
Novel Lifting Scheme Constructions

for Data Collected from Network

Edges

Dingjia Cao

PHD

UNIVERSITY of YORK

MATHEMATICS

September 2024

i

Abstract

As an emerging research area, analysing functions that arise from network

(graph) structures attracts researchers in both statistics and signal processing

communities. While current literature is rich when data are collected from the

graph vertex space, the data collected from graph edges call for new techniques,

and in its turn reaches across many application fields, from traffic networks to

neuroscience and hydrology. Wavelets are popular tools for understanding the be-

haviour of the underlying (edge) functions due to their computational efficiency

and robust performance in the presence of discontinuities.

In this thesis, we propose three types of new algorithms that provide a mul-

tiscale approach developed through lifting scheme wavelet constructions for data

collected from the network edges, useful for data compression and signal denoising.

We thoroughly investigate the properties of the proposed algorithms through sim-

ulation studies. In addition, we analyse the impact on the method performance of

different choices of key quantities, such as prediction/update weights and integrals

of the scaling functions.

Finally, we propose non-decimated versions for all of the proposed methods,

and these are shown to have a significant impact in the context of denoising prob-

lems posed in this thesis. We illustrate the advantages of our non-decimated lifting

constructions on a simulated dataset previously introduced in the literature as well

as on a new hydrological real dataset. The findings and the comparisons with ex-

isting results reported in the literature reinforce the superiority of our techniques

as well as the wide-reach of our three method types when considering the extent

to which data is available, e.g. full or partial information on edge lengths.

To my dad and my grandparents,

for their constant love at all times.

Contents

Contents iii

List of Figures viii

List of Tables xiv

Acknowledgement xx

Declaration xxii

Introduction xxiii

1 Literature Review 1

1.1 Prelude: Concepts for Hilbert Spaces and Basis Representations 1

1.1.1 Hilbert Spaces . 1

1.1.2 Orthogonality and Bases . 3

1.2 Wavelets . 5

1.2.1 Discretisation of the CWT . 7

1.2.2 Multiresolution Analysis (MRA) 8

1.2.3 Function Expansion using Wavelets 13

1.2.4 Discrete Wavelet Transform (DWT) 13

1.2.5 Biorthogonal Wavelets . 16

1.2.6 Non-decimated Discrete Wavelet Transform (NDWT) 18

1.3 The Lifting Scheme . 20

iii

iv Contents

1.3.1 Second Generation Multiresolution Analysis 21

1.3.2 Constructing Second Generation Wavelets and Filters 22

1.3.3 Fast Second Generation Wavelet Transform 24

1.3.4 The Lifting Transform in Practice 24

1.4 Graphs . 27

1.4.1 Basics of Graph Theory . 27

1.4.2 Matrices Associated to Graphs 29

1.4.3 Weighted Graphs . 30

1.4.4 Metrized Graphs . 30

1.5 LOCAAT Transform . 33

1.5.1 MRA Framework for LOCAAT 37

1.5.2 Filter Design . 39

1.5.3 Scales and Artificial Levels . 40

1.5.4 Variance Approximation . 41

1.6 Nonparametric Regression . 42

1.6.1 Estimation by Wavelet Shrinkage 42

1.6.2 Thresholding Strategy . 43

1.6.2.1 Hard- and Soft-thresholding 43

1.6.2.2 Empirical Bayes Thresholding 44

1.6.2.3 Estimating the Noise Level 45

2 Line Graph LOCAAT 47

2.1 Line Graph Transform . 48

2.2 Line Graph Distance Measure . 49

2.3 Line Graph LOCAAT (LG-LOCAAT) 51

2.3.1 Function Representation and Initial Lifting Functions Setup . . . 51

2.3.2 LG-LOCAAT Algorithm . 53

2.3.3 LG-LOCAAT Properties . 60

2.3.4 Original Domain Transformation 64

2.4 Simulation Testbed . 66

Contents v

2.4.1 Test Functions . 66

2.4.1.1 Sampling Network Structure 67

2.4.1.2 Embedding the Function Values 67

2.5 Simulation Results . 70

2.5.1 Stability . 70

2.5.2 Sparsity . 74

2.5.2.1 Sparsity Results for Pointwise Functions 76

2.5.2.2 Sparsity Results for Edge Averaging Functions 77

2.5.3 Denoising Performance . 78

2.5.3.1 Denoising Pointwise Functions 80

2.5.3.2 Denoising Edge Averaging Functions 85

3 E-LOCAAT: An Edge-Centred Scheme 94

3.1 E-LOCAAT Framework and Setup . 94

3.1.1 Interpolating-point Bases and Function Representations 95

3.1.2 Edge Bases and Function Representations 98

3.1.3 E-LOCAAT Algorithm Steps . 100

3.2 Biorthogonal Haar E-LOCAAT . 107

3.3 Simulation Study . 109

3.3.1 Stability . 111

3.3.2 Sparsity . 111

3.3.2.1 Sparsity for Pointwise Functions 112

3.3.2.2 Sparsity for Edge Averaging Functions 112

3.3.3 Denoising Performance . 112

3.3.3.1 Denoising Pointwise Functions 112

3.3.3.2 Denoising Edge Averaging Function 120

3.4 Remarks . 125

4 Laplacian-LOCAAT Construction 127

4.1 Graph Laplacian . 127

vi Contents

4.1.1 Laplacian Construction Using an Oriented Incidence Matrix . . . 128

4.1.1.1 Non-weighted Version 129

4.1.1.2 Weighted Version . 132

4.1.2 Laplacian Construction Using a Non-oriented Incidence Matrix . . 135

4.1.2.1 Non-weighted Version 135

4.1.2.2 Weighted Version . 136

4.1.3 Remarks . 137

4.1.3.1 A Natural Connection between the Laplacian and LO-

CAAT . 137

4.1.3.2 Generalisation for higher-order networks 138

4.2 Proposed Laplacian-LOCAAT Framework 141

4.2.1 Proposed LOCAAT via the Edge Laplacian 141

4.2.2 Proposed LOCAAT via the Line Graph Laplacian 152

4.3 Simulation Study . 155

4.3.1 Stability . 156

4.3.2 Sparsity . 157

4.3.2.1 Sparsity Plot for Pointwise Functions 157

4.3.2.2 Sparsity Plot for Edge Averaging Functions 159

4.3.3 Denoising Performance . 161

4.3.3.1 Denoising Pointwise Functions 161

4.3.3.2 Denoising Edge Averaging Function 162

5 Hydrological Data Analysis via Non-decimated Algorithms 168

5.1 Non-decimated Lifting Transform . 168

5.2 NLT for our Proposed Algorithms . 170

5.2.1 Non-decimated ‘Lazy’ Lifting Transform 170

5.2.2 Non-decimated Biorthogonal Haar Transform 172

5.3 Simulation Study for Denoising Performance 174

5.3.1 Denoising Pointwise Functions . 175

5.3.2 Denoising Edge Averaging Functions 185

Contents vii

5.4 Flow-based Function Denoising . 195

5.5 Real Data Analysis . 200

5.5.1 Results . 205

6 Conclusions and Future Work 207

6.1 Future Work . 210

A Path Distance 214

B Formulae of Test Functions 216

C Proofs 217

C.1 Proof for Proposition 2.3.1 . 217

C.2 Proof for Proposition 2.3.2 . 218

C.3 Proof for Lemma 4 . 219

C.4 Proof for Proposition 4.2.1 . 221

Bibliography 223

List of Figures

1.1 Visualisation for the Gibbs phenomenon. Top Left: The Blocks function.

Top Right: The reconstruction of the Blocks function via 50 Fourier basis

functions. Bottom Left: The reconstruction of the Blocks function via 100

Fourier basis functions. Bottom Right: The reconstruction of the Blocks

function via 200 Fourier basis functions. 5

1.2 Example of wavelets. Left: Extremal Phase Daubechies wavelets. Right:

Least Asymmetric Daubechies wavelets. Top: Wavelets with 4 vanishing mo-

ments.Middle:Wavelets with 6 vanishing moments.Bottom:Wavelets with

10 vanishing moments. 7

1.3 Doppler function and the approximations of it into the spaces Vj. From top

to bottom: Doppler function (V10); approximation of Doppler function in

V8; approximation of Doppler function in V6; and approximation of Doppler

function in V4. 10

1.4 Left: Haar mother wavelet ψHaar
1,0 . Middle: Haar wavelet ψHaar

2,2 . Right: Haar

wavelet ψHaar
1
2
, 1
2

. 12

1.5 An illustration of DWT. Top left: Blocks function. Top right: Doppler

function. Bottom left: Wavelet coefficients through different resolution lev-

els obtained by Haar wavelet transform for Blocks function. Bottom right:

Wavelet coefficients at different resolution levels obtained by Haar wavelet

transform for Doppler function. 15

2.1 A visualisation for the line graph transform. 49

viii

List of Figures ix

2.2 An undirected network structure ‘fiveNet’ with five nodes from Knight et al.

(2019). 58

2.3 Proposed relinkage method versus the relinkage method from Jansen et al.

(2009). Left: A toy network.Middle: The next-stage network after removing

the 10-th node via the relinkage from Jansen et al. (2009). Right: The next-

stage network after removing the 10-th node via the proposed relinkage. . . . 59

2.4 An example of a claw graph. 65

2.5 Heat maps for the test functions used in simulation. From left to right on

top row: g1, maartenfunc; middle row: Blocks, Doppler; bottom row: Bumps,

Heavisine. 68

2.6 Heat map for a set of function values defined on Voronoi polygons of the

vertex set of the line graph. The red points are the middle points of network

edges (hence, the vertices of the line graph), and each polygon represents

the function value of the corresponding new vertex (original edge). The test

function here is the edge averaging Blocks function, the values are obtained by

pointwise functions. The Voronoi polygons are generated by the new vertices

(red points). 69

2.7 Heat map for a set of function values defined on Voronoi polygons of the

vertex set of the line graph. The red points are the middle points of network

edges (hence, the vertices of the line graph), and each polygon represents

the function value of the corresponding new vertex (original edge). The test

function here is the Blocks function, the values are obtained by edge averaging

functions. The Voronoi polygons are generated by the new vertices (red points). 70

2.8 Sparsity plots for the test functions used in simulation by the equation (2.4.1).

The scheme is based on coordinate information. From left to right on top row:

g1, Blocks; middle row: Doppler, Bumps; bottom row: Heavisine, maartenfunc.

Black line: LG-Sid-c; red line: LG-Aid-c; blue line: LG-Did-c; dashed

black line: LG-Snw-c; dashed red line: LG-Anw-c; dashed blue line:

LG-Dnw-c. 75

x List of Figures

2.9 Sparsity plots for the test functions used in simulation by the equation (2.4.1).

The scheme is based on path distance. From left to right on top row: g1,

Blocks; middle row: Doppler, Bumps; bottom row: Heavisine, maartenfunc.

Black line: LG-Sid-p; red line: LG-Aid-p; blue line: LG-Did-p; dashed

black line: LG-Snw-p; dashed red line: LG-Anw-p; dashed blue line:

LG-Dnw-p. 76

2.10 Sparsity plots for the test functions used in simulation by the equation (2.4.2).

The scheme is based on coordinate information. From left to right on top row:

g1, Blocks; middle row: Doppler, Bumps; bottom row: Heavisine, maartenfunc.

Black line: LG-Sid-c; red line: LG-Aid-c; blue line: LG-Did-c; dashed

black line: LG-Snw-c; dashed red line: LG-Anw-c; dashed blue line:

LG-Dnw-c. 77

2.11 Sparsity plots for the test functions used in simulation by the equation (2.4.2).

The scheme is based on path distance. From left to right on top row: g1,

Blocks; middle row: Doppler, Bumps; bottom row: Heavisine, maartenfunc.

Black line: LG-Sid-p; red line: LG-Aid-p; blue line: LG-Did-p; dashed

black line: LG-Snw-p; dashed red line: LG-Anw-p; dashed blue line:

LG-Dnw-p. 78

2.12 Visualisation for the LG-LOCAAT estimation of three test functions. The

denoising is done by ‘LG-Aid-p’, with the average of 10 runs. From top to

bottom on left column: true Blocks, Doppler, Bumps functions; middle col-

umn: their noisy versions; right column: denoised signals. 81

3.1 Sparsity plots for the test functions used in simulation by the equation (2.4.1).

The scheme is based on the unweighted length update. From left to right

on top row: g1, blocks; middle row: doppler, bumps; bottom row: heavisine,

maartenfunc. Black line: E-Lid-nwu; red line: E-Lil-nwu; blue line: E-

Lnw-wu/nwu; dashed black line: E-Did-nwu; dashed red line: E-Dil-nwu;

dashed blue line: E-Dnw-wu/nwu. 113

List of Figures xi

3.2 Sparsity plots for the test functions used in simulation by the equation

(2.4.1). The scheme is based on the weighted length update. From left to

right on top row: g1, blocks; middle row: doppler, bumps; bottom row: heavi-

sine, maartenfunc. Black line: E-Lid-nwu; red line: E-Lil-nwu; blue line:

E-Lnw-wu/nwu; dashed black line: E-Did-nwu; dashed red line: E-Dil-

nwu; dashed blue line: E-Dnw-wu/nwu. 114

3.3 Sparsity plots for the test functions used in simulation by the equation (2.4.1).

The results are obtained by biorthogonal Haar LOCAAT. From left to right

on top row: g1, blocks; middle row: doppler, bumps; bottom row: heavisine,

maartenfunc. 115

3.4 Sparsity plots for the test functions used in simulation by the equation (2.4.2).

The scheme is based on the unweighted length update. From left to right

on top row: g1, blocks; middle row: doppler, bumps; bottom row: heavisine,

maartenfunc. Black line: E-Lid-wu/nwu; red line: E-Lil-nwu; blue line:

E-Lnw-nwu; dashed black line: E-Did-nwu; dashed red line: E-Dil-nwu;

dashed blue line: E-Dnw-wu/nwu. 116

3.5 Sparsity plots for the test functions used in simulation by the equation (2.4.2).

The scheme is based on the unweighted length update. From left to right

on top row: g1, blocks; middle row: doppler, bumps; bottom row: heavisine,

maartenfunc. Black line: E-Lid-nwu; red line: E-Lil-nwu; blue line: E-

Lnw-wu/nwu; dashed black line: E-Did-nwu; dashed red line: E-Dil-nwu;

dashed blue line: E-Dnw-wu/nwu. 120

3.6 Sparsity plots for the test functions used in simulation by the equation (2.4.2).

The results are obtained by biorthogonal Haar LOCAAT. From left to right

on top row: g1, blocks; middle row: doppler, bumps; bottom row: heavisine,

maartenfunc. 121

xii List of Figures

4.1 Sparsity plots for the test functions used in simulation by the equation (2.4.1).

The scheme is based on the edge Laplacian, and updated by Schur com-

plement, and incidence and weight matrix. From left to right on top row:

g1, blocks; middle row: doppler, bumps; bottom row: heavisine, maartenfunc.

Black line: EL-SC-L; Red line: EL-W-L. Blue line: EL-SC-D; Green

line: EL-W-D. 158

4.2 Sparsity plots for the test functions used in simulation by the equation (2.4.1).

The scheme is based on the line graph Laplacian, and updated by Schur

complement. From left to right on top row: g1, blocks; middle row: doppler,

bumps; bottom row: heavisine, maartenfunc. Black line: LGL-SC-S; dashed

black line: LGL-SC-A; dotted black line: LGL-SC-D. 159

4.3 Sparsity plots for the test functions used in simulation by the equation (2.4.2).

The scheme is based on the edge Laplacian, and updated by Schur com-

plement, and incidence and weight matrix. From left to right on top row:

g1, blocks; middle row: doppler, bumps; bottom row: heavisine, maartenfunc.

Black line: EL-SC-L; Red line: EL-W-L. Blue line: EL-SC-D; Green

line: EL-W-D. 160

4.4 Sparsity plots for the test functions used in simulation by the equation (2.4.2).

The scheme is based on the line graph Laplacian, and updated by Schur

complement. From left to right on top row: g1, blocks; middle row: doppler,

bumps; bottom row: heavisine, maartenfunc. Black line: LGL-SC-S; dashed

black line: LGL-SC-A; dotted black line: LGL-SC-D. 161

5.1 The simulated data for river flow, the network structure is introduced in

Gallacher et al. (2017), the test function construction is from Park et al.

(2022). 196

5.2 The flow data corrupted by noise ϵ ∼ N(0, 4). 196

5.3 The denoised version of the simulated noisy data for river flow in Figure 5.2,

via ‘LG-Aid-p-nlt (30)’. 199

List of Figures xiii

5.4 This is a new figure added to the thesis Left: The flow data corrupted by noise

ϵ ∼ (0, 1.52). Middle: The denoised river flow data by the non-decimated

lifting algorithm ‘LG-Aid-p-nlt’ of Cao et al. (2024), using 30 trajectories.

Right: The denoised river flow data by the proposed non-decimated lifting

algorithm ‘Bio-Haar-nlt-random’ with 30 trajectories. 199

5.5 The river network geometry of England. The green-coloured areas bounded

by orange curves are different river basins. The light-blue/grey curves are the

river water bodies, and the blue ones are canal water bodies. The red points

are the stations that collected data, and the red circle indicates the DO

data value associated with the stations (larger circle indicates larger value)

collected on 10th of May in 2024. 201

5.6 A visualised description for the toy network vertex sub-sampling. Left: Orig-

inal toy network. Right: Toy network after sub-sampling. Blue filled dot

points: network vertices. Red filled triangle points: stations on edges. . . 202

5.7 Left: Residual Q-Q plot of the DO data analysis (the data is collected on

10/May/2024, there are observations from all 60 stations) with algorithm

‘LG-Aid-c-nlt’. Right: Residual Q-Q plot obtained using algorithm ‘LG-Did-

c-nlt’. 204

5.8 Left: Residual Q-Q plot of the DO data analysis (the data is collected on

05/Jun/2024, there are 55 observations from 60 stations with 5 missing obser-

vations) with algorithm ‘LG-Aid-c-nlt’. Right: Residual Q-Q plot obtained

using algorithm ‘LG-Did-c-nlt’. 204

5.9 The denoised version for the data show in Figure 5.5. The algorithm used is

‘LG-Did-c-nlt’, with 100 trajectories. 205

5.10 The visualisation for the residuals. Positive residuals are represented by the

red circles, while negative residuals are represented by the black circles. The

size of the circle are determined by the absolute values of the residuals. . . . 206

List of Tables

2.1 Acronyms and algorithm descriptions for different parameter choices of LG-

LOCAAT. 71

2.2 Condition number for LG-LOCAAT with coordinate information. 73

2.3 Condition number for LG-LOCAAT using the path length. 73

2.4 AMSE for LG-LOCAAT on a tree structure with 100 nodes and 99 edges.

The functions follow the pointwise construction. We assume the coordinate

information is available. The values in parentheses are the standard deviations

(×103) of the AMSE results across the P ×R = 50× 100 replications. 82

2.5 Variance for LG-LOCAAT on a tree structure with 100 nodes and 99 edges.

The functions follow the pointwise construction. We assume the coordinate

information is available. The values in parentheses are the standard deviations

(×103) of the AMSE results across the P ×R = 50× 100 replications. 83

2.6 Squared bias for LG-LOCAAT on a tree structure with 100 nodes and 99

edges. The functions follow the pointwise construction. We assume the coor-

dinate information is available. The values in parentheses are the standard

deviations (×103) of the AMSE results across the P×R = 50×100 replications. 84

2.7 AMSE for LG-LOCAAT on a tree structure with 100 nodes and 99 edges.

The functions follow the pointwise construction. The path distance is used.

The values in parentheses are the standard deviations (×103) of the AMSE

results across the P ×R = 50× 100 replications. 85

xiv

List of Tables xv

2.8 Variance for LG-LOCAAT on a tree structure with 100 nodes and 99 edges.

The functions follow the pointwise construction. The path distance is used.

The values in parentheses are the standard deviations (×103) of the AMSE

results across the P ×R = 50× 100 replications. 86

2.9 Squared bias for LG-LOCAAT on a tree structure with 100 nodes and 99

edges. The functions follow the pointwise construction. The path distance is

used. The values in parentheses are the standard deviations (×103) of the

AMSE results across the P ×R = 50× 100 replications. 87

2.10 AMSE for LG-LOCAAT on a tree structure with 100 nodes and 99 edges. The

functions follow the edge-averaging construction. We assume the coordinate

information is available. The values in parentheses are the standard deviations

(×103) of the AMSE results across the P ×R = 50× 100 replications. 88

2.11 Variance for LG-LOCAAT on a tree structure with 100 nodes and 99 edges.

The functions follow the edge-averaging construction. We assume the coor-

dinate information is available. The values in parentheses are the standard

deviations (×103) of the AMSE results across the P×R = 50×100 replications. 89

2.12 Squared bias for LG-LOCAAT on a tree structure with 100 nodes and 99

edges. The functions follow the edge-averaging construction. We assume the

coordinate information is available. The values in parentheses are the stan-

dard deviations (×103) of the AMSE results across the P × R = 50 × 100

replications. 90

2.13 AMSE for LG-LOCAAT on a tree structure with 100 nodes and 99 edges.

The functions follow the edge-averaging construction. The path distance is

used. The values in parentheses are the standard deviations (×103) of the

AMSE results across the P ×R = 50× 100 replications. 91

2.14 Variance for LG-LOCAAT on a tree structure with 100 nodes and 99 edges.

The functions follow the edge-averaging construction. The path distance is

used. The values in parentheses are the standard deviations (×103) of the

AMSE results across the P ×R = 50× 100 replications. 92

xvi List of Tables

2.15 Squared bias for LG-LOCAAT on a tree structure with 100 nodes and 99

edges. The functions follow the edge-averaging construction. The path dis-

tance is used. The values in parentheses are the standard deviations (×103)

of the AMSE results across the P ×R = 50× 100 replications. 93

3.1 Acronyms and algorithm descriptions for different parameter choices of E-

LOCAAT. 110

3.2 Condition number for E-LOCAAT on a tree structure. 111

3.3 The AMSE table for different schemes. The test functions are the pointwise

ones defined in equation (2.4.1). 117

3.4 The variance table for different schemes. The test functions are the pointwise

ones defined in equation (2.4.1). 118

3.5 The squared bias table for different schemes. The test functions are the point-

wise ones defined in equation (2.4.1). 119

3.6 The AMSE table for different schemes. The test functions are the edge aver-

aging ones defined in equation (2.4.2). 122

3.7 The variance table for different schemes. The test functions are the edge

averaging ones defined in equation (2.4.2). 123

3.8 The squared bias table for different schemes. The test functions are the edge

averaging ones defined in equation (2.4.2). 124

4.1 Acronyms and algorithm descriptions for different parameter choices of LG-

LOCAAT. 156

4.2 Condition number for E-LOCAAT on a tree structure. 157

4.3 The AMSE table for different schemes. The test functions are the pointwise

ones defined in equation (2.4.1). 162

4.4 The variance table for different schemes. The test functions are the pointwise

ones defined in equation (2.4.1). 163

4.5 The squared bias table for different schemes. The test functions are the point-

wise ones defined in equation (2.4.1). 164

List of Tables xvii

4.6 The AMSE table for different schemes. The test functions are the edge aver-

aging ones defined in equation (2.4.2). 165

4.7 The variance table for different schemes. The test functions are the edge

averaging ones defined in equation (2.4.2). 166

4.8 The squared bias table for different schemes. The test functions are the edge

averaging ones defined in equation (2.4.2). 167

5.1 The AMSE table for different schemes. The test functions are the pointwise

ones defined in equation (2.4.1). The numbers following algorithm types in-

dicate the number of used trajectories, namely P = 10 and 30. 176

5.2 The variance table for different schemes. The test functions are the point-

wise ones defined in equation (2.4.1). The numbers following algorithm types

indicate the number of used trajectories, namely P = 10 and 30. 177

5.3 The squared bias table for different schemes. The test functions are the point-

wise ones defined in equation (2.4.1). The numbers following algorithm types

indicate the number of used trajectories, namely P = 10 and 30. 178

5.4 The AMSE table for different schemes. The test functions are the pointwise

ones defined in equation (2.4.1). The numbers following algorithm types in-

dicate the number of used trajectories, namely P = 10 and 30. 179

5.5 The variance table for different schemes. The test functions are the point-

wise ones defined in equation (2.4.1). The numbers following algorithm types

indicate the number of used trajectories, namely P = 10 and 30. 180

5.6 The squared bias table for different schemes. The test functions are the point-

wise ones defined in equation (2.4.1). The numbers following algorithm types

indicate the number of used trajectories, namely P = 10 and 30. 181

5.7 The AMSE table for different schemes. The test functions are the pointwise

ones defined in equation (2.4.1). The numbers following algorithm types in-

dicate the number of used trajectories, namely P = 10 and 30. 181

xviii List of Tables

5.8 The variance table for different schemes. The test functions are the point-

wise ones defined in equation (2.4.1). The numbers following algorithm types

indicate the number of used trajectories, namely P = 10 and 30. 182

5.9 The squared bias table for different schemes. The test functions are the point-

wise ones defined in equation (2.4.1). The numbers following algorithm types

indicate the number of used trajectories, namely P = 10 and 30. 182

5.10 The AMSE table for different schemes. The test functions are the pointwise

ones defined in equation (2.4.1). The numbers following algorithm types in-

dicate the number of used trajectories, namely P = 10 and 30. 183

5.11 The variance table for different schemes. The test functions are the point-

wise ones defined in equation (2.4.1). The numbers following algorithm types

indicate the number of used trajectories, namely P = 10 and 30. 184

5.12 The squared bias table for different schemes. The test functions are the point-

wise ones defined in equation (2.4.1). The numbers following algorithm types

indicate the number of used trajectories, namely P = 10 and 30. 185

5.13 The AMSE table for different schemes. The test functions are the edge av-

eraging ones defined in equation (2.4.2). The numbers following algorithm

types indicate the number of used trajectories, namely P = 10 and 30. . . . 186

5.14 The variance table for different schemes. The test functions are the edge

averaging ones defined in equation (2.4.2). The numbers following algorithm

types indicate the number of used trajectories, namely P = 10 and 30. . . . 187

5.15 The squared bias table for different schemes. The test functions are the edge

averaging ones defined in equation (2.4.2). The numbers following algorithm

types indicate the number of used trajectories, namely P = 10 and 30. . . . 188

5.16 The AMSE table for different schemes. The test functions are the edge av-

eraging ones defined in equation (2.4.2). The numbers following algorithm

types indicate the number of used trajectories, namely P = 10 and 30. . . . 189

List of Tables xix

5.17 The variance table for different schemes. The test functions are the edge

averaging ones defined in equation (2.4.2). The numbers following algorithm

types indicate the number of used trajectories, namely P = 10 and 30. . . . 190

5.18 The squared bias table for different schemes. The test functions are the edge

averaging ones defined in equation (2.4.2). The numbers following algorithm

types indicate the number of used trajectories, namely P = 10 and 30. . . . 191

5.19 The AMSE table for different schemes. The test functions are the edge av-

eraging ones defined in equation (2.4.2). The numbers following algorithm

types indicate the number of used trajectories, namely P = 10 and 30. . . . 191

5.20 The variance table for different schemes. The test functions are the edge

averaging ones defined in equation (2.4.2). The numbers following algorithm

types indicate the number of used trajectories, namely P = 10 and 30. . . . 192

5.21 The squared bias table for different schemes. The test functions are theedge

averaging ones defined in equation (2.4.2). The numbers following algorithm

types indicate the number of used trajectories, namely P = 10 and 30. . . . 192

5.22 The AMSE table for different schemes. The test functions are the edge av-

eraging ones defined in equation (2.4.2). The numbers following algorithm

types indicate the number of used trajectories, namely P = 10 and 30. . . . 193

5.23 The variance table for different schemes. The test functions are the edge

averaging ones defined in equation (2.4.2). The numbers following algorithm

types indicate the number of used trajectories, namely P = 10 and 30. . . . 194

5.24 The squared bias table for different schemes. The test functions are the edge

averaging ones defined in equation (2.4.2). The numbers following algorithm

types indicate the number of used trajectories, namely P = 10 and 30. . . . 195

5.25 AMSE for different methods performed on simulated flow data. 197

Acknowledgement

This thesis would not have been done without the help and support of many lovely

people. Firstly, I would like to send my gratitude to my supervisor, Prof. Marina Knight.

Thank you, Marina, for the support on academic and some chill chats throughout my

PhD period. Your tips on (math) writing, thinking, as well as the suggestions on work-life

balance will keep on helping me after my PhD study.

I would like to thank Prof. Wenyang Zhang and Prof. Degui Li for agreeing on being

my Thesis Advisory Panel members. I would also like to thank Dr. Ben Powell for many

useful chats in either the department or the pubs. Thanks to Dr. Yue Zhao, Dr. Jessica

Hargreaves, and Dr. Ben Powell, for letting me do the graduate teaching job for them

and trusting me. A big appreciation to everyone in the department of Mathematics, in

particular to Prof. Ed Corrigan for many chats and encouragements during my thesis

writing period, and to Prof. Kasia Rejzner for many memorable pub times.

I am extremely grateful for the accompany from every friend I meet in York, Ali,

Andrew, Jenny, Laura, Vincenzo, Vasilis, Ambroise, Cords, Eva, Diego, David, Peiyun,

Jade, Jack, Esther, Samantha, Guy, Emily, Ben G, Sam E, Nick, Ayan, Shefali, Nekhel,

Anjali, Lewis, Nikos, Yujia, Simen, Beth, Peter, Simon, Berend, Jintao, Shashank, Shashaank,

and Rutvij. Thanks to Diego and Eva for hosting me in London; to Andrew, Cords, Beth,

Ambroise (many times), Lewis, and Rutvij for being my housemates.

Thanks to Arnon, Jamie M, Jorjie, Ben C, Vincenzo for many enjoyable badminton

games, and of course to the state-level badminton player (and in many other sports) for

the guidances.

xx

xxi

There were many hard periods during the PhD (especially writing up time) and I

always know where to go, the Golden Ball, the best pub in the world. Thanks to all of

the staffs and every friend I met there. Thanks to Orion for the many drinks as well.

Big thanks to my friendship back in China, Haoyan, Yingyi, Cissie, thank you all for

a lot of late night (British time) conversations.

In the end, a big thank to my family, in particular my dad Bin Cao and my grandma

Genmei Feng, for their love and support at all time.

Declaration

This thesis is submitted to the University of York for the degree of Doctor of Philoso-

phy in Mathematics. I declare that the work presented in this thesis is my own original

independent research and has not been submitted for a degree at any other university

or institution. All sources of information have been properly acknowledged through ref-

erences.

xxii

Introduction

Network structures (or graph structures) have already attracted many mathematicians

throughout history. The first milestone in the study of networks has been widely recog-

nised as the proof of the Königsberg bridge problem by Euler, see Newman (2003).

Network analysis allows us to understand the behaviour of complex systems, such as cli-

mate, as Kolaczyk and Csárdi (2014) put it ‘an increasing tendency towards a systems-

level perspective in the sciences, away from the reductionism that characterised much

of the previous century ’. Some measurements or analysis methods for networks have a

large range of applications. For example, Zhang et al. (2003) presented a traffic matrix

estimation via an entropy-based method, Zhang et al. (2005) introduced a framework

for network anomaly detection and network tomography, Popescul and Ungar (2003)

and Taskar et al. (2003) analysed the link prediction problem in network science, Gir-

van and Newman (2002) investigated community structures in networks and introduced

a method for detecting such structures. For a comprehensive introduction to all these

topics and works, the reader can refer to Kolaczyk and Csárdi (2014). Recently, many

statisticians have been interested in the (statistical) modelling of networks, for example,

spatio-temporal modelling on networks, see Mahadevan (2010) and Knight et al. (2019),

as well as Park et al. (2022) for a problem in a hydrological context.

Although many efforts have been made to understand the probabilistic aspects of

networks, such as random graphs (Erdős et al.; 1960), there are still many interesting

statistical research questions to tackle when considering data collected on networks.

In general, statistical network analysis can be grouped into two main directions: (i)

constructing statistics describing the network structure, e.g., subgraph density (Chang

xxiii

xxiv Introduction

et al.; 2022); and (ii) analysing functions recorded over the network, e.g., nonparametric

regression on networks (Severn et al.; 2021). The second aspect can be subdivided into

two areas, when the function is observed from a static network, or the function is observed

through time, from a dynamic network. In this work, we are interested in the problem

of denoising a function recorded on the edges of a static network (e.g., a time snapshot).

Most of the work in the current literature on ‘graph wavelets’ among signal process-

ing community is exploring wavelet constructions for the vertex set, see for example,

Shuman et al. (2016) and Stanković et al. (2020). In reality, data may naturally come

from the edge set rather than from the vertex set, e.g. traffic flow data (Lakhina et al.;

2004), data from river networks (Cressie et al. (2006) and Park et al. (2022)), and fish

species distribution (Buisson et al.; 2008). It is not trivial to apply the existing methods

to such data, due to edge topology/geometry considerations, as opposed to the much

simpler case when data have been collected over one-dimensional locations. Under these

circumstances, constructing a multiscale method capable to operate on the edges of a

network is desirable, in particular, wavelets (‘little waves’) can capture space-frequency

(scale) localised information for many different underlying functions. To our knowledge,

the literature that considers multiscale decompositions for functions defined on the edges

of networks is very sparse. Cressie et al. (2006) discussed some statistical methods for

spatial prediction of data collected from streams (edges) of a river network, such as the

spatial moving average and kriging. Park et al. (2022) proposed an approach that uses

the lifting-one-coefficient-at-one-time algorithm (LOCAAT) of Jansen et al. (2009) albeit

the algorithm is designed for vertices while the data is recorded at the edges of a river

network. The method from Park et al. (2022) does not discuss the stream domain from a

geometric point of view and could lead to a mixture of vertex and edge topology. More-

over, their method employs river flow, another potentially noisy signal collected from

edges, to construct the prediction weights, which could lead to an inaccurate prediction.

Severn et al. (2021) introduced a regression curve estimation method for network data,

which they described as manifold-valued data. Their estimator is obtained by solving a

minimisation problem involving squared distances based on the graph Laplacian. Sim-

xxv

ilar to classic nonparametric regression methods, their approach relies on the choice of

kernel and bandwith, and may struggle to estimate network functions with discontinu-

ities. Therefore, designing a wavelet-based method with a theoretical framework that

captures information at various edge-driven scales would be valuable. In our work, we

will mainly build on the LOCAAT framework from Jansen et al. (2001, 2004, 2009).

This has already been proven to be a powerful tool for statistical regression problems

(also of interest in this thesis), see Nunes et al. (2006), Knight and Nason (2009) and

Knight et al. (2017). Our main target is to construct new multiscale methodologies that

are capable to denoise the data collected from edges corrupted by noise.

This thesis is organised as follows. In Chapter 1 we give a review of existing works,

which is essential for our work. In particular, we give the necessary background to wavelet

theory, including the first-generation (classic) and second-generation (via lifting scheme)

wavelets, as well as their applications for signal denoising. Some concepts from graph

theory will also be discussed, including the metrized graph from Kuchment (2003) and

Baker and Faber (2006), which provide a framework that will allow us to construct

multiscale function representations on a graph structure.

In Chapter 2 we propose a line graph lifting-based algorithm (LG-LOCAAT) for

dealing with data collected from network edges, where we first carry out a line graph

transform, and then use the LOCAAT algorithm (discussed in Chapter 1) on the new ver-

tices of this transformed structure. Using function representations by means of metrized

graphs, we also provide the theoretical support for our LG-LOCAAT transform, such as

the integral choice and the scale notion. In addition, other wavelet constructions can be

extended to the line graph space, such as the diffusion wavelets introduced by Coifman

and Maggioni (2006). However, the performance of diffusion wavelets depends on the

choice of diffusion operators as well as the underlying graph/manifold structure. For

instance, if the graph contains denser connected subgraphs, the diffusion operator may

create basis functions that fail to be localised in the observation domain. In contrast,

our method can overcome this limitation by utilising the lifting scheme, constructed to

generate a set of biorthogonal basis functions.

xxvi Introduction

In Chapter 3 we introduce a new multiscale construction for edge data, which we refer

to as E-LOCAAT, for which the lifting scheme is performed on the original metrized

graph domain instead of executing a line graph transform beforehand. The line graph

transformation is a limitation caused by the LG-LOCAAT construction but avoided by

the E-LOCAAT proposal, see Section 2.3.4 for more the details. An interesting Haar-like

variant will be generated by E-LOCAAT with a self-similarity constraint for the scaling

functions, which shows excellent denoising performance when the underlying function is

piecewise constant.

In Chapter 4 we introduce a new algorithm for dealing with edge data via the graph

Laplacian, which we refer to as the Laplacian-LOCAAT algorithm. This construction is

motivated by works from the signal processing community, in which graph Laplacians

(for the vertex set) are used for constructing Fourier and wavelet bases, see for example,

Hammond et al. (2013), Shuman et al. (2013), and Ortega et al. (2018); and for diffu-

sion wavelets introduced by Coifman and Maggioni (2006). To fit into the edge-based

data, we make use of the edge Laplacian, introduced into applications by Zelazo et al.

(2007) and Zelazo and Mesbahi (2010). The Laplacian-LOCAAT provides a faster algo-

rithm than LG-LOCAAT and E-LOCAAT, while also enabling different potential future

improvements, see Chapters 4 and 6 for more details.

Comprehensive simulation studies and assessment of the proposed methodologies

will be presented for the new algorithms in Chapters 2, 3, and 4. In Chapter 5 we

introduce non-decimated lifting scheme variants for the best performing algorithms in the

simulation studies for previous chapters, followed by a real data analysis. Comparisons

with recent works that treat hydrological data denoising on (simulated) river flow data

illustrate the superior behaviour of our proposed methodologies, while the analysis of

dissolved oxygen in river water, as an indicator of water quality, highlights the wide

span of data types (with complete versus incomplete information) that our portfolio of

algorithms can successfully deal with.

Chapter 1

Literature Review

In this chapter, we introduce the mathematical and statistical tools which we will use

throughout the thesis. In Section 1.1 we will briefly discuss some basic functional anal-

ysis terminologies. In Section 1.2 we give a detailed introduction of the first generation

wavelets (or classic wavelets) and the second generation wavelets, including the so-called

Multiresolution Analysis (MRA) framework, followed by the description of the lifting

scheme (Sweldens; 1998) in Section 1.3. Then in Section 1.4, we describe some topics in

graph theory which are essential for our analysis. Some related works and terminologies

of network data will be discussed. In the rest of this chapter, Section 1.5 describes the

Lifting One Coefficient At A Time (LOCAAT) framework constructed upon the lifting

scheme. The description of nonparametric regression, along with the wavelet threshold-

ing methods, will be introduced in Section 1.6.

1.1 Prelude: Concepts for Hilbert Spaces and Basis

Representations

1.1.1 Hilbert Spaces

Hilbert spaces are functional spaces which contain the classes of functions with ‘the

richest geometrical structure’ (see Young (1988)). Intuitively, we can consider Hilbert

1

2 Chapter 1. Literature Review

spaces as generalisations of Euclidean spaces (on functions). Inner products are used

to define quantities, such as distances, in Hilbert spaces. We denote ⟨·, ·⟩ as the inner

product, each inner product then derives a norm, denoted by ∥·∥. Then a Hilbert space

H can be considered as a complete metric space with the metric induced by its inner

product.

Throughout our study, we are mainly concerned with Hilbert spaces for some specific

functions or sequences, such as those are squared integrable (summable). For the function

version, suppose we have two functions f : R→ R and g : R→ R. We say that f belongs

to the space of squared integrable functions on R, namely f ∈ L2(R), if it satisfies∫ ∞

−∞
|f(x)|2dx <∞.

Then the inner product of f and g is defined as

⟨f, g⟩ =
∫ ∞

−∞
f(x)g(x)dx.

The (induced) L2-norm of the function f is defined as

∥f∥L2 = ⟨f, f⟩
1
2 =

(∫ ∞

−∞
|f(x)|2dx

) 1
2

.

For the sequence version, suppose now we have a sequence x = {xn}n∈Z, we say x ∈ l2(Z)

the space of squared summable sequences on Z if it satisfies∑
n∈Z

|xn|2 <∞.

Suppose we have another sequence y = {yn}n∈Z, then the inner product of x and y is

⟨x, y⟩ =
∑
n∈Z

xnyn.

The induced norm of the sequence x is

∥x∥l2 = ⟨x, x⟩
1
2 =

(∑
n∈Z

|xn|2
) 1

2

.

1.1. Prelude: Concepts for Hilbert Spaces and Basis Representations 3

1.1.2 Orthogonality and Bases

The basis of a Hilbert space H is defined as a set of functions {fk}k∈B, such that for any

f ∈ H, there exist a linear combination such that

f =
∑
k∈B

αkfk,

for some constants {αk}k∈B, and
∑

k∈B αkfk = 0 if and only if αk = 0 for any k ∈ B.

This property can be denoted as span{fk|k ∈ B} = H. Here A denotes the topological

closure of a set A.

An important property is orthogonality, and we say that two functions f, g ∈ H

are orthogonal if and only if their inner product satisfies ⟨f, g⟩ = 0.

A basis where any two different basis functions are orthogonal to each other is called

an orthogonal basis, and a set of functions {fk}k∈B ⊆ H forms an orthonormal basis

if and only if ⟨fi, fj⟩ = δij for all i, j ∈ B and span{fk|k ∈ B} = H, where

δij =

1, if i = j

0, otherwise

is the Kronecker delta, which implies the normalisation (each element has unit norm)

and linear independence of the family {fk}k∈B.

Example: Fourier series

Suppose we have a set of functions {fn(x)}n∈Z, where

fn(x) =
1√
2π
einx, for x ∈ (−π, π],

where we can see the oscillation in these functions according to the well-known Eu-

ler’s formula: einx = cos(nx) + i sin(nx). The functions in this family satisfy both con-

ditions ⟨em, en⟩ = δmn and span{fn|n ∈ Z} = L2((−π, π]), hence, for any function

f ∈ L2((−π, π]), we can rewrite it approximately as

f(x) =
∑
n∈Z

⟨f, fn⟩fn(x), (1.1.1)

4 Chapter 1. Literature Review

where f̂(n) = ⟨f, fn⟩ =
∫ π
−π

1√
2π
f(x)einxdx denotes the Fourier transform of function f .

Equation (1.1.1) is commonly known as the Fourier series expansion of f .

Fourier analysis is widely used in many areas, from physics to neuroscience, and

promoted a mathematical branch called harmonic analysis, see Pereyra and Ward (2012).

Moreover, a new philosophy was motivated by orthonormal basis expansion, in analysing

functions or signals in a different domain (frequency domain) rather than in observation

domain (time domain). For example, in equation (1.1.1), the amplitude and frequency

can be indicated by the magnitude of ⟨f, fn⟩ for each n.

In practice, Fourier bases have many desirable properties, for example, they can be

computed easily and can effectively extract information from smooth functions. But for

these functions with discontinuities, Fourier series usually lead to poor convergence re-

sults of neighbouring regions near discontinuities, the so-called Gibbs phenomenon,

see Pereyra and Ward (2012). Figure 1.1 shows a visualisation of the Gibbs phenomenon,

where we can clearly see that the Fourier analysis has difficulty dealing with the discon-

tinuities in the function, even as the number of basis functions increases.

In a nutshell, as classical Fourier analysis is not capable to deal with some local

information, Daubechies (1992) refers to this as: ‘high frequency bursts cannot be read

off easily from ⟨f, fn⟩’, which further motivated the development of functional analysis

in other domains, such as polynomial and wavelet bases.

Example: Monomial basis

Consider a class of polynomial functions f which have the form

f(x) =
∞∑
i=0

αix
i,

where αi is the coefficient of i-th power polynomial. For example, if f is a cubic function,

then α3 ̸= 0 and αi = 0 for i ≥ 4. It is easy to check that the set of polynomials

{x0, x1, x2, ...} spans the space of all polynomial functions, but orthogonality does not

hold. The set {x0, x1, x2, ...} is known as a (non-orthogonal) monomial basis.

1.2. Wavelets 5

Figure 1.1: Visualisation for the Gibbs phenomenon. Top Left: The Blocks function.
Top Right: The reconstruction of the Blocks function via 50 Fourier basis functions.
Bottom Left: The reconstruction of the Blocks function via 100 Fourier basis func-
tions. Bottom Right: The reconstruction of the Blocks function via 200 Fourier basis
functions.

1.2 Wavelets

Since the methodology in this work relies heavily on wavelets, in this section we provide

the essential details of wavelet theory. As of now, one may still have the question: what

are wavelets? Similar to Fourier analysis, wavelet analysis is a class of methods that

relies on (wavelet) basis expansion in functional spaces. Unlike Fourier bases, wavelet

bases are usually time-scale (frequency) localised rather than only frequency localised.

A mother wavelet (or wavelet function), ψ(x) ∈ L2(R), is a function that can

generate a basis by using dilations and translations. An element can be expressed as

6 Chapter 1. Literature Review

{ψa,b}a∈R\{0},b∈R, such that

ψa,b(x) =
1√
|a|
ψ

(
x− b
a

)
, (1.2.1)

where the dilation parameter a represents the scale of the wavelet, which also ensures

a constant norm in L2 such that ∥ψa,b∥L2 = ∥ψ∥L2 , while the translation parameter b

indicates the location of the wavelet. The continuous wavelet transform (CWT) for a

function f ∈ L2(R) can be defined as

CWTf (a, b) = ⟨f, ψa,b⟩L2 =
1√
|a|

∫ ∞

−∞
f(x)ψ

(
x− b
a

)
dx. (1.2.2)

Then the function f can be written as the wavelet representation by the Caldéron

reproducing formula (Calderón; 1964), such that

f(x) = C−1
ψ

∫ ∞

−∞

∫ ∞

−∞

1

a2
CWTf (a, b)ψa,b(x) da db, (1.2.3)

in which the constant is obtained by Cψ =
∫∞
−∞

|ψ̂(ω)|2
|ω| dω, where ψ̂ is the function obtained

by taking Fourier transform of ψ, see Section 1.1.2. To ensure the existence of the inverse

transform, this constant has to satisfy the admissibility condition, such that

Cψ =

∫ ∞

−∞

|ψ̂(ω)|2

|ω|
dω <∞. (1.2.4)

Daubechies (1992) shows that an equivalent form for the condition (1.2.4) is∫ ∞

−∞
ψ(x)dx = 0,

which demonstrates the oscillation of wavelets. This oscillation, along with the compact

support of wavelets (the Shannon wavelet is one of the exceptions, but it decays to zero

fast), brings the name ‘wavelets’, see for example Figure 1.2.

For a wavelet function ψ, if we have∫ ∞

−∞
xlψ(x)dx = 0,

for l = 0, ..., r − 1, then we say this wavelet has r vanishing moment. Wavelet functions

with higher vanishing moments are able to capture smoother patterns. For example,

1.2. Wavelets 7

Figure 1.2: Example of wavelets. Left: Extremal Phase Daubechies wavelets. Right:
Least Asymmetric Daubechies wavelets. Top:Wavelets with 4 vanishing moments.Mid-
dle:Wavelets with 6 vanishing moments.Bottom:Wavelets with 10 vanishing moments.

suppose that we have a r-polynomial function f(x) = arx
r + ar−1x

r−1 + · · ·+ a1x+ a0,

where ai ∈ R, for i = 0, ..., r. If we have a wavelet ψ(r+1) with (r+1) vanishing moments,

then the CWT will transform f into a zero function CWTf (a, b), which is a desirable

property in many applications.

1.2.1 Discretisation of the CWT

Recall in equation (1.2.2) that taking continuous wavelet transform for a function f

results into a function CWTf (a, b) that depends on two parameters, a ∈ R\{0} and

b ∈ R, making the transform redundant. A discretisation for the CWT can be carried out

to reduce this redundancy. The discretisation involves choosing discrete values for a, b to

reduce the number of wavelet functions ψa,b and is referred to as critical sampling. The

choice is not unique, but the most used is to let a = 2−j and b = 2−j k, where j, k ∈ Z,

8 Chapter 1. Literature Review

hence we can rewrite equation (1.2.1) into the dyadic decimated form such that

ψj,k(x) = 2j/2ψ(2jx− k). (1.2.5)

In addition, non-decimated wavelets can be constructed by letting a = 2−j and b = k,

for some j, k ∈ Z, which yields

ψj,k(x) = 2j/2ψ(2j(x− k)).

The non-decimated wavelet family provides wavelets at every location k ∈ Z instead of

a dyadic decimation 2−j k, see Section 1.2.6 for more details.

Hence, a discrete version of the function expansion form for f ∈ L2(R) in equation

(1.2.3) can be represented by an orthonormal decimated wavelet basis {ψj,k}j,k∈Z (in

equation (1.2.5)), such that

f(x) =
∑
k∈Z

∑
j∈Z

⟨f, ψj,k⟩L2 ψj,k(x),

and due to the orthogonality of wavelets, we have

dj,k := ⟨f, ψj,k⟩L2 =

∫ ∞

−∞
f(x)ψj,k(x)dx,

where {dj,k}j,k∈Z is known as the set of wavelet (or detail) coefficients.

1.2.2 Multiresolution Analysis (MRA)

Now let us introduce the important framework that brings wavelet analysis into various

applications, known as multiresolution analysis (MRA). The (orthogonal) multireso-

lution analysis (Mallat; 1989b,a) is defined as a nested sequence of closed subspaces

{Vj}j∈Z in L2(R), which satisfy that

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · . (1)

⋂
j∈Z

Vj = {0} (2)

⋃
j∈Z

Vj = L2(R). (3)

1.2. Wavelets 9

f(2jx) ∈ Vj if and only if f(x) ∈ V0. (4)

f(x− k) ∈ V0 if and only if f(x) ∈ V0. (5)

There exists a scaling function φ ∈ V0 with unit integral value

∫ ∞

−∞
φ(x)dx = 1,

such that {φ0,k}k∈Z is an orthonormal basis in V0, where φ0,k(x) = φ(x− k). (6)

Conditions (2) and (3) show that the subspaces have a trivial intersection and a dense

union in L2(R). Condition (4) indicates the self-similarity of any two subspaces. The

difference between the ‘resolution levels’ can be observed from different choices of j. For

example, from j to j + 1, finer information is captured on a higher scale 2j+1 rather

than 2j. As V0 ⊂ V1 and the fact that {φ1,k}k∈Z is a orthonormal basis in V1, then any

function φ ∈ V0 can be represented as a linear combination of the functions of V1. Hence,

we have

φ(x) =
∑
k∈Z

hk
√
2φ(2x− k). (1.2.6)

This is called the dilation or refinement equation. The set of coefficients {hk}k∈Z is

referred to as a low-pass filter. As its name suggests, this filter will preserve the low

frequency components of a signal and average out the high frequency components.

Daubechies (1992) defined an operator Proj, such that

Projjf =
∑
k∈Z

⟨f, φj,k⟩L2 φj,k(x), (1.2.7)

is the projection of the function f ∈ L2(R) on the subspace Vj. Daubechies (1992) also

shows the basic idea of MRA as the following theorem.

Theorem 1. If subspaces {Vj}j∈Z with a scaling function φ(x) form a multiresolution

analysis, then there exists an orthogonal wavelet basis {ψj,k}j,k∈Z, of L2(R), which in-

herits the scaling relations from φ, so, for every f ∈ L2(R) and j ∈ Z,

Projj+1f = Projjf +
∑
k∈Z

⟨f, ψj,k⟩L2 ψj,k, (1.2.8)

where Projj+1 and Projj are projections on Vj+1 and Vj, respectively.

10 Chapter 1. Literature Review

Figure 1.3: Doppler function and the approximations of it into the spaces Vj. From top
to bottom: Doppler function (V10); approximation of Doppler function in V8; approxi-
mation of Doppler function in V6; and approximation of Doppler function in V4.

Figure 1.3 illustrates projections for Doppler function in different spaces Vj using

the Haar wavelet. An interpretation of equation (1.2.8) is that the wavelets {ψj,k}k∈Z at

level j can be considered as the information ‘loss’ when zooming out from Projj+1 to

a coarser version Projj. Let Wj be the detail space spanned by {ψj,k}k∈Z for a certain

j ∈ Z, which is the orthogonal complement of Vj in Vj+1 such that Wj = {f ∈ Vj+1 :

∀g ∈ Vj, ⟨f, g⟩ = 0}. Then we have

Vj = Vj−1 ⊕Wj−1, (1.2.9)

where j ∈ Z and the symbol ‘⊕’ denotes the direct sum, Wj is called the detail space at

level-j. If the finest scale is J , then for i < j ≤ J , we have

Vj = Vi ⊕
j−1⊕
n=i

Wn. (1.2.10)

1.2. Wavelets 11

Recall the conditions (2) and (3) for the MRA, hence we have

L2(R) =
⊕
j∈Z

Wj,

which means that a function in L2(R) can be characterised by the detail spaces. Notice

that Wj inherit the scaling property from Vj+1 (Daubechies; 1992), hence we have the

following relations

f(x) ∈ W0 ⇐⇒ f(2j x) ∈ Wj, (1.2.11)

f(x) ∈ W0 ⇐⇒ f(x− k) ∈ W0, (1.2.12)

for j, k ∈ Z. Due to the self-similarity of the detail spaces, the mother wavelets {ψj,k}j,k∈Z
can be obtained by constructing an orthonormal basis ψ for W0. A possible construction

for such a basis is that

ψ(x) =
√
2
∑
k∈Z

(−1)kh1−k φ(2x− k). (1.2.13)

We can see that equation (1.2.13) follows the same thought with the refinement equation

(1.2.6) for scaling functions. Let gk = (−1)kh1−k, then the set of coefficients {gk}k∈Z is

referred to as the high-pass filter, which preserves high frequency components of the

signal. The sets {hk}k∈Z and {gk}k∈Z are together called quadrature mirror filters. Recall

that for any function φ(x) ∈ V0, we have
√
2φ(2x − k) ∈ V1, and W0 ⊂ V1, then the

refinement can be written as

φj,k(x) =
∑
l∈Z

hl−2kφj+1,l(x), (1.2.14)

ψj,k(x) =
∑
l∈Z

gl−2kφj+1,k(x). (1.2.15)

By equations (1.2.14) and (1.2.15), the filter design can be expressed as

hl−2k = ⟨φj,k, φj+1,l⟩, (1.2.16)

gl−2k = ⟨ψj,k, φj+1,k⟩, (1.2.17)

for all j, k, l.

12 Chapter 1. Literature Review

Figure 1.4: Left: Haar mother wavelet ψHaar
1,0 . Middle: Haar wavelet ψHaar

2,2 . Right: Haar
wavelet ψHaar

1
2
, 1
2

.

Example: Haar Wavelet

The Haar wavelet, introduced by Alfréd Haar (Haar; 1910) (even before the appearance

of the terminology ‘wavelet’), is the best example to start the wavelet journey because

of its simplicity. The Haar mother wavelet is defined as

ψHaar(x) = χ[0, 1
2
)(x)− χ[1

2
,1](x) =

1, 0 ≤ x < 1

2
;

−1, 1
2
≤ x ≤ 1;

0, otherwise.

The family of Haar wavelet functions obtained by dilation and translation are

ψHaar
a,b (x) = χ[b,a

2
+b)(x)− χ[a

2
+b,a+b](x) =

1√
a
, b ≤ x < a

2
+ b;

− 1√
a
, a

2
+ b ≤ x ≤ a+ b;

0, otherwise,

where a ∈ R>0 and b ∈ R. Figure 1.4 illustrates the Haar wavelets with different dilation

and translation.

1.2. Wavelets 13

1.2.3 Function Expansion using Wavelets

Recall that for a scale j, the detail space Wj ⊂ Vj+1, and Wj ⊥ Vj′ for any j′ ≤ j.

Now let us consider a certain level j0, we have that Vj0 ⊥ Wj and Wj ⊥ Wj′ , for any

j > j′ ≥ j0. The set {φj0,k}k∈Z
⋃
{ψj,k}j≥j0,k∈Z is an orthonormal basis for L2(R), hence,

along with equation (1.2.8), a function f ∈ L2(R) can be written as

f(x) =
∑
k∈Z

⟨f, φj0,k⟩L2φj0,k(x) +
∑
j≥j0

∑
k∈Z

⟨f, ψj,k⟩L2ψj,k(x). (1.2.18)

The first component tells us the information of the function at a coarse level j0, and the

second component consists of the finer level information when moving from Projj+1 to

Projj, for all j ≥ j0, so on and so forth. The limit form of the function expansion in

equation (1.2.18) can be written as

f(x) =
∑
j∈Z

∑
k∈Z

⟨f, ψj,k⟩L2ψj,k(x).

This indicates that any function f ∈ L2(R) can be characterised by the set of wavelet

functions {ψj,k}j,k∈Z and the associated wavelet coefficients dj,k = ⟨f, ψj,k⟩L2 . In practice,

computing the magnitude of the wavelet coefficients is of interest to us. The approach

is called the discrete wavelet transform, described as follows.

1.2.4 Discrete Wavelet Transform (DWT)

The discrete wavelet transform provides a fast recursive computation to obtain the

scaling and wavelet coefficients, without actually calculating the inner products ⟨f, φj,k⟩

and ⟨f, ψj,k⟩. This framework is firstly introduced by Mallat (1989b,a), referred to as

Mallat’s Pyramid algorithm.

Suppose we have a orthonormal basis {φj,k}j,k∈Z with compact supports, which sat-

isfies that
∫∞
−∞ φj,k(x)dx = 1, for all j, k. Recall that the supports of scaling functions

are squeezed from resolution level j to j + 1, Daubechies (1992) show the fact that

limj→∞ φj,k(x) = δ(x − k), where δ is the Dirac delta. Hence, by selecting a suitable

level j, we can start with ⟨f, φj,k⟩ ≈ f(k), for k ∈ Z. According to equation (1.2.8), this

14 Chapter 1. Literature Review

indicates that the information of the function can be (mostly) characterised by Projj,

thus, we have ⟨f, ψj,k⟩ ≈ 0. This means the function expansion can be written as

f(x) ≈
∑
k∈Z

cj,kφj,k(x), (1.2.19)

for a suitable level j. Hence, a possible construction is to start with the sequence {cj,k =

f(k)}k, and fully utilise the refinement equations (1.2.14) and (1.2.15). For example, we

have that

cj−1,k = ⟨f, φj−1,k⟩

=
∑
l∈Z

hl−2k⟨f, φj,k⟩

=
∑
l∈Z

hl−2kcj,k. (1.2.20)

Similarly, we have

dj−1,k =
∑
l∈Z

gl−2kcj,k. (1.2.21)

Equations (1.2.20) and (1.2.21) are known as the discrete wavelet transform. A sequence

of wavelet coefficients will be obtained if we perform these two equations recursively.

The discrete wavelet transform is also invertible, the associated inverse can be done

by recursively applying

cj,k =
∑
l∈Z

hk−2lcj,l +
∑
l∈Z

gk−2ldj,l,

see Mallat (1989b) for more details. Figure 1.5 illustrates the discrete wavelet transform

for Blocks and Doppler functions. The two bottom plots illustrate different degrees of

sparsity of the wavelet coefficients associated with these two functions, with most of

the wavelet coefficients being zero (or almost zero) for Blocks, hence indicating that the

function can be well represented by only a small set of basis functions, see equation

(1.2.18). For functions with discontinuities, this property helps avoid the Gibbs phe-

nomenon associated with the Fourier transform. Compared to the wavelet coefficients of

the Doppler function, note the Haar wavelet coefficients of the Blocks function are much

sparser, indicating a more efficient representation for Blocks than for Doppler, since the

function features can be captured using fewer basis functions.

1.2. Wavelets 15

Figure 1.5: An illustration of DWT. Top left: Blocks function. Top right: Doppler
function. Bottom left: Wavelet coefficients through different resolution levels obtained
by Haar wavelet transform for Blocks function. Bottom right: Wavelet coefficients at
different resolution levels obtained by Haar wavelet transform for Doppler function.

DWT for Discrete Data

All of the above discussions are for an underlying continuous function f ∈ L2(R). How-

ever, in practice (at least in statistical applications), the data observed are generally

discrete, located on equally-spaced points {xi}ni=1 of length n = 2J for some J ∈ N. For

the i-th point, there is a function value f(xi) associated with it. A convenient setup for

the starting scaling coeffcients is

cJ,i = f(xi). (1.2.22)

However, this choice is not accurate since the scaling functions {φJ,i}ni=1 are not exactly

Dirac deltas. As a result, equation (1.2.22) can lead to some error for the approximation

in equation (1.2.19), which is referred to as the ‘wavelet crime’ in Strang and Nguyen

(1996). They suggest to perform a pre-filter for the original data to guarantee equation

(1.2.19), for more details the reader can refer to Strang and Nguyen (1996).

16 Chapter 1. Literature Review

Once having chosen the scaling coefficients {cJ,i}2
J

i=1, we can compute the wavelet co-

efficients dJ−1 = (dJ−1,1, ..., dJ−1,2J)
T and scaling coefficients cJ−1 = (cJ−1,1, ..., cJ−1,2J)

T

at level (J − 1) by equations (1.2.20) and (1.2.21). Denote f = (f(x1), ..., f(x2J))
T , and

after iterating the procedure, we can obtain the vector

DWT(f) = (cj0 , dj0 , ..., cJ−1, dJ−1)
T ,

where j0 is a chosen stopping time. Since for any j ∈ Z, and j0 ≤ j ≤ J − 1, the lengths

of the associated vectors cj and dj are 2
j, it is easy to check that DWT(f) produces an

output of the same length as the input (which is 2J).

The discrete wavelet transform can be represented in a matrix form, such that

DWT(f) = Rf,

where R is a 2J × 2J matrix that characterises the discrete wavelet transform. Recall

that the discrete wavelet transform is an orthogonal transform, thus, the matrix R is an

orthogonal matrix, such that RTR = I2J , where I2J is an identity matrix of dimension

2J × 2J . Hence, we have R−1 = RT , which means the inverse transform in matrix form

can be obtained by taking the transpose of the matrix R.

1.2.5 Biorthogonal Wavelets

Orthogonal wavelets have many desirable advantages. For example, the wavelet domain

preserves the function energy (in terms of L2 norm). However, (real-valued) orthogonal

wavelets with compact support will lead to the absence of symmetry, with the only

exception being the Haar wavelet, see Daubechies (1992). This asymmetry can lead

to some drawbacks in applications, especially for those involving visualisation, such as

image analysis, see Daubechies (1992). Motivated by these application areas, Cohen et al.

(1992) introduced a wavelet construction with a relaxation of the orthogonality, which

is referred as biorthogonal wavelet construction.

Instead of a system of two filters {hk}k∈Z and {gk}k∈Z, biorthogonal constructions in-

volve four different filters: dual filters {h̃k}k∈Z and {g̃k}k∈Z, and primal filters {hk}k∈Z and

1.2. Wavelets 17

{gk}k∈Z. The refinement relations for biorthogonal wavelets can be found in Daubechies

(1992), which are

φ̃j,k(x) =
∑
l∈Z

h̃l−2kφ̃j+1,l(x), ψ̃j,k(x) =
∑
l∈Z

g̃l−2kφ̃j+1,l(x);

φj,k(x) =
∑
l∈Z

hl−2kφj+1,l(x), ψj,k(x) =
∑
l∈Z

gl−2kφj+1,l(x),

along with the condition

⟨φ0,k, φ̃0,k′⟩ = δkk′ ,

where δkk′ is a Kronecker delta. This condition gives rise to the biorthogonality conditions

⟨φj,k, φ̃j,k′⟩ = δkk′ , (1.2.23)

⟨ψj,k, ψ̃j′,k′⟩ = δjj′δkk′ . (1.2.24)

Biorthogonal wavelets generate two multiresolution analysis ladders (Cohen et al.; 1992)

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ,

· · · ⊂ Ṽ−2 ⊂ Ṽ−1 ⊂ Ṽ0 ⊂ Ṽ1 ⊂ Ṽ2 ⊂ · · · ,

where Vj = span{φj,k; k ∈ Z}, Ṽj = span{φ̃j,k; k ∈ Z}, and their (non-orthogonal)

complement subspaces Wj = span{ψj,k; k ∈ Z}, W̃j = span{ψ̃j,k; k ∈ Z}. Similar to the

orthogonal multiresolution analysis ladder, we have Vj+1 = Vj⊕Wj and Ṽj+1 = Ṽj⊕W̃j.

Different from the orthogonal multiresolution analysis, the spaces Vj and Wj (also Ṽj

and W̃j) are not orthogonal to each other. This can lead to the stability issues, which

will be delved into in our work. As a result from equations (1.2.23) and (1.2.24), we

have Vj ⊥ W̃j and Ṽj ⊥ Wj. As described by Daubechies (1992), these two ladders “fit

together like a giant zipper”. Consequently, the function expansion form (by biorthogonal

wavelets) can be written as (Cohen et al.; 1992)

f(x) =
∑
j∈Z

∑
k∈Z

⟨f, ψj,k⟩ψ̃j,k(x)

=
∑
j∈Z

∑
k∈Z

⟨f, ψ̃j,k⟩ψj,k(x),

18 Chapter 1. Literature Review

or it can be written at a certain resolution level j0, such that

f(x) =
∑
k∈Z

⟨f, φj0,k⟩φ̃j0,k(x) +
∑
j≥j0

∑
k∈Z

⟨f, ψj,k⟩ψ̃j,k(x)

=
∑
k∈Z

⟨f, φ̃j0,k⟩φj0,k(x) +
∑
j≥j0

∑
k∈Z

⟨f, ψ̃j,k⟩ψj,k(x). (1.2.25)

For more details on biorthogonal wavelets, the reader can refer to Cohen et al. (1992),

Cohen and Daubechies (1992), and Daubechies (1992).

1.2.6 Non-decimated Discrete Wavelet Transform (NDWT)

Non-decimated wavelet transforms have already been proven to be a powerful tool for

regression and time series problems, some of which will be discussed later on. For clas-

sic (first generation) wavelets, non-decimated wavelets aim to ‘fill in the gap’ of the

decimation caused by the dilation of multiresolution analysis, see Nason and Silverman

(1995). Due to this fact, Percival (1995) called it the maximal overlap estimator. This

construction allows us to perform a translation-invariant transform, which ‘averages

out’ the translation dependence caused by information shifts at each level, see Coifman

and Donoho (1995).

Suppose we have a dyadic sequence c = {c0, ..., cN−1}, defined on a set of equally

spaced one-dimensional points x = {0, 1
N
, ..., N−1

N
}, where N = 2J , for some J ∈ N+.

We denote F low = {hn}N−1
n=0 and Fhigh = {gn}N−1

n=0 as the low-pass and high-pass filters,

respectively. The low-pass and high-pass filters are designed with a discrete analogue

of compact support, which means only a few elements are non-zeros. The two filters

operate on the original data, such that

(F lowc)k =
N−1∑
n=0

hn−kcn,

(Fhighc)k =
N−1∑
n=0

gn−kcn,

1.2. Wavelets 19

see Daubechies (1992) and Nason (2008). Along with a dyadic decimation operator D0,

such that

(D0 c)k = c2k,

for k ∈ {0, ..., N
2
− 1}, the dilation equation can be written as

cJ−1 = D0F lowcJ ,

dJ−1 = D0FhighcJ ,

see Nason (2008). For any level j = 0, ..., J − 1, Nason and Silverman (1995) show that

the detail and scaling coefficients can be written as

dj = D0Fhigh(D0F low)J−j−1cJ ,

cj = (D0F low)J−jcJ .

The non-decimation can be carried out by considering a shift operator S, such that

(Sc)k = ck+1.

Nason and Silverman (1995) define a shifted-decimation operator D1 = D0S, such that

(D1 c)k = (D0S c)k

= c2k+1. (1.2.26)

Suppose we have an integer S and its binary representation εJ−1εJ−2 · · · ε0, where each

εj ∈ {0, 1} is an indicator of the shift operator, such that Dεj is used from level j+1 to j.

Nason and Silverman (1995) denote this as ε-decimated discrete wavelet transform, and

they show that the detail coefficients obtained by the binary sequence εJ−1εJ−2 · · · ε0 is

equivalent to performing the usual DWT on the shifted sequence SS c. Nason and Silver-

man (1995) also discussed the inverse of NDWT and point out the possible advantage of

NDWT for nonparametric regression, while Coifman and Donoho (1995) provided a de-

tail analysis of NDWT (what they call translation-invariant transform) on the denoising

performance, in which they found that NDWT with wavelet thresholding can suppress

visual artifacts, such as the Gibbs phenomena.

20 Chapter 1. Literature Review

1.3 The Lifting Scheme

Although first-generation wavelets are widely regarded as powerful tools, constructing

first-generation wavelets encounters some practical restrictions. For example, the length

of data has to be dyadic (2J for some J ∈ Z+), and observations have to be equally

spaced. However, the data observed for most real-life problems does not follow these

restrictions. Motivated by this, Sweldens (1995, 1996b, 1998) introduced a new technique

called the lifting scheme, which can produce wavelet-like bases adapted to more general

sampling cases. The lifting scheme naturally leads to biorthogonal bases and does not

rely on the Fourier domain. The wavelet bases generated by the lifting scheme are also

known as second generation wavelets. In this section, we provide a detailed mathematical

introduction to the lifting scheme, which forms the foundation construct for this thesis.

However, the reader can refer directly to Section 1.5 for the variant of the lifting scheme

that is most relevant for the subsequent chapters.

Now suppose we have an observed signal {f(xi)}ni=1, defined on the n different loca-

tions {xi}ni=1, where x1 < x2 < · · · < xn. Note that here these locations are no longer

assumed to be regularly distributed. The lifting scheme (Sweldens; 1998) consists of

three steps: split, prediction, and update. A single step split-predict-update paradigm

can be described as follows.

• Split: This step is equivalent to the downsampling of the discrete wavelet trans-

form. In the lifting construction, the observation locations {xi}ni=1 are separated

into two sets, {x2i−1}
⌈n
2
⌉

i=1 and {x2i}
⌊n
2
⌋

i=1 , which indicate odd and even positions of

the location sequence. A different ‘split’ strategy will be described in Section 1.5.

• Predict: Then we obtain the ‘prediction’ for the values on the odd positions,

{f(x2i−1)}
⌈n
2
⌉

i=1 , by the information from the even ones, {f(x2i)}
⌊n
2
⌋

i=1 . The difference

between the observation values and the prediction values are interpreted as the

detail or wavelet coefficients.

• Update: The observations on the even positions are then updated based on their

current values and the detail coefficients obtained in the prediction step. This step

1.3. The Lifting Scheme 21

aims to preserve some measurements of the signal, such as its energy and its mean

value.

These three steps will be reiterated to obtain a set of detail coefficients and remaining

scaling coefficients (those that have not been predicted).

The lifting scheme is easier to implement than the classic wavelets, and can be flexibly

designed (Sweldens and Schröder; 2005). In addition, one of the advantages of the lifting

scheme in the theoretical aspect is that it does not rely on the Fourier (frequency) domain

and instead, the construction can be carried out entirely in the data domain.

In the following section, the MRA framework for the second generation wavelets will

be briefly described, and for more details, the reader can refer to Sweldens (1996a, 1998).

1.3.1 Second Generation Multiresolution Analysis

The second generation MRA can be described as follows (Sweldens; 1998).

Definition 1.3.1. A second generation primal multiresolution analysis of the space

L2(R) is (still) defined as a nested sequence of closed subspaces {Vj}j∈J⊂Z such that

1. Conditions 1-3 in classic multiresolution analysis (Section 1.2.2) still hold.

2. Condition 4-5 in classic multiresolution analysis do not necessarily hold.

3. For each j, the space Vj has a Riesz basis given by scaling functions {φj,k}k∈Sj
,

such that for a function f ∈ L2(R), there is

L ∥f∥2L2
≤
∑
k∈Sj

|⟨f, φj,k⟩|2 ≤ U ∥f∥2L2
, (1.3.1)

where Sj is an index set at level j, with Sj ⊂ Sj+1, and 0 < L ≤ U <∞.

Definition 1.3.2. A second generation dualmultiresolution analysis consists of a nested

sequence of closed subspaces {Ṽj}j∈J⊂Z, where each subspace Ṽj has the same properties

with Vj as described in definition 1.3.1. For each space Ṽj, there is a set of (dual) scaling

functions {φ̃j,k}k∈Sj
, such that

⟨φj,k, φ̃j,k′⟩ = δkk′ , ∀j ∈ J ⊂ Z; k, k′ ∈ Sj. (1.3.2)

22 Chapter 1. Literature Review

It is clear that the dual and primal scaling functions satisfy the biorthogonality

property as described in Section 1.2.5. The primal and dual scaling functions are designed

to have properties such that ∫ ∞

−∞
φ̃j,k(x)dx = 1,∑

k∈Sj

φj,k(x) = 1, ∀x ∈ R,

see Sweldens (1998).

Recall that Vj ⊂ Vj+1, then we can define a filter with the coefficients {hj,k,l}l∈Sj+1

for each scaling function φj,k, where j ∈ J ⊂ Z and k ∈ Sj, such that

φj,k(x) =
∑
l∈Sj+1

hj,k,lφj+1,l(x). (1.3.3)

This can be considered as the equivalence of the refinement relation of the classic wavelet

theory, since each scaling function at level j can be written as a linear combination

of those at level j + 1. To ensure that equation (1.3.3) is well-defined, the sets {k ∈

Sj |hj,k,l ̸= 0} and {l ∈ Sj+1 |hj,k,l ̸= 0} have to be finite, which can be considered as the

‘compact support’ in classic wavelet theory. In addition, the values hj,k,l, for all j, k, l,

have to be uniformly bounded. Similarly, the refinement for the dual scaling function

can be constructed by a dual filter, such that

φ̃j,k(x) =
∑
l∈Sj+1

h̃j,k,lφ̃j+1,l(x), (1.3.4)

in which the filter {h̃j,k,l}∀j,k,l is finite and uniformly bounded as for the primal one.

1.3.2 Constructing Second Generation Wavelets and Filters

For constructing wavelets, we can define another two filters {gj,m,l} and {g̃j,m,l}, where

j ∈ Z, m ∈ Dj = Sj+1\Sj, and l ∈ Sj+1, such that

ψj,m(x) =
∑
l∈Sj+1

gj,m,lφj+1,l(x), (1.3.5)

ψ̃j,m(x) =
∑
l∈Sj+1

g̃j,m,lφ̃j+1,l(x). (1.3.6)

1.3. The Lifting Scheme 23

Similar to the filters h and h̃, here g and g̃ are assumed to be finite and uniformly

bounded.

By recursively performing equations (1.3.5) and (1.3.6), we can obtain a set of func-

tions {φj0,k}k∈Sj0

⋃
{ψj,k}j≥j0,m∈Dj

, or a fully decomposed version {ψj,k}j∈Z,m∈Dj
. Note

that the second generation MRA generates a biorthogonal basis for L2(R) (Sweldens;

1998), the function can be written as a similar form as in equation (1.2.25), such that

f(x) =
∑
k∈Sj0

⟨f, φ̃j0,k⟩φj0,k(x) +
∑
j≥j0

∑
m∈Dj

⟨f, ψ̃j,m⟩ψj,m(x) (1.3.7)

=
∑
j∈Z

∑
m∈Dj

⟨f, ψ̃j,m⟩ψj,m(x).

Recall the biorthogonality property from Section 1.2.5, which is ⟨φj,k, φ̃j,k′⟩ = δkk′ .

Then equations (1.3.3) and (1.3.4) can lead to∑
l∈Sj+1

hj,k,lh̃j,k′,l = δkk′ , ∀j ∈ Z, k, k′ ∈ Sj. (1.3.8)

Note from equation (1.3.3), we have

⟨φj,k, φ̃j+1,l⟩ =

〈 ∑
l′∈Sj+1

hj,k,l′ φj+1,l′

 , φ̃j+1,l

〉

=
∑

l′∈Sj+1

hj,k,l′⟨φj+1,l′ , φ̃j+1,l⟩

= hj,k,l,

which gives us the construction of the filters h. Similarly, the construction for the filters

h̃ can be obtained by h̃j,k,l = ⟨φ̃j,k, φj+1,l⟩. Similar relations for filters g and g̃ can be

written as ∑
l∈Sj+1

gj,m,lg̃j,m′,l = δmm′ , ∀j ∈ Z, m,m′ ∈ Dj, (1.3.9)

where the filters can be obtained by gj,m,l = ⟨ψj,m, φ̃j+1,l⟩, and g̃j,m,l = ⟨ψ̃j,m, φj+1,l⟩.

24 Chapter 1. Literature Review

Recall that Vj ⊥ W̃j and Ṽj ⊥ Wj, which indicate that∑
l∈Sj+1

hj,k,lg̃j,m,l = 0, (1.3.10)

∑
l∈Sj+1

h̃j,k,lgj,m,l = 0, (1.3.11)

for all j, k,m.

Definition 1.3.3. A set of filters {h, h̃, g, g̃} is a set of biorthogonal filters if equations

(1.3.8), (1.3.9), (1.3.10), and (1.3.11) hold.

1.3.3 Fast Second Generation Wavelet Transform

The second generation fast wavelet transform is similar in spirit to the first generation

one. Denote the level-j scaling coefficient cj,k = ⟨f, φ̃j,k⟩, for k ∈ Sj and the level-j

wavelet coefficients dj,m = ⟨f, ψ̃j,m⟩, for m ∈ Dj.

By the refinement relations in equations (1.3.4) and (1.3.6), we have that

cj,k =
∑
l∈Sj+1

h̃j,k,lcj+1,l, ∀j ∈ Z, k ∈ Sj,

dj,m =
∑
l∈Sj+1

g̃j,m,lcj+1,l, ∀j ∈ Z, m ∈ Dj.

Based on equations (1.3.3) and (1.3.5), the inverse transform can be done by recursively

applying the following equation

cj+1,l =
∑
k∈Sj

hj,k,lcj,k +
∑
m∈Dj

gj,m,ldj,m. (1.3.12)

1.3.4 The Lifting Transform in Practice

Up to this point we have seen the framework of the (biorthogonal) second generation

wavelets, but one might have the question on how could we perform the transform in

practice? Let us first start with the following theorem.

1.3. The Lifting Scheme 25

Theorem 2 (Primal Lifting in index notation (Sweldens; 1998)). If there is a set of

biorthogonal filters {h, h̃, g, g̃}, then a new set of biorthogonal filters {hnew, h̃new, gnew, g̃new}

can be constructed via

hnewj,k,l = hj,k,l, (1.3.13)

h̃newj,k,l = h̃j,k,l +
∑
m

bj,k,mg̃j,m,l, (1.3.14)

gnewj,m,l = gj,m,l −
∑
k

bj,k,mhj,k,l, (1.3.15)

g̃newj,m,l = g̃j,m,l. (1.3.16)

Combining equations (1.3.3)-(1.3.6), with equations (1.3.14) and (1.3.15), we have

the dual scaling functions and similarly for the primal wavelets, respectively,

φ̃new
j,k = φ̃j,k +

∑
m∈Dj

bj,k,mψ̃j,m, (1.3.17)

ψnew
j,m = ψj,m +

∑
k∈Sj

bj,k,mφj,k.

Now assume we have a set of observations {fi}ni=1 from a underlying function f ∈ L2(R),

with one-dimensional locations x1 < · · · < xn, where the i-th observation is located at

xi. Then from equation (1.3.17) we have

⟨f, φ̃new
j,k ⟩ =

〈
f,

φ̃j,k + ∑
m∈Dj

bj,k,mψ̃j,m

〉

=⇒ cnewj,k = cj,k +
∑
m∈Dj

bj,k,mdj,m. (1.3.18)

It is easy to check that these ‘new’ filters are finite and uniformly bounded, see

Sweldens (1998) for more details. By a similar construction, Sweldens (1998) show that

26 Chapter 1. Literature Review

the dual lifting (in index notation) can be presented as

hnewj,k,l = hj,k,l +
∑
m

aj,k,mgj,m,l, (1.3.19)

h̃newj,k,l = h̃j,k,l, (1.3.20)

gnewj,m,l = gj,m,l, (1.3.21)

g̃newj,m,l = g̃j,m,l −
∑
k

aj,k,mh̃j,k,l. (1.3.22)

Similarly, from equation (1.3.22), we can have the dual wavelets

ψ̃new
j,m = ψ̃j,m −

∑
k∈Sj

aj,k,mφ̃j,k. (1.3.23)

Then from equation (1.3.23) we have

⟨f, ψ̃new
j,m ⟩ =

〈
f,

ψ̃j,m −∑
k∈Sj

aj,k,mφ̃j,k

〉

=⇒ dnewj,m = dj,m −
∑
k∈Sj

aj,k,mcj,k. (1.3.24)

The lifting scheme provides a different philosophy. Assuming we have a set of ob-

servations {fi}ni=1 from an underlying function f ∈ L2(R), sampled at one-dimensional

locations x1 < · · · < xn, where the i-th observation is located at xi, we then itera-

tively apply dual lifting followed by primal lifting. For example, we start with a set

of primal scaling functions {φJ,i(x) = χxi(x)}ni=1 and a set of dual scaling functions

{φ̃J,i(x) = δ(x − xi)}ni=1, hence the i-th initial scaling coefficient can be represented as

cJ,i = ⟨f, φ̃J,i⟩ = fi. For obtaining the level-(J −1) coefficients, we perform the following

steps.

• Split: Split the index set SJ = {1, ..., n} into two sets, SJ−1 andDJ−1. For k ∈ SJ−1

and m ∈ DJ−1, we denote cJ−1,k = cJ,k and dJ−1,m = cJ,m, respectively.

• Predict: The wavelet coefficients will be obtained by

dJ−1,m := dJ−1,m −
∑

k∈SJ−1

aJ−1,k,mcJ−1,k,

for all k ∈ SJ−1.

1.4. Graphs 27

• Update: The scaling coefficients will be updated by

cJ−1,k := cJ−1,k +
∑

m∈DJ−1

bJ−1,k,mdJ−1,m,

for all m ∈ DJ−1.

If we iterate the above steps until a chosen (primary resolution) level j0, then a sequence

of wavelet coefficients can be obtained as in classic DWT. It is worth to mention that

the odd-even split strategy is just one of the possible choice, other choices can be chosen

to handle other irregular situations, such as data from high-dimensional spaces, which

will be expanded upon in Section 1.5.

1.4 Graphs

The structure of the data collected from networks can be modelled by graphs, the main

objects in the study of graph theory. In this section, we will present some background

knowledge on graph theory that will contribute to our work. We then introduce an

existing scheme that can handle data from the vertex set of a network, see Section 1.5

for more details.

1.4.1 Basics of Graph Theory

Much real-life data can be modelled by graphs, which consist of a set of objects and the

pairwise relations among these objects. Mathematically, a graph G can be represented

as an ordered pair G = (V , E), where V = {v1, ..., vn} is the set of vertices and E =

{e1, ..., em} is the set of edges, see e.g., Bondy and Murty (2008). The cardinality of the

vertex and the edge sets can be denoted as |V| = n and |E| = m, respectively. If the k-th

edge indicates the connection between i-th and j-th vertices, then we write ek = {vi, vj},

which is an unordered pair of these two vertices ({vi, vj} = {vj, vi}). In this case, we say

vj is a neighbour of vi, and vice versa. We further denote N V
i as the set of neighbouring

vertices of the vertex vi, which is defined as N V
i = {vj | vj ∈ V ; {vi, vj} ∈ E}. The

28 Chapter 1. Literature Review

graphs with all edges as unordered pairs are undirected graphs. A directed graph contains

ordered pairs as the edges, where we denote ek = (vi, vj), and (vi, vj) ̸= (vj, vi) if i ̸= j.

Intuitively, the order indicates that the vertex vi is connected to vj through the edge

ek, but not the other way around. In this work, when we mention the term ‘graph’, it

always means an undirected graph unless explicitly stated. Graphs can be divided into

two main groups: simple graphs and multi-graphs. A graph is a simple graph if:

(1) there is no edge starting from a vertex and ending at the same vertex (a loop with

only one vertex), which means that for any edge ek = {vi, vj}, we have i ̸= j; (2) there

is no pair of vertices with two or more than two edges linking them; thus, ek = ek′ only

if k = k′. A graph is a multi-graph if it is not a simple graph. In our work, all graph

structures we use are simple graphs, for more details on multi-graphs, the reader can

refer to Diestel (2005).

Furthermore, it would be helpful to provide some terminology for different types of

graphs. Listed below are some common graph structures that we will use in our study.

A complete graph is one in which every pair of vertices is connected by an unique

(undirected) edge. If a complete graph contains n vertices, then the number of edges is

m = n(n− 1)/2. The degree of a vertex is measured by the number of its neighbouring

vertices. A graph is a d-regular graph if every vertex is connected with d other vertices.

This structure is very common in many areas, for example, certain chemical or biological

structures form a regular graph, see Bonchev (1991). A graph is said to have loops if for

a vertex or some vertices, there exists a non-overlapping path from one vertex and back

to itself. A tree is a special case of graph, which is a structure without loops. A graph

G′ = (V ′, E ′) is a subgraph of a graph G = (V , E) if V ′ ⊆ V and E ′ ⊆ E . In general,

for a given set of vertices, any possible graph structure is the subgraph of the complete

graph with the same vertices. A spanning subgraph is a subgraph that contains the

full set of vertices, or it only deletes some edges from the graph associated with the

set of vertices; see Bondy and Murty (2008). Thus, a spanning subgraph of the graph

G = (V , E) can be denoted as Gs = (V , Es), where Es ⊂ E . If the subgraph Gs is a tree,

then it is known as a spanning tree. If for a graph G = (V , E) there exists a partition of

1.4. Graphs 29

the vertex set such that V = VX
⋃
VY and VX

⋂
VY = ∅, then the graph is a bipartite

graph, if any edge {x, y} satisfies x ∈ VX and y ∈ VY . A special case of trees is a star

graph, which is a bipartite graph with one of the partitioning set containing only one

element (vertex).

1.4.2 Matrices Associated to Graphs

Here let us introduce two most commonly used matrices, the adjacency matrix and the

incidence matrix, used for representing the graph structure. Suppose we have a graph

G = (V , E), which consists of |V| = n vertices (or nodes) and |E| = m edges, with | · |

representing the set cardinality. Then the (i, j)-th entry of the n× n vertex adjacency

matrix A(G) is given by

[A(G)]ij =

1, if vi ↭ vj and i ̸= j;

0, otherwise,

(1.4.1)

where ‘↭’ indicates an existing connection (edge) between two vertices. In our case, we

assume the graphs we are interested in contain no self-loops, which indicates [A(G)]ii = 0

for any adjacency matrix we will use in this work.

As mentioned above, another well-studied matrix in graph theory is the incidence

matrix, a n×m matrix whose (i, k)-th entry is

[B(G)]ik =

1, if vi ∈ ek;

0, otherwise,

(1.4.2)

For the incidence matrix B(G), the k-th column gives the set of vertices contained in

the k-th edge. In this sense, we have
∑n

i=1[B(G)]ik = 2 for all k ∈ {1, ...,m}, since each

edge is given by two different vertices. From now on, when it is clear which graph we

refer to, we will drop ‘(G)’ for simplification. For example, when using Bik instead of

[B(G)]ik, we should recall that B is still a function of G rather than only a matrix.

30 Chapter 1. Literature Review

1.4.3 Weighted Graphs

Previous sections described different types of graphs based on their topology, while many

real-life problems often require more information, see Bondy and Murty (2008). Weighted

graphs can provide such kind of information. Mathematically, a weighted graph Gω is

modelled by an ordered pair (G,ω), where G is the graph topology containing the vertex

set and their connectivity (edge set), and ω : E −→ R is a function that associates a

weight to each edge, see Bondy and Murty (2008). To fit our framework, we let the weight

for each edge e ∈ E be non-zero. Furthermore, we let ω : E −→ R+ for any undirected

graph (the case with direction/orientation will be discussed in later chapters). For the

edge ek = {vi, vj} ∈ E , the notation ωk or ωij will be used interchangeably to represent

the weight defined on this edge. In the literature on graph theory, there are many different

ways to consider the weights associated with edges; for example, weights can be the cost

in the travelling salesman problem (Bondy and Murty; 2008), resistance in electronic

networks (Bollobás; 1998), or traffic flows in a road network. The size of the weights

has different (sometimes opposite) effects on various applications. For example, a large

weight on an edge indicates a weak connection between two vertices associated with this

edge when the weights represent cost; however, in the case of traffic flows, it indicates a

strong link. For the purpose of our work, we let the connection between two vertices vi

and vj be monotonically increasing with the weight of the edge ek = {vi, vj}. Therefore,

if vi and vj are close to each other, then the weight ωk tends to be large.

1.4.4 Metrized Graphs

Weighted graphs, as we discussed in the previous section, are widely used in many

classical graph theory problems. However, recently, more focus has been put on metric

graphs, due to their wide ranging applications, for example, for Hilbert spaces defined on

graphs (Kuchment; 2003) and for the analysis of electronic networks (Baker and Faber;

2006). In a nutshell, the metrized graph gives geometric properties for a weighted graph,

which allows us to define and analyse functions on the graph domain. The following

1.4. Graphs 31

introduction to the metrized graph theory is mainly based on the work of Baker and

Faber (2006). A metrized graph Γ of a weighted graph Gω = (G,ω) arises from the a

pair (G, ℓ), where ℓ : E −→ R+ is a function that assigns lengths to all edges, in the

following way. Here we follow the construction from Baker and Faber (2006) and define

the length as the inverse weight, such that ℓ(e) = 1/ω(e), for all e ∈ E . Then to each edge

e, we associate a line segment (or equivalently, an one-dimensional interval) of length

ℓ(e) and identify the ends of distinct line segments if they correspond to the same vertex

v ∈ V . Sometimes for the length of a certain edge, for example, the k-th edge ek, we

write ℓk for convenience. The space Γ(G
ω) is the space that contains the points in any of

these line segment intervals, and Gω is referred to as a model for Γ(Gω). Sometimes we

simply denote Γ(Gω) as Γ for convenience if there is no ambiguity. The distance between

two points in Γ is defined as the length of the shortest path between them along the

line segments traversed. This distance is referred to as the path metric, and Γ with this

metric form a metrized graph.

Baker and Faber (2006) also introduced a way to define a vertex set and the associated

edge set on Γ, we re-state the main ideas of their definitions below.

• Defining a vertex set on Γ:

Let Vex(Γ) be any finite, non-empty subset of Γ, such that Vex(Γ) contains all

points with np ̸= 2, where np denotes the number of the directions by which a

path can leave the point p, which is referred to as the valence in Baker and Faber

(2006). Hence, Γ\Vex(Γ) is a finite, disjoint union of subspaces {Uk}k isometric to

open intervals, where Uk can be considered as a neighbourhood of a point pk ∈ Γ.

The reason for selecting the points in Vex(Γ) from any other points in Γ according

to their valence is that these are the points that distinguish Γ from an isometry of

open interval, see Baker and Faber (2006). For example, consider a vertex vs, with

two distinct neighbouring vertices vj1 and vj2 , through two edges ek1 = {vs, vj1}

and ek2 = {v2, vj2}. As we discussed above, we can consider two line segments

[0, ℓ(ek1)] and [0, ℓ(ek2)] as their isometry, where ℓ is the length function. If we

32 Chapter 1. Literature Review

translate [0, ℓ(ek2)] to [ℓ(ek1), ℓ(ek1) + ℓ(ek2)], then the interval [0, ℓ(ek1) + ℓ(ek2)]

can be considered as an isometry of the union of these two edges on Γ. Clearly,

this property does not hold for any vertex with np ̸= 2.

• Defining an edge set on Γ:

Once a certain vertex set has been defined, the associated (metrized) edge set

can be constructed based on it. Denote by Uk a subset of Γ\Vex(Γ), which is

isometric to an open interval (as we discussed above), thus its topological closure

Uk is isometric to a line segment. Then we define emet
k = Uk as the k-th edge of

the metrized graph. We also denote the metrized k-th edge emet
k of ek = {vi, vj}

as [vi, vj] for convenience. Additionally, any distinct metrized edges emet
k and emet

k′

(k ̸= k′) intersect in at most one point.

Note that the choice of Vex(Γ) is not unique (Baker and Faber; 2006), and each choice

of the vertex set determines a distinct set of metrized edges {emet
k }. Specifically, we

define VexG(Γ) as the vertex set that corresponds to the vertex set of the (original non-

metrized) graph G = (V , E). For two different graphs G and G′, we denote G ∼ G′ if

they admit a common refinement. Mathematically, a common refinement G̃ is a graph

satisfies that VexG(Γ) ⊆ VexG̃(Γ) and VexG′(Γ) ⊆ VexG̃(Γ). Without loss of generality, if

both G and G̃ are the models of Γ, and VexG(Γ) ⊂ VexG̃(Γ), then we call G̃ a refinement

(or refined graph) of G and we have G ∼ G̃.

The metrized graph and this shortest path distance define a metric space, denoted

as (Γ, distpath), see Baker and Faber (2006). For the mathematical details of the path

distance, please refer to Appendix A.

A Note for Hilbert Spaces on Metrized Graphs

For constructing a multiresolution analysis, having the knowledge of the underlying

function spaces is always desirable. The space L2(Γ) can be defined as follows (Kuchment;

2003).

1.5. LOCAAT Transform 33

Definition 1.4.1. For a metrized graph Γ corresponding to the original graph Gω, the

space L2(Γ) consists of functions that are measurable and integrable on each metrized

edge, such that

∥f∥2L2(Γ) =
∑
e∈E

∥f∥2L2(emet) <∞,

where the metrized edge emet corresponding to the original edge e ∈ E is isometric to a

line segment [0, ℓ(emet)] and ℓ(emet) is the length of this edge.

The space L2(Γ) can be considered as the orthogonal direct sum of L2(emet), see

Kuchment (2003). Consequently, since emet is isometric to a closed interval on R, the

inner product and orthogonality can be defined as in L2(R).

1.5 LOCAAT Transform

The LOCAAT (Lifting One Coefficient At A Time) transform (Jansen et al.; 2004,

2009) is a variant of the lifting scheme that perform a split stage that isolates one-point

at each step, as opposed to odds and evens, and provides a wavelet-like decomposition for

various types of data. In addition to the one-dimensional case, LOCAAT can also work

for complex data topology, such as spatial points and network vertices. The LOCAAT

scheme (for graph/network data) relies only on the topology/connectiveness and the

inter-vertex distance information. The original work of graph-LOCAAT (Jansen et al.;

2004, 2009) deals with the case when observations (with/without coordinates) come

from an Euclidean space Rd, where d ≥ 2 and d ∈ Z, and the graph may be constructed

by performing the minimal spanning tree among these points. Many works extended

the scope of LOCAAT to other cases, for example, one-dimensional data (Nunes et al.;

2006; Knight and Nason; 2006) and non-tree networks (Mahadevan; 2010). For fitting

into our framework, we use the case in which data is endowed with interpoint distance

information.

Suppose we have a tree graph G = (V , E), where V = {v1, ..., vn} and E = {e1, ..., em},

and the inter-vertex distance measure dist(vi, vj), ∀vi, vj ∈ V is known. Additionally,

34 Chapter 1. Literature Review

1. dist(vi, vi) = 0, ∀vi ∈ V ,

2. dist(vi, vj) > 0, ∀vi, vj ∈ V and i ̸= j,

3. dist(vi, vj) ≤ dist(vi, vk) + dist(vj, vk), ∀vi, vj, vk ∈ V ,

to guarantee that the set of vertices and their distance measure form a metric space.

Then suppose that we have a set of values {fV
1 , ..., f

V
n } of a function fV ∈ L2(Rd) defined

on the vertex set, where fV
i is the value associated with the vertex vi, viewed as a ‘site’ in

Rd. The target is to transform these values into a set of wavelet and scaling coefficients

(in the second generation wavelet domain). From the aspect of function representation,

initially we have the finest level expansion of function approximation such that for v ∈ V ,

fV(v) =
n∑
i=1

cVi,nφ
V
i,n(v),

where cVi,n := fV
i and {φV

i,n} form a basis for the space L2(Rd). Here {φV
i,n(vk) = δik}ni=1

is the set of initial (or finest) scaling functions at stage-n, which can be defined as

Kronecker deltas. The LOCAAT transform follows the split-predict-update paradigm

from the lifting scheme of Sweldens (1998); Sweldens and Schröder (2005), along with

an extra relinkage procedure. At the initial stage-n, a single-step LOCAAT is as follows.

• Split: As the name ‘lifting one coefficient at a time’ suggests, one coefficient (cor-

responding to one vertex) will be chosen to be removed and to be predicted. This

coefficient will be chosen based on the integral values of the initial primal scaling

function. Jansen et al. (2009) define the integral of a function as a weighted sum

along with a set of weights {wi}ni=1. For example, the integral of the function f in

the domain V will be
∫
V f

V(v)dv = IVfV :=
∑n

i=1wif
V
i . The weights proposed in

Jansen et al. (2009) are the sum or average of the distances between a vertex and

its immediate neighbours, where the immediate neighbours at stage-n are defined

as the vertices connected with the chosen vertex by an edge, denoted as

N V
i,n = {vj | {vi, vj} ∈ E}

1.5. LOCAAT Transform 35

for i-th vertex at stage-n. Mathematically, for the i-th vertex, the weight wi as the

sum of distances can be presented as

wsum
i =

∑
j: vj∈NV

i,n

dist(vi, vj). (1.5.1)

In addition, an average version has also been proposed as the weight definition

(Jansen et al.; 2009), such that for i-th vertex,

wave
i =

1

|N V
i,n|

∑
j: vj∈NV

i,n

dist(vi, vj). (1.5.2)

Then for the associated i-th initial scaling function, we have its integral to be

IVi,n : =
n∑
k=1

wkδik

= wi,

where wi can be designed by equation (1.5.1) or equation (1.5.2). The choice of

vertex to be lifted is then

vin = arg min
vi∈V

{IVi }.

The reason for choosing the vertex with the smallest integral value is that it is

associated to the highest sampling frequency in the first steps of the algorithm

(Nunes et al.; 2006).

• Predict: Once we have chosen the vertex vin to be removed, the detail coefficient

can be obtained using the information in the neighbouring set, namely

dVin = cVin,n −
∑

j: vj∈NV
in,n

aVj,nc
V
j,n, (1.5.3)

where {aVj,n}j: vj∈NV
in,n

are the prediction filters at stage-n.

• Update: The scaling coefficients associated with the neighbouring vertices of vin

will be updated from stage-n to stage-(n− 1) as follows

cVj,n−1 = cVj,n + bVj,nd
V
in , ∀j ∈ N

V
in,n, (1.5.4)

36 Chapter 1. Literature Review

and the remaining scaling coefficients will not be changed. Thus, ∀k /∈ N V
in,n, we

let cVk,n−1 := cVk,n. In addition, the neighbouring integral values will also be updated

to account for the loss of vertex vin , such that

IVj,n−1 = IVj,n + aVj,nI
V
in,n, ∀j ∈ N

V
in,n. (1.5.5)

Similarly, ∀k /∈ N V
in,n, we let IVk,n−1 := IVk,n.

• Relink: Unlike the structure of the one-dimensional case, a tree will be divided

into several different sub-trees after performing a split-predict-update step. Then it

is essential to have an extra step to relink these sub-trees. Once the vertex vin has

been removed, Jansen et al. (2004, 2009) suggest performing a minimum spanning

tree among the neighbouring node set {vj ∈ N V
in,n} for relinkage.

• Iterate : Then we repeat the three steps above until a stopping time τ that we

have set in advance. Generally, we iterate the above steps (n−2) times, resulting in

(n− 2) detail coefficients and τ = 2 scaling coefficients. At each stage-r, the split-

predict-update-relink procedure is of the same form as the one presented above

(stage-n), and we only need to change all the notations n to r, for example, ir

indicates the vertex chosen at stage-r.

We let Dr = {in, ..., ir+1} be the set of indices of the removed vertices at the beginning

of the stage-r, and Sr = {1, ..., n}\Dr as the set of indices of the remaining vertices.

Without loss of generality, we let Dn = ∅ and Sn = {1, ..., n}. Then at stage-(r− 1), the

corresponding expansion form for functional approximation can be written as

fV(v) =
∑
s∈Sr−1

cVs,r−1φ
V
s,r−1(v) +

∑
l∈Dr−1

dVl ψ
V
l (v), (1.5.6)

where {φV
s,r−1}s and {ψV

l }l are (primal) scaling and wavelet functions built ‘behind the

scenes’ by the lifting algorithm, as follows.

1.5. LOCAAT Transform 37

1.5.1 MRA Framework for LOCAAT

For ∀r ∈ {n, ..., 3} (we stop at stage-τ) the stage-r dual scaling and detail coefficients

are obtained by

cVs,r = ⟨fV , φ̃V
s,r⟩, ∀s ∈ Sr;

dVl = ⟨fV , ψ̃V
l ⟩, ∀l ∈ Dr.

If we plug these two inner products into the stage-r predict and update procedure, then

we have

⟨fV , ψ̃V
ir⟩ = ⟨f

V , φ̃V
ir,r⟩ −

∑
j: vj∈NV

ir,r

aVj,r⟨fV , φ̃V
j,r⟩; (1.5.7)

⟨fV , φ̃V
j,r−1⟩ = ⟨fV , φ̃V

j,r⟩+ bVj,r⟨fV , ψ̃V
ir⟩, ∀j ∈ N

V
ir,r. (1.5.8)

From equations (1.5.7) and (1.5.8), we can see that the dual MRA framework for LO-

CAAT can be represented as

ψ̃V
ir(v) = φ̃V

ir,r(v)−
∑

j: vj∈NV
ir,r

aVj,rφ̃
V
j,r(v);

φ̃V
j,r−1(v) = φ̃V

j,r(v) + bVj,rψ̃
V
ir(v), ∀j ∈ N

V
ir,r.

For obtaining the primal MRA framework, we consider the special case that fV(v) =

φV
s,r−1(v) for one s ∈ N V

ir,r. According to the expansion form (1.5.6), we have the following

conditions

cVs,r−1 = 1;

cVs′,r−1 = 0, ∀s′ ̸= s;

dVl = 0, ∀l ∈ Dr−1 = {in, ..., ir}.

Then inverting the update step (1.5.4) at stage-r, we have

cVs,r = 1;

cVs′,r = 0, ∀s′ ̸= s.

38 Chapter 1. Literature Review

Next we invert the predict step (1.5.3) at stage-r, we have

cVir,r = aVs,r.

Thus, we have

φV
s,r−1(v) = fV(v) =

∑
l∈Dr

dVl ψ
V
l (v) +

∑
s∈Sr

cVs,rφ
V
s,r(v)

= cVs,rφ
V
s,r(v) + aVs,rφ

V
ir,r(v).

Hence for ∀j ∈ N V
ir,r, the ‘primal update’ can be represented as

φV
j,r−1(v) = φV

j,r(v) + aVj,rφ
V
ir,r(v), ∀j ∈ N

V
ir,r. (1.5.9)

If we integrate equation (1.5.9), it will give us the relationship for updating the integrals

(as in equation (1.5.5)). Now let us consider another special case that fV(v) = ψV
ir(v).

Then again according to equation (1.5.6), we have

dVir = 1;

dVl = 0, ∀l ∈ Dr = {in, ..., ir+1};

cVs,r−1 = 0, ∀s ∈ Sr−1.

Then we invert the update step (1.5.4) at stage-r, hence we have

cVj,r = −bVj,r, ∀j ∈ N V
ir,r,

and inverting the predict step (1.5.3) at stage-r, we obtain

cVir,r = 1−
∑

j: vj∈NV
ir,r

aVj,rb
V
j,r.

1.5. LOCAAT Transform 39

Hence, we have

ψV
ir(v) = fV(v) =

∑
l∈Dr

dVl ψ
V
l (v) +

∑
s∈Sr

cVs,rφ
V
s,r(v)

=

1−
∑

j: vj∈NV
ir,r

aVj,rb
V
j,r

φV
ir,r(v) +

∑
j: vj∈NV

ir,r

−bVj,rφV
j,r(v)

= φV
ir,r(v)−

∑
j: vj∈NV

ir,r

bVj,r
(
φV
j,r(v) + aVj,rφ

V
ir,r(v)

)
(1.5.10)

= φV
ir,r(v)−

∑
j: vj∈NV

ir,r

bVj,rφ
V
j,r−1(v). (1.5.11)

From (1.5.10) to (1.5.11) above, we simply apply equation (1.5.9). Then the ‘primal

predict’ can be represented as

ψV
ir(v) = φV

ir,r(v)−
∑

j: vj∈NV
ir,r

bVj,rφ
V
j,r−1(v). (1.5.12)

For clarity, we summarise the results above as

ψ̃V
ir = φ̃V

ir,r −
∑

j: vj∈NV
ir,r

aVj,rφ̃
V
j,r; (1.5.13)

φ̃V
j,r−1 = φ̃V

j,r + bVj,rψ̃
V
ir , ∀j ∈ N

V
ir,r; (1.5.14)

φV
j,r−1 = φV

j,r + aVj,rφ
V
ir,r, ∀j ∈ N

V
ir,r; (1.5.15)

ψV
ir = φV

ir,r −
∑

j: vj∈NV
ir,r

bVj,rφ
V
j,r−1. (1.5.16)

Equations (1.5.13)-(1.5.16) are linked to the MRA framework for the LOCAAT transform

(Jansen et al.; 2009).

1.5.2 Filter Design

For the construction of the stage-r prediction filters {aVj,r}j∈NV
ir,r

, Jansen et al. (2009)

suggested to adopt the normalised inverse distance, such that

aVj,r =
(dist(vir , vj))

−1∑
k: vk∈NV

ir,r
(dist(vir , vk))

−1 , ∀j : vj ∈ N
V
ir,r.

40 Chapter 1. Literature Review

The normalisation guarantees that
∑

j: vj∈NV
ir,r

aVj,r = 1. The reason for using inverse

distance as the weight construction is that inverse distance weighted averaging has a

correspondence with the linear interpolation for the embedding of the tree in a Euclidean

space (Jansen et al.; 2009).

Different from the prediction filters, the update filters {bVj,r}j∈NV
ir,r

are constructed

based upon the primal framework. If we integrate equation (1.5.16), we have

0 = IVir,r −
∑

j: vj∈NV
ir,r

bVj,rI
V
j,r−1. (1.5.17)

The reason for the left-hand side to be zero is the admissibility condition for wavelets,∫
V ψ

V
ir(v)dv = 0. We can see that when |N V

ir,r| ≥ 2, then equation (1.5.17) is an under-

determined system. Jansen et al. (2004, 2009) suggested to solve the equation by the

minimum norm solution, such that

bVj,r =
IVir,rI

V
j,r−1∑

k: vk∈NV
ir,r

(
IVj,r−1

)2 , ∀j : vj ∈ N V
ir,r,

which provides a stabilised update step.

1.5.3 Scales and Artificial Levels

Compared with classical wavelets and the general lifting scheme, the LOCAAT frame-

work lacks the notion of a dyadic scale. Jansen et al. (2009) suggested to consider scale

as a continuous concept instead, and a convenient measure is the scaling function inte-

gral discussed above. Therefore, for the detail coefficient dVir obtained at stage-r, its scale

is IVir,r. Then artificial levels can be constructed, thus providing a partitioning of detail

coefficients based on their scales {IVir,r}r∈{n,...,3}. The artificial levels are constructed as

follows. Let αJ be the (1 − 2−J)-quantile for some J ∈ Z+, e.g., α1 is the median of

the sequence. Without loss of generality, we denote α0 = 0, then the J-th artificial level

is constructed as the range (αJ−1, αJ] and we say a detail coefficient dVir belongs to the

J-th artificial level if and only if IVir ∈ (αJ−1, αJ].

1.5. LOCAAT Transform 41

1.5.4 Variance Approximation

Now let us consider the variance of the detail coefficients given by the LOCAAT trans-

form. Suppose the initial scaling coefficients {cVi,n} are i.i.d normally distributed random

variables with finite variance σ2 <∞. For the k-th initial scaling coefficient, we denote

its variance as Vk,n σ
2, for all k ∈ {1, ..., n}. Recall that the prediction step in equation

(1.5.3) is linear, then after the prediction step, we have

V ∗
in σ

2 := Var(dVin) = Var

cVin,n − ∑
j: vj∈NV

in,n

aVj,nc
V
j,n

= Var(cVin,n) +

∑
j: vj∈NV

in,n

(aVj,n)
2Var(cVj,n)

=

Vin,n + ∑
j: vj∈NV

in,n

(aVj,n)
2 Vj,n

σ2.

⇒ V ∗
in = Vin,n +

∑
j: vj∈NV

in,n

(aVj,n)
2 Vj,n. (1.5.18)

Since dVin is correlated with cVj,n, ∀j : vj ∈ N V
in,n, then we have

cov(dVin , c
V
j,n) = −aVj,nVj,n σ2, ∀j : vj ∈ N V

in,n. (1.5.19)

According to the update step as in equation (1.5.4), along with the variance in equation

(1.5.18) and the covariance in equation (1.5.19), we have that

Vj,n−1 σ
2 := Var(cVj,n−1) = Var

(
cVj,n + bVj,nd

V
in

)
= Var(cVj,n) + (bVj,n)

2Var(dVin) + 2bVj,ncov(d
V
in , c

V
j,n)

= Vj,n σ
2 + (bVj,n)

2V ∗
in σ

2 + 2bVj,n(−aVj,nVj,n σ2)

=
(
(1− 2aVj,nb

V
j,n)Vj,n + (bVj,n)

2V ∗
in

)
σ2, ∀j : vj ∈ N V

in,n.

⇒ Vj,n−1 = (1− 2aVj,nb
V
j,n)Vj,n + (bVj,n)

2V ∗
in . (1.5.20)

Note that the variance magnitudes {V ∗
ir σ

2}r∈{n,...,3} for wavelet coefficients {dVir}r∈{n,...,3}
are different. However, for wavelet thresholding (which will be discussed in Section 1.6.1),

the homogeneity of variance is normally essential. Thus, we have to normalise the vari-

ance after the lifting scheme. One possible choice is to normalise the wavelet coefficients

42 Chapter 1. Literature Review

such that the ir-th normalised wavelet coefficient is d̃Vir = dVir/
√
V ∗
ir
. Hence, all normalised

wavelet coefficients are with (approximately) equal variances, such that Var(d̃Vir) ≈ σ2.

The inaccuracy happens since we ignore the covariance at the next stage. Nevertheless,

this strategy will only lose a small precision. Another advantage of this strategy is the

computational feasibility for obtaining {V ∗
ir}r∈{n,...,3}, we only have to perform the lifting

scheme (at the same time with the scaling coefficients) for the vector (V1,n, ..., Vn,n)
T = 1.

1.6 Nonparametric Regression

Consider we have the following data set {(xi, fi)}ni=1, which can be modelled as being

additively contaminated by noise {ϵi}ni=1

fi = g(xi) + ϵi, (1.6.1)

where xi ∈ Ω is the data location from a certain bounded domain Ω, and g : Ω −→ R

is a ‘true function’. The noise is assumed to be a set of i.i.d normal distribution, ϵi
iid∼

N(0, σ2), where σ2 is finite. The bounded domain can be one-dimensional line (Nunes

et al.; 2006), high-dimensional Euclidean space, or graph/network domain (Jansen et al.

(2009) and Mahadevan (2010)). For example, for the LOCAAT framework we discussed

above, the domain is Ω = V for a graph G = (V , E). Our goal is to denoise f , and obtain

an estimator ĝ for the true (unknown) function g.

1.6.1 Estimation by Wavelet Shrinkage

Donoho and Johnstone (1994) introduced a non-linear smoothing method based on

wavelet techniques, which is wavelet shrinkage. This method has become very popu-

lar among both the signal processing and statistics communities in the past thirty years

due to its theoretical support and the convenience of implementation. In this section,

we briefly describe some well-established classic wavelet shrinkage methods, which are

designed for data satisfies that

• The number of the observations is dyadic, denoted as 2J , for some J ∈ Z+.

1.6. Nonparametric Regression 43

• The locations of the observations are equally spaced in one dimension, for example,

xi = i/n in the interval [0, 1].

For the set of (noisy) observations f = {fi}ni=1 which follow the model (1.6.1), the

wavelet shrinkage is described by the following steps.

1. We first perform the discrete wavelet transform to the observations f , which gives

us two sets of (wavelet and scaling) coefficients, {dj,k}j0≤j<J ; j,k∈Z and {cj0,k}k∈Z,

where j0 ∈ Z is the primary resolution. For e.g. the Daubechies’ family of wavelets,

which generates orthonormal bases, the wavelet coefficients can be represented as

dj,k = d⋆j,k + εj,k, j, k ∈ Z; j ≥ j0 (1.6.2)

where d⋆j,k is the true wavelet coefficients and due to the orthonormality, we have

εj,k
iid∼ N(0, σ2), see Donoho and Johnstone (1994).

2. An estimator of each d⋆j,k, denoted as d̂⋆j,k, will be obtained by a chosen thresholding

rule, then we will have the set of the estimated wavelet coefficients {d̂⋆j,k}j≥j0; j,k∈Z.

3. Perform the inverse transform for {d̂⋆j,k}j≥j0; j,k∈Z and obtain the estimates {ĝi}ni=1

for the unknown function g.

1.6.2 Thresholding Strategy

Now let us give some examples of existing popular thresholding strategies.

1.6.2.1 Hard- and Soft-thresholding

The hard- and soft-thresholding were introduced by Donoho and Johnstone (1994, 1995)

and have the form

d̂hardj,k = dj,k · I(|dj,k| > λ),

d̂softj,k = sgn(dj,k)(|dj,k| − λ)I(|dj,k| > λ),

44 Chapter 1. Literature Review

where ‘sgn’ is the signum function, λ > 0 is a certain threshold value, and I(·) is the

indicator function. Both hard- and soft-thresholding are non-linear smoothing meth-

ods depending on the threshold value λ. The popular choice is the universal threshold

introduced by Donoho and Johnstone (1994), which is

λu = σ
√
2 logn, (1.6.3)

where σ is the standard deviation of the noise, and n is the number of data points.

Vidakovic (2009) recalled the following theorem from Pickands (1967).

Theorem 3. If {Zi}i∈N is a stationary Gaussian process, where E(Zi) = 0, E(Z2
i) = 1

and E(Zi Zi+k) = γ(k) with limk→∞ γ(k) = 0, then we have (maxni=1|Zi|)/
√
2 logn→ 1,

almost surely, when n→∞.

Hence, for the noise εj,k
iid∼ N(0, σ2) in the wavelet domain, by Theorem 3, we have

lim
n→∞

P(max
j,k
|εj,k| > σ

√
2 logn) = 0.

Notice that this result holds for dependent noise, see Theorem 3.

1.6.2.2 Empirical Bayes Thresholding

Note that the basic idea behind wavelet thresholding is to find an oracle such that

the wavelet coefficients can be separated into two groupings: the wavelet coefficients

we should choose for function reconstruction (likely to have high true absolute value in

wavelet domain), and those negligible (likely to have low true absolute value in wavelet

domain), see Donoho and Johnstone (1994) and Nason (2008). It is easy to see that the

threshold choice is very important in this process. Johnstone and Silverman (2004) show

that the optimal size of the threshold is highly dependent on the sparsity of the true

wavelet coefficients. However, this sparsity is usually unknown in applications. Hence,

a thresholding strategy which is self-adaptive to different sparsity levels (in the wavelet

domain) will be desirable.

Johnstone and Silverman (2004) proposed the empirical Bayes thresholding to tackle

this problem. Based on equation (1.6.2) and εj,k
iid∼ N(0, σ2), we have that dj,k|d⋆j,k ∼

1.6. Nonparametric Regression 45

N(d⋆j,k, σ
2). Johnstone and Silverman (2004) noticed that in practice, the significant

wavelets coefficients are likely to come from a heavy-tailed distribution, hence the prior

distribution fprior for d
⋆
j,k can be written as

fprior(d
⋆) = (1− ν)δ0(d⋆) + νπ(d⋆), (1.6.4)

where 0 < ν < 1 is a constant, δ0 is the Dirac delta for modelling the zero-valued

wavelet coefficients. The non-zero wavelet coefficients are captured by a fixed unimodal

symmetric density π(·). Unlike other Bayesian based shrinkage methods, Johnstone and

Silverman (2004) suggested to model these non-zero wavelet coefficients by a heavy-

tailed distribution instead of a zero-mean normal distribution, for example, Laplace

distribution or Cauchy distribution.

An alternative strategy is to allow a parametric dependence, hence the prior distri-

bution will be determined by a level-dependent ratio νj, see Johnstone and Silverman

(2004) and Jansen et al. (2009). In this work, we only consider the case that νj is a

constant within levels.

Once the distribution is fixed, we need to estimate the ratio ν. Johnstone and Sil-

verman (2004) suggest performing marginal maximum likelihood estimation for ν. Let h

be the convolution of the density π and a standard normal density ϕ, then the marginal

density of Z ∼ N(d⋆, 1) can be written as

(1− ν)ϕ(z) + νh(z),

Then the estimator ν̂ can be obtained by the maximizer of the marginal log-likelihood,

see Johnstone and Silverman (2004). Then the posterior distribution can be calculated

for each observation Zi, which is fpost(d
⋆|Zi = zi). The estimator d̂⋆ for the true wavelet

coefficients d⋆ can be obtained by hard/soft thresholding, or posterior mean/median, see

Johnstone and Silverman (2004) for more details.

1.6.2.3 Estimating the Noise Level

In practice, the noise has an unknown variance, which in turn has to be first estimated

before applying thresholding. We follow the suggestion from Donoho and Johnstone

46 Chapter 1. Literature Review

(1994), to estimate the standard deviation by the median absolute deviation (MAD) of

the finest level-(J − 1) wavelet coefficients, which is

σ̂ = MAD{dJ−1,k} = median{|dJ−1,k −median{dJ−1,k}|}/0.6745,

where dJ−1,k is the finest level (observed) wavelet coefficients. The advantage of the MAD

estimator is its robustness. For the LOCAAT algorithm, the standard deviation can be

estimated by using the largest artificial level instead of the ‘finest level’.

Chapter 2

Line Graph LOCAAT

This chapter introduces an approach to carry out multiscale analysis on data collected

from the edges of a network. The method we propose involves initially applying a line

graph transform in order to shift emphasis from edges to (new) vertices, followed by a

version of the LOCAAT on the vertices in the line graph domain. Therefore, we refer to

our proposed technique as Line Graph LOCAAT, or LG-LOCAAT.

This chapter will be organised as follows. We firstly introduce our proposed LG-

LOCAAT algorithm with both theoretical and computational aspects. Then a simulation

study will be implemented to test the performance of our algorithm. Finally, we will

discuss the advantages and disadvantages of our methods based on both theory and

simulation results.

For the methodology of LG-LOCAAT, we first focus on the line graph transform

and the associated metric defined on the line graph. We then present the proposed LG-

LOCAAT transform. In the line graph domain, the algorithm can (mostly) follow the

steps of LOCAAT; however, the relink step will be emphasised in this context, since the

transformation of the line graph can produce a non-tree graph.

A simulation study is presented that consists of evaluating three different aspects

of our algorithm’s performance: (i) data compression ability (via sparsity plots); (ii)

stability of the transform (via the condition number); and (iii) denoising performance

47

48 Chapter 2. Line Graph LOCAAT

(via the average mean squared error (AMSE)). Details on these related measures will be

discussed in the associated sections in this chapter.

Crovella and Kolaczyk (2003) was one of the first works that came up with the idea

of representing edge data by line graphs without fully developing the idea further. Evans

and Lambiotte (2009) consider line graph as a tool for edge clustering, enhancing our

confidence on the potential of wavelets lifting on line graph since multiscale methods

have a strong connection with cluster analysis, see Starck et al. (1998). Now let us start

by introducing essential knowledge on line graphs.

2.1 Line Graph Transform

In this section, we introduce the line graph transform, which leads to a graph structure

that fits the existing LOCAAT algorithm that operates on vertices. The term ‘line graph’

is sometimes used to mean the general ‘graph’ structure (‘line’ represents ‘edge’) in some

of the works from the signal processing community, see for example, Ortega et al. (2018).

In our work, the term ‘line graph’ will be used to represent the definition within graph

theory, see for example, Bondy and Murty (2008), Bollobás (1998) and Diestel (2005).

Specifically, the line graph of a graph G, denoted LG(G), is the graph whose vertex

set is bijective to the edge set E of G. For convenience, we write LG(G) = G∗ = (V∗, E∗),

and we have V∗ ←→ E , where ‘←→’ indicates a bijection between two sets. Moreover,

we simply let a new vertex v∗k correspond to the k-th original edge ek ∈ E , for any

k ∈ {1, ..., |E|}. Although the correspondence of subscripts can be any permutation, it

will not affect the result of our work since LOCAAT does not rely on this ordering.

Using notation established in Section 1.4.1, the new edge set E∗ can be defined as

E∗ = {{v∗k, v∗l } | ek, el ∈ E and |ek ∩ el| = 1} .

Here the cardinality of the intersection of two edges being equal to one indicates that

ek and el share only one common vertex. Figure 2.1 shows an example of the line graph

transformation.

2.2. Line Graph Distance Measure 49

A

B C

D E F

G

e1 e2

e3 e4 e5

e6

Irregular Tree Graph G

Transformation

e5 e3

e6 e2 e1 e4

Line Graph L(G)

Figure 2.1: A visualisation for the line graph transform.

In addition, the neighbourhood N V∗

k of a vertex v∗k in the line graph is defined as the

set of the vertices which are connected with v∗k by an edge e∗ ∈ E∗. Mathematically, for

the edge v∗k, its neighbourhood N V∗

k can be represented as

N V∗

k := {v∗s ∈ V∗ | {v∗k, v∗s} ∈ E∗} (2.1.1)

= {v∗s ∈ V∗ | s ̸= k; ek ∩ es ̸= ∅; ek, es ∈ E} (2.1.2)

Line graphs and their associated properties have been well-studied in the graph theory

literature and for more details the reader can refer to Bondy and Murty (2008) and

Harary (2018).

2.2 Line Graph Distance Measure

Note that line graphs only reveal combinatorial information between edges. To perform

LOCAAT on a line graph, we need to define a ‘distance’ between new vertices (edges), as

we recall from Section 1.5, e.g., the prediction weight is designed by means of the inverse

distance between the vertices (here, in the new line graph). We distinguish between the

following two situations:

1. We have the coordinate information for the graph G.

2. Coordinate information is not available, but the lengths of the edges in E are

available.

50 Chapter 2. Line Graph LOCAAT

For the first case, the original network can be naturally assumed to be located in a

Euclidean space, while for the second one, the associated metrized (original) graph can

be obtained. Recall a Euclidean space along with the Euclidean distance forms a metric

space, and the metrized graph with shortest path distance forms a metric space. We

remind the reader the definition of metric subspace (O’Searcoid; 2006).

Definition 2.2.1. If we have a set A and (A, dist) is a metric space, let B ⊂ A be a

subset of A, and dist|B as a restriction of dist, such that dist|B holds only for the set B,

and for any b1, b2 ∈ B, we have dist|B(b1, b2) = dist(b1, b2). Then (B, dist|B) is a metric

subspace.

Since a metric subspace is itself a metric space (O’Searcoid; 2006), a convenient way to

define the distance measure for E is to find a set of points {pk}|E|k=1 (points in a Euclidean

space for case 1, and points in the metrized graph space Γ for case 2) to represent E ,

and to take the associated distance. For each edge ek, we use its middle point, denoted

as pk, to represent this edge. Then for the first case, let S = {pk}|E|k=1, and we have that

(S, distE, |S) forms a metric space, where ‘E’ indicates Euclidean distance; for the second

case, the shortest path distance will be used to determine the metric space. As S has a

bijection with the new vertex set V∗, we let v∗k be the new vertex corresponding to pk.

We further define a distance distV∗ , where distV∗(v∗i , v
∗
j) = distE, |S(pi,pj) for the first

case, or distV∗(v∗i , v
∗
j) = distpath, |S(pi,pj) for the second case. Then the pair (V∗, distV∗)

is a metric space.

The rationale behind using the Euclidean distance is the fact that a graph can be

considered as the discrete approximation of a manifold, which is a topological space that

is locally homeomorphic to an Euclidean space Rp for some p, see Tu (2011) for more

details on the manifold structure, and see Zhou and Burges (2008) and Cao et al. (2024)

for further discussion on the connection between graphs and manifolds.

However, these are not the only two ways to define the distance between edges. For

example, if we consider each metrized edge as a planar curve, then one might choose

2.3. Line Graph LOCAAT (LG-LOCAAT) 51

Fréchet distance or Hausdorff distance (Alt et al.; 2004). For more details about various

distance measures, the reader can refer to Dryden and Mardia (2016).

2.3 Line Graph LOCAAT (LG-LOCAAT)

In this section, we will describe in detail our proposed LG-LOCAAT algorithm, including

some theoretical characteristics in terms of the associated function expansion, sparsity

and stability, as well as the computational aspects of the algorithm.

2.3.1 Function Representation and Initial Lifting Functions

Setup

Before discussing the line graph LOCAAT algorithmic steps, the details must first be un-

derstood from the function representation perspective. Following the notation of Diestel

(2005), suppose that we have a real-valued function gE ∈ E, where E is the vector space

that contains all functions that map E to R, where E is the edge set of a graphG = (V , E),

with V = {v1, ..., vn} and E = {e1, ..., em}. The associated line graph LG(G) = (V∗, E∗)

can be obtained by taking the line graph transform as we discussed in Section 2.1, and

we denote LG(G) as G∗ for convenience. Similarly, a vector space V∗ containing all func-

tions defined on the new vertex set can also be defined. The bijection between E and V∗

indicates that the two vector spaces E and V∗ are isomorphic, denoted as E ≈ V∗, see

Roman et al. (2005). Thus, we can find a function gV
∗ ∈ V∗, where gV

∗
(v∗k) = gE(ek) if v

∗
k

is the image of ek according to the line graph transform. We denote gV
∗ ≡ gE if they sat-

isfy this condition. This isomorphism has many advantages for our construction. First of

all, since additivity and scalar multiplication are maintained in isomorphic vector spaces

(Roman et al.; 2005), performing a linear combination of a set of vectors {us ∈ V∗}ps=1

is equivalent to performing the same linear combination of a set of vectors {ws ∈ E}ps=1,

where us ≡ ws. Secondly, if {us}ps=1 is a basis defined on V∗, then {ws}ps=1 is a basis

defined on E, and us ≡ ws. As a result, it is feasible to design a multiresolution analysis

for gE based on V∗.

52 Chapter 2. Line Graph LOCAAT

Now let us consider the design for the initial primal and dual scaling functions.

Incorporating the results from Sweldens (1996b, 1998) and the LOCAAT framework

(Section 1.5), we summarise the conditions for suitably designing primal and dual scaling

functions (for the vertex set V∗ of the graph G∗) as follows. Firstly, the set of dual

scaling functions {φ̃V∗

k,m}mk=1 should satisfy ⟨φ̃V∗

k,m, g
V∗⟩ = gV

∗

k , where {gV∗

k }mk=1 is the set

of observations on the function gV
∗
, defined on the new vertex set V∗. This condition

allows us to start with the observation values, as the initial scaling coefficients, and then

perform the lifting scheme. The primal scaling functions {φV∗

k,m}mk=1 are designed such

that for each k ∈ {1, ...,m}, we have φV∗

k,m(v
∗
k) = 1 and φV∗

k,m(v
∗
s) = 0 for all s ̸= k. The set

of primal and dual initial scaling functions has to satisfy the biorthogonality property,

such that ⟨φ̃V∗

k,m, φ
V∗

k′,m⟩ = δkk′ , where δkk′ is the Kronecker delta.

Recall that for a graph G, we can obtain a line graph LG(G) = (V∗, E∗) with an

associated metric space (V∗, distV∗). Then naturally we can generate the metrized version

of LG(G), denoted as Γ(LG(G)), or Γ∗ for convenience, along with the distance measure

distV∗(v∗i , v
∗
j) as the length, ℓk, of the metrized version, e∗met

k , for the edge e∗k = {v∗i , v∗j},

which gives us a continuous analogue of the line graph LG(G). We denote a point on

the metrized graph space as p∗ ∈ Γ∗, and particularly, we denote p∗
v∗k

as the point that

corresponds to v∗k. Then we can define the set of partitionings, {P∗
s}s∈{1,...,m}, of the

metrized line graph such that

P∗
s =

{
p∗ |p∗ ∈ Γ∗; dist(p∗,p∗

v∗s
) < dist(p∗,p∗

v∗
s′
), ∀s′ ∈ {1, ...,m}\{s}

}
. (2.3.1)

Clearly, the middle point of each metrized edge e∗met ∈ Γ∗ separates this edge into two

distinct partitionings. Then based on the partitioning and the conditions above, we let

the dual and primal scaling functions to be

φ̃Γ∗

s,m(p
∗) = δ(p∗ − p∗

v∗s
);

φΓ∗

s,m(p
∗) = χP∗

s
(p∗),

where χP∗
s
is the characteristic function defined on the s-th block of the partitioning,

and δ(p∗ − p∗
v∗s
) is the Dirac delta with the energy centred on the point p∗

v∗s
. We write

2.3. Line Graph LOCAAT (LG-LOCAAT) 53

Γ∗ the superscript for these scaling functions to point out that they are defined on the

metrized line graph space. The advantage of the characteristic functions is that they

can be used to reveal the geometric information of the partitionings. We also consider

another setup for the dual and primal scaling functions, which is

φ̃Γ∗

s,m(p
∗) = δ(p∗ − p∗

v∗s
); (2.3.2)

φΓ∗

s,m(p
∗) = δp∗

v∗s
,p∗ , (2.3.3)

where δp∗
v∗s
,p∗ is the Kronecker delta. The construction using equations (2.3.2) and (2.3.3)

can be considered akin to the lazy wavelets introduced by Sweldens (1996b), but on the

(new) vertex set. Then the initial expansion form of the function approximation can be

written as

gE(e) ≡ gV
∗
(v∗) = gΓ

∗
(p∗)

=
m∑
s=1

cΓ
∗

s,mφ
Γ∗

s,m(p
∗). (2.3.4)

where p∗ ∈ Γ∗ and gΓ
∗
is the metrized analogue of the function gV

∗
, and the (initial)

scaling coefficients are cΓ
∗
s,m = ⟨gΓ∗

, φ̃Γ∗
s,m⟩ = gΓ

∗
s = gEs . From this point onwards, we use

gV
∗
to be interchangeable with gΓ

∗
. The aim is to find the function approximation as

follows

gΓ
∗
(p∗) =

∑
s∈S2

cΓ
∗

s,2φ
Γ∗

s,2(p
∗) +

∑
l∈D2

dΓ
∗

l ψ
Γ∗

l (p∗), (2.3.5)

where D2 = {km, ..., k3}, and S2 = {1, ...,m}\D2. The set {dΓ∗

l }l∈D2 holds the detail

(wavelet) coefficients, which can be obtained at each stage-r along with the scaling

coefficients {cΓ∗
s,r}s∈Sr by our proposed algorithm next detailed.

2.3.2 LG-LOCAAT Algorithm

In this section, we present our proposed algorithm in terms of the split-predict-update-

relink procedure. Suppose that we have a set of observations, {gEk}k∈{1,...,m}, which are

collected from the graph edges. As we discussed in the previous section, the observations

can be considered as {gΓ∗

k }k∈{1,...,m} in the metrized line graph domain. Similar to Jansen

54 Chapter 2. Line Graph LOCAAT

et al. (2009), we start from stage-m, corresponding to the original edge-based observa-

tions, and the initial scaling coefficients are defined as cΓ
∗

k,m := ⟨gΓ∗
, φ̃Γ∗

s,m⟩ = gΓ
∗

k = gEk .

The initial neighbourhood structure can be represented as described in equation (2.1.1)

or (2.1.2). Here, we write N V∗

k,m instead of N V∗

k since the neighbourhood structure will

be changed as the algorithm progresses through stage-m, stage-(m− 1), and so on.

• Split: In line with Jansen et al. (2009), the criterion of the split step is to choose

the new vertex, denote it by v∗km , according to minimum integral value for the

primal scaling function associated with its metrized point, p∗
v∗km

. When the initial

primal scaling functions are defined as characteristic functions on the partitionings

of the metrized line graph, the initial integral values are

IΓ
∗,sum

k,m =

∫
Γ∗
φΓ∗

k,m(p
∗)dp∗

=

∫
Γ∗
χP∗

k
(p∗)dp∗

= µ(P∗
k)

=
∑

s:v∗s∈NV∗
k,m

ℓ∗s
2

∝
∑

s:v∗s∈NV∗
k,m

dist(v∗k, v
∗
s), (2.3.6)

where we use the Lebesgue measure µ for a union of intervals (or line segments) to

be the summation of their lengths, and ‘∝’ means ‘proportional to’. The resulting

integral is proportional to the sum of distances to the new neighbouring vertices of

the k-th new vertex. Computationally, using a proportional sum of distances will

give the same result (in terms of detail coefficients) as using the sum of distances

according to the following proposition.

Proposition 2.3.1. Suppose we have an integral sequence I∗ = {I∗k,m}k∈{1,...,m},

and a constant C > 0. Then, performing the LOCAAT algorithm with C · I∗ as

integrals will yield the same detail coefficients and the same prediction/update

filters, as performing LOCAAT with I∗.

2.3. Line Graph LOCAAT (LG-LOCAAT) 55

The proof is presented in Appendix C.1. Jansen et al. (2009) also suggested the cor-

responding average distance as a possible integral determination for initial scaling

functions. The average distance can be obtained by

IΓ
∗,ave

k,m =
1

2|N V∗
k,m|

∑
s:v∗s∈NV∗

k,m

dist(v∗k, v
∗
s). (2.3.7)

In our implementation, we will also test the performance of the algorithm using

the average distance as the integral since previous literature indicates its good

performance, see also Mahadevan (2010).

As we discussed in the previous subsection, the initial primal scaling functions

can also be set as Kronecker delta, which leads to a variant of the lazy wavelets

introduced in Sweldens (1998). However, the Kronecker delta is a discrete paradigm

which does not have an ‘integral’. For tackling this problem, we use the inner

product instead of the integral. Let δs = (0, · · · , 0, 1, 0, · · · , 0) as a canonical basis

representation for v∗s , such that only its s-th element is non-zero (one). Then we

have

IΓ
∗,Delta

k,m = ⟨δs,1m⟩

= 1, (2.3.8)

where 1m is a vector of ones of length m. This inner product can be considered as

a discrete analogue of the ‘integral of Kronecker delta’.

In the simulation study we will test the performance of these three integral value

choices, namely sum of distances (equation (2.3.6), ‘sum’), average distance (equa-

tion (2.3.7), ‘ave’), and starting with a vector of ones (equation (2.3.8), ‘Delta’).

Once the integral values (of the initial scaling functions) have been decided, choose

the new vertex removal corresponding to the minimum integral value. Addition-

ally, if there exist multiple new vertices with the minimum integral value, then

we randomly pick one of these vertices. The sequence of integrals will be updated

through the stages of the algorithm (which we will discuss in the update step). The

LOCAAT framework follows the principle of recursive wavelet construction, which

56 Chapter 2. Line Graph LOCAAT

only needs us to fix the initial scaling function, and the recursive computation of

the integrals will be carried out through the iterative process, see Sweldens (1998).

Therefore, in what follows, we refer to a general stage-r instead of the original

stage-m. The stage-r removal (new) vertex will be denoted by v∗k,r and the integral

value of the k-th scaling function will be denoted as I∗k,r. From now on, we will

skip the superscript indicating the integral determination (sum/ave/Delta) unless

necessary.

• Predict: Recall that we have a set of function values defined on the new vertices of

the metrized line graph Γ∗, which are {gΓ∗

k }k∈{1,...,m}. Since the initial dual scaling

functions are set as Dirac deltas, we can start with cΓ
∗

k,m := gΓ
∗

k , and perform the

prediction of the same form as in equation (1.5.3). Thus, the detail coefficient

obtained at stage-r is

dΓ
∗

kr = cΓ
∗

kr,r −
∑

s:v∗s∈NV∗
kr,r

aΓ
∗

s,rc
Γ∗

s,r, (2.3.9)

where {aΓ∗
s,r}s:v∗s∈NV∗

kr,r
are the prediction weights. The MRA framework associated

with the prediction step can be expressed as in equation (3.2.3),

ψ̃Γ∗

kr = φ̃Γ∗

kr −
∑

s:v∗s∈NV∗
kr,r

aΓ
∗

s,rφ̃
Γ∗

s,r.

Integrating and letting the left hand side be zero, the prediction weights satisfy∑
s:v∗s∈NV∗

kr,r

aΓ
∗

s,r = 1.

Then, as suggested in Jansen et al. (2009), we construct the prediction weights by

means of the normalised inverse distances (defined as in Section 2.2), where

aΓ
∗

s,r =
1/dist(v∗kr , v

∗
s)∑

t:v∗t ∈NV∗
kr,r

1/dist(v∗kr , v
∗
t)
. (2.3.10)

In addition to the inverse distance weights, we will also test the simple moving

average prediction, where the s-th prediction weight at stage-r is determined as

aΓ
∗

s,r =
1

|N V∗
kr,r
|
, (2.3.11)

where |N V∗

kr,r
| is the cardinality of the set N V∗

kr,r
.

2.3. Line Graph LOCAAT (LG-LOCAAT) 57

• Update: The update will be performed firstly for the integrals associated with

the neighbourhood, such that for v∗s ∈ N V∗

kr,r
, we have

IΓ
∗

s,r−1 = aΓ
∗

s,rI
Γ∗

kr,r + IΓ
∗

s,r, for s : v∗s ∈ N V∗

kr,r.

The second part to be updated is the set of scaling coefficient values corresponding

to the neighbourhood N V∗

kr,r
. Thus, we have

cΓ
∗

s,r−1 = cΓ
∗

s,r + bΓ
∗

s,rd
Γ∗

kr , for s : v∗s ∈ N V∗

kr,r, (2.3.12)

where the update coefficients, {bΓ∗s,r}, are obtained by the minimum norm solution

as suggested in Jansen et al. (2009), such that

bΓ
∗

s,r =
IΓ

∗
s,r−1I

Γ∗

kr,r∑
t:v∗t ∈NV∗

kr,r
(IΓ

∗
t,r−1)

2
, for s : v∗s ∈ N V∗

kr,r. (2.3.13)

These update coefficients along with the condition
∑

s:v∗s∈NV∗
kr,r

a∗s,r = 1, guarantee

the stability of the transform, see Jansen and Oonincx (2005) and Jansen et al.

(2009) for more details.

• Relink: A further requirement through the lifting steps is to perform a relink of the

graph structure, since the removal of a vertex (and of the associated edges) might

disconnect the graph structure. For a tree graph, it is easy to see that the tree will

be disconnected by removing a vertex which is not on the boundary (the boundary

of a graph consists of those vertices with only one neighbouring vertex). However,

for a non-tree graph (graphs satisfying |E| ≥ |V|), the remaining subgraph after

removing a vertex and associated edges might still be connected. For example,

Figure 2.2 is a toy network from Knight et al. (2019), to which the authors refer

as ‘fiveNet’. Its graph structure is not that of a tree, and its structure will result

in two separate components if we remove the 1-st vertex and its associated edges,

but the remaining graph will still be connected if we remove the 2-nd vertex and

its associated edges.

In such a case, if we still perform the relinking procedure introduced by Jansen

et al. (2009) (which is designed for tree structures) after removing v∗kr , we may

58 Chapter 2. Line Graph LOCAAT

Figure 2.2: An undirected network structure ‘fiveNet’ with five nodes from Knight et al.
(2019).

introduce artificial connections for these vertices {v∗s}s:v∗s∈NV∗
kr,r

, which might have

consequent stability issues since the wavelet bases will have larger overlaps (Jansen

and Bultheel; 1998). Thus, a new relinkage scheme is desirable to be adapted to

general graphs. Suppose we are at stage-r, then the way we design the relinkage

part of the algorithm is as follows.

1. Remove v∗kr and all edges {e∗l | v∗kr ∈ e
∗
l }.

2. Test the connectivity of the subgraph consisting of N V∗

kr,r
as vertices. If con-

nected, then the relinkage will not be performed.

3. If the subgraphs are not connected, then find the minimum spanning tree and

embed this spanning tree into the existing graph structure.

Once we complete the relinkage, the neighbourhood structure will be updated to

be N V∗

k,r−1 for all k ∈ {1, ...,m}\{km, ..., kr}. We denote the line graph structure at

stage-r as G∗
r = (V∗

r , E∗r), and the one after relinkage as G∗
r−1 = (V∗

r−1, E∗r−1), where

V∗
r = V∗

r−1 ∪ {v∗kr}.

Figure 2.3 helps visualise the proposed relinkage method compared to the method

from Jansen et al. (2009). We can see that our proposed relinkage method results

2.3. Line Graph LOCAAT (LG-LOCAAT) 59

Figure 2.3: Proposed relinkage method versus the relinkage method from Jansen et al.
(2009). Left: A toy network. Middle: The next-stage network after removing the 10-th
node via the relinkage from Jansen et al. (2009). Right: The next-stage network after
removing the 10-th node via the proposed relinkage.

in a sparser graph structure for the next stage and avoids adding redundant edges,

such as the edge {v5, v6} in the middle plot.

• Iterate: We iterate the split-predict-update procedures discussed above to obtain

a sequence of detail coefficients {dΓ∗

km
, ..., dΓ

∗

kτ+1
}, where τ is the stopping time, which

indicates the number of line graph vertices that will not be removed. In our work,

we set τ = 2 as recommended in the literature, see for example, Jansen et al. (2009)

and Nunes et al. (2006). For details on the stopping time problem for LOCAAT,

the reader can refer to Nunes (2006) and Mahadevan (2010).

• Inverse: A lifting scheme such as the one discussed above is a linear transform,

which guarantees a perfect reconstruction, see Sweldens (1998). Thus, the inverse

transform can be done by undoing the lifting steps in equation (2.3.9) and (2.3.12),

from stage-(r − 1) to stage-r, which are as follows

cΓ
∗

s,r = cΓ
∗

s,r−1 − bΓ
∗

s,rd
Γ∗

kr , for s : v∗s ∈ N V∗

kr,r (2.3.14)

cΓ
∗

kr,r = dΓ
∗

kr +
∑

s:v∗s∈NV∗
kr,r

aΓ
∗

s,rc
Γ∗

s,r. (2.3.15)

60 Chapter 2. Line Graph LOCAAT

From a computation viewpoint, a lifting coefficient array has to be stored after

every stage to allow the inverse transform. Consider first the inverse transform for

a tree structure as in Jansen et al. (2009). At stage-(r − 1), we start with G∗
r−1

and disconnect the set of edges {e∗k = {v∗i , v∗j} | e∗k ∈ E∗r−1 and v∗i , v
∗
j ∈ N V∗

kr,r
}. Then

add the vertex v∗kr and connect it to all vertices in N V∗

kr,r
, thus, obtaining G∗

r. For

non-tree cases, it is possible that we do not have to disconnect some of the edges

in the graph G∗
r−1 as discussed in relinkage. Therefore, we have to preserve more

information than the lifting array in Jansen et al. (2009). We first propose the

lifting array as

kr |N V∗

kr,r| S∗
r aΓ

∗

r bΓ
∗

r ,

where S∗
r is the set consists of all s such that v∗s ∈ N V∗

kr,r
, and a∗r; b

∗
r are sequences

of predict and update coefficients. In addition, we construct the following further

list at every stage. For stage-r, the component of the ‘extra’ list consists of all

pairs (s, s′), where s ̸= s′ and s, s′ ∈ N V∗

kr,r
, such that {v∗s , v∗s′} ∈ E∗r . Thus, for the

inverse transform, from stage-(r − 1) to stage-r, the edges in this list will not be

disconnected.

2.3.3 LG-LOCAAT Properties

In this section, we give some aspects of the theory behind the LG-LOCAAT transform.

We mainly focus on sparsity, stability conditions, and the scale interpretation, which

will all contribute to the computational performance of our approach. Some results are

the generalised version of those obtained by Jansen et al. (2009).

Wavelet Coefficient Magnitude

For multiresolution analysis, the term ‘sparsity’ usually indicates that after a wavelet

transform, the detail coefficients form a sparse sequence. This indicates that the energy

of the observations is concentrated in a relative small amount of coefficients, which allows

us to represent the function by a small set of the coefficients and wavelet functions.

2.3. Line Graph LOCAAT (LG-LOCAAT) 61

Recall that we are interested in a function gΓ
∗
defined on the metrized graph Γ∗,

where the data locations {p∗
v∗k
}mk=1 are associated with new vertices v∗k ∈ V∗, along with

the distV∗ (generated by distpath) give us a metric space. Then a Euclidean analogue of

a Lipschitz continuity on a graph can be generalised as follows.

Definition 2.3.1. A function gΓ
∗
defined on Γ∗ has a point p∗

L of Lipschitz continuity

if there exists an interval I∗ ⊂ Γ∗, such that for all p∗ ∈ I∗,∣∣gΓ∗
(p∗

L)− gΓ
∗
(p∗)

∣∣ ≤ C dist(p∗
L,p

∗),

where 0 < C <∞ is a constant.

This definition is motivated by the spatial Lipschitz continuous function used in

Jansen et al. (2009) and the Hölder class for tree graphs defined by Gavish et al. (2010).

Based on this definition, we have the following proposition.

Proposition 2.3.2. For a stage-r prediction step, if for all v∗k ∈ N V∗

kr,r
∪ {v∗kr}, we have

cΓ
∗

k,r = gΓ
∗
(p∗

v∗k
), and gΓ

∗
is Lipschitz continuous with an interval that contains all these

metrized points associated with N V∗

kr,r
, then the detail coefficient obtained by equation

(2.3.9) at stage-r satisfies that

∣∣dΓ∗

kr

∣∣ ≤ C

∑
s:v∗s∈NV∗

kr,r
dist(v∗kr , v

∗
s)

|N V∗
kr,r
|

. (2.3.16)

For the proof, the reader can refer to Appendix C.2. Nonetheless, acquiring a precise

bound for all detail coefficients is not a straightforward task for iterative methods. Let

us consider the following situation, suppose at stage-r, the function underpinning the

scaling coefficients (cΓ∗k,r) is Lipschitz continuous, which indicates that∣∣cΓ∗

k,r − cΓ
∗

s,r

∣∣ ≤ C dist(v∗kr , v
∗
s),

Now let us suppose that s : v∗s ∈ N V∗

kr,r
, and k : v∗k /∈ N V∗

kr,r
, then from stage-r to

stage-(r − 1), we have that

cΓ
∗

k,r−1 = cΓ
∗

k,r,

cΓ
∗

s,r−1 = cΓ
∗

s,r + bΓ
∗

s,rd
Γ∗

kr .

62 Chapter 2. Line Graph LOCAAT

We further assume that the detail coefficient satisfies the Proposition 2.3.2, then the

bound for the absolute difference between cΓ
∗

k,r−1 and cΓ
∗
s,r−1 becomes∣∣cΓ∗

k,r−1 − cΓ
∗

s,r−1

∣∣ = ∣∣(cΓ∗

k,r − cΓ
∗

s,r

)
− bΓ∗

s,rd
Γ∗

kr

∣∣
≤
∣∣cΓ∗

k,r − cΓ
∗

s,r

∣∣+ bΓ
∗

s,r

∣∣dΓ∗

kr

∣∣
≤ C dist(v∗k, v

∗
s) + bΓ

∗

s,rC

∑
t:v∗t ∈NV∗

kr,r
dist(v∗kr , v

∗
t)

|N V∗
kr,r
|

.

Hence, there is no guarantee that the function underpinning cΓ∗k,r−1 is still Lipschitz

continuous with the same constant C. This indicates that if v∗kr and v∗kr−1
are ‘close’ to

each other for some stage-r, there will be an unwanted effect on the compression ability.

Stability

The wavelet functions generated by the lifting scheme (including LOCAAT-based ap-

proaches) are no longer orthogonal, thus, the algorithm stability may become an issue.

One way to guarantee the stability of the transform is to ensure that both dual and

primal wavelet functions form Riesz bases, such that

L ∥gΓ∗∥2L2
≤
∑
k∈Dr

|⟨gΓ∗
, ψΓ∗

k ⟩|2 ≤ U ∥gΓ∗∥2L2
, (2.3.17)

L̃ ∥gΓ∗∥2L2
≤
∑
k∈Dr

|⟨gΓ∗
, ψ̃Γ∗

k ⟩|2 ≤ Ũ ∥gΓ∗∥2L2
, (2.3.18)

where Dr = {km, ..., kr+1}. If we can find the upper bounds, then the lower bound can

be obtained automatically by the duality, such that L = Ũ−1 and L̃ = U−1 holds, see

Cohen et al. (1993) and Daubechies (1992). Nonetheless, as pointed out by Jansen et al.

(2009), it is challenging to verify whether a set of bases satisfies the Riesz condition

on a global scale, especially in irregular scenarios. Simoens and Vandewalle (2003) and

Jansen and Oonincx (2005) presented a necessary but not sufficient condition for the

Riesz condition is that each one-step transform and its inverse are uniformly bounded.

This can be articulated as the one-level lifting operator and its inverse being bounded,

see Simoens and Vandewalle (2003). For the LOCAAT-based algorithm, it means that

the quantities resulting from the predict (equation (2.3.9)), the update (equation 2.3.12),

2.3. Line Graph LOCAAT (LG-LOCAAT) 63

undo update (equation (2.3.14)), and undo predict (equation (2.3.15)) should be bounded

in norm. For the forward prediction, given that
∑

k:v∗k∈N
V∗
kr,r

aΓ
∗
s,r = 1 and aΓ

∗
s,r ≥ 0, we have

that

|dΓ∗

kr |
2 = |cΓ∗

kr,r −
∑

s:v∗s∈NV∗
kr,r

aΓ
∗

s,rc
Γ∗

s,r|2

≤ (1 +
∑

s:v∗s∈NV∗
kr,r

|aΓ∗

s,r|2)
∑

k:v∗k∈N
V∗
kr,r

∪{kr}

|cΓ∗

k,r|2, (2.3.19)

≤ 2
∑

k:v∗k∈N
V∗
kr,r

∪{kr}

|cΓ∗

k,r|2.

by the Cauchy-Schwarz inequality. Since each update coefficient satisfies that 0 < bΓ
∗
s,r ≤

1
2
, for all v∗s ∈ N V∗

kr,r
, see Jansen et al. (2009), this guarantees that cΓ

∗
s,r−1 is bounded

after the update (equation (2.3.12)) for all v∗s ∈ N V∗

kr,r
. For the one-level undo lifting,

the boundness can be immediately obtained by the duality, see Jansen et al. (2009).

From the equation (2.3.19), we can see that the upper bound is given by the value

(1 +
∑

s:v∗s∈NV∗
kr,r
|aΓ∗
s,r|2). Hence, if we lift a new vertex which only has one neighbouring

new vertex, the bound tends to be the maximum (which is exactly 2). This matches

with the practical sensitive points phenomena observed by Jansen and Bultheel (1998)

and Mahadevan (2010), where the term ‘sensitive points’ indicates that such boundary

points contain high energy and have a significant influence on recovering the signal. On

the other hand, if a new vertex with a large size of neighbourhood has been lifted, and

the prediction weights are almost evenly distributed (e.g. moving average), then the

upper bound tends to be small.

Scale Interpretation

Having the notion of scale is essential for any wavelet-based method. The scale is a

measurement related to the level of detail, also known as the resolution, and has a

strong connection with the Fourier-based frequency notion, see Nason (2008) or Vi-

dakovic (2009). Recall that in the classical wavelet methods, the scales can be generated

by the dilation relation. Within the framework based on LOCAAT, the concept of scale

64 Chapter 2. Line Graph LOCAAT

is not directly discernible due to the absence of a dilation relation. As in the first gen-

eration wavelets literature, the scale can be viewed as a parameter of a power function,

which signifies the reduction of the detail coefficients, see Daubechies (1992). Inspired by

this, the quantities in equation (2.3.16) can help in determining the ‘scale’ notion. Notice

that its expression is very similar to the ‘sum of distances’ and the ‘average distance

integral’ as we discussed in Section 2.3. Thus, for computational convenience, we simply

define the scale of the detail coefficient dΓ
∗

kr
obtained at stage-r as

scaleΓ
∗

kr = IΓ
∗

kr,r (2.3.20)

The integral satisfies that IΓ
∗

kr−1,r−1 ≥ IΓ∗kr,r, which implies the correspondence between

removal order and scale. Note that when using the integral values as a sequence of ones,

the potential power of this integral choice is that for the initial recursions of lifting,

the next stage-(r − 1) removal choice v∗kr−1
cannot be a neighbouring vertex of v∗kr .

For example, once we remove v∗km , after the integral update, the integral values of its

neighbourhood will exceed the value one, which guarantees that another vertex (not

in the neighbourhood) will be picked for removal, hence the space is explored more

efficiently.

2.3.4 Original Domain Transformation

Through the iterations of the LG-LOCAAT steps discussed above, after stage-r, the

expansion of the function approximation can be written as (Jansen et al.; 2009)

gΓ
∗
(p∗) =

∑
s∈Sr−1

cΓ
∗

s,r−1φ
Γ∗

s,r−1(p
∗) +

∑
l∈Dr−1

dΓ
∗

l ψ
Γ∗

l (p∗), (2.3.21)

where Dr−1 = {km, ..., kr} are the wavelet coefficient indices, and Sr−1 = {1, ...,m}\Dr−1

are the scaling indices. Then functions {ψΓ∗

l }l∈Dr−1 are the wavelets functions and are

obtained recursively as detailed in Section 1.5. Recall that the LG-LOCAAT is designed

as a transform in the line graph space (G∗, or the metrized version Γ∗) of the original

graph. However, we are primarily interested in the function approximation in the original

graph space. In particular, understanding the topology of the set of scaling and wavelet

2.3. Line Graph LOCAAT (LG-LOCAAT) 65

v1

v2

v1

v3

v1 v4

Figure 2.4: An example of a claw graph.

functions is of interest. We can conceptualise our line graph transform as being associated

to a map LG, such that LG : G −→ G∗.

A question of interest is whether an inverse transform LG−1 exists, at any stage-r.

However, the line graph transform is not always invertible. This is since while any graph

has its unique corresponding line graph, but not all graphs are line graphs, see Bondy and

Murty (2008). As an example, let us consider the case where we lifted a new vertex v∗kr

at stage-r, and its neighbourhood is denoted as N V∗

kr,r
. Therefore, we have the subgraph

G∗supp
r = (V∗supp

r , E∗suppr), where V∗supp
r = {v∗kr} ∪N

V∗

kr,r
and E∗suppr = {{v∗kr , v

∗
s}}s: v∗s∈NV∗

kr,r
.

Recall that the prediction step at stage-r is performed on this subgraph G∗supp
r , hence

the analytic form of the wavelet function φΓ∗

kr
is defined on the topology of G∗supp

r . Now

if we want to obtain the associated analytical form defined on the original graph G

for φΓ∗

kr
, we have to find the inverse of G∗supp

r . Let us consider a special case, suppose

there are three component in the neighbourhood N V∗

kr,r
. This graph topology is called

‘claw graph’ in graph theory literature, see Bondy and Murty (2008). Figure 2.4 gives a

visualisation of a claw graph. Unfortunately, claw graphs are not line graphs, see Bondy

and Murty (2008) and Chudnovsky and Seymour (2005), which indicates that G∗supp
r

has no interpretation in the original graph domain if it is a claw graph. Moreover, any

star graph (see Section 1.4.1) with more than four vertices is not a line graph, see Bondy

and Murty (2008). Hence, at any stage-r, if there are more than three vertices used for

prediction, then the associated topology G∗supp
r will have no interpretation. Moreover,

the stage-(r−1) graph after relinkage may also not be a line graph. To check whether the

resulting graph at stage-(r−1) is a line graph, one could use the algorithm introduced by

66 Chapter 2. Line Graph LOCAAT

Roussopoulos (1973), which has the computational costO(max{n∗
r−1,m

∗
r−1}), where n∗

r−1

andm∗
r−1 indicate the number of vertices and edges of the relinked graph at stage-(r−1),

respectively. However, this algorithm is beyond the scope of this thesis, and we consider

it as a direction for future research. Nonetheless, we find it worth mentioning that if the

original graph is very dense, for example, if G is close to a complete graph, such that

m approaches to n(n− 1)/2, then the computational cost will increase significantly. For

the purpose of this work, recall the equivalence between the information in the original

edge domain and the line graph vertex domain, also represented in equation (2.3.4) as

gE(e) ≡ gV
∗
(v∗), which we will assume to hold at each stage.

2.4 Simulation Testbed

In this section, we present a comprehensive simulation study in order to investigate the

behaviour of our LG-LOCAAT algorithm. The simulation consists of three parts: stabil-

ity (assessed via the condition number), compression ability (assessed via the sparsity

plot), and denoising performance (assessed via the average mean squared error). Be-

fore moving onto the simulation setting, let us first describe the sampling for our test

functions and toy models.

2.4.1 Test Functions

In our work, the set of functions from Jansen et al. (2009) will be used in our simu-

lation study, which are two-dimensional analogues of the test functions from Donoho

and Johnstone (1994), along with the two-dimensional maartenfunc (mfc) introduced

by Jansen et al. (2009). ‘Blocks’ is a function with several blocks of different function

values, but within each block, the value is the same. ‘Doppler’ is a coordinate-based

sine function, which can be considered as a smooth function without discontinuities.

‘Bumps’ is a function that has several spikes as discontinuities. ‘Heavisine’ is a smooth

function but with high variation. ‘mfc’ is a function that has a line segment as a set of

discontinuities, which divides the domain into two parts, and each of them is a smooth

2.4. Simulation Testbed 67

function. We also test the performance of our method on the g1 function introduced in

Mahadevan (2010), which has a similar form to mfc, but with some more ‘obvious’ jump

discontinuities. Figure 2.5 gives the visualisation of these functions on a [0, 1] × [0, 1]

square. The formulae can be found in Appendix B, see also Mahadevan (2010).

2.4.1.1 Sampling Network Structure

Since the test functions are defined over the square [0, 1]× [0, 1] in Euclidean space, we

sample this space by means of a network structure. We first sample n points {(xi, yi)}ni=1,

where xi, yi ∼ Unif(0, 1). These points are fixed as the graph vertices {vi = (xi, yi)}ni=1

of the network G. Then the graph edges are obtained by the minimum spanning tree,

which gives us a set of m (m = n − 1) connections between vertices. We let these be

the set of edges for the graph G, and the length of each edge is simply given by the

Euclidean distance of the two vertices associated with this edge.

2.4.1.2 Embedding the Function Values

Within our simulation study, we will determine the function values at the set of edges

using two methods. The first method is to simply select the value that corresponds to

the coordinate at the midpoint of each edge. Let us assume we have a function gtest from

the previously mentioned collection of test functions. Consequently, for ek = {vi, vj},

where vi = (xi, yi) and vj = (xj, yj), the corresponding ‘true’ observation value will be

gEk = gV
∗

k := gtest(
xi + xj

2
,
yi + yj

2
). (2.4.1)

Nonetheless, this function’s definition still hinges on the pointwise perspective. We also

explore an alternative method for designating the function values, which incorporates

the geometric details of the edges. Inspired by the cell average function from Donoho

(1997), we suggest a different approach for adjusting the function values. We refer to

these functions as ‘edge averaging’, bearing a resemblance to the cell averaging but

defined on a set of line segments rather than a set of squares. For ek = {vi, vj}, the

68 Chapter 2. Line Graph LOCAAT

Figure 2.5: Heat maps for the test functions used in simulation. From left to right on
top row: g1, maartenfunc; middle row: Blocks, Doppler; bottom row: Bumps, Heavisine.

2.4. Simulation Testbed 69

Figure 2.6: Heat map for a set of function values defined on Voronoi polygons of the
vertex set of the line graph. The red points are the middle points of network edges (hence,
the vertices of the line graph), and each polygon represents the function value of the
corresponding new vertex (original edge). The test function here is the edge averaging
Blocks function, the values are obtained by pointwise functions. The Voronoi polygons
are generated by the new vertices (red points).

function value will be

gEk = gV
∗

k =

(
N−1∑
h=0

gtest
(
xi +

h

N − 1
(xj − xi), yi +

h

N − 1
(yj − yi)

))/
N, (2.4.2)

where gtest is one of the two-dimensional test functions. Here we simply letN = 100. Note

that this edge averaging function depends on the geometric location of the edges. Figure

2.4.1 and Figure 2.4.2 show the visualisations of the ‘pointwise’ Blocks function and

‘edge averaging’ Blocks function, respectively. Note that compared with the pointwise

function, the edge averaging is smoother when the edges cross blocks with different

values.

70 Chapter 2. Line Graph LOCAAT

Figure 2.7: Heat map for a set of function values defined on Voronoi polygons of the
vertex set of the line graph. The red points are the middle points of network edges
(hence, the vertices of the line graph), and each polygon represents the function value
of the corresponding new vertex (original edge). The test function here is the Blocks
function, the values are obtained by edge averaging functions. The Voronoi polygons are
generated by the new vertices (red points).

2.5 Simulation Results

In this section, we will provide numerical results for our simulation study. Various pro-

posed methods based on different combinations of measurements, such as initial scaling

function integral and prediction weights, will be presented. Acronyms will be used to

identify the approaches we explore, and their descriptions can be found in Table 2.1.

2.5.1 Stability

The condition number will be used to represent the stability of the transform. Before

discussing the condition number, we first have to construct the matrix associated to the

transform. In the remainder of this section, we drop the superscripts and subscripts of

2.5. Simulation Results 71

Acronym Proposed LG-LOCAAT variant
LG-Sid-c S: sum of distances as integral (equation (2.3.6)); id:

inverse distance prediction (equation (2.3.10)); c: coor-
dinate information available.

LG-Aid-c A: average distance as integral (equation (2.3.7)); id:
inverse distance prediction (equation (2.3.10)); c: coor-
dinate information available.

LG-Did-c D: a sequence of ones as integrals (equation (2.3.8)); id:
inverse distance prediction (equation (2.3.10)); c: coor-
dinate information available.

LG-Snw-c S: sum of distances as integral (equation (2.3.6)); nw:
moving average prediction (equation (2.3.11)); c: coor-
dinate information available.

LG-Anw-c A: average distance as integral (equation (2.3.7)); nw:
moving average prediction (equation (2.3.11)); c: coor-
dinate information available.

LG-Dnw-c D: a sequence of ones as integrals (equation (2.3.8)); nw:
moving average prediction (equation (2.3.11)); c: coor-
dinate information available.

LG-Sid-p S: sum of distances as integral (equation (2.3.6)); id:
inverse distance prediction (equation (2.3.10)); p: path
length available.

LG-Aid-p A: average distance as integral (equation (2.3.7)); id:
inverse distance prediction (equation (2.3.10)); p: path
length available.

LG-Did-p D: a sequence of ones as integrals(equation (2.3.8)); id:
inverse distance prediction (equation (2.3.10)); p: path
length available.

LG-Snw-p S: sum of distances as integral (equation (2.3.6)); nw:
moving average prediction (equation (2.3.11)); p: path
length available.

LG-Anw-p A: average distance as integral (equation (2.3.7)); nw:
moving average prediction (equation (2.3.11)); p: path
length available.

LG-Dnw-p D: a sequence of ones as integrals (equation (2.3.8)); nw:
moving average prediction (equation (2.3.11)); p: path
length available.

Table 2.1: Acronyms and algorithm descriptions for different parameter choices of LG-
LOCAAT.

72 Chapter 2. Line Graph LOCAAT

the function values, coefficients, and wavelet/scaling functions, since the construction of

the lifting matrix is general for any scheme. Computationally, the lifting scheme can be

represented as a matrix multiplication, d = R̃g, where g is the observation sequence, R̃

denotes the forward matrix generated by lifting scheme, and d is the detail coefficient

sequence.

Let vector ψ̃
kr

be the filter associated with the kr-th dual wavelet function ψ̃kr , then

the forward matrix can be represented as

R̃ =

ψ̃
T

1
...

ψ̃
T

m

 . (2.5.1)

Then we denote the kr-th row of the matrix R̃ as rowkr(R̃) = ψ̃
kr
, can be considered

as the vector form of the kr-th dual wavelet, ψ̃kr . The inverse matrix R, is obtained by

solving the equation RR̃ = R̃R = I, where I is the identity matrix of the same dimension

as R and R̃. Notice that for any k, k′ ∈ {1, ...,m}, there is

⟨rowk(R̃), colk′(R)⟩ = δkk′ .

Thus, the kr-th column of the matrix R, can be considered as the vector form of the

kr-th primal wavelet, ψkr . The inverse matrix can be represented as

R =
[
ψ

1
, · · · , ψ

m

]
. (2.5.2)

Now, if we let the vector us = (0, ..., 0︸ ︷︷ ︸
s−1

, 1, 0, ..., 0︸ ︷︷ ︸
m−s

)T as the detail coefficient sequence,

which indicates that ds = 1 and ds′ = 0 for all s′ ̸= s, and perform inverse transform

for this vector us, this will yield the vector form for the s-th wavelet, ψ
s
. Then we will

obtain the inverse matrix R by performing the procedure above for s ∈ {1, ...,m}. The

(forward) lifting matrix can be calculated by taking the inverse of R.

The condition number of the lifting matrix is then measured by

κ(R̃) = κ(R) = ∥R̃∥2∥R∥2,

2.5. Simulation Results 73

where ∥·∥2 is the L2-norm of the matrix. This norm is sometimes been called the spectral

norm of the matrix, and can be found by the singular value decomposition (SVD) of the

matrix (Trefethen and Bau III; 1997). For example, for our m × m matrix R̃, we can

obtain m ordered singular values through SVD. Since the forward matrix of our LG-

LOCAAT is invertible, then these singular values are all positive values. We further

denote by {ρi}i∈{1,...m} the set of singular values ordered according to their magnitude,

which means that ρ1 is the maximum singular value and ρm is the minimum one. Then

we have ∥R̃∥2 = ρ1. As the matrix R̃ is non-singular, we have ∥R∥2 = ∥(R̃)−1∥2 = 1/ρm.

Thus,

κ(R̃) =
ρ1
ρm

.

Notice that the condition number satisfies κ(R̃) ≥ 1. A transform is more stable than

another one if its condition number is closer to one, see Higham (2002). The condition

number and stabilised transform will be discussed in more detail in the later chapters.

Condition Number Max 75% Median 25% Min
LG-Sid-c 14.5314 12.9183 12.4962 11.9702 11.1918
LG-Aid-c 15.0632 13.2504 12.5252 11.9598 11.1996
LG-Did-c 13.9051 12.5774 11.5010 11.0700 10.6420
LG-Snw-c 13.5717 12.3798 11.7343 11.3743 10.8643
LG-Anw-c 12.7559 11.4412 11.0405 10.5475 10.0281
LG-Dnw-c 12.1607 11.0283 10.5684 10.2285 9.9500

Table 2.2: Condition number for LG-LOCAAT with coordinate information.

Condition Number Max 75% Median 25% Min
LG-Sid-p 13.4308 12.3485 11.7877 11.3759 10.7340
LG-Aid-p 12.7611 11.4225 10.9914 10.5397 10.0863
LG-Did-p 12.6918 11.6651 10.7789 10.3077 10.0251
LG-Snw-p 13.2506 12.0824 11.5843 11.2258 10.6871
LG-Anw-p 12.5608 11.3372 10.7768 10.3567 10.0530
LG-Dnw-p 12.2235 11.0813 10.5528 10.1628 9.9535

Table 2.3: Condition number for LG-LOCAAT using the path length.

Tables 2.2 and 2.3 give the quantiles of the condition numbers of the associated

transform. We can see that overall, performing the scheme with a sequence of ones as

74 Chapter 2. Line Graph LOCAAT

the integral will result in a lower condition number than using sum of distances or average

distance, moving average prediction provides a more stabilised transform than inverse

distance prediction. Reassuringly, it does not make a significant difference if the LG-

LOCAAT is based on the path length. The scheme based only on the path length gives

a comparably stabilised transform. These results are in agreement with our intuition set

out in the discussion in Section 2.3.3.

2.5.2 Sparsity

A desirable property of the wavelet transform is that a function can be transformed into

a sparse set of detail coefficients if this function belongs to a certain class of functions,

see Meyer (1992). Thus, the energy of the signal is concentrated in a small set of detail

coefficients after the transform, which means that the function can be well-approximated

by only a few detail coefficients.

The tool we use to assess the performance of compression is the sparsity plot, and

its construction proceeds as follows. First, we perform the LG-LOCAAT transform for

the true values {gV∗

k }mk=1. This will yield a corresponding vector which contains two

scaling coefficients and (m− 2) detail coefficients. We begin with the case with just two

scaling coefficients and assume all the detail coefficients are zero. Then to perform the

inverse transform for this vector, we obtain an estimator ĝV
∗
(t) for the true function

gV
∗
. Here (t−1) gives the number of detail coefficients used in reconstruction, such that

ĝV
∗
(1) is the reconstruction with only two scaling coefficients, while ĝV

∗
(2) means the

reconstruction with two scaling coefficients and one detail coefficient with the largest

absolute value, and so on and so forth. For any step, we will introduce one remaining

detail coefficient with the largest absolute value into the vector for reconstruction. Then

following the process above, we can obtain a different estimation in each step until all

detail coefficients have been used. For the sparsity plot, the value on the y-axis is the

integrated squared error (ISE), defined as follows:

ISE(t) = P−1

P∑
p=1

m∑
k=1

(
ĝV

∗(p)

k (t)− gV∗(p)

k

)2
,

2.5. Simulation Results 75

Figure 2.8: Sparsity plots for the test functions used in simulation by the equation (2.4.1).
The scheme is based on coordinate information. From left to right on top row: g1, Blocks;
middle row: Doppler, Bumps; bottom row: Heavisine, maartenfunc. Black line: LG-Sid-
c; red line: LG-Aid-c; blue line: LG-Did-c; dashed black line: LG-Snw-c; dashed
red line: LG-Anw-c; dashed blue line: LG-Dnw-c.

where gV
∗(p)

k and ĝV
∗(p)

k denote the true observation at new vertex ‘v∗k’ and its reconstruc-

tion using (t − 1) detail coefficients for the p-th network. In total, we generate P = 50

different networks with n = 100 vertices (and m = 99 edges) for our study. The x-axis

is the ‘t’-argument, as we mentioned above. If the ISE decays to zero fast (if for small t,

the ISE is already close to zero), then the algorithm leads to a highly sparse result for

the target function.

76 Chapter 2. Line Graph LOCAAT

Figure 2.9: Sparsity plots for the test functions used in simulation by the equation (2.4.1).
The scheme is based on path distance. From left to right on top row: g1, Blocks; middle
row: Doppler, Bumps; bottom row: Heavisine, maartenfunc. Black line: LG-Sid-p; red
line: LG-Aid-p; blue line: LG-Did-p; dashed black line: LG-Snw-p; dashed red
line: LG-Anw-p; dashed blue line: LG-Dnw-p.

2.5.2.1 Sparsity Results for Pointwise Functions

Figure 2.8 shows the sparsity results for different (pointwise) test functions, all with

schemes being based on the coordinate information. We can see that the compression

ability of the algorithm on g1 and mfc surpass any other test function. The results for

Bumps and Doppler functions display similar sparsity results, while for Blocks function

the results are inferior. The compression of the Heavisine function is the weakest com-

pared with other functions. Reassuring, there is no significant difference among different

choices of integral values and prediction weights.

2.5. Simulation Results 77

Figure 2.10: Sparsity plots for the test functions used in simulation by the equation
(2.4.2). The scheme is based on coordinate information. From left to right on top row:
g1, Blocks; middle row: Doppler, Bumps; bottom row: Heavisine, maartenfunc. Black
line: LG-Sid-c; red line: LG-Aid-c; blue line: LG-Did-c; dashed black line: LG-
Snw-c; dashed red line: LG-Anw-c; dashed blue line: LG-Dnw-c.

Figure 2.9 shows the results for the same functions while using path length instead

of the coordinates. For data compression, there is no significant difference between using

path length and coordinate information.

2.5.2.2 Sparsity Results for Edge Averaging Functions

Figure 2.10 shows the sparsity results for different edge averaging functions. The com-

pression ability follows the similar patterns to pointwise functions. Along with Figure

2.11, again there is no evidence of a significant difference between using path length

78 Chapter 2. Line Graph LOCAAT

Figure 2.11: Sparsity plots for the test functions used in simulation by the equation
(2.4.2). The scheme is based on path distance. From left to right on top row: g1, Blocks;
middle row: Doppler, Bumps; bottom row: Heavisine, maartenfunc. Black line: LG-Sid-
p; red line: LG-Aid-p; blue line: LG-Did-p; dashed black line: LG-Snw-p; dashed
red line: LG-Anw-p; dashed blue line: LG-Dnw-p.

and coordinate information. Both sets of plots indicate that different choices of integral

values and prediction weights will not change the sparsity results significantly.

2.5.3 Denoising Performance

In this section, we investigate the behaviour of LG-LOCAAT in the context of nonpara-

metric regression problem. Suppose we have the model,

fE
k = gE(ek) + ϵk,

= gEk + ϵk. (2.5.3)

2.5. Simulation Results 79

where gE is a true function defined on the edge set E = {ek}k∈{1,...,m}, and {ϵk} are

independent and identically distributed random variables (noise), assumed to follow a

normal distribution N(0, σ2). Thus, fE = {fE
k }k∈{1,...,m} is the set of observation values

on the edges of our graph G that are corrupted by noise, and our purpose is to obtain an

estimator ĝE of the true (unknown) function gE evaluated at the observed edges. For our

simulation study, the true function gE is generated by the test functions as in Appendix

B. Recall that the line graph transform allows us to represent gE(ek) = gV
∗
(v∗k) (and

similarly for the observations {fE
k }k∈{1,...,m}). Thus, equation (2.5.3) can be rewritten as

fV∗

k = gV
∗
(v∗k) + ϵk

= gV
∗

k + ϵk.

Then we can perform our proposed LG-LOCAAT algorithm for the observations fV∗
,

in order to obtain a sequence of detail coefficients d∗. Next, the detail coefficients will

be separated into different artificial levels by taking the median and different quantiles

of the size of the measurement I∗kr,r associated with the scale at stage-r for all r in

the algorithm, see Jansen et al. (2004, 2009) and Nunes et al. (2006). Subsequently,

wavelet thresholding will be performed on these detail coefficients. Following the finding

from Mahadevan (2010), which is that performing thresholding for around 80-90% detail

coefficients seems an optimal choice, we perform the wavelet thresholding for all detail

coefficients except for those that have been allocated at the two coarsest artificial levels.

The thresholding approach used in this thesis will be empirical Bayes thresholding, unless

we mention it specifically. The non-zero part of the prior density will be modelled as

the ‘quasi-Cauchy’ distribution from Johnstone and Silverman (2004), since it has been

proved to have good performance for LOCAAT-based approaches, see Nunes et al. (2006)

and Jansen et al. (2009). A set of estimated coefficients, d̂
∗
, will be obtained following

thresholding and we then perform the inverse transform to obtain an estimate of the true,

unknown function. We denote the corresponding estimates as ĝV
∗

k for all k ∈ {1, ...,m}.

Recall from Section 2.3.4, the equivalence between the estimates {ĝV∗

k }k∈{1,...,m} defined

on the line graph G∗
m, and the original graph domain, such that we have ĝE = ĝV

∗
.

80 Chapter 2. Line Graph LOCAAT

Our simulation will be performed on three different scales of the signal-to-noise ratio,

SNR = 3, 5, and 7. This ratio is measured by SNR =
√

var(gE)/σ, where var(gE) is the

variance of the simulated true function, and σ is the standard deviation of the noise.

For a clear comparison, the true function will be normalised so that var(gE) = 1. Thus,

the noise will be generated with σ = 1/3, 1/5, and 1/7, respectively. The simulation

is designed as follows: we sample p = 1, ..., P = 50 different graph structures, G(p)

(whose associated line graph will be denoted as G∗(p)). For each of them, we simulated

r = 1, ..., R = 100 different noise sequences, of a certain choice of σ as we discussed

above. Following the estimation procedure, we calculate the average mean squared error

(AMSE) defined as

AMSE = (PRm)−1

P∑
p=1

R∑
r=1

m∑
k=1

(
ĝEk,p,r − gEk,p

)2
,

where gEk,p is the true edge function value corresponding to the k-th ‘new’ vertex on the

line graph G∗(p), while ĝEk,p,r is the estimate of gEk,p when the true function is corrupted by

the r-th noise sequence. Figure 2.12 shows a visualisation of one realisation of denoising

for three different test functions for LG-LOCAAT with ‘LG-Aid-p’.

We will also calculate the squared bias and variance, and therefore the corresponding

average mean squared errors (AMSE) to check the performance of our methods. The

variance is calculated as follows.

Var = (PRm)−1

P∑
p=1

m∑
k=1

R∑
r=1

(
ĝEk,p,r − ḡEk,p

)2
,

where ḡk,p =
1
R

∑R
r=1 ĝ

E
k,p,r and the squared bias is calculated as

bias2 = (Pm)−1

P∑
p=1

m∑
k=1

(
ḡEk,p − gEk,p

)2
.

2.5.3.1 Denoising Pointwise Functions

In this section, we provide the AMSE results for the pointwise functions generated as

described in equation (2.4.1) using R = 100 noise sequences over P = 50 graph structures

each with m = 99 edges.

2.5. Simulation Results 81

Figure 2.12: Visualisation for the LG-LOCAAT estimation of three test functions. The
denoising is done by ‘LG-Aid-p’, with the average of 10 runs. From top to bottom on
left column: true Blocks, Doppler, Bumps functions; middle column: their noisy versions;
right column: denoised signals.

We can see that in terms of AMSE, using average distance as the integral value

almost surpasses the choice of sequence of ones or sum integral choices. ‘Did’ and ‘Dnw’

perform well for most of the function except Blocks and Heavisine. ‘Sid’ and ‘Snw’ never

appear to be the optimal choice unless the function is the Blocks (piecewise constant).

Note that the results for the Heavisine function are comparatively less competitive than

for the other test functions, and one reason could be that the 99 edges are below the anti-

aliasing sampling rate (equivalent to the Nyquist rate in the case of equally spaced data).

As a result, the reconstructed function may contain lower-frequency components instead

of the true underlying high-frequency components. This problem can likely be solved by

increasing the size of the network sampling, but is outside our scope for investigation

here.

82 Chapter 2. Line Graph LOCAAT

AMSE×103 (sd×103) g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

LG-Sid-c 65 (19) 114 (44) 109 (39) 92 (26) 272 (99) 52 (12)
LG-Aid-c 62 (18) 113 (48) 92 (29) 79 (19) 198 (66) 46 (10)
LG-Did-c 64 (18) 120 (46) 93 (31) 80 (20) 235 (81) 45 (11)
LG-Snw-c 66 (19) 117 (47) 109 (38) 97 (28) 282 (103) 53 (12)
LG-Anw-c 64 (18) 116 (48) 92 (31) 81 (20) 205 (66) 46 (10)
LG-Dnw-c 67 (19) 126 (51) 98 (33) 83 (21) 261 (87) 47 (11)

SNR=5
LG-Sid-c 23 (7) 41 (16) 44 (17) 45 (17) 206 (88) 26 (6)
LG-Aid-c 23 (7) 42 (18) 38 (13) 38 (12) 138 (48) 22 (5)
LG-Did-c 23 (7) 46 (20) 37 (13) 39 (12) 178 (76) 22 (5)
LG-Snw-c 22 (7) 42 (17) 44 (17) 47 (18) 217 (91) 26 (6)
LG-Anw-c 23 (8) 43 (19) 38 (14) 39 (12) 147 (48) 22 (5)
LG-Dnw-c 24 (8) 48 (21) 39 (14) 41 (13) 208 (81) 23 (5)

SNR=7
LG-Sid-c 11 (3) 21 (9) 24 (10) 28 (13) 184 (83) 17 (4)
LG-Aid-c 11 (3) 22 (10) 21 (7) 23 (8) 120 (43) 14 (3)
LG-Did-c 11 (3) 24 (11) 21 (7) 24 (9) 161 (75) 14 (3)
LG-Snw-c 10 (3) 21 (9) 25 (10) 29 (14) 195 (86) 18 (4)
LG-Anw-c 10 (3) 22 (12) 22 (8) 24 (8) 130 (43) 14 (3)
LG-Dnw-c 11 (3) 25 (11) 22 (8) 25 (9) 191 (79) 15 (3)

Table 2.4: AMSE for LG-LOCAAT on a tree structure with 100 nodes and 99 edges.
The functions follow the pointwise construction. We assume the coordinate information
is available. The values in parentheses are the standard deviations (×103) of the AMSE
results across the P ×R = 50× 100 replications.

From Table 2.5, we can see that the integral choice ‘A’ provides the best results

for variance control, while the choice ‘S’ provides similar and competitive results, too.

Performing the algorithm with the integral ‘D’ gives a relatively high variance compared

with the other two choices. The reason for this might be the dual wavelet functions

have fewer overlaps than any other scaling function construction choices (recall that the

integral choice ‘D’ allows us to capture the information more uniformly on the graph

structure).

For the bias results, integral choice ‘D’ surpasses the other methods for most of the

functions. The choice ‘A’ seems competitive for the Heavisine function, which contains

high frequency components when compared with other functions. The choice ‘S’ intro-

2.5. Simulation Results 83

Variance×103 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

LG-Sid-c 48 65 61 51 68 39
LG-Aid-c 46 64 55 48 64 36
LG-Did-c 49 81 66 56 101 37
LG-Snw-c 49 66 61 52 69 39
LG-Anw-c 46 64 55 48 64 36
LG-Dnw-c 52 86 71 60 113 39

SNR=5
LG-Sid-c 18 24 23 22 31 15
LG-Aid-c 18 24 22 20 27 14
LG-Did-c 20 33 27 26 67 15
LG-Snw-c 19 25 23 22 31 15
LG-Anw-c 18 24 21 20 26 14
LG-Dnw-c 21 34 30 28 78 17

SNR=7
LG-Sid-c 9 13 12 12 18 9
LG-Aid-c 9 13 12 11 15 8
LG-Did-c 10 18 15 16 57 9
LG-Snw-c 9 13 12 12 18 9
LG-Anw-c 9 13 12 12 15 8
LG-Dnw-c 10 18 16 17 68 10

Table 2.5: Variance for LG-LOCAAT on a tree structure with 100 nodes and 99 edges.
The functions follow the pointwise construction. We assume the coordinate information
is available. The values in parentheses are the standard deviations (×103) of the AMSE
results across the P ×R = 50× 100 replications.

duces high bias for the smoother functions (Doppler, Heavisine, mfc). Hence, when using

coordinate information, overall ‘LG-Aid-c’ appears to be a balanced choice that deliv-

ers competitive results irrespective of signal smoothness and noise contamination level.

Although ‘LG-Did-c’ does not give as good results as ‘LG-Aid-c’ in terms of AMSE

(especially for Blocks and Heavisine) and variance, it is still worth emphasising on since

it gives low bias. Let us next investigate the impact of not accessing the coordinate

information.

We can see that when performing the algorithm by using the path distance instead

of coordinate information, the AMSE results are remarkably comparable to those when

coordinate information is available, see Table 2.4. The variance and bias patterns in

84 Chapter 2. Line Graph LOCAAT

Bias2 × 103 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

LG-Sid-c 17 49 48 41 204 13
LG-Aid-c 17 49 37 32 134 9
LG-Did-c 14 39 27 24 134 8
LG-Snw-c 17 51 48 44 213 14
LG-Anw-c 18 51 37 33 141 10
LG-Dnw-c 15 40 27 23 148 8

SNR=5
LG-Sid-c 4 17 20 23 175 10
LG-Aid-c 5 18 16 17 112 7
LG-Did-c 3 13 10 13 111 6
LG-Snw-c 4 17 21 25 186 11
LG-Anw-c 5 19 17 18 121 8
LG-Dnw-c 3 13 10 13 129 6

SNR=7
LG-Sid-c 2 9 12 16 166 9
LG-Aid-c 2 9 9 11 105 6
LG-Did-c 1 7 5 8 104 5
LG-Snw-c 1 9 12 16 177 9
LG-Anw-c 2 10 10 12 115 6
LG-Dnw-c 1 7 5 8 124 5

Table 2.6: Squared bias for LG-LOCAAT on a tree structure with 100 nodes and 99 edges.
The functions follow the pointwise construction. We assume the coordinate information
is available. The values in parentheses are the standard deviations (×103) of the AMSE
results across the P ×R = 50× 100 replications.

Tables 2.5 and 2.6 appear similar to previous methods. However, should coordinate

information be available, this may be the better choice. This may be justified by the

design of the function values based on a two-dimensional Euclidean space and it will

be essential to inspect the algorithm performance for the edge averaging functions (see

next section).

Additionally, the average distance for integral and the inverse distance prediction

(‘LG-Aid-p’) also arise as a strong choice in this context, with the ‘Did’ choice a close

competitor in terms of bias control, and ‘Sid’ a close match particularly for variance

results. The performance of ‘LG-Sid-p’ is very similar to ‘LG-Aid-p’ except for Heavisine.

So using ‘average distances’ as integral is advantageous when dealing with high-frequency

2.5. Simulation Results 85

AMSE×103 (sd×103) g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

LG-Sid-p 67 (21) 116 (45) 109 (39) 93 (25) 274 (96) 54 (12)
LG-Aid-p 65 (20) 117 (48) 94 (31) 84 (21) 209 (73) 47 (10)
LG-Did-p 65 (19) 122 (49) 95 (31) 83 (22) 253 (93) 47 (11)
LG-Snw-p 68 (21) 118 (48) 110 (36) 96 (26) 288 (102) 54 (12)
LG-Anw-p 66 (20) 124 (55) 95 (31) 84 (22) 215 (76) 48 (10)
LG-Dnw-p 68 (20) 129 (54) 100 (33) 86 (22) 276 (93) 48 (11)

SNR=5
LG-Sid-p 23 (8) 42 (17) 44 (17) 45 (16) 208 (83) 27 (7)
LG-Aid-p 23 (8) 44 (19) 38 (13) 40 (13) 152 (62) 23 (5)
LG-Did-p 24 (8) 47 (21) 38 (13) 40 (13) 192 (86) 23 (5)
LG-Snw-p 23 (8) 42 (19) 44 (16) 47 (17) 220 (87) 27 (6)
LG-Anw-p 24 (8) 46 (22) 39 (13) 40 (13) 159 (61) 23 (5)
LG-Dnw-p 25 (8) 49 (22) 40 (14) 42 (13) 219 (89) 24 (5)

SNR=7
LG-Sid-p 11 (3) 22 (10) 24 (10) 28 (12) 186 (78) 18 (5)
LG-Aid-p 11 (3) 23 (11) 21 (7) 24 (9) 135 (58) 15 (3)
LG-Did-p 11 (4) 25 (12) 21 (7) 25 (9) 172 (83) 15 (3)
LG-Snw-p 11 (3) 21 (10) 25 (10) 29 (13) 197 (80) 18 (5)
LG-Anw-p 11 (3) 24 (13) 22 (8) 24 (9) 142 (55) 15 (3)
LG-Dnw-p 11 (4) 26 (12) 22 (8) 26 (10) 201 (87) 16 (4)

Table 2.7: AMSE for LG-LOCAAT on a tree structure with 100 nodes and 99 edges.
The functions follow the pointwise construction. The path distance is used. The values in
parentheses are the standard deviations (×103) of the AMSE results across the P ×R =
50× 100 replications.

information, as opposed to using ‘sum of distances’ as integral. However, we have to note

that using the average distances as integral values is still without theoretical support.

2.5.3.2 Denoising Edge Averaging Functions

Note from Tables 2.10 and 2.13 that when employing our algorithm on edge averag-

ing functions, ‘Aid’ algorithm is the optimal choice in terms of the AMSE when the

coordinate information is known, while ‘Did’ performs better if only path lengths are

known. However, ‘Aid’ surpasses the other methods for high frequency Heavisine func-

tion. Choosing a sequence of ones as the starting integrals decreases the bias for all func-

tions, and the improvements are more significant when we use the path length instead

86 Chapter 2. Line Graph LOCAAT

Variance×103 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

LG-Sid-p 49 66 61 52 69 39
LG-Aid-p 47 64 57 49 63 36
LG-Did-p 51 83 69 60 113 39
LG-Snw-p 49 67 61 52 70 39
LG-Anw-p 47 65 56 50 64 37
LG-Dnw-p 53 88 73 63 121 40

SNR=5
LG-Sid-p 19 25 23 22 31 16
LG-Aid-p 18 24 22 21 26 15
LG-Did-p 21 34 29 28 77 17
LG-Snw-p 19 25 23 22 31 16
LG-Anw-p 18 25 22 21 26 15
LG-Dnw-p 21 35 30 29 85 18

SNR=7
LG-Sid-p 9 13 12 12 18 9
LG-Aid-p 9 13 11 12 15 8
LG-Did-p 10 18 16 17 65 10
LG-Snw-p 9 13 12 13 19 9
LG-Anw-p 9 13 12 12 15 8
LG-Dnw-p 10 19 17 18 74 11

Table 2.8: Variance for LG-LOCAAT on a tree structure with 100 nodes and 99 edges.
The functions follow the pointwise construction. The path distance is used. The values in
parentheses are the standard deviations (×103) of the AMSE results across the P ×R =
50× 100 replications.

of the coordinate information. Again, ‘Aid’ is the optimal choice in terms of variance

control. The methods with coordinate information still slightly surpass the correspond-

ing results by the path distance, except for mfc. Hence we recommend to make use of

the coordinate information, if it is available. According to AMSE, the performances of

‘Did’ and ‘Aid’ are close except when the underlying function has high frequency (e.g.,

Heavisine).

So overall, we recommend the use of coordinate information when available, as imple-

mented in the methods, LG-Aid-c and LG-Did-c, if the underlying function are spatial

coordinate dependent. Should such coordinate information not be available, LG-Aid-p

and LG-Did-p are also very competitive throughout the board.

2.5. Simulation Results 87

Bias2 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

LG-Sid-p 17 50 48 42 205 14
LG-Aid-p 18 53 37 35 145 11
LG-Did-p 14 39 26 23 140 8
LG-Snw-p 19 51 49 43 218 15
LG-Anw-p 19 58 39 35 151 11
LG-Dnw-p 15 41 27 23 155 8

SNR=5
LG-Sid-p 4 17 21 24 177 11
LG-Aid-p 5 20 16 19 126 8
LG-Did-p 3 13 9 12 115 6
LG-Snw-p 4 17 21 25 188 12
LG-Anw-p 5 21 17 19 132 9
LG-Dnw-p 3 13 9 12 133 6

SNR=7
LG-Sid-p 2 9 12 16 168 9
LG-Aid-p 2 10 10 12 120 6
LG-Did-p 1 7 5 8 107 5
LG-Snw-p 2 9 12 16 178 9
LG-Anw-p 2 11 10 13 127 7
LG-Dnw-p 1 7 5 8 127 5

Table 2.9: Squared bias for LG-LOCAAT on a tree structure with 100 nodes and 99
edges. The functions follow the pointwise construction. The path distance is used. The
values in parentheses are the standard deviations (×103) of the AMSE results across the
P ×R = 50× 100 replications.

Empirical Computational Cost

The overall running times of the proposed LG-LOCAAT algorithms are recorded as

follows. For each algorithm, we report the median running time (hours:minutes:seconds),

rounded up to the nearest 30 seconds, and refer it to as the standard running time of the

algorithms. According to our simulation study, the standard running time is 00:49:30

for 50 × 100 replications, with 90% of the algorithms completing within 00:52:00. All

simulations were conducted using the York Viking high-performance computing facility.

Detailed system information can be found at https://vikingdocs.york.ac.uk/.

https://vikingdocs.york.ac.uk/

88 Chapter 2. Line Graph LOCAAT

AMSE×103 (sd×103) g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

LG-Sid-c 64 (19) 126 (47) 103 (32) 92 (25) 281 (96) 51 (12)
LG-Aid-c 59 (16) 120 (48) 89 (27) 79 (18) 206 (70) 45 (10)
LG-Did-c 59 (16) 120 (43) 88 (26) 79 (19) 228 (77) 44 (10)
LG-Snw-c 65 (19) 128 (46) 104 (32) 96 (27) 292 (101) 52 (12)
LG-Anw-c 60 (16) 125 (46) 90 (28) 80 (19) 215 (70) 45 (10)
LG-Dnw-c 61 (16) 128 (46) 92 (28) 82 (20) 255 (83) 46 (11)

SNR=5
LG-Sid-c 26 (9) 50 (22) 45 (17) 45 (16) 220 (86) 25 (6)
LG-Aid-c 24 (8) 49 (23) 39 (14) 38 (11) 147 (53) 21 (4)
LG-Did-c 25 (7) 51 (21) 38 (14) 38 (12) 176 (71) 21 (4)
LG-Snw-c 26 (9) 51 (22) 46 (18) 47 (17) 230 (90) 26 (6)
LG-Anw-c 25 (9) 51 (24) 40 (14) 39 (12) 158 (53) 22 (5)
LG-Dnw-c 26 (8) 54 (23) 40 (14) 40 (12) 204 (76) 22 (5)

SNR=7
LG-Sid-c 13 (4) 27 (12) 26 (11) 28 (12) 199 (81) 17 (4)
LG-Aid-c 13 (4) 27 (13) 22 (8) 23 (8) 129 (48) 14 (3)
LG-Did-c 13 (4) 28 (13) 22 (8) 24 (8) 160 (69) 13 (3)
LG-Snw-c 13 (4) 27 (12) 26 (11) 29 (13) 211 (86) 18 (5)
LG-Anw-c 13 (5) 27 (15) 23 (9) 24 (8) 141 (47) 14 (3)
LG-Dnw-c 13 (5) 30 (14) 23 (8) 25 (9) 190 (74) 15 (3)

Table 2.10: AMSE for LG-LOCAAT on a tree structure with 100 nodes and 99 edges. The
functions follow the edge-averaging construction. We assume the coordinate information
is available. The values in parentheses are the standard deviations (×103) of the AMSE
results across the P ×R = 50× 100 replications.

2.5. Simulation Results 89

Variance×103 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

LG-Sid-c 45 65 56 51 67 38
LG-Aid-c 42 62 52 47 64 36
LG-Did-c 46 78 60 55 99 37
LG-Snw-c 46 65 56 52 67 38
LG-Anw-c 42 63 51 48 64 36
LG-Dnw-c 48 84 65 59 111 39

SNR=5
LG-Sid-c 18 26 23 22 30 15
LG-Aid-c 17 25 21 20 27 14
LG-Did-c 20 35 27 26 65 15
LG-Snw-c 18 26 23 22 30 15
LG-Anw-c 18 26 21 20 26 14
LG-Dnw-c 21 37 29 28 77 17

SNR=7
LG-Sid-c 10 14 12 12 18 8
LG-Aid-c 9 13 12 11 15 8
LG-Did-c 11 19 15 16 55 9
LG-Snw-c 10 14 12 12 17 9
LG-Anw-c 9 13 12 11 15 8
LG-Dnw-c 11 21 17 17 67 10

Table 2.11: Variance for LG-LOCAAT on a tree structure with 100 nodes and 99 edges.
The functions follow the edge-averaging construction. We assume the coordinate infor-
mation is available. The values in parentheses are the standard deviations (×103) of the
AMSE results across the P ×R = 50× 100 replications.

90 Chapter 2. Line Graph LOCAAT

Bias2 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

LG-Sid-c 19 61 47 41 215 12
LG-Aid-c 17 58 37 31 142 9
LG-Did-c 13 42 28 23 130 7
LG-Snw-c 20 63 48 44 224 13
LG-Anw-c 18 62 39 32 152 9
LG-Dnw-c 13 44 28 23 144 7

SNR=5
LG-Sid-c 7 25 22 24 190 10
LG-Aid-c 7 24 18 18 120 7
LG-Did-c 5 17 11 12 111 6
LG-Snw-c 7 25 23 25 201 11
LG-Anw-c 8 25 19 19 131 7
LG-Dnw-c 5 17 11 12 128 6

SNR=7
LG-Sid-c 3 13 14 16 181 9
LG-Aid-c 3 13 11 12 114 6
LG-Did-c 2 9 6 8 105 4
LG-Snw-c 3 14 14 17 193 9
LG-Anw-c 4 14 11 12 126 6
LG-Dnw-c 2 9 6 8 123 5

Table 2.12: Squared bias for LG-LOCAAT on a tree structure with 100 nodes and 99
edges. The functions follow the edge-averaging construction. We assume the coordinate
information is available. The values in parentheses are the standard deviations (×103)
of the AMSE results across the P ×R = 50× 100 replications.

2.5. Simulation Results 91

AMSE×103 (sd×103) g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

LG-Sid-p 66 (20) 127 (47) 104 (32) 93 (25) 282 (95) 53 (12)
LG-Aid-p 62 (17) 123 (47) 91 (28) 83 (21) 218 (76) 46 (10)
LG-Did-p 60 (17) 122 (45) 90 (27) 82 (21) 247 (87) 46 (11)
LG-Snw-p 66 (21) 129 (48) 104 (30) 96 (26) 296 (101) 53 (12)
LG-Anw-p 62 (17) 133 (51) 92 (28) 84 (22) 225 (77) 47 (10)
LG-Dnw-p 62 (17) 130 (49) 94 (28) 85 (22) 270 (89) 47 (11)

SNR=5
LG-Sid-p 26 (9) 51 (23) 45 (17) 46 (16) 222 (85) 26 (7)
LG-Aid-p 26 (9) 52 (24) 39 (14) 40 (12) 162 (64) 22 (5)
LG-Did-p 25 (8) 52 (22) 39 (14) 39 (12) 190 (82) 22 (5)
LG-Snw-p 26 (9) 52 (23) 46 (17) 47 (17) 233 (88) 27 (6)
LG-Anw-p 26 (9) 55 (27) 41 (14) 40 (12) 170 (63) 23 (5)
LG-Dnw-p 26 (8) 55 (25) 41 (15) 41 (13) 217 (85) 23 (5)

SNR=7
LG-Sid-p 13 (5) 27 (13) 26 (11) 28 (12) 202 (81) 18 (5)
LG-Aid-p 13 (4) 28 (15) 22 (8) 24 (9) 145 (60) 14 (3)
LG-Did-p 13 (4) 29 (14) 22 (8) 24 (9) 173 (78) 14 (3)
LG-Snw-p 13 (5) 27 (13) 26 (11) 29 (12) 212 (81) 18 (5)
LG-Anw-p 14 (5) 29 (16) 23 (8) 25 (9) 154 (57) 15 (3)
LG-Dnw-p 13 (5) 31 (15) 23 (9) 26 (9) 201 (83) 16 (3)

Table 2.13: AMSE for LG-LOCAAT on a tree structure with 100 nodes and 99 edges.
The functions follow the edge-averaging construction. The path distance is used. The
values in parentheses are the standard deviations (×103) of the AMSE results across the
P ×R = 50× 100 replications.

92 Chapter 2. Line Graph LOCAAT

Variance×103 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

LG-Sid-p 46 65 56 52 67 39
LG-Aid-p 43 63 53 49 63 36
LG-Did-p 48 81 63 59 111 39
LG-Snw-p 46 65 56 52 69 39
LG-Anw-p 43 64 52 49 64 36
LG-Dnw-p 49 86 67 62 119 40

SNR=5
LG-Sid-p 19 26 23 22 30 15
LG-Aid-p 18 25 21 21 26 15
LG-Did-p 20 36 29 28 76 17
LG-Snw-p 19 26 23 22 30 16
LG-Anw-p 18 26 22 21 26 15
LG-Dnw-p 21 38 30 29 84 18

SNR=7
LG-Sid-p 10 14 12 12 18 9
LG-Aid-p 9 14 12 12 15 8
LG-Did-p 11 20 16 17 65 10
LG-Snw-p 10 14 13 12 18 9
LG-Anw-p 10 14 12 12 15 8
LG-Dnw-p 12 21 17 18 74 11

Table 2.14: Variance for LG-LOCAAT on a tree structure with 100 nodes and 99 edges.
The functions follow the edge-averaging construction. The path distance is used. The
values in parentheses are the standard deviations (×103) of the AMSE results across the
P ×R = 50× 100 replications.

2.5. Simulation Results 93

Bias2 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

LG-Sid-p 20 62 47 42 215 14
LG-Aid-p 18 61 38 34 155 10
LG-Did-p 13 41 27 23 136 7
LG-Snw-p 20 64 48 44 227 14
LG-Anw-p 20 69 40 35 162 10
LG-Dnw-p 13 44 28 23 151 7

SNR=5
LG-Sid-p 8 25 22 24 192 11
LG-Aid-p 8 26 18 19 135 8
LG-Did-p 4 16 11 12 115 6
LG-Snw-p 8 26 23 25 203 11
LG-Anw-p 8 29 19 19 144 8
LG-Dnw-p 5 17 11 12 133 6

SNR=7
LG-Sid-p 3 14 13 16 185 9
LG-Aid-p 4 15 11 12 130 6
LG-Did-p 2 9 6 7 108 4
LG-Snw-p 3 14 14 17 194 9
LG-Anw-p 4 15 12 13 138 6
LG-Dnw-p 2 9 6 8 127 5

Table 2.15: Squared bias for LG-LOCAAT on a tree structure with 100 nodes and 99
edges. The functions follow the edge-averaging construction. The path distance is used.
The values in parentheses are the standard deviations (×103) of the AMSE results across
the P ×R = 50× 100 replications.

Chapter 3

E-LOCAAT: An Edge-Centred

Scheme

In the previous chapter we constructed a variant of LOCAAT algorithm, which we called

line graph LOCAAT (LG-LOCAAT), for dealing with the data collected from the edge

set. The proposed LG-LOCAAT relies on a transformation from the graph G to the

associated line graph G∗. We pointed out that, at a particular stage, the relinkage of the

LG-LOCAAT might lead to a graph which cannot be inverted into the original graph

domain. Therefore, we further seek an alternative algorithm which allows us to perform

the lifting scheme directly on the original edge-domain.

In this chapter, we introduce a new edge-centred scheme, E-LOCAAT, which adapts

the lifting-one-coefficient-at-a-time paradigm but works directly for the edge collected

data on the original graph G.

3.1 E-LOCAAT Framework and Setup

Before formally starting, we first remark that the distance we employ in E-LOCAAT

will be determined by the path metric described in Section 1.4.4, as the construction

of the E-LOCAAT framework is heavily based on the metrized version of the origi-

nal graph. Our work is partially motivated by the previous work from Schröder and

94

3.1. E-LOCAAT Framework and Setup 95

Sweldens (1995a) that discussed two different approaches for representing functions de-

fined on non-regular topology by wavelet lifting (specifically, sphere triangulation), which

they refer to as interpolating-point bases and face bases. Wavelet constructions gener-

ated by interpolating scaling functions and characteristic functions are applied to these

two approaches (vertex-based and face-based), respectively. By taking advantage of the

recursive construction of the LOCAAT framework, we will see later that linear interpo-

lating functions (as initial scaling functions) or characteristic functions (as initial scaling

functions) will give the same result (detail coefficient sequence). We will also introduce

a biorthogonal Haar construction by imposing a condition on the scaling functions at

different stages (based on characteristic functions, see Section 3.2). For avoiding confu-

sion, where appropriate we use the terminology ‘interpolating point’ instead of ‘vertex’

in our work.

Similar in structure to the discussion in Section 2.3, our work will start from the

function expansion form and then move onto the proposed algorithm. Our aim is to

construct a method that works on the original graph space, which we define in terms of

the metrized graph space introduced in Section 1.4.4, instead of using a representation

in a different space such as the line graph space. Such a construction may circumvent

problems associated to the line graph space, refer to the invertibility problem discussed

in Section 2.3.4. First, let us start by explaining the setup for our study, particularly the

approach for defining the initial scaling functions.

3.1.1 Interpolating-point Bases and Function Representations

Recall we have the graph (tree) G = (V , E), with V = {v1, ..., vn} and E = {e1, ..., em},

where m = n − 1. We further assume that the length of each edge is known. Thus, a

metrized graph Γ(G) (or put simply, Γ) can be obtained. We also simply denote the

vertex set of the metrized original graph be VexG(Γ) = Vmet. Then we consider the

following steps.

96 Chapter 3. E-LOCAAT: An Edge-Centred Scheme

1. For the metrized form emet
k = [vi, vj] of an edge ek = {vi, vj}, we interpolate

the midpoint pij and assume this has an equivalent representation pk on emet
k

(sometimes we use both notations interchangeably).

2. We carry out a subdivision by considering the set of points {pk}k∈{1,...,m} as a set of

interpolating vertices. Thus, we have a new graph with V ′met = Vmet∪{pk}k∈{1,...,m}

as the vertex set, and the cardinality of the vertex set V ′ is (n+m). It is easy to see

that each interpolating point separates the metrized edge into two different edges.

For each metrized edge emet
k = [vi, vj], we denote e′met

2k−1 = [pvi ,pk] and e′met
2k =

[pk, vj] as the new edges resulting from the subdivision of emet
k (regardless of which

one corresponds to either vi or vj, while i ̸= j). Then we denote the set of edges

following the construction of interpolating vertices as E ′met = {e′met
k′ }k′∈{1,...,2m}, and

further denote the corresponding resulting graph as G′ = (V ′, E ′). Using n = m+1,

the graph G′ is still a tree since 2m = (n + m) − 1. Note that the total length

of the edges is preserved; thus G′ is also a model of the metrized graph Γ, and

since Vmet ⊂ V ′met, G′ is a refinement of G, denoted as G ∼ G′, and this scheme

produces a subdivision.

As the refined graph G′ and the original graph G both correspond to the same

metrized graph space Γ, we can construct a set of interpolating-point-based scaling func-

tions for {pk}k∈{1,...,m}. To be specific, we let the scaling functions on Γ(G′) satisfy the

following conditions.

1. The initial scaling function φΓ
k,m has to be interpolating among the set Vmet ∪

{pk}mk=1. Therefore, φ
Γ
k,m(pk) = 1, and φΓ

k,m(p) = 0 for those p ∈ Vmet ∪ {pk}mk=1;

p ̸= pk.

2. The closure of the union of the support of all scaling functions associated with

{pk}mk=1 covers the space Γ.

Note that we write φΓ
k,m to indicate that the analytical form of the scaling functions is

built upon the metrized graph domain Γ. An immediate way to ensure these conditions is

3.1. E-LOCAAT Framework and Setup 97

to define a partitioning and design primal scaling functions as the characteristic functions

of associated partitioning blocks. A possible choice is to simply let the partition be

{emet
k }mk=1. Akin to the idea of Schröder and Sweldens (1995a), we propose a set of

interpolating-point bases, which are generalised triangular functions defined on edges

(see the detail below).

For the refined graph G′, we construct initial scaling functions based on the set

of interpolating points {pk}k∈{1,...,m} since each interpolating point can represent an

associated edge. Since there is an isometry between emet
k and the interval [0, ℓk], we can

first design the scaling function (for the k-th edge) on the interval [0, ℓk], and then map

it onto emet
k . Hence, first we can design a triangular function centred at the middle point

of the interval [0, ℓk], with the interval as the support. A standard triangular function is

defined as

tri(x) =

1− |x|, if −1 ≤ x ≤ 1;

0, otherwise.

For fitting its domain into the interval [0, ℓk], we only have to perform the scaling and

the translation of the function to obtain tri(y), where y = ℓk
2
(x+1). Thus, we have that

trik,m(y) =

1− |y−ℓk/2|
ℓk/2

, if 0 ≤ y ≤ ℓk;

0, otherwise.

Notice that |y − ℓk/2| can be considered as the distance between the point y and the

middle point (ℓk/2) on the support interval. Then if we substitute it by the associated

path distance on Γ, the triangular function can be generalised to the one on the metrized

edge emet
k . We take this triangular function on emet

k as the k-th initial primal scaling

function, and we define

φ̃Γ,vertex
k,m (p) = δ(p− pk); (3.1.1)

φΓ,vertex
k,m (p) =

1− distΓpath(p,pk)

ℓk/2
, if p ∈ emet

k ;

0, if p /∈ emet
k ,

(3.1.2)

98 Chapter 3. E-LOCAAT: An Edge-Centred Scheme

where δ(p − pk) is the Dirac delta, and ‘distΓpath(p,pk)’ is the path distance between

p and pk on the metrized graph Γ, as described in Section 1.4.4. Since we have that

φΓ,vertex
k,m (pk) = 1 (by the fact that distΓpath(pk,pk) = 0), and φΓ,vertex

k,m (pk′) = 0 if k′ ̸= k

(pk′ /∈ emet
k if k′ ̸= k), the initial primal scaling functions are interpolating. The dual

scaling functions and primal scaling functions also satisfy the biorthogonality property,

such that ⟨φ̃Γ,vertex
k,m , φΓ,vertex

k′,m ⟩ = δkk′ , where δkk′ is the Kronecker delta. For the function

defined on the edges, gE , now we can represent it by the metrized graph, gΓ, where

gEk = gΓk = gΓ(pk), for k ∈ {1, ...,m}. Hence ⟨φ̃Γ,vertex
k,m , gΓ⟩ = gΓk , which allows us to have

the function representation

gE(e) = gΓ(p) =
m∑
k=1

cΓk,mφ
Γ
k,m(p), (3.1.3)

where p ∈ Γ, and the initial scaling coefficient is given by cΓk,m := ⟨φ̃Γ
k,m, g

Γ⟩ = gΓk .

In addition, we also construct a similar ‘lazy wavelet’ to the construction described in

Section 2, whose initial dual and primal scaling functions are given by

φ̃Γ,Delta
k,m (p) = δ(p− pk); (3.1.4)

φΓ,Delta
k,m (p) = δpk,p, (3.1.5)

where δpk,p is the Kronecker delta, which fulfills the biorthogonality requirement between

dual and primal scaling functions. Thus, the initial function expansion form can be

written exactly the same with equation (3.1.3). Note that in contrast to LG-LOCAAT,

the scaling functions are defined on the metrized graph Γ associated to the original

graph G instead of the line graph. Thus, the analytical forms of the scaling and wavelet

functions are defined in the original domain.

3.1.2 Edge Bases and Function Representations

Now let us introduce a construction of edge bases, as a variant of the face bases intro-

duced by Schröder and Sweldens (1995a).

We still start with the metrized graph Γ for the graph G, and recall that for all

k ∈ {1, ...,m}, we denote emet
k = [vi, vj] as the metrized version of the k-th edge

3.1. E-LOCAAT Framework and Setup 99

ek = {vi, vj}, and we further assume that the function values satisfy that gE(ek) = gΓ(p),

if p ∈ emet
k \{pvi ,pvj}. As a convention, we let gΓ(pvi) = 0 for all i such that vi ∈ V , oth-

erwise some singularities might appear since two metrized edges might have one point

intersection. Before designing the scaling functions, we have to find a suitable parti-

tioning for the metrized graph domain Γ(G), since the domain of each scaling function

should lie in one of the partitionings, see Jawerth and Sweldens (1994). For the k-th edge

ek = {vi, vj}, let emet
k = [pvi ,pvj] be its metrized version, then denote Pk = int(emet

k)

as the interior of emet
k , which is emet

k \{pvi ,pvj}. Then the set {Pk}k∈{1,...,m} forms a

partitioning of the metrized graph Γ(G), since the set satisfies that

Pk ∩Pk′ = ∅, if k ̸= k′;

m⋃
k=1

Pk = Γ.

Recall that (from Section 1.4.4) there is an isometry of emet
k = [pvi ,pvj] with [0, ℓk], where

ℓk is the length of the k-th edge. Then similarly, there is an isometry of Pk = int(emet
k)

with (0, ℓk), where (0, ℓk) is the open interval associated with 0 and ℓk. The reason for

taking the interior is to make sure that the linear combination of primal scaling function

will not create spikes at these metrized vertex points. Then we consider the dual and

primal scaling functions as

φ̃Γ,edge
k,m (p) =

1

µ(Pk)
χPk

(p) :=
1

ℓk
χ(0,ℓk), (3.1.6)

φΓ,edge
k,m (p) = χPk

(p) := χ(0,ℓk), (3.1.7)

where χ is the characteristic function, and µ(Pk) is the Lebesgue measure of the interval

(0, ℓk), which is simply the length of its closure. Hence, we have

⟨φ̃Γ,edge
k,m , φΓ,edge

k,m ⟩ =
∫
Γ

φ̃Γ,edge
k,m (p)φΓ,edge

k,m (p)dp

=

∫
R

1

ℓk
χ2
(0,ℓk)

(y)dy

=
1

ℓk

∫ ℓk

0

1dy

= 1,

100 Chapter 3. E-LOCAAT: An Edge-Centred Scheme

and for k ̸= k′, we have ⟨φ̃Γ,edge
k,m , φΓ,edge

k′,m ⟩ = 0 since φ̃Γ,edge
k,m and φΓ,edge

k′,m have non-overlapping

support. This guarantees that the dual and primal scaling functions are still biorthogonal.

Moreover, we have that

⟨φ̃Γ,edge
k,m , gΓ⟩ =

∫
Γ

φ̃Γ,edge
k,m (p)gΓ(p)dp

=

∫
R
gΓk

1

ℓk
χ(0,ℓk)(y)dy

= gΓk

(
1

ℓk

∫ ℓk

0

1dy

)
= gΓk ,

which allows us to start with the initial scaling coefficients defined as cΓk,m := gΓk , and the

functional expansion at stage-m can be written similarly to equation (3.1.3). Compared

with interpolating-point bases, edge bases do not use points as a representation of edges,

but treat each edge as a set of points instead. We will see later that edge bases will lead

to some interesting constructions.

3.1.3 E-LOCAAT Algorithm Steps

From now on in this chapter, we denote the length of k-th edge as ℓk,m initially (at stage-

m), since their values will be updated through the algorithm. The initial neighbourhood

structure for k-th edge is defined as

N E
k,m =

{
es

∣∣∣ |ek ∩ es| = 1
}
,

which encompasses the edges that have a common vertex with the edge ek. Although

we discussed and designed the initial scaling function by means of two different aspects

(interpolating-point- and edge-bases), there are only a few steps where these choices

impact the lifting algorithm. Thus, we will point out the differences where these occur.

The E-LOCAAT algorithm steps can be formalised as follows.

• Split: Recall that for the LOCAAT-based algorithm, the task for the ‘split’ step

is to first determine the integral values of the scaling functions at the initial stage,

3.1. E-LOCAAT Framework and Setup 101

which is stage-m here. For the interpolating-point bases, we have that

IΓ,vertexk,m =

∫
Γ

φΓ,vertex
k,m (p)dp

≡
∫ ℓk,m

0

trik,m(y)dy

=

∫ ℓk,m

0

(
1− |y − ℓk,m/2|

ℓk,m/2

)
dy

= 2

∫ ℓk

ℓk,m/2

(
1− y − ℓk,m/2

ℓk,m/2

)
dy

= 2

∫ ℓk,m

ℓk,m/2

(
2− 2y

ℓk,m

)
dy

= 2

[
2

(
ℓk,m −

ℓk,m
2

)
− 2

ℓk,m

(
ℓ2k,m −

ℓ2k,m
4

)]
=
ℓk,m
2
. (3.1.8)

The integral values of the initial primal scaling functions can also be set as

IΓ,Delta
k,m = 1, (3.1.9)

for the case that Kronecker Delta as the initial primal scaling functions.

For our proposed edge bases construction with the choices of the primal scaling

functions mentioned above, the initial integral value of the k-th edge scaling func-

tion can be obtained by

IΓ,edgek,m =

∫
Γ

φΓ,edge
k,m (p)dp

=

∫
R
χ[0,ℓk,m](y)dy

= ℓk,m. (3.1.10)

Note that according to Proposition 2.3.1, the choices of scaling functions for vertex

and edge bases will not impact the lifting steps, hence we will use equation (3.1.8).

Thus, from now on, we skip the superscript (vertex/edge/Delta) for convenience.

• Predict: Recall that for each ek ∈ E , we have an associated initial scaling coeffi-

cient value cΓk,m := gΓk on the metrized graph domain Γ. To ensure full generality, we

102 Chapter 3. E-LOCAAT: An Edge-Centred Scheme

present this algorithm at stage-r. Similar to LOCAAT and LG-LOCAAT, the pre-

diction of the removal edge, ekr , at stage-r can be obtained by a linear combination

of the values of neighbouring coefficients {cΓs,r}s:es∈NE
kr,r

, where

N E
kr,r = {es | es and ekr share only one common vertex at stage-r},

is the set of edge(s) neighbouring ekr . The detail coefficient dΓkr is then obtained

by taking the difference between the kr-th coefficient at stage-r and its prediction,

which is

dΓkr = cΓkr,r −
∑

s: es∈NE
kr,r

aΓs,rc
Γ
s,r, (3.1.11)

where
∑

s: es∈NE
kr,r

aΓs,rc
Γ
s,r is the prediction for cΓkr,r, and {a

Γ
s,r}s: es∈NE

kr,r
are the pre-

diction weights. The criterion for the prediction weights is that
∑

s: es∈NE
kr,r

aΓs,r = 1

and we still consider the normalised inverse distances as the prediction weights

suggested by Jansen et al. (2009). However, the interpolating-point bases and edge

bases will give rise to different distance measures, as follows.

– Distance for interpolating-point bases:

For the interpolating-point bases, the distance between two neighbouring

edges ek and es, can be simply represented as the path distance between

their metrized version pk and ps, on the metrized graph Γ. Instead of fixing

the distance measure at the beginning as we did in LG-LOCAAT, we define

the stage-r distance as the path distance such that

distΓ,rpath(pk,ps) =
ℓk,r + ℓs,r

2
, (3.1.12)

for all s, k, such that ek and es that neighbouring to each other. Notice that

we will only use the edges in the neighbourhood of ekr at stage-r, thus we

do not have to calculate the distance between two non-neighbouring edges at

each stage.

– Distance for edge bases:

3.1. E-LOCAAT Framework and Setup 103

Recall that for edge bases, we consider each edge as a set of points (as its

metrized version). Thus, we inevitably have to find a metric which gives not

only distance between two points, but preferably between two sets. A popular

choice for such metric is the Hausdorff distance. Hausdorff distance and some

of its variants are widely used in image analysis, see Huttenlocher et al. (1993),

Zhao et al. (2005), and Karimi and Salcudean (2019). Hausdorff distance is a

metric for measuring the distance between non-empty sets (O’Searcoid; 2006),

which is defined as follows.

Definition 3.1.1 (Hausdorff Distance). If (X, dist) is a metric space, let A

and B be two non-empty closed bounded subsets of X, then the Hausdorff

distance between A and B is defined as

distH(A,B) = max

{
sup
x∈A

{
inf
y∈B
{dist(x, y)}

}
, sup
y∈B

{
inf
x∈A
{dist(x, y)}

}}
,

where the H of distH stands for Hausdorff.

If we denote K(X) as the collection of all subsets of X, then (K(X), distH)

forms a metric space, see O’Searcoid (2006). Denote by Γr the metrized ver-

sion for the graph at stage-r, and by distΓr,r
path the path metric defined as in

equation (3.1.12). Since (Γr, dist
Γr,r
path) is a metric space, then at stage-r, if

es = {vj, vl} is neighbouring ekr = {vi, vj}, then the Hausdorff distance be-

tween their metrized versions is

distH(e
met
kr , e

met
s)

= max

{
sup

p∈emet
kr

{
inf

p′∈emet
s

{
distΓr,r

path(p,p
′)
}}

, sup
p′∈emet

s

{
inf

p∈emet
kr

{
distΓr,r

path(p,p
′)
}}}

= max

{
sup

p∈emet
kr

{
distΓr,r

path(p,pvj)
}
, sup
p′∈emet

s

{
distΓr,r

path(p
′,pvj)

}}
= max {ℓkr,r, ℓs,r} ,

which is easily dealt with computationally.

104 Chapter 3. E-LOCAAT: An Edge-Centred Scheme

Once we obtain the distance measure, the prediction weights can then be con-

structed as

aΓ,vertexs =
1/(lkr,r + ls,r)∑

j: ej∈NE
kr,r

1/(lkr,r + lj,r)
, for s : ej ∈ N E

kr,r, (3.1.13)

aΓ,edges =
1/max {ℓkr,r, ℓs,r}∑

j: ej∈NE
kr,r

1/max {ℓkr,r, ℓj,r}
, for s : ej ∈ N E

kr,r. (3.1.14)

The superscript ‘vertex’ and ‘edge’ indicate interpolating-point bases and edge

bases, respectively. Recall that for the edge bases, the removal choice is based on

the edge with the minimal length, such that ℓkr,r ≤ ℓt,r for all t ∈ N E
kr,r

. Thus,

the prediction weights for edge bases can simply be represented as the normalised

inverse length, which is

aΓ,edges =
1/ℓs,r∑

j: ej∈NE
kr,r

1/ℓj,r
, for s : ej ∈ N E

kr,r. (3.1.15)

Note that if the edge removal choice is not determined by the length as the inte-

gral measure, then the prediction weights will not be exactly inverse length as in

equation (3.1.15), for example, if we perform the split along with a sequence of

ones as the integral values. Nevertheless, we still construct the prediction weights

as in equation (3.1.15) because of its computational convenience, and similar to

LG-LOCAAT, we will perform the moving average in the proposed E-LOCAAT,

in which the prediction weights are

aΓ,edges =
1

|N E
kr,r
|
, for s : ej ∈ N E

kr,r. (3.1.16)

• Update: For LOCAAT-based methods for vertex-based data, there are three quan-

tities to be updated at each stage: the integral values (of the scaling functions), the

scaling coefficient values and the graph structure. Our E-LOCAAT is no exception,

with the lengths of the neighbouring edges also being updated.

Let us first update the integral values (associated with the neighbourhood of ekr)

from stage-r to stage-(r − 1) by

IΓs,r−1 = IΓs,r + aΓs,rI
Γ
kr,r, for s : es ∈ N E

kr,r.

3.1. E-LOCAAT Framework and Setup 105

Since all prediction weights are positive values, the integral values of the scaling

functions will be non-decreasing from stage-r to stage-(r − 1).

The coefficient values will be updated as

cΓs,r−1 = cΓs,r + bΓs,rd
Γ
kr , for s : es ∈ N E

kr,r. (3.1.17)

The values of the update coefficients will be given by taking the minimum norm

solution of underdetermined linear system
∑

s:es∈NE
kr,r

bΓs,rI
Γ
s,r−1 = IΓkr,r, see Jansen

et al. (2009). Therefore, the update coefficient will be obtained by

bΓs,r =
IΓkr,rI

Γ
s,r−1∑

t:et∈NE
kr,r

(
IΓt,r−1

)2 , for s : es ∈ N E
kr,r.

For E-LOCAAT, updating the graph structure by minimal spanning tree, as for

vertex-based LOCAAT, might not be a suitable choice, for both theoretical and

interpretation reasons, especially since we no longer transform edges into vertices

(as for LG-LOCAAT). Instead, we equate the removal of an edge ekr = {vir , vjr}

with its two endpoints (vertices) fusing. Therefore, different from the relinkage in

LG-LOCAAT, relinkage in E-LOCAAT is a natural part of the update procedure.

If we consider that these two vertices fuse to the middle point of the associated

metrized edge, then the updated neighbouring lengths can be obtained by

ℓs,r−1 = ℓs,r +
1

2
ℓkr,r, for s : es ∈ N E

kr,r. (3.1.18)

Another possible length update is to use the same scheme as for the integral value

update, which is given by

ℓs,r−1 = ℓs,r + aEs,rℓkr,r, for s : es ∈ N E
kr,r. (3.1.19)

Both methods ensure that the lengths are non-decreasing from stage-r to stage-

(r − 1). The one in equation (3.1.18) is more intuitive, while the one in equation

(3.1.19) keeps the consistence between lengths and integrals, which leads to a lower

computational effort (we only have to store one of them). We will refer to these

two different length update procedures as ‘unweighted’ (equation (3.1.18)) and

‘weighted’ (equation (3.1.19)) length update, respectively.

106 Chapter 3. E-LOCAAT: An Edge-Centred Scheme

• Iterate: We reiterate the split-predict-update procedures and obtain the detail

coefficients, {dΓkm , ..., d
Γ
kτ+1
}, where τ ∈ Z is the number of edges not being removed

(stopping time). Note that this set of detail coefficients is defined directly on the

edge topology, which allows us to avoid the problems discussed in Section 2.3.4.

• Inverse: The inverse E-LOCAAT transform can be carried out by undoing equa-

tion (3.1.17) and then undoing equation (3.1.11), as follows,

cΓs,r = cΓs,r−1 − bΓs,rdΓkr ,

cΓkr,r = dΓkr +
∑

s:es∈NE
kr,r

aΓs,rc
Γ
s,r.

Computationally, we store the set of edges as a list, each element of the list consists

of two numbers indicating two vertices associated with that edge. For example, the

kr-th element of the list is (ir, jr). Then the graph structure update is performed

by replacing all scripts jr with ir in the list except the kr-th element (or replacing

ir with jr, which will not influence the algorithm result). The kr-th element will

be replaced by (jr, jr). Although it is not removed through the algorithm, it will

not have any influence after stage-r since none of the other elements contain jr.

For E-LOCAAT, a lifting array will be constructed as

kr |N E
kr,r| S

E
r aΓr bΓr ir jr subjr(N E

kr,r),

where SE
r is the set consists of all s such that vEs ∈ N E

kr,r
; aΓr , b

Γ
r are sequences of

predict and update coefficients; ir ∈ ekr is the vertex for replacing jr at stage-r as

we described in the update part, and jr is the one being replaced; subjr(SE
r) is the

subset of SE
r , which is defined as

subjr(SE
r) = {t | et ∈ N E

kr,r; jr ∈ et}.

Thus, for recovering an edge kr-th edge through the inverse transform, we first turn

the kr-th element of the list (as we discussed in the update part) from (jr, jr) back

to (ir, jr). For all s-th elements, where s ∈ subjr(SE
r), we replace the ir by the jr.

Then we say both coefficient values and the graph structure have been inverted.

3.2. Biorthogonal Haar E-LOCAAT 107

3.2 Biorthogonal Haar E-LOCAAT

In this section, we delve into a variant of the E-LOCAAT framework, which is a unique

instance of the edge bases we outlined in Section 3.1.2. We retain the term ‘biorthogonal

Haar’ as coined by Schröder and Sweldens (1995a), this name was chosen as at each

stage, the wavelet function takes the form of a Haar-like step function on the metrized

edges.

Let us consider the scaling function choices of Section 3.1.2,

φΓ
k,m(p) = χPk

(p) ∼= χ(0,ℓk)(y), (3.2.1)

φ̃Γ
k,m(p) = ℓ−1

k χPk
(p) ∼= ℓ−1

k χ(0,ℓk)(y). (3.2.2)

As we previously mentioned, these initial scaling functions are inspired by the con-

struction in Schröder and Sweldens (1995a). Their construction relies on the cascade

algorithm, therefore, through their construction, the scaling functions at different levels

are always assumed to be characteristic functions. This condition guarantees the self-

similarity of the scaling functions (and the associated wavelet functions). Now, let us

consider this as a constraint for our E-LOCAAT. Firstly, note that our proposed E-

LOCAAT construction leads to an MRA of a similar form to the one derived in Jansen

et al. (2009), summarised here as an edge case, such that

ψ̃Γ
kr,r = φ̃Γ

kr,r −
∑

s∈NE
kr,r

aΓs,rφ̃
Γ
s,r (3.2.3)

φ̃Γ
s,r−1 = φ̃Γ

s,r + bΓs,rψ̃
Γ
kr,r, for s ∈ N E

kr,r (3.2.4)

φΓ
s,r−1 = φΓ

s,r + aΓs,rφ
Γ
kr,r, for s ∈ N E

kr,r (3.2.5)

ψΓ
kr,r = φΓ

kr,r −
∑

s∈NE
kr,r

bΓs,rφ
Γ
s,r−1. (3.2.6)

108 Chapter 3. E-LOCAAT: An Edge-Centred Scheme

If we plug equation (3.2.3) into equation (3.2.4), then the dual scaling function at stage-r

can be rewritten for s ∈ N E
kr,r

as

φ̃Γ
s,r−1 = φ̃Γ

s,r + bΓs,r(φ̃
Γ
kr,r −

∑
t∈NE

kr,r

aΓt,rφ̃
Γ
t,r)

= (1− aΓs,rbΓs,r)φ̃Γ
s,r + bΓs,rφ̃

Γ
kr,r −

∑
t′∈NE

kr,r
\{s}

bΓs,ra
Γ
t′,rφ̃

Γ
t′,r. (3.2.7)

Here we want the stage-(r − 1) dual scaling function to be a characteristic function of

the form

φ̃Γ
s,r−1 = ℓ−1

s,r−1χ(0,ℓs,r−1).

One way for equation (3.2.7) to lead to a characteristic function is if we consider letting

aΓt′,r = 0 for all t′ ∈ N E
kr,r
\{s}, i.e. using only one neighbour for prediction. Then equation

(3.2.7) can be rewritten as

φ̃Γ
s,r−1 = (1− aΓs,rbΓs,r)φ̃Γ

s,r + bΓs,rφ̃
Γ
kr,r

= (1− aΓs,rbΓs,r)ℓ−1
s,rχ(0,ℓs,r) + bΓs,rℓ

−1
kr,r

χ(0,ℓkr,r)
. (3.2.8)

Since ekr and es are neighbours, we can translate the characteristic function part of φ̃Γ
s,r

from χ(0,ℓs,r) to χ(ℓkr,r,ℓkr,r+ℓs,r)
. Therefore, if the condition (1 − aΓs,rbΓs,r)ℓ−1

s,r = bΓs,rℓ
−1
kr,r

is

satisfied, it ensures that the right-hand side of equation (3.2.8) can be represented as a

constant times a characteristic function on the support (0, ℓkr,r+ℓs,r), since (0, ℓkr,r+ℓs,r)

can be represented as int
(
(0, ℓkr,r) ∪ (ℓkr,r, ℓkr,r + ℓs,r)

)
, where A is the closure of a set

A, and int(A) is the interior of the set A. If we keep the length as the measure, and let

φ̃Γ
s,r−1 ∝ χ(0,ℓs,r−1), then naturally, from stage-r to stage-(r−1), the s-th edge length can

be updated by

ℓs,r−1 = ℓkr,r + ℓs,r.

Based on this, we propose to obtain the update coefficient bΓs,r by

ℓ−1
s,r−1 = bΓs,rℓ

−1
kr,r

⇒bΓs,r =
ℓkr,r
ℓs,r−1

=
ℓkr,r

ℓkr,r + ℓs,r
.

3.3. Simulation Study 109

The prediction weight aΓs,r is then derived to be

ℓ−1
s,r−1 = (1− aΓs,rbΓs,r)ℓ−1

s,r

⇒1− aΓs,rbΓs,r =
ℓs,r
ℓs,r−1

⇒aΓs,r = (1− ℓs,r
ℓs,r−1

) (bΓs,r)
−1

=
ℓkr,r
ℓs,r−1

(bΓs,r)
−1

= 1.

It is easy to see from equation (3.2.5) that aΓs,r = 1 guarantees that the s-th primal

scaling function is still characteristic function from stage-r to stage-(r− 1). Notice that

at every stage-r, only one edge from the neighbourhood of ekr will be used to carry

out the prediction for the value of ekr , with all of the scaling functions at any stage

as characteristic functions, while the forms of the wavelet functions look like step func-

tions. Therefore, this proposed construction generates a set of Haar-like biorthogonal

wavelets (since the lifting scheme generates biorthogonal bases). Different from the orig-

inal biorthogonal Haar from Schröder and Sweldens (1995a), our construction (since it

relies on recursive lifting construction) does not rely on the cascade algorithm. Recall

that performing a prediction step by only one neighbouring element will result in a high

bound for the L2-norm of the prediction weights, which makes the transform less stable

(Section 2.3.3). For the overall stability of the transform, the split will choose the edge

with the shortest length at each stage-r, such that the condition bΓs,r ≤ 1
2
is always guar-

anteed. The edge selected for prediction is the one with the shortest length in the set

N E
kr,r

, as it is nearest to ekr regardless of the distance metric employed.

3.3 Simulation Study

In this section, we perform a new simulation study to investigate the newly proposed

schemes. The datasets, network generating methods, and noise contamination are all as

110 Chapter 3. E-LOCAAT: An Edge-Centred Scheme

described in Section 2.4.1. A table consisting the acronyms of the algorithm is provided

in Table 3.1.

Acronyms

E-Lid-wu L: lengths as initial integral values (equation (3.1.8)); id:
inverse distance prediction (equation (3.1.13)); wu: weighted
update for edge lengths (equation (3.1.19))

E-Lid-nwu L: lengths as initial integral values (equation (3.1.8)); id:
inverse distance prediction (equation (3.1.13)); nwu: equally-
weighted update for edge lengths (equation (3.1.18))

E-Lil-wu L: lengths as initial integral values (equation (3.1.8)); il: in-
verse length prediction (equation (3.1.15)); wu: weighted up-
date for edge lengths (equation (3.1.19))

E-Lil-nwu L: lengths as initial integral values (equation (3.1.8)); il:
inverse length prediction (equation (3.1.15)); nwu: equally-
weighted update for edge lengths (equation (3.1.18))

E-Did-wu D: sequence of ones as initial integral values (equation
(3.1.9)); id: inverse distance prediction (equation (3.1.13));
wu: weighted update for edge lengths (equation (3.1.19))

E-Did-nwu D: sequence of ones as initial integral values (equation
(3.1.9)); id: inverse distance prediction (equation (3.1.13));
nwu: equally-weighted update for edge lengths (equation
(3.1.18))

E-Dil-wu D: sequence of ones as initial integral values (equation
(3.1.9)); il: inverse length prediction (equation (3.1.15)); wu:
weighted update for edge lengths (equation (3.1.19))

E-Dil-nwu D: sequence of ones as initial integral values (equation
(3.1.9)); il: inverse length prediction (equation (3.1.15));
nwu: equally-weighted update for edge lengths (equation
(3.1.18))

E-Lnw-wu/nwu L: lengths as initial integral values (equation (3.1.8)); nw:
moving average prediction (equation (3.1.16)). Here we com-
bine wu/nwu since they produce similar results.

E-Dnw-wu/nwu D: sequence of ones as initial integral values (equation
(3.1.9)); nw: moving average prediction (equation (3.1.16)).
Here we combine wu/nwu since they produce similar results.

Bio-Haar Biorthogonal Haar E-LOCAAT

Table 3.1: Acronyms and algorithm descriptions for different parameter choices of E-
LOCAAT.

3.3. Simulation Study 111

3.3.1 Stability

As already discussed in the previous chapter, the stability of the transform is measured

by the condition number of the associated lifting matrix. The condition numbers for the

different E-LOCAAT schemes are reported in the following table.

Condition Number Max 75% Median 25% Min
E-Lid-wu 13.0416 11.8697 11.5001 11.1103 10.6264
E-Lid-nwu 12.5082 11.7017 11.4390 11.1276 10.6339
E-Lil-wu 12.7565 12.0485 11.6578 11.3073 10.7940
E-Lil-nwu 12.6003 11.7388 11.5613 11.2099 10.5744

E-Did-wu 11.5659 10.7700 10.5015 10.1513 9.9615
E-Did-nwu 11.4153 10.6699 10.3878 10.1631 10.0230
E-Dil-wu 11.9683 11.4165 10.9500 10.5821 10.1335
E-Dil-nwu 11.8750 11.1817 10.8991 10.5558 10.1561

E-Lnw-wu/nwu 12.9201 12.1043 11.5347 11.0867 10.5442
E-Dnw-wu/nwu 11.1841 10.7376 10.3361 10.0381 9.9513

Bio-Haar 14.4716 13.2060 12.7001 12.2815 11.4737

Table 3.2: Condition number for E-LOCAAT on a tree structure.

From Table 3.2, we note that unweighted prediction provides a more stable transform

than the algorithms involving different parameter choices, its magnitude is similar to the

(best) condition number in LG-LOCAAT. There is almost no difference in the stability

achieved via the equally weighted and weighted update strategies. Overall, choosing a

sequence of ones as the integral values produces a more stable transform. The biorthog-

onal Haar LOCAAT has higher condition number than any other scheme, even though

it only chooses one neighbour at each stage. However, when compared with the perfor-

mance of LG-LOCAAT, we note that overall E-LOCAAT has lower condition number,

as measured by their interquartile range.

3.3.2 Sparsity

The sparsity plots for E-LOCAAT will be constructed as described for LG-LOCAAT (see

Section 2.4). Just as for LG-LOCAAT, different method choices do not appear to change

the algorithm sparsity property significantly. The biorthogonal Haar E-LOCAAT also

112 Chapter 3. E-LOCAAT: An Edge-Centred Scheme

produces reasonable results in terms of data compression. All methods have very similar

decay rates, within each function type. The most important factors in achieving good

compression properties are the decomposing function’s properties, such as smoothness,

with the most competitive results being obtained for ‘mfc’ and ‘g1’.

3.3.2.1 Sparsity for Pointwise Functions

We can see from Figures 3.1, 3.2, and 3.3 that different choices of initial integral determi-

nation, prediction methods, and length update methods will not improve the algorithm’s

compression ability. The sparsity is more likely to be influenced by the function types.

Biorthogonal Haar E-LOCAAT appears to have a slightly better compression ability for

‘Blocks’ and ‘g1’.

3.3.2.2 Sparsity for Edge Averaging Functions

Similar to the sparsity plots of E-LOCAAT for pointwise functions, there are no sig-

nificant differences between different choices of initial integral determination, prediction

methods, and length update methods for the edge averaging functions by E-LOCAAT,

see Figures 3.4, 3.5, and 3.6.

3.3.3 Denoising Performance

3.3.3.1 Denoising Pointwise Functions

Compared with the AMSE, (squared) bias, and variance tables in LG-LOCAAT, the

results for E-LOCAAT are more varied, see Tables 3.3, 3.4, and 3.5. In order to ensure

a fair comparison, we focus on comparing E-LOCAAT results to those obtained by LG-

LOCAAT using path information, as opposed to full coordinate information. Overall, the

best results in LG-LOCAAT (those associated with ‘LG-Aid’, which stands for using av-

erage distances as the initial integral values and whose prediction weights are constructed

via inverse shortest path distance) are better than the best ones in E-LOCAAT (those

associated with ‘E-Did’, which stands for using a sequence of ones as the initial integral

3.3. Simulation Study 113

Figure 3.1: Sparsity plots for the test functions used in simulation by the equation
(2.4.1). The scheme is based on the unweighted length update. From left to right on top
row: g1, blocks; middle row: doppler, bumps; bottom row: heavisine, maartenfunc. Black
line: E-Lid-nwu; red line: E-Lil-nwu; blue line: E-Lnw-wu/nwu; dashed black line:
E-Did-nwu; dashed red line: E-Dil-nwu; dashed blue line: E-Dnw-wu/nwu.

values and whose prediction weights are constructed via inverse shortest path distance)

in terms of AMSE, except for the biorthogonal Haar E-LOCAAT which significantly sur-

passes every other method for g1 and Blocks function. The source of the higher AMSE

when compared to LG-LOCAAT, appears to be traced from the variance of the estima-

tor, while the bias results of E-LOCAAT are competitive compared to LG-LOCAAT.

When the level of noise contamination is high, E-LOCAAT produces a lower bias com-

pared to LG-LOCAAT. Overall, amongst the E-LOCAAT methods we observe a clear

bias-variance tradeoff. Biorthogonal Haar E-LOCAAT beats other schemes in both vari-

ance and bias, for g1 and Blocks functions. However, the biorthogonal Haar LOCAAT

114 Chapter 3. E-LOCAAT: An Edge-Centred Scheme

Figure 3.2: Sparsity plots for the test functions used in simulation by the equation
(2.4.1). The scheme is based on the weighted length update. From left to right on top
row: g1, blocks; middle row: doppler, bumps; bottom row: heavisine, maartenfunc. Black
line: E-Lid-nwu; red line: E-Lil-nwu; blue line: E-Lnw-wu/nwu; dashed black line:
E-Did-nwu; dashed red line: E-Dil-nwu; dashed blue line: E-Dnw-wu/nwu.

does not work well for Bumps and mfc. If we have the knowledge that the underlying

true function is a piecewise function, then biorthogonal Haar will be the optimal choice;

otherwise it does not perform as well as other E-LOCAAT methods.

Among the tested methods, ‘E-Did-nwu’ seems an optimal choice for the remaining

functions (except g1 and Blocks). It is also interesting that ‘E-Lil-nwu’ always performs

better than any other E-LOCAAT algorithms (except when SNR=3) for Heavisine func-

tion, in terms of both AMSE and variance. Hence, the ‘E-Lil’ algorithm might be the

optimal choice for high-frequency functions. Overall, as a general rule of thumb, the ‘D’

methods (choosing a sequence of ones as initial integral values) are preferable.

3.3. Simulation Study 115

Figure 3.3: Sparsity plots for the test functions used in simulation by the equation (2.4.1).
The results are obtained by biorthogonal Haar LOCAAT. From left to right on top row:
g1, blocks; middle row: doppler, bumps; bottom row: heavisine, maartenfunc.

Note that the algorithm performance is consistent through different SNR levels. Sim-

ilarly to the results obtained by the LG-LOCAAT algorithm, the denoising performance

is highly related to the type of underlying function. For the function with smooth pat-

terns almost everywhere, e.g., ‘Doppler’ and ‘Bumps’ (see Appendix B), E-LOCAAT is

competitive compared with LG-LOCAAT, but for functions with many discontinuities

(‘Blocks’, g1, and mfc), E-LOCAAT is less competitive when compared to LG-LOCAAT.

The reason might be that E-LOCAAT uses larger neighbourhood sets through the algo-

rithm. As for LG-LOCAAT, E-LOCAAT also does not perform well when the underlying

function has high frequency, e.g., ‘Heavisine’.

116 Chapter 3. E-LOCAAT: An Edge-Centred Scheme

Figure 3.4: Sparsity plots for the test functions used in simulation by the equation
(2.4.2). The scheme is based on the unweighted length update. From left to right on top
row: g1, blocks; middle row: doppler, bumps; bottom row: heavisine, maartenfunc. Black
line: E-Lid-wu/nwu; red line: E-Lil-nwu; blue line: E-Lnw-nwu; dashed black line:
E-Did-nwu; dashed red line: E-Dil-nwu; dashed blue line: E-Dnw-wu/nwu.

If we compare the algorithms with the same choice of the initial integral values and

prediction weights, but with different length update paradigm, similar denoising results

can be observed, which indicates that there is no significance between these two choices

(as in equations (3.1.18) and (3.1.19)). In practice the choice associated with equation

(3.1.19) will be preferred since it keeps the construction consistent with the integral

value update.

3.3. Simulation Study 117

AMSE×103 (sd×103) g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

E-Lid-wu 74 (22) 136 (59) 109 (38) 93 (27) 232 (76) 53 (12)
E-Lid-nwu 73 (23) 137 (59) 109 (38) 93 (27) 234 (77) 53 (12)
E-Lil-wu 73 (23) 134 (56) 108 (37) 94 (27) 232 (78) 53 (12)
E-Lil-nwu 73 (22) 134 (56) 107 (37) 94 (27) 228 (72) 53 (12)

E-Did-wu 68 (19) 127 (51) 98 (33) 85 (21) 251 (91) 50 (11)
E-Did-nwu 68 (19) 127 (51) 98 (32) 84 (21) 252 (92) 49 (11)
E-Dil-wu 67 (19) 122 (48) 98 (33) 86 (22) 251 (92) 50 (11)
E-Dil-nwu 67 (20) 122 (48) 98 (33) 86 (22) 252 (93) 50 (11)

E-Lnw-wu/nwu 75 (24) 139 (63) 110 (38) 94 (27) 243 (81) 53 (12)
E-Dnw-wu/nwu 70 (20) 132 (54) 102 (34) 87 (22) 274 (94) 50 (11)

Bio-Haar 57 (20) 87 (33) 116 (41) 108 (31) 298 (99) 65 (13)
SNR=5

E-Lid-wu 27 (10) 50 (24) 44 (17) 44 (15) 166 (54) 26 (6)
E-Lid-nwu 27 (10) 50 (25) 44 (17) 43 (15) 167 (55) 26 (6)
E-Lil-wu 27 (10) 50 (24) 44 (16) 43 (15) 166 (57) 26 (5)
E-Lil-nwu 27 (10) 50 (23) 43 (16) 43 (15) 163 (52) 25 (5)

E-Did-wu 24 (8) 49 (22) 39 (13) 40 (13) 191 (83) 24 (5)
E-Did-nwu 25 (8) 49 (22) 39 (13) 40 (13) 191 (83) 24 (5)
E-Dil-wu 24 (8) 47 (20) 39 (14) 41 (13) 189 (84) 25 (5)
E-Dil-nwu 24 (8) 47 (20) 39 (14) 41 (13) 189 (85) 24 (5)

E-Lnw-wu/nwu 27 (11) 50 (25) 45 (18) 45 (17) 179 (59) 26 (6)
E-Dnw-wu/nwu 25 (8) 50 (23) 40 (14) 42 (13) 218 (87) 25 (5)

Bio-Haar 18 (5) 29 (10) 49 (20) 52 (18) 232 (82) 33 (8)
SNR=7

E-Lid-wu 12 (5) 26 (13) 24 (10) 27 (10) 147 (46) 17 (4)
E-Lid-nwu 12 (4) 26 (13) 24 (10) 27 (10) 149 (47) 17 (4)
E-Lil-wu 13 (4) 26 (13) 24 (9) 26 (10) 146 (50) 16 (4)
E-Lil-nwu 12 (4) 26 (12) 23 (9) 26 (10) 144 (46) 16 (4)

E-Did-wu 12 (4) 25 (12) 21 (7) 25 (9) 171 (80) 16 (4)
E-Did-nwu 12 (4) 25 (12) 21 (7) 25 (9) 172 (80) 16 (4)
E-Dil-wu 12 (3) 25 (11) 22 (8) 25 (9) 171 (82) 16 (4)
E-Dil-nwu 12 (3) 25 (11) 22 (8) 25 (9) 170 (82) 16 (4)

E-Lnw-wu/nwu 12 (4) 25 (13) 25 (10) 28 (11) 161 (51) 17 (4)
E-Dnw-wu/nwu 12 (4) 27 (13) 22 (8) 26 (10) 200 (84) 16 (4)

Bio-Haar 9 (2) 14 (5) 28 (12) 33 (13) 212 (77) 21 (6)

Table 3.3: The AMSE table for different schemes. The test functions are the pointwise
ones defined in equation (2.4.1).

118 Chapter 3. E-LOCAAT: An Edge-Centred Scheme

Var×103 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

E-Lid-wu 51 72 61 54 70 40
E-Lid-nwu 51 71 61 54 70 40
E-Lil-wu 51 71 61 55 70 41

E-Lil-nwu 51 71 61 54 69 40

E-Did-wu 53 87 72 62 116 41
E-Did-nwu 53 87 71 61 115 40
E-Dil-wu 53 85 72 63 116 42
E-Dil-nwu 53 84 71 62 115 41

E-Lnw-wu/nwu 51 72 61 54 69 40
E-Dnw-wu/nwu 54 91 74 63 123 41

Bio-Haar 49 61 63 58 73 43
SNR=5

E-Lid-wu 20 27 24 23 29 16
E-Lid-nwu 20 27 24 22 29 16
E-Lil-wu 20 27 24 23 29 16
E-Lil-nwu 20 27 24 23 29 16

E-Did-wu 21 35 29 29 78 18
E-Did-nwu 21 35 29 28 77 18
E-Dil-wu 21 34 30 29 78 19
E-Dil-nwu 21 34 30 29 77 18

E-Lnw-wu/nwu 21 27 24 23 29 16
E-Dnw-wu/nwu 22 37 31 30 86 18

Bio-Haar 16 22 25 24 31 19
SNR=7

E-Lid-wu 10 14 13 13 16 9
E-Lid-nwu 10 14 13 13 16 9
E-Lil-wu 10 14 13 13 17 9

E-Lil-nwu 10 14 13 13 16 9

E-Did-wu 11 19 16 17 66 11
E-Did-nwu 11 19 16 17 65 11
E-Dil-wu 11 18 16 17 66 11
E-Dil-nwu 11 18 16 17 65 11

E-Lnw-wu/nwu 10 14 13 13 16 9
E-Dnw-wu/nwu 11 20 17 18 75 11

Bio-Haar 8 11 13 14 19 11

Table 3.4: The variance table for different schemes. The test functions are the pointwise
ones defined in equation (2.4.1).

3.3. Simulation Study 119

bias2 ×103 (sd×103) g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

E-Lid-wu 23 65 48 40 163 13
E-Lid-nwu 23 65 48 39 164 13
E-Lil-wu 22 63 47 39 162 12
E-Lil-nwu 22 63 46 40 159 12

E-Did-wu 15 40 26 23 135 9
E-Did-nwu 15 40 26 23 137 9
E-Dil-wu 14 37 26 23 135 9
E-Dil-nwu 14 38 27 24 136 9

E-Lnw-wu/nwu 24 67 49 40 174 13
E-Dnw-wu/nwu 15 41 27 24 151 9

Bio-Haar 8 26 53 50 225 22
SNR=5

E-Lid-wu 7 23 20 21 138 9
E-Lid-nwu 7 23 20 21 139 9
E-Lil-wu 7 23 19 21 136 9
E-Lil-nwu 7 23 19 21 134 9

E-Did-wu 3 13 9 12 113 6
E-Did-nwu 3 14 9 12 114 6
E-Dil-wu 3 13 9 12 112 6
E-Dil-nwu 3 13 10 12 112 6

E-Lnw-wu/nwu 7 23 21 23 151 10
E-Dnw-wu/nwu 3 14 9 12 132 6

Bio-Haar 2 8 24 28 201 14
SNR=7

E-Lid-wu 2 12 11 14 131 7
E-Lid-nwu 2 12 11 14 132 7
E-Lil-wu 3 12 11 14 130 7
E-Lil-nwu 3 12 11 13 128 7

E-Did-wu 1 7 5 8 106 5
E-Did-nwu 1 7 5 8 107 5
E-Dil-wu 1 6 5 8 105 5
E-Dil-nwu 1 7 5 8 106 5

E-Lnw-wu/nwu 2 12 12 15 145 8
E-Dnw-wu/nwu 1 7 5 8 125 5

Bio-Haar 1 3 15 20 192 11

Table 3.5: The squared bias table for different schemes. The test functions are the point-
wise ones defined in equation (2.4.1).

120 Chapter 3. E-LOCAAT: An Edge-Centred Scheme

Figure 3.5: Sparsity plots for the test functions used in simulation by the equation
(2.4.2). The scheme is based on the unweighted length update. From left to right on top
row: g1, blocks; middle row: doppler, bumps; bottom row: heavisine, maartenfunc. Black
line: E-Lid-nwu; red line: E-Lil-nwu; blue line: E-Lnw-wu/nwu; dashed black line:
E-Did-nwu; dashed red line: E-Dil-nwu; dashed blue line: E-Dnw-wu/nwu.

3.3.3.2 Denoising Edge Averaging Function

The results for edge averaging functions detailed in Tables 3.6, 3.7, and 3.8 are more

competitive when compared to LG-LOCAAT. Here, the ‘D’ methods are still preferred

(especially ‘E-Did-nwu’), since they have better AMSE results and lower bias. For Blocks

and g1 functions, biorthogonal Haar LOCAAT still outperforms the other proposals.

It is desirable that the ‘Did-nwu’ method is consistently better performing, regardless

of the data generating process, while for the line graph algorithm the best performing

method switched from ‘Aid-p’ to ‘Did-p’ when moving from pointwise to edge averaging.

3.3. Simulation Study 121

Figure 3.6: Sparsity plots for the test functions used in simulation by the equation (2.4.2).
The results are obtained by biorthogonal Haar LOCAAT. From left to right on top row:
g1, blocks; middle row: doppler, bumps; bottom row: heavisine, maartenfunc.

Similarly, with increasing SNR, the least competitive results are for ‘Heavisine’ while all

others are comparable.

Empirical Computational Cost

The standard running time for E-LOCAAT algorithms is 00:10:30, with 90% of the

algorithms completing within 00:12:00. Compared to the computational cost of LG-

LOCAAT (see Section 2.5.3), E-LOCAAT affords a much faster computation.

122 Chapter 3. E-LOCAAT: An Edge-Centred Scheme

AMSE×103 (sd×103) g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

E-Lid-wu 70 (20) 148 (59) 106 (34) 94 (27) 251 (83) 52 (12)
E-Lid-nwu 69 (20) 147 (58) 105 (33) 93 (27) 252 (83) 52 (12)
E-Lil-wu 69 (20) 147 (57) 105 (33) 94 (27) 251 (85) 52 (12)
E-Lil-nwu 69 (20) 147 (58) 104 (33) 94 (27) 246 (79) 52 (12)

E-Did-wu 62 (17) 126 (45) 92 (28) 84 (21) 243 (84) 49 (11)
E-Did-nwu 62 (17) 125 (45) 92 (28) 83 (21) 243 (85) 48 (11)
E-Dil-wu 62 (17) 124 (45) 93 (28) 85 (21) 245 (86) 50 (11)
E-Dil-nwu 62 (17) 123 (45) 93 (28) 85 (21) 245 (86) 49 (11)

E-Lnw-wu/nwu 70 (20) 150 (60) 107 (34) 94 (27) 263 (88) 52 (12)
E-Dnw-wu/nwu 64 (17) 132 (48) 96 (29) 86 (21) 267 (90) 49 (11)

Bio-Haar 66 (21) 110 (47) 114 (38) 109 (31) 317 (103) 64 (13)
SNR=5

E-Lid-wu 31 (11) 61 (28) 46 (18) 44 (16) 187 (63) 25 (5)
E-Lid-nwu 31 (11) 62 (29) 46 (17) 44 (16) 189 (63) 25 (5)
E-Lil-wu 31 (11) 61 (28) 46 (17) 44 (15) 187 (66) 25 (5)
E-Lil-nwu 30 (11) 61 (28) 45 (17) 44 (15) 184 (61) 25 (5)

E-Did-wu 26 (8) 53 (22) 40 (14) 40 (13) 187 (77) 24 (5)
E-Did-nwu 26 (8) 53 (23) 40 (14) 40 (12) 188 (77) 24 (5)
E-Dil-wu 26 (8) 51 (22) 40 (14) 40 (13) 188 (79) 24 (5)
E-Dil-nwu 26 (8) 51 (21) 40 (14) 40 (12) 188 (79) 24 (5)

E-Lnw-wu/nwu 31 (12) 63 (31) 47 (18) 45 (16) 199 (66) 26 (5)
E-Dnw-wu/nwu 27 (9) 57 (25) 41 (15) 42 (13) 214 (82) 24 (5)

Bio-Haar 23 (8) 38 (14) 51 (21) 53 (18) 252 (90) 33 (8)
SNR=7

E-Lid-wu 16 (7) 34 (17) 26 (11) 27 (10) 169 (56) 16 (4)
E-Lid-nwu 16 (7) 34 (18) 26 (10) 27 (10) 170 (56) 16 (4)
E-Lil-wu 16 (6) 34 (17) 25 (10) 27 (10) 168 (60) 16 (4)
E-Lil-nwu 16 (6) 34 (17) 25 (10) 26 (10) 166 (55) 16 (4)

E-Did-wu 14 (5) 30 (14) 22 (8) 24 (9) 170 (74) 15 (4)
E-Did-nwu 13 (5) 30 (14) 22 (8) 24 (9) 170 (74) 15 (3)
E-Dil-wu 13 (4) 28 (13) 23 (8) 25 (9) 172 (76) 15 (4)
E-Dil-nwu 13 (4) 28 (13) 23 (8) 25 (9) 171 (77) 15 (3)

E-Lnw-wu/nwu 16 (7) 35 (19) 26 (11) 28 (11) 181 (58) 17 (4)
E-Dnw-wu/nwu 14 (5) 32 (15) 23 (9) 26 (9) 198 (79) 16 (4)

Bio-Haar 11 (3) 20 (7) 29 (12) 34 (13) 232 (85) 22 (6)

Table 3.6: The AMSE table for different schemes. The test functions are the edge aver-
aging ones defined in equation (2.4.2).

3.3. Simulation Study 123

Variance×103 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

E-Lid-wu 47 70 58 54 70 40
E-Lid-nwu 47 69 57 53 70 40
E-Lil-wu 47 69 58 54 70 40
E-Lil-nwu 47 69 57 54 69 40

E-Did-wu 50 84 66 61 113 41
E-Did-nwu 49 84 65 61 113 40
E-Dil-wu 50 84 67 62 114 42
E-Dil-nwu 50 83 66 62 113 41

E-Lnw-wu/nwu 46 69 57 53 70 40
E-Dnw-wu/nwu 50 88 68 63 121 41

Bio-Haar 49 66 60 58 73 43
SNR=5

E-Lid-wu 20 28 24 23 29 16
E-Lid-nwu 20 28 24 23 29 16
E-Lil-wu 20 28 24 23 29 16

E-Lil-nwu 20 28 24 23 28 16

E-Did-wu 21 37 29 28 76 18
E-Did-nwu 21 37 29 28 75 18
E-Dil-wu 21 36 30 29 77 18
E-Dil-nwu 21 36 30 29 76 18

E-Lnw-wu/nwu 20 28 24 22 29 16
E-Dnw-wu/nwu 22 40 31 29 84 18

Bio-Haar 18 24 25 24 32 18
SNR=7

E-Lid-wu 11 15 13 13 16 9
E-Lid-nwu 11 15 13 13 16 9
E-Lil-wu 11 15 13 13 17 9

E-Lil-nwu 11 15 13 13 16 9

E-Did-wu 12 21 17 17 65 11
E-Did-nwu 12 21 17 17 64 11
E-Dil-wu 11 20 17 17 65 11
E-Dil-nwu 11 20 17 17 64 11

E-Lnw-wu/nwu 11 15 13 13 16 9
E-Dnw-wu/nwu 12 22 17 18 74 11

Bio-Haar 9 12 13 14 19 11

Table 3.7: The variance table for different schemes. The test functions are the edge
averaging ones defined in equation (2.4.2).

124 Chapter 3. E-LOCAAT: An Edge-Centred Scheme

bias2 × 103 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

E-Lid-wu 23 78 48 40 182 12
E-Lid-nwu 23 78 48 40 183 12
E-Lil-wu 23 78 47 40 181 12
E-Lil-nwu 23 78 46 40 177 11

E-Did-wu 13 41 27 22 129 8
E-Did-nwu 13 42 27 23 131 8
E-Dil-wu 13 40 27 23 130 8
E-Dil-nwu 13 40 27 23 132 8

E-Lnw-wu/nwu 24 80 50 41 193 12
E-Dnw-wu/nwu 13 44 28 23 146 8

Bio-Haar 16 47 54 51 244 22
SNR=5

E-Lid-wu 11 33 22 21 159 9
E-Lid-nwu 11 34 22 21 160 9
E-Lil-wu 11 33 22 21 158 9
E-Lil-nwu 11 33 21 21 155 9

E-Did-wu 5 16 10 11 111 6
E-Did-nwu 5 16 10 12 113 6
E-Dil-wu 4 15 11 12 111 6
E-Dil-nwu 5 15 11 12 112 6

E-Lnw-wu/nwu 11 35 23 23 171 9
E-Dnw-wu/nwu 5 18 11 12 130 6

Bio-Haar 5 14 26 29 220 15
SNR=7

E-Lid-wu 5 19 13 14 153 7
E-Lid-nwu 5 19 13 14 154 7
E-Lil-wu 5 19 13 14 152 7
E-Lil-nwu 5 19 13 14 150 7

E-Did-wu 2 9 6 7 105 4
E-Did-nwu 2 9 6 7 106 5
E-Dil-wu 2 8 6 7 106 4
E-Dil-nwu 2 8 6 7 107 4

E-Lnw-wu/nwu 5 20 14 15 165 8
E-Dnw-wu/nwu 2 10 6 8 125 5

Bio-Haar 2 7 16 20 213 11

Table 3.8: The squared bias table for different schemes. The test functions are the edge
averaging ones defined in equation (2.4.2).

3.4. Remarks 125

3.4 Remarks

We proposed two algorithms aimed at building wavelet bases for the graph edge set on

the original graph domain through two different approaches, namely interpolation point

bases and edge bases. Although algorithmically they are similar (see Section 3.1.3), they

do have different interpretations. Thus, in this section, we will provide some remarks on

these aspects (including the biorthogonal Haar E-LOCAAT).

For the interpolating-point bases, we start with an idea similar to the LG-LOCAAT,

which is to find a set of points that represent all edges (referred to as ‘new vertices’

in LG-LOCAAT). The advantage of using vertex representation is the convenience of

function representation, and the possibility for constructing ‘smoother’ wavelets (by

means of higher vanishing moments), see Schröder and Sweldens (1995a), which can be

an interesting future task.

Although we did not put a lot of emphasis on the analysis of the function spaces

of the true functions (there is not much literature that has discussed the functional

analysis for edge-based functions), understanding the behaviour (e.g., smoothness and

variation) of the functions in edge-space is of interest as a future task, which allows

derivation for the detail coefficient decay rate, Riesz bounds, and estimation error. For

achieving these theoretical results, biorthogonal Haar type multiresolution analysis might

be the most amenable approach, see Schröder and Sweldens (1995a). In addition, the

self-similarity of the scaling/wavelet functions of the biorthogonal Haar E-LOCAAT is

more convenient than general LG-LOCAAT and E-LOCAAT (both use inverse distance

prediction, which is a linear interpolating scheme), which raises a potential contribution

to some applications, such as long-memory estimation (Knight et al.; 2017). Zhang et al.

(2008) shows that the biorthogonal Haar framework has potential for removing Poisson

noise.

Compared to LG-LOCAAT, although the constructions of E-LOCAAT scaling func-

tions are very different, the filters follow similar constructions. For example, for E-

LOCAAT (except biorthogonal Haar E-LOCAAT), the construction of prediction filters

{aΓ} is based on the distance measure between different edges, and the construction of

126 Chapter 3. E-LOCAAT: An Edge-Centred Scheme

update filters {bΓ} relies on the minimal norm solution, which guarantees the stability

of the transform.

Although for both LG-LOCAAT and E-LOCAAT, the distance can be chosen as the

path distance between two neighbouring edges, they result in very different algorithms

and interpretations. Once we perform the line graph transform with a chosen metric,

the distances between each pair of new vertices are then determined. However, for E-

LOCAAT, the distance measure between neighbouring edges depends on the edges at

the corresponding stage. Thus, the distance measure will be changed (for the edges in

N E
kr,r

) after each stage-r. Note that the distance between any two edges is non-decreasing

through the algorithm, hence, E-LOCAAT has a better ability to prevent the compres-

sion issue from the ‘update effect’ as discussed in Section 2.3.3.

The relinkage of E-LOCAAT normally generates a less sparse structure compared

with LG-LOCAAT, which means E-LOCAAT tends to use a larger size of neighbourhood

compared with LG-LOCAAT. Thus, E-LOCAAT displays a better stability performance

(see Section 2.3.3 for the discussion of the influence of the neighbourhood size), but it

might introduce more scale-mixing at the same time. This might be the underlying

reason for the denoising performance of LG-LOCAAT to be better than most proposed

E-LOCAAT algorithms.

For the function representation aspects, E-LOCAAT has more potential than LG-

LOCAAT, since the (scaling/wavelet) function representations can always be obtained

in the original domain (which is not the case for LG-LOCAAT, see Section 2.3.4).

Chapter 4

Laplacian-LOCAAT Construction

In Chapters 2 and 3 we proposed two algorithms that provide multiscale decompositions

for data collected from the network edges. One difficulty we recognised is to determine

the most suitable distance measure among the set of edges, a problem which is not as

straightforward as measuring the distance among nodes. Thus, an algebraic approach,

rather than a functional one, would be desirable for addressing this limitation.

Hence, in this chapter, we introduce a new LOCAAT-based algorithm for dealing

with edge data, which we refer to as Laplacian-LOCAAT, since it is derived from the

graph edge-Laplacian. The chapter is organised as follows. We first introduce some es-

sential background knowledge on graph Laplacian and its edge variant. This is followed

by a section introducing the connection between graph Laplacians and the lifting steps,

and some recent topics of topological data analysis related to the high-order Lapla-

cians. Then, similar to the previous two chapters, a detailed discussion of the proposed

algorithm and the simulation results will be given.

4.1 Graph Laplacian

The graph Laplacian was originally studied in spectral graph theory, which focused on

the analysis of eigenvalues and eigenvectors of the associated graph matrices. Bollobás

(1998) gives a description of spectral graph theory, details can also be found in Chung

127

128 Chapter 4. Laplacian-LOCAAT Construction

(1996). Brouwer and Haemers (2011) gives some advanced topics in relation to algebra

and topology. For introductory material on spectral graph theory, the reader can refer

to Spielman (2007, 2012). In the following two subsections, we will review literature on

two different types of graph Laplacian, corresponding to graphs whose edges are with

and without orientation, while mainly focusing on the relevant aspects of spectral graph

theory which contribute to our work. The reader can refer to the literature mentioned

above for further details. In this section, we preserve the notation from previous chapters,

i.e., the graph G, the number of the vertices (n), and the number of edges (m).

4.1.1 Laplacian Construction Using an Oriented Incidence

Matrix

Let us recall the adjacency matrix A(G) in equation (1.4.1) and the incidence matrix

B(G) in equation (1.4.2) discussed in Section 1.4.2. These matrices play an important

role in spectral graph theory, and in particular in the construction of the graph Laplacian.

The matrix B(G) introduced in equation (1.4.2) is the non-oriented incidence matrix for

an undirected graph G, see Diestel (2005). In a lot of literature, for example, Godsil

and Royle (2001) and Diestel (2005), an orientation is given to the incidence matrix, by

assigning ‘1’ and ‘-1’ to the corresponding elements (initial vertex and terminal vertex)

of the incidence matrix. For an undirected graph, the assignation could be arbitrary,

see Zelazo et al. (2007) and Zelazo and Mesbahi (2010). Here we further let the edge

ek = {vi, vj}, with vi be the initial vertex if i < j, and vj be the terminal vertex. Then,

similarly to the notion used in Zelazo et al. (2007), the (i, k)-th element of oriented

incidence matrix
−→
B (G) is defined as

[−→
B (G)

]
ik
=

1, if vi is the initial vertex of edge ek;

−1, if vi is the terminal vertex of edge ek;

0, otherwise.

(4.1.1)

Unlike the non-oriented incidence matrix B, each element of the oriented incidence

matrix
−→
B takes a value from the set {0, 1,−1} rather than {0, 1}. One might notice

4.1. Graph Laplacian 129

that the orientation can give ‘directions’ to an undirected graph, but oriented graphs

and directed graphs are different, see Diestel (2005). An edge could have two directions

in a directed graph but this is not allowed in oriented graph. Although the oriented

incidence matrix gives a unique direction for each edge, some consequent constructs will

not be changed, for example, when obtaining the graph Laplacian; see Godsil and Royle

(2001), Zelazo et al. (2007) or Zelazo and Mesbahi (2010). We will discuss this later in

this section. A relevant matrix related to the graph structure is the degree matrix,

which can be written as a n × n-dimensional diagonal matrix for the graph G, defined

as

D(G) =

deg(v1) 0

. . .

0 deg(vn)

 =

∑n

j=1A1j 0
. . .

0
∑n

j=1Anj

 , (4.1.2)

where deg(vi) is the degree of the i-th vertex defined to be simply the number of the

neighbours of the i-th vertex (or the number of edges containing this vertex).

4.1.1.1 Non-weighted Version

The core notion for the study of spectral graph theory is the graph Laplacian matrix

(see Chung (1996)), which is a n× n matrix given by

LV(G) = D(G)− A(G). (4.1.3)

Here we use the superscript V to represent that this Laplacian is a matrix established

upon the vertex set (since we will discuss the so-called edge Laplacian later). Alter-

natively, we can express it in an element-wise form, such that the (i, j)-th element

corresponding to the vertices vi and vj is

[
LV(G)

]
ij
=

−1, if i ̸= j and {vi, vj} ∈ E ;

deg(vi), if i = j;

0, otherwise.

(4.1.4)

Moreover, the graph Laplacian matrix has a natural relation with the oriented incidence

matrix
−→
B , see Merris (1994) or Zelazo and Mesbahi (2010). Namely, the Laplacian is

130 Chapter 4. Laplacian-LOCAAT Construction

obtained by

LV(G) =
−→
B (G)

−→
B (G)T , (4.1.5)

where each element Bik, as we mentioned in equation (4.1.1), is taking values from the

set {0, 1,−1}. In this case, we could see that
[
LV(G)

]
ij
=
∑m

t=1

−→
B it

−→
B jt. Since

−→
B it,
−→
B jt ∈

{0, 1,−1} and
−→
B it =

−→
B jt will occur only in two cases, which are

−→
B it =

−→
B jt = 0 or i = j,

then we can easily see that
[
LV(G)

]
ij
≤ 0 if i ̸= j. The graph Laplacian is a symmetric

matrix, thus, all of its eigenvalues are real and non-negative, see Chung (1997). From

equations (4.1.2) and (4.1.3), we can see that the graph Laplacian matrix satisfies that∑n
j=1

[
LV(G)

]
ij
= 0 for any i ∈ {1, ..., n}. We will see later that this property is desirable

for our work.

Recall that the incidence matrix brings up the connection between vertices and edges,

since the rows and columns represent vertices and edges, respectively. Consequently, an

edge variant of the graph Laplacian was introduced by Zelazo et al. (2007) and Zelazo

and Mesbahi (2010), which will be our main tool in this chapter. From now on, we

will distinguish the terminology ‘graph Laplacian’ and ‘edge Laplacian’ as the Laplacian

matrix for vertex set and edge set, respectively. Starting from equation (4.1.5) with the

oriented n × m incidence matrix B in equation (4.1.1), the edge variant of the graph

Laplacian, briefly, them×m edge Laplacian matrix, is obtained by simply commuting

the product terms in equation (4.1.5), such that

LE(G) =
−→
B (G)T

−→
B (G). (4.1.6)

It is easy to see that the edge Laplacian LE(G) is a real-valued m×m matrix symmetric

matrix with the following two properties (Zelazo et al.; 2007):

• For the Laplacian matrices LV and LE of the same graph structure G, the non-zero

eigenvalues are the same.

• The non-zero eigenvalues of LV and LE are equal to the square of the non-zero

singular values of
−→
B .

4.1. Graph Laplacian 131

These two properties guarantee that the edge Laplacian can preserve measures of the

graph structure, such as connectivity (see Godsil and Royle (2001)) and the trace of the

matrices. The edge Laplacian can be written in an elementwise form for the k-th and

l-th edges, ek and el, such that[
LE(G)

]
kl
=

n∑
p=1

−→
B pk

−→
B pl. (4.1.7)

Here {
−→
B pk}np=1 are all the entries of k-th column, namely, describing the relationship

the set of vertices {vp}np=1 has with edge ek. Recall that the column of the oriented

incidence matrix
−→
B only contains two nonzero elements that indicate the two vertices

that belong to the associated edge (see equation (4.1.1)) since we only consider simple

graphs. Therefore, if k = l, we have[
LE(G)

]
kk

=
n∑
p=1

(
−→
B pk)

2

= 12 + (−1)2

= 2.

For k ̸= l, we have
[
LE(G)

]
kl
∈ {1,−1, 0} because distinct edges cannot share exactly

the same set of vertices. Furthermore, for a pair of neighbouring edges ek and el, we say

that they form a path if their common vertex is initial for one of ek or el, and terminal

for the other. Thus the edge Laplacian can also be written entry-wise, namely

[
LE(G)

]
kl
=

1, if ek and el do not form a path but have a common vertex;

−1, if ek and el form a path;

2, if k = l;

0, otherwise (no vertex in common).

(4.1.8)

Hence the diagonal of the edge Laplacian is a vector of dimension m, populated with

2’s. A crucial algebraic property of LE is the connection with the line graph LG(G), see

Godsil and Royle (2001) and Zelazo and Mesbahi (2010), which is

A(LG(G)) =
∣∣LE(G)− 2Im

∣∣ , (4.1.9)

132 Chapter 4. Laplacian-LOCAAT Construction

here | · | means taking the absolute value for all entries in the matrix, and Im is the

m×m identity matrix.

4.1.1.2 Weighted Version

Both the graph Laplacian and edge Laplacian defined above are derived from degree

matrices, adjacency matrices, and incidence matrices, which contain only graph connec-

tivity information. However, a weighted Laplacian version is needed in order to show the

geometric information of a weighted graph. The weighted Laplacian was used in many

previous works from signal processing or wavelet communities, see for example, Coifman

and Maggioni (2006), Hammond et al. (2011), Hammond et al. (2013) and Chen and

Liu (2017). In our case, a weighted edge Laplacian will be preferred in order to show the

geometric information.

Similarly to the established literature, we begin with the vertex case. In general,

the graph Laplacian can also be embedded with a weight function ω : V × V → R+

if further information is available. We let this weight function to be symmetric, thus,

ω(vi, vj) = ω(vj, vi), ∀i, j, and assign it the role of an edge weight function as described in

Section 1.4.3. In this case, we define the Laplacian for a weighted graph, or the weighted

Laplacian (see Godsil and Royle (2001)), as

[
LV,ω(G)

]
ij
=

−ω(vi, vj), if {vi, vj} ∈ E ;∑

s∈{1,...,n}\{i} ω(vi, vs), if i = j;

0, otherwise.

(4.1.10)

Sometimes we may write ωij instead of ω(vi, vj) for simplification. We could also con-

struct the weighted Laplacian matrix by generalising equation (4.1.5) (Godsil and Royle;

2001), such that

LV,ω(G) =
−→
B (G)W (G)

−→
B (G)T , (4.1.11)

where W (G) (or put simply, W) is a m×m diagonal weight matrix such that

Wkk′ =

ωij, if k = k′ and ek = {vi, vj};

0, if k ̸= k′.

(4.1.12)

4.1. Graph Laplacian 133

This weight matrix could be designed flexibly, for example, the weights can be treated

as an intrinsic quantity related to the network, see Kolaczyk and Csárdi (2014). For the

river network motivating example, the construction of the weights using the streamflow

data (Park et al.; 2022) can be fitted as a weight matrix. In general, the weight matrix

W is not necessarily diagonal. Here, we assume that W is diagonal and that each weight

is positive with the k-th entry of the diagonal defined as the inverse length of the k-th

edge, 1
ℓk
, which can be further handled both theoretically and computationally. Thus,

we define its square root as

[
W 1/2(G)

]
kk′

=
√
Wkk′ =

√
ωij, if k = k′ and ek = {vi, vj};

0, if k ̸= k′.

Then the weighted Laplacian in equation (4.1.11) could be rewritten as

LV,ω(G) =
−→
BW
−→
B T

=
−→
BW 1/2

(
W 1/2

)T −→
B T

=
(−→
BW 1/2

)(−→
BW 1/2

)T
=
−→
B ω−→B ω

T
, (4.1.13)

where [−→
B ω
]
ik
: =

[−→
BW 1/2

]
ik

=
m∑
q=1

−→
B iq

[
W 1/2

]
qk

=
−→
B ik

√
Wkk

is the weighted incidence matrix, of the same dimension (n×m) as
−→
B . Thus we rewrite

the general version of equation (4.1.1) as

[−→
B ω
]
ik
=

√
ωij, if vi is the initial vertex of edge ek and ek = {vi, vj};

−√ωij, if vi is the terminal vertex of edge ek and ek = {vi, vj};

0, otherwise.

(4.1.14)

134 Chapter 4. Laplacian-LOCAAT Construction

The properties of the unweighted oriented incidence matrix
−→
B (defined as in equation

(4.1.1)) are well studied in some literature, see e.g., Godsil and Royle (2001) for algebraic

properties, Zelazo et al. (2007) and Zelazo and Mesbahi (2010) used the edge Laplacian to

analyse the agreement protocol of multi-agent systems, Barbarossa et al. (2018) treated

the edge Laplacian as a key to describe features of the high-order simplicial complexes,

which is the core of the topological data analysis, Schaub and Segarra (2018) gave

a framework of smoothing functions defined on edges by edge Laplacian and pointed

out the difference between edge Laplacian and Laplacian for line graphs. Overall, the

weighted edge Laplacian has received much less attention in the literature. In our context,

the weighted edge Laplacian will play an important role since it allows us to understand

higher-order interactions in real-life complex systems, see Schaub et al. (2021).

As we can see in equation (4.1.13), the weighted graph Laplacian LV,ω is determined

by the weighted incidence matrix Bω, and similarly, the weights could be introduced into

edge case by plugging equation (4.1.13) into equation (4.1.6), such that

LE,ω(G) =
−→
B ω

T−→
B ω. (4.1.15)

Then similar to equation (4.1.7), each entry of the edge Laplacian can be obtained by

[
LE,ω(G)

]
kl
=

n∑
p=1

[−→
B ω
]
pk

[−→
B ω
]
pl
, (4.1.16)

The weighted edge Laplacian could also be presented similarly to equation (4.1.8):

[
LE,ω(G)

]
kl
=

√
WkkWll, if ek and el do not form a path but have a common vertex;

−
√
WkkWll, if ek and el form a path;

Wkk +Wll = 2Wkk, if k = l;

0, otherwise.

(4.1.17)

We can see that the orientation does have an influence on the sign of the non-zero non-

diagonal components, but some of the properties are still preserved by construction, for

example, symmetry.

4.1. Graph Laplacian 135

4.1.2 Laplacian Construction Using a Non-oriented Incidence

Matrix

In the previous section we discussed the matrices related to graph structures, mainly

focusing on graph Laplacian and edge Laplacian, and their weighted versions. The con-

struction for Laplacian matrices heavily relies on the incidence matrix with an orientation

(4.1.1). For real data cases, such as the streamflow data used in Park et al. (2022), the

graph can be modelled by the Laplacian with orientation since each stream segment has

a natural unique direction. However, having a natural orientation does not apply to all

real-life problems. For instance, the features of the social network data from Zachary

(1977) and the traffic network data from Deri and Moura (2015) cannot be captured

by giving an orientation to the incidence matrix. Since both social data and traffic data

are generally bidirectional, it is also of interest to also consider a Laplacian construction

that uses a non-oriented incidence matrix.

4.1.2.1 Non-weighted Version

In this section we mainly focus on constructing the (edge) Laplacian matrices in terms

of the non-oriented incidence matrix (see equation (1.4.2)). Recall the matrix B is the

non-oriented incidence matrix given by

Bik =

1, if vi ∈ ek and ek = {vi, vj};

0, otherwise,

(4.1.18)

and define the graph and edge-Laplacian as

QV(G) = B(G)B(G)T , (4.1.19)

QE(G) = B(G)TB(G). (4.1.20)

Therefore the (i, j)-th element of QV will be

[
QV]

ij
=

1, if i ̸= j and {vi, vj} ∈ E ;

deg(vi), if i = j;

0, otherwise,

= [D + A]ij ,

136 Chapter 4. Laplacian-LOCAAT Construction

This version of Laplacian is referred to as the ‘signless Laplacian’ in the literature, see

for example, Godsil and Royle (2001) and Cvetković et al. (2007). Since there is no

distinction between the initial vertex and the terminal vertex for non-oriented incidence

matrix, then the (k, l)-th element of QE would be

[
QE(G)

]
kl
=

1, if ek and el share one common vertex and k ̸= l;

2, if k = l;

0, otherwise.

4.1.2.2 Weighted Version

As in Section 4.1.1, the weight matrix (4.1.12) can be plugged into the graph Laplacian

to give rise to the weighted version

QV,ω = BWBT

= (BW 1/2)(BW 1/2)T

= Bω(Bω)T . (4.1.21)

As in equation (4.1.14), here we have

[Bω]ik =

√
ωij, if vi ∈ ek and ek = {vi, vj};

0, otherwise.

(4.1.22)

By commuting these two matrices in equation (4.1.21), the signless weighted edge Lapla-

cian then could be obtained by

QE,ω = (Bω)TBω, (4.1.23)

or equivalently,

[
QE,ω]

kl
=

√
WkkWll, if ek and el share one common vertex and k ̸= l;

Wkk +Wll = 2Wkk, if k = l;

0, otherwise.

(4.1.24)

4.1. Graph Laplacian 137

Compared to the signed edge Laplacian (equation (4.1.17)), we can see that the signless

one (equation (4.1.24)) contains no negative elements. The signless Laplacian has some

potential advantages for spectral graph theory, see Cvetković et al. (2007). Nevertheless,

Section 4.1.2 is just for completeness, and the Laplacian generated by an oriented inci-

dence matrix will be used in our proposal since the oriented version is a better fit for

our framework.

4.1.3 Remarks

4.1.3.1 A Natural Connection between the Laplacian and LOCAAT

Here we briefly discuss the connection between the Laplacian (with the oriented incidence

matrix) and the LOCAAT. Suppose we have a function defined on the vertex set of a

graph G = (V , E , ω), let us denote it by gV : V → R. Let us denote the vector form of

gV as gV = (gV1 , ..., g
V
n)

T , where gVi denotes the value of the function at vertex vi. Then

we can show that the i-th element of the vector LV,ω gV is

[
LV,ω gV

]
i
=

n∑
j=1

[
LV,ω]

ij
gVj

=
[
LV,ω]

ii
gVi +

∑
j∈{1,...,n}

j ̸=i

[
LV,ω]

ij
gVj

=
∑
j∈NV

i

ωijg
V
i +

∑
j∈NV

i

−ωijgVj (4.1.25)

=
∑
j∈NV

i

ωij
(
gVi − gVj

)
, (4.1.26)

where N V
i = {j |

[
LV,ω]

ij
̸= 0 and j ̸= i} is the vertex-neighbourhood index set which

denotes the non-zero components on the i-th row of the graph Laplacian, which can

be considered as the neighbourhood. Equation (4.1.26) has been discussed in many

works but not precisely connected to lifting, the reader can refer to Chung (1996) or

Spielman (2007, 2012) for more details. As a special case, for the unweighted graph

Laplacian LV , we have
[
LVgV

]
i
=
∑

j∈NV
i

(
gVi − gNj

)
. Since the Laplacian satisfies that

∀i,
∑n

j=1

[
LV]

ij
= 0 and

[
LV]

ij
≤ 0 if i ̸= j, then we can see that each row (or column,

138 Chapter 4. Laplacian-LOCAAT Construction

due to its symmetry) has a similar role to that of a dual wavelet function, which we recall

has the property that
∫
v∈V ψ̃i(v)dv = 0. Hence, along with the unit energy condition∫

v∈V φ̃i,n(v)dv = 1, where φ̃i,n is the i-th initial scaling function, the Laplacian LV,ω can

be considered as a matrix that provides possible filter constructions (every row/column).

Moreover, if we normalise equation (4.1.25) as

[
LV,ω gV

]
i

/
(
∑
j∈NV

i

ωij) = gVi −
∑
s∈NV

i

ωis∑
j∈NV

i
ωij

gVs , (4.1.27)

and (as proposed in Section 4.1), let ωij be the inverse distance between vertex vi and

vertex vj, then we note that equation (4.1.27) is of the same form as the prediction step

in the LOCAAT transform of Jansen et al. (2009). Then the Laplacian can be considered

as a generalised version for the prediction filter design, which gives the weights explicitly.

4.1.3.2 Generalisation for higher-order networks

Recall that one of the most difficult (but important) parts of constructing a multiscale

method for edge data is to find appropriate inter-edge distance measures (or inter-edge

weights), see Chapters 2 and 3. In both LG-LOCAAT and E-LOCAAT, we used the

‘distance’ between interpolating points, since the distance measure is natural in this

context. However, we might consider whether there is an alternative approach to in-

troducing the edge-related geometric information via the inter-vertex distance measure.

The Hodge Laplacian along with the simplicial complexes could be a suitable tool to con-

sider. Simplicial complexes provide a representation of topological space and have been

used as a tool by the topological signal processing community, see Robinson (2014). Re-

cently, it has been introduced for some potential applications for data analysis, Kook and

Lee (2018) and Devriendt (2022) analysed the effective resistance problem on networks

based on simplicial complexes; Schaub et al. (2020) constructed random walk matrices

based on simplicial complexes with Hodge theory; Schaub et al. (2021), Battiloro et al.

(2023), Bick et al. (2023) and Sardellitti and Barbarossa (2024) discussed signal process-

ing techniques based on simplicial complexes. Besides these works, Lim (2020) gives an

introduction of the Hodge theory in linear algebra language, Grady and Polimeni (2010)

4.1. Graph Laplacian 139

gives a framework for defining calculus and functions on discrete structures based upon

simplicial complexes and Hodge theory. In our work, we will only introduce the details

which will contribute to our framework.

Suppose we have a weighted graph G = (V , E , ω), where V = {v1, ..., vn}, E =

{e1, ..., em}, and ω is a weight function that assigns positive values to edges. Recall that

an (undirected) edge is an unordered pair of two adjacent vertices. We can naturally

consider edges as a ‘higher-order structure’ compared to vertices. Then intuitively, we

can define another higher-order structure, which is referred to as faces in graph theory,

see Bondy and Murty (2008), Godsil and Royle (2001) and Diestel (2005). In a nutshell,

an abstract face set T can be defined as Lim (2020) and Bick et al. (2023),

{vi, vj, vk} ∈ T if and only if {vi, vj}, {vi, vk}, {vj, vk} ∈ E . (4.1.28)

The unordered set {vi, vj, vk} is then called a face. Typically, faces are also referred to as

2-cells, which can represent discrete domains; see Grady and Polimeni (2010). Similarly,

the edges and vertices are 1-cells and 0-cells, respectively. Higher-order cells can also

be constructed using the above strategy. However, we will not discuss details for any

higher-order structure in our work, the reader can refer to Lim (2020) or Bick et al.

(2023) for more details. Let Cp denote the p-order cells, for example, C0 = V , C1 = E ,

and C2 = T . Then the associated p-order simplicial complex is defined as Cp =
⋃p
q=0 Cq.

For any (p − 1)- and p-cells Cp−1 and Cp, where p ∈ Z+, an incidence matrix
−→
B p can

be constructed with an orientation. In this chapter, we will set subscripts as the order

instead of the vertex or edge set to describe the cell chain clearly. For example,
−→
B 1 is

the oriented incidence matrix
−→
B as we described in Section 4.1, whose rows represent

vertices and columns represent edges. Similarly,
−→
B 2 is the oriented incidence matrix

whose rows represent edges and columns represent faces. Here we skip the details of the

orientation of faces since it will not affect our framework. The incidence matrices play an

important role in mapping information between different order structures, for example,

140 Chapter 4. Laplacian-LOCAAT Construction

Chung (1997) consider
−→
B 1 and

−→
B 1

T
as two operators such that

E = C1
−→
B 1
// C0 = V

−→
B 1

T
oo .

Only in this section, we denote ·p as the (weight, incidence or Laplacian) matrix associ-

ated with p-order cells, for some p ∈ Z+; and let (·)q as the q-th power of a matrix. One

way for obtaining the interaction among a certain simplicial complex Cp is to construct

the Hodge Laplacian, see Grady and Polimeni (2010), Lim (2020), and Bick et al. (2023),

such that

Lp = W p+1−→B p
T
(W p)−1−→B p +

−→
B p+1W p+2−→B p+1

T
(W p+1)−1,

where
−→
B p and

−→
B p+1 are incidence matrices and W p, W p+1, and W p+2 are diagonal

weight matrices. Now let us consider the case that p = 0, and we let
−→
B 0 = 0, see Chung

(1997) and Bick et al. (2023). Then the general form for the vertex Laplacian becomes

L0 =
−→
B 1W 2−→B 1

T
(W 1)−1.

Thus, the general weighted (vertex) graph Laplacian LV can be obtained by setting

W 1 = I, and W 2 = W as the edge weight matrix (see Section 4.1). Now, consider the

case where p = 1, we have
−→
B 2 = 0, since there is no face in a tree structure. Then, in

this case, we can obtain

L1 = W 2−→B 1
T
(W 1)−1−→B 1

= W
−→
B 1

T−→
B 1.

Notice that this matrix is not symmetric, a similarity transform (W 2)−1/2L1(W 2)1/2 can

be performed to normalise it, see Grady and Polimeni (2010) and Bick et al. (2023).

Hence, we have

(W 2)−1/2L1(W 2)1/2 = (W 2)−1/2W 2−→B 1
T−→
B 1(W 2)1/2

= (W 2)1/2
−→
B 1

T−→
B 1(W 2)1/2

= LE ,

4.2. Proposed Laplacian-LOCAAT Framework 141

which gives us the weighted edge Laplacian introduced in previous Section 4.1.1.2. This

indicates that the inter-edge interaction information (weights) can be well-described by

the corresponding entries of the edge Laplacian.

4.2 Proposed Laplacian-LOCAAT Framework

As described in Chapters 2 and 3, we assume we have a weighted graph G = (V , E , ω)

with |V| = n and |E| = m, and we are interested in the construction of a basis on which

to represent the function gE : E −→ R, where {gEk}mk=1 is the set of observations on

graph edge set {ek}mk=1. In this section, we propose two algorithms, associated with the

edge Laplacian and the line graph Laplacian. We will next address the component of

the algorithm pertaining to the edge Laplacian.

4.2.1 Proposed LOCAAT via the Edge Laplacian

In our proposed edge Laplacian-LOCAAT framework, we follow the steps of E-LOCAAT,

but the edge Laplacian will be used for the construction of prediction filters, as shown

next. The algorithm works on the original graph edge domain, so the initial scaling

functions can be set as described in Sections 3.1.1 and 3.1.2.

Split Step

Since the initial stage-m scaling functions are defined as in Sections 3.1.1 and 3.1.2,

integral values associated to each edge ek are

IΓ,edgek,m = ℓk,

IΓ,Delta
k,m = 1,

where ℓk is the initial length of the k-th edge. The choice of the removal edge at stage-r

is based on the minimum integral value. Similar to previous chapters, the neighbouring

integrals will be updated at each stage during the update step.

142 Chapter 4. Laplacian-LOCAAT Construction

Predict Step

Let us assume that edge ekr was chosen for removal, hence we aim to predict its cor-

responding function value. The prediction step is such that for stage-r, we ensure the

prediction weights associated with k-th edge at stage-r fulfill the condition

m∑
s=1

aEs,r = 1. (4.2.1)

This condition guarantees that the wavelets satisfy the admissibility condition and the

transform is stable. Recall that the m × m edge Laplacian matrix can be obtained

by LE,ω(G) =
−→
B ω

T
(G)
−→
B ω(G). Note that the non-zero off-diagonal entries of the matrix

LE,ω(G) show the interactions (in terms of weights) among neighbouring edges (every pair

of edges that share only one common vertex), thus, these non-zero values can be naturally

considered as the prediction weights. We skip the notation G, and denote the edge

Laplacian matrix corresponding to the graph at stage-r as LE,ω
r . We further denote using

the stage-r Laplacian N E
kr,r

= {ej |
[
LE,ω
r

]
kr,j
̸= 0 and j ̸= kr} as the neighbourhood of

the edge ekr at stage-r. Notice that for the edge Laplacian with an orientation, the

off-diagonal components of kr-th row (or column) are not necessarily sharing the same

sign. Stability issues will arise if we predict using both positive and negative prediction

weights. For example, negative prediction weights will have an impact on the update of

the integral by decreasing it as opposed to increasing it, see Nunes et al. (2006), and

the integral may even become zero or negative. This may have a large influence on the

compression ability of the algorithm because of the ‘update effect’ discussed in Section

2.3.3. In order to avoid such problems, we propose to use the prediction weight aEs,r as

aEs,r =

∣∣∣[LE,ω
r

]
kr,s

∣∣∣∑
t:et∈NE

kr,r

∣∣∣∣[LE,ω
r

]
kr,t

∣∣∣∣ . (4.2.2)

4.2. Proposed Laplacian-LOCAAT Framework 143

Specifically, for the initial stage-m, defining Wm := W , the prediction weights can be

written as

aEs,m =

∣∣∣[LE,ω
m

]
km,s

∣∣∣∑
t:et∈NE

km,m

∣∣∣∣[LE,ω
m

]
km,t

∣∣∣∣
=

√
[Wm]kmkm [Wm]ss∑

t:et∈NE
km,m

√
[Wm]kmkm [Wm]tt

=

√
[Wm]ss∑

t:et∈NE
km,m

√
[Wm]tt

.

Note that if we let the entries of the weight matrix to be inverse distance, where

[Wm]kk = 1/ℓk, then as a result, we have aEs,m =

√
1/ℓs∑

t:et∈NE
km,m

√
1/ℓt

, which is the nor-

malised square root of the inverse length. However, this does not hold at every stage,

since either the weight matrix or the edge Laplacian matrix will be updated throughout

the algorithm (see below). Then the detail coefficient associated to the removed edge ℓkr

can be obtained as in E-LOCAAT, such that

dEkr = cEkr,r −
∑

s: es∈NE
kr,r

aEs,rc
E
s,r,

where cEk,r is the scaling coefficient of the k-th edge at stage-r, and we set cEk,m := gEk

initially.

Update Step

1. Update for Function and Integral Values

The integral values of the primal scaling function will be first updated. When

progressing from stage-r to stage-(r − 1), we have as in Chapters 2 and 3,

IEs,r−1 = IEs,r + aEs,rI
E
kr,r, ∀s ∈ N

E
kr,r.

The neighbouring coefficients are also updated by means of

cEs,r−1 = cEs,r + bEs,rdkr , ∀s ∈ N E
kr,r, (4.2.3)

144 Chapter 4. Laplacian-LOCAAT Construction

where the coefficients
{
bEs,r
}
are still obtained by taking the minimum norm solu-

tion of the update condition mentioned by Jansen et al. (2004, 2009), such that

bEs,r =
IEkr,r I

E
s,r−1∑

t:et∈NE
kr,r

(
IEt,r−1

)2 .
2. Update for the Edge Laplacian and Relinkage via Schur Complement

Recall that in E-LOCAAT, we update the lengths of the neighbouring edges of

the removed edge, and this is in turn will have an influence on the prediction

in the next stages. In our construction here, the update step has to consider the

update of the edge Laplacian matrix, since the edge Laplacian directly contributes

to the prediction filter construction (see equation (4.2.2)). We next discuss the

possibility to update the Laplacian matrix by taking the Schur complement. This

linear algebra tool has been studied along with the Laplacian for electrical circuits

which form a graph, see Devriendt (2022). Suppose we have a (p + q) × (p + q)

matrix M , which can be represented as a block-partitioned matrix as

M =

 E F

G H

 , (4.2.4)

where E, F , G, and H are p× p, p× q, q × p, and q × q matrices, respectively. If

H is invertible, then the Schur complement of M with respect to H, denoted as

M/H, is defined as

M/H = E − FH−1G. (4.2.5)

The Schur complement has been used in many areas of numerical analysis as a tool

to reduce the size of a linear system, see Zhang (2006). Dorfler and Bullo (2012)

consider Schur complement as a tool for analysing the circuit theory after removing

a set of nodes in electronic networks Kron reduction. In our framework, suppose at

stage-r we have the edge Laplacian LE,ω
r and we split the kr-th edge and perform the

prediction by the kr-th row (or column) of LE,ω
r . Then we perform a permutation for

both rows and columns of LE,ω
r , so that the order sequence of each row and column

4.2. Proposed Laplacian-LOCAAT Framework 145

(as an edge version) becomes (e1, ..., ekr−1, ekr+1, ..., em | ekr) instead of (e1, ..., em).

Denote the permuted stage-r edge Laplacian matrix by P(LE,ω
r), which can be

written in block-partitioned form as

P(LE,ω
r) =

 LE\{ekr},ω
r Jr
J T
r

[
LE,ω
r

]
kr,kr

 , (4.2.6)

where LE\{ekr},ω
r is the submatrix of LE,ω

r , associated with the edge sequence without

ekr , which is (e1, ..., ekr−1, ekr+1, ..., em); Jr denotes the kr-th column of LE,ω
r , but

without the kr-th entry;
[
LE,ω
r

]
kr,kr

is the kr-th diagonal entry of LE,ω
r . The matrix

in the bottom left block is the transpose of the one in the top right block because of

the symmetry of the generalised edge Laplacian. Notice that
[
LE,ω
r

]
kr,kr

is a special

case (1× 1) of matrices, whose inverse can be obtained by taking its reciprocal if

it is non-zero. Let us first suppose that
[
LE,ω
r

]
kr,kr

is non-zero, then we define the

stage-(r − 1) edge Laplacian as the Schur complement associated to stage-r edge

Laplacian with respect to its k-th diagonal entry, namely

LE,ω
r−1 := P(LE,ω

r)/
[
LE,ω
r

]
kr,kr

= LE\{ekr},ω
r − Jr

([
LE,ω
r

]
kr,kr

)−1

J T
r . (4.2.7)

Note that for Jr, only the entries that correspond to es ∈ N E
kr,r

are non-zero

(recall that we define the neighbourhood by the non-zero entries of the kr-th row

or column at stage-r). For the matrix Jr
([
LE,ω
r

]
kr,kr

)−1

J T
r , we first consider its

diagonal components. Let k < kr, and then we have[
Jr
([
LE,ω
r

]
kr,kr

)−1

J T
r

]
kk

=

(
[LE,ω

r]
kr,k

)2

[LE,ω
r]

kr,kr

, if ek and ekr are neighbouring edges;

0, otherwise;

For k > kr, we only have to substitute k by (k−1), while the form for off-diagonal

entries is cumbersome. Fortunately, some of the properties of the Schur complement

can help us to avoid analysing the new edge Laplacian matrix by elements. Let us

firstly consider the matrices LE,ω
m .

146 Chapter 4. Laplacian-LOCAAT Construction

Lemma 4. LE,ω
m is a positive-definite matrix.

Proposition 4.2.1. If we have a positive-definite matrix that can be written in

block partitioning form as in equation (4.2.4), then its Schur complement as in

equation (4.2.5) is also positive-definite.

The details of the proofs can be found in Appendices C.3 and C.4, respectively. As

a result of Proposition 4.2.1, the matrix LE,ω
r we obtain at any stage-r is positive-

definite. This in fact leads to many fascinating properties for LE,ω
r . Firstly, the

positive-definiteness ensures that our algorithm is valid. Note that all of the diag-

onal entries of a positive-definite matrix have to be positive, which indicates that

[LE,ω
r]−1

kr,kr
exists. Secondly, the positive-definiteness ensures that at any stage-r,

the associated matrix can be decomposed as LE,ω
r = [

−→
B ω
r]
T [
−→
B ω
r]. Hence, the ma-

trix LE,ω
r is still an ‘edge Laplacian’, although obtaining the exact form for stage-r

incidence matrix
−→
B ω
r is not straightforward.

3. Update for the Edge Laplacian via Incidence Matrix

• Updating the graph structure (relinkage): Similar to LOCAAT pro-

posed by Jansen et al. (2004, 2009), a relinking step will be performed for

the graph structure at the end of every stage. As we mentioned in the edge

Laplacian form, LE,ω = W 1/2−→B
T−→
BW 1/2, the information on the edges of the

graph is given by the matrix W , while the incidence matrix
−→
B indicates the

connectivity and orientation of the graph. Thus, here we consider performing

the relinkage by evolving the matrix
−→
B r at stage-r to

−→
B r−1 at stage-(r − 1).

As discussed in E-LOCAAT, the relinkage procedure for a tree graph could be

divided into two steps, which are edge removal and vertex merging. Thus, if we

have a matrix of dimension p× q, then after one-step relinkage, the resulting

matrix will be a (p− 1)× (q − 1) matrix. It is clearer to start from stage-m,

where we recall that the i-th row of the incidence matrix
−→
B represents the

incidence information of the vertex vi, while the k-th column represents the

4.2. Proposed Laplacian-LOCAAT Framework 147

incidence information of edge ek. Suppose from stage-m to stage-(m− 1), the

edge to be lifted is ekm = {vim , vjm}. The edge removal simply means deleting

the km-th column of
−→
Bm, and the vertex merging is to combine vim and vjm

such that they become a new vertex.

For computational reasons, here we introduce an alternative design, which

is to keep one vertex of {vim , vjm}. Suppose that im < jm, then we firstly

transform all incidence information of vjm to vim , in terms of a row addition of

the im-th and the jm-th row of
−→
Bm. Since each edge only contains two distinct

vertices, if the k-th element of the im-th row is non-zero (where k ̸= km,

indicates that vim ∈ ek), then the k-th element of the jm-th row must be

zero. Therefore, adding the jm-th row to the im-th row and then deleting the

jm-th row will be our relinkage strategy. In this case, the incidence matrix
−→
Bm−1 at stage-(m − 1) is a (n − 1) × (m − 1) matrix, where n = m + 1

for a tree graph. The rows of
−→
Bm−1 represent the incidence information of

{v1, ..., vjm−1, vjm+1, ..., vn}, therefore, we can construct a map from this set

of remaining vertices to the index set of the incidence matrix
−→
Bm−1, which is

{1, ...,m−1}, so that the s-th row of
−→
Bm−1 indicates the incidence information

of vs if s < j, or indicates the incidence information of vs+1 if s ≥ j. A similar

map can be defined for the set of remaining edges {e1, ..., ekm−1, ekm+1, ..., em},

such that the l-th column of
−→
Bm−1 indicates the incidence information of the

edge el if l < km or indicates the incidence information of the edge el+1 if

l ≥ km. According to this construction, we could define the relinkage as a

148 Chapter 4. Laplacian-LOCAAT Construction

transform from
−→
B r to

−→
B r−1, where ekr = (vir , vjr) and ir < jr, such that

[−→
B r−1

]
ik
=

[−→
B r

]
ik
, if i < jr; i ̸= ir and k < kr;[−→

B r

]
i,k+1

, if i < jr; i ̸= ir and k ≥ kr;[−→
B r

]
i+1,k

, if i ≥ jr and k < kr;[−→
B r

]
i+1,k+1

, if i ≥ jr and k ≥ kr;[−→
B r

]
ik
+
[−→
B r

]
jr,k
, if i = ir and k < kr;[−→

B r

]
i,k+1

+
[−→
B r

]
jr,k+1

, if i = ir and k ≥ kr.

(4.2.8)

• Updating the weight matrix: Recall that our construction is based on the

edge Laplacian of the form LE,ω = (
−→
BW 1/2)T (

−→
BW 1/2) = W 1/2−→B

T−→
BW 1/2.

Therefore we have a further term to be updated, which is the weight matrix

Wr at stage-r (here,Wm = W). The update of weight matrix could be flexibly

completed to account of some real-life measures, such as traffic flow (Deri and

Moura; 2015) or streamflow strength (Park et al.; 2022). Our focus here is to

describe possible ways of updating the weight matrices and not to find the

optimal solution.

An interesting observation is that many different designs of the prediction and

update weights result from different choices of W plugged into the Laplacian-

based method, e.g, if we let [W]kk = 1/ℓ2k for all k, then it initially results

in the inverse length prediction weight construction (equation 3.1.15) as dis-

cussed in Section 3; if we let [W]kk = 1 for all k, then it results in the

moving average case. In our work, the initial diagonal entries of W are set

as [W]kk = 1/ℓk as we discussed before in prediction step. We additionally

introduce a further approach for the update of the weight matrix from stage-r

to stage-(r − 1), which is as follows (further options are possible and easily

4.2. Proposed Laplacian-LOCAAT Framework 149

implemented too),

[Wr−1]kk′ =

0, if k ̸= k′;

αk,r [Wr]kk′ , if k = k′ < kr and k ∈ N E
kr,r

;

[Wr]kk′ , if k = k′ < kr and k /∈ N E
kr,r

;

αk,r [Wr]k+1,k′+1, if k = k′ ≥ kr and k ∈ N E
kr,r

;

[Wr]k+1,k′+1, if k = k′ ≥ kr and k /∈ N E
kr,r

,

where αk,r is a shrinkage parameter satisfies 0 < αk,r < 1. The reason we

decrease the size of the weights associated with the neighbourhood set N E
kr,r

is that larger weights cause issues with the algorithm stability and scale-

mixing, see Jansen and Oonincx (2005). In this work, we set αk,r = 1/2 to

test the performance of our method as this aligns well with the proposed re-

cursive construction for the edge Laplacian. An interesting question for the

future is to construct an optimal value αk,r by means of exploiting quan-

tities such as the Laplacian distance mentioned in Severn et al. (2021), or

eigenvalue/eigenvector properties described by Chung (1997).

4. Computational Aspects of the Update Step

As the algorithm progresses, we will decrease the dimension of incidence matrices

and weight matrices, as they are updated through the algorithm. Computationally,

it is easier to instead keep the initial dimension and replace the corresponding

rows and columns with zero vectors. In this section, we will mainly discuss the

computational update steps based on the weight matrix and incidence matrix, since

the only thing that has to be considered in the update step by Schur complement

is the permutation of the rows/columns. Then the incidence matrix relinkage could

be divided into two steps as follows:

• Vertex merging: Let us now define the dimension-preserving oriented in-

cidence matrix
−→̃
B r ∈ Rn×m for all r ∈ {m, ..., 2}, and the removal edge at

150 Chapter 4. Laplacian-LOCAAT Construction

this stage is ekr = {vir , vjr}. The vertex-merging could be completed by com-

bining the ir-th and jr-th rows of
−→̃
B r. Denote rowir(

−→̃
B r) as the vector of

dimension m representing the i-th row of
−→̃
B r, then the vertex merging could

be expressed as

rowir

(−→̃
B r−1

)
= rowir

(−→̃
B r

)
+ rowjr

(−→̃
B r

)
.

rowjr

(−→̃
B r−1

)
= 0, (4.2.9)

where 0 is the zero-vector of the same dimension as rowjr

(−→̃
B r

)
. There is

no significance in the choice of ir and jr, but here we always assume that

ir < jr, thus we always plug the information from jr-th row into ir-th row.

We notice that the ir-th row of the matrix
−→̃
B r is the incidence information of

the vertex vir , see the matrix form (1.4.2). Due to the fact that two distinct

vertices, for example, vir and vjr , cannot simultaneously belong to more than

one edge, rowir(
−→̃
B r) and rowjr(

−→̃
B r) only have one common non-zero element

at the same location, which is the kr-th element, then the k-th element of

rowir(
−→̃
B r−1) can be written as

[rowir(
−→̃
B r−1)]k =

0, if k = kr;

1, if k ̸= kr and if vir ∈ ek or vjr ∈ ekr ;

0, otherwise.

(4.2.10)

The reason for the k-th element becoming zero if k = kr is that one of [
−→̃
B]ir,kr

and [
−→̃
B]jr,kr is 1 and another is −1.

• Edge Removal: Once we lifted an edge ekr at stage-r, we have to remove the

corresponding column from the whole matrix incidence structure. For achiev-

ing this, we could just simply remove the kr-th column from the dimension-

preserving incidence matrix
−→̃
B r. Notice that after performing vertex merging

(equation (4.2.10)), the kr-th column immediately becomes a vector of all

zeros, since at stage-r, only the ir-th and jr-th element of kr-th column are

non-zero.

4.2. Proposed Laplacian-LOCAAT Framework 151

A similar update will also be performed for the weight matrix computation. The

construction for the weight matrix is more intuitive than for the incidence matrix,

where we only have to update the weights associated with the neighbourhoodN E
kr,r

.

The element indicating the weight of kr-th edge, [Wr]kr,kr , will not contribute to

the edge Laplacian at stage-(r− 1) because the kr-th column of
−→̃
B r−1 is 0, see the

discussion above.

Inverse Transform

The inverse transform can be done by simply undoing the predict and update steps,

which are

cEj,r = cEj,r−1 − bEj,r dEkr .

cEkr,r = dEkr +
∑

j∈NE
kr,r

aEj,rc
E
j,r.

Recall the lifting coefficient array designed for the inverse transform, see Section 2.3.2,

which consists of indicators for the removal edge and its neighbourhood, and the (predic-

tion and update) weights at each stage. In their construction, there is no other informa-

tion that has to be stored in this array because of the inverse of the minimal spanning

tree relinkage is uniquely defined, see Jansen et al. (2009) for more details. However,

this is not the case with our method. For the ability to recover the graph structure, in

terms of recovering from
−→̃
Bm−τ (τ is the number of lifted edges) to

−→̃
Bm, more informa-

tion must be stored in the lifting array. We set our recovery for the incidence matrix as

follows. Firstly, we want to have a map that recovers rowjr

(−→̃
B r

)
from rowjr

(−→̃
B r−1

)
.

Through this step, we could see that the essential items for recovery are the kr-th el-

ement value of rowjr

(−→̃
B r

)
, and the index jr for the vertex vjr and a subset of N E

kr,r
,

which indicates those edges that contain the vertex vjr at stage-r. Let us denote this

by subjr(N E
kr,r

) = {l | el ∈ N E
kr,r

and vjr ∈ el}. This subset can be easily determined by

the locations of those non-zero elements in rowjr

(−→̃
B r

)
except kr while performing the

forward transform. Similarly, the value

[
rowjr

(−→̃
B r

)]
kr

will be stored throughout the

152 Chapter 4. Laplacian-LOCAAT Construction

algorithm. The next step will be obtaining rowir

(−→̃
B r

)
by

rowir

(−→̃
B r

)
:= rowir

(−→̃
B r−1

)
− rowjr

(−→̃
B r

)
(4.2.11)

Through this step we do not have to store any other information, the kr-th column is

automatically recovered through the equation (4.2.11). The associated vertices vir and

vjr (indices ir and jr) have to be stored as well. Thus, the lifting array in our method is

kr |N E
kr,r| SE

r |subjr
(
N r
kr

)
| subjr

(
N r
kr

)
aEr bEr ir jr

[
rowjr

(−→̃
B r

)]
kr

.

where SE
r is the set consists of all s such that es ∈ N E

kr,r
, and aEr ; b

E
r are sequences of

predict and update coefficients.

The inverse transform corresponding to using the Schur complement is more straight-

forward than the one via updating incidence and weight matrices. Since the Schur com-

plement naturally gives us the structure update (relinkage), we can simply set the lifting

array as

kr |N E
kr,r| SE

r aEr bEr .

where SE
r is the set consists of all s such that es ∈ N E

kr,r
, and aEr ; b

E
r are sequences of

predict and update coefficients. This lifting array enables us to recover the signal, for

recovering the whole edge Laplacian structure, we only have to store the value
[
LE,ω
r

]
kr,kr

and the associated non-zero values of the vector Jr (see equation (4.2.7)), which is of

the same size of the neighbourhood N E
kr,r

. Then the Schur complement can be obtained

by undoing equation (4.2.7).

4.2.2 Proposed LOCAAT via the Line Graph Laplacian

Recalling the algebraic relation between the line graph and corresponding edge Laplacian

of the original graph (equation (4.1.9)) suggests to propose rewriting equation (4.1.9) in

a weighted form, specifically

A(LG(Gω)) =
∣∣LE,ω(Gω)− 2W

∣∣ .

4.2. Proposed Laplacian-LOCAAT Framework 153

Here the weight matrixW is used instead of the identity matrix I, since its role is simply

to turn the diagonal entries to be all zeros. We next define the degree matrix as

D(LG(Gω)) =

∑n

j=1[A(LG(Gω))]1j 0
. . .

0
∑n

j=1[A(LG(Gω))]nj

 ,

thus, the line graph Laplacian can be obtained by

L(LG(Gω)) = D(LG(Gω))− A(LG(Gω)). (4.2.12)

Since D(LG(Gω)) is determined by A(LG(Gω)), hence, the graph information can be

encoded into the edge adjacency matrix. The matrix AV̂,ω = A(LG(Gω)) is the algebraic

equivalent to the edge adjacency matrix, but defined on the set of line graph vertices

V̂ . Therefore, the matrix L(LG(Gω)) (or LV̂,ω) can lead to a variant of the Laplacian-

LOCAAT transform, in which the line graph Laplacian is used instead of the edge

Laplacian.

The lengths of the new edges correspond to the reciprocal of their weights, which

can be written as ℓ′(êks) = 1/[A(LG(Gω))]ks, where êks = {v̂k, v̂s}. We denote Γ̂ as the

metrized graph space for the graph given by the line graph Laplacian LV̂,ω, then the

partitionings and the functional forms can be constructed as in Section 2.3.1.

We propose the following algorithm.

Split

Consider the construction of the scaling functions as in Chapter 2, then for the new line

graph Laplacian-LOCAAT, we can start with their associated choices of initial scaling

function integral values. Then we can have the same initial integral measure as in LG-

LOCAAT, where the sum of distances can be represented as in equation (2.3.6), such

that

I V̂,sumk,m =
∑

s∈N V̂
k,m

ℓ′(êks),

154 Chapter 4. Laplacian-LOCAAT Construction

where N V̂
k,m is determined by the non-zero entries of AV̂,ω.

Similarly, the average distance can be written as in equation (2.3.7), such that

I V̂,avek,m =
I V̂,sumk,m

|N V̂
k,m|

,

We can also set initial integral values corresponding to the lazy lifting, such that

I V̂,Delta
k,m = 1,

as in equation (2.3.8).

The split strategy will still based on the line graph vertex with the minimum integral

value, and a random choice when several integral values are the same.

Predict

We propose to alter the prediction weights by substituting the stage-r edge Laplacian

with stage-r line graph Laplacian LV̂,ω
r . Thus, for the chosen edge ekr and its neighbour-

hood N V̂
kr,r

the prediction weights are given by

aV̂s,r =

∣∣∣∣[LV̂,ω
r

]
kr,s

∣∣∣∣∑
t:et∈N V̂

kr,r

∣∣∣∣[LV̂,ω
r

]
kr,t

∣∣∣∣ .
and the detail coefficient can be obtained by

dV̂kr = cV̂kr,r −
∑

s: es∈N V̂
kr,r

aV̂s,rc
V̂
s,r.

Update

Note that the initial line graph Laplacian LV̂,ω
m cannot be represented by the incidence

matrix
−→
B and the weight matrix W of the original graph. In fact, we have to construct

a new incidence matrix and an associated weight matrix of higher dimensions, since the

line graph normally consists of more edges than the original graph, which might cause

computational inefficiency. Moreover, note that the relinkage strategy through updating

4.3. Simulation Study 155

the incidence matrix is computationally non-problematic because we do not have to add

any structure. Removing edges and combining vertices can be simply coded as deleting

and performing addition for associated rows and columns in the incidence matrix. How-

ever, it is impossible to complete the relinkage for the line graph without checking the

graph connectivity, hence structure updating through the incidence matrix and weight

matrix might not be a good choice when considering the associated computational effort.

However, updating structure by the Schur complement is still valid, and in fact, taking

the Schur complement of a graph Laplacian has many desirable properties, as follows.

Theorem (Devriendt (2022)). The Schur complement of a graph Laplacian is a graph

Laplacian.

We also have the following theorem assuring the connectivity of the stage-r line graph

structure.

Theorem (Dorfler and Bullo (2012)). The Schur complement of an irreducible graph

Laplacian is also irreducible.

The irreduciblity of a graph Laplacian is equivalent to the connectivity of the vertex

set, see Dorfler and Bullo (2012). For an irreducible graph Laplacian, the diagonal com-

ponents have to be non-zero positive values. Hence, performing the Schur complement

as the structure update (and relinkage) is still valid, as discussed in Section 4.2.1. The

algorithm then consists of re-iterating the split-predict-update steps we described above.

4.3 Simulation Study

In this section, we test the proposed algorithm on the simulation test functions described

in Chapter 2.4.1. A list consisting of the descriptions and acronyms of our chosen algo-

rithms is provided in Table 4.1.

156 Chapter 4. Laplacian-LOCAAT Construction

Acronym
EL-SC-L LOCAAT algorithm with edge Laplacian, Laplacian up-

dated by Schur complement, the initial weight matrix is
given by Wm

kk = 1/ℓk, and initial scaling function inte-
gral value determined by lengths.

EL-W-L LOCAAT algorithm with edge Laplacian, Laplacian up-
dated by weight matrix and incidence matrix, the initial
weight matrix is given byWm

kk = 1/ℓk, and initial scaling
function integral value determined by lengths.

EL-SC-D LOCAAT algorithm with edge Laplacian, Laplacian up-
dated by Schur complement, the initial weight matrix is
given by Wm

kk = 1/ℓk, and initial scaling function inte-
gral value determined by a sequence of ones.

EL-W-D LOCAAT algorithm with edge Laplacian, Laplacian up-
dated by weight matrix and incidence matrix, the initial
weight matrix is given by Wm

kk = 1/ℓk, and initial scal-
ing function integral value determined by a sequence of
ones.

LGL-SC-S LOCAAT algorithm with Line graph Laplacian, Lapla-
cian updated by Schur complement, sum of distances as
the integrals of the initial primal scaling functions.

LGL-SC-A LOCAAT algorithm with Line graph Laplacian, Lapla-
cian updated by Schur complement, average distances
as the integrals of the initial primal scaling functions.

LGL-SC-D LOCAAT algorithm with Line graph Laplacian, Lapla-
cian updated by Schur complement, a sequence of ones
as the integrals of the initial primal scaling functions.

Table 4.1: Acronyms and algorithm descriptions for different parameter choices of LG-
LOCAAT.

4.3.1 Stability

The stability study will be presented in this section. We note that the stability results

are quite similar for most of the algorithms, except for ‘EL-SC-L’ and ‘LGL-LG-S-Rem’,

which appears less stable than other algorithms, namely, ‘EL-SC-D’. The sparsity results

are slightly better than LG-LOCAAT, but slightly less stable when compared with E-

LOCAAT.

4.3. Simulation Study 157

Condition Number Max 75% Median 25% Min
EL-SC-L 14.0715 11.9665 11.5194 11.0676 10.7022
EL-W-L 13.1193 11.8048 11.4902 11.0826 10.5132
EL-SC-D 12.0302 11.1227 10.7234 10.2282 9.9567
EL-W-D 12.1063 11.0290 10.7075 10.3864 10.0916

LGL-SC-S 13.5790 12.4173 11.8303 11.4840 10.8405
LGL-SC-A 13.2385 11.8782 11.1536 10.8220 10.2659
LGL-SC-D 12.9910 12.1666 11.5973 11.2536 10.5370

Table 4.2: Condition number for E-LOCAAT on a tree structure.

4.3.2 Sparsity

Similar to Sections 2 and 3, the sparsity plots for Laplacian-LOCAAT will be constructed

in the same way. The results will be presented for both pointwise functions and the edge

averaging function as we discussed in Section 2.4.1.

According to these figures, we can see that the sparsity for each function follows a

similar pattern to the LG-LOCAAT and E-LOCAAT. The compression ability for most

of the functions is good, however it is still difficult to attain a good compression for the

Heavisine function.

4.3.2.1 Sparsity Plot for Pointwise Functions

In this section, we provide the sparsity plots for different schemes performed on the

pointwise functions as described in equation (2.4.1).

158 Chapter 4. Laplacian-LOCAAT Construction

Figure 4.1: Sparsity plots for the test functions used in simulation by the equation
(2.4.1). The scheme is based on the edge Laplacian, and updated by Schur complement,
and incidence and weight matrix. From left to right on top row: g1, blocks; middle row:
doppler, bumps; bottom row: heavisine, maartenfunc. Black line: EL-SC-L; Red line:
EL-W-L. Blue line: EL-SC-D; Green line: EL-W-D.

4.3. Simulation Study 159

Figure 4.2: Sparsity plots for the test functions used in simulation by the equation (2.4.1).
The scheme is based on the line graph Laplacian, and updated by Schur complement.
From left to right on top row: g1, blocks; middle row: doppler, bumps; bottom row: heav-
isine, maartenfunc. Black line: LGL-SC-S; dashed black line: LGL-SC-A; dotted
black line: LGL-SC-D.

4.3.2.2 Sparsity Plot for Edge Averaging Functions

In this section, we provide the sparsity plots for different schemes performed on the

pointwise functions as described in equation (2.4.2).

160 Chapter 4. Laplacian-LOCAAT Construction

Figure 4.3: Sparsity plots for the test functions used in simulation by the equation
(2.4.2). The scheme is based on the edge Laplacian, and updated by Schur complement,
and incidence and weight matrix. From left to right on top row: g1, blocks; middle row:
doppler, bumps; bottom row: heavisine, maartenfunc. Black line: EL-SC-L; Red line:
EL-W-L. Blue line: EL-SC-D; Green line: EL-W-D.

4.3. Simulation Study 161

Figure 4.4: Sparsity plots for the test functions used in simulation by the equation (2.4.2).
The scheme is based on the line graph Laplacian, and updated by Schur complement.
From left to right on top row: g1, blocks; middle row: doppler, bumps; bottom row: heav-
isine, maartenfunc. Black line: LGL-SC-S; dashed black line: LGL-SC-A; dotted
black line: LGL-SC-D.

4.3.3 Denoising Performance

In this section, we will provide a simulation study for the functions also tested in Chap-

ters 2 and 3.

4.3.3.1 Denoising Pointwise Functions

From Tables 4.3, 4.4, and 4.5, we can see that the methods with ‘D’ (a sequence of

ones) as the initial integral values are competitive. However, the two proposed methods

of updating the coefficients (through the Schur complement and through incidence and

weight matrices) with both edge Laplacian or line graph Laplacian yield similar results,

162 Chapter 4. Laplacian-LOCAAT Construction

and close to the best results obtained across all proposed algorithms. Compared with

E-LOCAAT and LG-LOCAAT, the biorthogonal Haar is still the best choice when the

underlying function is mostly piecewise constant (g1 and Blocks). We can see that the al-

gorithms with line graph Laplacian (‘LGL’) show similar patterns to the results reported

in LG-LOCAAT. ‘EL-SC-D’, ‘EL-W-D’, and ‘LGL-SC-D’ deserve more emphasis, since

they are totally algebraic, which works even when the data do not form a metric space.

AMSE×103 (sd×103) g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

EL-SC-L 72 (22) 135 (58) 108 (38) 94 (27) 237 (78) 52 (12)
EL-W-L 73 (22) 138 (60) 109 (38) 94 (27) 237 (78) 54 (12)
EL-SC-D 67 (19) 126 (50) 97 (32) 84 (21) 251 (92) 48 (11)
EL-W-D 67 (19) 125 (50) 98 (32) 85 (21) 251 (91) 49 (11)

LGL-SC-S 68 (21) 121 (50) 115 (41) 100 (29) 292 (101) 56 (13)
LGL-SC-A 67 (20) 123 (47) 100 (34) 87 (23) 216 (76) 48 (11)
LGL-SC-D 66 (19) 123 (48) 96 (31) 83 (21) 250 (89) 47 (11)

SNR=5
EL-SC-L 27 (10) 49 (22) 44 (18) 44 (15) 171 (58) 25 (5)
EL-W-L 27 (10) 50 (24) 43 (17) 44 (15) 171 (57) 26 (6)
EL-SC-D 25 (8) 49 (22) 39 (13) 40 (13) 190 (84) 24 (5)
EL-W-D 25 (8) 48 (21) 39 (13) 40 (13) 190 (84) 24 (5)

LGL-SC-S 23 (8) 44 (18) 46 (17) 49 (18) 225 (89) 27 (6)
LGL-SC-A 24 (8) 46 (20) 40 (15) 42 (14) 154 (59) 23 (5)
LGL-SC-D 24 (8) 49 (21) 39 (14) 40 (13) 191 (83) 23 (5)

SNR=7
EL-SC-L 13 (5) 25 (12) 24 (9) 27 (10) 152 (52) 16 (4)
EL-W-L 12 (5) 26 (12) 24 (9) 27 (10) 151 (49) 17 (4)
EL-SC-D 12 (4) 26 (12) 21 (7) 25 (9) 171 (80) 15 (4)
EL-W-D 12 (4) 25 (12) 21 (7) 25 (9) 171 (81) 16 (4)

LGL-SC-S 11 (3) 22 (9) 26 (10) 31 (13) 203 (85) 18 (5)
LGL-SC-A 11 (4) 24 (11) 22 (8) 25 (10) 136 (53) 15 (3)
LGL-SC-D 12 (4) 26 (12) 21 (8) 25 (9) 173 (81) 15 (3)

Table 4.3: The AMSE table for different schemes. The test functions are the pointwise
ones defined in equation (2.4.1).

4.3.3.2 Denoising Edge Averaging Function

For the edge averaging functions, the results yield similar inferences when compared to

those associated to pointwise functions.

4.3. Simulation Study 163

Variance×103 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

EL-SC-L 50 71 61 54 70 40
EL-W-L 51 72 62 54 70 41
EL-SC-D 52 86 70 61 113 40
EL-W-D 53 86 72 62 115 41

LGL-SC-S 50 68 63 54 70 41
LGL-SC-A 48 66 59 51 66 38
LGL-SC-D 51 83 68 58 107 39

SNR=5
EL-SC-L 20 27 24 22 29 16
EL-W-L 20 27 24 23 29 16
EL-SC-D 21 35 29 28 75 17
EL-W-D 21 34 30 28 76 18

LGL-SC-S 20 25 24 23 32 16
LGL-SC-A 19 25 23 22 28 15
LGL-SC-D 21 34 28 26 71 16

SNR=7
EL-SC-L 10 14 13 13 16 9
EL-W-L 10 14 13 13 16 9
EL-SC-D 11 19 16 17 64 11
EL-W-D 11 18 16 17 65 11

LGL-SC-S 9 13 13 13 19 9
LGL-SC-A 9 13 12 12 16 9
LGL-SC-D 11 19 15 16 60 10

Table 4.4: The variance table for different schemes. The test functions are the pointwise
ones defined in equation (2.4.1).

Empirical Computational Cost

The standard running time for Laplacian-LOCAAT is 00:08:30, and 90% of the algo-

rithms completing within 00:11:00. Hence the algebraic construction at the heart of the

Laplacian-LOCAAT algorithms offers a faster computation than for both LG-LOCAAT

and E-LOCAAT.

164 Chapter 4. Laplacian-LOCAAT Construction

bias2 × 103 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

EL-SC-L 22 64 48 40 167 12
EL-W-L 23 66 47 40 167 13
EL-SC-D 15 40 27 24 138 9
EL-W-D 14 39 26 23 136 8

LGL-SC-S 17 53 53 46 222 15
LGL-SC-A 19 57 41 37 150 10
LGL-SC-D 14 40 28 25 143 8

SNR=5
EL-SC-L 7 23 20 22 142 9
EL-W-L 7 23 19 22 142 10
EL-SC-D 3 14 9 12 114 6
EL-W-D 3 13 9 12 113 6

LGL-SC-S 5 18 22 27 193 11
LGL-SC-A 6 21 17 20 126 8
LGL-SC-D 4 14 10 13 120 6

SNR=7
EL-SC-L 3 12 11 15 136 7
EL-W-L 2 12 11 14 135 7
EL-SC-D 1 7 5 8 107 5
EL-W-D 1 7 5 8 106 5

LGL-SC-S 2 9 13 18 183 9
LGL-SC-A 2 11 10 13 120 5
LGL-SC-D 1 7 6 9 112 5

Table 4.5: The squared bias table for different schemes. The test functions are the point-
wise ones defined in equation (2.4.1).

4.3. Simulation Study 165

AMSE×103 (sd×103) g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

EL-SC-L 69 (19) 148 (60) 105 (35) 95 (28) 257 (86) 52 (12)
EL-W-L 70 (20) 151 (62) 105 (34) 94 (27) 256 (87) 53 (12)
EL-SC-D 62 (17) 125 (46) 92 (28) 83 (21) 243 (85) 47 (11)
EL-W-D 62 (17) 125 (45) 93 (28) 84 (21) 243 (85) 48 (11)

LGL-SC-S 67 (21) 134 (53) 109 (34) 101 (29) 302 (100) 55 (13)
LGL-SC-A 62 (17) 131 (49) 95 (29) 87 (24) 228 (78) 48 (11)
LGL-SC-D 61 (16) 123 (43) 91 (27) 82 (20) 242 (82) 46 (11)

SNR=5
EL-SC-L 31 (11) 62 (30) 46 (18) 45 (16) 193 (69) 25 (5)
EL-W-L 31 (11) 63 (30) 45 (17) 45 (15) 193 (68) 26 (5)
EL-SC-D 26 (8) 53 (23) 40 (14) 40 (12) 187 (77) 23 (5)
EL-W-D 26 (8) 53 (22) 40 (14) 40 (12) 187 (77) 24 (5)

LGL-SC-S 27 (9) 54 (24) 48 (18) 50 (19) 240 (91) 27 (6)
LGL-SC-A 26 (8) 55 (25) 41 (15) 42 (14) 168 (64) 22 (5)
LGL-SC-D 26 (8) 53 (23) 40 (14) 39 (12) 189 (77) 22 (5)

SNR=7
EL-SC-L 16 (6) 34 (17) 26 (10) 27 (11) 174 (61) 16 (4)
EL-W-L 16 (6) 34 (18) 25 (10) 27 (11) 174 (61) 17 (4)
EL-SC-D 14 (5) 30 (14) 22 (8) 24 (9) 170 (75) 15 (3)
EL-W-D 14 (4) 29 (14) 22 (8) 24 (9) 170 (75) 15 (4)

LGL-SC-S 14 (5) 29 (14) 27 (11) 31 (13) 220 (86) 18 (5)
LGL-SC-A 14 (5) 30 (15) 23 (9) 26 (10) 150 (57) 14 (3)
LGL-SC-D 14 (4) 30 (14) 22 (9) 24 (9) 173 (76) 14 (3)

Table 4.6: The AMSE table for different schemes. The test functions are the edge aver-
aging ones defined in equation (2.4.2).

166 Chapter 4. Laplacian-LOCAAT Construction

Variance×103 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

EL-SC-L 46 69 57 54 70 40
EL-W-L 47 70 58 53 70 41
EL-SC-D 49 83 65 60 111 40
EL-W-D 49 83 66 61 112 41

LGL-SC-S 47 67 58 53 68 41
LGL-SC-A 44 65 54 50 66 38
LGL-SC-D 47 81 62 57 104 39

SNR=5
EL-SC-L 19 28 24 22 29 16
EL-W-L 20 28 24 23 29 16
EL-SC-D 21 37 29 28 74 17
EL-W-D 21 37 29 28 75 18

LGL-SC-S 19 27 24 23 31 16
LGL-SC-A 18 26 22 21 28 15
LGL-SC-D 21 36 28 26 70 16

SNR=7
EL-SC-L 11 15 13 13 16 9
EL-W-L 11 15 13 13 17 9
EL-SC-D 12 21 16 17 63 10
EL-W-D 12 21 17 17 64 11

LGL-SC-S 10 14 13 13 19 9
LGL-SC-A 10 14 12 12 16 8
LGL-SC-D 11 20 16 16 59 9

Table 4.7: The variance table for different schemes. The test functions are the edge
averaging ones defined in equation (2.4.2).

4.3. Simulation Study 167

bias2 × 103 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

EL-SC-L 23 79 48 41 187 12
EL-W-L 23 80 47 41 187 12
EL-SC-D 13 42 27 23 133 8
EL-W-D 13 41 27 22 131 8

LGL-SC-S 20 67 51 47 233 14
LGL-SC-A 18 66 41 37 163 10
LGL-SC-D 13 43 28 25 138 8

SNR=5
EL-SC-L 11 34 22 22 164 9
EL-W-L 11 34 22 22 164 9
EL-SC-D 5 16 11 12 113 6
EL-W-D 5 16 10 12 112 6

LGL-SC-S 8 28 24 27 209 11
LGL-SC-A 8 29 19 20 140 8
LGL-SC-D 5 17 12 13 119 6

SNR=7
EL-SC-L 6 19 13 15 157 7
EL-W-L 5 20 13 15 157 7
EL-SC-D 2 9 6 8 107 4
EL-W-D 2 9 6 7 106 4

LGL-SC-S 4 15 14 18 201 9
LGL-SC-A 4 16 11 13 134 6
LGL-SC-D 2 9 7 9 113 5

Table 4.8: The squared bias table for different schemes. The test functions are the edge
averaging ones defined in equation (2.4.2).

Chapter 5

Hydrological Data Analysis via

Non-decimated Algorithms

In this chapter, we propose non-decimated versions for the algorithms we introduced

in Chapters 2, 3, and 4. We show that the non-decimated lifting transform can be

easily implemented in computation, as shown in Knight and Nason (2009) for the one-

dimensional case, and the resulting algorithms have competitive properties when evalu-

ated on simulated flow data and dissolved oxygen (DO) dataset. Chapters 2 and 5 have

been (partially) packaged as a preprint (Cao et al.; 2024) and submitted for publication.

5.1 Non-decimated Lifting Transform

To bring the ‘non-decimation’ concept into the irregular data setup, Knight and Na-

son (2009) introduced a non-decimated lifting transform (NLT) based on the LOCAAT

framework from Jansen et al. (2004, 2009). Instead of using the shift operator, the non-

decimation is introduced via different ‘trajectories’ of removal order.

The framework of the NLT can be described as follows. Suppose we are still following

the nonparametric regression problem and that there is an underlying true, unknown

function g, sampled at a set of irregular locations x = {x1, ..., xn}, which gives us a set of

noisy observations f = {f1, ..., fn}. Unlike the general LOCAAT transform, the split step

168

5.1. Non-decimated Lifting Transform 169

of NLT is determined by using a predefined removal order. We denote T = (xo1 , ..., xon) as

a trajectory, where (o1, ..., on) is a permutation of (1, ..., n). The transform starts with the

removal of the observation located at xo1 , and the prediction will be performed for fxo1 ,

followed by the update step for relevant quantities (observation values and the integral

values) of its neighbours. Then we perform the predict and update steps for xo2 and so

on. After the full algorithm iteration, a sequence of detail coefficients {do1 , do2 ..., don−2}

will be obtained. Following this idea, we generate P different trajectories, denoted as

{Tp}Pp=1. Then for each p-th trajectory, we will obtain a detail coefficient sequence dp. As

a result of the transform across all P trajectories, we will have a set of detail coefficients

{dpi }p∈{1,...,P}, i∈{1,...n}. The main difference when compared with the NDWT is that NLT

will give several detail coefficients for each location across artificial levels, as opposed to

exactly one, see Knight and Nason (2009). Hence, in NLT case, the problem ‘to fill in

the gap’ of the decimation can be expressed as to select P ‘well-behaved’ trajectories. As

Knight and Nason (2009) pointed out, a proper selection of trajectories should have the

ability to explore the trajectory space consisting of all (n!) permutations of {1, ..., n}.

Once we obtain the detail coefficients, the denoising strategy assuming additive noise

is as follows. For the p-th trajectory Tp, we threshold the detail coefficient sequence dp by

a chosen shrinkage method (in our work, empirical Bayes thresholding). Then the inverse

transform will be performed to obtain an estimate ĝ(p) of the function g. Denote ĝ(p)(xi)

as the estimate of the observation gi at location xi, obtained by the p-th trajectory. Then

the NLT-based averaged estimator of g can be written as

ˆ̄g(xi) =
1

P

P∑
p=1

ĝ(p)(xi),

for all i ∈ {1, ..., n}. This aggregate estimator has the ability to improve performance of

individual (path) estimators as well as lower their variability (Knight and Nason; 2009).

170 Chapter 5. Hydrological Data Analysis via Non-decimated Algorithms

5.2 NLT for our Proposed Algorithms

In this section, we will discuss how to introduce a non-decimated transform stemming

from a selection of our proposed algorithms that have shown good performance in the

previous chapters. We will also put emphasis on the biorthogonal Haar construction,

since as we will see later, it can provide different trajectory choices.

Similarly to the previous chapters, suppose we have a graph G = (V , E), and a

function gE : E −→ R, with {fE
k }mk=1 the set of noisy observations on the edge set

{ek}mk=1. Then we naturally follow the idea from Knight and Nason (2009), and generate

P trajectories {Tp}Pp=1, where Tp = (eo1 , ..., eom) and (o1, ..., om) is a permutation of

the order sequence (1, ...,m). For each trajectory, let us say, the p-th one Tp, a detail

coefficient sequence dE,(p) can be obtained by any of (as long as it is the same) the

transforms we have proposed in previous chapters. Then similarly, an estimate ĝE,(p) will

be obtained. Hence, the average estimator can be written as

ˆ̄gEk =
1

P

P∑
p=1

ĝ
E,(p)
k ,

for k ∈ {1, ...,m}. In the work from Knight and Nason (2009), a genetic algorithm

(Lucasius and Kateman; 1993, 1994) is applied to generate ‘well-behaved’ trajectories,

which are those likely to have low variations. In the context of applying the LOCAAT

algorithm, for river network applications, Park et al. (2022) suggest to perform several

permutations within each stream cluster for each trajectory (see Section 5.4 later for the

discussion on stream clusters). In this work, we assume that there is no prior information

on the underlying function, thus, the trajectories are chosen by random permutations,

but note that further improvements may be possible as suggested by Knight and Nason

(2009) and Park et al. (2022).

5.2.1 Non-decimated ‘Lazy’ Lifting Transform

Notice that for the NLT, there is a possible stability issue caused by the use of a ran-

dom permutation (o1, ..., om). Recall that (see Section 2.3.3 or Jansen et al. (2009)) the

5.2. NLT for our Proposed Algorithms 171

transform is well-bounded if the size of update coefficients is in (0, 1
2
]. This condition is

always satisfied if the edge associated with the minimal scaling function integral value is

removed, and the update weights are constructed via the minimum norm solution, see

Jansen et al. (2009) for a detailed discussion. However, it is possible that an edge with

relative large (compared with its neighbouring edges) scaling function integral value is

chosen for removal by a random trajectory, which might cause an instability issue. Con-

sider for example that ekr is removed at stage-r, and it has only one neighbouring edge,

denote it as es. If I
E
kr,r

> IEs,r holds, where IEkr,r and IEs,r are the stage-r scaling func-

tion integral values associated with ekr and es, respectively, then the update coefficient

obtained by the minimum norm solution is

bEs,r =
IEkr,rI

E
s,r−1

(IEs,r−1)
2

=
IEkr,r
IEs,r−1

.

Since the prediction weight is aEs,r = 1 for the one neighbour case, we have IEs,r−1 =

IEs,r + IEkr,r, which yields

bEs,r =
IEkr,r

IEs,r + IEkr,r

>
IEkr,r

IEkr,r + IEkr,r

=
1

2
.

When the detail coefficient dEkr obtained at stage-r is not small (for example, if there

is a discontinuity between the values on ekr and es), then it is likely that after update

step, the scaling coefficient cEs,r−1 will be dominated by cEkr,r (see equation (2.3.19)),

which normally leads to large overlap between wavelet functions (Jansen and Bultheel;

1998) and may cause some unacceptable artifacts (Jansen and Oonincx; 2005). Although

the artifacts will be ‘averaged out’ through the non-decimated wavelet transform (see

Coifman and Donoho (1995) and Knight and Nason (2009)), we conjecture that the

denosing performance could be further improved if such instability issues are avoided.

172 Chapter 5. Hydrological Data Analysis via Non-decimated Algorithms

The ‘lazy lifting’ approach introduced in chapter can be considered as a way to solve

this issue. The key is that the lazy lifting itself has natural randomness embedded in

the trajectory choice when scaling function integral values equal one. Hence, instead of

generating random trajectories, we propose to perform several lazy lifting transforms

(with Kronecker deltas as the initial primal scaling functions, see in Chapter 2, 3 and

4). We then record the average of their denoised edge-functions as the NLT estimator.

5.2.2 Non-decimated Biorthogonal Haar Transform

Recall from Chapter 2.3.3 that only one of the neighbouring edges is chosen in the

prediction and update steps through the biorthogonal Haar E-LOCAAT. This gives us

more options to introduce the randomness into different trajectories.

We consider choosing the removal order (the trajectories {Tp}Pp=1) randomly as pro-

posed in Knight and Nason (2009). Recall that for biorthogonal Haar E-LOCAAT, the

one-step algorithm as proposed can be expressed as follows.

1. At stage-r, we remove the edge with the shortest length, denoted as ekr .

2. Among the neighbourhood of the chosen edge, the edge associated to the shortest

length will be chosen for performing the prediction. Then at stage-r, the prediction

is

dΓkr = cΓkr,r − c
Γ
s,r,

where Γ is the metrized graph for the original graphG, and s = arg mint:vt∈NE
kr,r
{ℓt,r}.

3. The value cΓs,r will then be updated by

cΓs,r−1 = cΓs,r + bΓs,rd
Γ
kr ,

where the update weight bΓs,r is obtained by

bΓs,r =
ℓkr,r

ℓkr,r + ℓs,r
.

4. Relink (see Section 3) and then iterate the steps to obtain the detail coefficients.

5.2. NLT for our Proposed Algorithms 173

We can see that the stability issue comes up if ℓkr,r > ℓs,r. On the other hand, choosing

a neighbouring edge es with ℓs,r ≫ ℓkr,r will result in an update weight close to zero.

Recall that the MRA framework for biorthogonal Haar E-LOCAAT can be expressed as

φΓ
s,r−1 = φΓ

s,r + φΓ
kr,r,

ψΓ
kr,r = φΓ

kr,r − b
Γ
s,rφ

Γ
s,r−1.

Note that the primal wavelets are generated by the update steps, see Sweldens (1998).

Hence, if bΓs,r is close to zero, then intuitively ψΓ
kr,r

almost locates in the vector space

spanned by φΓ
kr,r

, meanwhile the detail coefficient dΓkr is still obtained by the difference

between scaling coefficients, cΓkr,r−c
Γ
s,r. Recall that in the initial function expansion form,

the contribution for ekm is given by cΓkm,mφ
Γ
km,m

, while at stage-r, it is given by dΓkr,rψ
Γ
kr,r

.

Consider the situation that the coefficient and scaling function associated with ekr have

not been updated for any stage-r′, where r′ > r. Then if bΓs,r is close to zero, we will have

that ψΓ
kr,r

is approximately equal to φΓ
kr,r

, however, dΓkr is not typically equal to cΓkr,r since

dΓkr also highly depends on the value of cΓs,r. This suggests a loss of the local information

for the function expansion. As a result, for biorthogonal Haar E-LOCAAT, a desirable

design is to construct the update weight with a not negligible size, but bounded by 1
2
.

Then we propose the designated neighbour es ∈ N E
kr,r

to be chosen by the criterion

s = arg min
s: es∈NE

kr,r

{ℓs,r|ℓs,r > ℓkr,r}.

If this criterion cannot be satisfied, the edge es will be chosen by

s = arg max
s: es∈NE

kr,r

{ℓs,r}, (5.2.1)

in which the update weight will fall in the interval (1
2
, 1), but closer to 1

2
than any other

choice of the neighbouring edges.

We will also test a completely random biorthogonal Haar NLT algorithm, in which

both the removal edge and the neighbour used for prediction are chosen randomly.

174 Chapter 5. Hydrological Data Analysis via Non-decimated Algorithms

5.3 Simulation Study for Denoising Performance

In this section, as we did in previous chapters, a simulation study and the associated

results to the non-decimated version of our algorithms will be presented. Note that

both NLT and NDWT are over-determined transforms and they do not have an unique

inverse transform. Hence, implementing sparsity plots and condition numbers for the

overall NLT transform is of no benefit. Our main focus in this simulation is the denoising

performance of our proposed NLT variants, by means of the AMSE value. Recall that

our averaged estimator has the form

ˆ̄gEk =
1

P

P∑
p=1

ĝ
E,(p)
k ,

for k ∈ {1, ...,m}, where {ĝE,(p)k }mk=1 is the denoised version of the observed data {fE,obs
k }mk=1

corresponding to the p-th removal trajectory. The AMSE is obtained by simulating

R = 100 noise structures over Q = 50 different networks

AMSE = (QRm)−1

Q∑
q=1

R∑
r=1

m∑
k=1

(
ˆ̄gEk,q,r − gEk,q

)2
,

For the simulation study, we choose the algorithms from the previous chapters that

displayed best results. Specifically, the non-decimated versions of LG-LOCAAT that

will be tested are ‘LG-Aid-c’ and ‘LG-Did-c’. Similarly, the non-decimated versions of

‘E-Lil-nwu’, ‘E-Did-nwu’, and ‘E-Dil-nwu’ in E-LOCAAT will also be implemented. For

Laplacian-LOCAAT, ‘EL-SC-D’ and ‘LGL-SC-D’ will be chosen. As we discussed before,

the stabilised version of all these methods with (acronyms using ‘D’) as the choice for

the initial integral values and biorthogonal Haar NLT will be presented as special cases.

For the benefit of the reader, the acronyms and their meanings can be found in Tables

2.1, 3.1, and 4.1.

The algorithms whose acronyms end in the term ‘stable’ are the ones introduced in

Section 5.2.1. For the biorthogonal Haar construction, the algorithms that end in the

term ‘random’ indicate those with stable prediction as discussed in Section 5.2.2, while

those labelled with ‘mix.random’ are the ones that include randomness on both split

and prediction steps.

5.3. Simulation Study for Denoising Performance 175

5.3.1 Denoising Pointwise Functions

According to Tables 5.1-5.12, we can see that all of the non-decimated lifting algorithms

give more competitive results than those using one trajectory, albeit carefully chosen as

described in previous chapters. The only exception is the non-decimated biorthogonal

Haar algorithm for Heavisine function. This indicates that biorthogonal Haar construc-

tion does not work well for functions that display relative high variations. However, for

g1 and Blocks function, the non-decimated biorthogonal Haar construction is still the

most competitive. In addition, we see that if we only introduce the randomness into the

split step only, the non-decimated biorthogonal Haar performs better than the one with

randomnesses on both split and prediction step, which indicates that the magnitude of

the update coefficients does matter.

Contrary to our conjecture, the NLT algorithm with pruned trajectories for improved

stability does not improve the overall denoising performance, except for Heavisine func-

tion.

Overall, we can see that non-decimated lifting has the power to improve the net-

work edge denoising performance. Namely, for example, the AMSE for Blocks function

denoising via bio-Haar-random (30) in Table 5.7 has a 26.4% drop compared with the

one-trajectory bio-Haar algorithm. According to Tables 5.1-5.12, we can see that the

algorithms with P = 30 always performs better than those with P = 10. In conjunction

with the results in Knight and Nason (2009), we conjecture that increasing trajectories

has a high chance to improve the denoising performance in terms of AMSE.

176 Chapter 5. Hydrological Data Analysis via Non-decimated Algorithms

AMSE×103 (sd×103) g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

LG-Aid-c (10) 46 (13) 86 (27) 68 (19) 58 (13) 174 (46) 34 (8)
LG-Aid-c (30) 42 (12) 79 (25) 62 (18) 53 (12) 164 (41) 31 (7)

LG-Did-c (10) 46 (12) 84 (26) 67 (18) 58 (13) 188 (49) 34 (8)
LG-Did-c (30) 42 (12) 77 (23) 61 (17) 53 (12) 178 (46) 31 (7)

LG-Did-c-stable (10) 50 (14) 88 (28) 70 (20) 61 (14) 181 (49) 37 (9)
LG-Did-c-stable (30) 49 (13) 85 (27) 68 (19) 59 (13) 176 (46) 36 (9)

SNR=5
LG-Aid-c (10) 17 (5) 34 (11) 26 (7) 27 (7) 127 (41) 16 (3)
LG-Aid-c (30) 15 (4) 31 (10) 24 (6) 24 (6) 120 (37) 15 (3)

LG-Did-c (10) 16 (5) 33 (10) 26 (7) 26 (7) 140 (46) 16 (3)
LG-Did-c (30) 15 (4) 30 (9) 24 (6) 24 (6) 133 (42) 15 (3)

LG-Did-c-stable (10) 18 (5) 33 (11) 27 (8) 28 (8) 134 (45) 17 (4)
LG-Did-c-stable (30) 17 (5) 32 (10) 26 (7) 27 (7) 131 (43) 17 (4)

SNR=7
LG-Aid-c (10) 8 (2) 18 (6) 14 (4) 16 (4) 113 (39) 10 (2)
LG-Aid-c (30) 7 (2) 17 (6) 13 (3) 14 (4) 107 (36) 10 (2)

LG-Did-c (10) 8 (2) 18 (6) 14 (3) 16 (4) 125 (45) 10 (2)
LG-Did-c (30) 7 (2) 16 (5) 13 (3) 14 (4) 119 (41) 10 (2)

LG-Did-c-stable (10) 9 (2) 17 (5) 15 (4) 17 (5) 118 (44) 11 (2)
LG-Did-c-stable (30) 8 (2) 17 (5) 14 (4) 17 (5) 115 (42) 11 (2)

Table 5.1: The AMSE table for different schemes. The test functions are the pointwise
ones defined in equation (2.4.1). The numbers following algorithm types indicate the
number of used trajectories, namely P = 10 and 30.

5.3. Simulation Study for Denoising Performance 177

Variance×103 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

LG-Aid-c (10) 32 47 41 36 48 26
LG-Aid-c (30) 30 42 37 32 40 24

LG-Did-c (10) 32 47 41 36 47 26
LG-Did-c (30) 29 42 37 32 39 23

LG-Did-c-stable (10) 36 50 44 37 47 29
LG-Did-c-stable (30) 35 47 42 36 44 29

SNR=5
LG-Aid-c (10) 13 20 17 16 24 11
LG-Aid-c (30) 12 17 15 14 17 10

LG-Did-c (10) 13 19 17 15 24 11
LG-Did-c (30) 12 17 15 14 17 10

LG-Did-c-stable (10) 14 20 17 16 21 11
LG-Did-c-stable (30) 14 19 17 15 18 11

SNR=7
LG-Aid-c (10) 7 11 9 9 16 6
LG-Aid-c (30) 6 10 8 8 10 5

LG-Did-c (10) 7 11 9 9 16 6
LG-Did-c (30) 6 9 8 8 10 5

LG-Did-c-stable (10) 7 11 9 9 14 6
LG-Did-c-stable (30) 7 11 9 8 10 6

Table 5.2: The variance table for different schemes. The test functions are the pointwise
ones defined in equation (2.4.1). The numbers following algorithm types indicate the
number of used trajectories, namely P = 10 and 30.

178 Chapter 5. Hydrological Data Analysis via Non-decimated Algorithms

bias2 × 103 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

LG-Aid-c (10) 13 39 26 22 126 8
LG-Aid-c (30) 12 37 25 21 124 8

LG-Did-c (10) 13 38 26 22 141 8
LG-Did-c (30) 12 35 24 21 139 8

LG-Did-c-stable (10) 14 38 27 24 134 8
LG-Did-c-stable (30) 14 37 26 23 133 8

SNR=5
LG-Aid-c (10) 3 14 9 11 104 6
LG-Aid-c (30) 3 13 9 10 103 5

LG-Did-c (10) 3 13 9 11 117 6
LG-Did-c (30) 3 13 8 10 116 6

LG-Did-c-stable (10) 3 13 10 13 112 6
LG-Did-c-stable (30) 3 13 10 13 113 6

SNR=7
LG-Aid-c (10) 1 7 5 7 97 4
LG-Aid-c (30) 1 7 5 7 96 4

LG-Did-c (10) 1 7 5 7 109 4
LG-Did-c (30) 1 7 5 7 109 4

LG-Did-c-stable (10) 1 7 5 8 105 5
LG-Did-c-stable (30) 1 6 5 8 105 5

Table 5.3: The squared bias table for different schemes. The test functions are the point-
wise ones defined in equation (2.4.1). The numbers following algorithm types indicate
the number of used trajectories, namely P = 10 and 30.

5.3. Simulation Study for Denoising Performance 179

AMSE×103 (sd×103) g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

E-Did-nwu (10) 48 (13) 88 (28) 68 (18) 58 (13) 207 (56) 35 (8)
E-Did-nwu (30) 44 (12) 80 (25) 62 (17) 53 (12) 196 (51) 32 (7)

E-Did-nwu-stable (10) 50 (14) 89 (29) 70 (20) 60 (14) 185 (50) 36 (9)
E-Did-nwu-stable (30) 48 (13) 86 (27) 67 (19) 58 (13) 180 (48) 35 (8)

E-Lil-nwu (10) 50 (14) 98 (35) 73 (21) 62 (15) 212 (55) 37 (8)
E-Lil-nwu (30) 46 (13) 90 (32) 66 (19) 56 (13) 200 (50) 34 (8)

SNR=5
E-Did-nwu (10) 17 (5) 34 (11) 26 (7) 26 (6) 158 (53) 17 (4)
E-Did-nwu (30) 16 (5) 31 (10) 24 (6) 24 (6) 150 (49) 16 (3)

E-Did-nwu-stable (10) 18 (5) 34 (11) 27 (7) 28 (8) 136 (46) 18 (4)
E-Did-nwu-stable (30) 17 (5) 32 (10) 26 (7) 27 (7) 133 (44) 17 (4)

E-Lil-nwu (10) 18 (5) 39 (15) 28 (8) 28 (7) 161 (51) 18 (4)
E-Lil-nwu (30) 17 (5) 35 (14) 25 (7) 26 (7) 152 (45) 17 (4)

SNR=7
E-Did-nwu (10) 8 (2) 18 (6) 14 (3) 16 (4) 142 (53) 11 (2)
E-Did-nwu (30) 8 (2) 17 (5) 13 (3) 14 (4) 135 (48) 10 (2)

E-Did-nwu-stable (10) 9 (2) 18 (6) 15 (4) 17 (5) 121 (45) 11 (2)
E-Did-nwu-stable (30) 8 (2) 17 (5) 14 (4) 16 (4) 117 (43) 11 (2)

E-Lil-nwu (10) 9 (2) 21 (9) 15 (4) 17 (5) 145 (49) 12 (2)
E-Lil-nwu (30) 8 (2) 19 (8) 14 (4) 15 (4) 137 (44) 11 (2)

Table 5.4: The AMSE table for different schemes. The test functions are the pointwise
ones defined in equation (2.4.1). The numbers following algorithm types indicate the
number of used trajectories, namely P = 10 and 30.

180 Chapter 5. Hydrological Data Analysis via Non-decimated Algorithms

Variance×103 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

E-Did-nwu (10) 33 48 42 37 48 26
E-Did-nwu (30) 30 42 37 33 39 24

E-Did-nwu-stable (10) 36 50 44 37 49 28
E-Did-nwu-stable (30) 34 47 41 36 43 27

E-Lil-nwu (10) 35 50 44 38 51 28
E-Lil-nwu (30) 31 44 39 34 40 25

SNR=5
E-Did-nwu (10) 14 20 17 16 25 11
E-Did-nwu (30) 13 18 16 14 17 10

E-Did-nwu-stable (10) 15 21 18 16 22 11
E-Did-nwu-stable (30) 14 19 17 15 18 11

E-Lil-nwu (10) 14 21 18 17 26 12
E-Lil-nwu (30) 13 18 16 15 18 10

SNR=7
E-Did-nwu (10) 7 11 10 9 18 7
E-Did-nwu (30) 7 10 9 8 11 6

E-Did-nwu-stable (10) 7 11 10 9 14 7
E-Did-nwu-stable (30) 7 10 9 9 11 6

E-Lil-nwu (10) 8 12 10 10 19 7
E-Lil-nwu (30) 7 10 9 8 11 6

Table 5.5: The variance table for different schemes. The test functions are the pointwise
ones defined in equation (2.4.1). The numbers following algorithm types indicate the
number of used trajectories, namely P = 10 and 30.

5.3. Simulation Study for Denoising Performance 181

bias2 × 103 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

E-Did-nwu (10) 15 40 26 21 159 9
E-Did-nwu (30) 14 38 24 20 157 9

E-Did-nwu-stable (10) 14 39 26 23 137 8
E-Did-nwu-stable (30) 14 39 26 23 137 8

E-Lil-nwu (10) 16 48 29 24 161 9
E-Lil-nwu (30) 15 46 27 23 160 9

SNR=5
E-Did-nwu (10) 3 14 9 10 133 6
E-Did-nwu (30) 3 14 8 10 133 6

E-Did-nwu-stable (10) 3 13 9 12 114 6
E-Did-nwu-stable (30) 3 13 9 12 114 6

E-Lil-nwu (10) 4 18 10 12 135 6
E-Lil-nwu (30) 4 17 9 11 134 6

SNR=7
E-Did-nwu (10) 1 7 5 6 125 4
E-Did-nwu (30) 1 7 4 6 124 4

E-Did-nwu-stable (10) 1 7 5 8 107 5
E-Did-nwu-stable (30) 1 7 5 7 107 5

E-Lil-nwu (10) 1 9 5 7 126 5
E-Lil-nwu (30) 1 9 5 7 126 4

Table 5.6: The squared bias table for different schemes. The test functions are the point-
wise ones defined in equation (2.4.1). The numbers following algorithm types indicate
the number of used trajectories, namely P = 10 and 30.

AMSE×103 (sd×103) g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

bio-Haar-random (10) 41 (13) 70 (24) 84 (27) 77 (20) 326 (73) 45 (9)
bio-Haar-random (30) 37 (12) 64 (23) 76 (24) 69 (18) 313 (67) 40 (9)

bio-Haar-mix.random (10) 73 (22) 88 (30) 114 (34) 88 (26) 324 (62) 84 (24)
bio-Haar-mix.random (30) 61 (17) 80 (26) 100 (30) 77 (21) 307 (54) 67 (16)

SNR=5
bio-Haar-random (10) 13 (3) 24 (7) 35 (12) 37 (12) 288 (76) 23 (5)

bio-Haar-random (30) 12 (3) 22 (6) 32 (11) 34 (10) 277 (68) 21 (5)

bio-Haar-mix.random (10) 30 (11) 37 (13) 57 (21) 49 (18) 301 (65) 52 (19)
bio-Haar-mix.random (30) 23 (6) 33 (11) 48 (17) 41 (13) 285 (56) 38 (11)

SNR=7
bio-Haar-random (10) 6 (2) 12 (3) 20 (8) 24 (9) 276 (77) 16 (3)

bio-Haar-random (30) 6 (2) 11 (3) 18 (7) 21 (8) 265 (69) 14 (3)

bio-Haar-mix.random (10) 21 (9) 22 (9) 39 (17) 36 (16) 294 (66) 41 (18)
bio-Haar-mix.random (30) 15 (5) 19 (7) 31 (13) 29 (11) 278 (57) 19 (9)

Table 5.7: The AMSE table for different schemes. The test functions are the pointwise
ones defined in equation (2.4.1). The numbers following algorithm types indicate the
number of used trajectories, namely P = 10 and 30.

182 Chapter 5. Hydrological Data Analysis via Non-decimated Algorithms

Variance×103 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

bio-Haar-random (10) 35 46 46 42 47 31
bio-Haar-random (30) 31 41 40 36 34 26

bio-Haar-mix.random (10) 51 49 54 49 47 55
bio-Haar-mix.random (30) 41 41 41 38 30 39

SNR=5
bio-Haar-random (10) 12 17 19 19 28 14

bio-Haar-random (30) 11 16 17 16 17 12

bio-Haar-mix.random (10) 23 22 28 26 32 32
bio-Haar-mix.random (30) 16 17 19 18 16 19

SNR=7
bio-Haar-random (10) 6 9 11 11 23 8

bio-Haar-random (30) 5 8 9 9 11 7

bio-Haar-mix.random (10) 15 13 19 18 28 25
bio-Haar-mix.random (30) 10 10 12 11 12 13

Table 5.8: The variance table for different schemes. The test functions are the pointwise
ones defined in equation (2.4.1). The numbers following algorithm types indicate the
number of used trajectories, namely P = 10 and 30.

bias2 × 103 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

bio-Haar-random (10) 6 24 38 35 278 14
bio-Haar-random (30) 5 23 36 33 279 14

bio-Haar-mix.random (10) 21 39 60 39 277 29
bio-Haar-mix.random (30) 21 39 58 39 277 28

SNR=5
bio-Haar-random (10) 1 7 15 19 260 9

bio-Haar-random (30) 1 7 15 18 260 9

bio-Haar-mix.random (10) 7 15 29 23 269 19
bio-Haar-mix.random (30) 7 15 28 23 269 19

SNR=7
bio-Haar-random (10) 0 3 9 13 253 7
bio-Haar-random (30) 0 3 9 12 254 7

bio-Haar-mix.random (10) 5 9 20 18 266 16
bio-Haar-mix.random (30) 5 9 19 18 266 16

Table 5.9: The squared bias table for different schemes. The test functions are the point-
wise ones defined in equation (2.4.1). The numbers following algorithm types indicate
the number of used trajectories, namely P = 10 and 30.

5.3. Simulation Study for Denoising Performance 183

AMSE×103 (sd×103) g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

EL-SC-D (10) 47 (13) 87 (27) 68 (18) 59 (13) 208 (55) 35 (8)
EL-SC-D (30) 43 (12) 79 (25) 62 (17) 53 (12) 197 (50) 32 (7)

EL-SC-D-stable (10) 50 (14) 89 (29) 70 (20) 61 (14) 186 (50) 37 (9)
EL-SC-D-stable (30) 48 (13) 86 (27) 67 (19) 59 (13) 182 (49) 36 (8)

LGL-SC-D (10) 46 (13) 85 (27) 69 (19) 60 (13) 203 (55) 35 (8)
LGL-SC-D (30) 42 (12) 78 (24) 63 (17) 55 (13) 192 (51) 32 (8)

LGL-SC-D-stable (10) 50 (14) 89 (29) 72 (21) 63 (15) 190 (52) 37 (9)
LGL-SC-D-stable (30) 49 (13) 86 (27) 69 (20) 61 (14) 187 (50) 37 (8)

SNR=5
EL-SC-D (10) 17 (5) 34 (11) 26 (7) 27 (6) 160 (53) 17 (4)
EL-SC-D (30) 15 (4) 31 (10) 24 (6) 24 (6) 151 (48) 16 (3)

EL-SC-D-stable (10) 50 (14) 89 (29) 70 (20) 61 (14) 186 (50) 37 (9)
EL-SC-D-stable (30) 48 (13) 86 (27) 67 (19) 59 (13) 182 (49) 36 (8)

LGL-SC-D (10) 17 (5) 34 (11) 27 (7) 27 (7) 154 (53) 17 (4)
LGL-SC-D (30) 15 (4) 31 (9) 25 (6) 25 (6) 147 (49) 16 (3)

LGL-SC-D-stable (10) 18 (5) 34 (11) 28 (8) 29 (8) 142 (48) 18 (4)
LGL-SC-D-stable (30) 17 (5) 33 (10) 27 (7) 28 (8) 139 (46) 17 (4)

SNR=7
EL-SC-D (10) 8 (2) 19 (6) 14 (3) 16 (4) 144 (53) 11 (2)
EL-SC-D (30) 8 (2) 17 (6) 13 (3) 14 (4) 136 (48) 10 (2)

EL-SC-D-stable (10) 9 (2) 18 (6) 15 (4) 17 (5) 121 (45) 11 (2)
EL-SC-D-stable (30) 8 (2) 17 (5) 14 (4) 16 (5) 118 (43) 11 (2)

LGL-SC-D (10) 8 (2) 18 (6) 15 (4) 17 (5) 139 (52) 11 (2)
LGL-SC-D (30) 7 (2) 17 (5) 13 (3) 15 (4) 132 (48) 10 (2)

LGL-SC-D-stable (10) 9 (2) 18 (6) 15 (4) 18 (6) 127 (48) 11 (2)
LGL-SC-D-stable (30) 8 (2) 17 (6) 15 (4) 17 (5) 124 (46) 11 (2)

Table 5.10: The AMSE table for different schemes. The test functions are the pointwise
ones defined in equation (2.4.1). The numbers following algorithm types indicate the
number of used trajectories, namely P = 10 and 30.

184 Chapter 5. Hydrological Data Analysis via Non-decimated Algorithms

Variance×103 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

EL-SC-D (10) 32 47 42 36 48 26
EL-SC-D (30) 29 41 37 32 38 23

EL-SC-D-stable (10) 36 50 44 37 48 28
EL-SC-D-stable (30) 34 47 42 36 43 27

LGL-SC-D (10) 32 47 41 36 48 26
LGL-SC-D (30) 29 41 37 32 38 23

LGL-SC-D-stable (10) 36 50 44 38 47 29
LGL-SC-D-stable (30) 35 47 42 36 43 28

SNR=5
EL-SC-D (10) 14 20 17 16 25 11
EL-SC-D (30) 12 17 15 14 17 10

EL-SC-D-stable (10) 36 50 44 37 48 28
EL-SC-D-stable (30) 34 47 42 36 43 27

LGL-SC-D (10) 13 20 17 16 24 11
LGL-SC-D (30) 12 17 15 13 17 10

LGL-SC-D-stable (10) 14 20 18 16 22 11
LGL-SC-D-stable (30) 14 19 17 15 18 11

SNR=7
EL-SC-D (10) 7 11 10 9 18 6
EL-SC-D (30) 7 10 9 8 11 6

EL-SC-D-stable (10) 7 11 10 9 14 6
EL-SC-D-stable (30) 7 10 9 8 11 6

LGL-SC-D (10) 7 11 9 9 17 6
LGL-SC-D (30) 6 9 8 8 10 6

LGL-SC-D-stable (10) 7 11 10 9 14 6
LGL-SC-D-stable (30) 7 10 9 8 10 6

Table 5.11: The variance table for different schemes. The test functions are the pointwise
ones defined in equation (2.4.1). The numbers following algorithm types indicate the
number of used trajectories, namely P = 10 and 30.

5.3. Simulation Study for Denoising Performance 185

bias2 × 103 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

EL-SC-D (10) 14 40 26 22 160 9
EL-SC-D (30) 13 37 25 21 158 9

EL-SC-D-stable (10) 14 39 26 23 137 8
EL-SC-D-stable (30) 14 39 26 23 139 8

LGL-SC-D (10) 14 39 27 24 155 9
LGL-SC-D (30) 13 36 26 23 154 9

LGL-SC-D-stable (10) 14 39 28 25 143 8
LGL-SC-D-stable (30) 14 39 27 25 144 8

SNR=5
EL-SC-D (10) 3 14 9 11 135 6
EL-SC-D (30) 3 14 8 10 134 6

EL-SC-D-stable (10) 14 39 26 23 137 8
EL-SC-D-stable (30) 14 39 26 23 139 8

LGL-SC-D (10) 4 14 10 12 130 6
LGL-SC-D (30) 3 13 9 11 130 6

LGL-SC-D-stable (10) 4 14 10 14 121 6
LGL-SC-D-stable (30) 3 14 10 13 121 6

SNR=7
EL-SC-D (10) 1 8 5 7 126 4
EL-SC-D (30) 1 7 4 6 126 4

EL-SC-D-stable (10) 1 7 5 8 107 5
EL-SC-D-stable (30) 1 7 5 8 108 5

LGL-SC-D (10) 1 7 5 8 122 5
LGL-SC-D (30) 1 7 5 7 121 5

LGL-SC-D-stable (10) 1 7 6 9 113 5
LGL-SC-D-stable (30) 1 7 6 9 113 5

Table 5.12: The squared bias table for different schemes. The test functions are the point-
wise ones defined in equation (2.4.1). The numbers following algorithm types indicate
the number of used trajectories, namely P = 10 and 30.

5.3.2 Denoising Edge Averaging Functions

From Table 5.13-5.24, we can see that for the edge averaging functions, similar conclu-

sions can be drawn similar to those in Section 5.3.1.

186 Chapter 5. Hydrological Data Analysis via Non-decimated Algorithms

AMSE×103 (sd×103) g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

LG-Aid-c (10) 42 (11) 87 (25) 65 (18) 60 (14) 190 (46) 34 (8)
LG-Aid-c (30) 38 (11) 79 (23) 60 (17) 54 (13) 178 (42) 31 (7)

LG-Did-c (10) 41 (11) 85 (25) 64 (18) 59 (14) 185 (45) 34 (8)
LG-Did-c (30) 37 (10) 78 (23) 59 (16) 53 (12) 174 (41) 31 (7)

LG-Did-c-stable (10) 50 (14) 88 (28) 70 (20) 61 (14) 181 (49) 37 (9)
LG-Did-c-stable (30) 43 (12) 86 (27) 66 (20) 59 (13) 168 (43) 36 (8)

SNR=5
LG-Aid-c (10) 17 (5) 37 (12) 27 (8) 27 (7) 143 (43) 17 (4)
LG-Aid-c (30) 15 (4) 34 (11) 25 (7) 25 (6) 135 (39) 15 (3)

LG-Did-c (10) 17 (5) 36 (11) 27 (8) 27 (7) 139 (42) 17 (4)
LG-Did-c (30) 15 (4) 33 (10) 25 (7) 24 (6) 131 (38) 15 (3)

LG-Did-c-stable (10) 18 (5) 37 (14) 29 (9) 28 (7) 127 (41) 18 (4)
LG-Did-c-stable (30) 17 (5) 36 (13) 27 (8) 27 (7) 124 (38) 17 (4)

SNR=7
LG-Aid-c (10) 9 (2) 21 (7) 15 (4) 16 (4) 128 (42) 11 (2)
LG-Aid-c (30) 8 (2) 19 (7) 14 (4) 15 (4) 121 (38) 10 (2)

LG-Did-c (10) 9 (2) 20 (7) 15 (4) 16 (4) 124 (42) 11 (2)
LG-Did-c (30) 8 (2) 18 (6) 14 (4) 14 (4) 117 (37) 10 (2)

LG-Did-c-stable (10) 9 (3) 21 (9) 16 (5) 17 (5) 113 (40) 11 (2)
LG-Did-c-stable (30) 9 (2) 20 (8) 15 (5) 16 (4) 110 (38) 11 (2)

Table 5.13: The AMSE table for different schemes. The test functions are the edge aver-
aging ones defined in equation (2.4.2). The numbers following algorithm types indicate
the number of used trajectories, namely P = 10 and 30.

5.3. Simulation Study for Denoising Performance 187

Variance×103 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

LG-Aid-c (10) 30 45 37 36 48 26
LG-Aid-c (30) 27 39 33 32 38 23

LG-Did-c (10) 29 44 37 36 48 25
LG-Did-c (30) 26 39 33 32 38 23

LG-Did-c-stable (10) 36 50 44 31 47 29
LG-Did-c-stable (30) 31 44 37 35 43 27

SNR=5
LG-Aid-c (10) 13 20 16 16 25 11
LG-Aid-c (30) 11 17 14 14 17 10

LG-Did-c (10) 12 20 16 16 25 11
LG-Did-c (30) 11 17 14 14 17 9

LG-Did-c-stable (10) 13 20 17 16 22 11
LG-Did-c-stable (30) 13 19 16 15 18 11

SNR=7
LG-Aid-c (10) 7 11 9 9 18 6
LG-Aid-c (30) 6 10 8 8 11 5

LG-Did-c (10) 7 11 9 9 17 6
LG-Did-c (30) 6 10 8 8 10 5

LG-Did-c-stable (10) 7 11 9 9 14 6
LG-Did-c-stable (30) 7 10 9 8 10 6

Table 5.14: The variance table for different schemes. The test functions are the edge av-
eraging ones defined in equation (2.4.2). The numbers following algorithm types indicate
the number of used trajectories, namely P = 10 and 30.

188 Chapter 5. Hydrological Data Analysis via Non-decimated Algorithms

bias2 × 103 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

LG-Aid-c (10) 12 42 28 24 142 9
LG-Aid-c (30) 11 40 27 22 140 8

LG-Did-c (10) 12 41 27 23 137 9
LG-Did-c (30) 11 39 26 22 136 8

LG-Did-c-stable (10) 14 38 27 24 134 8
LG-Did-c-stable (30) 12 43 29 23 126 9

SNR=5
LG-Aid-c (10) 4 17 11 11 118 6
LG-Aid-c (30) 4 17 11 11 117 6

LG-Did-c (10) 4 17 11 11 114 6
LG-Did-c (30) 4 16 10 11 114 6

LG-Did-c-stable (10) 4 17 12 13 106 6
LG-Did-c-stable (30) 4 17 12 12 106 6

SNR=7
LG-Aid-c (10) 2 10 6 7 110 5
LG-Aid-c (30) 2 9 6 7 110 4

LG-Did-c (10) 2 9 6 7 107 4
LG-Did-c (30) 2 9 6 7 107 4

LG-Did-c-stable (10) 2 10 7 8 100 5
LG-Did-c-stable (30) 2 10 7 8 100 5

Table 5.15: The squared bias table for different schemes. The test functions are the
edge averaging ones defined in equation (2.4.2). The numbers following algorithm types
indicate the number of used trajectories, namely P = 10 and 30.

5.3. Simulation Study for Denoising Performance 189

AMSE×103 (sd×103) g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

E-Did-nwu (10) 43 (11) 87 (25) 64 (16) 57 (12) 201 (52) 34 (8)
E-Did-nwu (30) 40 (11) 79 (23) 59 (16) 52 (12) 190 (48) 31 (7)

E-Did-nwu-stable (10) 46 (12) 88 (26) 66 (17) 60 (13) 178 (46) 36 (8)
E-Did-nwu-stable (30) 44 (11) 85 (24) 64 (17) 57 (12) 174 (45) 35 (8)

E-Lil-nwu (10) 46 (13) 97 (30) 70 (19) 62 (14) 215 (53) 36 (8)
E-Lil-nwu (30) 42 (12) 89 (27) 64 (18) 56 (13) 203 (48) 33 (8)

SNR=5
E-Did-nwu (10) 17 (5) 37 (11) 27 (7) 26 (6) 155 (50) 17 (3)
E-Did-nwu (30) 16 (4) 33 (10) 24 (6) 24 (5) 148 (46) 15 (3)

E-Did-nwu-stable (10) 18 (5) 36 (11) 28 (8) 27 (7) 134 (43) 17 (4)
E-Did-nwu-stable (30) 18 (5) 35 (10) 26 (7) 26 (6) 131 (41) 17 (4)

E-Lil-nwu (10) 19 (5) 42 (14) 29 (8) 28 (7) 166 (50) 18 (4)
E-Lil-nwu (30) 17 (5) 38 (13) 26 (7) 25 (6) 157 (45) 16 (4)

SNR=7
E-Did-nwu (10) 9 (2) 21 (7) 15 (4) 15 (4) 141 (50) 11 (2)
E-Did-nwu (30) 8 (2) 19 (6) 13 (3) 14 (3) 134 (46) 10 (2)

E-Did-nwu-stable (10) 9 (3) 20 (6) 15 (4) 16 (5) 121 (43) 11 (2)
E-Did-nwu-stable (30) 9 (2) 19 (6) 15 (4) 16 (4) 117 (41) 11 (2)

E-Lil-nwu (10) 10 (3) 24 (9) 16 (4) 17 (5) 151 (49) 11 (2)
E-Lil-nwu (30) 9 (3) 22 (8) 14 (4) 15 (4) 143 (44) 10 (2)

Table 5.16: The AMSE table for different schemes. The test functions are the edge aver-
aging ones defined in equation (2.4.2). The numbers following algorithm types indicate
the number of used trajectories, namely P = 10 and 30.

190 Chapter 5. Hydrological Data Analysis via Non-decimated Algorithms

Variance×103 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

E-Did-nwu (10) 31 45 38 37 48 26
E-Did-nwu (30) 28 40 34 33 38 23

E-Did-nwu-stable (10) 33 47 40 37 47 28
E-Did-nwu-stable (30) 32 44 38 35 42 27

E-Lil-nwu (10) 32 45 40 38 50 27
E-Lil-nwu (30) 29 41 35 33 40 25

SNR=5
E-Did-nwu (10) 13 20 17 16 25 11
E-Did-nwu (30) 12 17 15 14 17 10

E-Did-nwu-stable (10) 14 20 17 16 22 11
E-Did-nwu-stable (30) 13 19 16 15 18 11

E-Lil-nwu (10) 14 21 17 17 26 12
E-Lil-nwu (30) 12 18 15 14 18 10

SNR=7
E-Did-nwu (10) 7 11 9 9 17 7
E-Did-nwu (30) 7 10 8 8 10 6

E-Did-nwu-stable (10) 8 11 9 9 14 6
E-Did-nwu-stable (30) 7 10 9 8 10 6

E-Lil-nwu (10) 8 12 10 10 19 7
E-Lil-nwu (30) 7 10 8 8 11 6

Table 5.17: The variance table for different schemes. The test functions are the edge av-
eraging ones defined in equation (2.4.2). The numbers following algorithm types indicate
the number of used trajectories, namely P = 10 and 30.

5.3. Simulation Study for Denoising Performance 191

bias2 × 103 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

E-Did-nwu (10) 13 41 26 21 153 8
E-Did-nwu (30) 12 39 25 20 152 8

E-Did-nwu-stable (10) 13 40 26 23 131 8
E-Did-nwu-stable (30) 13 40 26 22 132 8

E-Lil-nwu (10) 14 51 30 24 165 9
E-Lil-nwu (30) 13 48 28 22 163 9

SNR=5
E-Did-nwu (10) 4 17 10 10 131 5
E-Did-nwu (30) 4 16 9 9 131 5

E-Did-nwu-stable (10) 5 16 10 12 112 6
E-Did-nwu-stable (30) 4 16 10 11 113 6

E-Lil-nwu (10) 5 21 11 11 140 6
E-Lil-nwu (30) 5 20 11 11 140 6

SNR=7
E-Did-nwu (10) 2 9 5 6 124 4
E-Did-nwu (30) 2 9 5 6 124 4

E-Did-nwu-stable (10) 2 9 6 7 107 4
E-Did-nwu-stable (30) 2 9 6 7 107 4

E-Lil-nwu (10) 2 12 6 7 132 4
E-Lil-nwu (30) 2 12 6 7 132 4

Table 5.18: The squared bias table for different schemes. The test functions are the
edge averaging ones defined in equation (2.4.2). The numbers following algorithm types
indicate the number of used trajectories, namely P = 10 and 30.

AMSE×103 (sd×103) g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

bio-Haar-random (10) 45 (13) 89 (33) 82 (25) 77 (20) 339 (68) 44 (9)
bio-Haar-random (30) 41 (13) 82 (31) 75 (23) 70 (18) 327 (62) 40 (9)

bio-Haar-mix.random (10) 76 (22) 110 (36) 110 (32) 88 (25) 334 (56) 84 (24)
bio-Haar-mix.random (30) 64 (17) 100 (32) 96 (27) 77 (20) 317 (48) 67 (16)

SNR=5
bio-Haar-random (10) 15 (4) 33 (12) 36 (13) 38 (11) 306 (72) 23 (5)

bio-Haar-random (30) 14 (4) 31 (11) 33 (11) 34 (10) 295 (65) 21 (5)

bio-Haar-mix.random (10) 33 (12) 51 (21) 58 (22) 50 (18) 313 (60) 51 (19)
bio-Haar-mix.random (30) 26 (7) 45 (18) 49 (17) 41 (13) 297 (51) 38 (11)

SNR=7
bio-Haar-random (10) 8 (2) 18 (6) 21 (8) 24 (8) 296 (74) 16 (3)

bio-Haar-random (30) 7 (2) 16 (6) 19 (7) 22 (7) 285 (66) 14 (3)

bio-Haar-mix.random (10) 23 (10) 33 (16) 41 (18) 37 (16) 306 (61) 41 (18)
bio-Haar-mix.random (30) 16 (5) 28 (13) 32 (13) 29 (11) 290 (52) 29 (9)

Table 5.19: The AMSE table for different schemes. The test functions are the edge aver-
aging ones defined in equation (2.4.2). The numbers following algorithm types indicate
the number of used trajectories, namely P = 10 and 30.

192 Chapter 5. Hydrological Data Analysis via Non-decimated Algorithms

Variance×103 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

bio-Haar-random (10) 35 48 42 42 46 30
bio-Haar-random (30) 31 42 37 36 33 26

bio-Haar-mix.random (10) 51 51 52 49 46 55
bio-Haar-mix.random (30) 40 41 39 38 29 39

SNR=5
bio-Haar-random (10) 13 20 19 19 28 14

bio-Haar-random (30) 12 17 16 16 16 11

bio-Haar-mix.random (10) 24 25 28 26 32 32
bio-Haar-mix.random (30) 17 19 19 18 16 19

SNR=7
bio-Haar-random (10) 7 11 11 11 22 8

bio-Haar-random (30) 6 9 9 9 11 7

bio-Haar-mix.random (10) 16 16 20 19 28 25
bio-Haar-mix.random (30) 10 11 12 11 12 13

Table 5.20: The variance table for different schemes. The test functions are the edge av-
eraging ones defined in equation (2.4.2). The numbers following algorithm types indicate
the number of used trajectories, namely P = 10 and 30.

bias2 × 103 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

bio-Haar-random (10) 10 41 40 35 293 14
bio-Haar-random (30) 9 40 38 34 294 13

bio-Haar-mix.random (10) 25 59 59 39 288 29
bio-Haar-mix.random (30) 24 59 58 39 287 28

SNR=5
bio-Haar-random (10) 2 14 17 19 278 10

bio-Haar-random (30) 2 13 17 18 279 9

bio-Haar-mix.random (10) 9 27 30 23 281 19
bio-Haar-mix.random (30) 9 27 30 24 281 19

SNR=7
bio-Haar-random (10) 1 7 11 13 273 7
bio-Haar-random (30) 1 7 10 13 274 7

bio-Haar-mix.random (10) 6 17 21 18 278 16
bio-Haar-mix.random (30) 6 17 21 18 279 16

Table 5.21: The squared bias table for different schemes. The test functions are theedge
averaging ones defined in equation (2.4.2). The numbers following algorithm types indi-
cate the number of used trajectories, namely P = 10 and 30.

5.3. Simulation Study for Denoising Performance 193

AMSE×103 (sd×103) g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

EL-SC-D (10) 43 (11) 87 (25) 64 (17) 58 (13) 202 (52) 34 (8)
EL-SC-D (30) 40 (11) 80 (23) 59 (16) 53 (12) 191 (47) 31 (7)

EL-SC-D-stable (10) 46 (12) 88 (26) 67 (18) 60 (13) 179 (47) 36 (8)
EL-SC-D-stable (30) 44 (11) 85 (25) 65 (17) 58 (12) 175 (45) 35 (8)

LGL-SC-D (10) 43 (11) 87 (25) 66 (17) 59 (13) 197 (51) 34 (8)
LGL-SC-D (30) 40 (11) 80 (23) 60 (16) 54 (12) 187 (47) 32 (7)

LGL-SC-D-stable (10) 47 (13) 90 (27) 68 (18) 62 (14) 184 (48) 37 (9)
LGL-SC-D-stable (30) 45 (12) 86 (25) 66 (18) 60 (13) 180 (46) 36 (8)

SNR=5
EL-SC-D (10) 18 (5) 37 (11) 27 (7) 26 (6) 157 (50) 16 (3)
EL-SC-D (30) 16 (4) 34 (10) 24 (7) 24 (6) 149 (46) 15 (3)

EL-SC-D-stable (10) 46 (12) 88 (26) 67 (18) 60 (13) 179 (47) 36 (8)
EL-SC-D-stable (30) 44 (11) 85 (25) 65 (17) 58 (12) 175 (45) 35 (8)

LGL-SC-D (10) 18 (5) 37 (11) 28 (8) 27 (7) 153 (50) 16 (3)
LGL-SC-D (30) 16 (5) 34 (11) 25 (7) 25 (6) 145 (46) 15 (3)

LGL-SC-D-stable (10) 19 (5) 37 (12) 29 (8) 29 (8) 141 (45) 17 (4)
LGL-SC-D-stable (30) 18 (5) 36 (11) 28 (8) 28 (7) 138 (43) 17 (4)

SNR=7
EL-SC-D (10) 9 (2) 21 (7) 15 (4) 16 (4) 143 (50) 10 (2)
EL-SC-D (30) 8 (2) 19 (6) 14 (3) 14 (4) 136 (46) 10 (2)

EL-SC-D-stable (10) 9 (3) 20 (6) 15 (4) 17 (5) 121 (42) 11 (2)
EL-SC-D-stable (30) 9 (2) 19 (6) 15 (4) 16 (4) 118 (40) 10 (2)

LGL-SC-D (10) 9 (3) 21 (7) 15 (4) 16 (4) 139 (50) 11 (2)
LGL-SC-D (30) 8 (2) 19 (6) 14 (4) 15 (4) 132 (46) 10 (2)

LGL-SC-D-stable (10) 10 (3) 20 (7) 16 (5) 18 (5) 127 (45) 11 (2)
LGL-SC-D-stable (30) 9 (3) 20 (6) 15 (4) 17 (5) 124 (43) 11 (2)

Table 5.22: The AMSE table for different schemes. The test functions are the edge aver-
aging ones defined in equation (2.4.2). The numbers following algorithm types indicate
the number of used trajectories, namely P = 10 and 30.

194 Chapter 5. Hydrological Data Analysis via Non-decimated Algorithms

Variance×103 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

EL-SC-D (10) 30 45 38 36 47 26
EL-SC-D (30) 27 40 34 32 38 23

EL-SC-D-stable (10) 33 48 40 37 47 28
EL-SC-D-stable (30) 32 45 38 36 42 27

LGL-SC-D (10) 30 45 38 36 47 26
LGL-SC-D (30) 27 40 33 32 38 23

LGL-SC-D-stable (10) 34 47 40 37 46 29
LGL-SC-D-stable (30) 32 45 38 36 42 28

SNR=5
EL-SC-D (10) 13 20 17 16 24 11
EL-SC-D (30) 12 17 15 14 17 10

EL-SC-D-stable (10) 33 48 40 37 47 28
EL-SC-D-stable (30) 32 45 38 36 42 27

LGL-SC-D (10) 13 20 16 15 24 11
LGL-SC-D (30) 11 17 15 14 17 10

LGL-SC-D-stable (10) 14 20 17 16 21 11
LGL-SC-D-stable (30) 13 19 16 15 17 11

SNR=7
EL-SC-D (10) 7 11 9 9 17 6
EL-SC-D (30) 7 10 8 8 10 6

EL-SC-D-stable (10) 8 11 9 9 14 6
EL-SC-D-stable (30) 7 10 9 8 10 6

LGL-SC-D (10) 7 11 9 9 16 6
LGL-SC-D (30) 6 10 8 8 10 5

LGL-SC-D-stable (10) 8 11 9 9 13 6
LGL-SC-D-stable (30) 7 10 9 8 10 6

Table 5.23: The variance table for different schemes. The test functions are the edge av-
eraging ones defined in equation (2.4.2). The numbers following algorithm types indicate
the number of used trajectories, namely P = 10 and 30.

5.4. Flow-based Function Denoising 195

bias2 × 103 g1 Blocks Doppler Bumps Heavisine mfc
SNR=3

EL-SC-D (10) 13 42 27 22 155 8
EL-SC-D (30) 12 40 25 20 153 8

EL-SC-D-stable (10) 13 40 27 23 132 8
EL-SC-D-stable (30) 13 40 26 22 133 8

LGL-SC-D (10) 13 43 28 23 150 8
LGL-SC-D (30) 13 40 27 22 149 8

LGL-SC-D-stable (10) 13 42 28 25 138 8
LGL-SC-D-stable (30) 13 42 28 24 139 8

SNR=5
EL-SC-D (10) 5 17 10 10 133 6
EL-SC-D (30) 4 16 10 10 132 5

EL-SC-D-stable (10) 13 40 27 23 132 8
EL-SC-D-stable (30) 13 40 26 22 133 8

LGL-SC-D (10) 5 17 11 12 129 6
LGL-SC-D (30) 5 17 11 11 129 6

LGL-SC-D-stable (10) 5 17 12 13 120 6
LGL-SC-D-stable (30) 5 17 12 13 120 6

SNR=7
EL-SC-D (10) 2 10 5 6 126 4
EL-SC-D (30) 2 9 5 6 126 4

EL-SC-D-stable (10) 2 9 6 8 107 4
EL-SC-D-stable (30) 2 9 6 7 108 4

LGL-SC-D (10) 2 10 6 7 122 4
LGL-SC-D (30) 2 9 6 7 122 4

LGL-SC-D-stable (10) 2 9 7 9 114 5
LGL-SC-D-stable (30) 2 9 7 8 114 5

Table 5.24: The squared bias table for different schemes. The test functions are the
edge averaging ones defined in equation (2.4.2). The numbers following algorithm types
indicate the number of used trajectories, namely P = 10 and 30.

5.4 Flow-based Function Denoising

We now investigate our proposed algorithms and their non-decimated versions on the

piecewise function introduced by Park et al. (2022) on a simulated river tree network

from Gallacher et al. (2017), see Figure 5.1 for a visualisation. The river network contains

80 vertices and 79 edges, and its edge set is separated into seven different clusters. The

function is constructed as follows and described by Park et al. (2022). Firstly, the function

values for every stream are set as 9. Then we randomly pick a cluster, and the function

values of every stream in this cluster will be randomly chosen from {12, 15, 18}. We

196 Chapter 5. Hydrological Data Analysis via Non-decimated Algorithms

Figure 5.1: The simulated data for river flow, the network structure is introduced in
Gallacher et al. (2017), the test function construction is from Park et al. (2022).

Figure 5.2: The flow data corrupted by noise ϵ ∼ N(0, 4).

continue this procedure until there are more than 30 edges containing a value larger

than 9. Figure 5.2 shows the simulated flow data corrupted by noise ϵ ∼ N(0, 4). Table

5.25 shows the results from some of our algorithms which demonstrated to be competitive

5.4. Flow-based Function Denoising 197

in previous chapters, as well as their non-decimated versions (acronyms ending in ‘nlt’

in Table 5.25). We also display the results of the methods from Park et al. (2022).

AMSE (Std. error) 80 obs (σ = 1) 80 obs (σ = 1.5) 80 obs (σ = 2)
LG-Sid-p 0.6637 (0.0937) 0.9770 (0.1428) 1.2651 (0.1844)

LG-Sid-p-nlt (30) 0.5704 (0.0779) 0.8132 (0.1127) 1.0346 (0.1433)
LG-Aid-p 0.7183 (0.1139) 1.0484 (0.1480) 1.3429 (0.1932)

LG-Aid-p-nlt (30) 0.5645 (0.0786) 0.8050 (0.1144) 1.0231 (0.1456)

E-Lil-nwu 0.7832 (0.1317) 1.1240 (0.1930) 1.4027 (0.2256)
E-Lil-nwu-nlt (30) 0.6141 (0.0875) 0.8669 (0.1235) 1.0868 (0.1529)

E-Did-nwu 0.7271 (0.1118) 1.0314 (0.1498) 1.3179 (0.1897)
E-Did-nwu-nlt (30) 0.6149 (0.0856) 0.8662 (0.1215) 1.0845 (0.1522)

Bio-Haar 0.6786 (0.1086) 1.0222 (0.1568) 1.3495 (0.1962)
Bio-Haar-nlt-random (30) 0.5569 (0.0754) 0.8323 (0.1195) 1.0784 (0.1551)

EL-SC-D 0.7229 (0.1097) 1.0287 (0.1403) 1.3047 (0.1818)
EL-SC-D-nlt (30) 0.6047 (0.0858) 0.8512 (0.1210) 1.0708 (0.1488)

LGL-SC-D 0.7207 (0.1052) 1.0320 (0.1320) 1.3227 (0.1711)
LGL-SC-D-nlt (30) 0.5983 (0.0879) 0.8435 (0.1192) 1.0638 (0.1469)

Proposed (Median) from Park et al. (2022) 0.7265 (0.1212) 1.0249 (0.1510) 1.2818 (0.2599)
Proposed (Hard) from Park et al. (2022) 0.7396 (0.1317) 1.0666 (0.1678) 1.3705 (0.2495)

Proposed (Median, nlt) from Park et al. (2022) 0.7162 (0.1219) 1.0106 (0.1678) 1.2816 (0.2712)
O’Donnell 1.2698 (0.1251) 1.3815 (0.1727) 1.5421 (0.2017)

Table 5.25: AMSE for different methods performed on simulated flow data.

For LG-LOCAAT, we perform the algorithms ‘LG-Sid-p’ and ‘LG-Aid-p’ with the

path length instead of those with the coordinate information since the algorithms in

Park et al. (2022) are also based on path length metric and therefore using path length

as the metric will give a fair comparison with their results.

For E-LOCAAT algorithms, we tested ‘E-Did-nwu’ and ‘E-Lil-nwu’ since the former

one was shown to yield good results for test functions which display similar characteristics

to the function here, and ‘Lil’ gives an algorithm with a different focus, treating each

edge as a set of points (see Section 3.1.2). Biorthogonal Haar is also tested since it works

well for piecewise constant functions (such as ‘Blocks’).

For Laplacian-LOCAAT, we mainly focus on ‘EL-SC-D’ and ‘LGL-SC-D’, since these

two algorithms are totally algebraic and gave competitive results.

We can see that for the simulated flow data with the initial choice of trajectory,

‘LG-Sid-p’ results surpass all other (decimated) results, while ‘Bio-Haar’ and ‘EL-SC-D’

are also pretty competitive. The ‘Bio-Haar’ algorithm works particularly well when the

noise level is not very high. Notably, with only one choice of trajectory, we obtain better

198 Chapter 5. Hydrological Data Analysis via Non-decimated Algorithms

results than the non-decimated results (50 trajectories) from Park et al. (2022), while

‘nlt’ has been shown in general to drastically improve denosing results (see Knight and

Nason (2009)).

For the non-decimated lifting algorithms, biorthogonal Haar appears to be an optimal

choice when the noise level is not very high. The line graph algorithms work better than

other choices, especially ‘LG-Aid-p-nlt’, which gives consistently competitive results,

regardless of the noise level, as (very closely) does ‘LG-Sid-p-nlt’. The Laplacian-based

algorithms, ‘EL-SC-D-nlt’ and ‘LGL-SC-D-nlt’ also offer competitive choices compared

to what previous literature offered, albeit somewhat weak performances than the line

graph-based algorithms.

We also note that here the usefulness of introducing the random trajectory choice via

non-decimated through the use of using averaged estimates. In particular, exploring 30

trajectories has a significant impact on lowering the AMSE especially for lower signal-

to-noise ratios. For the highest reported noise level, the percentage improvement by

introducing several trajectories is around 23.8% for ‘LG-Aid-p-nlt’, followed by ‘Bio-

Haar-nlt-random’ at around 20.1% and the Laplacian-based ‘LGL-SC-D-nlt’ at around

19.6%. The percentage improvement decreases with the decreasing noise level, but it

is still substantial for our competitor methods, ranging from around 21.4% for ‘LG-

Aid-p-nlt’ to around 17.9% for ‘Bio-Haar-nlt-random’ and over 16% for Laplacian-based

methods. The lowest improvement is for ‘LG-Sid-p-nlt’ still sizeable at 14.1%, 16.7%,

and 18.2% corresponding to the reported noise level ordering in Table 5.25.

Figure 5.3 shows the denoised version of the noisy signal in Figure 5.2. The denoising

is done by one of our non-decimated lifting algorithm (‘LG-Aid-p-nlt’). From this figure,

we can see that our algorithm is able to capture the piecewise continuous structure when

the noise level is pretty high, which demonstrates that our algorithms work well for the

simulated data.

Figure 5.4 shows a comparison of ‘LG-Aid-p-nlt’ and ‘Bio-Haar-nlt-random’ denoised

networks when the noise level is set at σ = 1.5. Recall both methods demonstrated

superiority over other methods in terms of bias and variance. The observed network

5.4. Flow-based Function Denoising 199

Figure 5.3: The denoised version of the simulated noisy data for river flow in Figure 5.2,
via ‘LG-Aid-p-nlt (30)’.

Figure 5.4: This is a new figure added to the thesis Left: The flow data corrupted by
noise ϵ ∼ (0, 1.52). Middle: The denoised river flow data by the non-decimated lifting
algorithm ‘LG-Aid-p-nlt’ of Cao et al. (2024), using 30 trajectories. Right: The denoised
river flow data by the proposed non-decimated lifting algorithm ‘Bio-Haar-nlt-random’
with 30 trajectories.

appears in the left hand panel, while the middle and right panels of Figure 5.4 illustrate

our methods’ denoising performance. We highlight the areas containing discontinuities

via the rectangles. It can be observed that (although ‘LG-Aid-p-nlt’ performs better in

terms of the AMSE), the ‘Bio-Haar-nlt-random’ demonstrates better performance for

detecting discontinuities in the true function compared to ‘LG-Aid-p-nlt’. Additionally,

200 Chapter 5. Hydrological Data Analysis via Non-decimated Algorithms

for edge function values at the boundary (namely, edges with only one neighbour), ‘Bio-

Haar-nlt-random’ achieves better recovery.

5.5 Real Data Analysis

In this section, we perform some of our proposed algorithms (‘LG-Aid-nlt’ and ‘LG-Did-

nlt’) on a hydrology dataset from an open-resource website (https://environment.

data.gov.uk/hydrology/explore)). The dataset consists of the dissolved oxygen (DO)

measured by the amount of oxygen in the water, which is an indicator of water quality.

For convenience, we quote the formal description for the DO data as follows.

‘Dissolved oxygen (DO) is the measure of how much gaseous oxygen has been dissolved

into the water and, therefore, how much is available to aquatic organisms residing in

the body of water. Diurnal and seasonal patterns are often observed in this parameter.

DO can be increased by events such as photosynthesis, aeration from the atmosphere

and turbulent flow. Processes such as respiration of aquatic organisms and the decay of

organic matter reduce the concentration of DO in water. DO saturation is a measure of

the dissolved oxygen concentration in proportion to the maximum concentration that can

be dissolved and is therefore represented as a percentage.’.

The details can be found on the same website in (https://environment.data.gov.

uk/hydrology/explore). Understanding the DO data can allow us to know the influence

of the weather and human behaviours (e.g., seasonal changes and pollution, respectively)

on the river ecology. However, the data is normally corrupted by noise in reality, which

is the motivation for applying our methods on this DO dataset.

The dataset is collected by 60 different stations near rivers, at two different time

snapshots (10 May 2024 and 05 June 2024). There are some missing observations for

the second time snapshot caused by the shutdown of the stations and/or some technical

problems. Figure 5.5 gives the visualisation of the complete river network in England.

The river system can be separated into 10 river basins, and the 60 sampled stations

are distributed in 9 out of 10 river basins. The size of red circles in Figure 5.5 are

https://environment.data.gov.uk/hydrology/explore)
https://environment.data.gov.uk/hydrology/explore)
https://environment.data.gov.uk/hydrology/explore
https://environment.data.gov.uk/hydrology/explore

5.5. Real Data Analysis 201

Figure 5.5: The river network geometry of England. The green-coloured areas bounded
by orange curves are different river basins. The light-blue/grey curves are the river water
bodies, and the blue ones are canal water bodies. The red points are the stations that
collected data, and the red circle indicates the DO data value associated with the stations
(larger circle indicates larger value) collected on 10th of May in 2024.

determined by the value of the DO data, where larger circle indicates larger value.

The river network geometry can be found in another open-resource website (https:

//environment.data.gov.uk/catchment-planning/).

Recalling the discussion of LG-LOCAAT in Chapter 2, it is natural to consider the

data collected from these stations as the observations from the edges, since each station is

close to a certain river body. Note that we also need to define the vertices for obtaining

the whole network structure. A natural choice is to consider river conjunctions, the

sources and mouths of rivers as the vertices, and each river will be recognised as an

edge. However, by this construction, the England river network will be a tree structure

with a huge number of vertices, while we only have 60 observations for a single time

snapshot, hence, sub-sampling the network size is needed. Fortunately, this process can

https://environment.data.gov.uk/catchment-planning/
https://environment.data.gov.uk/catchment-planning/

202 Chapter 5. Hydrological Data Analysis via Non-decimated Algorithms

Figure 5.6: A visualised description for the toy network vertex sub-sampling. Left: Orig-
inal toy network. Right: Toy network after sub-sampling. Blue filled dot points: net-
work vertices. Red filled triangle points: stations on edges.

be handled by the power of refinement for metrized graphs, see Section 1.4.4. Consider

the toy model showed on the left in Figure 5.6, where each (blue) dot point represents a

vertex (river confluence), the lines between two adjacent vertices are the edges (rivers),

and the (red) triangles are observations from two stations. The sub-sampling of the

network is done as follows.

• If an edge (river) is not on the shortest paths of any two locations (stations), then

we remove this edge and fuse its two vertices.

• If there is one or more edges between two locations (exclude those two edges

associated to these two locations), then we remove all those edges in between

them and fuse all those vertices together.

See Figure 5.6 for an intuitive visualisation for sub-sampling a network.

Moreover, another possible scenario is that there might be more than one station

located around one river. This situation can be solved by taking the refinement of such

an edge, by means of inserting a point in between two adjacent stations.

5.5. Real Data Analysis 203

Subsequently, a network with 61 vertices (stations) and 60 edges (rivers after sub-

sampling and refinement) can be obtained, which allows us to perform the methods

we proposed. However, even if the whole network structure has been constructed, some

of the information is still difficult to get, for example, the length of an edge (river),

e.g., each river is a curve instead of a line segment. Hence, we propose to use line-

graph-based algorithms proposed in Chapter 2, which crucially enables us to use the

stations as line graph vertices, along with their coordinates. Recall in Chapter 2 new

vertices are constructed as middle points of metrized edges, this construction can be

easily generalised to any point with the exception of the two endpoints on that metrized

edge. Specifically, in our context here, we propose to consider the stations and their

associated latitude and longitude as the (metrized) new vertices and their coordinates.

Recall in Figure 5.6, the vertex (the blue dot in between those two red triangles) is

normally relocated if we remove the edge (or some edges) in between two stations.

Another advantage of LG-based algorithms is that we do not have to know the exact

location (coordinate) of this relocated vertex (blue dot), hence, LG-based methods are

computationally feasible and efficient.

As we already mentioned, the second time snapshot (05/Jun/2024) has some missing

observations, and we further perform the network sub-sampling to obtain a new network

and then perform our algorithm.

Remarks for Neighbourhood Structure

In the work from Park et al. (2022), the neighbourhood selection is based on the con-

cept of ‘flow-connected’ introduced by Hoef et al. (2006). Under that concept, if the

intersection of upstreams of two stations is a non-empty set, then they are defined as

neighbouring each other.

In our work, we conjecture that river quality related indices are highly dependent

on both river network structure and Euclidean space (for example, human and animal

behaviours, which are more likely to be on a two-/three-dimensional Euclidean space

instead of the network domain have influences). Hence, defining neighbourhood struc-

204 Chapter 5. Hydrological Data Analysis via Non-decimated Algorithms

Figure 5.7: Left: Residual Q-Q plot of the DO data analysis (the data is collected on
10/May/2024, there are observations from all 60 stations) with algorithm ‘LG-Aid-c-nlt’.
Right: Residual Q-Q plot obtained using algorithm ‘LG-Did-c-nlt’.

Figure 5.8: Left: Residual Q-Q plot of the DO data analysis (the data is collected on
05/Jun/2024, there are 55 observations from 60 stations with 5 missing observations)
with algorithm ‘LG-Aid-c-nlt’. Right: Residual Q-Q plot obtained using algorithm ‘LG-
Did-c-nlt’.

5.5. Real Data Analysis 205

ture as in equation (2.1.1), and performing the LG-LOCAAT algorithm with coordinate

information is also useful since it enables us to capture those information.

5.5.1 Results

Guided by the results from previous simulation study, the non-decimated ‘LG-Aid-c’

and ‘LG-Did-c’ will be performed. From Section 5.3.1, we conclude that increasing the

number of trajectories in non-decimated lifting increases the denoising performance,

hence, we perform a 100-trajectory non-decimated lifting for the real data case.

Figure 5.9: The denoised version for the data show in Figure 5.5. The algorithm used is
‘LG-Did-c-nlt’, with 100 trajectories.

Figure 5.9 shows the denoised version of the data shown in Figure 5.5, and Figure 5.10

shows the visualisation of the residuals after denoising. We observe that our methods

tend to smooth the observations based on the network structure, see the red circle chain

from near Welsh to the southeast of England, and the values in northern England. We

can see in Figure 5.9 that the DO values tend to be large around the countryside area

206 Chapter 5. Hydrological Data Analysis via Non-decimated Algorithms

and the area close to the sea, and many small values are around the London area or the

Manchester area, which follows the intuition that big cities might have a big impact on

the water quality.

Figure 5.10: The visualisation for the residuals. Positive residuals are represented by the
red circles, while negative residuals are represented by the black circles. The size of the
circle are determined by the absolute values of the residuals.

Figures 5.7 and 5.8 show the residual Q-Q plots for the DO data analysis at two differ-

ent time snapshots. We can see that the residuals for the data collected on 10/May/2024

appear to follow the normal distribution. Although the residual Q-Q plots for the data

collected on 05/Jun/2024 slightly diverge from the Q-Q lines, we can still agree on the

residuals also appear to follow the normal distribution in consideration of 5 missing val-

ues (in which we may have to connect two stations that are not very close to each other

to ensure a connected network). The results give us the confidence that our algorithms

work well for this real-data.

Chapter 6

Conclusions and Future Work

This thesis has proposed three novel lifting-scheme-based algorithms which provide mul-

tiscale methods for data collected from network edges. We now draw conclusions for all

these methods and propose some possible future work.

LG-LOCAAT

In Chapter 2, we discussed the first proposal that consists of transforming the original

graph into its associated line graph, which allows us to use the LOCAAT transform on

the line graph domain. In this context, we also brought the ‘metrized graph’ (Baker and

Faber; 2006) into the wavelet construction, which provided advantages in the wavelet

context too, since it has been proven by Baker and Faber (2006) that Fourier analysis

can be generalised onto the metrized graph. For example, rather than ‘defining’ the

integral values for initial primal scaling functions, the metrized graph provides a function

representation which is isometric to the direct sum of functions defined on multiple

one-dimensional axes. Based on this, we illustrate the wavelet coefficient magnitude

decay as a function of scale (which is defined as the primal integral value when the

associated vertex has been predicted), see equation (2.3.16). The upper bound of the

wavelet coefficient magnitudes also provide an explanation of why using average distances

as initial primal scaling function integrals results in good performances.

207

208 Chapter 6. Conclusions and Future Work

Throughout the simulation studies, we demonstrate that our proposed LG-LOCAAT

algorithm works well with the variants of the test functions used in Jansen et al. (2009).

As illustrated by the real data example, the line graph construction renders itself

useful for particular datasets, where the edge lengths might not be immediately available

but (new) vertices of the line graph are endowed with full information.

E-LOCAAT

In Chapter 3, we proposed the E-LOCAAT algorithm for directly dealing with the

problem of finding edge-based function expansions on the original graph domain. The

need for a method capable of working in the original domain is determined by certain

tasks that might require the ability to capture the graph structure at different resolutions.

For example, in the context of the edge clustering problem discussed in Evans and

Lambiotte (2009), if we apply the E-LOCAAT algorithm to the dataset, then the wavelets

corresponding to relatively small scales (support) can be interpreted as corresponding

to highly connected small groups within the community. In contrast, the LG-LOCAAT

does not have the ability to render such representations, as we discussed in Section 2.3.4.

Our work is inspired by the spherical wavelets constructed by Schröder and Sweldens

(1995a,b), but for a network scenario instead. Since the scheme does not rely on global

distance information (it only needs the distance measure between the an edge and its

neighbouring edges at each stage) and the relinkage is trivial, the E-LOCAAT provides a

faster algorithm compared to LG-LOCAAT. The algorithm also works for the situation

when the vertex Euclidean coordinates are not available.

Similar to Schröder and Sweldens (1995a), a biorthogonal ‘Haar-like’ construction

has been introduced in our work. This biorthogonal Haar E-LOCAAT shares some of

the advantages of LOCAAT (ability to deal with graph-type data, provides continuous

scale notion), and at the same time it inherits the self-similarity (all scaling functions

are of the same shape) from the cascade algorithm (although the construction does not

rely on it).

209

Throughout the simulation studies, E-LOCAAT also shows competitive denoising

performance, in particular the biorthogonal Haar when the underlying function is piece-

wise continuous.

Laplacian-LOCAAT

In Chapter 4, we construct a lifting scheme based on the Laplacian matrices of graph.

This is mainly motivated by works in the signal processing community, see for example,

Crovella and Kolaczyk (2003), Hammond et al. (2011), Shuman et al. (2013), Shuman

et al. (2016), Ortega et al. (2018), and Stanković et al. (2020). These works explored the

harmonic analysis via graph Laplacians. The edge variant of the Laplacian, described

in Zelazo et al. (2007), Zelazo and Mesbahi (2010), Schaub and Segarra (2018), and

Schaub et al. (2020) enables us to deal with the edge lifting construction. The advantage

of this construction is that the observation space does not have to be a metric space. The

scheme is valid as long as neighbourhood structures can be identified and the weights

between each pair of neighbouring edges are available/can be obtained. The algorithm

using edge Laplacian provides a faster transform since the relinkage via the incidence

matrix is convenient.

Non-decimated Versions and Real Data Analysis

The non-decimated lifting construction from Knight and Nason (2009) can be easily

adapted into our algorithms, which introduces a better performance in denoising prob-

lems than for the one-trajectory algorithms. The biorthogonal Haar construction high-

lights the importance of the update coefficient values and although large update coef-

ficient values lead to a unstable transform, low update coefficient values do not yield a

further improved denoising performance.

210 Chapter 6. Conclusions and Future Work

The real data analysis highlights the versatility of our algorithms that allows the

three algorithms we proposed to deal with many real-life data situations even when

there is a lack of some particular information type (for example, lack of edge lengths).

Method Comparison

Throughout the simulation studies and real data analysis in Chapters 2, 3, 4, and 5,

we have illustrated the advantages and the competitive performance of our proposed

methods. Here we provide an overall discussion and guidance on our proposed methods.

For LG-LOCAAT, the line graph transform allows us to take full advantage of the

Euclidean coordinates. In the context of our real data analysis, due to the geometri-

cal complexity of the river network, the length of each edge is difficult to determine,

whereas the coordinates of each station are immediately available. Thus, LG-LOCAAT

can smoothly address this issue, while both E-LOCAAT and Laplacian-LOCAAT will

struggle with it. In contrast, E-LOCAAT and Laplacian-LOCAAT algorithms could be

applied to datasets where the measure of edges is available, such as traffic data, where

the edge length corresponds to the length of each road.

If feasible, the biorthogonal Haar construction is recommended for scenarios where

the underlying true function contains discontinuities and the local smooth parts exhibit

relatively small variations. We conjecture that biorthogonal Haar construction may have

potential for network anomaly detection problems.

Under certain circumstances, more trajectories may be preferred for designing non-

decimated versions. Therefore, E-LOCAAT and Laplacian-LOCAAT may be preferred

because of their higher computational efficiency.

6.1 Future Work

There are several future research directions that can be related to the topics covered in

this thesis, and here we discuss some possibilities.

6.1. Future Work 211

The first concentrates on the underlying ‘true’ (edge) functions and on the usefulness

of being able to describe various properties of the functions, such as their Lipschitz con-

tinuity (for vertex-based graph functions) as we described in Section 2.3.3. For the edge

scenarios, describing functions becomes more complex and a possible future contribution

could be to develop the connection between edge bases and the cartoon function class.

A function is referred to as a cartoon function if it can be written as

f = f1 +

p∑
i=2

χBi
fi, (6.1.1)

for some p, where Bi is a compact domain in space such as Rd. The reader can refer to

Donoho (1997, 2001) and Grohs et al. (2016) for the details about this function class, in

which the function class is connected to image data.

Due to the iterative nature of LOCAAT-based algorithms, some theoretical aspects

are not easy to verify, and this could be an interesting direction for future research.

Additional theoretical background could be considered, such as the derivation of ex-

act bounds for the condition number of the lifting matrix and the distribution of the

associated wavelet coefficients.

To find a motivating real-world or simulated example where Laplacian-LOCAAT is

well-suited, but both LG-LOCAAT and E-LOCAAT struggle to deal is another inter-

esting problem. A possible scenario is when certain covariates are used to construct the

prediction weights, which could naturally be incorporated as associated elements into

the (edge) Laplacian matrices.

Other variants of the lifting scheme can be extended to the edge-scenario, for instance,

the adaptive lifting introduced by Nunes et al. (2006). A key question is how to define

quadratic and cubic prediction in a network setting. A potential approach is to leverage

powers of the graph (or edge) Laplacian matrices to construct filters. For instance,

the filters for quadratic case can be designed based on
(
LE)2 = LE LE . Alternatively,

the adaptive neighbourhood selection (Nunes et al.; 2006) can also be extended to the

network edge regression problem. In the case of a single chosen neighbour, the algorithm

can be considered as the adaptive version of our biorthogonal Haar E-LOCAAT design,

212 Chapter 6. Conclusions and Future Work

which may have the potential for denoising edge signals collected from a denser graph,

given the finding that biorthogonal Haar E-LOCAAT performs better than any other

algorithms for those signals.

To further generalise the lifting construction for a direct multi-graph, would allow

for more application scenarios, and the reader can refer to Sevi et al. (2023) for an

overview. Here, the metrized graph construction cannot be applied to a direct graph

as even the vertices might not form a metric space, thus, constructing initial scaling

functions and function expansions becomes an issue. For this case, a Laplacian-based

construction might provide the way forward, along with the discrete calculus notions

introduced by Grady and Polimeni (2010).

For the nonparametric regression problem on the network edge functions, going be-

yond the normality assumption could be another future research direction. As mentioned

in Jansen et al. (2009), the krill data they used does not appear to be Gaussian. Al-

though it was a node scenario, it is likely that this might also hold for some edge data.

For example, in the case of traffic flow data, a framework based on Poisson random vari-

ables is more commonly used in the literature, see Kolaczyk and Csárdi (2014). Hence,

one might consider adapting the Haar-Fisz transform Fryzlewicz and Nason (2004) to

our biorthogonal Haar framework. Another interesting future research direction is the

study of correlated noise in network structures.

In particular, new methods that are able to cope with edge data collected from a

network over a long time span can be another future direction. For instance, a spatio-

temporal network model can be modelled similarly to the one introduced in Mahadevan

(2010), by assigning a distance metric to both spatial and time dimensions. Then a set of

wavelet coefficients can be obtained by means of our algorithms, or alternatively, one can

model the wavelet coefficients using the GNAR framework introduced by Knight et al.

(2019). A further improvement could be to leverage the GNAR-edge model introduced

by Mantziou et al. (2023), which allows for time-varying edge weights, including edges

dropping in or out. Such a framework would allow us to forecast the time-varying network

data and to compute the confidence intervals could be another future research direction.

6.1. Future Work 213

Finally, constructing wavelets with higher vanishing moments is always of interest.

In particular, for constructing wavelets on a graph structure, we conjecture that some

regularisation might be useful for different application scenarios, which might suggest

constructing wavelets in a weighted inner product space instead of the general L2, under

which the work in Sweldens (1996a) will be helpful. For the regularisation of graph

structure, the reader can refer to Chung (1997) and Smola and Kondor (2003).

Appendix A

Path Distance

In graph theory, a (combinatorial) path of length k (where k ∈ Z and k ≥ 2) in a graph

G = (V , E) is defined by a chain of distinct vertices (Diestel; 2005)

Pvp1 ,vpk = vp1 vp2 · · · vpk , (A.0.1)

where ps ̸= ps′ if s ̸= s′, and vpi ↭ vpi+1
for all i ∈ {1, ..., k− 1}. Following the notation

in Diestel (2005), we refer to the path in equation (A.0.1) as a vp1-vpk path. For this

vp1-vpk path, there is an alternative edge representation such that

Pvp1 ,vpk = eq1 eq2 · · · eqk−1
,

where eqt = {vpt , vpt+1}, for t ∈ {1, ..., k − 1}. Note that there could be more than

one vp1-vpk path in the graph, with each of them being assigned a quantity based on

graph-defined measures, for example, the weight associated with each edge (see Section

1.4.3). We denote pvi ∈ Γ as the point corresponding to vi, then the path P Γ
p,p′ between

two points p,p′ ∈ Γ on the metrized graph space Γ is the generalised form of equation

(A.0.1), such that

P Γ
p,p′ =

ppvp1 · · · pvpk p
′, if p and p′ belong to different metrized edges;

pp′, if p and p′ belong to the same metrized edge,

(A.0.2)

where {pvpi}
k
i=1 are the points (corresponding to the vertices) that the p-p′ path passes

through, and for pvpi and pvpi+1
, their corresponding vertices are neighbouring to each

214

215

other. Similarly, the edge representation of equation (A.0.2) can be written as

P Γ
p,p′ =

p emet
q1
· · · emet

qk−1
p′, if p and p′ belong to different metrized edges;

pp′, if p and p′ belong to the same metrized edge,

where emet
qt = [vpt , vpt+1]. Notice that {p,p′} ∪ VexG(Γ) is a vertex set which defines a

refinement of G. Hence, for the case that p and p′ belong to different metrized edges, the

intervals [p,pvp1] and [pvpk ,p
′] can be considered as two metrized edges and measured

by the length function, denoted as ℓp,pvp1
and ℓpvpk

,p′ , respectively. If p,p′ are located on

the same metrized edge emet
k , then we denote ℓ ([p,p′]) as the length of the sub-interval

of emet
k bounded by these two points. Then the length of p-p′ path can be obtained as

ℓ(P Γ
p,p′) =

ℓp,pvp1
+ ℓpvpk

,p′ +
∑k−1

t=1 ℓqt , if p and p′ belong to different metrized edges;

ℓ ([p,p′]) , if p and p′ belong to the same metrized edge,

Note that for a non-tree graph, there can be more than one path between two points if

they belong to different edges. Denote PΓ
p,p′ as the set that contains all path between p

and p′, the path distance is defined as

distpath(p,p
′) = min

P∈PΓ
p,p′

{ℓ(P)},

which is the shortest path length on Γ between p and p′.

Appendix B

Formulae of Test Functions

g1 ≡ g(x, y) = (2x+ y)1((3x− y) < 1) + (10− x)1((3x− y) ≥ 1)

mfc ≡ g(x, y) = (2x+ y)1((3x− y) < 1) + (5x− y)1((3x− y) ≥ 1)

Blocks ≡ g(x, y) = 1 · 1(0 ≤ x < 0.1) + 2 · 1(0 ≤ y < 0.2)

+ 3 · 1(0.3 < x < 0.4)1(0.7 < y < 0.8) + 4 · 1(0.7 < x < 0.8)1(0.7 < y < 0.8)

+ 5 · 1(0.5 < x < 0.6)1(0.4 < y < 0.6) + 6 · 1(0.3 < x < 0.8)1(0.2 < y < 0.3)

+ 7 · 1(0.2 < x < 0.3)1(0.3 < y < 0.4) + 8 · 1(0.8 < x < 0.9)1(0.3 < y < 0.4)

Doppler ≡ g(x, y) = sin(1/(x2 + y2))

Bumps ≡ g(x, y) = exp((−|x− 0.1| − |y − 0.4|)/0.1)/0.04

+ exp((−|x− 0.8| − |y − 0.7|)/
√
0.02)/0.08

+ exp((−|x− 0.9| − |y − 0.1|)/
√
0.015)/0.06

Heavisine ≡ g(x, y) = sin(20
√
x2 + y2) +

1

0.04π
exp

(
−(x− 0.55)2 − (y − 0.5)2

0.0002

)

216

Appendix C

Proofs

C.1 Proof for Proposition 2.3.1

Starting with the integrals C · I∗ = {CI∗k,m}k∈{1,...m} will not change the stage-m split

step as long as C > 0, and the same new vertex v∗km will be lifted at this stage. Since

the predict step is independent of the integral values, the value of the detail coefficient

d∗km and the prediction weights remain the same. For any s ∈ N V∗

km,m
, the update of the

integral sequence is now

CI∗s,m + a∗s,mCI
∗
km,m

=C(I∗s,m + a∗s,mI
∗
km,m)

=CI∗s,m−1,

which indicates that in the stage-(m − 1), the integral sequence is proportional to the

integral with the same multiplier constant C. The s-th update coefficient is determined

by the minimum norm solution such that

bΓ
∗

s,m =
CI∗s,m−1CI

∗
km,m∑

t:v∗t ∈NV∗
km,m

(CI∗t,m−1)
2

=
I∗s,m−1I

∗
km,m∑

t:v∗t ∈NV∗
km,m

(I∗t,m−1)
2
,

217

218 Appendix C. Proofs

which coincides with the result when starting with I∗. Thus, repeating the procedures

above and by induction, we conclude that the detail coefficients and the filters do not

change upon a proportional change in the integral values.

C.2 Proof for Proposition 2.3.2

Recall the detail coefficient is obtained by the prediction step, in which we have

∣∣dΓ∗

kr

∣∣ =
∣∣∣∣∣∣∣cΓ

∗

kr,r −
∑

s:v∗s∈NV∗
kr,r

aΓ
∗

s,rc
Γ∗

s,r

∣∣∣∣∣∣∣ . (C.2.1)

If for all t : v∗t ∈ N V∗

kr,r
∪ {v∗kr}, we have that cΓ

∗
t,r = gΓ

∗
t , then equation (C.2.1) can be

written as

∣∣dΓ∗

kr

∣∣ =
∣∣∣∣∣∣∣gΓ

∗

kr −
∑

s:v∗s∈NV∗
kr,r

aΓ
∗

s,rg
Γ∗

s

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑

s:v∗s∈NV∗
kr,r

aΓ
∗

s,r(g
Γ∗

kr − g
Γ∗

s)

∣∣∣∣∣∣∣
≤

∑
s:v∗s∈NV∗

kr,r

aΓ
∗

s,r

∣∣gΓ∗

kr − g
Γ∗

s

∣∣ , (C.2.2)

since aΓ
∗
s,r ≥ 0 for all s : v∗s ∈ N V∗

kr,r
. Then because the function gΓ

∗
is Lipschitz with a

constant 0 < C <∞, then we have

∣∣dΓ∗

kr

∣∣ ≤ ∑
s:v∗s∈NV∗

kr,r

aΓ
∗

s,r

∣∣gΓ∗

kr − g
Γ∗

s

∣∣
≤

∑
s:v∗s∈NV∗

kr,r

aΓ
∗

s,r C dist(p∗
v∗kr
,p∗

v∗s
). (C.2.3)

C.3. Proof for Lemma 4 219

Recall that the prediction weights are normalised inverse distances, aΓ
∗
s,r =

1/dist(p∗
v∗
kr

,p∗
v∗s

)∑
t:v∗t ∈NV∗

kr,r
1/dist(p∗

v∗
kr

,p∗
v∗t

)
.

Plugging this into the inequality (C.2.3), we have

∣∣dΓ∗

kr

∣∣ ≤ ∑
s:v∗s∈NV∗

kr,r

1/dist(p∗
v∗kr
,p∗

v∗s
)∑

t:v∗t ∈NV∗
kr,r

1/dist(p∗
v∗kr
,p∗

v∗t
)
C dist(p∗

v∗kr
,p∗

v∗s
)

=
∑

s:v∗s∈NV∗
kr,r

1∑
t:v∗t ∈NV∗

kr,r
1/dist(p∗

v∗kr
,p∗

v∗t
)
C

=
1

|N V∗
kr,r
|

∑
s:v∗s∈NV∗

kr,r

|N V∗

kr,r
|∑

t:v∗t ∈NV∗
kr,r

1/dist(p∗
v∗kr
,p∗

v∗t
)
C

≤ 1

|N V∗
kr,r
|

∑
s:v∗s∈NV∗

kr,r

∑
t:v∗t ∈NV∗

kr,r
dist(p∗

v∗kr
,p∗

v∗t
)

|N V∗
kr,r
|

C

=

∑
t:v∗t ∈NV∗

kr,r
dist(p∗

v∗kr
,p∗

v∗t
)

|N V∗
kr,r
|

C, (C.2.4)

since for positive x1, ..., xn, we have

n

1/x1 + ...+ 1/xn
≤ x1 + ...+ xn

n
. (C.2.5)

C.3 Proof for Lemma 4

The first part of this proof (the equivalence of null spaces) can also be found in Zelazo

and Mesbahi (2010) and Schaub and Segarra (2018). Suppose we have a n×m oriented

weighted incidence matrix
−→
B ∗
ω. Hence, we have LE,ω

m =
−→
B ∗
ω

T−→
B ∗
ω. The null space of LE,ω

is defined as

Null
(
LE,ω
m

)
=
{
x ∈ Rm | LE,ωx = 0m

}
,

where 0m is a vector with m zeros. Similarly, the null space of the incidence matrix
−→
B ∗
ω

can be written as

Null
(−→
B ∗
ω

)
=
{
x ∈ Rm |

−→
B ∗
ωx = 0n

}
,

where 0n is a vector with n zeros. An alternative form for the null space of LE,ω
m is

Null
(
LE,ω
m

)
= Null

(−→
B ∗
ω

T−→
B ∗
ω

)
=
{
x ∈ Rm |

−→
B ∗
ω

T−→
B ∗
ωx = 0

}
.

220 Appendix C. Proofs

Assume we have a vector v ∈ Null
(−→
B ∗
ω

)
, then

−→
B ∗
ωv = 0 holds. Thus, immediately we

have
−→
B ∗
ω

T−→
B ∗
ωv = 0, which indicates that

Null
(−→
B ∗
ω

)
⊆ Null

(
LE,ω
m

)
. (C.3.1)

On the other hand, suppose we have a vector u ∈ Null
(
LE,ω
m

)
, then

−→
B ∗
ω

T−→
B ∗
ωu = 0 holds,

which leads to the following derivation.

−→
B ∗
ω

T−→
B ∗
ωu = 0 ⇒ uT

−→
B ∗
ω

T−→
B ∗
ωu = 0

⇒
(−→
B ∗
ωu
)T (−→

B ∗
ωu
)
= 0

⇒
−→
B ∗
ωu = 0.

Hence, we also have

Null
(
LE,ω
m

)
⊆ Null

(−→
B ∗
ω

)
. (C.3.2)

Combining (C.3.1) and (C.3.2), we have

Null
(
LE,ω
m

)
= Null

(−→
B ∗
ω

)
. (C.3.3)

Suppose we have a vector y, then yTLE,ω
m y = 0 if and only if y ∈ Null

(−→
B ∗
ω

)
, as we

discussed above. The null space of the incidence matrix
−→
B ∗
ω is also called the flow (or

cycle) space, whose dimension equals to the number of cycles (loops) in the associated

graph G, see Godsil and Royle (2001) and Schaub and Segarra (2018). The dimension of

the flow space obeys the following theorem (see Theorem 14.2.1 in Godsil and Royle

(2001)).

Theorem. Let G be a graph with n vertices, m edges, and c connected components,

then the dimension of its flow space is m− n+ c.

It is easy to see that for a connected tree graph G, the dimension of flow space is 0.

Hence, we have

Null
(−→
B ∗
ω

)
= {0m}. (C.3.4)

Hence, for any y ∈ Rm\{0m}, we have yTLE,ω
m y > 0. Therefore, LE,ω

m is positive-definite.

C.4. Proof for Proposition 4.2.1 221

C.4 Proof for Proposition 4.2.1

Suppose we have a (p + q)× (p + q) matrix M assumed to be (semi-) positive definite,

which can be represented as a block partitioned matrix as

M =

 E F

F T H

 , (C.4.1)

where E, F , G, and H are p×p, p×q, q×p, and q×q matrices, respectively. Recall that

if H is invertible (and we further assume H is symmetric), then the Schur complement

of E with respect to H, is given by

M/H = E − FH−1F T . (C.4.2)

A block-partitioning matrix (Section 1 in (Zhang; 2006)) contains M/H as one of the

blocks can be obtained by I −FH−1

0 I

 E F

F T H

 I 0

−H−1F T I

 (C.4.3)

=

 E − FH−1F T 0

F T H

 I 0

−H−1F T I

=

 E − FH−1F T 0

0 H

=

 M/H 0

0 H

 . (C.4.4)

By the fact that H is symmetric, then we have (−FH−1)T = −H−1F T . Then we can

see that I −FH−1

0 I

 =

 I 0

−H−1F T I

T

. (C.4.5)

Then we have

yTMy = xT

 M/H 0

0 H

x, (C.4.6)

222 Appendix C. Proofs

where

y =

 I 0

−H−1F T I

x (C.4.7)

=

 I 0

−H−1F T I

 (xTl , x
T
r)

T

= (xTl , (xr −H−1F Txl)
T)T , (C.4.8)

for any x ∈ Rp+q, xTl ∈ Rp, and xTr ∈ Rq. We can see that if y = 0p+q, we have that

xl = 0p and xr = H−1F Txl = 0q. Hence, we have

y = 0p+q ⇒ x = 0p+q, (C.4.9)

From the above calculation, we also have

yT

 E F

F T H

 y = xT

 M/H 0

0 H

x

= (xTl (M/H)xl, xrH xl) (C.4.10)

Hence, immediately we can see that M/H is also (semi-) positive-definite. As a result,

the Schur complement used in our work will keep the semi-positive/positive definite

property of the stage-m edge Laplacian matrix.

Bibliography

Alt, H., Knauer, C. and Wenk, C. (2004). Comparison of distance measures for planar

curves, Algorithmica 38: 45–58.

Baker, M. and Faber, X. (2006). Metrized graphs, Laplacian operators, and electrical

networks, Contemporary Mathematics 415(15-34): 2.

Barbarossa, S., Sardellitti, S. and Ceci, E. (2018). Learning from signals defined over

simplicial complexes, 2018 IEEE Data Science Workshop (DSW), IEEE, pp. 51–55.

Battiloro, C., Sardellitti, S., Barbarossa, S. and Di Lorenzo, P. (2023). Topological signal

processing over weighted simplicial complexes, ICASSP 2023-2023 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp. 1–5.

Bick, C., Gross, E., Harrington, H. A. and Schaub, M. T. (2023). What are higher-order

networks?, SIAM Review 65(3): 686–731.

Bollobás, B. (1998). Modern Graph Theory, Vol. 184, Springer Science & Business Media.

Bonchev, D. (1991). Chemical Graph Theory: Introduction and Fundamentals, Vol. 1,

CRC Press.

Bondy, J. A. and Murty, U. S. R. (2008). Graph Theory, Springer Publishing Company,

Incorporated.

Brouwer, A. E. and Haemers, W. H. (2011). Spectra of Graphs, Springer Science &

Business Media.

223

224 Bibliography

Buisson, L., Blanc, L. and Grenouillet, G. (2008). Modelling stream fish species distri-

bution in a river network: The relative effects of temperature versus physical factors,

Ecology of Freshwater Fish 17(2): 244–257.

Calderón, A. (1964). Intermediate spaces and interpolation, the complex method, Studia

Mathematica 24(2): 113–190.

Cao, D., Knight, M. I. and Nason, G. P. (2024). A multiscale method for data collected

from network edges via the line graph, arXiv preprint arXiv:2410.13693 .

Chang, J., Kolaczyk, E. D. and Yao, Q. (2022). Estimation of subgraph densities in

noisy networks, Journal of the American Statistical Association 117(537): 361–374.

Chen, P.-Y. and Liu, S. (2017). Bias-variance tradeoff of graph Laplacian regularizer,

IEEE Signal Processing Letters 24(8): 1118–1122.

Chudnovsky, M. and Seymour, P. D. (2005). The structure of claw-free graphs., BCC,

pp. 153–171.

Chung, F. R. (1996). Laplacians of graphs and Cheeger’s inequalities, Combinatorics,

Paul Erdos is Eighty 2(157-172): 13–2.

Chung, F. R. (1997). Spectral Graph Theory, Vol. 92, American Mathematical Society.

Cohen, A. and Daubechies, I. (1992). A stability criterion for biorthogonal wavelet bases

and their related subband coding scheme.

Cohen, A., Daubechies, I. and Feauveau, J.-C. (1992). Biorthogonal bases of compactly

supported wavelets, Communications on Pure and Applied Mathematics 45(5): 485–

560.

Cohen, A., Daubechies, I. and Vial, P. (1993). Wavelets on the interval and fast wavelet

transforms, Applied and Computational Harmonic Analysis .

Coifman, R. R. and Donoho, D. L. (1995). Translation-invariant de-noising, Wavelets

and Statistics, Springer, pp. 125–150.

Bibliography 225

Coifman, R. R. and Maggioni, M. (2006). Diffusion wavelets, Applied and Computational

Harmonic Analysis 21(1): 53–94.

Cressie, N., Frey, J., Harch, B. and Smith, M. (2006). Spatial prediction on a river

network, Journal of Agricultural, Biological, and Environmental Statistics 11: 127–

150.

Crovella, M. and Kolaczyk, E. (2003). Graph wavelets for spatial traffic analysis, IEEE

INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and

Communications Societies (IEEE Cat. No. 03CH37428), Vol. 3, IEEE, pp. 1848–1857.

Cvetković, D., Rowlinson, P. and Simić, S. K. (2007). Signless Laplacians of finite graphs,

Linear Algebra and Its Applications 423(1): 155–171.

Daubechies, I. (1992). Ten Lectures on Wavelets, SIAM.

Deri, J. A. and Moura, J. M. (2015). Taxi data in New York city: A network perspective,

2015 49th Asilomar Conference on Signals, Systems and Computers, IEEE, pp. 1829–

1833.

Devriendt, K. (2022). Effective resistance is more than distance: Laplacians, simplices

and the Schur complement, Linear Algebra and Its Applications 639: 24–49.

Diestel, R. (2005). Graph Theory 3rd ed, Graduate Texts in Mathematics.

Donoho, D. L. (1997). Cart and best-ortho-basis: A connection, The Annals of Statistics

25(5): 1870–1911.

Donoho, D. L. (2001). Sparse components of images and optimal atomic decompositions,

Constructive Approximation 17: 353–382.

Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage,

Biometrika 81(3): 425–455.

226 Bibliography

Donoho, D. L. and Johnstone, I. M. (1995). Adapting to unknown smoothness via

wavelet shrinkage, Journal of the American Statistical Association 90(432): 1200–

1224.

Dorfler, F. and Bullo, F. (2012). Kron reduction of graphs with applications to electrical

networks, IEEE Transactions on Circuits and Systems I: Regular Papers 60(1): 150–

163.

Dryden, I. L. and Mardia, K. V. (2016). Statistical Shape Analysis: With Applications

in R, Vol. 995, John Wiley & Sons.

Erdős, P., Rényi, A. et al. (1960). On the evolution of random graphs, Publ. Math. Inst.

Hung. Acad. Sci 5(1): 17–60.

Evans, T. S. and Lambiotte, R. (2009). Line graphs, link partitions, and overlapping

communities, Physical Review E 80(1): 016105.

Fryzlewicz, P. and Nason, G. P. (2004). A Haar-Fisz algorithm for Poisson intensity

estimation, Journal of Computational and Graphical Statistics 13(3): 621–638.

Gallacher, K., Miller, C., Scott, E., Willows, R., Pope, L. and Douglass, J. (2017). Flow-

directed PCA for monitoring networks, Environmetrics 28(2): e2434.

Gavish, M., Nadler, B. and Coifman, R. R. (2010). Multiscale wavelets on trees, graphs

and high dimensional data: Theory and applications to semi-supervised learning,

ICML.

Girvan, M. and Newman, M. E. (2002). Community structure in social and biological

networks, Proceedings of the National Academy of Sciences 99(12): 7821–7826.

Godsil, C. and Royle, G. F. (2001). Algebraic Graph Theory, Vol. 207, Springer Science

& Business Media.

Grady, L. J. and Polimeni, J. R. (2010). Discrete Calculus: Applied Analysis on Graphs

for Computational Science, Vol. 3, Springer.

Bibliography 227

Grohs, P., Wiatowski, T. and Bölcskei, H. (2016). Deep convolutional neural networks

on cartoon functions, 2016 IEEE International Symposium on Information Theory

(ISIT), IEEE, pp. 1163–1167.

Haar, A. (1910). Zur theorie der orthogonalen funktionensysteme,Math. Annal. 69: 331–

371.

Hammond, D. K., Gur, Y. and Johnson, C. R. (2013). Graph diffusion distance: A

difference measure for weighted graphs based on the graph Laplacian exponential

kernel, 2013 IEEE Global Conference on Signal and Information Processing, IEEE,

pp. 419–422.

Hammond, D. K., Vandergheynst, P. and Gribonval, R. (2011). Wavelets on graphs via

spectral graph theory, Applied and Computational Harmonic Analysis 30(2): 129–150.

Harary, F. (2018). Graph Theory (on Demand Printing Of 02787), CRC Press.

Higham, N. J. (2002). Accuracy and Stability of Numerical Algorithms, SIAM.

Hoef, J. M. V., Peterson, E. and Theobald, D. (2006). Spatial statistical models that

use flow and stream distance, Environmental and Ecological Statistics 13(4): 449–464.

Huttenlocher, D. P., Klanderman, G. A. and Rucklidge, W. J. (1993). Comparing images

using the Hausdorff distance, IEEE Transactions on Pattern Analysis and Machine

Intelligence 15(9): 850–863.

Jansen, M. and Bultheel, A. (1998). Smoothing non-equidistantly sampled data us-

ing wavelets and cross validation, Proceedings of the IEEE Benelux Signal Processing

Symposium, Citeseer, pp. 111–114.

Jansen, M. H., Nason, G. and Silverman, B. (2004). Multivariate nonparametric regres-

sion using lifting, Technical Report 04-17, University of Bristol.

Jansen, M. H. and Oonincx, P. J. (2005). Second Generation Wavelets and Applications,

Springer Science & Business Media.

228 Bibliography

Jansen, M., Nason, G. P. and Silverman, B. W. (2001). Scattered data smoothing

by empirical Bayesian shrinkage of second-generation wavelet coefficients, Wavelets:

Applications in Signal and Image Processing IX, Vol. 4478, International Society for

Optics and Photonics, pp. 87–97.

Jansen, M., Nason, G. P. and Silverman, B. W. (2009). Multiscale methods for data

on graphs and irregular multidimensional situations, Journal of the Royal Statistical

Society: Series B (Statistical Methodology) 71(1): 97–125.

Jawerth, B. and Sweldens, W. (1994). An overview of wavelet based multiresolution

analyses, SIAM Review 36(3): 377–412.

Johnstone, I. M. and Silverman, B. W. (2004). Needles and straw in haystacks: Empirical

Bayes estimates of possibly sparse sequences, The Annals of Statistics 32(4): 1594–

1649.

Karimi, D. and Salcudean, S. E. (2019). Reducing the Hausdorff distance in medical im-

age segmentation with convolutional neural networks, IEEE Transactions on Medical

Imaging 39(2): 499–513.

Knight, M. I., Leeming, K., Nason, G. and Nunes, M. (2019). Generalised Network

Autoregressive Processes and the GNAR package, Journal of Statistical Software .

Knight, M. I. and Nason, G. P. (2006). Improving prediction of hydrophobic segments

along a transmembrane protein sequence using adaptive multiscale lifting, Multiscale

Modeling & Simulation 5(1): 116–129.

Knight, M. I. and Nason, G. P. (2009). A ‘nondecimated’ lifting transform, Statistics

and Computing 19(1): 1–16.

Knight, M. I., Nason, G. P. and Nunes, M. A. (2017). A wavelet lifting approach to

long-memory estimation, Statistics and Computing 27(6): 1453–1471.

Kolaczyk, E. D. and Csárdi, G. (2014). Statistical Analysis of Network Data with R,

Vol. 65, Springer.

Bibliography 229

Kook, W. and Lee, K.-J. (2018). Simplicial networks and effective resistance, Advances

in Applied Mathematics 100: 71–86.

Kuchment, P. (2003). Quantum graphs: I. Some basic structures, Waves in Random

Media 14(1): S107.

Lakhina, A., Papagiannaki, K., Crovella, M., Diot, C., Kolaczyk, E. D. and Taft, N.

(2004). Structural analysis of network traffic flows, Proceedings of the Joint Interna-

tional Conference on Measurement and Modeling of Computer Systems, pp. 61–72.

Lim, L.-H. (2020). Hodge Laplacians on graphs, Siam Review 62(3): 685–715.

Lucasius, C. B. and Kateman, G. (1993). Understanding and using genetic algorithms

Part 1. Concepts, properties and context, Chemometrics and Intelligent Laboratory

Systems 19(1): 1–33.

Lucasius, C. B. and Kateman, G. (1994). Understanding and using genetic algorithms

Part 2. Representation, configuration and hybridization, Chemometrics and Intelligent

Laboratory Systems 25(2): 99–145.

Mahadevan, N. (2010). Multiscale, Multi-Dimensional Space and Space-Time Function

Estimation for Irregular Network Data, PhD thesis, University of Bristol.

Mallat, S. G. (1989a). Multiresolution approximations and wavelet orthonormal bases

of L2(R), Transactions of the American Mathematical Society 315(1): 69–87.

Mallat, S. G. (1989b). A theory for multiresolution signal decomposition: The wavelet

representation, IEEE Transactions on Pattern Analysis & Machine Intelligence

11(07): 674–693.

Mantziou, A., Cucuringu, M., Meirinhos, V. and Reinert, G. (2023). The GNAR-edge

model: A network autoregressive model for networks with time-varying edge weights,

arXiv preprint arXiv:2305.16097 .

230 Bibliography

Merris, R. (1994). Laplacian matrices of graphs: A survey, Linear Algebra and Its Ap-

plications 197: 143–176.

Meyer, Y. (1992). Wavelets and Operators: Volume 1, number 37, Cambridge University

Press.

Nason, G. P. (2008). Wavelet Methods in Statistics with R, Vol. 574, Springer.

Nason, G. P. and Silverman, B. W. (1995). The stationary wavelet transform and some

statistical applications, Wavelets and Statistics, Springer, pp. 281–299.

Newman, M. E. (2003). The structure and function of complex networks, SIAM Review

45(2): 167–256.

Nunes, M. A. (2006). Some New Multiscale Methods for Curve Estimation and Binomial

Data, PhD thesis, University of Bristol.

Nunes, M. A., Knight, M. I. and Nason, G. P. (2006). Adaptive lifting for nonparametric

regression, Statistics and Computing 16(2): 143–159.

Ortega, A., Frossard, P., Kovačević, J., Moura, J. M. and Vandergheynst, P. (2018).

Graph signal processing: Overview, challenges, and applications, Proceedings of the

IEEE 106(5): 808–828.

O’Searcoid, M. (2006). Metric Spaces, Springer Science & Business Media.

Park, S., Oh, H.-S. et al. (2022). Lifting scheme for streamflow data in river networks,

Journal of the Royal Statistical Society Series C 71(2): 467–490.

Percival, D. P. (1995). On estimation of the wavelet variance, Biometrika 82(3): 619–631.

Pereyra, M. C. and Ward, L. A. (2012). Harmonic analysis: From Fourier to wavelets,

Vol. 63, American Mathematical Society.

Pickands, J. (1967). Maxima of stationary Gaussian processes, Zeitschrift für

Wahrscheinlichkeitstheorie und Verwandte Gebiete 7: 190–223.

Bibliography 231

Popescul, A. and Ungar, L. H. (2003). Statistical relational learning for link prediction,

IJCAI Workshop on Learning Statistical Models from Relational Data, Vol. 2003.

Robinson, M. (2014). Topological Signal Processing, Vol. 81, Springer.

Roman, S., Axler, S. and Gehring, F. (2005). Advanced Linear Algebra, Vol. 3, Springer.

Roussopoulos, N. D. (1973). A max{m,n} algorithm for determining the graph H from

its line graph G, Information Processing Letters 2(4): 108–112.

Sardellitti, S. and Barbarossa, S. (2024). Topological signal processing over generalized

cell complexes, IEEE Transactions on Signal Processing .

Schaub, M. T., Benson, A. R., Horn, P., Lippner, G. and Jadbabaie, A. (2020). Random

walks on simplicial complexes and the normalized Hodge 1-Laplacian, SIAM Review

62(2): 353–391.

Schaub, M. T. and Segarra, S. (2018). Flow smoothing and denoising: Graph signal

processing in the edge-space, 2018 IEEE Global Conference on Signal and Information

Processing (GlobalSIP), IEEE, pp. 735–739.

Schaub, M. T., Zhu, Y., Seby, J.-B., Roddenberry, T. M. and Segarra, S. (2021). Signal

processing on higher-order networks: Livin’on the edge... and beyond, Signal Process-

ing 187: 108149.

Schröder, P. and Sweldens, W. (1995a). Spherical wavelets: Efficiently representing

functions on the sphere, Proceedings of the 22nd Annual Conference on Computer

Graphics and Interactive Techniques, pp. 161–172.

Schröder, P. and Sweldens, W. (1995b). Spherical wavelets: Texture processing, Ren-

dering Techniques’ 95: Proceedings of the Eurographics Workshop in Dublin, Ireland,

June 12–14, 1995 6, Springer, pp. 252–263.

Severn, K. E., Dryden, I. L. and Preston, S. P. (2021). Non-parametric regression for

networks, Stat 10(1): e373.

232 Bibliography

Sevi, H., Rilling, G. and Borgnat, P. (2023). Harmonic analysis on directed graphs and

applications: From Fourier analysis to wavelets, Applied and Computational Harmonic

Analysis 62: 390–440.

Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A. and Vandergheynst, P. (2013).

The emerging field of signal processing on graphs: Extending high-dimensional data

analysis to networks and other irregular domains, IEEE Signal Processing Magazine

30(3): 83–98.

Shuman, D. I., Ricaud, B. and Vandergheynst, P. (2016). Vertex-frequency analysis on

graphs, Applied and Computational Harmonic Analysis 40(2): 260–291.

Simoens, J. and Vandewalle, S. (2003). A stabilized lifting construction of wavelets on

irregular meshes on the interval, SIAM Journal on Scientific Computing 24(4): 1356–

1378.

Smola, A. J. and Kondor, R. (2003). Kernels and regularization on graphs, Learning

Theory and Kernel Machines: 16th Annual Conference on Learning Theory and 7th

Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003.

Proceedings, Springer, pp. 144–158.

Spielman, D. A. (2007). Spectral graph theory and its applications, 48th Annual IEEE

Symposium on Foundations of Computer Science (FOCS’07), IEEE, pp. 29–38.

Spielman, D. A. (2012). Spectral graph theory, Combinatorial Scientific Computing 18.

Stanković, L., Mandic, D., Daković, M., Scalzo, B., Brajović, M., Sejdić, E. and Con-

stantinides, A. G. (2020). Vertex-frequency graph signal processing: A comprehensive

review, Digital Signal Processing 107: 102802.

Starck, J.-L., Murtagh, F. D. and Bijaoui, A. (1998). Image Processing and Data Anal-

ysis: The Multiscale Approach, Cambridge University Press.

Strang, G. and Nguyen, T. (1996). Wavelets and Filter Banks, SIAM.

Bibliography 233

Sweldens, W. (1995). Lifting scheme: A new philosophy in biorthogonal wavelet con-

structions, Wavelet Applications in Signal and Image Processing III, Vol. 2569, Inter-

national Society for Optics and Photonics, pp. 68–79.

Sweldens, W. (1996a). Compactly supported wavelets which are biorthogonal with re-

spect to a weighted inner product, Proceedings of the 14th IMACS World Congress.

Sweldens, W. (1996b). The lifting scheme: A custom-design construction of biorthogonal

wavelets, Applied and Computational Harmonic Analysis 3(2): 186–200.

Sweldens, W. (1998). The lifting scheme: A construction of second generation wavelets,

SIAM Journal on Mathematical Analysis 29(2): 511–546.

Sweldens, W. and Schröder, P. (2005). Building your own wavelets at home, Wavelets

in the Geosciences pp. 72–107.

Taskar, B., Wong, M.-F., Abbeel, P. and Koller, D. (2003). Link prediction in relational

data, Advances in Neural Information Processing Systems 16.

Trefethen, L. N. and Bau III, D. (1997). Numerical Linear Algebra, Vol. 50, SIAM.

Tu, L. W. (2011). Manifolds, An Introduction to Manifolds, Springer, New York, pp. 47–

83.

Vidakovic, B. (2009). Statistical Modeling by Wavelets, Vol. 503, John Wiley & Sons.

Young, N. (1988). An Introduction to Hilbert Space, Cambridge University Press.

Zachary, W. W. (1977). An information flow model for conflict and fission in small

groups, Journal of Anthropological Research 33(4): 452–473.

Zelazo, D. and Mesbahi, M. (2010). Edge agreement: Graph-theoretic performance

bounds and passivity analysis, IEEE Transactions on Automatic Control 56(3): 544–

555.

Zelazo, D., Rahmani, A. and Mesbahi, M. (2007). Agreement via the edge Laplacian,

2007 46th IEEE Conference on Decision and Control, IEEE, pp. 2309–2314.

234 Bibliography

Zhang, B., Fadili, M., Starck, J.-L. and Digel, S. W. (2008). Fast Poisson noise removal

by biorthogonal Haar domain hypothesis testing, Statistical Methodology 5(4): 387–

396.

Zhang, F. (2006). The Schur Complement and Its Applications, Vol. 4, Springer Science

& Business Media.

Zhang, Y., Ge, Z., Greenberg, A. and Roughan, M. (2005). Network anomography,

Proceedings of the 5th ACM SIGCOMM Conference on Internet Measurement, pp. 30–

30.

Zhang, Y., Roughan, M., Lund, C. and Donoho, D. (2003). An information-theoretic

approach to traffic matrix estimation, Proceedings of the 2003 Conference on Ap-

plications, Technologies, Architectures, and Protocols for Computer Communications,

pp. 301–312.

Zhao, C., Shi, W. and Deng, Y. (2005). A new Hausdorff distance for image matching,

Pattern Recognition Letters 26(5): 581–586.

Zhou, D. and Burges, C. J. (2008). High-order regularization on graphs, Proceedings of

the 6th International Workshop on Mining and Learning with Graphs.

	Contents
	List of Figures
	List of Tables
	Acknowledgement
	Declaration
	Introduction
	Literature Review
	Prelude: Concepts for Hilbert Spaces and Basis Representations
	Hilbert Spaces
	Orthogonality and Bases

	Wavelets
	Discretisation of the CWT
	Multiresolution Analysis (MRA)
	Function Expansion using Wavelets
	Discrete Wavelet Transform (DWT)
	Biorthogonal Wavelets
	Non-decimated Discrete Wavelet Transform (NDWT)

	The Lifting Scheme
	Second Generation Multiresolution Analysis
	Constructing Second Generation Wavelets and Filters
	Fast Second Generation Wavelet Transform
	The Lifting Transform in Practice

	Graphs
	Basics of Graph Theory
	Matrices Associated to Graphs
	Weighted Graphs
	Metrized Graphs

	LOCAAT Transform
	MRA Framework for LOCAAT
	Filter Design
	Scales and Artificial Levels
	Variance Approximation

	Nonparametric Regression
	Estimation by Wavelet Shrinkage
	Thresholding Strategy
	Hard- and Soft-thresholding
	Empirical Bayes Thresholding
	Estimating the Noise Level

	Line Graph LOCAAT
	Line Graph Transform
	Line Graph Distance Measure
	Line Graph LOCAAT (LG-LOCAAT)
	Function Representation and Initial Lifting Functions Setup
	LG-LOCAAT Algorithm
	LG-LOCAAT Properties
	Original Domain Transformation

	Simulation Testbed
	Test Functions
	Sampling Network Structure
	Embedding the Function Values

	Simulation Results
	Stability
	Sparsity
	Sparsity Results for Pointwise Functions
	Sparsity Results for Edge Averaging Functions

	Denoising Performance
	Denoising Pointwise Functions
	Denoising Edge Averaging Functions

	E-LOCAAT: An Edge-Centred Scheme
	E-LOCAAT Framework and Setup
	Interpolating-point Bases and Function Representations
	Edge Bases and Function Representations
	E-LOCAAT Algorithm Steps

	Biorthogonal Haar E-LOCAAT
	Simulation Study
	Stability
	Sparsity
	Sparsity for Pointwise Functions
	Sparsity for Edge Averaging Functions

	Denoising Performance
	Denoising Pointwise Functions
	Denoising Edge Averaging Function

	Remarks

	Laplacian-LOCAAT Construction
	Graph Laplacian
	Laplacian Construction Using an Oriented Incidence Matrix
	Non-weighted Version
	Weighted Version

	Laplacian Construction Using a Non-oriented Incidence Matrix
	Non-weighted Version
	Weighted Version

	Remarks
	A Natural Connection between the Laplacian and LOCAAT
	Generalisation for higher-order networks

	Proposed Laplacian-LOCAAT Framework
	Proposed LOCAAT via the Edge Laplacian
	Proposed LOCAAT via the Line Graph Laplacian

	Simulation Study
	Stability
	Sparsity
	Sparsity Plot for Pointwise Functions
	Sparsity Plot for Edge Averaging Functions

	Denoising Performance
	Denoising Pointwise Functions
	Denoising Edge Averaging Function

	Hydrological Data Analysis via Non-decimated Algorithms
	Non-decimated Lifting Transform
	NLT for our Proposed Algorithms
	Non-decimated `Lazy' Lifting Transform
	Non-decimated Biorthogonal Haar Transform

	Simulation Study for Denoising Performance
	Denoising Pointwise Functions
	Denoising Edge Averaging Functions

	Flow-based Function Denoising
	Real Data Analysis
	Results

	Conclusions and Future Work
	Future Work

	Path Distance
	Formulae of Test Functions
	Proofs
	Proof for Proposition 2.3.1
	Proof for Proposition 2.3.2
	Proof for Lemma 4
	Proof for Proposition 4.2.1

	Bibliography

