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Abstract

We develop the deformation theory of instantons on asymptotically conical Spin(7)-manifolds

where the instanton is asymptotic to a fixed nearly G2-instanton at infinity. By relating the de-

formation complex with spinors, we identify the space of infinitesimal deformations with the

kernel of the twisted negative Dirac operator on the asymptotically conical Spin(7)-manifold.

We apply this theory to describe the deformations of the Fairlie–Nuyts–Fubini–Nicolai

(FNFN) Spin(7)-instantons on R8, where R8 is considered to be an asymptotically conical

Spin(7)-manifold asymptotic to the cone over S7. We calculate the virtual dimension of the

moduli space using the Atiyah–Patodi–Singer index theorem and the spectrum of the twisted

Dirac operator.

We then apply the deformation theory to compute the deformations of Clarke–Oliveira’s

instanton on the Bryant–Salamon Spin(7)-Manifold. The Bryant–Salamon Spin(7)-Manifold

/S−(S4) is an asymptotically conical manifold where the link is the squashed sphere Sp(2)×Sp(1)
Sp(1)×Sp(1) .

Finally, we show that with gauge groups U(1) and SU(2), no irreducible Sp(2) × U(1)-

invariant asymptotically conical instantons on R8 exist. Using this result, we prove that any

asymptotically conical U(1)- or SU(2)-instanton on R8 asymptotic to the flat connection on

S7 satisfying certain conditions is obstructed.
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Chapter 1

Introduction

Instantons on 4-manifolds are connections whose curvatures are anti-self-dual. Instantons

solve the Yang–Mills equation and hence have always been of interest to physicists in the con-

texts of quantum field theory, string theory, M-theory, supergravity etc. Instantons in dimen-

sions higher than 4 were also studied by many physicists, Corrigan–Devchand–Fairlie–Nuyts

[17], Fairlie–Nuyts [25], Fubini–Nicolai [27], before Donaldson–Thomas [19] and Donaldson–

Segal [21] explained their importance and scope to a mathematical audience. Analogous to

the 4-dimensional case, their prediction of the possibility to construct invariants from the

moduli space has been one of the main sources of motivation behind the research on higher

dimensional gauge theory for mathematicians.

The Spin(7)-instantons are instantons on 8-dimensional manifolds with Spin(7)-structures.

The Spin(7)-instanton equation appeared in various places in the physics literature; Fairlie–

Nuyts [25] and Fubini–Nicolai [27] have discussed Spin(7)-instantons on R8. Donaldson–

Thomas [19] and Carrion [13] have discussed Spin(7)-instantons more generally, and around

the same time, in 1998, Lewis also discussed Spin(7)-instantons in his PhD thesis [43]. In re-

cent years, Spin(7)-instantons have been studied by Sá Earp [52], Tanaka [56], Walpuski [58],

Lotay–Madsen [45] and many others.

1.1 Motivation for the Thesis

In this thesis, we develop the deformation theory of instantons on a particular type of non-

compact Spin(7)-manifolds known as asymptotically conical Spin(7)-manifolds. These mani-

folds are complete Spin(7)-manifolds asymptotic to the cone over compact nearly G2-manifolds.
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1. Introduction

The instantons on these manifolds also exhibit the asymptotically conical behaviour. Assum-

ing that the instanton is unobstructed, we prove that the moduli space of these instantons is

a manifold, and describe a way to calculate the (virtual) dimension. In the second part of

the paper, we apply the deformation theory to certain instantons on R8, first constructed by

Fairlie–Nuyts [25] and Fubini–Nicolai [27] independently, in the context of supergravity. The

space R8 is indeed an asymptotically conical Spin(7)-manifold, and hence it is appropriate to

study the deformations of these instantons using our theory. The main result for this part is

the calculation of the virtual dimension of the moduli space of these instantons.

The study of asymptotically conical Spin(7)-manifolds goes back to 1989, when Bryant–

Salamon [12] gave an example of a complete non-compact Spin(7)-manifold, namely, the

negative spinor bundle over the 4-sphere. In 2014, Clarke [15] constructed a Spin(7)-instanton

on this Bryant–Salamon Spin(7)-manifold. The manifolds R8, the 8-dimensional Euclidean

space, and /S−(S4), the negative spinor bundle over the 4-sphere, are both examples of asymp-

totically conical Spin(7)-manifolds. R8 is asymptotic to the cone over S7 with standard metric

and /S−(S4) is asymptotic to the cone over S7 with a squashed metric, where both S7 with

standard metric and S7 with squashed metric are examples of nearly G2-manifolds.

Asymptotically conical manifolds have been studied by many authors, e.g., asymptotically

conical G2 manifolds by Karigiannis–Lotay [36] and recently, asymptotically conical Spin(7)

manifolds were studied by Lehmann [42]. The analytic frameworks for studying asymptot-

ically conical manifolds, namely, the weighted Sobolev theory and theory of asymptotically

conical Fredholm and elliptic operators, have been developed by Lockhart–McOwen [44] and

Marshall [47].

Our work on deformation theory in dimension 8 has been partially motivated by similar

work in dimension 7, namely the deformation theory of asymptotically conical G2-instantons,

developed by Driscoll [22], utilising the works of Harland–Ivanova–Lechtenfeld–Popov [31],

Charbonneau–Harland [14]. Asymptotically conical G2-manifolds are asymptotic to the cone

over nearly Kähler manifolds. Instantons on asymptotically conical G2-manifolds have also

been studied by many authors, Clarke [15], Oliveira [50], Lotay–Oliveira [46] and many others.

1.2 Outline of the Thesis

Here is a brief outline of this thesis.
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1.2 Outline of the Thesis

After we discuss the basic notations and definitions, and fix conventions related to asymp-

totically conical Spin(7)-instantons in Chapter 2, we develop the deformation theory of asymp-

totically conical Spin(7)-instantons in Chapter 3. In the first part, we discuss the analytical

framework to study instantons of asymptotically conical Spin(7)-manifolds. We use Lockhart–

McOwen theory, and the relation between the Dirac operator on the cone and the Dirac op-

erator on the link to show that the Dirac operator on the asymptotically conical manifold is

Fredholm only when the rate of decay is not a critical weight, and the critical weights are

precisely the rates that differ from the eigenvalues of the Dirac operator on the link by a fixed

constant.

In the second part of Chapter 3, using the analytical framework and implicit function

theorem, we prove that if the rate of decay is not a critical weight, the moduli space of asymp-

totically conical Spin(7)-instantons is a smooth manifold, given that the deformations are

unobstructed; moreover the dimension of the moduli space is precisely the index of the Dirac

operator on the asymptotically conical manifold.

In Chapters 4 and 5 we carry out an in-depth study of Fairlie–Nuyts–Fubini–Nicolai

(FNFN) Spin(7)-instanton on R8 and its deformation theory. We apply the deformation theory

developed in Chapter 3 by considering R8 to be the asymptotically conical Spin(7)-manifold

asymptotic to the nearly G2-manifold S7.

In order to study the moduli space, we need to identify the critical weights, and hence

need to calculate the eigenvalues of the Dirac operator on the link S7 in a certain range de-

termined by the fastest rate of convergence of FNFN-instanton. In Chapter 4 we use various

techniques in representation theory and harmonic analysis, namely, the Frobenius reciprocity

to decompose the space of L2-sections of the spinor bundle into direct sums of finite dimen-

sional Hilbert spaces indexed by Spin(7)-representations. Moreover, we express the Dirac

operator as a sum of Casimir operators. We also calculate an eigenvalue bound which yields

only six representations of Spin(7) for which the eigenvalues of the Dirac operator could be

in the prescribed range. Then we explicitly calculate the eigenvalues of the Dirac operator for

these representations, and identify the critical rates.

In the first part of Chapter 5, we reconstruct the FNFN Spin(7)-instanton using algebraic

techniques, by identifying S7 with the homogeneous space Spin(7)/G2. In the second part we

use the Atiyah–Patodi–Singer theorem and the critical rates calculated in Chapter 4 to calculate

the virtual dimension of the moduli space of the FNFN instanton. It turns out that the virtual

3



1. Introduction

dimensions of the moduli space are determined by precisely two known deformations of

FNFN-instanton, namely dilation and translations.

Chapter 6 is devoted to computing the deformations of Clarke–Oliveira’s Instanton on

the Bryant–Salamon Spin(7)-Manifold. The Bryant–Salamon Spin(7)-Manifold is the neg-

ative spinor bundle of S4 which is an asymptotically conical manifold where the link is

the squashed 7-sphere Sp(2)×Sp(1)
Sp(1)×Sp(1) . We use the deformation theory of asymptotically conical

Spin(7)-instantons developed in chapter 3 to calculate the deformations of Clarke–Oliveira’s

Instanton and calculate the virtual dimension of the moduli space.

In the final chapter, chapter 7, we prove the non-existence of irreducible U(1) and SU(2)

asymptotically conical Sp(2)× U(1)-invariant instantons on R8. Moreover, we prove that any

asymptotically conical U(1)- or SU(2)-instantons on R8 asymptotic to the flat connection on

S7 satisfying certain condition are obstructed.

4



Chapter 2

Preliminaries

In this chapter we briefly discuss the preliminaries for studying asymptotically conical Spin(7)-

instantons and fix notations and conversions. We review the notions of nearly G2-manifolds,

(asymptotically conical) Spin(7)-manifolds and (asymptotically conical) Spin(7)-instantons.

We also briefly discuss Lockhart–McOwen analysis on asymptotically conical manifolds.

2.1 Nearly G2-Manifolds

Definition 2.1.1. Let Σ be a Riemannian 7-dimensional manifold. A 3-form ϕ ∈ Ω3(Σ) is
called a G2-structure on Σ if in local orthonormal frame e1, . . . , e7, ϕ can be written as

ϕ = e123 − e145 − e167 − e246 + e257 − e347 − e356, (2.1)

where eijk := ei ∧ ej ∧ ek.

For more details on the group G2, see Appendix B and for G2-structures, see [9], [10], [11],

[33].

Theorem 2.1.2 ([53]). There are orthogonal decompositions

Ω2(Σ) = Ω2
7 ⊕ Ω2

14,

Ω3(Σ) = Ω3
1 ⊕ Ω3

7 ⊕ Ω3
27,

where Ωk
d is a G2-invariant subspace of Ωk with point-wise dimension d and

Ω2
7 = {u ⌟ ϕ : u ∈ Ω1(Σ)} = {w ∈ Ω2(Σ) : ∗(ϕ ∧ w) = 2w} (2.2)

Ω2
14 = {w ∈ Ω2(Σ) : ψ ∧ w = 0} = {w ∈ Ω2(Σ) : ∗(ϕ ∧ w) = −w} (2.3)

5



2. Preliminaries

Ω3
1 = { f ϕ : f ∈ Ω0(Σ)} (2.4)

Ω3
7 = {u ⌟ ψ : u ∈ Ω1(Σ)} (2.5)

Ω3
27 = {w ∈ Ω3(Σ) : ϕ ∧ w = 0, ψ ∧ w = 0}. (2.6)

for ψ = ∗ϕ.

A Riemannian 7-manifold possesses a G2-structure if and only if it is a spin manifold [40].

Hence, we now discuss the spinor bundle.

For our purpose, we start by fixing a representation of the Clifford algebra Cl(7) in which

the volume form Γ7 acts as − Id.

Let /S(Σ) be the spinor bundle over a 7-manifold X with G2-structure. Let ξ ∈ Γ(/S(Σ)) be

a unit spinor such that ω · ξ = 0 for all ω ∈ Ω2
14, where · denotes Clifford multiplication. The

existence of ξ follows from the fact that G2 ⊂ SO(7) fixes a vector in the spinor representation,

and the uniqueness (up to sign) follows from G2 fixing everything in the trivial representation.

Then we have an isomorphism given by

s : Λ0(T∗Σ)⊕ Λ1(T∗Σ) → /S(Σ)

( f , v) 7→ ( f − v) · ξ. (2.7)

Lemma 2.1.3. The 3-form ϕ and 4-form ψ = ∗ϕ act on the subspaces Λ0 and Λ1 of /S(Σ) with
eigenvalues

Λ0 Λ1

ϕ 7 −1
ψ −7 1

Proof. Since Λ0 and Λ1 are irreducible representations of G2 and ϕ is G2-invariant, by Schur’s
lemma ϕ preserves the decomposition. Furthermore, ϕ must act on each space as a constant
and this action is traceless.

First let us take a look at Λ0. We have ψ = ∗ϕ = ϕ · vol7. Then ϕ · ψ = 7 vol7 −6ϕ. Now, let
ϕ · ξ = λξ. Then, using vol7 ·ξ = −ξ, we have

ϕ · ψ · ξ = ϕ2 vol7 ·ξ = −ϕ2ξ = −ϕ · (ϕ · ξ) = −ϕ · λξ = −λ2ξ.

Also,
ϕ · ψ · ξ = (7 vol7 −6ϕ) · ξ = (−7 − 6λ)ξ.

Hence,
λ2 − 6λ − 7 = 0 ⇒ λ = 7 or λ = −1.

6



2.1 Nearly G2-Manifolds

Now, eigenvalues of ϕ acting on Λ1 satisfies the same equation. Since ϕ is trace-less, we must
have that ϕ acts on Λ0 as 7 and on Λ1 as −1.

Lemma 2.1.4. Let ω ∈ Ω2(Σ). Then

ω · ξ = −(ω ⌟ ϕ) · ξ.

Proof. Since π14(ω) · ξ = 0, we have ω · ξ = π7(ω) · ξ. Now, π7(ω) = v⌟ϕ for some v ∈ Ω1(Σ).
Hence,

ω · ξ = (v ⌟ ϕ) · ξ = −1
2
(ϕ · v + v · ϕ) · ξ = −1

2
(−1v + 7v) · ξ = −3v · ξ.

Moreover,

ω ⌟ ϕ = π7(ω) ⌟ ϕ = (v ⌟ ϕ) ⌟ ϕ = 3v.

Thus we have the result.

Corollary 2.1.5. Let f ∈ Ω0(Σ), v, u ∈ Ω1(Σ). Then Clifford multiplication of ( f , v) by u is given
by

u · ( f , v) = (⟨u, v⟩,− f u − (u ∧ v) ⌟ ϕ). (2.8)

Proof.

s(u · ( f , v)) = u · (( f − v) · ξ)

= ( f u − u · v) · ξ

= ( f u − u ∧ v + ⟨u, v⟩) · ξ

= [ f u + ⟨u, v⟩] · ξ − (u ∧ v) · ξ

= [ f u + ⟨u, v⟩] · ξ + ((u ∧ v) ⌟ ϕ) · ξ by Lemma 2.1.4

= f u + ⟨u, v⟩+ ((u ∧ v) ⌟ ϕ) · ξ

= s(⟨u, v⟩,− f u − (u ∧ v) ⌟ ϕ).

Hence the result follows from s being isomorphism.

Definition 2.1.6. Let Σ be a 7-dimensional Riemannian manifold and ϕ ∈ Ω3(Σ). Then ϕ is
called a nearly (parallel) G2-structure on Σ if it satisfies

dϕ = τ0ψ, (2.9)

where ψ = ∗ϕ and τ0 ∈ R \ {0}. In this case, (Σ, ϕ) is called a nearly G2-manifold.

Clearly ϕ is not closed, but is co-closed. For more on nearly G2-structures, see [1], [26].

7



2. Preliminaries

Definition 2.1.7. Let /S(Σ) be the spinor bundle on Σ. A real spinor ξ ∈ Γ(/S(Σ)) is called
a Killing spinor if there exists δ ∈ R \ {0} such that for all X ∈ Γ(TΣ), ξ satisfies the Killing
equation given by

∇Xξ = δX · ξ. (2.10)

The scalar δ is called the Killing constant for the Killing spinor ξ.

We note that a unit spinor ξ on a nearly G2-manifold satisfying ω · ξ = 0 for all ω ∈ Ω2
14 is

a Killing spinor. Conversely, any Riemannian 7-manifold admitting a Killing spinor is a nearly

G2-manifold. In fact, there is a one to one correspondence between nearly G2-structures and

real Killing spinors on Σ [7].{
Nearly G2-structure ϕ

satisfying dϕ = τ0ψ

}
⇐⇒

{
ξ ∈ /S(Σ) such that
∇Xξ = τ0

8 X · ξ

}
where we have used the fact that the Killing constant δ can be written in term of τ0 as δ = τ0

8 .

If g is the metric induced by the nearly G2 structure ϕ, then the Ricci curvature is given

by Ricg = 3
8 τ2

0 g, and hence every nearly G2 manifold is Einstein. The scalar curvature is

Scalg = 21
8 τ2

0 .

We note that we can always re-scale τ0. If we take τ0 = 4, then we have dϕ = 4ψ. The

reason for this particular choice is that the unit 7-sphere S7 has scalar curvature 42, and so,

Scalg = 21
8 τ2

0 = 42, which implies τ0 = 4 (whereas taking τ0 = −4 would just change the

orientation of the manifold). Hence we have

∇Xξ =
1
2

X · ξ. (2.11)

For a nearly G2-manifold (Σ, ϕ), we can define a 1-parameter family of affine connections on

TΣ. Let t ∈ R. Then ∇t is a 1-parameter family of connections on TΣ defined by

g(∇t
XY, Z) = g(∇XY, Z) +

t
3

ϕ(X, Y, Z) (2.12)

for X, Y, Z ∈ Γ(TΣ).

Let Tt be the torsion (1, 2)-tensor of the affine connection ∇t. Then

g(X, Tt(Y, Z)) = g(X,∇t
YZ)− g(X,∇t

ZY)− g(X, [Y, Z]) =
2t
3

ϕ(X, Y, Z) (2.13)

using the fact that Levi–Civita connection is torsion-free. Hence the torsion tensor Tt is

Tt(X, Y) =
2t
3

ϕ(X, Y, ·) (2.14)

8



2.2 Spin(7)-Manifolds and Spin(7)-Instantons

which is totally skew-symmetric, being proportional to ϕ.

Now, ∇t lifts to the spinor bundle /S(Σ) given by

∇t
Xη = ∇Xη +

t
6
(X ⌟ ϕ) · η (2.15)

where η ∈ Γ(/S(Σ)) and X ∈ Γ(TΣ). Then, using the eigenvalues (2.1.3), we find

∇t
Xξ = − t − 1

2
X · ξ. (2.16)

Therefore, for t = 1, the Killing spinor ξ is parallel with respect to the connection ∇1. Then

the connection ∇1 has holonomy group contained in G2 with totally skew-symmetric torsion.

This connection ∇1 on the nearly G2-manifold Σ is known as the canonical connection.

Remark 2.1.8. We note that there is a notion of canonical connection in the context of homo-
geneous spaces as well (see Appendix A). Following the work of [54], for the homogeneous
nearly G2-manifolds we consider, these two notions of canonical connection coincide.

Proposition 2.1.9. [54] The Ricci tensor of the connection ∇t is given by

Rict =

(
6 − 2t2

3

)
g.

As a corollary, we have the scalar curvature of the canonical connection to be 112
3 .

2.2 Spin(7)-Manifolds and Spin(7)-Instantons

Definition 2.2.1. Let X be an 8-dimensional Riemannian manifold equipped with a 4-form
Φ ∈ Ω4(X) such that in local orthonormal basis e0, e1, . . . , e7, we have Φ = e0 ∧ ϕ + ψ where
ϕ is as in (2.1) and ∗(e0 ∧ ϕ) = ψ. Then Φ is said to be a Spin(7)-structure on X and (X, Φ) is
said to be an almost Spin(7)-manifold.

If Φ is torsion-free, i.e., if ∇Φ = 0 where ∇ is the Levi–Civita connection, or equivalently,
if dΦ = 0, then (X, Φ) is called a Spin(7)-manifold.

For more details on the group Spin(7), see Appendix B and for Spin(7)-manifolds, see [9],

[33].

Theorem 2.2.2 ([53]). There are orthogonal decompositions

Ω2(X) = Ω2
7 ⊕ Ω2

21

Ω3(X) = Ω3
8 ⊕ Ω3

48

9



2. Preliminaries

Ω4(X) = Ω4
1 ⊕ Ω4

7 ⊕ Ω4
27 ⊕ Ω4

35

where Ωk
d is a Spin(7)-invariant subspace of Ωk with point-wise dimension d and

Ω2
7 = {w ∈ Ω2(X) : ∗(Φ ∧ w) = 3w} (2.17)

Ω2
21 = {w ∈ Ω2(X) : ∗(Φ ∧ w) = −w} (2.18)

Ω3
8 = {u ⌟Φ : u ∈ Ω1(X)} (2.19)

Ω3
48 = {w ∈ Ω3(X) : Φ ∧ w = 0} (2.20)

Ω4
1 = { f Φ : f ∈ Ω0(X)} (2.21)

Ω4
7 = {LξΦ : ξ ∈ so(8)} (2.22)

Ω4
27 = {w ∈ Ω4(X) : ∗w = w, w ∧ Φ = 0, w ∧ LξΦ = 0 for all ξ ∈ so(8)} (2.23)

Ω4
35 = {w ∈ Ω4(X) : ∗w = −w} (2.24)

where Lξ is the Lie derivative with respect to ξ.

Proposition 2.2.3 ([32]). If Φ is a Spin(7)-structure on a manifold X, then X is a Spin manifold.
Moreover, if Φ is torsion-free, then X admits a non-trivial parallel spinor.

The canonical spin structure can be identified in the following way.

/S+ ∼= Λ0 ⊕ Λ2
7 and /S− ∼= Λ1

8.

Let X be a Spin(7) manifold and P be a principal G-bundle on X for a compact group G. Let

gP be the adjoint vector bundle. Then we have

Ω2(gP) = Ω2
7(gP)⊕ Ω2

21(gP)

Definition 2.2.4. Let π2
7 : Ω2(gP) → Ω2

7(gP) be the projection. Then a connection A on P is
said to be a Spin(7)-instanton if π2

7(FA) = 0 where FA is the curvature of the connection A. In
this case FA ∈ Ω2

21(gP).
Equivalently, A is a Spin(7) instanton if it satisfies

∗(Φ ∧ FA) = −FA. (2.25)

This follows from the fact that the operator on Λ2 defined by ω 7→ ∗(Φ ∧ ω) has eigenvalues
−1 and 3 with eigenspaces Λ2

21 and Λ2
7 respectively.

Moreover, A is an instanton if and only if FA annihilates the parallel spinor, i.e., for parallel
spinor ξ, we have FA · ξ = 0, where · denotes Clifford multiplication.

10



2.3 Asymptotically Conical Spin(7)-Manifolds

2.3 Asymptotically Conical Spin(7)-Manifolds

Let (Σ, gΣ) be a Riemannian 7-manifold with a nearly G2-structure ϕ satisfying dϕ = 4ψ

where ψ = ∗ϕ. A Spin(7)-cone on Σ is C(Σ) := (0, ∞)× Σ together with a Spin(7)-structure

(C(Σ), ΦC) defined by

ΦC := r3dr ∧ ϕ + r4ψ (2.26)

where r ∈ (0, ∞) is the coordinate. Σ is called the link of the cone. The metric gC compatible

with ΦC is given by

gC = dr2 + r2gΣ. (2.27)

We note that condition dϕ = 4ψ implies the torsion free condition dΦC = 0, which implies

that (C(Σ), gC, Φ) is a Spin(7)-manifold.

Remark 2.3.1. We note that a Spin(7)-cone is not complete. Hence, we consider complete
Spin(7)-manifolds whose geometry is asymptotic to the given (incomplete) G2-cone.

Definition 2.3.2. Let (X, g, Φ) be a Spin(7)-manifold. X is called an asymptotically conical (AC)
Spin(7)-manifold with rate ν < 0 if there exists a compact subset K ⊂ X, a compact connected
nearly G2 manifold Σ, and a constant R > 1 together with a diffeomorphism

h : (R, ∞)× Σ → X \ K (2.28)

such that ∣∣∣∇j
C(h

∗(Φ|X\K)− ΦC)
∣∣∣ (r, p) = O(rν−j) as r → ∞ (2.29)

for each p ∈ Σ, j ∈ Z≥0, r ∈ (R, ∞); where ∇C is the Levi–Civita connection for the cone
metric gC on C(Σ), and the norm is induced by the metric gC.

X \ K is called the end of X and Σ the asymptotic link of X.

Remark 2.3.3. For simplicity, we’ll drop the points (r, p) while writing the norm, and will
understand it from the context.

Remark 2.3.4. It can be proved that (see [36]) the metric g satisfies the same asymptotic con-
dition ∣∣∣∇j

C(h
∗(g|X\K)− gC)

∣∣∣ = O(rν−j) as r → ∞.

Examples 2.3.5.

• (R8, Φ0): Since C(S7) = R8 \ {0}, (R8, Φ0) is an AC manifold with any rate ν < 0.

11



2. Preliminaries

• Bryant–Salamon Spin(7)-manifold /S−(S4): This a rank 4 bundle, hence the total space
is a manifold of dimension 8. This is an AC Spin(7)-manifold asymptotic to the cone
over (S7 with squashed metric with rate ν = −10/3 (see [12]).

• Some more examples of AC Spin(7)-metrics can be found in the recent work of Lehmann
[41].

2.4 Lockhart–McOwen Analysis on AC Spin(7)-manifold

Now we review Lockhart–McOwen analysis applied to AC Spin(7) manifolds.

Let X be an AC Spin(7) manifold. In order to define “weighted Banach spaces” on X, we

first define a notion of radius function.

Definition 2.4.1. A radius function is a map ϱ : X → R defined by

ϱ(x) :=


1 if x ∈ the compact subset K ⊂ X

r if x = h(r, p) for some r ∈ (2R, ∞), p ∈ Σ

r̃ if x ∈ h((R, 2R)× Σ)

(2.30)

where h : (R, ∞)× Σ → X \ K is the diffeomorphism, and r̃ is a smooth interpolation between
its definition at infinity and its definition on K, in a decreasing manner.

Let π : E → X be a vector bundle over X with a fibre-wise metric and a connection ∇
compatible with the metric.

Definition 2.4.2. Let p ≥ 1, k ∈ Z≥0, ν ∈ R and C∞
c (E) be the space of compactly supported

smooth sections of E. We define the conically damped or weighted Sobolev space Wk,p
ν (E) of

sections of E over X of weight ν as follows:
For ξ ∈ C∞

c (E), we define the weighted Sobolev norm ∥ · ∥
Wk,p

ν (E)
as

∥ξ∥
Wk,p

ν (E)
=

(
k

∑
j=0

∫
X

∣∣∣ϱ−ν+j∇jξ
∣∣∣p ϱ−8 dvol

)1/p

(2.31)

which is clearly finite and indeed a norm. Then the weighted Sobolev space Wk,p
ν (E) is the

completion of C∞
c (E) with respect to the norm ∥ · ∥

Wk,p
ν (E)

.

Remark 2.4.3. [42]

• We note that W0,2
−4(E) = L2(E).
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2.4 Lockhart–McOwen Analysis on AC Spin(7)-manifold

• We have ϱνW0,2
µ (E) = W0,2

µ+ν(E). In particular, W0,2
ν (E) = ϱ4+νL2(E).

Definition 2.4.4. Let k ∈ Z≥0 and ν ∈ R. Then for ξ ∈ C∞
c (E), we define the weighted Ck norm

∥ · ∥Ck
ν(E) as

∥ξ∥Ck
ν(E) =

k

∑
j=0

∥ϱ−ν+j∇jξ∥C0 (2.32)

which is well defined and a norm. Then the weighted Ck space Ck
ν(E) is the closure of C∞

c (E)
with respect to this norm. We also define C∞

ν (E) :=
⋂

k≥0
Ck

ν(E).

Theorem 2.4.5 (Weighted Sobolev Embedding Theorem). [47]

1. Let k, l ≥ 0. If k − 8
p ≥ l, then

Wk,p
ν (E) ↪→ Cl

ν(E)

is a continuous embedding.

2. Let k ≥ l ≥ 0, p ≤ q and µ ≤ ν. If k − 8
p ≥ l − 8

q , then

Wk,p
µ (E) ↪→ W l,q

ν (E)

is a continuous embedding.

In order to ensure that we work with continuous sections, we shall always assume k ≥ 4.

This follows from the first part of the weighted Sobolev embedding theorem by putting l = 0

and p = 2.

Theorem 2.4.6 (Weighted Sobolev Multiplication Theorem). [22] Let ξ ∈ Wk,2
µ (E), η ∈ W l,2

ν (F). If
l ≥ k > 8

2 = 4, then the multiplication

Wk,2
µ (E)× W l,2

ν (F) → Wk,2
µ+ν(E ⊗ F)

is bounded. In other words, there is a constant C > 0 such that

∥ξ ⊗ η∥Wk,2
µ+ν(E⊗F) ≤ C∥ξ∥Wk,2

µ (E)∥η∥W l,2
ν (F).

Proposition 2.4.7. [42] Let ξ ∈ W0,2
µ (E), η ∈ W0,2

ν (E). If µ + ν < 8, then

⟨ξ, η⟩L2 =
∫

M
⟨ξ, η⟩dvol

is finite and satisfies,
⟨ξ, η⟩L2 ≤ ∥ξ∥W0,2

µ (E)∥η∥W0,2
ν (E).
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2. Preliminaries

From Proposition 2.4.7, we have the pairing

⟨· , ·⟩L2 : W0,2
ν (E)× W0,2

−8−ν(E) → R.

This defines the isomorphism [42] (
W0,2

ν (E)
)∗ ∼= W0,2

−8−ν(E). (2.33)

Now, let P → X be a principal G bundle. Consider the associated vector bundle E :=

T ⊗ gP, where T is either ΛkT∗X of k-forms, or Λ∗T∗X =
8⊕

k=0
ΛkT∗X, or the spinor bundle /S

over X. If A is a connection on gP, then E inherits a metric from T and a connection from the

Levi–Civita connection on T and the connection on gP. If ξ ∈ C∞
c (T ⊗ gP) ⊂ Γ(T ⊗ gP), then

the weighted Sobolev norm is given by Equation 2.31 where ∇ = ∇LC ⊗ 1gP + 1T ⊗∇A, ∇A

being the connection on gP.

Before moving forward let us fix few notations:

Ωm,k
ν (X) := W2,k

ν (ΛmT∗X),

Ωm,k
ν (gP) := W2,k

ν (ΛmT∗X ⊗ gP),

Ω∗,k
ν (X) := W2,k

ν (Λ∗T∗X),

Ω∗,k
ν (gP) := W2,k

ν (Λ∗T∗X ⊗ gP).

2.5 Asymptotically Conical Spin(7)-Instantons and Moduli Space

Definition 2.5.1. Let X be an AC Spin(7)-manifold asymptotic to the cone C(Σ). Let P → X
be a principal G-bundle over X. Then an asymptotically framed bundle is the bundle P together
with a choice of a principal bundle Q → Σ and an isomorphism

h∗P ∼= π∗Q

where π : C(Σ) → Σ is the natural projection.

We note that such framing always exists [46]. So we fix a framing Q.

Definition 2.5.2. Let X be an AC Spin(7)-manifold asymptotic to the cone C(Σ). Let P → X
be an asymptotically framed bundle. A connection A on P is called an asymptotically conical
connection with rate ν if there exists a connection AΣ on Q → Σ such that∣∣∣∇j

C(h
∗(A)− π∗(AΣ))

∣∣∣ = O(rν−1−j) as r → ∞ (2.34)
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for each p ∈ Σ, j ∈ Z≥0, ν < 0. The norm is induced by the cone metric and the metric on g.
A is called asymptotic to AΣ and ν0 := inf{ν : A is AC with rate ν} is called the fastest rate

of convergence of A.

Remark 2.5.3.

• We have defined the rate of convergence in term of conical metric and the coordinate
r on the cone. However, we could also have chosen in terms of the AC metric and the
radius function ϱ. But in both cases the rate of convergence would be the same.

• The −1 in the term O(rν−1−j) comes from the fact that a 1-from α on Σ satisfies |π∗α| =
O(r−1).

Let AP be the space of AC connections on P. Fix a reference connection A ∈ AP. Then,

we can identify the spaces AP and Ω1(gP) by A′ = A + α, for any other connection A′ and

α ∈ Ω1(gP). Denote the space of Wk,2
ν−1-connections by

Ak,ν−1 := {A + α : α ∈ Ω1,k
ν−1(gP)} (2.35)

and define

Aν−1 :=
∞⋂

k=1

Ak,ν−1 (2.36)

which is the space of C∞
ν−1-connections.

Now, a gauge transform is φ ∈ Aut(P) and acts on a connection A by φ · A = φAφ−1 −
dφφ−1. Let G → GL(V) be a faithful representation of G, and consider the associated vector

bundle E := P ×G V. Moreover, consider the endomorphism bundle End(E) whose fibre

at x ∈ X is the vector space End(Ex) = {linear maps Ex → Ex}. Note that there is a natural

embedding Aut(Ex) → End(Ex) and a canonical subgroup Gx of Aut(Ex) which is isomorphic

to G (but not canonically isomorphic to G).

Then we define the weighted gauge group by (see [49])

Gk+1,ν := {φ ∈ C0(End(E)) : ∥φ − I∥k+1,ν < ∞, φ ∈ G}. (2.37)

We also define Gν :=
∞⋂

l=1
Gl,ν.

Lemma 2.5.4. [18] The point-wise exponential map defines charts for which Gk+1,ν is a Hilbert Lie
group with Lie algebra modelled on Ω0,k+1

ν (gP) for k ≥ 3. The group Gk+1,ν acts on Ak,ν−1 smoothly
via gauge transformations, for k ≥ 4.
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2. Preliminaries

Definition 2.5.5. Let X be an AC Spin(7)-manifold asymptotic to C(Σ). Let P → X be a
principal G-bundle asymptotically framed by Q → Σ. Let AΣ be an instanton on the nearly
G2 manifold Σ. Then the moduli space of Spin(7)-instantons asymptotic to AΣ with rate ν is given
by

M(AΣ, ν) := {Spin(7) instanton A on P satisfying (2.34) asymptotic to AΣ}/Gν. (2.38)
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Chapter 3

Deformation Theory of Asymptotically
Conical Spin(7)-Instantons

In this chapter we describe the deformation theory of asymptotically conical Spin(7)-instantons.

In the first part we discuss the necessary analytic framework, following the works of Lockhart–

McOwen [44], Marshall [47], Karigiannis–Lotay [36] and Driscoll [23]. In the second part we

develop the general theory, where we closely follow Donaldson [20] and Driscoll [23].

3.1 Fredholm and Elliptic Asymptotically Conical Operators

We begin this section by defining the operators that will be important in developing the

deformation theory.

1. Let Σ be a nearly G2-manifold and Q → Σ be a principal G-bundle. Let AΣ be a connec-

tion on Q. Consider the bundle /S(Σ)⊗ gQ where /S(Σ) is the spinor bundle on Σ and

gQ = Q ×Ad g. Then we have a twisted Dirac operator

/DAΣ : Γ(/S(Σ)⊗ gQ) → Γ(/S(Σ)⊗ gQ). (3.1)

2. Let X be an AC Spin(7)-manifold with link Σ. Let P → X be an asymptotically framed

bundle. Let A ∈ AP be an AC connection asymptotic to AΣ.

Consider the bundle /S(X) ⊗ gP where /S(X) is the spinor bundle over X and gP =

P ×Ad g. Then we have a Dirac operator

/DA : Γ(/S(X)⊗ gP) → Γ(/S(X)⊗ gP). (3.2)

17
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3. Let C(Σ) = (0, ∞)× Σ be a Spin(7)-cone over Σ and π∗Q → C(Σ) be a principal bundle

over C(Σ). Let AC = π∗AΣ.

Now consider the bundle /S(C(Σ))× gπ∗Q, where /S(C(Σ)) is the spinor bundle on C(Σ)

and gπ∗Q = π∗Q ×Ad g. Then we have a Dirac operator

/DAC : Γ(/S(C(Σ))⊗ gπ∗Q) → Γ(/S(C(Σ))⊗ gπ∗Q). (3.3)

The objective behind introducing this Dirac operator /DAC is to study the Fredholm prop-

erties of the Dirac operator /DA using Lockhart–McOwen theory.

Then we have the following sets of operators:

Base Manifold Operator Bundle

X K
∇A Λ0(X)⊗ gP
/DA /S(X)⊗ gP

d∗AdA gP

Σ KΣ

∇AΣ Λ0(Σ)⊗ gQ
/DAΣ /S(Σ)⊗ gQ

d∗AΣ
dAΣ gQ

C(Σ) KC

∇AC Λ0(C(Σ))⊗ gπ∗Q
/DAC

/S(C(Σ))⊗ gπ∗Q

d∗AC
dAC gπ∗Q

Definition 3.1.1. Let E = /S(C(Σ))⊗ gπ∗Q or gπ∗Q be a bundle over C(Σ). Then a section σ of
the bundle E is called homogeneous of degree λ if

σ = rληΣ

where ηΣ is a section of /S(Σ)⊗ gQ or gQ respectively, lifted to the cone.

We note that here we use the identification clC(u) = rclΣ(u) for all u ∈ TC(Σ) where clΣ is the

Clifford action of TΣ and clC is the Clifford action of TC(Σ).

Now, let KC be either the Dirac operator /DAC or the coupled Laplace operator d∗AC
dAC .

Then we consider the set of critical weights D(KC) given by

D(KC) = {λ ∈ R : there exists non-zero σ ∈ Γ(E) of homogeneous order λ such that KC(σ) = 0}.

(3.4)
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Theorem 3.1.2. [47] The extended map

K : Wk+l,p
ν (E) → Wk,p

ν−γ(F)

(where K = /DA or d∗AdA, E = F = /S(X) ⊗ gP or gP and γ is 1 or 2 respectively) is Fredholm if
ν ∈ R \ D(KC). Moreover, for ν < ν′, if [ν, ν′] ∩ D(KC) = ∅, then the kernel ker K is independent
of the weight in the range [ν, ν′].

Hence, we focus our attention on finding the set of critical weights for the operators /DAC

and d∗AC
dAC .

The set of critical weights for the Laplace operator d∗AC
dAC

We want to find the set of critical weights for the Laplace operator d∗AC
dAC , i.e., the set

D(d∗AC
dAC). This set corresponds to a subset of the kernel of the operator containing ele-

ments of homogeneous order λ. Thus, if λ ∈ D(d∗AC
dAC), then there exists σ ∈ ker(d∗AC

dAC)

such that σ = rλη for η ∈ Ω0(gP). An easy calculation yields,

Lemma 3.1.3. Let σ = rλη for η ∈ Ω0(gP). Then,

d∗AC
dAC σ = rλ−2(d∗AΣ

dAΣ η − λ(λ + 6)η).

Thus, ξ is in the kernel if and only if λ(λ + 6) is an eigenvalue of d∗AΣ
dAΣ . But since the

coupled Laplace operator is positive, (−6, 0)∩D(d∗AC
dAC) = ∅. Hence, we have the following

proposition.

Proposition 3.1.4. Let A be an AC connection over an AC Spin(7)-manifold X. If ν ∈ (−6, 0), then
the coupled Laplace operator

d∗AdA : Ω0,k+2
ν (gP) → Ω0,k

ν−2(gP)

is Fredholm.

The set of critical weights for the Dirac operator /DAC

Now, we want to find the set of critical weights for the Dirac operator /DAC , i.e., the set

D(/DAC). This set corresponds to a subset of the kernel of the operator containing elements of

homogeneous order λ. Thus, if λ ∈ D(/DAC), then there exists σ ∈ ker /DAC such that σ = rληΣ

where ηΣ is a spinor on Σ.
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Recall that the volume element Γ8 acting on /S(C) satisfies Γ2
8 = 1 and this gives an eigen-

space decomposition /S(C) = /S+(C) ⊕ /S−(C) corresponding to +1 and −1 eigenvalues re-

spectively. This induces a decomposition of the Dirac operator DC of the cone metric:

D±
C : Γ(/S±(C)) → Γ(/S∓(C)).

Proposition 3.1.5. For the Dirac operators DΣ : Γ(/S(Σ)) → Γ(/S(Σ)) and D−
C : Γ(/S−(C)) →

Γ(/S+(C)), we have,

D−
C η = dr ·

(
∂

∂r
+

1
r

(
7
2
−DΣ

))
η.

Proof. We fix the convention where the indices i, j, k run from 1 to 7 and µ, ν run from 0 to 7.
Let ei be a local orthonormal frame of TΣ and using the metric gΣ, the dual ei be that of T∗Σ.
Then E0 := dr and Ei := rei for i = 1, . . . , 7 form a local orthonormal frame for T∗C(Σ).

Moreover, let ∂i be the differentiation with respect to ei and Dµ be the differentiation with
respect to Eµ (vector field dual of Eµ using the metric gC).

Now, let ωi
j be the connection 1-form of the Levi–Civita connection on T∗Σ. Hence, ∇Σei =

−ωi
je

j. Then

ωi
j = −ω

j
i (3.5)

and

dei + ωi
j ∧ ej = 0. (3.6)

Moreover, let Ωµ
ν = −Ων

µ be the Levi–Civita 1-form on C(Σ). Now, dE0 = d2r = 0. So,
dE0 + Ω0

i ∧ ei = 0 ⇒ Ω0
i ∧ ei = 0. For i ≥ 0,

dEi = −Ωi
µ ∧ Eµ = −Ωi

0 ∧ dr − Ωi
j ∧ rej. (3.7)

Also,

dEi = dr ∧ ei + rdei = dr ∧ ei − rωi
j ∧ ej. (3.8)

Comparing (3.7) and (3.8), we get

Ωi
0 = ei, Ωi

j = ωi
j

Now let Γµ
σν be the Christoffel symbols of the Levi–Civita connection on C(Σ) and γi

kj be that
of on Σ. Then,

∇Σ
ek

ej = γi
kjei.

But,

∇Σ
ek

ej = ωi
j(ek)ei.
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Hence,
γi

kj = ωi
j(ek) ⇒ ekγi

kj = ωi
j.

Similarly, EσΓµ
σν = Ωµ

ν .
Now, EσΓµ

σν = Ωµ
ν ⇒ E0Ωµ

ν = Γµ
0ν. But Ωµ

ν is either Ω0
i = ei or Ωi

0 = −ei or Ωi
j = ωi

j and
hence E0Ωµ

ν = 0, which implies
Γµ

0ν = 0

and
EkΓi

k0 = Ωi
0 = ei ⇒ rekΓi

k0 = ei ⇒ Γi
k0 =

1
r

ekei =
1
r

δi
k.

Now, we consider the natural embedding of Cl(7) into Cl0(8) by ei 7→ E0Ei. Then the action
of Dirac operator DΣ on η ∈ Γ(/S(Σ)) is given by

DΣη = E0Ei
(

∂iη +
1
4

γk
ijE

0EjE0Ekη

)
. (3.9)

Now, Γ7 · η = −η but since Γ7 = E0E1E0E2 · · · E0E7 = E0E1 · · · E7 = Γ8, this implies Γ8 · η =

−η. Thus, η ∈ Γ(/S−(C)). The action of negative Dirac operator D−
C on C(Σ) is given by

D−
C η = E0D0η + Ei

(
Diη +

1
4

Γν
iµEµEνη

)
= E0 ∂η

∂r
+ Ei

(
Diη +

1
4
(Γj

i0E0Ejη− + Γ0
ijE

jE0η + Γk
ijE

jEkη)

)
= E0 ∂η

∂r
+ Ei

(
1
r

∂iη +
1
4r
(δijE0Ejη − δijEjE0η + γk

ijE
jEkη)

)
= E0 ∂η

∂r
− 1

2r
EiEiE0η +

1
r

Ei
(

∂iη +
1
4

γk
ijE

jEkη

)
= E0 ∂η

∂r
+

7
2r

E0η +
1
r

Ei
(

∂iη +
1
4

γk
ijE

0EjE0Ekη

)
. (3.10)

The result follows from (3.9) and (3.10).

Corollary 3.1.6. Consider the following two twisted Dirac operators: /DAΣ and

/D−
AC

: Γ(/S−(C(Σ))⊗ gπ∗Q) → Γ(/S+(C(Σ))⊗ gπ∗Q).

Then,

/D−
AC

= dr ·
(

∂

∂r
+

1
r

(
7
2
− /DAΣ

))
. (3.11)

Proof. We note that

/DAΣ = cl7 ◦ (∇⊗ 1 + 1 ⊗∇AΣ) = DΣ ⊗ 1 + cl7 ◦ (1 ⊗∇AΣ)
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3. Deformation Theory of Asymptotically Conical Spin(7)-Instantons

and
/D−

AC
= cl8 ◦ (∇⊗ 1 + 1 ⊗∇AC) = D−

C ⊗ 1 + cl8 ◦ (1 ⊗∇AC).

Hence we just focus on cl7 ◦ (1 ⊗∇AΣ) and cl8 ◦ (1 ⊗∇AC).
Let {gb} be a local frame of gQ, ω̃c

b = eiγ̃c
ib be the connection 1-form of ∇AΣ and Ω̃c

b = EiΓ̃c
ib

be that of ∇AC . Then π∗ω̃ = Ω̃. Moreover, let {ua} be a local frame for the spin bundle. Then

/DAΣ( fabua ⊗ gb) = DΣ( fabua)⊗ gb + E0Ei fabua ⊗ γ̃c
ibgc. (3.12)

Now,

/D−
AC
( fabua ⊗ gb) = D−

C ( fabua)⊗ gb + Ei fabua ⊗ Γ̃c
ibgc

= E0
(

∂

∂r
fabua +

1
r

(
7
2
−DΣ( fabua)

))
⊗ gb +

1
r

Ei fabua ⊗ γ̃c
ibgc

= E0
(

∂

∂r
+

1
r

(
7
2
−DΣ

))
( fabua ⊗ gb) +

1
r
(Ei fabua)⊗ γ̃c

ibgc

= E0
(

∂

∂r
+

1
r

(
7
2
−DΣ

))
( fabua ⊗ gb)−

1
r
(E0E0Ei fabua)⊗ γ̃c

ibgc

= E0
(

∂

∂r
+

1
r

(
7
2
− /DAΣ

))
( fabua ⊗ gb) (using 3.12).

Finally, we have the description of the set critical weights of the twisted Dirac operator.

Proposition 3.1.7. Consider the Dirac operator

/D−
A : Wk+1,2

ν−1 (/S−(X)⊗ gP) → Wk,2
ν−2(/S

+(X)⊗ gP). (3.13)

Then the set of critical weights is given by

D(/D−
A) =

{
ν ∈ R : ν +

5
2
∈ Spec /DAΣ

}
. (3.14)

Thus, this Dirac operator /D−
A is Fredholm if ν + 5

2 ∈ R \ Spec /DAΣ .

Proof. Consider the section σ of homogeneous degree ν − 1. i.e., σ = e(ν−1)tη, where et = r.
Then ν ∈ D(/D−

A) if σ is also in the kernel of /D−
A . Now,

0 = /D−
Aσ = E0e−t

(
∂

∂t
+

7
2
− /DAΣ

)
e(ν−1)tη

= E0e−te(ν−1)te−(ν−1)t
(

∂

∂t
+

7
2
− /DAΣ

)
e(ν−1)tη

= E0e−te(ν−1)t
(

∂

∂t
+

7
2
+ (ν − 1)− /DAΣ

)
η.
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3.1 Fredholm and Elliptic Asymptotically Conical Operators

Index of the Dirac operator /D−
AC

Definition 3.1.8. For λ ∈ R, define the space

K(λ)−C :=
{

σ ∈ ker /D−
AC

: σ(r, p) = rλ−1P(r, p)
}

,

where

P(r, p) =
m

∑
j=0

(log r)jηj(σ)

and each ηj ∈ Γ(/S(Σ)⊗ gQ).

The following proposition is a consequence of the fact that the Dirac operator /DAΣ is self-

adjoint.

Proposition 3.1.9. If

/D−
AC

(
rλ−1

m

∑
j=0

(log r)jηj(σ)

)
= 0, (3.15)

with ηm ̸= 0, then m = 0. Hence elements of K(λ)−C have no log terms.

Proof. Expanding the expression (3.15) using (3.11), we have

dr ·
[(

(λ − 1)rλ−2
m

∑
j=0

(log r)jηj + rλ−1
m

∑
j=0

j(log r)j−1 1
r

ηj

)

+
7
2r

rλ−1
m

∑
j=0

(log r)jηj −
1
r

rλ−1
m

∑
j=0

(log r)j /DAΣ ηj

]
= 0.

Considering this as a polynomial in log r and comparing coefficients of (log r)m and (log r)m−1

respectively, we get

− rλ−2 /DAΣ ηm +
7
2

rλ−2ηm + (λ − 1)rλ−2ηm = 0

⇒ /DAΣ ηm − 7
2

ηm − (λ − 1)ηm = 0

⇒ /DAΣ ηm =

(
λ +

5
2

)
ηm, (3.16)

and

− rλ−2 /DAΣ ηm−1 +
7
2

rλ−2ηm−1 + (λ − 1)rλ−2ηm−1 + rλ−2mηm = 0

⇒ /DAΣ ηm−1 −
7
2

ηm−1 − (λ − 1)ηm−1 − mηm = 0
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3. Deformation Theory of Asymptotically Conical Spin(7)-Instantons

⇒ mηm = /DAΣ ηm−1 −
(

λ +
5
2

)
ηm−1.

Then using the self-adjoint property of /DAΣ , we get

m⟨ηm, ηm⟩L2(Σ) = ⟨/DAΣ ηm−1, ηm⟩L2(Σ) − ⟨(λ + 5/2)ηm−1, ηm⟩L2(Σ)

= ⟨ηm−1, /DAΣ ηm⟩L2(Σ) − ⟨(λ + 5/2)ηm−1, ηm⟩L2(Σ)

= ⟨ηm−1, (λ + 5/2)ηm⟩L2(Σ) − (λ + 5/2)⟨ηm−1, ηm⟩L2(Σ) = 0 (using 3.16).

Since ηm ̸= 0, we have m = 0.

Now, consider the Dirac operator (3.13) and denote its index by Indexν /D−
A . Then, we have

the following theorem.

Theorem 3.1.10. [47] If ν, ν′ ∈ R \D(/D−
A) such that ν ≤ ν′, then

Indexν′ /D−
A − Indexν /D−

A = ∑{dimK(λ)−C : λ ∈ (ν, ν′) ∩D(/D−
A)}.

From the Proposition 3.1.9, we conclude that K(λ)−C is precisely the
(
λ + 5

2

)
eigenspace of

the operator /DAΣ . Summarising, we have the following theorem.

Theorem 3.1.11. The Dirac operator

/D−
A : Wk+1,2

ν−1 (/S−(X)⊗ gP) → Wk,2
ν−2(/S

+(X)⊗ gP)

is Fredholm if ν is not a critical weight, i.e., ν + 5
2 ∈ R \ Spec /DAΣ . Moreover, for two non-critical

weights ν, ν′ with ν ≤ ν′, the jump in the index is given by

Indexν′ /D−
A − Indexν /D−

A = ∑
ν<λ<ν′

dim ker
(

/DAΣ − λ − 5
2

)
.

3.2 Deformations of Asymptotically Conical Spin(7)-Instantons

Let A be an asymptotically conical reference connection that also satisfies the Spin(7)-instanton

equation. Then, we have π7(FA) = 0. Now, we can write any other connection in some open

neighbourhood of A as A′ = A + α for α ∈ Ω1(gP). Then,

FA′ − FA = dAα +
1
2
[α, α].

Hence the connection A′ is a Spin(7)-instanton if and only if π7(FA+α) = 0, i.e.,

π7

(
dAα +

1
2
[α, α]

)
= 0.
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3.2 Deformations of Asymptotically Conical Spin(7)-Instantons

We also have the gauge fixing condition d∗Aα = 0 (which will be described in details later in

page 27). We consider the non-linear operator

/DNL
A : Γ(Λ1 ⊗ gP) → Γ((Λ0 ⊕ Λ2

7)⊗ gP)

α 7→
(

d∗Aα, π7

(
dAα +

1
2
[α, α]

))
(3.17)

Hence, the local moduli space of Spin(7)-instanton can be expressed as the zero set of /DNL
A ,

i.e.,
(

/DNL
A

)−1
(0).

Now, from the identifications of the positive and negative spinor bundles given by /S+ =

Λ0 ⊕ Λ2
7 and /S− = Λ1 we can prove that the linearisation of the non-linear operator /DNL

A is

precisely the twisted linear Dirac operator /D−
A ,

/D−
A : Γ(Λ1 ⊗ gP) → Γ((Λ0 ⊕ Λ2

7)⊗ gP)

α 7→ (d∗Aα, π7(dAα)). (3.18)

In order to calculate the zero set of the non-linear operator, we calculate the kernel of the

linearised Dirac operator, using the analytic techniques discussed in the previous subsections.

First we want to investigate the moduli space of AC Spin(7)-connections. We start with

the following lemma.

Lemma 3.2.1. Let α ∈ Ωm−1,k
µ (gP) and β ∈ Ωm,l

ν (gP). If k, l ≥ 4 and µ + ν < −7, then

⟨dAα, β⟩L2 = ⟨α, d∗Aβ⟩L2 .

Proof. Let us consider the manifold with boundary

X≤R := {x ∈ X : ϱ(x) ≤ R}.

Then the boundary is given by ∂(X≤R) = {R} × Σ. We note that

d(α ∧ ∗β) = dAα ∧ ∗β − α ∧ ∗d∗Aβ

Now we apply Stoke’s theorem∫
X≤R

⟨dAα, β⟩dvolX −
∫

X≤R

⟨α, d∗Aβ⟩dvolX =
∫

X≤R

d(α ∧ ∗β) =
∫
{R}×Σ

(α ∧ ∗β).

Now, by the Sobolev embedding theorem, |α| ≤ CRµ and |β| ≤ CRν on the end. Hence, we
have ∣∣∣∣∫{R}×Σ

(α ∧ ∗β)

∣∣∣∣ ≤ ∫
{R}×Σ

|α ∧ ∗β|dvolΣ ≤ CRµ+ν+7

which goes to zero as R → ∞, since µ + ν < −7.
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3. Deformation Theory of Asymptotically Conical Spin(7)-Instantons

As an immediate consequence, we have,

Corollary 3.2.2. Let f ∈ Ω0,k+2
ν (gP) for ν < 0 and d∗AdA f = 0. Then dA f = 0.

Proof. Since there are no critical weights in (−6, 0), then if d∗AdA f = 0 and ν < 0, we have
f ∈ Ω0,k+2

µ (gP) for some µ < −3 for any k. Then dA f ∈ Ω1,k+1
µ−1 (gP) and

∥dA f ∥L2 = ⟨d∗AdA f , f ⟩L2 = 0

by integration by parts.

The proof of the following lemma follows from the maximum principle.

Lemma 3.2.3 ([47]). Let (X, g) be an asymptotically conical Riemannian manifold. Let f ∈ Ω0,k+2
ν (X)

for ν < 0 and (d∗d) f = 0. Then f = 0.

Then we obtain the gauged version of Lemma 3.2.3 as follows.

Corollary 3.2.4. Let f ∈ Ω0,k+2
ν (gP) for ν < 0 and d∗AdA f = 0. Then f = 0.

Proof. Since f ∈ ker(d∗AdA)ν, we have dA f = 0. Then,

d∗d| f |2 = 2d∗⟨dA f , f ⟩ = 0.

Thus | f |2 is a harmonic function and hence by Lemma 3.2.3, is zero. Thus, f = 0.

The following lemma can easily be proved using inverse mapping theorem.

Lemma 3.2.5. If ν ∈ (−6, 0), then the coupled Laplace operator

d∗AdA : Ω0,k+2
ν (gP) → Ω0,k

ν−2(gP)

is an isomorphism of topological vector spaces.

Moreover, we have the following simple result from the theory of Banach spaces.

Lemma 3.2.6. Let X, Y be Banach spaces and T : X → Y be a bounded linear operator. Then ker T
is closed and a closed subspace X0 ⊂ X is a complement of ker T if and only if T|X0 is injective and
T(X) = T(X0).

First let us show that the image of dA is closed.

Lemma 3.2.7. For ν ∈ (−6, 0),

Im(dA : Ω0,k+2
ν (gP) → Ω1,k+1

ν−1 (gP))

is a closed subspace of Ω1,k+1
ν−1 (gP).
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3.2 Deformations of Asymptotically Conical Spin(7)-Instantons

Proof. Let {dA fn}∞
n=1 be a sequence in dA(Ω

0,k+2
ν (gP)). Let α ∈ Ω1,k+1

ν−1 (gP) such that

lim
n→∞

∥dA fn − α∥k+1,ν−1 = 0

in Ω1,k+1
ν−1 (gP). Applying the bounded operator d∗A, we get

lim
n→∞

∥d∗AdA fn − d∗Aα∥k,ν−2 = 0

in Ω0,k
ν−2(gP). Since d∗AdA admits a bounded inverse, we can define f := (d∗AdA)

−1d∗Aα and
then,

lim
n→∞

∥ fn − f ∥k+2,ν = 0

in Ω0,k+2
ν (gP). Now, applying the bounded operator dA, we get

lim
n→∞

∥dA fn − dA f ∥k+1,ν−1 = 0.

Hence, by uniqueness of limits, we get α = dA f , and hence Im dA is closed.

Proposition 3.2.8. If ν ∈ (−6, 0), then we have the decomposition

Ω1,k+1
ν−1 (gP) = ker d∗A ⊕ Im dA

where dA : Ω0,k+2
ν (gP) → Ω1,k+1

ν−1 (gP) and d∗A : Ω1,k+1
ν−1 (gP) → Ω0,k

ν−2(gP).

Proof. Let us consider the operator d∗A : Ω1,k+1
ν−1 (gP) → Ω0,k

ν−2(gP). This is a bounded operator.
Hence the kernel is a closed subspace. We want to show that X0 := Im dA satisfies the
conditions of Lemma 3.2.6. From Lemma 3.2.7 we note that Im dA is closed. Then for T := d∗A
and X := Ω1,k+1

ν−1 (gP) we have the result.
First we show that d∗A restricted to Im dA is injective. Let, for f , g ∈ Ω0,k

ν−2(gP), d∗AdA f =

d∗AdAg. Then f − g is harmonic function and hence zero, which implies dA f − dAg = 0, which
establishes the injectivity.

Now we need to show that d∗A(Ω
1,k+1
ν−1 (gP)) = d∗A(Im dA) = d∗AdA(Ω

0,k+2
ν (gP)). This follows

from the topological isomorphism in Lemma 3.2.5.

Let us consider the moduli space of connections Bk+1,ν = Ak+1,ν−1/Gk+2,ν. Then the in-

finitesimal action of the gauge group Gk+2,ν is given by

−dA : Ω0,k+2
ν (gP) → Ω1,k+1

ν−1 (gP).

Thus we can view the Proposition 3.2.8 as a “slice theorem” which gives us the complement of

the action of the gauge group.
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3. Deformation Theory of Asymptotically Conical Spin(7)-Instantons

Lemma 3.2.9. The action of the gauge group Gk+2,ν on the space of connections Ak+1,ν−1 is free.

Proof. Let us consider the stabilizer group

ΓA,ν = {φ ∈ Gk+2,ν : φ · A = A}.

We consider gauge transformations as sections of End(V). Now, the connection A has holon-
omy contained in G and hence it preserves the inner product on V as well as on End(V).
Since, φ ∈ ΓA,ν is a gauge transformation, by definition 2.37, we have ∥φ − I∥ ∈ Ω0,k+2

ν (gP)

and hence,

d∗d∥φ − I∥2 = 2d∗⟨dA(φ − I), φ − I⟩ = 0 ⇒ φ − I = 0,

since, φ · A = A implies dA φ = 0. Hence, we have ΓA,ν = {I}.

We note that unlike the case where the manifold X is compact, when X is AC, reducible

connections do not produce singularities in the space of connections modulo gauge.

Let us define the set

TA,ν,ϵ :=
{

α ∈ Ω1,k+1
ν−1 (gP) : d∗Aα = 0, ∥α∥Wk+1,2

ν−1
< ϵ

}
.

Then TA,ν,ϵ ⊂ ker d∗A models a local neighbourhood of the moduli space Bk+1,ν. We note

that studying the moduli space using the local model TA,ν,ϵ is basically same as solving the

Coulomb gauge fixing condition d∗Aα = 0. This condition is local: locally, near A it selects

a unique gauge equivalent class. The following lemma provides a sufficient condition for

solving the gauge fixing condition. It is the weighted version of Proposition 2.3.4 of [20].

Lemma 3.2.10. [23] If ν ∈ (−6, 0), then there is a constant c(A) > 0 such that if A′ ∈ Aν−1 and
A′ = A + α satisfies

∥α∥W4,2
ν−1

< c(A)

then there is a gauge transformation φ ∈ Gν such that φ(A′) is in Coulomb gauge relative to A.

Proposition 3.2.11. If ν ∈ (−6, 0), then the moduli space Bk+1,ν is a smooth manifold and the sets
TA,ν,ϵ provide charts near [A] ∈ Bk+1,ν = Ak+1,ν−1/Gk+2,ν.

Proof. The smoothness follows from Lemma 3.2.9 and the surjectivity follows from Proposition
3.2.10. The homeomorphism between TA,ν,ϵ and a neighbourhood of [A] ∈ Bk+1,ν follows from
a weighted version of Proposition 4.2.9 of [20] and the fact that ΓA,ν = {I}.
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3.2 Deformations of Asymptotically Conical Spin(7)-Instantons

Now, we turn out focus to the main objective of this section: the moduli space of AC

Spin(7)-instantons.

Let us define the spaces,

M(AΣ, ν)k+1 := {A ∈ Ak+1,ν−1 : A is a Spin(7)-instanton on P}/Gk+2,ν.

The proof of the following proposition is a weighted version of Proposition 4.2.16 of [20] and

very similar to the proof for the 7-dimensional case given by Driscoll [23].

Proposition 3.2.12. If k ≥ 4 and ν ∈ (−6, 0), then the natural inclusion given by
M(AΣ, ν)k+1 ↪→ M(AΣ, ν)k is a homeomorphism.

Hence by the same elliptic regularity arguments that show Proposition 3.2.12 and weighted

Sobolev embedding theorem, we see that M(AΣ, ν)k consists of smooth connections. We

obtain the following important corollary.

Corollary 3.2.13. If ν ∈ (−6, 0), then the zero set of the non-linear twisted Dirac operator (defined in
3.17) given by

/DNL
A : Wk+1,2

ν−1 (/S−(X)⊗ gP) → Wk,2
ν−2(/S

+(X)⊗ gP)

is independent of k ≥ 4. Moreover, a neighbourhood of [A] ∈ M(AΣ, ν) is homeomorphic to 0 in(
/DNL

A

)−1
(0).

Finally, we have all the tools necessary to define the deformation and obstruction spaces,

state and prove the main theorem of this section.

Definition 3.2.14. For ν < 0 the space of infinitesimal deformations is defined to be the kernel of
the Dirac operator. That is,

I(A, ν) :=
{

α ∈ Ω1,k+1
ν−1 (gP) : /D−

Aα = 0
}

. (3.19)

The obstruction space O(A, ν) is defined to be the cokernel of the Dirac operator. That is
O(A, ν) = (Ω0,k

ν−2(gP)⊕ Ω2,k
7,ν−2(gP))/ /D−

A

(
Ω1,k+1

ν−1 (gP)
)

.

We can identify O(A, ν) to be a finite-dimensional subspace of Ω0,k
ν−2(gP)⊕Ω2,k

7,ν−2(gP) such
that,

Ω0,k
ν−2(gP)⊕ Ω2,k

7,ν−2(gP) = /D−
A

(
Ω1,k+1

ν−1 (gP)
)
⊕O(A, ν). (3.20)

We have the main theorem:
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3. Deformation Theory of Asymptotically Conical Spin(7)-Instantons

Theorem 3.2.15. Let A be an AC Spin(7)-instanton asymptotic to a nearly G2 instanton AΣ. More-
over, let ν ∈ (R \ D(/D−

A)) ∩ (−6, 0). Then there exists an open neighbourhood U (A, ν) of 0 in
I(A, ν), and a smooth map κ : U (A, ν) → O(A, ν), with κ(0) = 0, such that an open neighbourhood
of 0 ∈ κ−1(0) is homeomorphic to a neighbourhood of A in M(AΣ, ν). Hence, the virtual dimension
of the moduli space is given by Index(/D−

A) = dim I(A, ν)− dimO(A, ν). Moreover, M(AΣ, ν) is
a smooth manifold if O(A, ν) = {0}.

Proof. Let X = Ω1,k+1
ν−1 (gP)×O(A, ν) and Y = Ω0,k

ν−2(gP)⊕Ω2,k
ν−2(gP). We define a Banach space

morphism as

F : X → Y

(α, β) 7→ /DNL
A α + β.

where /DNL
A is the nonlinear twisted Dirac operator (3.17). Then, F(0, 0) = 0, and the differen-

tial at (0, 0) is given by

dF|(0,0) : X → Y

(α, β) 7→ /D−
Aα + β.

Then dF|(0,0) is surjective and dF|(0,0) = 0 if and only if (/DAα, β) = (0, 0). Hence ker dF|(0,0) =:
K = I(A, ν)× {0} is finite dimensional, and we have a decomposition of X as X = K ⊕ Z,
where Z ⊂ X is a closed subspace. Moreover, we can write Z = Z ×O(A, ν) for a closed subset
Z ⊂ Ω1,k+1

ν−1 (gP). By implicit function theorem, we choose the open subsets U ⊂ I(A, ν), V1 ⊂
Z and V2 ⊂ O(A, ν), and smooth maps Fi : U → Vi for i = 1, 2, such that

F−1(0) ∩ ((U × V1)× V2) = {((α,F1(α)),F2(α)) : α ∈ U}

in X = (I(A, ν)⊕Z)×O(A, ν). Hence the kernel of F near (0, 0) is diffeomorphic to an open
subset of I(A, ν) containing 0.

Now, we define U (A, ν) := U and the map

κ : U (A, ν) → O(A, ν)

α 7→ F2(α).

Then we have a homeomorphism from an open neighbourhood of 0 in κ−1(0) to an open

neighbourhood of 0 in
(

/DNL
A

)−1
(0) given by α 7→ (α,F1(α)). Now, corollary 3.2.13 tells

us that a neighbourhood of [A] ∈ M(A, ν) is homeomorphic to a neighbourhood of 0 in(
/DNL

A

)−1
(0). Hence the theorem.
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Chapter 4

Eigenvalues of the Twisted Dirac
Operator on S7

In order to study the deformations of FNFN instantons, we need to calculate the spectrum of

the twisted Dirac operator on the link S7. We use representation theory, Frobenius reciprocity,

and Casimir operators, to write the Dirac operators as a sum of Casimir operators. Then

the problem of finding the spectrum of the Dirac operator reduces to finding the eigenvalues

of the Casimir operators. This method relies on S7 being a homogeneous manifold and is

developed based on the works of [55], [5], [6], [22].

4.1 Dirac operators on Homogeneous Nearly G2-Manifolds

Let Σ = G/H be a reductive homogeneous nearly G2-manifold. We consider the principal H-

bundle G → Σ. Let ρV : H → Aut(V) be a representation of H. Then we have the associated

vector bundle E := G ×ρ V → Σ and the space of smooth sections Γ(E) can be identified with

the space of H-equivariant smooth function G → V, i.e. the space C∞(G, V)H.

Now, the following left action of G on the space L2(G, V)H gives a representation ρL, called

the left regular representation defined by

(ρL(h)η)(g) = η(h−1g) (4.1)

for η ∈ L2(G, V)H, and g, h ∈ G.

The right action of G on the space L2(G, V) gives a representation ρR, called the right
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4. Eigenvalues of the Twisted Dirac Operator on S7

regular representation defined by

(ρR(h)η)(g) = η(gh). (4.2)

We note that ρR(h)ρR(k) = ρR(hk), that is, it is a left action. However, “right” in the name

reflects that it is defined using the right action of G on itself.

Then from H-equivariance,

L2(G, V)H = {η ∈ L2(G, V) : ρR(h)η = ρV(h)−1η for all h ∈ H}.

If we use the same notations for Lie algebra representations, then,

L2(G, V)H = {η ∈ L2(G, V) : ρR(X)η = −ρV(X)η for all X ∈ h}.

Let Ĝ be the set of equivalence classes of irreducible representations of G and for γ ∈ Ĝ we

have a representative (Vγ, ργ). Then Frobenius reciprocity implies the decomposition

L2(E) ∼= L2(G, V)H ∼=
⊕
γ∈Ĝ

Hom(Vγ, V)H ⊗ Vγ. (4.3)

Now, since G/H is reductive, we have an orthogonal decomposition g = h⊕m induced by

the Killing form K on G, defined by

K(X, Y) = Trg(ad(X) ad(Y)). (4.4)

Let us assume that for some constant c the metric given by

g(X, Y) = −c2K(X, Y) (4.5)

is a nearly G2-metric. Let {IA} be an orthonormal basis for g, {Ia : a = 1, . . . , dim(G/H) = 7}
is a orthonormal basis for m and {Ii : i = 8, . . . , dim(G)} is a orthonormal basis of h.

We note that in this framework G-invariant tensors on the tangent bundle T(G/H) corre-

spond to H-invariant tensors on m [38].

Now, we consider the complex spinor bundle /S(Σ) = G ×ρ,H ∆ where ∆ is the spinor space

(that is, an 8-dimensional representation of Cl(7)). From the splitting /SC(Σ) ∼= Λ0
C ⊕ Λ1

C, we

have ∆ ∼= C ⊕m∗
C. We now twist the spinor bundle by the associated bundle E = G ×ρV ,H V

for a representation V of H. Then

/SC(Σ)⊗ E = G ×(ρ∆⊗ρV ,H) (∆ ⊗ V).

32



4.1 Dirac operators on Homogeneous Nearly G2-Manifolds

The canonical connection ∇1,AΣ : L2(G, ∆ ⊗ V)H → L2(G,m∗ ⊗ ∆ ⊗ V)H can be written as

∇1,AΣ η = ea ⊗ ρR(Ia)η,

where ∇1 is the canonical connection for the spinor bundle and AΣ is the canonical connection

of E, ea is the basis of m∗ dual to Ia and η ∈ L2(G, ∆ ⊗ V)H. Then the Dirac operator /D1
AΣ

is

given by

/D1
AΣ

= Ia · ρR(Ia). (4.6)

Then, from (4.6), for the G2 3-form ϕ, we have a family of Dirac operators

/Dt
AΣ

= /D1
AΣ

+
(t − 1)

2
ϕ (4.7)

where for t = 0, we have /D0
AΣ

= /DAΣ (defined in (3.1)). Now,

L2(/SC(Σ)⊗ E) ∼= L2(G, ∆ ⊗ V)H ∼=
⊕
γ∈Ĝ

Hom(Vγ, ∆ ⊗ V)H ⊗ Vγ (4.8)

where the action of G on Vγ of the right hand side of the expression corresponds to the action

of ρL on L2(/SC(Σ)⊗ E). We note that the Dirac operator commutes with the left action of G

and hence it respects the decomposition (4.8). Then, by Schur’s lemma, for every t ∈ R, the

Dirac operator /Dt
AΣ

, restricted to Hom(Vγ, ∆ ⊗ V)H ⊗ Vγ is given by

/Dt
AΣ
|Hom(Vγ,∆⊗V)H⊗Vγ

=
(

/Dt
AΣ

)
γ
⊗ Id (4.9)

where
(

/Dt
AΣ

)
γ

: Hom(Vγ, ∆ ⊗ V)H → Hom(Vγ, ∆ ⊗ V)H is the Dirac operator [22]

(
/Dt

AΣ

)
γ

η = −Ia · (η ◦ ρVγ(Ia)) +
t − 1

2
ϕ · η. (4.10)

If {IA} is an orthonormal basis of g, then the Casimir Operator Casg ∈ Sym2(g) is the

inverse of the metric on g, defined by

Casg =
dim G

∑
A=1

IA ⊗ IA. (4.11)

If (ρ, V) is any representation of g, then

ρ(Casg) =
dim G

∑
A=1

ρ(IA)
2
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4. Eigenvalues of the Twisted Dirac Operator on S7

Similarly we define,

Cash =
dim G

∑
A=8

IA ⊗ IA. (4.12)

Using Lichnerowicz formula, we can write the square of the Dirac operator as sum of Casimir

operators.

Proposition 4.1.1. [54] Let V be a representation of H, E be the associated vector bundle G ×H V →
G/H, and AΣ be the canonical connection of E. Then,(

/D1/3
AΣ

)2
η = (−ρL(Casg) + ρV(Cash) + 49/9)η (4.13)

for η ∈ Γ(/SC(Σ)⊗ E).

The expression for
(

/Dt
AΣ

)2
η significantly simplifies as above only for t = 1/3.

Restricting the operator
(

/D1/3
AΣ

)2
to Hom(Vγ, ∆ ⊗ V)H ⊗ Vγ, we get

(
/D1/3

AΣ

)2
|Hom(Vγ,∆⊗V)H⊗Vγ

=
(

/D1/3
AΣ

)2

γ
⊗ Id . (4.14)

The self-adjointness of this operator implies that it is diagonalisable with real eigenvalues.

Frobenius reciprocity and Proposition 4.1.1 implies(
/D1/3

AΣ

)2

γ
= −ρVγ(Casg) + ρV(Cash) + 49/9. (4.15)

Eigenvalue Bounds

We have the nearly G2-manifold G/H which is a reductive homogeneous space. Now, the

Casimir operators commute with the group action, and hence on irreducible representation,

they act as a multiple of the identity. That is,

ργ(Casg) = cgγ Id,

ργ(Cash) = chγ Id,

where cgγ and chγ are real numbers, called Casimir eigenvalues. Now, let Vγ be an irreducible

representation of G. Then we have the decomposition of Vγ as

Vγ =
⊕
σ∈I

Wγ
σ ,
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4.1 Dirac operators on Homogeneous Nearly G2-Manifolds

where Wσ are irreducible representations of H and I is a finite sequence in Ĥ (the set of

equivalence classes of irreducible representations of H) which may have repeated entries.

Similarly, for finite sequences J, K in Ĥ, we have the decomposition

∆ =
⊕
α∈J

Wα, V =
⊕
β∈K

Wβ.

Let us assume that in the decomposition of Wα ⊗ Wβ into irreducible representations, Wγ
σ

occurs with multiplicity 1. Then we consider the composition map

qσ
αβ : Vγ → Wγ

σ → Wα ⊗ Wβ ↪→ ∆ ⊗ V

where the first map is the projection map and the third one is equivariant embedding. Since

the decompositions of Vγ, ∆ and V into irreducible representations of H are orthogonal, {qσ
αβ}

is an orthogonal basis of Hom(Vγ, ∆ ⊗ V)H. Hence, qσ
αβ are eigenvectors of (4.15) and(

/D1/3
AΣ

)2

γ
(qσ

αβ) =
(
−cgγ + chβ + 49/9

)
qσ

αβ. (4.16)

Then {qσ
αβ} diagonalizes the twisted Dirac operator

(
/D1/3

AΣ

)2

γ
. The eigenvalues are given

by −cgγ + chβ + 49/9 with multiplicities dim Hom(Vγ, ∆ ⊗ Wβ)
H. Hence the eigenvalues of(

/D1/3
AΣ

)2

γ
are

√
−cgγ + chβ + 49/9 and −

√
−cgγ + chβ + 49/9.

Now, we want to find an eigenvalue bound for the operator
(

/D0
AΣ

)
γ

. First, we have the

following lemma.

Lemma 4.1.2. Let A and B be n×n Hermitian matrices with eigenvalues {λA
1 , . . . , λA

n } and {λB
1 , . . . , λB

n}
respectively. If {λA+B

1 , . . . , λA+B
n } are eigenvalues of A + B, then

min
i

{∣∣∣λA+B
i

∣∣∣} ≥ min
i

{∣∣∣λA
i

∣∣∣}− max
i

{∣∣∣λB
i

∣∣∣} .

Proof. Since min
i

{∣∣λA
i

∣∣} = min
∥v∥=1

⟨Av, v⟩ and max
i

{∣∣λB
i

∣∣} = max
∥v∥=1

⟨Bv, v⟩, we have

|⟨(A + B)v, v⟩| = |⟨Av, v⟩+ ⟨Bv, v⟩|
≥ |⟨Av, v⟩| − |⟨Bv, v⟩|

≥ min
i

{∣∣∣λA
i

∣∣∣}− max
i

{∣∣∣λB
i

∣∣∣}
for all v ∈ Cn with ∥v∥ = 1. Hence min

i

{∣∣λA
i

∣∣}−max
i

{∣∣λB
i

∣∣} is a lower bound on
{∣∣∣λA+B

i

∣∣∣}n

i=1
.
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4. Eigenvalues of the Twisted Dirac Operator on S7

Theorem 4.1.3. Let Vγ be an irreducible representation of G. If

Lγ :=
√

min
β

{
−cgγ + chβ + 49/9

}
− 7

6
> 0

for β ∈ Ĥ, then Lγ is a lower bound on the smallest positive eigenvalues of
(

/D0
AΣ

)
γ

.

Proof. We have
(

/D0
AΣ

)
γ
=
(

/D1/3
AΣ

)
γ
− 1

6
ϕ. Now, ϕ acts on Λ0 and Λ1 with eigenvalues 7

and −1 respectively. Hence max{|7|, | − 1|} = 7. Now, if λ2
1, . . . , λ2

n are eigenvalues for(
/D1/3

AΣ

)2

γ
, then

(
/D1/3

AΣ

)
γ

has eigenvalues ±λ1, . . . ,±λn. Now, the smallest positive eigenvalue

of
(

/D1/3
AΣ

)
γ

is given by
√

min
β

{
−cgγ + chβ + 49/9

}
. Hence, by lemma 4.1.2,

√
min

β

{
−cgγ + chβ + 49/9

}
− 7

6

is a lower bound on the smallest positive eigenvalues of
(

/D0
AΣ

)
γ

.

4.2 The Twisted Dirac Operator on S7

We identify S7 with the homogeneous space Spin(7)/G2. Let m be the orthogonal com-

plement of g2 ⊂ spin(7) with respect to the Killing form (4.4) on the Lie algebra spin(7).

Clearly, [g2,m] ⊂ m and hence the homogeneous space Spin(7)/G2 is reductive. Consider the

Maurer–Cartan form θ on Spin(7) and the splitting θ = θg2 ⊕ θm induced by the decomposition

spin(7) = g2 ⊕m. Then θg2 =: AΣ is canonical connection on the bundle G2 → Spin(7) → S7

whose curvature is given by

F(X, Y) = −[X, Y]g2 (4.17)

for X, Y ∈ m. This is a G2-invariant element in Λ2m∗ ⊗ g2. The torsion is given by

T(X, Y) = −[X, Y]m. (4.18)

In (2.14) putting t = 1 for canonical connection and denoting T1(X, Y) by T(X, Y), we have

T(X, Y) =
2
3

ϕ(X, Y, ·). (4.19)

The nearly G2 metric, normalised such that the scalar curvature of the canonical connection

is 112
3 , can be written as (4.5) where K is the Killing form (4.4) and c is a constant to be
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4.2 The Twisted Dirac Operator on S7

determined. Let {IA : A = 1, . . . , 21} be an orthonormal basis for spin(7), {Ia : a = 1, . . . , 7}
be a basis for m and {Ii : i = 8, . . . , 21} be a basis for g2. Let f C

AB be the structure constants

defined by

[IA, IB] = f C
AB IC.

We lower the indices as fABC := f D
ABδDC. Then,

[Ia, Ib] = f c
ab Ic + f i

ab Ii.

Then for Ia, Ib ∈ m, (4.18) and (4.19) imply

Tc
ab = − f c

ab =
2
3

ϕabc. (4.20)

A simple calculation involving the relations shows that, for c2 = 3
40 we have

g(X, Y) = −c2K(X, Y) = − 3
40

Trspin(7)(ad(X) ad(Y)). (4.21)

is a nearly G2-metric, normalised so that the scalar curvature of the canonical connection is
112

3 .

Let us consider Cl(7), the Clifford algebra over R7. Let ∆ be a 8-dimensional representation

of Cl(7) and ρ∆ : spin(7) → End(∆) be the restriction to spin(7). From (4.8), recall the

identification Γ(/SC(Σ)⊗ (gP)C) ∼= L2(Spin(7), ∆ ⊗ V)G2 , where V ∼= spin(7)C. Consider the

operator

/Dρ
AΣ

: L2(Spin(7), ∆ ⊗ V)G2 → L2(Spin(7), ∆ ⊗ V)G2

/Dρ
AΣ

= ρ∆(Ia)ρR(Ia). (4.22)

We want to compare the operator (4.22) with the Dirac operator (4.6). That is, compare ρ∆(Ia)

with the Clifford multiplication by Ia.

Let {ea : a = 1, . . . , 7} be a orthonormal basis of m∗ dual to Ia of m. Now, we have the

decomposition spin(7) = g2 ⊕ m. We identify m with R7 via an isomorphism F : m → R7

as representations of g2. Then we note that F is unique by Schur’s lemma and imposing the

condition that F commutes with the G2-structures, i.e., F maps the G2-invariant 3-form of m

to G2-invariant 3-form of R7. Then F induces an isomorphism Cl(m) ∼= Cl(7). Then from

(2.7) we have an isomorphism ∆ ∼= C ⊕m∗
C. The basis ea for m∗ gives orthonormal vectors ea

in ∆. We choose e0 ∈ ∆ so that {e0, e1, . . . , e7} is an orthonormal basis for ∆ and the Spin(7)-

invariant 4-form Φ is given by the usual formula e0 ∧ ϕ + ∗ϕ. We identify ( f , v) ∈ C ⊕ m∗
C

with f e0 + v ∈ Λ1(∆)∗.
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4. Eigenvalues of the Twisted Dirac Operator on S7

Lemma 4.2.1. The action of ρ∆(Ia) on ∆ is given by

ρ∆(Ia)( f , v) =
(
−⟨ea, v⟩, f ea − 1

3
((ea ∧ v) ⌟ ϕ)

)
(4.23)

Proof. Consider the isomorphism so(8) ∼= Λ2(∆)∗ given by

β(w)(u) = −u ⌟w for u ∈ Λ1(∆)∗ and w ∈ Λ2(∆)∗, (4.24)

where ⌟ is the contraction from inner product. We consider the embedding spin(7) ↪→ so(8) ∼=
Λ2(∆)∗. Now, Λ2(∆)∗ = Λ2

7 ⊕ Λ2
21 where Λ2

7, Λ2
21 are irreducible representations of Spin(7).

Now the image of the embedding spin(7) ↪→ Λ2(∆)∗ is the space Λ2
21 of 2-forms α satisfying

α ⌟Φ = −α. Then Λ2(∆)∗ ∼= Λ2m∗ ⊕ (e0 ∧m∗). Moreover, Λ2m∗ = Λ2
7 ⊕ Λ2

14 where Λ2
14

∼= g2.
Then,

m ∼= Λ2
21(∆)

∗ ∩ (Λ2
7m

∗ ⊕ (e0 ∧m∗)), (4.25)

i.e., the image of m is isomorphic to
{

α ∈ Λ2
7m

∗ ⊕ (e0 ∧m∗) : α ⌟Φ = −α
}

. Now, for a =

1, . . . , 7, (
−e0 ∧ ea +

1
3

ea
⌟ ϕ

)
⌟Φ = −

(
−e0 ∧ ea +

1
3

ea
⌟ ϕ

)
.

Hence, we have

m ∼= Span
{

Ĩa := −e0 ∧ ea +
1
3

ea
⌟ ϕ : a = 1, . . . , 7

}
. (4.26)

We calculate

β( Ĩa)( f , v) = β

(
ea ∧ e0 +

1
3

ea
⌟ ϕ

)
( f , v)

= −( f e0 + v) ⌟
(

ea ∧ e0 +
1
3

ea
⌟ ϕ

)
= f ea − ⟨ea, v⟩e0 − 1

3
((ea ∧ v) ⌟ ϕ)

=

(
−⟨ea, v⟩, f ea − 1

3
((ea ∧ v) ⌟ ϕ)

)
. (4.27)

We find that Ĩa is an orthonormal basis for the right hand side of (4.25). We prove that Ia maps
exactly to Ĩa under the isomorphism. By Schur’s lemma, we have ρ∆(Ia) = cβ( Ĩa) for some
constant c. Now, an explicit calculation shows that [β( Ĩa), β( Ĩb)]m = − 2

3 ϕabcβ( Ĩc). But from
(4.19) we also have [ρ∆(Ia), ρ∆(Ib)]m = − 2

3 ϕabcρ∆(Ic). Hence c = 1 and ρ∆(Ia) = β( Ĩa).

Now, the formula (4.23) does not agree with the formula for Clifford multiplication by Ia,

which from (2.8), is given by

Ia · ( f , v) = (⟨ea, v⟩,− f ea − (ea ∧ v) ⌟ ϕ) . (4.28)
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4.2 The Twisted Dirac Operator on S7

To fix this, we consider another representation of spin(7) defined by

ρ̃∆(X) := M−1 · ρ∆(X) · M

where M :=
(

1 0
0 − Idm

)
= M−1. Then we calculate

ρ̃∆(Ia)( f , v) =
(
⟨ea, v⟩,− f ea − 1

3
((ea ∧ v) ⌟ ϕ)

)
. (4.29)

Thus from (4.28), (4.23) and (4.29), the Clifford multiplication of a spinor η by Ia can be

rewritten as

Ia · η = (ρ∆(Ia) + 2ρ̃∆(Ia)) η. (4.30)

Now, consider the twisted Dirac operator

/D1
AΣ

: Γ(/SC(Σ)⊗ (gP)C) → Γ(/SC(Σ)⊗ (gP)C).

Consider the operators /Dρ
AΣ

given by (4.22) and

/̃D
ρ

AΣ
: L2(Spin(7), ∆ ⊗ V)G2 → L2(Spin(7), ∆ ⊗ V)G2

/̃D
ρ

AΣ
= ρ̃∆(Ia)ρR(Ia). (4.31)

Note that the operators /Dρ
AΣ

and /̃D
ρ

AΣ
commute with the left action of Spin(7) and hence

respect the decomposition (4.8). From (4.30), we have(
/Dρ

AΣ
+ 2/̃D

ρ

AΣ

)
= (ρ∆(Ia)ρR(Ia) + 2ρ̃∆(Ia)ρR(Ia))

= (ρ∆(Ia) + 2ρ̃∆(Ia)) ρR(Ia)

= Ia · ρR(Ia) = /D1
AΣ

. (4.32)

Hence from (4.7) and (4.32), we have

/Dt
AΣ

= /D1
AΣ

+
t − 1

2
ϕ =

(
/Dρ

AΣ
+ 2/̃D

ρ

AΣ

)
+

t − 1
2

ϕ. (4.33)

In terms of Casimir operators, we can write

/Dρ
AΣ

=
1
2
(ρ∆⊗R(Casm)− ρ∆(Casm)− ρR(Casm))

and

/̃D
ρ

AΣ
=

1
2
(ρ̃∆⊗R(Casm)− ρ̃∆(Casm)− ρR(Casm))
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4. Eigenvalues of the Twisted Dirac Operator on S7

where ρ(Casm) := ρ(Casspin(7)) − ρ(Casg2) = ρ(Ia)ρ(Ia). Then restricting /Dρ
AΣ

and /̃D
ρ

AΣ
to

Hom(Vγ, ∆ ⊗ spin(7)C)
G2 , we get(

/Dρ
AΣ

)
γ
=

1
2

(
ρ∆⊗V∗

γ
(Casm)− ρ∆(Casm)− ρV∗

γ
(Casm)

)
, (4.34)(

/̃D
ρ

AΣ

)
γ
= M−1

γ

(
/Dρ

AΣ

)
γ

Mγ, (4.35)

where we define Mγ in the following way. Recalling M =

(
1 0
0 − Idm

)
: ∆ → ∆, for ξ ∈

Hom(Vγ ⊗ ∆, spin(7)C)
G2 , we define Mγ by

Mγξ(v ⊗ δ) := ξ(v ⊗ Mδ). (4.36)

Then from (4.33) we have (
/Dt

AΣ

)
γ
=
(

/Dρ
AΣ

)
γ
+ 2

(
/̃D

ρ

AΣ

)
γ
+

t − 1
2

ϕ. (4.37)

Now, we want to calculate the eigenvalues of the Casimir operators appearing in the

expression of the Dirac operator. Let V(a,b,c) be an irreducible representation of spin(7) with

highest weight (a, b, c) and V(a,b) be an irreducible representation of g2 with highest weight

(a, b). The Casimir operators can be written as

ρ(a,b,c)

(
Casspin(7)

)
= cspin(7)

(a,b,c) Id,

ρ(a,b)(Casg2) = cg2
(a,b) Id .

The Casimir eigenvalues are given by,

cg2
(a,b) = −8

9
(a2 + 3b2 + 3ab + 5a + 9b), (4.38)

cspin(7)
(a,b,c) = −1

3
(4a2 + 8b2 + 3c2 + 8ab + 8bc + 4ca + 20a + 32b + 18c). (4.39)

These expressions differ from that of [54], because we use a different normalisation of the

Casimir operator and an opposite convention for the order of a, b, c.

4.3 Eigenvalues of the Twisted Dirac Operator

For an FNFN Spin(7)-instanton (see section 5.1), the fastest rate of convergence is −2. Hence

we consider the family of moduli spaces M(AΣ, ν) for ν ∈ (−2, 0). We want to find the critical
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4.3 Eigenvalues of the Twisted Dirac Operator

weights in (−2, 0), i.e., ν ∈ (−2, 0) such that ν + 5
2 ∈ Spec /DAΣ . Hence, we are interested in

finding all the eigenvalues of the twisted Dirac operator in the interval
[ 1

2 , 5
2

]
.

Since spin(7)C = V(0,1,0) = V(1,0) ⊕ V(0,1), we have

Hom (Vγ, ∆ ⊗ spin(7)C)
G2 = Hom

(
Vγ, ∆ ⊗ V(1,0)

)G2
⊕ Hom

(
Vγ, ∆ ⊗ V(0,1)

)G2
.

Then, since cg2
(1,0) = −48/9 and cg2

(0,1) = −96/9, we have

(
/D1/3

AΣ

)2

γ

∣∣∣∣
Hom(Vγ,∆⊗V(1,0))

G2
= −cspin(7)γ + cg2

(1,0) + 49/9 = −cspin(7)γ + 1/9,

(
/D1/3

AΣ

)2

γ

∣∣∣∣
Hom(Vγ,∆⊗V(0,1))

G2
= −cspin(7)γ + cg2

(0,1) + 49/9 = −cspin(7)γ − 47/9. (4.40)

Hence the eigenvalues and their multiplicities of
(

/D1/3
AΣ

)2

γ
are

Eigenvalues Multiplicities

−cspin(7)γ + 1
9 dim Hom

(
Vγ, ∆ ⊗ V(1,0)

)G2

−cspin(7)γ − 47
9 dim Hom

(
Vγ, ∆ ⊗ V(0,1)

)G2

Hence, we can restate Theorem 4.1.3 as: for Vγ = V(a,b,c) an irreducible representation of

Spin(7), if

Lγ := L(a,b,c) :=
√
−cspin(7)

(a,b,c) − 47/9 − 7
6
> 0, (4.41)

then Lγ is a lower bound on the smallest positive eigenvalues of
(

/D0
AΣ

)
γ

.

This yields the following important corollary, which follows from (4.41) and (4.39).

Corollary 4.3.1. Consider the irreducible representations of Spin(7) given by

V(0,0,0), V(1,0,0), V(0,0,1), V(0,1,0), V(2,0,0), V(1,0,1).

If Vγ is not one of these irreducible representations, then the operator(
/D0

AΣ

)
γ

: Hom (Vγ, ∆ ⊗ spin(7)C)
G2 → Hom (Vγ, ∆ ⊗ spin(7)C)

G2

has no eigenvalues in the interval
(
− 5

2 , 5
2

)
.
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4. Eigenvalues of the Twisted Dirac Operator on S7

4.4 Calculation of Eigenvalues of the Twisted Dirac Operator

In this section we explicitly calculate the eigenvalues of the twisted Dirac operator corre-

sponding to the representations mentioned in Corollary 4.3.1. Let us describe the outline of

the method.

Let Vγ be an irreducible representation of Spin(7). We want to find the matrix of the

operator given in (4.37).

We note that, by G2-equivariance, on Hom(V(0,0,1) ⊗ Vγ, spin(7)C)
G2 , we have

ρ∆⊗Vγ
(Casg2) = ρspin(7)C

(Casg2). (4.42)

Hence, from (4.34), (4.42) and the isomorphism V∗
γ
∼= Vγ, we can rewrite the operator

(
/Dρ

AΣ

)
γ

as (
/Dρ

AΣ

)
γ
=

1
2

(
ρ∆⊗Vγ

(Casspin(7))− ρspin(7)C
(Casg2)− ρ∆(Casm)− ρVγ(Casm)

)
. (4.43)

• First, we want to find a basis of Hom(V(0,0,1) ⊗ Vγ, spin(7)C)
G2 that diagonalizes

ρspin(7)C
(Casg2)+ ρ∆(Casm)+ ρVγ(Casm). We construct the basis by non-zero G2-equivariant

maps

q(i,j)(k,l)
(m,n) : V(0,0,1) ⊗ Vγ → V(i,j) ⊗ V(k,l) → V(m,n) → spin(7)C, (4.44)

where V(m,n) is either V(1,0) or V(0,1). We identify spin(7)C with Λ2(C7), and the models

for the representations V(i,j) and V(i,j,k) are described in Appendix B.3.5. We use the

identities in Appendix B.3.4 and the projection formulae from Appendix B.3.5 to write

down explicit expressions of these maps.

• Then, we want to find a basis that diagonalizes ρ∆⊗Vγ
(Casspin(7)). We consider the maps

p(i,j,k)
(m,n) : V(0,0,1) ⊗ Vγ → V(i,j,k) → V(m,n) → spin(7)C. (4.45)

Then, p(i,j,k)
(m,n) are eigenvectors of ρ∆⊗Vγ

(Casspin(7)) with eigenvalues cspin(7)
(i,j,k) .

• From the explicit expressions of q-basis and p-basis elements, we write p(i,j,k)
(m,n) in terms

of q(i,j)(k,l)
(m,n) and the change of basis matrix.

• Now, q(i,j)(k,l)
(m,n) are eigenvectors of −ρspin(7)C

(Casg2)− ρ∆(Casm)− ρVγ(Casm) with eigen-

values cg2
(i,j)+ cg2

(k,l)− cg2
(m,n)− cspin(7)

(0,0,1) − cspin(7)γ and p(i,j,k)
(m,n) are eigenvectors of ρ∆⊗Vγ

(Casspin(7))

with eigenvalues cspin(7)
(i,j,k) . Then using the change of basis matrix, we write down the ma-

trix of
(

/Dρ
AΣ

)
γ

in the q-basis (4.43).
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4.4 Calculation of Eigenvalues of the Twisted Dirac Operator

• Next, we calculate the matrix of Mγ in the q-basis. From (4.36), we see that it is a diagonal

matrix with entries either 1 or −1, since qi factors through either V(0,0)
∼= Λ0 ⊂ ∆, or

V(1,0)
∼= Λ1 ⊂ ∆. Then, we calculate the matrix of

(
/Dρ̃

AΣ

)
γ

in the q-basis (4.35).

• In the q-basis, we have ϕ acting as a diagonal matrix with entries either 7 or −1, by

Lemma 2.1.3, since qi factors through either V(0,0)
∼= Λ0 ⊂ ∆, or V(1,0)

∼= Λ1 ⊂ ∆.

Consequently, using (4.37), we calculate the matrix of
(

/Dt
AΣ

)
γ

in the q-basis.

• We note that for t = 1/3, by (4.16),
(

/D1/3
AΣ

)2

γ
should be a diagonal matrix in the q-basis,

where the entries are either −cspin(7)γ + 1
9 or −cspin(7)γ − 47

9 , by (4.40), which acts as a

consistency check for our calculations.

Throughout the calculations, we use (4.38) and (4.39) to calculate the Casimir eigenval-

ues.

• Finally, for t = 0 in the matrix of
(

/Dt
AΣ

)
γ

in the q-basis, we calculate the desired eigen-

values of
(

/D0
AΣ

)
γ

.

Eigenvalues from the representation V(0,0,0)

We start with Vγ = V(0,0,0), the trivial representation of Spin(7). Then, by Schur’s lemma,

Hom(Vγ, ∆ ⊗ spin(7)C)
G2 ∼= Hom(C, ∆ ⊗ spin(7)C)

G2 ∼= Hom(∆, spin(7)C)
G2 .

This space is one dimensional with a basis given by the map that factors through projections

q : ∆ → V(1,0) → spin(7)C.

Now, when Vγ is the trivial representation, ρVγ(Casm) = 0 and ρ∆⊗Vγ
(Casm)− ρ∆(Casm) = 0.

Then, from (4.34) and (4.35), we have
(

/Dρ
AΣ

)
γ
= 0 and

(
/Dρ̃

AΣ

)
γ
= 0. Thus,

(
/D0

AΣ

)
γ
= − 1

2 ϕ.

Now, by Lemma 2.1.3, ϕ acts as −1 on the space Hom(∆, spin(7)C)
G2 since q factors through

V(1,0)
∼= Λ1 ⊂ ∆. Hence, the eigenvalue of

(
/D0

AΣ

)
γ

is 1
2 .

Eigenvalues from the representation V(1,0,0)

Let Vγ = V(1,0,0) be the standard representation of Spin(7). The space Hom(∆⊗V(1,0,0), spin(7)C)
G2

∼= Hom(V(0,0,1) ⊗ V(1,0,0), spin(7)C)
G2 is three dimensional. This follows from the facts that
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4. Eigenvalues of the Twisted Dirac Operator on S7

V(0,0,1) ⊗ V(1,0,0) = V(0,0) ⊕ 2V(1,0) ⊕ V(0,1) ⊕ V(2,0), spin(7)C = V(0,1,0) = V(1,0) ⊕ V(0,1), and

Schur’s lemma. Applying appropriate projection maps, the basis q(i,j)(k,l)
(m,n) of Hom(V(0,0,1) ⊗

V(1,0,0), spin(7)C)
G2 is given by

Maps Formula

q1 = q(0,0)(1,0)
(1,0)

V(0,0,1) ⊗ V(1,0,0) → V(0,0) ⊗ V(1,0) → V(1,0) → spin(7)C

(adt + v)⊗ (dt ∧ b + w) 7→ adt ⊗ 1
3 (w ⌟ ϕ) 7→ 1

3 a(w ⌟ ϕ)
7→ 1

3 a(w ⌟ ϕ) ⌟ ϕ = aw

q2 = q(1,0)(1,0)
(1,0)

V(0,0,1) ⊗ V(1,0,0) → V(1,0) ⊗ V(1,0) → V(1,0) → spin(7)C

(v + adt)⊗ (dt ∧ b + w) 7→ v ⊗
( 1

3 w ⌟ ϕ
)
7→
(
v ∧ 1

3 (w ⌟ ϕ)
)
⌟ ϕ

7→ 1
3 ((v ∧ (w ⌟ ϕ)) ⌟ ϕ) ⌟ ϕ

q3 = q(1,0)(1,0)
(0,1)

V(0,0,1) ⊗ V(1,0,0) → V(1,0) ⊗ V(1,0) → V(0,1) → spin(7)C

(v + adt)⊗ (dt ∧ b + w) 7→ v ⊗
( 1

3 w ⌟ ϕ
)
7→ 1

3 π14(v ∧ (w ⌟ ϕ))
7→ 1

3 v ∧ (w ⌟ ϕ)− 1
9 ((v ∧ (w ⌟ ϕ)) ⌟ ϕ) ⌟ ϕ

To calculate the basis p(i,j,k)
(m,n) of Hom(V(0,0,1) ⊗ V(1,0,0), spin(7)C)

G2 we use the following projec-

tion maps

V(0,0,1) ⊗ V(1,0,0) → V(0,0,1), (adt + v)⊗ (dt ∧ b + w) 7→ (adt + v) ⌟ (dt ∧ b + w),

V(0,0,1) ⊗ V(1,0,0) → V(1,0,1), (adt + v)⊗ (dt ∧ b + w) 7→ π48((adt + v) ∧ (dt ∧ b + w)).

where π48 is the projection Λ3(C8) → Λ3
48(C

8). Then we apply appropriate projection formu-

lae given in Appendix B.3.5 to project it further to V(1,0) or V(0,1). consequently, the basis p(i,j,k)
(m,n)

is given by

Maps Formula

p1 = p(0,0,1)
(1,0)

V(0,0,1) ⊗ V(1,0,0) → V(0,0,1) → V(1,0) → spin(7)C

(adt + v)⊗ (dt ∧ b + w) 7→ aw − 1
3 ((v ∧ (w ⌟ ϕ)) ⌟ ϕ) ⌟ ϕ

p2 = p(1,0,1)
(1,0)

V(0,0,1) ⊗ V(1,0,0) → V(1,0,1) → V(1,0) → spin(7)C

(adt + v)⊗ (dt ∧ b + w) 7→ aw + 1
18 ((v ∧ (w ⌟ ϕ)) ⌟ ϕ) ⌟ ϕ

p3 = p(1,0,1)
(0,1)

V(0,0,1) ⊗ V(1,0,0) → V(1,0,1) → V(0,1) → spin(7)C

(adt + v)⊗ (dt ∧ b + w) 7→ − 1
3 v ∧ (w ⌟ ϕ) + 1

9 ((v ∧ (w ⌟ ϕ)) ⌟ ϕ) ⌟ ϕ

44



4.4 Calculation of Eigenvalues of the Twisted Dirac Operator

Finally, we write the basis p(i,j,k)
(m,n) in terms of q(i,j)(k,l)

(m,n) as

p1 = q1 − q2

p2 = q1 +
1
6

q2

p3 = −q3.

Now, q(i,j)(k,l)
(m,n) are eigenvectors of −ρspin(7)C

(Casg2)− ρ∆(Casm)− ρV(1,0,0)
(Casm) with eigenval-

ues

cg2
(i,j) + cg2

(k,l) − cg2
(m,n) − cspin(7)

(0,0,1) − cspin(7)
(1,0,0) .

Hence,

−ρspin(7)C
(Casg2)− ρ∆(Casm)− ρV(1,0,0)

(Casm) = diag(15, 29/3, 15)

Moreover, p(i,j,k)
(m,n) are eigenvectors of ρ∆⊗V(1,0,0)

(Casspin(7)) with eigenvalues cspin(7)
(i,j,k) . Then the

eigenvalues corresponding to the eigenvectors p(0,0,1)
(1,0) , p(1,0,1)

(1,0) and p(1,0,1)
(0,1) are −7, − 49

3 , and

− 49
3 respectively, which implies, we have ρ∆⊗V(1,0,0)

(Casspin(7)) = diag(−7,−49/3,−49/3) in

the p-basis. Since q1 factors through V(0,0)
∼= Λ0 ⊂ ∆, whereas q2 and q3 factor through

V(1,0)
∼= Λ1 ⊂ ∆, , we note that in the basis q1, q2, q3, the matrix Mγ = diag(1,−1,−1) and ϕ

acts as the matrix diag(7,−1,−1). Consequently, by (4.37), the matrix of
(

/Dt
AΣ

)
γ

in the basis

q1, q2, q3 is given by

(
/Dt

AΣ

)
γ
=

 7
2 (t − 1) 4 0

2
3 2 − 1

2 (t − 1) 0
0 0 −2 − 1

2 (t − 1)

 .

We note that for t = 1/3, we have
(

/D1/3
AΣ

)2

γ
= diag(43/9, 43/9, 25/9), in the q-basis, which

shows that our calculations have been consistent. Finally, for t = 0, the eigenvalues are given

by 1
6 (−3 + 2

√
105), 1

6 (−3 − 2
√

105),− 3
2 .

Eigenvalues from the representation V(0,0,1)

Let Vγ = V(0,0,1) be the spin representation of Spin(7). The space

Hom(∆ ⊗ V(0,0,1), spin(7)C)
G2 ∼= Hom(V(0,0,1) ⊗ V(0,0,1), spin(7)C)

G2 is four dimensional. This

follows from the facts that V(0,0,1) ⊗ V(0,0,1) = 2V(0,0) ⊕ 3V(1,0) ⊕ V(0,1) ⊕ V(2,0), spin(7)C =

V(0,1,0) = V(1,0) ⊕ V(0,1), and Schur’s lemma. The basis q(i,j)(k,l)
(m,n) of the space Hom(V(0,0,1) ⊗

V(0,0,1), spin(7)C)
G2 is given by
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4. Eigenvalues of the Twisted Dirac Operator on S7

Maps Formula

q1 = q(0,0)(1,0)
(1,0)

V(0,0,1) ⊗ V(0,0,1) → V(0,0) ⊗ V(1,0) → V(1,0) → spin(7)C

(v + adt)⊗ (w + bdt) 7→ adt ⊗ w 7→ aw 7→ aw ⌟ ϕ

q2 = q(1,0)(0,0)
(1,0)

V(0,0,1) ⊗ V(0,0,1) → V(1,0) ⊗ V(0,0) → V(1,0) → spin(7)C

(v + adt)⊗ (w + bdt) 7→ v ⊗ bdt 7→ bv 7→ bv ⌟ ϕ

q3 = q(1,0)(1,0)
(1,0)

V(0,0,1) ⊗ V(0,0,1) → V(1,0) ⊗ V(1,0) → V(1,0) → spin(7)C

(v + adt)⊗ (w + bdt) 7→ v ⊗ w 7→ (v ∧ w) ⌟ ϕ 7→ ((v ∧ w) ⌟ ϕ) ⌟ ϕ

q4 = q(1,0)(1,0)
(0,1)

V(0,0,1) ⊗ V(0,0,1) → V(1,0) ⊗ V(1,0) → V(0,1) → spin(7)C

(v + adt)⊗ (w + bdt) 7→ v ⊗ w 7→ π14(v ∧ w)
7→ π14(v ∧ w) = (v ∧ w)− 1

3 ((v ∧ w) ⌟ ϕ) ⌟ ϕ

The basis p(i,j,k)
(m,n) of Hom(V(0,0,1) ⊗ V(0,0,1), spin(7)C)

G2 is given by

Maps Formula

p1 = p(1,0,0)
(1,0)

V(0,0,1) ⊗ V(0,0,1) → V(1,0,0) → V(1,0) → spin(7)C

(v + adt)⊗ (w + bdt) 7→ aw ⌟ ϕ − bv ⌟ ϕ + ((v ∧ w) ⌟ ϕ) ⌟ ϕ

p2 = p(0,1,0)
(1,0)

V(0,0,1) ⊗ V(0,0,1) → V(0,1,0) → V(1,0) → spin(7)C

(v + adt)⊗ (w + bdt) 7→ 3aw ⌟ ϕ − 3bv ⌟ ϕ − ((v ∧ w) ⌟ ϕ) ⌟ ϕ

p3 = p(0,1,0)
(0,1)

V(0,0,1) ⊗ V(0,0,1) → V(0,1,0) → V(0,1) → spin(7)C

(v + adt)⊗ (w + bdt) 7→ v ∧ w − 1
3 ((v ∧ w) ⌟ ϕ) ⌟ ϕ

p4 = p(0,0,2)
(1,0)

V(0,0,1) ⊗ V(0,0,1) → V(0,0,2) → V(1,0) → spin(7)C

(v + adt)⊗ (w + bdt) 7→ aw ⌟ ϕ + bv ⌟ ϕ

Finally, we write the basis p(i,j,k)
(m,n) in terms of q(i,j)(k,l)

(m,n) as

p1 = q1 − q2 + q3

p2 = 3q1 − 3q2 − q3

p3 = q4

p4 = q1 + q2.

Now, −ρspin(7)C
(Casg2) − ρ∆(Casm) − ρV(1,0,0)

(Casm) = diag(14, 14, 26/3, 14). Moreover, the

eigenvalues corresponding to the eigenvectors p(1,0,0)
(1,0) , p(0,1,0)

(1,0) , p(0,1,0)
(0,1) and p(0,0,2)

(1,0) are −8,− 40
3 ,− 40

3 ,

and −16 respectively. which implies, in p-basis,

ρ∆⊗V(0,0,1)
(Casspin(7)) = diag(−8,−40/3,−40/3,−16).
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4.4 Calculation of Eigenvalues of the Twisted Dirac Operator

Since q1 factors through V(0,0)
∼= Λ0 ⊂ ∆, whereas q2, q3 and q4 factor through V(1,0)

∼= Λ1 ⊂
∆, in the basis q1, q2, q3, q4, the matrix Mγ = diag(1,−1,−1,−1) and ϕ acts as the matrix

diag(7,−1,−1,−1). Consequently, by (4.37), the matrix of
(

/Dt
AΣ

)
γ

in the basis q1, q2, q3, q4 is

given by

(
/Dt

AΣ

)
γ
=


− 7(t−1)

2 1 −2 0
1 − t−1

2 −6 0
− 1

3 −1 −1 − t−1
2 0

0 0 0 1 − t−1
2


We note that for t = 1/3, we have

(
/D1/3

AΣ

)2

γ
= diag(64/9, 64/9, 64/9, 16/9), in the q-basis,

which shows that our calculations have been consistent. Finally, for t = 0, the eigenvalues are

given by 1
6 (−3 − 8

√
6), 1

6 (−3 + 8
√

6),− 5
2 , 3

2 .

Eigenvalues from the representation V(0,1,0)

Let Vγ = V(0,1,0) be the adjoint representation of Spin(7). The space Hom(∆⊗V(0,1,0), spin(7)C)
G2 ∼=

Hom(V(0,0,1)⊗V(0,1,0), spin(7)C)
G2 is five dimensional. This follows from the facts that V(0,0,1)⊗

V(0,1,0) = V(0,0) ⊕ 3V(1,0) ⊕ 2V(0,1) ⊕ 2V(2,0) ⊕ V(1,1), spin(7)C = V(0,1,0) = V(1,0) ⊕ V(0,1), and

Schur’s lemma. The basis q(i,j)(k,l)
(m,n) of Hom(V(0,0,1) ⊗ V(0,1,0), spin(7)C)

G2 is given by

Maps Formula

q1 = q(0,0)(1,0)
(1,0)

V(0,0,1) ⊗ V(0,1,0) → V(0,0) ⊗ V(1,0) → V(1,0) → spin(7)C

(v + adt)⊗ (dt ∧ b + w) 7→ adt ⊗ b 7→ ab 7→ −a(w ⌟ ϕ) ⌟ ϕ

q2 = q(0,0)(0,1)
(0,1)

V(0,0,1) ⊗ V(0,1,0) → V(0,0) ⊗ V(0,1) → V(0,1) → spin(7)C

(v + adt)⊗ (dt ∧ b + w) 7→ adt ⊗ π14(w) 7→ aπ14(w) 7→ aw − 1
3 a(w ⌟ ϕ) ⌟ ϕ

q3 = q(1,0)(1,0)
(1,0)

V(0,0,1) ⊗ V(0,1,0) → V(1,0) ⊗ V(1,0) → V(1,0) → spin(7)C

(v + adt)⊗ (dt ∧ b + w) 7→ v ⊗ b 7→ (v ∧ b) ⌟ ϕ
7→ (v ⌟ ((w ⌟ ϕ) ⌟ ϕ) ⌟ ϕ

q4 = q(1,0)(1,0)
(0,1)

V(0,0,1) ⊗ V(0,1,0) → V(1,0) ⊗ V(1,0) → V(0,1) → spin(7)C

(v + adt)⊗ (dt ∧ b + w) 7→ v ⊗ b 7→ π14(v ∧ b) 7→ π14(v ∧ b)
= −(v ∧ (w ⌟ ϕ)) + 1

3 ((v ∧ (w ⌟ ϕ)) ⌟ ϕ) ⌟ ϕ

q5 = q(1,0)(0,1)
(1,0)

V(0,0,1) ⊗ V(0,1,0) → V(1,0) ⊗ V(0,1) → V(1,0) → spin(7)C

(v + adt)⊗ (dt ∧ b + w) 7→ v ⊗ π14(w) 7→ v ⌟ π14(w) 7→ (v ⌟ π14(w)) ⌟ ϕ

=
(
v ⌟w − 1

3 v ⌟ ((w ⌟ ϕ) ⌟ ϕ))
)
⌟ ϕ

The basis p(i,j,k)
(m,n) of Hom(V(0,0,1) ⊗ V(0,1,0), spin(7)C)

G2 is given by
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Maps Formula

p1 = p(0,0,1)
(1,0)

V(0,0,1) ⊗ V(0,1,0) → V(0,0,1) → V(1,0) → spin(7)C

(v + adt)⊗ (dt ∧ b + w) 7→ −a(w ⌟ ϕ) ⌟ ϕ + (v ⌟w) ⌟ ϕ

p2 = p(1,0,1)
(1,0)

V(0,0,1) ⊗ V(0,1,0) → V(1,0,1) → V(1,0) → spin(7)C

(v + adt)⊗ (dt ∧ b + w) 7→ 4a(w ⌟ ϕ) ⌟ ϕ − 7(v ⌟ ((w ⌟ ϕ)) ⌟ ϕ) ⌟ ϕ
+3(v ⌟w) ⌟ ϕ

p3 = p(1,0,1)
(0,1)

V(0,0,1) ⊗ V(0,1,0) → V(1,0,1) → V(0,1) → spin(7)C

(v + adt)⊗ (dt ∧ b + w) 7→ aw − 1
3 (aw ⌟ ϕ) ⌟ ϕ + (v ∧ (w ⌟ ϕ))

− 1
3 ((v ∧ (w ⌟ ϕ)) ⌟ ϕ) ⌟ ϕ

p4 = p(0,1,1)
(1,0)

V(0,0,1) ⊗ V(0,1,0) → V(0,1,1) → V(1,0) → spin(7)C

orthogonal to p1 and p2

p5 = p(0,1,1)
(0,1)

V(0,0,1) ⊗ V(0,1,0) → V(0,1,1) → V(0,1) → spin(7)C

orthogonal to p3

Then, we write the basis p(i,j,k)
(m,n) in terms of q(i,j)(k,l)

(m,n) as

p1 = q1 +
1
3

q3 + q5

p2 = −4q1 − 6q3 + 3q5

p3 = q2 − q4.

In order to calculate p4 and p5, we calculate the norm of the q-basis element. By computing

the matrix of q explicitly, and using ∥q∥2 = Tr(q†q), we find that

∥q1∥2 =
63
4

, ∥q2∥2 = 14, ∥q3∥2 =
189
2

, ∥q4∥2 = 21, and ∥q5∥2 = 84.

Now, p4 factors through V(1,0), so must be a linear combination of q1, q3, q5, and similar p5

factors through V(0,1), so must be a linear combination of q2 and q4. Then, we use the fact that

the p-basis and the q-basis are orthogonal, we find,

p4 = q1 −
1
6

q3 −
1
8

q5

p5 = q2 +
2
3

q4.

Now, −ρspin(7)C
(Casg2)− ρ∆(Casm)− ρV(1,0,0)

(Casm) = diag(61/3, 61/3, 15, 61/3, 29/3). More-

over, the eigenvalues corresponding to the eigenvectors p(0,0,1)
(1,0) , p(1,0,1)

(1,0) , p(1,0,1)
(0,1) , p(0,1,1)

(1,0) and p(0,1,1)
(0,1)
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are

−7,− 49
3 ,− 49

3 ,−23 and −23 respectively. which implies,

ρ∆⊗V(1,0,1)
(Casspin(7)) = diag(−7,−49/3,−49/3,−23,−23).

Now, since q1 and q2 factors through V(0,0)
∼= Λ0 ⊂ ∆, whereas q3, q4 and q5 factor through

V(1,0)
∼= Λ1 ⊂ ∆, in the q-basis, the matrix Mγ is given by diag(1, 1,−1,−1,−1). and ϕ acts as

the matrix diag(7, 7,−1,−1,−1). Consequently, by (4.37), the matrix of
(

/Dt
AΣ

)
γ

in the basis

q1, q2, q3, q4, q5 is given by

(
/Dt

AΣ

)
γ
=


7
2 (t − 1) 0 −4 0 − 16

3
0 7

2 (t − 1) 0 2 0
− 2

3 0 −2 − 1
2 (t − 1) 0 8

3
0 4

3 0 2 − 1
2 (t − 1) 0

−1 0 3 0 − 1
2 (t − 1)

 .

We note that for t = 1/3, we have
(

/D1/3
AΣ

)2

γ
= diag(121/9, 73/9, 121/9, 73/9, 121/9), in the

q-basis, which shows that our calculations have been consistent. Finally, for t = 0, the eigen-

values are given by 1
2 (−1 − 2

√
17), 1

6 (−3 − 2
√

105), 1
2 (−1 + 2

√
17), − 7

2 , 1
6 (−3 + 2

√
105).

Eigenvalues from the representation V(2,0,0)

Now, let us consider the irreducible Spin(7) representation Vγ = V(2,0,0). The space Hom(∆ ⊗
V(2,0,0), spin(7)C)

G2 ∼= Hom(V(0,0,1) ⊗ V(2,0,0), spin(7)C)
G2 is two dimensional, since V(0,0,1) ⊗

V(2,0,0) = V(1,0) ⊕ V(0,1) ⊕ 2V(2,0) ⊕ V(3,0) ⊕ V(1,1), spin(7)C = V(0,1,0) = V(1,0) ⊕ V(0,1). The basis

q(i,j)(k,l)
(m,n) of Hom(V(0,0,1) ⊗ V(2,0,0), spin(7)C)

G2 is given by

q1 = q(1,0)(2,0)
(1,0) : V(0,0,1) ⊗ V(2,0,0) → V(1,0) ⊗ V(2,0) → V(1,0) → spin(7)C

q2 = q(1,0)(2,0)
(0,1) : V(0,0,1) ⊗ V(2,0,0) → V(1,0) ⊗ V(2,0) → V(0,1) → spin(7)C.

Now, the basis p(i,j,k)
(m,n) of Hom(V(0,0,1) ⊗ V(2,0,0), spin(7)C)

G2 is given by

p1 = p(1,0,1)
(1,0) : V(0,0,1) ⊗ V(2,0,0) → V(1,0,1) → V(1,0) → spin(7)C

p2 = p(1,0,1)
(0,1) : V(0,0,1) ⊗ V(2,0,0) → V(1,0,1) → V(0,1) → spin(7)C.

Since the maps q1 and q2 are unique up to scale, we choose the basis p(i,j,k)
(m,n) in terms of q(i,j)(k,l)

(m,n)

as

p1 = q1 and p2 = q2.
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Now, in the q-basis, −ρspin(7)C
(Casg2)− ρ∆(Casm)− ρV(1,0,0)

(Casm) = diag(119/9, 167/9). The

eigenvalues corresponding to the eigenvectors p(1,0,1)
(1,0) and p(1,0,1)

(0,1) are − 49
3 , and − 49

3 respectively,

which implies, in the p-basis, ρ∆⊗V(2,0,0)
(Casspin(7)) = diag(−49/3,−49/3). Now, since q1 and

q2 factor through V(1,0)
∼= Λ1 ⊂ ∆, in the q-basis, M = diag(−1,−1) and ϕ acts as the matrix

diag(−1,−1). Consequently, by (4.37), the matrix of
(

/Dt
AΣ

)
γ

in the basis q1, q2 is given by

(
/Dt

AΣ

)
γ
=

(
− 14

3 − t−1
2 0

0 10
3 − t−1

2

)
.

We note that for t = 1/3, in the q-basis, we have
(

/D1/3
AΣ

)2

γ
= diag(169/9, 121/9), which shows

that our calculations have been consistent. Finally, for t = 0, the eigenvalues are given by

− 25
6 , 23

6 .

Eigenvalues from the representation V(1,0,1)

Finally, we consider the irreducible Spin(7) representation Vγ = V(1,0,1). The space Hom(∆ ⊗
V(1,0,1), spin(7)C)

G2 ∼= Hom(V(0,0,1) ⊗ V(1,0,1), spin(7)C)
G2 is seven dimensional, since V(0,0,1) ⊗

V(1,0,1) = 4V(2,0) ⊕ 4V(1,0) ⊕ 3V(0,1) ⊕ V(1,1) ⊕ V(3,0) ⊕ V(1,1) ⊕ V(0,0), spin(7)C = V(0,1,0) = V(1,0) ⊕
V(0,1). The basis q(i,j)(k,l)

(m,n) of Hom(V(0,0,1) ⊗ V(1,0,1), spin(7)C)
G2 is given by

Maps Formula

q1 = q(0,0)(1,0)
(1,0)

V(0,0,1) ⊗ V(1,0,1) → V(0,0) ⊗ V(1,0) → V(1,0) → spin(7)C

(adt + v)⊗ (dt ∧ b + w) 7→ a(b ⌟ ϕ) ⌟ ϕ

q2 = q(1,0)(1,0)
(1,0)

V(0,0,1) ⊗ V(1,0,1) → V(1,0) ⊗ V(1,0) → V(1,0) → spin(7)C

(adt + v)⊗ (dt ∧ b + w) 7→ ((v ∧ (b ⌟ ϕ)) ⌟ ϕ) ⌟ ϕ

q3 = q(1,0)(1,0)
(0,1)

V(0,0,1) ⊗ V(1,0,1) → V(1,0) ⊗ V(1,0) → V(0,1) → spin(7)C

(adt + v)⊗ (dt ∧ b + w) 7→ v ∧ (b ⌟ ϕ)− 1
3 ((v ∧ (b ⌟ ϕ)) ⌟ ϕ) ⌟ ϕ

q4 = q(0,0)(0,1)
(0,1)

V(0,0,1) ⊗ V(1,0,1) → V(0,0) ⊗ V(0,1) → V(0,1) → spin(7)C

(adt + v)⊗ (dt ∧ b + w) 7→ ab − 1
3 a(b ⌟ ϕ) ⌟ ϕ

q5 = q(1,0)(0,1)
(1,0)

V(0,0,1) ⊗ V(1,0,1) → V(1,0) ⊗ V(0,1) → V(1,0) → spin(7)C

(adt + v)⊗ (dt ∧ b + w) 7→ (v ⌟ b) ⌟ ϕ + 1
3 ((v ∧ (b ⌟ ϕ) ⌟ ϕ)) ⌟ ϕ

q6 = q(1,0)(2,0)
(1,0)

V(0,0,1) ⊗ V(1,0,1) → V(1,0) ⊗ V(2,0) → V(1,0) → spin(7)C

(adt + v)⊗ (dt ∧ b + w) 7→ 1
3 ((v ⌟w) ⌟ ϕ) ⌟ ϕ + 1

6 ((v ∧ (b ⌟ ϕ)) ⌟ ϕ) ⌟ ϕ

q7 = q(1,0)(2,0)
(0,1)

V(0,0,1) ⊗ V(1,0,1) → V(1,0) ⊗ V(2,0) → V(0,1) → spin(7)C

(adt + v)⊗ (dt ∧ b + w) 7→ v ⌟w − 1
3 ((v ⌟w) ⌟ ϕ) ⌟ ϕ − 1

4 v ∧ (b ⌟ ϕ)
+ 1

12 ((v ∧ (b ⌟ ϕ)) ⌟ ϕ) ⌟ ϕ
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4.4 Calculation of Eigenvalues of the Twisted Dirac Operator

Now, the basis p(i,j,k)
(m,n) of Hom(V(0,0,1) ⊗ V(1,0,1), spin(7)C)

G2 is given by

Maps Formula

p1 = p(1,0,0)
(1,0)

V(0,0,1) ⊗ V(1,0,1) → V(1,0,0) → V(1,0) → spin(7)C

(adt + v)⊗ (dt ∧ b + w) 7→ a(b ⌟ ϕ) ⌟ ϕ + ((v ⌟w) ⌟ ϕ) ⌟ ϕ − (v ⌟ b) ⌟ ϕ

p2 = p(0,1,0)
(1,0)

V(0,0,1) ⊗ V(1,0,1) → V(0,1,0) → V(1,0) → spin(7)C

(adt + v)⊗ (dt ∧ b + w) 7→ a(b ⌟ ϕ) ⌟ ϕ + ((v ⌟w) ⌟ ϕ) ⌟ ϕ + 3(v ⌟ b) ⌟ ϕ

p3 = p(0,1,0)
(0,1)

V(0,0,1) ⊗ V(1,0,1) → V(0,1,0) → V(0,1) → spin(7)C

(adt + v)⊗ (dt ∧ b + w) 7→ ab − 1
3 (a(b ⌟ ϕ) ⌟ ϕ + (v ⌟w)− 1

3 ((v ⌟w) ⌟ ϕ) ⌟ ϕ

p4 = p(0,0,2)
(1,0)

V(0,0,1) ⊗ V(1,0,1) → V(0,0,2) → V(1,0) → spin(7)C

(adt + v)⊗ (dt ∧ b + w) 7→ −a(b ⌟ ϕ) ⌟ ϕ + (v ⌟ b) ⌟ ϕ
+((v ⌟w) ⌟ ϕ) ⌟ ϕ − 2(v ⌟ ((b ⌟ ϕ) ⌟ ϕ)) ⌟ ϕ

p5 = p(1,1,0)
(0,1)

V(0,0,1) ⊗ V(1,0,1) → V(1,1,0) → V(0,1) → spin(7)C

(adt + v)⊗ (dt ∧ b + w) 7→ 4v ∧ (b ⌟ ϕ)− 2((v ∧ (b ⌟ ϕ)) ⌟ ϕ) ⌟ ϕ + 6ab
−2(ab ⌟ ϕ) ⌟ ϕ − 2(v ⌟w) + 2

3 ((v ⌟w) ⌟ ϕ) ⌟ ϕ

p6 = p(1,0,2)
(1,0)

V(0,0,1) ⊗ V(1,0,1) → V(1,0,2) → V(1,0) → spin(7)C

orthogonal to p1, p2 and p4

p7 = p(1,0,2)
(0,1)

V(0,0,1) ⊗ V(1,0,1) → V(1,0,2) → V(0,1) → spin(7)C

orthogonal to p3 and p5

For p5, we note that the representation V(1,1,0) is not a subspace of the exterior algebra. We

cannot use the norm technique either, since we also need to calculate the expression of p7 in

terms of q-basis using the norm technique. But, we note that the irreducible decomposition

of the V(1,0,0) ⊗ V(0,1,0) is V(1,0,0) ⊕ V(0,0,2) ⊕ V(1,1,0) which contains V(1,1,0). Whereas, Λ4(C8) has

the decomposition V(0,0,0) ⊕V(1,0,0) ⊕V(2,0,0) ⊕V(0,0,2) (See Appendix B.3.5). Hence we consider

the following model of V(1,1,0). Consider the map

θ : Λ2(C8)⊗ Λ2(C8) → Λ4(C8)

ω ⊗ η 7→ ω ∧ η.

Then,

V(1,1,0)
∼= ker θ

∣∣
Λ2

7(C
8)⊗Λ2

21(C
8)

.

Hence, for ω7 ⊗ ω21 ∈ Λ2
7(C

8)⊗ Λ2
21(C

8), we have

πV(1,1,0)
(ω7 ⊗ ω21) = πker θ(ω7 ⊗ ω21) = ω7 ⊗ ω21 −

1
12

Eµν ⊗ Eµν
⌟ (ω7 ∧ ω21)
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4. Eigenvalues of the Twisted Dirac Operator on S7

where Eµ is an orthonormal basis of Λ1(C8) and E0 = dt. In order to express p6 and p7

in terms of q-basis elements, we calculate the norm of the q-basis element. By computing the

matrix of q explicitly, and using ∥q∥2 = Tr(q†q), we find that ∥q1∥2 = 36, ∥q2∥2 = 216, ∥q3∥2 =

48, ∥q4∥2 = 14, ∥q5∥2 = 84, ∥q6∥2 = 18, and ∥q7∥2 = 63. Then, we use the fact that p-basis

and q-basis are orthogonal. Hence, the basis p(i,j,k)
(m,n) in terms of q(i,j)(k,l)

(m,n) is

p1 = q1 −
1
6

q2 − q5 + 3q6

p2 = q1 −
9
6

q2 + 3q5 + 3q6

p3 =
1
4

q3 + q4 + q7

p4 = −q1 +
7
6

q2 + q5 + 3q6

p5 =
7
2

q3 + 6q4 − 2q7

p6 = q1 +
1
6

q2 +
1
7

q5 −
1
3

q6

p7 = q3 −
12
7

q4 +
4

21
q7.

Now, in q-basis, −ρspin(7)C
(Casg2)− ρ∆(Casm)− ρV(1,0,0)

(Casm) is the matrix

diag(70/3, 18, 70/3, 70/3, 38/3, 98/9, 146/9). Moreover, the eigenvalues corresponding to the

eigenvectors p(1,0,0)
(1,0) , p(0,1,0)

(1,0) , p(0,1,0)
(0,1) , p(0,0,2)

(1,0) , p(1,1,0)
(0,1) , p(1,0,2)

(1,0) and p(1,0,2)
(0,1) are

−8,− 40
3 ,− 40

3 ,−16,−24,− 80
3 , and − 80

3 respectively, which implies, in the p-basis,

ρ∆⊗V(1,0,1)
(Casspin(7)) = diag(−8,−40/3,−40/3,−16,−24,−80/3,−80/3).

Now, in the q-basis, since q1 and q4 factors through V(0,0), whereas q2, q3, q5, q6 and q7 factor

through V(1,0), the matrix Mγ = diag(1,−1,−1, 1,−1,−1,−1) and ϕ acts as the matrix

diag(7,−1,−1, 7,−1,−1,−1). Consequently, by (4.37), the matrix of
(

/Dt
AΣ

)
γ

in the q-basis is

7
2 (t − 1) 5 0 0 7

3 − 3
2 0

5
6

5
2 −

1
2 (t − 1) 0 0 − 7

6 − 1
4 0

0 0 − 5
2 −

1
2 (t − 1) − 7

12 0 0 21
8

0 0 −2 7
2 (t − 1) 0 0 − 9

2
1 −3 0 0 1

2 (t − 1) − 3
2 0

−3 −3 0 0 −7 − 7
6 −

1
2 (t − 1) 0

0 0 2 −1 0 0 5
6 −

1
2 (t − 1)


.

We note that for t = 1/3, we have(
/D1/3

AΣ

)2

γ
= diag(148/9, 148/9, 100/9, 100/9, 148/9, 148/9, 100/9)
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in the q-basis, which shows that our calculations have been consistent. Finally, for t = 0,

the eigenvalues are given by 1
2 (−1 − 4

√
5), 1

6 (−3 − 4
√

33), 1
6 (1 + 4

√
37), 1

2 (−1 + 4
√

5), 1
6 (1 −

4
√

37), 1
6 (−3 + 4

√
33),− 19

6 .

Main Result

Theorem 4.4.1. The eigenvalues of the twisted Dirac operator
(

/D0
AΣ

)
γ

are

1. 1
2 for Vγ = V(0,0,0).

2. For Vγ = V(1,0,0),
1
6
(−3 + 2

√
105),

1
6
(−3 − 2

√
105), −3

2
.

3. For Vγ = V(0,0,1),
1
6
(−3 − 8

√
6),

1
6
(−3 + 8

√
6), −5

2
,

3
2

.

4. For Vγ = V(0,1,0)

1
2
(−1 − 2

√
17),

1
6
(−3 − 2

√
105),

1
2
(−1 + 2

√
17), −7

2
,

1
6
(−3 + 2

√
105).

5. For Vγ = V(2,0,0)

−25
6

,
23
6

.

6. For Vγ = V(1,0,1)
1
2
(−1 − 4

√
5),

1
6
(−3 − 4

√
33),

1
6
(1 + 4

√
37),

1
2
(−1 + 4

√
5),

1
6
(1 − 4

√
37),

1
6
(−3 + 4

√
33), −19

6
.

Corollary 4.4.2. The eigenvalues of the twisted Dirac operator
(

/D0
AΣ

)
γ

in the interval
[
− 5

2 , 5
2

]
are

− 5
2 ,− 3

2 , 1
2 , 3

2 . In particular, the only eigenvalue in the interval
( 1

2 , 5
2

)
is 3

2 corresponding to the spin
representation V(0,0,1).
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Chapter 5

The Space of Deformations of FNFN
Spin(7)-Instanton

In this chapter, we shall study the deformations of AC Spin(7)-instantons on the AC Spin(7)-

manifold R8, where the Spin(7)-instantons on R8 will converge to the canonical connection

on S7 at infinity. Fairlie–Nuyts [25] and Fubini–Nicolai [27] independently constructed these

instantons on R8, and hence will be referred to as FNFN Spin(7)-instanton on R8.

5.1 FNFN Spin(7)-Instanton

In this section, we derive FNFN-instanton using homogeneous space techniques. The exact

same result and similar approach can also be found in [51].

Let us consider the asymptotically conical Spin(7)-manifold R8 asymptotic to the nearly G2

manifold Σ = S7. We consider S7 as a homogeneous nearly G2 manifold Spin(7)/G2. Then we

have the canonical bundle G2 → Spin(7) → S7 (call this bundle P). Also consider the bundle

Spin(7) → Spin(7)×(G2,ι) Spin(7) → S7 (call this bundle Q) where ι : G2 ↪→ Spin(7) is the

inclusion. This bundle is (bundle) isomorphic to the trivial bundle Spin(7) → S7 × Spin(7) →
S7. Explicitly, the isomorphism is given by

Spin(7)×(G2,ι) Spin(7) → S7 × Spin(7)

[(g1, g2)] 7→ ([g1], g1g2) (5.1)

Then, an action of Spin(7) on Spin(7)×(G2,ι) Spin(7) given by g[(g1, g2)] = [(gg1, g2)] induces

an action on S7 × Spin(7) given by g([g1], g1g2) = ([gg1], gg1g2).
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We want to find all Spin(7)-invariant connections on Q. From Wang’s theorem [59], we

know that this corresponds to all G2-equivariant linear maps m → spin(7), for the subspace m

defined in (4.26). That is, the set

{Λ : m → spin(7) : Λ is G2-equivariant}.

Now,

spin(7)⊗ C = V(0,1) ⊕ V(1,0)

and hence, restricting to m, we have the decomposition

m⊗ C = V(1,0)
∼= C7.

Recall Schur’s lemma:

Lemma 5.1.1. Let V, W be two irreducible representations of H. The space of H-equivariant maps
V → W is {φ · Id : V → W |φ ∈ C} if V ∼= W,

0 if V ̸∼= W.

Thus, we have all the G2-equivariant linear maps Λ : m → spin(7), explicitly given by

φ · id : V(1,0)
∼= m → V(1,0) ↪→ spin(7)

where the complex number φ is necessarily real because Λ is (the complexification of) a map

between real vector spaces m → m.

Now the basis IA (A = 1, . . . , 21) for spin(7) (where I1, . . . , I7 spans m) can be represented

by left invariant vector fields ÊA on Spin(7) and also by the dual basis êA of left invariant

1-forms. Denote the natural projection map

π : Spin(7) → Spin(7)/G2

g 7→ gG2

of the principal bundle. Let U be a contractible open subset of Spin(7)/G2. Then we choose a

map L : U → Spin(7) such that π ◦ L = IdU , i.e., L is a local section of the bundle Spin(7) →
Spin(7)/G2. We put eA := L∗ êA. Then {ea : a = 1, . . . , 7} form an orthonormal frame for

T∗(Spin(7)/G2) over U.
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For eA, we have the Maurer–Cartan equations

dea = − f a
ibei ∧ eb − 1

2
f a
bceb ∧ ec

dei = −1
2

f i
bceb ∧ ec − 1

2
f i
jkej ∧ ek. (5.2)

With respect to this local trivialisation, a connection on the bundle Q over the nearly G2-

manifold Spin(7)/G2 can be written as A = ei Ii + φea Ia where AΣ = ei Ii, is the canonical

connection, and φ ∈ R.

Now consider the 8-dimensional manifold R× Spin(7)/G2. Moreover, consider the projec-

tion π : R × Spin(7)/G2 → Spin(7)/G2. We choose the metric g8 = (e0)2 + g7 where e0 = dt

for t the coordinate of R, and g7 is the metric on Spin(7)/G2. This metric is conformal to the

flat metric on R8. We can describe a Spin(7)-invariant connection on π∗Q → R × Spin(7)/G2

using a function φ : R → R. The local connection 1-form A is given by

A = ei Ii + φ(t)ea Ia = Aaea. (5.3)

where, Aa = ei
a Ii + φ(t)Ia. Here, ei = ei

aea, for functions ei
a : U → R. Without loss of

generality, we have taken A0 = 0 (called temporal gauge), since we can always choose such a

gauge. We note that the connection A on R × S7 can be identified with a family {At : t ∈ R}
of connections on S7. The curvature of this connection is given by

FA = F0ae0 ∧ ea +
1
2

Fbceb ∧ ec (5.4)

where

F0a =
∂Aa

∂t
=

dφ

dt
Ia.

Note that we can identify the cone (0, ∞) × S7 ⊂ R8 with the cylinder R × S7 by the map

r = et. The ASD instanton equation Φ ∧ FA = −∗FA can be written as

FA ⌟Φ = −FA. (5.5)

Now, we have ϕ = 1
6 ϕabcea ∧ eb ∧ ec, ∗ϕ = ψ = 1

24 ψabcdea ∧ eb ∧ ec ∧ ed, for a, b, c = 1, . . . , 7,

where ϕabc are structure constants of the octonions and ψpqrs = ϵabcpqrsϕabc. We have already

seen that we can write the structure constants of the octonions ϕabc in terms of the structure

constants fabc as fabc = − 2
3 ϕabc.

Then, we get

FA ⌟Φ =

(
F0ae0 ∧ ea +

1
2

Fbceb ∧ ec
)
⌟ (e0 ∧ ϕ + ∗ϕ)
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=
1
2

Fbcϕabce0 ∧ ea +
1
2

F0aϕabceb ∧ ec +
1
4

Fadψabcdeb ∧ ec.

Then, from (5.5) we have two equations, F0a =
3
4 fabcFbc and Fbc = −F0aϕabc − 1

2 Fadψabcd, but the

first one implies the second. Hence, the ASD instanton equation (5.5) reduces to

F0a =
3
4

fabcFbc. (5.6)

Applying the Maurer–Cartan equations (5.2), we calculate dAt, as well as [At ∧ At], and the

curvature is given by

Fbc = (φ2 − 1) f i
bc Ii + (φ2 − φ) fabc Ia, F0a =

dφ

dt
Ia. (5.7)

Then, the ASD instanton equation (5.6) is equivalent to

dφ

dt
Ia =

3
4

fabc(φ2 − 1) f i
bc Ii +

3
4

fabc(φ2 − φ) fhbc Ih.

Simplifying, we have the differential equation dφ
dt = 2(φ2 − φ). Solving, we get

φ =
1

1 + e2t+2C1
=

1
Cr2 + 1

(5.8)

for C > 0, using the substitution r = et.

We note that φ(0) = 1 defines a flat connection over S7, and the corresponding trivialisa-

tion extends across the origin. Thus this connection on R× S7 is nothing but the restriction of

a flat connection on R8. Hence from the calculations above, and from the fact that the ASD in-

stanton equations are conformally invariant, it follows that the connection A defined in (5.3),

where φ is given in (5.8), is in fact an instanton on R8. We call this the FNFN Spin(7)-instanton.

Clearly FNFN Spin(7)-instanton A is asymptotic to the canonical connection AΣ with fastest

rate of convergence −2, since φ = O(r−2) as r → ∞.

5.2 Index of the Twisted Dirac Operator

We want to calculate the index of the Dirac operator /D−
A on /S(R8) twisted by the trivial bundle

gP := spin(7)× R8 over R8. We use the Atiyah–Patodi–Singer Index Theorem for manifolds with

boundaries, by relating the index of the Dirac operator /D−
A on R8 with the index of the Dirac

operator on a closed ball B8
R of large enough radius R. Moreover, we consider the FNFN

instanton to be an instanton on R8 and, for the purposes of calculating the eta-invariant

appearing in the index theorem, on R × S7.
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Atiyah–Patodi–Singer Index Theorem

The Atiyah–Patodi–Singer index theorem is applicable when the manifold has non-empty

boundary (for more details see [2], [3], [4], [24], [30]). Let M be a 8-manifold with non-empty

boundary ∂M. Let P → M be a principal G-bundle and consider the negative Dirac operator

/D−
A acting on the bundle E := /S−(X)⊗ gP over M. Then the index of the operator /D−

A requires

topological information on the manifold M as well as analytic information on the boundary

∂M.

The Atiyah–Patodi–Singer index theorem for a manifold M with non-empty boundary ∂M

has the form

Index(/D−
A , M, ∂M) = I(M) + CS(∂M) +

1
2

η(∂M). (5.9)

where I(M) is an integral of characteristic classes over M and η(∂M) is the eta-invariant of

the boundary. The Chern–Simons term CS(∂M) of the boundary arises when the manifold

does not admit a product metric on the boundary. Moreover, the Dirac operator /D−
A is subject

to non-local boundary condition which will be explained later.

R8 with Cigar metric and Index

Let gC be the asymptotically conical metric, i.e., the flat metric on R8. We define the metric

gCI := 1
ϱ2 gC, where ϱ is the radius function (2.30). Then (R8, gCI) resembles a cigar (the reason

gCI is usually called a cigar metric).

r = 0

S7

r → ∞

Figure 5.1: R8 with cigar metric.

In particular, for

ϱ(r) =

{
r r > 1
1
2 (1 + r2) r ≤ 1,

(R8, gCI) is a hemisphere M1 glued to a cylinder M2 = (1, ∞)× S7 (see Figure 5.2).
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M1 M2

Figure 5.2: R8 as a hemisphere glued to a cylinder.

The weighted Sobolev space W0,2
ν on R8 is defined by the norm

∥η∥W0,2
ν

:=
(∫

|ϱνη|2ϱ−8 dvolC

)1/2

.

The space W0,2
CI of L2-functions on the cigar M is defined by

∥η∥W0,2
CI

:=
(∫

|η|2 dvolCI

)1/2

.

Now, dvolCI = ϱ−8 dvolC. Hence,

W0,2
ν → W0,2

CI

η 7→ ϱνη

is an isomorphism. Similarly, we can extend this to an isomorphism Wk,2
ν → Wk,2

CI .

By conformal properties of Dirac operators, we have that the Dirac operator of gCI is

/D−
A,CI = ϱ

9
2 /D−

A,Cϱ−
7
2 (where /D−

A,CI and /D−
A,C are the Dirac operators corresponding to cigar

and conical metrics respectively.) Then we have the commutative diagram

Wk,2
CI Wk−1,2

CI

Wk,2
− 7

2
Wk−1,2

− 9
2

/D−
A,CI

ϱ−
7
2

/D−
A,C

ϱ
9
2

Since the vertical arrows are isomorphism, we have

Index
(

/D−
A,C : Wk,2

− 7
2
→ Wk−1,2

− 9
2

)
= Index

(
/D−

A,CI : Wk,2
CI → Wk−1,2

CI

)
. (5.10)
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5.2 Index of the Twisted Dirac Operator

Let us define a function φ̃ : R → R by

φ̃(t) =



1 t < −T
α′, −T < t < − T

2

φ(t), − T
2 < t < T

2

α, T
2 < t < T

0 t > T.

(5.11)

where α is a smooth interpolation between its definition at T
2 and T and α′ is that of between

its definition at −T and − T
2 .

Then we have a connection

Ã = ei Ii + φ̃(t)ea Ia. (5.12)

We note that

A − Ã = (φ(t)− φ̃(t))ea Ia ∈ Ω1(gP). (5.13)

Proposition 5.2.1. Let B8
R := {x ∈ R8 : |x| ≤ R} be 8-dimensional ball of radius R. Then for

sufficiently large R, we have

Index
(

/D−
A,CI , R8, gCI

)
= Index

(
/D−

Ã,CI , B8
R, gCI

)
.

Moreover, for sufficiently large T, we have

Index
(

/D−
A , R × S7, g

)
= Index

(
/D−

Ã′ , [−T, T]× S7, g
)

.

where g is the cylindrical metric g = dt2 + gS7 .

Proof. Let η : R8 → /S(gP) be a spinor such that /D−
Ã,CIη = 0 and η ∈ L2(R8, gCI). Now,

/D−
Ã,CI = E0

(
∂
∂t − /DÃt,Σ

)
. For t > ln R, since φ̃(t) = 0, we have /DÃt,Σ

= /DAΣ . Let λn ∈
Spec /DAΣ . Then, we have the Fourier expansion of η given by η = ∑

n∈Z

eλn(t−ln R)ηn where

ηn ∈ ker (/DAΣ − λn). Hence, η ∈ L2 implies ηn = 0 when λn > 0. So η can be written as a
sum of eigenvectors ηn of Dirac operator on the boundary with negative eigenvalues. Hence
η solves Atiyah–Patodi–Singer boundary condition.

Conversely, let η : B8
R → /S(gP) such that /D−

Ã,CIη = 0 and η solves Atiyah–Patodi–Singer
boundary condition. We extend η to R8. On ∂B8

R, η = ∑
n<0

ηn, where λn < 0 if and only if

n < 0. So, for r > R (i.e., t > ln R) we set η = ∑
n<0

eλn(t−ln R)ηn. Then η ∈ L2(R8, gCI) and

solves /D−
Ã,CIη = 0.
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Hence, we have just proved that ker
(

/D−
Ã,CI , R8, gCI

)
∼= ker

(
/D−

Ã,CI , B8
R, gCI

)
. Similarly, we

can show that coker
(

/D−
Ã,CI , R8, gCI

)
∼= coker

(
/D−

Ã,CI , B8
R, gCI

)
. Hence, we proved

Ind
(

/D−
Ã,CI , R8, gCI

)
= Ind

(
/D−

Ã,CI , B8
R, gCI

)
.

Finally, we prove that

Ind
(

/D−
A,CI , R8, gCI

)
= Ind

(
/D−

Ã,CI , R8, gCI

)
.

Consider

∥/D−
A,CI − /D−

Ã,CI∥ = ∥(φ(t)− φ̃(t))ea Ia∥ = sup
η∈L2(R8,gCI)

∥(φ(t)− φ̃(t))ea Iaη∥L2

∥η∥L2
. (5.14)

Now,

∥(φ(t)− φ̃(t))ea Iaη∥2
L2 =

∫
|(φ(t)− φ̃(t))ea Iaη|2 dvol

≤ sup(φ(t)− φ̃(t))2
∫

|ea Iaη|2 dvol

≤ sup(φ(t)− φ̃(t))2∥ea Ia∥2
∫

|η|2 dvol

= sup(φ(t)− φ̃(t))2∥ea Ia∥2∥η∥2
L2 .

Hence, from (5.14), we have

∥/D−
A,CI − /D−

Ã,CI∥ ≤ sup |φ(t)− φ̃(t)|∥ea Ia∥.

Hence, for all ϵ > 0, there exists R > 0 such that ∥/D−
A,CI − /D−

Ã,CI∥ < ϵ. Then the result follows
from the fact that two Fredholm operators belonging to the same connected component of the
space of all Fredholm operators have the same index, since the Fredholm index is continuous
and integer-valued.

The second part of the theorem can be proved similarly.

The term I(R8)

The term I(/D−
A,CI , R8, gCI) in (5.9) is given by

I(/D−
A,CI , R8, gCI) = −

∫
R8

Â(M) ch(gP ⊗ C)

= −
∫

R8

(
1 − 1

24
p1(R

8) +
1

5760
(7p1(R

8)2 − 4p2(R
8))

)
(

dim g+ p1(gP) +
1

12
(

p1(gP)
2 − 2p2(gP)

))
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= − 1
12

∫
R8

(
p1(gP)

2 − 2p2(gP)
)
+

1
24

∫
R8

p1(R
8)p1(gP)

− 1
5760

dim g

∫
R8
(7p1(R

8)2 − 4p2(R
8))

= − 1
12

∫
R8

(
p1(gP)

2 − 2p2(gP)
)
+

1
24

∫
M1

p1(M1)p1(gP)

+
1
24

∫
M2

p1(M2)p1(gP)−
1

5760
dim g

∫
M1

(7p1(M1)
2 − 4p2(M1))

− 1
5760

dim g

∫
M2

(7p1(M2)
2 − 4p2(M2))

where the Pontryagin classes pi are given in terms of the curvature as

p1(gP) = − 1
8π2 tr(F2

A)

p2(gP) =
1

128π4

[
tr(F2

A)
2 − 2 tr F4

A

]
where the trace is taken over g.

Since M1 is a hemisphere of S8, the curvature of M1 is the same as the curvature of S8. Let

Eµ, for µ = 0, 1, . . . , 7 be an orthonormal local frame for S8. Then, the Riemann curvature is

given by

R =
1
2

Rα
βγλEγ ∧ Eλ

where Rα
βγλ = δα

γδβλ − δα
λδβγ. Then, tr(R ∧ R) = 0 and tr(R ∧ R ∧ R ∧ R) = 0. Hence,

p1(M1) = − 1
8π2 tr(R2) = 0

and

p2(M1) =
1

128π4

[
tr(R2)2 − 2 tr R4

]
= 0.

Consider the projection π : R × S7 → S7. Then, pi(R × S7) = π∗pi(S7). Now, if R′ is the

curvature of S7, then,

p1(S7) = − 1
8π2 tr(R′ ∧ R′) = 0

and

p2(S7) =
1

128π4 tr(R′ ∧ R′)2 − 2 tr(R′ ∧ R′ ∧ R′ ∧ R′).

But tr(R′ ∧ R′ ∧ R′ ∧ R′) = 0 being an 8-form on 7-dimensional manifold S7. Further, we have

tr(R′ ∧ R′) ∧ tr(R′ ∧ R′) = 0 being an 8-form with only 7-coordinate functions, which means

there must be repeating terms. Consequently,

p1(M2) = 0, and p2(M2) = 0.
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Hence,

I(/D−
A,CI , R8, gCI) = − 1

12

∫
R8

(
p1(gP)

2 − 2p2(gP)
)
= − 1

384π4

∫
R8

tr F4
A. (5.15)

Eta Invariant of the Boundary

We calculate the eta-invariant of the twisted Dirac operator by relating it to the untwisted

Dirac operator, whose eta-invariant is zero, using a spectral flow.

Spectral Flow

Recall the FNFN Spin(7)-instanton A given by (5.3), where φ(t) is given by (5.8), can be

identified with a family of connections {At : t ∈ R} on S7. Then, we have a family of Dirac

operators on S7 twisted by the connections At given by

/DAt,Σ = /DAΣ + φ(t)ea Ia.

Now, the curvature of the connection is given by (5.7) for which we note that Fbc = 0 for

φ(t) = 1. Hence, At is a flat connection for t = −∞. Since the underlying manifold is

simply connected, this flat connection is the trivial connection (unique up to gauge). Hence

corresponding to this connection, or equivalently, for φ(t) = 1, we have the untwisted Dirac

operator DΣ, i.e.,

DΣ = /DAΣ + ea Ia. (5.16)

We want to calculate the spectral flow of the family
{

/DAt,Σ

}
t∈R

, where spectral flow is the net

number of eigenvalues flowing from negative to positive. First let us calculate the eigenvalues

of the operator ea Ia.

We note that the operator ea Ia acts fibre-wise: on ∆ ⊗ spin(7). Let eµ, µ = 0, 1, . . . , 7 be a

basis of ∆ and IA be a basis of spin(7). Then,

(ea Ia) (eµ ⊗ IA) = (ea · eµ)⊗ [Ia, IA] = (Ea ⊗ ad Ia)(eµ, IA)

where Ea is the matrix of Clifford multiplication with ea, calculated using (2.8). Taking the

Kronecker product of Ea and ad Ia, we get the matrix of ea Ia whose eigenvalues are listed in

the Table 5.1.

Now, let us plot the eigenvalues of the operators DΣ and /DAΣ near zero respectively. The

eigenvalues of DΣ can be found in [8] and that of /DAΣ from Corollary 4.4.2.
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5.2 Index of the Twisted Dirac Operator

Eigenvalues Multiplicities

4 8

−4 7
1
3

(
−3 +

√
33
)

14

1
3

(
3 −

√
33
)

14

1
3

(
−1 +

√
57
)

27

1
3

(
−1 −

√
57
)

27

2 7

0 64

Table 5.1: Eigenvalues of ea Ia and corresponding multiplicities.

From the figure 5.3 below and the eigenvalues of ea Ia, we have the complete description of

the spectral flow. We note that the eigenvalue of ea Ia with the highest magnitude is 4. Again,

from the figure 5.3, we see that the only possibility of having a non-zero spectral flow is the

eigenvalue 1/2 of /DAΣ flowing down to the eigenvalue −7/2 of DΣ. Since 1/2 corresponds to

eigenvalue of /DAΣ obtained from the trivial representation V(0,0,0) of Spin(7), the eigenspinor η

corresponding to eigenvalue 1/2 belongs to the space Hom(V(0,0,0), ∆⊗ spin(7)C)
G2 ⊗V(0,0,0) ⊂

L2(Spin(7), ∆ ⊗ spin(7)C)
G2 in the decomposition (4.8). Now, we have the decomposition

∆ ⊗ spin(7)C
∼= V(0,0,1) ⊗ V(0,1,0)

∼= V(0,0) ⊕ 3V(1,0) ⊕ 2V(0,1) ⊕ 2V(2,0) ⊕ V(1,1).

Hence by Schur’s lemma, we have that η ∈ Hom(V(0,0,0), V(0,0))
G2 ⊗V(0,0,0) which is a subspace

of L2(Spin(7), V(0,0))
G2 . Hence, in order to check whether a flow from the eigenvalue 1/2 of

/DAΣ flowing down to the eigenvalue −7/2 of DΣ exists, we need to calculate the eigenvalue

of ea Ia corresponding to the trivial subrepresentation V(0,0) of ∆ ⊗ spin(7)C.
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7/2
9/2

−7/2
−9/2

3/2
1/2

−3/2
−5/2

DΣ
φ(t) = 1
t = −∞

/DAΣ

φ(t) = 0
t = ∞

Figure 5.3: Spectral flow of the family
{

/DAt,Σ

}
t∈R

on S7.

Then, from the above table of eigenvalues of ea Ia and corresponding multiplicities, it is

clear that since dim V(1,1) = 64, V(1,1) is the eigenspace of the eigenvalue 0. Similarly, the two

copies of V(2,0) are the eigenspaces of the eigenvalues 1
3 (−1±

√
57), the two copies of V(0,1) are

the eigen spaces of the eigenvalues 1
3 (∓3±

√
33), the three copies of V(1,0) are the eigenspaces

of the eigenvalues 2, 4 and −4 respectively, V(0,0) is the eigenspace of one eigenvalue 4. Thus

we have a flow of the eigenvalue moving up to 9/2 and not down to −7/2. Hence, there

is no flow from the eigenvalue 1/2 of /DAΣ to the eigenvalue −7/2 of DΣ, and hence, we

have no flow of eigenvalues of DΣ flowing up or down across 0 to the eigenvalues of /DAΣ .

Consequently, the spectral flow of the family
{

/DAt,Σ

}
t∈R

is given by

sf
({

/DAt,Σ

}
t∈R

)
= 0. (5.17)

Eta Invariant of the Boundary

We recall that we can identify the family of Dirac operators
{

/DAt,Σ

}
t∈R

on S7 with a Dirac

operator /D−
A on the cylinder R × S7, where the identification is given by

/D−
A = E0 ·

(
d
dt

− /DAt,Σ

)
.

Then, the index of the Dirac operator /D−
A on the cylinder R × S7 is precisely the negative of

the spectral flow of the operator sf
({

/DAt,Σ

}
t∈R

)
(see [39] proposition 14.2.1). This follows
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from the fact that d
dt and /DAt,Σ have opposite signs, and Clifford multiplication by E0 is an

isomorphism that does not affect index. Hence, from (5.17), we have

Ind(/D−
A , R × S7) = − sf

({
/DAt,Σ

}
t∈R

)
= 0.

Now, from Proposition 5.2.1 applying Atiyah–Patodi–Singer index formula on the compact

manifold with boundary [−T, T]× S7, we have

Ind(/D−
A , R × S7) = Ind(/D−

Ã , [−T, T]× S7) = I
(

/D−
Ã , [−T, T]× S7

)
+

1
2

η(∂([−T, T]× S7)).

However, we note that Ind(/D−
A , R × S7) is independent of T, and hence taking T → ∞, we

have

Ind(/D−
A , R × S7) = I

(
/D−

Ã , R × S7
)
+

1
2

η(∂(R × S7)).

Now, from (5.13) and (5.15), we have

I
(

/D−
Ã , R × S7

)
= − 1

384π4

∫
R8

tr F4
Ã = − 1

384π4

∫
R8

tr F4
A = I

(
/D−

A , R × S7
)

.

Moreover, since ∂(R × S7) = S7 ⨿ S7, where S7 is S7 with opposite orientation, we have

η(∂(R × S7)) = η(DΣ, S7) + η(/DAΣ , S7) = η(/DAΣ , S7)− η(DΣ, S7) = η(/DAΣ , S7),

since, eta-invariant of DΣ is zero, which follows from the fact that the metric and Levi-Civita

connection of S7 are invariant under an orientation-reversing isometry. We note that the

orientation of S7 corresponding to the operator /DAΣ is the same as the boundary S7 of R8.

So, finally, we have

1
2

η(/DAΣ , S7) =
1
2

η(∂(R × S7)) = Ind(/D−
A , R × S7)− I(/D−

A , R × S7)

=
1

384π4

∫
R×S7

tr F4
A. (5.18)

Index of the Twisted Dirac Operator

From (5.10) and Proposition 5.2.1, we have

Ind− 5
2
(/D−

A , R8, g) = Ind(/D−
A,CI , R8, gCI) = Ind(/D−

Ã,CI , B8
R, gCI).

Since, B8
R is a compact manifold with boundary, applying Atiyah–Patodi–Singer index for-

mula,

Ind− 5
2
(/D−

A , R8, g) = I
(

/D−
Ã,CI , B8

R, gCI

)
+

1
2

η(/DAΣ , ∂B8
R).
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Since Ind− 5
2
(/D−

A , R8, g) is independent of R, taking R → ∞, and from (5.15) and (5.18) we have

Ind− 5
2
(/D−

A , R8, g) = I(/D−
Ã,CI , R8, gCI) +

1
2

η(/DAΣ , S7)

= − 1
384π4

∫
R8

tr F4
Ã +

1
384π4

∫
R×S7

tr F4
A

= − 1
384π4

∫
R8

tr F4
A +

1
384π4

∫
R×S7

tr F4
A

= 0. (5.19)

5.3 The Main Result

Finally, we have the main result on the deformations of FNFN Spin(7)-instanton.

Theorem 5.3.1. The virtual dimension of the moduli space M(AΣ, ν) of FNFN Spin(7)-instanton
with decay rate ν ∈ (−2, 0) \ {−1} is given by

virtual-dimM(AΣ, ν) =

1 if ν ∈ (−2,−1)

9 if ν ∈ (−1, 0).
(5.20)

Proof. From (5.19) we have that the index of the Dirac operator /D−
A corresponding to the rate

−5/2 is zero. Moreover, from Corollary 4.4.2, we see that the only critical rates greater that
−5/2 are −2 and −1, corresponding to the eigenvalues 1/2 and 3/2 respectively. Then, from
the facts that the eigenspace of the eigenvalue 1/2 is 1-dimensional and the eigenspace of the
eigenvalue 3/2 is 8-dimensional, the result follows from Theorem 3.1.11.

Now, the two known types of deformations of the FNFN instanton on R8 are the trans-

lation and the dilation. It is clear that translation being 8-dimensional, should come from

spin representation, whereas dilation being one dimensional, should come from the trivial

representation.

From the fact that the eigenvalues of the twisted Dirac operator in the range [1/2, 5/2]

are 1/2 and 3/2, corresponding to the trivial and spin representations respectively, we should

expect that the rate of dilation should be 1/2 − 5/2 = −2 and that of translation should be

3/2− 5/2 = −1. This can be easily verified from the fact that the two deformations translation

and dilation are given by ι ∂

∂xi
FA and ιxi ∂

∂xi
FA respectively.
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Chapter 6

Deformations of Clarke-Oliveira’s
Instanton on Bryant-Salamon Manifold

The aim of this chapter is to compute the deformations of Clarke–Oliveira’s Instanton on

the Bryant–Salamon Spin(7)-Manifold. The Bryant–Salamon Spin(7)-Manifold is the negative

spinor bundle of S4 which is an asymptotically conical manifold where the link is the squashed

sphere Sp(2)×Sp(1)
Sp(1)×Sp(1) (see [12]). Clarke and Oliveira in [16] have constructed instantons on this

manifold. To calculate the deformations of the instanton we use the deformation theory of

asymptotically conical Spin(7)-instantons developed in chapter 3.

6.1 Bryant–Salamon Spin(7)-Manifold

In this section, we derive the Bryant–Salamon metric using homogeneous space techniques,

where we identify the link — the squashed 7-sphere — with the homogeneous space Sp(2)×Sp(1)
Sp(1)×Sp(1) .

6.1.1 The Squashed 7-Sphere

Friedrich–Kath–Moroianu–Semmelmann in [26] have classified all compact, simply connected

homogeneous nearly G2 manifolds. As homogeneous space, the squashed 7-sphere can be

written as Σ7 := Sp(2)×Sp(1)
Sp(1)×Sp(1) . Recall the groups

Sp(1) :=
{

a ∈ H : aa† = 1
}

, Sp(2) :=
{

A =

(
a b
c d

)
: a, b, c, d ∈ H, AA† = I

}
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6. Deformations of Clarke-Oliveira’s Instanton on Bryant-Salamon Manifold

and corresponding Lie algebras

sp(1) :=
{

x ∈ H : x + x† = 0
}

, sp(2) :=
{

A =

(
x y
z w

)
: x, y, z, w ∈ H, A + A† = 0

}
.

Denote

Sp(1)u :=
{((

g 0
0 1

)
, 1
)

: g ∈ Sp(1)
}

, Sp(1)d :=
{((

1 0
0 g

)
, g
)

: g ∈ Sp(1)
}

.

The corresponding Lie algebras are given by

sp(1)u :=
{((

x 0
0 0

)
, 0
)

: x ∈ sp(1)
}

, sp(1)d :=
{((

0 0
0 x

)
, x
)

: x ∈ sp(1)
}

.

Then,

sp(1)u ⊕ sp(1)d =

{((
x 0
0 y

)
, y
)

: x, y ∈ sp(1)
}

.

We have a decomposition of the Lie algebra sp(2)⊕ sp(1) as

sp(2)⊕ sp(1) = sp(1)u ⊕ sp(1)d ⊕m.

We want to find m = (sp(1)u ⊕ sp(1)d)
⊥, where the orthogonality is with respect to the Killing

form. Since m is a representation of Sp(1)u × Sp(1)d, we want to decompose m into irreducible

representations of Sp(1)u × Sp(1)d.

Let Wi be the unique irreducible representation of SU(2) ∼= Sp(1) of dimension (i + 1).

Then,

W0 ≡ Trivial representation (dim W0 = 1),

W1 ≡ Standard representation (dim W1 = 2),

W2 ≡ Adjoint representation (dim W2 = 3).

Let Wu
i be an irreducible representation of Sp(1)u and Wd

i be an irreducible representation

of Sp(1)d. Let us define W(i,j) := Wu
i ⊗Wd

j , the irreducible representations of Sp(1)u × Sp(1)d.

Clearly, dim W(i,j) = (i + 1)(j + 1). Then

m = W(1,1) ⊕ W(0,2). (6.1)

Now, we want to find a basis for m. We note that m ∼= TpΣ ∼= Vp ⊕ Hp ∼= Im H ⊕ H, where

Vp is the vertical space and Hp is the horizontal space with dimensions 3 and 4 respectively,

corresponding to the Hopf fibration S7 → S4. Now,

Im H ∼=
{((

0 0
0 −qz

)
, pz
)

: z ∈ sp(1)
}

,
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6.1 Bryant–Salamon Spin(7)-Manifold

where we determine p = 3 and q = 2 using the Killing form. We choose a basis

I1 =

((
0 0
0 2i

)
,−3i

)
, I2 =

((
0 0
0 2j

)
,−3j

)
, I3 =

((
0 0
0 2k

)
,−3k

)
. (6.2)

Moreover,

H =

{((
0 b

−b† 0

)
, 0
)

: b ∈ H

}
and, we choose a basis

I4 =

((
0 1
−1 0

)
, 0
)

, I5 =

((
0 −i
−i 0

)
, 0
)

, I6 =

((
0 −j
−j 0

)
, 0
)

, I7 =

((
0 −k
−k 0

)
, 0
)

.

(6.3)

Denote the dual basis of Ia by ea for a = 1, . . . , 7.

Then I1, . . . , I7 together with

I8 =

((
i 0
0 0

)
, 0
)

, I9 =

((
j 0
0 0

)
, 0
)

, I10 =

((
k 0
0 0

)
, 0
)

,

I11 =

((
0 0
0 i

)
, i
)

, I12 =

((
0 0
0 j

)
, j
)

, I13 =

((
0 0
0 k

)
, k
)

(6.4)

form a basis of sp(2)× sp(1). Our objective is to calculate the Sp(2)× Sp(1)-invariant metric

g, three-form ϕ and ψ = ∗ϕ on Σ. We note that this corresponds to calculating the Sp(1)u ×
Sp(1)d-invariant metric g, three-form ϕ and ψ = ∗ϕ on m. We consider an ansatz for ϕ given

by

ϕ = α3e123 − αβ2(e1 ∧ ω1 + e2 ∧ ω2 + e3 ∧ ω3) (6.5)

where ω1, ω2, ω3 forms a basis for Λ2
+H∗. Explicitly, we take ω1 = e45 + e67, ω2 = e46 −

e57, ω3 = e47 + e56. Then, we can write ψ = ∗ϕ, the metric g and the volume form as

ψ =
1
6

β4(ω1 ∧ ω1 + ω2 ∧ ω2 + ω3 ∧ ω3)− α2β2(e12 ∧ ω3 + e23 ∧ ω1 + e31 ∧ ω2)

g = α2
3

∑
i=1

ei ⊗ ei + β2
7

∑
j=4

ej ⊗ ej

and dvol = α3β4e1234567 respectively. Hence,

ϕ = α3e123 − αβ2(e145 + e167 + e246 − e257 + e347 + e356),

ψ = β4e4567 − α2β2(e1247 + e1256 + e2345 + e2367 − e1346 + e1357).
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6. Deformations of Clarke-Oliveira’s Instanton on Bryant-Salamon Manifold

It is easy to verify that ϕ is indeed Sp(1)u × Sp(1)d-invariant. We need to find α and β such

that the metric determined by ϕ is the squashed metric, which is a nearly parallel metric.

Now, from the Maurer–Cartan equation

dea = − f a
ibei ∧ eb − 1

2
f a
bceb ∧ ec

and explicitly calculating the structure constants, we have

dϕ = 4ψ

⇒ α3
(

2
5
(−e1247 − e1256 + e1346 − e1357 − e2345 − e2367)

)
− αβ2

(
10(e1247 + e1256 − e1346 + e1357 + e2345 + e2367)− 12

5
e4567

)
= 4β4e4567 − 4α2β2(e1247 + e1256 + e2345 + e2367 − e1346 + e1357)

⇒ 3αβ2 = 5β4 and
2
5

α3 + 10αβ2 = 4α2β2

⇒ α = 3, β = ± 3√
5

.

Hence,

g = 9
3

∑
i=1

ei ⊗ ei +
9
5

7

∑
j=4

ej ⊗ ej. (6.6)

is the “squashed" metric on Σ7. An orthonormal basis of m is given by

Î1 =
1
3

((
0 0
0 2i

)
,−3i

)
, Î2 =

1
3

((
0 0
0 2j

)
,−3j

)
, Î3 =

1
3

((
0 0
0 2k

)
,−3k

)
.

Î4 =

√
5

3

((
0 1
−1 0

)
, 0
)

, Î5 =

√
5

3

((
0 −i
−i 0

)
, 0
)

,

Î6 =

√
5

3

((
0 −j
−j 0

)
, 0
)

, Î7 =

√
5

3

((
0 −k
−k 0

)
, 0
)

.

We denote the dual basis by êi for i = 1, . . . , 7.

6.1.2 The Bryant–Salamon Metric

We just studied the squashed sphere Σ7 := Sp(2)×Sp(1)
Sp(1)×Sp(1) as a nearly G2 manifold where the

G2-structure is given by (6.5).
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6.1 Bryant–Salamon Spin(7)-Manifold

Now, we consider (0, ∞)× Σ7 equipped with the Spin(7)-structure Φ = dr ∧ ϕ + ψ where

we consider α, β (and hence ϕ, ψ) as functions of r. The metric is given by

g = dr2 + α(r)2
3

∑
i=1

ei ⊗ ei + β(r)2
7

∑
j=4

ej ⊗ ej. (6.7)

The metric has holonomy Spin(7) iff Φ is closed. Then, we have,

∂ψ

∂r
= dΣϕ,

which implies,

dβ2

dr
=

6
5

α (6.8)

⇒ dβ

dr
=

3α

5β
. (6.9)

and

dα

dr
=

25β2 − 2α2

5β2 (6.10)

Hence,

dβ

dα
=

3αβ

25β2 − 2α2 .

This is a homogeneous ordinary differential equation. The solution is β4(5β2 − α2)3 = C.

Now, with the initial condition α(0) = 0 and β(0) =: β0, we have β4(5β2 − α2)3 = β10
0 , and

α, β are both strictly increasing for r > 0. It can be shown that the metric (6.7) on (0, ∞)× Σ7

can be smoothly extended over ((0, ∞)× Σ7) ∪ S4.

Now,

β4(5β2 − α2)3 = β10
0 ⇒ α2 =

(
5 − (β0β−1)

10
3

)
β2. (6.11)

Moreover,

dr2 =

(
dr
dβ

)2

dβ2 =
25
9

1

5 − (β0β−1)
10
3

dβ2.

Moreover, from (6.8), We note that

β2(r) = β2
0 +

6
5

∫ r

0
α(s) ds. (6.12)
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6. Deformations of Clarke-Oliveira’s Instanton on Bryant-Salamon Manifold

Hence, considering β as an independent variable, the metric (6.7) can be written as

g =
25
9

1

5 − (β0β−1)
10
3

dβ2 +
(

5 − (β0β−1)
10
3

)
β2

3

∑
i=1

ei ⊗ ei + β2
7

∑
j=4

ej ⊗ ej (6.13)

which is the Bryant–Salamon metric on ((0, ∞)×Σ7)∪ S4 ∼= /S−(S4). Thus, /S−(S4) is an asymp-

totically conical Spin(7)-manifold over the link squashed sphere with rate −10/3.

6.2 Clarke-Oliveira’s Instanton

Consider the gauge group Sp(1) ∼= SU(2). Then we have three isotropy homomorphisms

from Sp(1)u × Sp(1)d to Sp(1), namely

λ0 : Sp(1)u × Sp(1)d → Sp(1)((
g1 0
0 g2

)
, g2

)
7→ 1

λ1 : Sp(1)u × Sp(1)d → Sp(1)((
g1 0
0 g2

)
, g2

)
7→ g1

λ2 : Sp(1)u × Sp(1)d → Sp(1)((
g1 0
0 g2

)
, g2

)
7→ g2.

Consider the bundle Pi = (Sp(2) × Sp(1)) ×λi Sp(1) over Σ7 := Sp(2)×Sp(1)
Sp(1)×Sp(1) . From Wang’s

theorem [59], it follows that the invariant connections on Pi correspond to the Sp(1)× Sp(1)-

equivariant homomorphisms

Λi : (m, ad) → (sp(1), ad ◦λi).

Now,

ad ◦λi : sp(1)u ⊕ sp(1)d → End(sp(1)),

Then,

ad ◦λ0(X, Y)Z = ad(0)Z = 0.

Hence, the map Λ0 is equivalent to a map

W(1,1) ⊕ W(0,2) → W(0,0),
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6.2 Clarke-Oliveira’s Instanton

and so, must be trivial. Moreover,

ad ◦λ1(X, Y)Z = ad(X)Z = [X, Z].

Hence, the map Λ1 equivalent to a map

W(1,1) ⊕ W(0,2) → W(2,0)

is again trivial. Finally,

ad ◦λ2(X, Y)Z = ad(Y)Z = [Y, Z].

Hence, the map Λ2 can be described as follows,

W(1,1) ⊕ W(0,2) → W(0,2).

That is, by Schur’s lemma, Λ2|W(1,1)
is trivial map, whereas Λ2|W(0,2)

is the map

φ · Id : W(0,2) → W(0,2)

for some real number φ.

We note that for λ0 we get the flat connection, and for λ1, the canonical connection. Thus,

these two cases fail to give us anything interesting. Hence, we ignore these two cases. We

rename λ2 to be λ, Λ2 to be Λ and the corresponding bundle P2 to be P.

Let us fix a basis Ta, a = 1, 2, 3 for sp(1) ∼= su(2), where Ta = −iσa and σa, a = 1, 2, 3 are

the Pauli matrices given by

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
.

Let us denote Ψ by the matrix of Λ, i.e., Λ(Ia) = ΨacTc, for a, c = 1, 2, 3.

In local coordinates, any Sp(2) × Sp(1)-invariant connection on the bundle P over the

nearly G2-manifold Σ7 can be written as

A = eiλ(Ii) + eaΛ(Ia)

where i = 11, 12, 13, and the basis elements IA have been listed in (6.2). Now, we consider

(0, ∞)× Σ7 equipped with the Spin(7)-structure Φ = dr ∧ ϕ + ψ. The metric is given by

g = dr2 + α(r)2
3

∑
i=1

ei ⊗ ei + β(r)2
7

∑
j=4

ej ⊗ ej.

75



6. Deformations of Clarke-Oliveira’s Instanton on Bryant-Salamon Manifold

We consider the normalised basis ẽa where ẽ0 = e0 = dr, ẽa = α(r)ea for a = 1, 2, 3 and

ẽb = β(r)eb for b = 4, 5, 6, 7. For a = 1, 2, 3, we choose ea+10 = ẽa+10. Denote the dual of ẽi by

Ĩi for i = 1, . . . , 13.

A connection 1-form on the bundle π∗P → (0, ∞)×Σ7 for the projection π : (0, ∞)×Σ7 →
Σ7 is given by A = A0ẽ0 + Aa ẽa which yields the Sp(2) × Sp(1)-invariant connection (see

Appendix A) given by

A = ẽiλ( Ĩi) + ẽaΛ( Ĩa)

where i = 11, 12, 13. Now, for a = 1, 2, 3, we have Λ( Ĩa) = Ψ̃abTb where Ψ̃ab(r) = φ̃(r)δab.

Whereas, Λ( Ĩa) =
1

α(r)Λ(Ia) =
1

α(r)ΨabTb where Ψab(r) = φ(r)δab. Then,

A = ẽa+10Ta + φ̃(r)ẽaTa (6.14)

= ea+10Ta + φ(r)eaTa, (6.15)

for a = 1, 2, 3, where α(r)φ̃(r) = φ(r). Here without loss of generality, we take the temporal

gauge A0 = 0. The curvature of this connection is given by

FA = F0a ẽ0 ∧ ẽa +
1
2

Fbc ẽb ∧ ẽc

where

F0a =
∂Aa

∂r
=

dφ̃(r)
dr

Ta + φ̃(r)
∂α

∂r
1
α

Ta. (6.16)

Now, the ASD instanton equation can be written as

F0a = −1
2

ϕabcFbc

where ϕabc are structure constants of the octonions. Applying the Maurer–Cartan equations,

dea = − f a
ibei ∧ eb − 1

2
f a
bceb ∧ ec

dei = −1
2

f i
bceb ∧ ec − 1

2
f i
jkej ∧ ek

where f C
AB are the structure constants for the basis IA dual to eA, i.e., [IA, IB] = f C

AB IC. Let f̃ C
AB

are the structure constants for the basis ĨA dual to ẽA. we have

(dA)bc = − f̃ d+10
bc Td − φ̃(r) f̃ d

bcTd

and

[A ∧ A]bc = 4φ̃(r)2ϵdbcTd.
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6.2 Clarke-Oliveira’s Instanton

Hence,

Fbc = − f̃ d+10
bc Td − φ̃(r) f̃ d

bcTd + 2φ̃(r)2ϵdbcTd.

Hence the ASD instanton equation reduces to

2
dφ̃(r)

dr
Ta + 2φ̃(r)

∂α

∂r
1
α

Ta = ϕabc f̃ d+10
bc Td + φ̃(r)ϕabc f̃ d

bcTd − 2φ̃(r)2ϕabcϵdbcTd. (6.17)

From the values of the structure constants, simplifying, we get

dφ̃(r)
dr

− 12
(

5β2 − α2

5α2β2

)
+

(
35β2 + 2α2

5αβ2

)
φ̃(r) + 2φ̃(r)2 = 0. (6.18)

To solve the equation (6.18), we first simplify by the substitution x := αφ̃ + 3 = φ + 3, which

gives,

ẋ = −2
α

x
(

x −
(

5 − 2α2

5β2

))
. (6.19)

Now, following the analysis done in [16] we use the substitution

y(r) =
x(r)
α(r)2

⇒ x = α2y (6.20)

⇒ ẋ = α2ẏ + 2αy
25β2 − 2α2

5β2 (6.21)

where we have used (6.10). Substituting (6.20) and (6.21) in (6.19), we have

ẏ = −2αy2 ⇒ dy
y2 = −2α(r)dr. (6.22)

Now, we consider the initial condition,

y(0) = y0. (6.23)

Then, integrating (6.22) with the initial condition (6.23), we have

y(r) =
1

1
y0
+ 2

∫ r
0 α(r)dr

⇒ x(r) =
y0α2

1 + 2y0
∫ r

0 α(s)ds
.

Then, from (6.11) and (6.12), we have

φ(r) =
α2

1
y0
+ 2

∫ r
0 α(s)ds

− 3 =
5β2

0β
4
3 − β

10
3

0 − 3
y0

β
4
3

β
4
3

(
1
y0
+ 5

3 (β2 − β2
0)
) . (6.24)
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6. Deformations of Clarke-Oliveira’s Instanton on Bryant-Salamon Manifold

Remark 6.2.1. We note that φ(r) = 0 corresponds to the canonical connection. We want to
find the value of φ(r) for which we have the flat connection. For flat connection, we can write
φ(r) = c where c is a constant. To find c we substitute φ = c and α

β =
√

5 in the above
equation. Then, equation (6.18) implies c = 0,−3. It is easy to verify that c = −3 corresponds
to the flat connection, which takes the form

A0 = ea+10Ta − 3eaTa

= êa+10Ta − êaTa. (6.25)

for a = 1, 2, 3, where ẽa for a = 1, . . . , 7 is an orthonormal basis for the metric (6.7), and
ea+10 = êa+10. Now, the underlying manifold being simply connected, the flat connection A0

is the trivial connection (up to gauge).

Thus, we have a real 1-parameter family of Spin(7)-instantons which, following [16], we

denote by Ay0 .

For y0 = 0, the connection Ay0=0 is a flat connection, whereas for y0 > 0, Ay0 is irreducible.

For y0 < 0, the Spin(7)-instantons are only locally defined in a neighbourhood of S4 [16].

As y0 → ∞, the instanton Ay0 and all its derivatives converge uniformly to an instanton

Alim [16].

The following proposition follows from the removable singularity theorem of Tao and Tian

[57].

Proposition 6.2.2 ([16]). The instanton Ay0 on Σ7 × R ∼= /S−(S4) \ S4 smoothly extends over the
zero section S4 (up to gauge) if and only if the curvature FAy0

is bounded.

Then, we have the following theorem.

Theorem 6.2.3 ([16]). {Ay0}y0∈[0,∞) is a real 1-parameter family of Spin(7)-instantons on the trivial
bundle /S−(S4)× C2 → /S−(S4).

Moreover, Alim extends smoothly over S4 and gives a Spin(7)-instanton on the (non-trivial) bundle
π∗(/S−(S4)) → /S−(S4), for the projection map π : /S−(S4) \ S4 → S4.

Since, for large r, we have α = O(r) and β = O(r), clearly φ = O(r−2). Then, for the

diffeomorphism h : C(Σ) = Σ7 × R → /S−(S4) \ S4 and projection p : C(Σ7) → Σ7, we have,

|h∗(Ay0)− p∗(AΣ)|gC = |φ(r)eaTa|gC

= |1
3

φ(r)êaTa|gC

=
1
3

1
r
|φ(r)êaTa|gΣ
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6.3 Eigenvalues of the Dirac Operators on Squashed 7-Sphere

= O(r−2−1).

where AΣ = ea+10Ta. Then, following definition 2.34, the fastest rate of convergence of Clarke–

Oliveira’s instanton is −2.

6.3 Eigenvalues of the Dirac Operators on Squashed 7-Sphere

In this section, using various representation theoretic and homogeneous space techniques, we

calculate the eigenvalues of the untwisted and twisted Dirac operators on the squashed 7-

sphere. The results will directly be used to find the critical rates of the negative twisted Dirac

operators for Clarke–Oliveira’s instanton and in the spectral flow analysis for the index of the

Dirac operator.

6.3.1 Eigenvalue Bounds for the Twisted Dirac Operators on Squashed 7-Sphere

Let V(a,b) be the irreducible representations of Sp(2) corresponding to the highest weight

vector (a, b). Then,

V(0,0)
∼= C is the trivial representation,

V(0,1)
∼= H2 is the standard representation,

V(1,0) is the 5-dimensional representation under the isomorphism Sp(2) ∼= Spin(5).

Define V(a,b,c) := V(a,b) ⊗ Wc to be the irreducible representation of Sp(2)× Sp(1) and let

W(a,b) be that of Sp(1)u × Sp(1)d.

The Casimir eigenvalues of the Casimir operator (4.11) using the nearly G2-metric (4.5) for

c2 = 3/40, are given by

ρ(a,b,c)

(
Cassp(2)⊕sp(1)

)
= csp(2)⊕sp(1)

(a,b,c) Id,

ρ(a,b)(Cassp(1)u⊕sp(1)d
) = csp(1)u⊕sp(1)d

(a,b) Id .

where,

csp(2)⊕sp(1)
(a,b,c) = −5

9
(4a2 + 2b2 + 3c2 + 4ab + 12a + 8b + 6c),

csp(1)u⊕sp(1)d
(a,b) = −2

9
(5a2 + 3b2 + 10a + 6b).
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Eigenvalue Bounds

Since, for Clarke-Oliveira’s Instanton, the fastest rate of convergence is −2, we consider the

family of moduli spaces M(AΣ, ν) for ν ∈ (−2, 0). Recall the Sp(1)-bundle P = (Sp(2) ×
Sp(1))×λ Sp(1) over Σ7 corresponding to the isotropy homomorphism λ. Denote the adjoint

vector bundle gP. Then, we are interested in the eigenvalues of the twisted Dirac operator

/DAΣ twisted by the bundle gP, in the interval
(
−2 + 5

2 , 0 + 5
2

)
=
( 1

2 , 5
2

)
.

Since (sp(1)C, Ad ◦λ) = W(0,2), we have

Hom (Vγ, ∆ ⊗ sp(1)C)
Sp(1)u×Sp(1)d = Hom

(
Vγ, ∆ ⊗ W(0,2)

)Sp(1)u×Sp(1)d
.

Then, since csp(1)u⊕sp(1)d
(0,2) = −16/3, we calculate the eigenvalues of

(
/D1/3

AΣ

)2

γ
to be −csp(2)⊕sp(1)

γ +

1
9 with multiplicities dim Hom

(
Vγ, ∆ ⊗ W(0,2)

)Sp(1)u⊕Sp(1)d
.

Hence, we can restate theorem 4.1.3 as

Theorem 6.3.1. Let Vγ = V(a,b,c) be an irreducible representation of Sp(2)× Sp(1). If

Lγ := L(a,b,c) :=

√
−csp(2)⊕sp(1)

(a,b,c) +
1
9
− 7

6
> 0

then Lγ is a lower bound on the absolute values of the eigenvalues of
(

/D0
AΣ

)
γ

.

Corollary 6.3.2. Consider the irreducible representations of sp(2)⊕ sp(1) given by

V(0,0,0), V(1,0,0), V(0,0,1), V(0,1,0), V(1,0,1), V(0,1,1), V(0,2,0), V(0,0,2).

If Vγ is not one of these irreducible representations, then the operator(
/D0

AΣ

)
γ

: Hom (Vγ, ∆ ⊗ sp(1)C)
sp(1)u⊕sp(1)d → Hom (Vγ, ∆ ⊗ sp(1)C)

sp(1)u⊕sp(1)d

has no eigenvalues in the interval
[
− 5

2 , 5
2

]
.

6.3.2 Irreducible Representations of Sp(2)× Sp(1) and Bases

In order to calculate the eigenvalues the the Dirac operator on the squashed 7-sphere, we need

to fix orthonormal bases for the Sp(2)× Sp(1) irreducible representations and the restrictions

to the subspace Sp(1)u × Sp(1)d.
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Irreducible Representations of Sp(2)

For g ∈ Sp(1), consider the embedding of Sp(1) in Sp(2) given by
(

g 0
0 1

)
. As irreducible rep-

resentations of Sp(2), we have the following decomposition in terms of Sp(1)-representations.

Trivial representation V(0,0)
∼= W0 (1-dimensional),

Standard representation V(1,0)
∼= W0 ⊕ 2W1, (5-dimensional)

Vector representation V(0,1)
∼= 2W0 ⊕ W1, (4-dimensional)

Adjoint representation V(0,2)
∼= 3W0 ⊕ 2W1 ⊕ W2 (10-dimensional).

We will use the following models for these representations.

• dim V(0,0) = 1. A basis can be taken as 1.

• dim V(1,0) = 5. We consider the model

VR
(1,0) =

{
X ∈ Mat(2, H) : X† = X, Tr X = 0

}
=

{(
x h
h† −x

)
: x ∈ R, h ∈ H

}
.

Then, V(1,0) = VR
(1,0) ⊗ C. Sp(2) ∼= Spin(5) acts on R5 ⊗ C ⊂ Cl(R5)⊗ C by conjugation.

By writing h = a − ib − jc − kd, we find a basis as(
1 0
0 −1

)
,
(

0 1
1 0

)
,
(

0 −i
i 0

)
,
(

0 −j
j 0

)
,
(

0 −k
k 0

)
.

• dim V(0,1) = 4. V(0,1)
∼= C4 ∼= H2. Sp(2) acts on H2 by matrix multiplication. Here the

action of C on H2 is given by

(a + ib) ·
(

v1
v2

)
=

(
v1(a + ib)
v2(a + ib)

)
.

for a + ib ∈ C and v1, v2 ∈ H.

A basis can be taken as

K1 =

(
1
0

)
, K2 =

(
0
1

)
, K3 =

(
j
0

)
, K4 =

(
0
j

)
,

where,

2W0 = Span{K2, K4}, W1 = Span{K1, K3}.
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• dim V(0,2) = 10. Bases for the isotypical summands can be taken as

3W0 = Span
{

L1 =

(
0 0
0 i

)
, L2 =

(
0 0
0 j

)
, L3 =

(
0 0
0 k

)}
,

2W1 = Span
{

L4 =

(
0 1
−1 0

)
, L5 =

(
0 −i
−i 0

)
, L6 =

(
0 −j
−j 0

)
, L7 =

(
0 −k
−k 0

)}
,

W2 = Span
{

L8 =

(
i 0
0 0

)
, L9 =

(
j 0
0 0

)
, L10 =

(
k 0
0 0

)}
.

Sp(2) acts adjointly on V(0,2).

Irreducible Representations of Sp(2)× Sp(1)

As irreducible representations of Sp(2)× Sp(1), we have the following decomposition in terms

of Sp(1)u × Sp(1)d-representations.

V(0,0,0)
∼= W(0,0),

V(0,0,1)
∼= W(0,1),

V(0,0,2)
∼= W(0,2),

V(1,0,0)
∼= W(0,0) ⊕ W(1,1),

V(1,0,1)
∼= W(0,1) ⊕ W(1,0) ⊕ W(1,2),

V(0,1,0)
∼= W(1,0) ⊕ W(0,1),

V(0,1,1)
∼= W(0,0) ⊕ W(1,1) ⊕ W(0,2),

V(0,2,0)
∼= W(1,1) ⊕ W(2,0) ⊕ W(0,2).

Basis of V(0,0,2)

We choose an orthonormal basis {1 ⊗ i, 1 ⊗ j, 1 ⊗ k} of W(0,2)
∼= V(0,0,2).

Basis of V(1,0,0)

For V(1,0,0), we choose the orthonormal basis given by,

J1 :=
(

1 0
0 −1

)
⊗ 1, J2 :=

(
0 1
1 0

)
⊗ 1, J3 :=

(
0 −i
i 0

)
⊗ 1, J4 :=

(
0 −j
j 0

)
⊗ 1, J5 :=

(
0 −k
k 0

)
⊗ 1,

where W(0,0) = Span{J1} ⊂ V(1,0,0) and W(1,1) = Span{J2, J3, J4, J5} ⊂ V(1,0,0).
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Basis of V(0,1,1)

First, we note that

Span{K2 ⊗ j − K4 ⊗ 1} = W(0,0).

By identifying the highest weight vectors of W(0,2) ⊂ V(0,1,1) and that of W(0,2) ⊂ V(0,2,0), and

similarly for W(1,1) ⊂ V(0,1,1) and that of W(1,1) ⊂ V(0,2,0), we fix an orthonormal basis of V(0,1,1),

given by

M1 = i(K2 ⊗ j + K4 ⊗ 1),

M2 = (K2 ⊗ 1 + K4 ⊗ j),

M3 = i(K2 ⊗ 1 − K4 ⊗ j),

and

M4 = (−K1 ⊗ j + K3 ⊗ 1),

M5 = i(K1 ⊗ j + K3 ⊗ 1),

M6 = (K1 ⊗ 1 + K3 ⊗ j),

M7 = i(K1 ⊗ 1 − K3 ⊗ j),

together with

M0 = (K2 ⊗ j − K4 ⊗ 1),

where W(0,0) = Span{M0} ⊂ V(0,1,1), W(0,2) = Span{M1, M2, M3} ⊂ V(0,1,1) and W(1,1) =

Span{M4, M5, M6, M7} ⊂ V(0,1,1).

Basis of V(0,2,0)

An orthonormal basis of V(0,2,0) is given by

W(0,2) = Span
{

L1 :=
(

0 0
0 i

)
⊗ 1, L2 :=

(
0 0
0 j

)
⊗ 1, L3 :=

(
0 0
0 k

)
⊗ 1
}

,

W(1,1) = Span
{

L4 :=
1√
2

(
0 1
−1 0

)
⊗ 1, L5 :=

1√
2

(
0 −i
−i 0

)
⊗ 1,

L6 :=
1√
2

(
0 −j
−j 0

)
⊗ 1, L7 :=

1√
2

(
0 −k
−k 0

)
⊗ 1
}

,

W(2,0) = Span
{

L8 :=
(

i 0
0 0

)
⊗ 1, L9 :=

(
j 0
0 0

)
⊗ 1, L10 :=

(
k 0
0 0

)
⊗ 1
}

.
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6.3.3 Eigenvalues of the Untwisted Dirac operator

Consider the complex spinor bundle /S(Σ7) = (Sp(2)× Sp(1))×Sp(1)u⊗Sp(1)d
∆ where ∆ is the

spinor space. Since m ∼= W(1,1) ⊕ W(0,2)
∼= Λ1, W(0,0)

∼= Λ0, and ∆ ∼= Λ0 ⊕ Λ1, we have

∆ ∼= W(0,0) ⊕ W(1,1) ⊕ W(0,2). (6.26)

The canonical connection

∇1 : L2(Sp(2)× Sp(1), ∆)Sp(1)u⊗Sp(1)d → L2(Sp(2)× Sp(1),m∗ ⊗ ∆)Sp(1)u⊗Sp(1)d

can be written as

∇1η = ea ⊗ ρR(Ia)η,

where ea is the basis of m∗ dual to Ia and η ∈ L2(Sp(2) × Sp(1), ∆)Sp(1)u⊗Sp(1)d , and ρR is

defined in (4.2). The corresponding untwisted Dirac operator D1
Σ is given by

D1
Σ = Ia · ρR(Ia). (6.27)

Then, from, (2.15) and (6.27), we have a family of Dirac operators

Dt
Σ = D1

Σ +
(t − 1)

2
ϕ (6.28)

where for t = 0, we have D0
Σ = DΣ (defined in Proposition 3.1.5).

Now,

L2(/S(Σ7)) ∼= L2(Sp(2)× Sp(1), ∆)Sp(1)u⊗Sp(1)d ∼=
⊕

γ∈ ̂Sp(2)×Sp(1)

Hom (Vγ, ∆)Sp(1)u⊗Sp(1)d ⊗ Vγ.

(6.29)

Then, similar to the twisted case in section 4.1, for every t ∈ R, the Dirac operator Dt
Σ,

restricted to Hom(Vγ, ∆)Sp(1)u⊗Sp(1)d ⊗ Vγ is given by

Dt
Σ|Hom(Vγ,∆)Sp(1)u⊗Sp(1)d⊗Vγ

=
(
Dt

Σ
)

γ
⊗ Id (6.30)

where
(
Dt

Σ
)

γ
: Hom(Vγ, ∆)Sp(1)u⊗Sp(1)d → Hom(Vγ, ∆)Sp(1)u⊗Sp(1)d is the Dirac operator(

Dt
Σ
)

γ
η = −Ia · (η ◦ ρVγ(Ia)) +

t − 1
2

ϕ · η. (6.31)

Remark 6.3.3. We note that the untwisted Dirac operator DΣ acting on the bundle /S(Σ7) can
be identified with the twisted Dirac operator /DA0 acting the bundle /S(Σ7)⊗ gP twisted by flat
connection A0 (6.25) on the adjoint bundle gP. Hence, the eigenvalues of DΣ and /DA0 are the
same, a fact that will be used later in calculating the spectral flow of connection for the index
calculation.
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Eigenvalues from the representation V(0,0,0)

Vγ = V(0,0,0)
∼= W(0,0). Then,

Hom (Vγ, ∆)Sp(1)u⊗Sp(1)d ∼= Hom
(

W(0,0), ∆
)Sp(1)u⊗Sp(1)d

is 1-dimensional. A basis is given by

q(0,0) : V(0,0,0) → W(0,0) → ∆

which factors through Λ0 ⊂ ∆. Now,(
D1

Σ

)
γ
= Ia · ρV∗

γ
(Ia) ≡ 0.

Hence, (
D0

Σ
)

γ
=
(
D1

Σ

)
γ
− 1

2
ϕ = −1

2
ϕ.

Now, since q(0,0) factors through W(0,0) ⊂ Λ0, ϕ acts as 7, which follows from Lemma 2.1.3.

Proposition 6.3.4. Let Vγ = V(0,0,0). Then the eigenvalue of
(
D0

Σ

)
γ

is − 7
2 with multiplicity 1.

Eigenvalues from the representation V(0,0,1)

Vγ = V(0,0,1)
∼= W(0,1). Then,

Hom (Vγ, ∆)Sp(1)u⊗Sp(1)d ∼= Hom
(

W(0,1), ∆
)Sp(1)u⊗Sp(1)d

is a 0-dimensional vector space, by Schur’s lemma.

Eigenvalues from the representation V(0,0,2)

Vγ = V(0,0,2)
∼= W(0,2). Then,

Hom (Vγ, ∆)Sp(1)u⊗Sp(1)d ∼= Hom
(

W(0,2), ∆
)Sp(1)u⊗Sp(1)d

is 1-dimensional. A basis is given by

q(0,2) : V(0,0,2) → W(0,2) → ∆

which factors through Λ1 ⊂ ∆.
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Now, we identify q(0,2) with an invariant element of W(0,2) ⊗ W(0,2) ⊂ V(0,0,2) ⊗ ∆. We

choose a basis {1⊗ i, 1⊗ j, 1⊗ k} of W(0,2) ⊂ V(0,0,2), and the basis I1, I2, I3 of W(0,2) ⊂ ∆. Then,

we see that

q(0,2) = (1 ⊗ i)⊗ I1 + (1 ⊗ j)⊗ I2 + (1 ⊗ k)⊗ I3.

Then, (
D1

Σ

)
γ

q(0,2) = Ia · ρV∗
γ
(Ia)q(0,2)

= Ia · (1 ⊗ i)⊗ Ia · I1 + Ia · (1 ⊗ j)⊗ Ia · I2 + Ia · (1 ⊗ k)⊗ Ia · I3

= 4(1 ⊗ i)⊗ I1 + 4(1 ⊗ j)⊗ I2 + 4(1 ⊗ k)⊗ I3 = 4q(0,2).

Moreover, q(0,2) factors through W(0,2) ⊂ Λ1. Hence, from Lemma 2.1.3, ϕ acts as −1. Now,(
Dt

Σ
)

γ
=
(
D1

Σ

)
γ
+

t − 1
2

ϕ.

Then, (
D

1
3
Σ

)2

γ

=

(
4 +

1
3 − 1

2
(−1)

)2

= (13/3)2 = 169/9,

whereas, (
D

1
3
Σ

)2

γ

= −csp(2)⊕sp(1)
(0,0,2) +

49
9

=
120

9
+

49
9

=
169
9

which shows the consistency of the calculation. Finally,(
D0

Σ
)

γ
=
(
D1

Σ

)
γ
− 1

2
ϕ = 4 +

1
2
=

9
2

.

Proposition 6.3.5. Let Vγ = V(0,0,2). Then the eigenvalue of
(
D0

Σ

)
γ

is 9
2 with multiplicity 1.

Eigenvalues from the representation V(1,0,0)

Vγ = V(1,0,0)
∼= W(0,0) ⊕ W(1,1). Then,

Hom (Vγ, ∆)Sp(1)u⊗Sp(1)d ∼= Hom
(

V(1,0,0), ∆
)Sp(1)u⊗Sp(1)d

is 2-dimensional. A basis is given by

q(0,0) : V(1,0,0) → W(0,0) → ∆

which factors through Λ0 ⊂ ∆, and

q(1,1) : V(1,0,0) → W(1,1) → ∆
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which factors through Λ1 ⊂ ∆.

Now, we identify q(0,0) with an invariant element of W(0,0) ⊗ W(0,0) ⊂ V(1,0,0) ⊗ ∆. Thus,

q(0,0) = 1 ⊗ 1 = (J1 ⊗ 1)⊗ 1.

Hence,

Ia · ρV(1,0,0)
(Ia)q(0,0) =

2
√

5
3

q(1,1).

We identify q(1,1) with an invariant element of W(1,1) ⊗ W(1,1) ⊂ V(1,0,0) ⊗ ∆. Thus,

q(1,1) = (J2 ⊗ 1)⊗ I4 + (J3 ⊗ 1)⊗ I5 + (J4 ⊗ 1)⊗ I6 + (J5 ⊗ 1)⊗ I7.

Hence, (
D1

Σ

)
γ

q(0,0) = Ia · ρV∗
γ
(Ia)q(0,0) =

2
√

5
3

q(1,1)

(
D1

Σ

)
γ

q(1,1) = Ia · ρV∗
γ
(Ia)q(1,1) =

8
√

5
3

q(0,0) + 2q(1,1).

Thus, (
D1

Σ

)
γ
=

(
0 8

√
5

3
2
√

5
3 2

)
.

Moreover, q(0,0) factors through W(0,0) ⊂ Λ0 and q(1,1) factors through W(1,1) ⊂ Λ1. Hence,

from Lemma 2.1.3, ϕ acts as diag(7,−1). Now,

(
Dt

Σ
)

γ
=
(
D1

Σ

)
γ
+

t − 1
2

ϕ =

(
7
2 (t − 1) 8

√
5

3
2
√

5
3 2 + 1−t

2

)
.

We note that for t = 1/3, we have
(
D

1
3
Σ

)2

γ

= diag(43/3, 43/3), which shows the consistency

of the calculation, as −csp(2)⊕sp(1)
(1,0,0) + 49

9 = 80
9 + 49

9 = 129
9 . Finally, for t = 0, we have

(
D0

Σ
)

γ
=

(
− 7

2
8
√

5
3

2
√

5
3

5
2

)

and the eigenvalues are given by 1
6 (−3− 2

√
161), 1

6 (−3+ 2
√

161). Thus we have the following

proposition.

Proposition 6.3.6. Let Vγ = V(1,0,0). Then the eigenvalues of
(
D0

Σ

)
γ

are 1
6 (−3 − 2

√
161), 1

6 (−3 +

2
√

161) with multiplicity 1.
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Eigenvalues from the representation V(1,0,1)

Vγ = V(1,0,1)
∼= W(0,1) ⊕ W(1,0) ⊕ W(1,2). Then,

Hom (Vγ, ∆)Sp(1)u⊗Sp(1)d ∼= Hom
(

V(1,0,1), ∆
)Sp(1)u⊗Sp(1)d

is a 0-dimensional vector space, by Schur’s lemma.

Eigenvalues from the representation V(0,1,0)

Vγ = V(0,1,0)
∼= W(1,0) ⊕ W(0,1). Then,

Hom (Vγ, ∆)Sp(1)u⊗Sp(1)d ∼= Hom
(

V(0,1,0), ∆
)Sp(1)u⊗Sp(1)d

is a 0-dimensional vector space, by Schur’s lemma.

Eigenvalues from the representation V(0,1,1)

Vγ = V(0,1,1)
∼= W(0,0) ⊕ W(1,1) ⊕ W(0,2). Then,

Hom (Vγ, ∆)Sp(1)u⊗Sp(1)d ∼= Hom
(

V(0,1,1), ∆
)Sp(1)u⊗Sp(1)d

is 3-dimensional. A basis is given by

q(0,0) : V(0,1,1) → W(0,0) → ∆

which factors through Λ0 ⊂ ∆,

q(1,1) : V(0,1,1) → W(1,1) → ∆

which factors through Λ1 ⊂ ∆, and

q(0,2) : V(0,1,1) → W(0,2) → ∆

which factors through Λ1 ⊂ ∆.

Now, we identify q(0,0) with an invariant element of W(0,0) ⊗ W(0,0) ⊂ V(0,1,1) ⊗ ∆. Thus,

q(0,0) = M0 ⊗ 1.

We identify q(1,1) with an invariant element of W(1,1) ⊗ W(1,1) ⊂ V(0,1,1) ⊗ ∆. Thus,

q(1,1) = M4 ⊗ I4 + M5 ⊗ I5 + M6 ⊗ I6 + M7 ⊗ I7,
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and, we identify q(0,2) with an invariant element of W(0,2) ⊗ W(0,2) ⊂ V(0,1,1) ⊗ ∆. Thus,

q(0,2) = M1 ⊗ I1 + M2 ⊗ I2 + M3 ⊗ I3.

Then, (
D1

Σ

)
γ

q(0,0) =

√
5

3
q(1,1) − 5

3
q(0,2),

(
D1

Σ

)
γ

q(1,1) =
4
√

5
3

q(0,0) − 3q(1,1) − 4
√

5
3

q(0,2),

and (
D1

Σ

)
γ

q(0,2) = −5q(0,0) −
√

5q(1,1) +
2
3

q(0,2).

Hence, (
D1

Σ

)
γ
=

 0 4
√

5
3 −5√

5
3 −3 −

√
5

− 5
3 − 4

√
5

3
2
3

 .

Moreover, q(0,0) factors through W(0,0) ⊂ Λ0, q(1,1) factors through W(1,1) ⊂ Λ1 and q(0,2) factors

through W(0,2) ⊂ Λ1. Hence, from Lemma 2.1.3, ϕ acts as diag(7,−1,−1). Now,

(
Dt

Σ
)

γ
=
(
D1

Σ

)
γ
+

t − 1
2

ϕ =

 7
2 (t − 1) 4

√
5

3 −5√
5

3 −3 + 1−t
2 −

√
5

− 5
3 − 4

√
5

3
2
3 +

1−t
2

 .

We note that for t = 1/3, we have
(
D

1
3
Σ

)2

γ

= diag(16, 16, 16), which shows the consistency of

the calculation, as −csp(2)⊕sp(1)
(0,1,1) + 49

9 = 95
9 + 49

9 = 144
9 . Finally, for t = 0, we have

(
D0

Σ
)

γ
=

− 7
2

4
√

5
3 −5√

5
3 − 5

2 −
√

5
− 5

3 − 4
√

5
3

7
6


and the eigenvalues are given by 1

6 (−3 − 8
√

11), 1
6 (−3 + 8

√
11),− 23

6 . Thus we have the fol-

lowing proposition.

Proposition 6.3.7. Let Vγ = V(0,1,1). Then the eigenvalues of
(
D0

Σ

)
γ

are 1
6 (−3 − 8

√
11), 1

6 (−3 +

8
√

11), − 23
6 with multiplicity 1.
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Eigenvalues from the representation V(0,2,0)

Vγ = V(0,2,0)
∼= W(1,1) ⊕ W(2,0) ⊕ W(0,2). Then,

Hom (Vγ, ∆)Sp(1)u⊗Sp(1)d ∼= Hom
(

V(0,2,0), ∆
)Sp(1)u⊗Sp(1)d

is 2-dimensional. A basis is given by

q(0,2) : V(0,2,0) → W(0,2) → ∆

which factors through Λ1 ⊂ ∆, and

q(1,1) : V(0,2,0) → W(1,1) → ∆

which factors through Λ1 ⊂ ∆.

Now, we identify q(0,2) with an invariant element of W(0,2) ⊗ W(0,2) ⊂ V(0,2,0) ⊗ ∆. Thus,

q(0,2) = L1 ⊗ I1 + L2 ⊗ I2 + L3 ⊗ I3.

and, we identify q(1,1) with an invariant element of W(1,1) ⊗ W(1,1) ⊂ V(0,2,0) ⊗ ∆. Thus,

q(1,1) = L4 ⊗ I4 + L5 ⊗ I5 + L6 ⊗ I6 + L7 ⊗ I7.

Hence, (
D1

Σ

)
γ

q(0,2) = Ia · ρV∗
γ
(Ia)q(0,2) = −8

3
q(0,2) +

√
10q(1,1)

(
D1

Σ

)
γ

q(1,1) = Ia · ρV∗
γ
(Ia)q(1,1) =

4
√

10
3

q(0,2) + 2q(1,1).

Thus, (
D1

Σ

)
γ
=

(
− 8

3
4
√

10
3√

10 2

)
.

Moreover, q(0,2) factors through W(0,2) ⊂ Λ1 and q(1,1) factors through W(1,1) ⊂ Λ1. Hence, ϕ

acts as diag(−1,−1). Now,

(
Dt

Σ
)

γ
=
(
D1

Σ

)
γ
+

t − 1
2

ϕ =

(
− 8

3 +
1−t

2
4
√

10
3√

10 2 + 1−t
2

)
.
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6.3 Eigenvalues of the Dirac Operators on Squashed 7-Sphere

We note that for t = 1/3, we have
(
D

1
3
Σ

)2

γ

= diag(169/9, 169/9), which shows the consistency

of the calculation, as −csp(2)⊕sp(1)
(0,2,0) + 49

9 = 40
3 + 49

9 = 169
9 . Finally, for t = 0, we have

(
D0

Σ
)

γ
=

(
− 13

6
4
√

10
3√

10 5
2

)

and the eigenvalues are given by 9
2 ,− 25

6 . Thus we have the following proposition.

Proposition 6.3.8. Let Vγ = V(0,2,0). Then the eigenvalues of
(
D0

Σ

)
γ

are 9
2 , − 25

6 with multiplicity 1.

Main Result

Theorem 6.3.9. The eigenvalues of the untwisted Dirac operator
(
D0

Σ

)
γ

are

1. For Vγ = V(0,0,0),

−7
2

.

2. For Vγ = V(0,0,2),
9
2

.

3. For Vγ = V(1,0,0),
1
6
(−3 − 2

√
161),

1
6
(−3 + 2

√
161).

4. For Vγ = V(0,1,1)
1
6
(−3 − 8

√
11),

1
6
(−3 + 8

√
11), −23

6
.

5. For Vγ = V(0,2,0)
9
2

, −25
6

.

6.3.4 Eigenvalues of the Twisted Dirac Operator

We note that

∆ ⊗ sp(1)C
∼= ∆ ⊗ W(0,2)

∼= [W(0,0) ⊕ W(1,1) ⊕ W(0,2)]⊗ W(0,2)

∼= W(0,2) ⊕ [W(1,1) ⊗ W(0,2)]⊕ [W(0,2) ⊗ W(0,2)]

∼= W(0,2) ⊕ [W(1,1) ⊕ W(1,3)]⊕ [W(0,0) ⊕ W(0,2) ⊕ W(0,4)]. (6.32)
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6. Deformations of Clarke-Oliveira’s Instanton on Bryant-Salamon Manifold

Now,

L2(/S(Σ)⊗ gP) =
⊕

γ∈ ̂Sp(2)×Sp(1)

Hom
(

Vγ, ∆ ⊗ W(0,2)

)Sp(1)u⊗Sp(1)d
⊗ Vγ

where gP is the adjoint bundle of the principal bundle P = (Sp(2)× Sp(1))×λ Sp(1) defined

in section 6.2. Hence, for each γ, the operator
(

/Dt
AΣ

)
γ

defined in (4.10), acts on the space

Hom
(

Vγ, ∆ ⊗ W(0,2)

)Sp(1)u⊗Sp(1)d
.

Eigenvalues from the representation V(0,0,0)

Vγ = V(0,0,0)
∼= W(0,0). Then,

Hom
(

Vγ, ∆ ⊗ W(0,2)

)Sp(1)u⊗Sp(1)d ∼= Hom
(

W(0,0), ∆ ⊗ W(0,2)

)Sp(1)u⊗Sp(1)d

is 1-dimensional. A basis is given by

q(0,0)
(0,2)(0,2) : V(0,0,0) → W(0,0) → W(0,2) ⊗ W(0,2) → ∆ ⊗ W(0,2)

which factors through Λ1 ⊂ ∆. Now,(
/D1

AΣ

)
γ
= Ia · ρV∗

γ
(Ia) ≡ 0.

Hence, (
/D0

AΣ

)
γ
=
(

/D1
AΣ

)
γ
− 1

2
ϕ = −1

2
ϕ.

Now, since q(0,0)
(0,2)(0,2) factors through W(0,2) ⊂ Λ1, ϕ acts as −1.

Proposition 6.3.10. Let Vγ = V(0,0,0). Then the eigenvalue of
(

/D0
AΣ

)
γ

is 1
2 with multiplicity 1.

Eigenvalues from the representation V(0,0,1)

Vγ = V(0,0,1)
∼= W(0,1). Then,

Hom
(

Vγ, ∆ ⊗ W(0,2)

)Sp(1)u⊗Sp(1)d ∼= Hom
(

W(0,1), ∆ ⊗ W(0,2)

)Sp(1)u⊗Sp(1)d

is a 0-dimensional vector space, by Schur’s lemma.
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6.3 Eigenvalues of the Dirac Operators on Squashed 7-Sphere

Eigenvalues from the representation V(0,0,2)

Vγ = V(0,0,2)
∼= W(0,2). Then,

Hom
(

Vγ, ∆ ⊗ W(0,2)

)Sp(1)u⊗Sp(1)d ∼= Hom
(

W(0,2), ∆ ⊗ W(0,2)

)Sp(1)u⊗Sp(1)d

is 2-dimensional. A basis is given by

q(0,2)
(0,0)(0,2) : V(0,0,2) → W(0,2) → W(0,0) ⊗ W(0,2) → ∆ ⊗ W(0,2)

which factors through Λ0 ⊂ ∆, and

q(0,2)
(0,2)(0,2) : V(0,0,2) → W(0,2) → W(0,2) ⊗ W(0,2) → ∆ ⊗ W(0,2)

which factors through Λ1 ⊂ ∆.

Now, we identify q(0,2)
(0,0)(0,2) with an invariant element of W(0,2) ⊗ W(0,0) ⊗ W(0,2) ⊂ V(0,0,2) ⊗

∆ ⊗ W(0,2). Thus,

q(0,2)
(0,0)(0,2) = (1 ⊗ i)⊗ 1 ⊗ I1 + (1 ⊗ j)⊗ 1 ⊗ I2 + (1 ⊗ k)⊗ 1 ⊗ I3.

Now, we identify q(0,2)
(0,2)(0,2) with an invariant element of W(0,2) ⊗W(0,2) ⊗W(0,2) ⊂ V(0,0,2) ⊗ ∆ ⊗

W(0,2). Thus,

q(0,2)
(0,2)(0,2) = (1⊗ i)⊗ (I2 ⊗T3 − I3 ⊗T2)+ (1⊗ j)⊗ (I3 ⊗T1 − I1 ⊗T3)+ (1⊗ k)⊗ (I1 ⊗T2 − I2 ⊗T1).

Then, (
/D1

AΣ

)
γ

q(0,2)
(0,0)(0,2) = Ia · ρV∗

γ
(Ia)q

(0,2)
(0,0)(0,2) = 2q(0,2)

(0,2)(0,2),

and (
/D1

AΣ

)
γ

q(0,2)
(0,2)(0,2) = Ia · ρV∗

γ
(Ia)q

(0,2)
(0,2)(0,2) = 4q(0,2)

(0,0)(0,2) + 2q(0,2)
(0,2)(0,2).

Thus, (
/D1

AΣ

)
γ
=

(
0 4
2 2

)
Moreover, q(0,2)

(0,0)(0,2) factors through W(0,0) ⊂ Λ0 and q(0,2)
(0,2)(0,2) factors through W(0,2) ⊂ Λ1.

Hence, ϕ acts as diag(7,−1). Now,(
/Dt

AΣ

)
γ
=
(

/D1
AΣ

)
γ
+

t − 1
2

ϕ =

( 7
2 (t − 1) 4

2 2 + 1−t
2

)
.
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6. Deformations of Clarke-Oliveira’s Instanton on Bryant-Salamon Manifold

We note that for t = 1/3, we have
(

/D
1
3
AΣ

)2

γ

= diag(121/9, 121/9), which shows the consis-

tency of the calculation, as −csp(2)⊕sp(1)
(0,2,0) + 1

9 = 120
9 + 1

9 = 121
9 . Finally, for t = 0, we have

(
/D0

AΣ

)
γ
=

(
− 7

2 4
2 5

2

)
and the eigenvalues are given by 1

2 (−1 − 2
√

17), 1
2 (−1 + 2

√
17). Thus we have the following

proposition.

Proposition 6.3.11. Let Vγ = V(0,0,2). Then the eigenvalues of
(

/D0
AΣ

)
γ

are 1
2 (−1− 2

√
17), 1

2 (−1+

2
√

17) with multiplicity 1.

Eigenvalues from the representation V(1,0,0)

Vγ = V(1,0,0)
∼= W(0,0) ⊕ W(1,1). Then,

Hom
(

Vγ, ∆ ⊗ W(0,2)

)Sp(1)u⊗Sp(1)d ∼= Hom
(

V(1,0,0), ∆ ⊗ W(0,2)

)Sp(1)u⊗Sp(1)d

is 2-dimensional. A basis is given by

q(0,0)
(0,2)(0,2) : V(1,0,0) → W(0,0) → W(0,2) ⊗ W(0,2) → ∆ ⊗ W(0,2)

which factors through Λ1 ⊂ ∆, and

q(1,1)
(0,2)(0,2) : V(1,0,0) → W(1,1) → W(1,1) ⊗ W(0,2) → ∆ ⊗ W(0,2)

which factors through Λ1 ⊂ ∆.

Now, we identify q(0,0)
(0,2)(0,2) with an invariant element of W(0,0) ⊗ W(0,2) ⊗ W(0,2) ⊂ V(1,0,0) ⊗

∆ ⊗ W(0,2). Thus,

q(0,0)
(0,2)(0,2) = J1 ⊗ (I1 ⊗ T1 + I2 ⊗ T2 + I3 ⊗ T3)

and, we identify q(1,1)
(1,1)(0,2) with an invariant element of W(1,1) ⊗ W(1,1) ⊗ W(0,2) ⊂ V(1,0,0) ⊗ ∆ ⊗

W(0,2). Thus,

q(1,1)
(1,1)(0,2) = (J2 ⊗ I5 − J3 ⊗ I4 + J4 ⊗ I7 − J5 ⊗ I6)⊗ T1

+ (J2 ⊗ I6 − J4 ⊗ I4 − J3 ⊗ I7 + J5 ⊗ I5)⊗ T2

+ (J2 ⊗ I7 − J5 ⊗ I4 + J3 ⊗ I6 − J4 ⊗ I5)⊗ T3.
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Computing directly, we have,(
/D1

AΣ

)
γ

q(0,0)
(0,2)(0,2) = Ia · ρ(1,0,0)(Ia)q

(0,0)
(0,2)(0,2) =

2
√

5
3

q(1,1)
(1,1)(0,2),

and (
/D1

AΣ

)
γ

q(1,1)
(1,1)(0,2) = Ia · ρ(1,0,0)(Ia)q

(1,1)
(1,1)(0,2) =

8
√

5
3

q(0,0)
(0,2)(0,2) −

2
3

q(1,1)
(1,1)(0,2).

Hence, (
/D1

AΣ

)
γ
=

(
0 8

√
5

3
2
√

5
3 − 2

3 .

)
Moreover, q(0,0)

(0,2)(0,2) factors through W(0,2) ⊂ Λ1 and q(1,1)
(1,1)(0,2) factors through W(1,1) ⊂ Λ1.

Hence, ϕ acts as diag(−1,−1). Now,(
/Dt

AΣ

)
γ
=
(

/D1
AΣ

)
γ
+

t − 1
2

ϕ =

(
1−t

2
8
√

5
3

2
√

5
3 − 2

3 +
1−t

2 .

)
.

We note that for t = 1/3, we have
(

/D
1
3
AΣ

)2

γ

= diag(9, 9), which shows the consistency of the

calculation, as −csp(2)⊕sp(1)
(1,0,0) + 1

9 = 80
9 + 1

9 = 81
9 . Finally, for t = 0, we have

(
/D0

AΣ

)
γ
=

(
1
2

8
√

5
3

2
√

5
3 − 1

6 .

)
and the eigenvalues are given by 19

6 ,− 17
6 . Thus we have the following proposition.

Proposition 6.3.12. Let Vγ = V(1,0,0). Then the eigenvalues of
(

/D0
AΣ

)
γ

are 19
6 , − 17

6 with multiplicity

1.

Eigenvalues from the representation V(1,0,1)

Vγ = V(1,0,1)
∼= W(0,1) ⊕ W(1,0) ⊕ W(1,2). Then,

Hom
(

Vγ, ∆ ⊗ W(0,2)

)Sp(1)u⊗Sp(1)d ∼= Hom
(

V(1,0,1), ∆ ⊗ W(0,2)

)Sp(1)u⊗Sp(1)d

is a 0-dimensional vector space, by Schur’s lemma.

Eigenvalues from the representation V(0,1,0)

Vγ = V(0,1,0)
∼= W(1,0) ⊕ W(0,1). Then,

Hom
(

Vγ, ∆ ⊗ W(0,2)

)Sp(1)u⊗Sp(1)d ∼= Hom
(

V(0,1,0), ∆ ⊗ W(0,2)

)Sp(1)u⊗Sp(1)d

is a 0-dimensional vector space, by Schur’s lemma.
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Eigenvalues from the representation V(0,1,1)

Vγ = V(0,1,1)
∼= W(0,0) ⊕ W(1,1) ⊕ W(0,2). Then,

Hom
(

Vγ, ∆ ⊗ W(0,2)

)Sp(1)u⊗Sp(1)d ∼= Hom
(

V(0,1,1), ∆ ⊗ W(0,2)

)Sp(1)u⊗Sp(1)d

is 4-dimensional. A basis is given by

q(0,0)
(0,2)(0,2) : V(0,1,1) → W(0,0) → W(0,2) ⊗ W(0,2) → ∆ ⊗ W(0,2)

which factors through Λ1 ⊂ ∆,

q(1,1)
(1,1)(0,2) : V(0,1,1) → W(1,1) → W(1,1) ⊗ W(0,2) → ∆ ⊗ W(0,2)

which factors through Λ1 ⊂ ∆,

q(0,2)
(0,0)(0,2) : V(0,1,1) → W(0,2) → W(0,0) ⊗ W(0,2) → ∆ ⊗ W(0,2)

which factors through Λ0 ⊂ ∆, and

q(0,2)
(0,2)(0,2) : V(0,1,1) → W(0,2) → W(0,2) ⊗ W(0,2) → ∆ ⊗ W(0,2)

which factors through Λ1 ⊂ ∆.

Now, we identify q(0,0)
(0,2)(0,2) with an invariant element of W(0,0) ⊗ W(0,2) ⊗ W(0,2) ⊂ V(0,1,1) ⊗

∆ ⊗ W(0,2). Hence,

q(0,0)
(0,2)(0,2) = M0 ⊗ (I1 ⊗ T1 + I2 ⊗ T2 + I3 ⊗ T3).

We identify q(1,1)
(1,1)(0,2) with an invariant element of W(1,1)⊗W(1,1)⊗W(0,2) ⊂ V(0,1,1)⊗∆⊗W(0,2).

Hence,

q(1,1)
(1,1)(0,2) = (M4 ⊗ I5 − M5 ⊗ I4 + M6 ⊗ I7 − M7 ⊗ I6)⊗ T1

+ (M4 ⊗ I6 − M6 ⊗ I4 − M5 ⊗ I7 + M7 ⊗ I5)⊗ T2

+ (M4 ⊗ I7 − M7 ⊗ I4 + M5 ⊗ I6 − M6 ⊗ I5)⊗ T3.

We identify q(0,2)
(0,0)(0,2) with an invariant element of W(0,2)⊗W(0,0)⊗W(0,2) ⊂ V(0,1,1)⊗∆⊗W(0,2).

Hence,

q(0,2)
(0,0)(0,2) = M1 ⊗ 1 ⊗ T1 + M2 ⊗ 1 ⊗ T2 + M3 ⊗ 1 ⊗ T3,
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and, we identify q(0,2)
(0,2)(0,2) with an invariant element of W(0,2) ⊗ W(0,2) ⊗ W(0,2) ⊂ V(0,1,1) ⊗ ∆ ⊗

W(0,2). Hence,

q(0,2)
(0,2)(0,2) = M1 ⊗ (I2 ⊗ T3 − I3 ⊗ T2) + M2 ⊗ (I3 ⊗ T1 − I1 ⊗ T3) + M3 ⊗ (I1 ⊗ T2 − I2 ⊗ T1),

A direct computation yields,(
/D1

AΣ

)
γ

q(0,0)
(0,2)(0,2) =

√
5

3
q(1,1)
(1,1)(0,2) +

5
3

q(0,2)
(0,0)(0,2) +

5
3

q(0,2)
(0,2)(0,2),

(
/D1

AΣ

)
γ

q(1,1)
(1,1)(0,2) =

4
√

5
3

q(0,0)
(0,2)(0,2) + q(1,1)

(1,1)(0,2) +
4
√

5
3

q(0,2)
(0,0)(0,2) −

4
√

5
3

q(0,2)
(0,2)(0,2),(

/D1
AΣ

)
γ

q(0,2)
(0,0)(0,2) =

5
3

q(0,0)
(0,2)(0,2) +

√
5

3
q(1,1)
(1,1)(0,2) +

1
3

q(0,2)
(0,2)(0,2),

and (
/D1

AΣ

)
γ

q(0,2)
(0,2)(0,2) =

10
3

q(0,0)
(0,2)(0,2) −

2
√

5
3

q(1,1)
(1,1)(0,2) +

2
3

q(0,2)
(0,0)(0,2) +

1
3

q(0,2)
(0,2)(0,2)

Hence

(
/D1

AΣ

)
γ
=


0 4

√
5

3
5
3

10
3√

5
3 1

√
5

3 − 2
√

5
3

5
3

4
√

5
3 0 2

3
5
3 − 4

√
5

3
1
3

1
3

 .

Moreover, q(0,0)
(0,2)(0,2) factors through W(0,2) ⊂ Λ1, q(1,1)

(1,1)(0,2) factors through W(1,1) ⊂ Λ1, q(0,2)
(0,0)(0,2)

factors through W(0,0) ⊂ Λ0 and q(0,2)
(0,2)(0,2) factors through W(0,2) ⊂ Λ1. Hence, ϕ acts as

diag(−1,−1, 7,−1). Now,

(
/Dt

AΣ

)
γ
=
(

/D1
AΣ

)
γ
+

t − 1
2

ϕ =


1−t

2
4
√

5
3

5
3

10
3√

5
3 1 + 1−t

2

√
5

3 − 2
√

5
3

5
3

4
√

5
3

7
2 (t − 1) 2

3
5
3 − 4

√
5

3
1
3

1
3 +

1−t
2

 .

We note that for t = 1/3, we have
(

/D
1
3
AΣ

)2

γ

= diag(32/3, 32/3, 32/3, 32/3), which shows the

consistency of the calculation, as −csp(2)⊕sp(1)
(0,1,1) + 1

9 = 95
9 + 1

9 = 96
9 . Finally, for t = 0, we have

(
/D0

AΣ

)
γ
=


1
2

4
√

5
3

5
3

10
3√

5
3

3
2

√
5

3 − 2
√

5
3

5
3

4
√

5
3 − 7

2
2
3

5
3 − 4

√
5

3
1
3

5
6


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and the eigenvalues are given by 1
6 (−3− 16

√
2), 1

6 (−3+ 16
√

2), 1
6 (1− 8

√
6), 1

6 (1+ 8
√

6). Thus

we have the following proposition.

Proposition 6.3.13. Let Vγ = V(0,1,1). Then the eigenvalues of
(

/D0
AΣ

)
γ

are 1
6 (−3− 16

√
2), 1

6 (−3+

16
√

2), 1
6 (1 − 8

√
6), 1

6 (1 + 8
√

6) with multiplicity 1.

Eigenvalues from the representation V(0,2,0)

Vγ = V(0,2,0)
∼= W(1,1) ⊕ W(2,0) ⊕ W(0,2). Then,

Hom
(

Vγ, ∆ ⊗ W(0,2)

)Sp(1)u⊗Sp(1)d ∼= Hom
(

V(0,1,1), ∆ ⊗ W(0,2)

)Sp(1)u⊗Sp(1)d

is 3-dimensional. A basis is given by

q(1,1)
(1,1)(0,2) : V(0,2,0) → W(1,1) → W(1,1) ⊗ W(0,2) → ∆ ⊗ W(0,2)

which factors through Λ1 ⊂ ∆,

q(0,2)
(0,0)(0,2) : V(0,2,0) → W(0,2) → W(0,0) ⊗ W(0,2) → ∆ ⊗ W(0,2)

which factors through Λ0 ⊂ ∆, and

q(0,2)
(0,2)(0,2) : V(0,2,0) → W(0,2) → W(0,2) ⊗ W(0,2) → ∆ ⊗ W(0,2)

which factors through Λ1 ⊂ ∆.

Now, we identify q(1,1)
(1,1)(0,2) with an invariant element of W(1,1) ⊗ W(1,1) ⊗ W(0,2) ⊂ V(0,2,0) ⊗

∆ ⊗ W(0,2). Hence,

q(1,1)
(1,1)(0,2) = (L4 ⊗ I5 − L5 ⊗ I4 + L6 ⊗ I7 − L7 ⊗ I6)⊗ T1

+ (L4 ⊗ I6 − L6 ⊗ I4 − L5 ⊗ I7 + L7 ⊗ I5)⊗ T2

+ (L4 ⊗ I7 − L7 ⊗ I4 + L5 ⊗ I6 − L6 ⊗ I5)⊗ T3.

We identify q(0,2)
(0,0)(0,2) with an invariant element of W(0,2)⊗W(0,0)⊗W(0,2) ⊂ V(0,2,0)⊗∆⊗W(0,2).

Hence,

q(0,2)
(0,0)(0,2) = L1 ⊗ 1 ⊗ T1 + L2 ⊗ 1 ⊗ T2 + L3 ⊗ 1 ⊗ T3,

and, we identify q(0,2)
(0,2)(0,2) with an invariant element of W(0,2) ⊗ W(0,2) ⊗ W(0,2) ⊂ V(0,2,0) ⊗ ∆ ⊗

W(0,2). Hence,

q(0,2)
(0,2)(0,2) = L1 ⊗ (I2 ⊗ T3 − I3 ⊗ T2) + L2 ⊗ (I3 ⊗ T1 − I1 ⊗ T3) + L3 ⊗ (I1 ⊗ T2 − I2 ⊗ T1),
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Then, from direct computation, we have

Ia · ρ(0,2,0)(Ia)q
(1,1)
(1,1)(0,2) = −2

3
q(1,1)
(1,1)(0,2) −

4
√

10
3

q(0,2)
(0,0)(0,2) +

4
√

10
3

q(0,2)
(0,2)(0,2),

Ia · ρ(0,2,0)(Ia)q
(0,2)
(0,0)(0,2) = −

√
10
3

q(1,1)
(1,1)(0,2) −

4
3

q(0,2)
(0,2)(0,2),

and

Ia · ρ(0,2,0)(Ia)q
(0,2)
(0,2)(0,2) =

2
√

10
3

q(1,1)
(1,1)(0,2) −

8
3

q(0,2)
(0,0)(0,2) −

4
3

q(0,2)
(0,2)(0,2).

Hence, (
/D1

AΣ

)
γ
=

 − 2
3 −

√
10
3

2
√

10
3

− 4
√

10
3 0 − 8

3
4
√

10
3 − 4

3 − 4
3

 .

Moreover, q(1,1)
(1,1)(0,2) factors through W(1,1) ⊂ Λ1, q(0,2)

(0,0)(0,2) factors through W(0,0) ⊂ Λ0 and

q(0,2)
(0,2)(0,2) factors through W(0,2) ⊂ Λ1. Hence, ϕ acts as diag(−1, 7,−1). Now,

(
/Dt

AΣ

)
γ
=
(

/D1
AΣ

)
γ
+

t − 1
2

ϕ =

− 2
3 +

1−t
2 −

√
10
3

2
√

10
3

− 4
√

10
3

7
2 (t − 1) − 8

3
4
√

10
3 − 4

3 − 4
3 +

1−t
2

 .

We note that for t = 1/3, we have
(

/D
1
3
AΣ

)2

γ

= diag(121/9, 121/9, 121/9), which shows the

consistency of the calculation, as −csp(2)⊕sp(1)
(0,2,0) + 1

9 = 120
9 + 1

9 = 121
9 . Finally, for t = 0, we have

(
/D0

AΣ

)
γ
=

 − 1
6 −

√
10
3

2
√

10
3

− 4
√

10
3 − 7

2 − 8
3

4
√

10
3 − 4

3 − 5
6


and the eigenvalues are given by 1

2 (−1 − 2
√

17), 1
2 (−1 + 2

√
17), − 7

2 . Thus we have the

following proposition.

Proposition 6.3.14. Let Vγ = V(0,2,0). Then the eigenvalues of
(

/D0
AΣ

)
γ

are 1
2 (−1− 2

√
17), 1

2 (−1+

2
√

17), − 7
2 . with multiplicity 1.

Main Result

Theorem 6.3.15. The eigenvalues of the twisted Dirac operator
(

/D0
AΣ

)
γ

are
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1. For Vγ = V(0,0,0),

1
2

.

2. For Vγ = V(0,0,2),

1
2
(−1 − 2

√
17),

1
2
(−1 + 2

√
17).

3. For Vγ = V(1,0,0),

19
6

, −17
6

.

4. For Vγ = V(0,1,1)

1
6
(−3 − 16

√
2),

1
6
(−3 + 16

√
2),

1
6
(1 − 8

√
6),

1
6
(1 + 8

√
6).

5. For Vγ = V(0,2,0)

1
2
(−1 − 2

√
17),

1
2
(−1 + 2

√
17), −7

2
.

Corollary 6.3.16. The only eigenvalue of the twisted Dirac operator /D0
AΣ

in the interval
[
− 5

2 , 5
2

]
is 1

2

corresponding to the trivial representation V(0,0,0).

6.4 Deformations of Clarke–Oliveira’s Instanton

In this section we calculate the deformations of Clarke–Oliveira’s Instanton and calculate the

virtual dimensions of the moduli space. Following similar techniques as in chapter 5, we

compute the index of the twisted Dirac operator /D−
A : Wk,2

− 7
2
→ Wk−1,2

− 9
2

on /S−(S4), where

A is Clarke–Oliveira’s Instanton, using the Atiyah–Patodi–Singer theorem and various other

techniques.

6.4.1 Index of the Twisted Dirac Operator

Let gC be the Bryant–Salamon metric (6.13) on /S−(S4). We define the asymptotically cylindri-

cal “cigar” metric gCI := 1
ϱ2 gC, where ϱ is the radius function (2.30).

100



6.4 Deformations of Clarke–Oliveira’s Instanton

r = 0

S4

Σ7

r → ∞

Figure 6.1: /S−(S4) with cigar metric.

Then, as in Chapter 5, we have

Index
(

/D−
A,C : Wk,2

− 7
2
→ Wk−1,2

− 9
2

)
= Index

(
/D−

A,CI : Wk,2
CI → Wk−1,2

CI

)
. (6.33)

Throughout this section, We identify R × Σ7 with (0, ∞)× Σ7 via t = ln r for r ∈ (0, ∞) and

t ∈ R.

Define a function φ : R → R by

φ(t) =



−3 t < −T
a′, −T < t < − T

2

φ(t), − T
2 < t < T

2

a, T
2 < t < T

0 t > T

(6.34)

where a is a smooth interpolation between its values at T
2 and T and a′ is that of between its

values at −T and − T
2 .

Consider the connection on /S−(S4) given by

A = AΣ + φ(t)eaTa. (6.35)

This connection has the same limits at t = ±∞ as Clarke–Oliveira’s instanton A.

We note that /S−(S4) can be considered as the space [0, ∞)× (Sp(2)× Sp(1))/ ∼ where

(r, g) ∼ (r, g · h) for all r > 0, h ∈ Sp(1)2

(0, g) ∼ (0, g · h) for all h ∈ Sp(1)3. (6.36)

Proposition 6.4.1. Let K8
R := [0, R)× (Sp(2)× Sp(1))/ ∼ be a compact 8-dimensional subset of

/S−(S4), where R > 0 and ∼ is defined as (6.36). Then for sufficiently large R, we have

Index
(

/D−
A,CI , /S−(S4), gCI

)
= Index

(
/D−

A,CI , K8
R, gCI

)
,
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and for sufficiently large T, we have

Index
(

/D−
A , R × Σ7, g

)
= Index

(
/D−

A , [−T, T]× Σ7, g
)

.

where g is the cylindrical metric given by g = dt2 + gΣ7 .

The proof is similar to the proof of proposition 5.2.1.

Now, the index of the twisted Dirac operator /D−
A,CI on K8

R is given by the Atiyah–Patodi–

Singer index theorem, which states that

Index
(

/D−
A,CI , K8

R, gCI

)
= I

(
/D−

A,CI , K8
R, gCI

)
+

1
2

η(/DAΣ , ∂K8
R). (6.37)

By proposition 6.4.1, the index is independent of R, hence taking R → ∞, we have,

Index
(

/D−
A,CI , /S−(S4), gCI

)
= I

(
/D−

A,CI , /S−(S4), gCI

)
+

1
2

η(/DAΣ , Σ7). (6.38)

where, the term I(/D−
A,CI , /S−(S4), gCI) in (6.38) is given by

I(/D−
A,CI , /S−(S4), gCI) = −

∫
/S−(S4)

Â(/S−(S4)) ch(gP ⊗ C)

= −
∫

/S−(S4)

(
1 − 1

24
p1(/S

−(S4)) +
1

5760
(7p1(/S

−(S4))2 − 4p2(/S
−(S4)))

)
(

dim g+ p1(gP) +
1
12
(

p1(gP)
2 − 2p2(gP)

))
= − 1

12

∫
/S−(S4)

(
p1(gP)

2 − 2p2(gP)
)
+

1
24

∫
/S−(S4)

p1(/S
−(S4))p1(gP)

− 1
5760

dim g

∫
/S−(S4)

(7p1(/S
−(S4))2 − 4p2(/S

−(S4))), (6.39)

where pi denotes the ith Pontryagin classes.

6.4.2 Eta Invariant of the Boundary

We calculate the eta invariant η(/DAΣ , Σ7) of the twisted Dirac operator by first, relating it to

the untwisted Dirac operator on the squashed sphere, and then, relating it to the untwisted

Dirac operator on the round sphere, whose eta invariant is known to be zero.

Recall Clarke–Oliveira’s instanton (6.14) with φ given by (6.24). The instanton can be

identified with a family of connections {At : t ∈ R} on Σ7, where t = ln r. The family of Dirac

operators twisted by the connections At is given by

/DAt,Σ = /DAΣ + φ(t)eaTa (6.40)
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= /DAΣ +
1
3

φ(t)êaTa, (6.41)

where φ(t) varies from −3 to 0. Then, from (6.25), (6.40) and remark 6.3.3, we note that,

for φ(t) = 0, we have the Dirac operator /DAΣ twisted by the canonical connection, and for

φ(t) = −3, we have the Dirac operator twisted by the flat connection, given by

DΣ = /DAΣ − êaTa. (6.42)

We identify the family of Dirac operators
{

/DAt,Σ

}
t∈R

on Σ7 with the Dirac operator /D−
A on the

cylinder /C := R × Σ7, given by

/D−
A = dt ·

(
d
dt

− /DAt,Σ

)
.

Σ7

A0

Σ7

AΣ
/CA

Figure 6.2: The cylinder /C.

Then, from [39], the index of the Dirac operator /D−
A on R × Σ7 is

Ind(/D−
A , /C) = − sf

({
/DAt,Σ

}
t∈R

)
. (6.43)

Now, from Proposition 6.4.1 and applying the Atiyah–Patodi–Singer index formula on [−T, T]×
Σ7, we have

Ind(/D−
A , /C) = Ind(/D−

A , [−T, T]× Σ7) = I
(

/D−
A , [−T, T]× Σ7

)
+

1
2

η(∂([−T, T]× Σ7))

where the term η(∂([−T, T] × Σ7)) is the eta invariant for the operator /D−
A restricted to the

submanifold ∂([−T, T] × Σ7). By proposition 6.4.1, since Ind(/D−
A , /C) is independent of T,

taking T → ∞, we get,

Ind(/D−
A , /C) = I

(
/D−

A , /C
)
+

1
2

η(∂/C)

where η(∂/C) is the eta invariant for /D−
A restricted to the submanifold ∂/C.
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Now, from (6.4.1), we have

I
(

/D−
A , /C

)
= I

(
/D−

A , R × Σ7
)

Moreover, since ∂/C = Σ7 ⨿ Σ7, where Σ7 is Σ7 with opposite orientation, from (6.42) we have

η(∂/C) = η(DΣ, Σ7) + η(/DAΣ , Σ7) = η(/DAΣ , Σ7)− η(DΣ, Σ7),

So, finally, we have

1
2

η(/DAΣ , Σ7) =
1
2

η(∂/C) +
1
2

η(DΣ, Σ7)

= Ind(/D−
A , /C)− I(/D−

A , /C) +
1
2

η(DΣ, Σ7)

= − sf
({

/DAt,Σ

}
t∈R

)
− I(/D−

A , /C) +
1
2

η(DΣ, Σ7). (6.44)

Now, we note that since the squashed sphere does not have an orientation reversing isom-

etry, the eta-invariant of the untwisted Dirac operator DΣ may not be zero. So, to find the

eta-invariant of the untwisted Dirac operator on the squashed sphere, we relate it to that of

the round sphere for which we know the eta-invariant of the untwisted Dirac operator is zero.

Consider the cylinder CΣ := Σ × R, and for t ∈ R, a family of Riemannian manifolds

(Σ, gt) where for t = −∞ we have the squashed 7-sphere Σ7 and for t = ∞ we have the round

7-sphere S7.

S7

Σ7

CΣ

Figure 6.3: The cylinder CΣ.

Consider corresponding family of untwisted Dirac operators {DΣ,t}t∈R which we can identify

with an untwisted Dirac operator D− on the cylinder CΣ. Then, using the result from [39],
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6.4 Deformations of Clarke–Oliveira’s Instanton

we have that the index of the Dirac operator on the cylinder CΣ is the negative of the spectral

flow of the family {DΣ,t}t∈R, i.e.,

Ind(D−, CΣ) = − sf
(
{DΣ,t}t∈R

)
. (6.45)

Now, from Proposition 5.2.1 applying the Atiyah–Patodi–Singer index formula on [−T, T]×
Σ7, we have

Ind(D−, CΣ) = I
(
D−, [−T, T]× Σ7)+ 1

2
η(DΣ, ∂([−T, T]× Σ7)).

Since Ind(D−, CΣ) is independent of T, taking T → ∞, we get,

Ind(D−, CΣ) = I
(
D−, CΣ

)
+

1
2

η(∂(CΣ)).

Moreover, since ∂(CΣ) = Σ7 ⨿ S7, where S7 is S7 with opposite orientation, we have

η(∂(CΣ)) = η(DΣ, Σ7)− η(DΣ, S7).

Hence, we have

1
2

η(DΣ, Σ7) =
1
2

η(∂(CΣ)) +
1
2

η(DΣ, S7)

= Ind(D−, CΣ)− I(D−, CΣ) +
1
2

η(DΣ, S7)

= − sf
(
{DΣ,t}t∈R

)
− I(D−, CΣ) +

1
2

η(DΣ, S7). (6.46)

Then, substituting (6.46) in (6.44) and using the fact that η(DΣ, S7) = 0, we have

1
2

η(/DAΣ , Σ7) = − sf
({

/DAt,Σ

}
t∈R

)
− I(/D−

A , /C)− sf
(
{DΣ,t}t∈R

)
− I(D−, CΣ). (6.47)

Spectral Flow of the Connection

We want to find the spectral flow of the family of Dirac operators (6.40). First we compute the

eigenvalues of the operator êaTa which acts fibre-wise, on ∆ ⊗ sp(1). Let eµ, µ = 0, 1, . . . , 7 be

a basis of ∆ and Ta is a basis of sp(1), for a = 1, 2, 3. Then,

(êaTa) (êµ ⊗ Tb)

= (êa · êµ)⊗ [Ta, Tb]

= (Êa ⊗ ad Ta)(êµ ⊗ Tb),
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Eigenvalues Multiplicities

4 4

−4 4

−2 8

2 8

Table 6.1: Eigenvalues of êaTa and corresponding multiplicities.

where Êa is the matrix given by Clifford multiplication with êa. Similarly, we calculate the

matrices ad Ta. We get the matrix of êaTa by taking the Kronecker product of Êa and ad Ta.

The eigenvalues of êaTa are given in table 6.1.

In figure 6.4, we plot the eigenvalues of the operators DΣ and /DAΣ near zero, calculated in

theorems 6.3.9 and 6.3.15.

Now, the the highest magnitude among the eigenvalues of êaTa is 4. Hence, from (6.42),

any flow from an eigenvalue of the twisted Dirac operator /DAΣ to an eigenvalue of the un-

twisted Dirac operator DΣ can have a magnitude of maximum 4. Moreover, from the fig-

ure 6.4, it is evident that the only possible non-zero spectral flow would be a flow from

the eigenvalue 1/2 of /DAΣ to the eigenvalue −7/2 of DΣ, since any other flow of eigen-

values of /DAΣ to eigenvalues of DΣ of opposite sign has magnitude greater than 4. Now,

we recall that 1/2 is an eigenvalue of /DAΣ that corresponds to the trivial representation

V(0,0,0) of Sp(2) × Sp(1). Hence, in the decomposition (4.8), the eigenspinor η correspond-

ing to eigenvalue 1/2 belongs to the space Hom(V(0,0,0), ∆ ⊗ sp(1)C)
sp(1)u⊕sp(1)d ⊗ V(0,0,0) ⊂

L2(Sp(2)× Sp(1), ∆ ⊗ sp(1)C)
sp(1)u⊕sp(1)d . Then, from the decomposition

∆ ⊗ sp(1)C
∼= W(0,0) ⊕ 2W(0,2) ⊕ W(1,1) ⊕ W(1,3) ⊕ W(0,4),

and by Schur’s lemma, we have that η ∈ Hom(V(0,0,0), W(0,0))
sp(1)u⊕sp(1)d ⊗ V(0,0,0) which is a

subspace of L2(Sp(2)× Sp(1), ∆ ⊗ sp(1)C)
sp(1)u⊕sp(1)d . Hence, we compute the eigenvalue of

êaTa corresponding to the trivial subrepresentation W(0,0) of ∆ ⊗ sp(1)C.

A direct calculation shows that the eigenvalue is −4. Thus we have a flow of the eigenvalue

moving up to 9/2 and not down to −7/2. Thus, the spectral flow of the family
{

/DAt,Σ

}
t∈R

is

given by

sf
({

/DAt,Σ

}
t∈R

)
= 0. (6.48)
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− 7
2

9
2 (mult 2)

1
6 (−3 − 2

√
161)

1
6 (−3 + 2

√
161)

1
6 (−3 − 8

√
11)

1
6 (−3 + 8

√
11)

− 23
6− 25

6

1
2

1
2 (−1 − 2

√
17) (mult 2)

1
2 (−1 + 2

√
17) (mult 2)

19
6

− 17
6

1
6 (−3 − 16

√
2)

1
6 (−3 + 16

√
2)

1
6 (1 − 8

√
6)

1
6 (1 + 8

√
6)

− 7
2

DΣ
φ = 1

/DAΣ

φ = 0

Figure 6.4: Spectral flow of the family
{

/DAt,Σ

}
t∈R

on Σ7.

Spectral Flow of the Metric

Consider the Lichnerowicz–Weitzenböck formula for the family of Riemannian manifolds

(Σ, gt), given by

(DΣ,t)
2 = ∇∗

Σ,t∇Σ,t +
1
4

st, (6.49)

where st is the scalar curvature of the Riemannian manifold (Σ, gt). Then, for the family of

Dirac operators to have a nonzero spectral flow, the Dirac operator DΣ,t should have a zero

eigenvalue for some t, and it is only possible if the corresponding scalar curvature st is zero.

Following [37], we consider a family of metrics on Σ, given by

g(t) := a(t)2(η2
1 + η2

2) + b(t)2η2
3 + c(t)2π∗gS4 (6.50)
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where t ∈ R, π : S7 → S4 is a Riemannian submersion, η1, η2, η3 are one forms on S7. Then, for

this family, a = b = c = 1 corresponds to the round metric, and a = b = 1√
5
, c = 1 corresponds

to the squashed metric.

Lemma 6.4.2. [37] The Ricci curvature Ric(t) of the family g(t) is given by

2
(

2 − b2

a2 +
2a4

c4

)
(η2

1 + η2
2) + 2

(
b4

a4 +
2b4

c4

)
η2

3 + 2
(

6 − 2a2 + b2

c2

)
π∗gS4 . (6.51)

It is interesting to note that the Ricci flow for the family g(t) is well defined, and the only

two critical points correspond to the round and squashed metrics respectively [37].

We can easily calculate the scalar curvature of this family to be

4
(

2 − b2

a2 +
2a4

c4

)
1
a2 + 2

(
b4

a4 +
2b4

c4

)
1
b2 + 8

(
6 − 2a2 + b2

c2

)
1
c2

=
8
a2 − 4b2

a4 +
8a2

c4 +
2b2

a4 +
4b2

c4 +
48
c2 − 16a2

c4 − 8b2

c4

=
1
a4 (8a2 − 2b2) +

1
c4 (48c2 − 8a2 − 4b2).

For a = b = c = 1, we have the scalar curvature of the round metric, given by 42; and for

a = b = 1√
5
, c = 1, we have the scalar curvature of the squashed metric, given by 378/5.

Now, we consider a simpler family of Riemannian metrics

g̃(t) := a(t)2(η2
1 + η2

2 + η2
3) + π∗gS4 (6.52)

where a(−∞) = 1 and a(∞) = 1/5. The corresponding family of scalar curvatures is given by
6
a2 + 48 − 12a2, which we note to be always nonzero positive for a ∈

[
1√
5
, 1
]
.

Then, since a spectral flow of metrics, from the round sphere to the squashed sphere, being

a topological invariant, does not depend on the path, proves that

sf
(
{DΣ,t}t∈R

)
= 0. (6.53)

Index of the Twisted Dirac Operator

From (6.48), (6.53) and (6.47), we have,

1
2

η(/DAΣ , Σ7) = −I(/D−
A , /C)− I(D−, CΣ). (6.54)

To calculate I(/D−
A,CI , /S−(S4), gCI) in (6.38), we split /S−(S4) in two parts, /C, and the comple-

ment BΣ.
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6.4 Deformations of Clarke–Oliveira’s Instanton

r = 0

S4

Σ7Σ7

A0 A0 AΣ

/CBΣ

r → ∞

Figure 6.5: /S−(S4) = BΣ ⨿ /C.

Hence,

I(/D−
A,CI , /S−(S4), gCI) = I(D−, BΣ) + I(/D−

A , /C). (6.55)

Then, from (6.38), (6.55) and (6.54), we have,

Ind(/D−
A,CI , /S−(S4), gCI) = I(D−, BΣ)− I(D−, CΣ)

= I(D−, BΣ) + I(D−, CΣ)

= I(D−, BΣ ⨿ CΣ)

= I(D−, MΣ), (6.56)

where CΣ is CΣ with opposite orientation, and the manifold MΣ is diffeomorphic to BΣ#∂CΣ,

where the boundary gluing is defined by X#∂Y := X ⨿ Y/∂X ∼ ∂Y.

S7

S4

Σ7

CΣBΣ

∼=

S7

S4

MΣ

Figure 6.6: BΣ#∂CΣ
∼= MΣ.

Consider the 8-dimensional ball D8 := {x ∈ R8 : |x| ≤ R for some R > 0} equipped with the

cigar metric gCI . Then, we have the following lemma.
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6. Deformations of Clarke-Oliveira’s Instanton on Bryant-Salamon Manifold

Lemma 6.4.3. MΣ#∂D8 is invariantly diffeomorphic to HP2.

Proof. Recall that HP2 ∼= (H3 \ {0})/ ∼ where

x
y
z

 ∼

x
y
z

 λ for λ ∈ H \ {0}. We note

that there is a natural action of Sp(2) on HP2, where, for

(
a b
c d

)
∈ Sp(2), the matrixa b 0

c d 0
0 0 1

 acts on

x
y
z

 ∈ HP2. Since the orbits of the action of Sp(2) on MΣ are ex-

actly S4 and S7, whereas, the orbits of the action of Sp(2) on D8 are exactly S7 and {0}
respectively, it is enough to prove that the orbits of the action of Sp(2) on HP2 are exactly
{0} ∼= Sp(2)/Sp(2), S7 ∼= Sp(2)/Sp(1) and S4 ∼= Sp(2)/Sp(1)2. That is, the stabilizers of the
action are Sp(2), Sp(1), Sp(1)2 respectively.

S7

S4 {0}•• D8MΣ

Figure 6.7: MΣ#∂D8 ∼= HP2.

Case 1. z ̸= 0. Without loss of generality, we can take z = 1. Then, we have the following two
subcases.

Subcase 1: x = y = 0. Then the stabilizer of

0
0
1

 ∈ HP2 is Sp(2).

Subcase 2: x, y not both zero. Then, it is easy to calculate that the stabilizer of

x
y
1

 ∈ HP2 is

Sp(1).
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6.4 Deformations of Clarke–Oliveira’s Instanton

Case 2. z = 0. In this case, it is easy to calculate that the stabilizer of

x
y
0

 ∈ HP2 for x, y not

both zero, is Sp(1)× Sp(1).

Let a ∈ H4(HP2, Z) be a generator such that
∫

HP2
a2 = 1. Then, (see [48])

p1(HP2) = 2a, p2(HP2) = 7a2.

Hence,

Ind(D−, HP2) = I(D−, HP2)

= − 1
5760

dim g

∫
HP2

(7p1(HP2)2 − 4p2(HP2))

= − 1
5760

dim g

∫
HP2

(7 · 4a2 − 4 · 7a2)

= 0,

where the formula for the index is obtained from 6.39 by substituting p1(gP) = p2(gP) = 0,

for the trivial connection. Hence,

I(D−, HP2) = I(D−, MΣ) + I(D−
Σ , D8) = 0.

But, we know that p1(D8) = p2(D8) = 0, which implies I(D−, D8) = 0. Hence,

I(D−, MΣ) = 0. (6.57)

From (6.56), (6.57) and (6.33), we have

Ind− 5
2
(/D−

A , /S−(S4), g) = Ind(/D−
A,CI , /S−(S4), gCI) = 0. (6.58)

6.4.3 Virtual Dimension of the Moduli Space

The main result on the deformations of Clarke–Oliveira’s Instanton is given by the following

theorem.

Theorem 6.4.4. The virtual dimension of the moduli space M(AΣ, ν) of Clarke–Oliveira’s instanton
with decay rate ν ∈ (−2, 0) is given by

virtual-dimM(AΣ, ν) = 1. (6.59)
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6. Deformations of Clarke-Oliveira’s Instanton on Bryant-Salamon Manifold

Proof. The index of the Dirac operator /D−
A corresponding to the rate −5/2 is zero, which

follows from (6.58). Moreover, from Corollary 6.3.16, it follows that the only critical rate
between −5/2 and 0 is −2, corresponding to the eigenvalue 1/2. Then, the result follows from
the fact that the eigenspace of the eigenvalue 1/2 is 1-dimensional using Theorem 3.1.11.

Remark 6.4.5. We note that the deformation of the instanton described in theorem 6.4.4 comes
from the parameter y0 in the expression of φ(r) (6.24) in Clarke–Oliveira’s instanton (6.14).
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Chapter 7

Obstructedness of AC U(1) and SU(2)
Instantons on R8

In this chapter we investigate the existence of U(1) and SU(2) asymptotically conical Sp(2)×
U(1)-invariant instantons on R8. We show that with gauge groups U(1) and SU(2), no such

invariant instantons exist. However, this result enables us to prove that any asymptotically

conical U(1)- or SU(2)-instantons on R8 asymptotic to the flat connection on S7 satisfying

certain condition are obstructed.

SU(2)-instantons on R8 are already studied by Lewis [43]. He showed that there does

not exist SU(2)-instanton on R8 which has finite energy. However, there is no a priori reason

for any asymptotically conical SU(2)-instanton converging to a flat connection on S7 to have

finite energy.

7.1 Sp(2)× U(1)-invariant metrics on R8

As a homogeneous space, the 7-sphere can be written as Sp(2)×Sp(1)
Sp(1)×Sp(1) . We note that the round

metric on S7 is not Sp(2)× Sp(1)-invariant, which follows from the fact that Sp(2)× Sp(1)

is not a subgroup of Spin(7). It is Sp(2)-invariant, and we choose the maximal subgroup

Sp(2)× U(1) of Spin(7) containing Sp(2) for which the round metric is invariant. Hence, we

write the 7-sphere as the homogeneous space Sp(2)×U(1)
Sp(1)×U(1) . Recall the groups

Sp(1) :=
{

a ∈ H : aa† = 1
}

, Sp(2) :=
{

A =

(
a b
c d

)
: a, b, c, d ∈ H, AA† = I

}
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7. Obstructedness of AC U(1) and SU(2) Instantons on R8

and corresponding Lie algebras

sp(1) :=
{

x ∈ H : x + x† = 0
}

, sp(2) :=
{

A =

(
x y
z w

)
: x, y, z, w ∈ H, A + A† = 0

}
.

Now consider the embedding of Sp(1) and U(1) in Sp(2)× U(1) as

Sp(1) :=
{((

g 0
0 1

)
, 1
)

: g ∈ Sp(1)
}

, U(1) :=
{((

1 0
0 h

)
, h
)

: h ∈ U(1)
}

.

The corresponding Lie algebras are given by

sp(1) :=
{((

x 0
0 0

)
, 0
)

: x ∈ sp(1)
}

, u(1) :=
{((

0 0
0 y

)
, y
)

: y ∈ u(1)
}

.

Then,

sp(1)⊕ u(1) =
{((

x 0
0 y

)
, y
)

: x ∈ sp(1), y ∈ u(1)
}

.

We have a decomposition of the Lie algebra sp(2)⊕ u(1) as

sp(2)⊕ u(1) = sp(1)⊕ u(1)⊕m.

We want to find m = (sp(1)⊕ u(1))⊥. But, since sp(2)⊕ u(1) is not semi-simple, its Killing

form is degenerate, so instead we use the Killing form of sp(2) ⊕ sp(1) and the projection

sp(2)⊕ sp(1) → sp(2)⊕ u(1) to choose

m =

{((
0 b

−b† 2(z1i + z2 j + z3k)

)
,−3z1i

)
: b ∈ H, z1i + z2 j + z3k ∈ sp(1)

}
∼= sp(1)⊕ H.

(7.1)

Now, since m is a representation of Sp(1)× U(1), we want to decompose m into irreducible

representations of Sp(1)× U(1).

Let Vi be the unique irreducible representation of SU(2) ∼= Sp(1) of dimension (i + 1).

Then,

V0 ≡ Trivial representation (dim V0 = 1),

V1 ≡ Standard representation (dim V1 = 2),

V2 ≡ Adjoint representation (dim V2 = 3).

Let
((

g 0
0 h

)
, h
)
∈ Sp(1)× U(1) for g ∈ Sp(1), h ∈ U(1). It acts on an element of m as

((
g 0
0 h

)
, h
)((

0 b
−b† 2(z1i + z2 j + z3k)

)
,−3z1i

)((
g−1 0
0 h−1

)
, h−1

)
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7.1 Sp(2)× U(1)-invariant metrics on R8

=

((
0 gbh−1

−hb†g−1 2h(z1i + z2 j + z3k)h−1

)
,−3hz1ih−1

)
.

This shows that m contains three copies of the 1-dimensional irreducible representation and

two copies of the 2-dimensional irreducible representation of Sp(1)×U(1). To explicitly write

m as a direct sum of irreducible representations of Sp(1)×U(1), we first need to calculate the

weights of the irreducible representations of U(1) appearing in the above expression. Let

b = b0 + b1i + b2 j + b3k, h = eiθ = cos θ + i sin θ, h−1 = e−iθ = cos θ − i sin θ. Then, we consider

the action

h · b = bh−1

= (b0 cos θ + b1 sin θ) + (b1 cos θ − b0 sin θ)i + (b2 cos θ − b3 sin θ)j + (b3 cos θ + b2 sin θ)k.

Hence the matrix of the action is given by
cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 cos θ sin θ
0 0 − sin θ cos θ


whose eigenvalues are given by eiθ , e−iθ , eiθ , e−iθ .

Now, consider the action

h(z1i + z2 j + z3k)h−1

= (cos θ + i sin θ)(z1i + z2 j + z3k)(cos θ − i sin θ)

= z1i + (z2 cos2 θ − z2 sin2 θ − 2z3 sin θ cos θ)j + (z3 cos2 θ − z3 sin2 θ + 2z2 sin θ cos θ)k.

Hence the matrix of the action is given by1 0 0
0 cos 2θ sin 2θ
0 − sin 2θ cos 2θ,


whose eigenvalues are given by 1, e2iθ , e−2iθ .

Let Wj be the irreducible representation of U(1) of weight j. Then, we have the expression

of m as

m ∼= V1 ⊗ W1 ⊕ V1 ⊗ W−1 ⊕ V0 ⊗ W0 ⊕ V0 ⊗ W2 ⊕ V0 ⊗ W−2.
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7. Obstructedness of AC U(1) and SU(2) Instantons on R8

Let us define W(i,j) := Vi ⊗ Wj, the irreducible representations of Sp(1) × U(1). Clearly,

dim W(i,j) = i + 1. Then

m = W(1,1) ⊕ W(1,−1) ⊕ W(0,0) ⊕ W(0,2) ⊕ W(0,−2). (7.2)

Now, we want to find a basis for m. We note that m ∼= TpΣ ∼= Vp ⊕ Hp ∼= Im H ⊕ H, where

Vp is the vertical space and Hp is the horizontal space with dimensions 3 and 4 respectively.

Now,

Im H =

{((
0 0
0 2(z1i + z2 j + z3k)

)
,−3z1i

)
: z1i + z2 j + z3k ∈ sp(1), z1i ∈ u(1)

}
.

So, we choose a basis

I1 =

((
0 0
0 2i

)
,−3i

)
, I2 =

((
0 0
0 2j

)
, 0
)

, I3 =

((
0 0
0 2k

)
, 0
)

.

Now,

H =

{((
0 b

−b† 0

)
, 0
)

: b ∈ H

}
.

So, we choose a basis

I4 =

((
0 1
−1 0

)
, 0
)

, I5 =

((
0 −i
−i 0

)
, 0
)

, I6 =

((
0 −j
−j 0

)
, 0
)

, I7 =

((
0 −k
−k 0

)
, 0
)

.

Denote the dual basis of Ia by ea for a = 1, . . . , 7.

Then I1, . . . , I7 together with

I8 =

((
i 0
0 0

)
, 0
)

, I9 =

((
j 0
0 0

)
, 0
)

, I10 =

((
k 0
0 0

)
, 0
)

, and I11 =

((
0 0
0 i

)
, i
)

.

form a basis of sp(2)× u(1). Our objective is to calculate the Sp(2)×U(1)-invariant metrics g,

three-form ϕ and ψ = ∗ϕ on S7, i.e., Sp(1)×U(1)-invariant metric g, three-form ϕ and ψ = ∗ϕ

on m.

Expressions of ϕ, ψ and the metric g

We consider an ansatz for ϕ given by

ϕ = αe123 − β(e1 ∧ ω1)− γ(e2 ∧ ω2 + e3 ∧ ω3)

where ω1, ω2, ω3 forms a basis for Λ2
+H∗. Explicitly, we take ω1 = e45 + e67, ω2 = e46 −

e57, ω3 = e47 + e56.
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It is a routine matter to check ϕ is Sp(1)× U(1)-invariant. To find the constants α, β, γ, we

use the nearly G2 condition dϕ = 4ψ.

For ea, we have the Maurer–Cartan equations

dea = − f a
ibei ∧ eb − 1

2
f a
bceb ∧ ec.

Then, calculating the structure constants explicitly, we calculate,

dϕ = αde123 − βd(e1 ∧ ω1)− γd(e2 ∧ ω2 + e3 ∧ ω3)

= α

(
−e1247 − e1256 + e1346 − e1357 − 2

5
e2345 − 2

5
e2367

)
− β

(
−8

5
e2345 − 4

5
e4567 − 8

5
e2367 + 4e1247 + 4e1256 − 4e1346 + 4e1357

)
− γ

(
8e2345 + 8e2367 − 4e4567

)
.

Consider the transformation,

ẽi =


ae1 i = 1
bei i = 2, 3
cei i = 4, 5, 6, 7.

We choose α = ab2, β = ac2, γ = bc2. Then

ϕ = αe123 − β(e145 + e167)− γ(e246 − e257 + e347 + e356)

= ab2e123 − ac2(e145 + e167)− bc2(e246 − e257 + e347 + e356)

= ẽ123 − ẽ145 − ẽ167 − ẽ246 + ẽ257 − ẽ347 − ẽ356.

Corresponding ψ is given by

ψ = ẽ4567 − ẽ1247 − ẽ1256 + ẽ1346 − ẽ1357 − ẽ2345 − ẽ2367

= c4e4567 − abc2(e1247 + e1256 − e1346 + e1357)− b2c2(e2345 + e2367).

Now,

dϕ =

(
4
5

β + 4γ

)
e4567 + (−α − 4β)(e1247 + e1256 − e1346 + e1357) +

(
−2

5
α +

8
5

β − 8γ

)
(e2345 + e2367)

=

(
4
5

ac2 + 4bc2
)

e4567 + (−ab2 − 4ac2)(e1247 + e1256 − e1346 + e1357)

+

(
−2

5
ab2 +

8
5

ac2 − 8bc2
)
(e2345 + e2367).
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Then, dϕ = 4ψ implies

4
5

ac2 + 4bc2 = 4c4

−ab2 − 4ac2 = −4abc2

−2
5

ab2 +
8
5

ac2 − 8bc2 = −4b2c2.

Solving, we get

a = −5, b = 2, c = ±1,

and

a = 3, b =
6
5

, c = ± 3√
5

.

Then the unique metric g and the volume form compatible with ϕ are given by

g =
3

∑
i=1

ẽi ⊗ ẽi +
7

∑
j=4

ẽj ⊗ ẽj,

and dvol = ẽ1234567 respectively. That is,

g = a2e1 ⊗ e1 + b2
3

∑
i=2

ei ⊗ ei + c2
7

∑
j=4

ej ⊗ ej, (7.3)

and dvol = ab2c4e1234567.

Remark 7.1.1. We note that a = 3, b = 6
5 , c = ± 3√

5
corresponds to the squashed metric. Let

us consider the inclusion ι : sp(2)⊕ u(1) ↪→ sp(2)⊕ sp(1). We claim that the pullback of the
squashed metric (6.6) is the metric (7.3) for a = 3, b = 6

5 , c = ± 3√
5
. For that, it is enough

to compare the coefficients of the pullback metric with a = 3, b = 6
5 , c = ± 3√

5
. Consider

the orthonormal basis element 5
6 I2 of m ⊂ sp(2)⊕ u(1). Now consider the basis element I2

of sp(2)⊕ sp(1) and its dual e2, defined in chapter 6. Then, the pullback of the orthonormal
basis element 3e2 of m ⊂ sp(2)⊕ sp(1) paired with 5

6 I2 gives

ι∗(3e2)

(
5
6

I2

)
= ι∗(3e2)

5
6

((
0 0
0 2j

)
, 0

)
= 3e2 5

6

(
2
5
(I2 + 3I12)

)
= 1,

which shows that ι∗(3e2) is equals the orthonormal basis element 6
5 e2 for the metric (7.3).

Similar calculations for ei, i = 1, 3, 4, . . . , 7 establish the claim.
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Now, using the metric (7.3) with a = −5, b = 2, c = 1, which is the round metric, we nor-

malise our basis for m, and denote the normalised bases by Ii and ei for m and m∗ respectively,

where Ii and ei are dual to each other. Hence, an orthonormal basis for m is given by

I1 = −1
5

((
0 0
0 2i

)
,−3i

)
, I2 =

((
0 0
0 j

)
, 0
)

, I3 =

((
0 0
0 k

)
, 0
)

,

I4 =

((
0 1
−1 0

)
, 0
)

, I5 =

((
0 −i
−i 0

)
, 0
)

, I6 =

((
0 −j
−j 0

)
, 0
)

, I7 =

((
0 −k
−k 0

)
, 0
)

.

7.2 U(1) Instantons on R8

Consider the gauge group U(1). We want to construct invariant connections on U(1) bundles,

and the bundles are determined by their isotropy homomorphism. Now, we have two isotropy

homomorphisms from Sp(1)× U(1) to U(1), namely

λ0 : Sp(1)× U(1) → U(1)((
g1 0
0 g2

)
, g2

)
7→ 1,

λ1 : Sp(1)× U(1) → U(1)((
g 0
0 h

)
, h
)
7→ h.

Consider the bundle Pi = (Sp(2)× U(1))×λi U(1) over S7 := Sp(2)×U(1)
Sp(1)×U(1) . Then the invariant

connections on Pi correspond to the Sp(1)× U(1)-equivariant homomorphisms

Λi : (m, ad) → (u(1), ad ◦λi).

where m = W(1,1) ⊕ W(1,−1) ⊕ W(0,0) ⊕ W(0,2) ⊕ W(0,−2). Now,

ad ◦λi : sp(1)⊕ u(1) → End(u(1)),

Then,

ad ◦λ0(X, Y)Z = ad(0)Z = 0.

Hence, by Schur’s lemma, the map Λ0|W(0,0)
is given by

φ · Id : W(0,0) → W(0,0)
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for a real number φ, whereas Λ0|W⊥
(0,0)

is trivial. Moreover,

ad ◦λ1(X, Y)Z = ad(Y)Z = [Y, Z] = 0.

Hence, again, by Schur’s lemma, the map Λ1|W(0,0)
is given by

φ · Id : W(0,0) → W(0,0)

for a real number φ, whereas Λ1|W⊥
(0,0)

is trivial. We note that we can choose I1 to a be a basis

of W(0,0). Then, for i = 0, 1, we have,

Λi(Ia) =

{
φ, a = 1,
0 otherwise.

7.2.1 U(1) Instantons corresponding to λ0

In local coordinates, we can write any Sp(2)× Sp(1)-invariant connection on the bundle P0

over the manifold S7 = Sp(2)×U(1)
Sp(1)×U(1) with round metric and gauge group U(1) can be written as,

A = λ0(ei Ii) + eaΛ0(Ia) = φe1.

Now consider the 8-dimensional manifold R × S7. We choose the metric g8 = (e0)2 + g7

where e0 = dt and t be the coordinate of R and note that this metric is conformal to the flat

metric on punctured R8. The connection 1-form is given by A = A0e0 + Aaea which gives the

Sp(1)× U(1)-invariant connection

A = φ(t)e1.

Here, without loss of generality, we take A0 = 0. The curvature of this connection is given by

FA = F0ae0 ∧ ea +
1
2

Fbceb ∧ ec

where

F01 =
∂A1

∂t
= φ̇(t).

Then, the ASD instanton equation FA ⌟Φ = −FA reduces to

F01 = −1
2

ϕ1bcFbc.

Now,

Fbc = (dA)bc = −φ(t) f 1
bc.
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Then,

φ̇(t) =
1
2

φ(t)ϕ1bc f 1
bc = 2φ(t).

The solution is

φ(t) = Ce2t,

which shows the non-existence of irreducible Sp(2) × U(1)-invariant asymptotically conical

U(1)-instanton on R8 corresponding to λ0.

7.2.2 U(1) Instantons corresponding to λ1

In local coordinates, we can write any Sp(2)× Sp(1)-invariant connection on the bundle P1

over S7 with round metric and gauge group U(1) as,

A = λ(ei Ii) + eaΛ(Ia) = e11 + φe1.

Similar to the previous case, on the manifold R× S7, the Sp(1)×U(1)-invariant connection is

given by

A = e11 + φ(t)e1.

The curvature of this connection is given by

FA = F0ae0 ∧ ea +
1
2

Fbceb ∧ ec,

where

F01 =
∂A1

∂t
= φ̇(t).

Now,

Fbc = (dA)bc = − f 11
bc − φ(t) f 1

bc.

Then, from the ASD equation F01 = − 1
2 ϕ1bcFbc, we have

φ̇(t) =
1
2

ϕ1bc f 11
bc +

1
2

φ(t)ϕ1bc f 1
bc = −6

5
+ 2φ(t).

The solution is

φ(t) = Ce2t +
3
5

,

which shows the non-existence of Sp(2)×U(1)-invariant asymptotically conical U(1)-instanton

on R8 corresponding to λ1.
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7.3 SU(2) Instantons on R8

Consider the gauge group Sp(1) ∼= SU(2). We want to construct invariant connections on

SU(2)-bundles. These bundles are determined by their isotropy homomorphisms. There are

three isotropy homomorphisms from Sp(1)× U(1) to Sp(1), namely

λ0 : Sp(1)× U(1) → Sp(1)((
g1 0
0 g2

)
, g2

)
7→ 1,

λ1 : Sp(1)× U(1) → Sp(1)((
g1 0
0 g2

)
, g2

)
7→ g1,

λ2 : Sp(1)× U(1) → Sp(1)((
g1 0
0 g2

)
, g2

)
7→ g2 as a subgroup embedding.

Consider the bundle Pi = (Sp(2)× U(1))×λi Sp(1) over Σ := Sp(2)×U(1)
Sp(1)×U(1) . Then from Wang’s

theorem, we know that the Sp(2)×U(1)-invariant connections on Pi correspond to the Sp(1)×
U(1)-equivariant homomorphisms

Λi : (m, ad) → (sp(1), ad ◦λi).

Now,

ad ◦λi : sp(1)⊕ u(1) → End(sp(1)),

Then,

ad ◦λ0(X, Y)Z = ad(0)Z = 0.

Hence, by Schur’s lemma, the map Λ0|W(0,0)
given by

W(0,0) → W(0,0)

is an isomorphism, whereas Λ0|W⊥
(0,0)

is trivial. Moreover,

ad ◦λ1(X, Y)Z = ad(X)Z = [X, Z].

Hence, the map Λ1 given by

W(1,1) ⊕ W(1,−1) ⊕ W(0,0) ⊕ W(0,2) ⊕ W(0,−2) → W(2,0)
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is trivial. Finally,

ad ◦λ2(X, Y)Z = ad(Y)Z = [Y, Z].

Hence, the map Λ2 restricted to W(0,0) ⊕ W(0,2) ⊕ W(0,−2) is the isomorphism

W(0,0) ⊕ W(0,2) ⊕ W(0,−2) → W(0,0) ⊕ W(0,2) ⊕ W(0,−2)

whereas Λ2 restricted to W(1,1) ⊕ W(1,−1) is trivial, by Schur’s lemma.

Let us fix a basis Ta, a = 1, 2, 3 for Sp(1) ∼= SU(2), where Ta = −iσa and σa, a = 1, 2, 3 are

the Pauli matrices given by

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
.

7.3.1 SU(2) Instantons corresponding to λ0

In local coordinates, any Sp(2) × Sp(1)-invariant connection on the bundle P0 over S7 with

round metric and gauge group SU(2) can be written as,

A = λ0(ei Ii) + eaΛ0(Ia) = φe1T1.

Similar to the previous case, on the manifold R× S7, the Sp(1)×U(1)-invariant connection is

given by

A = e11 + φ(t)e1T1

The curvature of this connection is given by

FA = F0ae0 ∧ ea +
1
2

Fbceb ∧ ec.

where

F01 =
∂A1

∂t
= φ̇(t)T1.

Now,

Fbc = (dA)bc = −φ(t) f 1
bcT1.

Then, the instanton equation F01 = − 1
2 ϕ1bcFbc reduces to

φ̇(t) =
1
2

φ(t)ϕ1bc f 1
bc = 2φ(t).

The solution is

φ(t) = Ce2t,

which shows the non-existence of irreducible Sp(2) × U(1)-invariant asymptotically conical

SU(2)-instanton on R8 corresponding to λ0.
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7.3.2 SU(2) Instantons corresponding to λ2

As dim Hom(m, sp(1))Sp(1)×U(1) = 3, we choose a basis τi, i = 1, 2, 3. Then, τi : m → sp(1)

acts on the basis Ia, a = 1, . . . , 7 of m by τi(Ib) = 0 for b = 4, . . . , 7 and τi(Ia) = ±Tj where the

sign and index j of ±Tj is determined by the U(1)-invariance. Then, we choose,

τ1 : (I1, I2, I3) 7→ (T1, T2, T3),

τ2 : (I1, I2, I3) 7→ (T1,−T3, T2),

τ3 : (I1, I2, I3) 7→ (T1,−T2,−T3).

We can write,

Λ2 = φ1τ1 + φ2τ2 + φ3τ3.

Then, Λ2(Ia) = φ1τ1(Ia) + φ2τ2(Ia) + φ3τ3(Ia) = φ1τa1cTc + φ2τa2cTc + φ3τa3cTc, i.e.,

Λ2(Ia) = φbτabcTc.

Explicitly, τabc are given by

τ111 = 1, τ212 = 1, τ313 = 1, τ223 = −1, τ322 = 1, τ131 = 1.

Now, in local coordinates any connection on the bundle P2 over the nearly G2-manifold S7

with round metric can be written as

A = eiλ2(Ii) + eaΛ2(Ia)

= e11T1 + ea φbτabcTc.

Then, on the 8-dimensional manifold R × S7, the connection 1-form is given by A = A0e0 +

Aaea which gives the Sp(1)× U(1)-invariant connection

A = e11T1 + ea φb(t)τabcTc.

Here, we take A0 = 0. The curvature of this connection is given by

FA = F0ae0 ∧ ea +
1
2

Fbceb ∧ ec

where

F0a =
∂Aa

∂t
= φ̇b(t)τabcTc.

124



7.3 SU(2) Instantons on R8

Applying the Maurer–Cartan equations (5.2) we have,

(dA)bc = − f 11
bc T1 − f a

bc φp(t)τapqTq,

and

[A ∧ A]bc = 4φp(t)φs(t)τbpaτcsrϵarqTq.

Hence,

Fbc = − f 11
bc T1 +

(
2φp(t)φs(t)τbpaτcsrϵarq − φp(t) f a

bcτapq
)

Tq.

Thus, the ASD instanton equation F0a = − 1
2 ϕabcFbc reduces to

φ̇b(t)τabcTc =
1
2

ϕabc f 11
bc T1 −

1
2

ϕabc

(
2φp(t)φs(t)τbpdτcsrϵdrq − φp(t) f d

bcτdpq

)
Tq.

That is,

2φ̇b(t)τabcTc = ϕabc f 11
bc T1 − 2ϕabc φp(t)φs(t)τbpdτcsrϵdrqTq + ϕabc φp(t) f d

bcτdpqTq. (7.4)

Simplifying, we have the system of ODE given by

φ̇1 = −φ1

(
2φ1 + 2φ3 +

24
5

)
(7.5)

φ̇2 = −φ2

(
2φ1 + 2φ3 +

24
5

)
(7.6)

φ̇1 + φ̇3 = −6
5
− 2φ2

1 − 2φ2
2 + 2φ1 + 2φ3. (7.7)

Now, we have the following four cases.

Case 1. φ1 = φ2 = 0, φ3 ̸= 0.
Then, the ODEs reduce to

φ̇3 = −6
5
+ 2φ3. (7.8)

The solution is φ3 = Ce2t + 3
5 .

Case 2. φ1 = 0, φ2 ̸= 0, φ3 ̸= 0.
Then, the ODEs reduce to

φ̇2 = −φ2

(
2φ3 +

24
5

)
(7.9)
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φ̇3 = −6
5
− 2φ2

2 + 2φ3. (7.10)

Substituting a := φ2(t), b := φ3(t)− 3
5 , we have,

ȧ = −2a(b + 3)

ḃ = −2a2 + 2b.

The critical point is given by (a, b) = (0, 0). Near the critical point, the the linearised system
is given by

da
dt

= −6a

db
dt

= 2b.

The solutions are
x = C1e−6t, y = C2e2t,

which shows that the critical point is a saddle point. Hence, near the critical point (0, 0, 3/5),
the solution is given by

φ1(t) = 0, φ2(t) = C1e−6t, φ3(t) = C2e2t +
3
5

,

for C1, C2 > 0.
Let φ3 +

12
5 =: y and φ2 =: x. Then equations (7.9) and (7.10) become

ẋ = −2xy

ẏ = 2y − 2x2 − 6. (7.11)

Case 3. φ1 ̸= 0, φ2 = 0, φ3 ̸= 0.
Then, the ODEs reduce to

φ̇1 = −φ1

(
2φ1 + 2φ3 +

24
5

)
(7.12)

φ̇1 + φ̇3 = −6
5
− 2φ2

1 + 2φ1 + 2φ3. (7.13)

From (7.12) and (7.13), we have

− 2φ2
1 − 2φ1φ3 −

24
5

φ1 + φ̇3 = −6
5
− 2φ2

1 + 2φ1 + 2φ3

⇒ φ̇3 = −6
5
+ 2φ3 + 2φ1φ3 +

34
5

φ1 (7.14)
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Substituting a := φ1(t), b := φ3(t)− 3
5 , we have

da
dt

= −6a − 2a2 − 2ab

db
dt

= 8a + 2b + 2ab.

The critical point is given by (a, b) = (0, 0). Near the critical point, the the linearised system
is given by

da
dt

= −6a

db
dt

= 8a + 2b.

The solutions are
x = C1e−6t, y = −C1e−6t + (C1 + C3)e2t,

which shows that the critical point is a saddle point. Near the critical point (0, 0, 3/5), the
solution is given by

φ1(t) = C1e−6t, φ2(t) = 0, φ3(t) = −C1e−6t + (C1 + C2)e2t +
3
5

,

for C1, C2 > 0.
Let φ1 + φ3 +

12
5 =: y and φ1 =: x. Then equations (7.12) and (7.13) become

ẋ = −2xy,

ẏ = 2y − 2x2 − 6. (7.15)

Case 4. φ1, φ2, φ3 are all nonzero.
From (7.5) and (7.6), we have

φ̇1

φ1
=

φ̇2

φ2
⇒ ln φ2 = ln φ1 + ln C ⇒ φ2 = C′φ1 (7.16)

for C ∈ (0, ∞). From (7.5) and (7.7), we have

− 2φ2
1 − 2φ1φ3 −

24
5

φ1 + φ̇3 = −6
5
− 2φ2

1 − 2φ2
2 + 2φ1 + 2φ3

⇒ φ̇3 = −6
5
− 2C′2φ2

1 + 2φ3 + 2φ1φ3 +
34
5

φ1. (7.17)

Take a := φ1(t), b := φ3(t)− 3
5 . Then, from (7.5) and (7.17), we have

da
dt

= −6a − 2a2 − 2ab
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db
dt

= 8a − 2C′2a2 + 2b + 2ab.

The critical point is given by (a, b) = (0, 0). Near the critical point, the the linearised system
is given by

da
dt

= −6a

db
dt

= 8a + 2b.

The solutions are
x = C1e−6t, y = −C1e−6t + (C1 + C3)e2t,

which shows that the critical point is a saddle point. Hence, near the critical point (0, 0, 3/5),
the solution is given by

φ1(t) = C1e−6t, φ2(t) = C2e−6t, φ3(t) = −C1e−6t + (C1 + C3)e2t +
3
5

for C1, C2, C3 > 0.
Let φ1 + φ3 +

12
5 =: y, φ1 =: x and φ2 =: C′x for C′ > 0. Then equations (7.5) and (7.7)

become

ẋ = −2xy,

ẏ = 2y − Cx2 − 6 (7.18)

for C > 2. The critical point is (0, 3).

Curvature of the connection A at the critical point

We note that for all cases 2, 3 and 4, the critical points are the same, namely (0, 0, 3/5). We
want to calculate the curvature of the connection

A = e11T1 + ea φb(t)τabcTc

at the critical point (0, 0, 3/5). The curvature is

Fbc = − f 11
bc T1 +

(
2φp(t)φs(t)τbpaτcsrϵarq − φp(t) f a

bcτapq
)

Tq.

For b, c = 1, 2, 3

Fbc = − f 11
bc T1 +

(
2φp(t)φs(t)τbpaτcsrϵarq − φp(t) f a

bcτapq
)

Tq

and for b, c = 4, 5, 6, 7

Fbc = − f 11
bc T1 − φp(t) f a

bcτapqTq.

At the critical point, Fbc = 0. Hence, the connection A = e11T1 +
3
5 e1T1 is a flat connection on

the link S7.
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Non-existence of closed orbits

The existence of closed orbits for the cases 2, 3, and 4 can be combined to the existence of
closed orbits of the system of ODEs

ẋ = −2xy

ẏ = 2y − Cx2 − 6 (7.19)

for C ≥ 2, where C = 2 corresponds to cases 2 and 3, and C > 0 corresponds to case 4. The
critical point is (0, 3).

Figure 7.1: The direction field plot for the system 7.19.

Since an instanton is a path between the critical points, we note that existence of SU(2)-
instanton corresponds to having a solution of the system (7.19) with boundary conditions
(x(t), y(t)) = (0, 3) at t = −∞ and at t = ∞. From the direction field plot (7.1), we claim
that such an orbit starting and ending at the critical point (0, 3) cannot exist. To prove this, by
inspecting the stable and unstable directions of the saddle point, it is clear that we just need
to investigate the direction fields near the critical point for only the following cases.

Case 1. There exists t0 such that ẏ(t) > 0, y(t) > 3 for all t ≤ t0: There are two sub-cases.
Sub-case 1: Let t0 < t2 such that (x(t0), y(t0)) is inside the parabola 2y − Cx2 − 6 = 0 and the
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point (x(t2), y(t2)) is outside the parabola. Then there exists t1 ∈ (t0, t2) such that (x(t1), y(t1))

is on the parabola. Then, either x(t1) > 0, y(t1) > 0, which from the equation ẋ = −2xy
implies ẋ < 0; or x(t1) < 0, y(t1) > 0, which implies ẋ > 0, both leading to contradictions,
since the signs of x and ẋ should be the same for paths going out of the parabola from the
inside.
Sub-case 2: For all t > t0, the point (x(t), y(t)) is inside the parabola. Then, for all t ẏ > 0, so
y(t) > y(t0) > 3 for all t > t0. Then, y(t) cannot converge to 3 as t → ∞.

Case 2. There exists t0 such that ẏ(t) < 0, y(t) < 3 for all t ≤ t0: similar to Case 1, but here,
all the directions fields are pointing downwards.

Thus, we have the following proposition.

Proposition 7.3.1.

1. The only Sp(2)× U(1)-invariant SU(2)-instanton on S7 with round metric is the flat connec-
tion.

2. There are no irreducible Sp(2)× U(1)-invariant SU(2)-instantons on R8 asymptotic to the flat
connection on S7.

7.4 Obstructedness of U(1) and SU(2) Instantons on R8

Consider any asymptotically conical U(1)- or SU(2)-instanton on the trivial bundle over R8

asymptotic to the trivial connection AΣ on S7. Suppose, if possible, the instanton is unob-

structed. Let us consider the Lie algebra of the Lie group Sp(2)×U(1)⋉R8. The deformation

complex of Spin(7)-instanton is given by (see [13])

0 Ω0(gP) Ω1(gP) Ω2
7(gP) 0.

dA d7
A (7.20)

We note that the cohomology group H1
A,ν := ker d7

A/ Im dA is isomorphic as a vector space to

the deformation space I(A, ν) defined as in (3.19). We define a map

L : Lie(Sp(2)× U(1)⋉ R8) → H1
A,ν

X 7→ [ιX FA] .

Clearly, we can think of X as a Killing field and hence determining a deformation [ιX FA] =

[LX A] of the connection A. Then, we have the following proposition.
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Proposition 7.4.1. Under the assumption that

−
∫

R8
Tr F4

A < 3456π4 (7.21)

ker L is a Lie subalgebra of Lie(Sp(2)× U(1)⋉ R8) isomorphic to sp(2)⊕ u(1).

Proof. It is a routine matter to show that ker L is a Lie subalgebra of Lie(Sp(2)× U(1)⋉ R8).
Now, from theorem 3.2.15, i.e., the deformation theory of AC instantons on Spin(7)-

manifolds, we know that

dimM(A, ν) = Ind /D−
A = − 1

384π4

∫
R8

F4
A + η(/DAΣ , S7).

But, since AΣ is the flat connection on S7, we have η(/DAΣ , S7) = 0. Now, from the Rank-Nullity
theorem, we have,

ker L + rank L = dim Lie(Sp(2)× U(1)⋉ R8) = 19. (7.22)

Then, from (7.22) using the assumption (7.21), we have

ker L = 19 − rank L ≥ 19 − dimM(A, ν) > 19 − 9 = 10.

Now, if ker L ∼= Lie(H ⋉ U) ⊂ Lie(Sp(2)× U(1)⋉ R8) for some non-trivial U ⊂ R8, then A
has translational symmetries, and A cannot be asymptotically conical [23]. Since, sp(2)⊕ u(1)
is 11-dimensional, the only possibility is,

ker L ∼= sp(2)⊕ u(1).

As a direct consequence, we have the following proposition.

Proposition 7.4.2. Any unobstructed asymptotically conical U(1)- or SU(2)-instanton on R8 asymp-
totic to the flat connection on S7 satisfying (7.21) is Sp(2)× U(1)-invariant.

Then, proposition 7.3.1 implies the following main theorem.

Theorem 7.4.3. There are no unobstructed irreducible asymptotically conical U(1)- or SU(2)-instantons
on R8 asymptotic to the flat connection on S7 satisfying (7.21).
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Appendix A

Gauge Theory on Homogeneous Spaces

In this chapter we briefly review the notions of canonical and invariant connections on homo-

geneous bundles, where we closely follow [50], [38], [54] and [22]. We conclude the chapter

by discussing Wang’s theorem, which has been integral in constructing instantons throughout

the thesis.

A.1 Homogeneous Spaces and Homogeneous Bundles

We start with the following proposition.

Proposition A.1.1 ([38]). Let G be a Lie group and H a closed subgroup of G. Then M := G/H
admits a structure of a real smooth manifold such that the transitive action of G on G/H given by

L : G × G/H → G/H

g1, g2H 7→ g1g2H

is smooth. In particular, the canonical projection map G → G/H is smooth. Then, M = G/H is
called a homogeneous space.

Definition A.1.2. 1. A homogeneous fibre bundle over M = G/H is a locally trivial fibre
bundle π : E → M together with a G-action L̃ : G × E → E which lifts the action
L : G × M → M on M. i.e.,

π(L̃(g, y)) = L(g, π(y))

for all g ∈ G and y ∈ E.

2. A homogeneous principal bundle over M = G/H is a homogeneous fibre bundle π : E → M
which is a principal bundle such that for each g ∈ G the bundle map L̃g := L̃(g, ·) is a
principal bundle homomorphism.
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3. A homogeneous vector bundle over M = G/H is a homogeneous fibre bundle π : E → M
which is a vector bundle such that for each g ∈ G the bundle map L̃(g, ·) : E → E is a
vector bundle homomorphism.

Example A.1.3. The canonical principal H-bundle is the bundle H → G → G/H. This is a
homogeneous principal bundle under the action L̃ : G × G → G which is the multiplication
map.

A.2 Canonical Connection

We start by recalling the definition of Maurer–Cartan form.

Definition A.2.1. The Maurer–Cartan form θ ∈ Ω1(G, g) is the g-valued 1-form on G such that

(θ)g(Xg) = (dgLg−1)(Xg) ∈ TeG ∼= g

for all g ∈ G and Xg ∈ TgG. Here dgLg−1 is regarded as a linear map from TgG to TeG.

Lemma A.2.2. For the translation maps Lg : G → G and Rg : G → G defined by Lg(h) = gh and
Rg(h) = hg respectively, we have L∗

gθ = θ and R∗
gθ = Adg−1 ◦θ for all g ∈ G.

Let H be a subgroup of G with Lie algebra h.

Definition A.2.3. A homogeneous bundle H → G → G/H is called reductive if there exists a
subspace m such that g = h⊕m and Ad(H)m ⊂ m (which implies [h,m] ⊂ m).

Theorem A.2.4.

1. Let H → G → G/H be a reductive principal bundle. Let θ ∈ Ω1(G, g) be the Maurer–Cartan
form such that with respect to the decomposition g = h⊕m, we have θ = θh ⊕ θm where θh and
θm are the h and m-components of θ respectively. Then θh defines a connection on the principal
bundle H → G → G/H called the canonical connection which is invariant by left translation of
G (i.e., L∗

gθh = θh for all g ∈ G).

2. Conversely, any connection on H → G → G/H invariant by left translation of G (if exists)
determines a decomposition g = h⊕m and the connection can be obtained as described by (1).

3. The curvature form F of the canonical connection θh is given by

F = dθh +
1
2

θh ∧ θh = −1
2
(θm ∧ θm)h,

i.e., the h-component of − 1
2 (θm ∧ θm).
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It is important to note that the canonical connection on the principle bundle H → G →
G/H defines a canonical connection on the tangent bundle T(G/H). This follows from the

fact that T(G/H) ∼= G ×H m is the associated vector bundle to H → G → G/H by the

representation ρ : H → GL(m).

A.3 Invariant Connections and Wang’s Theorem

Lemma A.3.1. Let K, G be Lie groups and H ⊂ G be a closed subgroup. Let P → G/H be a
homogeneous principal K-bundle. Then there is a smooth homomorphism λ : H → K, called the
isotropy homomorphism, such that P ∼= G ×(H,λ) K where the equivalence relation on G × K is given
by

(gh, k) ∼ (g, λ(h)k)

for all h ∈ H, g ∈ G, k ∈ K.

Let k be the Lie algebra of K. Let X ∈ k and let ζX be the fundamental vector field on P

generated by X. Further, let us denote the principal right action of k ∈ K on P by Rk. Then

θ ∈ Ω1(P, k)is a connection of P if

θ(ζX) = X

(Rk)
∗θ = Adk−1 ◦θ.

Let Lg be the left action of g ∈ G on P. Since Lg is a bundle automorphism the pull back L∗
gθ

is again a connection on P.

Definition A.3.2. A connection θ on P is said to be a G-invariant connection iff

(Lg)
∗θ = θ

for all g ∈ G.

Consider an invariant connection θ on the homogeneous principal K-bundle P := G ×λ

K → G/H. Define a map

π : G → G ×H K

g → [(g, e)],
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for the identity element e ∈ K. Consider the linear map

(π∗θ − λ∗θh)|e : TeG ∼= g → k.

It can be proved that, (π∗θ − λ∗θh)|e(X) = 0 for all X ∈ h.

Define a linear map

Λθ : m → k

X 7→ (π∗θ − λ∗θh)|e(X)

for all X ∈ m. It is easy to check that Λθ is H-equivariant.

Thus, an invariant connection θ yields a linear map Λθ . The other direction is also true,

and the complete result is given by Wang [59] as follows.

Theorem A.3.3 (Wang’s Theorem). Let λ : H → K be a homomorphism. Consider the homogeneous
principal K-bundle P := G ×λ K → G/H. Then there is a one-to-one correspondence between the
G-invariant connections θ on P and linear maps

Λ : (m, Ad) → (k, Ad ◦λ)

as morphisms of H-representations.

Now, we introduce an orthonormal frame in order to present local expression of the con-

nection.

We note that a basis IA for g can be represented by left invariant vector fields ÊA on G as

well as by the dual basis êA of left invariant 1-forms. Denote the natural projection map

p : G → G/H

g 7→ gH,

of the principal bundle. Let U be a contractible open subset of G/H. Then consider a local

section σ of the bundle G → G/H, i.e., a map σ : U → G such that p ◦ σ = IdU . We put

eA := σ∗ êA. Then {ea : a = 1, . . . , dimm} form an orthonormal frame for T∗(G/H) over U.

Then, with respect to this local trivialisation, the invariant connection is a local k-valued

1-form on G/H, and can be written as follows

ei(dλ)(Ii) + eaΛ(Ia),

for a = 1, . . . , dimm and i = (dimm) + 1, . . . , dim g. Here ei(dλ)(Ii) is local expression of the

canonical connection.
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Appendix B

Exceptional Holonomy Groups

In this chapter, we briefly review the important notions of Riemannian holonomy groups,

Berger’s classification of Riemannian holonomy groups, and the exceptional holonomy groups

G2 and Spin(7). For the first part we closely follow [32] and for the holonomy groups G2 and

Spin(7), we very closely follow [53].

B.1 Parallel Transport and Riemannian holonomy

B.1.1 Parallel Transports and Holonomy groups

Consider a vector bundle π : E → M on an orientable smooth manifold M and a connection

∇E on E. Let γ : [0, 1] → M be a smooth curve with γ(0) = p and γ(1) = q. Then, we have

the pullback connection γ∗(∇E) on the pullback bundle γ∗(E) → [0, 1]. It can be proved that

for each x ∈ Ep := π−1(p) ⊂ E, there is a unique section σ on γ∗(E) with σ(0) = x, and

γ∗(∇E)σ = 0. Then the parallel transport map Pγ is defined by

Pγ : Ep → Eq

x 7→ σ(1). (B.1)

Now, we consider γ to be a piece-wise smooth loop based at p, that is, γ(0) = γ(1) = p. Then,

the parallel transport map Pγ : Ep → Ep is an invertible linear map, and then, the set of all

parallel transports Pγ for all piece-wise smooth loops γ based at p forms a group, which we

call the holonomy group Holp(∇E) of the connection ∇E.
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B.1.2 Riemannian holonomy

Now, consider an orientable Riemannian manifold (M, g) with the Levi–Civita connection ∇
on TM. Then, for p ∈ M, the Riemannian holonomy group Holp(g) is the holonomy group

Holp(∇) of the Levi-Civita connection.

We note that

• Holp(g) is a closed subgroup of SO(n).

• Holp(g) is independent of the base point p up to conjugation, and we denote it just by

Hol(g).

B.1.3 Berger’s classification of Riemannian holonomy groups

Consider a Riemannian product manifold (M × N, g × h). That is, for (p, q) ∈ M × N

(g × h)|(p,q) = g|p + h|q,

for p ∈ M and q ∈ N. Then,

Hol(g × h) = Hol(g)× Hol(h).

Definition B.1.1. A Riemannian manifold (M, g) is called irreducible if it not locally isometric
to a Riemannian product manifold.

Consider an isometry sp : M → M for any p ∈ M such that sp(p) = p and dsp = − Id.

Then the isometry sp is called a symmetry at p.

Definition B.1.2. A symmetric space M is a homogeneous space with a symmetry sp for every
p ∈ M. A locally symmetric space is a Riemannian manifold locally isometric to a symmetric
space.

A Riemannian manifold is locally symmetric if and only if ∇R = 0 for Levi-Civita connec-

tion ∇ and Riemann curvature R.

Theorem B.1.3 (Berger’s classification). Let M be an orientable simply-connected n-dimensional
Riemannian manifold where the Riemannian metric is irreducible and nonsymmetric (neither symmet-
ric nor locally symmetric). Then we have only the following possibilities for holonomy groups.

1. Hol(g) = SO(n),
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2. Hol(g) = U(m) for n = 2m,

3. Hol(g) = SU(m) for n = 2m,

4. Hol(g) = Sp(m) for n = 4m,

5. Hol(g) = Sp(m) · Sp(1) := Sp(m)×Z2 Sp(1) for n = 4m,

6. Hol(g) = G2 for n = 7,

7. Hol(g) = Spin(7) for n = 8.

Remark B.1.4. Berger’s classification has a deep relation with the existence of exactly four
normed division algebras R, C, H and O over R of real dimensions 1, 2, 4 and 8 respectively.
The group SO(m) acts on Rm, U(m) and SU(m) act on Cm, Sp(m) and Sp(m) · Sp(1) act on
Hm, and G2 acts on Im O and Spin(7) acts on O.

B.2 Octonions and the Lie Group G2

B.2.1 Cross Product

Definition B.2.1. A skew-symmetric bilinear map

V × V → V

(u, v) 7→ u × v

is said to be a cross product if

1. ⟨u × v, u⟩ = ⟨u × v, v⟩ = 0

2. |u × v|2 = |u|2|v|2 − ⟨u, v⟩2

for all u, v ∈ V.

It can be proved that V admits a cross product if and only if the dimension of V is 0, 1, 3,

or 7. In dimension 0 and 1 the cross product is trivial. In dimension 3 it is unique up to sign

determined by an orientation of V. In dimension 7 It is unique up to orthogonal isomorphism.

Definition B.2.2. Let dim V = 7. The map ϕ : V × V × V → R defined by

ϕ(u, v, w) := ⟨u × v, w⟩

is called the associative calibration of (V,×).

It can be proved that ϕ ∈ Λ3(V∗), i.e., ϕ is alternating.
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B.2.2 Normed Algebras

Definition B.2.3. Let (W, ⟨· , ·⟩) be a finite-dimensional inner product space. Further, let (W, ·)
is a unital ring with respect to a product

· : W × W → W

(u, v) 7→ u · w

where the product · is compatible with the scalar multiplication of the vector space W. The W
is called an algebra.

If moreover the norm on W satisfies

|uv| = |u||v|

for all u, v ∈ W, then W is called a normed algebra.

Remark B.2.4. For the normed algebra W, we can identify R with a subspace of W generated
by the multiplicative identity 1. For u ∈ W and λ ∈ R, we prefer to write u + λ for u + λ1.

Definition B.2.5. The conjugation of an element of W is defined by the involution

W → W

u 7→ u

where 1 = 1 and u = −u for u ∈ 1⊥ = {u ∈ W : ⟨u, 1⟩ = 0}. Combining, we can write

u = 2⟨u, 1⟩ − u

for all u ∈ W.

Definition B.2.6. The subspace R of W is considered as the real part of W. If V is the orthogonal
complement of R in W, then V is the imaginary part of W.

If u ∈ W, the real and imaginary parts are defined by

Re u := ⟨u, 1⟩, Im u := u − ⟨u, 1⟩

respectively.

Theorem B.2.7 ([53], Theorem 5.4). The one to one correspondence between Normed algebras and
vector spaces equipped with cross products is given as follows.
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1. If W is a normed algebra, then V := 1⊥ is a subspace of W equipped with a cross product

V × V → V

(u, v) 7→ u × v

defined by

u × v := uv + ⟨u, v⟩

for all u, v ∈ V := 1⊥. Conversely,

2. If (V, ⟨· , ·⟩) is a finite dimensional inner product space equipped with a cross product, then
W := R ⊕ V is a normed algebra. If u = u0 + u1, v = v0 + v1 ∈ R ⊕ V, then the product in
W is defined by

uv := u0v0 − ⟨u1, v1⟩+ u0v1 + v0u1 + u1 × v1

Here we identify f ∈ R with ( f , 0) ∈ R ⊕ V and v ∈ V with (0, v) ∈ R ⊕ V.

The following corollary is due to Hurwitz.

Corollary B.2.8. A normed algebra has dimension 1, 2, 4 or 8 and is isomorphic to R, C, H or O

respectively.

B.2.3 Octonions

The algebra O ∼= R8 is a non-associative algebra of real dimension 8. Let {1, e1, e2, e3, e4, e5, e6, e7}
is a basis of O.

The multiplication table is given below.

e1 e2 e3 e4 e5 e6 e7

e1 −1 e3 −e2 −e5 e4 −e7 e6

e2 −e3 −1 e1 −e6 e7 e4 −e5

e3 e2 −e1 −1 −e7 −e6 e5 e4

e4 e5 e6 e7 −1 −e1 −e2 −e3

e5 −e4 −e7 e6 e1 −1 −e3 e2

e6 e7 −e4 −e5 e2 e3 −1 −e1

e7 −e6 e5 −e4 e3 −e2 e1 −1

Table B.1: Multiplication table for Octonions.
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Fano Plane

The multiplication table of octonions can be described by the diagram below, called the Fano

plane.

e1

e2e4

e3

e6

e7

e5

Following the cyclic ordering of the diagram, we can clearly figure out the whole multipli-

cation table.

Then Fano plane is the projective plane Z2P2, consisting of lines through the origin in the

vector space Z3
2 over the field Z2 of dimension 3.

Since each such line (being points themselves) contains a single nonzero element, the Fano

plane can also be thought of the set consisting of the seven nonzero elements of Z3
2. Identifying

the origin in Z3
2 with 1 ∈ O, we get a basis for the octonions.

Revisiting the octonionic product

Recall the basis {1, e1, e2, e3, e4, e5, e6, e7} of the octonions O. We note that

{ei, ej} = eiej + ejei = −2δij

for i, j = 1, . . . , 7. To be precise,

eiej = Cijkek − δij

where Cijk is totally antisymmetric and Cijk = 1 for

ijk = 123, 154, 176, 264, 257, 374, 365
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(follows from Fano plane). Cijk are called the structure constants of the octonion algebra.

B.2.4 Associative Calibrations

Definition B.2.9.

• Let V be a real vector space. A 3-form ϕ ∈ Λ3V∗ is said to be non-degenerate if for every
pair of linearly independent vectors u, v ∈ V, there exists a vector w ∈ V such that
ϕ(u, v, w) ̸= 0.

• An inner product ⟨· , ·⟩ is said to be compatible with ϕ if the map

V × V → V

(u, v) 7→ u × v

defined by ϕ(u, v, w) := ⟨u × v, w⟩ is a cross product.

Lemma B.2.10 ([53]). Let V be a 7-dimensional real inner product space and ϕ ∈ Λ3V∗. Then the
following are equivalent.

1. ϕ is compatible with the inner product.

2. There is an orientation on V such that the volume form vol ∈ Λ7V∗ satisfies

ιuϕ ∧ ιvϕ ∧ ϕ = 6⟨u, v⟩ vol

for all u, v ∈ V. The orientation is uniquely determined by ϕ.

Both conditions imply that ϕ is non-degenerate.

B.2.5 The Lie group G2

Consider the associative calibration ϕ ∈ Λ3(R7)∗ defined by

ϕ0 = dx123 − dx145 − dx167 − dx246 + dx257 − dx347 − dx356, (B.2)

where dxijk = dxi ∧ dxj ∧ dxk. The coassociative calibration is the Hodge dual

ψ0 := ∗ϕ0 = dx4567 − dx1247 − dx1256 + dx1346 − dx1357 − dx2345 − dx2367.

The group G2 is the stabilizer group of ϕ0, i.e.

G2 := {g ∈ SO(7) : g∗ϕ0 = ϕ0}

= {g ∈ SO(7) : gu × gv = g(u × v) for all u, v ∈ R7}.
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Theorem B.2.11 ([35]). The group G2 is the automorphism group Aut(O).

Now let V be any 7-dimensional vector space and ϕ ∈ Λ3V∗ be the associative calibration

defined by ϕ(u, v, w) := ⟨u × v, w⟩. The group of automorphism of ϕ is

G(V, ϕ) := {g ∈ SO(V) : g∗ϕ = ϕ}.

Then G(V, ϕ) is isomorphic to G2.

Theorem B.2.12 ([53]). The group G2 is a 14-dimensional simple, connected, simply connected Lie
group. The action of G2 on S6 is transitive and for every unit vector u ∈ V, the isotropy group
Gu := {g ∈ G2 : gu = u} is isomorphic to SU(3) and hence we have the fibration

SU(3) ↪→ G2 → S6.

Theorem B.2.13 ([53]). Let V be a 7-dimensional vector space and ϕ ∈ Λ3V∗ be the associative
calibration. There are orthogonal decompositions

Λ2V∗ = Λ2
7 ⊕ Λ2

14

Λ3V∗ = Λ3
1 ⊕ Λ3

7 ⊕ Λ3
27

where dim Λk
d = d and

Λ2
7 = {u ⌟ ϕ : u ∈ V} = {w ∈ Λ2V∗ : ∗(ϕ ∧ w) = 2w}

Λ2
14 = {w ∈ Λ2V∗ : ψ ∧ w = 0} = {w ∈ Λ2V∗ : ∗(ϕ ∧ w) = −w}

Λ3
1 = ⟨ϕ⟩

Λ3
7 = {u ⌟ ψ : u ∈ V}

Λ3
27 = {w ∈ Λ3V∗ : ϕ ∧ w = 0, ψ ∧ w = 0}.

Each Λk
d is an irreducible representation of G2 and the representations Λ2

7 and Λ3
7 are both isomorphic

to V. Λ2
14 is isomorphic to the Lie algebra of G2, Λ3

27 is isomorphic to the space of traceless symmetric
endomorphisms of V: the space Sym2

0(V).

B.3 The Lie group Spin(7)

B.3.1 Triple cross products

Definition B.3.1. Let (W, ⟨· , ·⟩) be a finite-dimensional inner product space. An alternating
multi-linear map

W × W × W → W
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(u, v, w) → u × v × w (B.3)

is called a triple cross product if it satisfies

⟨u × v × w, u⟩ = ⟨u × v × w, v⟩ = ⟨u × v × w, w⟩ = 0 (B.4)

and

|u × v × w| = |u ∧ v ∧ w| (B.5)

for all u, v, w ∈ W.

When u, v, w ∈ W are linearly dependent, we have u × v × w = 0.

Let (B.3) be a triple cross product. If e ∈ W is a unit vector, then the subspace Ve := e⊥ is

equipped with a cross product

Ve ×e Ve → Ve

u ×e v = u × e × v.

Hence we conclude that dim Ve = 0, 1, 3 or 7 and dim W = 1, 2, 4 or 8.

Definition B.3.2. Let dim W = 8 and W be equipped with a triple cross product. Then the
map

Φ : W × W × W × W → R

(x, u, v, w) → ⟨x, u × v × w⟩

is an alternating 4-form, called the Cayley calibration of W.

We fix an orientation of W such that Φ ∧ Φ > 0.

Theorem B.3.3 ([53]). Let dim W = 8 and W be equipped with a triple cross product with Cayley
calibration Φ ∈ Λ4W∗. Let e ∈ W be a unit vector.

1. Define the map ψe : W × W × W × W → R by

ψe(u, v, w, x) := ⟨e × u × v, e × w × x⟩ − (⟨u, w⟩ − ⟨u, e⟩⟨e, w⟩)(⟨v, x⟩ − ⟨v, e⟩⟨e, x⟩)
+ (⟨u, x⟩ − ⟨u, e⟩⟨e, x⟩)(⟨v, w⟩ − ⟨v, e⟩⟨e, w⟩).

Then ψe ∈ Λ4W∗ and Φ = e∗ ∧ ϕe + ψe where e∗ is dual to e and ϕe := ιeΦ ∈ Λ3W∗.
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2. The subspace Ve := e⊥ is equipped with a cross product

Ve × Ve → Ve

(u, v) 7→ u ×e v := u × e × v (B.6)

and ϕe|Ve is the associative calibration of B.6 and ψe|Ve is the coassociative calibration of B.6.

3. The inner product space W is a normed algebra with identity e, where the multiplication and
conjugation are given by

uv := u × e × v + ⟨u, e⟩v + ⟨v, e⟩u − ⟨u, v⟩e
u := 2⟨u, e⟩e − u.

B.3.2 Cayley calibrations

Definition B.3.4. Let W be an 8-dimensional real inner product space.

• A 4-form Φ ∈ Λ4W∗ is said to be non-degenerate if for all u, v, w ∈ W, linearly indepen-
dent in W, there exists x ∈ W such that

Φ(u, v, w, x) ̸= 0.

• The inner product ⟨· , ·⟩ on W is said to be compatible with Φ if the map

W × W × W → W

(u, v, w) 7→ u × v × w

defined by
⟨x × u × v, w⟩ := Φ(x, u, v, w)

is a triple cross product.

• A 4-form Φ ∈ Λ4W∗ is said to be a Cayley form if it admits a compatible inner product.

Example B.3.5. Let ϕ0, defined in (B.2) be the associative calibration on R7 (with basis dxi, i =
1, . . . , 7). Then R8 has the Cayley form

Φ0 = dx0 ∧ ϕ0 + ψ0

where ψ0 = ∗ϕ0. We note that Φ0 ∧ Φ0 = 14 vol.

Lemma B.3.6. [53] Let (W, ⟨· , ·⟩) be an inner product space and Φ ∈ Λ4W∗, vol ∈ Λ8W∗ are a
4-form and volume form respectively. Then the following are equivalent.
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1. The inner product is compatible with Φ.

2. With volume form vol ∈ Λ8W∗, there is a unique orientation on W such that for all u, v, w ∈ W,

ιvιuΦ ∧ ιvιuΦ ∧ Φ = 6|u ∧ v|2 vol .

B.3.3 The Lie group Spin(7)

Let W be an 8-dimensional inner product space equipped with a positive triple product and

Φ ∈ Λ4W∗ be the Cayley calibration. We give W the orientation such that Φ ∧ Φ > 0. We note

that Φ is self-dual with respect to the Hodge star operator. Recall the subspace Ve := e⊥ ⊂ W.

Then

Φ = e∗ ∧ ϕe + ψe,

ϕe := ιeΦ ∈ Λ3W∗,

ψe := ∗(e∗ ∧ ϕe) ∈ Λ4W∗.

Denote the group of automorphisms of Φ by

G(W, Φ) := {g ∈ GL(W) : g∗Φ = Φ}.

Then G(W, Φ) ⊂ SO(W) and

G(W, Φ) = {g ∈ SO(W) : gu × gv × gw = g(u × v × w) for all u, v, w ∈ W}.

Denote Spin(7) := G(R8, Φ0), where Φ0 is the standard Cayley form on R8.

Lemma B.3.7 ([53]). G(W, Φ) is isomorphic to Spin(7) for all Cayley forms Φ ∈ Λ4W∗.

Theorem B.3.8 ([53]). The group Spin(7) is a 21-dimensional simple, connected, simply connected
Lie group. If S7 be the unit sphere in R8, then Spin(7) acts transitively on the unit tangent bundle of
S7. Moreover, for every unit vector e ∈ W, the stabilizer group

Ge := {g ∈ Spin(7) : ge = e}

is isomorphic to G2, thus giving a fibration

G2 ↪→ Spin(7) → S7.
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Theorem B.3.9 ([53]). There are orthogonal decomposition

Λ2W∗ = Λ2
7 ⊕ Λ2

21

Λ3W∗ = Λ3
8 ⊕ Λ3

48

Λ4W∗ = Λ4
1 ⊕ Λ4

7 ⊕ Λ4
27 ⊕ Λ4

35

where dim Λk
d = d and

Λ2
7 = {w ∈ Λ2W∗ : ∗(Φ ∧ w) = 3w}

Λ2
21 = {w ∈ Λ2W∗ : ∗(Φ ∧ w) = −w}

Λ3
8 = {u ⌟Φ : u ∈ W}

Λ3
48 = {w ∈ Λ3W∗ : Φ ∧ w = 0}

Λ4
1 = ⟨Φ⟩

Λ4
7 = {LξΦ : ξ ∈ so(W)}

Λ4
27 = {w ∈ Λ4W∗ : ∗w = w, w ∧ Φ = 0, w ∧ LξΦ = 0 for all ξ ∈ so(W)}

Λ4
35 = {w ∈ Λ4W∗ : ∗w = −w}

(where L is the Lie derivative, for ξ ∈ so(W), LξΦ ∈ Λ4W∗ defined by LξΦ := d
dt |t=0 exp(tξ)∗Φ)

Each Λk
d is an irreducible representation of Spin(7).

B.3.4 A Few Identities

It is convenient to list a few identities involving ϕ and ψ we have used throughout the paper

(For proof, see [53]).

Let u, v ∈ Λ1, w ∈ Λ2. Then,

1. ∗(ψ ∧ u) = u ⌟ ϕ, ∗(ϕ ∧ u) = u ⌟ ψ,

2. ϕ ∧ (u ⌟ ϕ) = 2ψ ∧ u,

3. (u ⌟ ϕ) ⌟ ψ = 2u ⌟ ϕ, (u ⌟ ψ) ⌟ ψ = −4u,

4. (u ⌟ ϕ) ⌟ ϕ = 3u, (u ⌟ ψ) ⌟ ϕ = 0,

5. ∗(ϕ ∧ u ∧ v) = v ⌟ (u ⌟ ψ),

6. (w ⌟ ϕ) ⌟ ϕ = ∗(ψ ∧ ∗(ψ ∧ w)) = w + ∗(ϕ ∧ w),

7. (w ⌟ ψ) ⌟ ψ = ∗(ϕ ∧ ∗(ϕ ∧ w)) = 2w + ∗(ϕ ∧ w).
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The following identities involving the structure constants of ϕ and ψ have been used fre-

quently. Because of our convention, they differ from [34] or [35] in signs.

1. ϕijkϕabk = δiaδjb − δibδja + ψijab,

2. ϕijkψabck = −δiaϕjbc − δibϕajc − δicϕabj + δjaϕibc + δjbϕaic + δjcϕabi,

3. ψijklψabkl = 4δiaδjb − 4δibδja + 2ψijab.

B.3.5 Irreducible Representations of G2 and Spin(7)

First, we list the irreducible G2-representations we came across in this thesis. Let V(a,b) be an

irreducible representation of g2 with highest weight (a, b).

G2-reps Dimensions Modelled using Also isomorphic to

V(0,0) 1 Λ0(C7) Λ3
1(C

7)

V(1,0) 7 Λ1(C7) Λ2
7(C

7)

V(0,1) 14 Λ2
14(C

7)

V(2,0) 27 Λ3
27(C

7) Sym2
0(C

7)

V(1,1) 64

V(0,2) 77

V(3,0) 77

Finally, we list the irreducible Spin(7)-representations and the decompositions into irreducible

G2-representations. Let V(a,b,c) be an irreducible representation of spin(7) with highest weight

(a, b, c).

Spin(7)-reps Dimensions Isomorphic to Decomposition into G2-reps

V(0,0,0) 1 Λ0(C8) V(0,0)

V(1,0,0) 7 Λ2
7(C

8) V(1,0)

V(0,1,0) 21 Λ2
21(C

8) V(1,0) ⊕ V(0,1)
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V(0,0,1) 8 Λ1(C8) V(0,0) ⊕ V(1,0)

V(1,0,1) 48 Λ3
48(C

8) V(1,0) ⊕ V(0,1) ⊕ V(2,0)

V(2,0,0) 27 Λ4
27(C

8) V(2,0)

V(0,0,2) 35 Λ4
35(C

8) V(0,0) ⊕ V(1,0) ⊕ V(2,0)

V(0,1,1) 112 V(1,0) ⊕ V(0,1) ⊕ V(2,0) ⊕ V(1,1)

V(2,0,1) 168 V(1,1) ⊕ V(2,0) ⊕ V(3,0)

V(1,1,0) 105 V(0,1) ⊕ V(2,0) ⊕ V(1,1)

V(1,0,2) 189 V(1,0) ⊕ V(0,1) ⊕ V(3,0) ⊕ V(2,0) ⊕ V(1,1)

Now, for G2, we have the following projections.

π7 : Λ2(C7) → Λ2
7(C

7), w 7→ 1
3

w +
1
3
(w ⌟ ψ) =

1
3
(w ⌟ ϕ) ⌟ ϕ,

π14 : Λ2(C7) → Λ2
14(C

7), w 7→ 2
3

w − 1
3
(w ⌟ ψ) = w − 1

3
(w ⌟ ϕ) ⌟ ϕ,

π27 : Λ3(C7) → Λ3
27(C

7), w 7→ w +
1
4
(w ⌟ ψ) ⌟ ψ − 1

7
(w ⌟ ϕ)ϕ.

For Spin(7), we have the following projections.

π7 : Λ2(C8) → Λ2
7(C

8), w 7→ 1
4
(w + w ⌟Φ),

π21 : Λ2(C8) → Λ2
21(C

8), w 7→ 1
4
(3w − w ⌟Φ),

π48 : Λ3(C8) → Λ3
48(C

8), w 7→ w +
1
7
(w ⌟Φ) ⌟Φ,

π35 : Λ4(C8) → Λ4
35(C

8), w 7→ 1
2
(w − ∗w).

Finally, we notice two important relations: if dt ∧ a + v ∈ Λ2
7(C

8), where a ∈ Λ1(C7) and

v ∈ Λ2(C7), then since, (dt ∧ a + v) ⌟Φ = 3(dt ∧ a + v), we have v ⌟ ϕ = 3a.

Moreover, if dt ∧ b + w ∈ Λ3
48(C

8), where b ∈ Λ2(C7) and w ∈ Λ3(C7), since, (dt ∧ b + w) ⌟

Φ = 0, we have b ⌟ ϕ = −w ⌟ ψ.
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