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Abstract

Two measurements of an observable always yield identical outcomes when imple-
mented in quick succession on a quantum system. In the standard formulation of
non-relativistic quantum theory, this phenomenon is accounted for by the collapse
of the state induced by a non-destructive measurement. In the first part of this
thesis, we investigate the role of the collapse in quantum theory in a systematic
way. We introduce the framework of Alternative-Measurement Theories (AMTs)
defined as no-signalling foils of quantum mechanics sharing with it all standard
postulates, except for the update rule assigning post-measurement states. By em-
bedding quantum mechanics in a set of structurally similar theories, we are able to
identify properties that depend on the collapse and show which of them are unique
to the Lüders projection rule. We show that update rules can affect the ontological
status of quantum states, or not allow for non-local correlations. The operational
equivalence of different experimental strategies to measure product observables is
found to rely on the chosen update rule, as well as the feasibility of protocols such as
local tomography. The comparison with individual AMTs, such as “passive quantum
theory” characterised by measurements which cause no state update, allows us to
identify operational assumptions from which the Lüders rule can be derived. We
show that the repeatability of measurement outcomes is insufficient; a stronger
assumption on degenerate observables proves sufficient, at least for non-composite
systems. In the second part, we focus on support uncertainty relations in spaces
of prime dimensions. Tao derived a state-independent inequality which holds for
the support sizes of a pure qudit state in two bases related by a discrete Fourier
transform. We generalise Tao’s uncertainty relation to complete sets of (d + 1)
mutually unbiased bases in prime-dimensional spaces and investigate the sharpness
of the obtained lower bounds.
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Preface

Quantum mechanics emerged a century ago from the joint effort of many physicists,
driven by the goal to explain certain experimental observations that could not be
justified within the classical framework of physics. To address phenomena such
as the black-body radiation spectrum [68], the photoelectric effect [103, 126] and
the discrete frequencies in the spectrum of hydrogen [11, 155], it was necessary to
challenge long-established concepts about the nature of the Universe. Intuitions such
as the quantization of energy [69, 146] and the wave-like behaviour of particles [53]
provided the conceptual groundwork for the development of Heisenberg, Born, and
Jordan’s matrix mechanics [30, 31, 98], as well as Schrödinger’s wave mechanics [158].
However, it was von Neumann’s subsequent contributions that provided the theory
with a rigorous mathematical foundation. In his book [177], von Neumann outlines
a set of assumptions that, for the most part, make up the “standard” formulation of
quantum theory, as commonly taught in academic curricula.

Despite the experimental success of quantum theory, a fundamental debate
persists regarding its interpretation. There is still no unanimous agreement on
what its mathematical objects represent of the world. For instance, the role of
quantum states is a subject of contention: some assert that states are ontic, objective
attributes of the systems they describe, while others suggest that they merely encode
our epistemic knowledge about them [92].

The conceptual ambiguities within quantum mechanics can partly be attributed to
the abstract nature of its standard postulates. Rather than offering explicit physical
principles, these postulates associate quantum systems with separable Hilbert spaces
and define their dynamical and observable properties in terms of operators acting
on these spaces. Integral to the standard formulation is the projection postulate,

11



12 Preface

also known as the collapse of the quantum state, state-reduction, or quantum jump.
This postulate introduces a seemingly abrupt and nonlinear update of the state of
a quantum system following a measurement. The so-called measurement problem
refers to the challenge of understanding the mechanism of the collapse (or whether
there is one and when it occurs), which seems to suggest a hard “cut” between
the quantum and classical realms [9]. The ontic and epistemic interpretations of
states offer distinct perspectives on the problem. If the state corresponds to an
objective property of the system, then the collapse must be a physical process,
and the resolution of the measurement problem hinges on comprehending how this
process takes place. Conversely, if the state encodes our knowledge about properties
of that system, then the collapse amounts to an update of our description of the
system, conditioned on the new information gained from the measurement.

The measurement problem is a central subject of research within the field of
quantum foundations, which seeks to clarify the structural properties of quantum
theory and address the conceptual challenges stemming from its non-classical charac-
ter. Notable achievements within this domain include proofs of quantum nonlocality
and contextuality [20, 21, 122]. These results have also found practical application
in the emerging domain of quantum information. Here, the computational power of
quantum theory and its potential for (secret) communication are studied to devise
algorithms and protocols that outperform their classical counterparts.

This thesis presents results from two research projects within the field of quantum
foundations. The following paragraphs will introduce the topics and provide a concise
summary of our contributions. For a more comprehensive understanding of the
motivations and results, readers are directed to the introductions at the beginning
of each part.

In Part I, we investigate the role of the projection postulate in quantum theory.
To do so in a systematic way, we construct foils of quantum theory that retain all the
standard postulates, except for replacing the collapse with alternative state update
rules. The “method” of juxtaposing quantum mechanics with structurally similar
models or embedding it in a set of foil theories has been successfully employed in the
past. Examples include Generalised Probabilistic Theories (GPTs) [16, 91], ontological
models replicating certain features of quantum theory [167] and modifications of
quantum theory with non-linear time evolutions [26, 84] or with additional types of
measurement devices [3, 118–120]. In a similar way, by comparing quantum theory
to toy models with different post-measurement states, we aim to better understand
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the conceptual and practical consequences of the collapse in the standard postulates
of quantum theory. Furthermore, we look for operational principles that uniquely
isolate the Lüders collapse of quantum mechanics from all feasible alternatives.

Chap. 1 provides an overview and discussion of the standard postulates of quan-
tum theory. In Chap. 2, we explore passive quantum theory (pQT), which postulates
that measurements do not disturb the state of a system. Passive measurements
can be used to implement an individual state determination (ISD) procedure [33]
and were initially introduced in [3] as a hypothetical computational resource. Later,
they also appeared in [120] as stochastic eigenvalue readout devices (SERDs). The
connection between pQT and previous or concurrent independent work on hypo-
thetical measurement devices [3, 118–120] which enable the implementation of an
ISD procedure, is examined. By analysing the properties of pQT, one can explore
how the projection postulate shapes quantum theory. The collapse is shown to be
necessary for the operational equivalence of two different experimental procedures for
measuring observables on composite systems, thereby contributing to the emergence
of correlations between distant systems—and thus leading to nonlocality and allowing
for local tomography. The projection postulate also affects the ontology of quantum
states, as “passive measurements” render the state of a single system observable
[33, 119], which has implications for the interpretation of mixed states and the
computational power of the theory [3, 120].

Chap. 3 generalises the idea of pQT and introduces Alternative-Measurement
Theories (AMTs) through the concept of an update rule. We require update rules
to satisfy two constraints: (non-relativistic) no-signalling and context-independence
(which asserts that the post-measurement state is independent of the outcomes that
are not observed). In contrast to no-signalling, the reason for demanding context-
independence is not based on physical consistency. Instead, it is a property abstracted
from quantum theory, which restricts the possible behaviours of the foil theories.
We show that quantum theory can be isolated within the set of AMTs by imposing
the following two operational assumptions: (i) the outcome probability distribution
of an observable is not affected by a prior measurement of a coarse-graining of the
same observable (this effectively encodes a form of trade-off between the information
gained from measurements and the disturbance applied to states); (ii) a measurement
on some subsystem ‘A’ with outcome represented by Πx is operationally equivalent to
a measurement on the composite system ‘AB’ with outcome represented by Πx ⊗ IB
(a property that we call “composition compatibility”). Alternatively, the Lüders rule
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can be derived by the combined assumptions of (i) “strong indistinguishability”,
stating that a sequence of measurements performed on one or more subsystems
cannot distinguish between different preparations of the same joint state, and (ii)
“ideality”, according to which a measurement does not change the state of the system
if the outcome is certain.

In Part II, our focus will be on uncertainty relations. Preparational uncertainty
relations describe the impossibility of preparing a quantum system in such a way that
the uncertainties relating to two or more incompatible observables take arbitrarily
small values. Heisenberg’s relation [99] concerning the product of the variances
of position and momentum distributions is a notable example of preparational
uncertainty relation. Others include entropic inequalities [55, 178] and support
inequalities [64, 173]. In support inequalities, the uncertainty of a state with respect
to a basis is quantified by the support size, i.e. the number of non-zero expansion
coefficients of a Hilbert space vector expressed in that orthonormal basis.

Chap. 4 deals with an additive support uncertainty relation introduced by Tao
[173] which holds for the computational and Fourier bases in prime-dimensional
Hilbert spaces. Tao’s uncertainty relation finds applications in quantum foundations
[7, 51, 52] but also in signal processing and recovery [38, 39]. Our work establishes
that this inequality remains valid for any pair of bases selected from the standard
complete set of (d + 1) mutually unbiased (MU) bases existing in a Hilbert space
of prime dimension d. This result allows us to construct a generalised uncertainty
relation that encompasses the supports across all (d+ 1) MU bases. The bound we
obtain appears to be sharp for dimension three only. Analytic and numerical results
for prime dimensions up to nineteen suggest that the bound cannot be saturated
in general. For prime dimensions two to seven, we construct sharp bounds on the
support sizes in (d+ 1) MU bases and identify some of the states achieving them.
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Introduction

Experimental evidence for the state change of a quantum system induced by mea-
surements has been available since 1925. Using a cloud chamber, Compton and
Simon [44] studied the scattering of “x-ray quanta” by electrons. They discovered
that the angle characterising the path of the recoiling electron and the angle of the
photon scattering direction are strongly correlated. Knowing one of them is suffi-
cient to determine where the particles interacted. According to von Neumann [177],
this experiment implements two subsequent measurements of one single observable,
which outputs the spatial coordinate of the interaction locus. The measurements of
the angles can be carried out in arbitrary temporal order and in quick succession,
leading to identical results. The resulting deterministic repeatability is argued by
von Neumann to be equivalent to assuming the projection postulate: immediately
after measuring an observable with non-degenerate eigenvalues, a quantum system
will reside in the unique eigenstate associated with the observed outcome. This is
in stark contrast to classical mechanics, where measurements reveal pre-existent
properties of the probed systems without affecting their state, given by a point in
phase space.

The incompatibility between the linear, deterministic time evolution of states
and the non-linear, stochastic nature of the collapse induced by measurements is
commonly referred to as the measurement problem. Different interpretations of
quantum theory have been developed to try and resolve or “explain away” the
measurement problem. These include interpretations that do not require objective
“quantum jumps” (e.g. Many Worlds [57]), and others that try to describe them as
manifestations of a fundamental stochastic dynamical law that operates at all times
(e.g. GRW [83]).

16
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The work presented in this part of the thesis does not directly delve into the
interpretational issues surrounding measurements in quantum mechanics. Instead,
we adopt an operational approach to address three main questions:

1. What is the role of the projection postulate within quantum theory? In other
words, what are the conceptual and practical consequences of incorporating
the collapse in the set of postulates?

2. Do alternatives to the projection postulate exist that give rise to self-consistent
physical theories?

3. Are there collapse-dependent properties unique to quantum theory? In other
words, can we identify operational principles that distinguish quantum me-
chanics from alternative theories with different post-measurement states?

To explore these questions, we will construct foils of quantum theory in a precise
way: all standard postulates will remain unchanged, except for Lüders’ projection
postulate, which will be replaced by different rules for state updates.

The idea of constructing foil theories by modifying one or more axioms of
quantum theory has been applied in various contexts. For example, previous studies
have explored quantum-like theories with non-linear dynamical rules [5, 26, 71,
119, 151, 152, 179, 188], in contrast to the linear Schrödinger equation, or with a
different method for calculating outcome probabilities [79, 80, 82, 101]. The resulting
deviations from quantum mechanics have helped to illustrate the extent to which
quantum theory relies on the original postulate. One example is the work of Gisin et
al. [18, 85, 147, 163] who showed that nonlinear variants of Schrödinger’s equation
may enable superluminal communication between distant parties. However, the
fact that Gisin’s argument does not apply to all nonlinear transformations [45, 46,
71, 72, 101, 118–120, 151, 152] sparked further research on the potential inclusion
of nonlinear deterministic dynamics into quantum theory. Recently, Wilson and
Ormrod [182] demonstrated how the linear and unitary deterministic dynamics
of quantum systems can be derived from the assumption of “local applicability”,
provided the other standard postulates of quantum theory are in place.

In the more specific context of modifications to the projection postulate, we ac-
knowledge Kent’s causal quantum theory [116, 117] which posits that the Lüders collapse
is a well-defined physical process that satisfies strict local causality. Namely, only
measurements carried out in the causal past of a quantum system can affect its state.
Notably, the demand for self-consistency in causal quantum theory requires that the



18 Introduction

notion of observable be also adjusted: “sharp” observables cannot be probed, imply-
ing that all measurements are inherently fuzzy and imprecise. Furthermore, Kent’s
hypothetical readout devices [118–120] represent an alternative class of measure-
ments, introduced alongside standard quantum measurements. They are postulated
to reveal (complete or partial) information about the local state of a system without
disturbing its quantum state. The local state is defined to be the density operator
obtained after accounting only for the measurement events which have taken place
in the causal past.

In analogy with causal quantum theory, the foil theories presented in this docu-
ment make distinct predictions from standard quantum mechanics due to a funda-
mental revision of the rule for state updates. However, they serve different purposes.
Causal quantum theory aims to reconcile locality with the observed violation of
Bell’s inequality in a way that can be potentially tested experimentally, and proposes
a specific solution to the measurement problem, involving the collapse as a physical
reality. In contrast, our toy models are not intended as post-quantum theories
but rather function as hypothetical tools to explore the role and uniqueness of the
collapse, as expressed by the three questions outlined earlier.

Conceptually, our approach is inspired by the success of applying a similar
strategy to foundational topics in quantum theory using Generalised Probabilistic
Theories (GPTs) [16, 91]. They contain both quantum and classical mechanics as
special cases, among other hypothetical but structurally similar theories. Features
such as the no-cloning theorem [14, 16], steering [170] or uncertainty relations [141]
can also be derived for these no-signalling foil theories. Interestingly, GPTs may
exhibit correlations stronger than those produced by quantum theory [148], and
constructions other than the traditional tensor product can be used to describe
composite systems [110, 181]. By understanding the specific options realised in
quantum theory, one hopes to explain why nature seems to “prefer” those options
over others.

To address the first of the three questions, we will discuss a toy model called passive
quantum theory (pQT) which assumes that measuring any observable causes no state
update. In this model, non-collapsing measurement devices, as introduced in [3],
replace standard quantum measurements rather than augmenting them. Consequently,
repeated measurements of the same observable yield outcomes according to the same
probability distribution. Although pQT shares many features with standard quantum
theory, it is manifestly different from it. As a foil theory, pQT does not aim to
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reproduce quantum theory, unlike unitary models that try to eliminate the need for
a projection postulate. Passive measurements have far-reaching consequences, both
from a conceptual and an applied point of view. Suspending the collapse highlights
the subtle ways in which the projection postulate shapes quantum theory. In fact,
some concepts of quantum theory turn out to be equivalent as a result of the non-
trivial state update described by the Lüders projection. For instance, “proper” and
“improper” mixtures can be distinguished by non-collapsing measurements [33, 119].
As a consequence, density operators do not always provide a complete description of
the observable properties of a system. Furthermore, there exist distinct experimental
procedures to measure local observables which are equivalent in quantum theory
but lead to different joint outcome probabilities in pQT. In particular, without the
projective state-update after measurements, spatially separated parties may not
register nonlocal correlations, making passive quantum theory a fully local theory.
However, it still cannot be reproduced by a non-contextual hidden variable model.

The passive measurements of pQT represent an alternative to the projection
postulate that results in a self-consistent, no-signalling quantum-like theory [119,
120]. To address the second question and explore what other postulated measurement
behaviours give rise to operationally valid alternatives to quantum theory, we
will formalise the concept of an update rule based on a small set of operational
assumptions. An update rule serves as a map that describes how states transform
following a measurement on any given system. We will use this concept, along
with the remaining postulates of quantum theory, to construct the framework of
Alternative-Measurement Theories (AMTs). Both pQT and quantum theory—despite
not being an ‘alternative’—are examples of AMTs.

To address the third question, we will consider the entire framework of AMTs,
rather than individual toy models. Our investigation aims to determine whether
the properties identified through the comparison with pQT, which rely on the
collapse, are unique to quantum theory (and therefore equivalent to assuming the
standard projection postulate) or more commonly found within AMTs. We will show,
in accordance with results in [37, 50], that the combination of two assumptions,
namely the (strong) indistinguishability of preparations and ideality, precisely define
quantum theory within the AMT set. A comparable argument cannot be made for
deterministic repeatability alone, as indicated by the differing predictions between
the Lüders rule of quantum theory and von Neumann’s original projection postulate.
However, we will prove that the Lüders rule for single systems can be derived uniquely
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by imposing a trade-off between the information gained from measurements and the
resulting disturbance applied to the systems.

Besides identifying operational principles that can distinguish the quantum
mechanical update rule from all possible alternatives, our approach suggests exploring
toy models capable of faithfully reproducing quantum measurements. We will show
that “linear” AMTs constitute a class of “mutually simulable” theories. That is, any
AMT characterised by an update rule giving rise to linear instruments can reproduce
the experimental predictions of quantum theory, despite being manifestly different
from it.

Part I of the thesis is organised as follows. Chap. 1 provides a brief discussion
on the standard axiomatisation of quantum theory and introduces the concept of
instruments, which will play a key role in the subsequent two chapters. Additionally,
we examine the apparent incompleteness of the standard set of axioms and review
some of the main criticisms that have been raised in the past.

In Chap. 2, we describe passive quantum theory (pQT) and conduct a comprehen-
sive comparison with quantum theory to elucidate the extent to which its properties
rely on the standard measurement postulate. A key distinction between the two
theories is the possibility in pQT to observe the state of an individual system. The
idea of states being observable properties has been explored in the past; therefore, we
begin the chapter by reviewing earlier work on the topic and its connection to pQT.
We corroborate that passive quantum theory provides a consistent no-signalling foil
of quantum theory that is not locally tomographic. However, we find that it is able
to “simulate” standard quantum measurements, provided that some operational
restrictions—such as a finite time delay for the “projection” to occur—are satisfied.
Additionally, we present a deterministic and local hidden variable model which is
compatible with the predictions of pQT, and we review how the modification of the
axiom changes the computational capabilities of the theory.

In Chap. 3, we formalise the concept of an update rule and use it to define
Alternative-Measurement Theories. We examine and justify the basic assumptions
underlying the AMT framework, namely context-independence and non-relativistic no-
signalling, and we motivate why complete positivity is unfit to construct a framework
of theories where the state updates can be nonlinear. Within each AMT, we define
generalised instruments and observables, allowing us to describe how one AMT can
simulate measurements of another AMT. We then show that ideality, completeness
of the density matrix description and information-disturbance trade-offs can serve
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as operational properties from which the quantum mechanical update rule can
be derived. We also discuss how our work aligns with—and differs from—earlier
works deriving the mathematical description of deterministic transformations of
quantum states [182] or of quantum measurements [76, 132, 168] from a small set
of assumptions. The AMT framework remains largely unexplored, and Chap. 3
concludes by discussing potential avenues for future research. These include the
search for a “nonlinear” AMTs (or proving its non-existence) that can simulate
quantum mechanics, exploration of how local tomography and restrictions on multi-
partite correlations impact the set of toy models, and the generalization of core
concepts to different mathematical structures, such as that of GPTs.
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Quantum theory with collapsing
measurements

The goal of this chapter is to offer a concise overview of the standard postulates of
quantum theory. After presenting their content (Sec. 1.1), we will take a closer look at
the role of measurements (Sec. 1.2). In particular, we will compare the Lüders collapse
with von Neumann’s original projection postulate and we will address the formulation
of the theory in terms of generalised measurements (or POVMs). Channels and
instruments will then be introduced as tools to describe the deterministic and
probabilistic transformations of states, respectively (Sec. 1.3). Moreover, we will
survey some common criticisms of the standard Copenhagen-type framework and
explore efforts to establish alternative axiomatisations (Sec. 1.4). The chapter
will conclude with a section on the role of foil theories in investigating the unique
properties of quantum mechanics (Sec. 1.5).

Throughout this document, we will be using standard concepts such as bounded
operators L ∈ L(H) on a complex, finite-dimensional Hilbert space H, self-adjoint
operators M ∈ Ls(H), projectors Π ∈ P(H), unitaries U ∈ U(H) and density
matrices ρ ∈ S(H). A list of definitions can be found in Appendix A.1.

1.1 The standard postulates of quantum theory

The mathematical description of a physical system typically starts with specifying the
states it might reside in as well as their time evolution. It is also necessary to indicate
how observable quantities are represented in the theory and how composition of
systems is described. Finally, the theory must be connected with observations made

22
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by measurements so that theoretical predictions can be compared to experimental
data.

The set of postulates presented in this section, often referred to as the standard
formulation of quantum theory in finite dimensions, builds upon von Neumann’s
axiomatisation of 1932 [177]. While the precise number of postulates may differ
across sources [112, 140, 149], they all share the common framework of describing the
theory in terms of complex Hilbert spaces and the associated operators. The first four
axioms establish the mathematical stage, while the last two regulate the probabilistic
occurrence of measurement outcomes and the conditional post-measurement states.

(S) To every physical system there corresponds a complex, separable and finite-
dimensional Hilbert space, H = Cd, and the states correspond to rays |ψ⟩ ∈ H
or, more generally, to density operators ρ ∈ S(H).

(T) Reversible transformations, including the time evolution of quantum states,
are described by unitary maps of the form ρ 7→ UρU †, with U ∈ U(H).

(C) The state space of a composite system is obtained from tensoring the Hilbert
spaces describing its constituent parts.

(O) Observable quantities are represented by self-adjoint operators M ∈ Ls(H).
The eigenvalues mx of M represent the possible outcomes of a measurement of
the corresponding observable.

(P) The probability that a measurement of the observable represented by M returns
the outcome mx is given by the Born rule

p(mx) = Tr (Πx ρ) (1.1)

where Πx ∈ P(H) projects onto the eigenspace of M with eigenvalue mx and ρ
is the state of the system when the measurement happens.

(ML) If a measurement outputs the outcome mx, then the pre-measurement state
ρ ∈ S(H) is updated to the normalised post-measurement state according to
the Lüders rule wL:

ρ
mx7−→ wL (Πx, ρ) = Πx ρΠx

Tr (Πx ρ)
. (1.2)
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1.2 Quantum measurements

1.2.1 The measurement problem

When viewed as a physical theory describing an objective reality independent of the
observer, quantum mechanics appears to be incomplete in the following sense. A
realist perspective suggests that measurements should be regarded as an “emergent”
phenomenon, resulting from the the chain of interactions between a “measured”
system and the physical constituents making up a “measuring” apparatus. To simply
assume the probabilistic nature of measurements and their influence on states—
Axioms (O), (P) and (ML)—, without providing an explanation of how these features
emerge from more fundamental interactions, is an indication of this incompleteness.
One can argue that the issue of incompleteness does not arise if the formalism is
viewed operationally, i.e. as a mere toolset for obtaining (objective or subjective)
probabilities about future experiments.

The so-called measurement problem captures, at least in part, this enigma. It
refers to the question of how to reconcile the linear time evolution of states with
the observed definiteness of measurement outcomes. According to Axiom (ML), a
measurement causes a superposition of states to collapse to a single definite state.
However, assuming an irreversible collapse merely shifts the problem to how to
reconcile the unitary dynamics of the Schrödinger equation with the seemingly
instantaneous projection occurring during the measurement process.

Numerous attempts have been made to address the measurement problem. They
usually fall into two categories: interpretational attempts, which propose alternative
interpretations of quantum theory without altering its predictions, or modifications of
quantum theory, which suggest changes or additions to the mathematical formalism.
Among the proposed solutions, we acknowledge the Many-Worlds interpretation
[57], which posits that the wave function never collapses, and instead, the observer
and the observed become entangled in a larger system. Other approaches, such as
quantum decoherence [157], argue that interactions between a quantum system and
its environment give the appearance of wave function collapse. Objective collapse
theories [17, 19, 83] suggest modifying quantum mechanics in such a way that it
includes a mechanism for spontaneous wave function collapse. However, opinions
about the proposed solutions remain divided, and the measurement problem continues
to be an active area of research.
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The work presented in this document does not delve into the complexities of
the measurement problem. Instead, our objective is to explore the implications and
distinctive features of the projection postulate. To achieve this, we will construct foil
theories by substituting Axiom (ML) with (MP) and (MA), introduced in Chap. 2 and
3, respectively. Therefore, measurements will continue to be considered a primitive
concept in the toy theories generated through our approach.

1.2.2 Lüders’ and von Neumann’s projection postulates

Modern formalisations of quantum theory generally employ the projection postulate
as presented by Lüders in 1950 [128], rather than the version introduced by von Neu-
mann in [177]. Von Neumann’s postulate, in fact, failed to identify post-measurement
states following the measurement of a degenerate observable, i.e. where at least one
eigenvalue has multiplicity greater than one. The original collapse postulate can be
formalised as follows:

(MvN) If a measurement of a non-degenerate observable represented by M outputs
the outcome mx, then the pre-measurement state is updated with the unique
eigenstate of M associated to mx.

In [177], von Neumann describes the outcome degeneracy of quantum measurements
as resulting from classical post-processing of more fundamental non-degenerate
measurements. In other words, according to von Neumann, one does not directly
implement a measurement of a degenerate observable M ; instead, a measurement of
a non-degenerate refinement M ′ commuting with M is carried out, and the outcomes
are coarse-grained. However, this approach presents a challenge: for any given
degenerate observable, there exist infinitely many possible refinements, leading to
an infinite number of possible post-measurement mixtures. For example, given any
orthonormal basis {|ei⟩}di=1 of H, the observable M ′ = ∑d

i=1 λi|ei⟩⟨ei|, with λi ∈ R
for all i and λi ̸= λj for i ̸= j, is a refinement of the identity, M = I.

The lack of an unambiguous assignment of output states in the degenerate case was
the primary reason that led Lüders to introduce his revised postulate. With Axiom
(ML), Lüders preserves the observed repeatability of measurement outcomes while
introducing a trade-off between the information acquired from the measurement
and the irreversible “disturbance” imposed on the system. Lüders justifies this
replacement by considering the special case of a trivial measurement represented by
the identity I, which, according to von Neumann, significantly disturbs the system
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to the extent that it can result in any state, while simultaneously providing no
information about its initial preparation. In contrast, Lüders’ axiom ensures that
measuring I is operationally equivalent to not performing any measurement.

1.2.3 Generalised measurements and POVMs

Some versions of the standard postulates prefer to adopt the broader notion of
generalised measurements—or generalised observables—to characterise observable
quantities of quantum systems. The ensuing axiom, taken from [140], would then
read
(gO) Observable quantities are represented by collections M = {Mx}x of measurement

operators Mx ∈ L(H) satisfying the completeness equation∑xM
†
xMx = I. Each

Mx corresponds to a possible outcome of a measurement of M.
The Hermitian operators appearing in (O) form the strict subset of sharp observables
[37]. We will often denote sharp observables by the corresponding set of orthogonal
projectors, rather than by the Hermitian operator.

There exists a close relationship between generalised measurements and Positive
Operator-Valued Measures (POVMs), i.e. collections {Ex}x of effects, positive semi-
definite operators Ex ≥ O that sum to the identity ∑xEx = Id. To each generalised
measurement, in fact, there corresponds a unique POVM via the relation Ex = M †

xMx

for all x.
For generalised measurements, the Born rule reads

p(x) = Tr
(
M †

xMx ρ
)
, (1.3)

whereas the Lüders rule is written as

ρ
x7−→ Mx ρM

†
x

Tr(M †
xMx ρ)

. (1.4)

If instead POVMs are postulated, then the Born rule is modified accordingly,

p(x) = Tr (Exρ) , (1.5)

but no equivalent of Lüders rule can be specified only using the POVM elements.
POVMs are often preferred in scenarios where the post-measurement state is of no
interest.

Naimark’s dilation theorem [138, 144] shows that any generalised measurement
can be modelled by performing a sharp measurement on an ancilla after it has been
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coupled to the original system by some unitary operator. Therefore, assuming (gO)
is not necessary. Axiom (O) is sufficient to capture the richness of the quantum
mechanical measurement process.

The possibility to define observable quantities in different ways plays a crucial
role in Gleason-type theorems. Gleason’s theorem [86] from 1957 represents an
attempt to derive some of the standard postulates of quantum theory from the
others, along with more intuitive assumptions.1 The theorem shows that the state
space of quantum theory (S) and the Born rule for outcome probabilities (P) can be
derived for dimensions d > 2 from Axiom (O) and a simple operational definition of
states in terms of probability assignments. Gleason-type theorems aim to generalise
this result by including qubits. However, all known generalisations rely on stronger
assumptions concerning observables, such as (gO) or other related assumptions that
include specific classes of unsharp observables [34, 41, 76, 186].

1.2.4 Measurements on subsystems

The Lüders postulate (ML) introduced in Sec. 1.1 describes the state change of a
single quantum system HA as a result of a measurement performed on it,

wL
A (Πx, ρ) = Πx ρΠx

Tr (Πx ρ)
. (1.6)

We will use subscripts to indicate the system for which the transformation yields the
output state. In the case of a generic single system, we will use the label ‘A’.

Eq. (1.6) does not address, however, what happens to a composite system following
a measurement on one of its constituents. In other words, the map does not describe
the state change of a quantum system as a result of a measurement performed on a
possibly distant, entangled system. Normally, one “extends” wL

A to a rule wL
AB for

bipartite systems HA ⊗ HB in the following way. Given an initial joint state ρAB, a
measurement performed on subsystem ‘A’ with outcome represented by Πx ∈ P(HA)
induces a state-update of the form

ρAB
xA7−→ wL

AB (Πx, ρAB) = (Πx ⊗ IB) ρAB (Πx ⊗ IB)
Tr (Πx ⊗ IB ρAB) . (1.7)

1Naimark’s theorem can be regarded as an example of such effort, allowing (gO) to be replaced
by (O). In a similar spirit, a recent paper by Wilson and Ormrod [182] shows that (T) can be
replaced by an assumption of “local applicability” for deterministic transformations; although it
remains debatable whether “local applicability” is a more intuitive assumption.
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Similar expressions account for measurements on HB and, more generally, on any
component of an arbitrary composite system.

In our notation, wL
AB : P(HA) × S(HA ⊗ HB) → S(HA ⊗ HB) represents the

complete Lüders rule that describes how states in quantum theory update following
measurements on a subsystem. The subscript denotes the composite system for which
the output state is returned, while the constituent on which the measurement is
performed can be inferred from the Hilbert space on which the projector Πx ∈ P(HA)
representing the outcome is defined.

The single-system projection of Eq. (1.6) is implied by Eq. (1.7). Let ρA =
TrB(ρAB), then

wL
A (Πx, ρA) = TrB

[
wL
AB (Πx, ρAB)

]
. (1.8)

Furthermore, notice the following property of the Lüders rule: for arbitrary
Πx ∈ P(HA) and joint states ρAB, we can write

wL
AB (Πx, ρAB) = wL

AB (Πx ⊗ I, ρAB) , (1.9)

where ‘AB’ on the right-hand side is regarded a single system, since Πx ⊗ I ∈
P(HA ⊗ HB). In other words, the maps on the left- and right-hand sides of Eq.
(1.9) are not the same: the first is defined on P(HA) × S(HA ⊗ HB) and describes a
measurement on subsystem ‘A’, whereas the second acts on P(HA⊗HB)×S(HA⊗HB)
and describes a measurement on ‘AB’. Therefore, in quantum theory, a measurement
on subsystem ‘A’ with outcome represented by Πx is operationally equivalent to a
measurement on the composite system ‘AB’ with outcome represented by Πx ⊗ I.
Both scenarios lead to the same update of the joint state.

Eq. (1.7) provides a natural but not unique way to extend Eq. (1.6) to composite
systems. For example, the mapping

w̃L
AB (Πx, ρAB) = wL

A (Πx,TrB (ρAB)) ⊗ TrA (ρAB) (1.10)

assigns different post-measurement states to composite systems while still being
compatible with the Lüders projection for single systems,

wL
A (Πx, ρA) = TrB

[
w̃L
AB (Πx, ρAB)

]
. (1.11)

We conclude that the standard axioms of quantum theory, in the form presented
in Sec. 1.1 which can be found in [140, 149], are incomplete from an operational
standpoint. To describe quantum mechanical state updates in both single and
composite systems, Axiom (ML) needs to be replaced by a more general axiom:
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(ML
⊗) If a measurement on system ‘A’ outputs the outcome x, then the joint pre-

measurement state ρAB of the composite system ‘AB’ is updated to the nor-
malised joint post-measurement state according to the Lüders rule wL:

ρAB
xA7−→ wL

AB (Πx, ρAB) = (Πx ⊗ IB) ρAB (Πx ⊗ IB)
Tr (Πx ⊗ IB ρAB) . (1.12)

By extending the Lüders projection to composite systems, we can more easily for-
mulate certain properties of quantum theory, such as (non-relativistic) no-signalling.
For all ρAB ∈ S(HA ⊗ HB) and all observables2 {Πx}x on HA,∑

x

p(x) TrA
[
wL
AB (Πx, ρAB)

]
= TrA (ρAB) (1.13)

describes the fact that un-conditional measurements on subsystem ‘A’ do not alter
the reduced state of (the possibly distant) subsystem ‘B’. A similar equation accounts
for measurements on subsystem ‘B’. Consequently, “local” measurements on quantum
systems cannot be used to send signals to distant parties.

1.3 Quantum operations

In quantum theory, a state will change either due to unitary evolution or to measure-
ments. The overall effect of any sequence composed of deterministic and probabilistic
transformations, possibly executed with the mediation of ancillary systems, can be
modelled by a quantum operation. It is a mapping from the set of density operators
S(H) to the set of sub-normalised states

S̄(H) = {ρ ∈ Ls(H) : ρ ≥ O, 0 ≤ Tr(ρ) ≤ 1} . (1.14)

Different realisations of the same state ρ cannot be distinguished by unitary trans-
formations or quantum measurements. Any operation N , in fact, preserves convex
combinations,

N
(

N∑
i=1

piρi

)
=

N∑
i=1

pi N (ρi) (1.15)

for all ρi ∈ S(H) and 0 ≤ pi ≤ 1, ∑i pi = 1. A mapping N satisfying Eq. (1.15) has
a unique linear extension to L(H) and, in fact, operations are usually defined on
this larger space [97].

2As mentioned in Sec. 1.2.3, we will often denote sharp observables by the corresponding set of
orthogonal projectors, rather than by the associated Hermitian operator.
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Definition 1. A mapping N on L(H) is a quantum operation if it is
• linear : N (c1L1+c2L2) = c1 N (L1)+c2 N (L2), for all c1, c2 ∈ C, L1, L2 ∈ L(H);

• completely positive: the map N ⊗ I on L(H ⊗ H′) is positive for all finite
dimensional extensions H′;

• trace non-increasing: Tr[N (L)] ≤ Tr(L) for all L ∈ L(H).

1.3.1 Channels

The set of quantum channels is defined as the strict subset of quantum operations
that are trace-preserving, Tr[N (L)] = Tr(L). They represent the most general
deterministic transformations of quantum states. Throughout the document, we will
denote channels with the letter η. Stinespring’s dilation theorem [144, 171] asserts
that for any channel η there exists a Hilbert space HE, a (pure) state ξ ∈ S(HE)
and a unitary operator U ∈ U(H ⊗ HE) such that

η (ρ) = TrE
[
U ρ⊗ ξ U †

]
. (1.16)

This means that every channel can be understood as the result of an interaction
between the system and a suitable environment. Furthermore, there are multiple
experimental setups that can give rise to the same channel, as the corresponding
dilation ⟨HE, U, ξ⟩ is not unique.

1.3.2 Instruments

Instruments serve as a valuable tool for describing the effect on the state of different
strategies to measure an observable.

Definition 2. Let M = ∑
x∈X mxΠx be an observable of H. A M -compatible

quantum instrument is a collection of maps {ωx}x∈X such that
• For each x ∈ X, ωx is a quantum operation;

• Tr[ωx(ρ)] = Tr(Πxρ) for all ρ ∈ S(H).

Note that an instrument is usually defined as a mapping from an outcome space
(X,Σ) to the set of quantum operations [97]. However, since we will only deal with
discrete observables, a compatible instrument is completely determined by the finite
set of operations described in Def. 2.
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If a measurement of M is performed on the quantum state ρ, the resulting un-
normalized post-measurement state conditioned on the outcome mx is represented
by ωx(ρ). The un-conditional output state is instead given by ωX(ρ) = ∑

x∈X ωx(ρ),
where ωX defines a quantum channel. If a measurement of N = ∑

y∈Y nyΠy is
performed immediately after the measurement of M , the joint sequential probabilities
can be expressed as

p(o1 = mx, o2 = ny) = Tr[Πy ωx(ρ)] , (1.17)

where o1 and o2 denote the random variables corresponding to the first and second
outcomes of the time-ordered sequence, respectively. For each observable M , there
are infinitely many M -compatible quantum instruments that describe different
post-measurement states for the system.

The Lüders instrument holds a significant place in quantum theory. For any (not
necessarily normalised) state ρ and any outcome Πx of a sharp measurement, it is
composed of maps of the form

ωL
x(ρ) = Πx ρΠx . (1.18)

When convenient, we will use the operator Πx as a subscript, rather than the label x,
i.e. ωL

Πx
(ρ). The Lüders instrument is related to the Lüders rule for single systems

wL appearing in (ML)—cf. (1.2)—via

ωL
x(ρ) = Tr (Πxρ) wL

x

(
ρ

Tr(ρ)

)
, (1.19)

where we set ωL
x(O) = O, with O being the zero operator. Note that the single-system

Lüders rule wL was only defined on normalised states, thus the need to divide by
the trace of ρ ∈ S̄(H). While wL is nonlinear over S̄(H), the associated instrument
map ωL in Eq. (1.18) is obviously linear.

A theorem by Ozawa [97, 142], which follows from Stinespring’s dilation theorem,
justifies thinking of the Lüders instrument as the fundamental description of the
operational effects of quantum measurements, in line with its status of axiom of the
theory. Before stating the result, we need to define the notion of a measurement
model [97].

Definition 3. Let M = {Mx}x be a generalised observable on a system associated
with the Hilbert space H. Let HE be a Hilbert space (associated to an ancillary
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system), ξ ∈ S(HE) a pure state, U ∈ U(H⊗HE) and N = ∑
x nx|nx⟩⟨nx| ∈ Ls(HE).

The quadruple M = ⟨HE, ξ, U,N⟩ is a measurement model of M if it satisfies the
probability reproducibility condition,

Tr
[
(I ⊗ |nx⟩⟨nx|)U (ρ⊗ ξ)U †

]
= Tr

(
M †

xMxρ
)
, (1.20)

for all ρ ∈ S(H) and Mx ∈ M.

Ozawa showed that for any quantum instrument {ωx}x compatible with some
generalised observable M = {Mx}x, there exists a measurement model M =
⟨HE, ξ, U,N⟩ of M such that

ωx(ρ) = TrE
[
(I ⊗ |nx⟩⟨nx|)U (ρ⊗ ξ)U † (I ⊗ |nx⟩⟨nx|)

]
(1.21a)

= TrE
[
ωL

I⊗ |nx⟩⟨nx|

(
Uρ⊗ ξU †

)]
. (1.21b)

Eq. (1.21b) implies that all quantum instruments, whether they describe sharp or
unsharp measurements, can be obtained by carrying out a sharp Lüders measurement
on an ancilla that is suitably coupled with the system. Therefore, not only is it
sufficient to consider sharp observables as fundamental (see Sec. 1.2.3), but also the
Lüders projection (ML

⊗) is sufficient to capture the full range of quantum instruments.
A theorem due to Hayashi [94, 97] reinforces this idea, showing that every quantum
instrument compatible with a discrete (generalised) observable M = {Mx}x can be
expressed as a post-processing of the state obtained from a Lüders measurement of
the same observable,

ωx = ηx ◦ ωL
x , (1.22)

where {ηx}x is a set of outcome-dependent quantum channels.

1.4 Alternative axiomatisations

Quantum mechanics has been remarkably successful in explaining experimental
observations at small scales. However, the standard postulates do not provide a
physical explanation for its empirical success. They associate mathematical objects
with physical quantities without identifying underlying physical principles that would
justify this connection.

Numerous attempts have been made to formulate quantum theory in different
terms. Von Neumann and Birkhoff developed “quantum logic” as a logical foundation
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for quantum theory [28]. Their approach, however, did not eliminate—or justify—
the underlying Hilbert space structure. More recently, researchers have turned
to information-theoretic [42, 49, 91, 133] or operational [129, 131] approaches to
identify fundamental principles that could serve as the basis for quantum theory.
None of these efforts has gained sufficient traction to replace the established Hilbert
space-based formalism as the standard formulation of quantum mechanics.

The separate treatment of space and time in quantum mechanics has also been
the subject of criticism. The Sum-Over-Histories approach [73], which is central
to the interpretation of quantum mechanics known as quantum measure theory [43,
65, 165], is based on concepts such as events and histories that are defined on the
four-dimensional manifold of spacetime. By taking special relativity into account
from the outset, quantum measure theory seeks to reframe quantum theory in the
language of logic, without relying on the Hilbert space setting and its resulting view
of a state as a description of a system in three-dimensional space evolving with
respect to absolute time via Schrödinger’s equation. Despite these efforts, a complete
characterization of quantum theory in measure-theoretical terms has not yet been
achieved.

1.5 Beyond quantum theory

It remains unclear which properties of quantum theory can be deemed genuinely
non-classical, and why Nature appears to exclude “superquantum” features. To
try and investigate the distinctive characteristics of quantum theory, it is useful to
embed it in a larger family of theories that are structurally similar.

The framework of Generalised Probabilistic Theories (GPTs) introduces opera-
tional theories defined by their own sets of states (S), observables (O), and rules
for system composition (C). Properties such as the no-cloning theorem, uncertainty
relations or teleportation were shown to hold for some GPTs as well. Many models,
importantly, exhibit superquantum correlations, e.g. Boxworld [89], and one can
define GPTs that share the same set of correlations with quantum theory [185].

Another approach consists of ontological models which assume that all properties
of a system at any given time are determined by an objective, observer-independent
“ontic state” (encoded in “hidden variables”). Outcome probabilities typically emerge
from the inaccessible nature of the ontic state, in constrast with operational theories
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in which probabilities represent a primitive concept. Thus, the quantum state of
a system corresponds to a probability distribution over the underlying ontic space.
Spekkens’ toy model [167] is a prominent example of a hidden variable theory that
replicates many features that are generally regarded as quantum, including the
complementarity of observables, remote steering, teleportation, superdense coding
and interference phenomena [40, 93]. It does not, however, replicate nonlocal
correlations, contextuality or the computational speedup over classical algorithms
[124]. Spekkens’ theory continues to be a subject of active research.

Constructing foil theories by modifying specific postulates of quantum theory
has been instructive to reveal which features of the theory depend on which of its
underlying assumptions. Examples include modifications of the Born rule (P) [79,
80, 82, 101], substitution of the standard tensor product used in (C) with minimum
or maximum tensor products [15, 110] and restriction of the observables in (O) to
PT-symmetric [23] or normal [154] operators. Other examples involve formulating
quantum theory over different number fields, such as the real numbers [153, 172] or
quaternions [74]. Kent’s causal quantum theory [116, 117] represents an attempt to
modify the projection postulate (ML) in a way that rules out any “spooky action
at a distance” while maintaining the same local predictions as standard quantum
theory. Additionally, readout devices [118–120] exemplify types of measurements that
can be consistently added to (or replace) the standard collapse-inducing quantum
measurements. In particular, supplementing standard quantum measurements with
non-collapsing ones has been shown to provide computational and communication
advantages [2–4, 137].

Nonlinear generalisations of Schrödinger’s equation (cf. (T)) have been suggested,
most notably in Weinberg’s work [179] which, according to Gisin [85] and Polchinski
[147], allows for superluminal communication. Gisin argues [18, 163] that, in order
to avoid superluminal signalling, the dynamics of quantum systems must necessarily
be described by completely positive linear maps on density matrices. However,
nonlinear transformations do exist [45, 46, 71, 72, 101, 119, 120, 151, 152] that do
not lead to signalling, suggesting a re-examination of Gisin’s argument.
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A quantum theory with non-collapsing
measurements

In this chapter, we will introduce and explore “passive quantum theory” (pQT), a foil
of non-relativistic quantum theory defined by measurements that do not alter the state
of a measured system (Sec. 2.1). Before describing the modified measurement process
in more detail (Sec. 2.3), we embed pQT in the context of earlier work introducing
hypothetical measurements allowing one to observe the state of an individual system
(Sec. 2.2). Next, we will turn to exploring differences and similarities of pQT
with quantum theory. The comparison aims at highlighting aspects of quantum
theory that depend on the standard projection postulate. Specifically, we investigate
the operational equivalence of two different strategies to measure observables on
composite systems (Sec. 2.3.2), the modified ontology of states (Sec. 2.4), nonlinear
state transformations (Secs. 2.5 and 2.7), locality and contextuality (Secs. 2.8 to
2.10) and the computational power of the foil theory (Sec. 2.11).

2.1 The postulates of passive quantum theory

Passive quantum theory (pQT) is defined by the same set of postulates as quantum
theory (see Sec. 1.1), namely (S), (T), (C), (O) and (P), except for the Lüders rule
(ML). We replace (ML) by the postulate (MP) which defines passive measurements,
denoting pure states in pQT (or p-states) by |⌢ψ⟩.
(MP) A system resides in the same p-state |⌢ψ⟩ before and after measuring an observ-

able.
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It is sufficient to consider pure states to account for the modified measurement
behaviour. The generalisation to density operators is implied and will be addressed
in Sec. 2.4.

Measurements in pQT provide information about the state of a system in the form
of a single outcome, as they do in quantum theory. They are, however, fundamentally
passive in the sense that the trivial update rule (MP) causes no disturbance to the
system.1 With only one type of time evolution, the toy model does not exhibit the
tension between the unitary dynamics of a quantum system and its probabilistic
evolution due to measurements.2 Nevertheless, a substantial part of the measurement
problem persists in pQT: Axiom (T) cannot explain the emergence of measurement
outcomes as postulated in (O); it remains unclear when and why a measurement
actually happens.

The foil theory pQT does not represent an interpretation of quantum theory,
as its predictions differ. Proposals of unitary quantum mechanics, such as modal
interpretations [60], Bohm’s theory [29] or the relative-state approach [57], aim to
eliminate the projection postulate but do not change the predictions of quantum
theory.

Replacing (ML) by (MP) has the striking consequence that p-states become
observable (see Sec. 2.3.1). We will now review earlier contributions where, in one
way or another, both the hypothetical means to observe a quantum state and the
implications thereof are discussed.

2.2 Unconventional measurements: a review

In his 1997 paper [33], Busch imagines the existence of a procedure called individual
state determination (ISD) which allows one to directly observe the state (i.e. the
density operator) of an individual quantum system. Drawing on earlier work on
state discrimination [59, 106, 109, 145], the consequences of an ISD procedure are
explored, highlighting the clashes with standard quantum theory that result.

In quantum theory, it is impossible to reliably discriminate between non-orthogonal
states when a single system is provided, and the state-update rule prevents infor-

1The possibility of non-collapsing measurements was listed by von Neumann [177] as early as
1932 as one of three possible reactions of a physical system to a measurement.

2Replacing (ML) with (MP) differs from augmenting quantum theory with (MP), which would
lead to yet a different theory with three competing “time evolutions”: (T), (ML) and (MP).
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mation about a system being gained without affecting its state. In contrast, an
ISD procedure would allow one to unambiguously identify any state in a set of
unknown non-orthogonal pure states. Proper mixtures, resulting from incomplete
knowledge about the preparation of a system, would no longer be fundamental: any
prior uncertainty about the ‘real’ state of an individual system can be eliminated
using an ISD procedure. The possibility to discern between two preparations of
the same mixed state ρ implies that density operators provide only an incomplete
description of a system [33]. Carrying out an ISD procedure on a subsystem of
an entangled system would reveal the mixed reduced state. Therefore, improper
mixtures, which arise from entanglement with other systems, are observable just
as pure states are [33]. Busch also points out that combining the ISD procedure
with standard collapse-inducing measurements allows distant parties to communicate
superluminally fast.

Throughout, Busch only considers the case of quantum theory augmented by
an ISD procedure. It is instructive to consider an “ISD-only” version of the theory,
in which standard quantum measurements are absent. In such a theory, signalling
between distant parties is not possible, but one can still distinguish between proper
and improper mixtures and discriminate between unknown non-orthogonal states.

The passive measurements of pQT can be used to implement an ISD procedure.
Busch briefly mentions measurements “with no state changes” [33, p. 7] as a possible
method to observe a quantum state, though this is unfeasible in standard quantum
theory. In line with Busch’s argument, passive measurements can be introduced at the
expense of fundamentally changing quantum theory. Consequently, the implications
he describes, e.g. the revised role of mixed states, also apply to pQT—except for
the fact that distant parties cannot use passive measurements to communicate (see
Sec. 2.7). In other words, pQT can be regarded as a “realisation” of the “ISD-only”
version of quantum theory. That being said, the goal of exploring pQT in preparation
for the more general treatment of AMTs differs from the thrust of Busch’s paper,
which is to show how a hypothetical (unspecified) ISD procedure violates accepted
properties of standard, unmodified quantum theory.

Given access to a source of classical randomness, any ISD procedure allows one to
effectively simulate passive measurements, albeit with an inevitable time delay (see
Sec. 2.6). To do so, one first observes the state of an individual system using ISD.
Next, one calculates the associated probability distribution and randomly selects
one outcome based on that distribution. This procedure takes finite time, even if
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done for a second run when the probability distribution is already known. Similarly,
an ISD procedure can be simulated in pQT to arbitrary precision in a finite time
interval since a finite sequence of tomographically complete passive measurements
will reveal the (approximate) state of a system. However, an infinite sequence of
measurements is necessary for exact state reconstruction (Sec. 2.3.1).

In 2005, Kent showed that nonlinear transformations of quantum states do not
necessarily imply superluminal signalling [119], in contrast to Gisin’s argument [18,
85, 147, 163]. The argument is based on a hypothetical state readout device (SRD),
i.e. a measurement device capable to extract the local state of an individual system
without disturbing it. As outlined in the Introduction, the local state denotes the
reduced state of the subsystem accessible to one party subsequent to all (standard,
collapse-inducing) measurements conducted on it or on any system entangled with it
within its causal past. In essence, a measurement performed on another space-like
separated part of the system updates the quantum state of the accessible subsystem—
as prescribed by the projection postulate—but it does not update the local state
instantly. The update only happens once sufficient time has elapsed for a light-speed
signal to propagate between the systems. Consequently, the quantum state and
the local state of a system may temporarily diverge. Thus, the SRD represents one
way among others [45, 46, 71, 72, 101, 151, 152] to implement a nonlinear time
evolution that is not ruled out by Gisin’s argument. In fact, by letting the known
local state determine which unitary gate to apply, an observer can implement any
locally varying nonlinear transformation on S(H).

Kent’s readout device can be thought of as a specific ISD procedure which reveals
the local state of the measured system rather than its quantum state. Consequently,
quantum theory augmented by an SRD exhibits many of the properties outlined by
Busch in [33], without violating the no-signalling requirement. For example, different
preparations of the same mixed state can be distinguished by invoking the SRD just
once. It also becomes possible to effectively clone an initially unknown quantum
state, without violating the (dynamical) no-cloning theorem—cf. Sec. 2.3.1.

Both an SRD and measurements in pQT do not disturb the measured system, nor
do they enable signalling between distant parties. Nevertheless, it seems appropriate
to consider “SRD-augmented” quantum theory and pQT as distinct theories. In
contrast to pQT, in the “SRD-augmented” quantum theory one can still perform
standard measurement-based protocols such as teleportation or entanglement swap-
ping, or violate Bell’s inequalities—cf. Sec. 2.8 and Sec. 2.11. The motivation to
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define the local state (and the reason it differs from the quantum state) rests on
the possibility to collapse quantum states with standard quantum measurements,
which do not exist in pQT. While not explicitly considered in [119], an “SRD-only”
quantum theory—i.e. a theory where standard quantum measurements are absent
(or never performed) but a readout device is assumed to exist—would represent
another specific example of an “ISD-only” theory, using Busch’s terminology. The
“SRD-only” theory will exhibit the same limitations regarding measurement-based
protocols and correlation strength that we will encounter in pQT. Just as a generic
ISD procedure, a state readout device can effectively simulate passive measurements
(modulo a time delay), and vice versa.

In 2016, Aaronson et al. introduced non-collapsing (or passive) measurements to
explore their potential computational advantages [3]. Specifically, they considered a
version of quantum theory augmented by non-adaptive non-collapsing measurements.
Here, non-adaptive means that the outcomes of non-collapsing measurements cannot
be used to determine the unitaries applied later in the circuit. The toy model was
shown to enable efficient solutions to the Graph Isomorphism problem (the task of
determining whether two finite graphs are isomorphic) and to offer improvements
over Grover’s algorithm. However, non-adaptive passive measurements do not allow
NP-hard problems to be solved efficiently. This contrasts with other modifications
of quantum theory—such as nonlinear dynamics, postselection, and changes to the
Born rule—which had been shown to extend the power of quantum computation to
NP or beyond [1, 5]. The results in [3] catalysed further research into non-adaptive
non-collapsing measurements [2, 4, 137] while the computational power of adaptive
non-collapsing measurements remains largely unexplored.

Similar conclusions were drawn in 2021 when Kent also introduced non-collapsing
measurements via the so-called stochastic eigenvalue readout device (SERD). SERDs
were presented alongside several other hypothetical devices to explore alternative
methods for obtaining information about quantum states in theories that involve
localised collapse [120]. A single use of the SRD can simulate a SERD or, equivalently,
a passive measurement, except for an unavoidable finite time delay, while repeated
uses of the SERD allow one to reconstruct the local state [120]. In addition,
invoking an infinite-precision SRD once would enable the solutions of NP problems
in polynomial time, while a SERD only provides partial information about the state,
hence will not be as efficient as an SRD—cf. Sec. 2.11. The foil theory considered
by Aaronson et al. in [3] coincides with “SERD-augmented” quantum theory as
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presented in [120], and it differs from passive quantum theory for the same reasons
as the “SRD-augmented” quantum theory. Importantly, “SERD-only” quantum
theory—where standard quantum measurements are absent—is identical to pQT.

Responding to the claim that the measurement postulates of quantum mechanics
are operationally redundant [132], Kent introduced new hypothetical readout devices
in 2023 [118]. A stochastic positive operator readout device (SPOD) is defined, akin
to a SERD but associated with POVMs instead of PVMs. Generalised measurements
in pQT, discussed in Secs. 2.3.3 and 2.5.4, will correspond to SPODs. In this
paper, Kent also considers the “SERD-only” (and the “SPOD-only”) theory which
is equivalent to pQT, introduced independently3 in [75].

In summary, the idea of extracting information about an unknown quantum
state, a key feature of measurements in pQT, has been addressed in a number of
ways dating back to at least 1997. We are aware of three proposals that are based on
unconventional procedures or devices, with different motivations provided. Firstly,
Busch is interested in exploring the consequences of adding hypothetical procedures
that make the state of quantum systems observable [33]. Any such procedure
would—in the absence of further modifications—clash with fundamental properties of
quantum theory, such as the relativistically motivated no-signalling. Secondly, Kent’s
readout devices [118–120] are meant (i) to illustrate that, upon suitable modifications,
quantum states may evolve nonlinearly without leading to superluminal signalling;
and (ii) to show that alternatives to the standard projection postulate are compatible
with quantum theory, thereby refuting the idea that the standard state update rule
could be derived from the other postulates. Thirdly, Aaronson et al. introduced
non-collapsing measurements alongside collapsing measurements to investigate how
acquiring information about the state of the register at key points in the quantum
circuit could enhance the computational power of the theory [3].

Our own motivation for passive quantum theory, where the state update in a
quantum measurement is suppressed, is to identify those properties of quantum theory
which depend on the standard update, and in which way. Such an investigation has
not yet been carried out systematically.

When discussing pQT, we will revisit and expand upon some established properties
of ISD- or SERD-augmented theories, including, for instance, an argument for the
incompleteness of quantum channels as descriptions of p-state transformations

3Ref. [118] was released in July 2023 (during the final stages of editing of the thesis), i.e. after
the pre-print [75] that introduced passive quantum theory in March 2023.
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(Sec. 2.5.1), an examination of the operational constraints on simulating quantum
measurements within pQT (Sec. 2.6), and a critique of the claim in [163] that Gisin’s
argument (as presented in the paper) does not rely on the projection postulate (Sec.
2.7).

In addition, we establish further properties of pQT, such as the equivalence
(under a reasonable assumption) of postulate (MP) for passive measurements with
sequential commutativity (Sec. 2.3), a discussion on the role of complete positivity
in foils such as pQT with nonlinear instruments (Sec. 2.5.3), and the distinction
between direct and indirect classes of p-instruments (Sec. 2.5.4) which does not
exist in standard quantum theory. We also review contextuality in pQT (Sec. 2.9),
and present a deterministic ontological model compatible with pQT, based on the
so-called “Bell model” [125] (Sec. 2.10). We will indicate throughout how our findings
relate to the earlier work on unconventional measurements summarised above.

2.3 Passive measurements

We begin by discussing passive measurements on single systems (Sec. 2.3.1), then
examine the case of composite systems (Sec. 2.3.2). We conclude with a brief section
on generalised measurements in pQT (Sec. 2.3.3).

2.3.1 Single systems

The predictions of standard quantum theory and passive quantum theory actually
agree as long as post-measurement states are not involved. For instance, the ex-
pectation value of an observable M = ∑

xmxΠx can be determined in pQT just
as in quantum mechanics: the eigenvalue mx of the observable M will occur with
probability p(mx), according to Axiom (P), upon measuring it repeatedly on an
ensemble of systems each of which resides in the p-state |⌢ψ⟩. Thus, preparational
uncertainty relations [99, 115, 159] hold for the variances of non-commuting observ-
ables in pQT. Similarly, entropic [107, 156] and support [64, 173] inequalities carry
over from standard quantum theory since the Shannon entropy of a p-state and
its support-size (see Sec. 4.1.1) can be evaluated in the same way as for quantum
states. Consequently, Heisenberg’s original plausibility argument—–i.e. measuring
the position of an electron will cause an uncertainty of its momentum, due to an
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uncontrollable state change–—is invalid, as already noticed by Busch [36]. Prepara-
tional uncertainty relations describe fundamental limitations on the ability to prepare
states and they are not related to irreversible measurement-based disturbances.

However, the expectation value of an observable may be obtained in pQT from a
single copy of a p-state |⌢ψ⟩, in contrast to the ensemble needed in quantum theory.
Since a (non-destructive) passive measurement of the observable M does not update
a p-state, it is possible to repeat the measurement on one and the same system as
often as is necessary to determine the outcome probabilities p(mx) given by the Born
rule to arbitrary precision. As a result, and in line with the previous work discussed
in Sec. 2.2, the collapse-free theory allows us to reconstruct an unknown p-state
|⌢ψ⟩ from a single system by simply repeating p-measurements of an informationally
complete set of observables [35, 108, 150]. A fortiori, an experimenter can tell
apart any two distinct non-orthogonal p-states |⌢ψ⟩ and |⌢ϕ⟩ with certainty, even
when being presented with a single copy only, as already observed in [33, 119].
To discriminate between two p-states, full tomography is, in general, not needed:
repeated measurements of a single observable with different expectation values in
these states would be sufficient.

Successful single-copy state reconstruction means that p-states should be thought
of as observable quantities assigned to individual quantum systems, akin to states of
classical objects. The flip side of the lack of collapse is that an experimenter can no
longer make use of measurements to prepare states. A desired p-state can only be
prepared by suitably evolving some known p-state in time, i.e. dynamically.

The Lüders rule of quantum theory entails deterministic repeatability as observed
in actual experiments.

Definition 4 (Deterministic repeatability (DR)). Consecutive measurements of
the same observable, performed on the same system without intervening unitary
evolution, yield identical outcomes.

Consider a system on which two successive measurements are performed (without
intervening evolution). Let o1 and o2 be the random variables denoting the outcomes
of the first and second measurement, respectively. Deterministic repeatability ensures
that for any observable M ∈ Ls(H) with set of outcomes {mx}, the conditional
probability p(o2 = mx|o1 = my) of observing outcome mx, after the first measurement
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of M has returned my, is given by

p(o2 = mx|o1 = my) = δmxmy for all mx,my , (2.1)

for any initial state of the system with p(o1 = my) ̸= 0.
Clearly, measurements in pQT are not deterministically repeatable. Instead,

repeated p-measurements are consistent with probabilistic repeatability.

Definition 5 (Probabilistic repeatability (PR)). Consecutive measurements of the
same observable, performed on the same system without intervening unitary evolution,
yield identically distributed outcomes.

In other words, the conditional probabilities obey

p(o2 = mx|o1 = my) = p(o1 = mx) for all mx, my , (2.2)

and for any p-state.
Passive measurements are also consistent with the requirement of sequential

commutativity.

Definition 6 (Sequential commutativity (SC)). Given any two observables M and
N , the joint sequential probability of observing any pair of outcomes mx and ny is
independent of the order in which the measurements are carried out.

Mathematically, sequential commutativity holds if

p(o1 = mx, o2 = ny) = p(o1 = ny, o2 = mx) , (2.3)

hence

p(o1 = mx) p(o2 = ny|o1 = mx) = p(o1 = ny) p(o2 = mx|o1 = ny) , (2.4)

for all mx, ny. For a given Hilbert space, combining the Born rule with sequential
commutativity implies postulate (MP), provided we make the reasonable assump-
tion that later outcomes do not affect the state obtained as a result of an earlier
measurement. This suggests that passive measurements are more closely related
to classical probability theory than quantum measurements. In the context of the
general framework of Alternative-Measurement Theories (AMTs) presented in Chap.
3, Lemma 2.1 shows that sequential commutativity (SC) represents an operational
definition of the update rule of pQT—cf. Def. 9.
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Lemma 2.1. Sequential commutativity (SC) implies passive measurements (MP) if
we assume

(i) the standard postulates for states (S), observables (O) and outcome probabilities
(P);

(ii) state-updates do not depend on the outcomes of future measurements; i.e.
if |ψ⟩ o17−→ |ϕ⟩ o27−→ . . . denotes a sequence of state-updates for the observed
outcomes o1, o2, . . . , then ϕ(ψ, o1, o2, . . . ) = ϕ(ψ, o1).

Proof. Let the system reside in the state |ψ⟩ ∈ HM
x , where HM

x ≡ ΠM
x H is the

eigenspace ofM with (possibly degenerate) eigenvaluemx. LetN = M , then Eq. (2.4)
implies that p(o2 = my|o1 = mx) = 0 if x ̸= y. Since ∑y p(o2 = my|o1 = mx) = 1, it
must follow that p(o2 = mx|o1 = mx) = 1. Hence, the post-measurement state after
recording outcome mx must still lie in HM

x , |ψ⟩ mx−−→ |ψMx ⟩ ∈ HM
x . More generally

(and making use of assumption (ii)), if a measurement on a pure state returns an
outcome with probability 1, then the post-measurement state must remain in the
eigenspace of the observable associated with that outcome.

Suppose |ψMx ⟩ ≠ |ψ⟩ (this is only meaningful if dimHM
x > 1), hence observing mx

leads to a non-trivial update of the state. Let N be an observable different from M

such that ΠN
y = |ψ⟩⟨ψ| for some eigenvalue ny. Since p(o1 = ny) = 1, it follows from

the argument in the previous paragraph that p(o2 = ny|o1 = ny) = 1, hence |ψ⟩ ny−→
|ψ⟩ ∈ HN

y (the post-measurement state must coincide with the pre-measurement
state since dimHN

y = 1). Therefore, for the initial state |ψ⟩ ∈ HN
y ⊂ HM

x , sequential
commutativity ensures that

p(o1 = mx) p(o2 = ny|o1 = mx) =p(o1 = ny) p(o2 = mx|o1 = ny) (2.5a)
=⇒ p(o2 = ny|o1 = mx) =1 (2.5b)

since p(o2 = mx|o1 = ny) = p(o1 = mx) = 1. But Eq. (2.5b) implies that ⟨ψ|ψMx ⟩ = 1,
leading to a contradiction. We conclude that |ψMx ⟩ = |ψ⟩ when |ψ⟩ ∈ HM

x . This
property is known as ideality (cf. Sec. 3.4.2).

At this point, we know that if a measurement returns an outcome with probability
1, then the post-measurement state must coincide with the pre-measurement state.
It remains to consider the more general case, wherein the state is not an eigenstate
of the measured observable. Let N now be any observable such that p(o1 = ny) ̸= 0
for some ny, and let M be any observable such that p(o1 = mx) = 1. From
ideality we have that p(o2 = ny|o1 = mx) = p(o1 = ny), hence Eq. (2.4) becomes
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p(o1 = ny) = p(o1 = ny) p(o2 = mx|o1 = ny), or p(o2 = mx|o1 = ny) = 1. Therefore,
after recording outcome ny, the state must still lie in HM

x . This result holds for any
HM
x that contains |ψ⟩, in particular the one-dimensional subspace with projector

ΠM
x = |ψ⟩⟨ψ|. Since we assume that the state-update induced by o1 = ny cannot

depend on o2 = mx, we exclude the possibility of a ‘conspiracy’ wherein |ψ⟩ is
transformed into a different state, still inside the required HM

x . We can thus conclude
that the measurement of such arbitrary observable N must leave the initial state
unchanged, i.e. |ψ⟩ ny−→ |ψ⟩ holds for any |ψ⟩ such that p(o1 = ny) ̸= 0.

The no-cloning theorem [58, 184] expresses the impossibility to produce copies
of unknown, non-orthogonal states dynamically, i.e. through the application of
unitary evolution of a system. The theorem is a consequence of the linearity of the
quantum time evolution (T) of states (S) of composite systems (C). Since the proof
does not involve the measurement postulate, the no-go result also holds in passive
quantum theory. However, in pQT an alternative cloning procedure exists, based on
single-copy state-reconstruction followed by the preparation of a new system in the
observed p-state. More generally, quantum state cloning is an immediate application
of any ISD procedure [33], such as the readout devices introduced in [118–120] which
encompass passive measurements [3]. In quantum theory, the equivalent of this
measurement-based procedure would require an ensemble of identically prepared
systems.

2.3.2 Composite systems

In line with the discussion of Sec. 1.2.4, Axiom (MP) is insufficient to describe
the impact on joint states of measurements carried out on a subsystem. For a
complete characterisation of passive measurements, the more general Axiom (MP

⊗) is
introduced.
(MP

⊗) A composite system resides in the same p-state |⌢Φ⟩ before and after measuring
an observable of one of its subsystems.

For simplicity, we will focus on bipartite systems, i.e. H = HA ⊗ HB. Consider
product observables such as M = A⊗B. In quantum theory, M can be measured by
a single apparatus DAB that spans both parts of the system in state |Φ⟩ ∈ HA ⊗ HB;
this method will be called the multi-partite scenario. Alternatively, M can be
measured using two mono-partite devices DA and DB that measure A ∈ Ls(HA)
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and B ∈ Ls(HB), respectively, followed by some classical communication. If the
constituents of the system are at different locations, only the method using separate
devices can be implemented.

In the multi-partite scenario, one obtains the eigenvalues mxy = axby of M with
probabilities p(mxy) and the system ends up in the state ΠA

x ⊗ ΠB
y |Φ⟩/

√
p(mxy) (for

simplicity, we consider non-degenerate eigenvalues mxy). In the mono-partite scenario,
the experimenters can, by comparing their records, determine the probabilities
p(o1 = ax) and p(o2 = by|o1 = ax) (as well as p(o1 = by) and p(o2 = ax|o1 = by)),
where o1 and o2 denote the outcomes of the measurement sequence, which govern
the occurrence of the eigenvalues ax and by. The identities

p(mxy) = Tr
(
ΠA
x ⊗ ΠB

y |Φ⟩⟨Φ|
)

(2.6a)

= Tr
(
ΠA
x ⊗ I |Φ⟩⟨Φ|

)
Tr
(
I ⊗ ΠB

y

ΠA
x ⊗ I |Φ⟩⟨Φ| ΠA

x ⊗ I
Tr (ΠA

x ⊗ I |Φ⟩⟨Φ|)

)
(2.6b)

= p(o1 = ax) p(o2 = by|o1 = ax) (2.6c)

and

p(mxy) = Tr
(
ΠA
x ⊗ ΠB

y |Φ⟩⟨Φ|
)

(2.7a)

= Tr
(
I ⊗ ΠB

y |Φ⟩⟨Φ|
)

Tr
ΠA

x ⊗ I
I ⊗ ΠB

y |Φ⟩⟨Φ| I ⊗ ΠB
y

Tr
(
I ⊗ ΠB

y |Φ⟩⟨Φ|
)
 (2.7b)

= p(o1 = by) p(o2 = ax|o2 = by) (2.7c)

entail that, in quantum theory, the distribution of the outcomes of M is independent
of the chosen method of implementation. The final state of the composite system
will also coincide,

I ⊗ ΠB
y√

p(o2 = by|o1 = ax)

 ΠA
x ⊗ I |Φ⟩√
p(o1 = ax)

 = ΠA
x ⊗ I√

p(o2 = ax|o1 = by)

 I ⊗ ΠB
y |Φ⟩√

p(o1 = by)


=

ΠA
x ⊗ ΠB

y |Φ⟩√
p(mxy)

. (2.8)

Therefore, the Lüders rule (ML
⊗) ensures the operational equivalence between the

two experimental strategies for measuring product observables in quantum theory.
The measurement axiom (MP

⊗) breaks the equivalence between the procedures
in pQT. When a passive measurement of M is performed on the p-state |⌢Φ⟩ by
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the multi-partite device DAB, the outcome probabilities are identical to those of
quantum theory,

p(mxy) = ⟨⌢Φ|ΠA
x ⊗ ΠB

y |⌢Φ⟩ = ⟨Φ|ΠA
x ⊗ ΠB

y |Φ⟩ , (2.9)

and the process will not disturb the joint state.
In contrast, in the mono-partite scenario, the two devices DA and DB will each

perform a measurement that does not update the joint state [3, 120]. As a result, they
will both operate on the same p-state |⌢Φ⟩, regardless of their order of implementation.
The lack of collapse trivialises the conditional probabilities, p(o2 = by|o1 = ax) =
p(o1 = by) ≡ p(by) and p(o2 = ax|o1 = by) = p(o1 = ax) ≡ p(ax), hence the
measurement outcomes produced by DA and DB will not be correlated. Therefore,
in pQT, the two-device strategy does not generally constitute a measurement of M ,

p(mxy) ̸= p(o1 = ax) p(o2 = by|o1 = ax) = p(ax) p(by) , (2.10)
p(mxy) ̸= p(o1 = by) p(o2 = ax|o1 = by) = p(by) p(ax) . (2.11)

The two scenarios remain equivalent only when the initial state is separable, |⌢Φ⟩ =
| ⌢ϕA⟩ ⊗ | ⌢ϕB⟩.

If the two subsystems are spatially separated, there is no way to measure M
without first bringing them together. Thus, passive quantum theory is not locally
tomographic4. In other words, an informationally complete set of observables of the
form A⊗B exists, but their expectation values can only be obtained by carrying out
p-measurements using devices DAB spanning both constituents. Observables that
cannot be expressed in the form A⊗B can only be implemented by multi-partite
devices, as in standard quantum theory.

2.3.3 Generalised p-measurements

Naimark’s dilation theorem [138, 144] does not involve post-measurement states,
hence it applies to pQT. For any generalised observable M = {Mx}x on H, there
exists some unitary operator U ∈ U(H ⊗ HE) such that, for any p-state |⌢ψ⟩ ∈ H
and a fixed ancilla p-state |⌢ξ ⟩ ∈ HE, we have

U(|⌢ψ⟩ ⊗ |⌢ξ ⟩) =
∑
x

Mx|
⌢
ψ⟩ ⊗ |⌢nx⟩ , (2.12)

4Note that quantum theory augmented with passive measurements [3] or other readout devices
[118–120] remains locally tomographic, as opposed to quantum theory in which standard quantum
measurements are replaced accordingly.
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where {|⌢nx⟩}x is an orthonormal basis of HE. The probability reproducibility
condition—cf. Eq. (1.20) in Sec. 1.3.2—confirms that the outcome distribution of a
sharp ancilla measurement of N = ∑

x nx|
⌢
nx⟩⟨

⌢
nx| agrees with the predictions of the

Born rule for a measurement of M on |⌢ψ⟩,

Tr
[(
I ⊗ |⌢nx⟩⟨

⌢
nx|
)(∑

x′x′′
Mx′|⌢ψ⟩⟨⌢ψ|M †

x′′ ⊗ | ⌢nx′⟩⟨ ⌢
nx′′ |

)]
= ⟨⌢ψ|M †

xMx|
⌢
ψ⟩ (2.13)

Therefore, even in pQT, the measurement model M = ⟨HE, ξ, U,N⟩, where ξ =
|⌢ξ ⟩⟨⌢ξ |, can be regarded as defining a strategy to implement a measurement of M.
However, in contrast with quantum theory, the lack of a state update means that
the protocol leaves the system entangled with the ancilla. To decouple them, the
inverse unitary U † must be applied.

2.4 Proper and improper mixtures

Up to this point, our focus has been on pure states described by rays in Hilbert
space. In quantum theory, probabilistic preparations of pure states give rise to mixed
states. We describe probabilistic preparations mathematically by means of Gemenge
(German for ‘mixture’), i.e. collections {(p1, ψ1), (p2, ψ2), . . . , (pn, ψn)} where pi ≥ 0,∑

i pi = 1 and |ψi⟩ ∈ H. For example, the Gemenge G = {(q, ψ1) , (1 − q, ψ2)},
describes a system that is prepared in state |ψ1⟩ with (classical) probability q or in
state |ψ2⟩ with probability (1 − q) [37]. Alternatively, it can describe an ensemble
of systems, each residing in either |ψ1⟩ or |ψ2⟩ with probabilities q and (1 − q),
respectively. An element of such ensemble is then completely described by the
density matrix

ρG = q |ψ1⟩⟨ψ1| + (1 − q) |ψ2⟩⟨ψ2| , (2.14)

which returns the outcome probabilities and post-measurement states prescribed by
the Born rule (P) and Lüders rule (ML), respectively. Eq. (2.14) denotes a mixed
state if q ̸= 0, 1.

To any Gemenge there corresponds a unique density operator; however, to each
mixed density operator there exist infinitely many compatible Gemenge. Despite
requiring different experimental set-ups to prepare, in quantum theory these mixtures
are operationally indistinguishable. No quantum measurement (or sequence thereof)
can reveal whether a system was prepared according to G1 or G2, if ρG1 = ρG2 . This
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follows from the linearity of both the Born rule and the Lüders instrument on the
space of density matrices [97].

Mixed states also arise in quantum theory when an experimenter can access
only part of a composite system. Given an entangled bipartite state ρAB, the
reduced state of each subsystem obtained with the partial trace, ρA = TrB(ρAB) and
ρB = TrA(ρAB), will be mixed. Mixed states with this origin are often referred to as
improper, while the term proper—or epistemic—is used for probabilistic Gemenge
of states [13, 48, 174]. The indistinguishability of different realisations of the same
density operator implies that no quantum measurement can determine whether ρ
refers to a proper or an improper mixture.

In pQT, mixed states play a different role, as mentioned already in Sec. 2.2.
Upon receiving a system prepared according to G = {(q1, ψ1) , (q2, ψ2) , ..., (qn, ψn)},
an experimenter can choose to perform single-copy reconstruction and identify
the pure p-state |⌢ψi⟩ of the system. Thus, as pointed out already in [33, 119], a
proper mixture represents an incomplete and disposable—hence not fundamental—
description of a p-system, that can be improved by extracting more information
via passive measurements. In principle, any ignorance reflected in the classical
“mixing” probability can be removed, enabling an experimenter to retrieve the correct
Gemenge describing the preparation of an ensemble of p-systems.

However, improper mixtures still play a role in pQT. If an observer has access
only to half of a pair residing in an entangled p-state |⌢Ψ⟩ ∈ HAB, then single-
copy reconstruction on, say, subsystem ‘A’ will identify the improper mixed state
ρA = TrB(|⌢Ψ⟩⟨⌢Ψ|) associated with it (the local state in the terminology of [119,
120]). Unless the observer gets access to the entire composite system, a mixed state
remains the most accurate description of the subsystem. Improper mixtures can
therefore be “observed” in pQT in the same way as pure p-states. In particular,
single-copy tomography defines a protocol to witness entanglement, as the detection
of “mixedness” guarantees the presence of entanglement with other systems. However,
it is impossible to identify the joint state |⌢Ψ⟩ uniquely, since many states lead to the
same mixture at ‘A’,

TrB
[
(IA ⊗ UB) |⌢Ψ⟩⟨⌢Ψ|

(
IA ⊗ U †

B

)]
= TrB

(
|⌢Ψ⟩⟨⌢Ψ|

)
= ρA (2.15)

for any UB ∈ U(HB).
We conclude that, in general, density operators in pQT do not represent a

complete description of the observable properties of a system, as inferred from [33,
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119, 120]. A proper mixture represented by ρ can be distinguished from an improper
mixture described by the same operator. Additionally, passive measurements allow
us to distinguish between different preparations of an ensemble corresponding to
the same proper mixed state. For improper mixtures, however, the density matrix
represents the best possible description of the system, as it does in quantum theory.

Having extended the discussion to density operators, we can define, in analogy
with the Lüders rule wL for single systems of Eq. (1.2), the passive update rule for
single systems, wP : P(H) × S(H) → S(H),

wP (Πx, ρ) = ρ . (2.16)

Notice that, according to both wL and wP, the output state depends (at most) on
the pre-measurement state and the observed outcome. In other words, the post-
measurement state is independent of the context of Πx, i.e. the measured observable
{Πx}x.

We can use Eq. (2.16) to reformulate Axiom (MP) in a way that resembles more
closely the structure of (ML).
(MP) If a measurement outputs the outcome x, then the pre-measurement state

ρ ∈ S(H) is updated to the normalised post-measurement state according to
the passive rule wP as follows:

(i) If ρ is a pure state, then

ρ
x7−→ wP(Πx, ρ) = ρ. (2.17)

(ii) If ρ is a proper mixture with Gemenge5 G = {(p1, ρ1), ..., (pn, ρn)}, then

ρ =
n∑
i=1

piρi
x7−→

n∑
i=1

p(i|x) wP (Πx, ρi) =
n∑
i=1

p(i|x)ρi , (2.18)

where p(i|x) = pi p(x|i)/p(x). In terms of Gemenge, G x7−→ Gx =
{(p(1|x), ρ1), ..., (p(n|x), ρn)}.

As improper mixtures arise from entanglement in composite systems, they do not
feature in Axiom (MP) which pertains to non-composite systems.

5We can express Gemenge in terms of density matrices, rather than state-vectors. This will be
more useful later, as we will also want to consider proper mixtures consisting of improper mixed
states.
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2.5 Channels and instruments in pQT

2.5.1 p-Channels

The proof of Stinespring’s dilation theorem [144, 171] does not involve measurements,
hence the result holds in pQT as well. Consequently, channels—linear, completely
positive, trace-preserving maps on S̄(H)—provide a representation for deterministic
transformations of p-states. In particular, every channel η can be implemented by
letting the system interact with an environment which is then traced out, and there
exist multiple strategies to execute the same channel.

However, as a result of the different ontology of p-states (cf. Sec. 2.4), it is possible
to distinguish between different experimental procedures giving rise to the same
channel. For example, consider the entangling unitary operator

U(|⌢ψ⟩⊗|⌢0 ⟩) =
√

1 − p |⌢ψ⟩⊗|⌢0 ⟩+
√
p/3

(
σx|

⌢
ψ⟩ ⊗ |⌢1 ⟩ + σy|

⌢
ψ⟩ ⊗ |⌢2 ⟩ + σ3|

⌢
ψ⟩ ⊗ |⌢3 ⟩

)
,

(2.19)
which, for ρ = |⌢ψ⟩⟨⌢ψ| and ξ = |⌢0 ⟩⟨⌢0 |, gives rise to the depolarising channel when
substituted in Eq. (1.16),

ηdep(ρ) = (1 − p)ρ+ p/3 (σxρσx + σyρσy + σzρσz) . (2.20)

In quantum theory, the transformation can be given an alternative yet equivalent
interpretation: the state is left undisturbed with probability (1 − p), or one of
the three operations of bit flip, phase flip or their combination is performed, each
with probability p/3. However, this interpretation does not hold in pQT. If ηdep

is implemented by applying the transformation of Eq. (2.19), then reconstruction
of the resulting p-state via sequential passive measurements will result in a mixed
state. On the other hand, if a classical mixture of the qubit unitaries I, σx, σy, σz
is implemented, then the same procedure will point to a pure state, revealing
which of the four gates was actually applied. The fact that either the unitary
or the measurement-based view can be consistently upheld is another example of
conflation of concepts within quantum theory which results from the particular form
of Lüders rule.

We conclude that, due to the distinguishability between proper and improper
mixtures of p-states, quantum channels η do not represent complete descriptions
of the (deterministic) transformations of states in pQT. Information regarding the
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particular method of implementation of a given channel η can in fact be obtained by
performing p-measurements on the system residing in η(ρ).

2.5.2 p-Instruments

In Sec. 1.3.2, we discussed how quantum instruments serve as a useful tool for de-
scribing the impact of different experimental strategies to measure a given observable.
Specifically, we explained how the Lüders instrument, derived by combining Axiom
(P) with Axiom (ML),

ωL
x(ρ) = Tr (Πxρ) wL

x

(
ρ

Tr(ρ)

)
= Πx ρΠx , (2.21)

can be considered as the fundamental quantum instrument compatible with an
arbitrary observable M. Other M-compatible quantum instruments are derivatives of
it, as indicated by Eq. (1.21b) and Eq. (1.22).

In a similar manner, we can construct the fundamental p-instrument {ωP
x} by

combining Axiom (P) with Axiom (MP). Then, by considering post-processing or the
inclusion of ancillary systems, we can define generalised p-instruments in terms of
{ωP

x}, cf. Sec. 2.5.4. Recalling wP from Eq. (2.16), for an arbitrary sharp observable
with outcomes denoted by x ∈ X, the corresponding fundamental p-instrument
{ωP

x}x consists of maps on S̄(H) of the form

ωP
x (ρ) = Tr(Πxρ) wP

x

(
ρ

Tr(ρ)

)
= Tr(Πxρ)

ρ

Tr(ρ) . (2.22)

Note that we must set ωP
x (ρ) = O when Tr(ρ) = 0, i.e. when ρ is the zero operator.

The operator ωP
x (ρ) represents the un-normalised conditional post-measurement

state, while ωP
X(ρ) = ∑

x∈X ω
P
x (ρ) denotes the un-conditional state. In analogy with

the Lüders instrument, the fundamental p-instrument map ωP
x is 1-homogeneous, i.e.

ωP
x (λρ) = λωP

x (ρ) for λ ∈ [0, 1]. This property enables us to account for sequences
of measurements. In fact, ωP

y (ωP
x (|⌢ψ⟩⟨⌢ψ|)) describes the state at the end of a time-

ordered sequence of passive measurements with outcomes x and y, respectively. The
joint sequential probability is then given by Tr

[
ωP
y (ωP

x (|⌢ψ⟩⟨⌢ψ|))
]
.

The incompleteness of density operators as descriptions of the observable prop-
erties of p-systems is a consequence of the fact that ωP

x does not define a quantum
operation (except in the trivial cases where Πx ∈ {O, I}). In fact, ωP

x cannot be
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implemented in quantum theory as it fails to preserve convex combinations, so that
no linear extension to L(H) exists,

ωP
x

(∑
i

pi |
⌢
ψi⟩⟨

⌢
ψi|
)

̸=
∑
i

pi ω
P
x

(
|⌢ψi⟩⟨

⌢
ψi|
)
. (2.23)

Eq. (2.23) encodes the distinguishability between proper and improper mixed
states. Specifically, the left-hand side of Eq. (2.23) describes the absence of distur-
bance on an improper mixture described by ρ = ∑

i pi|
⌢
ψi⟩⟨

⌢
ψi|, whereas the right-hand

side represents the information update resulting from a passive measurement on the
proper mixture described by the Gemenge G = {(p1, ψ1) , (p2, ψ2) , ...}.

To illustrate how passive measurements impose a classical update on proper
mixtures, let us consider the example of a single qubit prepared according to
G = {

(
1/2, |⌢0 ⟩⟨⌢0 |

)
,
(
1/2, |⌢+⟩⟨⌢+|

)
}, hence described by ρ =

(
|⌢0 ⟩⟨⌢0 | + |⌢+⟩⟨⌢+|

)
/2.

A passive measurement of σz modeled by the p-instrument {ωP
0 , ω

P
1 } is performed,

and the outcome “0” (eigenvalue +1) is obtained. Then, the updated normalised
description of the system is given by the proper mixture

ρ0 = 1
p(0)

[1
2ω

P
0 (|⌢0 ⟩⟨⌢0 |) + 1

2ω
P
0 (|⌢+⟩⟨⌢+|)

]
= 2

3 |⌢0 ⟩⟨⌢0 | + 1
3 |⌢+⟩⟨⌢+| . (2.24)

The new operator reflects the fact that, among the two available options, the observed
outcome suggests that it is more likely that the qubit was prepared in the p-state
|⌢0 ⟩. If this was indeed the case, then the mixture would converge to |⌢0 ⟩⟨⌢0 | in the
limit of infinite repetitions of σz p-measurements. Importantly, for this procedure
to be effective, the initial decomposition G must include the correct pure state. If
the experimenter is unaware whether ρ denotes a proper or improper mixture and
assigns equal probability to each scenario, she would initially describe the system
with the Gemenge

G ′ = {
(
1/4, |⌢0 ⟩⟨⌢0 |

)
,
(
1/4, |⌢+⟩⟨⌢+|

)
, (1/2, ρ)} , (2.25)

which is compatible with the same mixed state, ρG′ = ρG = ρ. Moreover, if the
Gemenge G is also unknown and no specific Gemenge is assigned a higher probability,
she would use an equal mixture of all proper mixtures compatible with ρ. By applying
the p-instrument maps to individual elements of the sum, the experimenter can then
systematically reconstruct the correct p-state associated with the single system.
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2.5.3 Complete positivity

In quantum theory, instrument maps ωL
AB describing subsystem measurements can

be constructed, unsurprisingly, by combining the Born rule of Axiom (P) with the
generalised Lüders rule wL

AB of Axiom (ML
⊗) (cf. Sec. 1.2.4),

ωL
AB (Πx, ρAB) = Tr [ΠxTrB (ρAB)] wL

AB

(
Πx,

ρAB
Tr(ρAB)

)
(2.26)

= (Πx ⊗ IB) ρAB (Πx ⊗ IB) (2.27)
=
(
ωL
x ⊗ I

)
(ρAB) . (2.28)

Here, Πx ∈ P(HA) denotes an arbitrary outcome of subsystem ‘A’.
The requirement of complete positivity of ωL

x ensures that ωL
AB always returns

valid joint states of HA ⊗ HB. The fact that the mapping ωL
x ⊗ I can be interpreted

as describing the effect on the larger system of a local measurement on HA is ensured
by the following consistency condition,

TrB
[
ωL
x ⊗ I (ρAB)

]
= ωL

x [TrB (ρAB)] , (2.29)

which holds for all ρAB ∈ S̄(HA ⊗ HB).
Complete positivity can be defined for both linear and nonlinear transformations

[6]. However, for nonlinear maps this requirement does not generally encode the
same desired operational properties. As pointed out in [47], complete positivity is
“physically unfitting” for nonlinear dynamics. Taking the example of passive mea-
surements, the fundamental p-instrument map ωP—cf. Eq. (2.22)—is not completely
positive, since a completely positive and 1-homogeneous map is necessarily linear [6].
However, this does not imply that it is impossible to consistently “extend” ωP to
describe the impact of p-measurements carried out on part of a composite system.
In fact, the generalised Axiom (MP

⊗) introduced in Sec. 2.3.2 serves precisely that
purpose.

In analogy with quantum theory, Axiom (MP
⊗) of pQT defines the generalised

passive update rule wP
AB which outputs normalised states of composite systems:

wP
AB (Πx, ρAB) = ρAB . (2.30)

The transformations of Eq. (2.30) is defined for any finite-dimensional extension HB.
Furthermore, for arbitrary Πx ∈ P(HA) and ρAB, it holds that

wP
AB (Πx, ρAB) = wP

AB (Πx ⊗ I, ρAB) , (2.31)
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where ‘AB’ on the right-hand side is regarded a single system, since Πx ⊗ I ∈
S(HA ⊗ HB). This property is also valid in standard quantum theory—cf. Eq. (1.9).

The p-instrument maps ωP
AB, therefore, can be defined as follows,

ωP
AB (Πx, ρAB) =Tr [ΠxTrB (ρAB)] wP

AB

(
Πx,

ρAB
Tr(ρAB)

)
(2.32)

=Tr (Πx ⊗ I ρAB) ρAB
Tr(ρAB) . (2.33)

The interpretation of ωP
AB (Πx, ρAB) as the un-normalised state of a bipartite system

HA⊗HB after a passive measurement on subsystem HA yields outcome Πx is ensured
by the same consistency condition used for the Lüders instrument—Eq. (2.29)—and,
more generally, for quantum operations,

TrB
[
ωP
AB (Πx, ρAB)

]
= ωP

A [Πx,TrB (ρAB)] , (2.34)

which holds for all joint states ρAB.
A more detailed discussion on the role of complete positivity in the context of

more general update rules is provided in Sec. 3.2.2 of Chap. 3.

2.5.4 Generalised p-instruments

Having introduced the fundamental p-instrument for both single and composite
systems, we can define generalised p-instruments by accounting for post-processing
of passive measurements and the inclusion of ancillary systems. Although ωP

S

is only defined for sharp measurement outcomes of system HS, we can extend
it to measurement operators (or, equivalently, to effects) in the following way.
Let M = ⟨HE, ξ, U, N = {ΠN

x }x⟩ be a measurement model compatible with the
generalised observable M = {Mx}x, we define

ωP
Mx

(ρ) = TrE
{
U †

[
ωP

I⊗ ΠN
x

(
U ρ⊗ ξ U †

)]
U
}
, (2.35)

where {ωP
I⊗ ΠN

x
} describes the effect on the composite system of the passive sharp

measurement on the ancilla HE—cf. Eq. (2.31). Then, the collection {ωP
Mx

}x describes
a passive measurement of M which, as already mentioned in Sec. 2.2, corresponds6

to the action of the SPOD introduced in [118]. In particular, Eq. (2.35) captures
6Technically, a SPOD implements a POVM rather than a generalised measurement, but this

distinction is not significant since the device does not alter the state of the measured system.
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the fact that, in order to bring the system back to its initial state ρ, the inverse
coupling unitary U † must be applied after measuring M via the strategy defined by
M—cf. Sec. 2.5.1. For example, consider a passive measurement of M = {ΠM

x },
which may indeed be performed using an ancilla. Let ρ = |⌢ψ⟩⟨⌢ψ| and ξ = |⌢0 ⟩⟨⌢0 |,
where |⌢ψ⟩ = ∑

i ci|
⌢
i ⟩. We can then set U(|⌢ψ⟩ ⊗ |⌢0 ⟩) = ∑

i ci|
⌢
i ⟩ ⊗ |⌢i ⟩ = |⌢Ψ⟩. A

measurement of N = M on the ancilla will yield the same outcome probability
distribution as a measurement of M on |⌢ψ⟩. However, the p-measurement on the
ancilla will not alter the joint state, i.e. wP

I⊗ ΠM
x

(
U ρ⊗ ξ U †

)
= |⌢Ψ⟩⟨⌢Ψ|, hence to

complete the protocol and return the system to its original state, the unitary U †

must be applied.
The generalisation of ωP to unsharp measurements allows us to define generalised

p-instruments for single systems. A formal definition of generalised instruments
applying to any theory in the AMT framework will be given in Sec. 3.3.1 of Chap.
3. In the special case of pQT, they can be expressed more simply by a formula
resembling the quantum case, see Eq. (1.22).

Definition 7. Given a generalised observable M = {Mx}x, an M-compatible gener-
alised p-instrument is any collection {ωMx}x of maps such that

ωMx = ηx ◦ ωP
Mx

, (2.36)

where {ωP
Mx

}x describes a passive measurement of M and {ηx}x is a set of outcome-
dependent channels.

In quantum theory, Ozawa’s theorem [97, 142]—cf. Sec. 1.3.2—demonstrates
that a physical implementation of the channel in Eq. (1.22) is not necessary. There
always exists a measurement model—defining a strategy terminating with an ancilla
measurement—that realises the corresponding quantum instrument. This is not true
in pQT, where there exist p-instruments for which the time-ordered sequence shown
in Eq. (2.36) represents the only way to implement the transformations. For example,
Eq. (2.35) describes a measurement strategy for unsharp M that cannot be realised
without applying a unitary channel after the ancilla measurement. Given that time is
required to physically implement a quantum channel, these strategies inevitably take
longer to execute, and can thus be distinguished from those where post-measurement
channels are not needed. In Sec. 3.3.1 of Chap. 3, this distinction in the experimental
implementation will define the difference between direct and indirect generalised
instruments in arbitrary AMTs. The possibility to realise any instrument “directly”,
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i.e. without the need for further evolution after the measurement, should not be
expected to hold a priori. In quantum theory, this is a consequence of the specific
form of the projection postulate.

2.6 Simulating quantum theory

Measurements on passive quantum systems can be made to look as if they were
performed on a quantum system, modulo a time delay. For non-degenerate Hermitian
operators M , a Lüders measurement of the associated observable returns a post-
measurement state |mx⟩ that is independent of the initial one |ψ⟩ (except that |mx⟩
must have a non-zero expansion coefficient in |ψ⟩). One can replicate the process in
pQT by performing a passive measurement of the same observable and substituting
|⌢ψ⟩ for | ⌢mx⟩. The “replacement” time would be subject to “quantum speed limits”
[54] if the set {| ⌢mx⟩} was unavailable and the experimenter had to generate the
required p-state by unitary evolution. For degenerate Hermitian operators, the
collapsed state depends also on the input state. Single-copy reconstruction of ρ is
therefore necessary to determine wL

x (ρ). However, if the measured system is, say, half
of an entangled pair residing in |⌢Ψ⟩, then the simulation protocol fails, unless the
experimenter has access to the whole composite system. In fact, the improper mixture
ρA = TrB(|⌢Ψ⟩⟨⌢Ψ|) is insufficient to determine the collapsed product state | ⌢mx⟩ ⊗ |⌢ϕ⟩.
The pure p-state |⌢Ψ⟩ must instead be reconstructed; however, as mentioned in Sec.
2.3.2, this cannot be done with mono-partite measurements. Therefore, other than
the time delay due to p-state replacement and the need for an infinite sequence of
p-measurements, the protocol requires that all entangled systems be at the same
location or be experimentally accessible in some other way. If these restrictions
are satisfied, then the Lüders instrument—hence any quantum instrument—of an
arbitrary observable M can be simulated in pQT.

One class of quantum instruments that can be simulated without resorting to
multiple passive measurements is conditional state preparators.

Definition 8. Given an observable M = {Mx}, an M-compatible instrument is called
a conditional state preparator if it is composed of maps of the form

ωx (ρ) = Tr
(
M †

xMxρ
)
ξx (2.37)

where ξx ∈ S(H).
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They are equivalent to discarding the system and preparing a new one in the
state ξx independent of the original. Substituting complete state contractions
ηx(ρ) = ξx in the formula for generalised p-instruments of Eq. (2.36), in fact, makes
the transformation linear—more specifically, a quantum operation. It is known that
if M is a rank-1 observable, i.e. for any x, M †

xMx = e(x) Πx for some projector Πx

and 0 < e(x) < 1, then all M-compatible quantum instruments are of the form of
Eq. (2.37) [97]. Therefore, pQT can simulate any quantum measurement of a rank-1
observable with a single passive device, i.e. without first reconstructing the state. In
contrast, quantum theory cannot simulate the passive measurements of non-trivial
observables featured in pQT.

2.7 No-signalling and linearity

If local measurements do not alter the state of a composite system, then they cannot
be used by two distant parties, say Alice and Bob, to communicate. Given a bipartite
system HAB = HA ⊗ HB and any observable A = ∑

x axΠx on HA, then
∑
x

TrA
[
ωP
AB (Πx, ρAB)

]
= TrA (ρAB) (2.38)

holds for all ρAB ∈ S(HAB). Similarly, for any observable B = ∑
y byΠy on HB,

∑
y

TrB
[
ωP
AB (Πy, ρAB)

]
= TrB (ρAB) . (2.39)

Eq. (2.38) and (2.39) establish (quantum) no-signalling (NS) in pQT from Alice to
Bob and from Bob to Alice, respectively. Clearly, the relations hold for arbitrary
p-instruments implemented locally. That is, appending channels of the form ηx ⊗ IB
to ωP

AB (Πx, ρAB) in Eq. (2.38), or IA ⊗ ηy to ωP
AB (Πy, ρAB) in Eq. (2.39), preserves

the equalities.
A violation of Eq. (2.38) and (2.39), along with the assumption that measurement

disturbances propagate instantaneously (in some reference frame), amounts to a
violation of the relativistic no-signalling principle, according to which information
cannot travel superluminally. Typically, nonlinear transformations are inconsistent
with relativistic no-signalling, but exceptions indeed exist, such as those implemented
using Kent’s readout devices [118–120] (cf. end of the section). In [85], Gisin showed
that a nonlinear modification of the Schrödinger equation presented by Weinberg
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[179] led to arbitrarily fast communication between observers. Gisin’s argument, later
improved in [163], affirms that, by assuming the Hilbert space setting (S), the Born
rule (P) and that information cannot propagate faster than light, it follows that the
time evolution of quantum states must be described by linear, completely positive
maps. This result depends on the fact that different convex combinations of quantum
states can be used to describe one and the same mixed state. Imagine to remotely
prepare a mixed state in one of two distinct convex combinations (Gemenge) by
performing local measurements on one part of a bipartite system. If quantum states
were to evolve nonlinearly in time, a space-like separated observer could subsequently
distinguish these decompositions, leading to signalling—see Fig.2.1.

{A′, A′′}

Alice
ρAB

... Bob

ρ′
B(t1) = ρ′′

B(t1) ρ′
B(t2) ̸= ρ′′

B(t2)

Figure 2.1: Schematic depiction of Gisin’s argument. By choosing to measure A′

or A′′, Alice can prepare one of two equivalent decompositions of the same mixed
state, ρ′

B(t1) or ρ′′
B(t1). If density matrices evolved nonlinearly, Bob could be able to

distinguish between the time-evolved ρ′
B(t2) and ρ′′

B(t2), thus revealing whether A′

or A′′ was chosen. In particular, this mechanism allows superluminal signalling if
Bob’s measurement takes place outside the causal future of Alice’s measurement.

The authors of [163] claim that the argument just given (as Gisin’s argument)
does not rely on the projection postulate. But if this was the case, then it would also
apply to pQT, ruling out any deterministic nonlinear evolution of p-states. However,
in analogy to the argument in [119], an experimenter can effectively implement
nonlinear deterministic transformations by reconstructing the reduced p-state of a
quantum system and applying unitaries based on the result.

The authors justify their claim by stating that the conditional post-measurement
state can be inferred from the Born rule alone, which specifies both the single and
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joint outcome probabilities,

p(o2 = by|o1 = ax) = Tr(Πx ⊗ Πy ρAB)
Tr(Πx ⊗ I ρAB) = Tr

{
I ⊗ Πy

Πx ⊗ I ρAB Πx ⊗ I
Tr(Πx ⊗ I ρAB)︸ ︷︷ ︸

wL
AB(Πx,ρAB)

}
. (2.40)

The issue with their argument lies in the expectation that the outcome probability
distribution of a single measurement on HA ⊗ HB (with outcome Πx ⊗ Πy) coincides
with that of two local measurements on HA (with outcome Πx) and HB (with
outcome Πy), each performed with a separate device. In fact, the use in Eq. (2.40) of

p(o1 = ax, o2 = by) = Tr(Πx ⊗ Πy ρAB) (2.41)

is tantamount to assuming the operational equivalence between the mono- and
multi-partite procedures described in Sec. 2.3.2. The equivalence, however, is not
guaranteed by the Born rule alone, as it relies on the update rule for post-measurement
states. Therefore, as already pointed out by Holman [105], Gisin’s argument is not
independent of the projection postulate. The supposedly instantaneous and nonlocal
collapse, which causes the transition from an improper mixture to a proper mixture,
is essential for the argument to apply.

It should be noted that Gisin’s argument does not rule out all nonlinear time
evolutions [45, 46, 71, 72, 101, 119, 120, 151, 152]. Alternative state-update rules,
rather than alternative time evolutions, may also result in nonlinear transformations
of the joint and reduced states, and possibly enable signalling. We already mentioned
in Sec. 2.2 that the readout devices presented in [118–120] represent an example of
measurement-induced transformations not dismissed by Gisin-type arguments, that
is, consistent with no-signalling. Passive quantum theory, where all measurements
are non-collapsing [3], is one such example.

2.8 Local realism

Bell’s theorem demonstrates that no physical theory of local hidden variables can
reproduce all of the predictions of quantum mechanics [20]. The widely accepted
conclusion is that quantum theory is incompatible with the combined notions of
realism and locality. Realism assumes that measurement outcomes are not created
during the measurement but reveal pre-existing properties possessed by the system



2.8. Local realism 61

and independent of whether the measurement is performed. Mathematically, this
is modelled by introducing hidden variables specifying all observable properties of
the system. Locality assumes that outcome probabilities cannot depend on events
happening arbitrarily far away. It is usually regarded as the combination of two
assumptions, (i) parameter independence and (ii) outcome independence [111, 160,
176]. Given two space-like separated parties measuring their own systems, the
outcome probability of one measurement is not influenced by the other party’s (i)
choice of measurement or (ii) observed outcome. Free choice also features among the
assumptions of Bell’s theorem: it stipulates that the choices of local measurements
are independent of the hidden variables.

In pQT, the restriction of space-like separation means that no correlations
between entangled systems will be observed. Therefore, Bell’s inequalities will not
be violated. More generally, this is true for quantum theory with readout devices
[118–120] replacing standard quantum measurements, albeit not for quantum theory
augmented by them, which remains nonlocal. Furthermore, causal quantum theory
[116, 117] is another example of a local foil obtained by modifying the projection
postulate.

Consider the simplest 2-input 2-output CHSH inequality

|⟨AB⟩ + ⟨A′B⟩ + ⟨AB′⟩ − ⟨A′B′⟩| ≤ 2 , (2.42)

where one party measures either A ⊗ I or A′ ⊗ I while the other party, with their
own separate device, measures either I ⊗B or I ⊗B′. Implementing mono-partite
p-measurements leads to factorised joint outcome probabilities,

p(ax, by) = p(ax)p(by) , (2.43)

for all bipartite p-states ρAB. Hence the correlations appearing in (2.42) take the
form

⟨AB⟩pQT =
∑
xy

axby p (ax, by) = ⟨A⊗ I⟩ ⟨I ⊗B⟩ , (2.44)

differing from those predicted by quantum theory,

⟨AB⟩QT = ⟨A⊗B⟩ . (2.45)

Eq. (2.43) implies the existence of a joint probability distribution for all four outcomes,

p (aw, a′
x, by, b

′
z) = p (aw) p (a′

x) p (by) p (b′
z) , (2.46)
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and the marginals return the correct probabilities for each choice of measurements.
The existence of a joint probability distribution entails the constraint of Eq. (2.42),
making the toy model compatible with local realism. A similar argument holds for
any other Bell-type inequality.

Replacing the Lüders collapse with a passive rule deprives the theory of its
nonlocal features, even though all outcome distributions featured in quantum theory
can be observed in pQT too. In fact, a passive measurement of A⊗B implemented
with a single device DAB spanning both constituents will return correlations of the
form (2.45). However, since this procedure requires access to both subsystems, the
obtained violation of Bell’s inequality does not imply a rejection of locality.

2.9 Contextuality

A hidden variable model for pQT can be local but cannot be non-contextual, as
per the theorems by Kochen and Specker [122] and by Bell [21]. A context can be
regarded as a collection of observables {A,B,C, ...} that can be jointly measured.
For sharp observables, joint measurability coincides with the commutativity of their
corresponding self-adjoint operators [95, 96]. An observable can belong to more than
one context, e.g. C1 = {A,B1, B2, ...} and C2 = {A,B′

1, B
′
2, ...}, but the set union

C1 ∪ C2 may not be jointly measurable. A hidden-variable model is non-contextual
(à la Kochen-Specker) if the value assigned by the ontic state (or hidden variable) λ
to any observable is independent of the context in which it is measured, e.g.

vλ(A|C1) = vλ(A|C2) = vλ(A) . (2.47)

For contextuality proofs, it suffices to find a set of observables A, B, C, ... for which
we can show that it is impossible to associate to each operator one of its eigen-
values, v(A) v(B) v(C), ..., such that all functional relationships between mutually
commuting subsets of the observables are also satisfied by the associated values.
These arguments do not require the notion of a post-measurement state, hence they
apply to pQT. They highlight the inherent inconsistency between the assumption of
realism supported by Eq. (2.47) and the requirement that observables correspond
to self-adjoint operators on a Hilbert space. The coexistence of contextuality and
locality in a realist model of pQT can be exemplified using a state-independent
version of the Kochen-Specker theorem provided by Mermin [135]. The star pattern
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Figure 2.2: The star-shaped pattern of ten observables on H8 leading to a proof of
the Kochen-Specker theorem. Notice the use of simplified notation, e.g. σ1

x instead
of σ1

x ⊗ I2 ⊗ I2. Each straight line defines a context, and each operator belongs to
two contexts.

depicted in Fig. 2.2 shows ten dichotomic observables (with eigenvalues ±1) on a
eight-dimensional qudit, H8, in such a way that any straight line of four operators
defines a context. In particular, each observable belongs to exactly two contexts.
Notice the use of simplified notation, e.g. σ1

x instead of σ1
x ⊗ I2 ⊗ I2. Denote the

operators by Ai, i = 1, ..., 10 and call Cj , j = 1, ..., 5 the products of the operators on
the j-th line. Then Cj = I for all contexts j ̸= 5, where j = 5 denotes the horizontal
line, for which C5 = −I. If we assume the existence of a hidden variable λ that
assigns all measurement outcomes, then a measurement of Ci reveals the product of
the eigenvalues assigned to the four operators in the context. In particular, if we also
assume that the assignment happens non-contextually, then the following must hold,[ 10∏

i=1
vλ(Ai)

]2

=
5∏
j=1

vλ(Cj) . (2.48)

However, (±)I represents the trivial observable that always returns the outcome
(±)1 regardless of the p-state ρ ∈ S(H8). Hence, vλ(I) = +1 and vλ(−I) = −1 for
any λ. This means that the right-hand side of (2.48) evaluates to −1, leading to a
contradiction. We conclude that, as with quantum theory, pQT cannot be reproduced
by a hidden variable model that assigns values to observables independently of what
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other observables are jointly measured.
In [135], Mermin shows that, by an appropriate change of the assumptions, the

same scenario can be recasted into the inequality-free proof of Bell’s theorem provided
by Greenberg, Horne and Zeilinger [87, 134]. Instead of considering the ten operators
as observables on an eight-dimensional qudit, they should be viewed as pertaining
to measurements performed on three space-like separated qubits. Each context is
then specified by three independent devices that register the value assigned to an
observable of the form σij, i ∈ {1, 2, 3} and j = {x, y}. Without communication
between parties, no one can know which of the two contexts including their chosen
measurement describes the scenario.

Instead of assuming non-contextuality for all observables, we only do so when
it can be justified by locality. In other words, we impose Eq. (2.47) only to the six
observables of the form σij , for which a dependency on the context implies a nonlocal
influence. Dropping non-contextuality for the product-observables in the horizontal
line breaks the chain of relations that leads to the contradiction. However, in quantum
theory the argument can be restored by making it state-dependent. Suppose the
three qubits reside in a GHZ state, i.e. an eigenstate of the four commuting product-
operators. Then the values assigned to the product-observables cannot differ from
one context to the other, vλ(σ1

j1σ
2
j2σ

3
j3|Cj) = vλ(σ1

j1σ
2
j2σ

3
j3|Cj′). If the three parties

were to share notes after performing their measurements, they would always find that
the products of their three outcomes equal the eigenvalue corresponding to the GHZ
state. This is a consequence of the fact that local measurements of σ1

j1 , σ2
j2 and σ3

j3 ,
followed by classical communication, are, as a whole, equivalent to a measurement of
σ1
j1σ

2
j2σ

3
j3 . Therefore, by restricting to such states, we can derive Eq. (2.48) using only

the assumption of locality. Then, the contradiction demonstrates the incompatibility
of quantum theory with local realism without the use of inequalities.

In pQT, the use of GHZ states ensures that the values assigned to the product-
observables are independent of the context. However, in contrast with standard
quantum theory, the use of three devices, each registering one outcome, followed
by classical communication between the parties, cannot be interpreted as a passive
measurement of σ1

j1σ
2
j2σ

3
j3 . This means that, in general,

vλ(σ1
j1) vλ(σ2

j2) vλ(σ3
j3) ̸= vλ(σ1

j1σ
2
j2σ

3
j3) . (2.49)

As a result, the chain of relations leading to the contradiction breaks, invalidating
the locality-based argument and in agreement with our earlier discussion of Sec. 2.8.
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To observe the correlations, the whole context must be measured jointly by a single
device, which is only possible when the subsystems are brought together in the same
place. Our conclusions are summarised in the following remark.

Remark. In pQT, the assignment of observable quantities by the hidden variable λ
must be context-dependent if the operators composing the context are measured
jointly by a single device. However, when the context is specified by multiple devices,
the predictions of pQT are consistent with a non-contextual assignment.

2.10 An ontological model for pQT

We propose an explicit local and contextual ontological model that is consistent with
the predictions of passive quantum theory. It is based on the so-called “Bell model”
[125], generalising the method to explain qubit measurements deterministically [21].
In this section, we use the term “local” in a relativistic sense, meaning that changes
of the ontic state of a system that is spread across multiple regions do not occur
superluminally. Another model for pQT, which is local but not deterministic, can
be obtained by identifying the ontic state of a system with its local state, along the
lines described in [116].

We employ a slightly different notion of an ontological model compared to that
in, say, [125], which includes only (generalised versions of) the first four items from
the list below. In the present context, an ontological model consists of:

• a measurable space (Λ,Σ) called the ontic space, where Λ is the set of ontic
states and Σ a σ-algebra on Λ;

• a probability measure µψ over (Λ,Σ) for each p-state ψ ∈ Hd;

• the probability Pr(x|λ,D) that a measurement performed with device D on
one or more constituents of a system described by the ontic state λ ∈ Λ returns
the outcome x;

• a probability measure T (U, λ) on (Λ,Σ) describing the update of the ontic state
following the implementation of a unitary gate U on one or more constituents
of a system described by λ ∈ Λ;

• a probability measure W (x, λ,D) on (Λ,Σ) describing the (possibly outcome-
dependent) update of the ontic state following a measurement with device
D.



66 Chapter 2. A quantum theory with non-collapsing measurements

The ontic space. Consider a d-dimensional p-system, where d = pn1
1 p

n2
2 . . . is the

unique prime factorisation of d. Let

Pd = (p1, p1, ...︸ ︷︷ ︸
n1 times

, p2, p2, ...︸ ︷︷ ︸
n2 times

, ...) (2.50)

be the finite tuple of prime numbers appearing in the decomposition, including
repetitions. Denoting the elements of Pd with si, i = 1, ..., |Pd|, we can write

Hd =
|Pd|⊗
i=1

Hsi
. (2.51)

The ontic space of the system is assumed to be

Λ = Λ1 × Λ2 where Λ1 = P (Hd)×|Pd| , Λ2 = [0, 1]×|Pd| , (2.52)

where P (Hd) is the set of rays in Hd and |Pd| is the cardinality of Pd. An equivalent
and useful factorisation is

Λ =
|Pd|

×
i=1

(Λsi
1 × Λsi

2 ) where Λsi
1 = P (Hd) , Λsi

2 = [0, 1] . (2.53)

Then, the ontic state of a single d-dimensional p-system takes the form

λ =
(
(λs1

1 , λ
s1
2 ), (λs2

1 , λ
s2
2 ), . . . , (λs|Pd|

1 , λ
s|Pd|
2 )

)
(2.54)

or, equivalently, λ = (λ1, λ2) where

λ1 = (λs1
1 , λ

s2
1 , . . . , λ

s|Pd|
1 ) ∈ Λ1 , λ2 = (λs1

2 , λ
s2
2 , . . . , λ

s|Pd|
2 ) ∈ Λ2 . (2.55)

In other words, a two-variable ontic state (λsi
1 , λ

si
2 ) is assigned to each subsystem

(or degree of freedom) and the ontic state of the entire system is the Cartesian
product of the ontic states of all subsystems. The variable λsi

1 can be regarded as
subsystem si’s own description of the composite system it is a part of, whereas λsi

2 is
si’s “hidden” variable that is inaccessible to observers. Anticipating what will be
discussed in a later paragraph, the reason we assign to each subsystem their own
description of the composite system is to model the time evolution of states, i.e. the
mapping T of the ontological model, in a local way, in the sense that implementing
a unitary gate on a subsystem does not superluminally update the ontic state of a
distant subsystem. Call Σsi

1 and Σsi
2 the Borel σ-algebras of Λsi

1 and Λsi
2 , respectively.

Then Σ = Σ1 ⊗ Σ2, where Σ1 = ⊗|Pd|
i=1 Σsi

1 and Σ2 = ⊗|Pd|
i=1 Σsi

2 , is the σ-algebra of Λ,
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generated by elements of the form Ω = Ω1 × Ω2, Ω1 ∈ Σ1, Ω2 ∈ Σ2 [125]. The tuple
(Λ,Σ) defines a measurable space.

The p-state ψ ∈ Hd is represented by the product measure

µψ (Ω) =
∫

Λ2
µψ1 (Ωλ2) dµψ2 (λ2) , (2.56)

where µψi is a probability measure on Λi and

Ωλ2 = {λ1 ∈ Λ1| (λ1, λ2) ∈ Ω} . (2.57)

Suppose a procedure involving the entire system—i.e. a global unitary—prepares
the p-state ψ. At the end of it, all constituents will share the same description of
the joint state, λ1 = (ψ, ψ, . . . ). This can be achieved by setting

µψ1 (λ1) =
|Pd|∏
i=1

δ (λsi
1 − ψ) . (2.58)

The “hidden” variable λ2, on the other hand, is uniformly distributed, i.e. µψ2 = µ2

is the uniform measure on Λ2. The underlying mechanism producing λ2—whether
intrinsically probabilistic or deterministic—is irrelevant to our analysis. What
matters is that the model is realist, i.e. all observable properties of the system are
uniquely determined by (λ1, λ2) which take on definite values at any point in time
and regardless of the measurements we may or may not perform.

The measurement process. The behaviour of p-measurements (and sequences
thereof) is modelled as follows. For the moment, we will assume that all subsystems
agree in their description of the composite system they belong to, i.e. λsi

1 = ψ for
all i. Let D(1,r) denote a device implementing a measurement on the first r ≤ |Pd|
subsystems in (2.51) of the observable represented by {Πx}Nx=1, Πx ∈ P (⊗r

i=1 Hsi
)

with N ≤ dim (⊗r
i=1 Hsi

). We can consider this scenario without loss of generality,
since any device acts like D(1,r) for a suitable ordering of the elements of (2.50). A
global measurement, with the entire system as input, is one where r = |Pd|.

Consider the unit r-cube [0, 1]r. The device D(1,r) splits the hypercube into exactly
N non-overlapping regions {Rx}Nx=1, each corresponding to a possible measurement
outcome x. Each region has volume

V (Rx) = Tr
(
Πx ρ(1,r)

)
, (2.59)
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where ρ(1,r) is the reduced state of the first r subsystems,

ρ(1,r) = Trsj , j>r (|ψ⟩⟨ψ|) . (2.60)

Notice that the locally available entries of λ1, λ(1,r)
1 = (λs1

1 , ..., λ
sr
1 ) are sufficient

to determine ρ(1,r). The arrangement of the regions in the unit r-cube and their
shape do not matter and can be assumed to be determined by the device. The
result of the measurement will then be the value x labelling the region where the
point λ(1,r)

2 = (λs1
2 , ..., λ

sr
2 ) ∈ [0, 1]r resides. In other words, the function Pr of our

ontological model is defined by the formula

Pr
(
x|λ(1,r)

1 , λ
(1,r)
2 ,D(1,r)

)
=

1 if λ(1,r)
2 ∈ Rx

0 otherwise
. (2.61)

Compliance with the Born rule is ensured by Eq. (2.59). The measurement also
leads to an update of the ontic state which is outcome-independent,

λsi
1 7→ λsi

1 i ∈ {1, ..., |Pd|} (2.62a)

λsi
2 7→

λ̃
si
2 i ≤ r

λsi
2 i > r

(2.62b)

where each λ̃si
2 is drawn uniformly from the unit interval [0, 1]. Formally, Eqs. (2.62)

characterise the update map W of our ontological model. In other words, the
measurement does not affect the description of the composite p-state associated to
any subsystem, λ1 7→ λ1, and does not update the hidden variables corresponding to
the subsystems that did not interact with the device.7 Assuming uniform measure for
λ̃si

2 ensures that repetitions of the same measurement will agree with the probabilistic
repeatability of pQT. Single-copy state reconstruction will return the reduced state
ρ(1,r), as expected.

To update the hidden variables λsi
2 of all the subsystems, a device must necessarily

act on the entire system, r = |Pd|. Furthermore, for any r1 < |Pd|, a measurement by
D(1,r1) of {Πx} is operationally indistinguishable from a measurement of {Πx ⊗ Im}
performed by D(1,r2) on r2 > r1 subsystems, where m = ∏

r1<i≤r2 si. This follows
from the use of the Born rule in (2.59) which ensures that the two procedures return

7Notice that the mechanism can be made consistent with quantum measurements if one sets
λsi

1 7→ Πx ⊗ Iλsi
1 /
√

p(x) for all i.
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the same outcome statistics for any initial p-state ψ ∈ Hd. Nevertheless, the two
measurements are not identical at the ontic level, as the number of hidden variables
updated by the two devices is different, r1 for D1 and r2 for D2. However, such
discrepancy cannot be observed.

Contextuality and locality. The model complies with the contextual behaviour
of pQT. Consider the following example in d = 3, hence |P3| = 1, with the two
qutrit observables C1 = {Πa,Πb,Πc} and C2 = {Πx,Πb,Πy}. The sets define two
different contexts for the operator Πb. Let the system reside in λ = (λ1, λ2) with λ1

not an eigenvector of any of the five projectors above. Then, contextual behaviour
can arise from the different ways C1 and C2 can split the unit hypercube (here the
unit interval). Fig. 2.3 shows an example where vλ(Πb|C1) = 1 but vλ(Πb|C2) = 0.
Notice that there will be values of λ2 for which vλ(Πb|C1) = vλ(Πb|C2) and these will
generally depend on how the regions are arranged—in Fig. 2.3 the order follows the
appearance of the operators in the sets.

Figure 2.3: An example of how the unit interval can be split according to the elements
of C1 = {Πa,Πb,Πc} (above) and C2 = {Πx,Πb,Πy} (below), given the ontic state
(λ1, λ2). The shaded areas highlight the values of λ2 for which vλ(Πb|C1) ̸= vλ(Πb|C2).

The machinery behind a measurement relies exclusively on the properties of the
single device implementing it and on the ontic states of the measured subsystems.
As a result, no contextual behaviour will arise whenever the context is defined by
multiple devices, in accordance with the results of Sec. 2.9. In particular, if we
assume that the un-measured subsystems are at space-like separation, then the use of
locally available information, along with the restriction to only disturb local hidden
variables, ensure that measurements in the model are an inherently local process.
The model is also compatible with the assumption that measurement settings are
independent of λ.
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Lack of correlations. The following example aims to clarify how the model works
for mono- and multi-partite measurements on a pair of qubits. Let d = 4, hence
P4 = {2, 2} and consider two qubit observables A = {ΠA

0 ,ΠA
1 } and B = {ΠB

0 ,ΠB
1 },

along with the two-qubit observable MAB = {ΠA
0 ⊗ΠB

0 ,ΠA
0 ⊗ΠB

1 ,ΠA
1 ⊗ΠB

0 ,ΠA
1 ⊗ΠB

1 }.
A passive measurement of MAB can only be realised with a single measurement
device. Let λ = (λ1, λ2) be the ontic state with λA1 = λB1 = α|0A0B⟩ +β|1A1B⟩ where
α, β ̸= 0. Fig. 2.4(a) illustrates one way to arrange the two non-zero volume regions
in the unit square, along with the measurement outcome. If A and B are instead
measured with two separate devices acting on subsystem sA and sB, respectively,
then Fig. 2.4(b) illustrates how the modulo-2 sum of the outcomes can happen to be
1, in agreement with the predictions of pQT.

Figure 2.4: (a). Example of a measurement of MAB with outcome ‘00’ on the
ontic state ((λA1 , λA2 ), (λB1 , λB2 )), where λi1 = α|0A0B⟩ + β|1A1B⟩. (b). Example
of two distinct p-measurements of A and B performed on (λA1 , λA2 ) and (λB1 , λB2 ),
respectively, for which vλ(A) + vλ(B) = 1 (mod 2).

Unitary evolution. So far, we have assumed that λ1 is always composed of |Pd|
copies of the prepared p-state ψ. The reason for assigning one vector λsi

1 ∈ P (Hd)
to each subsystem lies in the need to model unitary evolution in a local way, as
done for measurements. In fact, had we set Λ1 = P (Hd), then a unitary on, say, Hs2

alone, Us2 , would change the p-state of the entire system to Us2ψ. A measurement
on a space-like separated subsystem, say Hs1 , would then use the updated Us2ψ in
Eq. (2.60) to calculate the volumes via Eq. (2.59). This would effectively amount
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to a nonlocal influence between the two subsystems as a result of the ψ-ontology
of the model: if the p-state is part of the ontic state, then any change of it can
potentially establish an instantaneous interaction between systems. Assigning to
each subsystem their own description of the composite system, λsi

1 , is a way to avoid
such non-classical behaviour. By doing so, we can establish the mapping T within
our ontological model, whereby a local unitary on Hs2 only updates λs2

1 , leaving
unchanged the other entries of λ1, at least until enough time has passed for a signal to
reach the corresponding subsystems. Therefore, in the case of space-like separation,
a device measuring on Hs1 will still compute the volumes using λs1

1 = ψ. The correct
statistics will be obtained because applying Us2 does not affect the reduced state
of s1. We have thus introduced a mechanism resembling Kent’s local-state update8

[119], which accounts for modifications of λsi
1 due to unitary gates applied in the

causal past of si. This way, by the time s1 and s2 are brought to the same location,
their corresponding entries in λ1 will be identical, bringing us back to the previously
examined scenario. In addition, applying a joint unitary Us1s2 on s1 and s2 will
cause a new update of the locally available variables, λs1

1 = λs2
1 = Us1s2Us2ψ, which

will in turn extend to the remaining entries of λ1 without resorting to superluminal
influences.

Taking into account unitary evolution, we provide a slight modification of the
formula for reduced states. Since, in order to perform a passive measurement on⊗r

i=1 Hsi
, the r systems must not be space-like separated9, we conclude that at the

time of the measurement, λ(1,r)
1 = (λs1

1 , ..., λ
sr
1 ) will be composed of equal entries,

hence
ρ(1,r) = Trsj , j>r (|λsi

1 ⟩⟨λsi
1 |) for any i ≤ r . (2.63)

Eq. (2.60) constitutes a special case where no unitary gate is applied on any subsys-
tem in the causal past of the measurement event.

The model is ψ-ontic but not ψ-complete, as the ontic state includes the quantum
state as well as other variables [125]. Nevertheless, it may be the case that the

8Notice that, while we use it to model unitary evolution of the local ontic states, the original
purpose of Kent’s mechanism was to propagate measurement-induced disturbances.

9It is known that, in quantum theory, measurements of nonlocal observables can in principle
be performed on spatially separated systems via local operations and classical communication.
However, existing implementations [88, 175] rely on quantum state teleportation, which necessitates
the collapse of the state of the composite system as a result of local measurements. Consequently,
these protocols cannot be implemented in pQT.
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“true” p-state of the system does not appear in the entries of λ1 for some time. It
should be mentioned that we have only focused on pure states of the composite
system. To account for entanglement with additional systems, one could further
assume that the mechanism for updating λ1 can replace each entry with vectors from
higher-dimensional Hilbert spaces, effectively allowing the ontic space Λ to change
with time.
The model raises several unanswered question, such as how each degree of freedom
can carry such large amount of information, how the update mechanism à la Kent
can work, how the device arranges regions in the hypercube, and how the hidden
variables are generated. However, what we can conclude is that suspending the
collapse enables a fully classical explanation of all the predictions of the theory.

2.11 Quantum information with p-measurements

The state update induced by quantum measurements is essential for many protocols
in quantum information. Teleportation [25] and entanglement swapping [143], for
example, rely on system-wide state changes as a result of local measurements. Thus,
they will no longer work in pQT. The impossibility to “steer” the state of a distant
subsystem means that quantum key distribution protocols based on entangled states
[70] are also ruled out. At the same time, single-copy reconstruction would allow
for perfect eavesdropping on p-states, i.e. without leaving a trace. The security of
protocols like BB84 [24] would therefore be compromised.

Both adding collapse-free measurements to standard quantum theory and re-
placing collapsing measurements by them will modify its computational power, as
shown in [3, 120]. In the following paragraphs, we review some key implications,
with further details available in these papers.

“Quantum parallelism” may be exploited in full since the p-state encoding
the result of a quantum computation is observable, at least in principle [3]. The
algorithms by Deutsch and Jozsa [56], Grover [90] and Simon [164], for example,
involve “oracles” which “evaluate” a function f(x) by means of a unitary operator,
viz. Uf : |x, 0⟩ 7→ |x, f(x)⟩. Letting the linear operator Uf act on the symmetric
superposition |s⟩ = 2−n/2∑2n−1

x=0 |x, 0⟩, the output state carries information about
the function f(x) for all its values. A projective quantum measurement on the
final state Uf |s⟩ will, however, reveal at most one value of f(x), necessitating for
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further calls of the oracle. As mentioned in Sec. 2.2, a single implementation of an
infinite-precision local-state readout device (SRD) can reveal all the values of f(x)
[119, 120], making it possible to solve NP problems in polynomial time [5]. In pQT,
however, passive measurements only provide partial information about the state
of a system. Nevertheless, all values f(x) can be extracted from the final p-state
Uf |

⌢
s ⟩ with at least 2n measurements. Hence, only a single call to the oracle is

necessary within pQT which represents a substantial reduction in computational
cost, but a large increase in measurement complexity. The improvement does not
violate arguments of optimality such that for Grover’s algorithm [189]: by restricting
to a single p-measurement, it is still impossible to produce a more reliable solution
using fewer oracle calls (e.g. O(

√
2n) for Grover’s search algorithm).

In quantum algorithm complexity, the cost of a single measurement is generally
ignored due to the collapse making measurement sequences irrelevant. However,
for p-algorithms it is essential to estimate the resource cost of each measurement
to determine their feasibility [3]. The advantages provided by p-measurements are
more evident when the structure of the specific problem is leveraged. For instance,
without requiring additional measurements beyond the ones outlined in Simon’s
algorithm, in pQT a single implementation of Simon’s routine is sufficient. This
amounts to a linear improvement in terms of query complexity with no increase in
measurement complexity. Similarly, with even a single additional p-measurement at
the end of Shor’s factorisation algorithm [161], one eliminates the need for continued
fractions. This step is required in standard quantum theory to extract powers of
prime factors from the only available measurement outcome.

Although shared entanglement has no use for communication in pQT, a single
p-qubit can potentially carry an unlimited amount of information [3]. In fact, an
arbitrary n-bit message m = b1b2...bn, bi ∈ {0, 1}, can be encoded in, say, the (real)
amplitude of its p-state, such as α = ∑n

i=1 bi 2−i in α|⌢0 ⟩ + βeiϕ|⌢1 ⟩. After the system
is transmitted to a receiver, it can in principle be decoded using a sequence of
p-measurements.

2.12 Summary and discussion

We have reviewed a collapse-free foil theory of quantum mechanics by assuming
that measurements do not cause states to update, cf. Sec. 2.1. Such “passive”
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measurements were first introduced in [3] and correspond to a class of hypothetical
devices presented in [120]. The predictions of this model, pQT, agree with those of
quantum theory as long as its post-measurement states are discarded systematically.
Any non-quantum feature of pQT can be traced back to states not collapsing when
measuring generic observables. Being manifestly different from quantum theory, the
model represents a tool to study the role of the collapse rather than suggesting an
alternative interpretation aiming to circumvent the projection postulate.

The possibility of single-copy state reconstruction turns p-states into observ-
able quantities [33, 119], albeit only by virtue of infinitely long sequences of p-
measurements, cf. Sec. 2.2, Sec. 2.3.1. As any time-evolved state can in principle
be accessed directly in pQT, the cost and computational power of known quantum
algorithms must be evaluated anew [3], cf. Sec. 2.11. Assuming that the measured
state has been reconstructed—a procedure that, for entangled states, requires access
to all subsystems—pQT can simulate quantum theory including the collapse if one
accepts a time delay in state updates, cf. Sec. 2.6. In contrast, quantum theory
cannot simulate pQT.

In standard quantum theory, projective measurements can be used to prepare
specific states. In pQT, a desired state can only be prepared dynamically, i.e. by
suitably evolving a known state in time.

The comparison with pQT shows that some concepts of quantum theory are
equivalent because of the non-trivial state update described by the standard projection
postulate. As is well-known, proper and improper mixtures of quantum states are
indistinguishable. This is no longer true in pQT where passive measurements can be
used to reveal each of the individual states forming a proper mixture, cf. Sec. 2.4.
This, in turn, affects the valid interpretations for the physical realisation of quantum
channels, cf. Sec. 2.5.1. Similarly, in quantum theory the observable A⊗B can be
measured by either a single global device or by two local devices implementing A
and B separately, if supplemented by classical communication. In pQT, these two
scenarios lead to entirely different outcome statistics, cf. Sec. 2.3.2. A consequence of
the distinguishability between these two operational procedures is the impossibility
to perform local tomography. Furthermore, Bell’s inequalities can no longer be
violated in the usual setting, cf. Sec. 2.8, meaning that the predictions of pQT are
consistent with local realism. However, since the model shares the same state and
observable spaces of quantum theory, it necessarily exhibits contextual behavior,
cf. Sec. 2.9. In Sec. 2.10, we presented a fully-fledged deterministic hidden variable
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model for pQT consistent with both relativistic locality and contextuality.
It is not difficult to see that passive measurements represent just one specific case

of possible alternative state-update rules leading to quantum-like theories. However,
if consistent modifications of the projection postulate exist, an intriguing question
arises: can we identify a physical principle which singles out the quantum mechanical
update rule among these alternatives?



3

Quantum theories with alternative
measurements

3.1 The AMT framework

3.1.1 Construction

The analysis of pQT given in Chap. 2 shows that modifications of the projection
postulate can give rise to consistent quantum-like theories. Comparing them with
quantum mechanics allows us to identify the subtle ways in which the projection pos-
tulate shapes quantum theory. The ontology of quantum states, the incompatibility
with “local realism” and the operational equivalence between different procedures
for measuring local observables were all shown to depend on the specific form of the
standard update rule wL. Other features of the theory, such as contextuality and
preparational uncertainty relations, are independent of it.

Passive measurements offer an alternative to the collapse, but they are not the
only option. In this chapter, we will define a wide variety of Alternative-Measurement
Theories (AMTs), which are identical to quantum mechanics except for the assigned
post-measurement states. The AMT framework allows us to explore questions that
go beyond the scope of Chap. 2. For example, we can search for principles that single
out the quantum mechanical update rule amongst other operationally meaningful
alternatives. Our approach also suggests looking for toy models that successfully
simulate quantum measurements, despite being manifestly different from quantum
mechanics.

To define AMTs, we introduce the concept of an update rule wA which characterises

76
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the transformation of states resulting from a measurement performed on a system
(or a subsystem)1. Recall that all other axioms of quantum theory will remain
unchanged—cf. Sec. 1.1. We begin by considering measurements on a single system,
generically labeled with ‘A’ in a serif font, as done throughout Chap. 1 and 2.
Abstracting from standard and passive quantum theories—i.e. from (ML) and (MP),
respectively—we require that every pair of a pre-measurement state of the system and
a sharp measurement outcome (associated with a projector) uniquely determines a
post-measurement state, i.e. wA

A is a mapping from P(HA) × S(HA) to S(HA). From
an abstract point of view, we assume two properties: (R1) completeness, stating that
every measurement that might be performed must specify a valid post-measurement
state of the system; and (R2) context-independence, according to which the post-
measurement state does not depend on the context of Πx, i.e. it may have been
measured along with any other commuting set of projectors.

We formalise these features in the alternative postulate (MA).
(MA) If a measurement outputs the outcome x, then a pre-measurement state ρ is

updated to the normalised post-measurement state as follows:

(i) If ρ is a pure state, then

ρ
x7−→ wA

A(Πx, ρ). (3.1)

(ii) If ρ is a proper mixture with Gemenge G = {(p1, ρ1), ..., (pn, ρn)}, then

ρ =
n∑
i=1

piρi
x7−→

n∑
i=1

p(i|x) wA
A (Πx, ρi) , (3.2)

where p(i|x) = pi p(x|i)/p(x).

As improper mixtures arise from measurements on entangled states of composite
systems, they do not feature in (MA), as will be explained in the following paragraphs.
To simplify the notation in the single-system case, we define wA

x (·) ≡ wA
A(Πx, ·) as

the mapping from S(HA) to itself representing the assignment of states conditioned
on observing outcome x.

Having defined the effect of measurements on single systems, we now need to
describe their action on composite systems, since a system entering a measurement
device may be entangled with other systems. In other words, an update rule must
also account for the effect on the states of composite systems when measurements

1We will utilise the sans-serif superscript A to denote a generic AMT.
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are carried out only on some subsystems. We realise that, in analogy with quantum
theory and pQT (cf. Sec. 2.3.2), Axiom (MA) is operationally incomplete and a
generalised postulate (MA

⊗) must be introduced. To do so, we need to define what
constitutes a valid update rule in the AMT framework.

Definition 9 (AMT update rule). Let HA and HB be finite-dimensional Hilbert
spaces. An update rule wA is a family of functions {wA

AB}AB (one for each dimension
of HA and HB) satisfying (R1) completeness, (R2) context-independence—i.e. wA

AB :
P(HA) × S(HA ⊗ HB) → S(HA ⊗ HB)—and two additional conditions:
(R3) Self-consistency: let HB = HB′ ⊗ HB′′ (hence wA

AB ≡ wA
AB′B′′), then for all

HB′′ , ρAB′B′′ ∈ S(HA ⊗ HB′ ⊗ HB′′) and Πx ∈ P(HA), subsystem update rules
must satisfy the relation

TrB′′

[
wA
AB′B′′ (Πx, ρAB′B′′)

]
= wA

AB′ (Πx,TrB′′ (ρAB′B′′)) ; (3.3)

(R4) (Quantum) No-signalling: for all ρAB ∈ S(HA ⊗ HB) and all observables {Πx}
on HA, ∑

x

p(x) TrA
[
wA
AB (Πx, ρAB)

]
= TrA (ρAB) ; (3.4)

Given these conditions, we can interpret wA
AB (Πx, ρAB) as the normalised state

of the composite system ‘AB’, initially residing in ρAB, after a measurement has
been performed on subsystem ‘A’ resulting in outcome x. The subscript of wA

indicates the (possibly composite) system for which the output state is returned,
while the subsystem on which the measurement is performed can be inferred from the
Hilbert space on which the projector Πx is defined. Def. 9 considers measurements on
subsystem ‘A’, but update rules are of course assumed to account for measurements
on any constituent, e.g. Πy ∈ P(HB).

In line with our previous discussion on single systems, we require post-measurement
joint states to be (R1) always well-defined and (R2) uniquely determined by the
observed local outcome Πx and the pre-measurement state ρAB. In addition, condi-
tion (R3) ensures that the assignment of states is unambiguous. In particular, for
any outcome Πx registered by a device acting on ‘A’, the output state assigned to
the composite system ‘AB′’ can also be obtained from the output state assigned to
the larger composite system ‘AB′B′′’. The assignment of post-measurement states
is required to be independent of the observer’s choice of how to partition the inac-
cessible part of the system. Condition (R4), on the other hand, assures that local
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measurements, in the sense of measurements on distant subsystems, cannot be used
to transmit information—cf. Sec. 1.2.4.

The single-system mapping of Eq. (3.1) is now obtained as a special case. Let
ρA = TrB(ρAB), using (R3) we set

wA
A (Πx, ρA) = TrB

[
wA
AB (Πx, ρAB)

]
. (3.5)

Eq. (3.5) describes the update of the state of ‘A’ when initially entangled to ‘B’.
Therefore, it specifies how improper mixtures update following measurements.

An AMT is defined by replacing the Lüders rule wL with an update rule satisfying
Def. 9.
(MA

⊗) If a measurement on system ‘A’ outputs the outcome x, then the joint pre-
measurement state ρAB of the composite system ‘AB’ is updated to the nor-
malised joint post-measurement state according to the update rule wA as
follows:

(i) If ρAB is a pure or improper mixed state, then

ρAB
xA7−→ wA

AB(Πx, ρAB); (3.6)

(ii) If ρAB is a proper mixture with Gemenge G = {(p1, ρ
1
AB), ..., (pn, ρnAB)},

then
ρAB =

n∑
i=1

piρ
i
AB

xA7−→
n∑
i=1

p(i|x) wA
AB

(
Πx, ρ

i
AB

)
, (3.7)

where p(i|x) = pi p(x|i)/p(x).

By considering proper and improper mixtures separately, we allow the AMT frame-
work to include model theories such as pQT where sequential measurements can be
used to distinguish between the two classes.

Definition 10. An Alternative-Measurement Theory (AMT) is a theory defined
by the quantum postulates—cf. Sec. 1.1—for states (S), time evolution (T), system
composition (C), observables (O), probabilistic outcome production (P) and Axiom
(MA

⊗) assigning post-measurement states.

Both quantum theory and pQT are examples of AMTs. Quantum theory is
characterised by the Lüders rule,

wL
AB (Πx, ρAB) = (Πx ⊗ I) ρAB (Πx ⊗ I)

Tr (Πx ⊗ I ρAB) , (3.8)
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whereas passive quantum theory, i.e. quantum theory with non-collapsing measure-
ments [3] (or SERDs [120]) replacing standard measurements, is characterised by
the passive update rule,

wP
AB (Πx, ρAB) = ρAB . (3.9)

We note that the other types of readout devices explored in [118–120] do not, at least
in an obvious way, provide alternative update rules as defined in Def. 9. Update
rules, in the context of Def. 9, refer to assignments of post-measurement states
for measurements of quantum observables, which are represented by self-adjoint
operators. Devices such as SRDs or VNEMs fall outside our framework as they
yield the local state of a system or its von Neumann entropy, respectively [118]
(although it may be conceivable to simulate such devices within valid AMTs, e.g.
pQT). Nonetheless, implementing (possibly local-state-dependent, thus nonlinear)
evolution rules after the action of a SERD—mentioned explicitly in [118, 120]—
indeed provides different update rules, hence AMTs. Our framework, however, is not
confined to these examples: it also encompasses update rules capable of modifying
(as in standard quantum theory) the state of arbitrarily distant entangled systems,
something that cannot be achieved by applying unitaries based on the observed local
state of a system. In particular, anticipating the discussion of Sec. 3.3.2, the AMTs
obtained by assuming post-processing of SERDs constitute subtheories of pQT.

By combining Axioms (MA
⊗) and (P) we can construct instrument maps ωA

AB :
P(HA) × S̄(HA ⊗ HB) → S̄(HA ⊗ HB), which allow us to jointly describe both the
obtained outcome and the post-measurement state. In the following sections, we
will often work with ωA and sub-normalised states rather than directly with update
rules wA and normalised states. Let us define

ωA
AB (Πx, ρAB) = Tr [ΠxTrB (ρAB)] wA

AB

(
Πx,

ρAB
Tr(ρAB)

)
, (3.10)

then ωA
AB (Πx, ρAB) denotes the un-normalised post-measurement state of ‘AB’ con-

ditioned on observing outcome x on system ‘A’. As with standard instrument maps,
the trace of ωA

AB (Πx, ρAB) returns the probability of observing x,

Tr
[
ωA
AB (Πx, ρAB)

]
= Tr (ΠxTrB (ρAB)) = Tr (Πx ⊗ I ρAB) . (3.11)

We can concatenate instrument maps meaningfully. Given any initial joint state
ρAB (not necessarily normalised), the operator ωA

AB

(
Πy, ω

A
AB (Πx, ρAB)

)
describes

the joint state at the end of a time-ordered sequence of two measurements with
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outcomes Πx and Πy, respectively. Note that the measurements do not have to be
performed on the same subsystem. This property is ensured by the requirement that
ωA
AB be 1-homogeneous over S̄(HA ⊗ HB): for all Πx ∈ P(HA), ρAB ∈ S̄(HA ⊗ HB)

and λ ∈ [0, 1],
ωA
AB (Πx, λ ρAB) = λωA

AB (Πx, ρAB) . (3.12)

For proper mixtures, the conditional un-normalised post-measurement state is
obtained by applying ωA

AB to each element of the sum,

ρAB =
n∑
i=1

piρ
i
AB

xA7−→
n∑
i=1

pi ω
A
AB

(
Πx, ρ

i
AB

)
. (3.13)

3.1.2 Assumptions

To recap, the AMT framework rests on four assumptions:
(R1) Completeness: Every system must be assigned a post-measurement state as a

result of any measurement that may be performed on some of its components.

(R2) Context-independence: The initial state of the system and the observed outcome
uniquely determine the post-measurement state.

(R3) Self-consistency: The assignment of post-measurement states does not depend
on whether or not the probed system is regarded as part of a larger composite
system.

(R4) (Quantum) No-signalling: Measurements on separated subsystems do not
provide a signalling mechanism.

Assumptions (R1) and (R3) ensure that the behaviour of a system is coherent under
measurements. In contrast, (R2) and (R4) encode operational principles that will
restrict the set of mathematically-consistent measurement behaviours in a non-trivial
way.

In Sec. 3.2, we will continue our discussion on the definition of update rules. In
particular, we will examine how different AMTs can share the same measurement
behaviour for single systems and we will explore the limitations of “complete positivity”
in constructing the AMT framework. Then, in Sec. 3.2.4 and 3.2.5, we will analyse
more closely assumptions (R2) and (R4) by providing examples of measurement
behaviours that are ruled out exclusively by either context-independence or no-
signalling.
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3.2 The role of update rules

3.2.1 Multiple extensions to composite systems

As discussed in Sec. 1.2.4, Axiom (ML) fails to describe how a measurement on one
component affects entangled systems in quantum theory. Axiom (ML

⊗) was therefore
introduced to describe any measurement scenario in the theory. However, Axiom
(ML

⊗) is not implied uniquely from Axiom (ML).
More generally, different update rules may be compatible with the same behaviour

observed for single systems. Therefore, operational conditions on the behaviour of
single systems are usually insufficient to isolate a specific update rule wA from the
rest.

For example, it is easy to verify that

wA
AB (Πx, ρAB) = wA

A (Πx,TrB (ρAB)) ⊗ TrA (ρAB) (3.14)

defines a valid update rule compatible with any single-system rule wA
A obeying (R1)

completeness and (R2) context-independence. In fact, since the reduced state of
subsystem ‘B’ is not affected, the map in Eq. (3.14) satisfies (R3) self-consistency
and (R4) no-signalling.

Substituting wL
A—cf. Eq. (1.6)—into Eq. (3.14) leads to an alternative update

rule, w̃L, still compatible with the standard collapse, cf. Eq. (1.10). Therefore, there
are at least two AMTs featuring the Lüders projection for single systems: standard
quantum theory, identified by wL, and correlation-free quantum theory, identified
by w̃L. The predictions of the two models agree for single-system measurements,
but differ when entangled systems are measured independently. In particular, the
behaviour described by Eq. (3.14) is equivalent to cloning the reduced state TrB (ρAB)
and performing a measurement on the copy while the original is discarded2. As
in pQT, correlations between distant entangled systems cannot be observed but,
in contrast to pQT, they cannot even be retrieved by subsequent multi-partite
measurements.

2Note that the ‘correlation-free’ theory cannot be obtained by instead changing the state
space to exclude entanglement. Such a modification would, in fact, also affect the behaviour of
measurements performed on the entire composite system, which one does not obtain by replacing
the standard update rule with w̃L.
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3.2.2 The limitations of complete positivity

A map N defined on the space of bounded operators L(HA) is said to be completely
positive if, for any finite-dimensional space HB with m = dim (HB), and all positive
operators σ ∈ L(HA ⊗ HB), where σ = ∑

ijkl cijkl|i⟩⟨j| ⊗ |k⟩⟨l| = ∑
kl σkl ⊗ |k⟩⟨l|, we

have
σ′ =

m∑
k,l=1

N (σkl) ⊗ |k⟩⟨l| ≥ O . (3.15)

This definition, taken from [6], was introduced to apply to linear as well as nonlinear
maps. If N is linear, then σ′ ≡ (N ⊗ I) (σ).

Quantum mechanics is an example of an AMT in which instrument maps associ-
ated with a measurement on subsystem ‘A’ with outcome Πx obey the relation

ωA
AB (Πx, ρAB) =

(
ωA
x ⊗ IB

)
(ρAB) , (3.16)

where ωA
x (·) ≡ ωA

A(Πx, ·) is the single-partite map acting on S̄(HA) conditioned on
Πx. Assuming ωA

x has a unique linear extension to L(HA), the complete positivity
of ωA

x is a necessary and sufficient condition for Eq. (3.16) to define a valid update
rule wA via the relation given in Eq. (3.10). In fact, if ωA

x is completely positive,
then it is a quantum operation, hence ωA

AB is both (R3) self-consistent and (R4)
no-signalling—if this was not the case, quantum theory would violate at least one
of these two requirements. Conversely, if ωA

x is not completely positive, then ωA
AB

does not map onto S̄(HA ⊗ HB), hence Eq. (3.16) does not always represent a valid
state of the composite system. Therefore, complete positivity represents a way to
consistently “extend” single-system linear maps ωA

A to composite systems. In other
words, it provides a way to define (MA

⊗) from (MA) in the case of single-system rules
wA
A that give rise to linear instruments.

We could have defined arbitrary update rules constructively using complete
positivity of the single-system mappings ωA

A, rather than in terms of the conditions
(R1)-(R4) of Def. 9. Clearly, a more restricted framework of theories would have
resulted. This is an immediate consequence of Eq. (3.14) which provides an update
rule consistent with Def. 9 regardless of whether ωA

A is completely positive or not—a
feature that distinguishes our approach from others, such as [162], where complete
positivity of transformations is assumed from the outset. Nevertheless, can Eq. (3.15)
serve as an effective means to extend any single system behaviour into a fully fledged
update rule?
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It turns out that this is not possible, as complete positivity defined by Eq.
(3.15) is “physically unfit” for nonlinear dynamics. The authors of [47] observed
that a nonlinear version of N generally maps different decompositions of the same
state ρAB to different operators. In the AMT framework, this translates into an
ambiguous—hence unphysical—assignment of joint post-measurement states. Let
us illustrate this feature using passive measurements. Firstly, notice that complete
positivity, as defined in [6], requires the map to be defined on the space of bounded
operators, whereas the single-system rule wP

A and its corresponding p-instrument
map ωP

A are defined on S(HA) and S̄(HA), respectively. Therefore, one needs to
modify their definitions so that they also apply to non-Hermitian operators, i.e.
ωP
A (Πx, L) = Tr (ΠxL)L, where L ∈ L(HA). Now suppose we have a qubit pair in

the state |ΨAB⟩ = c0|00⟩ + c1|11⟩ ∈ HA ⊗ HB, and we perform a computational
basis measurement on subsystem ‘A’ with outcome Π0 = |0⟩⟨0|. By choosing two
different bases, say {|0⟩, |1⟩} and {|+⟩, |−⟩}, for HB, we can express the operator
ρAB = |ΨAB⟩⟨ΨAB| in two different ways:

ρAB =
∑

k,l∈{0,1}
σkl ⊗ ckc

∗
l |k⟩⟨l| =

∑
k̃,l̃∈{+,−}

σ̃k̃l̃ ⊗ |k̃⟩⟨l̃|/2 (3.17)

where we have set σkl = |k⟩⟨l|, σ̃k̃l̃ = |ϕk̃⟩⟨ϕl̃| and |ϕ±⟩ = c0|0⟩ ± c1|1⟩. Applying the
transformation defined in Eq. (3.15) to these decompositions leads to two different
outputs:

∑
k,l∈{0,1}

ωP
A (Π0, σkl) ⊗ ckc

∗
l |k⟩⟨l| = |c0|2|00⟩⟨00| , (3.18)

∑
k̃,l̃∈{+,−}

ωP
A (Π0, σ̃k̃l̃) ⊗ |k̃⟩⟨l̃|/2 = |c0|2ρAB . (3.19)

Both are valid states of HA ⊗ HB, hence the argument against complete positivity
applies regardless of whether Eq. (3.15) holds in all cases. In particular, the output
given in Eq. (3.18) is inconsistent with the action of ωP

A on the reduced state of
qubit ‘A’, ωP

A(Π0, ρA) = |c0|2ρA. Using a third basis for HB would likely result in yet
another final state.

This suggests that complete positivity is not a sensible criterion to construct
instrument maps for composite systems given arbitrary instrument maps for single
systems. The requirement does not entail for nonlinear maps the same desirable
operational properties that it does for linear maps.
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3.2.3 Composition compatibility

In quantum theory, a measurement with outcome Πx performed by a device DA

on subsystem HA affects the joint state in the same way as a measurement with
outcome Πx ⊗ IB performed by a global device DAB on the entire system HA ⊗ HB.
Formally, this property reads

wL
AB (Πx, ρAB) = wL

AB (Πx ⊗ IB, ρAB) , (3.20)

where on the right-hand side ‘AB’ is regarded as a single system, since Πx ⊗ I ∈
P(HA ⊗ HB). In other words, the two expressions in Eq. (3.20) are different: that
on the left-hand side is defined on P(HA) × S(HA ⊗ HB), while the other on
P(HA ⊗ HB) × S(HA ⊗ HB). Let us define this operational feature for arbitrary
AMTs.

Definition 11 (Composition Compatibility (CC)). An update rule wA satisfies
composition compatibility (CC) if, for every HA, HB, joint state ρAB ∈ S(HA ⊗ HB)
and local outcome Πx ∈ P(HA),

wA
AB (Πx, ρAB) = wA

AB (Πx ⊗ IB, ρAB) . (3.21)

Again, although Eq. (3.21) specifies measurements on ‘A’ only, the property is
assumed to hold for measurements on any component.

In analogy with complete positivity, composition compatibility can be used to
define an update rule wA given only the behaviour for single systems, wA

A. However,
in contrast with complete positivity, (CC) can be also used for maps wA

A giving rise to
nonlinear instruments. Passive quantum theory is one such example, in line with Eq.
(2.31). Furthermore, composition compatibility singles out quantum theory within
the set of AMTs consistent with the Lüders projection for single systems wL

A—cf.
Sec. 3.2.1.

However, this strategy of constructing update rules does not work in general. For
instance, consider the mapping

wmix
A (Πx, ρ) = IA

dA
(3.22)

where dA = dim(HA), which completely depolarises any measured state. If the
outcome represented by |0⟩⟨0|⊗ I2 is observed from a measurement by a global device
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DAB on a 4-dimensional qudit (labelled ‘AB’) in the product state |00⟩, then the
post-measurement state would be

wmix
AB (|0⟩⟨0| ⊗ I2, |00⟩⟨00|) = I4

4 . (3.23)

If we imposed composition compatibility, then Eq. (3.23) would also describe the
joint state of two (possibly distant) qubits after a measurement on HA performed
with a local device DA. Consequently, the reduced state of qubit ‘B’ would transition
from a pure state to the maximally mixed state. Clearly, such transformation would
enable signalling between the parties, thus violating (R4).

3.2.4 Context-dependence: von Neumann’s postulate

The assumption (R2) of context-independence ensures that all identical experimental
runs (i.e. the same state ρ is measured and the same outcome Πx is observed) lead
to the same post-measurement state. Conceptually, it resembles the standard idea of
non-contextuality in quantum foundations [166] which stipulates that the context—
i.e. any information distinguishing two operationally equivalent processes—does
not result in any difference at the ontic level. Similarly, here we choose to assume
that the post-measurement state must not depend on any information beyond the
observed outcome and the input state. Specifically, the state assignment cannot
depend on “hidden” variables with probability distributions which vary from one
experimental run to the next.

Many possible measurement behaviours are dismissed by this constraint. For
example, consider a map acting non-trivially whenever Πx is obtained from a mea-
surement of the observable M but behaving passively when it is obtained from a
measurement of a different observable N . The output would then depend on the
experimenter’s choice of observable, hence the map does not define a valid update
rule3. Our assumption does not exclude the possibility that wA may act trivially
whenever the outcome Πx is observed and non-trivially whenever some other outcome
Πy ̸= Πx is registered. Single-system maps of the form

wA
A (Πx, ρ, λ) =

ρ0 if λ = 0

ρ1 if λ = 1
, (3.24)

3Of course, one might choose to define update rules differently to include such possibility.
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however, are ruled out by context-independence. In this case, the parameter λ might
represent some environmental variable, noise internal to the device, or a switch that
flips between different update rules.

However, if instead we assumed that the probability that the hidden variable λ
takes on a specific value is the same across all experimental runs, i.e. p (λ = 0) = q,
then it is possible to define an update rule that accounts for such probabilistic
behavior. For single systems, this would be

wA
A (Πx, ρ) = q ρ0 + (1 − q) ρ1 . (3.25)

In contrast with Eq. (3.24), here the post-measurement state is a proper mixture
and identical in all runs. One might still consider the “real” post-measurement state
to be either ρ0 or ρ1 based on the value of some hidden λ, however the distribution
of λ is independent of the “context” of the particular experiment. Specifically, Eq.
(3.25) might depict a scenario where, with probability q (equal for all measurements),
the state is projected to the subspace Hx (i.e. a standard quantum measurement
device is implemented), while with probability 1 − p it does not change (i.e. a SERD
or passive measurement device is implemented). In other words, the assumption
of context-independence does not rule out all possible versions of quantum theory
augmented by readout devices [120].

The projection postulate introduced by von Neumann is a notable example for
which a similar argument can be made. As discussed in Sec. 1.2.2, according to von
Neumann [177], outcome degeneracy of quantum measurements results from classical
post-processing of non-degenerate measurements. That is, one does not directly
implement a measurement of a degenerate observable M , but a measurement of a
non-degenerate refinement M ′ commuting with M is carried out, and the outcomes
are coarse-grained. Given a degenerate observable, there exist, however, infinitely
many refinements. For example, both qutrit observables {|0⟩⟨0|, |1⟩⟨1|, |2⟩⟨2|} and
{|+⟩⟨+|, |−⟩⟨−|, |2⟩⟨2|} are valid refinements of the degenerate observable {I −
|2⟩⟨2|, |2⟩⟨2|}. As a result, the post-measurement state will not only depend on ρ

and Πx but also on the chosen orthonormal basis Bx = {|xi⟩}Tr(Πx)
i=1 of Hx ≡ ΠxH,

wvN
A (Πx, ρ,Bx) = 1

p(x)
∑
i

p(xi) wL
A (|xi⟩⟨xi|, ρ) , (3.26)

where p(x) = Tr(Πxρ) and p(xi) = Tr(|xi⟩⟨xi|ρ). Therefore, von Neumann’s
postulate—which, as Lüders postulate, only focuses on the state-updates of the
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measured system—does not give rise to a valid update rule, unless the probability
of using any given basis Bx is fixed for each experiment resulting in the outcome
Πx. Notice that the corresponding instrument map ωvN

A is linear and completely
positive, hence Eq. (3.16) allows to extend the rule to composite systems in a way
that satisfies no-signalling. We can thus conclude that “context-independence” (R2)
is the only assumption responsible for ruling out von Neumann’s update rule.

3.2.5 Signalling: partial repeatablity

An example of measurement behavior that is ruled out by the quantum no-signalling
condition was already provided in Eqs. (3.22)-(3.23). Assuming that measurement
disturbances propagate instantaneously, such toy models would enable superluminal
signalling between parties, thus also violating the relativistic no-signalling principle.
In other words, the possibility to construct toy models via our approach that violate
(R4) (cf. (3.4)) indicates that the Hilbert space structure of quantum theory on its
own does not guarantee compatibility with special relativity. In this section, we
investigate other toy models that violate the quantum no-signalling condition.

Let us examine the following measurement behaviours that can be considered to
“lie between” the standard collapse of quantum theory and the passive rule of pQT.
Given λ ∈ [0, 1], we introduce a one-parameter family of mappings wλ

A for a single
system ‘A’. Let Πx ∈ P(HA) and ρ ∈ S(HA), define

wλ
A (Πx, ρ) = G

1/2
λ (Πx) ρG1/2

λ (Πx)
Tr(Gλ (Πx) ρ)

(3.27)

where
Gλ (Πx) = (1 − λ) Πx + λI (3.28)

and
G

1/2
λ (Πx) =

(
1 −

√
λ
)

Πx +
√
λ I (3.29)

is its unique positive square root. The Lüders rule wL
A and the passive rule wP

A for
single systems are recovered by setting λ = 0 and λ = 1, respectively. In other words,
the family {wλ

A} smoothly interpolates between quantum theory and pQT.
The induced instrument maps ωλA,

ωλA (Πx, ρ) = Tr(Πxρ)
G

1/2
λ (Πx) ρG1/2

λ (Πx)
Tr(Gλ (Πx) ρ)

, (3.30)
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are nonlinear in the state ρ for λ ≠ 0. Therefore, as pQT, these new models do not
preserve the indistinguishability of different preparations of the same mixed state.

Consider the vector state |ψ⟩ = ∑d−1
i=0 ci|i⟩ ∈ HA and a measurement outcome

ΠX = ∑
i∈X |i⟩⟨i| for X ⊆ {0, ..., d− 1}. The output state is then

wλ
A (ΠX , |ψ⟩⟨ψ|) = |ψX⟩⟨ψX | , (3.31)

where

|ψX⟩ = 1
N

∑
j∈X

cj|j⟩ +
√
λ
∑
i/∈X

ci|i⟩

 , (3.32)

with N being the normalisation factor. Therefore, the parameter λ, fixed for all
measurements in the corresponding toy model, determines how likely a second
measurement, performed immediately after the first one, will yield the same outcome
as the first. The closer λ is to 0, the higher the boost in moduli of the amplitudes
corresponding to the “observed” components of the superposition. We call this
phenomenon partial repeatability.

Definition 12 (Partial repeatability (PA)). For any outcome x of a measurement
repeated on the same system without intervening unitary evolution, the probability
of observing x for the second time is higher than the probability to observe it for
the first time,

p (o2 = x|o1 = x) > p (o1 = x) , (3.33)

where o1 (o2) is the variable corresponding to the outcome of the first (second)
measurement.

The transformations of Eq. (3.27) satisfy partial repeatability, except when λ = 1.
In fact, partial repeatability does not include the probabilistic repeatability (PR)
known from pQT, where p(o2 = x|o1 = x) = p(o1 = x), cf. Sec. 2.3.1. Furthermore,
Eq. (3.32) shows that the disturbance to the state does not affect the relative phases,
and that the ratio between post- and pre-measurement amplitudes is the same even
for “unobserved” components, i.e. where i /∈ X.

In order to extend the update rule to composite systems, we assume composition
compatibility (CC), following the example of quantum theory and pQT, see Sec.
3.2.3. That is, subsystem measurements induce joint state updates according to

wλ
AB (Πx, ρAB) = wλ

AB (Πx ⊗ IB, ρAB) . (3.34)
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Figure 3.1: Example of partial repeatability resulting from the single-system trans-
formation wλ

A. Taking λ = 0.5 and the initial qutrit state |ψ⟩ =
√

0.3|0⟩ +
√

0.5|1⟩ +√
0.2|2⟩, the plots show the outcome probabilities before and immediately after a

measurement in the computational basis, where outcome ‘1’ (left) or ‘2’ (right) is
observed.

To show that Eq. (3.34) is self-consistent (R3), notice that

G
1/2
λ (Πx ⊗ IB) = G

1/2
λ (Πx) ⊗ IB , (3.35)

hence, as expected,

TrB′′

[
wλ
AB′B′′ (Πx, ρAB′B′′)

]
= TrB′′

G1/2
λ (Πx) ⊗ IB′B′′ ρAB′B′′ G

1/2
λ (Πx) ⊗ IB′B′′

Tr (Gλ (Πx ⊗ IB′B′′) ρAB′B′′)


(3.36)

= G
1/2
λ (Πx) ⊗ IB′ TrB′′ (ρAB′B′′) G1/2

λ (Πx) ⊗ IB′

Tr (Gλ (Πx ⊗ IB′) TrB′′ (ρAB′B′′)) (3.37)

= wλ
AB′ (Πx,TrB′′ (ρAB′B′′)) . (3.38)

However, Eq. (3.34) does not define a valid update rule for λ /∈ {0, 1} because it
violates quantum no-signalling (R4). Let Alice and Bob share a pair of qubits in the
entangled state

|ψ⟩ = α|00⟩ + eiθβ|11⟩, α, β ∈ R , (3.39)



3.2. The role of update rules 91

and consider a computational basis measurement performed by Alice. Then

p(0A) wλ
AB (Π0, |ψ⟩⟨ψ|) + p(1A) wλ

AB (Π1, |ψ⟩⟨ψ|) = α2 |ψ0A
⟩⟨ψ0A

| + β2 |ψ1A
⟩⟨ψ1A

| ,
(3.40)

where β2 = 1 − α2. The normalised post-measurement states are

|ψ0A
⟩ = α|00⟩ + eiθ

√
λβ|11⟩√

α2 + λβ2 , |ψ1A
⟩ =

√
λα|00⟩ + eiθβ|11⟩√

λα2 + β2 . (3.41)

Alice can signal to Bob since

p(0A) TrA
[
wλ
AB (Π0, |ψ⟩⟨ψ|)

]
+ p(1A) TrA

[
wλ
AB (Π1, |ψ⟩⟨ψ|)

]
=

=
(

α4

α2 + λβ2 + λα2β2

λα2 + β2

)
|0⟩⟨0| +

(
λα2β2

α2 + λβ2 + β4

λα2 + β2

)
|1⟩⟨1|

̸= α2|0⟩⟨0| + β2|1⟩⟨1| = TrA (|ψ⟩⟨ψ|) (3.42)

for all 0 < λ < 1 and provided α2 /∈ {0, 1/2, 1}. The probability that Bob will
observe the outcome “0” depends on whether or not Alice performs her measurement:

p(0B|no A mmt) = α2 (3.43)

p(0B|A mmt) = α4

α2 + λβ2 + λα2β2

λα2 + β2 (3.44)

The two probabilities match when qubits are not entangled or, surprisingly, when they
are maximally entangled. Consequently, by sharing an ensemble of (not maximally)
entangled systems, Alice and Bob can violate Bell’s inequalities up to the algebraic
maximum.

Despite the failure of wλ of Eq. (3.34) to define an update rule, it is indeed
possible to construct valid AMTs featuring partial measurements. Eq. (3.14), for
instance, provides a valid extension w̃λ

AB of wλ
A to composite systems. Alternatively,

we can interpolate between wL and wP in the following way. Let µ ∈ (0, 1) and
Πx ∈ P(HA), and consider the one-parameter family of update rules defined by

wµ
AB (Πx, ρAB) = (1 − µ) wL

AB (Πx, ρAB) + µwP
AB (Πx, ρAB) . (3.45)

The transformations of Eq. (3.45) satisfy partial repeatability. Unlike the previous
family of transformations, here the higher probability of re-observing x comes from
the non-zero chance—equal for all measurements—of the state collapsing via the
Lüders rule. Eq. (3.45) does not lead to signalling since it is the convex combination
of no-signalling update rules.
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3.3 Generalised instruments and AMT simulation

3.3.1 Generalised instruments and observables

In any AMT, measuring an observable M = ∑
x∈X mxΠM

x defined on a system leads
to a post-measurement state as prescribed by the update rule. However, there
exist alternative strategies to measure the same observable. For instance, a device
that implements a measurement of N = UMU † can be used, provided the system
first undergoes the unitary evolution ρ 7→ U ρU †. Though a different experimental
set-up is required, the outcome statistics will agree with the Born rule for M ,
p(x) = Tr

(
ΠM
x ρ
)
. Another strategy is to couple the system with an ancilla, which is

then suitably measured. Furthermore, adding a channel at the end of any of these
strategies will define yet a different scheme for measuring M . This holds true for all
AMTs because channels can be defined in terms of axioms which do not involve the
update rule.

Although every measurement is ultimately modeled by the update rule of the
theory, different schemes for measuring M will generally result in different post-
measurement states of the original system. We account for this flexibility by defining
generalised M -compatible instruments for any model theory in the framework. This
will also allow us to include unsharp measurements in our formalism—Sec. 1.2.3.

It follows from Naimark’s dilation theorem [144, 171] that we can interpret a
measurement model M = ⟨HE, ξ, U,N⟩, where HE denotes an ancillary system, as
describing one way to implement a measurement of M = {Mx}x∈X on HS. For this
to hold, letting N = {ΠN

x }x∈X , the probability reproducibility condition—cf. Eq.
(1.20)—must be satisfied,

Tr
[(
I ⊗ ΠN

x

)
U ρ⊗ ξ U †

]
= Tr

(
M †

xMx ρ
)
. (3.46)

In the language of AMTs, given a theory characterised by the update rule wA—with
associated fundamental instrument map ωA given by Eq. (3.10)—, the strategy
described by M induces the following transformation of system HS,

ωM (Mx, ρ) = TrE
[
ωA
SE

(
ΠN
x , U ρ⊗ ξ U †

)]
. (3.47)

Therefore, with Eq. (3.47) we can describe the impact of unsharp measurements,
despite the fact that the update rule wA and the fundamental instrument map ωA

are only defined for projectors.
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However, Eq. (3.47) only covers a subset of possible strategies for measuring M.
Instead of operating on the ancilla, a sharp measurement could in principle be carried
out on HS directly or on the whole composite system HS ⊗ HE. We want to be able
to account for these options in order to include, for example, the ancilla-free strategy
mentioned at the beginning of the section, where the unitary gate in M would have
the form U ⊗ IE. In addition, we also would like to include cases of AMTs that are
not “compositionally compatible” (CC), i.e. where measuring {Πx} on HE is not
equivalent to measuring {IS ⊗ Πx} on HS ⊗ HE. To achieve this level of generality,
we will work with a generalised notion of measurement model M = ⟨HE, ξ, U,N⟩, in
which N can refer to a (sharp) observable defined on any subspace H

Ẽ
⊆ HS ⊗ HE.

The reproducibility condition (3.46) can then be written in the following way,

Tr
[
ωA
SE

(
ΠN
x , U ρ⊗ ξ U †

)]
= Tr

(
M †

xMxρ
)
, (3.48)

where ΠN
x ∈ P(H

Ẽ
), while Eq. (3.47) continues to hold.

We now define, for any theory in the framework, the M-compatible generalised
instruments describing all possible single-apparatus strategies implementing a mea-
surement of M and their effect on the system. In essence, these strategies follow the
simple paradigm of first executing an M-compatible measurement model M and
then applying an outcome-dependent channel to the composite system. In particular,
the channels are assumed to be implemented dynamically, i.e. via unitary evolution
involving additional ancillary systems. The alternative way to implement channels
via unconditional measurements (see discussion in Sec. 2.5.1) is ruled out by the
restriction to a single apparatus.

Definition 13. The collection of maps {ωMx}x is an M-compatible generalised
instrument realisable in the AMT with update rule wA if

ωMx (ρ) ≡ ω (Mx, ρ) = TrE
[
ηxSE ◦ ωA

SE

(
ΠN
x , U ρ⊗ ξ U †

)]
(3.49)

where M = ⟨HE, ξ, U,N = {ΠN
x ∈ P(H

Ẽ
)}⟩ is an M-compatible measurement model

and {ηxSE}x is a collection of channels on S(H ⊗ HE).

For a given AMT, the fundamental instrument {ωA
x }x for a sharp observable M

is recovered by setting ηxSE = ISE, U = ISE and letting N = M be an observable of
HS. In the special case of quantum theory, the generalised instruments compatible
with M coincide with its quantum instruments defined in Def. 2.
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A theorem by Ozawa [142]—already mentioned in Sec. 1.3.2—shows that for
every M-compatible quantum instrument {ωMx}x, there exists a measurement model
M such that, for all states ρ, ωMx (ρ) = ωM (Mx, ρ). In other words, all quantum
instruments can be realised without physically implementing channels ηxSE after the
measurement on the ancilla. This property, however, does not hold for arbitrary
AMTs. In pQT, for instance, as discussed in Sec. 2.5.4, there exists p-instruments
that cannot be realised without applying some channels after the measurement.
An example of such “indirect” p-instrument is provided by the map ω (Mx, ρ) =
Tr(Mxρ)ρ/Tr(ρ) for some non-trivial unsharp M (i.e. the Mx are not all multiples of
the identity). Despite being identical to the fundamental p-instrument ωP

A (which
however is only defined for sharp observables), the transformation requires that a
unitary gate is applied after the ancilla measurement. In fact, any M-compatible
measurement model M generates entanglement between the system and the ancilla,
which is not broken by a passive measurement of the observable N . Hence, to bring
the system back to its initial state ρ, the de-coupling unitary U † must be applied to
the composite HS ⊗ HE.

We thus identify two classes of generalised instruments. On one hand, direct
instruments describe ways of measuring M that do not require the implementation of
channels ηxSE. On the other hand, indirect instruments describe those strategies where
channels, hence the time delay needed for their implementation, are unavoidable.

Definition 14. The M-compatible generalised instrument {ωMx}x, realisable in
the AMT with update rule wA, is said to be direct if there exists an M-compatible
measurement model M such that ωMx (ρ) = ωM (Mx, ρ) for all ρ ∈ S̄(HS). Otherwise,
it is said to be indirect.

3.3.2 Subtheories

In Sec. 2.6, we discussed the possibility to simulate quantum theory with passive
measurements. We now generalise the idea to arbitrary AMTs with different update
rules. Specifically, if AMT(β) can reproduce the update rule of AMT(α), we say
that AMT(α) is a subtheory of AMT(β).

Definition 15. AMT(α), with update rule wα, is a subtheory of AMT(β), with
update rule wβ, if, for any HA, HB and any sharp measurement M = {Πx}x on HA,
there exists an M -compatible measurement model MM = ⟨HC , ξ, UCA, N⟩ — with
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N = {ΠN
x }x a sharp observable of H

Ẽ
⊆ HC ⊗ HA — and a collection of channels

{ηxCA}x on S(HC ⊗ HA) such that

ωαAB (Πx, ρAB) = TrC
[
(ηxCA ⊗ IB) ◦ ωβCAB

(
ΠN
x , (UCA ⊗ IB) (ξ ⊗ ρAB)

(
U †
CA ⊗ IB

))]
(3.50)

for all joint states ρAB ∈ S(HA ⊗ HB).

A diagrammatic illustration of the condition of Eq. (3.50), which is articulated in
terms of fundamental instrument maps rather than the corresponding update rules,
is depicted in Fig. 3.2. In short, we require that the impact on the joint state of any
sharp subsystem measurement predicted by AMT(α) can be simulated in AMT(β)
by a procedure that involves a measurement of the same subsystem, and possibly an
ancilla. In particular, we impose the restriction that the simulation protocol cannot
involve subsystem HB, which is not directly measured in the “target” procedure of
AMT(α). This guarantees the exclusion of simulation strategies that require the
experimenter to have access to both systems HA and HB, even in cases where these
systems are space-like separated.

AMT(α) AMT(β)

x

A

α

B

=

D

Ux
C

UM

β
x

A

B

Figure 3.2: Circuit diagrammatic representation of Eq. (3.50). The operator UM =
UCA denotes the unitary included in the M -compatible measurement model MM ,
whereas Ux, which acts on HCA and an additional ancilla HD (initialised in some
state ξD), realises the outcome-dependent channel ηxCA—i.e. ⟨HD, Ux, ξD⟩ is a dilation
of ηxCA. We use dashed lines around the meter to indicate that the measurement
may be performed only on part of the system(s) of interest, here H

Ẽ
⊆ HC ⊗ HA.

A direct consequence of Eq. (3.50) is that, for any generalised observable M, all
M-compatible generalised instruments realisable in AMT(α) are also realisable in
AMT(β). This is illustrated schematically in Fig. 3.3. Therefore, if (3.50) holds,
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then AMT(β) can successfully simulate any measurement process that appears in
AMT(α). The simulability relation defined by the notion of a subtheory does not
define a partial order within the set of AMTs. In fact, in Sec. 3.4.1, we will explore
a subset of different AMTs that are mutually simulable.

AMT(α) AMT(β)

B

A

UM

α

Ux

x

C

D

=

B

D′

U ′
x

C ′

U ′
M′

β x

A
UM

UxC

D

=

HC′′ = HC ⊗ HC′

HD′′ = HD ⊗ HD′

U ′′
M′′ = U ′

M′(IC′ ⊗ UM)
U ′′
x = (ID′ ⊗ IC′ ⊗ Ux)(U ′

x ⊗ ID)

B

A

U ′′
M′′

β

U ′′
x

x

C ′′

D′′

Figure 3.3: Pictorial proof that Eq. (3.50) implies that AMT(β) can simulate all
instruments realisable in AMT(α). For any generalised observable M of HA, any
M-compatible generalised instrument in AMT(α) can be realised by a circuit like the
one on the left, cf. (3.49). The horizontal equivalence is ensured by Eq. (3.50), while
the vertical equivalence follows by suitable relabeling of systems and operators.

When simulation was addressed in Sec. 2.6 in the specific case of pQT, it was
argued that all quantum measurements can be simulated, at least in principle, with
passive measurements. However, the protocol described required both an infinite
sequence of passive measurements and access to entangled subsystems. According
to the more restrictive definition in terms of Eq. (3.50), it is clear that standard
quantum theory is not a subtheory of passive quantum theory, and vice versa. In
fact, no passive measurement can induce the collapse of a distant entangled system,
and at the same time no non-trivial quantum measurement leaves the joint state
unaltered.
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3.4 Properties of AMTs

Having introduced the AMT framework and illustrated it by providing examples
of acceptable and excluded measurement behaviors, our attention now turns to
exploring the properties of the theories allowed within the framework. The objective
of the upcoming sections is to characterise physically reasonable update rules which
respect additional operationally-inspired properties. Ultimately, we will search for
features that distinguish standard quantum theory from all other AMTs. Table 3.1
in Sec. 3.5 summarises the main update rules discussed in this chapter along with
some of their features.

3.4.1 Preparation indistinguishability

In all AMTs, a single measurement cannot distinguish between different preparations
of the same density matrix. By performing one measurement on each element
of an infinite ensemble described by the mixed state ρ, an experimenter cannot
decide whether the ensemble was prepared according to Gemenge G1 or G2, where
ρG1 = ρG2 = ρ. This follows from the linearity of the Born rule over S(H).

Suppose G1 = {(1/2, |0⟩) , (1/2, |1⟩)} and G2 = {(1/2, |+⟩) , (1/2, |−⟩)}, hence
ρG1 = ρG2 = I/2 ∈ S(H2). In quantum theory, the two preparations are indistin-
guishable even if the experimenter is allowed to perform a sequence of measurements
on each element of the ensemble. However, this equivalence does not hold in all
AMTs. In pQT, for example, two measurements in the computational basis are
sufficient to discriminate between the two scenarios. If successive measurements on
the same system always yield identical outcomes, i.e. p(o1 = x1, o2 = x2) = δx1x2/2,
then the ensemble was prepared according to G1; otherwise, G2 was employed. The
distinguishability, as discussed in Sec. 2.5.2, is a consequence of the nonlinearity of
the fundamental p-instrument map ωP over S(H).

We now formalise the idea of “preparation indistinguishability” for sequential
measurements. In analogy with the extension (MA

⊗) of Axiom (MA), we will start
by considering non-composite systems only (Def. 16) and then provide a stronger
definition that accounts for subsystem measurements (Def. 17).

Definition 16 (Weak Indistinguishability (WI)). Physically different preparations of
one and the same state of a composite system cannot be distinguished by a sequence
of measurements performed on it as a whole.
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Given an arbitrary AMT, this property is guaranteed by the convex-linearity
over S(HA) of the single-system instrument map ωA

A induced by the defining update
rule wA. That is, (WI) holds if and only if

ωA
A (Πx, λρ+ (1 − λ)σ) = λωA

A (Πx, ρ) + (1 − λ)ωA
A (Πx, σ) (3.51)

for all Πx ∈ P(HA), ρ, σ ∈ S(HA) and λ ∈ [0, 1]. Convex-linearity over density
matrices implies the existence of a unique linear extension over the larger space of
bounded operators L(HA) [97]. For simplicity, we will speak of “linearity” rather
than “convex-linearity” and denote the extension to L(HA) with the same symbol
as the map originally defined on S(HA), namely ωA

A.
As shown in Sec. 3.2.1, it is possible to devise update rules such that ωA

A is linear
over S(HA) but ωA

AB is nonlinear over the larger, composite system S(HA ⊗ HB).
In this case, even though the AMT satisfies (WI), different preparations of the
same joint state may be distinguished by exploiting the composite nature of the
system. As an example, we consider the update rule w̃L defined by Eq. (3.14), that
is compatible with the Lüders projection for single systems wL

A. The corresponding
instrument map for composite systems ω̃L

AB is nonlinear over density matrices.
To see this, suppose that the two-qubit state ρAB has been prepared either via
G1 = {(1/2, |Ψ+⟩), (1/2, |Ψ−⟩)} or via G2 = {(1/2, |00⟩), (1/2, |11⟩)}4. In such an
AMT, measurements in the computational basis of each qubit can reveal which
Gemenge was employed. In fact, if the outcomes obtained from the two mono-partite
measurements are not identical, then the qubits must have been prepared according
to G1, see Sec. 3.2.1. Therefore, measurement outcomes from different constituents
may be used to gain knowledge about the preparation of the composite system. This
possibility neither implies a violation of quantum no-signalling nor can it be achieved
with measurements performed on only one constituent.

In order to exclude such a scenario, we define the following stronger notion of
preparation indistinguishability.

Definition 17 (Strong Indistinguishability (SI)). Physically different preparations of
one and the same state of a composite system cannot be distinguished by a sequence
of measurements performed on it as a whole or on its constituents.

Since a linear map ωA
AB cannot induce a nonlinear map ωA

A, the condition is
equivalent to the convex-linearity over density matrices of the instrument map for

4Here, |Ψ±⟩ = (|00⟩ ± |11⟩)/
√

2.
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composite systems induced by the defining update rule wA. That is, (SI) holds if
and only if

ωA
AB (Πx, λρAB + (1 − λ)σAB) =

= λωA
AB (Πx, ρAB) + (1 − λ)ωA

AB (Πx, σAB) (3.52)

for all HB, Πx ∈ P(HA), ρAB, σAB ∈ S(HA ⊗ HB) and λ ∈ [0, 1]. In other words,
the map ωA

AB is linear over L(HA ⊗ HB).
If the map ωA

AB is linear, then all generalised instruments—cf. Eq. (3.49)—of the
corresponding theory will be linear. The converse is also true, hence linearity of all
generalised instruments is equivalent to “strong indistinguishability”.

Lemma 3.1. An update rule wA is (SI) if and only if, for any generalised observable
M on HA, all M-compatible generalised instruments realisable in the corresponding
AMT are composed of linear maps over S̄(HA).

Proof. See Appendix A.2.

We will now show that assuming (SI) is equivalent to fixing a particular extension
of instrument maps to composite systems. The proof of this result (cf. Theorem 3.1
below) relies on the following lemma.

Lemma 3.2. Let M,N : L(HA ⊗ HB) → L(HA ⊗ HB) be linear mappings satisfying
M(ρA ⊗ ρB) = N(ρA ⊗ ρB) for all ρA ∈ S(HA) and ρB ∈ S(HB). Then M = N .

Proof. See Appendix A.2.

Theorem 3.1. An update rule wA is (SI) if and only if the corresponding instrument
maps—defined by Eq. (3.10)—have the form

ωA
AB (Πx, ρAB) =

(
ωA
x ⊗ IB

)
(ρAB) . (3.53)

where ωA
x (·) ≡ ωA

A(Πx, ·).

Proof. In order for Eq. (3.53) to (i) be well-defined and (ii) assign post-measurement
states unambiguously, ωA

A must be (i) linear over L(HA) and (ii) completely positive.
But if ωA

A is linear over L(HA), then the map ωA
AB is linear over L(HA ⊗ HB). Hence,

an update rule wA for which Eq. (3.53) holds is necessarily (SI).
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To show the converse, namely that (SI) implies Eq. (3.53), consider an arbitrary
pure product state ρψ ⊗ ρϕ = |ψ⟩⟨ψ| ⊗ |ϕ⟩⟨ϕ| ∈ S(HA ⊗ HB). Given any update rule
wA, the requirement of no-signalling (R4) implies that

TrA
[
ωA
AB (Πx, ρψ ⊗ ρϕ)

]
= ρϕ (3.54)

whereas from self-consistency (R3) we have that

TrB
[
ωA
AB (Πx, ρψ ⊗ ρϕ)

]
= ωA

x (ρψ) . (3.55)

The post-measurement state of the joint system must therefore be given by

ωA
AB (Πx, ρψ ⊗ ρϕ) = ωA

x (ρψ) ⊗ ρϕ. (3.56)

Consider now an arbitrary product state ρA ⊗ ρB = ∑
ij piqjρ

i
A ⊗ ρjB, where 0 ≤

pi, qj ≤ 1, ∑i pi = ∑
j qj = 1 and ρiA, ρjB are pure states. If wA is (SI), it follows from

the linearity of ωA
AB over joint states and Eq. (3.56) that

ωA
AB (Πx, ρA ⊗ ρB) =

∑
ij

piqj ω
A
AB

(
Πx, ρ

i
A ⊗ ρjB

)
(3.57)

=
∑
ij

piqj ω
A
x

(
ρiA
)

⊗ ρjB (3.58)

=
∑
ij

piqj ω
A
x ⊗ I

(
ρiA ⊗ ρjB

)
(3.59)

= ωA
x ⊗ I (ρA ⊗ ρB) , (3.60)

where we used the definition N ⊗ I (LA ⊗ LB) = N (LA) ⊗ LB for any LA ∈ L(HA)
and LB ∈ L(HB). Hence, for any fixed outcome Πx ∈ P(HA), the two linear
mappings M(·) = ωA

AB (Πx, ·) and N(·) = ωA
x ⊗ I(·) defined on L(HA ⊗ HB) agree

on all product operators ρA ⊗ ρB. Lemma 3.2 applies: the two maps must be equal.
Therefore,

ωA
AB (Πx, ρAB) =

(
ωA
x ⊗ IB

)
(ρAB) (3.61)

holds for any Πx ∈ P(HA) and joint state ρAB ∈ S(HA ⊗ HB).

We have shown that assuming “strong indistinguishability” implies that (i)
the single-system instrument map ωA

A is linear and completely positive and (ii)
the composite-system instrument map ωA

AB is given by the well-defined relation
(3.53). In other words, the assumption singles out quantum instruments. Since
the Lüders instrument is not the only quantum instrument compatible with an
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arbitrary sharp observable M , it follows that the set of (SI) AMTs includes standard
quantum theory, though not exclusively. Adding an outcome-dependent channel to
the Lüders rule, in fact, defines a different (SI) update rule. Nevertheless, from the
theorems by Ozawa [142] and Hayashi [94, 97], mentioned in Sec. 1.3.2, it follows
that quantum theory can simulate any (SI) AMT.

Corollary 3.1. Every (SI) AMT is a subtheory of standard quantum theory.

Mono- and multi-partite procedures

Another consequence of assuming strong indistinguishability is the equivalence
between mono- and multi-partite procedures for measuring observables of the form
A⊗B, which we encountered in Sec. 2.3.2.

Definition 18 (Equivalence of mono- and multi-partite procedures (MM)). The
outcome probabilities {p(x, y)}xy from a measurement of {Πx ⊗ Πy}xy using a global
device DAB on HA ⊗ HB coincide with the joint probabilities from measurements of
{Πx}x on HA and {Πy}y on HB performed by local devices DA and DB, respectively.

Note that classical communication between the parties is required to obtain the
joint probabilities when performing mono-partite measurements. Given an arbitrary
AMT with update rule wA, the requirement for (MM) can be expressed as

Tr(Πx ⊗ Πy ρAB) = Tr
[
(I ⊗ Πy)ωA

AB (Πx, ρAB)
]
, (3.62)

holding for all ρAB and local outcomes Πx ∈ P(HA) and Πy ∈ P(HB). For the
reverse order of the local measurements, we have

Tr(Πx ⊗ Πy ρAB) = Tr
[
(Πx ⊗ I)ωA

AB (Πy, ρAB)
]
. (3.63)

Notice that the identities (3.62) and (3.63) only require agreement of the outcome
probabilities and not necessarily of the output state of the composite system.

Lemma 3.3. If the update rule wA is (SI), then the corresponding AMT satisfies
(MM).

Proof. If the update rule is (SI), then the instrument map for single systems ωA
A is

linear and completely positive. Therefore, it has an operator-sum (Kraus) represen-
tation ωA

A (Πx, L) = ∑
rKr LK

†
r , where L ∈ L(HA) and ∑rK

†
r Kr = Πx [97]. Then
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we can write

Tr
[
(I ⊗ Πy)

(
ωA
A (Πx) ⊗ I

)
(ρAB)

]
= Tr

[∑
r

(I ⊗ Πy) (Kr ⊗ I) ρAB
(
K†
r ⊗ I

)]
(3.64)

= Tr
[∑
r

(
K†
rKr ⊗ I

)
(I ⊗ Πy) ρAB

]
(3.65)

= Tr(Πx ⊗ Πy ρAB) (3.66)

since the operators Kr ⊗ I and I ⊗ Πy commute for all values of r and y.

Closure under sequential composition

Another way to ensure linearity of all instrument maps is by assuming the following
principle, which, to the best of our knowledge, was first introduced in [76].

Definition 19 (Closure under sequential composition (CS)). For any sequence of
generalised measurements performed on a system, there exists a single generalised
measurement that is equivalent to it.

In other words, given an arbitrary sequence of measurements, it is possible to
identify a single (generalised) measurement such that the outcome probabilities
obtained from performing it on each element of an infinite ensemble coincide with
the joint probabilities observed from performing the sequence of measurements on
each element. The equivalence must hold for any state ρ.

The equivalence between (CS) and (SI) can be understood as follows: if we require
sequences of measurements to have the same mathematical representation as single
measurements, then preparations that cannot be distinguished based on the outcome
statistics of single measurements also cannot be distinguished based on the statistics
of many measurements.

In the language of our framework, an AMT is “sequentially closed” (CS) if,
for any pair of generalised observables F = {Fi} and G = {Gj} of HA and any
F-compatible instrument {ωFi

} realisable in the AMT, there exists a generalised
observable H = {Hij} such that

Tr
(
H†
ij Hij ρ

)
= Tr

[
G†
j Gj ωFi

(ρ)
]
, (3.67)

for any state ρ ∈ S̄(HA). The generalisation to longer sequences follows by induction.
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Lemma 3.4. An update rule wA is (CS) if and only if it is (SI).

Proof. Suppose wA is (CS). Let ρ = pρ1 +qρ2 with ρ1 ̸= ρ2 and non-negative numbers
p, q with p+ q = 1. By linearity of the trace, we write

Tr
[
H†
ij Hij (pρ1 + qρ2)

]
= pTr

(
H†
ij Hij ρ1

)
+ qTr

(
H†
ij Hij ρ2

)
. (3.68)

Using (3.67) leads to

Tr
[
G†
j Gj ωFi

(pρ1 + qρ2)
]

= pTr
[
G†
j Gj ωFi

(ρ1)
]

+ qTr
[
G†
j Gj ωFi

(ρ2)
]

(3.69)

= Tr
[
G†
j Gj (p ωFi

(ρ1) + q ωFi
(ρ2))

]
. (3.70)

According to Assumption (CS), Eq. (3.69) must hold for any G = {Gj}. But since two
quantum states that assign the same probabilities to all outcomes of all measurements
are necessarily equal, it follows that

ωFi
(pρ1 + qρ2) = p ωFi

(ρ1) + q ωFi
(ρ2) (3.71)

Therefore, for any generalised measurement F = {Fi}, all F-compatible generalised
instruments realisable in the AMT are composed of linear maps. According to
Lemma 3.1, this implies that the update rule wA satisfies (SI).

To show that (SI) implies (CS), let {ωFi
} be any F-compatible generalised instru-

ment in the AMT. Using Lemma 3.1 again, we have that ωFi
is linear for every i.

We can thus define the dual map ω∗
Fi

: L(H) → L(H) in the following way (see [97]),

Tr
[
ω∗
Fi

(A)B
]

= Tr[AωFi
(B)] ∀A,B ∈ L(H) . (3.72)

Since ωF = ∑
i ωFi

is trace-preserving, ω∗
F is unital, ω∗

F (I) = I. Let Gj = G†
j Gj denote

the POVM elements of G = {Gj}, then Hij = ω∗
Fi

(Gj) defines a POVM,
∑
ij

ω∗
Fi

(Gj) =
∑
j

ω∗
F (Gj) = ω∗

F (
∑
j

Gj︸ ︷︷ ︸
I

) = I (3.73)

where the second step follows from the linearity of ω∗
F. Hence, for arbitrary F and G,

there exists a generalised observable H = {Hij} with POVM elements Hij = H†
ijHij

such that
Tr [Gj ωFi

(ρ)] = Tr[Hij ρ] (3.74)

for all states ρ ∈ S̄(H). We conclude that wA satisfies (CS).
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Closure under sequential composition—cf. Def. 19—was introduced in 2017 by
Flatt et al. in [76] to extend the Gleason-Busch theorem [34] to sequential measure-
ments. The authors justify this principle by an assumption of non-contextuality at
the level of the description of measurements.

In 2019, Masanes et al. adopt (CS) and argue that quantum instruments represent
the only consistent measurement-induced transformations of states [132]. However,
a recent objection by Stacey [168] maintained that linearity was assumed in their
argument, rather than derived (the paper [132] was also critically reviewed in [118],
where objections were raised using readout devices). In their response [81] to [168], the
authors clarified how (CS) encapsulates their operational definition of a measurement
as

“any experiment that takes a quantum system [...] as its input and
generates one of several possible outcomes” ([81], p. 3).

With this definition, the process involving the implementation of a sequence of
devices is considered a single measurement in its own right. Therefore, it must be
represented by the same type of mathematical objects, which they assume to be
POVMs.

In contrast to both [132] and [76], the AMT framework employs a different notion
of measurement, based on the standard axiomatization of quantum theory. We
regard a measurement as

any experiment that returns the value of one of the observable quantities
of a system.

In particular, according to Axiom (O), the observable quantities are represented
by self-adjoint operators. Rather than using sharp observables instead of POVMs,
the key difference from the definition adopted in [132] is the specification of what
measurement outcomes represent, namely values of observables, which have a precise
mathematical representation. Now, a sequence of measurements might not, as
a whole, return the value of one of the observables of the system, so the entire
process does not generally constitute a measurement in its own right. Therefore,
measurement sequences are conceptually distinct from the single measurements that
compose them, and do not need to be described by the same mathematical objects.
Although the lack of specification in the definition employed in [132] might suggest
that it is weaker, it is really the AMT definition that provides greater generality.
The AMT framework, in fact, includes model theories that are inconsistent with the
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definition in [132], e.g. pQT where the sequential measurements of two observables
cannot be described as a measurement of a single observable, as well as theories that
are consistent with it, i.e. (SI) AMTs.

Mutual simulability

The principle of strong indistinguishability significantly limits the range of feasible
measurement behaviours. Corollary 3.1 asserts that any AMT that conforms to this
restriction can be simulated by quantum theory. Likewise, every (SI) AMT has the
ability to replicate the standard collapse.

Theorem 3.2. Standard quantum theory is a subtheory of every (SI) AMT.

Proof. Consider the Lüders instrument {ωL
Πx

}x of a sharp observable {Πx}x on
HA. Ozawa’s theorem (cf. Sec. 1.3.2) applies: there exists a measurement model
M = ⟨HC , ξ, UCA, N = {ΠN

x }x⟩ with ΠN
x ∈ P(HC) such that

ωL
Πx

(ρA) = TrC
[(

ΠN
x ⊗ IA

)
UCA (ξ ⊗ ρA) U †

CA

]
(3.75)

for all ρA ∈ S(HA). Recall that ξ is the initial state of the ancilla HC , UCA is
the coupling unitary and N is the sharp ancilla observable. We can use the same
measurement model M for a measurement on a subsystem. Let ρAB ∈ S(HA ⊗ HB),
then

ωL
AB (Πx, ρAB) =

(
ωL

Πx
⊗ IB

)
(ρAB) (3.76)

= TrC
[(

ΠN
x ⊗ IA ⊗ IB

)
σCAB

]
(3.77)

where σCAB = (UCA ⊗ IB) (ξ ⊗ ρAB) (U †
CA ⊗ IB). We can rewrite this equation in the

following way,

ωL
AB (Πx, ρAB) =TrC

[(
ΠN
x ⊗ IA ⊗ IB

)
σCAB

(
ΠN
x ⊗ IA ⊗ IB

)]
(3.78)

=TrC
[(
ωL

ΠN
x

⊗ IAB
)

(σCAB)
]
. (3.79)

Since appending channels to the ancilla HC does not alter the reduced state of
HA ⊗ HB (violation of this would amount to signalling), we have that

ωL
AB (Πx, ρAB) = TrC

{ [(
ηx ◦ ωL

ΠN
x

)
⊗ IAB

]
(σCAB)

}
(3.80)

for any channel ηx on S(HC). Hayashi’s theorem (cf. Sec. 1.3.2) asserts that, given
any generalised observable M = {Mx}x, every M-compatible quantum instrument
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{ωMx}x is composed of maps of the form ωMx = ηx ◦ ωL
Mx

, where {ηx}x is some set
of outcome-dependent channels. We know from Theorem 3.1 that the fundamental
instrument of any (SI) AMT, {ω(SI)

Πx
}x, is a quantum instrument. Therefore, it follows

from Eq. (3.80) that in any (SI) AMT we can write

ωL
AB (Πx, ρAB) = TrC

[(
ω

(SI)
ΠN

x
⊗ IAB

)
(σCAB)

]
, (3.81)

which holds for all joint states ρAB. We use Eq. (3.53) to rewrite the expression in
the form of Eq. (3.50) appearing in the definition of a subtheory:

ωL
AB (Πx, ρAB) = TrC

[
ω

(SI)
CAB

(
ΠN
x , (UCA ⊗ IB) (ξ ⊗ ρAB)

(
U †
CA ⊗ IB

))]
. (3.82)

Therefore, quantum theory is a subtheory of any (SI) AMT.

In particular, since no non-trivial channel follows the measurement on HC , Eq.
(3.82) shows that the Lüders instrument is a direct generalised instrument in all
models that obey (SI)—cf. Def. 14. Combining Corollary 3.1 and Theorem 3.2,
we can conclude that all AMTs with update rules w(SI) which give rise to linear
fundamental instruments are mutually simulable.

Corollary 3.2. Every (SI) AMT is a subtheory of every other (SI) AMT.

Corollary 3.2 suggests that the Lüders’ rule wL is not the only update rule that
is able to model the experimental results predicted by quantum mechanics. Any
(SI) update rule can replicate the standard quantum collapse by suitably measuring
an ancilla after having coupled it with the original system. For example, consider
the (SI) AMT with linear fundamental instrument map ωmix

AB = ωmix
A ⊗ IB, where

ωmix
A (Πx, ρ) = Tr(Πxρ) IA/dA. In other words, the update rule for non-composite

systems wmix
A simply replaces the pre-measurement state with the maximally mixed

state (see Def. 3.22). Clearly, wmix
A and wL

A assign different post-measurement states to
the system interacting with the device. However, despite the fundamental difference
in measurement behaviour, in such AMT it is possible to induce the standard collapse
of the state by following the measurement strategy outlined in Eq. 3.82, in which
the device interacts with an ancilla. Repeating the same procedure with a new
ancilla, immediately after the first measurement, will yield identical outcomes, in
line with the deterministic repeatability of quantum mechanics—see Sec. 3.4.3. In
general, since AMTs differ exclusively by their update rules, it follows that (SI)
AMTs can capture all features of quantum theory, such as deterministic repeatability,
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nonlocal correlations, measurement-based protocols and algorithms. Therefore, the
choice to use the Lüders rule or any other (SI) rule is a matter of convention and
convenience. Considering the fact that our formalism has the simple goal of modelling
the operational effects of measurements, there is no a priori reason to prefer one (SI)
update rule over another.

The results of this section also allow us to conclude that neither is pQT a
subtheory of (SI) AMTs, nor do any of them feature as subtheories of pQT. This
is due to the fact that passive measurements cannot disturb the states of distant
entangled systems.

3.4.2 Ideality

In order to distinguish quantum theory from all other (SI) AMTs, an additional
condition must be imposed. It was shown in [37, 50] that the Lüders instrument is
the only ideal quantum instrument for sharp observables.

Definition 20 (Ideality (ID)). A measurement does not change the state of the
system if the outcome is certain.

Just as for preparation indistinguishability, we can distinguish a weaker and a
stronger notion of ideality. “Weak ideality” is defined for non-composite systems
only. Given an update rule wA

A, weak ideality amounts to the condition

Tr(Πxρ) = 1 =⇒ wA
A (Πx, ρ) = ρ . (3.83)

In contrast, “strong ideality” applies to the joint state of the composite system,
thus preserving correlations with any entangled subsystem that was not measured.
Mathematically, strong ideality is equivalent to the condition

Tr(Πx ⊗ I ρAB) = 1 =⇒ wA
AB (Πx, ρAB) = ρAB . (3.84)

For (SI) theories, the two notions are equivalent, since the update rule on the joint
system can be expressed in terms of the single-system rule, according to Eq. (3.53)
(Theorem 3.1). However, the equivalence does not hold in general, as demonstrated
by the AMT defined by w̃L—cf. Sec. 3.2.1—which only satisfies weak ideality.

We now provide a different proof of a fundamental theorem shown in [37, 50].

Theorem 3.3. If an update rule has the properties (SI) and (ID), it must be equal
to the Lüders rule wL.
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Proof. Let {|i⟩, i = 0, ..., d − 1} be some orthonormal basis of Hd. Consider the
outcome represented by the projector ΠX = ∑

i∈X |i⟩⟨i| where X ⊆ {0, ..., d − 1}.
Assuming that the update rule wA is (ID) implies that ωA

X (|ψ⟩⟨ψ|) = |ψ⟩⟨ψ| for
all |ψ⟩ ∈ HX = ΠXHd. Additionally, all update rules must satisfy the follow-
ing: ωA

X (|ϕ⟩⟨ϕ|) = O for all |ϕ⟩ ∈ H⊥
X , where H⊥

X = (Id − ΠX)Hd. For example,
ωA
X (|j⟩⟨j|) = O for all j /∈ X. But since we assume (SI), the map ωA

X is linear over
L(Hd) and completely positive, with Kraus representation ωA

X (L) = ∑
rKrLK

†
r ,

where L ∈ L(Hd). It follows that ωA
X (|j⟩⟨j|) = ∑

rKr|j⟩⟨j|K†
r = O, hence

Kr|j⟩ = 0 for all r and all j /∈ X. This implies that Kr|ϕ⟩ = 0 for all r and
all |ϕ⟩ = ∑

j /∈X cj|j⟩ ∈ H⊥
X .

Let |ξ⟩ be an arbitrary state of Hd, which can decomposed as follows,

|ξ⟩ = ΠX |ξ⟩︸ ︷︷ ︸
=|ψ⟩

+ (Id − ΠX) |ξ⟩︸ ︷︷ ︸
=|ϕ⟩

= |ψ⟩ + |ϕ⟩ . (3.85)

Then, due to the linearity of ωA
X , we can write

ωA
X (|ξ⟩⟨ξ|) =ωA

X (|ψ⟩⟨ψ|) + ωA
X (|ψ⟩⟨ϕ|) + ωA

X (|ϕ⟩⟨ψ|) + ωA
X (|ϕ⟩⟨ϕ|) (3.86)

=|ψ⟩⟨ψ| +
∑
r

Kr|ψ⟩⟨ϕ|K†
r +

∑
r

Kr|ϕ⟩⟨ψ|K†
r +

∑
r

Kr|ϕ⟩⟨ϕ|K†
r (3.87)

=|ψ⟩⟨ψ| . (3.88)

Hence, ωA
X (|ξ⟩⟨ξ|) = ΠX |ξ⟩⟨ξ|ΠX = ωL

X (|ξ⟩⟨ξ|) for any |ξ⟩ ∈ Hd. The exten-
sion to composite systems ωL

AB is fixed by Theorem 3.1. Having isolated the
Lüders instrument map ωL, the corresponding Lüders rule wL follows from Eq.
(3.10).

A schematic summary of the assumptions involved in the derivation of wL within
the AMT framework is shown in Fig. 3.4.

Notice that ideality alone is not sufficient to imply the standard quantum update
rule wL, as there exist ideal “nonlinear” AMTs such as pQT. Other cases can be
envisaged: let wA

A be any valid update rule for single systems (not necessarily ideal),
then

w(ID)
A (Πx, ρ) = Tr(Πxρ) wL

A (Πx, ρ) + [1 − Tr(Πxρ)] wA
A (Πx, ρ) (3.89)

defines another single-system rule that complies with the weaker notion of ideality.
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Figure 3.4: Schematic depiction of the arguments of Secs. 3.4.1 and 3.4.2 to derive the
Lüders rule in the context of the AMT framework. Refer to Sec. 1.1 for the standard
postulates of unitary quantum theory, and recall that (NS) = “no-signalling” ((R4)
in Sec. 3.1.1), (CI) = “context-independence” ((R2) in Sec. 3.1.1), (SI) = “strong
indistinguishability” and (ID) = “ideality”. The Lüders rule is uniquely implied by
the assumptions in bold. Notably, while (NS) is required to define generic update
rules, it does not feature in the derivation culminating with Theorem 3.3. In fact,
quantum no-signalling is ensured by the requirement of (SI).

3.4.3 Deterministic repeatability

The original projection postulate was introduced by von Neumann to model the
deterministic repeatability observed in the scattering experiment carried out by
Compton and Simon [44]. We provide the definition once again.

Definition 4 (Deterministic repeatability (DR)). Consecutive measurements of
the same observable, performed on the same system without intervening unitary
evolution, yield identical outcomes.

In order to satisfy deterministic repeatability (DR), the post-measurement state
of the probed system must have full support in the linear subspace Hx ≡ ΠxH of H
for any outcome Πx,

Πx wA
A (Πx, ρ) Πx = wA

A (Πx, ρ) . (3.90)
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For non-degenerate outcomes, where Πx = |x⟩⟨x|, the only option is to have

wA
A (Πx, ρ) = |x⟩⟨x| = wL

A (Πx, ρ) . (3.91)

However, for degenerate outcomes, infinitely many quantum states have full support
in Hx. We present three examples of non-Lüders deterministically repeatable update
rules for non-composite systems:

(i) following the discussion of Sec. 3.2.4, von Neumann’s projection wvN
A does not

define an update rule because it violates context-independence (R3). However,
by fixing an orthonormal basis Bx = {|xi⟩}Tr(Πx)

i=1 for each subspace Hx, we
obtain a valid update rule w̃vN

A which satisfies (DR),

w̃vN
A (Πx, ρ) = 1

p(x)
∑
i

p(xi) wL
A (|xi⟩⟨xi|, ρ) , (3.92)

where p(x) = Tr(Πxρ) and p(xi) = Tr(|xi⟩⟨xi|ρ).

(ii) the map
wA
A (Πx, ρ) = 1

Tr(Πx)
∑
ij

|xi⟩⟨xj| (3.93)

reduces to Eq. (3.91) when Πx is rank-1 but, in case of outcome degeneracy,
collapses any initial state to an equal superposition of the elements of a preferred
basis Bx of Hx.

(iii) another option is to update ρ to the maximal mixed state Ix/dx of Hx, which
does not require the specification of any basis for the subspace.

Notably, all proposed examples define linear instruments for non-composite systems.
Nevertheless, we can conclude that deterministic repeatability (DR), even when
supported by strong indistinguishability (SI), is insufficient to isolate quantum theory
within the broad framework of AMTs. In [100], the authors show that the Lüders rule
for single systems can be derived via an information-theoretic approach by imposing,
alongside (DR), that the post-measurement state minimises the relative information
with respect to the pre-measurement state ρ. In other words, they prove that
wL
A(Πx, ρ) is the least distinguishable state from ρ among those compatible with the

repeatability of measurement outcomes. A similar result, framed in terms of trace
distances, already appeared in [102].
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3.4.4 Information-disturbance trade-off

As discussed in Sec. 1.2.2, Lüders presents two main objections to von Neumann’s
projection postulate [128]. Firstly, he argues that the post-measurement state should
depend only on the outcome and the initial state. Secondly, he suggests that

“the measurement of a highly degenerate quantity permits only relatively
weak assertions regarding the considered ensemble. For that reason, the
resulting change in state should likewise be small” (Eng. trans. [127] of
[128], p. 665).

In the limit of the trivial observable {I, O}, a measurement reveals no information
about the original state and it should have no effect on it. This idea of a trade-off
between applied disturbance and acquired information is encoded in the following
principle.

Definition 21 (Information-disturbance trade-off (TO)). The outcome probability
distribution of an observable M is not affected by a prior measurement of a coarse-
graining of M .

Consider an infinite ensemble prepared in an arbitrary quantum state, and
examine the following two scenarios: (i) a measurement of M is performed on each
element of the ensemble; (ii) a measurement of a coarse-graining of M followed by a
measurement of M are performed on each element of the ensemble. Condition (TO)
stipulates that the outcome probabilities {p(x)} observed from the measurements
of M in scenarios (i) and (ii) must be identical. In other words, for all quantum
states and outcomes Πx and Πy such that Πx Πy = Πy Πx = Πx, the relation
p(o1 = y) p(o2 = x|o1 = y) = p(x) should hold (where o1 and o2 denote the first
and second outcomes of two consecutive measurements, respectively). In terms of
single-system update rules, the condition can be expressed as

Tr (Πyρ) Tr
[
ΠxwA

A (Πy, ρ)
]

= Tr (Πxρ) , (3.94)

or, in terms of the associated instrument maps, as

Tr
[
Πx ω

A
A (Πy, ρ)

]
= Tr(Πxρ) . (3.95)

Here, x denotes the outcome of the M measurement, while y denotes the outcome
of the coarse-graining. If Πx ̸= Πy, then Hx ⊂ Hy, meaning that y provides less
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information about the original state than x. As a result, the disturbance applied to
the state cannot be arbitrarily strong but must preserve coherence in the subspace
Hy, in the sense that p(o2 = x|o1 = y) = const. × p(x) for all Πx ∈ P(Hy). In the
limiting case of Πy = I, one obtains wA

A (I, ρ) = ρ, in agreement with Lüders’ remark.
The trade-off implies both deterministic repeatability and the weak version of

ideality.

Lemma 3.5. If an update rule for non-composite systems wA
A is (TO), then it is

(DR).

Proof. Consider an arbitrary projector Πx and a system residing in some state
ρ ∈ S(HA) such that Tr(Πxρ) ̸= 0. Letting Πy = Πx in Eq. (3.94) leads to

Tr
[
Πx wA

A (Πx, ρ)
]

= 1 . (3.96)

This implies that the post-measurement state wA
A (Πx, ρ) has full support in the

subspace Hx = ΠxHA, i.e.

Πx wA
A (Πx, ρ) Πx = wA

A (Πx, ρ) , (3.97)

which is the defining condition of (DR)—cf. Eq. (3.90).

Lemma 3.6. If an update rule for single systems wA
A is (TO), then it is weakly (ID).

Proof. We need to show that Eq. (3.94) implies condition (3.83). From Lemma 3.5,
we know that wA

A (Πy, ρ) has full support Hy. Let the initial state ρ also have full
support in Hy, i.e. Tr(Πyρ) = 1, and consider an informationally complete set of
observables on Hy. If wA

A (Πy, ρ) ̸= ρ, then for at least one of the outcomes of an
observable in the set, say Πx ∈ P(Hy), we have Tr

[
ΠxwA

A (Πy, ρ)
]

̸= Tr(Πxρ), in
contradiction with (TO). Therefore, the transformation must not disturb the states
of measured systems when the outcome is certain, i.e. it satisfies the weaker notion
of ideality.

The following theorem demonstrates the uniqueness of Axiom (ML) in relation to
(TO), a result briefly discussed in [22], albeit without investigating its validity for
composite systems.

Theorem 3.4. The Lüders rule for single systems wL
A is the only one consistent

with (TO).
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Proof. Substituting wL
A in (3.94) leads to

Tr(ΠxΠyρΠy) = Tr(Πx ρ) , (3.98)

which holds for all ρ and Πx Πy = Πy Πx = Πx. Hence the Lüders projection for
single systems satisfies (TO).

To show the converse, suppose wA is (TO) but wA
A ̸= wL

A. Then, there must exist
some Πy ∈ P(HA) and ρ ∈ S(HA) such that wA

A (Πy, ρ) ̸= wL
A (Πy, ρ). Since both

rules are (TO), hence (DR), it holds that wA
A (Πy, ρ) ,wL

A (Πy, ρ) ∈ Hy. We employ
the same argument used in the proof of Lemma 3.6. Consider a set of observables
of Hy which allow to reconstruct any quantum state of Hy tomographically. As
wA
A (Πy, ρ) and wL

A (Πy, ρ) are different states, they must yield different predictions
for at least one outcome Πx ∈ P(Hy) in the set,

Tr
[
Πx wA

A (Πy, ρ)
]

̸= Tr
[
Πx wL

A (Πy, ρ)
]
. (3.99)

Substituting wL
A (Πy, ρ) = Πy ρΠy/Tr(Πyρ) and using the fact that ΠxΠy = Πy Πx =

Πx, we obtain
Tr (Πyρ) Tr

[
Πx wA

A (Πy, ρ)
]

̸= Tr(Πxρ) , (3.100)

which represents a contradiction with our assumption of (TO). We thus conclude
that wA

A = wL
A.

Therefore, the trade-off principle (TO) captures the distinctive behaviour of
quantum measurements for single systems. To recover the full quantum mechanical
update rule wL, however, one must add another assumption that pertains to composite
systems, such as “composition compatibility” (CC) or “strong indistinguishability”
(SI). Fig. 3.5 presents a scheme of the assumptions featured in this alternative
derivation of the Lüders rule.

3.5 Summary and future work

In this chapter, we have introduced the framework of Alternative-Measurement
Theories and initial findings that show the type of questions it raises. The AMT
framework is motivated by the methodology of research conducted in Generalised
Probabilistic Theories (GPTs) and ontological models such as Spekken’s toy theory.
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Figure 3.5: Schematic depiction of the alternative argument of Sec. 3.4.4 to derive
the Lüders rule in the context of the AMT framework. As in Fig. 3.4, “no-signalling”
is not used in the derivation but is implied by the requirement of “composition
compatibility” (CC). As mentioned in the text, the derivation also works with (SI)
replacing (CC).

AMTs share the Hilbert space structure with quantum mechanics but are char-
acterized by different rules governing the assignment of post-measurement states.
The main aims of this framework are (i) to examine the possible alternatives to
the Lüders projection that give rise to self-consistent physical theories, and (ii) to
explore which features distinguish it from the rest. Our motivations align well with
work by Wilson and Ormrod [182], who identify an operational principle that, when
supported with the remaining axioms of quantum theory, allows them to derive
the unitary deterministic transformations of quantum states, Axiom (T). A more
detailed comparison between our work and [182] can be found in Sec. A.3 of Appendix
A.

The AMT framework is built on the concept of an update rule, see Sec. 3.1.1,
which assigns post-measurement states to systems conditioned on the outcomes
observed. In particular, to define update rules we do not assume the linearity
of the corresponding instrument maps—cf. Sec. 3.1.2. Nonlinear instruments can
therefore arise in our framework, which enables us to reconsider the operational role
of complete positivity, see Sec. 3.2.1. A summary of the main update rules discussed
in this chapter and their operational properties can be found in Table 3.1.
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The operational assumptions of “context-independence” and (quantum) “no-
signalling” are discussed in Sec. 3.2.4 and 3.2.5, respectively, where we present
examples of measurement behaviours ruled out by these requirements. In Sec. 3.3.1,
we illustrate how to account for unsharp observables in any AMT and we define
generalised instruments describing the impact on states of different experimental
strategies to measure the same observables. Generalised instruments are then used
in Sec. 3.3.2 to define subtheories, i.e. AMTs that can be faithfully simulated by
another AMT.

The linearity over the space of density operators of all instrument maps encodes
the impossibility to distinguish between different realisations of the same mixed
states. In Sec. 3.4.1, we present different ways to characterise the set of update
rules giving rise to linear instruments. Our discussion on linearity connects with a
recent debate [81, 168] on the derivation of quantum instruments in [76, 132]. We
examine how the two sides of the argument employ different operational definitions
of a measurement. Then, we show that the set of AMTs with linear instruments,
which includes but is not limited to quantum mechanics, is mutually simulable.
In fact, any update rule in the set can simulate the deterministic repeatability of
quantum measurements by introducing an ancillary system on which to perform
measurements.

To uniquely recover the textbook version of the collapse, linearity needs to
be supplemented by other assumptions such as ideality—cf. Sec. 3.4.2. We also
find, in Sec. 3.4.3, that repeatability alone does not single out the Lüders rule, as
shown by suitable modifications of von Neumann’s original postulate. However,
the trade-off between the disturbance applied by measurements and information
gained—see Assumption (TO)—represents a unique property of the Lüders rule for
single systems, Sec. 3.4.4. The argument does not extend to composite systems;
additional requirements seem necessary to fully describe measurements in quantum
theory.

Looking ahead, we intend to continue searching for operational statements that
are equivalent to the projection postulate. An important step would be to characterise
all update rules compatible with the standard projection for single systems. Presently,
only two examples are known, namely wL and w̃L—cf. Sec. 3.2.1. Other examples
may help us to better understand the structure of the quantum mechanical update
rule and their relationship to the assumptions underlying the AMT framework.

Another direction is to explore whether “nonlinear” AMTs can exist that have
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quantum theory as a subtheory, or to prove the impossibility to do so. We also do
not know whether or not there exist AMTs that exhibit super-quantum correlations
without violating non-relativistic no-signalling. We also propose to investigate the
effect of imposing local tomography on the set of toy models. The consequences of
using different update rules on the computational capabilities of the theory will also
need to be examined, in analogy with the case of pQT of Chap. 2.

Furthermore, it is worth investigating the potential for generalising the AMT
framework beyond the Hilbert space structure. One may consider using our definition
of update rule as a template to construct more general operational theories. This
would then allow to explore the operational role of sequential measurements if
different states, observables and rules for the composition of systems and for outcome
probabilities are postulated.



Part II

Support uncertainty relations
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Introduction

No quantum particle can reside in a state with both its position and momentum
distributions being localised arbitrarily well. For these incompatible observables,
Heisenberg’s uncertainty relation [99, 115] establishes a finite lower bound for the
product of their variances. This result relies on a fundamental property of Fourier
theory: a real (or complex) function with finite support on the real line has a Fourier
transform which must be non-zero almost everywhere [77]. It is, however, difficult to
quantify the support of functions on unbounded intervals. Using variances instead
of the supports of probability distributions circumvents this difficulty.

The situation is different for quantum systems with finite-dimensional Hilbert
spaces since the support (size) of a pure state—defined as the number of non-zero
components in a given orthonormal basis—is always finite. A computational basis
state in Cd, say, has support equal to one, and the support of its (discrete) Fourier
transform equals d since all basis states contribute. Thus, the product of the support
sizes equals d which turns out to be its smallest possible value [64].

The underlying product inequality has been generalised in a number of directions
[136, 180]. Tao derived an additive inequality [173] which is valid in spaces Cd of
prime dimensions d = p: the sum of the supports of a state and its discrete Fourier
transform is bounded from below by the value (p+ 1). This bound is sharp since a
computational basis state and its Fourier transform saturate it.

Support inequalities and their generalisations have found applications in signal
processing [38, 39], for example, and they can be used to identify non-classical
quantum states [52] for which the Kirkwood-Dirac quasiprobability distribution [61,
121] is not a probability distribution. Such states provide an advantage in quantum
metrology [8] and play a role in weak measurements [7, 66, 104] and contextuality
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[123].
Using the support size of a quantum state as a measure of uncertainty has an

unexpected—and previously unnoticed—operational advantage. Quantum supports
take a finite set of integer values only, in stark contrast to other measures. Variances
of observables in a given state or its von Neumann entropy take real numbers as
values which demands many measurements to determine experimentally. However, a
finite number of measurements may already suffice to determine the exact support
size of a quantum state. This situation occurs whenever the state at hand has (i)
“full” support in the basis considered and (ii) each outcome has been registered
at least once. Conformity with a given support inequality may be verified by a
finite number of measurements as small as the bound itself. This property depends,
of course, on the assumption that the measuring device never registers incorrect
outcomes; limited detection efficiency does not invalidate the argument, however.

Variance-based uncertainty relations also exist for more than two observables
associated with multiple orthonormal bases [62, 63, 113, 114]: position and mo-
mentum may be supplemented by a third continuous variable which is canonical
to each of them. The eigenbases of these three observables are mutually unbiased
and related by fractional Fourier transforms. The product of their variances satisfies
a triple uncertainty relation [113]. Importantly, the best known lower bound of
this inequality does not follow from the pair uncertainty relations but must be
determined independently. No quantum state exists that satisfies all three pair
uncertainty relations simultaneously. In a similar vein, entropic uncertainty relations
capture the incompatibility of up to (d+ 1) observables in finite-dimensional systems,
linked to a complete set of mutually unbiased bases known to exist in prime-power
dimension [10, 107, 156].

The main goal of this chapter is to extend Tao’s additive support uncertainty
relation to the case of more than two bases, inspired by the triple uncertainty relation
for continuous variables. The focus will be on prime-dimensional spaces where (p+ 1)
mutually unbiased bases exist, known as complete sets. The support sizes of a state
in any pair of mutually unbiased bases from such a set are expected to satisfy Tao’s
bound but they might not saturate all pair bounds simultaneously.

Chap. 4 is structured as follows. Sec. 4.1 sets up notation by briefly describing
known product and sum inequalities for the support of a vector, and the properties
of complete sets of mutually unbiased bases are summarised. In Sec. 4.2, Tao’s
additive uncertainty relation for the support of quantum states is shown to hold for
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any pair of mutually unbiased bases in a complete set, and the generalised additive
support inequality involving all (p+ 1) mutually unbiased bases is established as a
direct consequence. According to Sec. 4.3, the bounds provided by the generalised
support inequality cannot be saturated for prime dimensions 2 ≤ d ≤ 19, except
d = 3. Higher achievable bounds are derived in Sec. 4.4 for prime numbers up to
d = 7. In Sec. 4.5, we summarise and discuss the results obtained. The proofs of
some lemmata are relegated to Appendix B.1.



4

Support inequalities for complete sets of
mutually unbiased bases

4.1 Preliminaries

4.1.1 The support size of a quantum state

The support (size) of a Hilbert-space vector ψ ∈ Hd is given by the number
of its non-zero expansion coefficients ψv = ⟨v|ψ⟩ in an orthonormal basis B =
{|v⟩, v = 0, 1, . . . , d− 1},

|supp(ψ,B)| = #(ψv ̸= 0, v = 0 . . . d− 1) ∈ {0 . . . d} . (4.1)

The only vector with vanishing support is the zero vector. Due to normalisation,
the support of a quantum state must be at least one, and the maximum is achieved
whenever the state ψ is a linear combination of all d basis states. The support size
of a state clearly depends on the chosen basis.

Thinking of the support size as the (improper) L0-“norm”—given ψ = (ψ1, . . . , ψd),
it is defined as ∥ψ∥0 = |{i : ψi ̸= 0}|—we will use the notation

|supp(ψ,B)| = ∥ψ∥B . (4.2)

The set of expansion coefficients {ψv, v = 0 . . . d− 1} has three obvious support-
conserving symmetries. The support size is invariant (i) under rephasing each
expansion coefficient separately,

∥ψ∥B = ∥Rψ∥B , R = diag(eiτ0 , eiτ1 , . . . , eiτd−1) , (4.3)
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with real numbers τv, v = 0, . . . , d− 1; (ii) under permuting the components of any
state among themselves

∥ψ∥B = ∥Pψ∥B , P ∈ Sd , (4.4)

where Sd is the permutation group acting on sets of d elements; and (iii) under the
complex conjugation of some (or all) of its components,

∥ψ∥B = ∥Kψ∥B , K =
∏

some v∈{0... d−1}
Kv , (4.5)

where each operator Kv, v = 0, . . . , d− 1, maps one expansion coefficient of the state
ψ in the basis B to its complex conjugate, Kvψv = ψ∗

v , and does not change the
others. In the basis B, the permutations P are represented by a matrix of order
d containing exactly one unit entry in each row and column; hence the unitary
invariances of rephasing and permuting coefficients are conveniently combined into
monomial matrices M ≡ RP . The third invariance described by the operators Kv

will play no role.

4.1.2 Support inequalities for a Fourier pair of bases

Given two distinct orthonormal bases B and B′ of Hd, one may ask to which extent a
state can be “localised” in both of them. Clearly, the product of its support sizes in
B and B′ may take values between one and d2. If the bases are related by B′ = FB,
where F is the discrete Fourier transform with matrix elements (in the B-basis)

Fvv′ = 1√
d
e−2πivv′/d v, v′ ∈ {0 . . . d− 1} , (4.6)

then the product of the support sizes of a state ψ and its Fourier transform ψ̃ = F †ψ

is bounded from below [64],
∥ψ∥B ∥ψ∥B′ ≥ d , (4.7)

where we use the fact that the support size of the Fourier transformed state ψ̃ in the
basis B is equal to the support size of the state ψ in the basis B′, i.e.

∥ψ̃∥B = ∥F †ψ∥B = ∥ψ∥B′ . (4.8)

The inequality (4.7) represents a finite-dimensional analogue of Heisenberg’s un-
certainty relation for position and momentum observables of a quantum particle:
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quantum states localised in position, say, necessarily come with a broad variance in
momentum, the Fourier-transformed position observable.

For spaces Hd with prime dimensions d, an additive inequality for the supports
of a quantum state in a pair of Fourier-related bases is known [173],

∥ψ∥B + ∥ψ∥B′ ≥ d+ 1 , (4.9)

which is stronger than the multiplicative relation (4.7), as follows from the inequality
d+ 1 −x ≥ d/x, for x ∈ [1, d]. In the terminology of [52], any two bases B and B′ are
said to be completely incompatible if and only if the support sizes of the expansion
coefficients of any (non-zero) vector ψ ∈ Hd satisfy this bound.

The inequality (4.9) is a special case of a theorem valid for finite additive abelian
groups G with only trivial subgroups, a condition which implies that the cardinality
|G| must be a prime number [173]. Consider a complex-valued function f : G → C
and its transform f̃ : G → C, defined by

f̃(v′) = 1√
|G|

∑
v∈G

f(v)e(v, v′) , (4.10)

where e(v, v′) is a “bi-character” of G satisfying e(v1 + v2, v
′) = e(v1, v

′)e(v2, v
′) and

an analogous relation for its second argument. In the particular case of e(v, v′) =
e−2πivv′/d, one obtains an inequality for the supports of f and f̃ ≡ F †f .

Theorem 4.1 (Tao’s theorem). If f : G → C is a non-zero function and the
cardinality |G| of the group G is prime, then

|supp(f)| + |supp(f̃)| ≥ |G| + 1 . (4.11)

Upon identifying f (v) with ⟨v|ψ⟩ and f̃(v′) with ⟨v′|ψ⟩, respectively, we obtain
the inequality (4.9) relative to the bases B and B′ introduced via F in Eq. (4.6).

The main ingredient of Tao’s proof is a fundamental property of the Fourier
matrix in prime dimensions [78, 169, 173] which dates back to the 1920s: all its
square submatrices are invertible.

Theorem 4.2 (Chebotarëv’s theorem). If d is prime, then all minors of the Fourier
matrix F in Eq. (4.6) are non-zero.

The inequalities (4.7) and (4.9) involve a pair of mutually unbiased bases of Hd,
namely the computational basis B and its Fourier transform. We will now introduce
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larger sets of mutually unbiased bases to formulate more general support inequalities.
Not surprisingly, Chebotarëv’s theorem must be generalised to other matrices which
emerge when establishing bounds on support sizes of quantum states in multiple
bases (cf. Sec. 4.2.1).

4.1.3 Mutually unbiased bases in prime dimensions

Two orthonormal bases of the space Hd = Cd are said to be mutually unbiased (MU)
if the inner products between any two states (not of the same basis) have modulus
1/

√
d. Then, to know the outcome of a projective measurement performed in one

basis implies complete uncertainty about the outcome of a subsequent projective
measurement performed in the other.

When d is a power of a prime number p, i.e. d = pn, sets of (d + 1) mutually
unbiased bases have been constructed [12, 67, 108, 183]. Such complete sets are
both maximal—in the sense that no additional MU basis can be added to it—and
tomographically complete: the probability distributions of outcomes in the (d+ 1)
bases uniquely encode an unknown quantum state. It is an open problem whether
complete sets of MU bases exist in composite dimensions, d ̸= pn.

For d = 2, the eigenstates of the Pauli operators Z2, X2 and X2Z2 = −iY2 form
a complete set which has a simple structure. Representing the computational basis
B0 by the identity matrix H0 = I(2×2), the following two (2 × 2) complex Hadamard
matrices—i.e. (n× n) unitary matrices with all entries of modulus 1/

√
n—encode

the bases which are MU to B0,

H1 = F = 1√
2

1 1
1 −1

 , H2 = DF where D =
1 0
0 i

 . (4.12)

If d is an odd prime, the eigenstates of the (d+ 1) generalised Pauli operators
Zd, Xd, XdZd, XdZ

2
d , ..., XdZ

d−1
d , represent a maximal set of MU bases. The phase

and shift operators Zd and Xd are defined as follows: Zd|x⟩ = ωx|x⟩ and Xd|x⟩ =
|x+1 (mod d)⟩, where the states {|x⟩ ≡ |ϕ0

x⟩, x = 0 . . . d− 1} form the computational
basis B0 and ω ≡ e2iπ/d is a d-th root of the number 1 [67]. The k-th state of the j-th
basis (following the given order, where j = 0 : Zd, j = 1 : Xd, . . . , j = d : XdZ

d−1
d ) is

given by

|ϕjk⟩ = 1√
d

d−1∑
x=0

ω−kxω(j−1)x2|ϕ0
x⟩ , j ∈ {1... d} , k ∈ {0... d− 1} . (4.13)



126 Chapter 4. Support inequalities for complete sets of MU bases

For each value of j, the equimodular expansion coefficients

[Hj]xk = ⟨x|ϕjk⟩ = 1√
d
ω−kxω(j−1)x2

, j ∈ {1... d} , x, k ∈ {0... d− 1} , (4.14)

define a complex-valued Hadamard matrix. These are unitary matrices since their
columns are given by the components (in the computational basis B0) of d orthogonal
vectors. When combined with the computational basis B0, the states given in Eq.
(4.13) form a complete set of MU bases for Hilbert spaces of prime dimensions, which
we will refer to as the standard set. In this chapter, all MU bases will be taken from
the standard set.

The Hadamard matrix H1 in (4.14) coincides with the discrete Fourier matrix F
given in Eq. (4.6). The remaining Hadamard matrices Hj map the computational
basis B0 of Hd to other orthonormal bases denoted by Bj. Adopting an active view
of these transformations, the state ψ is mapped to the state H†

jψ. The relation
between the supports of the state ψ in B0 and the j-th MU basis Bj reads,

∥H†
jψ∥0 = ∥ψ∥j , (4.15)

abbreviating the notation introduced in (4.8), i.e. ∥ψ∥Bj
≡ ∥ψ∥j, j ∈ {0 . . . d}.

The columns of the d Hadamard matrices Hj in (4.14) are related in a simple
way to each other, namely by

|ϕjk⟩ = Dj−1Bk|ϕ1
0⟩ , j ∈ {1... d} , k ∈ {0... d− 1} , (4.16)

with two diagonal (d×d) matrices B and D; in other words, all states of the complete
set of MU bases can be generated easily from any given state such as |ϕ1

0⟩—except
for the states of the computational basis B0. Within each Hadamard matrix, the
matrix B cyclically shifts a given column to the right,

B|ϕjk⟩ =

|ϕjk+1⟩ , k = 0, . . . , d− 2 ,

|ϕj0⟩ , k = d− 1 ;
(4.17)

its entries are given by the components of the second column of the Fourier matrix
F = H1,

B = diag
(
1, ω−1, . . . , ω−(d−1)

)
, (4.18)

except for the factor
√
d.
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The matrix D is given by the components of the first column of the second
Hadamard matrix H2, i.e.

D = diag
(
1, ω1, . . . , ω(d−1)2)

, (4.19)

cyclically mapping a state of the j-th MU basis to the corresponding one of the MU
basis with label (j + 1),

D|ϕjk⟩ =

|ϕj+1
k ⟩ , j = 1, . . . , d− 1 ,

|ϕ1
k⟩ , j = d .

(4.20)

In terms of Hadamard matrices, this property reads

DHj =

Hj+1 , j = 1, . . . , d− 1 ,

H1 , j = d .
(4.21)

Writing Hj = Dj−1H1 ≡ Dj−1F , Chebotarëv’s theorem is seen to imply that
the minors of all Hadamard matrices Hj, j = 1 . . . d, are non-zero: the ranks of the
minors of F do not change upon multiplying their rows with non-zero scalars. In
view of Eq. (4.12), this generalisation is also valid for the case of d = 2.

4.2 Support inequalities...

How well can one localise quantum states simultaneously in (d+ 1) MU bases? To
answer this question, we need to minimise the support sizes of a state relative to the
complete set. In a first step, we now show that the support sizes of a quantum state
relative to any pair of standard MU bases also satisfy Tao’s bound (4.9). Second,
by combining the resulting pair inequalities, we establish a state-independent lower
bound.

4.2.1 ...for arbitrary pairs of MU bases

Tao’s result establishes—for a space of prime dimension d supporting a cyclic abelian
group—a sharp inequality for the support sizes of a quantum state and its Fourier
transform. Most pairs of the MU bases introduced in Eq. (4.13) are, however, not
related by a Fourier transform. Nevertheless, Tao’s bound also holds for the supports
of the images of any quantum state generated by two Hadamard matrices as we will
show now.
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Theorem 4.3. Given any pair of distinct standard MU bases associated with matrices
Hj and Hk, j, k ∈ {0 . . . d}, the support sizes of a quantum state |ψ⟩ ∈ Hd satisfy
the state-independent sharp bound,

∥ψ∥j + ∥ψ∥k ≥ d+ 1 , (4.22)

where d is any prime number.

It is important to realise that Theorem 4.3 does not cover arbitrary pairs of
MU bases in prime dimensions but only those defined in Eq. (4.14). Nevertheless,
all pairs of MU bases in dimensions d = 2, 3 and 5 are found to be completely
incompatible since in these dimensions all Hadamard matrices are equivalent to
the Fourier matrix. Already for the next prime, d = 7, other types of Hadamard
matrices exist [32].

Proof. The case of dimension d = 2 is straightforward. If a state |ψ⟩ ∈ H2 has
support one in one MU basis, it must have support two in both other bases, due
to being MU to their members. Thus, the sum of the supports of any state in two
bases must be at least three.

For odd primes d,we will consider two cases separately: either (i) one of the bases
in Eq. (4.22) is the computational basis, so that j = 0, say, or (ii) neither of them.

(i) Defining the vector ϕ = D1−kψ, we obtain

∥ψ∥0+∥ψ∥k = ∥ψ∥0+∥H†
kψ∥0 = ∥ψ∥0+∥F †D1−kψ∥0 = ∥Dk−1ϕ∥0+∥F †ϕ∥0 , (4.23)

recalling that Hk = Dk−1F holds according to Eq. (4.21). Since D is a diagonal
unitary hence a support-conserving unitary matrix (cf. (4.3)), we obtain

∥ψ∥0 + ∥ψ∥k = ∥ϕ∥0 + ∥F †ϕ∥0 ≥ d+ 1 , (4.24)

where Tao’s theorem was used in the last step.
(ii) Now consider the case where the non-zero labels j and k differ from each

other. Defining the vector ϕ = H†
jψ, the sum of the support sizes can be written as

∥ψ∥j + ∥ψ∥k = ∥H†
jψ∥0 + ∥H†

kψ∥0 = ∥ϕ∥0 + ∥H†
kHjϕ∥0 . (4.25)

The product H†
kHj of two distinct Hadamard matrices is, in fact, always equal to

another Hadamard matrix H†
t , t ̸= 0, up to a monomial matrix M(j, k); this result
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is the content of Lemma 4.1 stated directly after the proof. As the matrix M(j, k) is
support-conserving (cf. Eqs. (4.3) and (4.4)) for all states of the space Hd, we find

∥ϕ∥0 + ∥M(j, k)H†
t ϕ∥0 = ∥ϕ∥0 + ∥H†

t ϕ∥0 ≥ d+ 1 , (4.26)

where (4.24) of Part (i) has been used in the final step.

The proof just relies on dissolving products of the Hadamard matrices Hj which
encode a complete set of MU bases. Clearly, products of the form H†

kHj, j ̸= k, are
Hadamard matrices since their matrix elements, being overlaps of MU vectors, have
modulus 1/

√
d, [

H†
kHj

]
ℓℓ′

= ⟨ϕkℓ |ϕ
j
ℓ′⟩ . (4.27)

When d = 2, one finds explicitly that H†
1H2 = MH†

2 and H†
2H1 = M ′H†

2, with
monomial matrices M and M ′. In other words, the phases of the matrix elements
(4.27) coincide with those of the adjoint of another transition matrix after permuting
and rephasing its rows. This property actually holds for any prime dimension.

Lemma 4.1. Let d be an odd prime and j, k ∈ {1 . . . d} with j ̸= k. Then

H†
kHj = M(j, k)H†

t (4.28)

for a monomial matrix M(j, k) if and only if t = 1+χ ∈ {1, . . . , d} where the integer
χ satisfies 4 (j − k)χ = 1 mod d.

Proof. See Appendix B.1.

Furthermore, Lemma 4.1 allows us to generalise Chebotarëv’s theorem (Theorem
4.2) to the product matrices H†

kHj, for distinct indices j and k.

Corollary 4.1. If d is prime, then all minors of the Hadamard matrices H†
kHj,

j, k ∈ {0 . . . d} and j ̸= k, are non-zero.

Proof. Let d be an odd prime. Any Ht, t ∈ {1 . . . d}, has only non-zero minors, as
was mentioned after Eq. (4.21), as do the adjoints H†

t . Therefore, the claim holds if
one of the labels j, k, is zero. For both j, k ̸= 0, Lemma 4.1 applies. Since rephasing
and permuting the rows of a matrix do not change the rank of any submatrix, we
can conclude that the matrices H†

kHj, j, k ̸= 0 and j ̸= k also have non-zero minors
only.

In dimension d = 2, the result follows from inspecting the products H†
1H2 = MH†

2

and H†
2H1 = M ′H†

2.
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According to Corollary 4.1 the vectors formed by the columns (or rows) of all
square submatrices of the Hadamard matrices H†

kHj , j ̸= k, are linearly independent.
What is more, any set of d (or fewer) vectors taken from any two MU bases are
linearly independent.

Corollary 4.2. Given a complete standard set of MU bases in the space Hd of
prime dimension d, any set of d (or fewer) vectors taken from any two MU bases
are linearly independent.

Proof. See Appendix B.1.

Theorem 4.3 also demonstrates that all pairs of MU bases taken from the complete
standard set in prime dimension are completely incompatible, in the sense of Sec.
4.1.2. This statement is stronger than the results of [52, 173] since the bases we
consider are not necessarily related by the Fourier matrix F .

4.2.2 ...for complete sets of (d+ 1) MU bases

Let us denote the sum of the numbers of non-zero expansion coefficients of a state
ψ ∈ Hd in a complete standard set of MU bases by

S(d) = ∥ψ∥0 + ∥ψ∥1 + · · · + ∥ψ∥d . (4.29)

Then, the inequalities (4.22) imply that the overall support size S(d) cannot fall
below a certain threshold.

Theorem 4.4. For any prime d, the overall support S(d) of a quantum state |ψ⟩ ∈ Hd

in a complete standard set of MU bases satisfies the additive state-independent bound

S(d) ≥ (d+ 1)2

2 ≡ T (d) . (4.30)

Proof. Write down (d+1) copies of the support inequality (4.22) with indices (j, j+1),
j = 0, . . . d − 1, and (d, 0), respectively. Adding them up, the right-hand-sides of
(4.22) give (d+ 1)2. Since each term ∥ψ∥j ≡ ∥H†

jψ∥0, j = 0, . . . , d, occurs twice in
the sum, we divide by two and obtain the inequality (4.30).

An alternative proof treats all pair supports equally: write down (4.22) for all
d(d+ 1) distinct pairs of indices (j, k) and consider the sum of the supports. After
removing common factors, the bound (4.30) on S(d) follows.
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Support inequalities other than Eqs. (4.22) and (4.30) exist. They may involve
any number between two and (d+ 1) MU bases. For example, picking the first three
MU bases and combining the associated pair inequalities from (4.22) leads to the
additive “triple support inequality”,

S(d; 3) ≡ ∥ψ∥0 + ∥F †ψ∥0 + ∥H†
2ψ∥0 ≥ 3

2(d+ 1) . (4.31)

Clearly, this inequality cannot be saturated for dimension d = 2 because the overall
support S(2) of a state is always an integer number. Taking only two possible
values, the smallest achievable value of the triple support size S(2; 3) ≡ S(2) equals
Ts(2) = 5; here and in the following, achievable—or sharp—bounds of S(d) are
denoted by Ts(d).

The lower bound on the triple uncertainty relation for continuous variables [113],
derived similarly by combining pair uncertainty relations, can also not be reached.
Theorem 4.4 is not constructive, hence it is not obvious whether the case of d = 2
represents an exception or whether the inequalities (4.30) are never sharp. In the next
section we will first derive some general results about multiple-support inequalities,
followed by a closer look at dimensions 3 ≤ d ≤ 19.

4.3 Saturating support inequalities for MU bases

To saturate the bound of the inequality (4.30) means to identify states that minimise
all support pair relations simultaneously. We present a number of rigorous results
for prime dimensions d ≤ 7. Numerical methods are then used to determine whether
the generalised inequality can be saturated for dimensions up to d = 19.

4.3.1 Constraints on saturating states

Our first general result is a necessary and sufficient condition that the support
inequality (4.30) involving a complete set of (d+ 1) MU bases be saturated.

Theorem 4.5 (Equal support sizes). The additive support inequality for a complete
standard set of MU bases (4.30) is saturated by a state ψ ∈ Hd if and only if it has
the same support in all (d+ 1) MU bases, i.e.

∥ψ∥j = d+ 1
2 , j ∈ {0... d} , (4.32)

where d is an odd prime.



132 Chapter 4. Support inequalities for complete sets of MU bases

Proof. Substituting the values (4.32) into (4.30) directly produces the lower bound.
For the converse, we show that the supports must have the values given in (4.32)

if equality holds in Eq. (4.30). Noting that the support of any state ψ ∈ Hd ranges
from 1 to d, i.e.

∥ψ∥0 = d+ 1
2 ± ∆ , ∆ ∈

{
0, 1, . . . , 1

2(d− 1)
}
, (4.33)

we will proceed by exhausting all its values in the computational basis B0. It turns
out that the the minimum in (4.30) cannot be reached if the support is either (i)
smaller or (ii) larger than (d + 1)/2, leaving (iii) the values in (4.32) as the only
option.

(i) If ∥ψ∥0 = (d+ 1) /2−∆, ∆ > 0, then (4.22) implies that ∥ψ∥j ≥ (d+ 1) /2+∆,
j = {1 . . . d}. Hence, the sum of the supports in all (d+ 1) MU bases equals

S(d) =
d∑
j=0

∥ψ∥j ≥ d+ 1
2 − ∆ + d

(
d+ 1

2 + ∆
)

≥ (d+ 1)2

2 + (d− 1)∆ >
(d+ 1)2

2 .

(4.34)

Therefore, the inequality cannot be saturated by a state which has support smaller
than (d+ 1) /2 in the basis B0.

(ii) Assume that ∥ψ∥0 = (d+ 1) /2 + ∆, ∆ > 0. Clearly, the lower bound of the
sum in Eq. (4.30) can only be reached if the support of the state ψ is smaller than
(d + 1)/2 in at least one of the MU bases, ∥ψ∥j∗ < (d+ 1) /2, j∗ ∈ {1 . . . d}, say.
Repeating the argument from (i) relative to the MU basis Bj∗ instead of B0 implies
that the inequality (4.30) cannot be saturated.

(iii) If ∥ψ∥0 = (d+ 1) /2 then (4.22) implies that ∥ψ∥j ≥ (d+ 1) /2, j = {1 . . . d}.
However, given these bounds, the minimum of S(d) in (4.30) can be achieved only if
the support of the state ψ ∈ Hd takes the value (d+ 1) /2 in all other MU bases as
well.

The second general result states that a specific d-th root of unity can appear
at most twice in the columns of the Hadamard matrices Hj, j = 2 . . . d, given in
(4.14). The proof of another necessary–but not sufficient–condition for saturating
the generalised inequality (4.30) will rely on this limit of the occurrences of roots.

Lemma 4.2 (Frequency of roots). Let d be prime and consider the states |ϕjk⟩,
j = 2, . . . , d, in Eq. (4.13) forming the bases Bj which are MU to both the identity
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and the Fourier matrix. Any d-th root ωn, n ∈ {0 . . . d}, figures at most twice among
the numbers

√
d⟨x|ϕjk⟩, x ∈ {0 . . . d− 1}.

Proof. We need to determine the number of solutions of the equation ω−kx+(j−1)x2 =
ωn which becomes (j − 1)x2 − kx− n mod d = 0 upon taking the logarithm and
rearranging. Since j ̸= 1, the equation is quadratic for each n and there can be at
most two integer solutions for the unknown x. The extension to the special case of
d = 2 is trivial.

According to Theorem 4.5, a state saturating (4.30) must have (d−1)/2 vanishing
expansion coefficients in each MU basis of the standard set, in any odd prime
dimension. A third general result is that there are constraints on the distributions
of these zeroes when expanded in the MU bases of a complete set.

To spell out these constraints, let us introduce the zero distributions Zj of a state
ψ ∈ Hd which list the indices of the vanishing expansion coefficients in the (d+ 1)
bases of the complete set,

Zj =
{
κ ∈ {0 . . . d− 1} : ⟨ϕjκ|ψ⟩ = 0

}
, j = 0, . . . , d . (4.35)

Using the relation ⟨ϕjκ|ψ⟩ = ⟨ϕ0
κ|H

†
j |ψ⟩, one can also think of Zj as the set of

vanishing coefficients of the state H†
j |ψ⟩ in the computational basis.

Two zero distributions of vectors in the same Hilbert space are said to be
compatible, Z ∼ Z ′, if they are equal up to a cyclic shift. In other words, two
compatible distributions Z = {κ1, κ2, ..., κδ} and Z ′ = {κ′

1, κ
′
2, ..., κ

′
δ} must have the

same number δ of elements and the mapping κi 7→ κi + µ mod d for some fixed
integer µ must be a bijection from Z to Z ′. Compatibility of zero distributions is an
equivalence relation between classes of d elements.

The extension of Chebotarëv’s Theorem shown in Sec. 4.2.1 and Lemma 4.2 imply
a constraint on zero distributions for all prime dimensions d > 3. This property will
be used in Sec. 4.3.3 to prove that the support inequality (4.30) cannot be saturated
in dimensions d = 5 and d = 7.

Theorem 4.6. Let d > 3 be prime and ψ ∈ Hd be a state with (d− 1)/2 expansion
coefficients vanishing in the computational basis and in two more standard MU bases,
i.e.

∥ψ∥0 = ∥ψ∥j1 = ∥ψ∥j2 = d+ 1
2 , j1 > j2 ̸= 0 . (4.36)
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Then the zero distributions associated with the vectors H†
j1|ψ⟩ and H†

j2|ψ⟩, respectively,
are incompatible.

Proof. Since the state ψ has d− ≡ (d − 1)/2 vanishing components in three bases
with labels j = 0, j1, j2, it satisfies 3d− conditions,

⟨ϕ0
κ0

1
|ψ⟩ = ⟨ϕ0

κ0
2
|ψ⟩ = . . . = 0 , Z0 =

{
κ0

1, κ
0
2, . . . , κ

0
d−

}
,

⟨ϕj1
κ1

1
|ψ⟩ = ⟨ϕj1

κ1
2
|ψ⟩ = . . . = 0 , Zj1 =

{
κ1

1, κ
1
2, . . . , κ

1
d−

}
, (4.37)

⟨ϕj2
κ2

1
|ψ⟩ = ⟨ϕj2

κ2
2
|ψ⟩ = . . . = 0 , Zj2 =

{
κ2

1, κ
2
2, . . . , κ

2
d−

}
.

We proceed by contradiction. To assume that the zero distributions Zj1 and Zj2

are compatible means that they are related by a cyclic shift by some integer µ ∈
{0 . . . d− 1}. In particular, we can arrange the elements in the two sets such that

κ2
i = κ1

i + µ mod d for all i ∈ {1 . . . d−} . (4.38)

Then, according to Eq. (4.16), the corresponding states must be related by powers
of the matrices D and B,

|ϕj2
κ2

i
⟩ = Dj2−1Bκ2

i |ϕ1
0⟩ = Dj2−1Bκ2

iD−j1+1B−κ1
i |ϕj1

κ1
i
⟩ = Dj2−j1Bµ|ϕj1

κ1
i
⟩ , (4.39)

where we have used the fact that D and B commute. Defining V †
µ = Dj2−j1Bµ, the

third set of conditions in (4.37) turns into

⟨ϕj2
κ2

i
|ψ⟩ = ⟨ϕj1

κ1
i
|Vµψ⟩ = 0 for all i ∈ {1 . . . d−} . (4.40)

Since Vµ is diagonal in the computational basis, we have

⟨ϕ0
κ0

i
|ψ⟩ = ⟨ϕ0

κ0
i
|Vµψ⟩ = 0 for all i ∈ {1 . . . d−} , (4.41)

which means that Z0 and Zj1 are zero distributions for the pair of vectors ψ and Vµψ.
In other words, these two states are both orthogonal to the same set of 2d− = (d− 1)
vectors {

ϕ0
κ0

1
, . . . , ϕ0

κ0
d−
, ϕj1

κ1
1
, . . . , ϕj1

κ1
d−

}
, (4.42)

stemming from the computational basis B0 and the basis Bj1 . According to Corollary
4.2, this is a set of (d− 1) linearly independent vectors so that only one unique ray
in Hd can exist that is orthogonal to all of them. Therefore, the vectors ψ and Vµψ

must be collinear, i.e. Vµψ = λψ for some non-zero scalar λ ∈ C.
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Since Vµ = Dj1−j2B−µ is diagonal in B0, the computational basis states are
eigenvectors of Vµ. By assumption, the state ψ has d+ ≡ (d+ 1) /2 non-zero
coefficients in this basis. Thus, the state ψ will be an eigenvector of the unitary
Vµ only if λ is an eigenvalue with multiplicity of d+ (at least). However, this is
impossible for prime dimensions d > 3: the non-zero matrix elements on the diagonal
of Vµ coincide with the components of the vector

√
d|ϕj1−j2+1

−µ ⟩ in the computational
basis but for j1 > j2 ̸= 0 (mod d) no more than two of the components may coincide
according to Lemma 4.2. Thus, at most two of the eigenvalues of Vµ can coincide.
No contradiction arises for dimension d = 3 where ψ has exactly two non-vanishing
coefficients in the computational basis.

4.3.2 Dimension d = 3

To prove that the bound (4.30) can be achieved in the space H3, we exhibit the
states which minimise the support inequality.

Theorem 4.7. The state ψ saturates the generalised support inequality (4.30) in
dimension d = 3 if and only if it is one of the following nine (non-normalised) qutrit
states, 

1
−ωm

0

 ,


1
0

−ωm

 ,


0
1

−ωm

 , m ∈ {0, 1, 2} , (4.43)

with ω ≡ e2iπ/3 being a third root of unity.

Proof. Theorem 4.5 implies that a state ψ saturates Eq. (4.30) with respect to a
complete standard set of MU bases if and only if it has support two in each of them,
i.e. ∥ψ∥j ≡ ∥H†

jψ∥0 = 2, j = 0 . . . 3. First, we assume that the third component of
a candidate state vanishes in the computational basis, i.e. ψ =

(
a, b, 0

)T
, with

non-zero complex numbers a and b. Applying the matrices H†
j , j = 1, 2, 3, to it, we

find four vectors,
a

b

0

 ,


a+ b

a+ ωb

a+ ω2b

 ,


a+ ω2b

a+ b

a+ ωb

 ,


a+ ωb

a+ ω2b

a+ b

 . (4.44)

The components of the last three vectors agree, except for permutations. Hence,
support size two can occur in three different ways: one component of each vector
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vanishes if
b = −ωma , m ∈ {0, 1, 2} , (4.45)

holds for some value of m. After removing an irrelevant phase, we obtain the
first three vectors given in Eq. (4.43). Second, repeating this argument for initial
vectors of the form ψ =

(
a, 0, b

)T
and ψ =

(
0, a, b

)T
, respectively, leads to the

remaining six vectors in (4.43).
Having exhausted all three-component vectors in the computational basis with

support two, we have shown that the nine vectors in (4.43) are the only states
saturating the support inequality (4.30) for d = 3.

4.3.3 Dimensions d = 5 and d = 7

We will show that it is impossible to reach the lower bound of the support inequality
(4.30) in dimensions d = 5 and d = 7. The proof relies on a property of the zero
distributions of the vectors H†

jψ, j = 0 . . . d, which were introduced in Sec. 4.3.1.

Theorem 4.8. The additive support uncertainty relation (4.30) cannot be saturated
in dimensions d = 5 and d = 7.

Proof. Let Zd
n be the set of the zero distributions with n zeroes among the computational-

basis coefficients of qudit states in the Hilbert space Hd. These distributions are
determined by choosing n out of d indices; hence, there are |Zd

n| =
(
d
n

)
such sets.

Recalling that compatible sets of zero distributions form equivalence classes, ob-
tained from rigidly shifting a given one, only |Zd

n/ ∼ | =
(
d
n

)
/d incompatible zero

distributions exist.
According to Theorem 4.5, a state |ψ⟩ ∈ Hd saturating (4.30) for d > 3, must

have n = (d − 1)/2 zeroes in each basis. In addition, a saturating state requires
the existence of at least d incompatible zero distributions as Theorem 4.6 does not
allow compatible zero distributions for more than two bases. In other words, the
inequality |Zd

(d−1)/2/ ∼ | ≥ d must hold. Clearly, this does not happen for d = 5 and
d = 7 since |Z5

2/ ∼ | = 2 < 5 and |Z7
3/ ∼ | = 5 < 7 , respectively. When d ≥ 11,

however, the inequality is satisfied, with |Z11
5 / ∼ | = 42 > 11, for example.

4.3.4 Numerical results for 5 ≤ d ≤ 19

For prime numbers d greater than seven, more than d incompatible zero distributions
exist which removes the bottleneck we exploited to prove Theorem 4.8. In the
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absence of an analytic handle on the problem, we will use numerical means to check
whether the bound imposed by (4.30) can be reached for dimensions larger than
d = 7.

A saturating state necessarily has (d− 1)/2 zeroes in each MU basis. Thus, if one
picks two distinct MU bases with labels j1, j2 ∈ {0 . . . d}, say, with corresponding
zero distributions Zj1 and Zj2 , the state will have vanishing scalar products with
a total of (d− 1) states which—in view of Corollary 4.2—are known to be linearly
independent. Consequently, there is a unique ray ψ⊥ ∈ Hd associated with any
two zero distributions of the type considered. If the support size of the states ψ⊥

generated in this way (i.e. for all possible choices of initial zero distributions Zj1

and Zj2) is always larger than (d+ 1)/2 in some third MU basis, then the support
inequality (4.30) cannot be saturated: if no state with support size (d+ 1)/2 in three
MU bases exists, then no state with support size (d+ 1)/2 in (d+ 1) MU bases will
exist. Since only a finite number of zero distributions needs to be checked for a given
dimension d, this approach actually represents an algorithm to check whether the
lower bound can be reached.

Running the program for prime numbers with 5 ≤ d ≤ 19 means to check an
exponentially increasing number of cases. On a standard PC, the program ran
about a second for d = 5 and d = 7 while it took about a week for d = 17. No
state has been found which would display (d− 1)/2 zeroes in three MU bases. For
dimensions d = 5 and d = 7, this result is stronger than that of Sec. 4.3.3 since the
non-existence of a state with two and three zeroes, respectively, is sufficient to derive
Theorem 4.8, but not vice versa. Due to the exponential increase in the number of
zero distributions, dimensions larger than d = 19 were out of of reach.

4.3.5 Dimensions d > 19

To satisfy the additive support inequality (4.30) relative to (d + 1) MU bases, a
state needs to satisfy more than one pair relation (4.22) simultaneously which seems
unlikely. It is all the more surprising that for dimension d = 3 the bound T (3) = 8
is actually sharp, i.e. Ts(3) = T (3). Our results for prime dimensions up to d = 19
suggest that this case is exceptional.

We conjecture that the generalised uncertainty relation (4.30) in prime dimensions
can only be saturated when d = 3. Here is a plausibility argument to support this
view. Assume that a saturating state ψ ∈ Hd exists for some prime dimension d ≥ 3.
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According to Theorem 4.5, the state must be orthogonal to exactly (d− 1) /2 vectors
from each of the (d+ 1) MU bases. Corollary 4.2 implies that orthogonality with
respect to just two such sets—i.e. (d− 1) vectors—already determines a unique
state. Therefore, the remaining (d− 1)2 /2 vectors (one set of (d− 1)/2 vectors is
associated with each of the (d − 1) MU bases not yet considered) must all lie in
the same (d− 1)-dimensional subspace orthogonal to the state ψ. This is known to
happen for d = 3 but seems hard to satisfy for larger dimensions.

4.4 Sharp lower bounds

According to the results presented in Sec. 4.3, no states exist which would saturate
the lower bounds (4.30) for the support sizes in dimensions up to d = 19, with the
exception of d = 3. The focus of this section will be on identifying achievable bounds.

4.4.1 Dimension d = 3

Theorem 4.7 in Sec. 4.3.2 displays the states which achieve the lower bound (4.30) in
dimension d = 3. In other words, the bound for the overall support of qutrit states
ψ is sharp, S(3) ≥ 8, where S (d) ≡ ∑d

j=0 ∥ψ∥j for ψ ∈ Hd.

4.4.2 Dimension d = 5

Theorem 4.8 shows that, for any state ψ ∈ H5, the overall support of the states H†
jψ,

j = {0 . . . d}, must satisfy S(5) > 18. In this section, we will prove a sharp lower
bound, namely S(5) ≥ 22 ≡ Ts(5).

To begin, we generalise Lemma 4.2 which will be necessary for the proof of
Lemma 4.4.

Lemma 4.3. Let d be an odd prime and ω ≡ e
2iπ

d . Consider two states |ϕj1k1⟩, |ϕj2k2⟩ ∈
Hd taken from different standard MU bases, j1, j2 ̸= 0, and let {|x⟩} be the com-
putational basis. Then there can be at most two values of x ∈ {0 . . . d− 1} such
that

⟨x|ϕj1k1⟩ = ωn⟨x|ϕj2k2⟩ (4.46)

for the same value of n ∈ {0...d− 1}. If two different states are taken from the same
basis, j1 = j2, then the equation has exactly one solution for each value of n.
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Proof. See Appendix B.1.

Now consider a state with two vanishing expansion coefficients in both the
computational basis and a second basis of the complete set. It turns out that such a
state can have only non-zero coefficients in the remaining four bases, resulting in a
total support size of 26.

Lemma 4.4. If the support of a state ψ ∈ H5 equals three in both the computational
basis and another standard MU basis with label j ̸= 0, i.e. ∥ψ∥0 = ∥ψ∥j = 3, then its
support size in each of the remaining four bases equals five, ∥ψ∥j′ = 5, with j′ ≠ 0, j.

Proof. The proof, given in Appendix B.1, uses Corollary 4.1 and Lemma 4.3.

This result allows us to determine a sharp bound Ts(5) for the support size S(5).

Theorem 4.9. Given a state ψ ∈ H5, the sharp bound on its overall support size
S(5) in a complete standard set of MU bases is given by Ts(5) = 22.

Proof. To construct the bound, we go through all possible values of the support size
of the state ψ in the computational basis, i.e. ∥ψ∥0 ∈ {1 . . . 5}.

For ∥ψ∥0 = 1, the pair inequalities (4.22) imply that the state ψ must have full
support in all other five MU bases, i.e. ∥ψ∥j ̸=0 = 5. Hence, the overall support of a
computational basis state is given by S(5) = 26.

For ∥ψ∥0 = 2, the pair inequalities (4.22) imply that the state ψ can have at
most one zero in each of the other five MU bases, i.e. ∥ψ∥j ̸=0 = 4. Hence, the overall
support of ψ is given by S(5) = 22. All 300 states of the form

|ψ⟩ = 1√
2
(
|ϕjk1⟩ − ωn|ϕjk2⟩

)
, j ∈ {0 . . . 5} , k1, k2, n ∈ {0 . . . 4} , k1 ̸= k2 .

(4.47)
achieve this bound. More generally, for primes d > 3, there are

(d+ 1) d
(

2
d

)
= 1

2
(
d2 − 1

)
d2 (4.48)

such states as j takes (d + 1) values, n takes d values and there are
(

2
d

)
different

pairs of k1 and k2. The three-dimensional case is an exception, as demonstrated by
Theorem 4.7.

For ∥ψ∥0 = 3, the pair inequalities (4.22) rule out a support size lower than three
in any basis from the set. We apply Lemma 4.4: the support size of ψ can equal
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three in only one other MU basis while the state must have full support in the others,
leading to S(5) = 26. It is also possible to have ∥ψ∥j = 4 in all bases but the first
one, i.e. for j ̸= 0. In this case seven expansion coefficients would vanish over the
complete set, resulting in an overall support size of S(5) = 23. This bound is larger
than the one already obtained for the case of ∥ψ∥0 = 2.

If ∥ψ∥0 = 4 and all other support sizes are also equal to four, the resulting overall
support of S(5) = 24 is again larger that the previous bound of S(5) = 22 obtained
for ∥ψ∥0 = 2. To improve on the value of S(5) = 24, at least one of the other norms
must fall below four, i.e. 1 ≤ ∥ψ∥j∗ ≤ 3 for some j∗ ̸= 0. This assumption, however,
sends us back to one of the cases already discussed: we formally map j∗ 7→ 0 and
repeat the arguments given for 1 ≤ ∥ψ∥0 ≤ 3.

Similarly, full support in all six MU bases cannot beat any of the bounds given so
far. Improving on the value of S(5) = 30 is only possible by decreasing some of the
support sizes, so that we will end up in one of the previously discussed cases. Having
considered all support sizes of a state in a basis, we have exhausted all possibilities
and conclude that the bound on the overall support of a state ψ ∈ H5 in six MU
bases is indeed given by Ts(5) = 22.

4.4.3 Dimension d = 7

Our aim is to identify states which minimise the overall support S(7) = ∑7
j=0 ∥ψ∥j.

To determine the sharp bound for d = 7, we will proceed as in the previous section.
However, since no equivalent to Lemma 4.4 is known, we will partly rely on numerical
results.

For ∥ψ∥0 = 1, the pair inequalities (4.22) imply that the state ψ must have full
support in all other seven MU bases,∥ψ∥j ̸=0 = 7. Hence, the overall support of ψ is
given by S(7) = 50.

For ∥ψ∥0 = 2, the pair inequalities (4.22) imply that the state ψ can have at
most one zero in each of the other seven MU bases, i.e. ∥ψ∥j ̸=0 = 6. Hence, the
overall support of ψ is given by S(7) = 44, achieved by states of the form

|ψ⟩ = 1√
2
(
|ϕjk1⟩ − ωn|ϕjk2⟩

)
, j ∈ {0 . . . 7} , k1, k2, n ∈ {0 . . . 6} , k1 ̸= k2 .

(4.49)
According to Eq. (4.48), there are 1176 such states.

For ∥ψ∥0 = 3, the smallest possible value of S(7) compatible with the pair
inequalities is S(7) = 38, as the states in the other bases must have support size at
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least five each, i.e. ∥ψ∥j ̸=0 = 5. However, no state achieving this bound has been
found (numerically). The computations show that a state with support sizes three
and five in two MU bases must have full support in the remaining six MU bases so
that S(7) = 50. Assuming support size six in all but the first MU basis, the overall
support would be S(7) = 45 which is higher than the bound of S(7) = 44 achievable
for ∥ψ∥0 = 2 .

Given a support size of four in the first MU basis, ∥ψ∥0 = 4, not all other
support sizes can be equal to four according to Theorem 4.8. One case corresponds
a state having support size four in the first and one other MU basis. It is possible to
(numerically) construct states for which the remaining six supports sizes must be equal
to six, leading to S(7) = 44. We neither know analytic expressions for these states
nor their total number. The other scenario compatible with ∥ψ∥0 = 4 corresponds
to the remaining seven support sizes each equalling five, i.e. ∥ψ∥j ̸=0 = 5, leading
to S(7) = 39. However, this case cannot be realised: our numerical investigations
show that any set composed of three vectors from B0 and two vectors from each
Bj ̸=0 spans the full space.

Assume now that ∥ψ∥0 = 5 and that the support of ψ in the other MU bases is
also at least five (we exclude all cases with ∥ψ∥j∗ < 5 for some j∗ ̸= 0 since—upon
relabeling the MU bases—they have effectively already been considered). An overall
support of S(7) = 40 results, below the previously obtained value of S(7) = 44 for
∥ψ∥0 = 2. Numerically searching for states achieving this bound, we find that pairs
of states with support size five in two MU bases exist but no triples, ruling out the
value S(7) = 40. Assuming support size five in two bases and at least six in the
remaining six MU bases leads to a higher support size, S(7) = 46.

Starting out with a support size of ∥ψ∥0 > 5, no smaller lower bound will exist if
all other support sizes take a value of at least six as S(7) ≥ 48 follows immediately. If
not all support sizes take a value of at least six we are being sent back to a previously
discussed case. Thus, we have established the sharp bound of Ts(7) = 44 on the
overall support of seven-component vectors in eight MU bases, partly relying on
numerics.
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4.5 Summary and conclusions

Tao’s uncertainty relation provides a lower bound on the sum of the support sizes of
a state ψ ∈ Hd in the standard basis and its Fourier transform, for prime dimensions
d. By generalising the bound to arbitrary pairs of mutually unbiased bases (cf.
Theorem 4.3), we show in Theorem 4.4 that the sum of the support sizes of a state ψ
in a complete standard set of (d+ 1) MU bases cannot fall below T (d) ≡ (d+ 1)2/2.
The bound is found to be sharp for d = 3, and proofs were given that it cannot be
saturated for dimensions d = 2, 5 and 7. Numerical results indicate that no states
exist which achieve the bound for prime numbers up to d ≤ 19. Table 4.1 summarises
these results. We conjecture that the inequality is saturated in dimension d = 3 only.

d 2 3 5 7 11 13 17 19
T (d) 9/2 8 18 32 72 98 162 200

T (d) achievable? × ✓ × × (×) (×) (×) (×)
Ts(d) 5 8 22 (44) ? ? ? ?

Table 4.1: Lower and sharp bounds T (d) and Ts(d), respectively, on the support
sizes of states ψ ∈ Hd when expanded in the complete standard set of (d+ 1) MU
bases, for small prime dimensions (numerical results in parentheses).

Tao’s pair support inequality has been used to identify KD-nonclassical states,
i.e. states for which the Kirkwood-Dirac quasiprobability distribution has negative
or complex contributions [52]. Given two orthonormal bases of a finite-dimensional
space Hd, d ∈ N, with no common elements, a state ψ is found to be KD-nonclassical
if the sum of its support sizes in these bases is greater than (d+ 1). KD-classicality
is readily generalised to complete sets of MU bases instead of pairs only. In this
context, the results of Sec. 4.3 mean that no states exist which are KD-classical with
respect to the standard set of (d+ 1) MU bases in small prime dimensions. When
d = 3, the claim follows by directly computing the complex KD distributions of the
nine minimal uncertainty states of Eq. (4.43).

The uncertainty of quantum states involving more than two MU bases has been
studied before. Building on a result for a pair of mutually unbiased observables
[130], entropic uncertainty relations have been found which involve (d+ 1) MU bases
[107, 156]. Similarly, Heisenberg’s uncertainty relation for continuous variables has a
counterpart based on three observables satisfying the canonical commutation relation
pairwise [113]. Often, the generalisations are straightforward but the resulting
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inequalities tend not to be achievable. Sharp bounds and the minimising states are
usually difficult to find (see e.g. [114, 187] and the review [178]). In this respect, the
additive inequality proposed here is no exception.

Support uncertainty relations for multiple MU bases have many interesting
features. As for the pair inequalities, a finite number of measurements can be
sufficient to confirm that a quantum state satisfies a specific bound. The minimum
number of required measurements is simply given by the value of the relevant bound,
be it sharp or not: it is sufficient that T (d) different outcomes be registered when
measurements in the MU bases are performed on the state ψ. This property also
ensures that KD-nonclassicality may sometimes be detected with a finite number of
measurements.

Furthermore, the lower bounds of support inequalities neither depend on the
state considered nor on the value of Planck’s constant. The absence of ℏ as a
parameter suggests that no support inequalities for continuous variables will emerge
in the limit of systems with ever larger dimensions d. The maximal support size
of a quantum state grows without bound and, therefore, does not approach a well-
defined quantitative measure for uncertainty. Finally, we would like to point out
that determining bounds on support sizes is experimentally difficult since they are
basis-dependent quantities.

Establishing sharp bounds for dimensions d ≥ 11 remains an open question
which will require new insights since numerical approaches become unfeasible with
increasing dimensions. Other directions of future work will be to study support
uncertainty relations for smaller sets of MU bases such as triples, for example.
The simplification stems from the considerably smaller number of parameters in
comparison to complete MU sets. Preliminary analytical and numerical results for
small prime dimensions 3 ≤ d ≤ 19 suggest that no state can saturate the bound
T (d; 3) on the triple uncertainty relation (4.31) for d ̸= 3.
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Appendix to Part I

A.1 Definitions of operator sets

In the following list, let H be a complex, finite-dimensional Hilbert space.
– Bounded operators: L(H) : {L : H → H : L(c ψ + ϕ) = c L(ψ) + L(ϕ) ∀ψ, ϕ ∈

H, c ∈ C; ∃ t ≥ 0 : ∥Lψ∥ ≤ t ∥ψ∥ ∀ψ ∈ H};

– Self-adjoint operators (Hermitian): Ls(H) = {M ∈ L(H) : M † = M};

– Projectors: P(H) = {Π ∈ Ls(H) : Π2 = Π};

– Unitary operators: U(H) = {U ∈ L(H) : U †U = UU † = I};

– Density operators (normalised): S(H) = {ρ ∈ Ls(H) : ρ ≥ O, Tr(ρ) = 1}.

A.2 Proofs of Lemmata 3.1 and 3.2

Lemma 3.1. An update rule wA is (SI) if and only if, for any generalised observable
M on HA, all M-compatible generalised instruments realisable in the corresponding
AMT are composed of linear maps over S̄(HA).

Proof. It follows from Eq. (3.49) that, if the update rule wA is (SI), hence the map
ωA
AB is linear over S(HA ⊗ HB), then all generalised instruments are composed

of linear maps over S(HA). It remains to show that any AMT that is not (SI)
will necessarily feature some nonlinear instruments. This is trivial whenever ωA

A is
nonlinear. Suppose now wA is (WI) but not (SI), i.e. ωA

A is linear but ωA
AB is not.

There will exist at least two (normalised) joint states, ρAB and σAB, and a local

144
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outcome Πx of some observable N = {Πx}x of HA, such that

ωA
AB (Πx, λρAB + (1 − λ)σAB) ̸=

λωA
AB (Πx, ρAB) + (1 − λ) ωA

AB (Πx, σAB) (A.1)

for some 0 < λ < 1. Tracing out subsystem ‘B’ on both sides must lead to an
equality, since we are assuming (WI). However, for any pair of different joint states
with same reduced state for a subsystem (here: the left- and right-hand sides of
Eq. (A.1)), there exists a channel mapping them to other joint states with different
reduced states1. Denoting this (possibly outcome-dependent) channel by ηxAB, we
have that, for this specific value of λ and pair of states (ρAB, σAB),

TrB
[
ηxAB ◦ ωA

AB (Πx, λρAB + (1 − λ)σAB)
]

̸=

λTrB
[
ηxAB ◦ ωA

AB (Πx, ρAB)
]

+ (1 − λ) TrB
[
ηxAB ◦ ωA

AB (Πx, σAB)
]
. (A.2)

Note that we do not require Eq. (A.2) to hold for arbitrary mixtures of arbitrary
states.

In the remaining steps of the proof, we will show that Eq. (A.2) implies the
existence of a nonlinear generalised instrument. Let HE = HB ⊗ HB′ denote a
composite system, initialised in state ξ = |0⟩⟨0| ⊗ ξB′ , and let U ∈ U(HA ⊗ HE) be
the unitary inducing the following channel on S(HA ⊗ HB),

ηU (φAB) = Tr (|00⟩⟨00|φAB) ρAB + Tr ((IAB − |00⟩⟨00|)φAB)σAB. (A.3)

In other words, ⟨HB′ , U, ξB′⟩ defines a dilation of the channel ηU , i.e. ηU(φAB) =
TrB′(U φAB ⊗ ξB′ U †). Setting ρA = |0⟩⟨0| and σA = |1⟩⟨1|, it follows that

ηU (ρA ⊗ |0⟩⟨0|) = ρAB , ηU (σA ⊗ |0⟩⟨0|) = σAB , (A.4)

and that
ηU ([λρA + (1 − λ)σA] ⊗ |0⟩⟨0|) = λρAB + (1 − λ)σAB . (A.5)

1For any φ1, φ2 ∈ S(HA ⊗ HB) such that φ1 ̸= φ2 but TrB(φ1) = TrB(φ2), there must exists
some Πy ∈ P(HA ⊗ HB) such that p(y|φ1) = Tr(Πyφ1) ̸= Tr(Πyφ2) = p(y|φ2). Then, fixing some
states ξ1, ξ2 ∈ S(HA ⊗ HB) with TrB(ξ1) ̸= TrB(ξ2), the channel η(φ) = p(y|φ)ξ1 + (1 − p(y|φ))ξ2
is such that TrB [η(φ1)] ̸= TrB [η(φ2)]. The channel can be implemented unitarily on a larger space
HA ⊗ HB ⊗ HC , where HC is an ancilla.
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Therefore, using the property of self-consistency (R3) of update rules (cf. Def. 9), we
can write

ωA
AB (Πx, ρAB) =ωA

AB (Πx, ηU (ρA ⊗ |0⟩⟨0|)) (A.6)
=ωA

AB

(
Πx,TrB′

(
U ρA ⊗ |0⟩⟨0| ⊗ ξB′ U †

))
(A.7)

= TrB′

[
ωA
ABB′

(
Πx, U ρA ⊗ |0⟩⟨0| ⊗ ξB′ U †

)]
. (A.8)

Similar expressions can be written for σAB and the mixture λρAB + (1 − λ)σAB.
Substituting these expressions in Eq. (A.2), and recalling that ξ = |0⟩⟨0| ⊗ ξB′ , leads
to the following relation,

TrB
{
ηxAB ◦ TrB′

[
ωA
ABB′

(
Πx, U (λρA + (1 − λ)σA) ⊗ ξ U †

)] }
̸=

λTrB
{
ηxAB ◦ TrB′

[
ωA
ABB′

(
Πx, U ρA ⊗ ξ U †

)] }
+

(1 − λ)
{
ηxAB ◦ TrB′

[
ωA
ABB′

(
Πx, U σA ⊗ ξ U †

)] }
. (A.9)

Since the channel ηxAB does not act on ‘B′’, we can take the partial trace over ‘B′’
outside the curly bracket,

TrBB′

[
ηxAB ⊗ IB′ ◦ ωA

ABB′

(
Πx, U (λρA + (1 − λ)σA) ⊗ ξ U †

)]
̸=

λTrBB′

[
ηxAB ⊗ IB′ ◦ ωA

ABB′

(
Πx, U ρA ⊗ ξ U †

)]
+

(1 − λ) TrBB′

[
ηxAB ⊗ IB′ ◦ ωA

ABB′

(
Πx, U σA ⊗ ξ U †

)]
. (A.10)

Recalling that HE = HB ⊗ HB′ , and relabeling ‘A’ with ‘S’, we recast Eq. (A.10) in
the notation of Eq. (3.49),

TrE
[
ηxSE ◦ ωA

SE

(
Πx, U (λρS + (1 − λ)σS) ⊗ ξ U †

)]
̸=

λTrE
[
ηxSE ◦ ωA

SE

(
Πx, U ρS ⊗ ξ U †

)]
+

(1 − λ) TrE
[
ηxSE ◦ ωA

SE

(
Πx, U σS ⊗ ξ U †

)]
, (A.11)

where we set ηxSE = ηxSB ⊗ IB′ . Applying Eq. (3.49) to both sides leads to

ωMx (λρS + (1 − λ)σS) ̸= λωMx (ρS) + (1 − λ)ωMx (σS) . (A.12)

Therefore, for any (WI) update rule, there exists some generalised observable M =
{Mx}x on HS—with measurement model M = ⟨HE, ξ, U,N = {Πx ∈ P(HS)}x⟩—
such that an M-compatible generalised instrument, {ωMx}x, is not composed of linear
maps over S̄(HS). Specifically, ωMx does not preserve arbitrary convex combinations
of ρS = |0⟩⟨0| and σS = |1⟩⟨1|. It follows that the requirement of (SI) implies the
linearity of all generalised instruments in the corresponding AMT.
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Lemma 3.2. Let M,N : L(HA ⊗ HB) → L(HA ⊗ HB) be linear mappings satisfying
M(ρA ⊗ ρB) = N(ρA ⊗ ρB) for all ρA ∈ S(HA) and ρB ∈ S(HB). Then M = N .

Proof. Let X and Y be arbitrary elements of L(HA) and L(HB), respectively. They
can be expressed as a complex linear combination of self-adjoint operators,

X =H + iK , H,K ∈ Ls(HA) , (A.13)
Y =W + iZ , W,Z ∈ Ls(HB) . (A.14)

Moreover,

H =H+ −H− , H+, H− ≥ O , (A.15)
K =K+ −K− , K+, K− ≥ O , (A.16)
W =W+ −W− , W+,W− ≥ O , (A.17)
Z =Z+ − Z− , Z+, Z− ≥ O . (A.18)

This allows us to express X as follows,

X = Tr (H+) H+

Tr (H+)︸ ︷︷ ︸
ρ+

H

−Tr (H−) H−

Tr (H−)︸ ︷︷ ︸
ρ−

H

+ iTr (K+) K+

Tr (K+)︸ ︷︷ ︸
ρ+

K

−iTr (K−) K−

Tr (K−)︸ ︷︷ ︸
ρ−

K

, (A.19)

where ρji ∈ S(HA) for i ∈ {H,K} and j ∈ {+,−}. To avoid issues of ill-definedness,
we set ρ+

H = ρ∗ if H+ = O, where ρ∗ ∈ S(HA) is arbitrary, with analogous conditions
for the other states. A similar expression for Y can be written,

Y = Tr (W+) ρ+
W − Tr (W−) ρ−

W + iTr (Z+) ρ+
Z − iTr (Z−) ρ−

Z , (A.20)

where ρnm ∈ S(HB) for m ∈ {W,Z} and n ∈ {+,−}. Therefore, X ⊗ Y can be
expressed as a linear combination (over C) of product density matrices,

X ⊗ Y =
∑
ijmn

cjnimρ
j
i ⊗ ρnm . (A.21)

From the linearity of M and N , and the condition that M(ρji ⊗ρmm) = N(ρji ⊗ρmm) for
all i, j,m, n, it follows that M(X⊗Y ) = N(X⊗Y ) for arbitrary X⊗Y ∈ L(HA⊗HB).
The two maps are therefore equal, M = N .
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A.3 Comparison with the work of Wilson and Ormrod

In a recent pre-print [182], Wilson and Ormrod adopt a similar approach to the one
presented in this chapter, contributing to showcasing the types of arguments and
results that can be achieved. Their objective is to identify an operational principle
that allows for the unique recovery of the unitary, deterministic transformations of
quantum states—i.e. Axiom (T)—while retaining all other standard postulates of
quantum theory, including the Lüders projection for single systems, Axiom (ML).

The authors show that imposing unitary dynamics of quantum states is equivalent
to assuming the “local applicability” of deterministic transformations. Roughly
speaking, this refers to the possibility of applying a transformation to a system
without having it act on a (possibly far away) environment. In particular, the
transformation is independent of any measurement performed on the environment.
Interestingly, we observe that their definition of local applicability and our definition
of update rule, cf. Def. 9, overlap in certain aspects. Both concepts are defined in
terms of a number of basic operational conditions, none of which depend on any prior
notion of linearity. Specifically, a condition of self-consistency (R3) also appears in
the definition of local applicability, and neither update rules nor locally applicable
transformations allow for violations of quantum no-signalling (R4).

In line with with our discussion in Sec. 3.2.1, the authors of [182] notice that,
in order to “extend” the action of a transformation to the larger state space of
a composite system without assuming linearity, families of functions need to be
introduced. In the case of AMTs, fixing HA, these are the collections {wA

AB} defined
for any finite-dimensional extension HB, describing the effect of a measurement of
‘A’ on any composite system that includes it. Similarly, families of functions {LX},
defined for any finite-dimensional extension HX , are used to define locally applicable
transformations.

The authors of [182] also introduce the concept of a state-measurement theory,
i.e. a “bare” operational theory without notion of system composition and time
evolution. In particular, their definition includes a measurement-induced state update
mapping uA. This map resembles the single-system update rule wA

A featured in this
document for the authors assume, albeit only implicitly, context-independence (R2).
However, they impose an additional condition on “null measurements”, stating that
when the observed outcome provides no information about the pre-measurement
state, then the measurement cannot disturb the system. This requirement does
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not appear in our Def. 9 of update rules. In fact, measurements in AMTs may
disturb the state of a system regardless of the amount of information revealed. In
other words, in constructing the AMT framework, we do not assume a priori that
measuring a “trivial” observable is operationally equivalent to not measuring any
observable. While the former might require the implementation of a physical device
or involve post-processing, the latter, being the absence of measurement, is not
formally captured by an update rule. If no measurement takes place, the update rule
wA is simply not applied. In Sec. 3.4.4, we showed that the information-disturbance
trade-off (TO), which implies the described behaviour for null measurements, is a
rather strong condition, able to uniquely identify the Lüders projection for single
systems.

Considering these observations, we notice that a more general definition of a
spatial state-measurement theory (i.e. a state-measurement theory with a notion of
composite system) than the one presented in [182] can be provided by replacing the
partial function uA with a suitable generalisation of our notion of an update rule wA

that does not refer to specific axioms of quantum theory.
Gisin’s argument is also reviewed by the authors of [182]. They emphasise the

need of additional assumptions to those of the original argument [84] in order to
isolate the Schrödinger equation within the possible convex-linear, deterministic time
evolutions compatible with the no-superluminal-signalling principle. In our work, as
discussed in Sec. 2.7, we address a different aspect of Gisin’s argument. Specifically,
we show that, contrary to the claims made in [163], the argument indeed relies on the
projection postulate. Furthermore, in line with numerous examples appeared in the
literature [45, 46, 71, 72, 101, 118–120, 151, 152], all nonlinear instruments featured
in the AMT framework represent instances of nonlinear dynamical transformations
that do not lead to signalling. Therefore, they are not dismissed by Gisin-type
arguments.
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Appendix to Part II

B.1 Proofs of Lemmata 4.1, 4.3, 4.4 and Corollary 4.2

We present proofs of Lemma 4.1, Corollary 4.2 and Lemmata 4.3 and 4.4, in this
order.

Lemma 4.1. Let d be an odd prime and j, k ∈ {1 . . . d} with j ̸= k. Then

H†
kHj = M(j, k)H†

t (4.28)

for a monomial matrix M(j, k) if and only if t = 1+χ ∈ {1, . . . , d} where the integer
χ satisfies 4 (j − k)χ = 1 mod d.

Proof. Using Eqs. (4.14), we calculate the matrix elements of the product H†
kHj,

with j, k ̸= 0 and j ̸= k,
[
H†
kHj

]
ℓℓ′

= ⟨ϕkℓ |ϕ
j
ℓ′⟩ = 1√

d
Gd(j − k, ℓ− ℓ′) , (B.1)

with the generalised Gauss sum [27]

Gd(j, ℓ) = 1√
d

d−1∑
x=0

ωjx
2+ℓx . (B.2)

Using 1 = ω(ℓ−ℓ′)2χω−(ℓ−ℓ′)2χ in (B.1) and letting χ be an integer satisfying 4 (j − k)χ ≡
1 mod d, we obtain a standard Gauss sum Gd (j − k, 0) with known closed form.

150
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Explicitly, for j ̸= k, we obtain

Gd(j − k, ℓ− ℓ′) = ω−(ℓ−ℓ′)2χ 1√
d

∑
x

ω(j−k)x2+(ℓ−ℓ′)xω(ℓ−ℓ′)2χ

= ω−(ℓ−ℓ′)2χ 1√
d

∑
x

ω(j−k)[x+2(j−k)(ℓ−ℓ′)]2

= ω−(ℓ−ℓ′)2χ

[
1√
d

∑
x

ω(j−k)x2
]

= ω−(ℓ−ℓ′)2χGd (j − k, 0)

= ω−(ℓ−ℓ′)2χ

(
j − k

d

)
εd , (B.3)

where ā denotes the multiplicative inverse of a, āa ≡ 1 mod d, while
(
a
b

)
denotes

the Jacobi symbol of the integers a and b, and

εd =

1 if d ≡ 1 mod 4 ,

i if d ≡ 3 mod 4 .
(B.4)

The sum Gd (j − k, ℓ− ℓ′) in (B.3) reduces to a phase factor as it should since the
components of the matrix H†

kHj are given by the overlap of states stemming from
different MU bases.

Combining (B.1) and (4.14), we now determine the elements of the matrix
V ≡ H†

kHjHt for arbitrary t ̸= 0:

Vℓℓ′ =
d−1∑
ℓ′′=0

⟨ϕkℓ |ϕ
j
ℓ′′⟩⟨ℓ′′|ϕtℓ′⟩ = 1

d

d−1∑
ℓ′′=0

Gd(j − k, ℓ− ℓ′′)ω−ℓ′ℓ′′+(t−1)ℓ′′2
. (B.5)

We can simplify this expression by substituting (B.3) into it, to find

Vℓℓ′ = 1
d

(
j − k

d

)
εd

d−1∑
ℓ′′=0

ω−(ℓ−ℓ′′)2χ ω−ℓ′ℓ′′+(t−1)ℓ′′2

= 1
d

(
j − k

d

)
εd ω

−ℓ2χ
d−1∑
ℓ′′=0

ω(t−1−χ)ℓ′′2+(2ℓχ−ℓ′)ℓ′′ .

(B.6)

Letting t = 1 + χ, we obtain sums over all d-th roots of one which vanish unless the
exponents of ω vanish,

d−1∑
ℓ′′=0

ω(2ℓχ−ℓ′)ℓ′′ =

d if ℓ′ = 2ℓχ mod d ,

0 otherwise .
(B.7)

Thus, for this value of t, the matrix elements of V take the form

Vℓℓ′ =


(
j−k
d

)
εd ω

−ℓ2χ if ℓ′ = 2ℓχ mod d ,

0 otherwise ,
(B.8)



152 Appendix B. Appendix to Part II

so that the only non-zero elements of the matrix V are those with indices (ℓ, 2ℓχ mod d).
Each row ℓ has exactly one non-zero entry and the map ℓ 7→ 2ℓχ mod d constitutes
a permutation of the elements of {0 . . . d− 1} since d is a prime number and 2χ ̸= 0
mod d. (Assume this was not the case, i.e. 2χx mod d = 2χy mod d for some
x, y ∈ {0 . . . d− 1}, x ̸= y. Then 2χ (x− y) = nd for some integer n which is never
the case whenever d is prime and χ ̸= 0 mod d.) As a consequence, each column will
also display exactly one non-zero entry.

Therefore, the product V of three Hadamard matrices is equal to a monomial
matrix M(j, k) if t = 1 + χ, i.e.

H†
kHj = M(j, k)H†

1+χ . (B.9)

We complete the proof by showing that the matrix V = H†
kHjHt is not monomial

for any other value of t. For t ̸= 1 + χ, the sum on the right-hand side of (B.6)
represents another generalised Gauss sum so that

Vℓℓ′ = 1√
d

(
j − k

d

)
εd ω

−ℓ2χGd (t− 1 − χ, 2ℓχ− ℓ′) (B.10)

with Gd (t− 1 − χ, 2ℓχ− ℓ′) =
√
d⟨ϕ1+χ

2ℓχ |ϕtℓ′⟩. We can now substitute the expression
(B.3) and obtain

Vℓℓ′ = 1√
d
ε2
d

(
j − k

d

)(
t− 1 − χ

d

)
ω−ℓ2χω−(2ℓχ−ℓ′)2χ̃ (B.11)

where χ̃ ∈ {1 . . . d} is an integer satisfying 4 (t− 1 − χ) χ̃ = 1 mod d. Hence, the
matrix elements Vℓℓ′ are all non-zero confirming that the matrix V is not monomial
unless t = 1 + χ.

An alternative, shorter proof of Lemma 4.1 can be given by representing the
Hadamard matrices Hj as 2 × 2 matrices in SL(2,Z/dZ) (cf. [139]).

Corollary 4.2. Given a complete standard set of MU bases in the space Hd of
prime dimension d, any set of d (or fewer) vectors taken from any two MU bases
are linearly independent.

Proof. Construct a matrix M of order d× (d1 + d2) from any (d1 + d2) ≤ d column
vectors—expressed in the computational basis—from the two MU bases Bj1 and Bj2 .
Then left-multiply M by H†

j1 . Since ⟨x|H†
j1|ϕj1k ⟩ = ⟨x|k⟩, the first d1 columns will be

elements of the computational basis, while the remaining d2 columns will be taken
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from H†
j1Hj2 since ⟨x|H†

j1|ϕj2k ⟩ = ⟨x|H†
j1Hj2|k⟩. By swapping rows appropriately via

a permutation operator P which does not change linear independence of column
vectors, the top left square can be mapped to the d1-dimensional identity. For
example, if we consider d = 5 and d1 = d2 = 2, we obtain a 5 × 4 matrix,

PH†
j1M =



1 0 ∗ ∗
0 1 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗


, (B.12)

where the asterisks refer to the elements of H†
j1Hj2 .

The (d1 + d2) ≤ d vectors are linearly dependent only if M does not have full rank,
i.e. rank (M) < d1+d2. Since PH†

j1 is unitary, it follows that rank
(
PH†

j1M
)
< d1+d2.

Given the form of the matrix (B.12), the bottom-right part of PH†
j1M must contain

a (d2 × d2) submatrix with vanishing determinant. However, this is prohibited by
Corollary 4.1 which ensures for all prime numbers d that H†

j1Hj2 has non-vanishing
minors if j1 ̸= j2. Thus, all (d1 + d2) column vectors of M must be linearly
independent.

Lemma 4.3. Let d be an odd prime and ω ≡ e
2iπ

d . Consider two states |ϕj1k1⟩, |ϕj2k2⟩ ∈
Hd taken from different standard MU bases, j1, j2 ̸= 0, and let {|x⟩} be the com-
putational basis. Then there can be at most two values of x ∈ {0 . . . d− 1} such
that

⟨x|ϕj1k1⟩ = ωn⟨x|ϕj2k2⟩ (4.46)

for the same value of n ∈ {0...d− 1}. If two different states are taken from the same
basis, j1 = j2, then the equation has exactly one solution for each value of n.

Proof. By substituting (4.13) into (4.46) and taking the logarithm, one obtains
ax2 + bx− n = 0 mod d where a = j1 − j2 and b = k2 − k1. This quadratic equation
can have no more than two integer solutions. Thus, at most two components of the
states |ϕj1k1⟩ and |ϕj2k2⟩ can be identical in the computational basis, up to multiplication
by ωn. If j1 = j2, then a = 0 and the equation is linear with a single solution for
each value of n.

Lemma 4.4. If the support of a state ψ ∈ H5 equals three in both the computational
basis and another standard MU basis with label j ̸= 0, i.e. ∥ψ∥0 = ∥ψ∥j = 3, then its
support size in each of the remaining four bases equals five, ∥ψ∥j′ = 5, with j′ ≠ 0, j.
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Proof. Four scalar products with the state ψ vanish,

⟨x1|ψ⟩ = ⟨y1|ψ⟩ = ⟨ϕjx2|ψ⟩ = ⟨ϕjy2|ψ⟩ = 0 , (B.13)

two for each of the bases. Hence, the zero distributions of the states ψ and H†
jψ, are

given by Z0 = {x1, y1} and Zj = {x2, y2} respectively, with four integer numbers
x1, . . . , y2 ∈ {0 . . . 4}. Now suppose that there is a third MU basis Bj′ , different from
both B0 and Bj, in which the state ψ does not have full support. In other words,
there is at least one vanishing scalar product, ⟨ϕj′

x3|ψ⟩ = 0, say, where x3 ∈ {0 . . . 4}.
Expressing the components of the five vectors |x1⟩, |y1⟩, |ϕjx2⟩, |ϕjy2⟩, |ϕj′

x3⟩ with
respect to the computational basis and arranging them into a 5 × 5 matrix, we find,
after permuting the rows and rephasing the last three vectors,

M = 1√
5



√
5 0 ∗ ∗ ∗

0
√

5 ∗ ∗ ∗
0 0 1 1 1
0 0 ωa ωc ωe

0 0 ωb ωd ωf


, a, . . . , f ∈ {0 . . . 4} . (B.14)

Being elements of the Hadamard matrices Hj and Hj′ , the entries of the last three
columns are powers of ω, a fifth root of one. Corollary 4.2 ensures the linear
independence of the first four vectors.

If the determinant of M does not vanish, detM ̸= 0, then the five column vectors
forming it are linearly independent, thus spanning H5. However, the only state being
orthogonal to all of H5 is ψ = 0 which does not represent a quantum state. Thus,
for an acceptable state ψ producing the given five vanishing expansion coefficients,
the five vectors involved must be linearly dependent, i.e. detM = 0. Consequently,
the determinant of the bottom right 3 × 3 matrix of M must vanish,

∆ ≡ det


1 1 1
ωa ωc ωe

ωb ωd ωf

 = ωa+d + ωe+b + ωc+f − ωc+b − ωe+d − ωa+f = 0 . (B.15)

Each of the six terms in this expression is a power of a fifth root ω of unity, hence
non-zero. It is well known that the set {ωn |n = 0, ..., 3} is linearly independent over
the rational numbers Q. As a consequence, every non-zero complex number that
is expressible as a linear combination (over Q) of these roots of unity has a unique
expression. Since ω4 = −1 −ω−ω2 −ω3, it must follow that the only decomposition



B.1. Proofs of Lemmata 4.1, 4.3, 4.4 and Corollary 4.2 155

of zero over Q in terms of fifth roots of 1 is 0 = q (1 + ω + ω2 + ω3 + ω4), with some
rational number q ∈ Q. In other words, for the sum to vanish all five roots must be
multiplied to the same rational coefficient.

We distinguish two cases: either q ̸= 0 or q = 0. Since (B.15) involves six terms
with coefficients ±1, we conclude that the case of q ̸= 0 cannot be realised: it is
impossible to get all five roots to appear with the same non-zero coefficient. For
example, let (a+ d) = (e+ b) mod 5, then Eq. (B.15) reduces to

∆ = 2ωa+d + ωc+f − ωc+b − ωe+d − ωa+f (B.16)

Since all roots must appear, the exponents in (B.16) are all different. However, the
coefficients are not equal throughout and the sum cannot vanish. A similar argument
holds for any other equality between exponents.

The case of q = 0 must therefore apply: the determinant ∆ vanishes if and only
if the six terms in Eq. (B.15) cancel each other in pairs, i.e. the the powers of ω must
occur an even number of times, and with an equal number of positive and negative
coefficients. Hence, the first term in (B.15) is necessarily paired up with one of the
powers with a negative coefficient leading. Three cases arise which we will consider
separately.

(i) For the first and the fourth term to cancel, we must have (a+ d) = (c+ b)
mod 5 , or

(a− b) = (c− d) mod 5 , (B.17)

relating the expansion coefficients of two vectors of the same basis, namely |ϕjx2⟩ and
|ϕjy2⟩. Consequently, the third and fourth column vectors in the matrix M in (B.14)
have (at least) two equal entries in identical positions, up to an irrelevant common
phase factor. This would result in a vanishing 2 × 2 submatrix of Hj contradicting
Corollary 4.1 (and Lemma 4.3). Thus the determinant ∆ cannot vanish in this case.

(ii) For the first and the fifth term to cancel, we must have (a + d) = (e + d)
mod 5 , or

a = e mod 5 , (B.18)

relating the expansion coefficients of two vectors of different bases, namely |ϕjx2⟩ and
|ϕj′
x3⟩. Corollary 4.1 does not apply to this case. We do know, however, that the

fourth term in the sum (B.15) must pair up with either the second or the third term
of the sum in (B.15). In the first case, we find (c+ b) = (e+ b) mod 5 ,or

c = e mod 5 . (B.19)
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Given the constraint (B.18), we we obtain the identity

a = c mod 5 , (B.20)

again relating the expansion coefficients of two vectors of the same basis, namely
|ϕjx2⟩ and |ϕjy2⟩. As in the Case (i), a contradiction to Corollary 4.1 arises.

In the second case, we pair up terms three and four of the sum (B.15), leading to
the identity (c+ b) = (c+ f) mod 5, or

b = f mod 5 . (B.21)

Together with Eq. (B.18), it follows that the last three elements of the third and
and fifth columns of M are identical. However, according to Lemma 4.3, two vectors
stemming from two different bases MU to the computational basis can have at most
two identical components.

(iii): Assuming that the first and the sixth term of the sum (B.15) cancel again
leads to a contradiction along the lines of the argument considered in Case (ii).

Thus, we are forced to conclude that the determinant ∆ cannot not vanish for
any j′ ̸= 0, j and any x3, which implies that the state ψ must have full support.
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