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Abstract

Understanding quantum and post-quantum correlations in various causal settings, is
fundamental to singling out the first set from the latter. We present progress in this
study in three directions: correlation self-testing of quantum theory, exploration of
post-quantum correlations within an indefinite causal order, and certification of nonlocal
quantum correlations in the absence of freedom of choice.
Correlation self-testing refers to identifying a set of tasks optimal performance of which,
can only be achieved using quantum theory. The adaptive CHSH game, which was
proposed as a candidate task, requires a theory to allow for entanglement swapping,
if a post-classical performance is to be achieved. Its performance, however, was not
explicitly tested in theories that do. In fact, a theory in which this task can be executed
better than quantum theory, has also been proposed. We show that this theory does not
violate Chained Bell inequalities and therefore can be ruled out. We present adaptive
GHZ and adaptive Chained Bell Games and analyse its performance in various theories.
Finally, we show that the existing theories that allow for entanglement swapping can
also be ruled out using the adaptive CHSH game.
In the second part, we introduce an operational definition of superposition, consistent
with quantum theory. We then construct a toy theory that admits superposition, under
this definition, and can generate all non-signalling correlations in the Bell setting. We
show, that even in an indefinite causal order, in particular, the switch setting, this
theory can generate post-quantum correlations. We certify this using theory-independent
techniques.
In the final part, we consider a relaxation of parameter independence in the Bell setting
by allowing the parties to communicate with each other over a binary symmetric channel.
We manage to show, that unless this channel is perfect, all quantum correlations cannot
be reproduced using classical strategies. In addition, one way signalling is just as
effective as two way signalling, for this channel model.
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1

Introduction

1.1 PROLOGUE

We have sought to understand the world around us for as far back as pre-history stretches. Perhaps
even before, for octopuses can quickly learn to unscrew jars to access food. Clearly, there are
underlying mechanisms that enable such an understanding of how objects like jars work. For the
21st-century physicist, for the most part, these mechanisms are mathematical models that describe
various phenomena. A successful example can be found in the ability of the Hilbert space formalism
of quantum theory to describe the microscopic world.

Although widely accepted, the Hilbert space formalism is rich in features that are highly counter-
intuitive. Perhaps uncomfortably, it is purely based on mathematical assumptions, with little direct
physical motivation to promote them. One might then question its wide acceptance. In the author’s
understanding, there are at least two reasons why: firstly, the predictions of this formalism, have
been experimentally verified with remarkable accuracy. Therefore, to some, the physical significance
of the underlying mathematical assumptions might hold feeble importance, as long as they keep on
churning the wheels of technological progress. The second reason is slightly more subtle. There
have been attempts to re-axiomatise quantum theory from first principles. At the core of each of
these attempts, lie mathematical frameworks which are not fully physically motivated. Once these
frameworks are assumed and some constraints (axioms) are imposed, quantum theory seems to
emerge “naturally”. Although these attempts are valuable in gaining insight into the structure
of the theory, the physical meaning behind the axioms remains unclear. Therefore, choosing one
mathematical formalism over another becomes somewhat subjective.

Apart from the predictions obtained from a mathematical model, understanding which other
features of the model pertain to true physical phenomena, becomes relevant when seeking to
uncover how Nature works, in the scale applicable to the model. For example, the aforementioned
Hilbert space formalism of quantum theory is an intrinsically probabilistic model. If one now
assumes that Nature is fundamentally probabilistic, one arrives at a large class of theories, many of
which yield predictions that are not observed in experiments [81]. Why then these theories do not
describe Nature, is a question that has been under scrutiny for the last few decades. One way to
gain understanding is to take a top-down approach, and classify theories based on the permissible
operations within them and what changes in predictions these operations bring in. One hopes that
these classifications will point towards higher physical principles behind the various mathematical

1



Chapter 1. Introduction

axioms. Generalised Probabilistic Theories(GPTs) [9] are an operational framework where these
questions can be systematically phrased.

Quantum correlations generated by performing local measurements on parts of entangled states
can generate correlations that cannot be explained by local physics, a phenomenon known as Bell
nonlocality [11]. The large class of theories mentioned earlier share this feature as well, however,
quantitatively by a larger amount than that achievable using quantum theory. What restrictions
should one impose on set correlations, that are incompatible with local physics, such that they
can be realised by quantum theory, has been a central topic of investigation in the foundations
of quantum theory. Several interesting proposals [14, 58, 76, 71, 40] on how to constrain this set
have provided deeper insights into the structure of quantum theory as well. However, for the most
part, they single out a set of correlations slightly larger than what can be achieved using quantum
theory [70].

An alternate and more objective approach was proposed [99, 98], where one looks for causal
structures, in which the largest set of correlations that are incompatible with local physics are
those that can be generated in quantum theory. This proposal came with a causal structure, in
which, using entanglement swapping, one can generate quantum correlations that are non-realisable
in most of the GPTs displaying stronger-than-quantum nonlocality; Primarily because they do
not allow for entanglement swapping. However, examples of GPTs displaying such correlations
and allowing for entanglement swapping also exist [93, 92]. Whether these theories, or other
post-quantum theories allowing for entanglement swapping, can generate a larger set of correlations
in the proposed causal structure, remains unexplored. A big portion of this thesis is dedicated to
investigating this question.

An interesting feature of the Hilbert space formalism of quantum theory is superposition, which
facilitates the description of operations that do not have a definite causal order [17]; The operations
are in superposition of causal orders. Firstly, if elements of Nature can truly be in superposition of
values that can be assigned to them, then their descriptions should not rely on the mathematical
model used to describe them. In particular, if one departs from the Hilbert space formalism of
quantum theory to a formalism that has equal predictive power, they should be able to formulate
a consistent notion of superposition, and in fact indefinite causal order. In this thesis, we have
tried to understand whether a consistent notion of superposition can be formulated in terms of the
statistical properties of a theory and whether such a definition allows one to describe indefinite
causal order.

The fact that quantum correlation are nonlocal, has immense applications in various information-
theoretic tasks. To certify nonlocal correlations, however, one needs to justify locality. Miniaturisa-
tion of devices that produce nonlocal correlations, raises the question of whether the assumption of
locality can still be justified. There is a vast technological interest in certifying quantum correlations
nonlocal, that are generated in the absence of locality. However, whether quantum correlations
generated under the assumption of locality rule out the presence of classical models that violate it
remains less explored. Since, one does not always have access to the devices they are using, ruling
out such classical model is a certificate of quantumness. In the final part of this thesis, we have
tried to provide initial results towards this direction.
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1.2. Synopsis

1.2 SYNOPSIS

Chapters in this thesis are collected into five parts. Part I consisting of Chapters 2, 3 and 4 provides
the background for reading the main results. Chapters 5 and 6 in Part II, Chapter 7 in Part III,
and Chapter 8 in Part IV constitute the main findings of this thesis. Part IV contains appendices
to support the various claims made in the main text.

In Chapter 2, we present the framework of Generalised Probabilistic Theories (GPTs), high-
lighting the connection between Hilbert space formalism and probability state space formalism.
In Chapter 4, we discuss compositional consistency in GPTs and introduce a necessary criterion,
minimal k-preservibility, which transformations must satisfy to be compositionally consistent. In
the short Chapter 4, we briefly overview notions of causal order, compatible causal structures and
freedom of choice.

Next, in Chapter 5, we review the idea behind correlation self-testing, or simply self-testing,
of theories and present new games that can be used for the purpose of self-testing of quantum
theory. In Chapter 6, we present various GPTs, wherein, entanglement swapping is potentially
possible. We show, however, that in most such GPTs, transformations underlying entanglement
swapping are not compositionally consistent. Therefore, they are deemed invalid. A consequence of
this is this is the ability to self-testing quantum theory against all such GPTs. Additionally, there
are GPTs in which entanglement swapping transformations are compositionally consistent, but
nevertheless, can also be ruled out. We conclude this chapter by presenting a connection between
minimal k-preservibility and Tsirelson’s bound, applicable to the GPTs we present.

Chapter 7 deals with the notion of superposition and indefinite causal order in GPTs, the latter
of which is based around the quantum switch. We present a candidate definition of superposition
for GPTs, consistent with the notion of quantum superposition. We then build a toy theory that
admits superposition and show how, in that theory, it is possible to demonstrate indefinite causal
order.

Finally, in Chapter 8, we show that it is possible to certify nonlocal non-signalling quantum
correlations in the presence of arbitrarily large signalling, taking place over a binary symmetric
channel. Additionally, using this channel, two way signalling cannot be used to gain any leverage
over one way signalling when it comes to generating non-signalling correlations.
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2

Generalised Probabilistic Theories

2.1 INTRODUCTION

GPTs are a framework for operational theories, i.e., theories in which the basic building blocks
are preparations of states, transformations of states and measurements on them. The earliest
contribution to the development of GPTs is possibly due to Mackey [65] and Ludwig [63]. Further
developments are due to Dähn [25, 26, 26], Stolz [95, 96], Davies and Lewis [29], Edwards [38, 35, 37,
34, 33, 36], Gudder [45], Mielnik [68, 67] and Ludwig [61, 62, 60], and a few years later by Kläy [56]
and Wilce [100]. The most recent developments can be attributed to Popescu and Rohrlich [81]
and Barrett [9]. A chronological read of the above shows the development of this framework over
the last seven decades. In this chapter, we are going to use the presentation provided in [9].

The first building block, i.e., state preparation refers to setting up a system of interest in one of
the configurations allowed in the theory. Transformation of state refers to evolving the system from
one allowed state to another. Finally, measurement refers to the operation of deciphering the state
of the system. In this chapter, we will only focus on state preparations and measurements. Let us
denote by s the state of a system and by S the set of all states the system could be in. S is referred
to as the state space associated with the system. Now, let us assume that there exists a set of
questions M := {e1, · · · , en}, answers to which can fully describe s. In a deterministic theory, one
of the answers to these n questions will be yes and the rest will be no. In a probabilistic theory, the
answer to each of these questions could be probabilistic. Therefore, let us associate to the answer
ei[s], of the question ei on the state s, a probability pi. Now, suppose that the state s is a mixture
λs1 + (1 − λ)s2 of two states s1 and s2 with λ ∈ [0, 1]. If ei[s1] = pi,1 and ei[s2] = pi,2, to respect
convexity, we would like λpi,1 + (1 − λ)pi,2 = pi, implying that the action of ei is convex-linear.
For simplicity, we will assume linearity. The set M is said to be a measurement if

∑
i pi = 1. More

precisely, (
∑n

i=1 ei)[s] = 1 for every state s ∈ S. The set of all questions is called the effect space.
One way to model state and effect spaces is to use real vector spaces. Here, a state space is

identified as a subset of a real vector space and the effects are positive linear functional on the
states. Below we formalise them concretely.

Definition 2.1.1. (State space:) Let V be a finite dimensional real vector space and V∗ its dual
vector space. A state space is a compact convex subset of V such that there exists an element u ∈ V∗

with the property that ⟨u, s⟩=1 for any s ∈ S. The sub-normalised state space S⩽ of S is defined as
the convex hull of S and the zero vector v0 ∈ V.

5



Chapter 2. Generalised Probabilistic Theories

The requirement of ⟨u, s⟩ = 1 implies that every state is an element of a compact convex subset of
a hyperplane in V. We call this property of states as normalisation. Further, this entails that for
M to be a measurement, one requires

∑n
i=1 ei = u.

Definition 2.1.2. (Effect space:) Let V be a finite dimensional real vector space, V∗ its dual
vector space and S be a state space as defined in 2.1.1. The maximal effect space ES of S is a
compact and convex subset of V∗ defined as

ES := {e ∈ V∗ | ⟨e, s⟩ ∈ [0, 1] ∀ s ∈ S}.

An effect space E is any subset of ES such that for every e ∈ E, u− e ∈ E, and u, v∗0 ∈ E where v∗0
is the null effect with the property ⟨v∗0 , s⟩ = 0 ∀ s ∈ S and u is called the unit effect.

Now, a theory can have different types of systems. There should be a meaningful way of
describing them both on their own and jointly. Let us label the various types of systems A0,A1, · · · .
A system in a given type can be in one of the various states allowed by that type. Let us associate to
each type a state space: SA0 to type A0, SA1 to type A1 and so on, and denote their respective effect
spaces by EA0 , EA1 and so on. Given two state spaces SAi

and SAj
, we denote by SAi

⊠AiAj
SAj

the state space corresponding to a system, which is a composite of a subsystem of type Ai and a
subsystem of type Aj . Here ⊠AiAj

denotes a composition rule. This need not be thought of as a
tensor product but rather a list of states allowed in the theory when one of the systems is of type
Ai and the other of type Aj . Additionally, there might exist several joint state spaces composed
of SAi and SAj , identified by the set of composition rules {⊠t

AiAj
}t. Note, that for every (i, j), t

runs from 1 to f(i, j), where f is an integer function of i and j. To completely describe a theory,
one needs to specify the collection of all types of state spaces S := {SAi}i, their corresponding
effect spaces E := {EAi}i and the collection of composition rules ⊠ := {{⊠t

Ai,Aj
}t}(i,j). With this,

one can formally define a GPT as follows:

Definition 2.1.3. (GPT:) Let S be the collection of state spaces {SAi
}i in the vector spaces

{VAi
}i and E be the collection of the corresponding effect spaces E := {EAi

}i in the dual vector
spaces {V∗Ai

}i and ⊠ is the collection of composition rules {{⊠t
Ai,Aj

}t}(i,j) where i, j ∈ Zn and for
each (i, j), t ∈ Zf(i,j), where f is an integer function of i and j. A GPT is the triple (S,E,⊠),
where ⊠ is a composition rule with the property that, for every t,

1. SAiAj ,t := SAi ⊠
t
AiAj

SAj ⊂ VAi ⊗ VAj is a state space and EAiAj ,t := EAi ⊠
t
AiAj

EAj ⊂
V∗Ai

⊗ V∗Aj
is the effect space of SAiAj ,t, and for any sAiAj ,t ∈ SAiAj ,t,

(idAi
⊗ eAj

)
(
sAiAj ,t

)
∈ SAi⩽

and (eAj
⊗ idAj

)
(
sAiAj ,t

)
∈ SAj⩽

where idAi/Aj
: VAi/Aj

→ VAi/Aj
is the identity map, eAi/Aj

∈ EAi/Aj
and ⊗ is the tensor

product,

2. for any collection of states {(rk)Ai
}m

k=1 ⊆ SAi
, {(sk)Aj

}m
k=1 ⊆ SAj

, the state
n∑

k=1
λk(rk)Ai

⊗ (sk)Aj
∈ SAiAj ,t

where λk ⩾ 0 ∀ k ∈ {1, · · · , n},
∑n

k=1 λk = 1,
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3. the effect space EAiAj ,t of SAiAj ,t, is a subset of the maximal effect space ESAiAj ,t
defined

in (2.1.2).

Note, that the definition of state space implies that the description of any state in the theory
can be completely encoded in the entries of a finite real vector. Meaning, that state tomography
can be performed using a finite set of measurements. The set of measurements with which state
tomography can be performed are called fiducial measurements. Now for a bipartite system
composed of subsystems of type A and B, since its associated state space is a subset of VA ⊗ VB,
any bipartite state can be identified by local tomography. In addition, for any pair of effects
eA, eB ∈ E , and state sAB ∈ SAB, since both (idA ⊗ eB) (sAB) and (eA ⊗ idB) (sAB) are valid
sub-normalised states,

(eA ⊗ eB) (sAB) = (idA ⊗ eB)(eA ⊗ idB) (sAB) = (eA ⊗ idB)(idA ⊗ eB) (sAB) ∈ [0, 1], (2.1)

and hence all product effects eA ⊗ eB are elements of the bipartite effect space. Additionally, local
actions of effects on respective subsystems always commute. From Definition 2.1.2, one can see
that the only necessary restriction between a state and effect space pair is that the inner product
between an effect and a state must be between 0 and 1. Although we have mentioned state space
first, an alternative is to first define an effect space E and then choose an appropriate set S ⊆ SE as
the state space. Either way, for a fixed state space S, ES is its maximal effect space and for a fixed
effect space E , SE is its maximal state space. We will use both these approaches. In Section 3.2, we
will explain how this definition can be used to describe more parties.

2.2 COMPOSITE SYSTEMS

In the previous section, we saw that given two state spaces SA and SB, a composition rule ⊠AB

specifies the composite state space SAB. We present here two examples of composition rules that
allow one to construct the joint state space, regardless of the types of the systems being composed
together. These are the minimal and maximal tensor product compositions, formally defined below.

Definition 2.2.1. (Minimal and Maximal Tensor Products) Let SA ⊂ VA and SB ⊂ VB be
two state spaces and let EA and EB be their respective effect spaces. Then

• the minimal tensor product of SA and SB is

SA ⊗
min

SB := ConvHull{sA ⊗ sB | sA ∈ SA, sB ∈ SB},

• the maximal tensor product of SA and SB is

SA ⊗
max

SB := {sAB ∈ VA ⊗ VB | ⟨eA ⊗ eB, sAB⟩ ∈ [0, 1], ∀ eA ∈ EA, eB ∈ EB}.

A similar definition for effect spaces is also possible. It is important to point out that the maximal
effect space compatible with SA ⊗

min
SB is EA ⊗

max
EB and the maximal effect space compatible with

SA ⊗
max

SB is EA ⊗
min

EB. The maximal tensor product state space, as defined, is the largest set of

7



Chapter 2. Generalised Probabilistic Theories

bipartite states for which marginalisation to single system gives a valid state in the single system
state space. Therefore, for any arbitrary composition ⊠AB of state spaces, one gets the following
chain of inclusions: SA ⊗

min
SB ⊆ SA ⊠AB SB ⊆ SA ⊗

max
SB. Although the definitions above are

stated for bipartite systems, they can capture multipartite systems as well.
In the following, we illustrate how this framework allows discussions of classical, quantum and

post-quantum theories.

2.3 EXAMPLE I: CLASSICAL PROBABILITY THEORY

Any theory in which all state spaces can be represented as simplices is referred to as classical
probability theory. For instance, take a biased coin as the system of interest. The state of this
coin describes the degree of bias it has. The only fiducial measurement we need to describe this
state is tossing the coin and observing the outcome. To its event space {0, 1}, let us associate a
probability density function pcoin with the property pcoin(0) = p and pcoin(1) = 1 − p for some
p ∈ [0, 1]. The extremal states of the coin correspond to the deterministic outcomes when either
p = 0 or p = 1. Therefore, the probability state space corresponding to the state of a biased coin
can be geometrically represented by a line segment in R2 with (1, 0) and (0, 1) as the extremal
states. Similarly, for a certain event with 3 outcomes, the extremal states are:

s1 =

1
0
0

 , s2 =

0
1
0

 , s3 =

0
0
1

 ,

which can be seen as the vertices of a triangle. In general, the state space for a k-outcome
measurement can be geometrically represented by a (k − 1)-simplex. The min- and the max-tensor
product of state spaces that can be represented by simplices coincide and is also a simplex [4, 7].

2.4 EXAMPLE II: NON-CLASSICAL PROBABILITY THEORIES

Theories with non-simplicial state spaces are referred to as non-classical probability theory. Below,
we present three examples of non-classical probability theories, the last one being quantum theory.

2.4.1 Generalised Local Theory

A generalised local theory (GLT) refers to any GPT where the single system state space allows
all probability distributions and in which every multipartite state is separable across all bi-
partitions 1 [9]. We provide two examples of non-classical GLTs that are relevant to this thesis.
Consider the gbit state space Gn

m of a single system for which state tomography requires m fiducial
measurements having n outcomes each, such that any valid probability distribution on these
measurements and outcomes are permitted 2. The min- tensor product of two such gbit state spaces

1Any classical probability theory is a GLT.
2In principle, one can have a theory where the numbers of outcomes depend on the choice of the corresponding

measurements.
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GnA
mA

and GnB
mB

is always a generalised local theory. The two examples are cases of this composition
when i) mA = mB = nA = nB = 2 and when ii) mA = mB = 3 and nA = nB = 2.

When m = n = 2, the state space G2
2 can be characterised as the convex hull of four extremal

deterministic states, in particular

s1 =


1
0
1
0

 , s2 =


1
0
0
1

 , s3 =


0
1
1
0

 , s4 =


0
1
0
1

 ,

where we have used the notation s = (p(0|0) p(1|0) | p(0|1) p(1|1))T with p(a|x) denoting the
probability of observing the outcome labelled a when the fiducial measurement labelled x is
performed. For describing a bipartite state ς, we will use the notation,

ς =



p(0, 0|0, 0) p(0, 1|0, 0) p(0, 0|0, 1) p(0, 1|0, 1)

p(1, 0|0, 0) p(1, 1|0, 0) p(1, 0|0, 1) p(1, 1|0, 1)

p(0, 0|1, 0) p(0, 1|1, 0) p(0, 0|1, 1) p(0, 1|1, 1)

p(1, 0|1, 0) p(1, 1|1, 0) p(1, 0|1, 1) p(1, 1|1, 1)


(2.2)

where p(a, b|x, y) is the probability of getting the outcomes labelled a and b when the (fixed) fiducial
measurements labelled x and y are performed on the respective subsystems. Although written as a
matrix, this can be thought of as a way to write a 16-element vector.

The extremal states of the min-tensor product composition of two G2
2 state spaces are locally

deterministic and can be calculated by taking the Kronecker product of si with sj for i, j ∈
{1, 2, 3, 4} [9]. As an example,

s1 ⊗ s1 =


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

 .

The resultant joint state space is a polytope characterised by the convex hull of these 16 states. We
denote this state space as H[0]

(2,2), where the 0 denotes the absence of any non-separable or entangled
extremal state and (2, 2) signifies m = n = 2. Any polytope can be characterised either by the
convex hull of its extremal states (vertex description) or by a set of inequalities defining its facets
(facet description) (see e.g. Section 2.2.4 of [13]). Assuming normalisation and non-signalling 3

conditions hold, H[0]
(2,2) can be characterised by 24 facets, out of which 16 are positivity facets (i.e.,

corresponding to p(a, b|x, y) ⩾ 0 ∀ a, b, x, y), justifying valid probabilities and the remaining 8 are

3Non-signalling conditions impose that the probability distributions realisable in a theory cannot signal from
one party to another. For simplicity, in the representation (2.2), a state is non-signalling if the sum of the first
two probabilities in each row (or column) equals the sum of the second two. We will discuss this in more detail in
Section 2.7.
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called CH facets. To list the CH facets, consider the following 4 vectors in R16:

eCH1 =


0 0 1 0
0 1 0 0
0 −1 0 1
0 0 0 0

 , eCH2 =


0 0 0 0
0 −1 0 1
0 0 1 0
0 1 0 0

 ,

eCH3 =


0 0 0 1
0 1 0 0
0 −1 1 0
0 0 0 0

 , eCH4 =


0 0 0 0
0 −1 1 0
0 0 0 1
0 1 0 0

 ;

(2.3)

The 8 CH facets are given by {⟨eCHi ,x⟩ ⩽ 1}4
i=1 and {

〈
e′CHi

,x
〉
⩽ 1}4

i=1 where e′CHi
:= u− eCHi ,

x ∈ R16 and the inner product is defined element-wise. Each CH facet inequality is saturated
by 8 local deterministic states. Next, to find the effect polytope, let us first recall that for a
vector e ∈ V∗ to be an effect e, it must satisfy ⟨e, s⟩ ∈ [0, 1] for any state s in the state space (see
Def. 2.1.3). Since we defined state spaces to be convex and compact, it sufficient to check whether
⟨e, si⟩ ∈ [0, 1] for every extremal state si of the state space. We denote the extremal states of H[0]

(2,2)

as Vert
[
H[0]

(2,2)

]
. The set of facet-defining inequalities of the effect polytope EH[0]

(2,2)
is then given by:

Facets
[
E[H[0]

(2,2)

]] :=
{

x.svertex ⩾ 0 | svertex ∈ Vert
[
H[0]

(2,2)

]}⋃{
x.svertex ⩽ 1 | svertex ∈ Vert

[
H[0]

(2,2)

]}
;

(2.4)
Finding the vertices of a polytope from its facets is called vertex enumeration. For this work, we
have used PANDA [59] to solve all vertex enumeration problems. In the present case, we find that
the effect polytope has 90 extremal effects (see Appendix B.1 for a full classification) of which 82
are separable effects and the remaining 8 are entangled effects of the form eCHi

and e′CHi
with

i = 1, · · · , 4. The 82 separable effects consist of the positivity effects and linear combinations of
them. These 82 effects form the extremal effects of the largest effect space compatible with the
maximal tensor product of two copies of G2

2 ; We will introduce this in the next section.
When mA = mB = 3 and nA = nB = 2, the extremal (deterministic) states of the state space

G2
3 are



1
0
1
0
1
0


,



1
0
1
0
0
1


,



1
0
0
1
1
0


,



1
0
0
1
0
1


,



0
1
1
0
1
0


,



0
1
1
0
0
1


,



0
1
0
1
1
0


,



0
1
0
1
0
1


;

There are 64 local deterministic states of the state space polytope H[0]
(3,2) formed by taking the

min-tensor product of two G2
3 state spaces. Alternatively, assuming normalisation and non-signalling
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conditions hold, H[0]
(3,2) can be characterised by 36 positivity facets and 648 Bell facets 4. These

Bell facets can be categorised into two equivalence classes: the first containing 72 CH facets and
the second containing 576 I3322 facets [41, 78, 22]. In particular, consider the following two vectors
in R36 in the condensed notation as (2.2):

FCH =



0 0 1 0 0 0
0 1 0 0 0 0
0 −1 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, FI3322 = 1

3



0 1 0 1 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 −1 0 −1 1 0
0 0 0 1 0 0
0 1 0 0 0 0


(2.5)

The CH facets are given by ⟨FCH,x⟩ ⩽ 1 and the I3322 facets are given by ⟨FI3322 ,x⟩ ⩽ 1 where
x ∈ R36. The remaining elements for each class can be found by applying all relabelling symmetries
to FCH and I3322 respectively, and then discarding duplicates. There are 32 extremal states that
satisfy ⟨FCH, s⟩ = 1 and 32 extremal states that satisfy ⟨FCH, s⟩ = 0. On the other hand, there
are 20 extremal state with ⟨FI3322 , s⟩ = 1, 28 with ⟨FI3322 , s⟩ = 2/3, 12 with ⟨FI3322 , s⟩ = 1/3 and
4 with ⟨FI3322 , s⟩ = 0. There are at most 18 extremal locals states that simultaneously saturate
facets from each class.

We perform a vertex enumeration similar to the previous example to find that the effect polytope
EH[0]

(3,2)
is given by the convex hull of 27968 extremal effects. A classification of these effects is

provided in Table A.2 of Appendix A.

2.4.2 Box-World

Any GPT is said to be nonlocal if it is not a sub-theory of GLT. An example is the maximal tensor
product of GnA

mA
and GnB

mB
, also called box-world (BW). For the case of mA = mB = nA = nB = 2,

the extremal states include the 16 local deterministic states and 8 entangled states called PR
boxes [80, 81, 9]. We denote this state space as H[8]

(2,2) and list the 8 PR boxes:

PR1 = 1
2


1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 0

 ,PR2 = 1
2


0 1 1 0
1 0 0 1
1 0 1 0
0 1 0 1

 ,PR3 = 1
2


1 0 0 1
0 1 1 0
1 0 1 0
0 1 0 1

 ,

PR4 = 1
2


0 1 0 1
1 0 1 0
1 0 0 1
0 1 1 0

 ,PR′1 = 1
2


0 1 0 1
1 0 1 0
0 1 1 0
1 0 0 1

 ,PR′2 = 1
2


1 0 0 1
0 1 1 0
0 1 0 1
1 0 1 0

 ,

4They are called Bell facets because they can witness whether state of the form ς can be written as
∑

i
λiri ⊗ si,

where λi ⩾ 0 and
∑

i
λi = 1; A consequence of Bell’s theorem [11].

11



Chapter 2. Generalised Probabilistic Theories

PR′3 = 1
2


0 1 1 0
1 0 0 1
0 1 0 1
1 0 1 0

 ,PR′4 = 1
2


1 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1

 ;

Notice that the pairs PRi and PR′i are called isotropically opposite; Equal mixtures of them give
the maximally mixed state.

Next, when mA = mB = 3 and nA = nB = 2, the state space polytope corresponding to the
max-tensor product has 1408 extremal states, out of which 64 are local deterministic. Let us denote
this polytope as H[1344]

(3,2) , where 1344 denotes the number of extremal entangled states in the state
space. These entangled states can be classified into 4 relabelling classes in accordance with the
discussion above [54]. We present one candidate state from each of these classes below :

N1 = 1
2



1 0 1 0 0 1
0 1 0 1 0 1
1 0 0 1 0 1
0 1 1 0 0 1
0 0 0 0 0 0
1 1 1 1 0 2


,N2 = 1

2



1 0 1 0 0 1
0 1 0 1 1 0
1 0 0 1 0 1
0 1 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0


,

N3 = 1
2



1 0 1 0 1 0
0 1 0 1 0 1
1 0 0 1 1 0
0 1 1 0 0 1
1 0 1 0 1 0
0 1 0 1 0 1


,N4 = 1

2



1 0 1 0 1 0
0 1 0 1 0 1
1 0 0 1 0 1
0 1 1 0 1 0
0 0 0 0 0 0
1 1 1 1 1 1


;

Each entangled state violates multiple FCH and FI3322 facets and each FCH or FI3322 has multiple
entangled states violating them. Tables 2.1 and 2.2 below summarise this information.

Class # #FCH #FI3322

N1 288 1 8
N2 192 6 18
N3 288 4 24
N4 576 2 12

Table 2.1: Table above summarises “#” the number of elements in each class, “#FCH” and “#FI3322”
the number of FCH and FI3322 facets violated by an element of each class.

Inequality #N1 #N2 #N3 #N4

FI3322 4 6 12 12
FCH 4 16 16 16

Table 2.2: Table summarising the number of entangled states from each class violating a single
facet.
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2.4. Example II: Non-Classical Probability Theories

The effect polytope of EH[1344]
(3,2)

has 248 extremal effects. All 248 of these effects are separable [90]
and are extremal effects of EH[0]

(3,2)
as well. Just like the 2 input setting discussed earlier, these 248

effects can be classified into 7 relabelling classes. A classification of these effects can be found
in [39] which we summarise in Table A.1 of Appendix A for completeness.

2.4.3 Qubit Quantum Theory

Qubit quantum theory is an example of a GPT where local tomography requires three fiducial
measurements with two outcomes each. Below, we show how to connect the density matrix formalism
of qubit quantum theory to the probability state formalism, where every state is represented by
a table of probabilities (see (2.2)). In the density matrix formalism, a qubit is represented by a
2 × 2 density matrix, i.e., a positive semi-definite complex matrix with unit trace. The set of all
such density matrices D(C2) is a strict subset of the real vector space Mh(C2) of 2 × 2 Hermitian
matrices. An effect or POVM element is represented by a positive semi-definite complex matrix
Π such that 0 ⩽ Tr[ρΠ] ⩽ 1 for any ρ ∈ D(C2). We denote the set of all POVM elements as
ED(C2)

5. Since D(C2) and ED(C2) are both closed convex and compact, they form a well-defined
state and effect space pair. The composite state space of two qubits is a subset of the real vector
space Mh(C2) ⊗ Mh(C2). The composition rule ⊗̃ simply identifies this subset as the set of 4 × 4
density matrices. Compositions of multiple qubits can be understood similarly. With these, the
GPT

(
D(C2), ED(C2), ⊗̃

)
describes qubit quantum theory 6 in the density matrix formalism. An

analogous treatment is possible for quantum systems with higher (finite) dimensions.
The probability state formalism can be derived, from above, in the following way. Given a 2 × 2

density matrix, ρ, we first fix a set of fiducial measurements. A common choice is

{Mx}x∈{0,1,2} :=
{{ I + σx

2 ,
I − σx

2

}}
x∈{0,1,2}

(2.6)

where

σ0 =
(

0 1
1 0

)
, σ1 =

(
1 0
0 −1

)
and σ2 =

(
0 −i
i 0

)
denote the Pauli matrices 7 and I is the identity matrix. The state tomography of ρ with this choice
of measurement then defines a convex bijection D(C2) → R3 which we embed in R6 as follows:

ρ 7−→ 1
2



Tr [(I + σ0)ρ]
Tr [(I − σ0)ρ]
Tr [(I + σ1)ρ]
Tr [(I − σ1)ρ]
Tr [(I + σ2)ρ]
Tr [(I − σ2)ρ]


=



p(0|0)
p(1|0)
p(0|1)
p(1|1)
p(0|2)
p(1|2)


=: pρ, (2.7)

5It is well known that the positive cone of complex square matrices is self-dual (see Example 2.24 of [13]).
Therefore the positive cone generated by D(C2) is the same as the positive cone generated by ED(C2).

6Note that the minimal tensor product D(C2) ⊗
min

D(C2) is a strict subset of D(C2)⊗̃2, and describes the set of

separable states in this formalism. Characterisation of the maximal tensor product is unknown.
7Conventionally, the Pauli matrices are denote by σ1, σ2 and σ3. We have used non-standard notation here.
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Chapter 2. Generalised Probabilistic Theories

We call pρ the probability state of ρ and denote the set of all probability states obtained upon
performing state tomography on qubits using Pauli measurements P[D(C2)], the probability state
space of a qubit. Note that since the set D(C2) is compact and convex, so is P[D(C2)] via the convex
bijection. The composite probability state space for two qubits can be similarly derived by performing
local tomography with all pairs of fiducial measurements on all bipartite states in D(C2)⊗̃2.
We denote this joint state space as P[D(C2)⊗̃2]. A chain of inclusions P[D(C2)] ⊗

min
P[D(C2)] ⊂

P[D(C2)⊗̃2] ⊂ P[D(C2)] ⊗
max

P[D(C2)] is invoked since probability states corresponding to entangled

qubits are not necessarily separable, and P[D(C2)⊗̃2] is not the maximal state space when only
separable effects are considered.

It is important to stress that the Hilbert space and probability state formalism of quantum
theory (or any physical theory) are equivalent in their statistical predictions. However, there
are non-statistical features in the Hilbert space formalism, such as superposition, that do not
have a direct analogue in the probability state formalism. It is then natural to ask whether such
model-specific features pertain to any real description of Nature, or whether, they only serve as
mathematical tools enabling the model to provide reasonably accurate predictions. We will discuss
this in greater detail in Chapter 7.

2.5 ASIDE ON RELABELLINGS AND CHSH GAMES

2.5.1 Relabellings

So far, we have assumed that the probability representation of a state requires two ingredients: a
fixed set of fiducial measurements and a fixed labelling of these measurements and their outputs.
In a lab setting, these labels could correspond to a fixed colour coding of the switches at the
input and LEDs at the output of some measurement apparatus. In general, an alternative colour
coding, corresponding to the relabelling of the measurements and their outcomes, will give an
alternate description of the same state. Note, that there are multiple ways of relabelling: relabelling
the measurement choices, outcomes, or more generally, outcomes only for a particular choice of
measurement, or in fact, any sequence of these. As an example, if a measurement previously
labelled as 0 is now relabelled to 1 and vice versa, a state that gives rise to the probability table
PR1 would instead give rise to PR2 and vice versa. For bipartite (in general multipartite) systems,
there are two types of relabellings: i) local relabellings, i.e., relabelling the inputs and outputs for
each subsystem and ii) global relabellings, i.e., relabelling the subsystems as well. The latter will
be discussed further in Section 3.2.

An interesting observation is that the set of probability descriptions of extremal states resulting
from relabelling the measurement choice instanced above coincides with the set of previously
obtained probability descriptions. Even more strongly, this happens for any choice of relabelling
and does not depend on the initial labels used. The list of probability descriptions that the state
can be assigned to via relabellings is exactly 8 and coincides with the 8 probability tables PRi/PR′i]
above. Since with any fixed labelling, the 8 probability tables describe 8 distinct states, a relabelling
operation that leaves the overall probability description of the state space unchanged, corresponds

14
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to an allowed reversible transformation on the state space. For instance, since relabelling a
measurement 0 to 1 by both parties leaves the probability description of H[8]

(2,2) unchanged, there
is an allowed transformation on the state space that maps s1 (the state that gives rise to PR1

under some fixed fiducial measurements) to s2 (the state that gives rise to PR2 under the same
fiducial measurements), with analogous maps on the other extremal states. Similarly, since all
relabelling operations leave H[8]

(2,2) invariant, there is a reversible transformation on the underlying
state space corresponding to each of the relabellings. Therefore, these 8 entangled states are
equivalent up to these reversible transformations, and their probability descriptions are equivalent
up to relabelling operations. Hence, H[8]

(2,2) contains two classes of extremal states up to relabelling:
local deterministic states and PR boxes.

2.5.2 CHSH Games

There is an interesting connection between the probability tables PR above and CHSH games.
CHSH games are played between two players who can share non-classical resources but are otherwise
isolated in closed labs. The players are asked random questions labelled by random variables X
and Y to which they need to provide answers labelled by random variables A and B respectively.
The players win if their input-output bits satisfy the winning conditions of the game of interest. In
the simplest scenario where |X| = |Y | = |A| = |B| = 2, the 8 winning conditions corresponding to
the 8 given games are given by a⊕ b = xy⊕ c0x⊕ c1y⊕ c2, where c0, c1 and c2 are binary variables.
Then the 8 vectors {CHSHi := 1/2PRi}4

i=1 and {CHSH′i := 1/2PR′i}4
i=1 define the 8 CHSH games.

The factor 1/4 arises since the binary questions X and Y are randomly chosen. The score of a
correlation p(A,B|X,Y ) in the game CHSHi is given by ⟨1/2PRi,p(A,B|X,Y )⟩. For instance,
since the correlation table obtained after performing the fiducial measurements on PR1 coincides
with the probability table of PR1, one can see that

CHSH1[pPR1(A,B|X,Y )] = ⟨1/2PR1,pPR1(A,B|X,Y )⟩ =

〈
1/4 0 1/4 0
0 1/4 0 1/4

1/4 0 0 1/4
0 1/4 1/4 0

 ,
1
2


1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 0


〉

= 1.
(2.8)

The vectors CHSHi and CHi are related by an affine transformation, for the facets of the state
space H[0]

(2,2) can also be written as {⟨Ci,x⟩ ⩽ 3/4}i.

2.6 A HILBERT SPACE FORMALISM OF GLT AND BW

This section has been inspired from useful discussions with Stefan Weigert and Alaister Mansfield.
In the previous section, we saw that there is more than one way to mathematically model a

theory. In particular, qubit quantum theory can be described in both the Hilbert space formalism
and, as shown above, the probability state space formalism. In Section 2.4.1 and Section 2.4.2 we
also saw the probability state space formalism of GLT and BW respectively. In this section, we
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will present a Hilbert space formalism of these two theories. We will stick to the case where state
tomography requires three or two binary outcome fiducial measurements. We will first state the
effect space and then work out the state space.

Let us start with the vector space of 2 × 2 Hermitian matrices. Let

E := ConvHull
{

{0, I}
⋃{

I ± σi

2

}2

i=0

}
(2.9)

be the effect space for a single system, where 0 is the zero matrix. The facet defining inequalities
of the corresponding maximal state space SE can be written as

Facets [SE] :=
{
ϱ ∈ Mh

(
C2) | Tr [ρe] ⩽ 1 ∀ e ∈ E

}
; (2.10)

Now, recall that since the Pauli matrices together with the identity matrix span the vectors space
Mh

(
C2), any unit trace hermitian matrix can be expressed as

ϱ = I + r0σ0 + r1σ1 + r2σ2

2 , (2.11)

where ri ∈ R ∀ i ∈ {0, 1, 2}. The set of inequalities (2.10) above poses constraints on the ranges of
ri. Notice that,

Tr
[
ϱ
I ± σi

2

]
= 1 ± ri

2 , (2.12)

with which, the constraints above reduce to{
0 ⩽

1 ± ri

2 ⩽ 1
}2

i=0
= {−1 ⩽ ri ⩽ 1}2

i=0 . (2.13)

We can now construct 8 states by combining the various extremal values allowed for each ri. These
8 states are:(

1 1
2 − i

2
1
2 + i

2 0

)
,

(
0 1

2 − i
2

1
2 + i

2 1

)
,

(
1 1

2 + i
2

1
2 − i

2 0

)
,

(
0 1

2 + i
2

1
2 − i

2 1

)
(

1 − 1
2 − i

2
− 1

2 + i
2 0

)
,

(
0 − 1

2 − i
2

− 1
2 + i

2 1

)
,

(
1 − 1

2 + i
2

− 1
2 − i

2 0

)
,

(
0 − 1

2 + i
2

− 1
2 − i

2 1

)
;

Compactly, {
I ± σ0 ± σ1 ± σ2

2

}
.

One can check that each of these states satisfies the inequalities (2.10) and since they are elements
of Mh

(
C2), a theory in which the state space is the convex hull of these 8 states requires 3

fiducial measurements for state tomography. In addition, if these measurements are the projectors
corresponding to the Pauli matrices, then a short calculation shows that the probability state space
corresponding to SE is G2

3 . In fact, the probability representation of the first state above is the first
local deterministic state written out while characterising G2

3 and so on.
Bipartite state spaces can be constructed by assuming that state tomography of bipartite states

can be done by performing local tomography of each subsystem. Therefore, instead of solving a
set of constraints we can take each probability state and find a 4 × 4 unit trace hermitian matrix,
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2.7. The Set of Correlations

such that if it were the bipartite state, on performing local tomography with the three Pauli
measurements one would get back the probability state they started with. The extremal bipartite
states for GLT are simply the Kronecker product of each of the states above. This gives us 64
states corresponding to the 64 local deterministic states mentioned earlier. For the extremal BW
states, we provide the states to which N1, N2, N3 and N4 get mapped to in this process.

N1 7→


0 0 0 1

2 − i
2

0 0 0 0
0 0 0 0

1
2 + i

2 0 0 1



N2 7→


0 − 1

4 + i
4 − 1

4 + i
4

1
2 − i

2
− 1

4 − i
4

1
2 0 1

4 − i
4

− 1
4 − i

4 0 1
2

1
4 − i

4
1
2 + i

2
1
4 + i

4
1
4 + i

4 0



N3 7→


1
2

1
4 − i

4
1
4 − i

4
1
2 − i

2
1
4 + i

4 0 0 − 1
4 + i

4
1
4 + i

4 0 0 − 1
4 + i

4
1
2 + i

2 − 1
4 − i

4 − 1
4 − i

4
1
2



N3 7→


0 1

4 + i
4 0 1

2 − i
2

1
4 − i

4
1
2 0 0

0 0 0 − 1
4 − i

4
1
2 + i

2 0 − 1
4 + i

4
1
2


Of special interest could be the Hilbert space state of the PR box. For this, let us assume that

fiducial measurements are performed using Pauli σi and σj with i, j ∈ {0, 1, 2}, i ̸= j . The three
Hilbert space states that the box PR1 gets mapped to for each (i, j) are

0 0 0 1
2 − i

2
0 0 0 0
0 0 0 0

1
2 + i

2 0 0 1


(0,1)

,


0 1

4
1
4 0

1
4

1
2

1
2 − 1

4
1
4

1
2

1
2 − 1

4
0 − 1

4 − 1
4 0


0,2

,


0 − i

4 − i
4 0

i
4

1
2

1
2

i
4

i
4

1
2

1
2

i
4

0 − i
4 − i

4 0


(1,2)

,

where the subscripts denote the choices of the Pauli measurements used.

2.7 THE SET OF CORRELATIONS

Recall that since local actions of effects on respective subsystems commute, when local measurements
are performed on two halves of a composite system, the marginal distribution obtained from one half
is the same whether calculated before or after the measurement on the other half. Consequentially,
non-signalling correlations emerge which for bipartite systems can be phrased as follows.
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∑
b

p(a, b|x, y) =
∑

b

p(a, b|x, y′) = p(a|x) for all a, x, y, y′

∑
a

p(a, b|x, y) =
∑

a

p(a, b|x′, y) = p(b|y) for all b, x, x′, y
(2.14)

In Section 2.4.3, we have introduced probability state spaces to phrase quantum theory. More
generally, state spaces for any GPT can be described using probability tables. The interpretation
here is that, although one might not have knowledge of the algebraic structure of state space,
the probability state space gives a list of probability tables obtained when local tomography is
performed on every state allowed in the theory. A potential confusion could be in the difference
between a probability state space and the set of correlations generated from that state space. We
attempt to clarify this here. Consider a probability state space S of a single system and its maximal
effect space ES . Further, consider the collection of all sets of m measurements, each of which has n
outcomes, i.e.,

Mm,n :={{{
e0|x, · · · , ea|x, · · · en−1|x

}}m−1
x=0

∣∣∣ ea|x ∈ ES ∀ x ∈ {0, · · · ,m− 1}, a ∈ {0, · · · , n− 1},
n−1∑
a=0

ea|x = u

}
.

Let X denote the random variable corresponding to the measurement choice x, A denote the
random variable corresponding to the outcome a and |Z| denote the number of values that a
random variable Z takes. Then, for some state s ∈ S, the collection{

ps(A|X)
∣∣∣ |A| = n, |X| = m

}
denotes the set of all conditional probability distributions, or correlations, that can be generated
when there are m possible measurements that can be performed on s, each of which has n outcomes.
Here |A| denotes the number of possible outcomes. A correlation set of the state space S can now
be defined as:

C(1,m,n) :=
{

ps(A|X)
∣∣∣ |A| = n, |X| = m, s ∈ S

}
,

where (1,m, n) signifies the measurement setting and the number 1 highlights that we are talking
about a single system. In the same way, a bipartite correlation set can be defined as:

C(2,m,n) :=
{

pς(A,B|X,Y )
∣∣∣ |A| = |B| = n, |X| = |Y | = m, ς ∈ SAB

}
.

This can be generalised to more parties, i.e., to measurement settings (p,m, n). A measurement
setting for p > 1 is often referred to as a Bell setting. Note that the set of probability tables
forming the description of a state space is always a subset of the set of correlations, when m

in the setting equals the number of fiducial measurements required to perform tomography, and
n equals the number of outcomes of those fiducial measurements. In this thesis, when ς is a
bipartite probability state with m = n = 2, we will use CHSHi[ς] to denote the score in the game
CHSHi of the distribution obtained when fiducial measurements are performed on ς. For example,
CHSH1[PR1] = 1 or CHSH2[PR1] = 1/2.
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2.7. The Set of Correlations

Given a set of correlations, it is not always possible to uniquely identify the underlying state
space. For example, assume that the underlying state space is the convex hull of H[0]

(2,2) and PR1.
Now, label the collection of fiducial measurements as {e0|0, e1|0} and {e0|1, e1|1}, such that the
correlation pPR1(A,B|X,Y ) obtained when this measurement is performed on PR1 is identical to
the probability table of PR1. Now consider a relabelling of the same measurements such that the
outcomes previously labelled as 0 are now relabelled to 1, and vice-versa, for the system labelled
A. The correlation pPR1(A′, B′|X,Y ) obtained when the relabelled fiducial measurements are
performed on PR1 would now be identical to the probability table of PR′1. Similarly, one can
keep on relabelling the fiducial measurements and generate correlations that match the probability
tables of the rest of the PR boxes. The fact that, for example, all PR boxes can be realised in the
correlation space does not mean that there are states associated with each PR box in the state
space.
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3

Minimal k-Preservibility Criterion

Evolution of systems is an integral part of any theory. Once a collection of state spaces has been
specified, we will assume that every GPT allows a system to evolve from a state in one state space
to a state in the same or another state space. In this chapter, we will study the properties of maps
that define such transformations.

Let us consider the evolution of a system from type A0 to type A1 and let the associated state
spaces be SA0 and SA1 respectively. Further, let T be the map characterising this evolution. More
precisely, T is a map from the vector space VA0 to the vector space VA1 . Now, suppose that
T maps the states s1, s2 ∈ SA0 to the states r1, r2 ∈ SA1 respectively. An experimenter flips a
biased coin and prepares s1 if she gets a Head and prepares s2 if she gets a Tail. Let us assume
that the probability of getting a Head is p and the probability of getting a Tail is 1 − p, where
p ∈ [0, 1]. After the evolution happens, if the state were s1, the evolved state will be r1 and if the
state were s2, the evolved state will be r2. However, if she forgets the outcome of the coin toss,
from her perspective, the input state would be a convex mixture of s1 and s2, i.e., ps1 + (1 − p)s2

and similarly, the expected output state should be the convex mixture pr1 + (1 − p)r2. With this
reasoning, the action of the map T needs to be convex-linear. More precisely,

T (ps1 + (1 − p)s2) = pT (s1) + (1 − p)T (s2), (3.1)

For simplicity, we will make a stronger assumption that the actions of all maps governing evolution
of systems in any GPT are linear on the underlying vector spaces.

Linearity of maps, however, is not sufficient in order for them to characterise evolution of
systems; Such maps should be able to suitably describe situations where the system is seen as a
part of a larger composite, the rest of which is not undergoing any evolution. An introductory
understanding of this property is the overarching theme of the following sections.

3.1 COMPLETE PRESERVIBILITY

Suppose a system in state s ∈ SA0 is seen as a subsystem of a larger composite in state ς ∈
SA0 ⊠A0K SK. If a map T truly defines the evolution of the system in state s, it should consistently
evolve the state s to a state r ∈ SA1 , without affecting the system type of the part it is not acting
on. In other words, the evolved composite system must be in some state ϑ ∈ SA1 ⊠A1K SK. A
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reasonable way to necessitate this is by requiring:

T A0→A1 ⊗ idK (ς) ∈ (SA1 ⊠A1K SK) , (3.2)

where ⊗ represents a tensor product and idK is the identity map. Recall from the discussion leading
to Definition 2.1.3, that the state space SK can also be compositions of subsystems of various types.
The map T is said to be K-preserving if (3.2) holds. T is said to be completely preserving if it
is K-preserving for every system type K allowed in the theory. In the following, we will see how
these conditions manifest in some of the theories we have introduced in Chapter 2.

3.1.1 Complete Preservibility in Generalised Local Theory

In GLT, a composite state space is constructed using the minimal tensor product (see Definition 2.2.1)
of single system state spaces. The various types of single system state spaces are solely given by the
type of gbit state spaces allowed, i.e., the number of measurements with the corresponding number
of outputs required to perform state tomography. Now, consider a certain composite formed of
(m + k) single systems, with types A0, · · · ,Am−1 and K := Km, · · · ,Km+k−1. Every extremal
state ς in the composite state space can be written as

ς = (s0 ⊗ s1 ⊗ · · · ⊗ sm−1) ⊗
(
s′m ⊗ · · · ⊗ s′m+k−1

)
, (3.3)

where si ∈ GAi
and s′j ∈ GBj

for all i ∈ {0, · · · ,m− 1} and j ∈ {m, · · · ,m+ k − 1}. Now, let T
define the evolution of systems from a state in the composite system labelled by (A0, · · · ,Am−1) to
the composite system labelled by (A′0, · · · ,A′m−1). The action of T on the appropriate subsystems
of ς can then be seen as

T A→A′
⊗ idB (ς) = T A→A′

(s0 ⊗ s1 ⊗ · · · ⊗ sm−1) ⊗ idK (s′m ⊗ · · · ⊗ s′m+k−1
)

= ϑ⊗
(
s′m ⊗ · · · ⊗ s′m+k−1

) (3.4)

where ϑ is a state in the composite state space labelled by (A′0, · · · ,A′m−1). Finally, since T is
linear on the underlying vector spaces, its action on a convex combination of extremal states can
be understood similarly. The fact that we haven’t specified anything about the composite system
type labelled by K, implies that every such map is completely preserving.

Remark. Here, 0-preserving means that the map is an effect of the state space it is acting on.

3.1.2 Complete Preservibility in Box-World

The single-system state spaces in BW are identical to the single-system state spaces of classical
theory. Composite systems are described by the maximal tensor product of subsystems. It has
been shown in [79] and independently in [12] that every K-preserving map is completely preserving.
This implication might initially appear trivial, from these two examples, but it is important to
stress that in quantum theory it does not hold.
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3.1.3 Complete Preservibility in Quantum Theory

In the Hilbert space formalism of quantum theory, preservibility is equivalent to positivity since
every density matrix is positive semi-definite. Here, the transpose map is positive but not completely
positive. To see why, consider the action of the map on the qubit state space:

T : D
(
C2) → D

(
C2)

ρ 7→ (ρ)T
,

where (ρ)T is the matrix transpose of ρ. (ρ)T is a valid density matrix, implying that T is positive.
However, the action of T on a subsystem of a composite system does not always result in valid
density matrices. For example,

T ⊗ id (Φ+) = T ⊗ id

1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


 = 1

2


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,

where Φ+ := |ϕ+⟩⟨ϕ+| with |ϕ+⟩ := (|00⟩ + |11⟩)/
√

2. The 4 × 4 matrix on the right has negative
eigenvalues and therefore is not a density matrix. The partial transpose has been used for witnessing
entanglement, and it turns out that for bipartite qubit systems, positivity under the partial transpose
is necessary and sufficient to conclude that a density matrix is not entangled [77, 51]. An extension
of this to continuous variables, in particular Gaussian states has also been studied [91].

Necessary and sufficient conditions for complete positivity of maps have been extensively studied
and criteria for maps to be completely positive have been proposed by Stinespring [94], Choi [19,
18] (see also [3]) and Kraus [57]. We refer the reader to [74] and [88] for a concise reading on the
developments on this topic. Such a condition for any GPT is unknown. In the following sections,
we restrict ourselves to only effects and present an easily verifiable necessary criterion for effects to
be completely preserving.

3.2 MINIMAL K-PRESERVIBILITY

From this section and onwards, unless explicitly specified otherwise, we will assume that all single
systems are of the same type and there is a single composition rule for every k-partite system with
k ⩾ 0 i.e., for a given k, all k-partite systems are also of a single type. The preservibility discussion
from above can then be simplified to the action of a map on subsystems of a composite which can
now be numbered rather than being typed. In the following, we will first rephrase the preservibility
requirements in terms of the number of systems and present our criterion thereafter.

So far, the only consistency condition we have put on state and effect spaces is that they should
result in valid probabilities, i.e., their inner products are between 0 and 1. To build a full theory,
we also need to consider composability of systems. In particular, effects corresponding to a given
number of systems should also be compatible with states of larger systems, regardless of how
they are arranged. More precisely, expanding on the first property of a composition rule ⊠ from
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3.2. Minimal k-Preservibility

Definition 2.1.3, we need that for two state spaces S⊠m and S⊠k and effect space E⊠m ⊆ ES⊠m ,
every effect ẽ ∈ E⊠m must have the property that

id⊗k1 ⊗ ẽ⊗ id⊗k2 (ς)〈
u, id⊗k1 ⊗ ẽ⊗ id⊗k2 (ς)

〉 ∈ S⊠k, (3.5)

for any ς ∈ S⊠(m+k) and m, k, k1, k2 ∈ Z⩾0 with k1 + k2 = k. Here ẽ acts on any arbitrary m

subsystems out of the m+ k systems described by ς and S0 is the trivial system, i.e., the length 1
vector with entry 1. This requirement ensures that ẽ respects the composition ⊠ by preserving the
state space structure even when not acting on any arbitrary k subsystems. We call this property
k-preservibility and say that ẽ is a k-preserving effect 1. If ẽ is k-preserving for all k ⩾ 0, we say
that ẽ is a completely preserving effect.

Given a rule ⊠, a complete characterisation of every state in S⊠(m+k) may not be straightforward,
since there might be infinitely many extremal states2. Therefore, even showing that an effect ẽ
is k-preserving is challenging. We thereby present a necessary condition for ẽ to be k-preserving
that can be checked once all extremal states in S⊠m and S⊠k are known but a full list of extremal
states in S⊠(m+k) is not. Recall from Definition. 2.2.1 that for two state spaces S⊠m and S⊠k,
one always has S⊠m ⊗

min
S⊠k ⊆ S⊠(m+k). Consequently, for any two states r ∈ S⊠m and s ∈ S⊠k,

their tensor product r ⊗ s is an element of S⊠(m+k). Therefore if e is k-preserving, it must at least
consistently act on any m subsystems of r ⊗ s. We call this necessary condition for k-preservability
minimal k-preservability and formally define it below.

Definition 3.2.1. (Minimal k-Preservability) Let S⊠m and S⊠k be a m- and k-partite state
spaces and r ⊗ s be a state describing m + k systems where r ∈ S⊠m describes a composite
system labelled by Xr := {1, 2, · · · ,m} and s ∈ S⊠k describes the composite system labelled by
Xs := {m+ 1,m+ 2, · · · ,m+ k}. Let Br ⊆ Xr, Bs ⊆ Xs, Ar = Xr \ Br and Cs = Xs \ Bs. An
effect e ∈ ES⊠m is said to be minimally k-preserving if

idAr ⊗ eBr∪Bs ⊗ idCs (r ⊗ s)〈
u, idAr ⊗ eBr∪Bs ⊗ idCs (r ⊗ s)

〉 ∈ S⊠k

for any r ∈ S⊠m and s ∈ S⊠k and any Br, Bs such that |Br| + |Bs| = m, where eBr∪Bs denotes
the action of e on any arbitrary m subsystems labelled by Br ∪Bs.

Requiring minimal 2-preservability puts constraints on the effect space, in the sense that not
all elements of ES correspond to valid effects. It is natural to ask whether there is a simple set
of sufficient conditions to test k- (more ambitiously complete) preservibility, however, we are not
aware of one. Nevertheless, to illustrate the significance of this criterion, we provide below two
examples of GPTs in which minimal 2-preservibility is broken.

1Remark: K-preservibility simplifies to k-preservibility when all single systems are of the same type and there is
a single composition rule given the number of parties.

2Due to convexity of the effects, it is sufficient to check that an effect is minimal k-preserving on extremal states.
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3.2.1 State space with 1 PR Box

For this example, we will consider a party swap symmetric GPT and focus on bipartite state and
effect spaces. Let e ∈ ES⊠2 be an effect and r and s be two arbitrary states of S⊠2. Assume that
r is composed of 2 subsystems labelled by {1, 2} and s is composed of 2 subsystems labelled by
{3, 4}. Since e is a bipartite effect, for a party symmetric state space, it is sufficient to consider two
different maps arising from e depending on which subsystems of the state r ⊗ s it acts on:

e(1,2) ⊗ id(3,4) (r ⊗ s)〈
u, e(1,2) ⊗ id(3,4) (r ⊗ s)

〉 and id(1) ⊗ e(2,3) ⊗ id(4) (r ⊗ s)〈
u, id(1) ⊗ e(2,3) ⊗ id(4) (r ⊗ s)

〉 .
In both cases here, the identity acts on two systems. For e to be minimally 2-preserving, we require
that these two states are elements of S⊠2 for any choice of r and s. From the definition of an effect
space (see Def. 2.1.2), the first state is indeed an element of S⊠2. But the second one may not be.
Denoting by Φ(23)

e (r, s) the second state, minimally 2-preservability in this scenario corresponds to
Φ(23)

e (r, s) being an element of S⊠2 for all r, s ∈ S⊠2.
Our first example is the bipartite state space H[1]

(2,2)[PR1], introduced in [93] to study entangle-
ment swapping in GPTs. This state space is the convex hull of the 16 local deterministic states
(vertices of H[0]

(2,2) presented in Section 2.4.1) and the PR box PR1. There are effects in its maximal
effect space EH[1]

2,2[PR1], that are not minimally 2-preserving. In particular, none of the CH type

effects that have an inner product in the range [0, 1] with every state of H[1]
(2,2)[PR1] is minimally

2-preserving. As an example,

id ⊗ eCH4 ⊗ id (PR1 ⊗ PR1)
⟨u, id ⊗ eCH4 ⊗ id (PR1 ⊗ PR1)⟩ = 1

2


0 1 1 0
1 0 0 1
0 1 0 1
1 0 1 0

 = PR′3

which is not in the state space. A similar calculation using other CH type effects will prove the rest
of the claim.

3.2.2 Self-Dualised BW (Janotta)

The second example is the self- dualised version of BW presented by Janotta [52], the bipartite
state space is given by the convex hull of all the local deterministic states and the 4 PR boxes

PR1 = 1
2


1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 0

 ,PR′1 = 1
2


0 1 0 1
1 0 1 0
0 1 1 0
1 0 0 1

 ,

PR′3 = 1
2


0 1 1 0
1 0 0 1
0 1 0 1
1 0 1 0

 ,PR′4 = 1
2


1 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1

 .
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The effect space is the convex hull of

eCH2 =


−1 0 1 0
0 0 0 0
1 0 0 0
0 0 0 1

 , e′CH2
=


0 0 0 1
0 1 0 0
0 0 0 0
1 0 0 −1

 ,

2
3e
′
CH3

= 2
3


0 1 0 0
0 0 0 1
0 0 0 0
1 0 0 −1

 ,
2
3e
′
CH4

= 2
3


1 0 0 −1
0 0 0 0
0 1 0 0
0 0 0 1

 ;

However, these extremal effects are not minimally 2-preserving, since

id ⊗ eCH2 ⊗ id
(
PR1 ⊗ PR′3

)〈
u, id ⊗ eCH2 ⊗ id

(
PR1 ⊗ PR′3

)〉 = 1
2


0 1 0 1
1 0 1 0
1 0 0 1
0 1 1 0

 = PR4,

id ⊗ e′CH2
⊗ id

(
PR1 ⊗ PR′1

)〈
u, id ⊗ e′CH2

⊗ id
(
PR1 ⊗ PR′1

)〉 =


1 0 0 1
0 1 1 0
0 1 0 1
1 0 1 0

 = PR′2,

id ⊗ (2/3)e′CH3
⊗ id

(
PR1 ⊗ PR′3

)〈
u, id ⊗ e′CH3

⊗ id
(
PR1 ⊗ PR′3

)〉 =


1 0 0 1
0 1 1 0
0 1 0 1
1 0 1 0

 = PR′2,

id ⊗ (2/3)e′CH4
⊗ id

(
PR′3 ⊗ PR′4

)〈
u, id ⊗ e′CH4

⊗ id
(
PR′3 ⊗ PR′4

)〉 = 1
2


0 1 0 1
1 0 1 0
1 0 0 1
0 1 1 0

 = PR4,

none of these effects are minimally 2-presrving.

3.3 FAILURE OF NO-RESTRICTION HYPOTHESIS(NRH)

The no restriction hypothesis states that there are no further restrictions between a state and effect
space pair, other than that of the inner product. An interesting feature that emerges from our work
is that NRH leads to inconsistencies when composite state spaces are considered. In particular,
when an effect from the dual of the state space is performed on two halves of two bipartite systems,
the resulting state may now lie outside the state space. Hence, the state spaces we consider can
be seen as examples where restrictions further than requiring a valid inner product, in particular
minimal k-preservibility, is needed to maintain consistency when composite systems are considered.
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Previously, theories with restricted effect spaces have been considered [53]. In particular, it was
shown that the maximal tensor product (as defined in 2.2.1) of single system state spaces with
restricted effect spaces contains states whose marginals are not elements of the original state space.
As a solution, the authors propose a generalised definition of the maximal tensor product. However,
a physically motivated principle to demand restricted effect spaces was missing. In this thesis, we
argue that since minimal k-preservibility coincides with complete preservibility for minimal tensor
product theories, for any theory where the minimal tensor product state space is always a subset of
the composite state space, minimal k-preservibility presents a physical principle for compositional
consistency and necessitates the requirement to consider restricted effect spaces.

3.4 CONCLUSION

We have introduced a minimal necessary criterion for multipartite effects to be completely preserving.
Our requirement can be seen as a natural generalisation of the NRH, since the NRH only demands
effects to be 0-preserving. In quantum theory, all 0-preserving effects are completely preserving
and therefore the NRH serves as a sufficiency condition for validity of effects. We have shown that
in general theories this feature no longer holds and one might need to use the proposed generalised
NRH. In addition, one can extend the notion of minimal k-preservibility of transformations between
state spaces and ask which transformations are admissible in a theory. An interesting question there
would be to look for transformations that although are minimally k-preserving but not completely
k-preserving. We leave these investigations for future work.

Recently, in [27], the authors discuss complete preservibility in composite state spaces which
are not constructed using the minimal or maximal tensor product rule. In particular, they refer to
Janotta [52] where the state space considered was the convex hull of H[0]

(2,2) and 4 PR boxes, out of
which 2 PR boxes are isotropically opposite to each other and 2 PR boxes (not necessarily the other
two) are symmetric under party swap. Naturally, the state space is not symmetric under party swap.
In agreement with our results, they also find effects that are not minimally 2-preserving. Further,
they state that the only possible compositions of two gbit state spaces, G2

2 , which are completely
preserving are H[0]

(2,2),H
[8]
(2,2) and a party symmetric state space 3 of H[1]

(2,2)[PR1] with a restricted
effect space constructed from the convex hull of BW effects and only one entangled effect, i.e., the
coupler epure only. Our results show that more state and effect space pairs are potentially completely
2-preserving. For instance, H[1]

(2,2)[PR1] with a restricted effect space constructed from the convex
hull of BW effects, the 9 coupling effects and their complementary effect. A noisier version of this
example is also minimally 2-preserving and therefore potentially completely preserving. Other
examples, to be covered in Chapter 6, include H[m]

α,(2,2) state spaces, with m even, denoting the
number of isotropically opposite noisy PR boxes present in the state space. Here the restricted
effect spaces are constructed by taking the convex hull of all the extremal effects of EH[m]

α,(2,2)
, with

the exception of the CH type effects.

3A state space is party swap symmetric if it the party swap relabelling maps aloowed states to allowed states.
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4

Causal Order, Causal Structure and Freedom of Choice

This chapter presents a brief overview of the connections between the three concepts in its title,
closely following the proposal of Colbeck and Renner [20].

4.1 CAUSAL ORDER

Any physical experiment must involve preparation of states, measurements on them and finally,
generation of measurement outcomes. From our perception of the world around us, we expect there
to be an order in which these operations occur, namely, measurement outcomes are observed after a
state has been prepared and a measurement choice has been made. However, we do not necessitate
that the measurement outcomes are always dependent on the other two.

One way to formulate this is by associating the random variable Λ to state preparations, X to
measurement choices and A to the observed outcomes. Since X is a potential cause of A, we say
that A is in the causal future of X and denote it by X 99K A. Similarly, Λ 99K A. Given a set, Γ,
of random variables, a causal order, (Γ, 99K), is then a preorder relation 99K on Γ.

Remark: Instead, if we defined causal order using partial order, whenever X 99K A and A 99K X,
using antisymmetry, we will obtain A = X. However, there might be situations in which two
distinct random variables precede each other. Therefore, we will use preorder relations for defining
both causal order and causal structures.

4.2 CAUSAL STRUCTURES COMPATIBLE WITH A CAUSAL ORDER

Given a set of random variables, a causal structure represents the true causes of each random
variable in the set. In the experiment described above, the experimenter is aware of the measurement
choice and the outcomes observed but they need not know the state; The variables A and X are
deemed observed, while Λ is unobserved. A causal structure, (Γ,→), is then a preorder relation →
on Γ, where → denotes true cause, such that at least one variable is observed. (Γ,→) can also be
represented as a directed acyclic graph, where the random variables are the nodes, some of which
are labelled as observed.

A casual structure (Γ,→) is said to be compatible with the causal order (Γ, 99K), if and only if
for every pair of random variables (A,X), if X 99K A then A ̸→ X. This is illustrated in Figure 4.1.
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Figure 4.1: Causal structures with three random variables A, X and Λ where Λ is unobserved. (I),
(II) and (III) are compatible with the causal order described in Section 4.1, while (IV) is not.

4.3 FREEDOM OF CHOICE

In any experiment, such as the one above, we would ideally like the state preparation not to
influence the measurement choice. In fact, it is reasonable to demand that the random variable X
is free and has no apparent cause. Therefore, it is independent of all variables outside its causal
future. This assumption, freedom of choice, restricts the set of causal structures that are compatible
with a given causal order. In Figure 4.1, the only compatible causal structures with X free are (I)
and (II). Note that (III) is not since p(X|Λ) ̸= p(X).
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5

Correlation Self-Testing of Theories

5.1 INTRODUCTION

Quantum theory is known to lead to nonlocal correlations between the observations that different,
separated parties can make on a shared quantum system. This counter-intuitive phenomenon,
known as Bell nonlocality, has implications for the foundations of quantum theory as well as for
various applications, e.g. in quantum cryptography. These quantum correlations, even though
nonlocal, are non-signalling, i.e., they are known to be compatible with special relativity, in the
sense that they do not allow for superluminal transfer of information. However, it is also known
that quantum theory does not allow for the most general non-signalling correlations [81, 80]. Thus,
the question as to why the correlations of quantum theory are further restricted, has occupied
researchers in the foundations of quantum theory in recent decades, developments of which we
proceed to outline.

One way to approach this question is to start from the largest set of correlations compatible
with special relativity, that can be realised by space-like separated parties, and then to identify a
list of information-theoretic principles (ideally only one) that restrict this set to the set of quantum
correlations. A few proposed principles include non-triviality of communication complexity [14],
impossibility of nonlocal computation [58], information causality [76], macroscopic locality [71],
and local orthogonality [40]. While these approaches provide us with insight into the properties of
quantum correlations and reduce the set of allowed nonlocal correlations, none is known to single
out the set of quantum correlations [70]. Additionally, principles naturally arising from information-
theoretic requirements may or may not be deemed fundamentally “natural” with respect to our
perception of Nature. Therefore, an objective approach would be to experimentally rule out theories
that generate post-quantum correlations and then investigate a link to an underlying principle.
Correlation self-testing of quantum theory [98, 99] takes this approach and asks whether there is an
information-theoretic task that can only be optimally performed using quantum correlations. If
such a task is found then the underlying information-theoretic requirement for optimally winning
the task might point to a physical principle. For the rest of this thesis, we will use the term
self-testing and correlation self-testing alternatively.

This chapter is presented as follows: in Sections 5.2 and 5.3 we review the idea behind self-testing
and adaptive CHSH game. In Section 5.4, we present a GPT that is known to support entanglement
swapping. In Section 5.6, we show that the GPT proposed in [30], that can perfectly win the

30
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adaptive CHSH game can be ruled out, for it cannot violate chained Bell inequalities. Finally,
in Sections 5.8 and 5.6.1 we present two new games and analyse their performance against some
GPTs, that produce post-quantum correlations.

5.2 CORRELATION SELF-TESTING OF PHYSICAL THEORIES

The setup of correlation self-testing is as follows: given a physical theory, P , and a foil theory, T , if
P can produce correlations within a causal structure that cannot be produced by T in the same
causal structure, then it is possible to devise an information processing task in which P outperforms
T . More generally, for a set of foil theories {Ti}n

i=1, suppose there is a set of tasks (ideally only
one) that singles out P from the set of foil theories. Such a list of tasks is said to be a correlation
self-test of P within {Ti}n

i=1. In particular, upon requiring a certain threshold for performance
in each task, P can be singled out from the rest of the foil theories. The overarching ambition is
to find a set of tasks that single out quantum theory within GPTs, and this would then point to
higher principles for quantum theory.

Figure 5.1: A pictorial representation of the high-level idea behind the Adaptive CHSH game. If
there exists a causal structure within which the sets of correlations that can be generated in theories
T1 and T2 are proper subsets of the set of quantum correlations, Q, then an information-theoretic
task whose optimal performance can only be achieved in quantum correlations (yellow region above
the line).

5.3 THE ADAPTIVE CHSH (ACHSH) GAME

The Adaptive CHSH game was proposed as a candidate task for correlation self-testing of quantum
theory [98, 99]. The task is as follows: in the bi-local causal structure displayed in Fig. 5.2,
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Figure 5.2: Causal structure for the Adaptive CHSH game. Bob shares the resource sAB with
Alice and the resource sB′C with Charlie. A referee asks questions to Alice and Charlie labelled
by random variables X and Z respectively. Bob performs a joint measurement on his share of
resources, the outcomes of which are labelled by the random variable B. Alice and Charlie perform
local measurements on their subsystems, the outcomes of which are labelled by random variables
A and C. The values of all the random variables determine the score in the game. There are
no non-classical tripartite resources shared by all three parties (shared tripartite randomness is
allowed).

three players Alice, Bob and Charlie indulge in a cooperative game, in which a referee asks Bob
to randomly return two bits denoted by B ∈ {00, 01, 10, 11}. The referee then asks uniformly
random binary questions denoted by X and Z to Alice and Charlie. Alice and Charlie need to
provide binary answers A and C, such that they win a game with winning conditions given by
a⊕ c = (x · z) ⊕ ((b0 ⊕ b1) · x) ⊕ z ⊕ b0, where (b0, b1) denotes the two bit response B of Bob. Here,
⊕ denotes addition modulo 2. In quantum theory, this game can be won with a maximum winning
probability of 1/2

(
1 + 1/

√
2
)

≈ 0.85 [98, 99]. For completeness, we present an optimal strategy
below and direct the interested reader to [98, 99] for further reading on previous results.

5.3.1 Quantum Strategy in the ACHSH Game

The players, if allowed to use quantum theory, can use a strategy where Alice shares a two qubit
maximally entangled state ρAB with Bob, and Charlie shares another two qubit maximally entangled
state ρB′C with Bob. Then Bob performs a joint measurement in the Bell basis on his two qubits.
This is an entanglement swapping operation and therefore, for each outcome of the measurement,
Alice and Charlie will be left with a maximally entangled state. For example, if the Bell basis is
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denoted by

|ψ00⟩ = 1√
2

(|00⟩BB′ + |11⟩BB′) ,

|ψ01⟩ = 1√
2

(|00⟩BB′ − |11⟩BB′) ,

|ψ10⟩ = 1√
2

(|01⟩BB′ + |10⟩BB′) ,

|ψ11⟩ = 1√
2

(|01⟩BB′ − |10⟩BB′) ,

(5.1)

then the resultant state with Alice and Charlie after the projection |ψ00⟩ is 1√
2 (|00⟩AC + |11⟩AC)

with an associated probability of 1/4, and so on. Further, denoting |θ⟩ = cos θ|0⟩ + sin θ|1⟩, Alice
and Charlie execute the following operations:

• when X = 0, Alice measures in {|0⟩, |π⟩} basis,

• when X = 1, Alice measures in {|π/2⟩, |3π/2⟩} basis,

• when Z = 0, Charlie measures in {|π/4⟩, |5π/4⟩} basis,

• when Z = 1, Charlie measures in {|3π/4⟩, |7π/4⟩} basis,

• For each measurement, if the first element of the basis is obtained, the answer (A/C) is set to
0, otherwise to 1.

Using the notation 2.2, one then obtains

p (A,C|X,Z,B = 00)) = 1
4


1 + ϵ 1 − ϵ 1 − ϵ 1 + ϵ

1 − ϵ 1 + ϵ 1 + ϵ 1 − ϵ

1 + ϵ 1 − ϵ 1 + ϵ 1 − ϵ

1 − ϵ 1 + ϵ 1 − ϵ 1 + ϵ

 , (5.2)

where ϵ = 1/
√

2. This helps the players win the CHSH game a⊕c = x ·z with a score of 1
2

(
1 + 1√

2

)
.

Putting together winning scores for the other outcomes with their associated probabilities, the
overall winning probability sums to 1

2

(
1 + 1√

2

)
.

A key observation is that in order to achieve the score above, the parties perform an entanglement
swapping operation. Moreover, this swapping operation is deterministic, i.e., when post-selecting
on every outcome of Bob, Alice and Charlie are left with a maximally entangled state. Since Alice
and Charlie are not allowed to share any non-classical resources, to exceed the classical bound of
3/4, a GPT must allow for entanglement swapping, which is the topic of our next section.

5.4 ENTANGLEMENT SWAPPING IN GPTS

Consider a scenario in which Bob shares two maximally entangled qubit pairs, one with Alice and
one with Charlie. Bob then performs a joint measurement on his two qubits in the Bell basis. After
post-selecting on any of Bob’s outcomes, Alice’s qubit and Charlie’s qubit are maximally entangled.
In such settings where Bob initially shares entangled states with Alice and Charlie and then jointly
measures his systems, whenever Alice and Charlie’s post-selected states are entangled for at least
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one of Bob’s outcomes, we say that we have a swapping scenario. This idea can be extended to the
landscape of GPTs. Let S be a bipartite state space and sAB and sB′C be two entangled states in
S. If for an effect e ∈ E ,

sAC|e = idA ⊗ e⊗ idC (sAB ⊗ sB′C)
⟨u, idA ⊗ e⊗ idC (sAB ⊗ sB′C)⟩ (5.3)

is entangled, e is called a coupler. Note that the effect e must not be a convex combination of
product effects, in particular, it must be entangled (non-separable). However, not all entangled
effects are couplers for there might be entangled effects ẽ ∈ E such that there is no pair of entangled
states sAB and sB′C in the state space that can create a swapping scenario.

5.4.1 The House-like state space H[1]
(2,2)

Entanglement swapping is a key ingredient in achieving a post-classical score in the ACHSH game
as shown in [98, 99]. Theories like BW generate correlations in the (2, 2, 2) setting that can perfectly
win CHSH games although they do not support entanglement swapping (see [89] for the case when
the single-party state space is G2

2). In general, recall from Definition 2.2.1, theories in which the
state space is formed by the maximal tensor product have the smallest effect space cone, with all
effects being separable, in particular, there exists a trade-off between states and measurements [90].
In order for a theory to have entanglement swapping, it needs to allow entangled states and
entangled effects, implying that the state space can neither be minimally nor maximally composed.
In this regard, quantum theory lies in a sweet spot since for every quantum state ρ and any number
t ∈ [0, 1], tρ is an allowed effect. Interestingly, in [93] the authors showed that with the state space
H[1]

(2,2)[PR1], characterised by the convex-hull of H[0]
(2,2) and PR1, and its maximal effect space, one

can demonstrate entanglement swapping. In particular, the effect space contains couplers. We
have seen in Subsection 2.7 that in the (2, 2, 2) setting, this state space generates all non-signalling
correlations. Therefore, H[1]

(2,2)[PR1] is a potential example where one might achieve a higher score
in the ACHSH game as compared to quantum theory. Here we quickly revisit a variation of the
example from [93] and flesh out all the coupling effects.

We consider the state space H[1]
(2,2)[PR2]. Solving the vertex enumeration problem for the effect

polytope, we found that EH[1]
(2,2)

has 106 extremal effects, of which 82 are the extremal effects of

H[8]
(2,2). We call these 82 effects BW effects. Amongst the 24 non-BW effects, 9 effects are couplers.

We can categorize them into two sets on whether the post-selected state with Alice and Charlie is
extremal or not.

epure =


0 0 0 0
0 −2/3 0 2/3
0 0 2/3 0
0 2/3 0 0

 = 2/3eCH2 . (5.4)
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5.4. Entanglement Swapping in GPTs

Figure 5.3: A two-dimensional slice of the set of correlations generated when fiducial measurements
are performed on the states of the bipartite state space characterised by 16 local deterministic
states and one PR box [93]. The vertical axes represent a CHSH inequality and the horizontal axes
represent one of its symmetries obtained by relabelling the inputs. Local correlations, denoted by
the square C, satisfy 0 ⩽ FCHSH ⩽ 3/4 and 0 ⩽ FCHSH∗ ⩽ 3/4.

Enoisy =




0 1/2 0 0
0 −1/2 0 1/2
0 0 1/2 0
0 1/2 0 0

 ,


0 0 0 0

1/2 −1/2 0 1/2
0 0 1/2 0
0 1/2 0 0

 ,


0 0 1/2 0
0 −1/2 0 1/2
0 0 1/2 0
0 1/2 0 0

 ,


0 0 0 0
0 −1/2 0 1
0 0 1/2 0
0 1/2 0 0

 ,


0 0 0 0
0 −1/2 0 1/2

1/2 0 1/2 0
0 1/2 0 0

 ,


0 0 0 0
0 −1/2 0 1/2
0 0 1/2 0
0 1 0 0

 ,


0 0 0 0
0 −1/2 0 1/2
0 0 1 0
0 1/2 0 0

 ,


0 0 0 0
0 −1/2 0 1/2
0 0 1/2 0
0 1/2 0 1/2

 ;


(5.5)

A small calculation shows that if Bob shared two instances of PR2, one with Alice and one with
Charlie and performed a joint measurement {epure, u − epure}, then with a probability 1/3 the
outcome corresponding to epure occurs and the post-measurement state is :

idA ⊗ epure ⊗ idC ((PR2)AB ⊗ (PR2)B′C)
⟨u, idA ⊗ epure ⊗ idC ((PR2)AB ⊗ (PR2)B′C)⟩ = (PR2)AC . (5.6)
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Likewise, if the measurement was {enoisy, u − enoisy} instead, where enoisy is the first element of
Enoisy, a similar calculation shows that with probability 3/8, the outcome corresponding to enoisy

occurs with the post-measurement state being

idA ⊗ enoisy ⊗ idC ((PR2)AB ⊗ (PR2)B′C)
⟨u, idA ⊗ enoisy ⊗ idC ((PR2)AB ⊗ (PR2)B′C)⟩ = 2

3(PR2)AC + 1
3


0 0 0 0
1 0 0 1
1 0 0 1
0 0 0 0


AC

. (5.7)

Notice that the local deterministic state L at the end of this equation satisfies CHSH2[L] = 3/4.
When a different effect from the set Enoisy is used instead, we will get a similar decomposition with
the corresponding local deterministic state Li also satisfying CHSH2[Li] = 3/4.

One might then wonder, how the theory above performs in the ACHSH game. This is precisely
the topic in Chapter 6. However, it is worth mentioning that if more than one tensor products are
allowed in a theory it is possible to perfectly win the ACHSH game. We briefly emphasise this in
the following section.

5.5 THEORIES WITH MULTIPLE COMPOSITION RULES

One can perform deterministic entanglement swapping if more than one composition rule is allowed
between single systems, such as the one in [8, 53]. Explicitly, one possibility is allowing BW
compositions for bipartite states labelled by AB1,B2C and between AC and allowing local
composition between B1,B2. With this one can perfectly win the ACHSH game when Bob shares
two copies of PR1, one with Alice and another with Charlie and Bob performs a four-outcome joint
measurement with appropriate CH-type effects. An alternate proposal can be found in [30].

For this thesis, we have avoided these types of constructions since requiring multiple composition
rules is not a close analogy to quantum theory, for quantum theory only needs a single composition
rule, namely, the tensor product of the underlying Hilbert spaces. These observations lead us to
wonder whether there exists any GPT that can be described by a single composition rule and can
perform perfect entanglement swapping. One such proposal has been presented in [30]. In the next
section, we will show that although one can perfect deterministic entanglement swapping in this
theory, it fails to generate all quantum correlations in the Bell causal structure.

5.6 OBLATE STABILIZER THEORY

The Oblate Stabilizer (OS) theory has been recently introduced in [30] as a toy theory within which
one can perfectly win the ACHSH game. This provokes the claim that quantum theory cannot be
self-tested against OS. We argue here that this is not the case. Below, we will first present the
OS theory and show that although it can perfectly win the ACHSH game, there exist quantum
correlations in the Bell causal structure that cannot be reproduced in OS. As a consequence, the
Bell causal structure is sufficient to rule out OS, as it is in [30].
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Let |x̃±⟩⟨x̃±| := (I2 ± 4
√

2σX̂)/2, |ỹ±⟩⟨ỹ±| := (I2 ± 4
√

2σŶ )/2 and |z̃±⟩⟨z̃±| := (I2 ± σẐ)/2, and
let R := exp

(
−i π

8σẐ

)
, where i =

√
−1. The single system state and effect spaces of OS are then

defined as:

OS
(1) := ConvHull

{
|x̃±⟩⟨x̃±|, |ỹ±⟩⟨ỹ±|, |z̃±⟩⟨z̃±|

}
,

E(1) := ConvHull
{
I2,O, R (|x̃±⟩⟨x̃±|)R†, R (|ỹ±⟩⟨ỹ±|)R†, R (|z̃±⟩⟨z̃±|)R†

}
,

where O is the 2 × 2 null matrix. Now let Ω := {Φ+,Φ−,Ψ+,Ψ−} be the set density matrices
corresponding to the four Bell states. Finally, consider the set

RΩR† :=
{

(Rm) (ω) (Rm)† | ω ∈ Ω,m ∈ Z8,m odd
}

;

The bipartite state and effect spaces are then given as:

OS
(2) := ConvHull

{(
OS

(1) ⊗
min

OS
(1)
)⋃

RΩR†
}
,

E(2) := ConvHull
{(

E(1) ⊗
min

E(1)
)⋃

RΩR†
}
,

Now, let us consider a scenario in which Alice and Bob share the entangled state

RΦ+R
† =


1
2 0 0 1

2e
− iπ

4

0 0 0 0
0 0 0 0

1
2e

iπ
4 0 0 1

2


in the Bell causal structure. Since there are six extreme effects in the single system effect space,
let us assume that both Alice and Bob perform three binary measurements |x̃±⟩⟨x̃±|, |ỹ±⟩⟨ỹ±| and
|z̃±⟩⟨z̃±| each on the entangled state above. The resultant probability distribution is then

pOS = 1
2



1 0 0 1 1/2 1/2
0 1 1 0 1/2 1/2
0 1 0 1 1/2 1/2
1 0 1 0 1/2 1/2

1/2 1/2 1/2 1/2 1 0
1/2 1/2 1/2 1/2 0 1


. (5.8)

One can show that choosing a different entangled state will generate probability distributions
that are relabellings of pOS . Next, we will show that this distribution cannot violate certain Bell
inequalities, which are known to be violated by quantum correlations.

5.6.1 Chained Bell Inequalities

The chained Bell inequalities were introduced in [15] as an extension of the CHSH inequalities to
more inputs. They are parameterised by the number of input settings m for both parties. One way
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of expressing this inequality is∑
x,y∈{0,1,···m−1}
|2(y−x)+1|=1

p (a ̸= b|x, y) + p (a = b|x = 0, y = n) ⩾ 1. (5.9)

It is satisfied by every local correlation, while quantum correlations are known to exist that violate
it [15]. For m = 3, a rewriting of this inequality can be given by ⟨CB,p⟩ ⩾ 1, where,

CB :=



0 1 0 0 1 0
1 0 0 0 0 1
0 1 0 1 0 0
1 0 1 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0


(5.10)

There are 192 relabellings of CB which all correspond to variations of Inequality (5.9). Now, notice
that any relabelling of CB must have six (2 × 2) blocks with 1s in either the diagonal or off-diagonal
entries. For any such relabelling, there will always be an odd number of blocks containing 1s in a
diagonal that is different from the diagonal in which the rest of the blocks contain 1s. On the other
hand, pOS has an even number of blocks that differ in the diagonals containing 1/2. Therefore,
the smallest inner product between any relabelling of CB and any relabelling pOS must be 1. One
relabelling of CB that indeed allows one to get to this minimum is

0 1 0 0 0 1
1 0 0 0 1 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 0 1
0 0 0 1 1 0


.

One might try to use non-extremal effects to construct the measurements. However, since such
effects will be convex mixtures of extremal effects, the resultant distribution will also be a convex
mixture of extremal distributions. Since no extremal distribution can violate any chained bell
inequality (relabellings of ⟨CB,p⟩ ⩾ 1), the non-extremal ones cannot either. Therefore, one can
use these inequalities to correlation self-test quantum theory against the oblate stabilizer theory.

5.7 POSSIBLE EXTENSIONS TO THE ACHSH GAME

There are two primary directions in which one might want to generalise the idea behind the ACHSH
game. The first is to extend this game to more parties. In quantum theory, it is possible to construct
scenarios wherein one can perform deterministic entanglement swapping, regardless of the number
of parties. If this is a feature innate only to theories that realise all quantum correlations in any
causal structure, games involving multi-party deterministic swapping might be the key to singling
out quantum correlations. The second direction is to stay within the bi-local causal structure 5.2
while allowing for more inputs. This would allow one to use more of the quantum state space.
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5.8 THE ADAPTIVE GHZ (AGHZ) GAME

5.8.1 GHZ Games

The k-party GHZ game, introduced by Mermin [66], can be perfectly won within quantum theory
and its quantum violation grows exponentially with the number of parties. For our discussion we
will consider k to be odd. In short, a referee asks each of the k-parties, A0, · · · Ak−1, a binary
question xi ∈ {0, 1} such that (x0, · · · , xk−1) is uniformly distributed over bit strings of even parity.
Each player then returns a binary answer aj ∈ {0, 1}. The players win if

(−1)
∑k−1

i=0
ai+ 1

2

∑k−1
j=0

xj = 1.

In particular, if (
∑k−1

j=0 xj)/2 is odd, then
∑k−1

i=0 ai is odd, and if (
∑k−1

j=0 xj)/2 is even, then
∑k−1

i=0 ai

is even. To win this game within quantum theory, the players can share the k-qubit GHZ state

|0⟩⊗k + |1⟩⊗k

√
2

. (5.11)

Each player then performs the measurement {(I + σX̂)/2, (I − σX̂)/2} when their question is 0 and
{(I + σŶ )/2, (I − σŶ )/2} when their question is 1. They record 0 if they get the first outcome and
1 if they get the second. This strategy allows the players to perfectly win the game stated above.

Now consider the projectors in the GHZ basis:

G0···0 := |0 · · · 0⟩ + |1 · · · 1⟩√
2

,G0···01 := |0 · · · 01⟩ + |1 · · · 10⟩√
2

, · · · ,G01···1 := |01 · · · 1⟩ + |10 · · · 0⟩√
2

,

G1···0 := |0 · · · 0⟩ − |1 · · · 1⟩√
2

,G1···01 := |0 · · · 01⟩ − |1 · · · 10⟩√
2

, · · · ,G11···1 := |01 · · · 1⟩ − |10 · · · 0⟩√
2

.

If instead of G0···0 the players started by sharing any of these states while using the same measure-
ment strategy, then with the same questions from the referee there would exist another game that
they can perfectly win. The rules of these games can be obtained by locally relabelling the outputs
of the original game described above. Note that for k parties, there are 2k such relabellings. For
each such relabelled game, there exists one of the 2k projectors above that help in perfectly winning
it. We don’t provide a closed formula for these games here. We label a game Gb, where b denotes
the subscript of the initial shared entangled state chosen to perfectly win it. Finally, note that
since these games are related by relabellings, they have equal classical bounds.

5.8.2 AGHZ Game

The AGHZ game is motivated from the discussion in the previous section in addition to the fact that
if each party starts by sharing the state ϕ+ = (|00⟩ + |11⟩)/

√
2 with the referee, who then makes

a k-partite GHZ basis measurement. This ensures that the post-selected states with the parties
would exactly be the projectors observed by the referee. We now lay out the game elaborately.

The AGHZ game is a collaborative game played by k > 1 parties, with k odd, labelled as
A0, · · · Ak−1 and B, who are set up in the star causal structure, depicted in Figure 5.4. A referee
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Figure 5.4: Causal structure for the Adaptive GHZ game. Bob shares the resource si with Ai

where i ∈ {0, · · · , k − 1}. A referee asks questions to Ai, labelled by random variables Xi and Bob
performs a joint measurement on his share of resources, the outcomes of which are labelled by the
random variable B. Parties Ai perform local measurements on their subsystems, the outcomes of
which are labelled by random variables Ai. The values of all the random variables determine the
score in the game. There are no non-classical k-partite resources shared by all three parties (shared
k-partite randomness is allowed).

asks B to return k bits b := (b0, b1, · · · , bk−1) denoted by the random variable B. The referee then
asks binary questions denoted by random variables X0, · · · , Xk−1 to the k parties, such that the
string x := (x0, · · · , xk−1) is uniformly distributed over bit strings of even parity. To these questions,
the parties need to provide binary answers denoted by the random variables A0, · · · , Ak−1, in such
a way that they win the version of the k-party GHZ game, Gb, mentioned in the previous section.
The score in the game is given by

GAGHZ :=
∑

a,x,b∈{0,1}k

p (a, x, b) δ (a, x, b) , (5.12)

where a := (a0, · · · , ak−1) and δ (a, x, b) is 1 if the winning conditions are met, otherwise it is 0.
This game can be won perfectly in quantum theory, as expected.

Now, for a concrete example, consider the case when k = 3. The winning conditions for the
game are provided in Table 5.1. According to the strategy presented above, A1,A2 and A3 share
an instance of maximally entangled state |ϕ+⟩ each with B. B measures their 3 qubits on the
following basis:

G000 := |000⟩ + |111⟩√
2

,G001 := |001⟩ + |110⟩√
2

,G010 := |010⟩ + |101⟩√
2

,G011 := |011⟩ + |100⟩√
2

,

G100 := |000⟩ − |111⟩√
2

,G101 := |001⟩ − |110⟩√
2

,G110 := |010⟩ − |101⟩√
2

,G111 := |011⟩ − |100⟩√
2

;

The state left with A0,A1 and A2, post-selecting on the outcome corresponding to Gb is also
Gb. On performing the said measurements, one can now verify that each of the GHZ games
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x0 x1 x2 a0 ⊕ a1 ⊕ a2
(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

0 0 0 0 0 0 0 1 1 1 1
1 1 0 1 1 0 0 0 0 1 1
1 0 1 1 0 1 0 0 1 0 1
0 1 1 1 0 0 1 0 1 1 0

Table 5.1: Winning conditions for Adaptive GHZ game for the case k = 3. The triples represent the
bit string b. For the inputs (x0, x1, x2) the parties need to output (a0, a1, a2) such that a0 ⊕ a1 ⊕ a2
equals the entry corresponding to the row specified by the inputs and column specified by the game
version b. Here ⊕ denotes addition modulo 2.

corresponding to the bit string b as presented in Table 5.1 can be perfectly won. Now, since every
outcome of the GHZ measurement occurs with a probability 1/8, the overall score in the game is 1.

Remark. An alternate way of playing this game in quantum theory is by allowing B to possess the
three qubit state G000. B then performs a Bell basis measurement, presented in (5.1), jointly on
one of the qubits of G000 and the qubit which is maximally entangled Ai’s qubit. The outcome of
each of these measurements is then stored in the set of bit pairs (g0, g1, g2), where g

i
:= (gi,0, gi,1)

corresponds to the outcome obtained when the Bell measurement was performed on a qubit of G000

and the qubit which is maximally entangled Ai’s qubit. The bits string b can then be calculated as
a function of (g0, g1, g2). This strategy can be generalised to an arbitrary number of parties.

5.8.3 Classical and Box-World Strategies in ACB Game

The lack of entanglement swapping in both classical theory and BW limits one to perfectly win
the AGHZ game in these theories. In any classical theory, each GHZ game can be won with a
probability 3/4. Therefore, the overall score can also be upper-bounded by 3/4. In BW, the
maximum score is also upper bounded by 3/4 since the parties {Ai}i cannot share a maximally
nonlocal box and upon the lack of any entanglement swapping operation are limited to classical
strategies.

Remark. The case where k is even can be formalised in the same way. For this, the list of questions
asked by the referee is 2k. The idea behind the rest of the strategy remains the same. The case
when k = 2 is equivalent to the ACHSH game.

5.9 ADAPTIVE CHAINED BELL (ACB) GAME

The Adaptive Chained Bell game is a generalisation of the ACHSH game to more input settings.
It is based on the chained Bell inequalities mentioned in Section 5.6.1. Three parties, Alice Bob
and Charlie are set up in the bi-local causal structure shown in Fig. 5.2. A referee asks Bob to
randomly return two bits denoted by B ∈ {00, 01, 10, 11}. The referee then asks m uniformly
random questions to Alice and Charlie, denoted by random variables X and Z, to which they
need to return binary answers, denoted by random variables A and Z respectively, such that they
satisfy the winning conditions of the game. If b := (b0, b1) denotes the two bit response B of Bob,

41



Chapter 5. Correlation Self-Testing of Theories

(b0, b1) Winning Condition

(0, 0) a ̸= c if |2(z − x) + 1| = 1,
a = c if x = 0 and z = m− 1

(0, 1) a ̸= c if |2(n− (x+ z)) − 1| = 1,
a = c if x = z = 0

(1, 0) a = c if |2(n− (x+ z)) − 1| = 1,
a ̸= c if x = z = 0

(1, 1) a = c if |2(z − x) + 1| = 1,
a ̸= c if x = 0 and z = m− 1

Table 5.2: Winning conditions of the Adaptive Chained Bell Game

the winning conditions are given in Table 5.2. With fixed strategies, if p(A,B,C,X,Z) is the
probability distribution generated, the score of the game is given by

GACB := 1 − 1
4

∑
a,b0,b1,c∈{0,1}

x,z∈{0,··· ,m−1}

p (a, b, c, x, z) δ (a, b, c, x, z) , (5.13)

where δ = 1 if the winning conditions in Table 5.2 are met and otherwise δ = 0. When m = 2,
this game is equivalent to the ACHSH game. Note, that since X and Z are uniformly distributed
p (a, b, c, x, z) = p (a, b, c|x, z) /4.

Each of the winning conditions in Table 5.2 can be understood as a constraint corresponding to
a chained Bell inequality. For instance, when m = 4,

CB4,(0,0) =



0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 1 0 1 0


,CB4,(0,1) =



1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 1 0 1 0
0 0 0 1 0 1 0 0
0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0


,

CB4,(1,0) =



0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0


,CB4,(1,1) =



1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1


;

Every local distribution pL satisfies
〈
CB4,(b0,b1),pL

〉
⩾ 1 for any b0, b1 ∈ {0, 1}. Therefore, if the

inner product of a distribution with any of the vectors above is less than 1, Bell nonlocality is
witnessed. Next, we provide a quantum strategy such that the ACB game can be won perfectly in
the limit m → ∞.
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5.9. Adaptive Chained Bell (ACB) Game

5.9.1 Quantum Strategy

If players have access to quantum theory, they can use entanglement swapping operations, just like
the strategy in ACHSH game, and perform pre-strategised measurements. To get a high score, one
needs to minimise the summation appearing on the right hand side of Equation (5.13). This can
be achieved if the observables corresponding to the inputs x and z of Alice and Charlie are

sin
(xπ
m

)
σX̂ + cos

(xπ
m

)
σẐ and sin

(
(2z + 1)π

2m

)
σX̂ + cos

(
(2z + 1)π

2m

)
σẐ (5.14)

respectively. When b = (0, 0), the post-measurement state with Alice and Charlie is |ϕ+⟩⟨ϕ+|.
On performing the measurements above, the probability of satisfying the first constraint is
2m sin [π/(4m)]2. The probabilities of satisfying the other constraints with the respective post-
selected states are all 2m sin [π/(4m)]2, as well. Therefore, the final score in the game is

GQACB = 1 − 1
4

4 × 2m sin [π/(4m)]2

4 = 1 − m sin [π/(4m)]2

2 . (5.15)

When m = 2, the score is (1 − 1/
√

2)/2 coinciding with the score in the ACHSH game. In addition,
as m → ∞, m sin [π/(4m)]2 → 0, implying , GQACB → 1. However, we would ideally want to have a
finite value for m since the quantum-classical gap disappears as m → ∞.

5.9.2 Classical and Box-World Strategies in ACB Game

Since the four conditions presented in Table 5.2 correspond to constraints of chained Bell inequalities,
the smallest value of the summation achievable using classical strategies is 1. Therefore, the
maximum score of the ACB game for any value of input size m is strictly bounded above by 1−1/m.
The maximum achievable score in BW is 1 − 1/m as well, due to the lack of entanglement swapping
and thereby only having access to local classical strategies. In addition, all theories that can be
ruled out using the ACHSH game can also be ruled out by the ACB games since these games are
equivalent when each party is restricted to only two input settings. Finally, the OS theory reviewed
in Section 5.6 also cannot win this game better than classical theory since it cannot violate any
chained Bell inequality. It is worth investigating whether there exist generalisations of this theory
that can violate the chained Bell inequalities while preserving the feature of perfect entanglement
swapping.
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6

ACHSH Game in State Spaces with Restricted Relabelling
Symmetries

This chapter contains our first set of main results: a large class of theories supporting entanglement
swapping can be ruled out using the adaptive CHSH game. These theories produce post-quantum
correlations, and some of them support entanglement swapping. The chapter is designed as follows:
in Section 6.2 and 6.3, we provide an analytic construction for effect polytopes for any given noisy
asymmetric state space in our model. In addition, we provide a complete list of the set of extremal
effects for each such case and present a formula for calculating the number of extremal effects
of such effect spaces. In Section 6.5, we check this consistency criteria against effects obtained
in Sections 6.2 and 6.3 and present our first result showing that entanglement swapping cannot
be performed in most of the state spaces in the model considered. Section 6.6 contains the main
results stating that quantum theory can be successfully correlation self-tested using the ACHSH
game against every state space considered. Finally, in Section 6.7 we present an interesting result
drawing a connection between minimal k-preservibility and Tsirelson’s bound for our model of
state spaces. Throughout this chapter, we will assume that only a single copy of the state space is
available to each party.

6.1 INTRODUCTION

We have shown in Section 2.7, that although both the bipartite gbit state spaces H[1]
(2,2) and H[8]

(2,2)

generate all non-signalling correlations in the (2, 2, 2) setting, only H[1]
(2,2) supports the existence of

couplers. In addition, recall that out of the state spaces that produce all non-signalling correlations,
only H[8]

(2,2) was tested for the purpose of correlation self-testing. These observations raise two
natural questions: i) are there other bipartite gbit state spaces that support couplers?1 ii) could
such state spaces outperform quantum theory in the ACHSH game?

One way to try to answer these questions is to consider a bipartite composition gbit state spaces

1In [92], authors considered a noisy bipartite gbit state space model with two noisy entangled states. In the
general case where the amounts of noise on them are not equal, the state space has only one maximally entangled state
and supports couplers. When the noise is the same, there are two maximally entangled states that are isotropically
opposite to each other, and the state space does not support couplers. In this thesis, we consider cases where the
two maximally entangled states are not necessarily isotropically opposite.
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6.2. Bipartite House Compositions of G2
2 and their Effect Polytopes

Figure 6.1: A pictorial representation of a state space characterised by the convex hull of the
extremal states of H[0]

(2,2) and the m noisy PR boxes of the form presented in Equation (6.1).

characterised by the convex hull of H[0]
(2,2) and m noisy PR boxes of the form:

PRi,αi
:= αiPRi + (1 − αi)U, (6.1)

where αi ∈ [1/2, 1] and 1 − αi denotes the amount of noise for the ith PR box and U is the
maximally mixed state. In this work, we only consider the scenario where the amount of noise
is the same on all of the PR boxes i.e., αi = α, and denote such a state space by H[m]

α(2,2). Note
that PRi,1/2 is local and therefore, H[m]

1/2(2,2) = H[0]
(2,2). In the following, we will use the range of α

as (1/2, 1] unless specified otherwise. To investigate whether a state space of this form supports
couplers, we need to find the extremal effects of its maximal effect space. Since any effect space is
convex (see Definition 2.1.2), if couplers exist at least one of the extremal effects must be a coupler.
Therefore, the search for couplers reduces to a check on the set of extremal effects only.

In the following, we first describe the effect polytope for state spaces with 1 noisy PR box
and then show how to generalise to two or more noisy PR boxes. Inspired from the pictorial
representation of H[1]

(2,2) (see Fig. 5.3), we call a state space of the form H[m]
α(2,2) (see Fig. 6.1) “house

with m roofs”. Note, that H[m]
α(2,2) is not a unique state space for a fixed m,α.

6.2 BIPARTITE HOUSE COMPOSITIONS OF G2
2 AND THEIR EFFECT POLYTOPES

6.2.1 1 Roof: H[1]
α(2,2)[PR2]

The 8 PR boxes are equivalent up to relabelling symmetries (see Section 2.4.2); It suffices to work
with any PR box while considering a house state space with 1 roof. The state space H[1]

α(2,2)[PR2] is
characterised by 23 facets of which 16 are positivity facets and 7 are CH facets. These are the same
as the facets of H[0]

(2,2) with the exception of ⟨eCH2 .x⟩ ⩽ 1 2. Further, recall from Section 2.4.1 that
2Note that

〈
eCH2 .PR2,α

〉
> 1.
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Chapter 6. ACHSH Game in State Spaces with Restricted Relabelling Symmetries

the maximal effect polytope of H[0]
(2,2) has 90 extremal effects which includes 82 BW effects [9] and 8

entangled effects given by {eCHi}4
i=1 and {u−eCHi}4

i=1. The maximal effect polytope of H[1]
α(2,2)[PR2]

is a subset of the maximal effect polytope of H[0]
(2,2), which is contained in the intersection of the

half-spaces satisfying ⟨x,PR2,α⟩ ⩽ 1 and ⟨x,PR2,α⟩ ⩾ 0, where x ∈ R16. Since ⟨eCH2 .PR2,α⟩ > 1,
eCH2 and u− eCH2 cease to be valid effects of H[1]

α(2,2)[PR2]. The remaining 88 extremal effects of
H[0]

(2,2) are still valid effects for H[1]
α(2,2)[PR2] and in fact extremal. Additional extremal effects for

this state space are vectors x ∈ R16 that satisfy ⟨x,PR2,α⟩ = 0 and ⟨x,PR2,α⟩ = 1. We found that
these come in 4 types up to relabelling. Below, we present a candidate effect of each type lying
on the hyperplane ⟨x,PR2,α⟩ = 0, and encourage the curious reader to Appendix B.1 for their
derivation:

Type 1 : 1 − α

α
eCH2 +

(
1 − 1 − α

α

)
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 ,

Type 2 : 1 − α

3α− 1eCH2 +
(

1 − 1 − α

3α− 1

)
1 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 ,

Type 3 : 3 − α

3α+ 1eCH2 +
(

1 − 3 − α

3α+ 1

)
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 =: em,α,

Type 4 : 2
3eCH2 =: ep,α

(6.2)

On the hyperplane ⟨x,PR2,α⟩ = 0, there are 12 effects of Type 1, 8 of Type 2, 8 of Type 3
and 1 of Type 4. Their complementary effects are also extremal effects and lie on the hyperplane
⟨x,PR2,α⟩ = 1.

For a count, the maximal effect polytope of H[1]
α(2,2)[PR2] is the convex hull of 146 extremal effects.

These include 82 BW effects, 6 CH type effects, 29 effects satisfying ⟨ẽ,PR2,α⟩ = 1 and 29 effects
satisfying ⟨ẽ,PR2,α⟩ = 0. Note that when α → 1, all the effects satisfying ⟨ẽ,PR2,α⟩ = 1 from the
first two types converge to deterministic effects, and their complementary effects (u− ẽ) converge
to the complimentary deterministic effects. This leaves us 106 extremal effect of H[1]

(2,2)[PR2] in
agreement with the Example from Section 5.4.

A natural question now is which of these extremal effects are couplers. A short calculation
shows that
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CHSH2

 idA ⊗ eB1B2 ⊗ idC

(
(PR2,α)AB1

⊗ (PR2,α)B2C

)
〈
u, idA ⊗ eB1B2 ⊗ idC

(
(PR2,α)AB1

⊗ (PR2,α)B2C

)〉
 =



α+2
4 if e ∈ Type 1

α(α+10)−4
20α−8 if e ∈ Type 2

5α2+2α+4
4(α+2) if e ∈ Type 3

α2+1
2 if e ∈ Type 4

.

(6.3)
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Figure 6.2: A plot of the CHSH scores of the renormalised states obtained when an effect ẽ from
each of the four types is applied in the middle half of the 4-partite state PR2,α ⊗ PR2,α. The red
line is obtained when ẽ ∈ Type 4. The brown line is obtained for any ẽ ∈ Type 3. The yellow and
blue lines are obtained when any ẽ is taken from Type 1 and Type 2 respectively. The straight
horizontal black lines represent the classical score 3/4 and Tsirelson’s bound.

When plotted against α, as shown in Fig. 6.2, it is evident that only effects in Type 3 and Type
4 are couplers. In particular, effects in Type 3 are couplers in the range (1 +

√
41)/10 < α ⩽ 1.

Similarly, the effect in Type 4 is a coupler in the range 1/
√

2 < α ⩽ 1, which corresponds to
the state spaces having nonlocality strictly more than Tsirelson’s bound. Therefore, the only
extremal effect which is a coupler in the range 1/

√
2 < α ⩽ (1 +

√
41)/10 is the coupler of Type 4.

Additionally, noting the CHSH values of the post-measurement states, one can also see that for the
couplers of Type 3, the post-measurement state will have a CHSH value more than Tsirelson’s bound
when α > 1/10(

√
2 +

√
2(1 + 20

√
2)). Similarly, for the coupler from Type 4, this corresponds to

α > 1/ 4
√

2. We report that no other extremal effect is a coupler.
Next, for the measurements {ep,α, u− ep,α} and {em,α, u− em,α}, a straightforward calculation

shows that if Bob shares a copy of the state PRα, one with Alice and another with Charlie, then
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the probability of successful entanglement swapping can be expressed in terms of α as

psuccess = ⟨u, id ⊗ e⊗ id (PRα ⊗ PRα)⟩ =

 1
1+2α if e = ep

2+α
2+6α if e = em

(6.4)

Note that when α = 1, ep,α=1 = epure and em,α=1 ∈ Enoisy with the success probability being 1/3
for ep and 3/8 for em which matches with the example visited in Section 5.4 from [93].

6.2.2 2 Roofs: H[2]
α(2,2)[PR2,2′ ] and H[2]

α(2,2)[PR12]

In this section, we consider state spaces with 2 noisy PR boxes and perform a similar analysis.
There are

(8
2
)

= 28 pairs of PR boxes. A pair of PR boxes (PRi,PRj) is said to be equivalent to
another pair (PRk,PRl) if there exists a local relabelling operation R such that R[PRi] = PRk

and R[PRj ] = PRl. We found that there are two classes of pairs of PR boxes. (PR1,PR2) are an
instance of the first class and (PR2,PR′2) are an instance of the second. Therefore, with 2 roof
state spaces we have to do a two-part analysis to cover all possibilities. We will first look into state
spaces where the pair is isotropically opposite and then investigate the other case.

Let us denote by H[2]
α(2,2)[PR2,2′ ] the state space characterised by the convex hull of H[1]

α(2,2)[PR2]
and the noisy PR box PR′2,α. This state space is characterised by 16 positivity facets and 6 Bell
facets. In particular, ⟨u− eCH2 ,x⟩ ⩽ 1 which is a facet of H[1]

α(2,2)[PR2] is no longer a facet of
H[2]

α(2,2)[PR2,2′ ] 3. The maximal effect space of H[2]
α(2,2)[PR2,2′ ] is the subset of the maximal effect

space of H[1]
α(2,2)[PR2] that is contained in the intersection of the half spaces satisfying ⟨x,PR2′,α⟩ ⩽ 1

and ⟨x,PR2′,α⟩ ⩾ 0. Using a similar technique as the case of 1 roof, we calculated all the extremal
effects of the maximal effect space and found that there are no couplers. The extremal effects
include 82 BW effects, 6 CH type effects, 12 effects shared by the hyperplanes ⟨x,PR2,α⟩ = 0 and〈
x,PR′2,α

〉
= 1, 12 effects shared by the hyperplanes ⟨x,PR2,α⟩ = 1 and

〈
x,PR′2,α

〉
= 0 and 8

Type 2 effects lying on each of these four hyperplanes, making it a total of 144 extremal effects.
We refer the reader to Appendix B.2 for more details.

Next, let us consider the second state space H[2]
α(2,2)[PR12] where the two noisy PR boxes are

not isotropically opposite to each other. We found that the only extremal effects of H[1]
α(2,2)[PR2]

that cease to be valid are eCH1 and eCH1′ . Following the same construction as above, we found
that the extremal effects lying on the hyperplane ⟨x,PR1,α⟩ = 0 are exactly of the form Type
1,2,3 and 4. Consequently, their complementary effects lie on the hyperplane ⟨x,PR1,α⟩ = 1 and
are extremal. These constitute the new extremal effects. This gives us the following count of the
total number of extremal effects: 82 BW effects, 4 CH type effects and 29 effects each from the 4
hyperplanes, making it a total of 202 extremal effects. We refer the reader to Appendix B.3 for
more details. Finally, note that since all the extremal effects from the previous state space are still
extremal effects here, this state space does have couplers.

3Note that
〈

u − eCH2 , PR′
2,α

〉
> 1.
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6.2.3 General Algorithm for m Roofs

Finally, let us focus on the general case, H[m]
α(2,2), which is the state space characterised by the

convex hull of 16 local deterministic boxes and m noisy PR boxes. For the sake of this discussion
only, let us denote these m PR boxes as PRi,α where i ∈ {1, · · · ,m}. To construct the effect
polytope of H[m]

α(2,2), one can run the following sequence of steps:

Step 1 : Consider m house state spaces with 1 roof each where the roofs are the noisy PR
boxes of the state space of interest, i.e., house with m roofs.

Step 2 : From the effect polytope described Section 6.2.1, find the effect polytope of
H[1]

α(2,2)[PRi] for each i via the identification of local relabelling symmetry. More precisely, if
Ri is a relabelling operation such that Ri[PR2] = PRi, then the extremal effects of H[1]

α(2,2)[PRi]
are

Extreme
[
EH[1]

α(2,2)[PRi]

]
=
{

Ri[e] | e ∈ Extreme
[
EH[1]

α(2,2)[PR2]

]}
Step 3 : Define VE as the union of all the extremal effects found in each case, i.e.,

VE :=
m⋃

i=1
Extreme

[
EH[1]

α(2,2)[PRi]

]
.

Step 4 : Run through elements of VE and discard the ones that give an inner product outside
[0, 1] with any of the noisy m PR boxes.

Step 5 : Denote all the remaining elements of VE as Extreme
[
EH[m]

α

]
.

Note, that in Step 4, discarding suffices since all new effects that might arise are captured
in Step 1. With this construction, one can also give a count of the number of extremal effects
corresponding to any such state spaces. There are 90 extremal effects from H[0]

(2,2). This includes
82 BW effects and 8 CH type effects. Now let us assume that in the state space H[m]

α(2,2) with
1/2 < α < 1 there are t pairs of noisy PR boxes that are isotropically opposite to each other. Now,
the addition of (m − 2t) noisy PR boxes to the local effect polytope introduces 58(m − 2t) new
extremal effects and eliminates 2(m− 2t) CH type effects. On the other hand t pairs of isotropically
opposite PR boxes introduce to the local effect polytope 56t new extremal effects and eliminates 2t
CH type effects. Putting all these together one gets 90 + 56m− 58t extremal effects of the effect
polytope. A similar analysis can be done when α = 1 which leads us to the following formula for
the total number of extremal effects of the effect polytope :

∣∣∣Extreme
[
EH[m]

α(2,2)

] ∣∣∣ =


90 if α = 1/2

90 + 56m− 58t if 1/2 < α < 1

90 + 16m− 34t if α = 1.

(6.5)

The entire construction discussed in this section can be lifted to the case when the PR boxes have
different amounts of noise on them. However, we refrain from that investigation in this thesis.
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6.3 BIPARTITE HOUSE COMPOSITION OF G2
3 AND THEIR EFFECT POLYTOPES

In quantum theory, the smallest system, a qubit, needs three fiducial measurements to be charac-
terised. Therefore, to draw a closer analogy with qubit quantum theory, we study bipartite state
spaces of G2

3 and investigate the presence of couplers in them. We have looked at H[1]
(3,2) state spaces

constructed from the convex hull of 64 local deterministic states and 1 extremal entangled state.
Since there are 4 classes of extremal entangled states we consider them separately. In Table 6.1 we
provide a summary of the different facets of each state space and the number of extremal effects of
their respective effect polytopes.

Class # ICH Facets # I3322 Facets #Extreme Effects

H[1]
(3,2)[N1] 71 568 29486

H[1]
(3,2)[N2] 66 558 41888

H[1]
(3,2)[N3] 68 552 37376

H[1]
(3,2)[N4] 70 564 32384

Table 6.1: Summary of the number of CH facets, I3322 facets and extremal effects for the state
space H[1]

(3,2). N1,N2,N3 and N4 are as defined in Section 2.4.2.

We will discuss the existence of couplers for such state spaces in Section 6.5.3.

6.4 MINIMAL 2-PRESERVIBILITY IN HOUSE STATE SPACES

6.4.1 CH Type Effects of H[1]
α(2,2)[PR2]

Recall from Section 6.2.1, that the CH type effects of the effect polytope EH[1]
α(2,2)

for α ∈ (1/2, 1]
are eCH1 , e

′
CH1

, eCH3 , e
′
CH3

, eCH4 and e′CH4
, where e′CHi

= u− eCHi . However, these effects are not
minimally 2-preserving. A direct calculation shows that

CHSH1′

 Φ(23)
eCH1

(PR2,α,PR2,α)〈
u,Φ(23)

eCH1
(PR2,α,PR2,α)

〉
 = CHSH1

 Φ(23)
eCH′

1
(PR2,α,PR2,α)〈

u,Φ(23)
eCH′

1
(PR2,α,PR2,α)

〉


= CHSH4′

 Φ(23)
eCH3

(PR2,α,PR2,α)〈
u,Φ(23)

eCH3
(PR2,α,PR2,α)

〉
 = CHSH4

 Φ(23)
eCH′

3
(PR2,α,PR2,α)〈

u,Φ(23)
eCH′

3
(PR2,α,PR2,α)

〉


= CHSH3′

 Φ(23)
eCH4

(PR2,α,PR2,α)〈
u,Φ(23)

eCH4
(PR2,α,PR2,α)

〉
 = CHSH3

 Φ(23)
eCH′

4
(PR2,α,PR2,α)〈

u,Φ(23)
eCH′

4
(PR2,α,PR2,α)

〉


= 1
2(α2 + 1).

(6.6)

Since (α2 + 1)/2 > 3/4 when α > 1/
√

2, no CH-type effect is minimally 2-preserving for α > 1/
√

2
since in H[1]

α(2,2)[PR2] only CHSH2 can be violated. To check whether the state on systems 1 and 4
is an element of the state space, one can alternatively verify whether the list of inner products it
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generates with all the extremal effects are in the interval [0, 1] or not. For the current example, this
boils down to checking this against the list of CH-type effects only since the non-trivial facets of the
state space polytope are exactly the CH facets. However, in the above, we have calculated scores
obtained in CHSH games with correlations obtained upon performing fiducial measurements on the
states. This is because the winning criterion of these games, for local theories, can be written as
inequalities that can be affinely transformed into the corresponding CH inequalities. Further, since
we are ultimately going to investigate the ACHSH game, the use of CHSH games for our examples
is useful to set the context.

6.4.2 Couplers of H[2]
α(2,2)[PR1,2]

Recall from Section 6.2.2 that the state space H[2]
α(2,2)[PR1,2] contains couplers. However, these

couplers are not minimally 2-preserving. To check this, note that:

CHSH2′

 Φ(23)
f2(α) (PR1,α,PR2,α)〈

u,Φ(23)
f2(α) (PR1,α,PR2,α)

〉
 = CHSH1′

 Φ(23)
f1(α) (PR2,α,PR2,α)〈

u,Φ(23)
f1(α) (PR2,α,PR2,α)

〉
 = 1

2
(
α2 + 1

)
,

CHSH2′

 Φ(23)
ẽ(α) (PR1,α,PR2,α)〈

u,Φ(23)
ẽ(α) (PR1,α,PR2,α)

〉
 = CHSH1′

 Φ(23)
g̃(α) (PR2,α,PR2,α)〈

u,Φ(23)
g̃(α) (PR2,α,PR2,α)

〉
 = 5α2 + 2α+ 4

4(α+ 2) ,

(6.7)

where f1(α) and g̃(α) are the Type 4 and any Type 3 effect lying on the facet ⟨x,PR1,α⟩ = 1 and
f2(α) and ẽ(α) are Type 4 and any Type 3 effects lying on the facet ⟨x,PR2,α⟩ = 1. This implies
that none of the Type 3 and Type 4 effects lying on these hyperplanes are minimally 2 preserving
and are therefore not valid. Note, however, that these become minimally 2 preserving exactly when
they stop coupling i.e., α ⩽ (1 +

√
41)/10 for Type 2 effects and α ⩽ 1/

√
2 for Type 4 effects. As a

result, there are no minimally 2-preserving extremal effects for this state space that are couplers.
Additionally, the CH-type effects are not minimally 2-preserving either and a similar treatment as
in the previous example shows that for a fixed α, the maximum score in a CHSHi ̸=1,2 game when a
CH effect is applied in the middle half of two allowed PR boxes is (α2 + 1)/2.

6.5 MINIMALLY 2-PRESERVING COUPLERS OF PARTY SYMMETRIC STATE
SPACES

6.5.1 Party Symmetric State Spaces with Restricted Relabelling

In this thesis, we will focus on bipartite house compositions of G2
2 and G2

3 that are party symmetric.
A first classification can be based on the number of maximally entangled states (roofs) present in
the state space. For compositions of G2

2 , we will consider this varying from one to all eight noisy
PR boxes. Next, for a given number of roofs, a second classification involves finding equivalence
classes under relabelling. We say that two state spaces H[m]

α(2,2) and H′[m]
α(2,2) are equivalent if there

exists a relabelling R of probability tables that uniquely maps H[m]
α(2,2) to H′[m]

α(2,2), i.e., for every
state s′ ∈ H′[m]

α(2,2), there exists a state s such that R[s] = s′.
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We found that for 2 ⩽ m ⩽ 7, one can find classes of party symmetric state spaces for every m.
In the table below we give a count on the number of such classes for each choice m, and refer the
reader to Appendix D for a full classification.

# Roofs 2 3 4 5 6 7

# Classes 2 2 4 2 2 1

Table 6.2: Table shows the number of equivalence classes of party symmetric states spaces with m
roofs.

When single systems are described by G2
3 , party symmetric state spaces with one roof are

characterised by the convex hull of 64 local deterministic states and one of the entangled states
N1,N2 or N3. We will restrict to only one roof since the number of cases to consider with more is
combinatorically large. In addition, we will only consider noiseless house compositions, i.e., state
spaces of the form H[1]

α=1(3,2)[Ni]. We leave the treatment of more roofs and noisy state spaces for
future work.

In the following, we consider bipartite house composition of systems whose single system state
spaces are either G2

2 or G2
3 . For each such state space, we calculate its effect polytope and search

for effects which are minimally 2-preserving couplers.

6.5.2 Bipartite House Composition: H[m]
α(2,2)

Recall from Section 3.2 that the state space H[1]
α=1(2,2)[PR2] allows the presence of couplers that are

minimally 2-preserving [93]. This is not true for the state space H[2]
α [PR1,2]. In fact, by using the

ideas from the previous sections, we have shown case by case that none of the extremal effects of
H[m]

α(2,2) with 1 < m ⩽ 8 are minimally 2-preserving couplers. This, however, does not rule out that
there might be non-extremal minimally 2-preserving effects that are couplers. It begs the question
then of whether certain convex mixtures of extremal effects can be both minimally 2-preserving
and couplers. Our next theorem says that these also do not exist.

Theorem 1. Let ẽ ∈ EH[m]
α(2,2)

be an effect for a party symmetric bipartite state space H[m]
α(2,2) where

1 < m ⩽ 8. Then the following does not simultaneously hold :

• ẽ is a coupler

• ẽ is minimally 2-preserving

Proof. We refer the interested reader to Appendix E for the proof.

We have also considered bipartite state spaces that do not have the party swap symmetry. For
these, we have considered state spaces of the form H[m]

β(2,2), where β is a discrete variant of α, varied
between 1/2 and 1 with a step size of 1/30 and 1 < m ⩽ 8. We have numerical evidence that these
state spaces do not support minimally 2-preserving couplers as well. Therefore, we conjecture that
minimally 2-preserving couplers are only present in house state spaces with a single roof.
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6.5.3 Bipartite House Composition: H[1]
(3,2)

Using PANDA, we found the maximal set of extremal effects for the state spaces H[1]
(3,2)[N1],

H[1]
(3,2)[N2] and H[1]

(3,2)[N3]. From each of these maximal effect spaces, we filtered out every extremal
effect which is not a minimally 2-preserving coupler and listed out the ones that are. We then
classified the extremal effects present in each list into equivalent relabelling classes. Taking a class
representative, we calculated the maximal violations of the FCH and F3322 inequalities and the
corresponding probabilities of successful swapping.

H[1]
(3,2)[N1] has 29786 extremal effects in its maximal effect space of which 28688 effects are

minimally 2-preserving. Amongst these, there are 856 couplers which can be classified into 61
relabelling classes. 104 of these couplers are pure and fall into 15 of the 61 classes. We present a
member of each of these 15 classes in Appendix C. We found that the maximum product of the
probability of successful swapping and the inner product of the normalised state generated with
FCH is 1/2. One of the couplers with which one can obtain this value is

fCH1 := 2
3



0 0 1 0 0 0
0 1 0 0 0 0
0 −1 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


.

Notice that the top left 4 × 4 block of fCH1 is eCH1 . With this, the probability of a successful swap
is 1/3 and the CHSH value is 1.

H[1]
(3,2)[N2] has 41888 extremal effects in its maximal effect space. Of these, there are 19829

minimally 2-preserving effects. However, we found that none of these are couplers. The effect fCH1 ,
defined above, although extremal, turns out to be not minimally 2-preserving since the normalised
state obtained after swapping is N3.

H[1]
(3,2)[N3] has 37376 extremal effects in its maximal effect space. 35503 of these are minimally

2-preserving of which there are 2716 couplers that can be grouped into 78 relabelling classes. Only
one of these classes contains pure couplers. Similar to the case of H[1]

(3,2)[N1], the maximum product
of the probability of successful swapping and the inner product of the normalised state generated
with FCH is 1/2; One can get this value with fCH1 .

6.6 CORRELATION SELF-TESTING OF QUANTUM THEORY AGAINST PARTY
SWAP SYMMETRIC STATE SPACES

In this section, we start laying out our main result showing that quantum theory can be correlation
self-tested against any party swap symmetric state space of the form H[m]

α(2,2) and H[1]
(3,2). To do this,

we first introduce a Lemma and a Proposition and then provide proofs of the main claim in the
following sections.
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Lemma 1. Let A,B,X, Y be four random variables with |A| = |B| = |X| = |Y | = 2. Let CHSH =
{CHSHi}8

i=1 be the 8 CHSH games in the Bell setting (2, 2, 2). If CHSHi [p(A,B|X,Y )] > 3/4,
then CHSHj [p(A,B|X,Y )] ⩽ 3/4 for all j ̸= i.

Proof. When a conditional probability distribution p(A,B|X,Y ) scores less than 3/4 in a CHSH
game, we can express it by CHSHi [p(A,B|X,Y )] ⩽ 3/4, where CHSHi is one of the following:

CHSH1 = 1
4


1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 0

 ,CHSH2 = 1
4


0 1 1 0
1 0 0 1
1 0 1 0
0 1 0 1

 ,CHSH3 = 1
4


1 0 0 1
0 1 1 0
1 0 1 0
0 1 0 1


,

CHSH4 = 1
4


0 1 0 1
1 0 1 0
1 0 0 1
0 1 1 0

 ,CHSH5 = 1
4


0 1 0 1
1 0 1 0
0 1 1 0
1 0 0 1

 ,CHSH6 = 1
4


1 0 0 1
0 1 1 0
0 1 0 1
1 0 1 0


,

CHSH7 = 1
4


0 1 1 0
1 0 0 1
0 1 0 1
1 0 1 0

 ,CHSH8 = 1
4


1 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1

 ;

There are 8 CHSH inequalities that can lead to 2 classes of pairs up to relabelling symmetry:
{CHSH1,CHSH3} and {CHSH1,CHSH5}. Therefore it suffices to prove the results for these pairs.
Let us assume that CHSH1[p(A,B|X,Y )] > 3/4. Note that the 2 × 2 blocks of CHSHj̸=1 are all
different when j = 5 whereas others are different from CHSH1 by two blocks. Let us collect them
in two sets CHSH5 and CHSHj̸=1,5. First, let us assume that CHSH3[p(A,B|X,Y )] > 3/4 as well.
Then it follows that

(CHSH1 + CHSH3)[p(A,B|X,Y )] > 3
2

=⇒ 1
4




1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 0

+


1 0 0 1
0 1 1 0
1 0 1 0
0 1 0 1


 [p(A,B|X,Y )] > 3

2

=⇒ 1 + 1 + 2 (p(0, 0|0, 0) + p(1, 1|0, 0) + p(0, 0|1, 0) + p(1, 1|1, 0)) > 6

=⇒ (p(0, 0|0, 0) + p(1, 1|0, 0) + p(0, 0|1, 0) + p(1, 1|1, 0)) > 2

(6.8)

On the other hand, for any conditional probability distribution p(A,B|X,Y ), we have

max
p∈P

(p(0, 0|0, 0) + p(1, 1|0, 0) + p(0, 0|1, 0) + p(1, 1|1, 0)) ⩽ 2, (6.9)

which is a contradiction. A similar contradiction can be reached if any other element from the second
set were chosen. Next, let us assume that CHSH1[p(A,B|X,Y )] > 3/4 and CHSH5[p(A,B|X,Y )] >
3/4, then
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(CHSH1 + CHSH5)[p(A,B|X,Y )] > 3
2

=⇒




1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 0

+


0 1 0 1
1 0 1 0
0 1 1 0
1 0 0 1


 [p(A,B|X,Y )] > 6

=⇒


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 [p(A,B|X,Y )] > 6

=⇒ 4 > 6

(6.10)

which is also a contradiction.

Although this result states a general property of conditional probabilities, when applied to (2, 2, 2)
Bell scenario, implies that every conditional probability distribution of the form p(A,B|X,Y ) can
only win at most one out of 8 CHSH games, with a score of more than 3/4. Next, we prove an
analytic upper bound of the maximum probability of winning the ACHSH game for any GPT
characterized by the convex hull of local deterministic states and only one nonlocal state.

Proposition 1. Let H[1]
α,(m,n)[N] be the convex hull of {L1, · · · ,Ln,Nα}, where {Li}n

i=1 are local
deterministic states and Nα is a maximally entangled state. Let Ecoup ⊂ Extreme[EH[1]

α,(m,n)[N]] be the

subset of minimally 2-preserving couplers. Further, for e ∈ Ecoup, let psucc(e) =
〈
u,Φ(2,3)

e (Nα,Nα)
〉

,

se = Φ(2,3)
e (Nα,Nα)/psucc(e) and ζe be the maximum score of any distribution pse(A,B|X,Y ),

generated by se in the (2, 2, 2) Bell setting, in any CHSH game. Finally, let pwin be the maximum
probability of winning the ACHSH game in the state space H[1]

α,(m,n)[N]. Then,

pwin ⩽


3
4 if Ecoup = ∅
3
4 + max

e∈Ecoup
psucc(e)

(
ζe − 3

4
)

if Ecoup ̸= ∅
. (6.11)

Proof. In the adaptive CHSH game, Bob performs a four outcome measurementM = {eb}b∈{00,01,10,11}.
Corresponding to each outcome, Alice and Charlie need to win 4 different CHSH games labelled
{CHSHb}b. To perform entanglement swapping, Bob shares two instances of the maximally en-
tangled state, Nα, one with Alice and one with Charlie. Since e00 is minimally 2-preserving,
se00 ∈ ConvHull{L1,L2, · · · ,Ln,Nα}. Let,

se00 =
n∑

j=1
λ00,jLj + δiN, (6.12)

such that
∑n

j=1 λ00,j + δi = 1 and λ00,j , δi ⩾ 0 for all j ∈ {1, 2, · · · , n}. Recall further that Alice
and Charlie fix their measurements and do not change them throughout the run of the game. Since

55



Chapter 6. ACHSH Game in State Spaces with Restricted Relabelling Symmetries

se00 admits the decomposition in Eq. (6.12), the probability distribution pse00
(A,B|X,Z) obtained

after Alice and Charlie measure the state se00 can be expressed as

pse00
(A,B|X,Z) =

n∑
j=1

λ00,jpLj
(A,B|X,Z) + δipNα

(A,B|X,Z) , (6.13)

where pLj
(A,B|X,Z) is the distribution obtained if Alice and Charlie had measured the local

deterministic state Lj , and pNα
(A,B|X,Z) is the distribution obtained if Alice and Charlie had

measured the entangled state Nα. Their objective is that pse00
(A,B|X,Z) wins the CHSH game

CHSH00. For this, the state se00 must be entangled, i.e., se00 /∈ ConvHull {L1,L2, · · · ,Ln}; in
other words, ee00 must be a coupler. Assume that CHSH00[pe00 (A,B|X,Z)] > 3/4. Next, consider
the state se01 left with Alice and Charlie corresponding to the outcome of the effect e01. From
minimal 2-preservibility of e01, se01 will also have a decomposition as in Eq. (6.12) and since
the measurements of Alice and Charlie are fixed, se01 will generate a conditional probability
distribution, pse01

(A,B|X,Y ), that admits a decomposition similar to Eq. (6.13). If e01 is a coupler,
the distribution pse01

(A,B|X,Y ) will win the game CHSH00 by an amount more than 3/4. However,
this time Alice and Charlie need to win CHSH01 by an amount more than 3/4. Now, recall that by
Lemma 1, no conditional distribution can simultaneously win two CHSH games by an amount more
than 3/4. This implies that Alice and Charlie can only win CHSH01 by a score of at most 3/4.
This argument can be extended to the remaining two post-selected states as well. The maximum
winning probability is achieved if the measurement choice helps Alice and Charlie to have a score of
3/4 for the remaining games. Since e00 is a dummy variable, replacing e00 by e gives the following
upper bound on the winning probability

pwin ⩽ psucc(e)ζe + (1 − psucc(e))3
4

⩽
3
4 + psucc(e)

(
ζe − 3

4

)
.

(6.14)

This upper bound is maximised when the product psucc(e) (ζe − 3/4) is maximised. When there
are no minimally 2-preserving couplers, ζe can be at most 3/4. Putting these together, we get

pwin ⩽


3
4 if Ecoup = ∅
3
4 + max

e∈Ecoup
psucc(e)

(
ζe − 3

4
)

if Ecoup ̸= ∅
. (6.15)

.

Theorem 2. Let pH[1]
α,(2,2)

and pH[1]
α=1,(3,2)

denote the maximum winning probability of the ACHSH

game in the party symmetric state spaces H[1]
α,(2,2) and H[1]

α=1,(3,2) respectively and let pQ denote
Tsirelson’s bound. Then the following hold:

1. pQ > pH[1]
α,(2,2)

,

2. pQ > pH[1]
α=1,(3,2)

.

Proof. 1. For H[1]
α,(2,2) there is only one class to check since all the PR boxes are equivalent up to

local relabelling. Going back to Section 6.2.1, we find that there are only two types of extremal
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effects that are minimally 2-preserving couplers: ep,α and of em,α. From Eq. (6.3) and Eq. (6.4),
we get

3
4 + psucc(ep,α)

(
ζep,α

− 3
4

)
= α(α+ 3) + 1

4α+ 2 ,
3
4 + psucc(em,α)

(
ζemα

− 3
4

)
= α(5α+ 17) + 4

24α+ 8 ;

When α ∈ [1/2, 1], both of these quantities are strictly less than pQ. Both these functions are
monotonically increasing in this range. When α = 1 they evaluate to 5/6 and 13/16 respectively.
Using Proposition 1, the functions above can be seen as upper bounds to the winning score.

2. There are three classes of H[1]
α=1,(3,2) state spaces depending on whether the maximally

entangled state is N1,N2 or N3. We discussed in Section 6.5.3 that H[1]
α=1,(3,2)[N2] does not have

any minimally 2-preserving extremal effects that are couplers. Since the extremal coupling effects
are not minimally 2-preserving, any convex combination of extremal effects will either be minimally
2-preserving and not coupling or would be coupling and not minimally 2-preserving. Therefore,
the maximum score in the ACHSH game is upper bounded by the classical score of 3/4. For
H[1]

α=1,(3,2)[N1] and H[1]
α=1,(3,2)[N3], the effect fCH1 can be used to maximise the product of the

probability of a successful swap and the CHSH score of the generated state. Since fCH1 is pure
coupler the CHSH score is 1 for both cases. The probability of a successful swap in both cases is
1/3. Therefore, using Proposition 1, we get a score of 5/6 in both cases.

The theorem above proves that quantum theory can be correlation self-tested against single
roof house state spaces considered in this chapter. In addition to this, we have considered noisier
state spaces H[1]

β(3,2) where β is discretely varied between 1/2 and 1 with a step size of 1/30. For
this, we have numerical evidence that the maximum score in the ACHSH game, calculated as per
Proposition 1 is always strictly less than Tsirelson’s bound. Therefore, we conjecture that quantum
theory can be correlation self-tested against any state spaces of the form H[1]

α(3,2) where α ∈ [1/2, 1].
Next, we provide a generalisation of the result showcasing that no party symmetric house state

space H[m]
α,(2,2) allows one to win the ACHSH game better than Tsirelson’s bound.

Theorem 3. Let H[m]
α(2,2) be a party symmetric state space with 1 ⩽ m ⩽ 8 and 1/2 ⩽ α ⩽ 1.

Let pH[m]
α(2,2)

be the maximum winning probability of the ACHSH game in H[m]
α(2,2) and pQ denotes

Tsirelson’s bound. Then,
pQ > pH[m]

α (2,2) (6.16)

for any m ∈ {1, 2, · · · , 8} and any α ∈ [1/2, 1].

Proof. The proof has two cases :
• for H[1]

α(2,2), i.e., m = 1, using Theorem 2 (part 1.) we obtain pQ > pH[m]
α(2,2)

• when 1 < m ⩽ 8, from Theorem 1, we obtain that pH[m]
α(2,2)

⩽ 3/4 since there are no minimally
2-preserving couplers.

An important observation is that this theorem holds even if multicopy nonlocality distillation
is allowed. When 1 < m ⩽ 8, such distillations are not possible due to the absence of couplers.
When m = 1, from Theorem 2 one gets that the maximum score in the ACHSH game achievable
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if nonlocal correlations are distilled to perfectly win one of the CHSH games is bounded by 5/6
which is less than Tsirelson’s bound.

6.7 MINIMAL 2-PRESERVIBILITY AND TSIRELSON’S BOUND

Recall from Definition 2.1.3, that given a state space S, the minimal tensor product composition
S
⊗

min
k

is a subset of any composite state space S⊠k. Similarly, for the effect space E , the minimal
tensor product composition E

⊗
min

k

is a subset of any composite effect space E ′ ⊆ ES⊠k . When S and
E denote bipartite party swap symmetric state and effect spaces, then this requirement implies
the following: i) for every pair of states σ, ω ∈ S, the states {σ(1,2) ⊗ ω(3,4), σ(1,4) ⊗ ω(2,3)} are
valid states of the 4 partite state space S

⊗
min

2
and ii) for every pair of effects e, f ∈ E , the effects

{e(1,2) ⊗ f (3,4), e(1,4) ⊗ f (2,3)} are valid effects of the 4 partite effect space E
⊗

min
2
.

Note, that a different way of stating minimal 2-preservibility, defined in Section 3.2, of an effect
f is requiring that for every effect e, the effects {e(1,2) ⊗ f (3,4), e(1,4) ⊗ f (2,3)} are valid. More
strongly, a bipartite effect f is minimally 2-preserving if and only if for every bipartite effect e, the
effects {e(1,2) ⊗ f (3,4) and e(1,4) ⊗ f (2,3)} are valid 4-partite effects. Therefore, requiring both i)
and ii) is equivalent to every bipartite effect f ∈ E being minimally 2-preserving.

Section 3.2 requiring both i) and ii) is equivalent to every effect e ∈ E being minimally 2-
preserving. One outcome of our work is that in the case of house-like state spaces H[m]

α(2,2), requiring
i) and ii) to simultaneously hold does not allow every effect in the maximal effect space EH[m]

α(2,2)

to be minimal 2-preserving for every choice of α. Interestingly, if one restricts the maximum
nonlocality of H[m]

α(2,2) to be at most Tsirelson’s bound, every effect in the maximal effect space
becomes minimally 2-preserving. We make this more precise in the following theorem.

Theorem 4. Let H[m]
α (2, 2) be a party symmetric bipartite state space with m < 8 and let pQ

denote Tsirelson’s bound. Then the following two statements are equivalent:

1. any e ∈ EH[m]
α

minimally 2-preserving

2. maxi CHSHi[s] ⩽ pQ for any state s ∈ H[m]
α

Proof. (1 =⇒ 2) We split the proof in two cases, first when m = 1 and second when 1 < m < 8.
When m = 1, recall from Example 6.4.1 that for the state space H[1]

α(2,2)[PR2], the set of extremal
effects that are not minimally 2-preserving are the CH-type effects. This was shown by the score
of a CHSHi ̸=2 game of the distribution obtained after performing fiducial measurements on the
state Φ̃(2,3)

eCHj̸=2,2′ (PR2,α,PR2,α)/ ⟨u, ·⟩ being (α2 + 1)/2, which in the range 1/
√

2 < α ⩽ 1 is greater
than 3/4 (maximum local score). Therefore, in order for these CH-type effects to be minimally
2-preserving, we require α ⩽ 1/

√
2. This implies that the maximum CHSH score achievable in the

state space is

max
1
2⩽α⩽ 1√

2

CHSH2 [PR2,α] = 1√
2

(
1 + 1√

2

)
= pQ. (6.17)
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Next, when m = 2, recall from Example 6.4.2, that for the state space H[2]
α(2,2)[PR1,2] the set of

extremal effects that are not minimally 2-preserving are all the CH-type effects and all the couplers.
In this case, one can see from Eq. (6.7) that for a given α, the maximum score in a CHSHi ̸=1,2

game is (α2 + 1)/2. Therefore, for all these effects to be minimally 2-preserving, we require that
α ⩽ 1/

√
2. This argument can be extended to 2 < m < 8 without loss of generality.

(2 =⇒ 1) When α ⩽ 1/
√

2, there are no couplers and hence every effect is minimally
2-preserving.

When m = 8, since any effect of the full effect space is minimally 2-preserving, no such tension
arises for any amount of noise.

Our work provides an in-depth analysis of state space models where taking the dual of the state
space is insufficient. A further restriction of compositional consistency is required. In fact, setting
the collection of all elements in the dual of a state space as the effect space can be seen as a special
case of minimal k-preservibility when Br = Xr in Definition 3.2.1. Our work shows that although
when single systems are considered, i.e., |Xr| = 1, this is indeed sufficient, when more systems are
involved, minimal k-preservibility (in fact k-preservibility) should be considered instead. Finally,
for quantum theory, every element in the dual of the state space is also completely state space
preserving, i.e., all POVM elements are completely positive. Theorem 4 addresses the restrictions
needed on the house models if this feature needs to be carried over. Although the theorem finds
a restriction on asymmetric state spaces, unlike quantum state spaces which are symmetric, this
restriction being Tsirelson’s bound is surprising.

6.8 CONCLUSION

We have shown that quantum theory can be correlation self-tested against a class of theories
that allow post-quantum correlations. Further, these results hold even if the players are allowed
to perform nonlocality distillation, since they can only distil up to the amount allowed by the
state space and produce boxes that are valid states. However, to completely single out quantum
correlations from BW correlations, one needs to look for all the theories whose state spaces are
smaller than BW state spaces, thereby supporting entanglement swapping, but leaving enough
scope to allow distillation of correlations such that all non-signalling correlations can be generated.
Although one can arbitrarily truncate BW state spaces to construct state spaces of such theories,
obtaining a complete list of such state spaces may not be straightforward. Here, we have only
considered house-like compositions of G2

3 with single roofs. However, since there are multiple
equivalence classes of maximally entangled states for this case, house state spaces with two or more
roofs might enable us to outperform quantum theory. This is an unexplored area in this work due
to heavy computational demands and is left for future work.

Recently, in [27], the authors discuss complete preservibility in composite state spaces which
are not constructed using the minimal or maximal tensor product rule. In particular, they refer to
Janotta [52] where the state space considered was the convex hull of H[0]

(2,2) and 4 PR boxes, out of
which 2 PR boxes are isotropically opposite to each other and 2 PR boxes (not necessarily the other
two) are symmetric under party swap. Naturally, the state space is not symmetric under party
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swap. In agreement with our results, they also find effects that are not minimally 2-preserving.
Further, they state that the only possible compositions of two gbit state spaces, G2

2 , which are
completely preserving are H[0]

(2,2),H
[8]
α=1,(2,2) and a party symmetric state space of H[1]

α=1,(2,2)[PR1]
with a restricted effect space constructed from the convex hull of BW effects and only one entangled
effect, i.e., the coupler epure only. Our results show that more state and effect space pairs are
potentially completely 2-preserving. For instance, H[1]

α=1,(2,2)[PR1] with a restricted effect space
constructed from the convex hull of BW effects, the 9 coupling effects and their complementary
effect. A noisier version of this example is also minimally 2-preserving and therefore potentially
completely preserving. Other examples include H[m]

α,(2,2) state spaces with m even where the PR
boxes are isotropically opposite and the restricted effect spaces are constructed by taking the convex
hull of all the extremal effects of EH[m]

α,(2,2)
with the exception of the CH-type effects.

The optimal strategy used in quantum theory in the ACHSH game involves a perfect entangle-
ment swapping. In particular, post-selected on each of Bob’s outcomes, Alice and Charlie’s systems
are maximally entangled. Note that one can mimic this feature if more than one composition rule
is allowed, such as the one in [8] mentioned in Section 3.2. Explicitly, one possibility is allowing
BW compositions for bipartite states labelled by AB1,B2C and between AC and allowing local
composition between B1,B2. With this one can perfectly win the ACHSH game when Bob shares
two copies of PR1, one with Alice and another with Charlie and Bob performs a four outcome
joint measurement with appropriate CH-type effects. As argued in Section 3.2, we have avoided
these types of constructions since they require multiple composition rules, and hence not a close
analogy to quantum theory, described by a single composition rule, namely, the tensor product of
the underlying Hilbert spaces.
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Part III

Superposition and Indefinite Causal
Order
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7

Superposition and Indefinite Causal Order in Generalised
Probabilistic Theories

7.1 INTRODUCTION

General relativity(GR) and quantum theory(QT) have been shown to be successful at describing
cosmic and atomic physics respectively. A long-standing quest is to formulate a higher theory
that describes physics at all scales in a way that its descriptions of cosmic and atomic physics are
equivalent to that of GR and QT respectively. To investigate such a theory, it might be useful to
work in a framework in which features of both these theories can be expressed meaningfully. From
an operational perspective, since QT is probabilistic, it is reasonable to assume that this higher
theory might be probabilistic as well.

A minimal requirement for any such theory is to be able to describe operations and causal
orderings amongst operations in every way permissible in GR and QT. If an operation causally
precedes another, we say that there exists a definite causal ordering relating the two. It turns out
that in both GR and QT, there are scenarios in which a lack of definite causal ordering is observed.
In GR if two operations occur in regions that are space-like separated, then there is no definite
causal order between them. On the other hand, in QT, the ordering between two operations can
be in quantum superposition [17]. This lack of definite causal order in non-relativistic quantum
theory has come to be known as indefinite causal order (ICO). Now, in a probabilistic theory, the
lack of causal definiteness of events arising from GR can be modelled by assuming that operations
performed in space-like separated regions commute. That of superposition of operations remains
unknown. In this chapter, we try to take a step towards bridging this gap in the framework of
GPTs.

Fundamental to causal superposition of operations is the notion of superposition itself. In
QT, this notion is attributed to the fact that there exists a representation of pure states in
which every pure state can be expressed as a linear combination of two other pure states. In
an arbitrary probabilistic theory, such a representation need not exist. Therefore, one needs an
operational understanding of superposition that can be used to check whether a probabilistic theory
admits superposition or not. In this chapter, we present a candidate definition for superposition
which captures the notion of quantum superposition and is inadmissible by classical probability
theory. Additionally, we found that although composite systems of maximal theories respecting
no-superluminal signalling [81] display superposition, their single systems do not.

62



7.2. Indefinite Causal Order in Quantum Theory

This chapter is organised as follows: Sections 7.2 and 7.3, give an overview of developments
in indefinite causal order in quantum theory and how it can be self-tested in certain cases. In
Section 7.4, we propose an operational definition of superposition and show its consistency with
quantum theory. We also show that GLT does not admit superposition, however, BW does. In
Sections 7.5 and 7.6 we present a toy theory that admits superposition and then show how it can
also display indefinite causal order, while keeping track of the underlying assumptions.

7.2 INDEFINITE CAUSAL ORDER IN QUANTUM THEORY

ICO in quantum theory has received a lot of attention in the past decade. Originally the idea
behind ICO was proposed by Hardy to introduce a probabilistic framework for quantum gravity [50,
49]. Subsequently, a concrete example of a process displaying ICO, the quantum switch, was put
forward by Chiribella [17]; We will discuss this in more detail in Section 7.3.1. The framework of
ICO has so far been further developed by Colnaghi et al. [23] and Oreshkov et al. [72]. The use
of ICO has also been shown to have theoretically improved various information-theoretic tasks.
A handful, but by no means exhaustive, list of examples include communication complexity [46],
reduced error quantum communication [28], metrology [101], quantum thermodynamics [16], and
local implementation of nonlocal operations [43].

An important instalment in this direction is the development of causal inequalities, that are
satisfied by every quantum process admitting a definite causal order [72, 2]. The quantum switch,
however, does not violate these inequalities [2, 82]. Device-independent techniques have been
proposed for correlation self-testing of ICO in the quantum switch [44, 64, 32]. The self-test
introduced in [64] is not only device-independent but theory-independent as well, just like Bell
inequalities. In the following, we will briefly recap the quantum switch and the inequality presented
in [64].

7.3 QUANTUM SWITCH AND DRF INEQUALITY

7.3.1 Quantum Switch

The quantum switch [17] is a process in which the order of two operations OA1 and OA2 is controlled
by a quantum state. Let us assume that if the control quantum state is a qubit, then OA1 precedes
OA2 when the qubit is in state |0⟩⟨0| and OA2 precedes OA1 when the qubit is in state |1⟩⟨1|. In
particular, one obtains an entanglement between the state of the control qubit and the order in
which the operations OA1 and OA2 are performed. In the case where the operations OA1 and OA2

represent unitary maps U1 and U2, the action of the quantum switch on them can be defined as

(U1, U2) 7→ |0⟩⟨0|C ⊗ U2U1 + |1⟩⟨1|C ⊗ U1U2, (7.1)

where C represents the control qubit system [31]. When the control qubit is in a superposition of
the states |0⟩⟨0| and |1⟩⟨1|, the ordering of the operations becomes superposed, exhibiting indefinite
causal order. Next, we summarise the idea behind DI self-testing of ICO, as presented in [64].
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Figure 7.1: Abstraction of the setup considered in [64] to derive the DRF inequality 7.2. Blue
region represents a process that implements the operations OA1 and OA2 (yellow) in the orders
OA2 ≺ OA1 when the value of subsystem C of Λ is 0 and OA1 ≺ OA2 when the value of subsystem
C of Λ is 1. OC is in the causal future of {OAi

}i and OB is causally disjoint from {OAi
}i , and OC .

7.3.2 DRF Inequality

We split this discussion into two parts, first describing the various causal relations needed and
second a possible justification for the implementation of these relations in space-time.

Given two random variables A and X, A ⊥⊥ X denotes that A is independent of X. In a causal
structure, A is said to be in the causal future of X if X is a potential cause of A. X is said to be
free if it is independent of every random variable outside its causal future. Now, let us consider four
operations OA1 ,OA2 ,OB and OC. To each operation O, let us assign a pair of random variables
(M,N) such that N is in the causal future of M (see Section 4.1). We assign (X1, A1) to OA1 ,
(X2, A2) to OA2 , (Y,B) to OB and (Z,C) to OC. OAi ≺ OAj , denotes that (Mj , Nj) is in the
causal future of (Mi, Ni) and OAi× OAj denotes that neither (Mi, Ni) nor (Mj , Nj) is in the
causal future of the other, i.e., they are causally disjoint. The causal relations can now be phrased
in the following two assumptions:

Assumption 1: There is a random variable Λ taking values λ ∈ {0, 1}. When λ = 0, OA1 ≺ OA2

and when λ = 1, OA2 ≺ OA1 . In addition, OAi ≺ OC , OB× OAi and OB× OC for any i ∈ {1, 2}.
Assumption 2: The random variables X1, X2, Y, Z are free.
Figure 7.1 is one way to implement these causal relations with the justifications that the

operations take place in four closed labs A1, A2, B, and C respectively, (M,N) represent random
variables associated to the input and output of the operation O, and that the following hold:

1. Definite Causal Order (D): All operations admit definite causal order, conditioned on Λ.
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2. Relativistic Causality (R): If Oi ≺ Oj , then the physical implementation of Oj is in the
future lightcone of that of Oi. If Oi× Oj , then their physical implementations are space-like
separated.

3. Freedom of Choice (F): The underlying theory allows for all input settings to be freely
chosen.

Under these assumptions, the set of conditional probability distributions, p(A1, A2, C,B|X1, X2, Z, Y ),
can be characterised as a convex polytope, a facet of which is

p(b = 0, a2 =x1|y = 0) + p (b = 1, a1 = x2|y = 0)

+ p (b⊕ c = yz|x1 = x2 = 0) ⩽ 7
4 ,

(7.2)

where ⊕ denotes the modulo 2 operation. This inequality holds even if the random variable Λ is
correlated with the outcome represented by B, as depicted in Fig. 7.1. This inequality applies
to theories in which the following assumptions can be physically justified: i) DRF, ii) the theory
allows operations to be performed in a closed lab setting, i.e., the operations are unaffected by
anything outside the respective labs they take place in and iii) classical theory is a sub-theory, in
particular the classical random variable, Λ, can be modelled as a valid state. Within any theory,
admitting these assumptions, whenever the order of operations between OA1 and OA2 is determined
by Λ, every conditional distribution satisfies inequality (7.2). Therefore, this inequality presents a
theory-independent (modulo i, ii and iii) constraint on conditional probabilities that respect the
above assumptions.

In [64], the authors showed that if the order of the operations OA1 and OA2 were controlled by
one subsystem of a bipartite maximally entangled state while the other subsystem is distributed to
lab B, it is possible to violate inequality (7.2). Since classical theory is a sub-theory of quantum
mechanics, under the closed lab assumption, this violation implies that the DRF conditions do not
simultaneously hold. If one further assumes that R and F hold, a device-independent violation of
definite causal order is implied.

In the following, we summarise the quantum strategy presented in [64] that leads to such a
violation.

7.3.3 Quantum Strategy in the Switch

Let us denote by

σX̂ := σ0 =
(

0 1
1 0

)
, σŶ := σ1 =

(
0 −i
i 0

)
and σẐ := σ2 =

(
1 0
0 −1

)

the three Pauli matrices corresponding to some fixed orthogonal directions X̂, Ŷ and Ẑ respectively.
Operations OAi

are measure and prepare channels and operations OB and OC are measurements.
The target system, T , is initially prepared in |0⟩⟨0|. One subsystem (C) of a maximally entangled
state Φ+ is used as the control while the other subsystem (B) is distributed to lab B. In lab Ai,
the incoming qubit is measured in the {|0⟩⟨0|, |1⟩⟨1|} basis. The outcome is labelled ai, and the
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state |xi⟩⟨xi| is prepared and sent off. In lab C, the output control qubit is measured in the basis
generated by the rank 1 projectors of (σẐ + σX̂)/

√
2 when z = 0 and of (σẐ − σX̂)/

√
2 when z = 1;

Let us denote these projectors as |ψc|z⟩⟨ψc|z|. The outcome is recorded as c. In the space-like
separated lab B, the distributed half of Φ+ is measured in the basis defined by the rank 1 projectors
of σẐ when y = 0 and σX̂ when y = 1; Let us denote these projectors as |ϕb|y⟩⟨ϕb|y|. The outcome
is recorded in b. The elements of resultant distribution p(A1, A2, B,C|X1, X2, Y, Z) can be written
as:

p (a1, a2, b, c|x1, x2, y, z) = Tr
[
K
(
ΦBC

+ ⊗ |0⟩⟨0|T
)
K†
]
, (7.3)

where K := ⟨ψc|z|C⟨ϕb|y|B(|0⟩⟨0|C⊗|x2⟩ ⟨a2|x1⟩ ⟨a1|T +|1⟩⟨1|C⊗|x1⟩ ⟨a1|x2⟩ ⟨a2|T). Now, note that
when y = 0, the probability of getting either b = 0 or b = 1 is 1/2. When b = 0, the post-selected
control qubit is in the state |0⟩⟨0|C which implies a2 = x1. Similarly, when b = 1, the post-selected
control qubit is in the state |1⟩⟨1|C which implies a1 = x2. Therefore, the first two terms of
inequality (7.2) add up to 1. Next, when x1 = x2 = 0, the state of the control system is unaffected
and therefore labs B and C can perform a Bell-test to get p (b⊕ c = yz|x1 = x2 = 0) = (1+1/

√
2)/2.

As a consequence, inequality (7.2) is violated as the sum of all the conditional probabilities appearing
in it is 1 + (1 + 1/

√
2)/2 > 7/4.

7.4 SUPERPOSITION IN GPTS

Textbook introduction to quantum superposition is attributed to the fact that certain linear
combinations of pure states, when represented as vectors in Cd, are also pure states. More precisely,
for every pure state |ϕ⟩, there exists a pair of states {|ψ1⟩, |ψ2⟩}, a unique linear combination of
which reproduces |ϕ⟩, i.e.,

α|ψ1⟩ + β|ψ2⟩ = |ϕ⟩, (7.4)

where α and β are complex numbers. This notion of superposition cannot be generalised to arbitrary
GPTs since it a priori depends on pure states being represented by vectors in Cd. Indeed, even for
quantum theory, this notion of superposition is solely dependent on its Hilbert space formalism. In
a different formalism, for instance, if all states were represented by probability tables constructed
from tomographic data, a clear understanding of quantum superposition is missing. To have an
understanding of superposition that does not depend on the mathematical framework in which the
underlying theory is phrased, one might want to take an operational approach and describe it in
terms of the input-output statistics obtained upon performing suitable measurements.

Two attempts to address this were presented in [5] and [24]. In [5], superposition has been
treated at equal footing as non-classicality. In particular, any theory with a non-simplicial 1 state
space admits superposition. In [24], the property of superposition has only been explored for
theories with infinitely many pure states. In this chapter, we take a slightly different approach by
first looking at the statistical features of experimental outcomes that are traditionally associated
with the presence of superposition in quantum theory and then characterise a minimal condition
for a theory to display similar statistical behaviour.

1The state space of any classical probability theory can be described as a simplex.
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For our first example, let us consider |ϕ⟩ = |0⟩, |ψ1⟩ = |+⟩ and |ψ2⟩ = |−⟩ with which one has

1√
2

(|+⟩ + |−⟩) = |0⟩. (7.5)

Looking at these states as elements of the state space, we see that for the state |0⟩⟨0|, there exists a
unique measurement {|0⟩⟨0|, |1⟩⟨1|} such that the outcome of the measurement is deterministic, i.e.,
Tr[|0⟩⟨0|.|0⟩⟨0|] = 1 and Tr[|1⟩⟨1|.|0⟩⟨0|] = 0. Similarly, for the states |+⟩⟨+| and |−⟩⟨−|, there exists
a basis {|+⟩⟨+|, |−⟩⟨−|} such that outcome of a measurement on these two states is deterministic.
However, when |0⟩⟨0| is measured in {|+⟩⟨+|, |−⟩⟨−|} or |+⟩⟨+|/|−⟩⟨−| is measured in {|0⟩⟨0|, |1⟩⟨1|}
the probability of each outcome is 1/2. Here, the probability of non-deterministic outcomes being
1/2 is not crucial. For clarity, consider |ϕ⟩ = |0⟩, |ψ1⟩ = |ψ⟩ :=

√
2/3|0⟩ +

√
1/3|1⟩ and |ψ2⟩ = |−⟩

with which one has
|0⟩ =

√
3

1 +
√

2
|ψ⟩ +

√
2

1 +
√

2
|−⟩. (7.6)

For the state |ψ⟩⟨ψ| there exists a unique measurement {|ψ⟩⟨ψ|,1− |ψ⟩⟨ψ|} which is deterministic
with respect to the state |ψ⟩⟨ψ| but non-deterministic with respect to both |0⟩⟨0| and |−⟩⟨−|. In
addition, Tr[|0⟩⟨0|.|ψ⟩⟨ψ|] = 2/3 ̸= Tr[|0⟩⟨0|.|−⟩⟨−|]. To translate this to the framework of GPTs,
we first note that to check whether a binary outcome measurement is deterministic with respect to
a state or not, it is sufficient to check the probability corresponding to only one of the outcomes.
Secondly, although in qudit quantum theory for every pair states |ϕ′1⟩⟨ϕ′1| and |ϕ′2⟩⟨ϕ′2| there exists
a unique effect |ϕ′1⟩⟨ϕ′1| such that Tr[|ϕ′1⟩⟨ϕ′1|].|ϕ′1⟩⟨ϕ′1| = 1 and |ϕ′1⟩⟨ϕ′1|.|ϕ′2⟩⟨ϕ′2| ∈ (0, 1), this may
not be true for an arbitrary GPT. In particular, there might be more than one extremal effect
with this property. This discussion gives us a first requirement for a theory to have superposition:
the state space of the theory must have three distinct extremal states s and {r1, r2} and three
extremal effects es and {fr1 , fr2} such that ⟨es, s⟩ = 1 but

〈
es, r1/2

〉
∈ (0, 1) and ⟨fr1 , r1⟩ = 1 and

⟨fr2 , r2⟩ = 1 but
〈
fr1/2 , s

〉
∈ (0, 1). Since we are only considering pure states this requirement

already distinguishes a superposition from a classical mixture, since for any classical mixture of
αr1 + (1 − α)r2, ⟨es, αr1 + (1 − α)r2⟩ ∈ (0, 1), where α ∈ [0, 1]. We now formalise our observations
into an operational definition of superposition.

Definition 7.4.1. Let S and E be a state and effect space pair of a GPT and denote by Extreme[S]
and Extreme[E ] the set of extremal states in S and extremal effects in E respectively. The GPT is
said to admit superposition if there exists three distinct states s, r1, r2 ∈ Extreme[S] and three effects
es, fr1 , fr2 ∈ Extreme[E ], such that ⟨es, s⟩ = 1, ⟨es, rj⟩ ∈ (0, 1),

〈
frj
, rj

〉
= 1 and

〈
frj
, s
〉

∈ (0, 1),
for all j ∈ {1, 2}.

Note that the effects es and frj
can neither be the zero nor the unit effect. Further, notice that

since the inner product between any extremal state and any extremal effect in a simplicial theory
is either 0 or 1, classical theory cannot admit superposition. Finally, for qudit quantum theory, say
with d = 3, although one might be able to represent a pure state as a linear combination of three
other pure states, a superposition of two pure states is still a well-defined pure state. Definition 7.4.1
thus captures the minimal necessary requirements for a theory to admit superposition.

It is possible to satisfy the conditions stated in Definition 7.4.1 by mixed states lying on the
boundary of the state space. One might urge that superposition should then be defined for mixed
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states as well. Indeed, there is no operational reason as to why only extremal states must possess
superposition. We therefore do not impose a direct restriction on the type of states that might be
described as superposition of other states. However, in this work, superposition can be associated
to mixed states subject to the theory admitting superposition in accordance to Definition 7.4.1.

Next, let us look at the gbit state space G2
2 (see Section 2.4.1) consisting of the following extremal

states: 
1
0
1
0

 ,


1
0
0
1

 ,


0
1
1
0

 ,


0
1
0
1

 . (7.7)

in the notation p(A|X) := (p(0|0)p(1|0)|p(0|1)p(1|1))T , where X and A represent the random
variables associated to the choices and outcomes of fiducial measurements. The maximal set of
extremal effects for this state space is:




1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1

 ,


0
0
0
0

 ,


1
1
0
0


 (7.8)

Upon constructing a table of inner products between extremal states and effects, one can check that
all the inner products are either 0 or 1. Therefore, the condition in Definition 7.4.1 cannot be met,
implying that the single system state space does not admit superposition. In fact, no GLT admits
superposition. It is then natural to ask whether there exists a GPT which admits superposition
whilst having its single system state spaces being described by the gbits. We show that BW is an
example of such a theory; To see this, consider the following collection of states :

PR1 := 1
2


1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 0

 ,PR2 := 1
2


0 1 0 1
1 0 1 0
0 1 1 0
1 0 0 1

 ,

PR′1 := 1
2


1 0 0 1
0 1 1 0
1 0 1 0
0 1 0 1

 ,PR′2 := 1
2


0 1 1 0
1 0 0 1
0 1 0 1
1 0 1 0

 ,

and the collection of effects:

e1 :=


0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0

 , e2 :=


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 1

 ,
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e′1 :=


0 0 0 1
0 1 0 0
0 0 0 0
0 0 0 0

 , e′2 :=


0 0 1 0
1 0 0 0
0 0 0 0
0 0 0 0

 ,

from the bi-partite state and effect spaces. Taking the inner product by element-wise multiplication,
we get ⟨ei,PRi⟩ = 1,

〈
e′j ,PR′j

〉
= 1,

〈
ei,PR′j

〉
= 1/2 and

〈
e′j ,PRi

〉
= 1/2 for any i, j ∈ {1, 2}.

Furthermore, 1/2PR1 + 1/2PR2 = 1/2PR′1 + 1/2PR′2, drawing resemblance to the quantum
ensembles of states, {|0⟩, |1⟩} and {|+⟩, |−⟩}, discussed above. In the following two sections, we
provide an example of a GPT that admits superposition, and show how one can use this theory to
violate the DRF inequality (7.2) by an amount more than achievable in quantum theory, a first
study of indefinite causal order in the framework of GPTs.

7.5 HEX-SQUARE THEORY

The derivation of inequality (7.2) assumes nothing more about the underlying theory than what
has been stated in Section 7.3.2. Although quantum theory violates this inequality, there might
be other theories in which the stated assumptions can be consistently made and that also violate
inequality (7.2). In fact, such violations might be by an amount higher than what is achievable
within quantum theory. Now, the part of inequality (7.2) whose algebraic limit cannot be met
in quantum theory is p (b⊕ c = yz|x1 = x2 = 0). The condition b⊕ c = yz is a nonlocal (CHSH)
game, which can be won to its algebraic maximum by a PR box. Therefore, one way to outperform
quantum theory in the violation of inequality (7.2) is to construct a theory where a PR box is a
valid bipartite state and use one half of this state as the control while sharing the other half with
lab B.

For this, consider the state

ΦPR := 1 +
√

2
2 Φ+ + 1 −

√
2

2 Φ−, (7.9)

where Φ− := |ϕ−⟩⟨ϕ−| with |ϕ−⟩ := (|00⟩ + |11⟩)/
√

2. When ΦPR is shared between two parties
holding devices that can measure the observables {(σX̂ + σŶ )/

√
2, (σX̂ − σŶ )/

√
2} and {σX̂ , σŶ }

respectively, they can generate PR correlations [1]. Further, recall that in the quantum strategy
presented in Section 7.3.3, the observables measured in lab C were (σẐ ± σX̂)/

√
2 and σẐ

2 and in
lab B were {σX̂ , σẐ}. With this information, we construct here a bipartite theory where the only
non-zero and non-unit extremal effects of one of the systems (system C) are the rank 1 projectors of
(σX̂ ± σẐ), (σX̂ ± σŶ ) and σẐ , and that of the other system (system B) are the rank 1 projectors
of σX̂ , σŶ and σẐ . Recall from Section 2.6, that this effect space has already been studied in the
context of a Hilbert space formalism of GLT.

Let us denote by SC and SB the state spaces for systems C and B respectively. SC is the set of
all elements of H(C2) such that their Hilbert-Schmidt inner products with the rank 1 projectors of

2There is no direct measurement of σẐ . However, in the calculation of the probability using the formula in
Equation (7.3), the action of the map K on system C can be seen as a measure and prepare operation onto the
eigen-basis of σẐ .
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(σẐ ± σX̂)/
√

2, (σX̂ ± σŶ )/
√

2 and σẐ is a valid probability. Similarly, SB is the set of all elements
of H(C2) such that the inner products with the rank 1 projectors of σX̂ , σŶ and σẐ are valid
probabilities. For both systems, we consider 1 as the unit effect. Recall, that we can write any unit
trace 3 Hermitian matrix ϱ as

ϱ = 1+ rxσX̂ + ryσŶ + rzσẐ

2 (7.10)

where rx, ry, rz ∈ R. Our objective is to calculate the extremal states of systems C and B. To
do this, we can first write the set of facet-defining inequalities for the state space polytope by
exploiting the inner-product relation between states and effects:

Facets [S] =
{

Tr[ϱ, e] ⩽ 1 | e ∈ Extreme[E ]
}

; (7.11)

Since the set of extremal effects for both systems is finite, the state spaces for both systems C
and B can be characterised by finite lists of facets. For our problem, we enlist the intersection
points of the hyperplanes defining the facets in variables (rx, ry, rz), and then check which of these
intersection points satisfies all the facet inequalities for the given systems. In terms of elements in
H(C2), the extremal states for systems C are then:

Extreme [SC] ={
1±

√
2σX̂

2 ,
1±

√
2σŶ ± σẐ

2 ,
1± rσX̂ ± σŶ ± σẐ

2

} (7.12)

where r =
√

2 − 1. We encourage the reader to Appendix F for the derivation of Extreme [SC]. We
have already found in Section 2.6 that the extremal states of the maximal state space of system B
are

Extreme [SB] =
{
1± σX̂ ± σŶ ± σẐ

2

}
. (7.13)

Figure 7.2 represents the structure of these state spaces SC and SB with respect to the real quantum
state space (the Bloch-disc).

Since the cubic state space associated with system B is isomorphic to the gbit state space G2
3 ,

system B does not admit superposition. However, we find that system C admits superposition.
We make this precise in the following lemma.

Lemma 2. If SC and EC are a state and effect space pair of a GPT, the GPT admits superposition.

Proof. Take the collection of states {s1, s2, r1, r2}, where

s1 := 1+
√

2σX̂

2 , s2 := 1−
√

2σX̂

2 ,

r1 :=, 1+ rσX̂ + σŶ + σẐ

2 r2 := 1− rσX̂ − σŶ − σẐ

2 ,

and effects :
f1 := 1− (σẐ − σX̂)/

√
2

2 , f2 := 1+ (σẐ − σX̂)/
√

2
2 ,

3Since 1 is the unit effect, we require the states to be unit trace.
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Figure 7.2: Projections on the X̂ − Ẑ plane. (Top) Representation of the SC (blue) with respect to
the quantum set (yellow). (Bottom) Representation of the SB (blue) with respect to the quantum
set (yellow).

f ′1 := 1− σẐ

2 , f ′2 := 1+ σẐ

2 ,

One then gets ⟨fi, si⟩ = 1,
〈
f ′j , s

′
j

〉
= 1,

〈
fi, s

′
j

〉
∈ (0, 1) and

〈
f ′j , si

〉
= 1/2 for any i, j ∈ {1, 2}.

Finally, 1/2s1 + 1/2s2 = 1/2s′1 + 1/2s′2, resembling quantum theory.

7.5.1 Bipartite Systems

We are interested in the bipartite compositions of these state spaces. Any state in such a joint
system must have the property that when marginalised to system C must be a valid state in the
hexagonal state space and when marginalised to system B must be a valid state of the square
state space. In particular, any unit trace 4 × 4 Hermitian matrix ς is a valid state as long as
Tr[(ΠC ⊗ΠB)ς] is a valid probability, where ΠC and ΠB are any effects from EC and EB respectively.
For our work, it is sufficient to focus on only one bipartite state which is compatible with all product
effects. In particular ΦPR. Note, that ΦPR is not a quantum state since it has negative eigenvalues.
Although this theory generates all non-signalling correlations in the (2, 2, 2) Bell scenario, it is
different from BW since one of the single system state spaces is not characterised by gbits. In the
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next section, we will see that this state can be used to display indefinite causal order.

7.6 INDEFINITE CAUSAL ORDER IN THE HEX-SQUARE THEORY

In this section, we present our main result: an example of a theory that can violate the DRF
inequality by an amount more than that achievable using quantum theory. First, recall that we
require the classical variable Λ can be modelled as a valid state of the theory. For the quantum
case, this was done by taking a classical mixture of the states |0⟩⟨0| and |1⟩⟨1|. The control being in
the state |0⟩⟨0| or |1⟩⟨1| corresponds to Λ being 0 or 1 respectively. First, note from (7.12) that
both |0⟩⟨0| and |1⟩⟨1| are states in SC . Therefore, in our case, we stick to the same convention for
the control. Secondly, since the hexagonal and square state spaces were constructed by requiring
that all quantum operations required to demonstrate a violation of the DRF inequality (7.2) are
allowed effects, we will stick to the quantum strategy here as well, with the exception of using a
subsystem of ΦPR instead of Φ+ for controlling the causal order between the operations OA1 and
OA2 . Since system C admits superposition, it is natural to use it as the new control. With this,
let us evaluate the values of the probabilities appearing in inequality (7.2). First, when y = 0 and
b = 0, the post-selected sub-normalised state of the control is

TrB [(idC ⊗ |0⟩⟨0|B) ΦPR] = 1
2 |0⟩⟨0|C, (7.14)

with 1/2 being the associated probability. Similarly, when y = 0, with a probability 1/2 one gets
b = 1, with the post-selected state on the control being |1⟩⟨1|C. Hence, the first two terms in
inequality (7.2) add up to 1. To calculate the third term, when x1 = x2 = 0, one gets

Tr
[
K (ΦPR ⊗ |0⟩⟨0|)K†

]
x1=x2=0 =

1 +
√

2
2 Tr

[
K (Φ+ ⊗ |0⟩⟨0|)K†

]
x1=x2=0 +

1 −
√

2
2 Tr

[
K (Φ− ⊗ |0⟩⟨0|)K†

]
x1=x2=0 =

Tr [ΠCB ⊗ idT (ΦPR ⊗ |0⟩⟨0|T)] δa1=a2=0;

(7.15)

where ΠCB := |ψc|z⟩⟨ψc|z|C ⊗ |ϕb|y⟩⟨ϕb|y|B . This implies that the operations inside the switch act
as an identity on the control and target input systems when x1 = x2 = 0. Next, Charlie and Bob
can measure ΦPR in their respective bases to generate the conditional probability distribution

p(C,B|X,Z) =


ε+/8 ε−/8 1/2 0
ε−/8 ε+/8 0 1/2
ε+/8 ε−/8 0 1/2
ε−/8 ε+/8 1/2 0

 (7.16)

where ε± = 2 ±
√

2. This distribution has a CHSH score of (6 +
√

2)/8. The three terms of
inequality (7.2) therefore add up to (14 +

√
2)/8 which is bigger than the maximal violation

achievable in quantum theory, i.e., 1 + (1 + 1/
√

2)/2. Under the assumptions taken in [64], this
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violation certifies indefinite causal order in a post-quantum theory. Although the Hex-Square
theory can generate all Box-world correlations we do not see the algebraic maximal violation of
inequality (7.2). This is because one needs to measure the observables (σX̂ ± σŶ )/

√
2 on system C

and {σX̂ , σŶ } on system B. If either σX̂ or σŶ is measured on system B, there are no outcomes,
post-selecting on which a definite causal order is achieved between OA1 and OA2 . Therefore, the
sum of the first two terms in inequality (7.2) cannot be maximised.

7.7 DISCUSSION

We have shown the existence of indefinite causal order in post-quantum GPTs by introducing the
Hex-Square theory. In particular, we have shown that it is possible to device-independently certify
indefinite causal order in the Hex-Square theory. In addition, if one were to take the violation of
the DRF inequality as a measure of indefinite causal order, in analogy to Bell inequalities and
nonlocality, a larger than quantum violation of the DRF inequality in the Hex-Square theory
would then suggest that quantum theory is neither the most nonlocal nor the most causally
indefinite. To single out quantum theory from the other GPTs, one might then want to devise an
information processing task in which an optimal performance is reached when one uses quantum
correlations generated in an indefinite causal order. This might point towards a way towards
possible axiomatisations of quantum theory.

The violation mentioned above is not the algebraic bound of the DRF inequality (7.2). An
interesting avenue is to try to construct a theory that achieves this bound. Another possible
direction is to check whether there are information processing tasks whose performances can only
be enhanced by post-quantum theories in an indefinite causal order.

An interesting outcome of our work is that there exist non-classical theories which do not admit
superposition. In particular, the minimal tensor product composition of gbit state spaces has
been shown not to admit superposition. However, their maximal tensor product composition, i.e.,
box-world does. This is in contradiction to the notion of superposition presented in [5], in which
any non-classical theory admits superposition.
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8

Quantum Correlations can be Certified Nonlocal with
Arbitrarily Large Signalling

8.1 INTRODUCTION

Bell’s theorem [11] concerns two parties, Alice and Bob, who are asked questions, x and y, to which
they need to return answers, a and b respectively. For simplicity, let us assume that x, y, a, b ∈ {0, 1},
and let us denote by X,Y and A,B the respective random variables corresponding to the inputs
(questions) and outputs (answers). Since a represents the output for the input x, the random
variable X is a potential cause for A, and therefore A is in the causal future of X. Similarly, B is
in the causal future of Y . In addition, they are allowed to share classical randomness, denoted by
the (hidden) random variable Λ. It is further assumed that B and Λ are not in the causal future of
X, and A and Λ are not in the causal future of Y . With this causal ordering, one can find multiple
causal structures that are compatible with it (see Section 4.2), some of which are presented in
Figure 8.1.

The first assumption of the theorem is that of freedom of choice, stating that the random
variables X and Y are free, i.e., they are independent of every random variable outside their
respective causal futures. More precisely, the random variable X is independent of B, Y and Λ,
and the random variable Y is independent of A,X and Λ. This assumption can be broken down
into two parts: i) measurement independence (MI): X and Y are independent of Λ, ii) parameter
independence (PI): X (or Y ) is independent of B (or A). The second assumption of Bell’s theorem
is called local determinism, stating that the value of A (or B) can be completely determined by
the variables in its causal past, i.e., X (or Y ) and Λ. This means that A and B are conditionally
independent. With these, one way of phrasing Bell’s theorem is: “there exist quantum correlations
that are incompatible with the joint assumptions of freedom of choice and local determinism”. This
incompatibility can be demonstrated by first finding the facets of the set of conditional probability
distributions p(A,B|X,Y ) generated from the joint assumptions, and then showing the presence
of a quantum correlation that violates one of the facet-defining inequalities. Such inequalities are
called Bell inequalities.

Every conditional probability distribution p(A,B|X,Y ) that satisfies the Bell inequalities has
the property that for every x, y, a, b and λ,

p(a, b|x, y, λ) = p(a|x, λ)p(b|y, λ), (8.1)
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Figure 8.1: (I) Bell causal structure. (II) Relaxation of Parameter Independence. (III) Relaxation
of Measurement Independence.

i.e., conditioned on X,Y and Λ, the random variables A and B are uncorrelated. That quantum
correlations violate Bell inequalities, testify that this statistical independence is not achieved in
quantum theory. Additionally, from the freedom of choice assumption, one can infer that neither A
nor B is the cause of the other. What is then the source of this correlation has been a topic under
the limelight for several decades, dating back to a letter from von Neumann to Schrödinger [85]. A
popular broadway is to adopt Reichenbach’s principle1 [86] and hypothesise that there is a common
cause explanation for the correlations between A and B which can be found in the relaxation of
freedom of choice.

In particular, one has to relax either (or both) MI or (and) PI. Given a model in which freedom
of choice has been relaxed, two principal directions have been investigated. Firstly, how much
measurement or parameter dependence is needed in order to violate Bell inequalities as much
as violated by quantum theory. Secondly, how much of this dependence is needed to capture all
quantum correlations (since there are post-quantum non-signalling distributions as well).

Various works have been presented to investigate how much of these assumptions need to
be relaxed to account for violation of Bell inequalities. The amount of information about the
measurement settings that needs to be transferred to the other party in order to violate Bell
inequalities by Tsirelson’s bound is 0.736 bits [75], developed further in [42]. To mention a few,
all correlations generated by performing projective measurements on a singlet can be reproduced
if Alice’s input setting is correlated with the Λ, regardless of the size of the inputs of the two
parties [10]. An upper bound on the amount of this correlation has also been proposed [47].
Additionally, one bit of classical communication is required to generate all correlations obtained
by projective measurements on a singlet [97]. For two partially entangled qubits there is a 2 bits
communication model [97]; However, it is still unknown whether this is optimal or whether one
single bit would suffice. Relaxed Bell inequalities accounting for relaxations of the aforementioned

1Reichenbach’s Common Cause Principle: If A and B are correlated, i.e., p(A ∩ B) ̸= p(A)p(B), either A or B
is the cause of the other, or there is a common cause conditioned on which they are independent.
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assumptions have also been studied [48] and then in [73]. In a slightly different direction, it has
been found that arbitrarily small amount of measurement dependence is needed to demonstrate
Bell nonlocality [84]. This has been followed up in [83]. Finally, relaxation of free will only for one
party has been considered in [6]. This list captures the interest in relaxing the assumptions in the
quest of understanding quantum Bell nonlocal correlations but is definitely not exhaustive.

The second line of query involving the detection of quantum correlations in the presence of
strong relaxations of the assumptions has been answered in the context of MI [21, 87]. For the rest
of this chapter, we will investigate the presence of quantum correlations in the presence of strong
PI by considering communication of the inputs from one party to another over a binary symmetric
channel. The chapter is designed as follows: in Section 8.2 we present a definition for one and
two way signalling. Then, in Section 8.3 present the set of distributions that can be realised in
the Bell setting, if signalling is allowed over a binary symmetric channel. In Section 8.4, we show
that the set of non-signalling correlations that one way and two way signalling can reproduce are
equal. Finally, in Section 8.5 we present our main result: quantum correlations can be certified
nonlocal in the presence of arbitrarily strong signalling, when only one party is allowed to signal.
In Section 8.6, we conjecture that the same holds when both the parties are allowed to signal.

8.2 RELAXATIONS OF PARAMETER INDEPENDENCE

Given a probability distribution,

p(A,B|X,Y ) =



p(0, 0|0, 0) p(0, 1|0, 0) p(0, 0|0, 1) p(0, 1|0, 1)

p(1, 0|0, 0) p(1, 1|0, 0) p(1, 0|0, 1) p(1, 1|0, 1)

p(0, 0|1, 0) p(0, 1|1, 0) p(0, 0|1, 1) p(0, 1|1, 1)

p(1, 0|1, 0) p(1, 1|1, 0) p(1, 0|1, 1) p(1, 1|1, 1)


,

in the (2, 2, 2) setting, signalling relations can be verified by checking that the element-wise inner
product of p(A,B|X,Y ) with the vectors

NSA→B
0 :=


1 0 0 0
1 0 0 0

−1 0 0 0
−1 0 0 0

 , NSA→B
1 :=


0 0 1 0
0 0 1 0
0 0 −1 0
0 0 −1 0

 ,

NSA←B
0 :=


1 1 −1 −1
0 0 0 0
0 0 0 0
0 0 0 0

 , NSA←B
1 :=


0 0 0 0
0 0 0 0
1 1 −1 −1
0 0 0 0

 ;

(8.2)

is zero. A probability distribution p satisfying ⟨NSi,A→B,p⟩ = 0, is non-signalling from Alice to
Bob with respect to Bob’s first measurement choice when i = 0 and second measurement choice
when i = 1. If satisfying ⟨NSj,A←B,p⟩ = 0, p is non-signalling from Bob to Alice, with respect to
Alice’s first measurement choice when j = 0 and second measurement choice when j = 1. These
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constraints are presented here with respect to the first outcomes. It is sufficient to do so since
together with the normalisation condition, non-signalling with respect to the second outcomes is
implied.

A non-zero inner product of p with at least one of the vectors in (8.2) implies a violation of
parameter independence. Concisely, if p has a non-zero inner product with either NA→B

x or NA←B
y

for x, y ∈ {0, 1}, but not both, either Alice’s input x influences Bob’s output b or Bob’s input y
influences Alice’s output a. We call this one way signalling. On the other hand, if for some x
and y, p has a non-zero inner product with both NA→B

x and NA←B
y , Alice’s input x influences

Bob’s output b and simultaneously, Bob’s input y influences Alice’s output a. We call this two way
signalling. Given a set, S, of conditional probability distributions that allows one way signalling,
it is possible that signalling is allowed only from Alice to Bob (or Bob to Alice). We call this
one sided one way signalling. If, on the other hand, S allows signalling in both directions but not
simultaneously, we call it genuinely one way signalling. We formally define these notions below.

Definition 8.2.1. Let S be a set of conditional probability distributions in the (2, 2, 2) setting
and let NSA→B

0 ,NSA→B
1 ,NSA←B

0 and NSA←B
1 be defined as in (8.2). If for some p ∈ S and some

i, j ∈ {0, 1},
〈
NSA→B

i ,p
〉

̸= 0 or
〈
NSA←B

j ,p
〉

̸= 0, S is
1. one sided one way(1S1W) signalling, if either

〈
NSA→B

i ,p
〉

= 0 for all i ∈ {0, 1} and for all
p ∈ S, or

〈
NSA←B

j ,p
〉

= 0 for all j ∈ {0, 1} and for all p ∈ S,

2. genuinely one way(G1W) signalling, if there does not exist any i, j ∈ {0, 1} and any extremal
p ∈ S such that

〈
NSA→B

i ,p
〉

̸= 0 and
〈
NSA←B

j ,p
〉

̸= 0,

3. two way(2W) signalling, if for some i, j ∈ {0, 1} and some extremal p ∈ S,
〈
NSA→B

i ,p
〉

̸= 0
and

〈
NSA←B

j ,p
〉

̸= 0.

Note that if S is 1S1W signalling it can also be seen as G1W signalling but not every G1W signalling
set is 1S1W signalling. In addition, if a set is G1W it cannot be 2WS and vice-versa.

8.3 SIGNALLING WITH BINARY SYMMETRIC CHANNEL

Any experiment demonstrating a violation of Bell inequalities needs to justify how its physical
implementation respects the assumptions leading to inequalities. One way to justify PI is to not
allow signalling of one party’s inputs to influence the other party’s output. Therefore, one can
justify relaxation of PI by allowing such signalling. In this chapter, we consider a modification of
the Bell setup by introducing two identical binary symmetric channels to be used to signal Alice’s
input choice x to Bob and Bob’s input choice y to Alice respectively. The action of this channel on
a bit z is defined as:

Cp (z)

z with probability p

z with probability 1 − p
, (8.3)

where p ∈ [0, 1] can be seen as the amount of slack in the relaxation of PI. In particular, when
p = 1, PI is completely relaxed, while when p = 1/2, PI is not relaxed at all. The case when p = 0
is symmetric to the case of p = 1 and therefore we will assume that the range of p is [1/2, 1], unless
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specified otherwise. In the next three subsections, we describe each of the three signalling models
as obtained under the binary symmetric channels.

8.3.1 One Sided One Way (1S1W) Signalling

We assume here that the channel from Alice to Bob is active and the channel from Bob to Alice
is inactive. Alice’s output a is then a function of her input x and Bob’s output is a function of
his input y and the noisy message px+ (1 − p)x. We assume that although Bob might know that
the channel is noisy, he has no information whether in a given round the bit was flipped or not.
To characterise the set of all extremal probability distributions that the two parties can generate,
let us first consider the case when p = 1. Since the set of distributions can be described as the
convex hull of the deterministic strategies, it suffices to list the deterministic distributions. Given
any (x, y), Bob has two options for his outcome b. Since x and y can take one of two values, the
total number of choices for outputting b is 2(2×2). In addition, for a given x, Alice has 2 choices
of her output a, making the total number of possible choices 22 . Therefore, the total number of
deterministic strategies that Alice and Bob can realise is 22 × 2(2×2) = 64. The set of 16 local
deterministic non-signalling distributions is a subset of these deterministic strategies.

For a concrete example, consider the strategy where Alice outputs a = x and Bob outputs
b = x ∧ y. When p = 1, they realise the distribution

1 0 0 1
0 0 0 0
0 0 0 0
1 0 1 0

 .

This is a deterministic signalling distribution that can perfectly win one of the CHSH games. Now,
if p = 0, Bob will always receive x and produce an output b′ = x ∧ y. This would generate the
deterministic signalling distribution 

1 0 1 0
0 0 0 0
0 0 0 0
1 0 0 1

 .

which is also signalling and can win one of the CHSH games perfectly. For an arbitrary p, a mixture
of these distributions

p


1 0 0 1
0 0 0 0
0 0 0 0
1 0 1 0

+ (1 − p)


1 0 1 0
0 0 0 0
0 0 0 0
1 0 0 1

 =


1 0 1 − p p

0 0 0 0
0 0 0 0
1 0 p 1 − p


is obtained. The rest 63 noisy strategies can be found by writing out b as a deterministic function
of x and y and then repeating the procedure above. Note, that when Alice and Bob realise the
local deterministic non-signalling distributions, Bob’s outcomes are independent of Alice’s input
choice. Therefore the 16 no signalling distributions are unaffected by the channel.
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We found that these 64 distributions can be classified into 3 classes, up to equivalence of local
relabelling symmetries. An element for each class is given below:

L =


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

 ,S1 :=


1 0 p 1 − p

0 0 0 0
1 0 1 − p p

0 0 0 0

 ,

S2 :=


p 1 − p p 1 − p

0 0 0 0
1 − p p 1 − p p

0 0 0 0

 ;

S1 represents a class of 32 elements and S2 represents a class of 16 elements. One can generate the
members of a class by performing all local relabelling operations on the class candidate provided,
followed by discarding distributions that involve signalling from Bob to Alice. Note, that S1 is
signalling with respect to only one of Bob’s input settings, while S2 is signalling for both of them.
Let us denote this polytope as SA→B

p,(2,2). Note, that when p = 1/2, SA→B
p=1/2,(2,2) = H[0]

(2,2).
We varied p in the interval [4/5, 1] in 10 steps and for each step-size we generated the facets

of the SA→B
p,(2,2). We then interpolated each facet to obtain the corresponding forms and classified

them based on relabelling symmetries. We found that there are 13 inequivalent classes of facets. A
candidate facet from each class is given as ⟨Fi,x⟩ ⩽ 1, with the vectors Fi provided below.

F1 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , F2 =


1 − 1−p

2p−1 0 0
1 − 1−p

2p−1 0 0
0 − p−1

2p−1 0 0
0 − p−1

2p−1 0 0

 ,

F3 =


1 −−3p3+4p2−3p+1

4p3−4p2+3p−1 0 − p3

4p3−4p2+3p−1

−−5p3+5p2−3p+1
4p3−4p2+3p−1 −−4p3+3p2−2p+1

4p3−4p2+3p−1
(p−1)2p

4p3−4p2+3p−1 0
0 − (p−1)3

4p3−4p2+3p−1 0 − p3−p2

4p3−4p2+3p−1

0 − p3−p2

4p3−4p2+3p−1 0 − (p−1)3

4p3−4p2+3p−1

 ,

F4 =


−−3p2+4p−2

2p2−3p+2
(p−1)(5p2−6p+2)
(2p−1)(2p2−3p+2) 0 − (p−1)2p

(2p−1)(2p2−3p+2)

−−3p2+4p−2
2p2−3p+2 − −5p3+9p2−7p+2

(2p−1)(2p2−3p+2) 0 − p3

(2p−1)(2p2−3p+2)

0 − (p−1)p2

(2p−1)(2p2−3p+2) 0 − (p−1)p2

(2p−1)(2p2−3p+2)

0 − (p−1)3

(2p−1)(2p2−3p+2) − p2−p
2p2−3p+2 − (p−1)(3p2−3p+1)

(2p−1)(2p2−3p+2)

 ,

F5 =


1 −−3p3+4p2−3p+1

4p3−4p2+3p−1 0 − (p−1)3

4p3−4p2+3p−1
−−3p2+2p−1

2p2−p+1 −−5p3+5p2−3p+1
4p3−4p2+3p−1 0 − p3−p2

4p3−4p2+3p−1

0 − (p−1)3

4p3−4p2+3p−1 0 − (p−1)2p
4p3−4p2+3p−1

0 − p3−p2

4p3−4p2+3p−1 0 − p3

4p3−4p2+3p−1

 ,
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F6 =


1 −−3p3+4p2−3p+1

4p3−4p2+3p−1 0 − (p−1)3

4p3−4p2+3p−1
−−3p2+2p−1

2p2−p+1 −−5p3+5p2−3p+1
4p3−4p2+3p−1 0 − p3−p2

4p3−4p2+3p−1

0 − (p−1)3

4p3−4p2+3p−1 0 − (p−1)2p
4p3−4p2+3p−1

0 − p3−p2

4p3−4p2+3p−1 0 − p3

4p3−4p2+3p−1

 ,

F7 =


−−4p2+3p−1

3p2−2p+1 − −7p3+10p2−5p+1
(2p−1)(3p2−2p+1) 0 − p2−p

3p2−2p+1

−−4p2+3p−1
3p2−2p+1 − −7p3+8p2−4p+1

(2p−1)(3p2−2p+1) 0 0
0 − (p−1)p2

(2p−1)(3p2−2p+1) 0 0
0 − (p−1)3

(2p−1)(3p2−2p+1) − p2−p
3p2−2p+1 − p(2p−1)

3p2−2p+1

 ,

F8 =


1 − −5p3+7p2−4p+1

(2p−1)(3p2−2p+1) 0 − p2

3p2−2p+1

−−4p2+3p−1
3p2−2p+1

(p−1)p2

(2p−1)(3p2−2p+1) + 1 0 0
0 − (p−1)3

(2p−1)(3p2−2p+1) 0 − (p−1)p
3p2−2p+1

0 − (p−1)p2

(2p−1)(3p2−2p+1) 0 0

 ,

F9 =


1 − 1−p

2p−1 0 0
(p−1)2

p(2p−1) 0 − 2−3p
2p−1 − 2−3p

2p−1

0 − p−1
2p−1 0 0

0 − p−1
2p−1 0 0

 , F10 =


1 (p−1)3

2p3−3p2+3p−1 0 0
1 − −p3+p2−2p+1

2p3−3p2+3p−1 − p2

p2−p+1 0
0 − (p−1)3

2p3−3p2+3p−1 0 0
0 − (p−1)p2

2p3−3p2+3p−1 0 (p−1)p
p2−p+1

 ,

F11 =


1 − 1−2p

3p−1 0 − p
3p−1

2(2p−1)
3p−1

2(2p−1)
3p−1 0 0

0 − p−1
3p−1 0 0

0 0 0 − p−1
3p−1

 , F12 =


1 − 1−2p

3p−1 0 0
1 1 − 1−p

3p−1 0
0 0 0 0
0 − p−1

3p−1 0 − p
3p−1



F13 =


0 0 1 0
0 1 0 0
0 − 1−p

p 0 − p−1
p

0 0 0 0


The number of facets in each class is summarised in Table 8.1. In the limit p → 1/2, these facets
converge to the 24 facets of H[0]

(2,2). On the other hand, when p = 1, one might rightly guess that
all non-signalling distributions can be realised by one way signalling. We formalise this in the
following lemma.

Class 1 2 3 4 5 6 7 8 9 10 11 12 13
# 16 8 32 32 64 64 64 64 16 64 32 64 32

Table 8.1: Number of facets in each class, inequivalent up to relabelling symmetries, for SA→B
p,(2,2)

(interpolated).

Lemma 3. H[8]
(2,2) ⊂ SA→B

p=1,(2,2).
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Proof. It suffices to show that all 8 PR boxes are elements of the set HA→B
p=1,(2,2); First, we note that

1
2


1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 0

 = 1
2


1 0 1 0
0 0 0 0
0 0 0 0
0 1 1 0

+ 1
2


0 0 0 0
0 1 0 1
1 0 0 1
0 0 0 0

 .

The remaining 7 PR boxes also admit similar decompositions. One can find them by applying
appropriate local relabelling operations on both sides of the equality above and using linearity of
relabelling operations to find the respective deterministic signalling distributions.

Since the set of non-signalling quantum correlations is a subset of the set of all non-signalling
correlations, one can generate all quantum correlations when p = 1. It is then natural to investigate
a lower bound on p such that one can still generate all non-signalling quantum correlations. We
will discuss this in Section 8.5. Before that, we briefly present the sets of probability distributions
arising from G1W signalling and 2WS signalling over binary symmetric channels.

8.3.2 Genuinely One Sided (G1S) Signalling

Let us assume here that during the generation of any probability distribution, either the channel
from Alice to Bob is active or the channel from Bob to Alice is active. One can then use these two
scenarios separately. The case where the channel from Alice to Bob is active gives us precisely SA→B

p .
Instead, if only Bob signalled to Alice, the set of distributions, SA←B

p , would just be the party swap
relabelling of the distributions in SA→B

p . Therefore, the two sided one way signalling distributions
can be obtained by first applying the party relabelling map to the extremal distributions of SA→B

p

to obtain the extremal distributions of SA←B
p , followed by taking the convex hull of the union

of these sets SA→B
p and SA←B

p . Just like the one sided version, there are 3 equivalence classes of
extremal distributions, candidates of which are L,S1 and S2. There are 64 elements in the class
represented by S1 and 32 elements in the class represented by S2. Full classes can be calculated
by applying all relabelling operations on respective candidate distributions and then discarding
duplicates. Since distributions that are signalling from Bob to Alice are now allowed, one gets the
inclusion

SA→B
p ⊆ ConvHull

[
SA→B

p ∪ SA←B
p

]
(8.4)

with equality when p = 1/2. Together with Lemma 8.3.1, a further inclusion

H[8]
(2,2) ⊂ ConvHull

[
SA→B

p=1 ∪ SA←B
p=1

]
(8.5)

is implied.

8.3.3 Two Way (2W) Signalling

Finally, we assume here that on every round both the channels are active, i.e., Alice and Bob
are allowed to simultaneously signal to each other. In particular, both Alice and Bob’s outcomes
are now functions of x and y. More precisely, a is a function of x and py + (1 − p)y and b is a
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function of y and px + (1 − p)x. Let us first consider the set of deterministic distributions that
can be generated when p = 1. For each value of x and y, Alice has two possible outcomes for a
and similarly, Bob has two possible choices for b, implying that there are (2 × 2) possible ways of
choosing a pair (a, b) for every (x, y). Since there are 4 choices of pairings (x, y), the total number
of deterministic distributions that can be realised is 4(2×2) = 256. The set of 16 local non-signalling
distributions, S[A→B]

p=1 and ConvHull
[
SA→B

p=1 ∪ SA←B
p=1

]
are all subsets of this set of 256 distributions.

As an example, if a = b = (x⊕ y), the distribution
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


will be generated. The inner products of this distribution with the vectors NS0,A→B, NS1,A→B,
NS0,A←B and NS1,A←B are all non-zero, indicating two way signalling. Now if p = 0, one gets
a = (x⊕ y) and b = (x⊕ y)2, giving the distribution

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 ,

which is also two way signalling. For any arbitrary p ∈ [0, 1], the distribution

p


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

+ (1 − p)


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 =


p 0 1 − p 0
0 1 − p 0 p

1 − p 0 p 0
0 p 0 1 − p


is obtained. This distribution is local when p = 1/2, otherwise two way signalling. The rest of the
255 noisy strategies can be found in a similar way. These 256 distributions can be categorised into
6 inequivalent relabelling classes, representatives of which are:

L =


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

 ,S′1 =


1 0 p 1 − p

0 0 0 0
1 0 1 − p p

0 0 0 0

 ,S′2 =


p 1 − p p 1 − p

0 0 0 0
1 − p p 1 − p p

0 0 0 0

 ,

S′3 =


1 0 p 1 − p

0 0 0 0
p 0 1 − p 0

1 − p 0 0 p

 ,S′4 =


p 1 − p p 1 − p

0 0 0 0
0 p 1 − p 0

1 − p 0 0 p

 ,

S′5 =


p 0 0 1 − p

0 1 − p p 0
0 p 1 − p 0

1 − p 0 0 p

 ;
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There are 64 elements in the second, fourth and fifth classes each, 32 in the third class and 16 in
the sixth class. Note, that S′1 is signalling with respect to only one of the measurement choices
of one party, S′2 is signalling with respect to both of the measurement choices of one party, S′3 is
signalling with respect to one of the input choices of one party and one of the input choices of the
other, S′4 is not signalling with respect to one of the input choices for one of the parties and finally,
S′5 is signalling with respect to both the inputs for both of the parties. Using the interpolation
technique mentioned above, we found that there are 5 inequivalent classes of facets up to relabelling
symmetries. A candidate facet of each class is given by

〈
F′j ,x

〉
⩽ 1, with the vectors F′j listed

below :

F′1 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

F′2 =


P

2P−1
P

2P−1
P−1

2P−1
P−1

2P−1
0 0 0 0
0 0 0 0
0 0 0 0

 ,

F′3 =


1 −−3P 3+2P 2−2P +1

4P 3−4P 2+3P−1 0 (P−1)P 2

4P 3−4P 2+3P−1

−−3P 3+2P 2−2P +1
4P 3−4P 2+3P−1 −−2P 3+2P 2−2P +1

4P 3−4P 2+3P−1 − (P−1)3

4P 3−4P 2+3P−1 0
0 − (P−1)3

4P 3−4P 2+3P−1 0 − −P 3+2P 2−P
4P 3−4P 2+3P−1

0 − (P−1)P 2

4P 3−4P 2+3P−1 − P
2P 2−P +1 − −P 3+2P 2−P

4P 3−4P 2+3P−1

 ,

F′4 =


1 −−P 2−P +1

2P−1 0 0
1 −−P 2−P +1

2P−1 0 0
0 (P−1)2

2P−1 0 0
− P 2

2P−1 0 − P 2−P
2P−1 − P 2−P

2P−1

 ,

F′5 =


1 1 0 0

− 1−2P
3P−1 1 0 − P−1

3P−1
0 − 1−P

3P−1 0 0
0 0 0 − P

3P−1

 ,

where x ∈ R16. The number of facets in each class is summarised in Table 8.2.

Class 1 2 3 4 5
# 16 16 128 16 64

Table 8.2: Number of facets in each class, inequivalent up to relabelling symmetries, for SA↔B
p,(2,2)

(interpolated).
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8.4 NON-SIGNALLING SUBSPACES OF SIGNALLING MODELS

Our main goal is to find the smallest p in the various signalling models such that all non-signalling
quantum correlations can be realised. Since the set of non-signalling quantum correlations, Q,
is a proper subset of all non-signalling correlations, it is worth understanding the set of all non-
signalling distributions that can be generated from a given signalling model. This can be achieved
by projecting the signalling sets of distributions down to the subspace of non-signalling distributions.
In the following, three sections we provide the set of extremal distributions one obtains when each
of the signalling sets is restricted to non-signalling.

8.4.1 Non Signalling Subspace of SA→B
p

In the (2, 2, 2) scenario, there are four non-signalling constraints. All non-signalling distributions lie
on the intersection of the hyperplanes corresponding to these constraints. These four hyperplanes
can be represented as {〈

NSA→B
x ,x

〉
= 0
}

x

and
{〈

NSA←B
y ,x

〉
= 0
}

y

,

where x, y ∈ {0, 1} and NSA→B
x and NSA←B

y is defined in (8.2) and x ∈ R16. In the probability
tables used, there are 16 probabilities, knowing all of them is not necessary. The normalisation
condition implies that within each block (fixed inputs for Alice and Bob), the probabilities sum
up to 1. In the presence of normalisation, this reduces the dimension by 4. Now, if a probability
distribution is non-signalling, then the sum of the first two probabilities in every row and column
is the same as the sum of the last two probabilities. This further reduces the dimension by 4.
Therefore, a signalling probability distribution must have true dimension between 9 and 12. In
particular, the set containing this distribution can be seen as an embedding in Rd where 9 ⩽ d ⩽ 12.
Given such a set, one can look at its projection on the d − 1 hyperplane described by one of
the non-signalling constraints. If d − 1 ̸= 8, one can then further project it down by another
non-signalling constraint, and continue until he dimension reaches 8. However, one might lose
distributions if in the first step one projects down to d−2. With this intuition, we present a sequence
of steps that one can use to get the non-signalling subspace of a set of signalling distributions.

• Step 1: Take the set of extremal distributions, Extreme [S], of a set of signalling distributions
S and a non-signalling constraint vector, NSi, from (8.2).

• Step 2: Take the subset S∗ of Extreme [S] such that for every p ∈ S∗, ⟨NSi,p⟩ ≠ 0.
• Step 3: Collect all pairs (pj ,pk), such that pj/k ∈ S∗.
• Step 4: For every pair (pj , pk), define a line segment lj,k,θ := θpj + (1 − θ)pk with 0 ⩽ θ ⩽ 1

and find θ′ such that when θ = θ′, ⟨NSi, lj,k,θ′⟩ = 0. Define the set of all such intersection
points as NSi [S∗]. Ignore cases when no solution exists.

• Step 5: Calculate the set (
Extreme [P] \ P∗

)⋃
NSi [P∗] .

• Step 6: If this set is signalling, repeat Step 1 through Step 4 starting with this set and a
different non-signalling constraint NSj ̸=i from (8.2).
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We will use this sequence of steps in the following two sub-sections to calculate the non-signalling
sub-polytopes of the three signalling polytopes. We present the extremal distributions for each
case in the beginning of the respective subsections so that the reader can skip the details of the
calculation and move on to the next section.

8.4.2 Non-Signalling Subspace of One Way Signalling Polytope

There are two equivalence classes of extremal states defining the non-signalling sub-polytope of the
state space SA→B

p . One class is the set of local deterministic boxes. A representative of the other
class is:

SA ̸→B := 1
2


1 0 p 1 − p

0 1 1 − p p

1 0 1 − p p

0 1 p 1 − p

 (8.6)

There are 16 elements of this class, the rest 15 of which can be obtained by performing local
relabelling operations on SA̸→B . Notice, that the party-swap relabelling symmetry is not present.
Finally, when p = 1, these states reduce to the 8 PR boxes. Derivation can be found in the
Appendix G.

8.4.3 Non Signalling Subspace of ConvHull
[
SA→B

p ∪ SA←B
p

]
The non-signalling subspace for this case can be found in three steps. First, collect all the
distributions for which the inner products with NSA→B

0 and NSA→B
1 are non-zero and restrict

them. This is precisely the case considered in the last section. Then collect all the distributions
for which the inner products with NSA←B

0 and NSA←B
1 are non-zero. Using the party relabelling

symmetry all the reductions can be performed by taking each distribution obtained in the previous
step and performing a party swap relabelling operation on them. Finally, one can take the union of
the correlations obtained from these two steps along with the 16 local deterministic distributions.
Up to equivalence of relabelling symmetries, there are two classes: class of 16 local deterministic
correlations and class of 32 correlations of the form

SA ̸↔B := 1
2


1 0 1 0
0 1 0 1
p 1 − p 1 − p p

1 − p p p 1 − p

 . (8.7)

8.4.4 Non-Signalling Subspace of SA↔B
p

We performed a step by step reduction, as presented in Subsection 8.4.2 and found that apart from
the class of 16 local deterministic correlations, the only other class of distributions is exactly that of
32 elements of the form SA̸↔B represented in (8.7). This implies that the non-signalling subspaces
of the two sided one way signalling polytope and the genuinely one sided signalling polytopes
are equal. Therefore all non-signalling correlations that can be generated by genuinely two way
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signalling can also be generated by two sided one way signalling. We formalise this statement in
the theorem below.

Theorem 5. The signalling polytopes ConvHull
[
SA→B

p ∪ SA←B
p

]
and SA↔B

p , restricted to non-
signalling, are equal for any p ∈ [1/2, 1].

Proof. Proof for the case of ConvHull
[
SA→B

p ∪ SA←B
p

]
is provided in Appendix G. Using the very

same technique the case for SA↔B
p has also been found.

8.5 DETECTING NONLOCALITY AGAINST STRONG 1S1W SIGNALLING

In this section we will prove that the minimum value of p one needs to generate all quantum
correlations in the 1S1W signalling model is 1, suggesting that PI must be completely relaxed to
describe correlations generated from quantum theory. To see this, let us consider the (2, 2, 2) Bell
setup where Alice and Bob share the bipartite qubit state

|ψθ⟩ := cos θ|00⟩ + sin θ|11⟩, (8.8)

Note that |ψθ⟩ is maximally entangled when θ = zπ/4 where z ∈ Z \ {0}. To check whether the
set of all quantum correlations can be realised, it suffices to check whether the correlations on the
boundary of this set can be realised. Since all distributions on the boundary of this set can be
obtained by performing qubit measurements on (8.8) on the Ẑ − X̂ plane [69] (a consequence of
Jordan’s Lemma [55]), we consider Alice’s measurements Mx and Bob’s measurements Ny to be
the following projections:

|Mx⟩ := cos θx

2 |0⟩ + sin θx

2 |1⟩ and |Ny⟩ := cos ϕy

2 |0⟩ + sin ϕy

2 |1⟩, (8.9)

which gives us the following projection valued measures:{
M0|x := |Mx⟩⟨Mx|,M1|x = I − M0|x

}
and

{
N0|y := |Ny⟩⟨Ny|,N1|y = I − N0|y

}
. (8.10)

Using Born’s rule, the conditional probabilities are given as:

p (a, b|x, y) = Tr
[(

Ma|x ⊗ Nb|y
)
ψθ

]
, (8.11)

where ψθ := |ψθ⟩⟨ψθ|. We now show that for any p ̸= 1, one can generate a non-signalling quantum
correlation that lies outside the set SA→B

p ̸=1 .

Theorem 6. Let Q be the set of non-signalling quantum correlations in the (2, 2, 2) setting. For
p ∈ [1/2, 1), Q ̸⊂ SA→B

p .

Proof. Consider the facet ⟨F13,x⟩ ⩽ 1 of the polytope SA→B
p , where

F13 =


0 0 1 0
0 1 0 0
0 − 1−p

p 0 − p−1
p

0 0 0 0

 .
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Next, fix θ0 = π/2 and θ1 = 0, i.e., Alice measures the observables σX̂ when x = 0 and σẐ when
x = 1. In addition, assume that ϕ1 = π − ϕ0. Let p(θ,ϕ0) be the correlation generated by this
strategy. The inner product between F13 and p(θ,ϕ0) can be calculated to be

〈
F13,p(θ,ϕ0)

〉
= p sin 2θ sinϕ0 + cosϕ0((1 − 2p) cos 2θ − p+ 1) + p

2p . (8.12)

Since θ and ϕ0 are the only free parameters, we need to maximize
〈
F13,p(θ,ϕ0)

〉
with respect to θ

and ϕ0. The partial derivatives of
〈
F13,p(θ,ϕ0)

〉
with respect to θ and ϕ0 are

∂
〈
F13,p(θ,ϕ0)

〉
∂θ

= cos 2θ sinϕ0 + (2p− 1) sin 2θ cosϕ0

p

∂
〈
F13,p(θ,ϕ0)

〉
∂ϕ0

= p sin 2θ cosϕ0 + sinϕ0((2p− 1) cos 2θ + p− 1)
2p

(8.13)

Setting these two equations to 0 gives us the following conditional solutions for θ and ϕ0:

θ ϕ0

c1π, c1 ∈ Z c22π, c2 ∈ Z
c1π, c1 ∈ Z π + c22π, c2 ∈ Z

π+c12π
2 , c1 ∈ Z c22π, c2 ∈ Z

π+c12π
2 , c1 ∈ Z π + c22π, c2 ∈ Z

1
2

(
tan−1

(
g
f

)
+ c12π

)
, c1 ∈ Z tan−1

(
g′

f ′−f ′′+f ′′′

)
+ c22π, c2 ∈ Z

1
2

(
tan−1

(
g
f

)
+ c12π

)
, c1 ∈ Z tan−1

(
−g

−f ′+f ′′−f ′′′

)
+ c22π, c2 ∈ Z

1
2

(
tan−1

(
−g
f

)
+ c12π

)
, c1 ∈ Z tan−1

(
−g′

f ′−f ′′+f ′′′

)
+ c22π, c2 ∈ Z

1
2

(
tan−1

(
−g
f

)
+ c12π

)
, c1 ∈ Z tan−1

(
g′

−f ′+f ′′−f ′′′

)
+ c22π, c2 ∈ Z

Table 8.3: General solutions obtained after setting the identities in (8.13) to zero.

where
f := 1 − 2p

3p− 1 , g :=
√
p
√

5p− 2√
9p2 − 6p+ 1

,

f ′ :=
2√

p

(5p− 2)
√

6p− 2
√

9p2 − 6p+ 1
, f ′′ := 11p3/2

(5p− 2)
√

6p− 2
√

9p2 − 6p+ 1
,

f ′′′ := 15p5/2

(5p− 2)
√

6p− 2
√

9p2 − 6p+ 1
, g′ :=

√
5p− 2√
6p− 2 ;

From the table above, consider the solution at row 5 with c1 = c2 = 0. Substituting back to
Equation (8.12) gives us an inner product

√
p
√

(3p− 1)2
√

2(3p− 1)3/2
+ 1

2 .

When p ∈ [1/2, 1), this expression is strictly positive and bigger than 1. When p = 1, the value of
this expression is 1. Running through the rest of the solutions, one finds that this is indeed the
global maxima.

88



8.6. Detecting Nonlocality against strong 2W signalling

8.6 DETECTING NONLOCALITY AGAINST STRONG 2W SIGNALLING

The quantum strategy presented in the proof of Theorem 8.5 lies outside the polytope SA→B
p<1 .

However, existence of quantum correlations outside the polytopes ConvHull
[
SA→B

p ∪ SA←B
p

]
and

SA↔B
p<1 is unknown. For instance, the correlation mentioned above might lie inside these polytopes.

Now, since the non-signalling subspaces of ConvHull
[
SA→B

p ∪ SA←B
p

]
and SA↔B

p are equal, if a
non-signalling quantum correlation lies outside ConvHull

[
SA→B

p ∪ SA←B
p

]
, it must also lie outside

SA↔B
p<1 . Below, we present a conjecture based on numerical evidence that such correlations do exist.

Conjecture 1. Let Q be the set of quantum correlations in the (2, 2, 2) setting. For p ∈ [1/2, 1),
Q ̸⊂ SA↔B

p .

Numerical Evidence: We considered the facet inequality ⟨F′5,x⟩ ⩽ 1 of the polytope SA↔B
p

and the correlation pθ,{θi},{ϕj} generated by performing the measurements (8.10) on the bipartite
state (8.8), where i, j ∈ {0, 1}. The maximum value of the inner product between the facet vector
F′5 at some p = p′ can be found by the following maximisation problem

max
−π⩽θ⩽π
−π⩽{θi}⩽π
−π⩽{ϕj}⩽π

〈
F′5|p=p′ ,pθ,{θi},{ϕj}

〉
. (8.14)

We used MATHEMATICA to calculate the value of this maximisation at p = 0.
30︷ ︸︸ ︷

99 · · · 9, and found
the inner product, precise up to 40 decimal digits, to be

1.0000000000000000000000000000000137877803125642512104562579,

with the angles

θ = −1.3858577783473489061406801749542294920165919936412114663033,

θ0 = 2.954347992445453529886918970098793343060939121696182892242,

θ1 = 0.9303608045374145576190543308175844733680327004406804650056

ϕ0 = θ1 − π, ϕ1 = θ0

Note that with the θ above, the state is not maximally entangled.
Possible Route To Proof: From the numerical data, one might assume that ϕ0 = θ1 − π

and ϕ1 = θ0. Using this guess, the inner product between the facet vector F5 and the quantum
correlation p(θ,θ0,θ1) is then a function of four variables p, θ, θ0 and θ1. We need to find θ, θ0 and
θ1 as functions of p such that the inner product is maximised. Setting the partial derivative
∂
〈
F′5,pθ,{θi},{ϕj}

〉
/∂θ to 0, one finds

θ = tan−1
[

(p− 1)(cos 2θ0 − cos 2θ1) − 4p sin θ0 sin θ1

4(2p− 1)(cos θ0 + cos θ1)

]
+ cπ, c ∈ Z;

Note that the numerical value of θ presented can be generated by setting c = 0 and substituting
the rest of the angles and p with their respective values stated above. Therefore, it might suffice to
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consider the case where c = 0 and substitute the expression for θ in the inner product function〈
F′5,pθ,{θi},{ϕj}

〉
. The remaining steps are to calculate the partial derivatives of this updated inner

product with respect to θ0 and θ1, set them to zero and obtain appropriate expressions for θ0 and
θ1 in terms of p, such that the updated inner product is maximised.

8.7 OUTLOOK ON RESULTS

We have shown that arbitrarily large signalling is needed to realise all quantum correlations when
the signalling is taking over a binary symmetric channel. The correlations that cannot be realised
unless the channel is noiseless arise from performing qubit measurements on a partially entangled
state. In addition, we have shown that the sets of non-signalling distributions that can be generated
using one way and two way signalling are equal. As a result, non-signalling quantum correlations
that cannot be realised using one way signalling remain non-realisable using two way signalling
as well. Additionally, we have provided a technique to project any set of signalling correlations
to the space of non-signalling distributions. These results have both practical and foundational
implications which we highlight in the following two paragraphs.

The advent of quantum computers brings in the expectation of miniaturising them as well.
If an on-chip quantum computer is to be made, that uses nonlocal correlations for information
processing, one needs to certify that the assumptions behind Bell’s theorem, in particular locality,
are properly addressed. This might turn out not to be straightforward. However, if one manages to
generate the quantum correlations we have presented above, they can certify that any relaxation of
the assumptions which can be modelled as a binary symmetric channel, if exists, is limited. The
family of quantum correlations parameterised by p provides a strict upper bound on the amount
of signalling that might be taking place. This might turn out to be a way to certify signalling
thresholds in a device dependent manner. Another possible direction is to use these correlations to
certify randomness in the presence of signalling. We leave these for future work.

To explain Bell nonlocality through a common-cause mechanism, one might propose that hidden
signalling exists in the universe, though it remains inaccessible to us. Under this assumption, it
is possible to simulate all quantum correlations. However, this idea also requires an additional
assumption: fine-tuning. Specifically, while signalling can account for signalling distributions, it
also allows non-signalling (PR) distributions, which cannot be realised in quantum theory. Our
work adds a new dimension to the ways in which such signalling would need to be fine-tuned. In
particular, if such signalling were taking place behind the scenes, it needs to be perfect, at least if
modelled by binary symmetric channels.
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A

Classification of extremal effects of H[0]
(3,2) and H[1344]

(3,2)


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


1


1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


36

1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


144


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


18

1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


12


0 1 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


36

1 1 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


1

−

Table A.1: Effects of H[1344]
(3,2) up to local relabelling. All effects are separable. Number beside an

effect denotes the number of effects present in the class represented by that given effect.
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Table A.1 Effects, 248 1
3


0 1 0 1 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 −1 0 −1 1 0
0 0 0 1 0 0
0 1 0 0 0 0


576


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 −1 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0


72

1
5


0 2 0 0 0 0
0 0 2 0 −1 0
0 0 0 0 0 0
0 −2 0 1 2 0
0 1 1 0 1 0
0 0 0 1 0 0


2304

1
3


0 1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 0 1
0 −1 0 1 0 0
0 1 0 0 1 0
0 0 0 1 0 0


2304

1
3


0 1 0 0 0 0
0 −1 1 0 0 0
0 1 0 0 0 0
0 0 0 1 1 0
0 0 1 0 0 0
0 0 0 0 0 0


2304

1
3


0 1 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 0
0 −1 0 1 1 0
0 0 1 0 0 0
0 0 0 0 0 0


2304

1
5


0 0 0 2 0 0
0 −1 0 0 0 1
0 0 0 0 0 0
2 0 0 −1 0 1
0 0 0 1 1 0
0 2 0 0 0 1


2304

1
3


0 1 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 −1 0 1
1 0 0 0 1 0
0 0 0 1 0 0


2304

1
3


0 1 0 0 0 0
0 0 0 −1 0 1
0 1 0 0 0 0
0 −1 0 1 1 0
1 0 0 0 0 1
0 0 0 1 0 0


1152

1
5


0 2 0 0 0 0
0 0 2 0 −1 0
0 0 0 0 0 2
2 0 0 1 0 0
0 0 0 0 2 1
0 −1 0 2 0 0


2304

1
5


0 0 0 0 2 0
2 0 0 −2 1 0
0 0 0 0 0 0
0 −1 0 1 0 2
1 2 0 0 1 0
0 0 0 2 0 0


2304

1
3


1 1 0 0 0 0
1 −1 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 1 0 −1


2304

1
3


0 0 0 0 1 1
1 0 1 −1 0 0
0 0 0 0 1 0
0 −1 0 1 0 0
0 1 0 0 0 1
0 0 0 1 0 0


2304

1
3


0 0 0 0 1 1
0 −1 1 0 0 0
0 0 0 0 1 0
1 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0


2304

1
3


0 0 0 1 1 1
1 0 0 0 0 1
0 0 0 0 0 0
0 −1 0 0 1 0
0 1 1 0 0 0
0 0 0 0 0 1


576

− −

Table A.2: Effects of H[0]
(3,2) up to relabelling. Only the first 248 effects are separable. Number

beside an effect denotes the number of effects present in the class represented by that given effect.
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B

Construction of the Effect Polytopes

B.1 CONSTRUCTION OF THE EFFECT POLYTOPE OF H[1]
α(2,2)[PR2]

The extremal effects of the local state space H[0]
(2,2) can be categorised into 8 equivalence classes

based on relabelling symmetries. A representative from each class is given below:

e0 :=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , eClassI :=


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , eClassII :=


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


,

eClassIII :=


1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 , eClassIV :=


1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , eClassV :=


0 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0


,

eCH2 =


0 0 0 0
0 −1 0 1
0 0 1 0
0 1 0 0

 , u =


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 ,

One can generate the rest of the effects from each class by applying all relabelling symmetries
followed by discarding duplicates. There are 16 effects of Class I, 8 of Class II, 32 of Class III, 8 of
Class IV, 16 of Class V and 8 CH type effects. These constitute the 90 extremal effects of the local
state space. Note that effects of Class I have their complimentary pairs in Class V, for instance,
eClassI + eClassV = u. For the rest of the classes, the complementary effects are self-contained in
each class, apart from the zero effect e0 whose complementary effect is the unit effect u. Further,
when the CH type effects are removed from this list, one gets the extremal BW effects introduced
in 2.4.2. In reverse, one can think that when all the PR boxes are added to H[0]

(2,2), many effects of
EH[0]

(2,2)
will give an inner product outside the interval [0, 1] and therefore cannot be deemed as valid

effects of the BW state space H[8]
(2,2). Upon removing those local effects the resultant effect space

can be described by the convex hull of all but the CH type extremal effects of EH[0]
(2,2)

.
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Class I Class II Class III

⟨·,PR2,α⟩ 1−α
4

1+α
4

1−α
2

1+α
2

1−α
2

1+α
2

1
2

Count 8 8 4 4 8 8 16

Class IV Class V Class CH

⟨·,PR2,α⟩ 1
2

3−α
4

3+α
4

1
2

1+2α
2

1−2α
2

Count 8 8 8 6 1 1

Table B.1: Inner products between PR2,α and the extremal effects of H[0]
(2,2) apart from the zero

and the unit effect. When α > 1/2, two CH type effects give inner products outside the interval
[0, 1]. All remaining extremal effects give inner products inside the interval [0, 1].

Here, we take a similar approach to find the extremal effects of the state space H[1]
α(2,2). In

particular, the following sequence of steps are followed:

• Step 1: Consider the hyperplanes ⟨x,PR2,α⟩ = 0 and ⟨x,PR2,α⟩ = 1 and define

Edisc :=
{
e ∈ Extreme

[
EH[0]

(2,2)

]
| ⟨e,PR2,α⟩ /∈ [0, 1]

}
• Step 2: For each e ∈ Edisc, construct a line segment le,w,f := we + (1 − w)f , where f ∈

Extreme
[
EH[0]

(2,2)

]
. For each le,w,f , calculate w′ such that when w = w′ either ⟨le,w′,f ,PR2,α⟩ =

0 or ⟨le,w′,f ,PR2,α⟩ = 1 and store le,w′,f in E0 or E1 respectively.

• Step 3:

1. Select an element from E0/1 and represent it as a convex combination of other elements
from that set.

2. If not possible, construct a hyperplane that separates this element from the rest of the
set, showing that it is extremal.

• Step 4: Take the union of extremal elements of E0, E1 and the effects Extreme
[
EH[0]

(2,2)

]
\Edisc

After running these steps, we found that the extremal effects in the set E1 up to equivalence of
relabelling symmetries are

e1(Type 1) := 1 − α

α
eCH2 +

(
1 − 1 − α

α

)
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 ,

e1′(Type 1′) := 1 − α

α
eCH2 +

(
1 − 1 − α

α

)
0 1 0 0
0 0 0 0
1 0 0 0
0 0 0 0

 ,
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e2(Type 2) := 1 − α

3α− 1eCH2 +
(

1 − 1 − α

3α− 1

)
1 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 ,

e3(Type 3) := 3 − α

3α+ 1eCH2 +
(

1 − 3 − α

3α+ 1

)
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


and e4(Type 4) := 2/(1 + 2α)eCH2 ;

The rest of the extremal effects can be found by applying all relabelling symmetries on each of the
ones presented above and checking that the inner product with PR2,α is 1. The extremal effects in
the set E0, up to equivalence of relabelling symmetries, are the complementary effects of the effects
in E1. We present a working below with more details.

Step 1:
The only extremal effects of EH[0]

(2,2)
that give an inner product outside the interval [0, 1] with PR2,α

are two CH type effects, see Table B.1. In particular,

eCH2 =


0 0 0 0
0 −1 0 1
0 0 1 0
0 1 0 0

 and e′CH2
=


0 0 0 1
0 1 0 0
0 0 0 0
0 −1 1 0

 .

Step 2:
The addition of PR2,α introduces two hyperplanes through the polytope EH[0]

(2,2)
, given by ⟨x.PR2,α⟩ =

0 and ⟨x.PR2,α⟩ = 1. The set EH[1]
α(2,2)

[PR2] can be characterised as:

EH[1]
α(2,2)

=
{
e ∈ EH[0]

(2,2)
| 0 ⩽ ⟨e,PR2,α⟩ ⩽ 1

}
(B.1)

i.e., the set confined in the inner half-spaces of the two hyperplanes above. The extremal effects of
this polytope can be collected in two groups based on whether they are lying on the hyperplanes
or not. When α ∈ (1/2, 1), none of the extremal effects from Table B.1 lie on the hyperplanes
and hence are extremal. To find the extremal effects lying on the hyperplanes, one can draw line
segments between eCH2/e

′
CH2

and effects lying inside the hyperplanes and find all the points of
intersection between the line segments and the hyperplanes. One can then find the convex hull of
the set of intersection points on each hyperplane and find which points are extremal. The union of
the extremal points found in this manner from each hyperplane constitute the remaining extremal
effects of EH[1]

α(2,2)[PR2].
For the hyperplane ⟨x.PR2,α⟩ = 1, we consider line segments of the form w(α)eCH2 +(1−w(α))f

where f is an extremal local effect and calculate the weight w(α) such that the corresponding effect
will lie on the hyperplane. Table B.2 summarises these weights alongside the extremal local effects
such that the corresponding effect will lie on the hyperplane.
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1−α
α

1−α
3α−1

3−α
3α+1

2
1+2α

3+α
1+5α

1+α
3α

1
2α

1+α
5α−1 0

Class I − − 8 − 8 − − − −

Class II 4 − − − − 4 − − −

Class III 8 − − − − 8 16 − −

Class IV − − − − − − 8 − −

Class V − 8 − − − − − 8 −

Class CH − − − − − − 6 − −

zero − − − 1 − − − − −

unit − − − − − − − − 1

Table B.2: Table summaries weights w(α) on eCH2 such that ⟨w(α)eCH2 + (1 − w(α))f,PR2,α⟩ = 1,
where f is an extremal local effect. The numbers denote how many extremal local effects combine
with eCH2 with the corresponding weight to generate an effect on the hyperplane ⟨x.PR2,α⟩ = 1.

Step 3.1:

Not all the effects deduced from this procedure are extremal. We found that all the effects
corresponding to weights (3 +α)/(1 + 5α), (1 +α)/3α, 1/2α and (1 +α)/(5α− 1) can be written as
a convex sum of effects obtained from the first four rows of Table B.2. From each weight and class
combination we pick one effect and show their convex decompositions below. To read the equalities
below, recall that two effects are identical if the list of inner products it gives with the list of all
extremal states in the state space are equal. For each of the effects appearing on the left and right
of the equality, this is the case. To make the representation identical as well, one may apply non
signalling moves on the effects. The following equalities, therefore, are up to non-signalling moves
and should be read as such.

3 + α

1 + 5αeCH2 + 4α− 2
1 + 5αeClassI

ns= 2α
1 + 5α


0 0 0 0
0 α−1

α 0 1−α
α

1 − 1−α
α 0 1−α

α 0
0 1−α

α 0 1 − 1−α
α



+ 3α+ 1
5α+ 1


0 0 1 − 3−α

3α+1 0
0 α−3

3α+1 0 3−α
3α+1

0 0 3−α
3α+1 0

0 3−α
3α+1 0 0


(B.2)

To see that the effects on the right indeed arise from the first four rows, notice that
0 0 0 0
0 α−1

α 0 1−α
α

1 − 1−α
α 0 1−α

α 0
0 1−α

α 0 1 − 1−α
α

 = 1 − α

α
eCH2 +

(
1 − 1 − α

α

)
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 1

 and
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
0 0 1 − 3−α

3α+1 0
0 α−3

3α+1 0 3−α
3α+1

0 0 3−α
3α+1 0

0 3−α
3α+1 0 0

 = 3 − α

3α+ 1eCH2 +
(

1 − 3 − α

3α+ 1

)
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

where the local effect with two 1s and all 0s is from Class III and the one with a single 1 all 0s is
from Class I. For the remaining, we omit this expanding for it can be noticed upon close inspection.

1 + α

α
eCH2 + 2α− 1

3α eClassII
ns= 1

3


0 0 1 − 1−α

α 0
0 α−1

α 0 1
0 0 1−α

α 0
0 1−α

α 0 0

+ 1
3


0 0 0 0
0 α−1

α 0 1−α
α

1 − 1−α
α 0 1−α

α 0
0 1 0 0



+ 1
3


0 0 0 0
0 α−1

α 0 1−α
α

0 0 1 0
0 1−α

α 0 1 − 1−α
α


(B.3)

1 + α

α
eCH2 + 2α− 1

3α eClassIII
ns= 1

3


0 1 − 1−α

α 0 0
0 α−1

α 0 1−α
α

1 − 1−α
α 0 1−α

α 0
0 1−α

α 0 0



+ 1
3


0 0 1 − 1−α

α 0
0 α−1

α 0 1
0 0 1−α

α 0
0 1−α

α 0 0

+ 1
3


0 0 0 0
0 α−1

α 0 1−α
α

0 0 1 0
0 1−α

α 0 1 − 1−α
α


(B.4)

1
2αeCH2 + 2α− 1

2α


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 ns= 1
2


0 1 − 1−α

α 0 0
1 − 1−α

α
α−1

α 0 1−α
α

0 0 1−α
α 0

0 1−α
α 0 0



+ 1
2


0 0 0 0
0 α−1

α 0 1−α
α

0 0 1 0
0 1 0 0


(B.5)
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1
2αeCH2 + 2α− 1

2α eClassIV
ns= 1

2


0 1 − 1−α

α 0 0
0 α−1

α 0 1−α
α

1 − 1−α
α 0 1−α

α 0
0 1−α

α 0 0



+ 1
2


0 0 1 − 1−α

α 0
0 α−1

α 0 1−α
α

0 0 1−α
α 0

0 1−α
α 0 1 − 1−α

α


(B.6)

1
2αeCH2 + 2α− 1

2α eCH1
ns= 1

2


0 0 1 − 1−α

α 0
0 α−1

α 0 1
0 0 1−α

α 0
0 1−α

α 0 0



+ 1
2


0 0 0 0
0 α−1

α 0 1−α
α

1 − 1−α
α 0 1−α

α 0
0 1 0 0


(B.7)

1 + α

5α− 1eCH2 + 4α− 2
5α− 1


1 1 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ns= 3α− 1
5α− 1


0 0 0 0
0 α−1

3α−1 0 1−α
3α−1

1 − 1−α
3α−1 1 − 1−α

3α−1
1−α

3α−1 0
0 1 0 0



+
(

1 − 3α− 1
5α− 1

)
0 0 1 − 1−α

α 0
0 α−1

α 0 1−α
α

0 0 1−α
α 0

0 1−α
α 0 1 − 1−α

α


(B.8)

Similar decompositions are possible for every other element arising from combinations of the last
four non-zero weights and the various classes.

Step 3.2:
The effects arising from the first four rows, we claim, are extremal. First, let us collect them by
rows and call them Type 1 for weight 1−α

α , Type 2 for weight 1−α
3α−1 , Type 3 for weight 3−α

3α+1 and
Type 4 for weight 2

1+2α . Notice that when α = 1, the Type 3 effects correspond to the noisy
couplers and the Type 4 effect corresponds to the pure coupler. Now, to show that these effects are
extremal, first recall that if a point on a polytope is extremal, the shape of the polytope will change
if that point is removed and the new polytope is constructed from the convex hull of the remaining
vertices. In essence, there will be a supporting hyperplane corresponding to a face of this new
polytope that will witness the removed point (hyperplane separation theorem). For our purpose,
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we first collect all the effects from Table B.1 that satisfy 0 ⩽ ⟨ẽ,PR2,α⟩ ⩽ 1 and all the effects
generated from Table B.2 and their complimentary effects lying on the hyperplane ⟨x,PR2,α⟩ = 0.
From this collection, we remove one effect from Type 1 and then perform a facet enumeration on
the reduced set. This gives us a list of inequalities corresponding to the face defining supporting
hyperplanes of the reduced polytope. We then filter out the hyperplane that witnesses the removed
effect. For instance, consider

e1 = 1 − α

α
eCH2 +

(
1 − 1 − α

α

)
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 and

W1 := − 1
2α− 6


(α− 1) −(α− 3) (α+ 1) −(α− 1)

−(α− 3) 3(α− 1) −(α− 1) 5α− 3
(α+ 1) −(α− 1) −(α− 3) (α− 1)
(α− 1) (α+ 1) −3(α− 1) 3α− 1

 ;

one can verify that every effect, f1, in the reduced polytope obtained after removing e1, satisfies
⟨f1.W1⟩ ⩽ 1. However,

⟨e1.W1⟩ = 3α(α− 2) + 1
α(α− 3)

which is 1 when α = 1/2 or 1 but greater than one in the open interval (1/2, 1). Since e1 converges
to eCH2 as α → 1/2 and converges to the deterministic effect as α → 1, W1 witnesses e1. For a
Type 2 effect, consider

e2 = 1 − α

3α− 1eCH2 +
(

1 − 1 − α

3α− 1

)
1 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 and

W2 := 1
22 − 10α


7 − 7α 7 − α 3α+ 3 8 − 8α
8 − 2α 4 − 4α 3 − 3α 8 − 2α
9 − 3α 5 − 5α 7 − α 5 − 5α
5 − 5α α+ 5 7 − 7α 3α+ 3


with which, one gets ⟨f2,W2⟩ ⩽ 1 for any effect f2 in the reduced polytope obtained after removing
e2 but

⟨e2.W2⟩ = 21α2 − 47α+ 14
15α2 − 38α+ 11

which is 1 when α = 1/2 or 1 but bigger than one in the open interval (1/2, 1). For a Type 3 effect,
consider

e3 = 3 − α

3α+ 1eCH2 +
(

1 − 3 − α

3α+ 1

)
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 and
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W3 := 1
4


−2 4 α+ 1 1 − α

2α− 2 −2 −2 2α− 2
2α− 2 −2 α+ 1 1 − α

−2 α+ 1 1 − α α+ 1


with which one has ⟨f3.W1⟩ ⩽ 1 for any effect f3 in the reduced polytope obtained after removing
e3 but

⟨e3.W3⟩ = (13 − 2α)α− 1
6α+ 2

which is 1 when α = 1/2 but bigger than 1 otherwise. Finally, for Type 4, consider e4 =
2/(1 + 2α)eCH2 and

W4 :=


−α− 3 α− 3 α− 3 −α− 3
α− 3 −α− 7 −α− 3 α− 3
α− 3 −α− 11 α− 3 −α− 3

−α− 3 α− 3 −α− 3 α− 3

 ;

one then has ⟨f4.W4⟩ ⩾ 0 for any effect f4 from the reduced polytope obtained after removing e4

but
⟨e4.W4⟩ = 4 − 8

2α+ 1
which is 0 when α = 1/2 but negative otherwise. We suppress the details of the rest of the witnesses
for the remaining effects from these 4 types. For the hyperplane ⟨x,PR2,α⟩ = 0 the extremal effects
are exactly the complementary effects obtained above.

Step 4:
Taking the union we find that this effect polytope is the convex hull of 146 extremal effects. These
include 82 BW effects, 6 CH type effects, 29 effects lying on the hyperplane ⟨x,PR2,α⟩ = 0 and
⟨x,PR2,α⟩ = 1 each.

B.2 CONSTRUCTION OF THE EFFECT POLYTOPE OF H[2]
α(2,2)[PR2,2′ ]

Next, take the state space H[2]
α(2,2)[PR2,2′ ] the state space characterised by the convex hull of

H[1]
α(2,2)[PR2] and the noisy PR box PR′2,α. The addition of PR′2,α to H[1]

α(2,2)[PR2] introduces two
hyperplanes through its effect polytope, given by

〈
x,PR′2,α

〉
= 1 and

〈
x,PR′2,α

〉
= 0. One can

perform a similar analysis as shown in the previous section to check which of the extremal effects of
the full effect polytope of H[1]

α(2,2)[PR2] are still valid effects by ensuring that their inner products
with PR′2,α is in the interval [0, 1]. We found that the set of Type 1 and Type 1′ effects from the
previous section are extremal and lie on the hyperplane

〈
x,PR′2,α

〉
= 0. The only other class of

extremal effect lying on this hyperplane is of the Type 2 form, a candidate of which is
2−4α
3α−1

2−4α
3α−1 0 0

0 −1 0 1−α
3α−1

0 0 1 2−4α
1−3α

0 1−α
3α−1

2−4α
1−3α

2−4α
1−3α

 = 1 − α

3α− 1eCH2 + 4α− 2
3α− 1

u−


1 1 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 ;
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More precisely, from Table B.3, we can ensure that the Type 1, Type 1′ and Type 2 effects of
H[1]

α(2,2)[PR2] are still valid effects but the effects in Type 3 and Type 4 are not. The extremal effects
of H[1]

α(2,2)[PR2] that are not lying on the hyperplanes ⟨x,PR2,α⟩ = 1 and ⟨x,PR2,α⟩ = 0 are still
valid. To calculate the new effects generated on the hyperplanes

〈
x,PR′2,α

〉
= 1 and

〈
x,PR′2,α

〉
= 0,

we can follow the algorithm described in the previous section. Note from Table B.3, that the Type
1 effects of H[1]

α(2,2)[PR2] lie on the second hyperplane. Upon calculating all the effects lying on this
hyperplane and filtering out the extremal effects as described in the previous section, we found that
these Type 1 effects are still extremal. The remaining extremal effects are of the Type 2 form. In
particular, they can be written as (1 − α)/(3α− 1)eCH2 + (4α− 2)/(3α− 1)(u− fV ) where fV is a
Class V effect with ⟨fV ,PR2′⟩ = 1. Since there are 8 Class V effects that have an inner product of
1 with PR2′ , there are 8 corresponding extremal effects of this form. The extremal effects on the
hyperplane

〈
x,PR′2,α

〉
= 1 can be calculated as the complements of the extremal effects on the

hyperplane
〈
x,PR′2,α

〉
= 0.

Type 1/1′ Type 2 Type 3 Type 4

k(α) 0 1−2α
1−3α

1−2α
3α+1

1−2α
1+2α

k(1/2) 0 0 0 0

k(1) 0 1/2 −1/4 −1/3

Table B.3: Inner product between extremal vectors ẽ from the four types and PR′2,α. Here
k(α) =

〈
ẽ,PR′2,α

〉
. Notice that Type 3 and Type 4 effects of H[1]

α(2,2)[PR2] are no longer valid effects
of H[1]

α(2,2)[PR22′ ] because of the negative inner product.

B.3 CONSTRUCTION OF THE EFFECT POLYTOPE OF H[2]
α(2,2)[PR1,2]

Type 1 ∪ Type 1′ Type 2 Type 3 Type 4

{k(α)}
{

1 − α, α, 1
2
} {

α2−3α+1
1−3α , α2+2α−1

3α−1

} {
−α2+α+1

3α+1 , α2+1
3α+1

}
1

2α+1

{k(1/2)} 1/2 1/2 1/2 1/2

{k(1)} {0, 1, 1/2} {1, 1/2} 1/4 1/3

Table B.4: Inner product between extremal vectors ẽ from the four types and PR1,α. Here
k(α) = ⟨ẽ,PR1,α⟩ and the set {k(α)} runs over all effects from a given type. Since all the inner
products are between 0 and 1 in the range 1/2 ⩽ α ⩽ 1, all extremal effects of H[1]

α(2,2)[PR2] are
also effects of H[1]

α(2,2)[PR12].

Next, let us consider the second state space H[2]
α(2,2)[PR12] where the two noisy PR boxes are

not isotropically opposite to each other. Following the previous analysis, we construct Table B.4
to check the inner product between the extremal effects of H[1]

α(2,2)[PR2] lying on the hyperplane
⟨x,PR2,α⟩ = 1 and PR1,α. From this table, it is clear that all the extremal effects of H[1]

α(2,2)[PR2]
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B.3. Construction of the Effect Polytope of H[2]
α(2,2)[PR1,2]

have an inner product between 0 and 1 in the range 1/2 ⩽ α ⩽ 1 and therefore are valid effects of
H[2]

α(2,2)[PR12] and in fact extremal and similarly the complementary effects. However, the effects of
the local polytope eCH1 and eCH1′ are no longer valid. One can use the algorithm from Section B.1
to find that effects of the form Type 1,2,3 and 4 are new extremal effects on the hyperplane〈
x,PR′2,α

〉
= 1 and their complimentary effects on the hyperplane

〈
x,PR′2,α

〉
= 0. The effect

polytope of H[2]
α(2,2)[PR12] can be calculated by separately constructing the effect polytopes of

H[1]
α(2,2)[PR1] and H[1]

α(2,2)[PR2], taking their union and then discarding the extremal effects whose
inner products with either PR1 or PR2 is outside the interval [0, 1]. In particular, these effects are
eCH1 , e

′
CH1

, eCH2 and e′CH2
.
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C

Pure Couplers of H[1]
(3,2)[N1]

Class representatives of pure couplers. Subscripts denote the number of elements from each class.



0 0 0 0 0 0
0 1

3 0 1
3 − 2

3 − 1
3

0 0 0 0 0 0
0 1

3 0 − 1
3 − 1

3 0
0 − 2

3 0 0 1 2
3

0 − 1
3 0 0 1 1

3


8

,



0 0 0 0 0 0
0 2

3 0 2
3 − 2

3 − 2
3

0 0 0 0 0 0
0 2

3 0 − 2
3 0 0

0 − 2
3 0 0 2

3
2
3

0 − 2
3 0 0 2

3
2
3


1

,



0 0 0 0 0 0
0 1

3 0 1
3 − 2

3 − 1
3

0 0 0 0 0 0
0 1

3 0 − 1
3

1
3 0

0 − 1
3 0 1

3
2
3

1
3

0 − 1
3 0 0 2

3
1
3


8



0 0 0 0 0 0
0 1

3 0 1
3 − 1

3 − 1
3

0 0 0 0 0 0
0 1

3 0 − 1
3

1
3 0

0 − 2
3 0 1

3
2
3

2
3

0 − 1
3 0 0 2

3
1
3


8

,



0 0 0 0 0 0
0 1

3 0 1
3 − 1

3 − 1
3

0 0 0 0 0 0
0 1

3 0 − 1
3

1
3 0

0 0 0 − 1
3

1
3

2
3

0 − 1
3 0 0 2

3
1
3


24

,



0 0 0 0 0 0
0 2

3 0 2
3 − 2

3 − 2
3

0 0 0 0 0 0
0 2

3 0 − 2
3

1
3 0

0 − 2
3 0 0 2

3
2
3

0 − 2
3 0 0 2

3
2
3


8



0 0 0 0 0 0
0 2

3 0 2
3 − 2

3 − 2
3

0 0 0 0 0 0
0 2

3 0 − 2
3 0 0

0 − 2
3 0 0 1 2

3
0 − 2

3 0 0 2
3

2
3


3

,



0 0 0 0 0 0
0 2

3 0 2
3 − 2

3 − 2
3

0 0 0 0 0 0
0 2

3 0 − 2
3 0 0

0 − 1
3 0 0 2

3
2
3

0 − 2
3 0 0 1 2

3


8

,



0 0 0 0 0 0
0 2

3 0 2
3 − 2

3 − 2
3

0 0 0 0 0 0
0 2

3 0 − 2
3 0 0

0 − 2
3 0 0 1 2

3
0 − 2

3 0 0 1 2
3


2



0 0 0 0 0 0
0 2

3 0 2
3 − 2

3 − 2
3

0 0 0 0 0 0
0 2

3 0 − 2
3 0 0

0 − 2
3 0 0 1 1

0 − 2
3 0 0 1 2

3


1

,



0 0 0 0 0 0
0 2

3 0 2
3 − 5

6 − 2
3

0 0 0 0 0 0
0 2

3 0 − 2
3 − 1

6 0
0 − 5

6 0 0 1 5
6

0 − 2
3 0 0 1 2

3


8

,



0 0 0 0 0 0
0 2

3 0 2
3 − 5

6 − 2
3

0 0 0 0 0 0
0 2

3 0 − 2
3 0 0

0 − 5
6 0 − 1

6 1 1
0 − 2

3 0 0 1 2
3


8
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

0 0 0 0 0 0
0 2

3 0 2
3 − 1

2 − 2
3

0 0 0 0 0 0
0 2

3 0 − 2
3 − 1

6 0
0 − 2

3 0 − 1
6 1 5

6
0 − 2

3 0 0 5
6

2
3


8

,



0 0 0 0 0 0
0 2

3 0 2
3 − 1

2 − 2
3

0 0 0 0 0 0
0 2

3 0 − 2
3 0 0

0 − 5
6 0 − 1

6 1 1
0 − 2

3 0 0 5
6

2
3


8

,



0 0 0 0 0 0
0 2

3 0 2
3 − 2

3 − 2
3

0 0 0 0 0 0
0 2

3 0 − 2
3 0 0

0 − 2
3 0 0 2

3 1
0 − 2

3 0 0 1 2
3


1
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D

Equivalence Classes of m PR boxes

2-Roofs
Class Description Example PS Count

Class 1 Isotropically opposite pairs {PR1,PR′1} Yes 4

Class 2 1 party symmetric, 1 party
asymmetric {PR1,PR3} No 16

Class 3
Party symmetric or asymmetric

that are not isotropically
opposite

{PR1,PR2} Yes 8

Table D.1: Two Roofs

3-Roofs
Class Description Example PS Count

Class 1

Two PR boxes isotropically
opposite to each other. If they

are party symmetric, the third is
not and vice versa

{PR1,PR′1,PR3} No 16

Class 2

Two PR boxes that are not
isotropically opposite. If these
two are party symmetric the

third is party asymmetric and
vice versa.

{PR3,PR′4,PR1} Yes 32

Class 3 Either all party symmetric or
party asymmetric. {PR1,PR′1,PR2} Yes 8

Table D.2: Three Roofs
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4-Roofs
Class Description Example PS Count

Class 1
Two isotropically opposite pairs.

1 pair party symmetric and 1
pair party asymmetric

{PR1,PR′1,PR3,PR′3} No 4

Class 2

Three party asymmetric with
one party symmetric/three party

symmetric with one party
asymmetric

{PR3,PR4,PR′4,PR1} No 32

Class 3

1 pair of party symmetric PR
boxes and 1 pair of party

asymmetric PR boxes. 1 pair
isotropically opposite and 1 pair

isotropically not opposite.

{PR1,PR′1,PR3,PR′4} Yes 16

Class 4

1 pair of party symmetric and 1
pair of party asymmetric. Pairs

differ by the same diagonal
block.

{PR1,PR′2,PR3,PR′4} Yes 16

Class 5

1 pair of party symmetric and 1
pair of party asymmetric. Pairs

differ in different diagonal
blocks.

{PR1,PR2,PR3,PR′4} Yes 8

Class 6 All party symmetric/asymmetric {PR1,PR′1,PR2,PR′2} Yes 2

Table D.3: Four Roofs

5-Roofs
Class Description Example PS Count

Class 1

1 isotropically opposite pair
party symmetric/asymmetric

pair with three party
asymmetric/symmetric

{PR1,PR′1,PR3PR′3,PR4} No 16

Class 2

1 isotropically non-opposite pair
party symmetric/asymmetric

pair with three party
asymmetric/symmetric

{PR1,PR2,PR′2,PR3,PR′4} Yes 32

Class 3
All party symmetric/asymmetric

and one party
asymmetric/symmetric.

{PR1,PR3,PR′3,PR4,PR′4} Yes 8

Table D.4: Five Roofs
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Appendix D. Equivalence Classes of m PR boxes

6-Roofs
Class Description Example PS Count

Class 1
Three party symmetric PR

boxes with three party
asymmetric PR boxes

{PR1,PR′1,PR2,PR3PR′3,PR4} No 16

Class 2

1 isotropically opposite party
symmetric/asymmetric pair with

four party
asymmetric/symmetric

{PR1,PR′1,PR3,PR′3,PR4,PR′4} Yes 4

Class 3

4 party asymmetric/symmetric
PR boxes with two party

symmetric/asymmetric PR
boxes that are not isotropically

opposite. or vice versa.

{PR1,PR2,PR3,PR′3,PR4,PR′4} Yes 8

Table D.5: Six Roofs

7-Roofs
Class Description Example PS Count

Class 1 All but one PR box {PR1,PR2,PR′2,PR3,PR′3,PR4,PR′4} Yes 8

Table D.6: Seven Roofs
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E

Proof of Theorem 1

Let Extreme[EH[m]
α(2,2)

] be the set of extremal effects of the effect polytope EH[m]
α(2,2)

and n denote
the cardinality of Extreme[EH[m]

α(2,2)
]. Let us denote by O and 1 the vectors (0 0 · · · 0)1×n and

(1 1 · · · 1)1×n respectively. Since the effects space is convex, any effect e can be expressed as

e =
n∑

j=1
xjej (E.1)

where ej is an extremal effect and xj ∈ [0, 1] such that
∑n

j xj = 1. For e to be minimally 2-
preserving, we require that for any extremal effect ej and a pair of PR boxes PRk,α and PRl,α the
inner product between ej and the sub-normalised state

Φe (k, l) := id(1,4) ⊗ e(2,3)
(

PR(1,2)
k,α ,PR(3,4)

l,α

)
is non-negative. Since for every extremal effect ej , the effect u− ej is also an extremal effect, this
condition also implies that the above inner product cannot be more than 1. In other words, for
an arbitrary pair of noisy PR boxes indexed by (k, l), one requires that if x ∈ Rn

⩾0 represents the
convex support of the effect e, then every entry of the vector,

Mk,l.xT :=


⟨e1,Φe1 (k, l)⟩ ⟨e1,Φe2 (k, l)⟩ · · · ⟨e1,Φen (k, l)⟩
⟨e2,Φe1 (k, l)⟩ ⟨e2,Φe2 (k, l)⟩ · · · ⟨e2,Φen (k, l)⟩

...
... . . . ...

⟨en,Φe1 (k, l)⟩ ⟨en,Φe2 (k, l)⟩ · · · ⟨en,Φen
(k, l)⟩


n×n

.


x1

x2
...

xn


n×1

, (E.2)

must be non-negative. This can be viewed as the constraint:

−Mk,l.xT ⩽ OT (E.3)

Additionally, since the vector x represents the convex weights, one also needs the following convexity
conditions to hold:

1.xT ⩽ 1 and − 1.xT ⩽ −1. (E.4)
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Appendix E. Proof of Theorem 1

With this one can define a constraint matrix C and a bound vector b as:

C :=



1

−1
−M1,1

−M1,2
...

−Mm,m−1

−Mm,m


(m2n+2)×n

and b :=



1
−1
OT

...
OT


(m2n+2)×1

(E.5)

respectively. The effect e, if minimally 2- preserving, will satisfy C.xT ⩽ b. Next, since we are
interested in finding minimally 2-preserving couplers, we would also like e to satisfy

CHSHi

[
Φ̃(2,3)

e (PRk,α,PRl,α)
]
>

3
4 (E.6)

where CHSHi is a CHSH game that can be won by an amount more than 3/4 by correlations obtained
upon performing the fiducial measurements on the allowed noisy PR boxes and Φ̃(2,3)

e (PRk,α,PRl,α)
is the normalised state Φ(2,3)

e (PRk,α,PRl,α). This is equivalent to requiring

CHSHi

[
Φ(2,3)

e (PRk,α,PRl,α)
]
>

3
4

〈
u,Φ(2,3)

e (PRk,α,PRl,α)
〉

=⇒ CHSHi

[
Φ(2,3)

e (PRk,α,PRl,α)
]

− 3
4

〈
u,Φ(2,3)

e (PRk,α,PRl,α)
〉
> 0

=⇒
〈

CHSHi − 3
4u,Φ

(2,3)
e (PRk,α,PRl,α)

〉
> 0

=⇒

〈
CHSHi − 3

4u, id ⊗
∑

j

xjej ⊗ id(PRk,α,PRl,α)
〉
> 0

=⇒
(〈

CHSHi − 3
4u,Φ

(2,3)
e1

(k, l)
〉
, · · · ,

〈
CHSHi − 3

4u,Φ
(2,3)
en

(k, l)
〉)

.xT =: fk,l|i.xT > 0

(E.7)

We do not know whether there exists any effect at all such that for the choice of k, l and i,
fk,l|i.xT > 0. Therefore, one can alternatively look for a vector x which maximises the value
fk,l|i.xT . This can be done with the help of a Linear Program (LP) defined below:

Pk,l|i :=

maximise:
x∈Rn

fk,l|i.xT

subject to: C.xT ⩽ b

x ⩾ 0

(E.8)

The dual program is defined as:

Dk,l|i :=

minimise:
y∈R|b|

bT .y

subject to: CT .y ⩾ fk,l|i

y ⩾ 0

. (E.9)

To prove that a minimally 2-preserving coupler exists, one needs to show that for at least one
choice of k′, l′ and i′,

Pk′,l′|i′ = Dk′,l′|i′ > 0. (E.10)
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E.1. 2 Roofs

Recall, that when α ⩽ 1/
√

2, no extremal effects of party symmetric house state spaces are
couplers. It therefore suffices to evaluate these LP pairs in the range 1/

√
2 < α ⩽ 1. To analytically

solve these primal and dual problems we have first solved them discretely and then interpolated the
results. For each case, we considered the discretised effect polytope EH[m]

β(2,2)
where β is discretely

varied between 1/2 and 1 with a step-size 1/30. For every step-size we have then solved the primal
and dual problem pairs and interpolated the corresponding primal and dual optimising vectors to
find their analytic forms. We have then checked that these pair of vectors provide correct solutions
to the analytic versions of the primal and dual problems and in addition, satisfy the analytic version
of the constraints.

E.1 2 ROOFS

There are 3 equivalent local relabelling classes of state spaces with 2 PR boxes. Out of these, party
symmetric state spaces exist only in Class 1 and Class 3. However, since the PR boxes in Class 1
are isotropically opposite pairs, there are no couplers for this state space (see Section 6.2.2) and one
therefore only needs to check for couplers for a state space in Class 2. In Table E.1, we focus on
CHSH1 scores. The set of PR box pairs such that there exists an extremal effect in EH[2]

α(2,2)[PR2,3]

for which a score of more than 3/4 can be achieved in the CHSH1 game are:

{(PR1,α,PR1,α), (PR1,α,PR2,α), (PR2,α,PR1,α)}.

In the table below and all following tables, we will only consider pairs of noisy PR boxes for which
such violations are possible using extremal effects. In addition we directly provide the effects as a
convex combination of extremal effects and the vectors CT .y. From this data one can figure the
optimising vectors x and y. For instance, the effect in the first row of Table E.1 is θeCH1,α +(1−θ)u.
The underlying vectors x has all zero entries, with the exception of θ at the index position of
CH1,α in (E.1), and (1 − θ) at the index position of u in (E.1). The corresponding entry of CT .y is
1+2α

4
[
eCH1,α

]
−M2,2

. Therefore underlying vector y has all zeros, with the exception of 1+2α
4 at the

index corresponding to the column of CT , where the inner products of the sub-normalised states
are taken with eCH1,α , in the block −M2,2. This presentation style has been chosen to compress
the data.

θ := 3α(α+ 1)
4α(α+ 1) − 2and θ′ = 2

2α2 + 1

Pairs Effects CT .y

(PR1,α,PR1,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2

(PR1,α,PR2,α) θeCH2,α
+ (1 − θ)u 1+2α

4
[
eCH2,α

]
−M1,1

(PR2,α,PR1,α) θeCH2,α + (1 − θ)u 1+2α
4
[
eCH2,α

]
−M1,1

Table E.1: CHSH1 (2 Roofs Class 3)
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Appendix E. Proof of Theorem 1

E.2 3 ROOFS

E.2.1 Class 2

Pairs Effects CT .y

(PR1,α,PR1,α) θeCH1,α
+ (1 − θ)u 1

2
[
e′CH2

]
−M3,4′

(PR1,α,PR3,α) θe′CH4,α
+ (1 − θ)u 1

2
[
e′CH2

]
−M1,4′(

PR1,α,PR′4,α

)
θeCH3,α

+ (1 − θ)u 1
2 [eCH2 ]−M1,3

(PR3,α,PR1,α) θe′CH4,α
+ (1 − θ)u 1

2
[
e′CH2

]
−M1,4′

(PR3,α,PR3,α) θeCH1,α + (1 − θ)u 1
2
[
e′CH2

]
−M3,4′(

PR3,α,PR′4,α

)
θ′e′CH2

+ (1 − θ′)u 1
2
[
e′CH2

]
−M1,1(

PR′4,α,PR1,α

)
θeCH3,α

+ (1 − θ)u 1
2 [eCH2 ]−M1,3(

PR′4,α,PR3,α

)
θ′eCH2 + (1 − θ′)u 1

2 [eCH2 ]−M1,1(
PR′4,α,PR′4,α

)
θeCH1,α

+ (1 − θ)u 1
2
[
e′CH2

]
−M3,4′

Table E.2: CHSH1 (3 Roofs Class 2)

Pairs Effects CT .y

(PR1,α,PR1,α) θe′CH4,α
+ (1 − θ)u 1+2α

4
[
e′CH2

]
−M1,4′

(PR1,α,PR3,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
e′CH2

]
−M3,4′(

PR1,α,PR′4,α

)
θ′e′CH2

+ (1 − θ′)u 1+2α
4
[
e′CH2

]
−M1,1

(PR3,α,PR1,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
e′CH2

]
−M3,4′

(PR3,α,PR3,α) θe′CH4,α
+ (1 − θ)u 1+2α

4
[
e′CH2

]
−M1,4′(

PR3,α,PR′4,α

)
θeCH3,α

+ (1 − θ)u 1+2α
4 [eCH2 ]−M1,3(

PR′4,α,PR1,α

)
θ′eCH2 + (1 − θ′)u 1+2α

4 [eCH2 ]−M1,1(
PR′4,α,PR3,α

)
θeCH3,α + (1 − θ)u 1+2α

4 [eCH2 ]−M1,3

Table E.3: CHSH3 (3 Roofs Class 2)
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E.2. 3 Roofs

Pairs Effects CT .y

(PR1,α,PR1,α) θeCH3,α
+ (1 − θ)u 1+2α

4 [eCH2 ]−M1,3

(PR1,α,PR3,α) θ′eCH2 + (1 − θ′)u 1+2α
4 [eCH2 ]−M1,1(

PR1,α,PR′4,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
e′CH2

]
−M3,4′

(PR3,α,PR1,α) θ′e′CH2
+ (1 − θ′)u 1+2α

4
[
e′CH2

]
−M1,1(

PR3,α,PR′4,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4
[
e′CH2

]
−M1,4′(

PR′4,α,PR1,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
e′CH2

]
−M3,4′(

PR′4,α,PR3,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4
[
e′CH2

]
−M1,4′(

PR′4,α,PR′4,α

)
θeCH3,α + (1 − θ)u 1+2α

4 [eCH2 ]−M1,3

Table E.4: CHSH′4 (3 Roofs Class 2)

E.2.2 Class 3

Pairs Effects CT .y

(PR1,α,PR2,α) θeCH2,α + (1 − θ)u 1+2α
4
[
eCH2,α

]
−M1,1

(PR2,α,PR1,α) θeCH2,α
+ (1 − θ)u 1+2α

4
[
eCH2,α

]
−M1,1

Table E.5: CHSH1 (3 Roofs Class 3)

Pairs Effects CT .y(
PR′1,α,PR2,α

)
θeCH2,α

+ (1 − θ)u 1+2α
4
[
eCH2,α

]
−M1,1(

PR2,α,PR′1,α

)
θeCH2,α + (1 − θ)u 1+2α

4
[
eCH2,α

]
−M1,1

Table E.6: CHSH′1 (3 Roofs Class 3)

Pairs Effects CT .y(
PR1,α,PR′1,α

)
θeCH2,α

+ (1 − θ)u 1+2α
4
[
eCH2,α

]
−M1,1(

PR′1,α,PR1,α

)
θeCH2,α

+ (1 − θ)u 1+2α
4
[
eCH2,α

]
−M1,1

(PR2,α,PR2,α) θeCH2,α + (1 − θ)u 1+2α
4
[
eCH2,α

]
−M1,1

Table E.7: CHSH2 (3 Roofs Class 3)
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Appendix E. Proof of Theorem 1

E.3 4 ROOFS

E.3.1 Class 3

Pairs Effects CT .y

(PR1,α,PR3,α) θe′CH4,α
+ (1 − θ)u 1+2α

4
[
eCH3,α

]
−M1,2(

PR1,α,PR′4,α

)
θeCH3,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M1,2

(PR3,α,PR1,α) θe′CH4,α
+ (1 − θ)u 1+2α

4
[
eCH3,α

]
−M1,2(

PR3,α,PR′4,α

)
θ′e′CH2

+ (1 − θ′)u 1
2
[
e′CH2

]
−M1,1(

PR′4,α,PR1,α

)
θeCH3,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M1,2(

PR′4,α,PR3,α

)
θ′eCH2 + (1 − θ′)u 1

2 [eCH2 ]−M1,1

Table E.8: CHSH1 (4 Roofs Class 3)

Pairs Effects CT .y(
PR′1,α,PR3,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4
[
eCH3,α

]
−M1,2(

PR′1,α,PR′4,α

)
θeCH3,α + (1 − θ)u 1+2α

4

[
e′CH4,α

]
−M1,2(

PR3,α,PR′1,α

)
θeCH3,α

+ (1 − θ)u 1+2α
4
[
eCH3,α

]
−M1,2(

PR3,α,PR′4,α

)
θ′eCH2 + (1 − θ′)u 1

2 [eCH2 ]−M1,1(
PR′4,α,PR′1,α

)
θeCH3,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M1,2(

PR′4,α,PR3,α

)
θ′e′CH2,

+ (1 − θ′)u 1
2 [eCH2 ]−M1,1

Table E.9: CHSH′1 (4 Roofs Class 3)
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E.3. 4 Roofs

Pairs Effects CT .y

(PR1,α,PR1,α) θe′CH4,α
+ (1 − θ)u 1+2α

4

[
e′CH4,α

]
−M1,2(

PR1,α,PR′4,α

)
θ′e′CH2

+ (1 − θ′)u 1
2
[
e′CH2

]
−M1,1(

PR′1,α,PR′1,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4
[
eCH3,α

]
−M1,2(

PR′1,α,PR′4,α

)
θ′eCH2 + (1 − θ′)u 1

2 [eCH2 ]−M1,1

(PR3,α,PR3,α) θe′CH4,α
+ (1 − θ)u 1+2α

4
[
eCH3,α

]
−M1,2(

PR3,α,PR′4,α

)
θeCH4,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M1,2(

PR′4,α,PR1,α

)
θ′eCH2 + (1 − θ′)u 1

2 [eCH2 ]−M1,1(
PR′4,α,PR′1,α

)
θ′e′CH2

+ (1 − θ′)u 1
2
[
e′CH2

]
−M1,1(

PR′4,α,PR3,α

)
θeCH3,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M1,2

Table E.10: CHSH3 (4 Roofs Class 3)

Pairs Effects CT .y

(PR1,α,PR1,α) θe′CH4,α
+ (1 − θ)u 1+2α

4

[
e′CH4,α

]
−M1,2

(PR1,α,PR3,α) θ′eCH2 + (1 − θ′)u 1
2 [eCH2 ]−M1,1(

PR′1,α,PR′1,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M1,2(

PR′1,α,PR3,α

)
θ′e′CH2

+ (1 − θ′)u 1
2
[
e′CH2

]
−M1,1

(PR3,α,PR1,α) θ′e′CH2
+ (1 − θ′)u 1

2
[
e′CH2

]
−M1,1(

PR3,α,PR′1,α

)
θ′eCH2 + (1 − θ′)u 1

2 [eCH2 ]−M1,1(
PR3,α,PR′4,α

)
θeCH3,α

+ (1 − θ)u 1+2α
4
[
eCH3,α

]
−M1,2(

PR′4,α,PR3,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4
[
eCH3,α

]
−M1,2(

PR′4,α,PR′4,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M1,2

Table E.11: CHSH′4 (4 Roofs Class 3)
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E.3.2 Class 4

Pairs Effects CT .y

(PR1,α,PR1,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2(

PR1,α,PR′2,α

)
θe′CH2,α

+ (1 − θ)u 1+2α
4

[
e′CH2,α

]
−M1,1

(PR1,α,PR3,α) θe′CH4,α
+ (1 − θ)u 1+2α

4

[
e′CH4,α

]
−M1,2(

PR1,α,PR′4,α

)
θeCH3,α

+ (1 − θ)u 1+2α
4
[
eCH3,α

]
−M2,1(

PR′2,α,PR1,α

)
θe′CH2,α

+ (1 − θ)u 1+2α
4

[
e′CH2,α

]
−M1,1(

PR′2,α,PR′4,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M1,2

(PR3,α,PR1,α) θe′CH4,α
+ (1 − θ)u 1+2α

4

[
e′CH4,α

]
−M1,2(

PR3,α,PR′2,α

)
θeCH3,α

+ (1 − θ)u 1+2α
4
[
eCH3,α

]
−M2,1

(PR3,α,PR3,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2(

PR3,α,PR′4,α

)
θe′CH2,α

+ (1 − θ)u 1+2α
4

[
e′CH2,α

]
−M1,1(

PR′4,α,PR1,α

)
θeCH3,α

+ (1 − θ)u 1+2α
4
[
eCH3,α

]
−M2,1(

PR′4,α,PR′4,α

)
θeCH1,α + (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2

Table E.12: CHSH1 (4 Roofs Class 4)

Pairs Effects CT .y(
PR1,α,PR′2,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2

(PR1,α,PR3,α) θeCH3,α
+ (1 − θ)u 1+2α

4
[
eCH3,α

]
−M2,1(

PR′2,α,PR1,α

)
θeCH1,α + (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2(

PR′2,α,PR′2,α

)
θe′CH2,α

+ (1 − θ)u 1+2α
4

[
e′CH2,α

]
−M1,1(

PR′2,α,PR3,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M1,2(

PR′2,α,PR′4,α

)
θeCH3,α

+ (1 − θ)u 1+2α
4
[
eCH3,α

]
−M2,1(

PR3,α,PR′2,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M1,2

(PR3,α,PR3,α) θe′CH2,α
+ (1 − θ)u 1+2α

4

[
e′CH2,α

]
−M1,1(

PR′4,α,PR1,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M1,2(

PR′4,α,PR′2,α

)
θeCH3,α

+ (1 − θ)u 1+2α
4
[
eCH3,α

]
−M2,1(

PR′4,α,PR3,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2(

PR′4,α,PR′4,α

)
θe′CH2,α

+ (1 − θ)u 1+2α
4

[
e′CH2,α

]
−M1,1

Table E.13: CHSH′2 (4 Roofs Class 4)
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E.3. 4 Roofs

Pairs Effects CT .y

(PR1,α,PR1,α) θe′CH4,α
+ (1 − θ)u 1+2α

4

[
e′CH4,α

]
−M1,2(

PR1,α,PR′2,α

)
θeCH3,α + (1 − θ)u 1+2α

4
[
eCH3,α

]
−M2,1

(PR1,α,PR3,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2(

PR1,α,PR′4,α

)
θe′CH2,α

+ (1 − θ)u 1+2α
4

[
e′CH2,α

]
−M1,1(

PR′2,α,PR′2,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M1,2(

PR′2,α,PR3,α

)
θe′CH2,α

+ (1 − θ)u 1+2α
4

[
e′CH2,α

]
−M1,1

(PR3,α,PR1,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2(

PR3,α,PR′2,α

)
θe′CH2,α

+ (1 − θ)u 1+2α
4

[
e′CH2,α

]
−M1,1

(PR3,α,PR3,α) θe′CH4,α
+ (1 − θ)u 1+2α

4

[
e′CH4,α

]
−M1,2(

PR3,α,PR′4,α

)
θeCH3,α + (1 − θ)u 1+2α

4
[
eCH3,α

]
−M2,1(

PR′4,α,PR′2,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2(

PR′4,α,PR3,α

)
θeCH3,α + (1 − θ)u 1+2α

4
[
eCH3,α

]
−M2,1

Table E.14: CHSH3 (4 Roofs Class 4)

Pairs Effects CT .y

(PR1,α,PR1,α) θeCH3,α
+ (1 − θ)u 1+2α

4
[
eCH3,α

]
−M2,1(

PR1,α,PR′4,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2(

PR′2,α,PR1,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M1,2(

PR′2,α,PR′2,α

)
θeCH3,α

+ (1 − θ)u 1+2α
4
[
eCH3,α

]
−M2,1(

PR′2,α,PR3,α

)
θeCH1,α + (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2(

PR′2,α,PR′4,α

)
θe′CH2,α

+ (1 − θ)u 1+2α
4

[
e′CH2,α

]
−M1,1

(PR3,α,PR1,α) θe′CH2,α
+ (1 − θ)u 1+2α

4

[
e′CH2,α

]
−M1,1(

PR3,α,PR′4,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M1,2(

PR′4,α,PR1,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2(

PR′4,α,PR′2,α

)
θe′CH2,α

+ (1 − θ)u 1+2α
4

[
e′CH2,α

]
−M1,1(

PR′4,α,PR3,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M1,2(

PR′4,α,PR′4,α

)
θeCH3,α

+ (1 − θ)u 1+2α
4
[
eCH3,α

]
−M2,1

Table E.15: CHSH′4 (4 Roofs Class 4)
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Appendix E. Proof of Theorem 1

E.3.3 Class 5

Pairs Effects CT .y

(PR1,α,PR1,α) θeCH1,α + (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2

(PR1,α,PR2,α) θeCH2,α
+ (1 − θ)u 1+2α

4
[
eCH2,α

]
−M1,1

(PR1,α,PR3,α) θe′CH4,α
+ (1 − θ)u 1+2α

4

[
e′CH4,α

]
−M2,1(

PR1,α,PR′4,α

)
θeCH3,α

+ (1 − θ)u 1+2α
4
[
eCH3,α

]
−M1,2

(PR2,α,PR1,α) θeCH2,α
+ (1 − θ)u 1+2α

4
[
eCH2,α

]
−M1,1

(PR2,α,PR3,α) θeCH3,α + (1 − θ)u 1+2α
4
[
eCH3,α

]
−M1,2

(PR3,α,PR1,α) θe′CH4,α
+ (1 − θ)u 1+2α

4

[
e′CH4,α

]
−M2,1

(PR3,α,PR3,α) θeCH1,α + (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2(

PR′4,α,PR1,α

)
θeCH3,α

+ (1 − θ)u 1+2α
4
[
eCH3,α

]
−M1,2(

PR′4,α,PR2,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M2,1(

PR′4,α,PR3,α

)
θeCH2,α + (1 − θ)u 1+2α

4
[
eCH2,α

]
−M1,1(

PR′4,α,PR′4,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2

Table E.16: CHSH1 (4 Roofs Class 5)

Pairs Effects CT .y

(PR1,α,PR2,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2(

PR1,α,PR′4,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M2,1

(PR2,α,PR1,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2

(PR2,α,PR2,α) θeCH2,α
+ (1 − θ)u 1+2α

4
[
eCH2,α

]
−M1,1

(PR2,α,PR3,α) θe′CH4,α
+ (1 − θ)u 1+2α

4

[
e′CH4,α

]
−M2,1(

PR2,α,PR′4,α

)
θeCH3,α

+ (1 − θ)u 1+2α
4
[
eCH3,α

]
−M1,2

(PR3,α,PR1,α) θeCH3,α + (1 − θ)u 1+2α
4
[
eCH3,α

]
−M1,2

(PR3,α,PR2,α) θe′CH4,α
+ (1 − θ)u 1+2α

4

[
e′CH4,α

]
−M2,1

(PR3,α,PR3,α) θeCH2,α
+ (1 − θ)u 1+2α

4
[
eCH2,α

]
−M1,1(

PR3,α,PR′4,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2(

PR′4,α,PR2,α

)
θeCH3,α

+ (1 − θ)u 1+2α
4
[
eCH3,α

]
−M1,2(

PR′4,α,PR′4,α

)
θeCH2,α + (1 − θ)u 1+2α

4
[
eCH2,α

]
−M1,1

Table E.17: CHSH2 (4 Roofs Class 5)
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E.3. 4 Roofs

Pairs Effects CT .y

(PR1,α,PR1,α) θe′CH4,α
+ (1 − θ)u 1+2α

4

[
e′CH4,α

]
−M2,1

(PR1,α,PR3,α) θeCH1,α + (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2

(PR2,α,PR1,α) θeCH3,α
+ (1 − θ)u 1+2α

4
[
eCH3,α

]
−M1,2

(PR2,α,PR2,α) θe′CH4,α
+ (1 − θ)u 1+2α

4

[
e′CH4,α

]
−M2,1

(PR2,α,PR3,α) θeCH7,α + (1 − θ)u 1+2α
4
[
eCH2,α

]
−M1,1(

PR2,α,PR′4,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2

(PR3,α,PR1,α) θeCH1,α + (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2

(PR3,α,PR2,α) θeCH2,α
+ (1 − θ)u 1+2α

4
[
eCH2,α

]
−M1,1

(PR3,α,PR3,α) θe′CH4,α
+ (1 − θ)u 1+2α

4

[
e′CH4,α

]
−M2,1(

PR3,α,PR′4,α

)
θeCH3,α + (1 − θ)u 1+2α

4
[
eCH3,α

]
−M1,2(

PR′4,α,PR1,α

)
θeCH2,α

+ (1 − θ)u 1+2α
4
[
eCH2,α

]
−M1,1(

PR′4,α,PR3,α

)
θeCH3,α + (1 − θ)u 1+2α

4
[
eCH3,α

]
−M1,2

Table E.18: CHSH3 (4 Roofs Class 5)

Pairs Effects CT .y

(PR1,α,PR1,α) θeCH3,α + (1 − θ)u 1+2α
4
[
eCH3,α

]
−M1,2

(PR1,α,PR2,α) θe′CH4,α
+ (1 − θ)u 1+2α

4

[
e′CH4,α

]
−M2,1

(PR1,α,PR3,α) θeCH2,α + (1 − θ)u 1+2α
4
[
eCH2,α

]
−M1,1(

PR1,α,PR′4,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2

(PR2,α,PR2,α) θeCH3,α
+ (1 − θ)u 1+2α

4
[
eCH3,α

]
−M1,2(

PR2,α,PR′4,α

)
θeCH2,α + (1 − θ)u 1+2α

4
[
eCH7,α

]
−M1,1

(PR3,α,PR2,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2(

PR3,α,PR′4,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M2,1(

PR′4,α,PR1,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2(

PR′4,α,PR2,α

)
θeCH2,α

+ (1 − θ)u 1+2α
4
[
eCH2,α

]
−M1,1(

PR′4,α,PR3,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M2,1(

PR′4,α,PR′4,α

)
θeCH3,α

+ (1 − θ)u 1+2α
4
[
eCH3,α

]
−M1,2

Table E.19: CHSH′4 (4 Roofs Class 5)
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E.4 5 ROOFS

E.4.1 Class 2

Pairs Effects CT .y

(PR1,α,PR1,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2

(PR1,α,PR3,α) θe′CH4,α
+ (1 − θ)u 1+2α

4

[
e′CH4,α

]
−M1,3(

PR1,α,PR′4,α

)
θeCH3,α

+ (1 − θ)u 1+2α
4
[
eCH3,α

]
−M1,2(

PR2,α,PR′2,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2

(PR2,α,PR3,α) θeCH3,α + (1 − θ)u 1+2α
4
[
eCH3,α

]
−M1,2(

PR′2,α,PR2,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2(

PR′2,α,PR′4,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M1,3

(PR3,α,PR1,α) θe′CH4,α
+ (1 − θ)u 1+2α

4

[
e′CH4,α

]
−M1,3(

PR3,α,PR′2,α

)
θeCH3,α

+ (1 − θ)u 1+2α
4
[
eCH3,α

]
−M1,2

(PR3,α,PR3,α) θeCH1,α + (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2(

PR′4,α,PR1,α

)
θeCH3,α

+ (1 − θ)u 1+2α
4
[
eCH3,α

]
−M1,2(

PR′4,α,PR2,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M1,3(

PR′4,α,PR′4,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2

Table E.20: CHSH1 (5 Roofs Class 2)

Pairs Effects CT .y

(PR1,α,PR2,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2(

PR1,α,PR′4,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M1,3

(PR2,α,PR1,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2

(PR2,α,PR3,α) θe′CH4,α
+ (1 − θ)u 1+2α

4

[
e′CH4,α

]
−M1,3(

PR2,α,PR′4,α

)
θeCH3,α

+ (1 − θ)u 1+2α
4
[
eCH3,α

]
−M1,2

(PR3,α,PR1,α) θeCH3,α
+ (1 − θ)u 1+2α

4
[
eCH3,α

]
−M1,2

(PR3,α,PR2,α) θe′CH4,α
+ (1 − θ)u 1+2α

4

[
e′CH4,α

]
−M1,3(

PR3,α,PR′4,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2(

PR′4,α,PR2,α

)
θeCH3,α + (1 − θ)u 1+2α

4
[
eCH3,α

]
−M1,3

Table E.21: CHSH2 (5 Roofs Class 2)
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E.4. 5 Roofs

Pairs Effects CT .y(
PR1,α,PR′2,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2

(PR1,α,PR3,α) θeCH3,α + (1 − θ)u 1+2α
4
[
eCH3,α

]
−M1,2(

PR′2,α,PR1,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2(

PR′2,α,PR3,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M1,3(

PR′2,α,PR′4,α

)
θeCH3,α + (1 − θ)u 1+2α

4
[
eCH3,α

]
−M1,2(

PR3,α,PR′2,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M1,3(

PR′4,α,PR1,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M1,3(

PR′4,α,PR′2,α

)
θeCH3,α

+ (1 − θ)u 1+2α
4
[
eCH3,α

]
−M1,2(

PR′4,α,PR3,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2

Table E.22: CHSH′2 (5 Roofs Class 2)

Pairs Effects CT .y

(PR1,α,PR1,α) θe′CH4,α
+ (1 − θ)u 1+2α

4

[
e′CH4,α

]
−M1,3(

PR1,α,PR′2,α

)
θeCH3,α + (1 − θ)u 1+2α

4
[
eCH3,α

]
−M1,2

(PR1,α,PR3,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2

(PR2,α,PR1,α) θeCH3,α
+ (1 − θ)u 1+2α

4
[
eCH3,α

]
−M1,2

(PR2,α,PR2,α) θe′CH4,α
+ (1 − θ)u 1+2α

4

[
e′CH4,α

]
−M1,3(

PR2,α,PR′4,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2(

PR′2,α,PR′2,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M1,3

(PR3,α,PR1,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2

(PR3,α,PR3,α) θe′CH4,α
+ (1 − θ)u 1+2α

4

[
e′CH4,α

]
−M1,3(

PR3,α,PR′4,α

)
θeCH3,α

+ (1 − θ)u 1+2α
4
[
eCH3,α

]
−M1,2(

PR′4,α,PR′2,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2(

PR′4,α,PR3,α

)
θeCH3,α + (1 − θ)u 1+2α

4
[
eCH3,α

]
−M1,2

Table E.23: CHSH3 (5 Roofs Class 2)
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Pairs Effects CT .y

(PR1,α,PR1,α) θeCH3,α
+ (1 − θ)u 1+2α

4
[
eCH3,α

]
−M1,2

(PR1,α,PR2,α) θe′CH4,α
+ (1 − θ)u 1+2α

4

[
e′CH4,α

]
−M1,3(

PR1,α,PR′4,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2

(PR2,α,PR2,α) θeCH3,α
+ (1 − θ)u 1+2α

4
[
eCH3,α

]
−M1,2(

PR′2,α,PR1,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M1,3(

PR′2,α,PR′2,α

)
θeCH3,α

+ (1 − θ)u 1+2α
4
[
eCH3,α

]
−M1,2(

PR′2,α,PR3,α

)
θeCH1,α + (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2

(PR3,α,PR2,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2(

PR3,α,PR′4,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M1,3(

PR′4,α,PR1,α

)
θeCH1,α + (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2(

PR′4,α,PR3,α

)
θe′CH4,α

+ (1 − θ)u 1+2α
4

[
e′CH4,α

]
−M1,3(

PR′4,α,PR′4,α

)
θeCH3,α + (1 − θ)u 1+2α

4
[
eCH3,α

]
−M1,2

Table E.24: CHSH′4 (5 Roofs Class 2)

E.4.2 Class 3

Pairs Effects CT .y

(PR1,α,PR1,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,3

(PR3,α,PR3,α) θeCH1,α + (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,3(

PR3,α,PR′4,α

)
θ′e′CH2

+ (1 − θ′)u 1
2
[
e′CH2

]
−M1,1(

PR′3,α,PR′3,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,3(

PR′3,α,PR4,α

)
θ′e′CH2

+ (1 − θ′)u 1
2
[
e′CH2

]
−M1,1(

PR′3,α,PR′4,α

)
θ′eCH2 + (1 − θ′)u 1

2 [eCH2 ]−M1,1

(PR4,α,PR3,α) θ′e′CH2
+ (1 − θ′)u 1

2
[
e′CH2

]
−M1,1(

PR4,α,PR′3,α

)
θ′eCH2 + (1 − θ′)u 1

2 [eCH2 ]−M1,1

(PR4,α,PR4,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,3(

PR′4,α,PR3,α

)
θ′eCH2 + (1 − θ′)u 1

2 [eCH2 ]−M1,1(
PR′4,α,PR′3,α

)
θ′e′CH2

+ (1 − θ′)u 1
2
[
e′CH2

]
−M1,1(

PR′4,α,PR′4,α

)
θeCH1,α + (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,3

Table E.25: CHSH1 (5 Roofs Class 3)
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E.4. 5 Roofs

Pairs Effects CT .y

(PR1,α,PR3,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,3

(PR1,α,PR4,α) θ′eCH2 + (1 − θ′)u 1
2 [eCH2 ]−M1,1(

PR1,α,PR′4,α

)
θ′e′CH2

+ (1 − θ′)u 1
2
[
e′CH2

]
−M1,1

(PR3,α,PR1,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,3

(PR4,α,PR1,α) θ′e′CH2
+ (1 − θ′)u 1

2
[
e′CH2

]
−M1,1(

PR′4,α,PR1,α

)
θ′eCH2 + (1 − θ′)u 1

2 [eCH2 ]−M1,1

Table E.26: CHSH3 (5 Roofs Class 3)

Pairs Effects CT .y(
PR1,α,PR′3,α

)
θeCH1,α + (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,3

(PR1,α,PR4,α) θ′e′CH2
+ (1 − θ′)u 1

2
[
e′CH2

]
−M1,1(

PR1,α,PR′4,α

)
θ′eCH2 + (1 − θ′)u 1

2 [eCH2 ]−M1,1(
PR′3,α,PR1,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,3

(PR4,α,PR1,α) θ′eCH2 + (1 − θ′)u 1
2 [eCH2 ]−M1,1(

PR′4,α,PR1,α

)
θ′e′CH2

+ (1 − θ′)u 1
2
[
e′CH2

]
−M1,1

Table E.27: CHSH′3 (5 Roofs Class 3)

Pairs Effects CT .y

(PR1,α,PR3,α) θ′e′CH2
+ (1 − θ′)u 1

2
[
e′CH2

]
−M1,1(

PR1,α,PR′3,α

)
θ′e′CH2

+ (1 − θ′)u 1
2
[
e′CH2

]
−M1,1

(PR1,α,PR4,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,3

(PR3,α,PR1,α) θ′eCH2 + (1 − θ′)u 1
2 [eCH2 ]−M1,1(

PR′3,α,PR1,α

)
θ′e′CH2

+ (1 − θ′)u 1
2
[
e′CH2

]
−M1,1

(PR4,α,PR1,α) θeCH1,α + (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,3

Table E.28: CHSH4 (5 Roofs Class 3)
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Pairs Effects CT .y

(PR1,α,PR3,α) θ′eCH2 + (1 − θ′)u 1
2 [eCH2 ]−M1,1(

PR1,α,PR′3,α

)
θ′e′CH2

+ (1 − θ′)u 1
2
[
e′CH2

]
−M1,1(

PR1,α,PR′4,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,3

(PR3,α,PR1,α) θ′e′CH2
+ (1 − θ′)u 1

2
[
e′CH2

]
−M1,1(

PR′3,α,PR1,α

)
θ′eCH2 + (1 − θ′)u 1

2 [eCH2 ]−M1,1(
PR′4,α,PR1,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,3

Table E.29: CHSH′4 (5 Roofs Class 3)

E.5 6 ROOFS

E.5.1 Class 3

Pairs Effects CT .y

(PR1,α,PR1,α) θeCH1,α + (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2

(PR1,α,PR2,α) θeCH2,α
+ (1 − θ)u 1+2α

4
[
eCH2,α

]
−M1,1

(PR2,α,PR1,α) θeCH2,α
+ (1 − θ)u 1+2α

4
[
eCH2,α

]
−M1,1

(PR3,α,PR3,α) θeCH1,α + (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2

(PR3,α,PR4,α) θeCH2,α
+ (1 − θ)u 1+2α

4
[
eCH2,α

]
−M1,1(

PR′3,α,PR′3,α

)
θeCH1,α + (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2(

PR′3,α,PR′4,α

)
θeCH2,α

+ (1 − θ)u 1+2α
4
[
eCH2,α

]
−M1,1(

PR4,α,PR′3,α

)
θeCH2,α

+ (1 − θ)u 1+2α
4
[
eCH2,α

]
−M1,1

(PR4,α,PR4,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2(

PR′4,α,PR3,α

)
θeCH2,α

+ (1 − θ)u 1+2α
4
[
eCH2,α

]
−M1,1(

PR′4,α,PR′4,α

)
θeCH1,α + (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2

Table E.30: CHSH1 (6 Roofs Class 3)
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E.5. 6 Roofs

Pairs Effects CT .y

(PR1,α,PR2,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2

(PR2,α,PR1,α) θeCH1,α + (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2

(PR2,α,PR2,α) θeCH2,α
+ (1 − θ)u 1+2α

4
[
eCH2,α

]
−M1,1

(PR3,α,PR3,α) θeCH2,α
+ (1 − θ)u 1+2α

4
[
eCH2,α

]
−M1,1(

PR3,α,PR′4,α

)
θeCH1,α + (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2(

PR′3,α,PR′3,α

)
θeCH2,α

+ (1 − θ)u 1+2α
4
[
eCH2,α

]
−M1,1(

PR′3,α,PR4,α

)
θeCH1,α + (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2

(PR4,α,PR3,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2

(PR4,α,PR4,α) θeCH2,α
+ (1 − θ)u 1+2α

4
[
eCH2,α

]
−M1,1(

PR′4,α,PR′3,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2(

PR′4,α,PR′4,α

)
θeCH2,α

+ (1 − θ)u 1+2α
4
[
eCH2,α

]
−M1,1

Table E.31: CHSH2 (6 Roofs Class 3)

Pairs Effects CT .y

(PR1,α,PR3,α) θeCH1,α + (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2

(PR1,α,PR4,α) θeCH2,α
+ (1 − θ)u 1+2α

4
[
eCH2,α

]
−M1,1

(PR2,α,PR3,α) θeCH2,α + (1 − θ)u 1+2α
4
[
eCH2,α

]
−M1,1(

PR2,α,PR′4,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2

(PR3,α,PR1,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2

(PR3,α,PR2,α) θeCH2,α
+ (1 − θ)u 1+2α

4
[
eCH2,α

]
−M1,1

(PR4,α,PR2,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2(

PR′4,α,PR1,α

)
θeCH2,α + (1 − θ)u 1+2α

4
[
eCH2,α

]
−M1,1

Table E.32: CHSH3 (6 Roofs Class 3)
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Pairs Effects CT .y(
PR1,α,PR′3,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2(

PR1,α,PR′4,α

)
θeCH2,α + (1 − θ)u 1+2α

4
[
eCH2,α

]
−M1,1(

PR2,α,PR′3,α

)
θeCH2,α

+ (1 − θ)u 1+2α
4
[
eCH2,α

]
−M1,1

(PR2,α,PR4,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2(

PR′3,α,PR1,α

)
θeCH1,α + (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2(

PR′3,α,PR2,α

)
θeCH2,α

+ (1 − θ)u 1+2α
4
[
eCH2,α

]
−M1,1

(PR4,α,PR1,α) θeCH2,α + (1 − θ)u 1+2α
4
[
eCH2,α

]
−M1,1(

PR′4,α,PR2,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2

Table E.33: CHSH′3 (6 Roofs Class 3)

Pairs Effects CT .y(
PR1,α,PR′3,α

)
θeCH2,α

+ (1 − θ)u 1+2α
4
[
eCH2,α

]
−M1,1

(PR1,α,PR4,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2

(PR2,α,PR3,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2

(PR2,α,PR4,α) θeCH2,α + (1 − θ)u 1+2α
4
[
eCH2,α

]
−M1,1

(PR3,α,PR1,α) θeCH2,α
+ (1 − θ)u 1+2α

4
[
eCH2,α

]
−M1,1(

PR′3,α,PR2,α

)
θeCH1,α + (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2

(PR4,α,PR1,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2

(PR4,α,PR2,α) θeCH2,α
+ (1 − θ)u 1+2α

4
[
eCH2,α

]
−M1,1

Table E.34: CHSH4 (6 Roofs Class 3)

Pairs Effects CT .y

(PR1,α,PR3,α) θeCH2,α
+ (1 − θ)u 1+2α

4
[
eCH2,α

]
−M1,1(

PR1,α,PR′4,α

)
θeCH1,α + (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2(

PR2,α,PR′3,α

)
θeCH1,α

+ (1 − θ)u 1+2α
4
[
eCH1,α

]
−M2,2(

PR2,α,PR′4,α

)
θeCH2,α + (1 − θ)u 1+2α

4
[
eCH2,α

]
−M1,1

(PR3,α,PR2,α) θeCH1,α
+ (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2(

PR′3,α,PR1,α

)
θeCH2,α

+ (1 − θ)u 1+2α
4
[
eCH2,α

]
−M1,1(

PR′4,α,PR1,α

)
θeCH1,α + (1 − θ)u 1+2α

4
[
eCH1,α

]
−M2,2(

PR′4,α,PR2,α

)
θeCH2,α

+ (1 − θ)u 1+2α
4
[
eCH2,α

]
−M1,1

Table E.35: CHSH′4 (6 Roofs Class 3)
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E.6. 7 Roofs

E.6 7 ROOFS

The effects for each of these cases is θeCH1,α + (1 − θ)u and every CT .y is 1+2α
4
[
eCH2,α

]
−M1,1

.

CHSH1 CHSH2 CHSH2′ CHSH3

(PR1,α,PR1,α) (PR1,α,PR2,α)
(
PR1,α,PR′2,α

)
(PR1,α,PR3,α)(

PR2,α,PR′2,α

)
(PR2,α,PR1,α)

(
PR′2,α,PR1,α

) (
PR2,α,PR′4,α

)(
PR′2,α,PR2,α

) (
PR3,α,PR′4,α

)
(PR3,α,PR4,α)

(
PR′2,α,PR4,α

)
(PR3,α,PR3,α)

(
PR′3,α,PR4,α

) (
PR′3,α,PR′4,α

)
(PR3,α,PR1,α)(

PR′3,α,PR′3,α

)
(PR4,α,PR3,α)

(
PR4,α,PR′3,α

)
(PR4,α,PR2,α)

(PR4,α,PR4,α)
(
PR′4,α,PR′3,α

) (
PR′4,α,PR3,α

) (
PR′4,α,PR′2,α

)(
PR′4,α,PR′4,α

)
− − −

CHSH3′ CHSH4 CHSH4′(
PR1,α,PR′3,α

)
(PR1,α,PR4,α)

(
PR1,α,PR′4,α

)
(PR2,α,PR4,α) (PR2,α,PR3,α)

(
PR2,α,PR′3,α

)(
PR′2,α,PR′4,α

) (
PR′2,α,PR′3,α

) (
PR′2,α,PR3,α

)(
PR′3,α,PR1,α

) (
PR3,α,PR′2,α

)
(PR3,α,PR2,α)(

PR4,α,PR′2,α

) (
PR′3,α,PR2,α

) (
PR′3,α,PR′2,α

)(
PR′4,α,PR2,α

)
(PR4,α,PR1,α)

(
PR′4,α,PR1,α

)
Table E.36: Table describes pairs of noisy PR boxes relevant for the respective CHSH games.
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F

Derivation of Hex State Space

1+(σX̂ +σẐ )/
√

2
2

1−(σX̂ +σẐ)/
√

2
2

1+(σX̂−σẐ )/
√

2
2

1
4
(√

2rx +
√

2rz + 2
) 1

4
(
−

√
2rx −

√
2rz + 2

) 1
4
(
−

√
2rx +

√
2rz + 2

)
1−(σX̂−σẐ )/

√
2

2
1+σẐ

2
1+(σX̂ +σŶ )/

√
2

2

1
4
(√

2rx −
√

2rz + 2
)

rz+1
2

1
4
(√

2rx +
√

2ry + 2
)

1−(σX̂−σŶ )/
√

2
2

1−σẐ

2

1
4
(
−

√
2rx +

√
2ry + 2

) 1−rz

2

Table F.1: Inner products between the extremal effects of EC and the state (7.10).

One needs that every inner product listed in the entries of Table F.1 is between 0 and 1. This
puts constraints on the ranges of the variables rx, ry and rz, which are provided in Table F.2 below.
From the first two constraints, one gets the states

rx = −
√

2 ∧ ry = 0 ∧ rz = 0

rx =
√

2 ∧ ry = 0 ∧ rz = 0

−
√

2 < rx ⩽
√

2−2√
2 ∧ −

√
2rx−2√

2 ⩽ ry ⩽
√

2rx+2√
2 ∧ −

√
2rx−2√

2 ⩽ rz ⩽
√

2rx+2√
2

√
2−2√

2 < rx ⩽ 0 ∧ −
√

2rx−2√
2 ⩽ ry ⩽

√
2rx+2√

2 ∧ −1 ⩽ rz ⩽ 1

0 < a ⩽ 2−
√

2√
2 ∧

√
2a−2√

2 ⩽ b ⩽ 2−
√

2a√
2 ∧ −1 ⩽ c ⩽ 1

2−
√

2√
2 < rx <

√
2 ∧

√
2rx−2√

2 ⩽ ry ⩽ 2−
√

2rx√
2 ∧

√
2rx−2√

2 ⩽ rz ⩽ 2−
√

2rx√
2

Table F.2: Constraints on the variables rx, ry and rz upon requiring every inner product listed in
Table F.1 to be between 0 and 1.
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From the third constraint onwards, one can set the inequalities to equalities, where possible
and solve for the remaining states. We provide these states below:(

1
2 − 1√

2
− 1√

2
1
2

)
,

(
1
2

1√
2

1√
2

1
2

)
(

1 1
2 (r − i)

1
2 (r + i) 0

)
,

(
0 1

2 (r − i)
1
2 (r + i) 1

)
,

(
1 1

2 (r + i)
1
2 (r − i) 0

)
,

(
0 1

2 (r + i)
1
2 (r − i) 1

)
,

(
1 1

2 (−r − i)
1
2 (−r + i) 0

)
,

(
0 1

2 (−r − i)
1
2 (−r + i) 1

)
,

(
1 1

2 (−r + i)
1
2 (−r − i) 0

)
,

(
0 1

2 (−r + i)
1
2 (−r − i) 1

)
,

(
0 1√

2 i

− 1√
2 i 1

)
,

(
1 1√

2 i

− 1√
2 i 0

)
,

(
0 − 1√

2 i
1√
2 i 1

)
,

(
1 − 1√

2 i
1√
2 i 0

)

The group of first 4 states can be written as 1±
√

2σX̂

2 . The next 8 states can be written as
1±
√

2σŶ ±σẐ

2 . The last 4 states can be written as 1±rσX̂±σŶ ±σẐ

2 .
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G

Derivation of Non-Signalling Subspace of SA→B
p

Next, we present the derivation of this subspace. Since in this model, Bob never signals to Alice,
all distributions lie on the hyperplanes ⟨NS1,x⟩ = 0 and ⟨NS2,x⟩ = 0. Therefore, we only need to
consider restrictions imposed by NS3 and NS4. We ran the steps above and calculated the set of
intersection points on each of the two hyperplanes. In each case, we classified the distributions
up to equivalence of relabelling operations. We first present a representative of the classes that
we claim to be extremal and then present the representatives of the remaining classes as convex
decompositions of the claimed extremals.

G.1 RESTRICTION BY NS3:

We claim that there are three extremal distributions up to equivalence of relabelling symmetries;
0 0 0 0
0 1 1 − p p

0 0 0 0
0 1 p 1 − p

 ,
1
2


1 − p p 0 1
p 1 − p 1 − p p

1 − p p p 1 − p

p 1 − p 0 1

 ,
1
2


1 − p p 1 0
p 1 − p 0 1

1 − p p 0 1
p 1 − p 1 0


There are 16 elements in the first class, 32 in the second class and 8 in the third class. Elements
of the rest of the classes are not extremal as they can be written as convex combinations of the
distributions from the three classes above and the 16 non-signalling local deterministic distributions,
as shown below.

1
2

1
2 p 1 − p

0 0 0 0
1
2

1
2 1 − p p

0 0 0 0


8

= 1
2


0 1 p 1 − p

0 0 0 0
0 1 1 − p p

0 0 0 0

+ 1
2


1 0 p 1 − p

0 0 0 0
1 0 1 p

0 0 0 0




1
2

1
2 1 0

0 0 0 0
1
2

1
2 1 0

0 0 0 0


8

= 1
2


0 1 1 0
0 0 0 0
0 1 1 0
0 0 0 0

+ 1
2


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0


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G.1. Restriction by NS3:


1
2

1
2

5
6

1
6

0 0 0 0
1
2

1
2

2
3

1
3

0 0 0 0


16

= 1
2


0 1 2

3
1
3

0 0 0 0
0 1 1

3
2
3

0 0 0 0

+ 1
2


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0




1
2

1
2

1
2

1
2

0 0 0 0
1
2

1
2

1
2

1
2

0 0 0 0


4

= 1
2


0 1 1 0
0 0 0 0
0 1 1 0
0 0 0 0

+ 1
2


1 0 0 1
0 0 0 0
1 0 0 1
0 0 0 0




1
2

1
2 1 0

0 0 0 0
1−p

2
p
2

1
2 0

p
2

1−p
2

1
2 0


16

= 1 − p

2


0 1 1 0
0 0 0 0
0 0 0 0
0 1 1 0

+ 1 − p

2


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0



+p

2


0 1 1 0
0 0 0 0
0 1 1 0
0 0 0 0

+ p

2


1 0 1 0
0 0 0 0
0 0 0 0
1 0 1 0




1
2

1
2

1+p
2

1−p
2

0 0 0 0
1−p

2
p
2

1
2 0

p
2

1−p
2

1−p
2

p
2


32

= 1 − p

2


0 1 p 1 − p

0 0 0 0
0 0 0 0
0 1 1 − p p

+ 1 − p

2


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0



+p

2


0 1 1 0
0 0 0 0
0 1 1 0
0 0 0 0

+ p

2


1 0 p 1 − p

0 0 0 0
0 0 0 0
1 0 1 − p p




1
2

1
2

2−p
2

p
2

0 0 0 0
1−p

2
p
2

1
2 0

p
2

1−p
2

p
2

1−p
2


32

= 1 − p

2


0 1 1 − p p

0 0 0 0
0 0 0 0
0 1 p 1 − p

+ 1 − p

2


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0



+p

2


0 1 1 0
0 0 0 0
0 1 1 0
0 0 0 0

+ p

2


1 0 1 − p p

0 0 0 0
0 0 0 0
1 0 p 1 − p




1
2

1
2

1
2

1
2

0 0 0 0
1−p

2
p
2

1
2 0

p
2

1−p
2 0 1

2


16

= 1 − p

2


0 1 0 1
0 0 0 0
0 0 0 0
0 1 0 1

+ 1 − p

2


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0


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Appendix G. Derivation of Non-Signalling Subspace of SA→B
p

+p

2


0 1 1 0
0 0 0 0
0 1 1 0
0 0 0 0

+ p

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1




p
2

1−p
2

1
2 0

1−p
2

p
2

1
2 0

1−p
2

p
2

1
2 0

p
2

1−p
2

1
2 0


24

= 1 − p

2


0 0 0 0
1 0 1 0
1 0 1 0
0 0 0 0

+ 1 − p

2


0 1 1 0
0 0 0 0
0 0 0 0
0 1 1 0



+p

2


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

+ p

2


1 0 1 0
0 0 0 0
0 0 0 0
1 0 1 0




1
2

1
2 p 1 − p

0 0 0 0
1−p

2
p
2

1−p
2

p
2

p
2

1−p
2

1−p
2

p
2


16

= 1 − p

2


0 1 p 1 − p

0 0 0 0
0 0 0 0
0 1 1 − p p

+1 − p

2


1 0 p 1 − p

0 0 0 0
1 0 1 − p p

0 0 0 0



+p

2


0 1 p 1 − p

0 0 0 0
0 1 1 − p p

0 0 0 0

+ p

2


1 0 p 1 − p

0 0 0 0
0 0 0 0
1 0 1 − p p




p
2

1−p
2

p
2

1−p
2

1−p
2

p
2

p
2

1−p
2

1−p
2

p
2

1−p
2

p
2

p
2

1−p
2

1−p
2

p
2


8

= 1 − p

2


0 0 0 0
1 0 p 1 − p

1 0 1 − p p

0 0 0 0

+1 − p

2


0 1 p 1 − p

0 0 0 0
0 0 0 0
0 1 1 − p p



+p

2


0 0 0 0
0 1 p 1 − p

0 1 1 − p p

0 0 0 0

+ p

2


1 0 p 1 − p

0 0 0 0
0 0 0 0
1 0 1 − p p




p
2

1−p
2

p
2

1−p
2

1−p
2

p
2

1−p
2

p
2

1−p
2

p
2

1−p
2

p
2

p
2

1−p
2

p
2

1−p
2


8

= 1 − p

2


0 0 0 0
0 1 0 1
0 1 0 1
0 0 0 0

+ 1 − p

2


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0



+p

4


0 0 0 0
1 0 0 1
1 0 0 1
0 0 0 0

+ p

4


0 1 1 0
0 0 0 0
0 0 0 0
0 1 1 0


132



G.2. Additional Restriction By NS4:

+p

4


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

+ p

4


1 0 1 0
0 0 0 0
0 0 0 0
1 0 1 0


The numbers at the subscripts denote the cardinality of the respective classes.

G.2 ADDITIONAL RESTRICTION BY NS4:

We take all the extremal distributions obtained in the previous analysis and found that upon further
restricting to the hyperplane ⟨NS4,x = 0⟩, using the sequence of steps described above, there is
only one class of extremal states with a cardinality of 16. A representative of this class is

1
2


1 0 p 1 − p

0 1 1 − p p

1 0 1 − p p

0 1 p 1 − p

 .

In the following, we present one element from each extremal class. A convex decomposition, like the
one obtained in the previous section, can also be obtained. However, an easier way of noticing that
they are not extremal is by the fact that they are all local. The subscripts represent the number of
elements present in each class.

0 0 0 0
0 1 1

2
1
2

0 0 0 0
0 1 1

2
1
2


8

,


0 0 0 0
0 1 1

2
1
2

0 1
2

1−p
2

p
2

0 1
2

p
2

1−p
2


16

,


0 0 0 0
1
2

1
2

1
2

1
2

0 0 0 0
1
2

1
2

1
2

1
2
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Appendix G. Derivation of Non-Signalling Subspace of SA→B
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