0.3)

0.23

(0.15

-

0.29)

0.23

(0.16

-

0.29)

0.24

(0.17

-

0.3)

1441

(1424

-

1461)

1442

(1426

-

1461)

1441

(1426

-

1461)

1439

(1424

-

1457)

1.1

(0.86

-

1.3)

1.1

(0.87

-

1.3)

1.1

(0.89

-

1.3)

1.1

(0.93

-

1.3)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

0.72

(0.69

-

0.74)

LASSO

CR 0.73

(0.52

-

0.95)

0.74

(0.54

-

0.99)

0.73

(0.52

-

0.94)

0.73

(0.52

-

0.94)

0.28

(0.21

-

0.33)

0.28

(0.21

-

0.33)

0.28

(0.21

-

0.33)

0.29

(0.22

-

0.34)

0.23

(0.16

-

0.29)

0.23

(0.16

-

0.28)

0.23

(0.16

-

0.28)

0.24

(0.17

-

0.29)

1441

(1427

-

1459)

1441

(1427

-

1459)

1441

(1429

-

1458)

1439

(1425

-

1457)

1.1

(0.91

-

1.3)

1.1

(0.89

-

1.3)

1.1

(0.9

-

1.3)

1.1

(0.92

-

1.3)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

RSF

CR 0.76

(0.54

-

0.99)

0.77

(0.56

- 1)

0.76

(0.56

- 1)

0.76

(0.53

- 1)

0.29

(0.23

-

0.32)

0.29

(0.24

-

0.33)

0.28

(0.22

-

0.32)

0.28

(0.23

-

0.32)

0.24

(0.18

-

0.29)

0.25

(0.19

-

0.28)

0.23

(0.17

-

0.27)

0.23

(0.18

-

0.27)

1440

(1430

-

1455)

1437

(1428

-

1452)

1442

(1432

-

1458)

1440

(1430

-

1455)

1.2

(0.96

-

1.3)

1.2

(0.98

-

1.3)

1.1

(0.93

-

1.2)

1.1

(0.94

-

1.3)

0.72

(0.7

-

0.74)

0.72

(0.7

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

PCA

CR 0.77

(0.55

- 1)

0.78

(0.58

- 1)

0.76

(0.55

- 1)

0.76

(0.55

- 1)

0.3

(0.24

-

0.34)

0.29

(0.23

-

0.34)

0.29

(0.23

-

0.33)

0.28

(0.23

-

0.32)

0.25

(0.18

-

0.3)

0.24

(0.18

-

0.29)

0.24

(0.18

-

0.29)

0.24

(0.17

-

0.28)

1436

(1424

-

1452)

1437

(1426

-

1453)

1438

(1426

-

1454)

1441

(1430

-

1456)

1.2

(0.97

-

1.3)

1.2

(0.96

-

1.3)

1.2

(0.96

-

1.3)

1.1

(0.94

-

1.3)

0.72

(0.7

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

10 patients per batch
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Clin

C 0.79

(0.53

-

1.1)

0.78

(0.51

-

1.1)

0.79

(0.52

-

1.1)

0.77

(0.52

-

1.1)

0.28

(0.23

-

0.31)

0.28

(0.22

-

0.31)

0.28

(0.22

-

0.31)

0.28

(0.22

-

0.31)

0.22

(0.16

-

0.25)

0.21

(0.15

-

0.25)

0.21

(0.15

-

0.25)

0.21

(0.16

-

0.25)

1138

(1132

-

1148)

1139

(1132

-

1150)

1139

(1132

-

1150)

1139

(1132

-

1150)

1.1

(0.88

-

1.2)

1.1

(0.87

-

1.2)

1.1

(0.87

-

1.2)

1.1

(0.88

-

1.2)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

Back

CR 0.72

(0.47

-

0.99)

0.72

(0.46

-

0.99)

0.73

(0.5

- 1)

0.72

(0.49

-

0.98)

0.3

(0.23

-

0.35)

0.29

(0.22

-

0.34)

0.29

(0.22

-

0.35)

0.3

(0.23

-

0.36)

0.24

(0.17

-

0.32)

0.24

(0.16

-

0.31)

0.24

(0.15

-

0.31)

0.25

(0.17

-

0.32)

1134

(1122

-

1148)

1136

(1123

-

1150)

1136

(1122

-

1151)

1134

(1120

-

1148)

1.2

(0.91

-

1.4)

1.1

(0.89

-

1.4)

1.1

(0.86

-

1.4)

1.2

(0.91

-

1.4)

0.73

(0.7

-

0.75)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.75)

0.73

(0.69

-

0.75)

Forw

CR 0.66

(0.41

-

0.9)

0.64

(0.35

-

0.89)

0.66

(0.39

-

0.9)

0.66

(0.45

-

0.89)

0.31

(0.2

-

0.39)

0.29

(0.17

-

0.36)

0.3

(0.19

-

0.37)

0.3

(0.22

-

0.37)

0.26

(0.15

-

0.35)

0.24

(0.13

-

0.32)

0.26

(0.15

-

0.34)

0.26

(0.16

-

0.33)

1131

(1111

-

1155)

1136

(1119

-

1160)

1132

(1117

-

1156)

1132

(1116

-

1151)

1.2

(0.86

-

1.5)

1.1

(0.81

-

1.4)

1.2

(0.85

-

1.5)

1.2

(0.9

-

1.4)

0.73

(0.69

-

0.76)

0.72

(0.68

-

0.75)

0.73

(0.69

-

0.75)

0.73

(0.69

-

0.76)

LASSO

CR 0.69

(0.43

-

0.93)

0.68

(0.42

-

0.94)

0.69

(0.45

-

0.93)

0.68

(0.46

-

0.93)

0.32

(0.22

-

0.39)

0.3

(0.19

-

0.36)

0.31

(0.22

-

0.37)

0.3

(0.23

-

0.37)

0.27

(0.16

-

0.35)

0.25

(0.15

-

0.32)

0.26

(0.16

-

0.34)

0.26

(0.17

-

0.33)

1129

(1112

-

1151)

1134

(1120

-

1156)

1131

(1117

-

1151)

1133

(1117

-

1149)

1.2

(0.89

-

1.5)

1.2

(0.87

-

1.4)

1.2

(0.89

-

1.5)

1.2

(0.92

-

1.4)

0.73

(0.7

-

0.76)

0.72

(0.69

-

0.75)

0.73

(0.7

-

0.75)

0.73

(0.69

-

0.75)

RSF

CR 0.71

(0.49

-

0.98)

0.71

(0.47

-

0.99)

0.73

(0.48

-

0.98)

0.7

(0.47

-

0.98)

0.29

(0.23

-

0.33)

0.29

(0.22

-

0.32)

0.28

(0.21

-

0.32)

0.27

(0.21

-

0.31)

0.24

(0.17

-

0.3)

0.23

(0.16

-

0.27)

0.22

(0.15

-

0.26)

0.21

(0.15

-

0.26)

1135

(1125

-

1149)

1137

(1128

-

1150)

1139

(1130

-

1152)

1139

(1131

-

1153)

1.2

(0.93

-

1.4)

1.1

(0.9

-

1.2)

1.1

(0.86

-

1.2)

1.1

(0.86

-

1.2)

0.73

(0.7

-

0.75)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

PCA

CR 0.72

(0.47

-

0.96)

0.72

(0.48

-

0.98)

0.73

(0.48

-

0.98)

0.71

(0.46

-

0.97)

0.31

(0.24

-

0.37)

0.31

(0.24

-

0.36)

0.3

(0.23

-

0.36)

0.29

(0.22

-

0.34)

0.26

(0.18

-

0.33)

0.25

(0.17

-

0.32)

0.25

(0.17

-

0.32)

0.24

(0.16

-

0.3)

1132

(1117

-

1147)

1132

(1121

-

1147)

1133

(1120

-

1149)

1135

(1124

-

1150)

1.2

(0.95

-

1.4)

1.2

(0.93

-

1.4)

1.2

(0.93

-

1.4)

1.2

(0.89

-

1.3)

0.73

(0.7

-

0.75)

0.73

(0.7

-

0.75)

0.73

(0.69

-

0.75)

0.72

(0.69

-

0.75)

15 patients per batch

Clin

C 0.74

(0.47

-

1.1)

0.74

(0.48

- 1)

0.74

(0.48

-

1.1)

0.74

(0.48

-

1.1)

0.27

(0.22

-

0.31)

0.27

(0.21

-

0.31)

0.27

(0.21

-

0.31)

0.27

(0.21

-

0.31)

0.21

(0.15

-

0.26)

0.21

(0.14

-

0.26)

0.21

(0.14

-

0.26)

0.21

(0.14

-

0.26)

883.9

(877.5

-

893.9)

883.9

(877

-

894.2)

884.1

(877.5

-

894.7)

884

(877.3

-

894.8)

1.1

(0.86

-

1.2)

1.1

(0.84

-

1.2)

1.1

(0.84

-

1.2)

1.1

(0.83

-

1.2)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.68

-

0.74)

Back

CR 0.66

(0.41

-

0.97)

0.66

(0.41

-

0.95)

0.66

(0.42

-

0.96)

0.67

(0.42

-

0.95)

0.29

(0.2

-

0.36)

0.28

(0.2

-

0.34)

0.28

(0.2

-

0.35)

0.29

(0.19

-

0.35)

0.23

(0.14

-

0.31)

0.22

(0.14

-

0.3)

0.23

(0.15

-

0.3)

0.23

(0.14

-

0.31)

881.3

(868.4

-

897)

882.8

(871.5

-

897)

882.2

(870.7

-

896.3)

881.6

(870.2

-

897.5)

1.1

(0.83

-

1.4)

1.1

(0.82

-

1.3)

1.1

(0.85

-

1.3)

1.1

(0.83

-

1.4)

0.72

(0.69

-

0.75)

0.72

(0.68

-

0.75)

0.72

(0.68

-

0.75)

0.72

(0.68

-

0.75)
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Forw

CR 0.59

(0.31

-

0.86)

0.58

(0.29

-

0.87)

0.59

(0.31

-

0.86)

0.6

(0.36

-

0.86)

0.29

(0.17

-

0.37)

0.28

(0.16

-

0.35)

0.3

(0.16

-

0.38)

0.3

(0.19

-

0.39)

0.24

(0.13

-

0.33)

0.23

(0.12

-

0.31)

0.24

(0.13

-

0.34)

0.25

(0.13

-

0.35)

880.5

(865.9

-

901.2)

883

(869.2

-

903.5)

880

(863.6

-

902.3)

878.2

(861.4

-

898.8)

1.2

(0.81

-

1.4)

1.1

(0.76

-

1.4)

1.2

(0.79

-

1.5)

1.2

(0.8

-

1.5)

0.73

(0.69

-

0.76)

0.72

(0.68

-

0.75)

0.73

(0.69

-

0.75)

0.73

(0.69

-

0.76)

LASSO

CR 0.62

(0.36

-

0.91)

0.63

(0.4

-

0.91)

0.62

(0.37

-

0.9)

0.62

(0.4

-

0.89)

0.3

(0.2

-

0.37)

0.29

(0.18

-

0.35)

0.3

(0.2

-

0.38)

0.29

(0.2

-

0.37)

0.25

(0.14

-

0.33)

0.23

(0.14

-

0.3)

0.25

(0.14

-

0.33)

0.24

(0.15

-

0.33)

879.2

(866.8

-

896.5)

881.5

(870.1

-

899.3)

878.5

(864.8

-

896.4)

880.3

(866.2

-

897)

1.2

(0.84

-

1.4)

1.1

(0.84

-

1.3)

1.2

(0.82

-

1.4)

1.2

(0.85

-

1.4)

0.73

(0.69

-

0.76)

0.72

(0.69

-

0.75)

0.73

(0.69

-

0.75)

0.73

(0.69

-

0.76)

RSF

CR 0.66

(0.42

-

0.95)

0.68

(0.43

-

0.95)

0.67

(0.43

-

0.97)

0.66

(0.43

-

0.94)

0.28

(0.2

-

0.34)

0.3

(0.23

-

0.34)

0.28

(0.21

-

0.33)

0.27

(0.19

-

0.33)

0.23

(0.15

-

0.29)

0.23

(0.17

-

0.29)

0.22

(0.15

-

0.28)

0.22

(0.13

-

0.28)

882

(872.6

-

896.3)

880.1

(871.4

-

892.3)

882.9

(873.2

-

895.2)

883.9

(874.4

-

898.5)

1.1

(0.87

-

1.3)

1.1

(0.91

-

1.3)

1.1

(0.85

-

1.3)

1.1

(0.8

-

1.3)

0.72

(0.69

-

0.75)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

0.71

(0.68

-

0.74)

PCA

CR 0.67

(0.4

-

0.95)

0.68

(0.43

-

0.97)

0.66

(0.41

-

0.96)

0.66

(0.41

-

0.94)

0.3

(0.21

-

0.35)

0.3

(0.22

-

0.36)

0.29

(0.21

-

0.35)

0.29

(0.2

-

0.35)

0.24

(0.15

-

0.31)

0.24

(0.15

-

0.31)

0.24

(0.15

-

0.3)

0.23

(0.15

-

0.31)

880.1

(869.2

-

895.2)

879.3

(868.6

-

893.7)

880.8

(870.6

-

895.5)

881.8

(870.2

-

896.5)

1.2

(0.86

-

1.4)

1.2

(0.87

-

1.4)

1.1

(0.84

-

1.3)

1.1

(0.85

-

1.4)

0.73

(0.69

-

0.75)

0.73

(0.69

-

0.75)

0.72

(0.69

-

0.75)

0.72

(0.68

-

0.75)

Calibration slopes closer to 1 indicates better calibration. Relative explained variation ranges from 0 to 1; higher values are better. Lower relative model fit indicates a better performing model. Royston and Sauerbrei’s

D statistic indicates better discrimination as the value moves away from 0. C-index ranges from 0.5 to 1; 0.5 indicating no and 1 indicating perfect discrimination. Back = backwards stepwise feature elimination, Clin =

clinical features only, CI = confindence interval, Forw = forwards stepwise feature selection, HM = histogram matching, LASSO = Least Absolute Shrinkage and Selection Operator, PCA = principle component analysis

(with clustering of results), RSF = random survival forests, RAW = no intensity standardisation prior to radiomic extraction, WS = WhiteStripe standardisation, ZS = z-score intensity standardisation

a Maximum of four radiomic features selected with the chosen method b Clinical features only or a combination of both clinical and radiomic features in the Cox proportional hazards model. C = Clinical only, CR =

combined clinical-radiomics model.
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Table S4.14: Mean and 95% confidence intervals of the performance measures are derived across the 1000 bootstrap repetitions in the ’test’ sample (ie. data
withheld from bootstrap resample, and not used to build initial/training model). Results are shown for 128 bin count, with ComBat realignment and all minimum
ComBat batch sizes. The models shown here are the clinical only and combined radiomics + clinical models, built using five different feature selection processes
to select the radiomic features

Calibration Relative Explained Variation Relative Model Fit Discrimination

Calibration Slope Nagelkerke’s R2 Royston Sauerbrei’s R2 Akaike’s Information Criterion Royston Sauerbrei’s D Concordance Index

Featsa Modelb ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW

5 patients per batch

Clin

C 0.82

(0.6

-

1.1)

0.82

(0.6

-

1.1)

0.83

(0.58

-

1.1)

0.82

(0.61

-

1.1)

0.27

(0.23

-

0.29)

0.27

(0.23

-

0.29)

0.27

(0.23

-

0.29)

0.27

(0.23

-

0.29)

0.22

(0.17

-

0.24)

0.21

(0.17

-

0.25)

0.22

(0.17

-

0.25)

0.22

(0.17

-

0.25)

1444

(1438

-

1454)

1444

(1438

-

1455)

1444

(1438

-

1455)

1445

(1438

-

1455)

1.1

(0.93

-

1.2)

1.1

(0.92

-

1.2)

1.1

(0.92

-

1.2)

1.1

(0.92

-

1.2)

0.72

(0.69

-

0.73)

0.72

(0.69

-

0.73)

0.72

(0.69

-

0.73)

0.72

(0.69

-

0.73)

Back

CR 0.76

(0.55

- 1)

0.76

(0.55

- 1)

0.77

(0.55

- 1)

0.76

(0.55

-

0.99)

0.27

(0.22

-

0.31)

0.27

(0.22

-

0.31)

0.27

(0.22

-

0.31)

0.28

(0.22

-

0.33)

0.23

(0.17

-

0.27)

0.22

(0.16

-

0.27)

0.23

(0.17

-

0.27)

0.23

(0.17

-

0.28)

1443

(1432

-

1457)

1443

(1433

-

1458)

1443

(1433

-

1456)

1441

(1429

-

1456)

1.1

(0.93

-

1.3)

1.1

(0.89

-

1.2)

1.1

(0.92

-

1.2)

1.1

(0.93

-

1.3)

0.72

(0.69

-

0.74)

0.71

(0.68

-

0.73)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

Forw

CR 0.71

(0.5

-

0.94)

0.7

(0.48

-

0.93)

0.7

(0.49

-

0.93)

0.7

(0.48

-

0.93)

0.27

(0.2

-

0.32)

0.27

(0.2

-

0.32)

0.27

(0.2

-

0.33)

0.28

(0.2

-

0.34)

0.22

(0.15

-

0.27)

0.23

(0.15

-

0.28)

0.23

(0.14

-

0.28)

0.23

(0.16

-

0.29)

1444

(1431

-

1462)

1443

(1429

-

1462)

1443

(1429

-

1461)

1440

(1425

-

1461)

1.1

(0.87

-

1.3)

1.1

(0.88

-

1.3)

1.1

(0.84

-

1.3)

1.1

(0.9

-

1.3)

0.71

(0.68

-

0.74)

0.72

(0.68

-

0.74)

0.71

(0.68

-

0.74)

0.72

(0.69

-

0.74)

LASSO

CR 0.73

(0.53

-

0.95)

0.73

(0.53

-

0.98)

0.73

(0.53

-

0.97)

0.72

(0.51

-

0.93)

0.27

(0.21

-

0.31)

0.28

(0.22

-

0.32)

0.27

(0.22

-

0.31)

0.29

(0.22

-

0.34)

0.23

(0.16

-

0.27)

0.23

(0.17

-

0.27)

0.23

(0.17

-

0.27)

0.24

(0.17

-

0.29)

1443

(1432

-

1458)

1442

(1431

-

1457)

1443

(1432

-

1457)

1439

(1426

-

1457)

1.1

(0.91

-

1.2)

1.1

(0.93

-

1.3)

1.1

(0.93

-

1.2)

1.1

(0.94

-

1.3)

0.71

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.71

(0.69

-

0.73)

0.72

(0.69

-

0.75)

RSF

CR 0.76

(0.55

- 1)

0.77

(0.57

- 1)

0.77

(0.55

- 1)

0.76

(0.54

-

0.99)

0.28

(0.23

-

0.32)

0.3

(0.24

-

0.33)

0.28

(0.22

-

0.31)

0.28

(0.23

-

0.32)

0.24

(0.18

-

0.28)

0.25

(0.2

-

0.28)

0.23

(0.17

-

0.27)

0.23

(0.17

-

0.27)

1440

(1431

-

1453)

1437

(1428

-

1451)

1442

(1432

-

1456)

1441

(1430

-

1455)

1.2

(0.97

-

1.3)

1.2

(1 -

1.3)

1.1

(0.93

-

1.2)

1.1

(0.94

-

1.2)

0.72

(0.7

-

0.74)

0.72

(0.7

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

PCA

CR 0.76

(0.56

- 1)

0.77

(0.56

- 1)

0.76

(0.54

- 1)

0.75

(0.55

-

0.99)

0.29

(0.24

-

0.34)

0.29

(0.23

-

0.33)

0.29

(0.23

-

0.33)

0.28

(0.22

-

0.32)

0.25

(0.18

-

0.3)

0.24

(0.18

-

0.29)

0.24

(0.18

-

0.29)

0.23

(0.17

-

0.28)

1437

(1426

-

1452)

1439

(1427

-

1455)

1440

(1427

-

1454)

1442

(1431

-

1456)

1.2

(0.97

-

1.3)

1.2

(0.95

-

1.3)

1.1

(0.94

-

1.3)

1.1

(0.93

-

1.3)

0.72

(0.7

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

10 patients per batch
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Clin

C 0.77

(0.52

-

1.1)

0.78

(0.53

-

1.1)

0.79

(0.54

-

1.1)

0.78

(0.53

-

1.1)

0.28

(0.22

-

0.31)

0.28

(0.23

-

0.31)

0.28

(0.23

-

0.31)

0.28

(0.22

-

0.31)

0.21

(0.15

-

0.25)

0.21

(0.15

-

0.25)

0.22

(0.16

-

0.25)

0.21

(0.15

-

0.25)

1139

(1132

-

1151)

1139

(1132

-

1149)

1138

(1132

-

1149)

1139

(1132

-

1150)

1.1

(0.85

-

1.2)

1.1

(0.87

-

1.2)

1.1

(0.89

-

1.2)

1.1

(0.86

-

1.2)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

Back

CR 0.71

(0.47

-

0.97)

0.71

(0.47

-

0.98)

0.72

(0.5

-

0.98)

0.72

(0.48

-

0.98)

0.29

(0.22

-

0.35)

0.29

(0.22

-

0.34)

0.29

(0.22

-

0.34)

0.3

(0.23

-

0.36)

0.24

(0.15

-

0.31)

0.23

(0.15

-

0.3)

0.24

(0.16

-

0.3)

0.25

(0.16

-

0.32)

1136

(1123

-

1151)

1137

(1124

-

1151)

1136

(1124

-

1151)

1134

(1119

-

1149)

1.1

(0.84

-

1.4)

1.1

(0.87

-

1.3)

1.1

(0.88

-

1.3)

1.2

(0.89

-

1.4)

0.72

(0.69

-

0.75)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.73

(0.69

-

0.75)

Forw

CR 0.65

(0.42

-

0.88)

0.64

(0.4

-

0.9)

0.65

(0.4

-

0.88)

0.66

(0.44

-

0.89)

0.29

(0.2

-

0.35)

0.28

(0.19

-

0.34)

0.29

(0.2

-

0.36)

0.31

(0.21

-

0.38)

0.24

(0.14

-

0.31)

0.23

(0.14

-

0.3)

0.24

(0.13

-

0.32)

0.26

(0.16

-

0.33)

1135

(1121

-

1155)

1138

(1124

-

1156)

1135

(1120

-

1155)

1131

(1114

-

1152)

1.2

(0.83

-

1.4)

1.1

(0.83

-

1.3)

1.2

(0.8

-

1.4)

1.2

(0.88

-

1.4)

0.72

(0.69

-

0.75)

0.72

(0.68

-

0.75)

0.72

(0.69

-

0.75)

0.73

(0.69

-

0.76)

LASSO

CR 0.68

(0.44

-

0.92)

0.68

(0.43

-

0.93)

0.68

(0.46

-

0.91)

0.69

(0.46

-

0.91)

0.3

(0.21

-

0.35)

0.28

(0.21

-

0.33)

0.3

(0.22

-

0.35)

0.32

(0.22

-

0.38)

0.25

(0.15

-

0.31)

0.23

(0.15

-

0.29)

0.24

(0.15

-

0.31)

0.26

(0.16

-

0.33)

1134

(1122

-

1152)

1137

(1126

-

1153)

1134

(1122

-

1151)

1130

(1115

-

1150)

1.2

(0.86

-

1.4)

1.1

(0.86

-

1.3)

1.2

(0.86

-

1.4)

1.2

(0.9

-

1.4)

0.73

(0.69

-

0.75)

0.72

(0.68

-

0.74)

0.73

(0.69

-

0.75)

0.73

(0.7

-

0.76)

RSF

CR 0.7

(0.48

-

0.96)

0.72

(0.5

-

0.99)

0.72

(0.49

-

0.99)

0.7

(0.47

-

0.97)

0.29

(0.22

-

0.33)

0.29

(0.23

-

0.33)

0.27

(0.21

-

0.32)

0.27

(0.21

-

0.32)

0.24

(0.16

-

0.3)

0.23

(0.17

-

0.27)

0.22

(0.15

-

0.27)

0.21

(0.15

-

0.26)

1136

(1126

-

1150)

1136

(1127

-

1149)

1139

(1129

-

1153)

1140

(1130

-

1153)

1.1

(0.91

-

1.3)

1.1

(0.93

-

1.2)

1.1

(0.86

-

1.2)

1.1

(0.85

-

1.2)

0.73

(0.69

-

0.75)

0.72

(0.69

-

0.74)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

PCA

CR 0.72

(0.48

-

0.97)

0.72

(0.49

-

0.99)

0.72

(0.48

-

0.99)

0.7

(0.47

-

0.96)

0.31

(0.23

-

0.37)

0.3

(0.23

-

0.35)

0.3

(0.23

-

0.36)

0.29

(0.21

-

0.34)

0.26

(0.17

-

0.33)

0.25

(0.17

-

0.32)

0.25

(0.17

-

0.33)

0.24

(0.16

-

0.3)

1132

(1117

-

1148)

1133

(1121

-

1148)

1134

(1119

-

1149)

1136

(1125

-

1152)

1.2

(0.93

-

1.4)

1.2

(0.93

-

1.4)

1.2

(0.92

-

1.4)

1.1

(0.88

-

1.3)

0.73

(0.7

-

0.75)

0.73

(0.7

-

0.75)

0.72

(0.69

-

0.75)

0.72

(0.69

-

0.75)

15 patients per batch

Clin

C 0.75

(0.48

-

1.1)

0.75

(0.49

-

1.1)

0.74

(0.49

- 1)

0.74

(0.49

-

1.1)

0.27

(0.21

-

0.31)

0.27

(0.21

-

0.31)

0.27

(0.21

-

0.31)

0.27

(0.21

-

0.31)

0.21

(0.14

-

0.25)

0.21

(0.15

-

0.26)

0.21

(0.14

-

0.26)

0.21

(0.14

-

0.26)

884.3

(877.6

-

895.4)

884.4

(877.7

-

895)

884.4

(877.4

-

895.7)

884.2

(877.5

-

894.9)

1.1

(0.84

-

1.2)

1.1

(0.87

-

1.2)

1

(0.82

-

1.2)

1.1

(0.83

-

1.2)

0.72

(0.69

-

0.74)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

Back

CR 0.66

(0.42

-

0.97)

0.67

(0.43

-

0.97)

0.66

(0.43

-

0.96)

0.67

(0.41

-

0.95)

0.28

(0.2

-

0.34)

0.27

(0.19

-

0.33)

0.28

(0.2

-

0.34)

0.29

(0.2

-

0.35)

0.23

(0.14

-

0.3)

0.22

(0.14

-

0.3)

0.22

(0.14

-

0.3)

0.23

(0.14

-

0.31)

882.6

(871

-

897)

883.8

(873.1

-

897.3)

882.8

(871.2

-

896.6)

881.4

(869.1

-

896.8)

1.1

(0.83

-

1.3)

1.1

(0.82

-

1.3)

1.1

(0.83

-

1.3)

1.1

(0.84

-

1.4)

0.72

(0.68

-

0.75)

0.72

(0.68

-

0.75)

0.72

(0.68

-

0.75)

0.72

(0.68

-

0.75)
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Forw

CR 0.6

(0.35

-

0.88)

0.59

(0.35

-

0.87)

0.6

(0.36

-

0.86)

0.6

(0.37

-

0.89)

0.29

(0.18

-

0.36)

0.28

(0.17

-

0.36)

0.29

(0.2

-

0.37)

0.3

(0.19

-

0.38)

0.24

(0.13

-

0.32)

0.22

(0.11

-

0.31)

0.24

(0.14

-

0.33)

0.25

(0.14

-

0.33)

881.5

(868

-

899.4)

883.2

(868.4

-

900.9)

880.3

(866

-

896.9)

879

(864.7

-

898.8)

1.1

(0.8

-

1.4)

1.1

(0.74

-

1.4)

1.2

(0.81

-

1.4)

1.2

(0.82

-

1.4)

0.72

(0.68

-

0.75)

0.72

(0.68

-

0.75)

0.72

(0.68

-

0.75)

0.73

(0.69

-

0.76)

LASSO

CR 0.63

(0.39

-

0.91)

0.63

(0.39

-

0.9)

0.63

(0.4

-

0.91)

0.63

(0.4

-

0.9)

0.29

(0.2

-

0.35)

0.28

(0.19

-

0.34)

0.3

(0.22

-

0.37)

0.3

(0.21

-

0.37)

0.24

(0.14

-

0.32)

0.23

(0.13

-

0.3)

0.25

(0.15

-

0.33)

0.25

(0.16

-

0.32)

881

(869.1

-

897)

882.5

(871.1

-

897.9)

878.4

(865.9

-

893.8)

878.7

(866.4

-

894.5)

1.1

(0.84

-

1.4)

1.1

(0.8

-

1.4)

1.2

(0.87

-

1.4)

1.2

(0.89

-

1.4)

0.73

(0.69

-

0.75)

0.72

(0.68

-

0.75)

0.73

(0.69

-

0.75)

0.73

(0.68

-

0.76)

RSF

CR 0.66

(0.42

-

0.94)

0.68

(0.45

-

0.96)

0.67

(0.43

-

0.94)

0.67

(0.41

-

0.95)

0.28

(0.2

-

0.33)

0.29

(0.22

-

0.34)

0.28

(0.2

-

0.33)

0.27

(0.19

-

0.33)

0.23

(0.15

-

0.29)

0.24

(0.16

-

0.29)

0.22

(0.14

-

0.28)

0.21

(0.13

-

0.27)

882.4

(873

-

896.1)

880.3

(871.2

-

893.5)

883.7

(873.9

-

897)

884.4

(874.3

-

898.8)

1.1

(0.85

-

1.3)

1.1

(0.89

-

1.3)

1.1

(0.82

-

1.3)

1.1

(0.79

-

1.3)

0.72

(0.69

-

0.75)

0.72

(0.68

-

0.74)

0.72

(0.68

-

0.74)

0.71

(0.68

-

0.74)

PCA

CR 0.67

(0.4

-

0.95)

0.67

(0.42

-

0.95)

0.66

(0.4

-

0.93)

0.66

(0.39

-

0.94)

0.29

(0.21

-

0.35)

0.29

(0.21

-

0.35)

0.29

(0.21

-

0.35)

0.28

(0.19

-

0.34)

0.24

(0.15

-

0.31)

0.24

(0.15

-

0.31)

0.23

(0.14

-

0.3)

0.23

(0.14

-

0.3)

880.8

(869.7

-

895.2)

880.7

(869.8

-

895.5)

881.4

(870.3

-

895.1)

883

(871.3

-

897.8)

1.2

(0.85

-

1.4)

1.1

(0.86

-

1.4)

1.1

(0.83

-

1.4)

1.1

(0.82

-

1.3)

0.72

(0.69

-

0.75)

0.72

(0.69

-

0.75)

0.72

(0.69

-

0.75)

0.72

(0.69

-

0.75)

Calibration slopes closer to 1 indicates better calibration. Relative explained variation ranges from 0 to 1; higher values are better. Lower relative model fit indicates a better performing model. Royston and Sauerbrei’s

D statistic indicates better discrimination as the value moves away from 0. C-index ranges from 0.5 to 1; 0.5 indicating no and 1 indicating perfect discrimination. Back = backwards stepwise feature elimination, Clin =

clinical features only, CI = confindence interval, Forw = forwards stepwise feature selection, HM = histogram matching, LASSO = Least Absolute Shrinkage and Selection Operator, PCA = principle component analysis

(with clustering of results), RSF = random survival forests, RAW = no intensity standardisation prior to radiomic extraction, WS = WhiteStripe standardisation, ZS = z-score intensity standardisation

a Maximum of four radiomic features selected with the chosen method b Clinical features only or a combination of both clinical and radiomic features in the Cox proportional hazards model. C = Clinical only, CR =

combined clinical-radiomics model.
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Table S4.15: Mean and 95% confidence intervals of the performance measures are derived across the 1000 bootstrap repetitions in the ’test’ sample (ie. data
withheld from bootstrap resample, and not used to build initial/training model). Results are shown for 128 bin count and all minimum ComBat batch sizes but
without ComBat feature realignment. The models shown here are the clinical only and combined radiomics + clinical models, built using five different feature
selection processes to select the radiomic features

Calibration Relative Explained Variation Relative Model Fit Discrimination

Calibration Slope Nagelkerke’s R2 Royston Sauerbrei’s R2 Akaike’s Information Criterion Royston Sauerbrei’s D Concordance Index

Featsa Modelb ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW

5 patients per batch

Clin

C 0.83

(0.6

-

1.1)

0.82

(0.59

-

1.1)

0.82

(0.6

-

1.1)

0.82

(0.59

-

1.1)

0.27

(0.23

-

0.29)

0.27

(0.22

-

0.29)

0.27

(0.22

-

0.29)

0.27

(0.23

-

0.29)

0.21

(0.17

-

0.24)

0.21

(0.17

-

0.24)

0.22

(0.17

-

0.25)

0.21

(0.17

-

0.25)

1445

(1438

-

1455)

1444

(1438

-

1456)

1444

(1438

-

1456)

1444

(1438

-

1455)

1.1

(0.91

-

1.2)

1.1

(0.92

-

1.2)

1.1

(0.92

-

1.2)

1.1

(0.91

-

1.2)

0.72

(0.69

-

0.73)

0.72

(0.69

-

0.73)

0.72

(0.69

-

0.73)

0.72

(0.69

-

0.73)

Back

CR 0.77

(0.55

- 1)

0.76

(0.54

- 1)

0.76

(0.55

- 1)

0.77

(0.55

- 1)

0.27

(0.22

-

0.31)

0.27

(0.22

-

0.31)

0.27

(0.22

-

0.31)

0.28

(0.23

-

0.32)

0.23

(0.16

-

0.27)

0.22

(0.16

-

0.27)

0.22

(0.17

-

0.27)

0.23

(0.18

-

0.28)

1443

(1432

-

1457)

1443

(1433

-

1458)

1443

(1433

-

1457)

1441

(1429

-

1455)

1.1

(0.91

-

1.3)

1.1

(0.9

-

1.2)

1.1

(0.92

-

1.2)

1.1

(0.94

-

1.3)

0.72

(0.69

-

0.74)

0.71

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

Forw

CR 0.71

(0.5

-

0.94)

0.7

(0.49

-

0.92)

0.71

(0.5

-

0.94)

0.7

(0.47

-

0.91)

0.27

(0.2

-

0.32)

0.27

(0.2

-

0.32)

0.28

(0.21

-

0.33)

0.28

(0.2

-

0.34)

0.22

(0.15

-

0.28)

0.23

(0.15

-

0.28)

0.23

(0.16

-

0.28)

0.23

(0.16

-

0.29)

1444

(1430

-

1462)

1443

(1429

-

1461)

1442

(1427

-

1460)

1441

(1426

-

1461)

1.1

(0.87

-

1.3)

1.1

(0.87

-

1.3)

1.1

(0.89

-

1.3)

1.1

(0.9

-

1.3)

0.71

(0.68

-

0.74)

0.72

(0.68

-

0.74)

0.71

(0.68

-

0.74)

0.72

(0.69

-

0.74)

LASSO

CR 0.74

(0.52

-

0.98)

0.73

(0.5

-

0.99)

0.73

(0.52

-

0.95)

0.73

(0.51

-

0.94)

0.27

(0.21

-

0.31)

0.27

(0.2

-

0.32)

0.28

(0.21

-

0.32)

0.29

(0.22

-

0.33)

0.22

(0.16

-

0.27)

0.23

(0.16

-

0.27)

0.23

(0.16

-

0.27)

0.24

(0.17

-

0.28)

1444

(1432

-

1459)

1443

(1431

-

1461)

1442

(1431

-

1459)

1440

(1426

-

1456)

1.1

(0.88

-

1.2)

1.1

(0.89

-

1.3)

1.1

(0.9

-

1.3)

1.1

(0.94

-

1.3)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.71

(0.68

-

0.74)

0.72

(0.69

-

0.74)

RSF

CR 0.77

(0.57

- 1)

0.77

(0.56

- 1)

0.77

(0.56

- 1)

0.76

(0.54

- 1)

0.28

(0.23

-

0.32)

0.29

(0.24

-

0.33)

0.28

(0.22

-

0.32)

0.28

(0.23

-

0.32)

0.24

(0.18

-

0.29)

0.25

(0.19

-

0.28)

0.23

(0.17

-

0.27)

0.23

(0.18

-

0.27)

1440

(1430

-

1454)

1437

(1428

-

1451)

1442

(1432

-

1457)

1441

(1431

-

1454)

1.2

(0.97

-

1.3)

1.2

(1 -

1.3)

1.1

(0.93

-

1.2)

1.1

(0.95

-

1.2)

0.72

(0.7

-

0.74)

0.72

(0.7

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

PCA

CR 0.77

(0.56

- 1)

0.76

(0.53

- 1)

0.76

(0.55

- 1)

0.76

(0.53

- 1)

0.29

(0.24

-

0.33)

0.29

(0.22

-

0.33)

0.29

(0.23

-

0.33)

0.28

(0.22

-

0.32)

0.25

(0.18

-

0.3)

0.24

(0.17

-

0.29)

0.24

(0.17

-

0.29)

0.23

(0.17

-

0.28)

1438

(1426

-

1453)

1439

(1428

-

1457)

1440

(1428

-

1455)

1442

(1430

-

1457)

1.2

(0.97

-

1.3)

1.2

(0.94

-

1.3)

1.1

(0.93

-

1.3)

1.1

(0.94

-

1.3)

0.72

(0.7

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

0.72

(0.69

-

0.74)

10 patients per batch
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Clin

C 0.78

(0.53

-

1.1)

0.78

(0.52

-

1.1)

0.78

(0.53

-
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Calibration slopes closer to 1 indicates better calibration. Relative explained variation ranges from 0 to 1; higher values are better. Lower relative model fit indicates a better performing model. Royston and Sauerbrei’s

D statistic indicates better discrimination as the value moves away from 0. C-index ranges from 0.5 to 1; 0.5 indicating no and 1 indicating perfect discrimination. Back = backwards stepwise feature elimination, Clin =

clinical features only, CI = confindence interval, Forw = forwards stepwise feature selection, HM = histogram matching, LASSO = Least Absolute Shrinkage and Selection Operator, PCA = principle component analysis

(with clustering of results), RSF = random survival forests, RAW = no intensity standardisation prior to radiomic extraction, WS = WhiteStripe standardisation, ZS = z-score intensity standardisation

a Maximum of four radiomic features selected with the chosen method b Clinical features only or a combination of both clinical and radiomic features in the Cox proportional hazards model. C = Clinical only, CR =

combined clinical-radiomics model.
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Figure S4.1: Stacked bar charts demonstrating the different ComBat batch labels per MRI sequence,
for minimum batch size = 5. Each bar represents a different MRI sequence. Each segment of a bar
represents a unique batch label (see key for details).
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Figure S4.2: Stacked bar charts demonstrating the different ComBat batch labels per MRI sequence,
for minimum batch size = 10. Each bar represents a different MRI sequence. Each segment of a
bar represents a unique batch label (see key for details).

Figure S4.3: Stacked bar charts demonstrating the different ComBat batch labels per MRI sequence,
for minimum batch size = 15. Each bar represents a different MRI sequence. Each segment of a
bar represents a unique batch label (see key for details).
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Figure S4.4: Calibration instability plots show the impact of different experimental settings on 1-
year survival predictions. ComBat was applied for columns 1 and 3, and without ComBat in columns
2 and 4. Different minimum ComBat batch size were used (5 - columns 1 and 2; 15 - columns 3
and 4) and different intensity standardisation techniques applied per row. Results show individual
survival predictions at 1 year, across the bootstrap resamples for models built using backwards
feature elimination and bin count 32. x-axes represent predicted and y-axes the observed survival
at 1-year. The thin curves represent the predictions from one bootstrap sample and the thicker
curve, predictions based on the original, non-bootstrapped data. Only 200, randomly selected,
bootstrap results are shown in each calibration plot. The grey dashed line represents the null
line, with greater deviation from this indicating worse calibration. Increased spread of the thin
curves indicates lower stability of that model building process. The calibration plots resulting
from combined clinical and radiomics models, with features selected using hierarchical clustering of
principle component analysis results (rows 2,3 and 4) are compared against the clinical only models
(grey, top row).
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Figure S4.5: Calibration instability plots show the impact of different experimental settings on 1-
year survival predictions. ComBat was applied for columns 1 and 3, and without ComBat in columns
2 and 4. Different minimum ComBat batch size were used (5 - columns 1 and 2; 15 - columns 3
and 4) and different intensity standardisation techniques applied per row. Results show individual
survival predictions at 1 year, across the bootstrap resamples for models built using forwards
stepwise selection and bin count 32. x-axes represent predicted and y-axes the observed survival at
1-year. The thin curves represent the predictions from one bootstrap sample and the thicker curve,
predictions based on the original, non-bootstrapped data. Only 200, randomly selected, bootstrap
results are shown in each calibration plot. The grey dashed line represents the null line, with greater
deviation from this indicating worse calibration. Increased spread of the thin curves indicates lower
stability of that model building process. The calibration plots resulting from combined clinical
and radiomics models, with features selected using hierarchical clustering of principle component
analysis results (rows 2,3 and 4) are compared against the clinical only models (grey, top row).
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Figure S4.6: Calibration instability plots show the impact of different experimental settings on
1-year survival predictions. ComBat was applied for columns 1 and 3, and without ComBat in
columns 2 and 4. Different minimum ComBat batch size were used (5 - columns 1 and 2; 15 -
columns 3 and 4) and different intensity standardisation techniques applied per row. Results show
individual survival predictions at 1 year, across the bootstrap resamples for models built using Least
Absolute Shrinkage and Selection Operator (LASSO) selection and bin count 32. x-axes represent
predicted and y-axes the observed survival at 1-year. The thin curves represent the predictions from
one bootstrap sample and the thicker curve, predictions based on the original, non-bootstrapped
data. Only 200, randomly selected, bootstrap results are shown in each calibration plot. The grey
dashed line represents the null line, with greater deviation from this indicating worse calibration.
Increased spread of the thin curves indicates lower stability of that model building process. The
calibration plots resulting from combined clinical and radiomics models, with features selected using
hierarchical clustering of principle component analysis results (rows 2,3 and 4) are compared against
the clinical only models (grey, top row).
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Figure S4.7: Calibration instability plots show the impact of different experimental settings on 1-
year survival predictions. ComBat was applied for columns 1 and 3, and without ComBat in columns
2 and 4. Different minimum ComBat batch size were used (5 - columns 1 and 2; 15 - columns 3 and 4)
and different intensity standardisation techniques applied per row. Results show individual survival
predictions at 1 year, across the bootstrap resamples for models built using random survival forests
(RSF) selection and bin count 32. x-axes represent predicted and y-axes the observed survival at
1-year. The thin curves represent the predictions from one bootstrap sample and the thicker curve,
predictions based on the original, non-bootstrapped data. Only 200, randomly selected, bootstrap
results are shown in each calibration plot. The grey dashed line represents the null line, with greater
deviation from this indicating worse calibration. Increased spread of the thin curves indicates lower
stability of that model building process. The calibration plots resulting from combined clinical
and radiomics models, with features selected using hierarchical clustering of principle component
analysis results (rows 2,3 and 4) are compared against the clinical only models (grey, top row).



CHAPTER

FIVE

DISCUSSION

5.1 Summary of aims

The thesis set out to first systematically review the literature regarding the use of ISTs in the

processing of diffuse glioma and glioblastoma MRI prior to the extraction of RFs, and tried to

determine the optimal IST (chapter 2).

Chapter 3 examined the prognostic effect of tumour size, a simple quantitative imaging feature, in

a large cohort of patients with glioblastoma and also examined the effect of varying sample size and

non-linear transformation on the ability to reproduce the modelling results.

As a result of the preceding components, the final experiment (chapter 4) assessed the impact

of ISTs and ComBat realignment, a statistical approach to multi-centre RF harmonisation, on

prognostic model performance in patients with unifocal glioblastoma. In particular, the focus was

on comprehensive model performance assessment, which included examining calibration, stability,

discrimination, relative explained variation and fit.

196
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5.2 Intensity standardisation of MRI prior to radiomic

feature extraction for artificial intelligence research in

glioma – a systematic review (chapter 2)

5.2.1 Summary

In chapter two, the published literature was systematically reviewed with the aim of comparing

different methods of MRI ISTs prior to RF extraction in patients with diffuse glioma, including

glioblastoma. MEDLINE, EMBASE, and SCOPUS, were searched for articles that included: MRI

radiomic studies where one IST was compared with another or no standardisation, and original

research concerning patients diagnosed with diffuse gliomas. After title and abstract screening,

PRISMA criteria were used to extract data from potentially eligible studies including number

of patients, MRI sequences, validation status, radiomics software, method of segmentation and

intensity standardisation. QUADAS-2 was used for quality appraisal.

After duplicate removal, 743 results were returned from database and reference searches and from

these, 12 papers were eligible. Due to a lack of common pre-processing and different analyses, a

narrative synthesis was sought. Three different approaches to intensity standardisation (IS) have

been studied: histogram matching (HM, 5/12), limiting or rescaling signal intensity (8/12), and deep

learning (1/12) - only two papers compared different methods. From these studies, on face value,

HM produced the highest AUC values but these particular studies failed to include a comparison

method and hencde no consensus could be reached on an optimal strategy.

5.2.2 Limitations

As mentioned in chapter two, there were several limitations of this review. Full-text articles for two

conference abstracts were not available. Based on the abstracts, it is unlikely they would have been

included and their potential omission will have had a limited impact as a narrative synthesis would
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still have been required. Similarly, there are several studies that have been published on this topic

since the initial searches were carried out. These are discussed in depth in the following section,

and they would not have altered the finding and conclusions of the narrative review.

Included studies were evaluated with the QUADAS-2 tool [1], however it is not specifically designed

for assessing the efficacy of MRI ISTs, rather it is designed for assessment of primary diagnostic ac-

curacy studies. A more specific alternative was not available and radiomics or artificial intelligence-

specific reporting tools such as the Radiomics Quality Score [2] or CLAIM [3], respectively are

intended to evaluate the quality of radiomic or AI model development.

The scope of this review was to assess MRI ISTs in the context of diffuse gliomas, which will have led

to inevitable omission of studies of other organs, brain pathologies and healthy volunteers. As noted

in the introduction, there is evidence from these other studies that supports the use of ISTs such as

HM and WS in other contexts. The scope of the review was limited to diffuse glioma and radiomic

studies as this would reduce the amount of heterogeneity in the included studies and increase the

specificity for neuro-oncology settings. Also, WS is a popular IST and is specific to neuroimaging

as it relies on the segmentation of normal appearing white matter (NAWM) [4]. Hence, it would

be difficult to compare the results of studies that included this approach with others.

The review was also limited to assessing methods of harmonisation that are applied to images prior

to feature extraction, and therefore did not include an assessment of strategies such as ComBat.

ComBat is a statistical model for feature realignment that is applied to RFs directly, following their

extraction [5]. Studies were still eligible for inclusion if they did use ComBat [6] but they had to

specifically assess the impact of ISTs alone. The debate about whether ComBat is a useful tool

for multi-centre RF realignment [5, 7–9] is one that would have added further complexity to the

assessment of MRI IST. This is a related area but may require a separate review to address.
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5.2.3 Future work

Since this systematic review was undertaken, more studies have investigated MRI ISTs in patients

with diffuse glioma, however the additional evidence adds further weight to the conclusion that a

consensus is difficult to reach and further work is necessary. The studies can be broadly divided into

those that chose to use only one type of IST, ZS [7, 9] and those that compared multiple approaches

[10–12].

The benefit of using ZS standardisation was demonstrated in studies by Carré et al. [9] and Li et

al. [7], although neither compared the results to other ISTs (Carré et al. had previously published

a comparative study, which was included in the systematic review [13]). Carré et al. [9] compared

ZS standardised images to images without standardisation on 174 patients with glioblastoma and

low-grade glioma (LGG) from TCGA multi-centre dataset on TCIA. It was assumed that NAWM

RFs should be equal across patients, and any observed differences are due to non-biological, site-

dependent effects. Hence, the relative standard deviation (RSD, standard deviation divided by the

absolute mean) of NAWM RFs ought to be lower if the site-effects are minimised. MRIs without

any pre-processing were compared to those that had been standardised with ZS, as well as spatially

resampled (1mm3 resolution) and had N4 bias field inhomogeneity correction (N4) applied. The

RSD of NAWM RFs was reduced in 78% of FLAIR images, and 82% T1CE images compared with

unprocessed images. They also investigated the effect of pre-processing on the balanced accuracy

(arithmetic mean of sensitivity and specificity) of five ML classifiers for differentiation of glioblas-

toma (n = 125) versus LGG (n = 107) and results were mixed depending on the sequence. For

T1W and T1CE sequences, pre-processed images led to increased accuracy, whereas the reverse was

true for FLAIR images. T2W results depended upon the specific ML classifier chosen.

The impact of ZS standardisation compared to no IST was investigated by Li et al. [7] on the

prediction accuracy of glioma grade, IDH mutation and 1p/19q co-deletion in 212 patients. Images

for patients with glioblastoma (n = 107) and LGG (n = 105) from TCGA were used to build

seven ML classifiers and the AUC was used to evaluate their accuracy. Using ZS standardisation

increased the consistency of the histograms of MRI signal intensity and increased the AUC for all
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seven classifiers for the three prediction tasks. Carré et al. may have avoided comparison between

ZS and other ISTs as they concluded in a prior study that ZS offers the simplest approach compared

to HM or WS and the results are comparable to other methods. Li et al. do not justify their choice

of IST [7] but it may have been impractical to investigate ISTs as well as ComBat realignment,

amongst other factors included in their study. However, given the lack of consensus around this

in the literature [8, 14], supplementary results with other ISTs would be beneficial to help the

community understand how the results of any radiomics study is impacted by this pre-processing

step.

Saltybaeva et al. [10] investigated the impact of HM and ZS IST, as well as different grey-level

discretization approaches, on the reproducibility of RFs in a two-stage study. 11 patients with

glioblastoma that had a T1CE sequence acquired on two different MRI machines (one internal

and another external to the institution) within a specific time interval (range 1-36 days) were

included in stage-one. Reproducibility of features between the two scans was low. The percentage

of features with a one-way random effects ICC > 0.9 was at most 8.0% in the case of HM (1.9% for

no IST, 5.9% ZS). In stage-two, they compared the results of univariable logistic regression models

per feature for OS at 18 months in 60 patients (35 deaths) with glioblastoma acquired from the

public BraTs collection [15]. Again, the impact of IST was small but noticeable with 7/97 features

showing a prognostic relationship with HM (3/97 without IST, ZS not tested). The conclusions

that can be drawn from this study are limited by the small sample size and also by the inclusion

criteria for the institutional data. The 11 patients with glioblastoma had a large range in intervals

between both scans, and although the authors stated that the volume change was < 30%, this

still seems substantial when trying to use this as a test-retest dataset for reproducibility analysis.

Further studies using larger test-retest datasets are required, with shorter intervals between studies

to ensure that there is no macroscopic change between the tumours if they are to be used for RF

robustness assessment.

The impact of 15 different ISTs, including ZS, WS and HM, on OS prediction models was also

evaluated by Salome et al. [8], in patients with recurrent glioblastoma (n = 197, 15 scanners) and
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glioblastoma at initial presentation (n = 144, 14 scanners). One strength of their study is the real-

world dataset used and the range of MRI acquisitions but also, as with the study by Carré et al.,

they investigated the differential impact of ISTs per MRI sequence. For Cox proportional hazards

models built with RFs from T1CE images of glioblastoma at diagnosis, WS performed better than

other popular methods with C-index 0.652 (no IST = 0.608, ZS = 0.628, HM = 0.639) and AIC 547

(no IST = 558, ZS = 559, HM = 560). For T2W images, HM had C-index 0.67 (no IST = 0.648,

ZS = 0.665, WS = 0.639) and AIC 415 (no IST = 420, ZS = 420, WS = 414). One reason for the

lack of consensus in optimal IST could be the nature of each sequence, particularly the range and

distribution of signal intensity, which necessitates different approaches to harmonising the signals

across patients. However, their results showed minimal absolute differences in model performance

metrics and the order of change in C-index or AIC is difficult to interpret [16]. Using multiple ISTs

for standardising a MRI dataset also introduces further complexity to the radiomics pipeline, when

there is insufficient evidence on the basis of this study to do so.

ZS and WS performed similarly when assessing the impact of different pre-processing techniques

on the performance of different ML classifiers for molecular glioma subtype prediction by Foltyn-

Dumitru et al. [12]. Using homogeneously acquired internal data (n = 610) and heterogeneous

external, publicly available data from University of California San Francisco (UCSF) (n = 410)

and TCGA (n = 160) to train nine ML classifiers to predict three classes of glioma subtype (IDH-

mutant, 1p/19q intact vs IDH-mutant, 1p/19q co-deleted vs IDH-wild type). They found that there

was a large impact on model performance from using IST in the external datasets compared to the

more homogeneous internal data. For example, the best classifier in the institutional data hold-out

test set (80:20 data partition), had AUC 0.84 (95% CI = 0.75-0.89) without any pre-processing

compared to 0.87 (95% CI = 0.81-0.91) with N4 in conjunction with ZS and very similar results

for N4/WS. In the external TCGA data, however, AUC increased from 0.45 (95% CI = 0.35-0.54)

for unprocessed images to 0.85 (95% CI = 0.76-0.89) with N4/WS and 0.87 (95% CI = 0.80-0.91)

with N4/ZS. Similar changes were seen with application to the UCSF data. Overall, they could not

detect any large differences between ZS or WS ISTs, which is consistent with other groups [8, 13].

In particular, these prior studies have used a FBN grey-level discretization method for calculating
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the texture features, which may provide a way of normalising these RFs without the need for ISTs

or limiting their impact, and is recommended by the IBSI for discretization of MRI images [13, 17].

Lastly, Ubaldi et al. [11] compared the impact of ISTs on a random forest classifier for differenti-

ation of low versus high-grade glioma in 158 patients taken from the BraTs public dataset. They

used three ISTs: i) subtracting the minimum intensity and dividing by the range of intensities in

the whole brain (MinMax normalisation); ii) subtracting the median intensity and dividing by the

interquartile range of intensities in the whole brain (RobustScaler normalisation); iii) subtracting

the median intensity and dividing by the interquartile range of intensities in the brainstem (Brain-

stem normalisation). They found that RobustScaler and Brainstem normalisation led to greater

uniformity in histograms of MRI intensity and increased the AUC of the classifier when considering

only intensity-based RFs, but not texture features and this was not dependent on the number of

bins used for grey-level discretization when a FBN was used. Again, this supports the view that

a FBN may negate the impact of ISTs for texture-based features, but it is clearly important for a

multi-centre MRI dataset to produce more harmonisation of the signal intensity distribution across

patients.

Despite a number of studies being published following the systematic review of ISTs in diffuse

glioma radiomics, there is still little consensus on the optimal approach and this is still an active

field of research. Future studies will benefit from better availability of large volumes of scan-rescan

data, with short imaging intervals. This should allow for improved assessment of IST impact on

repeatability of RFs in a greater range of institutions. Producing such datasets prospectively may

be technically challenging and expensive however, and may explain why approaches such as that

by Saltybaeva et al. was used [10]. Another area for research to focus upon, relates to radiomics

study design. Studies that investigate the impact of ISTs on the results of predictive models could

provide the results of alternative ISTs, in particular the more popular choices of HM, ZS or WS,

which would represent minimal additional workload when considering the nature of the radiomics

pipeline.

Regarding IST impact on survival models in glioma [8, 10, 18–20], the approach to modelling has
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been varied and more work is required to ascertain the impact of ISTs on survival models that

assess time-to-event models thoroughly. Studies have dichotomised patients into two risk groups

[10, 18, 19] or considered only discrimination performance [20], whereas it would be helpful to

also assess the impact of ISTs on calibration and stability and focus on continuous event analysis

[21]. One of the key areas for future research would be to conduct a study with multi-centre MRI

acquisition and produce a radiomics prognostic model that could be thoroughly evaluated using

a scan-rescan dataset as well as large volumes of publicly available data on glioblastoma patients,

with accompanying clinical predictor data.

There are DL approaches to this problem that will need to be compared with radiomics models.

Convolutional neural networks (CNNs) could alleviate the need to find optimal IST strategies

for harmonising signal intensity of MRIs in multicentre datasets [22] but they could also produce

accurate survival prediction models without the need for radiomic feature extraction [23]. This could

produce many potential benefits, including removing the need for laborious tumour segmentation,

image pre-processing and devising a ML or statistical strategy for modelling the RFs against a

chosen outcome. Another advantage of a DL-approach is that ’transfer learning’ can leverage pre-

trained CNNs to build models for outcome prediction on relatively small volumes of new data [24].

A CNN that has been previously trained on a large volume of brain MRI data, for example, can

be trained on unseen imaging to predict a new outcome such as OS in much smaller samples and

perform accurately [23, 24].

One of the main concerns, however, with DL models is the relative lack of explainability of model

decisions when compared to traditional prediction modelling based on clinical parameters or IBs

that can be measured or derived directly from the images [25]. Trust between the clinicians and

any new model is important for its use and translation too [26]. There are now many ways in which

DL models can be made more ’explainable’ and future work will be necessary to show how a model

has come to its decision for OS prediction. For example, saliency maps can be produced using a

number of different methods to generate input images with a heatmap of the most important parts

of an image used for making a particular decision [25]. Such approaches might help to increase
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the trust of clinicians and users in DL approaches, although maps still require some assumptions

to be made about how the particular parts of the image have contributed to the decision. Future

studies are required to determine which approach to improved OS prediction is most accurate in

multicentre data, but also the more explainable and trustworthy for patients and clinicians.

To summarise, the main recommendations for future research are:

• Greater availability of scan-rescan data, which will allow assessment of the repeatability of

novel IBs, and greater availability of publicly-available glioma datasets including imaging and

comprehensive clinical data.

• When investigating the impact of ISTs, researchers could provide results of alternative ISTs,

in particular the more popular choices of HM, ZS or WS.

• Investigate the effect of ISTs on continuous outcome time-to-event models for patients with

diffuse glioma, paying attention to metrics such as calibration and stability.

5.3 Tumour size and overall survival in a cohort of patients

with unifocal Glioblastoma: a uni- and multivariable

prognostic modelling and resampling study (Chapter 3)

5.3.1 Summary

In chapter 3, the prognostic effect of tumour size in a large cohort of patients diagnosed with

glioblastoma was investigated. Secondary analyses evaluated the impact of sample size choice

and consideration of non-linear transformations on the likelihood of finding a prognostic effect

using univariable and multivariable analysis and data resampling. 279 patients with IDH-wildtype

unifocal WHO grade 4 glioblastoma and pre-operative MRI between 2014-2020 from a retrospective

cohort were investigated. Uni- and multivariable association between core volume, whole volume
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(CV, WV) and diameter with OS was assessed with (1) Cox proportional hazard models ± log

transformation and (2) resampling with 1,000,000 repetitions and varying sample size to identify

the percentage of models, which showed a significant effect of tumour size.

Diameter or volume models adjusted for operation-type were significant, and diameter adjusted for

all clinical variables including age, gender, adjuvant therapy, MGMT and operation type remained

significant (p = 0.03). Multivariable resampling increased significant effects (p < 0.05) of all

size variables as sample size increased. Log-transformation also had a large effect on chances of

prognostic effect of WV. For models adjusted for operation-type, 19.5% of WV vs 26.3% log-WV

(n = 50) and 69.9% WV and 89.9% log-WV (n = 279) were significant. The study suggested that

tumour volume is prognostic in multivariable analysis and that this is most likely detected at larger

sample sizes and with log-transformation for WV.

5.3.2 Limitations

The MRI acquisition parameters in our dataset were heterogeneous, especially slice thickness, and

this could have impacted upon the accuracy of volume measurements. The images were standardised

prior to volume assessment by spatially resampling to an isotropic 1mm3 voxel resolution, which

should have reduced the impact of acquisition heterogeneity. Heterogeneous data acquisition will

be encountered in routine clinical practice, and an IB such as tumour volume will have to be robust

to variation in acquisition parameters in order to be clinically relevant.

A proportion of our patients had to be excluded due to lack of the necessary MRI sequences for the

DL segmentation algorithm. The efficiency of a semi-automated segmentation approach outweighed

the potential limitation of a reduced sample size. A manual approach could have been adopted for

the patients who did not have all four sequences (T1W, T2W, FLAIR and T1CE) required for the

algorithm, however the lack of certain MRI sequences could feasibly impact on even expert manual

segmentation, and would have increased the workload of the study.

We investigated only three size variables but there are many others described in the literature.
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The experiment did not aim to provide a comprehensive evaluation of the prognostic role of all

possible tumour size parameters in glioblastoma, but to investigate some of the methodological

issues affecting this question, and that could be applied to any of the other continuous measures of

tumour size in glioblastoma.

The resampling study was limited by the maximum sample size, and the results could have been

further enhanced with access to larger amounts of patient imaging and corresponding well-curated

datasets. Several of the large publicly available repositories such as BraTs [15] or TCGA data do

not have as in-depth clinical labels for building multivariable models, which does hamper their use.

The analysis of tumour size as a prognostic factor in glioblastoma patients would have been even

more clinically relevant if the dataset had included other key variables such as performance status,

trial inclusion and socioeconomic status and to adjust for these in the modelling process. Despite

this, it was still possible to highlight methodological issues and common pitfalls in this area of

literature.

5.3.3 Future work

Multi-centre prognostic factor studies, with larger sample sizes will be needed to investigate the role

of different tumour volumes such as CV and WV with appropriate use of non-linear transformations

of volume and other clinical predictors to validate the findings of chapter 3. Ideally, these studies

will use optimal statistical methodology [27], and avoid potential pitfalls that can be encountered

in glioblastoma prognostication literature [28, 29].

A recent large multi-centre study conducted by Karschnia et al.[28, 29] illustrates how statistical

methodology in glioblastoma prognostic factor research can be optimised. The study aimed to

evaluate the prognostic impact of the extent of surgical resection in 744 patients with glioblastoma,

diagnosed according to 2021 WHO criteria and treated with Stupp protocol adjuvant treatment [30].

In univariable Cox regression, pre-operative enhancing tumour volume was not prognostic (hazard

ratio 1.00, 95% CI 1.0-1.0). To improve this study, future work could use this data to investigate
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pre-operative non-enhancing tumour volume, or WV for prognostic effect and could also consider

whether any continuous variables could be modelled non-linearly. A separate analysis of 98 patients

with glioblastoma that showed no contrast enhancement did include non-enhancing pre-operative

tumour volume, which was not found to be prognostic in univariable analysis [29].

Their study only included predictors into multivariable models based on univariable screening (in-

cluded if univariable model p < 0.05). Additional analyses could explore whether unsupervised

feature selection could demonstrate other prognostic factors and this might avoid some of the draw-

backs of univariable feature screening [27]. Riley et al. also suggest that exploratory prognostic

factor research should present adjusted hazard ratios; estimates that are adjusted for optimism by

performing internal validation [27]. Availability of such datasets in the public domain would greatly

enhance prognostic factor research, as well as IST exploration as mentioned in section 5.2.3.

5.4 Impact of intensity standardisation and ComBat batch

size on clinical – radiomic prognostic models perfor-

mance in a multi-centre study of patients with Glioblas-

toma (Chapter 4)

5.4.1 Summary

The final experiment of the thesis assessed the effect of different ISTs and ComBat batch sizes

on radiomics survival model performance and stability in a heterogeneous, multi-centre cohort of

patients with glioblastoma. Multi-centre pre-operative MRI acquired between 2014-2020 in patients

with IDH-wildtype unifocal WHO grade 4 glioblastoma were retrospectively evaluated. WS, HM

and ZS ISTs were applied before RF extraction. RFs were realigned using ComBat and minimum

batch size (MBS) of 5, 10 or 15 patients (RFs without ComBat realignment were also used for

comparison). Cox proportional hazards models for OS prediction were produced using five different
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selection strategies and the impact of IST and MBS was evaluated using bootstrapping. Calibration,

discrimination, relative explained variation, and model fit were assessed. Instability was evaluated

using 95% CIs, feature selection frequency and calibration curves across the bootstrap resamples.

195 patients were included. Median OS = 13 (95% CI 12-14) months. 12-14 unique MRI protocols

were used per MRI sequence. HM and WS produced the highest relative increase in model dis-

crimination, explained variation and model fit but IST choice did not greatly impact on stability,

nor calibration. Larger batches improved discrimination, model fit and explained variation and, at

MBS 10 and 15, using ComBat feature realignment also led to slight improvements in performance.

However, higher MBS (reduced sample size) reduced stability (across all performance metrics) and

reduced calibration accuracy. The results showed how heterogeneous, real-world glioblastoma data

poses a challenge to the reproducibility of radiomics, and that whilst ComBat generally improved

model performance as MBS increased, this required a reduced sample size and therefore reduced

stability and calibration. HM and WS tended to improve model performance.

5.4.2 Limitations

As noted in section 5.3.2, the acquisition parameters for the MRI used in this modelling study were

heterogeneous, including several centres with relatively few patients scanned, which impacted on

our ability to test larger batch sizes for ComBat. Again, given that this is a real-world dataset,

encountering this degree of heterogeneity was inevitable, particularly considering the ’hub-and-

spoke’ system of neuro-oncology referrals to the central neurosciences centre. This impacted upon

the batch labelling for ComBat realignment; some peripheral centres scanned only a small number

of patients so there were not enough to be included when selecting the MBS for ComBat. For the

purposes of this study, this limitation did not impact upon the main findings, as it was still possible

to compare the relative impact of different ISTs on model performance, and it was still possible to

thoroughly evaluate the models at three different MBSs for ComBat.

Public data could have been used to either supplement or replace institutional data and therefore

increase the patients scanned in each batch. However, one strength of this thesis was the availability
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of well-curated clinical data, as this allowed comparison between a gold-standard clinical model

and clinical-radiomic models in our dataset. Whilst there are larger MRI datasets online, the most

popularly cited collections do not contain in-depth clinical parameters such as adjuvant treatment

history [31, 32]. Better availability of datasets, or adopting a federated approach, which could

reduce the need for in-depth data protection approvals, to such tasks might offer a more suitable

approach going forwards [33].

The analysis in this PhD did not attempt to increase the ComBat batch sizes using unsupervised

clustering, but this has been used [9, 34] to group patients with similar RFs into clusters to avoid

excessive data loss in ComBat realignment. A small number of patients that would ordinarily have

been assigned to a separate batch because they were scanned at a small site or with a different

set of acquisition parameters to the majority of patients could be incorporated into another batch

label if the RFs were found to be similar by clustering algorithms such as hierarchical clustering

[34]. Da-Ano et al. [34], for instance, used hierarchical clustering of RFs in 98 patients with laryn-

geal cancer who had contrast-enhanced computed tomography acquired with 15 different protocols

and found that they could cluster patients based on the RFs from their tumours into 2 clusters.

Novel batch labels resulted in larger cluster sizes (38 and 60 per cluster) for estimation of ComBat

equation coefficients, than using the 15 protocols as batches. Accuracy of ML classifiers for predic-

tion of response to chemotherapy improved following the use of ComBat (balanced accuracy 27%

untransformed vs 69% with ComBat).

Several limitations of a clustering approach influenced the decision not to use unsupervised clus-

tering for this PhD. Da-Ano et al. checked that the new batch labels did not differ in terms of the

number of events per cluster (16% in cluster 1 vs 15% in cluster 2), and concluded that since these

values are similar, clustering based on RFs was not influenced by outcome or biological differences

between patients. The distribution of clinical predictors between clusters was not presented, and

statistical testing of group differences was not conducted, although it is accepted that the sample

size was unlikely to be sufficient to accurately detect cluster-wise differences in all clinical predic-

tors. Alternatively, Da-Ano et al. could have adopted the approach used by Carré et al., using
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DICOM metadata and MR quality metrics to cluster patients for ComBat batch labels. These

metrics included simple statistical measures of foreground signal intensity (mean, range, variance),

as well as more complex measures such as ratio of foreground to background standard deviation

in signal intensity [9]. It is much less likely that these metrics would be influenced by the tumour

characteristics or clinical predictors.

Another limitation is that unsupervised clustering requires the user to arbitrarily decide where

the best cut-off is located and determine into how many clusters the dataset is optimally divided,

therefore it is not completely objective. Da-Ano et al. used the silhouette method [34] to try to

optimise this decision, which measures the average of the ratios between intra- and nearest-cluster

distances; smaller distances between patients within the cluster, than the distance to the centre

of the nearest neighbouring clusters suggests a compact and well separated group of patients. A

smaller ratio, therefore is optimal. This score can be compared against a number of user-defined

clusters, and the point at which the score is no longer decreasing substantially, as the number

of clusters increases, determines the optimal cut-point and this can be represented graphically

(referred to as the ’elbow’ method) [35]. This requires some subjectivity and therefore the results of

clustering should ideally be validated in another dataset. However, Da-Ano et al. did not perform

any internal validation and attempting to do so in a small dataset would have been difficult. The

clustering used by Carré et al. was also not validated on unseen data, however they did note an

improved accuracy of ML classifer for high versus LGG prediction with T2W RFs compared to

standard labelling for ComBat [9].

Only three out of many ISTs available were chosen for evaluation in chapter 4, however these had

previously been identified as the most popular choices in prior studies [36] and the approach to model

performance evaluation is still justified. The supervised feature selection strategies considered far

more than the four radiomic features suggested as the maximum by event per predictor calculation,

and therefore these strategies would not have been optimal if the aim of the study was to identify

potential prognostic IBs. However, these selection strategies are popular within the radiomics

modelling literature and the potential for overfitting in my selection strategy will not have impacted
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upon our assessment of relative model performance due to IST and ComBat batch size. Finally,

measurement of IST impact on feature repeatability was not assessed, however to the best of

my knowledge, a preoperative glioblastoma dataset with test-retest data is not available publicly.

Again, this would have been more imperative had the study aimed to produce an accurate radiomics

prognostic model.

5.4.3 Future work

Many of the strategies noted in section 5.2.3 could also be applied to the current work. Thorough

assessment of prognostic radiomics models in patients with glioblastoma including the impact on

stability and calibration, use of larger and publicly-available multi-centre glioblastoma datasets

with comprehensive clinical metadata and scan-rescan data, and evaluation of multiple ISTs on the

results of any candidate models would all be ways to extend the work in chapter 4. Ultimately

these studies would also need large external validation datasets and DL approaches could also be

compared to radiomics based approaches.

Building upon the limitations section, unsupervised clustering could be evaluated in this context

but should be evaluated in large, dedicated studies. It would be invaluable to build larger clusters of

patients in multi-centre data and avoid the instability introduced by discarding patients when the

MBS was increased, particularly if the ideal of 20-30 per cluster, per biological covariate [5] is to be

achieved. It is likely that the lack of added benefit of ComBat realignment in the study conducted

by Salome et al. [8] was in part due to the small number of patients per batch, and it may have led to

the only marginal gains with ComBat in the study performed in this thesis. For example, Salome

et al. had 197 patients with recurrent glioblastoma scanned used 15 scanners, and 144 patients

with new glioblastoma scanned using 14 machines. They found, for T1CE images in recurrent

glioblastoma that the C-index with ComBat and WS was 0.68 (95% CI 0.66-0.69), compared to

0.71 (95% CI 0.69-0.74) with just WS and this trend was replicated for other sequences and the

newly diagnosed glioblastoma cohort. If they had used ComBat with clustering to determine larger

batches, perhaps a greater improvement would have been seen with ComBat as the coefficients
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would have been more accurately estimated [5].

Therefore, it would be useful to conduct a proof-of-concept study in a large multi-centre study

to ensure that any clustering algorithm based on RFs separates patients in a way where they do

not vary in a statistically significant manner between cluster, avoiding the assumptions made by

Da-Ano et al. [34]. Additionally, it would be useful to validate the results with unseen external

data to determine its validity, which was not conducted by Carré et al. or Da-Ano et al [9, 34].

This is likely to require large datasets and dedicated sample size calculations.

5.5 Future perspectives and considerations

Further testing of the findings raised in this thesis will need to be explored in new datasets. A

collaboration of 10 institutions, Radiomic Signatures for PrecisiON Diagnostics (ReSPOND) con-

sortium on glioblastoma, has collated 3,300 de novo cases of glioblastoma that have undergone

Stupp treatment with the aim of developing novel IBs [37]. The models developed in chapter 3 and

4 could be extended and externally validated in these larger datasets. Given the lack of consensus

on the optimal IST for images prior to radiomic extraction in neuro-oncology, IBSI’s documentation

could be updated to reflect the current trends in the literature and issue a position statement on

best practice for future research on this topic.

The prospect of DL in medical imaging analysis may make the need for thorough assessment of

ISTs and radiomics prognostic models unnecessary going forwards. Particularly given that the

advantage of CNNs is that they can learn complex representations of multi-centre data without any

need for researchers to spend time deciding the optimal strategy to harmonise the input images.

These advances are welcome, however they may need comprehensive evaluation against an optimised

radiomics model given the intense research interest and promise in using radiomic IBs to enhance

glioblastoma prognostication. Hence, the work presented in this thesis can help to give a framework

of how to model any quantitative IBs such as tumour volume, diameter or more complex RFs, as

well as how to thoroughly assess putative prognostic models. It may be that DL models outperform
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even the most optimised radiomics approaches, however the methodology of building and evaluating

the radiomics approaches needs to be improved for an adequate comparison to take place.

This thesis primarily considered IBs from anatomical and structural MRI and some clinical pre-

dictors including molecular pathology such as MGMT methylation status, but there are a myriad

of constantly improving tests and modalities for assessing the patient with diffuse glioma and it is

possible that a multi-modal approach that integrates data from advanced MRI, positron-emission

tomograpy (PET), genomics, biochemistry, clinical and socioeconomic information may produce the

best explanatory model for OS prognostication [38]. For instance, amino acid based PET tracers

can readily cross the blood brain barrier and are taken up by glioma cells via the L-type large amino

acid transporters (LAT), which are overexpressed in glioma cells and therefore they generally have

excellent tumour-to-background uptake ratios [39]. O-(2-F 18-fluoroethyl)-L-tyrosine (FET) is an

example of a radiolabelled PET-tracer, which has been shown to provide prognostic information in

the context of suspected recurrent glioma [40] and show slight positive correlation with glioma cellu-

larity in pre-operative imaging in glioblastoma patients [41]. Newer advanced MRI sequences such

as amide proton transfer-weighted (APTw) imaging can semiquantitatively estimate the concentra-

tion of endogenous proteins in a tissue [42] and has been shown to also correlate with cellularity in

glioblastoma [41]. It is possible that future studies will demonstrate additional prognostic benefit

for using these imaging modalities and sequences in pre-operative settings.

5.6 Conclusions

This PhD has evaluated the current landscape of intensity standardisation techniques prior to

radiomic extraction in patients with glioblastoma and shown that there is more research needed

into the optimal strategies, and better reporting of IST evaluation on radiomic models. The thesis

has also added to the general field of prognostic factor research, specifically in this context by

highlighting some areas of improvement in exploratory prognostic research such as careful attention

to non-linear modelling, sample size calculations, and thorough time-to-event model evaluation
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including model calibration and stability.

Recommendations for future work investigating prognostic modelling in patients with glioblastoma

and using radiomics-based imaging biomarkers include:

• Prognostic models using radiomic IBs need to be comprehensively assessed, which includes

measuring not only discrimination but also calibration and stability as well as evaluating the

impact of popular ISTs on model performance.

• Future radiomic model building will greatly benefit from large volumes of publicly-available

and multi-centre imaging data (or federated approaches), including scan-rescan imaging and

also accompanying well-curated clinical and molecular pathology information.

• Understanding of prognostic factors for patients with glioblastoma could be improved with

greater emphasis on modelling predictors non-linearly and not using univariable screening

methods for predictor selection.
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