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Abstract

We develop the deformation theory of instantons on asymptotically conical Spin(7)-manifolds
where the instanton is asymptotic to a fixed nearly G,-instanton at infinity. By relating the de-
formation complex with spinors, we identify the space of infinitesimal deformations with the
kernel of the twisted negative Dirac operator on the asymptotically conical Spin(7)-manifold.

We apply this theory to describe the deformations of the Fairlie-Nuyts—Fubini-Nicolai
(FNFN) Spin(7)-instantons on RS, where R® is considered to be an asymptotically conical
Spin(7)-manifold asymptotic to the cone over S’. We calculate the virtual dimension of the
moduli space using the Atiyah-Patodi-Singer index theorem and the spectrum of the twisted
Dirac operator.

We then apply the deformation theory to compute the deformations of Clarke-Oliveira’s

instanton on the Bryant-Salamon Spin(7)-Manifold. The Bryant-Salamon Spin(7)-Manifold
Sp(2)xSp(1)
Sp(1)xSp(1)”
Finally, we show that with gauge groups U(1) and SU(2), no irreducible Sp(2) x U(1)-

%7 (S*) is an asymptotically conical manifold where the link is the squashed sphere
invariant asymptotically conical instantons on R® exist. Using this result, we prove that any

asymptotically conical U(1)- or SU(2)-instanton on R® asymptotic to the flat connection on

S7 satisfying certain conditions is obstructed.
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Chapter 1

Introduction

Instantons on 4-manifolds are connections whose curvatures are anti-self-dual. Instantons
solve the Yang-Mills equation and hence have always been of interest to physicists in the con-
texts of quantum field theory, string theory, M-theory, supergravity etc. Instantons in dimen-
sions higher than 4 were also studied by many physicists, Corrigan-Devchand-Fairlie-Nuyts
[17], Fairlie-Nuyts [25], Fubini-Nicolai [27], before Donaldson-Thomas [19] and Donaldson—
Segal [21] explained their importance and scope to a mathematical audience. Analogous to
the 4-dimensional case, their prediction of the possibility to construct invariants from the
moduli space has been one of the main sources of motivation behind the research on higher
dimensional gauge theory for mathematicians.

The Spin(7)-instantons are instantons on 8-dimensional manifolds with Spin(7)-structures.
The Spin(7)-instanton equation appeared in various places in the physics literature; Fairlie—
Nuyts [25] and Fubini-Nicolai [27] have discussed Spin(7)-instantons on R®. Donaldson-
Thomas [19] and Carrion [13] have discussed Spin(7)-instantons more generally, and around
the same time, in 1998, Lewis also discussed Spin(7)-instantons in his PhD thesis [43]. In re-
cent years, Spin(7)-instantons have been studied by Sa Earp [52], Tanaka [56], Walpuski [58],
Lotay-Madsen [45] and many others.

1.1 Motivation for the Thesis

In this thesis, we develop the deformation theory of instantons on a particular type of non-
compact Spin(7)-manifolds known as asymptotically conical Spin(7)-manifolds. These mani-

folds are complete Spin(7)-manifolds asymptotic to the cone over compact nearly G,-manifolds.
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The instantons on these manifolds also exhibit the asymptotically conical behaviour. Assum-
ing that the instanton is unobstructed, we prove that the moduli space of these instantons is
a manifold, and describe a way to calculate the (virtual) dimension. In the second part of
the paper, we apply the deformation theory to certain instantons on R8, first constructed by
Fairlie-Nuyts [25] and Fubini-Nicolai [27] independently, in the context of supergravity. The
space IR® is indeed an asymptotically conical Spin(7)-manifold, and hence it is appropriate to
study the deformations of these instantons using our theory. The main result for this part is
the calculation of the virtual dimension of the moduli space of these instantons.

The study of asymptotically conical Spin(7)-manifolds goes back to 1989, when Bryant-
Salamon [12] gave an example of a complete non-compact Spin(7)-manifold, namely, the
negative spinor bundle over the 4-sphere. In 2014, Clarke [15] constructed a Spin(7)-instanton
on this Bryant-Salamon Spin(7)-manifold. The manifolds R®, the 8-dimensional Euclidean
space, and 8~ (S%), the negative spinor bundle over the 4-sphere, are both examples of asymp-
totically conical Spin(7)-manifolds. IR® is asymptotic to the cone over S” with standard metric
and $(S*) is asymptotic to the cone over S” with a squashed metric, where both S” with
standard metric and S” with squashed metric are examples of nearly G,-manifolds.

Asymptotically conical manifolds have been studied by many authors, e.g., asymptotically
conical G, manifolds by Karigiannis-Lotay [36] and recently, asymptotically conical Spin(7)
manifolds were studied by Lehmann [42]. The analytic frameworks for studying asymptot-
ically conical manifolds, namely, the weighted Sobolev theory and theory of asymptotically
conical Fredholm and elliptic operators, have been developed by Lockhart-McOwen [44] and
Marshall [47].

Our work on deformation theory in dimension 8 has been partially motivated by similar
work in dimension 7, namely the deformation theory of asymptotically conical G,-instantons,
developed by Driscoll [22], utilising the works of Harland-Ivanova-Lechtenfeld—Popov [31],
Charbonneau-Harland [14]. Asymptotically conical G;-manifolds are asymptotic to the cone
over nearly Kédhler manifolds. Instantons on asymptotically conical G,-manifolds have also

been studied by many authors, Clarke [15], Oliveira [50], Lotay—Oliveira [46] and many others.

1.2 Outline of the Thesis

Here is a brief outline of this thesis.



1.2 Outline of the Thesis

After we discuss the basic notations and definitions, and fix conventions related to asymp-
totically conical Spin(7)-instantons in Chapter 2, we develop the deformation theory of asymp-
totically conical Spin(7)-instantons in Chapter 3. In the first part, we discuss the analytical
framework to study instantons of asymptotically conical Spin(7)-manifolds. We use Lockhart-
McOwen theory, and the relation between the Dirac operator on the cone and the Dirac op-
erator on the link to show that the Dirac operator on the asymptotically conical manifold is
Fredholm only when the rate of decay is not a critical weight, and the critical weights are
precisely the rates that differ from the eigenvalues of the Dirac operator on the link by a fixed
constant.

In the second part of Chapter 3, using the analytical framework and implicit function
theorem, we prove that if the rate of decay is not a critical weight, the moduli space of asymp-
totically conical Spin(7)-instantons is a smooth manifold, given that the deformations are
unobstructed; moreover the dimension of the moduli space is precisely the index of the Dirac
operator on the asymptotically conical manifold.

In Chapters 4 and 5 we carry out an in-depth study of Fairlie-Nuyts—-Fubini-Nicolai
(FNEN) Spin(7)-instanton on R® and its deformation theory. We apply the deformation theory
developed in Chapter 3 by considering R® to be the asymptotically conical Spin(7)-manifold
asymptotic to the nearly G,-manifold S’.

In order to study the moduli space, we need to identify the critical weights, and hence
need to calculate the eigenvalues of the Dirac operator on the link S” in a certain range de-
termined by the fastest rate of convergence of FNFN-instanton. In Chapter 4 we use various
techniques in representation theory and harmonic analysis, namely, the Frobenius reciprocity
to decompose the space of L?-sections of the spinor bundle into direct sums of finite dimen-
sional Hilbert spaces indexed by Spin(7)-representations. Moreover, we express the Dirac
operator as a sum of Casimir operators. We also calculate an eigenvalue bound which yields
only six representations of Spin(7) for which the eigenvalues of the Dirac operator could be
in the prescribed range. Then we explicitly calculate the eigenvalues of the Dirac operator for
these representations, and identify the critical rates.

In the first part of Chapter 5, we reconstruct the FNFN Spin(7)-instanton using algebraic
techniques, by identifying S” with the homogeneous space Spin(7)/G,. In the second part we
use the Atiyah-Patodi-Singer theorem and the critical rates calculated in Chapter 4 to calculate

the virtual dimension of the moduli space of the FNFEN instanton. It turns out that the virtual
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dimensions of the moduli space are determined by precisely two known deformations of
FNFN-instanton, namely dilation and translations.

Chapter 6 is devoted to computing the deformations of Clarke-Oliveira’s Instanton on
the Bryant-Salamon Spin(7)-Manifold. The Bryant-Salamon Spin(7)-Manifold is the neg-
ative spinor bundle of S* which is an asymptotically conical manifold where the link is
the squashed 7-sphere %. We use the deformation theory of asymptotically conical
Spin(7)-instantons developed in chapter 3 to calculate the deformations of Clarke—Oliveira’s
Instanton and calculate the virtual dimension of the moduli space.

In the final chapter, chapter 7, we prove the non-existence of irreducible U(1) and SU(2)
asymptotically conical Sp(2) x U(1)-invariant instantons on IR®. Moreover, we prove that any
asymptotically conical U(1)- or SU(2)-instantons on R® asymptotic to the flat connection on

S7 satisfying certain condition are obstructed.



Chapter 2

Preliminaries

In this chapter we briefly discuss the preliminaries for studying asymptotically conical Spin(7)-
instantons and fix notations and conversions. We review the notions of nearly G;-manifolds,
(asymptotically conical) Spin(7)-manifolds and (asymptotically conical) Spin(7)-instantons.

We also briefly discuss Lockhart-McOwen analysis on asymptotically conical manifolds.

2.1 Nearly G,-Manifolds

Definition 2.1.1. Let ¥ be a Riemannian 7-dimensional manifold. A 3-form ¢ € Q3(X) is

1

called a Gy-structure on ¥ if in local orthonormal frame ¢!, ..., ¢7, ¢ can be written as

o = p123 _ G145 _ 167 _ 246 | 257 _ 347 _ 356 2.1)
where ek .= ¢l A el A ek,

For more details on the group G, see Appendix B and for G-structures, see [9], [10], [11],
[33].

Theorem 2.1.2 ([53]). There are orthogonal decompositions

O*(Z) = a0,
E) =0l a0,

where QO is a Gy-invariant subspace of QOF with point-wise dimension d and

2 ={usp:uc D)} ={weQX): (¢ Aw) = 2w} (2.2)
04 ={we*X):prw=0} ={we Q) : *(¢ Nw) = —w} (2.3)
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Of = {fp:f e Q°(2)} (24)
B ={usyp:uc(xn)} (2.5)
O, ={wePX):pAw=0,¢Aw = 0}. (2.6)

for P = x¢.

A Riemannian 7-manifold possesses a Gy-structure if and only if it is a spin manifold [40].
Hence, we now discuss the spinor bundle.

For our purpose, we start by fixing a representation of the Clifford algebra CI(7) in which
the volume form I'y acts as — Id.

Let 8(X) be the spinor bundle over a 7-manifold X with G,-structure. Let ¢ € T'($(X)) be
a unit spinor such that w - ¢ = 0 for all w € O2,, where - denotes Clifford multiplication. The
existence of ¢ follows from the fact that G, C SO(7) fixes a vector in the spinor representation,
and the uniqueness (up to sign) follows from G, fixing everything in the trivial representation.

Then we have an isomorphism given by
s: ANT*2) & AHT*Z) — ()
(f,0) = (f—v)-¢. 2.7)

Lemma 2.1.3. The 3-form ¢ and 4-form ¢ = x¢ act on the subspaces A° and A' of $(X) with
eigenvalues

\ A0 Al
o 7 -1
vl -7 1

Proof. Since AY and A! are irreducible representations of G, and ¢ is Gp-invariant, by Schur’s
lemma ¢ preserves the decomposition. Furthermore, ¢ must act on each space as a constant
and this action is traceless.

First let us take a look at A°. We have ¢ = x¢ = ¢ - voly. Then ¢ - ) = 7vol; —6¢. Now, let
¢ - ¢ = AC. Then, using voly -¢ = —¢, we have

P E=q Vol L= =9 = —¢-(¢-8) = =9 Al = =A%
Also,
¢-p-5=(7vol;—6¢) - ¢ = (=7 —6A)C.
Hence,
A2—6A—7=0=A=7o0rA=—1
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Now, eigenvalues of ¢ acting on A! satisfies the same equation. Since ¢ is trace-less, we must
have that ¢ acts on A’ as 7 and on A! as —1. O

Lemma 2.1.4. Let w € QO%(X). Then

w-g=—(w9)-¢

Proof. Since m14(w)-& = 0, we have w - & = 77(w) - & Now, 77(w) = v 1 ¢ for some v € QL(Z).
Hence,

1 1

W E=(039) E=—5(p 00 9) L= —5(~T0+70)-T= 30
Moreover,
wa¢p=rmr(w) ¢ = (vai¢p) ¢ =230

Thus we have the result. O

Corollary 2.1.5. Let f € Q%X),v,u € QY(X). Then Clifford multiplication of (f,v) by u is given
by
u-(f,v) = (wv), —fu—(uAv)¢). (2.8)

Proof.

(
((uNv)1¢)-& by Lemma 2.1.4
Nv) 1) -

Hence the result follows from s being isomorphism. O

Definition 2.1.6. Let ¥ be a 7-dimensional Riemannian manifold and ¢ € Q*(Z). Then ¢ is
called a nearly (parallel) Gy-structure on X if it satisfies

d(,b = TQilJ, (29)
where ¢ = ¢ and 15 € R\ {0}. In this case, (¥, ¢) is called a nearly Gy-manifold.

Clearly ¢ is not closed, but is co-closed. For more on nearly G;-structures, see [1], [26].
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Definition 2.1.7. Let $(X) be the spinor bundle on X. A real spinor { € T'($(X)) is called
a Killing spinor if there exists & € R\ {0} such that for all X € I'(TX), ¢ satisfies the Killing
equation given by

V& = 6X - ¢. (2.10)

The scalar ¢ is called the Killing constant for the Killing spinor ¢.

We note that a unit spinor ¢ on a nearly G,-manifold satisfying w - & = 0 for all w € Q3 is
a Killing spinor. Conversely, any Riemannian 7-manifold admitting a Killing spinor is a nearly
Gp-manifold. In fact, there is a one to one correspondence between nearly Gp-structures and
real Killing spinors on X [7].
{Nearly Gy-structure cp} PN { ¢ € 8(X) such that}
satisfying d¢ = 1ot Vxi=32X-¢

where we have used the fact that the Killing constant § can be written in term of 1) as § = %.

If g is the metric induced by the nearly G, structure ¢, then the Ricci curvature is given
by Ric, = 372¢, and hence every nearly G, manifold is Einstein. The scalar curvature is
Scal, = 272

We note that we can always re-scale 7p. If we take 70 = 4, then we have d¢ = 4. The
reason for this particular choice is that the unit 7-sphere S7 has scalar curvature 42, and so,
Scal, = %Tg = 42, which implies 19 = 4 (whereas taking 1) = —4 would just change the

orientation of the manifold). Hence we have
1
V¢ = EX - C. (2.11)

For a nearly Gy-manifold (X, ¢), we can define a 1-parameter family of affine connections on

TE. Let t € R. Then V! is a 1-parameter family of connections on TX defined by
t
(VY Z) =g(VxY, Z2) + 3¢(X,Y, Z) (2.12)

for X,Y,Z € T(TY).

Let T* be the torsion (1,2)-tensor of the affine connection V. Then
2t
gX,T(Y,2)) = 8(X, VyZ) =g(X,V2Y) —g(X, [V, Z]) = T¢(X,Y,Z)  (213)
using the fact that Levi—Civita connection is torsion-free. Hence the torsion tensor T* is

THX,Y) = %4)()(, Y, (2.14)
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which is totally skew-symmetric, being proportional to ¢.
Now, V! lifts to the spinor bundle () given by

t
Vi = Vxi+ (X 99) -1 (2.15)
where 7 € T(8(X)) and X € T(TX). Then, using the eigenvalues (2.1.3), we find
V& = —%X - C. (2.16)

Therefore, for t = 1, the Killing spinor ¢ is parallel with respect to the connection V!. Then
the connection V! has holonomy group contained in G, with totally skew-symmetric torsion.

This connection V! on the nearly Gy-manifold X is known as the canonical connection.

Remark 2.1.8. We note that there is a notion of canonical connection in the context of homo-
geneous spaces as well (see Appendix A). Following the work of [54], for the homogeneous
nearly Gp-manifolds we consider, these two notions of canonical connection coincide.

Proposition 2.1.9. [54] The Ricci tensor of the connection V' is given by

212
Ric' = <6 - 3) g
112

As a corollary, we have the scalar curvature of the canonical connection to be 3=.

2.2 Spin(7)-Manifolds and Spin(7)-Instantons

Definition 2.2.1. Let X be an 8-dimensional Riemannian manifold equipped with a 4-form
® € O*(X) such that in local orthonormal basis ¢’, ¢!, ..., e’, we have ® = ¢’ A ¢ + 1 where
¢ is as in (2.1) and (e’ A ¢) = . Then @ is said to be a Spin(7)-structure on X and (X, ®) is
said to be an almost Spin(7)-manifold.

If ® is torsion-free, i.e., if V& = 0 where V is the Levi-Civita connection, or equivalently,
if d® = 0, then (X, ®) is called a Spin(7)-manifold.

For more details on the group Spin(7), see Appendix B and for Spin(7)-manifolds, see [9],
[33].

Theorem 2.2.2 ([53]). There are orthogonal decompositions

0*(X) = 07 & 03,
Q*(X) = 0§ © Qg
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X)) =000 05, @ 0%

where QF is a Spin(7)-invariant subspace of QO with point-wise dimension d and

0% = {w e O*(X) : #(®Aw) = 3w} (2.17)
03, = {wec O*(X) : %(® Aw) = —w} (2.18)
O ={u1®:uc0X)} (2.19)
O ={we PX): ®Aw =0} (2.20)
O = {fo: f c QX)) (2.21)
OF = {L:P: ¢ €50(8)} (2.22)
0 ={we O} X)xw=w,wA®=0,wAL:DP=0forall & €s0(8)} (2.23)
0% = {we OYX) : »w = —w} (2.24)

where Lg is the Lie derivative with respect to .

Proposition 2.2.3 ([32]). If ® is a Spin(7)-structure on a manifold X, then X is a Spin manifold.
Moreover, if ® is torsion-free, then X admits a non-trivial parallel spinor.

The canonical spin structure can be identified in the following way.
$T =A@ A% and $ = AL

Let X be a Spin(7) manifold and P be a principal G-bundle on X for a compact group G. Let

gp be the adjoint vector bundle. Then we have

Q*(ap) = O5(gp) ® O3 (ap)

Definition 2.2.4. Let 72 : O?(gp) — O3(gp) be the projection. Then a connection A on P is
said to be a Spin(7)-instanton if 72(F4) = 0 where Fy4 is the curvature of the connection A. In
this case F4 € O3 (gp).

Equivalently, A is a Spin(7) instanton if it satisfies

«(®AFy) = —F4. (2.25)

This follows from the fact that the operator on A? defined by w + *(® A w) has eigenvalues
—1 and 3 with eigenspaces A2, and AZ respectively.

Moreover, A is an instanton if and only if F4 annihilates the parallel spinor, i.e., for parallel
spinor ¢, we have Fy4 - ¢ = 0, where - denotes Clifford multiplication.

10
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2.3 Asymptotically Conical Spin(7)-Manifolds

Let (X,¢x) be a Riemannian 7-manifold with a nearly Gy-structure ¢ satisfying d¢ = 4y
where ¢ = x¢. A Spin(7)-cone on X is C(X) := (0,00) x X together with a Spin(7)-structure
(C(X2), Dc) defined by

Oc = rdr A + 1y (2.26)

where r € (0,00) is the coordinate. X is called the link of the cone. The metric g¢ compatible
with ®¢ is given by

gc = dr* +1r%gs. (2.27)
We note that condition d¢ = 4¢ implies the torsion free condition d®c = 0, which implies
that (C(X), gc, ®) is a Spin(7)-manifold.

Remark 2.3.1. We note that a Spin(7)-cone is not complete. Hence, we consider complete
Spin(7)-manifolds whose geometry is asymptotic to the given (incomplete) G,-cone.

Definition 2.3.2. Let (X, g, ®) be a Spin(7)-manifold. X is called an asymptotically conical (AC)
Spin(7)-manifold with rate v < 0 if there exists a compact subset K C X, a compact connected
nearly G, manifold ¥, and a constant R > 1 together with a diffeomorphism

h:(Ro0) x T — X\ K (2.28)

such that
V]C(h*(CD\X\K) —®c)| (r,p) = O(rvfj) asr — oo (2.29)

foreach p € ¥, j € Z>o, v € (R,); where V¢ is the Levi-Civita connection for the cone
metric gc on C(X), and the norm is induced by the metric gc.
X\ K is called the end of X and X the asymptotic link of X.

Remark 2.3.3. For simplicity, we'll drop the points (r, p) while writing the norm, and will
understand it from the context.

Remark 2.3.4. It can be proved that (see [36]) the metric ¢ satisfies the same asymptotic con-
dition

’v]C(h*(g|X\K) —gc)’ =0(r'"7) asr— co.
Examples 2.3.5.

* (R8,®p): Since C(S7) = R8\ {0}, (IR8, ®p) is an AC manifold with any rate v < 0.
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2. Preliminaries

* Bryant-Salamon Spin(7)-manifold $ (S*): This a rank 4 bundle, hence the total space
is a manifold of dimension 8. This is an AC Spin(7)-manifold asymptotic to the cone
over (S7 with squashed metric with rate v = —10/3 (see [12]).

e Some more examples of AC Spin(7)-metrics can be found in the recent work of Lehmann
[41].

24 Lockhart-McOwen Analysis on AC Spin(7)-manifold

Now we review Lockhart-McOwen analysis applied to AC Spin(7) manifolds.
Let X be an AC Spin(7) manifold. In order to define “weighted Banach spaces” on X, we

tirst define a notion of radius function.
Definition 2.4.1. A radius function is a map ¢ : X — R defined by
1 if x € the compact subset K C X

o(x):=<r ifx=h(r,p) for some r € (2R, ), p € = (2.30)
if x € h((R,2R) x X)

~

where h : (R, 00) x X — X \ K is the diffeomorphism, and 7 is a smooth interpolation between

its definition at infinity and its definition on K, in a decreasing manner.

Let 7 : E — X be a vector bundle over X with a fibre-wise metric and a connection V

compatible with the metric.

Definition 2.4.2. Let p > 1,k € Z>o,v € R and CZ(E) be the space of compactly supported
smooth sections of E. We define the conically damped or weighted Sobolev space Wff’p (E) of
sections of E over X of weight v as follows:

For ¢ € CZ(E), we define the weighted Sobolev norm || - ||, ks () 35
k . P Vp
HC||W5"’(E) = (Z/X ’Q—V—HV]C‘ Q—S dvol) (2.31)
j=0

which is clearly finite and indeed a norm. Then the weighted Sobolev space W{f’p(E) is the
completion of C°(E) with respect to the norm || - |, c» ()

Remark 2.4.3. [42]

* We note that W*3(E) = L?(E).

12



2.4 Lockhart-McOwen Analysis on AC Spin(7)-manifold

* We have Q”WS’z(E) = Wwo2

iv(E). In particular, WO2(E) = o**VL2(E).

Definition 2.4.4. Let k € Z> and v € R. Then for & € C*(E), we define the weighted C* norm

| - HcI;(E) as

k . .
18l ckey = Y. o™ VI co (2.32)
j=0

which is well defined and a norm. Then the weighted C* space CX(E) is the closure of C®°(E)
with respect to this norm. We also define C3°(E) := ) Ck(E).
k>0

Theorem 2.4.5 (Weighted Sobolev Embedding Theorem). [47]

1. Letk,1 > 0. Ifk — % > [, then
Wy (E) — CL(E)

is a continuous embedding.
2. LethlZO,pgqandygv.Ifk—%zl—%,then
Wi? (E) < W,(E)
is a continuous embedding.

In order to ensure that we work with continuous sections, we shall always assume k > 4.
This follows from the first part of the weighted Sobolev embedding theorem by putting I = 0
and p = 2.

Theorem 2.4.6 (Weighted Sobolev Multiplication Theorem). [22] Let { € W;,"Z(E),iy e WA (F). If
I >k > % = 4, then the multiplication

k,
Wi (E) x Wy2(F) — W% (E®F)
is bounded. In other words, there is a constant C > 0 such that
||(: ®n HW;’:’JE.,(E(@F) < CHéHwﬁ:Z(E) ||77 HWLZ/Z(F)'
Proposition 2.4.7. [42] Let ¢ € W)*(E), 7 € W)*(E). If u+v < 8, then

&= /M<§,17>dvol

is finite and satisfies,

(& me < ||‘§Hw,9f2(15)H”“WS'z(E)'

13



2. Preliminaries

From Proposition 2.4.7, we have the pairing
(-, )2 s WO2(E) x W% (E) = R.
This defines the isomorphism [42]
(WO2(E))" = W2 (E). (2.33)

Now, let P — X be a principal G bundle. Consider the associated vector bundle E :=

T ® gp, where T is either AXT*X of k-forms, or A*T*X = é AYT*X, or the spinor bundle %
over X. If A is a connection on gp, then E inherits a metrickf:rgm T and a connection from the
Levi-Civita connection on T and the connection on gp. If € C®(T ® gp) C I'(T ® gp), then
the weighted Sobolev norm is given by Equation 2.31 where V = V¢ @ 1,, + 17 @ V4, V4
being the connection on gp.

Before moving forward let us fix few notations:

2.5 Asymptotically Conical Spin(7)-Instantons and Moduli Space

Definition 2.5.1. Let X be an AC Spin(7)-manifold asymptotic to the cone C(X). Let P — X
be a principal G-bundle over X. Then an asymptotically framed bundle is the bundle P together

with a choice of a principal bundle Q — X and an isomorphism
h*P = 7*Q
where 7 : C(X) — X is the natural projection.

We note that such framing always exists [46]. So we fix a framing Q.

Definition 2.5.2. Let X be an AC Spin(7)-manifold asymptotic to the cone C(X). Let P — X
be an asymptotically framed bundle. A connection A on P is called an asymptotically conical
connection with rate v if there exists a connection Ay on Q — X such that

VL (A) — 1 (Ag))| = O(* ) asr — oo (2.34)

14



2.5 Asymptotically Conical Spin(7)-Instantons and Moduli Space

foreach p € X, j € Z>9, v < 0. The norm is induced by the cone metric and the metric on g.
A is called asymptotic to Ay, and vy := inf{v : A is AC with rate v} is called the fastest rate
of convergence of A.

Remark 2.5.3.

* We have defined the rate of convergence in term of conical metric and the coordinate
r on the cone. However, we could also have chosen in terms of the AC metric and the
radius function ¢. But in both cases the rate of convergence would be the same.

e The —1 in the term O(r'~1~/) comes from the fact that a 1-from a on X satisfies |7t*a| =
o(r 1.

Let Ap be the space of AC connections on P. Fix a reference connection A € Ap. Then,
we can identify the spaces Ap and O'(gp) by A’ = A + &, for any other connection A’ and

« € Q' (gp). Denote the space of W2 -connections by

Ay 1 ={A+a:acO (gp)} (2.35)

and define -
Av—l = m -Ak,v—l (236)

k=1

which is the space of C; ;-connections.

Now, a gauge transform is ¢ € Aut(P) and acts on a connection A by ¢ - A = pAp~! —
dgoq)_l. Let G — GL(V) be a faithful representation of G, and consider the associated vector
bundle E := P xg V. Moreover, consider the endomorphism bundle End(E) whose fibre
at x € X is the vector space End(E,) = {linear maps Ex — E.}. Note that there is a natural
embedding Aut(Ey) — End(Ey) and a canonical subgroup G, of Aut(E,) which is isomorphic
to G (but not canonically isomorphic to G).

Then we define the weighted gauge group by (see [49])
Giiry = {9 € CUENA(E)) : [l — Ilis1, < 09,9 € G}. (237)
We also define G, := ﬁ Gy
I=1

Lemma 2.5.4. [18] The point-wise exponential map defines charts for which Gy1, is a Hilbert Lie
group with Lie algebra modelled on QOY*™(gp) for k > 3. The group Gi1, acts on Ay,,_1 smoothly
via gauge transformations, for k > 4.
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2. Preliminaries

Definition 2.5.5. Let X be an AC Spin(7)-manifold asymptotic to C(X). Let P — X be a
principal G-bundle asymptotically framed by Q — X. Let Ay be an instanton on the nearly
G, manifold X. Then the moduli space of Spin(7)-instantons asymptotic to Ay, with rate v is given

by

M(As,v) := {Spin(7) instanton A on P satisfying (2.34) asymptotic to Az }/G,.  (2.38)
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Chapter 3

Deformation Theory of Asymptotically
Conical Spin(7)-Instantons

In this chapter we describe the deformation theory of asymptotically conical Spin(7)-instantons.
In the first part we discuss the necessary analytic framework, following the works of Lockhart-
McOwen [44], Marshall [47], Karigiannis-Lotay [36] and Driscoll [23]. In the second part we
develop the general theory, where we closely follow Donaldson [20] and Driscoll [23].

3.1 Fredholm and Elliptic Asymptotically Conical Operators

We begin this section by defining the operators that will be important in developing the

deformation theory.

1. Let X be a nearly Gy-manifold and Q — X be a principal G-bundle. Let Ay be a connec-
tion on Q. Consider the bundle $(X) ® gg where $(X) is the spinor bundle on X and

g0 = Q Xaq 9. Then we have a twisted Dirac operator
Da, :T((Z)®ag) = T(8(X) ®ag). (3.1)

2. Let X be an AC Spin(7)-manifold with link X. Let P — X be an asymptotically framed
bundle. Let A € Ap be an AC connection asymptotic to Ay.

Consider the bundle $(X) @ gp where $(X) is the spinor bundle over X and gp =

P x a4 g. Then we have a Dirac operator

Da:T(8(X)@gp) = T(8(X) ®gp). (3.2)

17



3. Deformation Theory of Asymptotically Conical Spin(7)-Instantons

3. Let C(X) = (0,00) x X be a Spin(7)-cone over ¥ and t*Q — C(X) be a principal bundle
over C(X). Let Ac = m*As.

Now consider the bundle $(C(X)) X gr+o, where $(C(X)) is the spinor bundle on C(X)

and g9 = 71°Q X aq 9. Then we have a Dirac operator
D4 : T(8(C(Z)) ® g-0) = T(8(C(Z)) ® g-0). (33)

The objective behind introducing this Dirac operator @ 4. is to study the Fredholm prop-

erties of the Dirac operator P 4 using Lockhart-McOwen theory.

Then we have the following sets of operators:

| Base Manifold | Operator | Bundle \
v4 A’(X) ® gp
X K| D, 3(X)®gp
dyda gp
v A’(Z) ® g
by Ke | Day $(X) ® g
Ay das 90
Ve [AYCE)) @ arg
C(z) Ke']| Pac | 3(C(X)) ®gro
dj dac g7°Q

Definition 3.1.1. Let E = $(C(X)) ® gn+g Or g be a bundle over C(Z). Then a section ¢ of
the bundle E is called homogeneous of degree A if

g = 1’%’]2
where 775 is a section of §(X) ® g or g respectively, lifted to the cone.

We note that here we use the identification clc(u) = rcly(u) for all u € TC(X) where cly, is the
Clifford action of TX and cl¢ is the Clifford action of TC(X).
Now, let K¢ be either the Dirac operator D . or the coupled Laplace operator d} da..

Then we consider the set of critical weights 2(K¢) given by

2(Kc) = {A € R: there exists non-zero ¢ € I'(E) of homogeneous order A such that Kc(0) = 0}.
(3.4)

18



3.1 Fredholm and Elliptic Asymptotically Conical Operators

Theorem 3.1.2. [47] The extended map
k+, k,
K:W,"F(E) = W,* (F)

(where K = P4 or dida, E = F = $(X) ® gp or gp and 7y is 1 or 2 respectively) is Fredholm if
v € R\ Z(K¢). Moreover, for v < V', if [v,v'| N 2(Kc) = &, then the kernel ker K is independent
of the weight in the range [v,V'].

Hence, we focus our attention on finding the set of critical weights for the operators D 4.

and djchAc-

The set of critical weights for the Laplace operator 4}, da.

We want to find the set of critical weights for the Laplace operator dj da., ie., the set
9 (d;cd Ac)- This set corresponds to a subset of the kernel of the operator containing ele-
ments of homogeneous order A. Thus, if A € Z(d} da.), then there exists o € ker(d}, da)

such that o = r'y for 7 € Q%(gp). An easy calculation yields,

Lemma 3.1.3. Let o = r'y for 1 € Q%(gp). Then,
Ay daco =" (dh dagy — AMA+6)n).

Thus, ¢ is in the kernel if and only if A(A + 6) is an eigenvalue of dj‘qzd Ay~ But since the
coupled Laplace operator is positive, (—6,0) N Z(d}; da.) = . Hence, we have the following

proposition.

Proposition 3.1.4. Let A be an AC connection over an AC Spin(7)-manifold X. If v € (—6,0), then
the coupled Laplace operator
d:kqu : Qg’k+2(gp) — QS’EQ(QP)

is Fredholm.

The set of critical weights for the Dirac operator D 4

Now, we want to find the set of critical weights for the Dirac operator D4, i.e., the set
2(D a.)- This set corresponds to a subset of the kernel of the operator containing elements of
homogeneous order A. Thus, if A € 2(D 4..), then there exists o € ker® 4. such that o = 1’)‘172

where 7y, is a spinor on .
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3. Deformation Theory of Asymptotically Conical Spin(7)-Instantons

Recall that the volume element T's acting on $(C) satisfies I'; = 1 and this gives an eigen-
space decomposition (C) = $7(C) @ 8 (C) corresponding to +1 and —1 eigenvalues re-

spectively. This induces a decomposition of the Dirac operator D¢ of the cone metric:
DE:T(3%(C)) = T($7(Q)).

Proposition 3.1.5. For the Dirac operators Dy : T(8(X)) — T'(8(X)) and Dz : T(% (C)) —

I'(8%(C)), we have,
_ 0 1/7
Dcn—dr (ar+r <2—D2>> 17

Proof. We fix the convention where the indices i, j, k run from 1 to 7 and y, v run from 0 to 7.
Let e; be a local orthonormal frame of TX and using the metric g5, the dual ¢’ be that of T*X.
Then E° := dr and E' := re' fori = 1,...,7 form a local orthonormal frame for T*C(Z).
Moreover, let d; be the differentiation with respect to ¢; and D), be the differentiation with
respect to E, (vector field dual of E¥ using the metric gc).
Now, let w§ be the connection 1-form of the Levi-Civita connection on T*X. Hence, VZe¢! =

—w;ej . Then
aJ§ = —w{ (3.5)
and
de' + w]l: Nel = 0. (3.6)
Moreover, let QF = —(), be the Levi-Civita 1-form on C(X). Now, dEY = d%r = 0. So,

dEO—i—Q?/\ei :0:>Q?/\ei:O. Fori > 0,

dE' = —Qi, NEF = —Qf Adr — Qf Arel. 3.7)
Also,

dEl = dr ANeét +rdet = dr ne' — rw]’: Ael. (3.8)

Comparing (3.7) and (3.8), we get

Oh =¢, Q; = w]’:

Now let I';, be the Christoffel symbols of the Levi-Civita connection on C(Z) and 7! J be that
of on X. Then,

Vezkej = 'y,ijei.
But,

Vezkej = w;:(ek)ei.

20



3.1 Fredholm and Elliptic Asymptotically Conical Operators

Hence,
'y}(j = w}-(ek) = ek'y}cj = w;-.

Similarly, E°T, = Qb

Now, E°T, = Qf = EQf) = I’gv. But Q) is either Q? = ¢ or Qf) = —¢ or Q; = w; and
hence EgQ), = 0, which implies

Iy, =0

and
1

o S o . 1 .
ET =0y =¢e =re'Tiy=¢ =T}y = ;eke’:;é,’(.

Now, we consider the natural embedding of CI(7) into CI°(8) by ¢! — EE’. Then the action
of Dirac operator Dy on 57 € I'($(X)) is given by

Dyyy = E°E! (am + i'yf-‘]-EOEfEOEkiy> : (3.9)

Now, I'7 - 7 = —7 but since Ty = E°E'E°E? .- - E°E7 = E°E! ... E7 = Ty, this implies I's - 7 =
—11. Thus, 7 € T(8™ (C)). The action of negative Dirac operator D~ on C(X) is given by

Dcn = E°Dony + E (Diﬂ + 1FZVVE”EV17>

= Eogz +E <Di17 - %(r{OEOEW +THEE" + rﬁijfEk;y)>
097 i1 1 0pj 10 k j ok
_ anl 1 E'E'E% + %Ei (aiﬂ n 1 k.EjEkiy>

o 2r 47
d 7 1_; 1 ;
= an—z + ZE% +F (81'17 + 47§§EOEJE0E’<;7> . (3.10)
The result follows from (3.9) and (3.10). O

Corollary 3.1.6. Consider the following two twisted Dirac operators: D s, and

Da:T(8(C(T) @grg) = T(87(C(X) @ gr0)-

_ o 1/7
Dy =dr- <8r+r (2—%2)). (3.11)

Then,

Proof. We note that

Da, =clyo (VR1+10VE) =Dy @1+clyo (1@ VA)
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3. Deformation Theory of Asymptotically Conical Spin(7)-Instantons

and
Da.=clgo (VR1+1®VA) =D @1+clgo (1® VA).

Hence we just focus on cly o (1 ® V4z) and clg o (1 ® V4¢).
Let {g,} be a local frame oj g, @5 = e'¥5, be the connection 1-form of V4= and Q) = ET¢,
be that of V4¢. Then 7t*@ = Q). Moreover, let {u,} be a local frame for the spin bundle. Then

D a; (fartta @ 8) = Dx(faptta) @ gy + E°E frptia @ 75 Qc- (3.12)

Now,

@EC (fabuu ®gb) = DE (fabuu) X gy + Eifabua X begc

d 1/7 1_; -
=E° <arfab“a + ; <2 — DZ(fab”a))) K gy + ;Elfahua & ’)'qugc
o 1/7 1, -
=E° (81’ + o (2 - DZ)) (favtta ® 8v) + ;(Elfahua) ® Vip&e
o 1/7 1 ; -
(51 (5 Px ) ) G .80) = HEEE ) © T
0 1/[7 .
= E° <ai’ + v (2 - ®A2>> (fabua ® gb) (USII’Ig 3'12)'
O
Finally, we have the description of the set critical weights of the twisted Dirac operator.
Proposition 3.1.7. Consider the Dirac operator
D W87 (X) @gp) = W2 (87 (X) @ gp). (3.13)
Then the set of critical weights is given by
_ 5
@(@A):{VEIR:V—FzESPEC@AZ}. (3.14)

Thus, this Dirac operator D, is Fredholm if v+ 3 € R\ Spec® 4.

Proof. Consider the section ¢ of homogeneous degree v — 1. ie., 0 = e("*l)tn, where ¢! = 7.
Then v € 2(D ) if ¢ is also in the kernel of D ,. Now,

_ Jd 7
0=9D 0= El%! (81‘ + 5~ %AZ> e(v’l)tn
—t, (v— —(v— d 7 v—
= EOE te( 1)t€ (v-1)t (E)t + E - ®A2> e( 1)t17

(v 0 7
= E%%telv1)t <at+2+(v—1)—@Az>q.
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3.1 Fredholm and Elliptic Asymptotically Conical Operators

Index of the Dirac operator D 4
Definition 3.1.8. For A € R, define the space
KA)¢ = {0 ckerDy. :o(r,p) = = 1p(r, p)}

where
m

P(r,p) = g(IOg r)j(o)
]:
and each 77; € T(8(XZ) ® gg)-

The following proposition is a consequence of the fact that the Dirac operator @ 4 is self-

adjoint.
Proposition 3.1.9. If
Da. ( i (log r)/y;(c > =0, (3.15)
with 1, # 0, then m = 0. Hence elements of K.(A)c have no log terms.
Proof. Expanding the expression (3.15) using (3.11), we have
m _ m 1
dr - [((?\ - 1)”2;(10% )i+ r“];)]'(bg r)]lrm')

7 1 . 1,
+2r2‘_1 2(log ) — ;r 2(log r)]%Azq]] =0.

j:O ]':0

Considering this as a polynomial in log r and comparing coefficients of (logr)™ and (logr)™ !
respectively, we get

- 21)A217m + 7r 2+ (A= 1) 2 = 0
= Daglim — 5’7m —(A=1nm =0
D= <A N 5> - (3.16)
and
— 2D a1 + Zr)‘_zﬂmfl + (A =1 2+ iy = 0

2
7
= D a1~ 5lm-1- (A=D1 —migyy =0
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3. Deformation Theory of Asymptotically Conical Spin(7)-Instantons

5
= M = D aglm—1 — (/\ + 2) Mm—1-
Then using the self-adjoint property of D 4., we get

m<’7m/’7M>L2(2) = <®Az77m—1/’7m>L2(Z) —((A+ 5/2)77m—1r’7m>L2():)
= (-1, Daghm)2z) — (A +5/2)m—1,1m) 12(x)
= (Im—1, (A +5/2)11m) 12(5) — (A +5/2) (tfm—1,1m)12(x) = 0 (using 3.16).

Since 17, # 0, we have m = 0. O

Now, consider the Dirac operator (3.13) and denote its index by Index, @ ,. Then, we have

the following theorem.
Theorem 3.1.10. [47] Ifv,v' € R\ 2(D ) such that v < V', then
Index, @, —Index, D, = Y {dimK(A)c: A € (v,v)N2(D4)}.

From the Proposition 3.1.9, we conclude that (1) is precisely the (A + 3) eigenspace of

the operator @ 4,. Summarising, we have the following theorem.

Theorem 3.1.11. The Dirac operator
DaWHAE (X) @) = W28 (X) @ gp)

is Fredholm if v is not a critical weight, i.e., v + % € R\ Spec® 4,. Moreover, for two non-critical
weights v,v' with v < v/, the jump in the index is given by

Index, D, —Index, D, = ) dimker (@AZ —A— 5) :

v<A<Y 2

3.2 Deformations of Asymptotically Conical Spin(7)-Instantons

Let A be an asymptotically conical reference connection that also satisfies the Spin(7)-instanton
equation. Then, we have 717(F4) = 0. Now, we can write any other connection in some open
neighbourhood of A as A’ = A +a for « € Q'(gp). Then,

1
Fy—Fp=dpa+ E[rx,tx].

Hence the connection A’ is a Spin(7)-instanton if and only if 777(Fa1,) =0, i.e.,

1
7Ty (dAzx—l— z[oc,uc]) =0.
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3.2 Deformations of Asymptotically Conical Spin(7)-Instantons

We also have the gauge fixing condition d%a = 0 (which will be described in details later in
page 27). We consider the non-linear operator
PR T(A'®gp) = T((A @ AZ) @ gp)

x> (d*A(x, 77 (dAzx + %[(x, zx])) (3.17)

Hence, the local moduli space of Spin(7)-instanton can be expressed as the zero set of N,
ie, (P4) " (0).

Now, from the identifications of the positive and negative spinor bundles given by $* =
A’@® AZ and §~ = Al we can prove that the linearisation of the non-linear operator PN is

precisely the twisted linear Dirac operator @ ,,
D4 :T(A ®@gp) = T((A° @ A7) ©gp)
a— (dhe, m7(dae)). (3.18)
In order to calculate the zero set of the non-linear operator, we calculate the kernel of the
linearised Dirac operator, using the analytic techniques discussed in the previous subsections.

First we want to investigate the moduli space of AC Spin(7)-connections. We start with

the following lemma.
Lemma 3.2.1. Let a € Q) ¥ (gp) and p € Q)" (gp). Ifk,1 > 4 and p+v < 7, then
(da, B2 = (a,dyp) 2.
Proof. Let us consider the manifold with boundary
X<g:={x € X:0(x) <R}
Then the boundary is given by d(X<gr) = {R} x X. We note that
dla N*xB) =daa A xp—a A xd) B

Now we apply Stoke’s theorem
[ G pravol— | (wdip)dvol = [ dwnsp)= [ (@rp)

Now, by the Sobolev embedding theorem, |«| < CR¥ and || < CR" on the end. Hence, we
have

A < A *B|dvoly < CRITVH7
/{R}XZ((X *ﬁ)‘_/{R}XZM *ﬁ| Volz =

which goes to zero as R — oo, since p +v < —7. O
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3. Deformation Theory of Asymptotically Conical Spin(7)-Instantons

As an immediate consequence, we have,
Corollary 3.2.2. Let f € Q%2 (gp) for v < 0 and dhdaf =0. Thendpf = 0.

Proof. Since there are no critical weights in (—6,0), then if d%dsf = 0 and v < 0, we have
f € Q)% (gp) for some p < —3 for any k. Then daf € Q;f{l (gp) and

1dafll> = (dadaf, f)i2 =0
by integration by parts. O

The proof of the following lemma follows from the maximum principle.

Lemma 3.2.3 ([47]). Let (X, g) be an asymptotically conical Riemannian manifold. Let f € QB'HZ(X)
forv < 0and (d*d)f = 0. Then f = 0.

Then we obtain the gauged version of Lemma 3.2.3 as follows.
Corollary 3.2.4. Let f € QY (gp) for v < 0 and didaf =0. Then f = 0.
Proof. Since f € ker(d%da)y,, we have d4f = 0. Then,
d*d|f|* = 2d*(daf, f) = 0.

Thus | f|? is a harmonic function and hence by Lemma 3.2.3, is zero. Thus, f = 0. O
The following lemma can easily be proved using inverse mapping theorem.
Lemma 3.2.5. If v € (—6,0), then the coupled Laplace operator

dhida s OF 2 (ap) = O (ar)
is an isomorphism of topological vector spaces.

Moreover, we have the following simple result from the theory of Banach spaces.

Lemma 3.2.6. Let X,Y be Banach spaces and T : X — Y be a bounded linear operator. Then ker T
is closed and a closed subspace Xo C X is a complement of ker T if and only if T|x, is injective and
T(X) = T(Xo).

First let us show that the image of d4 is closed.

Lemma 3.2.7. Forv € (—6,0),
Im(da : Q02 (gp) = 0,5 (gr)

is a closed subspace of Qiﬂrl (gp).
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3.2 Deformations of Asymptotically Conical Spin(7)-Instantons

Proof. Let {daf.};>, be a sequence in da(QY2(gp)). Leta € Q}/ﬁrl(gp) such that
lim [ldsfy — i1, = 0
in Qll/f Tl (gp). Applying the bounded operator d%, we get
lim (|44 fo — dsellgu2 = 0

in Qg’fz(gp). Since d*d, admits a bounded inverse, we can define f := (d%d4) 'da and
then,

nh_{r.}o 1fn — fHk+2,v =0
in QY2 (gp). Now, applying the bounded operator d4, we get
lim [|dafn —daflkt1o-1=0.
Hence, by uniqueness of limits, we get « = d 4 f, and hence Imd 4 is closed. O

Proposition 3.2.8. If v € (—6,0), then we have the decomposition
Q¥ (gp) = kerd’; ®Imd,
where d4 : Q% 2(gp) — Q}/ﬁ“l(gp) and d’ : Q}/’ﬁ’](gp) - QS’EQ(GP).

Proof. Let us consider the operator d7 : Qiﬁrl (gp) — ng ,(gp). This is a bounded operator.
Hence the kernel is a closed subspace. We want to show that Xy := Imd, satisfies the
conditions of Lemma 3.2.6. From Lemma 3.2.7 we note that Imd, is closed. Then for T := d’
and X := Q¥ (gp) we have the result.

First we show that 4’ restricted to Imd, is injective. Let, for f,g € QS’S(EP), didaf =
d%dag. Then f — ¢ is harmonic function and hence zero, which implies d4 f —d,g¢ = 0, which
establishes the injectivity.

Now we need to show that d* (QX¥ 1 (gp)) = d% (Imd ) = d%,d4(QY2(gp)). This follows
from the topological isomorphism in Lemma 3.2.5. O

Let us consider the moduli space of connections By;1, = Akt+1y-1/Gk+2,. Then the in-

finitesimal action of the gauge group Gy, , is given by
—da: OV (gp) — O (gp).

Thus we can view the Proposition 3.2.8 as a “slice theorem” which gives us the complement of

the action of the gauge group.
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3. Deformation Theory of Asymptotically Conical Spin(7)-Instantons

Lemma 3.2.9. The action of the gauge group Gy, on the space of connections Ay 1,1 is free.

Proof. Let us consider the stabilizer group
Tav ={9 € Gryoy: - A= A}

We consider gauge transformations as sections of End(V'). Now, the connection A has holon-
omy contained in G and hence it preserves the inner product on V as well as on End(V).
Since, ¢ € T4, is a gauge transformation, by definition 2.37, we have |¢ — I|| € Q%2 (gp)
and hence,

d*dl|lg —I|* =2d"(da(¢ —I),¢ 1) =0= ¢ — [ =0,

since, ¢ - A = A implies d4¢ = 0. Hence, we have I'y, = {I}. O

We note that unlike the case where the manifold X is compact, when X is AC, reducible
connections do not produce singularities in the space of connections modulo gauge.

Let us define the set
Tave = {a € QU ap)  diw = 0, a2 < e}

Then T4, C kerd’ models a local neighbourhood of the moduli space Byq,. We note
that studying the moduli space using the local model T4,  is basically same as solving the
Coulomb gauge fixing condition d%a = 0. This condition is local: locally, near A it selects
a unique gauge equivalent class. The following lemma provides a sufficient condition for

solving the gauge fixing condition. It is the weighted version of Proposition 2.3.4 of [20].

Lemma 3.2.10. [23] If v € (—6,0), then there is a constant c(A) > 0 such that if A" € A,_1 and
A" = A + w satisfies
[z < e(4)

then there is a gauge transformation ¢ € G, such that ¢(A’) is in Coulomb gauge relative to A.

Proposition 3.2.11. If v € (—6,0), then the moduli space By 1, is a smooth manifold and the sets
T, provide charts near [A] € Byy1,y = Aks10-1/ Gki20-

Proof. The smoothness follows from Lemma 3.2.9 and the surjectivity follows from Proposition
3.2.10. The homeomorphism between T4, and a neighbourhood of [A] € By, 1, follows from
a weighted version of Proposition 4.2.9 of [20] and the fact that T4, = {I}. O
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3.2 Deformations of Asymptotically Conical Spin(7)-Instantons

Now, we turn out focus to the main objective of this section: the moduli space of AC
Spin(7)-instantons.

Let us define the spaces,
M(As, V)1 :={A € Agy1-1 1 Ais a Spin(7)-instanton on P} /G-

The proof of the following proposition is a weighted version of Proposition 4.2.16 of [20] and

very similar to the proof for the 7-dimensional case given by Driscoll [23].

Proposition 3.2.12. Ifk > 4 and v € (—6,0), then the natural inclusion given by
M(As, V)kr1 = M(As, V)i is a homeomorphism.

Hence by the same elliptic regularity arguments that show Proposition 3.2.12 and weighted
Sobolev embedding theorem, we see that M(Ay,v); consists of smooth connections. We

obtain the following important corollary.

Corollary 3.2.13. If v € (—6,0), then the zero set of the non-linear twisted Dirac operator (defined in
3.17) given by
DA WA (87 (X) @ gp) = W2 (87 (X) @ gp)

is independent of k > 4. Moreover, a neighbourhood of [A] € M(As,v) is homeomorphic to 0 in

(@5&)71 (0).

Finally, we have all the tools necessary to define the deformation and obstruction spaces,

state and prove the main theorem of this section.

Definition 3.2.14. For v < 0 the space of infinitesimal deformations is defined to be the kernel of
the Dirac operator. That is,

I(Av) = {zx € Q¥ (gp) : Dae = 0}. (3.19)

The obstruction space O(A,v) is defined to be the cokernel of the Dirac operator. That is
O(A,v) = (5 (ar) ® O 4(ar)) /D5 (A (a0))-
We can identify O(A, v) to be a finite-dimensional subspace of QSE ,(gp) @ 0%72 (gp) such
that,
O (ap) & Oy (ap) = D4 (O (ap)) @ O(A,v). (3.20)

We have the main theorem:
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3. Deformation Theory of Asymptotically Conical Spin(7)-Instantons

Theorem 3.2.15. Let A be an AC Spin(7)-instanton asymptotic to a nearly G, instanton As. More-
over, let v € (R\ 2(D,)) N (—6,0). Then there exists an open neighbourhood U(A,v) of 0 in
Z(A,v), and a smooth map x : U(A,v) — O(A,v), with k(0) = 0, such that an open neighbourhood
of 0 € x~1(0) is homeomorphic to a neighbourhood of A in M(Agx,v). Hence, the virtual dimension
of the moduli space is given by Index(D,) = dimZ(A,v) — dim O(A, v). Moreover, M(Asx,v) is
a smooth manifold if O(A,v) = {0}.

Proof. Let X = QM (gp) x O(A,v) and Y = Q% (gp) ® O%*

v—

,(gp). We define a Banach space

morphism as

F:X—>Y
(a,B) — DN + B.

where ’i)i”‘ is the nonlinear twisted Dirac operator (3.17). Then, F(0,0) = 0, and the differen-
tial at (0,0) is given by

dF’(0,0) X—=Y
(a, B) — D40+ B.

Then dF| g ) is surjective and dF| o) = 0 if and only if (D aa, B) = (0,0). Hence ker dF| (o) =:
K = Z(A,v) x {0} is finite dimensional, and we have a decomposition of X as X = K& Z,
where Z C Xis a closed subspace. Moreover, we can write Z = Z x O(A, v) for a closed subset
ZC Qiﬁrl (gp). By implicit function theorem, we choose the open subsets Y C Z(A,v), V1 C
Z and V, C O(A,v), and smooth maps F; : U — V; for i = 1,2, such that

FL0)N (U x V1) x Va) = {((a, F1 (&), Fala)) : a € U}

inX=(Z(A,v)® Z) x O(A,v). Hence the kernel of F near (0,0) is diffeomorphic to an open
subset of Z(A, v) containing 0.
Now, we define U (A, v) := U and the map

k:U(A V) — O(Av)
a— Fo(a).

Then we have a homeomorphism from an open neighbourhood of 0 in x~1(0) to an open

-1
neighbourhood of 0 in (@IXL) (0) given by a — (a, F1(«)). Now, corollary 3.2.13 tells
us that a neighbourhood of [A] € M(A,v) is homeomorphic to a neighbourhood of 0 in

-1
(@1}]‘) (0). Hence the theorem. O
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Chapter 4

Eigenvalues of the Twisted Dirac
Operator on S’

In order to study the deformations of FNFN instantons, we need to calculate the spectrum of
the twisted Dirac operator on the link S”. We use representation theory, Frobenius reciprocity,
and Casimir operators, to write the Dirac operators as a sum of Casimir operators. Then
the problem of finding the spectrum of the Dirac operator reduces to finding the eigenvalues
of the Casimir operators. This method relies on S” being a homogeneous manifold and is
developed based on the works of [55], [5], [6], [22].

4.1 Dirac operators on Homogeneous Nearly G,-Manifolds

Let ¥ = G/H be a reductive homogeneous nearly G,-manifold. We consider the principal H-
bundle G — X. Let py : H — Aut(V) be a representation of H. Then we have the associated
vector bundle E := G x, V — X and the space of smooth sections I'(E) can be identified with
the space of H-equivariant smooth function G — V, i.e. the space C®(G, V).

Now, the following left action of G on the space L2(G, V) gives a representation p;, called

the left reqular representation defined by

(or(h)n)(g) =n(h™'g) (4.1)

for 7 € L*(G,V)H, and g,h € G.
The right action of G on the space L?(G,V) gives a representation pg, called the right
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4. Eigenvalues of the Twisted Dirac Operator on S’

regular representation defined by

(or(R)1)(8) = 1(gh). (42)

We note that pr(h)pr(k) = pr(hk), that is, it is a left action. However, “right” in the name
reflects that it is defined using the right action of G on itself.

Then from H-equivariance,
L*(G, V)" = {n € L*(G,V) : pr(h)y = py(h) 'y for all h € H}.
If we use the same notations for Lie algebra representations, then,
I2(G, V)" = {5 € IX(G, V) : pr(X) = —pv(X)y for all X € b}.

Let G be the set of equivalence classes of irreducible representations of G and for v € G we

have a representative (V,, p,,). Then Frobenius reciprocity implies the decomposition
L*(E) = L*(G, V)" = @B Hom(V,, V)" @ V. (4.3)
veG

Now, since G/H is reductive, we have an orthogonal decomposition g = h & m induced by
the Killing form K on G, defined by

K(X,Y) = Trg(ad(X) ad(Y)). (4.4)
Let us assume that for some constant ¢ the metric given by
g(X,Y) = —*K(X,Y) (4.5)

is a nearly G-metric. Let {I4} be an orthonormal basis for g, {I,:a =1,...,dim(G/H) =7}
is a orthonormal basis for m and {I; : i =8, ...,dim(G)} is a orthonormal basis of §.

We note that in this framework G-invariant tensors on the tangent bundle T(G/H) corre-
spond to H-invariant tensors on m [38].

Now, we consider the complex spinor bundle $(X) = G x, iy A where A is the spinor space
(that is, an 8-dimensional representation of CI(7)). From the splitting 8¢ (Z) = A2 & AL, we
have A = C © mg. We now twist the spinor bundle by the associated bundle E = G x,, g V

for a representation V of H. Then

$C(Z) KE=G X(PA®PV,H) (A &® V)
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4.1 Dirac operators on Homogeneous Nearly G,-Manifolds

The canonical connection V4= : [2(G,A® V)H — L*(G,m* ® A ® V)H can be written as
Vi =€ @ pr(l)n,

where V! is the canonical connection for the spinor bundle and Ay is the canonical connection
of E, ¢ is the basis of m* dual to I, and 7 € L?>(G,A ® V). Then the Dirac operator @}42 is
given by

D, = Lo pr(Lo). (4.6)

Then, from (4.6), for the G, 3-form ¢, we have a family of Dirac operators

9h, =2k, + g 47)

where for t = 0, we have 15?42 = D 4, (defined in (3.1)). Now,

L*(8¢(X) ®E) 2 L*(G,A® V) =2 (D Hom(V,, A V)TV, (4.8)
yeG

where the action of G on V., of the right hand side of the expression corresponds to the action
of o on L?($c(Z) ® E). We note that the Dirac operator commutes with the left action of G
and hence it respects the decomposition (4.8). Then, by Schur’s lemma, for every t € R, the

Dirac operator 17)22, restricted to Hom(V,, A ® V) @ V, is given by
Dl [Hom(v, aov ey, = (15542)7 ®Id (4.9)
where (7)22) : Hom(V,,A® V)H# — Hom(V,, A ® V) is the Dirac operator [22]
0

~1
(@22)7'7 =—L-(0pv,(I)) +tT¢-17- (4.10)

If {I4} is an orthonormal basis of g, then the Casimir Operator Cas;, € Sym?*(g) is the

inverse of the metric on g, defined by

dim G
Casg = Y Ip®Iq. (4.11)
A=1
If (p, V) is any representation of g, then
dim G

p(Casg) = ) p(la)®
A=1
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4. Eigenvalues of the Twisted Dirac Operator on S’

Similarly we define,

dim G
Casy = Y, I4®Ix. (4.12)
A=8

Using Lichnerowicz formula, we can write the square of the Dirac operator as sum of Casimir

operators.

Proposition 4.1.1. [54] Let V be a representation of H, E be the associated vector bundle G xy V —
G/H, and Ay, be the canonical connection of E. Then,

2
(242) 1= (—pu(Casy) +pv (Casy) +49/9)y (4.13)
forn € T($c(X) ®E).

2
The expression for (®22> 1 significantly simplifies as above only for t = 1/3.

2
Restricting the operator (@XE 3) to Hom(V,,, A @ V)2 ® V,, we get

2 2
(@%23) |Hom(V, A0V)HaV, = (53)}4/23)7 ®Id. (4.14)

The self-adjointness of this operator implies that it is diagonalisable with real eigenvalues.

Frobenius reciprocity and Proposition 4.1.1 implies
1/3)\?
(Q)AZ )7 = —pv, (Casy) + pv(Casy) +49/9. (4.15)

Eigenvalue Bounds

We have the nearly G;-manifold G/H which is a reductive homogeneous space. Now, the
Casimir operators commute with the group action, and hence on irreducible representation,

they act as a multiple of the identity. That is,

Id,
Id,

p(Casy)
0,(Casy)

g
Cy

b
Cy

where c% and cf’y are real numbers, called Casimir eigenvalues. Now, let V,, be an irreducible

representation of G. Then we have the decomposition of V., as

sz@wg/

el
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4.1 Dirac operators on Homogeneous Nearly G,-Manifolds

where W, are irreducible representations of H and I is a finite sequence in H (the set of
equivalence classes of irreducible representations of H) which may have repeated entries.

Similarly, for finite sequences J, K in H , we have the decomposition

A=PW, V=PW,.

€] BeK

Let us assume that in the decomposition of W, ® W into irreducible representations, W)

occurs with multiplicity 1. Then we consider the composition map
Gap: Vo = Wo = We @Wp = ARV

where the first map is the projection map and the third one is equivariant embedding. Since
the decompositions of V,,, A and V into irreducible representations of H are orthogonal, {qgﬁ}

is an orthogonal basis of Hom(V,, A @ V). Hence, (g are eigenvectors of (4.15) and
1/3
(@ ‘ ) (qap) = (—C% + cf; + 49/9) Tap- (4.16)

Then {g ﬁ} diagonalizes the twisted Dirac operator (@1/ 3) . The eigenvalues are given
7
by —cf + C/; +49/9 with multiplicities dim Hom(V,, A ® Wg)". Hence the eigenvalues of

(151/3) are \/—cf, + ¢} +49/9 and —/—c§ + ¢} +49/9.

Now, we want to find an eigenvalue bound for the operator (Z)?qz) . First, we have the
¥

following lemma.

Lemma 4.1.2. Let A and B be n x n Hermitian matrices with eigenvalues {\{,..., A} and {AB,..., AB}
respectively. If {78, ..., AA+BY are eigenvalues of A + B, then

w17} 2 min {1} -

i
Proof. Since mm{{/\A‘} = thm (Av,v) and max{})\B‘} = |\I1I;1\|aX1<BU ,0), we have

AB

1

A4

1

[((A+B)ov,0)| = [{Av,v) + (Bv, )]
> [(Av,0)| = |(Bv,v)|

- man

1 )\B
forallv € C" with ||o|| = 1. Hence min {|A{|} — max {|A?|} is a lower bound on {‘Al‘-HB
1 1

1

> min{

i

}?:1'
]
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4. Eigenvalues of the Twisted Dirac Operator on S’

Theorem 4.1.3. Let V., be an irreducible representation of G. If

. 7
L,:= \/rr%n{—c%+c2+49/9}—6>0
or p € A,t en is a lower bound on the smallest positive eigenvalues o .
H, then L., is a lower bound on the smallest p genval D0,
¥

1
Proof. We have (Z)?qz) = ( }4/2 3) — 84)' Now, ¢ acts on A’ and A! with eigenvalues 7
Y i
and —1 respectively. Hence max{|7|,| — 1|} = 7. Now, if A3,...,A2 are eigenvalues for

2
(@X;) , then (@}4/23) has eigenvalues +A4, ..., +A,. Now, the smallest positive eigenvalue
¥ ¥

of (1)}(3)7 is given by \/mﬁm {—C% + cg + 49/9}. Hence, by lemma 4.1.2,

7
: _ 9 b _z
\/mﬁm{ c7+cﬁ+49/9} 6

is a lower bound on the smallest positive eigenvalues of (@942> . O
g

4.2 The Twisted Dirac Operator on S’

We identify S” with the homogeneous space Spin(7)/G,. Let m be the orthogonal com-
plement of g C spin(7) with respect to the Killing form (4.4) on the Lie algebra spin(7).
Clearly, [g2, m] C m and hence the homogeneous space Spin(7) /G, is reductive. Consider the
Maurer—Cartan form 6 on Spin(7) and the splitting 6 = 6y, ® 6, induced by the decomposition
spin(7) = go ® m. Then 6, =: Ay is canonical connection on the bundle G, — Spin(7) — S”
whose curvature is given by

F(X,Y) = —[X,Y],, (4.17)

for X,Y € m. This is a Go-invariant element in A’m* ® g,. The torsion is given by
T(X,Y) = —[X,Y]m. (4.18)

In (2.14) putting ¢ = 1 for canonical connection and denoting T*(X,Y) by T(X,Y), we have

T(X,Y) = §4>(X, Y,.). (4.19)

The nearly G, metric, normalised such that the scalar curvature of the canonical connection

112

is 535, can be written as (4.5) where K is the Killing form (4.4) and c is a constant to be
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4.2 The Twisted Dirac Operator on S’

determined. Let {I4 : A = 1,...,21} be an orthonormal basis for spin(7), {I, :a =1,...,7}
be a basis for m and {I; : i = 8,...,21} be a basis for g;. Let ng be the structure constants

defined by
[1a,15] = f5plc.

We lower the indices as fapc := f EB(SDC' Then,

L, I) = fo1c + fiplie

Then for I,, I, € m, (4.18) and (4.19) imply

2
o= —fab = gfpabc- (4.20)

A simple calculation involving the relations shows that, for ¢ = 2 we have

2(X,Y) = —K(X,Y) = —% Tropnr) (ad(X) ad(Y)). 421)

is a nearly Gp-metric, normalised so that the scalar curvature of the canonical connection is

112
3

Let us consider CI(7), the Clifford algebra over R”. Let A be a 8-dimensional representation
of CI(7) and pa : spin(7) — End(A) be the restriction to spin(7). From (4.8), recall the
identification T(8¢c(Z) ® (gp)c) = L2(Spin(7),A ® V)2, where V 2 spin(7)c. Consider the

operator

P L2(Spin(7), A © V) — L*(Spin(7),A@ V)
D4, = ealla)pr(1a). (4.22)

We want to compare the operator (4.22) with the Dirac operator (4.6). That is, compare pa (1)
with the Clifford multiplication by I,.

Let {¢" : a = 1,...,7} be a orthonormal basis of m* dual to I, of m. Now, we have the
decomposition spin(7) = g, & m. We identify m with R” via an isomorphism F : m — R’
as representations of g>. Then we note that F is unique by Schur’s lemma and imposing the
condition that F commutes with the Gy-structures, i.e., F maps the Gp-invariant 3-form of m
to Gp-invariant 3-form of R”. Then F induces an isomorphism CI(m) = CI(7). Then from
(2.7) we have an isomorphism A = C ©® m¢. The basis ¢” for m* gives orthonormal vectors e
in A. We choose ¢ € A so that {¢’,¢!,...,¢”} is an orthonormal basis for A and the Spin(7)-
invariant 4-form ® is given by the usual formula e A ¢ + *¢. We identify (f,v) € C & mg
with fe® +0v e Al(A)*.
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4. Eigenvalues of the Twisted Dirac Operator on S’

Lemma 4.2.1. The action of pa(1,) on A is given by

a1 (f,0) = (—,0), ¢ = 3 (& A 0) 39) ) 42
Proof. Consider the isomorphism s0(8) = A%(A)* given by
B(w)(u) = —u_w foru € AY(A)* and w € A%(A)%, (4.24)

where _i is the contraction from inner product. We consider the embedding spin(7) < s0(8) =
A%(A)*. Now, A%(A)* = A2® A% where A2, A}, are irreducible representations of Spin(7).
Now the image of the embedding spin(7) <> A%(A)* is the space A, of 2-forms a satisfying
a 1@ = —a. Then A?(A)* = A’m* @ (" Am*). Moreover, A>’m* = A3 & A2, where A, = go.
Then,

m = A3 (AN (AZm* @ (2 Am*)), (4.25)

i.e., the image of m is isomorphic to {a € AZm* & (" Am*): 0 1P = —a}. Now, for a =
1,...,7,

(—eo/\ea%—;e”_l(p) 1d=— (—eo/\e“+;eu¢> :
Hence, we have
m%Span{Ta:: —eO/\e”—l—;e”_lcpza:l,...J}. (4.26)
We calculate
BL)(,0) =B (& e+ 3¢ 39) (7,0
= —(fe +0) 2 (e”/\eo+ ;eanb)
= fe' — (¢, 0)¢" — 5((¢" A 2) 3 9)
= (e o s = (@ no)a9)). 27)

We find that I, is an orthonormal basis for the right hand side of (4.25). We prove that I, maps
exactly to I, under the isomorphism. By Schur’s lemma, we have p,(I,) = cB(I,) for some
constant c. Now, an explicit calculation shows that [8(1,), B(I;)]m = —2¢uwB(I:). But from
(4.19) we also have [pa(Iz), 0a(1p)]m = —3¢abcoa(le). Hence ¢ = 1 and pa(Is) = B(L,). O

Now, the formula (4.23) does not agree with the formula for Clifford multiplication by I,,
which from (2.8), is given by

I - (f,v) = ((e",v), —fe" — (" Nv) J¢). (4.28)
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4.2 The Twisted Dirac Operator on S’

To fix this, we consider another representation of spin(7) defined by

Pa(X) = M1 pa(X) - M

1 0

where M := <0 1,

) = M~L. Then we calculate

5alle)(f,0) = (<e“,v>,—fe“ (@A) m)) |

(4.29)

Thus from (4.28), (4.23) and (4.29), the Clifford multiplication of a spinor # by I, can be

rewritten as
In-n = (oa(la) +20a(1a)) 17
Now, consider the twisted Dirac operator

Dy, :T(8c(Z) @ (ap)c) = T($c(Z) ® (ap)c)-

Consider the operators Q)ZZ given by (4.22) and

DY, LA(Spin(7), A ® V)& — 12(Spin(7), A V)%

D0, = Pa(L)pr(la).

(4.30)

(4.31)

Note that the operators @ZK: and i)iz commute with the left action of Spin(7) and hence

respect the decomposition (4.8). From (4.30), we have

(2%, +290,) = (a(L)pr(la) +2Pa(L)pr (1)
= (pa (1) +2Pa (L)) pr (1)
= Iy pr(ls) = D,

Hence from (4.7) and (4.32), we have
t—1

t—1 ~
Dh, = Dh, + ——9 = (D, +2900, ) + ¢

In terms of Casimir operators, we can write

1

%fqz =3 (pasr(Casm) — pa(Casy) — pr(Casm))

and
- 1 B
D, = 5 (Pacr(Casn) — pa(Casm) — pr(Casm))
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4. Eigenvalues of the Twisted Dirac Operator on S’

where p(Casy) = p(Casgyin(7)) — p(Casy,) = p(la)p(ls). Then restricting @QZ and @22 to
Hom(V,, A ® spin(7)c)©2, we get

(1)?42)7 = % (PA@V; (Casm) — pa(Casm) — Pv: (Casm)) ’ (4.34)
(@12)7 — M (gzsgz)7 M,, (4.35)

1 0

where we define M, in the following way. Recalling M = <O d
- m

) : AN — A, for ¢ €
Hom(V,, ® A, spin(7)c)©?, we define M., by

M, (0 ®8) := E(v ® MJ). (4.36)

Then from (4.33) we have
(), = (2), +2(35), 5t @
Now, we want to calculate the eigenvalues of the Casimir operators appearing in the
expression of the Dirac operator. Let V) be an irreducible representation of spin(7) with
highest weight (a,b,¢) and V(ﬂ,b) be an irreducible representation of g, with highest weight
(a,b). The Casimir operators can be written as
in(7
P (a,b,c) (Casspin(7)) = C?E,‘Z,(C)) Id,
P(ab) (Cang) = C?;,b) Id.

The Casimir eigenvalues are given by,

on = —g(aZ +3b* + 3ab + 5a + 9b), (4.38)
P = —%(4512 + 80 + 3¢2 + 8ab + 8bc + 4ca + 20a + 32b + 18¢). (4.39)

These expressions differ from that of [54], because we use a different normalisation of the

Casimir operator and an opposite convention for the order of 4, b, c.

4.3 Eigenvalues of the Twisted Dirac Operator

For an FNEN Spin(7)-instanton (see section 5.1), the fastest rate of convergence is —2. Hence

we consider the family of moduli spaces M (As,v) for v € (—2,0). We want to find the critical
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4.3 Eigenvalues of the Twisted Dirac Operator

weights in (—2,0), i.e, v € (—2,0) such that v + % € Spec® 4,. Hence, we are interested in
finding all the eigenvalues of the twisted Dirac operator in the interval [, 2].
Since spin(7)c = V(g1,0) = V(1,0) © V(0,1), we have

. G G2 Gy
Hom (V,, A ® spin(7)c) > = Hom (VV,A ® V(l,O)) @ Hom (VW,A ® V(0,1)> .

Then, since C?i,o) = —48/9 and c%/l) = —96/9, we have
(24°) =) L 14979 =~ 419,
= )9 | tom (Vo 2Vi0)) 2 U (1,0) 7
2 : .
1/3 __ _spin(7) g9 __ spin(7)
(@Az 0% Hom(erA®V(01))G2 -4 +C(0/1) +49/9 =% 47/9' (4'40)
Hence the eigenval d their multiplicities of (9%
ence the eigenvalues and their multiplicities o ( Ay )7 are
Eigenvalues Multiplicities

. G
_nypm(7) _|_ % dlm Hom (Vry, A ® V(LO)) ’

. G
_Csvpm(7) _ 49l dim Hom (VWA 2 V(O,l)) 2

Hence, we can restate Theorem 4.1.3 as: for V,, = V|,; ) an irreducible representation of
Spin(7), if

— — in(7) 7
Ly := Ly, i= \/ ~Clabo —47/9- 2 >0, (4.41)

then L, is a lower bound on the smallest positive eigenvalues of (@?42> .
g

This yields the following important corollary, which follows from (4.41) and (4.39).

Corollary 4.3.1. Consider the irreducible representations of Spin(7) given by

Vi00,0) V1,000, V(00,1 V01,00 V200, Va,01)-

If V., is not one of these irreducible representations, then the operator
(Cb%z),y : Hom (V,,, A @ spin(7)¢) <> — Hom (V,, A ® spin(7)¢c)

has no eigenvalues in the interval (—3,3).
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4. Eigenvalues of the Twisted Dirac Operator on S’

4.4 Calculation of Eigenvalues of the Twisted Dirac Operator

In this section we explicitly calculate the eigenvalues of the twisted Dirac operator corre-
sponding to the representations mentioned in Corollary 4.3.1. Let us describe the outline of
the method.

Let V, be an irreducible representation of Spin(7). We want to find the matrix of the
operator given in (4.37).

We note that, by Gy-equivariance, on Hom(V(q1) ® V), spin(7)¢)“2, we have

Paxv, (Casgz) = Pspin(7)¢ (Casgz ) (4.42)

Hence, from (4.34), (4.42) and the isomorphism V' = V,, we can rewrite the operator (%QZ) §

as

1
(9%.), = 5 (P27, (Casint) — Papnir)c (Cases) — pn(Casm) —pv, (Casw)) . (443)

* First, we want to find a basis of Hom (V1) ® V., spin(7)c)“? that diagonalizes
Pspin(7)c (Casg,) +pa(Casm) + pv, (Casw). We construct the basis by non-zero G,-equivariant
maps
qg;{),f)"” :Vioon) © Vo = Viej) © Vien) = Vi) — spin(7)c, (4.44)
where V|, ) is either V(; ) or V(). We identify spin(7)c with A?(C7), and the models
for the representations V; ;) and V|, ;i) are described in Appendix B.3.5. We use the
identities in Appendix B.3.4 and the projection formulae from Appendix B.3.5 to write

down explicit expressions of these maps.

* Then, we want to find a basis that diagonalizes pazv, (Casspmm). We consider the maps

ik .
P&ini :Vioo) ® Vo = Vi) = Vi) — spin(7)c. (4.45)

Then, pg;f:; are eigenvectors of pagv, (Casgyin(z)) With eigenvalues c"(’f;“k(;)
¢ From the explicit expressions of g-basis and p-basis elements, we write pg;fg in terms

(@) (k1)

(mn)

e Now, qg;f)n(;{ " are eigenvectors of —pqpin(7). (Casg,) — pa(Casm) — pv, (Casy) with eigen-

— Cigjg,(f)) — cf,pi"m and pglnf:; are eigenvectors of paxv, (Casgyin(7))

of g and the change of basis matrix.

92 92 _ .02
values it ?(m,n)
with eigenvalues c?f}nk(; ). Then using the change of basis matrix, we write down the ma-

trix of (@ZJ in the g-basis (4.43).
0t
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4.4 Calculation of Eigenvalues of the Twisted Dirac Operator

¢ Next, we calculate the matrix of M, in the g-basis. From (4.36), we see that it is a diagonal
matrix with entries either 1 or —1, since ¢; factors through either V(o) = A C A, or
Vi) = A! C A. Then, we calculate the matrix of (@iz) in the g-basis (4.35).
v

¢ In the g-basis, we have ¢ acting as a diagonal matrix with entries either 7 or —1, by
Lemma 2.1.3, since g; factors through either V() = A C A, or Vi) = Al C A

Consequently, using (4.37), we calculate the matrix of (@22) in the g-basis.
v

2
¢ We note that for t = 1/3, by (4.16), <®}4/2 3) should be a diagonal matrix in the g-basis,
v
where the entries are either _nypm(7 ) + % or —c“:’fm(7 ) _ %, by (4.40), which acts as a
consistency check for our calculations.
Throughout the calculations, we use (4.38) and (4.39) to calculate the Casimir eigenval-
ues.

¢ Finally, for t = 0 in the matrix of (@22) in the g-basis, we calculate the desired eigen-
v

values of (@?42%.

Eigenvalues from the representation V()

We start with V., = V(g o), the trivial representation of Spin(7). Then, by Schur’s lemma,
Hom(V,, A ® spin(7)c)“? = Hom(C, A ® spin(7)c)“? = Hom(A, spin(7)c) 2.
This space is one dimensional with a basis given by the map that factors through projections
q: 8 = Vi) — spin(7)c.

Now, when V, is the trivial representation, py, (Casn) = 0 and pasv, (Casn) — pa(Casm) = 0.
P — o _ 0 _ 1

Then, from (4.34) and (4.35), we have (Zi’)AZ)7 =0 and (,”}.’)A):)7 = 0. Thus, (@AZ)’Y = —5¢.

Now, by Lemma 2.1.3, ¢ acts as —1 on the space Hom(A, spin(7)¢c)? since g factors through

Vi,0) & Al C A. Hence, the eigenvalue of (1)2\2)7 is %

Eigenvalues from the representation V; o)

Let V,, = V(1,0 be the standard representation of Spin(7). The space Hom (A ® V{y o), spin(7)¢ )2

= Hom(Vg01) ® V(l,olo),spin(7)c)cl is three dimensional. This follows from the facts that
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4. Eigenvalues of the Twisted Dirac Operator on S’

Vi001) @ Va0 = Voo @ 2Via0 © Vion) © Vo), spin(7)c = Vo100 = V(1,0 ® V(o) and

Schur’s lemma. Applying appropriate projection maps, the basis q&])n(;( D of Hom (V1) ®

V(1,0,0),50in(7)c) 2 is given by

H Maps ‘ Formula H

Vioo,1) @ V1,000 = V(o) ® V10 = Vv — spin(7)c
=140 (adt +0) @ (At Ab+w) — adt ® (w1 ¢P) — Fa(w 1)
= ta(w i) 1 =aw
Vioo1) @ Vii00 = V1,0 @ Vo) = Viae) — spin(7)c
_ L)1, 1 1
92 = 41p) (v+adt) @ (dtAb+w) —» o (Fwad) — (vA3(wag)) 1¢
= 3((@A([Wa¢)) 3¢) 1¢
Vioo1) @ Vit00 = Vo) ® Vgl,O) — Vio,1) = spin(7)c
G3=4dpy | (©+ad)@@dtAb+w) 0@ (zwa) = 3mis(oA (wa¢))
= 30N (wa¢) —5((A (W 19)) 1¢) 1¢

To calculate the basis pg;fg of Hom(V/g,1) ® V(llolo),spin(7)c)62 we use the following projec-

tion maps

V(O,O,l) ® V(l,O,O) — V(0,0,]), (adt + U) ® (dt Ab+ ZU) — (lldt + U) _l (dt Ab+ ZU),
V(O,O,l) X V(l,O,O) — V(l,O,l)' (adt + U) X (di’ Ab + ZU) —> 7'(48((adt + U) A\ (dt Ab + ZU))

where 7143 is the projection A3(C®) — A3 (C?). Then we apply appropriate projection formu-

lae given in Appendix B.3.5 to project it further to V(; o) or V(g 1). consequently, the basis pgin]zg

is given by
H Maps ‘ Formula H

_ (001) Vio1) ® Va0 = Vo) = Vae) — spin(7)c

PL= P (adt +v) ® (dt/\b+w)r—>aw—1((v/\(w_|q>))_|q>)
_ (101) Vio1) ® Ve — Vi) = Vae — spin(7)c

P2 =P (adt +0) ® (dt/\b+w)»—>aw+118((v/\(w_|¢))_|(p)

pg = p{to) Vioo,1) ® V(100 = V(101) — Vo) — spin(7)c

ST | (adt+0) @ (dEAb+w) —gv/\(WJsb) s(OA (W) 1) ¢

44



4.4 Calculation of Eigenvalues of the Twisted Dirac Operator

Finally, we write the basis pgﬂﬂg in terms of qE:ﬂ])n(f D as
P1=4q1—4q2
]
P2 =1 6Q2
ps = —4qs-
Now, qE:ﬂ])’g D are eigenvectors of —0gyin (7). (Casg,) — pa(Casm) — pv;,, (Casm) with eigenval-
ues
pin(7) _ spin(7)
i)+ ey ~ Cmm) ~ S001) ~ C(100)
Hence,

—Pspin(7)c (Casg,) — pa(Casy) — OViin0) (Casp) = diag(15,29/3,15)
Moreover, pgﬂjg are eigenvectors of pagv, (Casgpin(7)) with eigenvalues C?F'in(ﬂ. Then the

i,]k)
eigenvalues corresponding to the eigenvectors pg(l)’g’)l),pg’g’)l) and pE(l)'(l)’)l) are —7, —%, and

—2 respectively, which implies, we have PA&V,1 00 (CaSepin(7)) = diag(—7,—49/3,-49/3) in

the p-basis. Since g factors through V() = A® C A, whereas g; and g3 factor through

Vii0) & Al C A, , we note that in the basis g1, 9, g3, the matrix M, = diag(1,—1,—1) and ¢

acts as the matrix diag(7, —1, —1). Consequently, by (4.37), the matrix of (@22) in the basis
Y

91,42, q3 is given by

Z(t—1) 4 0
(Q’fﬁz)ﬂ/( % 2_%(t_1) 0 )
0 0 —2-1(t-1)

2

We note that for t = 1/3, we have (@XZ 3) = diag(43/9,43/9,25/9), in the g-basis, which
4

shows that our calculations have been consistent. Finally, for t = 0, the eigenvalues are given

by +(—3+2v105), £(—3 —2V/105), —3.

Eigenvalues from the representation V()

Let V,, = Vg ,1) be the spin representation of Spin(7). The space
Hom(A ® V(Ololl),spin(7)C)G2 = Hom (V1) ® V(Ololl),spin(7)c)cz is four dimensional. This

follows from the facts that V(g91) ® Vigo1) = 2V(00) @ 3V(1,0) @ Vio1) @ Vio0), pin(7)c =
(i) (k1)

(m,n)

Vioi,0) = V(1,0 @ V{o,1), and Schur’s lemma. The basis g of the space Hom(V(gg1) ®

V(O,O,l)/ﬁpiﬂ(7)c)c2 is given by
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4. Eigenvalues of the Twisted Dirac Operator on S’

H Maps ‘ Formula H
_ (00)(1,0) Vi0,01) @ Vi001) = Vioo) @ Va0 — Via,e) — spin(7)c
=00 (v+ adt) ® (w+ bdt) — adt ® w — aw — aw 1 ¢
_ (1,0)(00) Vi0,01) @ Vi001) = V1,0 © Vo) = Viz,0) = spin(7)c
92 = (1,0 (v + adt) @ (w + bdt) — v @ bdt — bv — bv I ¢
__(1L0)(10) Vi0,01) @ Vi001) = Vi,0 @ Vv — Viae) — spin(7)c
=010 (v4adt) @ (w+bdt) »vR@wr (VAw) 3¢ — (v Aw) J¢) J¢
Lol(1o Vioo,1) @ Vo) = Vv ® Vo) = Vo) — spin(7)c
q4:q20'1§(') (v 4+ adt) ® (w+ bdt) — v @ w — m4(v A W)
= (o Aw) = (0Aw) — (o Aw) J1¢) J¢

The basis pg g of Hom(V(g1) ® V(o,o,1),5pin(7)c)G2 is given by
H Maps ‘ Formula H

_ . (100) Vioo,1) @ Vio0,1) = V1,00 = V0 — 5131"(7)0:

PLZP00) | (v+adt) @ (w+bdt) — aw ¢ —bo o+ (v Aw) 1¢) 2
_ (010 Vio01) ® Vo) = Vio10) = V) — spin(7)c

P2 =P (v+adt)®(w+bdt)r—>3aw_|4> 3bv i — ((vAw) 1) J¢
_ (010 Vio1) ® Vo) = Vio1,0 = Vo) — spin(7)c

P3 =Py (v+adt) (w+bdt)|—>vAw—l((v/\w) ) ¢
_ ,(002) Vio01) ® Vioo1) = Vioo2) = V) — spin(7)c

Pa= Py (v+adt) ® (w+ bdt) — aw 3¢ +bv 1

Finally, we write the basis pg g in terms of qg )(;( D as

Pr=q1—q2+4q3
p2 =3q1 — 392 — g3
p3 = q4

P4 = q1 + q2.

Now, —pgpin(7)c (Casg,) — pa(Casm) — pv,,, (Casm) = diag(14,14,26/3,14). Moreover, the

eigenvalues corresponding to the eigenvectors pgl 0)0), pEO 1)0), pgg 1)0) and pg(l]:g’) ) are -8, — —, — 43—0,

and —16 respectively. which implies, in p-basis,

PA®V(0,0,1) (Casﬁpmm) = diag(—8, —40/3, —40/3, —16).
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4.4 Calculation of Eigenvalues of the Twisted Dirac Operator

Since g; factors through Vioo) = A% C A, whereas 92,93 and g4 factor through Viio) & Al C

A, in the basis 41, 92,43, g4, the matrix M, = diag(1l,—1,—1,—1) and ¢ acts as the matrix

diag(7,—1,—1, —1). Consequently, by (4.37), the matrix of (®f42> in the basis 41,92, 93,94 is
¥

given by
7(t—1
— (2 ) ;l : _2 0
1 —&1 —6 0
@i& = 1 2 —1
< 2)7 -1 -1 -1-% 0
0 0 0 - =L

2
We note that for + = 1/3, we have (@}{;) = diag(64/9,64/9,64/9,16/9), in the g-basis,
¥
which shows that our calculations have been consistent. Finally, for t = 0, the eigenvalues are
given by %(—3 —8V6), %(—3 + 8V/6), —%, %

Eigenvalues from the representation Vg

Let V,, = V(g1,0) be the adjoint representation of Spin(7). The space Hom(A ® V{q1 g), spin(7)¢) 2 =
Hom(V{01) ® V(Olllo),spin(7)¢)cz is five dimensional. This follows from the facts that V(1) ®

V(O,l,O) = V(O,O) S5) SV(LO) SY) 2V(0,1) SP 2V(2,0) SP) V(l,l)/ 5piﬂ(7)c = V(O,l,O) = V(l,()) 8P V(O,l)l and
(@,7) (kD)

Schur’s lemma. The basis g (m1)

of Hom(V(g1) ® V(Olllo),spin(7)C)G2 is given by

’ ‘ Maps ‘ Formula ‘ ‘
g1 = q00010) Voo @ V(01,0 = V(00 @ Va0 = Vire) — spin(7)c
LR CV) (v+adt) @ (At Ab+w) — adt @b — ab — —a(w J1¢) 1 ¢
_ (0,0)(0,1) V(O,O,l) ® V(O,l,()) — V(O,O) & V(O,l) — V(O,l) — 5pil’l(7)c
92 = 1) (v+adt) ® (At Ab+w) — adt ® mig(w) — am(w) — aw — Ta(w 1) 1¢

V(O,O,l) ® V(O,l,O) — V(l,O) ® V(l,O) — V(l,O) — spin(7)c
93 =14qnp) (v+adt) @ (dtAb+w) —vR@b— (VAD) 2@
= (i (wag)1¢) ¢

Vi0,01) @ Vo0 = Vo) @ Vg = V(o) — spin(7)c
qa = q(O:l) ' ('U + &ldt) (%9 (dt/\ b+ ZU) HoRb— 7'(14(2) VAN b) g 7'[14(’0 A b)

= (WA (w19))+3((A(W¢)) 1¢) 1¢
Vio01) ® Vo0 = Vi) @ Vior) = Va0 — spin(7)c
g5 = ‘7(1:0) ’ (v+adt) @ (At Ab+w) — v® ma(w) — v 2 ma(w) — (v ma(w)) 2¢
= (vaw—gva(wag)19))) 1¢

The basis pé'nf:g of Hom(V(Om) ® V(Orl,o),spin(7)C)Gz is given by
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4. Eigenvalues of the Twisted Dirac Operator on S’

H Maps ‘ Formula H
py = p(0,0,1) Vio,01) @ Vo0 = Vioo1) = V) — spin(7)c
1= Pao (v+adt) @ (dEAb+w) — —a(w ) 3¢+ (vaw) ¢
101) Vio1) ® Vo0 = Viae1) = V) — spin(7)c
py = p(l:O,) (v+adt) @ (At ANb+w) — 4a(w ) 2p—7(va((wagp))2¢) 2¢
+3(vaw) a¢
(101} Vio,01) ® Vo0 = Via01) = Vo) — spin(7)c
3 =P (v+adt) @ (dtAb+w) — aw — 3(aw 1) 1¢+ (VA (w1 ¢))
—3((0A(wIg))1¢)1¢
py = pl01) Vio,01) @ Vo0 = Vio11) = V) — spin(7)c
4= Payo) orthogonal to p; and p»
_ (011 Vio01) ® Vo0 = Vio11) = Vo) — spin(7)c
P5= Pl orthogonal to p3
Then, we write the basis pg;jg in terms of qg;{)n(;( 1 as

1
p1=q1+ §q3+015
p2 = —4q1 — 693 + 345
P3 =42 — q4.

In order to calculate ps and ps, we calculate the norm of the g-basis element. By computing
the matrix of g explicitly, and using ||g||*> = Tr(q"q), we find that

189

63
lgull® = 7 llaall* =14, Jlgsl|* = ==, llaal|* = 21, and gs||* = 84.

Now, p4 factors through V(;g), so must be a linear combination of 41,43,95, and similar ps
factors through V(g 1), so must be a linear combination of g, and q4. Then, we use the fact that
the p-basis and the g-basis are orthogonal, we find,
1 1
Pa=4q1 — 8‘73 - g%
ps = q2 + EIM
3

Now, —pgpin(7)c (Casg,) — pa(Casm) — pv,, (Casm) = diag(61/3,61/3,15,61/3,29/3). More-

over, the eigenvalues corresponding to the eigenvectors pgg),g,)l) , pg’g’)l), Pgé’(l]')l), pg(l)’cl)’)l) and pgg’i’)l)
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4.4 Calculation of Eigenvalues of the Twisted Dirac Operator

are

-7, ——, —% _23and —23 respectively. which implies,
pA@V(l,o,l) (CaS5pm(7)) = diag(—7, —49/3, —49/3, —23, —23).

Now, since 4 and ¢ factors through V() = A® C A, whereas g3,94 and g5 factor through

Vi,0) & Al C A, in the g-basis, the matrix M, is given by diag(1,1,—1,—1,—1). and ¢ acts as

the matrix diag(7,7, —1, —1, —1). Consequently, by (4.37), the matrix of (1522) in the basis
¥

91,492, 93, 94,95 is given by

Z(t—1) 0 —4 0 —1%
0 Z(t—1) 0 2 0
(9%) =| -3 0 —2-1¢t-1) 0 g
Y 4 2 _ 1
0 3 0 (t—1) 0
-1 0 3 0 —3(t-1)

We note that for £ = 1/3, we have (@1/3) = diag(121/9,73/9,121/9,73/9,121/9), in the
7
g-basis, which shows that our calculations have been consistent. Finally, for t = 0, the eigen-

values are given by 1(—1—2v17), (-3 —2V/105), 1(-1+2v17), -, 1 (-3 +2V/105).

Eigenvalues from the representation V, )

Now, let us consider the irreducible Spin(7) representation V., = V(; ). The space Hom(A ®
V(20,0),50in(7)¢)? = Hom(V(01) ® Vp00),5pin(7)c) is two dimensional, since V{g1) ®
V(z 0) = V(LO) @ V(O,l) S5) 2V(2,0) S5) V(3,()) SP) V(l,l)’ 5piﬁ(7)c = V(O,l,O) = V(L()) 8P, V(O,l)' The basis
qum,n) D of Hom(V{g01) ® V(z,olo),spin(7)c)62 is given by

Vi) @ Vigoo — Va0 @ Vigo) = Va0 — spin(7)c

: V(O,O,l) & V(z/o/o) — V(l,O) & V(z/o) — V(O,l) — 5pin(7)c.

/ Ilz of Hom(V{ 1) ® V(Z,O,O),spin(7)c)cz is given by

p1= Pg:g')l) Vi1 @ Voo = Vii01) = Vi) — spin(7)c
p2 = Pg(l):%l) Vi1 @ Voo = Vii01) = Vo) — spin(7)c.

Since the maps 41 and g, are unique up to scale, we choose the basis pg;ﬁg in terms of qglmj)n(;( 2

as

p1=q and pz =qo.
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4. Eigenvalues of the Twisted Dirac Operator on S’

(Casy) = diag(119/9,167/9). The

(1,0,1) (1,0,1) 49
(1,0) (01) € —73/

which implies, in the p-basis, pacv, ., (Casgin(z)) = diag(—49/3, —49/3). Now, since 41 and

Now, in the g-basis, —pyin(7) - (Casg,) — pa(Casy) — OVirgn)

eigenvalues corresponding to the eigenvectors p and p and — % respectively,
q2 factor through V(y o) = Al C A, in the g-basis, M = diag(—1,—1) and ¢ acts as the matrix

diag(—1, —1). Consequently, by (4.37), the matrix of (Z)fqz) in the basis g1, g2 is given by
0

(2.), = <—3O—z w_ot_21>.

2
We note that for + = 1/3, in the g-basis, we have (@XZ 3) = diag(169/9,121/9), which shows
¥

that our calculations have been consistent. Finally, for t = 0, the eigenvalues are given by

—25 23
676"

Eigenvalues from the representation V(; o)

Finally, we consider the irreducible Spin(7) representation V,, = V{3 ;). The space Hom(A ®
Vi1,0,1),50in(7)¢)? = Hom(V(gg1) ® V(1,0,1),5pin(7)c)“? is seven dimensional, since V|qq7) ®

Via,01) = 4V(20) ©4V(1,0) © 3V(0.1) © Via,1) © Viz0) © Vi1,1) @ V(o). s9in(7)c = Vio1,0) = Vii0) @

7) (k1)

Vio,1)- The basis q&/n) of Hom(V(o,o,l) ® V(Lo,l),spin(7)¢)G2 is given by

H Maps Formula H
_ _(00)(1,0) Vioo1) @ Via01) = Vioo) @ Vo) — Vire — spin(7)c
=400 (adt +v) @ (dt Ab+w) — a(ba¢) J¢
_ (1,0)(1,0) V(O,O,l) ® V(l,O,l) — V(l,O) & V(l,O) — V(l,O) — 5pi1’1(7)c
92 = 49,0 (adt +0) @ (At Ab+w) — (VA (b)) J¢) 2o
g — q(l,O)(l,O) Vioo1) @ Vi) = V1,0 @ V) — Vo) — spin(7)c
3~ o) (adt+0) @ (dtAb+w) > oA (bag)— (oA (bag)) 1¢) 1¢
_(00)(0) Vi0,01) @ Via01) = Vioo) ® Vo) — Vio) — spin(7)c
4= o) (adt +0) @ (dt ANb+w) — ab— La(b 1 ¢) 1
_(10)(01) Vi0,01) @ Via01) = Vi) @ Vo) = Vige) — spin(7)c
95 = a0 (adt +0) @ (At Ab+w) — (vab) ap+ 1 ((0A(bad) 1)) 1¢
g6 = q(LO)(Z,O) Vi0,01) @ V1) = Vi @ Vigo) = Vige) — spin(7)c
6= 0 (adt +0) @ (dEAD+w) = L(vow) 3¢) 3¢+ L(vA(bag)) J¢) 3¢
10)20) Vioo1) @ Vi) = V1,0 @ Vo) = Vioa) — spin(7)c
97 = a0 (adt +0) @ (At AND+ w) — v;lw— H(vaw)ap)ap— oA (bag)
+5((0A(bap)) 1¢) a¢
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4.4 Calculation of Eigenvalues of the Twisted Dirac Operator

Now, the basis p

(
(

i,j,k . . .
;j’n; of Hom(V{ 1) ® V(Loll),spln(7)c)c2 is given by

’ ‘ Maps Formula ‘ ‘
P = (1,0,0) Vioo1) @ Vi) = Va0 — Ve — spin(7)c
1= Pao) (adt+0) @ (dtANb+w) —a(bap) 2¢+ (vaw) a¢p) 2¢p— (vab) 2¢
_ (010 Vi0,01) @ Via01) = Vo0 — V(a0 — spin(7)c
P2 = P, (adt+0)@ (dtANb+w) —abap) 2¢+ (v2w) 1¢p) Jp+3(vab) 1¢
Dy — p(O,l,O) Vioo) @ V1) = Vior,0 — Vion) — spin(7)c
37 o (adt +0) @ (dt Ab+w) —ab—1(a(bap) 1+ (vaw) — L((vaw) 1) 1¢
002) Vi0,01) @ Via,01) = Vioe2) — V(1,0 — spin(7)c
Ps= Py (adt +0) @ (At Ab+w) — —a(ba¢) 1p+ (vab) J¢
+((vaw) 1¢) 1¢p—2(wa((bip) 19)) 1¢
(1.10) Vi0,01) @ Via01) = V0 = V(o) — spin(7)c
P5 = P(o1) (adt +0) @ (At ANb+w) — 4o A (bap) —2((vA(ba¢p)) 2¢p) 2+ 6ab
—2(aba¢) 1p—2(vaw)+ 3((vIw) 1¢) 1¢
P = p(LOIZ) Vi0,01) @ Via01) = Va2 — Vi) — spin(7)c
6 (1,0) orthogonal to p1, p2 and py
_ (1,0,2) V(O,O,l) ® V(l,O,l) — V(l,O,Z) — V(O,l) — 5pin(7)c
P7 = Poy) orthogonal to p3 and ps

For ps, we note that the representation V(l,l,O) is not a subspace of the exterior algebra. We

cannot use the norm technique either, since we also need to calculate the expression of p7 in

terms of g-basis using the norm technique. But, we note that the irreducible decomposition

Of the V(l,O,O) (039 V(O,l,O) is V(Loro) ) V(O,O,Z) D V(l,l,O) Wthh contains V(LLO)' Whereas, A4 (Cg) has

the decomposition V(g 0y © Vi1,0,0) © Viz,0,0) @ V(0,0,2) (See Appendix B.3.5). Hence we consider

the following model of V(; ; o). Consider the map

Then,

0 : A%(C%) @ A%(C®) — A*(CP)
wRN— wA1.

Vi = kere‘/\g(cf‘)@/\gl (C8)*

Hence, for wy ® wy € A%(C¥) ® A%, (C8), we have

Ty,

(1,1,0)

1
(w7 @ wa1) = Tyerp (W7 @ wo1) = Wy @ woy — EEW ® EM 1 (w7 A wn)
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4. Eigenvalues of the Twisted Dirac Operator on S’

where E¥ is an orthonormal basis of A'(C?) and E° = dt. In order to express ps and p;
in terms of g-basis elements, we calculate the norm of the g-basis element. By computing the
matrix of g explicitly, and using ||g||*> = Tr(q"q), we find that ||q1]|> = 36, ||q2]|*> = 216, ||g3]|> =
48, ||lg4]1> = 14, ||g5|1> = 84, ||g6/|> = 18, and ||g7||> = 63. Then, we use the fact that p-basis

and g-basis are orthogonal. Hence, the basis pélm]z; in terms of qgnj)n()k D is
1
P1=11— ¢92 = q5+ 316
9
Pa=q1— a2t 345 + 346
1
p3 = ZQ3+Q4+IJ7
7
Pa= "M+ 42+ 45+ 346
7
Ps = 543 + 644 — 247
B VR O
Pe =M1 6112 7(15 3116
2
pP7 =43 7 g4 21117.

Now, in g-basis, —pgyin(7). (Casg,) — pa(Casm) — v, (Casm) is the matrix

diag(70/3,18,70/3,70/3,38/3,98/9,146/9). Moreover, the eigenvalues corresponding to the

. (1,0,0) _(0,1,0) (0,1,0) . (0,02)  (1,1,0) _(1,02) (1,0,2)
eigenvectors p '), P Pio) +Piio) »Ploa) - Pio) and pgy)” are
—8, 40

-3, —%, —16, —24, —%0, and —83—0 respectively, which implies, in the p-basis,
PA&Viy 1) (CaSepin(7)) = diag(—8,—40/3, —40/3, —16, —24, —80/3, —80/3).

Now, in the g-basis, since g1 and g4 factors through V(g ), whereas g2, 43, 45, 46 and g7 factor

through V(4 o), the matrix M, = diag(1, —1,—1,1,—1,—1, 1) and ¢ acts as the matrix

diag(7,—-1,—1,7,—1,—1, —1). Consequently, by (4.37), the matrix of (@;Q in the g-basis is
g

Z(t—1) 5 0 0 z -3 0
R I VI 0o - 0
0 0 -3-de-n) —hH 0 0 3
0 0 -2 Z(t—1) 0 0 -3
1 -3 0 0 t-1) -3 0
-3 -3 0 0 -7 —I-1(t-1) 0
0 0 2 -1 0 0 2 1(t—1)

We note that for t = 1/3, we have

2
(z)}@) — diag(148/9,148/9,100/9,100/9,148/9,148/9,100/9)
v
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4.4 Calculation of Eigenvalues of the Twisted Dirac Operator

in the g-basis, which shows that our calculations have been consistent. Finally, for t = 0,
the eigenvalues are given by 3(—1 —4v/5), 1(—3 — 4/33), +(1+4V37),3(-14+4V5), (1 -
4V/37), :(—-3+4v/33), - £.

Main Result

Theorem 4.4.1. The eigenvalues of the twisted Dirac operator (@?42) are
v

1. %fOV Vr)/ = V(0,0,0).
2. For Vz)/ = V(l,O,O)/
1
(~3+2V/105), £(~3 - 2V/T0B), —g.

SN =

3. For Vr)/ = V(O,O,l)/

1 1 3
6(—3—8\@), 6(—3+8\£), ~5 5

N G1

4. For Vr)/ = V(O,l,O)

%(—1—2\5), %(—3—2%),%(—14@@), —%, %(—3+2\/ﬁ).

5. For Vr)/ = V(z[o/o)

6. For Vry = V(l,O,l)

(=1 —4V5), =(—3 —4V/33), %(1 +44/37),

N —
N =

1 1 1 19
5(—1+4\/§), 6(1_4@)’ 8(—:—3+4\/3T%), e

Corollary 4.4.2. The eigenvalues of the twisted Dirac operator (@?42) in the interval [—%, %] are
7
—%, —%, %, % In particular, the only eigenvalue in the interval (%, %) is % corresponding to the spin

representation Vg ).
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Chapter 5

The Space of Deformations of FNFN
Spin(7)-Instanton

In this chapter, we shall study the deformations of AC Spin(7)-instantons on the AC Spin(7)-
manifold R8, where the Spin(7)-instantons on R® will converge to the canonical connection
on §7 at infinity. Fairlie-Nuyts [25] and Fubini-Nicolai [27] independently constructed these

instantons on R®, and hence will be referred to as FNFN Spin(7)-instanton on RRS.

5.1 FNFN Spin(7)-Instanton

In this section, we derive FNFN-instanton using homogeneous space techniques. The exact
same result and similar approach can also be found in [51].

Let us consider the asymptotically conical Spin(7)-manifold IR® asymptotic to the nearly G,
manifold ¥ = S”. We consider S” as a homogeneous nearly G, manifold Spin(7)/G,. Then we
have the canonical bundle G, — Spin(7) — S’ (call this bundle P). Also consider the bundle
Spin(7) — Spin(7) X (g, Spin(7) — S7 (call this bundle Q) where ¢ : Gy < Spin(7) is the
inclusion. This bundle is (bundle) isomorphic to the trivial bundle Spin(7) — S7 x Spin(7) —
S7. Explicitly, the isomorphism is given by

Spin(7) X (g, Spin(7) — S” x Spin(7)
[(g1,82)] — ([81], 8182) (5.1)

Then, an action of Spin(7) on Spin(7) X,y Spin(7) given by g[(g1,82)] = [(g1,82)] induces
an action on S” x Spin(7) given by ¢([¢1],182) = ([891),89182)-
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5. The Space of Deformations of FNEN Spin(7)-Instanton

We want to find all Spin(7)-invariant connections on Q. From Wang’s theorem [59], we
know that this corresponds to all Gy-equivariant linear maps m — spin(7), for the subspace m
defined in (4.26). That is, the set

{A:m — spin(7) : A is Gy-equivariant}.

Now,

spin(7) @ C = V(g 1) © Vi10)

and hence, restricting to m, we have the decomposition
m ® C = V(l,()) = C7.

Recall Schur’s lemma:

Lemma 5.1.1. Let V, W be two irreducible representations of H. The space of H-equivariant maps
V—=Wis

{p-1d: VW |peC} ifV=W,
0 ifvV2W.

Thus, we have all the Gy-equivariant linear maps A : m — spin(7), explicitly given by
(N id : V(l,O) Zm— V(l,O) — 5p1n(7)

where the complex number ¢ is necessarily real because A is (the complexification of) a map
between real vector spaces m — m.

Now the basis Iy (A =1,...,21) for spin(7) (where I, ..., I; spans m) can be represented
by left invariant vector fields E4 on Spin(7) and also by the dual basis ¢4 of left invariant

1-forms. Denote the natural projection map

7 Spin(7) — Spin(7)/ Gy
g 8Go
of the principal bundle. Let U be a contractible open subset of Spin(7)/G,. Then we choose a
map L : U — Spin(7) such that ro L = Idy, i.e., L is a local section of the bundle Spin(7) —

Spin(7)/Gy. We put e? := L*¢4. Then {¢” : a = 1,...,7} form an orthonormal frame for
T*(Spin(7)/Gy) over U.
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5.1 ENEN Spin(7)-Instanton

For ¢/, we have the Maurer—-Cartan equations
1

de’ = —fhe' el — Efgceb Y

, 1 . 1 . .
de' = ) iet net — Efj’ke] Ak, (5.2)

With respect to this local trivialisation, a connection on the bundle Q over the nearly G»-
manifold Spin(7)/G, can be written as A = el + pe’l; where Ay = ¢'l;, is the canonical
connection, and ¢ € R.

Now consider the 8-dimensional manifold R x Spin(7)/G,. Moreover, consider the projec-
tion 77 : R x Spin(7)/ Gy — Spin(7)/G,. We choose the metric g5 = (e°)? + g7 where ® = dt
for t the coordinate of R, and g7 is the metric on Spin(7)/G,. This metric is conformal to the
flat metric on IR®. We can describe a Spin(7)-invariant connection on 7Q — R x Spin(7)/G,

using a function ¢ : R — IR. The local connection 1-form A is given by
A=¢T+ @(t)e"l, = Age”. (5.3)

where, A, = eI, + ¢(t)I,. Here, el = ele, for functions ¢) : U — R. Without loss of
generality, we have taken Ay = 0 (called temporal gauge), since we can always choose such a
gauge. We note that the connection A on R x S can be identified with a family {4; : t € R}

of connections on S”. The curvature of this connection is given by

1
Fg = Foue® A + EFbceb A€ (5.4)

where 5 ;

_ 94, _dg
F O0a — W - Elu-
Note that we can identify the cone (0,00) x S7 C RR® with the cylinder R x S” by the map
r = ¢!. The ASD instanton equation ® A F4 = —«F, can be written as

FA 1P = —FA. (55)

Now, we have ¢ = Lopce” AeP NeS, xp = 1 = tpgpeae” NP Ae€ Ae, for a,bc = 1,...,7,
where ¢y are structure constants of the octonions and §pgrs = €apepgrsPave: We have already

seen that we can write the structure constants of the octonions ¢,,. in terms of the structure

constants fuc as fape = —%(Pubc.

Then, we get

1
Fy 1® = (Foaeo Net + EFbceb A e’:> J(" AN+ x¢)
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5. The Space of Deformations of FNEN Spin(7)-Instanton

1 1 1
= EFbcgbabceo Ne' + §F0a¢abceb Y + 1Fad¢ubcd6b N €.

Then, from (5.5) we have two equations, Fy, = % faveFpe and Foe = —Foaape — %Fadlpabcd, but the

tirst one implies the second. Hence, the ASD instanton equation (5.5) reduces to

3
POa = Efabcpbo (56)

Applying the Maurer—Cartan equations (5.2), we calculate dA;, as well as [A; A A¢], and the

curvature is given by

; d
Fie = (¢ = Dficli + (¢~ 9)fusclor Foa =21, 67)

Then, the ASD instanton equation (5.6) is equivalent to

d 3 ; 3
Lt = S e 0 = Vficli+ S fure (9% = ) e

Simplifying, we have the differential equation inTt =2(¢? — ¢). Solving, we get

1 1
T T e T o2t

(5.8)

for C > 0, using the substitution r = e'.

We note that ¢(0) = 1 defines a flat connection over S7, and the corresponding trivialisa-
tion extends across the origin. Thus this connection on R x S7 is nothing but the restriction of
a flat connection on IR®. Hence from the calculations above, and from the fact that the ASD in-
stanton equations are conformally invariant, it follows that the connection A defined in (5.3),
where ¢ is given in (5.8), is in fact an instanton on IR®. We call this the FNFN Spin(7)-instanton.
Clearly ENEN Spin(7)-instanton A is asymptotic to the canonical connection Ay with fastest

rate of convergence —2, since ¢ = O(r~2) as r — oo.

5.2 Index of the Twisted Dirac Operator

We want to calculate the index of the Dirac operator @ 4 on 8(IR®) twisted by the trivial bundle
gp = spin(7) x R® over R®. We use the Atiyah—Patodi-Singer Index Theorem for manifolds with
boundaries, by relating the index of the Dirac operator @, on R® with the index of the Dirac
operator on a closed ball B} of large enough radius R. Moreover, we consider the FNFN
instanton to be an instanton on R® and, for the purposes of calculating the eta-invariant

appearing in the index theorem, on R x S.
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5.2 Index of the Twisted Dirac Operator

Atiyah-Patodi-Singer Index Theorem

The Atiyah-Patodi-Singer index theorem is applicable when the manifold has non-empty
boundary (for more details see [2], [3], [4], [24], [30]). Let M be a 8-manifold with non-empty
boundary oM. Let P — M be a principal G-bundle and consider the negative Dirac operator
P, acting on the bundle E := § (X) ® gp over M. Then the index of the operator D, requires
topological information on the manifold M as well as analytic information on the boundary
oM.

The Atiyah-Patodi-Singer index theorem for a manifold M with non-empty boundary oM

has the form

Index(9;, M, M) = (M) + CS(2M) + 57(aM). (59)

where (M) is an integral of characteristic classes over M and 7 (0M) is the eta-invariant of
the boundary. The Chern-Simons term CS(dM) of the boundary arises when the manifold
does not admit a product metric on the boundary. Moreover, the Dirac operator D 4 is subject

to non-local boundary condition which will be explained later.

R® with Cigar metric and Index

Let gc be the asymptotically conical metric, i.e., the flat metric on R®. We define the metric
gc1 = Ql—z gc, where ¢ is the radius function (2.30). Then (IR, ¢c;) resembles a cigar (the reason

gcr is usually called a cigar metric).

In particular, for

(r)— r r>1
e = %(1—}—1*2) r<1,

(R, gc1) is a hemisphere M; glued to a cylinder M, = (1,00) x S” (see Figure 5.2).
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5. The Space of Deformations of FNEN Spin(7)-Instanton

Figure 5.2: R® as a hemisphere glued to a cylinder.

The weighted Sobolev space W.* on R® is defined by the norm

1/2
02 = ( / \gwg—SchﬂC) |

The space Wg’lz of L2-functions on the cigar M is defined by

1/2
Illzs = I dvoler)

Now, dvol¢c; = Q*S dvolc. Hence,

0,2 0,2
Wy~ — Wej

1= a'n

is an isomorphism. Similarly, we can extend this to an isomorphism W2 — W(Iglz

By conformal properties of Dirac operators, we have that the Dirac operator of gcj is

Dacr = Q%@Z,CQV% (wWhere D 4 c; and @4 ¢ are the Dirac operators corresponding to cigar

and conical metrics respectively.) Then we have the commutative diagram

5
k2 acl k—12
Wei Wer
_7 9
Q2 02
k2 Duc k=12
W_% W_%

Since the vertical arrows are isomorphism, we have

Index (CZ)Z/C : WfZZ — WSm) = Index (@Z,CI : Wélz — ng’z) .
2 2
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5.2 Index of the Twisted Dirac Operator

Let us define a function ¢ : R — R by

1 t< =T
o, -T<t< —%
p(t) =< ot), —T<t<? (5.11)
x, T<t<rT
0 t>T.

\

where a is a smooth interpolation between its definition at & and T and &’ is that of between
its definition at —T and —1.
Then we have a connection

A=el+ p(t)el,. (5.12)
We note that

A—A=(p(t) = g(t)e'l, € Q' (gp). (5.13)

Proposition 5.2.1. Let B := {x € R® : |x| < R} be 8-dimensional ball of radius R. Then for
sufficiently large R, we have

Index (Q)Z,Cl, ]RS,gCI) = Index (@:?,CI' B%,ga) :
Moreover, for sufficiently large T, we have
Index (@Z,IR X S7,g> = Index (@1},, [—T,T] x S7,g> )
where g is the cylindrical metric ¢ = dt* + gg.

Proof. Let 1 : IR® — $(gp) be a spinor such that P> .77 = 0 and 7 € L*(IR%, g¢;). Now,
D

icl = E° (% _@gm:)' For t > InR, since ¢(t) = 0, we have Dj, = Day- Let Ay €

Spec® .. Then, we have the Fourier expansion of 1 given by 7 = Y. eM{=1"Ry where
nez

i € ker (D4, — Ay). Hence, 7 € L? implies 7, = 0 when A,, > 0. So 7 can be written as a
sum of eigenvectors #, of Dirac operator on the boundary with negative eigenvalues. Hence
1 solves Atiyah—Patodi-Singer boundary condition.

Conversely, let 7 : B — $(gp) such that D7
boundary condition. We extend 1 to R%. On 0B%, 7 = ¥ #7,, where A, < 0 if and only if
n<0
n < 0. So, forr > R (ie, t > InR) wesety = Y. eM(="R)y  Then 5 € L2(R%,g¢c;) and
n<0

n = 0 and 7 solves Atiyah-Patodi-Singer

solves D ; ., = 0.
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5. The Space of Deformations of FNEN Spin(7)-Instanton

Hence, we have just proved that ker (@ZI cr RS, gCI) = ker <®§ cr B%, gC[). Similarly, we

can show that coker (@ =

RS ~
Aicr ,ga) coker (@A cr R,ga). Hence, we proved

Ind (D, RS, ger) = Ind (D5, B gcr) -
Finally, we prove that

nd (D701, RS, ger) = Tnd (D5, RS g1

Consider
_ = a
197,01 — 5 = 90 — Gt = sup OO =0WI iz = 54y,
' nEL2(R8,gcr) 7] 2
Now,
(p(t) = (N Lan i = [ (ol )e g dvol

IN

sup(¢(t) — ¢(t)) /|e”Iu17|2dvol
< sup(g(t) — §(1) e’ L[> [ Iy dvol
= sup(¢(t) — ¢(t))*[le" L 1[I -
Hence, from (5.14), we have
1Dact =Pzl < suplp(t) — @()][[e" Lall.

Hence, for all € > 0, there exists R > 0 such that |94 c; — D .|| < €. Then the result follows
from the fact that two Fredholm operators belonging to the same connected component of the
space of all Fredholm operators have the same index, since the Fredholm index is continuous
and integer-valued.

The second part of the theorem can be proved similarly. O

The term I(IR®)

The term I(D 4 ¢, R®, gc;) in (5.9) is given by
1(®7,01 R ger) = - / A(m) ch<gp ©0)
1 8\2 8
Jo (17 57 R+ g (1 (R — () )

<dimg + p1(gp) + 113 (p1(ap)* — 2P2(9P)))
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5.2 Index of the Twisted Dirac Operator

1
=12 s (p1(gp)* —2p2(gp)) 24/ p1(R®)p1(gp)
8 8
— g dimo [ (7p1(RY? — 4pa(RY))

= 112 (Pl(gp) —2p2(gp)) +24/M1 p1(Mi)p1(gp)

t51 /MZ p1(Mz2)pa(gp) — 57160 dimg/Ml(7p1(M1)2 — 4pr(My))

B . 2
5760 dimg /M2 (7p1(M2)” — 4p2(M2))

where the Pontryagin classes p; are given in terms of the curvature as
1 2
pilep) = —g 5 tr(Fj)

1
paer) = T |tr(F3)? — 2tr Ff

where the trace is taken over g.

Since M; is a hemisphere of S8, the curvature of M; is the same as the curvature of S8. Let
E#, for y = 0,1,...,7 be an orthonormal local frame for S8. Then, the Riemann curvature is
given by .

A
R= SR \ETAE

where Ry, ) = 670p) — 056p,. Then, tr(R A R) =0 and tr(RARARAR) = 0. Hence,

_ 1 2\ _
pl(Ml) = 872 tI‘(R ) =0
and
2 4] _
po(M;) = 128 — [tr(R )2 —2trR } 0.
Consider the projection 77 : R x 7 — S7. Then, p;(R x S7) = 7*p;(S7). Now, if R’ is the
curvature of §7, then,

1
p1(S7) = —52 tr(R*AR') =0

and

1
pa(S7) = 58 tr(R' AR)> = 2tr(R* AR"AR'AR).

But tr(R" AR’ AR’ AR") = 0 being an 8-form on 7-dimensional manifold S”. Further, we have
tr(R" AR") Atr(R' AR’) = 0 being an 8-form with only 7-coordinate functions, which means

there must be repeating terms. Consequently,

p1(Mz) =0, and pa(M,) =0.
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5. The Space of Deformations of FNEN Spin(7)-Instanton

Hence,

_ 1 1
1(Dac, R gcr) = 12 s (p1(sp)* —2p2(gp)) = ~ 380 /ms tr F5. (5.15)

Eta Invariant of the Boundary

We calculate the eta-invariant of the twisted Dirac operator by relating it to the untwisted

Dirac operator, whose eta-invariant is zero, using a spectral flow.

Spectral Flow

Recall the FNEN Spin(7)-instanton A given by (5.3), where ¢(t) is given by (5.8), can be
identified with a family of connections {A; : t € R} on S”. Then, we have a family of Dirac

operators on S’ twisted by the connections A; given by
@At,z = @Az + go(t)e“[u.

Now, the curvature of the connection is given by (5.7) for which we note that F,, = 0 for
¢(t) = 1. Hence, A; is a flat connection for t = —oo. Since the underlying manifold is
simply connected, this flat connection is the trivial connection (unique up to gauge). Hence
corresponding to this connection, or equivalently, for ¢(t) = 1, we have the untwisted Dirac
operator Dy, i.e.,

Dy = D4, + 1L, (5.16)

We want to calculate the spectral flow of the family {®4,, }, g, Where spectral flow is the net
number of eigenvalues flowing from negative to positive. First let us calculate the eigenvalues
of the operator e”1,.

We note that the operator ¢”I, acts fibre-wise: on A ® spin(7). Lete*, y =0,1,...,7 be a
basis of A and I4 be a basis of spin(7). Then,

(e'Ip) (e" @ Ia) = (e"-e") ® o, [a] = (E" ®@ad L) (¥, Ia)

where E” is the matrix of Clifford multiplication with e, calculated using (2.8). Taking the
Kronecker product of E* and ad I,, we get the matrix of e”I, whose eigenvalues are listed in
the Table 5.1.

Now, let us plot the eigenvalues of the operators Dy, and D 4, near zero respectively. The

eigenvalues of Dy can be found in [8] and that of D 4, from Corollary 4.4.2.
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5.2 Index of the Twisted Dirac Operator

Eigenvalues | Multiplicities
4 8
—4 7
§(-3+V3) 14
1(3-Vv3) 14
-1+ V57) 27
L (-1-v#7) 27
2 7
0 64

Table 5.1: Eigenvalues of e”I, and corresponding multiplicities.

From the figure 5.3 below and the eigenvalues of e”I,, we have the complete description of
the spectral flow. We note that the eigenvalue of ¢?I, with the highest magnitude is 4. Again,
from the figure 5.3, we see that the only possibility of having a non-zero spectral flow is the
eigenvalue 1/2 of D 4, flowing down to the eigenvalue —7/2 of Dx. Since 1/2 corresponds to
eigenvalue of D 4, obtained from the trivial representation V(q ) of Spin(7), the eigenspinor 7
corresponding to eigenvalue 1/2 belongs to the space Hom(V/0), A ® spin(7)c) > ® Vi0,0,0) C

L%(Spin(7), A @ spin(7)c ) in the decomposition (4.8). Now, we have the decomposition

A ®5p1ﬂ(7)c = V(O,O,l) & V(U,l,O) = V(O,O) D 3V(1/0) D 2V(0,1) D ZV(Z,()) D V(l,l)'

Hence by Schur’s lemma, we have that 7 € Hom(V{q0,0), V(0,0)) > ® V{0,0,0) Which is a subspace
of L2(Spin(7), V(O,O))GZ. Hence, in order to check whether a flow from the eigenvalue 1/2 of
D 4, flowing down to the eigenvalue —7/2 of Dy exists, we need to calculate the eigenvalue

of "I, corresponding to the trivial subrepresentation V(g ) of A ® spin(7)c.
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5. The Space of Deformations of FNEN Spin(7)-Instanton

9/2
7/2
3/2
1/2
—-3/2
-5/2
-7/2
—-9/2
Dy Q)Az
p(t) =1 @(t) =0
= —o0 t =00

Figure 5.3: Spectral flow of the family {®4,, }, . on 5.

Then, from the above table of eigenvalues of e”I, and corresponding multiplicities, it is
clear that since dim V(; 1) = 64, V|4 1) is the eigenspace of the eigenvalue 0. Similarly, the two
copies of V5 ) are the eigenspaces of the eigenvalues %(—1 +1/57), the two copies of Vo) are
the eigen spaces of the eigenvalues }(F3 & 1/33), the three copies of V/; o) are the eigenspaces
of the eigenvalues 2,4 and —4 respectively, Vo) is the eigenspace of one eigenvalue 4. Thus
we have a flow of the eigenvalue moving up to 9/2 and not down to —7/2. Hence, there
is no flow from the eigenvalue 1/2 of D4, to the eigenvalue —7/2 of Dy, and hence, we
have no flow of eigenvalues of Dy flowing up or down across 0 to the eigenvalues of D 4.

Consequently, the spectral flow of the family {D4,, is given by

}te]R

of ({Das i) =0 (5.17)

Eta Invariant of the Boundary

We recall that we can identify the family of Dirac operators {Q) Af,E}t cr ON S7 with a Dirac

operator D, on the cylinder R x S7, where the identification is given by
_ d
Da= E°. <dt - Q)Aw) :

Then, the index of the Dirac operator @, on the cylinder R x S’ is precisely the negative of

the spectral flow of the operator sf ({@ Arx ) (see [39] proposition 14.2.1). This follows

}teJR
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5.2 Index of the Twisted Dirac Operator

from the fact that % and P 4,, have opposite signs, and Clifford multiplication by E° is an

isomorphism that does not affect index. Hence, from (5.17), we have
Ind(®;,R x §7) = —sf ({mt,z}tem) —0.

Now, from Proposition 5.2.1 applying Atiyah-Patodi-Singer index formula on the compact

manifold with boundary [T, T] x S7, we have
- 7 - 7 — 7 1 7
Ind(, R x §7) = Ind(D, [T, T] x ) = 1 (D5, [=T,T) x §7) + 59(3(|=T,T] x §7)).

However, we note that Ind(®4,R x S”) is independent of T, and hence taking T — oo, we
have

Ind(D,R x §7) = 1 (D3, R x &) + %U(B(IR x §7)).

Now, from (5.13) and (5.15), we have

_ 1 1 _
7\ _ 4 _ 4 _ 7
I(Z)A,les ) =~ a0 /RstrFA =~ 380 /]RstrFA _1<@A,1R x S )

Moreover, since (IR X S7) =S711 ?, where S7 is S7 with opposite orientation, we have

NO(R x §7)) = 4(Dx, §7) +1(Day, ") = 1(Day, 87) = 1(Dg, 57) = 1(Day, 57,

since, eta-invariant of Dy is zero, which follows from the fact that the metric and Levi-Civita
connection of 7 are invariant under an orientation-reversing isometry. We note that the
orientation of S’ corresponding to the operator @ 4, is the same as the boundary S” of R®.

So, finally, we have

%11(@/12,57) = %17(8(11{ xS")) =Ind(D 4, R x S7) —I(D,,R x §)

1 4
= /}R ot (5.18)

Index of the Twisted Dirac Operator

From (5.10) and Proposition 5.2.1, we have

Ind_5 (D4, R’ g) = Ind(D 4,1, R® gc1) = Ind(D; ., Bk, gc1)-

3
2

Since, B is a compact manifold with boundary, applying Atiyah-Patodi-Singer index for-
mula,
_ _ 1
Ind (5, R ) = I (D5, Bk ger) + 571Dy, 9BY).
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5. The Space of Deformations of FNEN Spin(7)-Instanton

Since Ind_5 (D4, R8, <) is independent of R, taking R — oo, and from (5.15) and (5.18) we have

5
2

_ _ 1

Ind_3(D, R, g) = (D} -, R® gcr) + 577(2)142/57)
1

F4 / F4

tr F% + 38478 Jrns trFy

tr F}

1 /
38474 JRrs
1
L R /
38472 /Rs TEAT 3848 Jrvsr
—0. (5.19)

5.3 The Main Result

Finally, we have the main result on the deformations of FNFN Spin(7)-instanton.

Theorem 5.3.1. The virtual dimension of the moduli space M(As,v) of ENFN Spin(7)-instanton
with decay rate v € (—2,0) \ {—1} is given by

N {1 if ve (-2,-1)
virtual-dim M (As,v) = (5.20)
9 if ve (—1,0).

Proof. From (5.19) we have that the index of the Dirac operator @, corresponding to the rate
—5/2 is zero. Moreover, from Corollary 4.4.2, we see that the only critical rates greater that
—5/2 are —2 and —1, corresponding to the eigenvalues 1/2 and 3/2 respectively. Then, from
the facts that the eigenspace of the eigenvalue 1/2 is 1-dimensional and the eigenspace of the
eigenvalue 3/2 is 8-dimensional, the result follows from Theorem 3.1.11. ]

Now, the two known types of deformations of the FNFN instanton on R8 are the trans-
lation and the dilation. It is clear that translation being 8-dimensional, should come from
spin representation, whereas dilation being one dimensional, should come from the trivial
representation.

From the fact that the eigenvalues of the twisted Dirac operator in the range [1/2,5/2]
are 1/2 and 3/2, corresponding to the trivial and spin representations respectively, we should
expect that the rate of dilation should be 1/2 —5/2 = —2 and that of translation should be
3/2—5/2 = —1. This can be easily verified from the fact that the two deformations translation

and dilation are given by ¢ » F4 and 1; o Fa respectively.
ox! ox?
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Chapter 6

Deformations of Clarke-Oliveira’s
Instanton on Bryant-Salamon Manifold

The aim of this chapter is to compute the deformations of Clarke-Oliveira’s Instanton on
the Bryant-Salamon Spin(7)-Manifold. The Bryant-Salamon Spin(7)-Manifold is the negative
spinor bundle of $* which is an asymptotically conical manifold where the link is the squashed
sphere % (see [12]). Clarke and Oliveira in [16] have constructed instantons on this
manifold. To calculate the deformations of the instanton we use the deformation theory of

asymptotically conical Spin(7)-instantons developed in chapter 3.

6.1 Bryant-Salamon Spin(7)-Manifold

In this section, we derive the Bryant-Salamon metric using homogeneous space techniques,

where we identify the link — the squashed 7-sphere — with the homogeneous space %.

6.1.1 The Squashed 7-Sphere

Friedrich-Kath-Moroianu-Semmelmann in [26] have classified all compact, simply connected

homogeneous nearly G, manifolds. As homogeneous space, the squashed 7-sphere can be

_ Sp(2)xSp(1)

: 7.
written as X/ := Sp(1)xSp(D)”

Recall the groups

Sp(1) = {a €H:aa" = 1}, Sp(2) = {A = (i Z) ta,b,c,d € H,AA" = 1}
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6. Deformations of Clarke-Oliveira’s Instanton on Bryant-Salamon Manifold

and corresponding Lie algebras

sp(1) = {xe]H:x+x*:0}, 5p(2) = {A: (’ZC g}) :x,y,z,weH,A+A+:0}.

Denote

Sp(1)u = {((ﬁ 2) ,1> :g € Sp(l)}, Sp(1)4 = {(((1) g) ,g) g € Sp(l)}.

The corresponding Lie algebras are given by

sp(1)y i= {((g 8)0) :xEsp(l)}, sp(1), = {((8 g>x> :xesp(l)}.

Then,
sp(1)y ®sp(1)s = {((g 3) 4/) ‘xy € ﬁp(l)} :

We have a decomposition of the Lie algebra sp(2) @ sp(1) as
5p<2) b 5]3(1) = 5]3(1)11 @5p(1)d P m.

We want to find m = (sp(1), ®sp(1);)*, where the orthogonality is with respect to the Killing
form. Since m is a representation of Sp(1), x Sp(1),, we want to decompose m into irreducible
representations of Sp(1), x Sp(1),.

Let W; be the unique irreducible representation of SU(2) = Sp(1) of dimension (i + 1).
Then,
Wo = Trivial representation (dim Wy = 1),
W; = Standard representation (dim W; = 2),
W, = Adjoint representation (dim W, = 3).

Let W be an irreducible representation of Sp(1), and W¢ be an irreducible representation
of Sp(1)4. Let us define W; ;) := W}' ® W]d, the irreducible representations of Sp(1), x Sp(1),.
Clearly, dim W(; jy = (i + 1)(j + 1). Then

m = W(L]) D W(O,Z)' (61)

Now, we want to find a basis for m. We note that m = T,)2. = V, ® H, = ImH © H, where
V) is the vertical space and H,, is the horizontal space with dimensions 3 and 4 respectively,

corresponding to the Hopf fibration S” — S*. Now,

ImH = {((8 _(Z]Z> ,pz> 1z 65p(1)},
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6.1 Bryant-Salamon Spin(7)-Manifold

where we determine p = 3 and g = 2 using the Killing form. We choose a basis

00 . 0 0 . 0 0
O 0 O (B O (L S
Moreover,
0 b
= {(( o)ren
and, we choose a basis

(D)5 392 ((G D)o ().

(6.3)

Denote the dual basis of I, by ¢* fora =1,...,7.
Then I3, ..., I together with

= (6 )= (4 9) = (G 2)9)
D (R (P R

form a basis of sp(2) x sp(1). Our objective is to calculate the Sp(2) x Sp(1)-invariant metric
g, three-form ¢ and ¢ = *¢ on X. We note that this corresponds to calculating the Sp(1), %

Sp(1)4-invariant metric g, three-form ¢ and i = *¢ on m. We consider an ansatz for ¢ given
by
¢ = a’e'? —ap(e! Nwy + e Awa + € Aws) (6.5)

where wy,wy, w3 forms a basis for AZH*. Explicitly, we take w; = e* + ¢%,w, = ¢4 —

57

e”,ws = e* + €°°. Then, we can write ¢ = x¢, the metric g and the volume form as

1
Y= 8/34(601 A w1+ wy Awy +ws Aws) —a?B(e? A ws + e Awy + e Awy)

3 7
g:a2261®el+ﬁ2261®e]
i=1 j=4

3 134 61234567

and dvol = « respectively. Hence,

(P — 0(36123 _ 06,32 (6145 + 6167 4 6246 _ 8257 + 6347 4 6356),

w — ,3464567 _ a2ﬁ2 ((:’1247 + 31256 4 32345 4 62367 _ 61346 + 81357).
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6. Deformations of Clarke-Oliveira’s Instanton on Bryant-Salamon Manifold

It is easy to verify that ¢ is indeed Sp(1), x Sp(1)s-invariant. We need to find « and  such
that the metric determined by ¢ is the squashed metric, which is a nearly parallel metric.

Now, from the Maurer—Cartan equation
de® = a i b 1 a ,b c
e = —fpe Ne —5 b€ Ne
and explicitly calculating the structure constants, we have

dp = 49

2
= 23 (5(_ Q1247 _ (1256 | 1346 _ 1357 2345 2367

_ “52 <10(€1247 + 61256 _ 31346 + 61357 T 62345 4 62367) _ 15284567>

4[34 4567 4&2,32 (61247 + 81256 T 82345 T 82367 _ 61346 + 61357)

2
= 3aB? = 58* and guc3 + 100> = 4a°p>
3

a=3pF== .
V5

Hence,

3
= Ze Qe+ = Ze]@)e] (6.6)
i=1

is the “squashed" metric on ¥7. An orthonormal basis of m is given by

HHED DAl )
A 992 )

We denote the dual basis by & fori = 1,.

6.1.2 The Bryant-Salamon Metric

We just studied the squashed sphere ¥/ := W as a nearly G, manifold where the
Gy-structure is given by (6.5).
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6.1 Bryant-Salamon Spin(7)-Manifold

Now, we consider (0,0) x £7 equipped with the Spin(7)-structure ® = dr A ¢ + ¢ where

we consider «, f (and hence ¢, 1) as functions of r. The metric is given by
g = dr2+a(r)2231®e’+ﬁ(r)2Ze]®e]. (6.7)
i=1 j=4

The metric has holonomy Spin(7) iff ® is closed. Then, we have,

99

a = d2¢/
which implies,
dﬁZ 6
dg  3a
= e % (6.9)
and
de  25p% — 202
Pl 5752 (6.10)
Hence,
ag 3up

do  25B% — 202"

This is a homogeneous ordinary differential equation. The solution is g4(58% — #2)3 = C.

Now, with the initial condition (0) = 0 and B(0) =: By, we have p*(58% — a?)®> = B1’, and
a, B are both strictly increasing for r > 0. It can be shown that the metric (6.7) on (0, 00) x X7
can be smoothly extended over ((0,00) x £7) U S%.

Now,
BH5B — o) = B’ = a2 = (5 (pop™) ¥ ) B~ (6.11)
Moreover,

dr\? 25 1
= () ¥ =g

Moreover, from (6.8), We note that

B*(r) = B3+ g /Or a(s) ds. 6.12)
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6. Deformations of Clarke-Oliveira’s Instanton on Bryant-Salamon Manifold

Hence, considering  as an independent variable, the metric (6.7) can be written as

g:

§%dﬁz + (5 - (ﬁoﬁ”)?) B ie" ®e + B i e @ el (6.13)
95— (Bop~1)3 i=1 =4

which is the Bryant-Salamon metric on ((0,00) x £7) US* = §7(S*). Thus, § (S*) is an asymp-
totically conical Spin(7)-manifold over the link squashed sphere with rate —10/3.

6.2 Clarke-Oliveira’s Instanton

Consider the gauge group Sp(1) = SU(2). Then we have three isotropy homomorphisms
from Sp(1), x Sp(1),4 to Sp(1), namely

Ao Sp(1)y x Sp(1); — Sp(1)
0
(5 o))
A1:Sp(1)y x Sp(1)y — Sp(1)
0
(5 0)s)-s
Az : SP(l)u X SP(l)d — Sp(l)

g1 0
(5 o))

Consider the bundle P; = (Sp(2) x Sp(1)) x,, Sp(1) over X7 := %. From Wang's

theorem [59], it follows that the invariant connections on P; correspond to the Sp(1) x Sp(1)-

equivariant homomorphisms

Aj: (m,ad) — (sp(1),ad oA;).

Now,
adoA; : sp(1), ®sp(1); — End(sp(1)),
Then,
adoAy(X,Y)Z =ad(0)Z = 0.

Hence, the map A is equivalent to a map

W1y @ Wioz) = Wio),
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6.2 Clarke-Oliveira’s Instanton

and so, must be trivial. Moreover,
adoM(X,Y)Z =ad(X)Z = [X, Z].
Hence, the map A; equivalent to a map
Wiy ©Woz) = W)

is again trivial. Finally,
adoAy(X,Y)Z =ad(Y)Z =[Y, Z].

Hence, the map A; can be described as follows,
Wi, @ Wio2) = Wio2)-
That is, by Schur’s lemma, A2|W<1,1) is trivial map, whereas Az\wm) is the map
@-1d : Wig2) — Wig2)

for some real number ¢.

We note that for Ay we get the flat connection, and for A;, the canonical connection. Thus,
these two cases fail to give us anything interesting. Hence, we ignore these two cases. We
rename Ay to be A, Ay to be A and the corresponding bundle P, to be P.

Let us fix a basis T,, a = 1,2,3 for sp(1) = su(2), where T, = —io, and 0,, a = 1,2,3 are

the Pauli matrices given by

01 0 —i 1 0
=) 2= () == 5

Let us denote ¥ by the matrix of A, i.e.,, A(I;) = Yo T¢, fora,c =1,2,3.
In local coordinates, any Sp(2) x Sp(1)-invariant connection on the bundle P over the

nearly G;-manifold Y7 can be written as
A =eAL) +e"A(IL)

where i = 11,12,13, and the basis elements I4 have been listed in (6.2). Now, we consider

(0,00) x X7 equipped with the Spin(7)-structure ® = dr A ¢ + 1. The metric is given by

3 . . 7 . .
g=drr+a(r)?) e +p(r)?) dxe.
i=1 j=4

75



6. Deformations of Clarke-Oliveira’s Instanton on Bryant-Salamon Manifold

We consider the normalised basis ¢# where & = ¢V = dr,&" = a(r)e® for a = 1,2,3 and
e’ = B(r)e’ for b = 4,5,6,7. For a = 1,2,3, we choose ¢+10 = g"+10, Denote the dual of ¢ by
Lifori=1,...,13.

A connection 1-form on the bundle 77*P — (0, 00) x X7 for the projection 7 : (0,00) x £7 —
Y7 is given by A = Ape’ + A" which yields the Sp(2) x Sp(1)-invariant connection (see
Appendix A) given by

A =FA(T) + A1)

where i = 11,12,13. Now, for a = 1,2,3, we have A(I;) = ¥,,T, where ¥, (r) = @(7)0gp-

Whereas, A(I,) = ﬁ/\(lu) = ﬁ‘l’abTb where ¥,;,(r) = ¢(7)d,p- Then,

A =T, + ¢(r)e" T, (6.14)
=TT, 4 o(r)e" T, (6.15)

for a = 1,2,3, where a(r)@(r) = ¢(r). Here without loss of generality, we take the temporal

gauge Ao = 0. The curvature of this connection is given by
1
Fp = Fouéo ANet + EFbch A€

where

0A,  dg(r)
or  dr

Now, the ASD instanton equation can be written as

o1

Ey —
Oa or a

T, + ¢(r) Ta. (6.16)
1
Fop = _Ecpabcpbc
where ¢, are structure constants of the octonions. Applying the Maurer-Cartan equations,
; 1
de® = —fie Neb — Efbaceb Y
. 1, , 1, &
de' = ) e N et — Efjlkef/\e

where ng are the structure constants for the basis I4 dual to ¢4, i.e., [I4,I5] = ng Ic. Let ng

are the structure constants for the basis 14 dual to é. we have
(dA)ye = —fic°Ta = 9(1) fieTu
and

[A A A]bc = 4¢(r)2€dbch-
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6.2 Clarke-Oliveira’s Instanton

Hence,
Fy,. = —ﬁijlo T; — fﬁ(i’)j?gc T+ 2$(V)2€dbc T;.
Hence the ASD instanton equation reduces to

1

d¢ ~ = - = ~
2 o Ta+29(r) or ;Tu - ‘PabCfI;icHOTd + (P(T’)%bcfgch —2¢(r)*Pac€ave Ta- (6.17)

dr

From the values of the structure constants, simplifying, we get

~ 2 2 2 2
dq:z(rr) ~12 (5@2/3;) + (W) §(r) +2¢(r)* = 0. (6.18)

To solve the equation (6.18), we first simplify by the substitution x := a¢p + 3 = ¢ + 3, which

J'c:—%x <x— <5—§;§)>. (6.19)

Now, following the analysis done in [16] we use the substitution

gives,

y(r) = 20

-~ oa(r)?
= x = a’y (6.20)
2 _9p2
= % =a’y+ 204y25’85'322a (6.21)
where we have used (6.10). Substituting (6.20) and (6.21) in (6.19), we have
. 2 _ 4y
Y= 2oy = vl = —2u(r)dr. (6.22)
Now, we consider the initial condition,
y(0) = yo. (6.23)
Then, integrating (6.22) with the initial condition (6.23), we have
1 yoa?
r) = = x(r) = .
y(r) % +2 [y a(r)dr ") 1+2yo [, a(s)ds
Then, from (6.11) and (6.12), we have
10
2 58283 — B3 — 383
o(r) = . P il M (6.24)

w2l g (3B
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6. Deformations of Clarke-Oliveira’s Instanton on Bryant-Salamon Manifold

Remark 6.2.1. We note that ¢(r) = 0 corresponds to the canonical connection. We want to
find the value of ¢(r) for which we have the flat connection. For flat connection, we can write
@(r) = c where c is a constant. To find ¢ we substitute ¢ = ¢ and % = +/5 in the above
equation. Then, equation (6.18) implies ¢ = 0, —3. It is easy to verify that c = —3 corresponds
to the flat connection, which takes the form

Ag = "1, — 3T,
=" 10T, — &' T, (6.25)

for a = 1,2,3, where ¢" for a = 1,...,7 is an orthonormal basis for the metric (6.7), and

a+10 _ Za+10

e e" . Now, the underlying manifold being simply connected, the flat connection Ag

is the trivial connection (up to gauge).

Thus, we have a real 1-parameter family of Spin(7)-instantons which, following [16], we
denote by Ay,.

For yp = 0, the connection Ayy=0 is a flat connection, whereas for yo > 0, Ay, is irreducible.
For 1o < 0, the Spin(7)-instantons are only locally defined in a neighbourhood of $* [16].

As yo — oo, the instanton A,;, and all its derivatives converge uniformly to an instanton
Ajim [16].

The following proposition follows from the removable singularity theorem of Tao and Tian
[57].

Proposition 6.2.2 ([16]). The instanton Ay, on 7 x R = 8~ (S*) \ S* smoothly extends over the
zero section S* (up to gauge) if and only if the curvature Fa,, is bounded.

Then, we have the following theorem.

Theorem 6.2.3 ([16]). {Ay, }y,c[0,00) i @ real 1-parameter family of Spin(7)-instantons on the trivial
bundle $~(S*) x C? — 87 (5%).

Moreover, Ay, extends smoothly over S* and gives a Spin(7)-instanton on the (non-trivial) bundle
(87 (S*)) — 87 (S*), for the projection map 7t : 8 (S*)\ S* — S

Since, for large r, we have a = O(r) and B = O(r), clearly ¢ = O(r~2). Then, for the
diffeomorphism / : C(Z) = &7 x R — $~(S%) \ S* and projection p : C(X7) — X7, we have,

‘h*<Ayo) - P*(AZ)’gc = ‘@(”)eaTa’gC
1
= ‘g‘P(r)gaTu’gc

11
= g;’ﬁ”(r)gaTa\gz
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=0(r ).

where Ay = ¢""19T,. Then, following definition 2.34, the fastest rate of convergence of Clarke-

Oliveira’s instanton is —2.

6.3 Eigenvalues of the Dirac Operators on Squashed 7-Sphere

In this section, using various representation theoretic and homogeneous space techniques, we
calculate the eigenvalues of the untwisted and twisted Dirac operators on the squashed 7-
sphere. The results will directly be used to find the critical rates of the negative twisted Dirac
operators for Clarke-Oliveira’s instanton and in the spectral flow analysis for the index of the

Dirac operator.

6.3.1 Eigenvalue Bounds for the Twisted Dirac Operators on Squashed 7-Sphere

Let V(,) be the irreducible representations of Sp(2) corresponding to the highest weight
vector (a,b). Then,
Vo) = C is the trivial representation,
Vi) = H? is the standard representation,
V(1,0) is the 5-dimensional representation under the isomorphism Sp(2) = Spin(5).

Define V) := V(45 ® W to be the irreducible representation of Sp(2) x Sp(1) and let
W,y be that of Sp(1), x Sp(1)4.

The Casimir eigenvalues of the Casimir operator (4.11) using the nearly G,-metric (4.5) for
¢? = 3/40, are given by

_ sp(2)@sp(1)
O(ap,c) <Cassp(2)@5p(1)> = Clabrc) Id,

_ sp(Lubsp(l
0(a) (CaSap(1), cap1),) = oy~ 1d.

where,

el — _g(4a2 +26% + 3¢% + dab + 12a + 8 + 6¢),
2
—5(

P 5 5a* + 3b* + 10a + 6b).
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6. Deformations of Clarke-Oliveira’s Instanton on Bryant-Salamon Manifold

Eigenvalue Bounds

Since, for Clarke-Oliveira’s Instanton, the fastest rate of convergence is —2, we consider the
family of moduli spaces M(Ay,v) for v € (—2,0). Recall the Sp(1)-bundle P = (Sp(2) x
Sp(1)) x, Sp(1) over X7 corresponding to the isotropy homomorphism A. Denote the adjoint
vector bundle gp. Then, we are interested in the eigenvalues of the twisted Dirac operator
D 4, twisted by the bundle gp, in the interval (—2 + %,0 + %) = (%, %)

Since (sp(1)c, Ad oA) = W(g,), we have

Sp(1)uxSp(1
Hom (V,,, A © sp(1)c)PVPWis — Hom (VW,A 2 W(0,2)> p(1)uxSp( )d.

2
Then, since ¢**1*®** (i — _16/3, we calculate the eigenvalues of (573}4/23> to be —nyp(z)%p(l) +
7

(0.2)
Sp(1)u®Sp(1
% with multiplicities dim Hom (Vw A® W(o,z)) p(1)u®Sp( )d‘

Hence, we can restate theorem 4.1.3 as

Theorem 6.3.1. Let V., = V{, ;o) be an irreducible representation of Sp(2) x Sp(1). If

— [ @es) 17
Lzy = L(a,b,c) = \/_C(a,b,c) + § - 6 > 0
then L., is a lower bound on the absolute values of the eigenvalues of (@%J .
0
Corollary 6.3.2. Consider the irreducible representations of sp(2) & sp(1) given by

V0,00 V1,00 Yioo1) V1,0, V101 Vo1 Y020 Vo)
If V,, is not one of these irreducible representations, then the operator

(%), - Hom (V3, A @ sp(1)c) ™0  Hom (V;, & @ sp(1)) 70

has no eigenvalues in the interval [—g, %]

6.3.2 Irreducible Representations of Sp(2) x Sp(1) and Bases

In order to calculate the eigenvalues the the Dirac operator on the squashed 7-sphere, we need
to fix orthonormal bases for the Sp(2) x Sp(1) irreducible representations and the restrictions

to the subspace Sp(1), x Sp(1),.
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Irreducible Representations of Sp(2)

For g € Sp(1), consider the embedding of Sp(1) in Sp(2) given by (g (1)> . As irreducible rep-

resentations of Sp(2), we have the following decomposition in terms of Sp(1)-representations.

Trivial representation V() = Wy (1-dimensional),
Standard representation V(; o) & Wy @ 2W;, (5-dimensional)
Vector representation V1) = 2Wy © Wi, (4-dimensional)

Adjoint representation V) = 3Wy © 2W; & W, (10-dimensional).
We will use the following models for these representations.
e dim V(o) = 1. A basis can be taken as 1.
e dim V(; 5) = 5. We consider the model

x h
V(]Iio):{XEMat(Z,]H):X’f:X,TrX:O}:{(w _x> :XE]R,MH}

Then, V(1) = V(]lio) ® C. Sp(2) = Spin(5) acts on R> ® C C CI(R®) ® C by conjugation.

By writing h = a — ib — jc — kd, we find a basis as

1 0 01 0 —i 0 —j 0 —k
0 -1)"\1 0)"\i 0)"\j 0)"\k 0)°
o dim V) = 4. V(o1) = C* = H2 Sp(2) acts on H? by matrix multiplication. Here the

action of C on H? is given by

oy (v1) _ [(vi(a+ib)
(El T lb) (Uz> B (Uz(&l + lb)) )
fora+ib € C and v1,v, € H.

A basis can be taken as
1 0 ] 0
Kl == <0> ’ KZ == <1> ’ K3 - <(])> 7 K4 - (]) ’

2Wp = Span{Ky, K4}, W; = Span{Kj, K3}.

where,

81



6. Deformations of Clarke-Oliveira’s Instanton on Bryant-Salamon Manifold

* dim Vg,) = 10. Bases for the isotypical summands can be taken as

00 0 0 00
3W0 = Span {Ll = <0 Z) , LZ - <O ]) ’ L3 — <0 k> } ’
B /0 1 (0 i (0 (0 —k
2W1—Span{L4—<_1 0>1 L5_<—l 0)/ L6_(_] 0>/ L7_<_k 0>}/
0 i 0 k 0
WZ = Span {LS == <(l) > s L9 - <é O) ’ LlO = (0 0) } .

Sp(2) acts adjointly on V(g ).

Irreducible Representations of Sp(2) x Sp(1)
As irreducible representations of Sp(2) x Sp(1), we have the following decomposition in terms

of Sp(1), x Sp(1)4-representations.

Vi0,0,0) = Wio,0),

Vio01) = Wio1),

Vi0,02) = Wio2),

Vit00) = Wio0) ® Wii1),

Vito1) = W) ® W) © W 2),
Vio,1,0) = W00 @ Wio 1),

Vio1,1) = Wioo) © Wii,1) © W),
Vio2,0) = Wi1,1) © Wia,0) © Wig2)-

Basis of V()

We choose an orthonormal basis {1®1,1® j,1®k} of Wg2) = V(g2)-

Basis of V(q

For V(4 0,9), we choose the orthonormal basis given by,

B B A I o B

where W) = Span{]J1} C V{10, and Wy 1) = Span{Jz, 5, Ja, J5} C V(1,00)-
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6.3 Eigenvalues of the Dirac Operators on Squashed 7-Sphere

Basis of V(g1 1)

First, we note that
Span{Kz ®] — Ky ® 1} = W(O,O)'

By identifying the highest weight vectors of Wg») C V(g1,) and that of W) C V(g0), and

similarly for Wy 1y C V(g 1,1) and that of W(; 1) C V(g), we fix an orthonormal basis of V(g 1 1,

given by
M =i(Ko®j+Ks®1),
M; = (K @1+ K4 ®7),
M; =i(K®1—-Ks®7),
and

My=(-Ki®j+Ks®1),
Ms =i(Ki®j+Ks®1),
Me=(K1®1+K3®7),
M;=i(Ky®1—Ks®7),

together with
My = (Kz ®j—K4®1),

where W) = Span{Mo} C Vio1,0), Wioz) = Span{Mi, Mz, M3} C Vig11) and Wip) =
Span{ My, Ms, Mg, M7} C V(911

Basis of V(g

An orthonormal basis of Vg ) is given by

00 00 0 0
W(O,Z)ZSPaH{Ll = (0 i>®l’ Ly := <0 ].)@1, L := <0 k>®1},

1 1 0 —i
W(l,l) = Span{L4 = ﬁ <_1 0> ®1, L5 = ﬁ <—Z 0 ) ®1,
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6.3.3 Eigenvalues of the Untwisted Dirac operator

Consider the complex spinor bundle 3(X7) = (Sp(2) x Sp(1)) Xsp(1),@sp(1), A Where A is the
spinor space. Since m = Wy 1) ® Wigz) = Al, Wio,0) = A% and A = A° ® A, we have

A & W(O,O) @ W(l,l) @ W(O,Z)' (626)
The canonical connection
V1 L2(Sp(2) x Sp(1),A)5PMu@SP(Ma 5 12(5p(2) x Sp(1), m* @ A)°P1u«@Sp(1)4
p p p p

can be written as
Vi = e @ pr(L)1,
where ¢° is the basis of m* dual to I, and 7 € L*(Sp(2) x Sp(1),A)P(D«®5p(Ma and pr is
defined in (4.2). The corresponding untwisted Dirac operator Dy is given by
Dy = I, - pr(Ia). (6.27)

Then, from, (2.15) and (6.27), we have a family of Dirac operators

DL =Dl + (t ; 1)4> (6.28)

where for ¢t = 0, we have Dg = Dy (defined in Proposition 3.1.5).

Now,

L2(8(X7)) = L*(Sp(2) x Sp(1), A)SPHu@Sp)a =~ @  Hom (v, a) 05 Wi gy,
YESp(2)xSp(1)
(6.29)
Then, similar to the twisted case in section 4.1, for every + € R, the Dirac operator DL,

restricted to Hom(V,,, A)SP(1)«®Sr()e @ V, is given by

D% ‘Hom(Vy,A)sp(l)”@sPu)d®Vw = (DE) v ® Id (630)

where (th)y : Hom(V,,, A)$P(u@SP (i — Hom(V;,, A)SP(1«®5p(1a is the Dirac operator

—1
(D), 1 = ~La- (0 v, (1) + 51 (631)

Remark 6.3.3. We note that the untwisted Dirac operator Dy, acting on the bundle $(%X”) can
be identified with the twisted Dirac operator ® 4, acting the bundle $(X7) ® gp twisted by flat
connection A (6.25) on the adjoint bundle gp. Hence, the eigenvalues of Dy and D 4, are the
same, a fact that will be used later in calculating the spectral flow of connection for the index
calculation.
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6.3 Eigenvalues of the Dirac Operators on Squashed 7-Sphere

Eigenvalues from the representation V)
Vry = V(O,O,O) = W(O,O)' Then,

Sp(1).®Sp(1)
Hom (V,,, A)*PD«=5P e = Hom (W(o,o)rA> S

is 1-dimensional. A basis is given by
q(O'O) . V(O,O,O) — W(O,O) — A
which factors through A% C A. Now,
(D;)7 =L~ pv: (L) = 0.
Hence,
1 1
0y —(pr) _t,__ 1
(DZ)'y - <D2>7 24) 24)
Now, since (%% factors through Wio,0) C A°, ¢ acts as 7, which follows from Lemma 2.1.3.

Proposition 6.3.4. Let V., = V(g ). Then the eigenvalue of (Dg)7 is — 2 with multiplicity 1.

Eigenvalues from the representation V(g )
Vo =Vi001) = Wo,1)- Then,

Hom (VW’A)Sp(l)uQQSp(l)d ~ Hom <W(0,1)/A> Sp(1)u®Sp(1)4
is a 0-dimensional vector space, by Schur’s lemma.
Eigenvalues from the representation V()

Vo = Viop2) = Wop)- Then,

Hom (V’WA)Sp(l)u®Sp(l)d ~ Hom (W(0,2)1A> Sp(1)u®@Sp(1)a

is 1-dimensional. A basis is given by

C](O'z) . V(O,O,Z) — W(O,Z) — A

which factors through Al C A.
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6. Deformations of Clarke-Oliveira’s Instanton on Bryant-Salamon Manifold

with an invariant element of W, ® Wgy) C V(gp) @ A. We

Now, we identify q(?)
choose abasis {1®1i,1®j,1®k} of Wi0,2) C V(0p,2), and the basis Iy, I, I3 of W) C A. Then,

we see that
g =(10)eh+(18) 9L+ 18k &k,

Then,
(D%)7 9% = I, - pv; (1)q*?
=L - 19)®L - I+ - 1)L L+ -1k, I3

=4(101)®h +4(1®)) @ L+4(10k) @ I = 447,

factors through W(o,z) C Al. Hence, from Lemma 2.1.3, ¢ acts as —1. Now,
t—1

Moreover, g(%2)
ty — (Pl
(DZ)W - (DZ)7+ 2 4)
Then,
1\ 2 1_ 1 2
3 3 2
<D§> = <4+ 5 (—1)) = (13/3)" =169/9,
v
whereas,
12 49 120 49 169
3| — _se@osp(l) | 22 24V 2T 20Y
<DZ>7_ ‘00 T tT9 T 9 T9 T
which shows the consistency of the calculation. Finally,
1 1 9
0y — (pr) _ 1, _ 17
(DY), = (DZ>7 So=d+5=12.

Proposition 6.3.5. Let V., = V(g ). Then the eigenvalue of (Dg)7 is 3 with multiplicity 1.

Eigenvalues from the representation V(; o)
Sp(1)u®@Sp(1)a

Vn’ = V(l,O,O) = W(O,O) b W(l,l)' Then,
Hom. (Vry’A)SP(l)u@SP(l)d =~ Hom (V(l,O,O)/ )

is 2-dimensional. A basis is given by
q(O’O) . V(l,O,O) — W(O,O) — A

which factors through A% C A, and
q(l 1) . V(],O,O) — W(l,l) — A
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6.3 Eigenvalues of the Dirac Operators on Squashed 7-Sphere

which factors through Al C A.

(0,0)

Now, we identify 4'°" with an invariant element of W gy ® Wgg) C V(100) @ A. Thus,

g =101=(1®1)®1.

Hence,
25
Lo 0V (I)g 0% = =240,

We identify q(lfl) with an invariant element of Wy 1) ® Wy 1) C V(q0) ® A. Thus,

g = (L) L+ (o) eh+ (i) @+ (Js©1)® 1.

Hence,
2v5
<D%)7q(0'0) =1, 'PV;(Ia)q(O'O) _ Tq(l’l)
8v/5
(Dé)7 1 = 1y py; (1)g) = 22400 4 50
Thus,

8v/5
(°), = (= 3)
v \E2 2
Moreover, g(*0) factors through W0 C A% and g factors through Wi C Al. Hence,
from Lemma 2.1.3, ¢ acts as diag(7, —1). Now,

A PO E{CE VI
(Pg), = (DZ)ﬁT‘P_ <2 15 2+3% :

2
1
We note that for t = 1/3, we have (DE) = diag(43/3,43/3), which shows the consistency

?1’/(02,2)?5‘3(1) + % = 89—0 + % = 192. Finally, for t = 0, we have

(D}), = (‘ f)

and the eigenvalues are given by (-3 —21/161), £(—3 +21/161). Thus we have the following

proposition.

of the calculation, as —c

OSTRN|

N
m%

Qi
[S1[$]

Proposition 6.3.6. Let V., = V{y ). Then the eigenvalues of (Dg)7 are t(—3 —2V161), (-3 +
2v/161) with multiplicity 1.
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Eigenvalues from the representation Vo)
V7 = V(1,0,1) = W(O,l) @ W(l,O) @ W(1,2)~ Then,

Sp(1)u®Sp(1
Hom (V,,, A)5P(Me®Sp0i & Hom (V(l,o,l)zA> PLEsp L

is a 0-dimensional vector space, by Schur’s lemma.

Eigenvalues from the representation Vg

Vry = V(O,l,O) = W(l,O) D W(O,])' Then,

Sp(1).®Sp(1
Hom (VV,A)sp(l)uéBSP(l)d =~ Hom (V(o,1,0)rA> PSS

is a 0-dimensional vector space, by Schur’s lemma.

Eigenvalues from the representation V(g )

Vi =Vio1) = W0 ® W) ® Wio2)- Then,

Sp(1)u®Sp(1
Hom (V,,, A)SPDe®5P (i & Hom <V(O,1,1)1A> p(1)u®Sp(1)4

is 3-dimensional. A basis is given by
6](0'0) . V(O,l,l) — W(O,O) — A

which factors through A C A,

q(lrl)

. V(O,l,l) — W(l,l) — A
which factors through Al C A, and
9% Vig10) = Wiop) = A

which factors through A C A.
Now, we identify g(>0) with an invariant element of Wi0,0) @ Wio0) C Vio1,1) ® A. Thus,

C](O’O) = My® 1.
We identify g(!) with an invariant element of Wi,1) ® W1y C Vio,1) @ A. Thus,

g =My @ L+Ms®@Is+Ms® I+ My @ I,
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6.3 Eigenvalues of the Dirac Operators on Squashed 7-Sphere

(0,2)

and, we identify 4"~ with an invariant element of W) ® Wg2) C V(g1,1) ® A. Thus,

4 =M @L+My®@ L+ Mz ® L.

Then,
1\ 00— Y5 a1 _5 02
(P )ﬂ s 73T
4+/5 4./5
1 (1,1) (0,0 (1,1) (0,2)
(D )W 3 1 3 3 ’
and
(Dl) q(oz) 5q00 \[qll 02)
Hence,
0 5 5
o), = s
7 5 45 2
3 3 3

Moreover, q(0) factors through Wio,0) C A%, g0 factors through W) C A and (%2 factors
through W) C Al. Hence, from Lemma 2.1.3, ¢ acts as diag(7, —1, —1). Now,

Z(t—1) &5 -5
t 1 t—1 ? V5 ’ 1t
(D), = (DZ) t= ¥ B3+ E b
! 5 BV S
3 3 3 2

2
1
We note that for t = 1/3, we have (Dg) = diag(16,16,16), which shows the consistency of

the calculation, as —C?g,(lz, )16)95’3(1) + %5 =%+ % = 1% Finally, for t = 0, we have
_7 45 -5
0 \/52 35
5 45 7
3 3 6

and the eigenvalues are given by 1(—3 — 8v/11), (-3 4 8y/11), —2. Thus we have the fol-

lowing proposition.

Proposition 6.3.7. Let Vo, = V(g1 Then the eigenvalues of (DY), are 3(—3 — 8v11), (-3
8vV/11), —2 with multiplicity 1.
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Eigenvalues from the representation V(g )
Vry = V(O,Z,O) = W(l,l) EB W(Z,O) @ W(O,Z)’ Then,

Sp(1),®Sp(1
Hom(VwA)Sp(l)u@Sp(l)d ~ Hom (V(o,z,O),A> p(1)u@Sp(1)a

is 2-dimensional. A basis is given by

9% : Viga0) = Wioa) = A
which factors through A! C A, and

g Vigao) = W) — A

which factors through Al C A.

02)

Now, we identify 4" with an invariant element of W) ® W(g2) C V(g2,0) ® A. Thus,

JO) =L oL+ hL+ L3I

1,1)

and, we identify (1)) with an invariant element of W1 @ Wii1y C Vigpo) ® A. Thus,

q(lfl):L4®I4—|—L5®I5+L6®I6+L7®17'

Hence,
<Dé)yq(02) = L pvs (1)q %) = _gq(o,z) + /104D
(7)%)7 q(l,l) =1, -pv;(la)q(l’l) — Ahéﬁq(ol) + 26](1,1).
Thus,

_8  4/10
(Di) (=5 5 ).
v \WV10 2
Moreover, (%% factors through W) C Al and g(""V) factors through Wi C Al. Hence, ¢
acts as diag(—1, —1). Now,

AN 1 t—1 _8 41t 4V10
(DZ)7_<DZ>W+ 2 (P—< 3\/ﬁ2 2—|—317t .
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1
We note that for t = 1/3, we have <D§) = diag(169/9,169/9), which shows the consistency

sp(2)sp(1 + 9_40+49

020) 49 169. Finally, for t = 0, we have

of the calculation, as —c; ( 5

13 4/10
<D%>7=(ﬁo )

and the eigenvalues are given by 3, —2. Thus we have the following proposition.

N O

Proposition 6.3.8. Let Vy = V(o). Then the eigenvalues of (D3), are 3, —% with multiplicity 1.

Main Result
Theorem 6.3.9. The eigenvalues of the untwisted Dirac operator (Dg)7 are

1. For Vry = V(O,O,O)/
2. For Vr)/ = V(O,O,Z)/

3. For Vr)/ = V(],O,O)/

—3-2V/161), %(—3 +2v161).

4. For Vr)/ = V(O,l,l)
1 1
(=3-8V1), (-3+8V1T), -2

5. For Vry = V(O,Z,O)

6.3.4 Eigenvalues of the Twisted Dirac Operator
We note that
A ®5p(1)c ZA® W(O,Z)
= W0 & Wia,1) @ Wioa)l ® Wiog)

= Wiz © (Wi @ W) © W) @ W)
= W) @ (W) © Wzl © [Wioe) © Wiz © Woal- (6.32)
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Now,
Sp(1)u®Sp(1)
12(3(2)©gr)= P  Hom (Vy,A ® W(O,Z)) !

—

Y€Sp(2)xSp(1)

@V,

where gp is the adjoint bundle of the principal bundle P = (Sp(2) x Sp(1)) x, Sp(1) defined
in section 6.2. Hence, for each <, the operator (@i\z) defined in (4.10), acts on the space
g

Sp(1),®Sp(1)
Hom (V,, A ® Wiy, ‘.

Eigenvalues from the representation V()
Vry = V(O,O,O) & W(O,O)' Then,

)Sp(l)u®5p(l)d )Sp(l)uQQSp(l)d

Hom (Vr)/, A X W(O,Z) = Hom (W(O,O)/ A X W(O,Z)

is 1-dimensional. A basis is given by

qES:Sim,Z) *Vi00,0) = Wio0) = Wio2) @ Wio2) = A @ Wgp)

which factors through A C A. Now,
(CZ)}‘\Z)v =1 'pV;‘(Ia) =0.
Hence,
(34), = (54), - o= 1o
Ry )y 2 2
Now, since qgg’(z)g 02) factors through W(o,z) C AL ¢ acts as —1.

Proposition 6.3.10. Let V), = V(g ). Then the eigenvalue of (%%2) is 3 with multiplicity 1.
7

Eigenvalues from the representation V()
VW = V(O,O,l) = W(O,l)' Then,

Hom <Vry, A® W(O,Z) = Hom (W(O,l)l A® W(O,Z)

is a 0-dimensional vector space, by Schur’s lemma.
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6.3 Eigenvalues of the Dirac Operators on Squashed 7-Sphere

Eigenvalues from the representation V| ,)
VW = V(O,O,Z) = W(O,Z)‘ Then,

Hom (V3,4 & Wy = Hom (W(g2), @ Wioz)

is 2-dimensional. A basis is given by
Yooz * Yiooa)  Woa) = Wi © Wiz = A® Wi

which factors through A° C A, and

(02)

902)(02) * V002) = Wz) = Wo2) ® Wz = A® Wy

which factors through A! C A.
Now, we identify qgg’ég(o 2) with an invariant element of W) ® Wig0) ® Wg2) C V(go2) ®

AR W(O,Z)' Thus,

Toajon = 10D @18 L+ (18))®18 L+ 10k 18 kL

Now, we identify qggig(o 2) with an invariant element of W) ® Wg2) @ Wig2) C Vig2) ® A®

W(O,Z) . Thus,

q(ojzﬂ(o,z) =19 (LOTG-LT)+(10)R (LT —LT)+ 10k (LT, —LT).

Then,
1 (0,2) _ (0,2) _ ~,(02)
(z)AZ)’y Tooo2) = o 0v; U)di00)02) = 29002027
and
1\ 02 02 _ 4 (02 02)
(Phs)_ 0202 = o 0; (14103 02) = 41l00)02) *+ (02} 02)
Thus,

(24), = (5 3)

Moreover, qggi(z)i(o,z) factors through W) C A® and ’7%83 (02) factors through Wg,) C AL

Hence, ¢ acts as diag(7, —1). Now,

(@22)7 _ (4@342>7+ %4, _ (Z(tz— 1) 2+412t) .
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We note that for t = 1/3, we have (7)3 ) = diag(121/9,121/9), which shows the consis-
¥
sp(2)Dsp(1) + % _

tency of the calculation, as —c (020) T + % = %. Finally, for t = 0, we have

(%), =(7 3)

and the eigenvalues are given by 1(—1—2v/17),1(—1+ 2v/17). Thus we have the following

proposition.

NIN

Proposition 6.3.11. Let V., = V(g 5). Then the eigenvalues of (15?42) are 3(—1-2v17), 3(-1
7
2v/17) with multiplicity 1.

Eigenvalues from the representation V; o)
Vry = V(l,O,O) = W(O,O) EB W(l,l)' Then,

>5P(1)U®SP(1)¢ )Sp(l)u®5p(1)d

Hom (Vr)/, A & W(O,Z) = Hom (V(l,O,O)/ A X W(0,2)

is 2-dimensional. A basis is given by

©00) .
Ti02)02) * V1,00) = W) = Wio2) @ Wio2) = A® Wiz

which factors through Al C A, and

L)
T02)02) * V100) = W) = Wiy @ Wiez) = A® Wioy)

which factors through Al C A.
Now, we identify qgg'(z]g(o 2) with an invariant element of W) ® Wig2) @ Wg2) C V(100 ®
A (039 W(O,Z)' Thus,

qggg(o,z) =hehehh+LeTh+LEeT;)

and, we identify ‘78,3(0 2) with an invariant element of Wy 1) ® W(1,1) @ Wg2) C V(100 A ®
W(O,Z)‘ Thus,

Mo = ROE—BeL+LeL - k) oT
+ (- LeOL-BL+®1)®Th
+ (L —0L+ 30— ]1®I5)® Ts.
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Computing directly, we have,

(%}42)7‘758:2;(0,2) = I ‘9(1,0,0)(107)‘78:2;(0,2) = 2;@‘7&3(02)'
and
(35342%‘78 D02 = o pa00) 1)4112)02) = %@‘78&02) - %qgjg(m)'
Hence,

1 0 815
(@), (5 %)
3 3
Moreover, qgg’g;(o 2) factors through Wy, C Al and qﬁ’g(o 2) factors through W, 1) C Al
Hence, ¢ acts as diag(—1, —1). Now,

(0), - (22), = 5o (3 ).

2
1\2
We note that for t = 1/3, we have (ZZ) 1342) = diag(9,9), which shows the consistency of the
v
calculation, as —c?i/%?wm + 3= 80+ é 81 . Finally, for t = 0, we have
1 8/5
0 (L 8
<@Az>7 (s %)
3 6°
and the eigenvalues are given by ¥, —Z. Thus we have the following proposition.

Proposition 6.3.12. Let V), = V| ). Then the eigenvalues of <®%Z> are 2, — 17 with multiplicity
g
1.

Eigenvalues from the representation V(; o)

Vry = V(l,O,l) = W(O,l) SP) W(l,O) SP) W(Lz). Then,

>SP(1)u®5P(1)d )SP(1)1¢®SP(1)d

Hom (VV, A® W) ~ Hom (V(wll), A® W)

is a 0-dimensional vector space, by Schur’s lemma.

Eigenvalues from the representation Vg )

sz = V(O,l,()) = W(l,O) 8P, W(O,l)' Then,

Hom (Vr),, A ® W(O,Z) = Hom (V(O,l,())/ A & W(0’2)

is a O-dimensional vector space, by Schur’s lemma.
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6. Deformations of Clarke-Oliveira’s Instanton on Bryant-Salamon Manifold

Eigenvalues from the representation V(g )
Vo =Vo,1) = W0 ® W) ® Wo2)- Then,

>Sp(1)u®5p(1)d )Sp(l)u®5p(1)d

Hom (Vry, AR W(O,Z) = Hom (V(O,l,l)l A® W(O,Z)

is 4-dimensional. A basis is given by

(0,0)

Qi02)(02) * V011 = W) = Wioz) @ Wioz) = A®@ Wiz

which factors through Al C A,

1
T11)02) * Vo1 = Wapy = Wai) @ Wiz = A® Wiy

which factors through Al C A,

(0.2)

900)(02) * V011 = Wioz) = Wi @ W) = A® Wy

which factors through A® C A, and

02 .
Ti02)02) * Vo11) = Wio2) = W) @ Wio2) = A® Wigz)

which factors through Al C A.
Now, we identify qgg’gg(o 2) with an invariant element of W) ® W) @ Wg2) C V(g1,1) ®
A ® W2 Hence,

6]58:2;(0,2) =My® (Il RTT+LRT,+3® T3).

We identify ‘783 02) with an invariant element of W(; 1) @ W31y @ W(g2) C V(g1,1) @ A® W ).

Hence,

qglllg(O,Z) == (M4®I5_M5®I4+M6®I7_M7®I6)®Tl
+(M4®I6—M6®I4—M5®I7—|—M7®I5)®T2
+ (My®@L; — M7 QL+ Ms I — Mg ® I5) @ Ts.

We identify qgg’gg 02) with an invariant element of W(q2) @ W(g0) ® Wig2) C V(g1,1) @ AQ W ).

Hence,

Tom0y =M1 @1OTI + M @18 T+ Ms @18 Ty,
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6.3 Eigenvalues of the Dirac Operators on Squashed 7-Sphere

and, we identify qgg’g 02) with an invariant element of W) ® Wig2) @ Wga) C V(g1,1) ®A®
Wo2)- Hence,

6]58:2(0’2) =M ® (12 RT3 —I3® Tz) + M ® (13 KT —L® Tg) + M3 ® (Il KT —DbL® T1),

A direct computation yields,

and
1 (02) 10 (0,0 2v/5 (1,1) 2 (02) 1 02
<5~’)z‘1z)7 T02)02) = 3 902)02) 3 10102 T 390002 T 3902)02)

Hence

0 4/5 5 10

3 3 3
V5 1 V5 26
;7_)1 _ |3 3 3
Ax) 5 46 g 2

3 3 3

5 _4/5 1 1

3 3 3 3

Moreover, qggigi 02) factors through W) C Al, ’783 02) factors through W, ;) C Al quf)g 02)

factors through Wy C A% and qggég(o,z) factors through Wy, C Al. Hence, ¢ acts as
diag(—1,—1,7,—1). Now,

1t 45 5 10
NN ST 25
(2) = (h) + 5= |3 12 L0, S
U U 3 ¥ s(t=1) 3
5  _4/6 1 14 1ot
3 3 3 37T 72
1\ 2
We note that for t = 1/3, we have (i’) 13‘1): = diag(32/3,32/3,32/3,32/3), which shows the
%%
consistency of the calculation, as —cf(’g,(i)l?sp(l) + % - % + % = %6. Finally, for + = 0, we have
1 46 5 10
2 3 3 3
V5 3 V5 _2V5
(@% ) _ |3 2 3 3
=)y 5 465 7 2
3 3 2 3
5 _46 1 5
3 3 3 6

97



6. Deformations of Clarke-Oliveira’s Instanton on Bryant-Salamon Manifold

and the eigenvalues are given by 1(—3 — 16v/2), 1(—3+ 16v/2), 1 (1 — 8v/6), 1 (14 8V/6). Thus

we have the following proposition.

Proposition 6.3.13. Let Vo, = V(g1 1). Then the eigenvalues of (@?42) are 1(—3—16v2), (-3+
v

16v2), $(1—8v6), t(14 8v/6) with multiplicity 1.

Eigenvalues from the representation Vg, )

V'Y = V(O,Z,O) = W(l,l) D W(Z,O) ) W(O,Z)' Then,

)Sp(l)u@SP(l)d )Sp(l)u®5r’(1)d

Hom (V;, A & Wiy = Hom (Vg1 A ® Wioy)

is 3-dimensional. A basis is given by

qéi:iim *Vio20) = W) = W) @ Wio) = A@ W)

which factors through A! C A,
q(oio;(o,z) V0200 = Wioz) = Wioo) @ Wioz) =A@ Wiog)

which factors through AY C A, and

(02)

Ti02)02) * V(020) = Wio2) = Wio2) @ Wio2) = A® Wiz

which factors through A! C A.
Now, we identify qﬁB 02) with an invariant element of Wy 1) ® W(y,1) @ W(g2) C V(g2,0) ®

A ® W) Hence,

qﬁjgm) = (Ly@ 6 -Ls@L+Le®@; — Ly ® 1) ®Th

+(Li®l—Le®@L—Ls@; +Ly015) @ Ty
+ (L@ —Ly®@L+Ls® I — Le®I5) ® Ts.

We identify qgg’gg 02) with an invariant element of W(q ) @ W o) ® W(g2) C V(g2,0) @ A® W ).

Hence,

(02) _
q(0,0)(O,Z) = L1®1®T1+L2®1®T2+L3®1®T3,

and, we identify qgg’ig 02) with an invariant element of W) @ W) @ Wg2) C V(g0 @ A®

Wi(o.2)- Hence,

0,2

qgojzg(O,Z) =L®hLel-LEeah)+Le (e —LT) +Le(heT,—-LeT),
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6.3 Eigenvalues of the Dirac Operators on Squashed 7-Sphere

Then, from direct computation, we have

(1,1) 2 1) 410 (02) 410 ()
L ‘P(0,2,0)(Ia)”/(1,1)(o,z) = 7390102 ~ —3 10002 T 73 102027

V10 (11 4 (02)
I 'p(O,Z,O)(Ia)q(o 002 — ~ 3 11102 ~ 3702027
and
I 140 2v10 (17 8 (02 4 (02
a"P020)( “)‘7(02)(02) = 73 10102 ~ 370002 ~ 3702)02)
Hence,
_2 _ V10 2v/10
) o 3 3
(ﬁAz)A,_ -5 0 =3
410 _4 _4
3 3 3

Moreover, q&}g(m) factors through W, ;) C Al qggﬁg 02) factors through W) C A and

(0,2)

0(02)(02) factors through Wgz) C Al. Hence, ¢ acts as diag(—1,7, —1). Now,
24 1=t V10 2V10
t 1 t—1 ° 4 102 7 ° 38
(@Az)vz (@AZ)QLTQ”: -2 (-1 =3
4410 _4 _4 + 1—t
3 3 37T 72
1 \2
We note that for t = 1/3, we have <1§22> = diag(121/9,121/9,121/9), which shows the
0
consistency of the calculation, as —C?SI(ZZ, zf)Bsp(l) + % = % + % = %. Finally, for t = 0, we have
_1  _ Y10 2Y10
0 4% ; 38
<@A2>7_ —73 T2 T3
410  _4  _5
3 3 6

(=14 2\/?), —%. Thus we have the

N[—

and the eigenvalues are given by 1(—1 —2v/17),

following proposition.

Proposition 6.3.14. Let V., = V(g ). Then the eigenvalues of (@942) are 3(—1—2v/17), 3(-1+
0
2V/17), —Z. with multiplicity 1.

Main Result

Theorem 6.3.15. The eigenvalues of the twisted Dirac operator (@%Q are
g
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6. Deformations of Clarke-Oliveira’s Instanton on Bryant-Salamon Manifold

1. For Vr)/ = V(0,0,()),

2. For V’Y:V(O,O,Z)/
2( 1-2V17), (1+2\ﬁ)

3. For Vr), = V(],O,O)/

4. For Vo = Vio 1))
%(—3—16\@), ~(=3+16V2), (1—8f) (1+8f)

5. For Vry = V(O,Z,O)
1 1
S(-1-2V17), 2(-1+2V17), =3

Corollary 6.3.16. The only eigenvalue of the twisted Dirac operator D" Ay in the interval [— 2,3)is 3

corresponding to the trivial representation Vg ).

6.4 Deformations of Clarke-Oliveira’s Instanton

In this section we calculate the deformations of Clarke—Oliveira’s Instanton and calculate the
virtual dimensions of the moduli space. Following similar techniques as in chapter 5, we
compute the index of the twisted Dirac operator D, : szz — ngl on 3 (S*), where
A is Clarke-Oliveira’s Instanton, using the Atiyah—Patodi—SiIiger theo;em and various other

techniques.

6.4.1 Index of the Twisted Dirac Operator

Let gc be the Bryant-Salamon metric (6.13) on $~ (S*). We define the asymptotically cylindri-

cal “cigar” metric gcy 1= QI—Z gc, where ¢ is the radius function (2.30).
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6.4 Deformations of Clarke-Oliveira’s Instanton

G4
Figure 6.1: $~ (S*) with cigar metric.

Then, as in Chapter 5, we have
Index (Q);C L WR2 Wk;m) = Index <@;1 crt wk2 Wkil’z) . (6.33)
, -7 -2 , CI cI

Throughout this section, We identify R x ¥7 with (0,00) x £7 via t = Inr for r € (0,00) and
t e R.
Define a function ¢ : R — R by

-3 t<-T
a, —T<t<—%
o) =S o), —LT<t<] (6.34)
a, T<t<rT
t>T

where 7 is a smooth interpolation between its values at - and T and 4’ is that of between its
values at —T and — 1.

Consider the connection on 8~ (S*) given by
A=Ay +¢(t)e"T,. (6.35)

This connection has the same limits at t = +o00 as Clarke-Oliveira’s instanton A.

We note that $ (S*) can be considered as the space [0,00) x (Sp(2) x Sp(1))/ ~ where

(r,8) ~ (r,g-h) forallr >0, h € Sp(1)?
(0,8) ~ (0,g-h) forall h € Sp(1)>. (6.36)

Proposition 6.4.1. Let K& := [0,R) x (Sp(2) x Sp(1))/ ~ be a compact 8-dimensional subset of
37 (S*), where R > 0 and ~ is defined as (6.36). Then for sufficiently large R, we have

Index <@2/Cl, $7(S4),gc1> = Index (@ia, K%,ga) ,
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6. Deformations of Clarke-Oliveira’s Instanton on Bryant-Salamon Manifold

and for sufficiently large T, we have
Index (@g,]R x 57, g) — Index (1)%, [T, T] x 7, g) .
where g is the cylindrical metric given by ¢ = dt* + g7

The proof is similar to the proof of proposition 5.2.1.

Now, the index of the twisted Dirac operator @ ., on K% is given by the Atiyah-Patodi-

ACI
Singer index theorem, which states that

_ _ 1
Index (B ¢, Kk ger) =1 (D1, Kk ger) + 51(Das, 9KR). (637)

By proposition 6.4.1, the index is independent of R, hence taking R — oo, we have,

_ _ 1
Index (D ;8 (5),8cr) =1 (D58 (8),801) +51(Das X)) (6.38)

where, the term [(D 4 ¢, 8 (S*), gcr) in (6.38) is given by
- —(c4 _ A(g—(ch
I(Bacn$ (Sgc) =~ [ A (5%) eh(er &)
_ _ b —(c4 1 —(c4\\2 _ —(c4
[y (1= 557 + g O (8 (5%~ apa(s(s))

(dimg + p1(gp) + l (P1 (gp)? — 2P2(9P))>

:_% g (st )(p1(gp) —2pa(o 24/ $*)p1(ap)
5760 9/ (7p1(87 (1) —4Pz($*(54))), (6.39)

where p; denotes the ith Pontryagin classes.

6.4.2 Eta Invariant of the Boundary

We calculate the eta invariant 7(®4,,%’) of the twisted Dirac operator by first, relating it to
the untwisted Dirac operator on the squashed sphere, and then, relating it to the untwisted
Dirac operator on the round sphere, whose eta invariant is known to be zero.

Recall Clarke-Oliveira’s instanton (6.14) with ¢ given by (6.24). The instanton can be
identified with a family of connections {A; : t € R} on ¥/, where t = Inr. The family of Dirac

operators twisted by the connections A; is given by

Day =Day + @) Ta (6.40)

102



6.4 Deformations of Clarke-Oliveira’s Instanton

1

where ¢(t) varies from —3 to 0. Then, from (6.25), (6.40) and remark 6.3.3, we note that,
for ¢(t) = 0, we have the Dirac operator P 4, twisted by the canonical connection, and for

¢(t) = —3, we have the Dirac operator twisted by the flat connection, given by
Dy = D4, — T, (6.42)

We identify the family of Dirac operators {D4,, } ter ON Y7 with the Dirac operator ¥, on the
cylinder € := R x X7, given by

- d
o (4 -2..).

7 7
Ap Ca Ay

Figure 6.2: The cylinder .

Then, from [39], the index of the Dirac operator ¥, on R x ¥ is
Ind(D,¢) = —sf ({mbz}teﬂ{) . (6.43)

Now, from Proposition 6.4.1 and applying the Atiyah-Patodi-Singer index formula on [—T, T] x

%7, we have
Ind(D4,¢) =Ind(D, [T, T x27) =1 (1)%, [T, T] x 27) - %n(a([—T, T] x £7))

where the term 5 (9([—T, T] x £7)) is the eta invariant for the operator P restricted to the
submanifold 9([—T,T] x £7). By proposition 6.4.1, since Ind(® 4, ) is independent of T,
taking T — oo, we get,
_ _ 1
nd(®5,¢) = I (@Z, @) +51(00)

where 7(9¢) is the eta invariant for P restricted to the submanifold 9¢.
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6. Deformations of Clarke-Oliveira’s Instanton on Bryant-Salamon Manifold

Now, from (6.4.1), we have
1(25,¢) =1(23RxY)
Moreover, since o = X7 11 ﬁ, where Y7 is 7 with opposite orientation, from (6.42) we have
1(0C) = (D, ) + (D ay, X) = (D, ) = 1(Ds, T),

So, finally, we have

P W A

=Ind(D,,C) - 1(D4,C) + %17(172, 27)

= st ({Dae}yen) ~ 1D2,€) + %W(Dz, 7). (6.44)

Now, we note that since the squashed sphere does not have an orientation reversing isom-
etry, the eta-invariant of the untwisted Dirac operator Dy may not be zero. So, to find the
eta-invariant of the untwisted Dirac operator on the squashed sphere, we relate it to that of

the round sphere for which we know the eta-invariant of the untwisted Dirac operator is zero.

Consider the cylinder Cy := £ X R, and for t € R, a family of Riemannian manifolds
(%, gt) where for t = —co we have the squashed 7-sphere 7 and for t = oo we have the round
7-sphere S7.

Figure 6.3: The cylinder Cs.

Consider corresponding family of untwisted Dirac operators { Dy, ; };cr which we can identify

with an untwisted Dirac operator D~ on the cylinder Cyz. Then, using the result from [39],
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6.4 Deformations of Clarke-Oliveira’s Instanton

we have that the index of the Dirac operator on the cylinder Cy, is the negative of the spectral

flow of the family {Ds }ier, ie.,
Ind(D~,Cs) = —sf ({Dxs}1ep) - (6.45)

Now, from Proposition 5.2.1 applying the Atiyah-Patodi-Singer index formula on [—T, T] x

¥7, we have
Ind(D~,Cs) =1 (D, [-T,T] xX7) + %n(Dz,a([—T, T] x 27)).
Since Ind(D~, Cy) is independent of T, taking T — oo, we get,
Ind(D~,Cx) = I1(D",Cs) + %n(a(cz)).
Moreover, since d(Cy) = £7 I1 §7, where S7 is S7 with opposite orientation, we have
1(0(Cs)) = 7(Dg,X7) —1(Ds, 57).
Hence, we have
1 7 1 1 7
21(Ds,57) = 25(8(Ce) + 5(Ds, )
=Ind(D~,Cs) —I(D~,Cx) + %U(Dz, s7)
= —sf ({Dsi}er) — (D7, Cx) + %;7(732, s7). (6.46)
Then, substituting (6.46) in (6.44) and using the fact that 7(Ds, S”) = 0, we have

1@ %) = —f (D} o) — 1@3,€) —sf ({Pridyr) —1(D,Ce). (647)

Spectral Flow of the Connection

We want to find the spectral flow of the family of Dirac operators (6.40). First we compute the
eigenvalues of the operator e’ T, which acts fibre-wise, on A @ sp(1). Lete”, y =0,1,...,7 be
a basis of A and T, is a basis of sp(1), for a = 1,2,3. Then,

-~

(E*®ad T,)(e" @ Tp),
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6. Deformations of Clarke-Oliveira’s Instanton on Bryant-Salamon Manifold

Eigenvalues | Multiplicities
4 4
—4 4
-2 8
2 8

Table 6.1: Eigenvalues of e"T, and corresponding multiplicities.

where E” is the matrix given by Clifford multiplication with ¢*. Similarly, we calculate the
matrices ad T,. We get the matrix of T, by taking the Kronecker product of E* and ad T,.
The eigenvalues of ¢"T, are given in table 6.1.

In figure 6.4, we plot the eigenvalues of the operators Dy and D 4, near zero, calculated in
theorems 6.3.9 and 6.3.15.

Now, the the highest magnitude among the eigenvalues of e"T, is 4. Hence, from (6.42),
any flow from an eigenvalue of the twisted Dirac operator @4, to an eigenvalue of the un-
twisted Dirac operator Dy, can have a magnitude of maximum 4. Moreover, from the fig-
ure 6.4, it is evident that the only possible non-zero spectral flow would be a flow from
the eigenvalue 1/2 of D4, to the eigenvalue —7/2 of Dy, since any other flow of eigen-
values of D, to eigenvalues of Dy of opposite sign has magnitude greater than 4. Now,
we recall that 1/2 is an eigenvalue of @, that corresponds to the trivial representation
Vio0,0) of Sp(2) x Sp(1). Hence, in the decomposition (4.8), the eigenspinor # correspond-
ing to eigenvalue 1/2 belongs to the space Hom(V| ), A @ sp(1)¢)PMu@sp(la Vio00) C
L2(Sp(2) x Sp(1), A @ sp(1)¢)*Du®sp(Da, Then, from the decomposition

A® ﬁp(l)c = W(O,O) SP) 2W(0/2) S5 W(l,l) S W(1,3) S5) W(0,4)/

and by Schur’s lemma, we have that 7 € Hom (V) W(O,O))”(l)”@sp(])d ® V(o,0,0) which is a
subspace of L?(Sp(2) x Sp(1),A ® sp(1)¢)*M«®sp()a Hence, we compute the eigenvalue of
e"T, corresponding to the trivial subrepresentation Wy of A ® sp(1)c.

A direct calculation shows that the eigenvalue is —4. Thus we have a flow of the eigenvalue
moving up to 9/2 and not down to —7/2. Thus, the spectral flow of the family {Da,, }, p is
given by

of ({Das i) =0 (6.48)
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%(multZ)
1.
t(=3+2v1e61) s(=3+8V11) 11486 2(=1+2V/17) (mult 2)
6 163 1(-3+16V2)
1
2
Y
7 67 %(1_8%)
21 23 2
_5l 6 !
6 1(—3-16V2)
L-3-2V161)31 5 g /1) i 1(-1-2V17) (mult2)
6
Dy, @Az
p=1 =20

Figure 6.4: Spectral flow of the family {D4,, }, cr ON X7

Spectral Flow of the Metric

Consider the Lichnerowicz-Weitzenbock formula for the family of Riemannian manifolds
(%, gt), given by
. 1
(DZ,t)2 = Vs, Ve + 25 (6.49)

where s; is the scalar curvature of the Riemannian manifold (%, g;). Then, for the family of
Dirac operators to have a nonzero spectral flow, the Dirac operator Dy should have a zero
eigenvalue for some t, and it is only possible if the corresponding scalar curvature s; is zero.

Following [37], we consider a family of metrics on X, given by

g(t) == a(t)* (5 +13) + b(t)*n3 + c(t)*m* gse (6.50)
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6. Deformations of Clarke-Oliveira’s Instanton on Bryant-Salamon Manifold

wheret € R, 71 : S — S*is a Riemannian submersion, 11,12, 173 are one forms on S7. Then, for

this family, 2 = b = ¢ = 1 corresponds to the round metric,and a = b = L =1 corresponds

V5
to the squashed metric.

Lemma 6.4.2. [37] The Ricci curvature Ric(t) of the family g(t) is given by
b?  2q% bt 2pt 22 +b*\

It is interesting to note that the Ricci flow for the family g(t) is well defined, and the only

two critical points correspond to the round and squashed metrics respectively [37].

We can easily calculate the scalar curvature of this family to be

b2 24%*\ 1 bt 2%\ 1 202 + b2\ 1
8 4b*  8a® 20* 4V 48 16a*  8b°

SE At atatataa -

1 1
= aj(&zz —2b°) + ?4<48C2 — 8a% — 4b?).

For a = b = ¢ = 1, we have the scalar curvature of the round metric, given by 42; and for
1
\/5/

Now, we consider a simpler family of Riemannian metrics

a =b = —=,c =1, we have the scalar curvature of the squashed metric, given by 378/5.

g(t):=a(t)?(ni+n3+n3) + mgs (6.52)

where a(—c0) = 1 and a(c0) = 1/5. The corresponding family of scalar curvatures is given by
a% + 48 — 1242, which we note to be always nonzero positive for a € {%, 1} .
Then, since a spectral flow of metrics, from the round sphere to the squashed sphere, being

a topological invariant, does not depend on the path, proves that
sf ({Dst}ier) = 0. (6.53)
Index of the Twisted Dirac Operator
From (6.48), (6.53) and (6.47), we have,
%n(mz,ﬁ) = —1(D4,¢) - 1(D",Cy). (6.54)

To calculate I(D -, (S*),8c1) in (6.38), we split §(S*) in two parts, ¢, and the comple-

ment By.
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|

4
S 7 7

Ay A Ay
By z
Figure 6.5: § (S*) = By 11 €.
Hence,
[(D5c, 8 (8%),8ct) = (D™, Bz) + (D4, ©). (6.55)
Then, from (6.38), (6.55) and (6.54), we have,
Ind(@i/a,é@_(S‘*),ga) =I1(D",Bs)—I(D",Cx)
D™, Ms), (6.56)

where Cy, is Cy. with opposite orientation, and the manifold My is diffeomorphic to Bs#,Cs,
where the boundary gluing is defined by X#;Y := X1 Y/0X ~ 9Y.

A

Ms 7

Figure 6.6: By#,Cy = Ms.

Consider the 8-dimensional ball D® := {x € R®: |x| < R for some R > 0} equipped with the

cigar metric gc;. Then, we have the following lemma.
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6. Deformations of Clarke-Oliveira’s Instanton on Bryant-Salamon Manifold

Lemma 6.4.3. Ms#,D? is invariantly diffeomorphic to HP?.

X x
Proof. Recall that HP? = (H>\ {0})/ ~ where [y | ~ |y | A for A € H\ {0}. We note
z z

b
that there is a natural action of Sp(2) on HP?, where, for v q € Sp(2), the matrix
c

a b 0 x

c d 0| actson [y | € HP2 Since the orbits of the action of Sp(2) on My are ex-

0 01 z
actly S* and S7, whereas, the orbits of the action of Sp(2) on D® are exactly S” and {0}
respectively, it is enough to prove that the orbits of the action of Sp(2) on HP? are exactly
{0} = Sp(2)/Sp(2), S” = Sp(2)/Sp(1) and S* = Sp(2)/Sp(1)2. That is, the stabilizers of the
action are Sp(2),Sp(1), Sp(1)? respectively.

54 MZ {0}

S7

Figure 6.7: My#,D? =~ HP?2.

Case 1. z # 0. Without loss of generality, we can take z = 1. Then, we have the following two

subcases.
0
Subcase 1: x = y = 0. Then the stabilizer of | 0 | € HP? is Sp(2).
1
x
Subcase 2: x,y not both zero. Then, it is easy to calculate that the stabilizer of | y | € HP? is
1
Sp(1).
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6.4 Deformations of Clarke-Oliveira’s Instanton

X
Case 2. z = 0. In this case, it is easy to calculate that the stabilizer of | y | € HP? for x, y not

0
both zero, is Sp(1) x Sp(1).

Let a € H*(IHP?,Z) be a generator such that / ) a?> = 1. Then, (see [48])
HP

p1(HP?) = 2a, py(HP?) = 7a4°.
Hence,
Ind(D~,HP?) = I(D~,HP?)

1 2\2 2
= — g dima [ (7 (HP?)? — 4pa(HP?))
_ 1 . 2 2

= 576Odung ]HP2<7 40° — 4 -7a%)

=0,

where the formula for the index is obtained from 6.39 by substituting p1(gp) = p2(gp) = 0,

for the trivial connection. Hence,
I(D~,HP?) = I(D~,Ms) + I(Dy, D®) = 0.
But, we know that p;(D8) = p2(D8) = 0, which implies I(D~, D¥) = 0. Hence,
I(D~,Myx) =0. (6.57)
From (6.56), (6.57) and (6.33), we have

Ind_s(D4,8 (5%),8) =Ind(Dycp, $ (5*), gc1) = 0. (6.58)

5
2

6.4.3 Virtual Dimension of the Moduli Space

The main result on the deformations of Clarke-Oliveira’s Instanton is given by the following

theorem.

Theorem 6.4.4. The virtual dimension of the moduli space M(As,v) of Clarke-Oliveira’s instanton
with decay rate v € (—2,0) is given by

virtual-dim M (As,v) = 1. (6.59)

111



6. Deformations of Clarke-Oliveira’s Instanton on Bryant-Salamon Manifold

Proof. The index of the Dirac operator @, corresponding to the rate —5/2 is zero, which
follows from (6.58). Moreover, from Corollary 6.3.16, it follows that the only critical rate
between —5/2 and 0 is —2, corresponding to the eigenvalue 1/2. Then, the result follows from
the fact that the eigenspace of the eigenvalue 1/2 is 1-dimensional using Theorem 3.1.11. [

Remark 6.4.5. We note that the deformation of the instanton described in theorem 6.4.4 comes
from the parameter y in the expression of ¢(r) (6.24) in Clarke-Oliveira’s instanton (6.14).
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Chapter 7

Obstructedness of AC U(1) and SU(2)
Instantons on R®

In this chapter we investigate the existence of U(1) and SU(2) asymptotically conical Sp(2) x
U(1)-invariant instantons on R8. We show that with gauge groups U(1) and SU(2), no such
invariant instantons exist. However, this result enables us to prove that any asymptotically
conical U(1)- or SU(2)-instantons on R® asymptotic to the flat connection on S satisfying
certain condition are obstructed.

SU(2)-instantons on R® are already studied by Lewis [43]. He showed that there does
not exist SU(2)-instanton on R® which has finite energy. However, there is no a priori reason
for any asymptotically conical SU(2)-instanton converging to a flat connection on S’ to have

finite energy.

7.1 Sp(2) x U(1)-invariant metrics on R®

As a homogeneous space, the 7-sphere can be written as %. We note that the round

metric on S’ is not Sp(2) x Sp(1)-invariant, which follows from the fact that Sp(2) x Sp(1)
is not a subgroup of Spin(7). It is Sp(2)-invariant, and we choose the maximal subgroup

Sp(2) x U(1) of Spin(7) containing Sp(2) for which the round metric is invariant. Hence, we

o (2)XU(R. Recall the groups

write the 7-sphere as the homogeneous space Sp)<U)

Sp(1) = {a €H:aa" = 1}, Sp(2) = {A = (i Z) ta,b,c,d € H,AA" = 1}
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7. Obstructedness of AC U(1) and SU(2) Instantons on R®

and corresponding Lie algebras

ap(1) = {xe]H:x+x*:0}, ap(2) = {A: (’Z“ g}) :x,y,z,weH,A+A’f:0}.

Now consider the embedding of Sp(1) and U(1) in Sp(2) x U(1) as

= {((5 )i o {(( )):veun)

The corresponding Lie algebras are given by

o= {((5 §):scom). v {(( 9) w0}

sp(l) du(l) = {((g 3) ,y) cx €sp(l),y € u(l)}.

We have a decomposition of the Lie algebra sp(2) @ u(1) as

Then,

sp(2) du(l) =sp(l) du(l) ®m.

We want to find m = (sp(1) @ u(1))*. But, since sp(2) @ u(1) is not semi-simple, its Killing
form is degenerate, so instead we use the Killing form of sp(2) @ sp(1) and the projection

sp(2) @sp(l) — sp(2) @ u(l) to choose

0 b . - .
"= { <<—bJr 2(z1i + 22 + Z3k)> ’ _3211) b e H,z1i+2z2j + 23k € 5p(1)} =~ sp(1) @ H.
(7.1)

Now, since m is a representation of Sp(1) x U(1), we want to decompose m into irreducible
representations of Sp(1) x U(1).

Let V; be the unique irreducible representation of SU(2) = Sp(1) of dimension (i + 1).
Then,
Vo = Trivial representation (dim Vp = 1),
V1 = Standard representation (dim V; = 2),
V> = Adjoint representation (dim V, = 3).

et (<§ 2) 'h> € Sp(1) x U(1) for g € Sp(1), h € U(1). It acts on an element of m as

(60 (G s yrmn) 9 (o2 #)
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7.1 Sp(2) x U(1)-invariant metrics on R®

-1

- <<—hbqu‘1 2h(zyi —|—gzbz;]l' + 23k)h_1> ’ _3hzlih_l) ’
This shows that m contains three copies of the 1-dimensional irreducible representation and
two copies of the 2-dimensional irreducible representation of Sp(1) x U(1). To explicitly write
m as a direct sum of irreducible representations of Sp(1) x U(1), we first need to calculate the
weights of the irreducible representations of U(1) appearing in the above expression. Let
b =by+bii+byj+bsk, h = e = cos@+isinh, h™1 = e ¥ = cos§ — isinh. Then, we consider

the action

h-b=bh!
= (bpcos B + by sin @) + (by cos 0 — by sin0)i + (b cos @ — bz sin®)j + (bs cos 0 + by sin 6)k.

Hence the matrix of the action is given by

cosf —sinf 0 0
sinf  cosf 0 0
0 0 cosf) siné
0 0 —sinf cos6

whose eigenvalues are given by el =10 oif o=if

Now, consider the action

h(z1i + z2j + zsk)h ™!
= (cosO +isin@)(z1i + z2j + z3k)(cos§ —isin @)

= z1i + (22c08% 0 — zp 5in® O — 223 5in 0 cos B) ] + (23 cos® O — z3 sin? 6 + 2z, sin 6 cos O)k.
Hence the matrix of the action is given by

1 0 0

0 cos20 sin20

0 —sin20 cos?26,
whose eigenvalues are given by 1,¢%?, =29,
Let W; be the irreducible representation of U(1) of weight j. Then, we have the expression

of m as

mMEVIWPVIQQW_ 1 Vi Wyh Vo Wr & Vo ® W_s.
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7. Obstructedness of AC U(1) and SU(2) Instantons on R®

Let us define W;;) := V; ® W;, the irreducible representations of Sp(1) x U(1). Clearly,
dim W(; ;) =i+ 1. Then
m= W(l,l) D W(llfl) D W(O,O) & W(O,Z) D W(O,72)' (72)

Now, we want to find a basis for m. We note that m = T, = V, ® H, = ImH © H, where
V) is the vertical space and H),, is the horizontal space with dimensions 3 and 4 respectively.

Now,

0 0 . . . .
ImH = { <<0 2(21i+22j+z3k)> / —3211> 210+ 2p] + 23k € sp(1),z1i € u(l)} .

So, we choose a basis
- 0 0 N = 0 0 - 0 0
(6 )= 3956 )
0 b
= (S 2).0)bem).
So, we choose a basis

(% )8 ()9 (5 9w (53

Denote the dual basis of I, by ¢ fora=1,...,7.
Then I,...,1I, together with

(5 )1 (6 )1 (6 ) mn-(9),

form a basis of sp(2) x u(1). Our objective is to calculate the Sp(2) x U(1)-invariant metrics g,

Now,

three-form ¢ and ¢ = x¢ on 7, i.e., Sp(1) x U(1)-invariant metric g, three-form ¢ and i = *¢
on m.
Expressions of ¢, and the metric g
We consider an ansatz for ¢ given by
¢ = ae'® — B(e' Nwy) — (@ Awr +2 Aws)

where w1, ws, w3 forms a basis for A%JH*. Explicitly, we take w; = P e w, = * —

&7 wy =V + 5.
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7.1 Sp(2) x U(1)-invariant metrics on R®

It is a routine matter to check ¢ is Sp(1) x U(1)-invariant. To find the constants &, B, 7, we
use the nearly G, condition d¢ = 4.

For ¢, we have the Maurer—Cartan equations
de* = azi A 5b 1 a b A 5
et = —f,e Ne —Efbce NE°.

Then, calculating the structure constants explicitly, we calculate,
dp = ade'® — Bd(e* A wy) — yd (@ Awy +2 Aws)
5 5°

iy <_8€2345 _ §E4567 _ §52367 1451247 4 g51256 _ 451346 | 431357>
5

_ _ _ _ 2_ 2
— <_ 1247 _ 51256 | 51346 _ 51357 _ 252345 2367

5 5
gy <8§2345 4 852367 _ 454567> .

Consider the transformation,
ael Q=
é={b i=23
e i=4,56,7.
We choose &« = abz,,B = ac?,y = bc®. Then

4) —_ 0@123 o 13(5145 + 5167) o 'Y(E246 o é257 + E347 4 E356)
— anglZS o llC2 (5145 + El67) _ bCz (5246 _ EZS7 + 5347 + 5356)

_ A2 G5 G167 _ 246 | 257 _ 347 _ 5356

Corresponding 1 is given by
p = 067 _ 1247 _ 51256 | G346 _ 1357 _ 52345 _ 52367

—_ C4E4567 _ ach (51247 + 51256 _ 51346 + 51357) _ b2c2 (52345 + 52367).

No

=

4 2
dp = (5ﬁ+4’y> e85 4 (— o — 4p) (21247 4 71256 _ p1346 | G1357) | (_SDH_ gﬁ —87) (@345 4 52367)
_ <§ac2 +4bc2> 4567 | (—ab? — 4ac?) (21247 4 §12%6 _ gl346 4 51357)

2
n <—5ab2 i gucz _ 8bc2> (@35 4 267,
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7. Obstructedness of AC U(1) and SU(2) Instantons on R®

Then, d¢ = 4y implies

%ac2 +4bc? = 4c*
—ab? — 4ac* = —4abc?
2
—gab2 + gac2 — 8bc? = —4b3E2.
Solving, we get
a=-5 b=2, c= =41,

and

a=23, bzé, c==+ 3

5 V5
Then the unique metric g and the volume form compatible with ¢ are given by
3 7
g=) ewe+) dwd,
i=1 j=4

51234567

and dvol = ¢ respectively. That is,

3 7
g=dae @e +1P) dwe+c’) dxd, (7.3)
i=2 j=4

and dvol = agb?c4e1234567

Remark 7.1.1. We note thata =3, b =
us consider the inclusion ¢ : sp(2) @ u(1

, €= i% corresponds to the squashed metric. Let
— sp(2) @ sp(1). We claim that the pullback of the

squashed metric (6.6) is the metric (7.3) fora =3, b = g, c = j:%. For that, it is enough
6
57
the orthonormal basis element 21, of m C sp(2) @ u(1). Now consider the basis element I,
of 5p(2) @ sp(1) and its dual €?, defined in chapter 6. Then, the pullback of the orthonormal

basis element 3¢? of m C sp(2) @ sp(1) paired with 21, gives

~(3¢) <212> = (3)2 ((g 20]> ,o) =302 @(12 +3112>) -1,

which shows that (*(3¢?) is equals the orthonormal basis element géz for the metric (7.3).

~ vlon

to compare the coefficients of the pullback metric witha =3, b = c= j:%. Consider

Similar calculations for ¢/,i = 1,3,4, ...,7 establish the claim.
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7.2 U(1) Instantons on R®

Now, using the metric (7.3) with a = —5,b = 2,¢ = 1, which is the round metric, we nor-
malise our basis for m, and denote the normalised bases by I; and ¢’ for m and m* respectively,

where I; and ¢ are dual to each other. Hence, an orthonormal basis for m is given by

S AE D) (6 - (D)
(499w (D (DI (5 D)
7.2 U(1) Instantons on R®

Consider the gauge group U(1). We want to construct invariant connections on U(1) bundles,
and the bundles are determined by their isotropy homomorphism. Now, we have two isotropy

homomorphisms from Sp(1) x U(1) to U(1), namely

Aot Sp(1) x U(1) — U(1)

g1 0
((0 82)'g2>'_>1'

A1z Sp(1) x U(1) — U(1)

i Sp(1)xU(1)

Consider the bundle P; = (Sp(2) x U(1)) x,, U(1) over §7 := SP(Z)XU(B. Then the invariant
x U(1)-equivariant homomorphisms

connections on P; correspond to the Sp(1)
A;:(m,ad) — (u(1),ad oA;).
where m = Wi, @ Wii,—1) ® Wio0) © Wio2) © Wig,—2)- Now,
adoA; : sp(1) @ u(l) — End(u(1)),

Then,
adoAy(X,Y)Z = ad(0)Z = 0.

Hence, by Schur’s lemma, the map AO|W(0/0) is given by

(P . Id : W(O,O) — W(O,O)
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7. Obstructedness of AC U(1) and SU(2) Instantons on R®

for a real number ¢, whereas Ag|,y 5o is trivial. Moreover,
adoA(X,Y)Z=ad(Y)Z=1Y,Z] =0.
Hence, again, by Schur’s lemma, the map A4 |W(0,o) is given by
@-1d : Wipo) — W)

for a real number ¢, whereas A1l 5o is trivial. We note that we can choose I; to a be a basis
0,0

of W(o,o)- Then, for i = 0,1, we have,

, a=1,
Ai(L) = {q’

0 otherwise.

7.21 U(1) Instantons corresponding to A

In local coordinates, we can write any Sp(2) x Sp(1)-invariant connection on the bundle Py

over the manifold §7 = SP(2)xU(1)

= SpxU with round metric and gauge group U(1) can be written as,

A = Mo (e'L) + e Ao(I) = ge'.

Now consider the 8-dimensional manifold R x S7. We choose the metric g5 = (%)% + g7
where ¢’ = dt and t be the coordinate of R and note that this metric is conformal to the flat
metric on punctured R®. The connection 1-form is given by A = Age? + Aze® which gives the
Sp(1) x U(1)-invariant connection

A= g(t)el.

Here, without loss of generality, we take Ag = 0. The curvature of this connection is given by

1
Fg = Foue® A" + EFbceb A e°

where 5
Aq
Foi = — = ¢(t).
0 =5 =¢)
Then, the ASD instanton equation F4 1 ® = —F4 reduces to
1
For = —§¢1chbc-
Now,

Fpe = (dA)bc = _(P(t)fblc'
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7.2 U(1) Instantons on R®

Then,

#() = S0(O09ucsl, = 20(8).

The solution is
q)(t) = CEZt/

which shows the non-existence of irreducible Sp(2) x U(1)-invariant asymptotically conical

U(1)-instanton on IR® corresponding to Ay.

7.2.2 U(1) Instantons corresponding to A;

In local coordinates, we can write any Sp(2) x Sp(1)-invariant connection on the bundle P;

over S7 with round metric and gauge group U(1) as,
A= AE'L) 4+ e"A(L,) = et + e

Similar to the previous case, on the manifold R x S7, the Sp(1) x U(1)-invariant connection is
given by
A=e"+ g(t)e.

The curvature of this connection is given by

1
Fa = Foue® A e” + =Epee” A€,

2
where
Fop = 851;1 = ¢(t).
Now,
Fye = (dA)se = —foo — ¢(t) fye-
Then, from the ASD equation Fy; = —%cpwchc, we have

1 1 6
P(t) = E(Plefl}cl + E(P(t)(Plbcfblc =5 +2¢(t).

The solution is
3

gl

which shows the non-existence of Sp(2) x U(1)-invariant asymptotically conical U(1)-instanton

p(t) = Ce* +

on RR® corresponding to A;.
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7. Obstructedness of AC U(1) and SU(2) Instantons on R®

7.3 SU(2) Instantons on R®

Consider the gauge group Sp(1) = SU(2). We want to construct invariant connections on
SU(2)-bundles. These bundles are determined by their isotropy homomorphisms. There are

three isotropy homomorphisms from Sp(1) x U(1) to Sp(1), namely

Ao Sp(1) x U(1) — Sp(1)
(5 o))

Ay s Sp(1) x U(1) — Sp(1)
(6 )

Az Sp(1) x U(1) — Sp(1)
<< 0 gz) ’g2> — g2 as a subgroup embedding.

Consider the bundle P; = (Sp(2) x U(1)) x,, Sp(1) over X := %. Then from Wang's

theorem, we know that the Sp(2) x U(1)-invariant connections on P; correspond to the Sp(1) x
U(1)-equivariant homomorphisms

Aj: (m,ad) — (sp(1),ad oA;).

Now,
adoA; : sp(1) @ u(1l) — End(sp(1)),

Then,
adoAy(X,Y)Z =ad(0)Z = 0.

Hence, by Schur’s lemma, the map AO|W(0,0) given by
W0 = W)
is an isomorphism, whereas A0|W (%,o) is trivial. Moreover,
adoM(X,Y)Z = ad(X)Z = [X, Z].
Hence, the map A; given by

W1y @ Wa,—1) © Wio0) © Wio2) © Wio,—2) = W20
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7.3 SU(2) Instantons on R®

is trivial. Finally,
adoAy(X,Y)Z =ad(Y)Z = [Y, Z].

Hence, the map A, restricted to Wgg) @ W(g2) @ W(g ) is the isomorphism
Wio) © Wioz) © Wio-2) = Wigo) & Wiz © W)

whereas A; restricted to Wy 1) @ Wiy, _y) is trivial, by Schur’s lemma.
Let us fix a basis T,, a = 1,2,3 for Sp(1) = SU(2), where T, = —io, and 0, a = 1,2,3 are

the Pauli matrices given by
0 1 0 —i 1 0
=10/ 27 o) 7 \0o -1/

7.3.1 SU(2) Instantons corresponding to Ay

In local coordinates, any Sp(2) x Sp(1)-invariant connection on the bundle Py over S” with

round metric and gauge group SU(2) can be written as,
A = Ao(e'L) + " Ao(I,) = @e'Ty.

Similar to the previous case, on the manifold R x S7, the Sp(1) x U(1)-invariant connection is
given by
A=el+9(t)e'Ty

The curvature of this connection is given by

1
Fu = Foae® A 6" + = Epee” A€t

2
where
Fo1 = ail = ¢(t)Th.
Now,
Fye = (dA)pe = —9(t) fp.Th-
Then, the instanton equation Fy; = —%¢1ch,,5 reduces to

o) = Sp(O0gucsl, = 20(8).

The solution is
q)(t) = CEZt/

which shows the non-existence of irreducible Sp(2) x U(1)-invariant asymptotically conical

SU(2)-instanton on R® corresponding to Ao.

123



7. Obstructedness of AC U(1) and SU(2) Instantons on R®

7.3.2 SU(2) Instantons corresponding to A,

As dimHom(m,sp(l))sP(l)Xu(l) = 3, we choose a basis 1;, i = 1,2,3. Then, T; : m — sp(1)
acts on the basis I,a =1,...,7 of mby 7;(I;) =0 for b =4,...,7 and 1;(I,) = +T; where the

sign and index j of £T; is determined by the U(1)-invariance. Then, we choose,

T : (I, I, ) — (Th, T, T3),
T (I, L, ) — (T, —T3 Ta),
T3 (I, I, I3) — (Th, =T, —T3).

We can write,

Ny = 111 + @22 + P37T3.
Then, Ax(1,) = ¢171(L) + ¢212(La) + 9313(L) = @1Ta1cTe + P2Ta2c Te + P3Ta3c e, i€,
Ao (L) = @pTapcTe.
Explicitly, T, are given by
=1 =1 B3=1 tw=-1 =1 1n =1

Now, in local coordinates any connection on the bundle P, over the nearly G;-manifold s7
with round metric can be written as
A = e Ay (I;) + e Ay (I,)
= el T + e" ppTapc I

Then, on the 8-dimensional manifold R x S7, the connection 1-form is given by A = Ape +

Age” which gives the Sp(1) x U(1)-invariant connection
A=eT + e @p (1) Tape Te.
Here, we take Ag = 0. The curvature of this connection is given by

1
Fy = Foaeo Net + EFbceb A e°

where

FOa - - ¢b(t)TabcTc~

ot
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7.3 SU(2) Instantons on R®

Applying the Maurer-Cartan equations (5.2) we have,

(dA)oe = —fod Tt — fro@p(E)Tapg Ty,

and
[AN Alpe = 4(Pp(t>§0s(t)pruTCsr€uquq-
Hence,
Fype = _fl}clTl + (Z(Pp(t)(l’S(t)pruTCSfeﬂfﬂ - QDP(t)fgcTﬂM) ;.

Thus, the ASD instanton equation Fy, = —%%chbc reduces to

0 (DT Te = ~dune fIT1 — ~ e (200 (1) @s (B TopaTeor€arg — @ () fans) T

P abcle = 24’abcfbc 1 24’abc Pp(L)Ps bpdTesr€drg — Pp foe dpq | 1q-
That is,

2¢ (t)Tabc T, = ‘Pabcfblcl Ty — 2¢apc Py (t) Ps (t)prchsredrq Tq + PavcPp <t)fllychdpq Tq- (7.4)

Simplifying, we have the system of ODE given by

24
. 24
) ) 6
g1+ 3=~z — 2% — 295 +2¢1 + 29;. (7.7)

Now, we have the following four cases.

Case 1. 91 = @2 =0,¢3 #0.
Then, the ODESs reduce to

_ 6
¢3 = —5 +2¢s. (7.8)
The solution is g3 = Ce? + 3.
Case 2. 91 =0,¢02 #0,¢93 #0.
Then, the ODEs reduce to
24
P2 = —¢2 <2¢3 + 5> (7.9)
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7. Obstructedness of AC U(1) and SU(2) Instantons on R®

) 6
§3 = —¢ — 203+ 2¢5. (7.10)
Substituting a := @ (t), b := @3(t) — 2, we have,

a= —2a(b+3)
b = —2a% + 2.

The critical point is given by (a,b) = (0,0). Near the critical point, the the linearised system

is given by
da
ar = o
db
E —_— 2ba

The solutions are
x = Cpe ®, y= Coe”,
which shows that the critical point is a saddle point. Hence, near the critical point (0,0,3/5),

the solution is given by

3

91(8) =0, gat) = Cre™, ga(t) = Coe® + 5,

for C1,C > 0.
Let @3 + % =:y and ¢, =: x. Then equations (7.9) and (7.10) become

X = —2xy
y =2y —2x*> — 6. (7.11)
Case 3. ¢1 #0,¢92 =0, 93 # 0.
Then, the ODEs reduce to

, 24

P1=—P <2g01 + 2(/)3 + 5) (712)

) 6

1+ 3 = —¢ — 201 + 291 +2¢s. (7.13)

From (7.12) and (7.13), we have

24 6
— 2971 20193 — T @1+ ¢35 = —¢ — 291 + 201+ 29

6 34
= @3 = — +2¢3+ 29193 + g(pl (7.14)
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7.3 SU(2) Instantons on R®

Substituting a := @1(t),b := @3(t) — 2, we have

@ = —6a — 24a% — 2ab
dt

db
yi 8a + 2b + 2ab.

The critical point is given by (a,b) = (0,0). Near the critical point, the the linearised system
is given by

da
dt
db
dt

= —6a
= 8a + 2b.
The solutions are
x=Ce o, y=—Cre ® 4 (C; + C3)e?,

which shows that the critical point is a saddle point. Near the critical point (0,0,3/5), the
solution is given by

3
91(t) = Cre™®, g2(t) =0, p3(t) = ~Cre ' + (1 +C)e* + 3,

for C;,C, > 0.
Let @1 + @3 + % =:y and ¢ =: x. Then equations (7.12) and (7.13) become

X = —2xy,
y=2y—2x" -6 (7.15)
Case 4. @1, ¢2, 3 are all nonzero.
From (7.5) and (7.6), we have
PL_ P2 gy =Ing +InC = ¢, = C'o (7.16)
1 @2

for C € (0,00). From (7.5) and (7.7), we have

24 ) 6
- 240% — 29193 — gq)l + @3 = 5 Z(P% - 24)% +2¢1+2¢3
. 6 34
= ¢3=—¢ - 2C7 Q3 +2¢3 + 2193 + R4S (7.17)

Take a := ¢1(t),b := ¢3(t) — 2. Then, from (7.5) and (7.17), we have

@ = —6a — 2a® — 2ab
dt
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7. Obstructedness of AC U(1) and SU(2) Instantons on R®

illt’ = 8a —2C"%a* + 2b + 2ab.
The critical point is given by (a,b) = (0,0). Near the critical point, the the linearised system
is given by
da
E = —64a
db
i 8a + 2b.

The solutions are
x = Cre™ %, y= —Cqe % + (C1+ Cg)eZt,

which shows that the critical point is a saddle point. Hence, near the critical point (0,0,3/5),
the solution is given by

3
ng(t) = C1€_6t, ([)2(1’) = C2€_6t, q)g(t) = —C1€_6t + (C1 + C3)€2t + 5

for C1,C,,C3 > 0.
Let 91+ @3+ 2 = y,¢1 = x and ¢, =: C'x for C' > 0. Then equations (7.5) and (7.7)

become

X = —2xy,

y=2y—Cx*—6 (7.18)
for C > 2. The critical point is (0, 3).

Curvature of the connection A at the critical point

We note that for all cases 2, 3 and 4, the critical points are the same, namely (0,0,3/5). We
want to calculate the curvature of the connection

A =e""T + ey (t)Tapc T
at the critical point (0,0,3/5). The curvature is
Fu = —f2T; + (20,0920t Trar — 900 fiTrs) T
Forb,c =1,2,3
Foe = —fpr Ti + (20 (8) @5 () TopaTesr€arg — @p(t) fieTapq) Ty
and for b,c = 4,5,6,7
Foe = — foe Tt = @p () fieCapq Ty-

At the critical point, F,, = 0. Hence, the connection A = ¢! Ty + %el T; is a flat connection on
the link S7.
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7.3 SU(2) Instantons on R®

Non-existence of closed orbits

The existence of closed orbits for the cases 2, 3, and 4 can be combined to the existence of
closed orbits of the system of ODEs

X = —2xy
y=2y—Cx*—6 (7.19)

for C > 2, where C = 2 corresponds to cases 2 and 3, and C > 0 corresponds to case 4. The
critical point is (0, 3).
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Figure 7.1: The direction field plot for the system 7.19.

Since an instanton is a path between the critical points, we note that existence of SU(2)-
instanton corresponds to having a solution of the system (7.19) with boundary conditions
(x(t),y(t)) = (0,3) at t = —co and at + = oco. From the direction field plot (7.1), we claim
that such an orbit starting and ending at the critical point (0, 3) cannot exist. To prove this, by
inspecting the stable and unstable directions of the saddle point, it is clear that we just need
to investigate the direction fields near the critical point for only the following cases.

Case 1. There exists t( such that y(¢) > 0,y(t) > 3 for all t < t;: There are two sub-cases.
Sub-case 1: Let ty < t, such that (x(t),y(ty)) is inside the parabola 2y — Cx?> — 6 = 0 and the

129



7. Obstructedness of AC U(1) and SU(2) Instantons on R®

point (x(t2),y(t2)) is outside the parabola. Then there exists t; € (f, t2) such that (x(t1),y(t1))
is on the parabola. Then, either x(t;) > 0,y(t;) > 0, which from the equation ¥ = —2xy
implies ¥ < 0; or x(t1) < 0,y(t1) > 0, which implies ¥ > 0, both leading to contradictions,
since the signs of x and x should be the same for paths going out of the parabola from the
inside.

Sub-case 2: For all t > tg, the point (x(t),y(t)) is inside the parabola. Then, for all t y > 0, so
y(t) > y(to) > 3 for all t > ty. Then, y(t) cannot converge to 3 as t — oo.

Case 2. There exists ty such that y(t) < 0,y(t) < 3 for all ¢+ < fy: similar to Case 1, but here,
all the directions fields are pointing downwards.

Thus, we have the following proposition.
Proposition 7.3.1.

1. The only Sp(2) x U(1)-invariant SU(2)-instanton on S’ with round metric is the flat connec-
tion.

2. There are no irreducible Sp(2) x U(1)-invariant SU(2)-instantons on R® asymptotic to the flat

connection on 7.

7.4 Obstructedness of U(1) and SU(2) Instantons on R®

Consider any asymptotically conical U(1)- or SU(2)-instanton on the trivial bundle over R®
asymptotic to the trivial connection Ay on S7. Suppose, if possible, the instanton is unob-
structed. Let us consider the Lie algebra of the Lie group Sp(2) x U(1) x R8. The deformation
complex of Spin(7)-instanton is given by (see [13])

d 4,
0 —— Q%gp) —— Ql(gp) —— O2(gp) —— 0. (7.20)

We note that the cohomolo roup HY :=kerd’, / Imd, is isomorphic as a vector space to
gy group 1, , A p p

the deformation space I(A,v) defined as in (3.19). We define a map

L: Lie(Sp(2) x U(1) x R®) — H} ,
X — [lXFA] .

Clearly, we can think of X as a Killing field and hence determining a deformation [i1xF4] =

[LxA] of the connection A. Then, we have the following proposition.
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7.4 Obstructedness of U(1) and SU(2) Instantons on R®

Proposition 7.4.1. Under the assumption that
- / TeF < 34567 (7.21)
JR

ker L is a Lie subalgebra of Lie(Sp(2) x U(1) x R8) isomorphic to sp(2) & u(1).

Proof. It is a routine matter to show that ker L is a Lie subalgebra of Lie(Sp(2) x U(1) x R?).
Now, from theorem 3.2.15, i.e., the deformation theory of AC instantons on Spin(7)-

manifolds, we know that

dim M(A,v) =Ind D, = 8Pj+;7(m2,s7).

b /
3847t Jr

But, since Ay is the flat connection on S7, we have (D ay, 57) = 0. Now, from the Rank-Nullity
theorem, we have,

ker L + rank L = dim Lie(Sp(2) x U(1) x R®) = 19. (7.22)
Then, from (7.22) using the assumption (7.21), we have
kerL =19 —rankL > 19 —dim M(A,v) > 19 -9 = 10.

Now, if ker L = Lie(H x U) C Lie(Sp(2) x U(1) x R®) for some non-trivial U C RR¥, then A
has translational symmetries, and A cannot be asymptotically conical [23]. Since, sp(2) & u(1)
is 11-dimensional, the only possibility is,

ker L = sp(2) @ u(1).

As a direct consequence, we have the following proposition.

Proposition 7.4.2. Any unobstructed asymptotically conical U(1)- or SU(2)-instanton on R® asymp-
totic to the flat connection on S” satisfying (7.21) is Sp(2) x U(1)-invariant.

Then, proposition 7.3.1 implies the following main theorem.

Theorem 7.4.3. There are no unobstructed irreducible asymptotically conical U(1)- or SU(2)-instantons
on IR® asymptotic to the flat connection on S’ satisfying (7.21).
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Appendix A

Gauge Theory on Homogeneous Spaces

In this chapter we briefly review the notions of canonical and invariant connections on homo-
geneous bundles, where we closely follow [50], [38], [54] and [22]. We conclude the chapter
by discussing Wang’s theorem, which has been integral in constructing instantons throughout

the thesis.

A.1 Homogeneous Spaces and Homogeneous Bundles

We start with the following proposition.

Proposition A.1.1 ([38]). Let G be a Lie group and H a closed subgroup of G. Then M := G/H
admits a structure of a real smooth manifold such that the transitive action of G on G/ H given by
L:GxG/H—G/H
81,82H = g182H
is smooth. In particular, the canonical projection map G — G/H is smooth. Then, M = G/H is

called a homogeneous space.

Definition A.1.2. 1. A homogeneous fibre bundle over M = G/H is a locally trivial fibre
bundle 7 : E — M together with a G-action L : G x E — E which lifts the action
L:GxXxM— Mon M. ie,

n(L(g,y)) = L(g, 7(y))

forallg € Gandy € E.

2. A homogeneous principal bundle over M = G/ H is a homogeneous fibre bundle 7t : E — M
which is a principal bundle such that for each ¢ € G the bundle map Eg =L(g,)isa
principal bundle homomorphism.
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A. Gauge Theory on Homogeneous Spaces

3. A homogeneous vector bundle over M = G/H is a homogeneous fibre bundle 7 : E — M
which is a vector bundle such that for each ¢ € G the bundle map L(g,-) : E — Eisa
vector bundle homomorphism.

Example A.1.3. The canonical principal H-bundle is the bundle H -+ G — G/H. This is a
homogeneous principal bundle under the action L : G x G — G which is the multiplication
map.

A.2 Canonical Connection

We start by recalling the definition of Maurer—Cartan form.

Definition A.2.1. The Maurer-Cartan form 6 € Q'(G, g) is the g-valued 1-form on G such that
(0)g(Xg) = (dgly1)(Xg) € .G = g

forall g € G and X € T;G. Here dgL,-1 is regarded as a linear map from T¢G to T.G.

Lemma A.2.2. For the translation maps Ly : G — G and Ry : G — G defined by Ly(h) = gh and
Rq () = hg respectively, we have L3 = 6 and R30 = Ad,1 00 for all g € G.

Let H be a subgroup of G with Lie algebra b.

Definition A.2.3. A homogeneous bundle H — G — G/H is called reductive if there exists a
subspace m such that g = h @ m and Ad(H)m C m (which implies [h, m] C m).

Theorem A.2.4.

1. Let H — G — G/ H be a reductive principal bundle. Let 0 € QO'(G, g) be the Maurer—Cartan
form such that with respect to the decomposition g = b ® m, we have 0 = 0y @ 0, where Oy and
O are the b and m-components of 6 respectively. Then 6y defines a connection on the principal
bundle H — G — G/ H called the canonical connection which is invariant by left translation of
G (ie., Lgby = 0y forall g € G).

2. Conwversely, any connection on H — G — G/H invariant by left translation of G (if exists)
determines a decomposition g = b @ m and the connection can be obtained as described by (1).

3. The curvature form F of the canonical connection 8y is given by
1 1
F = dGh + 59[) VAN Gh = —E(Gm N em)h/

i.e., the h-component of —3 (0 A Or).
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It is important to note that the canonical connection on the principle bundle H — G —
G/H defines a canonical connection on the tangent bundle T(G/H). This follows from the
fact that T(G/H) = G xpym is the associated vector bundle to H - G — G/H by the
representation p : H — GL(m).

A.3 Invariant Connections and Wang’s Theorem

Lemma A.3.1. Let K, G be Lie groups and H C G be a closed subgroup. Let P — G/H be a
homogeneous principal K-bundle. Then there is a smooth homomorphism A : H — K, called the
isotropy homomorphism, such that P = G X g 5y K where the equivalence relation on G x K is given

by
(8h k) ~ (g, A(h)k)
forallh € H,g € G,k e K.

Let £ be the Lie algebra of K. Let X € £ and let {x be the fundamental vector field on P
generated by X. Further, let us denote the principal right action of k € K on P by R. Then
6 € Q!(P, )is a connection of P if

0(Cx) = X
(Re)*0 = Ady .+ of.

Let Lg be the left action of ¢ € G on P. Since Ly is a bundle automorphism the pull back L36

is again a connection on P.

Definition A.3.2. A connection 6 on P is said to be a G-invariant connection iff
(Lg)*e =0
forall g € G.

Consider an invariant connection 6 on the homogeneous principal K-bundle P := G x,
K — G/H. Define a map

m:G—>GxgK

g~ (g,
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for the identity element e € K. Consider the linear map
(70 — Ayby)|e : T.G =2 g — &

It can be proved that, (776 — A.6y)|.(X) = 0 for all X € b.

Define a linear map

Ng:m — ¢

X (770 — Au0p)]e(X)

for all X € m. It is easy to check that Ay is H-equivariant.
Thus, an invariant connection 6 yields a linear map Ay. The other direction is also true,

and the complete result is given by Wang [59] as follows.

Theorem A.3.3 (Wang’s Theorem). Let A : H — K be a homomorphism. Consider the homogeneous
principal K-bundle P := G x) K — G/H. Then there is a one-to-one correspondence between the
G-invariant connections 0 on P and linear maps

A (m,Ad) — (¢, AdoA)
as morphisms of H-representations.

Now, we introduce an orthonormal frame in order to present local expression of the con-
nection.
We note that a basis I4 for g can be represented by left invariant vector fields E4 on G as

well as by the dual basis é# of left invariant 1-forms. Denote the natural projection map

p:G—G/H
g gH,

of the principal bundle. Let U be a contractible open subset of G/H. Then consider a local
section ¢ of the bundle G — G/H, i.e, amap ¢ : U — G such that poo = Idy. We put

A * A

e :=c*¢4. Then {e" :a =1,...,dimm} form an orthonormal frame for T*(G/H) over U.

Then, with respect to this local trivialisation, the invariant connection is a local ¢-valued

1-form on G/ H, and can be written as follows
e (dM) (1) + e"A(LL),

fora=1,...,dimmand i = (dimm) + 1,...,dim g. Here ¢/(dA)(I;) is local expression of the

canonical connection.
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Appendix B

Exceptional Holonomy Groups

In this chapter, we briefly review the important notions of Riemannian holonomy groups,
Berger’s classification of Riemannian holonomy groups, and the exceptional holonomy groups
Gy and Spin(7). For the first part we closely follow [32] and for the holonomy groups G, and
Spin(7), we very closely follow [53].

B.1 Parallel Transport and Riemannian holonomy

B.1.1 Parallel Transports and Holonomy groups

Consider a vector bundle 77 : E — M on an orientable smooth manifold M and a connection
VE on E. Let v : [0,1] — M be a smooth curve with 7(0) = p and (1) = g. Then, we have
the pullback connection 7*(V¥) on the pullback bundle 7*(E) — [0,1]. It can be proved that
for each x € E, := 7 (p) C E, there is a unique section ¢ on y*(E) with ¢(0) = x, and

v*(VE)o = 0. Then the parallel transport map P, is defined by
P,:E, = E,
x> o(1). (B.1)
Now, we consider 7y to be a piece-wise smooth loop based at p, thatis, ¥(0) = y(1) = p. Then,
the parallel transport map P, : E, — E, is an invertible linear map, and then, the set of all

parallel transports P, for all piece-wise smooth loops <y based at p forms a group, which we

call the holonomy group Hol,(V*) of the connection VE.
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B.1.2 Riemannian holonomy

Now, consider an orientable Riemannian manifold (M, ¢) with the Levi-Civita connection V
on TM. Then, for p € M, the Riemannian holonomy group Hol,(g) is the holonomy group
Hol, (V) of the Levi-Civita connection.

We note that

* Holy(g) is a closed subgroup of SO(n).
* Hol,(g) is independent of the base point p up to conjugation, and we denote it just by
Hol(g).
B.1.3 Berger’s classification of Riemannian holonomy groups

Consider a Riemannian product manifold (M x N, g x h). That is, for (p,q) € M x N

(& X 1)l = &lp + hlgs
for p € M and q € N. Then,
Hol(g x h) = Hol(g) x Hol(h).

Definition B.1.1. A Riemannian manifold (M, g) is called irreducible if it not locally isometric
to a Riemannian product manifold.

Consider an isometry s, : M — M for any p € M such that s,(p) = p and ds, = —1Id.

Then the isometry sy, is called a symmetry at p.

Definition B.1.2. A symmetric space M is a homogeneous space with a symmetry s, for every
p € M. A locally symmetric space is a Riemannian manifold locally isometric to a symmetric

space.

A Riemannian manifold is locally symmetric if and only if VR = 0 for Levi-Civita connec-

tion V and Riemann curvature R.

Theorem B.1.3 (Berger’s classification). Let M be an orientable simply-connected n-dimensional
Riemannian manifold where the Riemannian metric is irreducible and nonsymmetric (neither symmet-
ric nor locally symmetric). Then we have only the following possibilities for holonomy groups.

1. Hol(g) = SO(n),
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5. Hol(g) = Sp(m) - Sp(1) := Sp(m) xz, Sp(1) for n = 4m,
6. Hol(g) = Gy forn =7,
7. Hol(g) = Spin(7) for n = 8.

Remark B.1.4. Berger’s classification has a deep relation with the existence of exactly four
normed division algebras R, C,IH and O over R of real dimensions 1,2,4 and 8 respectively.
The group SO(m) acts on R™, U(m) and SU(m) act on C", Sp(m) and Sp(m) - Sp(1) act on
H", and G; acts on ImO and Spin(7) acts on O.

B.2 Octonions and the Lie Group G;

B.2.1 Cross Product
Definition B.2.1. A skew-symmetric bilinear map

VxV =V

(u,v) — uxv
is said to be a cross product if
1. (u xv,u) =(uxov,0) =0
2. Jux o2 = |ul?lv]* - (u,v)?
forall u,v e V.

It can be proved that V admits a cross product if and only if the dimension of V' is 0,1,3,
or 7. In dimension 0 and 1 the cross product is trivial. In dimension 3 it is unique up to sign

determined by an orientation of V. In dimension 7 It is unique up to orthogonal isomorphism.

Definition B.2.2. Let dimV =7. Themap ¢ : V x V x V — IR defined by
$(u,v,w) = (u x v,w)
is called the associative calibration of (V, x).

It can be proved that ¢ € A3(V*), i.e., ¢ is alternating.
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B.2.2 Normed Algebras

Definition B.2.3. Let (W, (-, -)) be a finite-dimensional inner product space. Further, let (W, -)
is a unital ring with respect to a product

WX W =W

(u,0) —»u-w

where the product - is compatible with the scalar multiplication of the vector space W. The W
is called an algebra.

If moreover the norm on W satisfies
luv| = [ul|o|
for all u,v € W, then W is called a normed algebra.

Remark B.2.4. For the normed algebra W, we can identify R with a subspace of W generated
by the multiplicative identity 1. For u € W and A € R, we prefer to write u + A for u 4+ A1l.

Definition B.2.5. The conjugation of an element of W is defined by the involution

W—-W
u—u
where 1 =1and u = —u foru € 1+ = {u € W: (u,1) = 0}. Combining, we can write
u=2ul)y—u

forallu e W.

Definition B.2.6. The subspace R of W is considered as the real part of W. If V is the orthogonal
complement of R in W, then V' is the imaginary part of W.
If u € W, the real and imaginary parts are defined by

Reu:= (u,1), Imu:=u—(u,1)
respectively.

Theorem B.2.7 ([53], Theorem 5.4). The one to one correspondence between Normed algebras and
vector spaces equipped with cross products is given as follows.
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1. If W is a normed algebra, then V := 1+ is a subspace of W equipped with a cross product

VxV =V

(u,v) — uxov
defined by
uXxv:=uv+ (u,0)
forall u,v € V := 1+. Conversely,
2. If (V,(-,-)) is a finite dimensional inner product space equipped with a cross product, then

W := R @V is a normed algebra. If u = ug + u1,v = vg+v; € R@ V, then the product in
W is defined by

uv := ugvg — (uq,v1) + ugvy + vouly + U1 X vy
Here we identify f € R with (f,0) € R& V and v € V with (0,v) e R V.

The following corollary is due to Hurwitz.

Corollary B.2.8. A normed algebra has dimension 1,2,4 or 8 and is isomorphic to R,C,IH or O
respectively.

B.2.3 Octonions

The algebra O = R8 is a non-associative algebra of real dimension 8. Let {1, ey, ez, 3, €4, €5, €6, €7}

is a basis of O.

The multiplication table is given below.

e1 e es ey es €6 ey
e1 | —1 e3 —ey —es5 ey —ey Cg
er | —e3 —1 e1 —eg ey ey —es
e3 (%) —e1 —1 —e7 —¢€p €5 €4
€4 €5 [ ey -1 —e1 —€ —€3
es | —eq —ey  eg e1 -1 —e3 e
e | e —ey —e5 e es3 -1 —e
ey —€q €5 —€4 e3 —e2 (4] —1

Table B.1: Multiplication table for Octonions.
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Fano Plane

The multiplication table of octonions can be described by the diagram below, called the Fano

Following the cyclic ordering of the diagram, we can clearly figure out the whole multipli-

plane.

cation table.

Then Fano plane is the projective plane Z,P?, consisting of lines through the origin in the
vector space Z3 over the field Z; of dimension 3.

Since each such line (being points themselves) contains a single nonzero element, the Fano
plane can also be thought of the set consisting of the seven nonzero elements of Z3. Identifying

the origin in Z3 with 1 € O, we get a basis for the octonions.
Revisiting the octonionic product
Recall the basis {1, e1, ez, 3,4, 5,6, €7} of the octonions O. We note that
{ei, (3]} = eej + ejej = —251']'
fori,j=1,...,7. To be precise,
eiej = Cijkex — Jjj
where C;j is totally antisymmetric and C;j = 1 for

ijk = 123,154,176,264,257,374,365
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(follows from Fano plane). Cjj are called the structure constants of the octonion algebra.

B.2.4 Associative Calibrations
Definition B.2.9.

* Let V be a real vector space. A 3-form ¢ € A3V* is said to be non-degenerate if for every
pair of linearly independent vectors u,v € V, there exists a vector w € V such that

$(u,v,w) # 0.
e An inner product (-, -) is said to be compatible with ¢ if the map

VxV =V

(u,v) — uxov
defined by ¢(u, v, w) := (u x v,w) is a cross product.

Lemma B.2.10 ([53]). Let V be a 7-dimensional real inner product space and ¢ € A3V*. Then the
following are equivalent.

1. ¢ is compatible with the inner product.
2. There is an orientation on V such that the volume form vol € A”V* satisfies
wp A Ly A = 6(u,v) vol
forall u,v € V. The orientation is uniquely determined by ¢.

Both conditions imply that ¢ is non-degenerate.

B.2.5 The Lie group G;
Consider the associative calibration ¢ € A3(R”)* defined by
Po = dx'Z — dx45 — dx167 _ go246 | 3327 _ x4 _ 4,356 (B.2)
where dx'/* = dx' A dx/ A dx¥. The coassociative calibration is the Hodge dual
Yo i= o = dxi57 — x1247 _ go1256 | 1346 g 1357 2345 32367

The group G is the stabilizer group of ¢y, i.e.

Gy := {8 €50(7) : g"do = o}
= {g€S50(7) : gu x gu = g(u x v) for all u,v € R"}.
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Theorem B.2.11 ([35]). The group G, is the automorphism group Aut(O).
Now let V be any 7-dimensional vector space and ¢ € A3V* be the associative calibration
defined by ¢(u, v, w) := (u x v, w). The group of automorphism of ¢ is
G(V,¢) :={g €SO(V) : g"¢ = ¢}.
Then G(V, ¢) is isomorphic to G,.

Theorem B.2.12 ([53]). The group G, is a 14-dimensional simple, connected, simply connected Lie
group. The action of Gy on S® is transitive and for every unit vector u € V, the isotropy group
Gy = {g € Gy : gu = u} is isomorphic to SU(3) and hence we have the fibration

SU(3) < G, — S°.

Theorem B.2.13 ([53]). Let V be a 7-dimensional vector space and ¢ € A3V* be the associative
calibration. There are orthogonal decompositions

AV* = A2 A}
NV =N e A D A3,
where dim AX = d and
AN={us¢p:ucV}={we AV :x(pAw)=2w}
Ay ={we AV :prAw=0} ={wec A*V* : x(p ANw) = —w}
AL = (¢)
A ={usyp:uecV}
A, ={we NV :pAw=0, ANw = 0}.

Each A¥ is an irreducible representation of G, and the representations A% and A3 are both isomorphic
to V. A3, is isomorphic to the Lie algebra of Gy, A3, is isomorphic to the space of traceless symmetric
endomorphisms of V: the space Sym3(V).

B.3 The Lie group Spin(7)

B.3.1 Triple cross products

Definition B.3.1. Let (W, (- ,-)) be a finite-dimensional inner product space. An alternating

multi-linear map

WxWxW-—=>W
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(u,v,w) > uxXvxXwW (B.3)
is called a triple cross product if it satisfies
(uxovxwuy=(uxvxw,ov)=uxvxww) =0 (B.4)

and

UXovxXwl =uNvAuw| (B.5)

forall u,v,w € W.

When u,v,w € W are linearly dependent, we have u x v x w = 0.

Let (B.3) be a triple cross product. If e € W is a unit vector, then the subspace V, := et is

equipped with a cross product

Ve xe Ve = Ve

UX,V=1UXeX0v.

Hence we conclude that dimV, =0,1,3 or 7 and dimW =1,2,4 or 8.

Definition B.3.2. Let dimW = 8 and W be equipped with a triple cross product. Then the
map

P WxWxWxW-—->R

(x,u,v,w) = (x,u X v X W)
is an alternating 4-form, called the Cayley calibration of W.

We fix an orientation of W such that ® A & > 0.

Theorem B.3.3 ([53]). Let dim W = 8 and W be equipped with a triple cross product with Cayley
calibration ® € A*W*. Let e € W be a unit vector.

1. Define the map . : W x W x W x W — R by

Pe(u,v,w,x) == (e xuxv,exwxx)—((uw)—(ue)lew))((v,x)—(v,e)e x))

+ ((u,x) = (u,e){e, x)) ((v,w) — (v, €) (e, w)).

Then ¢, € A*W* and ® = e* A ¢, + P where e* is dual to e and ¢, := 1,® € A3SW*.
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2. The subspace V, := e™ is equipped with a cross product

Vex Ve =V,

(U, 0) » U X, V:=uUXexv (B.6)

and ¢.|y, is the associative calibration of B.6 and .|y, is the coassociative calibration of B.6.

3. The inner product space W is a normed algebra with identity e, where the multiplication and
conjugation are given by

uv:=uxexv+ (ue)v+ (v,e)u — (u,v)e
u:=2(u,eye—u.
B.3.2 Cayley calibrations
Definition B.3.4. Let W be an 8-dimensional real inner product space.

o A 4-form ® € A*W* is said to be non-degenerate if for all u,v,w € W, linearly indepen-
dent in W, there exists x € W such that

®P(u,v,w,x) #0.

e The inner product (- ,-) on W is said to be compatible with ® if the map

WxWxW-—>W

(u,v,w) = uXvXw

defined by
(x xuxovw):=&(x,u0vw)

is a triple cross product.
* A4-form ® € A*W* is said to be a Cayley form if it admits a compatible inner product.

Example B.3.5. Let ¢y, defined in (B.2) be the associative calibration on R” (with basis dx/, i =
1,...,7). Then R® has the Cayley form

@y = dx® A o + o
where 1y = *¢9. We note that $y A Py = 14 vol.

Lemma B.3.6. [53] Let (W, (- ,-)) be an inner product space and ® € A*W*,vol € ASW* are a
4-form and volume form respectively. Then the following are equivalent.
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1. The inner product is compatible with ®.

2. With volume form vol € A8W*, there is a unique orientation on W such that for all u,v,w € W,

Loly @ A 11, @ NP = 6]u A v|2vol.

B.3.3 The Lie group Spin(7)

Let W be an 8-dimensional inner product space equipped with a positive triple product and
® € A*W* be the Cayley calibration. We give W the orientation such that ® A ® > 0. We note
that @ is self-dual with respect to the Hodge star operator. Recall the subspace V, := e+ C W.
Then

d=e"A (Pe + 4)6/
P := 1D € NSW*,
e i= *(e* A ¢e) € AW

Denote the group of automorphisms of ® by
G(W,®) :={g € GL(W):¢g"D = D}.
Then G(W, ®) C SO(W) and
G(W,®) ={g€SOW):guxguxgw=g(uxvxw)forall u,o,w € W}.
Denote Spin(7) := G(IR8, ®;), where @ is the standard Cayley form on R®.

Lemma B.3.7 ([53]). G(W, ®) is isomorphic to Spin(7) for all Cayley forms ® € A*W*.

Theorem B.3.8 ([53]). The group Spin(7) is a 21-dimensional simple, connected, simply connected
Lie group. If S” be the unit sphere in RS, then Spin(7) acts transitively on the unit tangent bundle of
S7. Moreover, for every unit vector e € W, the stabilizer group

Ge:={g € Spin(7) : ge = e}
is isomorphic to Gy, thus giving a fibration

G, < Spin(7) — §.
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Theorem B.3.9 ([53]). There are orthogonal decomposition

AW = A3 A
AW =A@ Al
AW = At O AL A3, © ASs

where dim As =d and

A2 ={w € A’W* : x(® Aw) = 3w}

A3 = {w e N°W* : (D Aw) = —w}

A ={u_®:ucw}

A ={we NPW: dAw =0}

At = (@)

A;={L:®: & € 50(W)}

Ay ={we AW xsw=w,wAP=0,wAL:D=0forall & €so(W)}
Ajs = {w € A*W* : sxw = —w}

(where L is the Lie derivative, for & € so(W), Lz® € A*W* defined by L:® := &|_oexp(t&)*P)
Each A is an irreducible representation of Spin(7).

B.3.4 A Few Identities

It is convenient to list a few identities involving ¢ and i we have used throughout the paper
(For proof, see [53]).
Let u,v € A, w € A% Then,

Lox(pAu)=usgp, *(pAu)=u_y,

2. pA(uap) =29 Au,

3. (uag)sp=2u_¢p, (usyp) = —4u,

4. (ua¢p)1¢p=3u, (uay)a¢p=0,

5. x(p AUAD) =0 (1),

6. (19) 1p=*(PAx(PAW) =w+(PAw),

7. (wap) s =*(pA*(p Aw)) = 2w+ *(P Aw).
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The following identities involving the structure constants of ¢ and ¢ have been used fre-

quently. Because of our convention, they differ from [34] or [35] in signs.
L. @ijkPavk = diadjp — Sivdja + Wijav,s
2. GijkWabek = —diaPjve — SivPajc — SicPabj + OjaPive + OjpPaic + jcPavis

3. YijkiWavki = 40iadjp — 40ip0ja + 24ijap-

B.3.5 Irreducible Representations of G, and Spin(7)

First, we list the irreducible G,-representations we came across in this thesis. Let V(,;) be an

irreducible representation of g, with highest weight (a,b).

Gy-reps | Dimensions | Modelled using | Also isomorphic to
Vi0,0) 1 A(C7) A3(C7)
Vo) 7 AN(C7) A3(C7)
Vo) 14 A3, (C7)
Vo0 27 A3, (C7) Symy(C7)
Vi) 64
Vio2) 77
Vi3,0) 77

Finally, we list the irreducible Spin(7)-representations and the decompositions into irreducible
Ga-representations. Let V|, ) be an irreducible representation of spin(7) with highest weight
(a,b,c).

Spin(7)-reps | Dimensions | Isomorphic to Decomposition into Gy-reps
V(0,00) 1 A°(C?®) V0,0
Vi1,00) 7 AF(CP) Vi1,0)
Vi0,1,0) 21 A3 (CP) V0 @ Viop)
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Vi) 8 A(CP) Vioo) @ Vo)

V01 48 Agg(C?) Vi @ Vo) @ Vio)

V(z,o,o) 27 A%7(C8) V(Z,O)

V002 35 A35(CP) Vioo) @ Va0 ® Vo0

Vio1,1) 112 ViL0) @ Vion) @ Vizo) © Vi)
Vi2o1) 168 Vi @ Vi) © Visp)

Vii,10) 105 Vion) ® Ve &V

Vi10,2) 189 Viro) @ Vo) @ Vizo) @ Vize) @ Vi1

Now, for G,, we have the following projections.

117+ AX(C7) — A3(C7),w %w+ %(w_n,b) = %(w_ncp) J¢,

2 1 1
s A2(C7) — A2 (C7),w 30— g(w_u,b) =w— g(w_up) ¢,
3.7 3 (7 1 1
7127 @ A (C ) — A27(C ),wi—> w+1(w_|ll))_|ll)— §(WJ(I))47
For Spin(7), we have the following projections.
717+ AX(C) = AZ(CP),w > jI(w—Fw_ld)),
71+ A2(CP) > A2, (C),w > i(f&w —w®),
g : A3(C) = A% (CY),w — w+ ;(wm) Lo,

35 : A*(C8) — A% (CP), w — %(w — *w).

Finally, we notice two important relations: if dt Aa+ v € A3(C®), where 2 € A!(C7) and
v € A%(C7), then since, (dt Aa+v) 1@ = 3(dt Aa+v), we have v 1 ¢ = 3a.

Moreover, if dt Ab+w € AJg(C®), where b € A*(C”) and w € A3(C7), since, (dt Ab+w) 1
®=0,wehaveb 1¢p = —w 1.
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