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Abstract 

Heroin and methadone poisoning are significant causes of death of young people 
in the United Kingdom. In a high proportion of these fatalities concomitant 

substances are also detected. This thesis is concerned with the significance of this 

observation and the hypothesis that these substances are risk factors for fatal 

heroin- and methadone-related overdose. 

A referential database was developed incorporating post-mortem toxicology data 

from 1,222 heroin and methadone overdose fatalities from around England and 
Wales. The most commonly detected concomitant drugs were ethanol, diazepam, 

temazepam, an additional opioid and cocaine. In the first of two studies, statistical 

models were derived, using multiple linear regression, to assess the potential 

effect of these concomitant substances on the lethality of heroin and methadone. 
Log-log and semi-log models . were considered and regression coefficients were 

estimated by ordinary least squares. 

Ethanol blood concentrations were associated with significantly reduced blood 

levels of total morphine and methadone, consistent with a causal role for this 

substance. There was an absence of evidence of a similar effect for other 

commonly detected concomitants. 

xv 



In a second study, the non-specific risk of concomitant use of benzodiazepines 

and cocaine was examined in a series of matched case-control studies. 

Benzodiazepines were associated with increased risk of both heroin and 

methadone overdose with odds ratios of 1.95 and 7.83 respectively. In contrast, 

cocaine was detected in fewer overdose fatalities than expected. 

The findings from this thesis ostensibly suggest that ethanol concentrations, 

particularly at high levels, appear to lower the quantity of blood morphine or 

methadone at which fatal overdose occurs. Further research is required to 

corroborate these findings using other methodologies and to rule out alternative 

explanations. 

As there was no evidence of a similar association for benzodiazepines, it is 

concluded that if these drugs do have a role in fatal heroin or methadone 

overdose, the mechanism is unlikely to be pharmacological in nature. 

The limitations of using non-experimental methods to investigate this issue and 

the implications for further research are presented. 
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Introduction 

1.0 Mortality associated with the use of illicit drugs 
Mortality associated with the use of illicit drugs is a major international public 

health problem of increasing magnitude. Between 1979 and 1998, deaths related 

to drug use increased six-fold in England and Wales and towards the end of the 

20th century accounted for an estimated loss of between 1000 - 3000 lives per year 
in these two countries alone (ACMD, 2000; EMCDDA, 2000). Because illicit 

drug use tends to occur in young populations, associated mortality results in the 

loss of a considerable amount of life potential. In 1995, illicit drug-related deaths 

accounted for 40,550 years of male life lost (ACMD, 2000), a figure which 

approached that of road traffic accidents and one which represented 5% of the 

total number of years of life lost in that year. At a local level, the impact can be 

particularly devastating, as illustrated by a Glasgow study in which close to a third 

1 



of all deaths among those aged 15-35 years were classified as being drug-related 

(Frischer et al., 1997). 

The United Kingdom (UK) Advisory Council on the Misuse of Drugs' (ACMD) 

2000 report into reducing drug-related deaths identified the opioids heroin and 

methadone as the largest contributors to mortality arising from the 'immediate' l 

effects of drug-taking. Similarly, epidemiological studies throughout many 

countries have shown that the majority of illicit drug-related mortality is 

attributable to opioid use. For example, Bargagli ei al. (2005) estimate that 10%- 

20% of adult mortality between ages 15-49 years in Europe is opioid-related. 
Such statistics are of particular concern because, although illicit opioid use has 

been known to follow cyclic changes akin to epidemics (Ward et al., 1992), an 

overall trend towards increasing use has been observed throughout Europe, North 

America and Australia, coinciding with a global increase in illicit heroin 

production and transportation (UNODC, 1997). In response to these challenges, 

targets for reductions in drug-related deaths were included in the UK 

Government's Action Plan Against Drugs (Hellawell, 2001) and in the updated 

Drug Strategy (The Home Office, 2002). 

1.1 Mortality among opioid users 
In comparison to their peers, opioid users experience vastly elevated mortality 

rates. Darke & Ross (2002) found annual mortality rates among opioid users 

ranging from 0.5% to 7% in their review of over 30 heterogeneous studies, with 

most lying between 1-3%, a range confirmed in a recent study of eight European 

cohorts (Bargagli et al., 2005). Some of this mortality is due to the increased risk 

of death from Acquired Immunodeficiency Syndrome (Robertson et al., 1994). 

However, even accounting for this, excess mortality in this population remains 
high. In a literature review of 12 cohort studies conducted in countries with low 

ratest of Human Immunodeficiency Virus (HIV) seroprevalence, Hulse et al. 

(1999) estimated excess mortality among illicit opioid users to be more than 13 

I These deaths are the focus of this thesis and refer to fatalities caused by acute drug toxicity. These are 
distinguished from deaths caused by the chronic health consequences of drug use. 

2 Defined in this study as those in which AIDS accounted for less than 2% of total mortality among this 
population. Countries Included In this meta-analysis were USA (4 cohorts), England and Wales (3), Denmark 
(2), Sweden (1), Scotland (1), Italy (1). 
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times that of age and gender matched peers. These authors estimated a mortality 

rate of 8.6 per 1000 person years equating to an annual rate of 0.86% (CI 0.81% - 
0.90%). For a country with comparatively low HIV seroprevalence (WHO, 2006), 

research suggests that mortality rates for opioids users in the United Kingdom 

(UK) have been historically high. Oppenheimer et al. (1994) reported a 1.84% 

annual mortality rate among London heroin users in a 22-year cohort study, a 
figure similar to that obtained in a 12-year follow-up of injecting drug users from 

Glasgow between 1982 and 1994 (Frischer et al., 1997). To put this in context, the 

mortality rate in England and Wales for the 25-34 year old male age group over 
this same period was 0.093% per year (ONS 2005). More recent UK data suggest 
that the mortality rate remains high; for example, Hickman et al. (2003) report a 
1.6% annual mortality rate amongst a cohort of London heroin users between 

1997 and 2001 with a standardised mortality ratio (SMR) 3 of 17 times that of their 

non-heroin using peers. 

Because many of the cohorts summarised in the preceding section were initially 

recruited from treatment centres, and treatment is protective (Gronbladh et 

al., 1990; Caplehorn et al., 1994), these studies are likely to underestimate the true 

mortality within this population. Barnett (1999) observes that there is little 

available data on the long-term mortality of opioid users who do not have access 

to methadone maintenance treatment (MIvIT) and that from the limited available 
data, the annual mortality rate for untreated opioid users may be as high as 8% 

(e. g., Gearing & Schweitz, 1974; cited by Barnett, 1999). The cumulative impact 

of this excess mortality can be dramatic, as illustrated in a US cohort study of 
heroin dependent males by Hser et al. (2001) who found that at 33 years' follow- 

up, half of the study participants had died. Similarly, in Oppenheimer's 22-year 

follow-up of London heroin users, 38% died during the observation period 
(Oppenheimer et al., 1994). Frischer et al. (1997) estimated the risk of fatality 

among injecting drug users to be around 1 in 10 after 10 years injecting and, after 
14 years, the probability that an injector will die during the subsequent year was 1 

in 5. It is perhaps not surprising therefore to discover that opioid dependence is 

3 The Standardised Mortality Rate (SMR) is the ratio of the number of deaths within the cohort to the number of 
general population deaths during the same period, standardised for age and gender. It is sometimes referred to 
as the Excess Mortality Ratio (EMR). 
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associated with greater excess mortality than any other common mental heath 

disorder (Harris & Barriclough, 1998). 

1.2 Why do heroin users die prematurely? 
The reason that heroin users experience such high rates of early mortality starts to 

become clear when one considers the amount of exposure that this population has 

to potentially life-threatening hazards (Theodorou & Haber, 2005). Heroin and 

methadone are both potent respiratory depressants (Gustein & Akil, 2006) and 

thus present a considerable overdose risk to the user, particularly when injected 

(Strang et al., 1998). Non-sterile use of hypodermic syringes can also lead to 

infection by blood-borne pathogens such as HIV and hepatitis B/C (Donoghoe & 

Wodak, 1998; Kuo et al., 2004; Thorpe et al., 2002) as well bacterial skin 
infections from Staphylococcus aureus which may lead to endocarditis 
(Moreillion & Que, 2004). Isolated epidemics of severe illness caused by 

infections of Clostridium novyi and Clostridium botulinum have also been 

reported (Bellis et al., 2001; Passaro et al., 1998). Substance misuse is one of the 

most robust predictors of suicide (Harris & Barriclough, 1997); up to a third of 

opioid users meet the criteria for major depression and suicidal ideation is 

common (Darke & Ross, 1997). Traumatic injury either from road traffic 

accidents (Quaglio et al., 2001) or from systemic violence associated with 

involvement in an illicit drug culture (Vaillant, 1973) also occur. Furthermore, 

these hazards may interact to further increase the risk of mortality. For example, 

there is evidence that HIV-seropositive opioid users may be at higher risk for fatal 

overdose (Zaccarelli et al., 1994; Vlahov et al., 2000; Wang et al., 2005), as may 

users infected with hepatitis variants (Warner-Smith ei al., 2001). HIV-infected 

injection drug users also have a higher risk of infective endocarditis (Wilson et 

al., 2002). 

1.3 Non-deliberate overdose is the leading cause of death 
among opioid users 

Whilst the relative rate of mortality from these respective causes differs somewhat 
between geographical areas (WHO, 1998) and is subject to temporal fluctuation 

(Davoli et al., 1997; Quaglio et al., 2001), fatal overdose is the principal 
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contributor to the mortality of opioid users in most counties (Darke & Zador, 

1996). During periods of moderate to high HIV seroprevalence within the drug- 

using population, for example following the HIV epidemics in Spain (Sanchez- 

Carbonell & Seus 2000); Italy (Quaglio et al, 2001; Davoli et al., 1997; Mezzelani 

et al., 1998); New York (Selwyn et al., 1989); and Edinburgh (Copeland, 2004), 

AIDS-related mortality has been shown to predominate, albeit temporarily. In 

north-eastern Italy between 1985 and 1996, AIDS-related mortality among 
injecting drug users increased from 3% to 42%, overtaking overdose as the 

principle cause of death for a short period before falling to 17% by 1998 (Quaglio 

et al., 2001). This coincided with the introduction of drugs such as highly active 

antiretroviral therapies which have also been instrumental in reducing AIDS- 

related mortality in many other countries (Mayor et al., 2005; Copeland et al., 
2004). For opioid users in countries less affected by HIV/AIDS, such as the UK 

and Australia, fatal overdose is the leading cause of death (Hulse et al., 1999; 

EMCDDA, 2005; Hall & Darke, 1998). In a four-year follow-up of a UK cohort 

of 1075 drug users in the National Treatment Outcome Research Study 

(NTORS)4, mortality was attributed to drug overdose in 68% of the deaths over 

this period. Medical complications arising from pneumonia, AIDS, infections or 

other diseases were implicated in only 18% of cases, whilst the remaining 
fatalities were recorded as being due to `violence' (Gossop et al., 2002). Oyefeso 

et al. 's (1999) 20 year follow-up of a cohort of teenagers registered on the Home 

Office Addicts Index reported similarly high rates of death due to drug overdose 
(69%). 

Perhaps unsurprisingly, the overwhelming majority of overdose-related mortality 

among this population is associated with the use of opioids, in particular heroin 

and, less commonly, methadone (ACMD, 2000; EMCDDA, 2005; WHO, 1998; 

Steentoft et al., 1996; Ghodse et al., 2005). In the NTORS cohort, 66% of the 

overdose fatalities involved heroin and overall 85% had one or more opioids 
detected following post-mortem examinations (Gossop et al., 2002). Opioids have 

also been shown to dominate UK studies of illicit drug overdose fatalities 

4 The NTORS cohort comprised 81% poly-drug users; 90% of the cohort had used heroin or illicitly obtained 
methadone in the three months prior to study intake and three quarters of the cohort were considered to be 
regular heroin users - defined as using heroin at least once a week (Gossop et al., 1998). 
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investigated by coroners5 (Webb et al., 2003; Oliver et al., 2002; Hammersley et 

al., 1995; Cassidy et al., 1995) as well as elsewhere (Preti et al., 2002). 

There is little doubt that suicide is an important cause of mortality among opioid 

users (Farrell et al., 1996) and young people in general (Madge & Harvey, 1999). 

However, most overdose fatalities among drug users are classified as non- 
deliberate. For example, 75% of the deaths of known drug-users notified by UK 

Coroners to the National Programme on Substance Abuse Deaths (NpSAD) in 

2005 were attributed to accidental overdose (Ghodse et al., 2005). In terms of 

overall mortality among opioid users, suicide has been estimated to account for 

between 15% - 35% of total mortality (Hulse et al., 1999); although more recent 

research suggests that UK estimates are currently a great deal lower than this 

(parke & Ross, 2002). 

1.4 Heroin and methadone overdose mortality trends 
Knowledge of long term trends in opioid-related mortality is based mainly upon 

national mortality registers. Concerns have been raised on a number of occasions 

over a lack of standardisation in defining and classifying fatal opioid-related 

overdose within these sources, particularly as general mortality registers do not 

receive information on toxicology or post-mortem results but are reliant upon 

death certificates (WHO, 1993; WHO, 1998). Despite these limitations, data from 

various countries generally converge to indicate that the number and proportion of 

opioid-related overdose fatalities increased dramatically over the latter part of the 

20th century in a number of countries including the UK (Neeleman & Farrell, 

1997), Ireland (Kelleher et al., 2005; Long et al., 2005); Denmark, Norway and 

Sweden (Steencroft et al., 2001); Italy, (Preti et al., 2002); Austria (Risser et al., 

2000); and Australia (Hall & Darke, 1998). Using official mortality statistics, 

Neeleman and Farrell (1997) reported a 900% increase in the estimated number of 

heroin and methadone deaths in England and Wales between 1974 and 1992; a 

period which saw poisoning deaths in general fall by 32%. This study also showed 

that proportional mortality ratio (PMR)6 attributed to opioids rose by 80% per 

5 Known as Procurators Fiscals In Scotland. 
6 The proportional mortality ratio (PMR) Is the proportion of the total number of deaths within the reference 
population attributed to a specific cause. 

6 



three year period over this time. Over a similar time period, Australia experienced 

a 55-fold increase in the rate of opioid overdose deaths between 1964 and 1997 

(Hall, 1999). 

More recent data from the UK comes from the Office for National Statistics' 

(ONS) database on deaths from drug related poisonings. This is a special drug 

poisoning database that contains information on illicit and non-illicit drug-related 

poisonings in England and Wales dating back to 1993. The database attempts to 

standardise the classification of drug-related deaths by coding the underlying 

cause of death according to the International Classification of Diseases 

(Christophersen et al., 1998). The estimated number of heroin-related fatalities 

between 1993 and 2000 increased from less than 200 to more than 900, before 

stabilising in 2001. This represents an increase of almost 400% (ONS, 2003). 

Methadone deaths in England and Wales followed a similar pattern up to 1997, 

before steadily decreasing (Figure 1.1). In Scotland since 1996, the number of 

deaths involving heroin and methadone has been collected each year by the 

General Register Office for Scotland (GROS) using methods broadly comparable 

to those of the ONS (Ghodse et al., 2005). The pattern of deaths observed in 

Scotland during 1996 - 2001 generally paralleled that for England and Wales over 

the same period (Jackson, 2002). 

Figure I. I. Estimated number of heroin/methadone deaths in England and Wales, 
1993 - 2001. Reference: ONS (2003) 
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Various factors have been proposed to explain the rise in opioid-related overdose 

mortality. Epidemiologic and other research indicate that the majority of opioid 

overdose fatalities are dependent heroin users with lengthy injecting drug-use 

histories (Darke & Zador, 1996; Oliver et al., 2003). The logical conclusion of 

this is that the rise in the number of opioid overdose fatalities observed since the 

1960s is explained by the growth in the number of opioid users within the general 

population (Neeleman & Farrell, 1997). This is supported by UK data on 

notifications of drug users to the Home Office Addicts Index and its more recent 

incarnation, the Drug Treatment Monitoring System, which show patterns 

remarkably similar to the growth in opiate overdose deaths over the same period 

(Figure 1.2). However, whilst the observed long term national pattern of mortality 

has undoubtedly been driven by the prevalence of heroin use, transient increases 

in overdose deaths such as the three-fold increase in opioid deaths in England and 

Wales between 1993 and 1998 (Hickman et al., 2003) and other `epidemics' such 

as that reported by Ruttenber & Luke (1984), are suggestive of a more complex 

phenomenon. Hall and Darke (1998) observe that the average age of new users 

recruited to heroin use in Australia has been falling over a period in which the 

average age of overdose fatalities has been increasing, and that the rate of increase 

in overdose mortality is greatest amongst older users. If risk of death from 

overdose was independent of age (i. e., constant throughout one's opioid using 

career) then the average age of death would be expected to fall. This suggests that 

factors in addition to the population prevalence of heroin use have influenced the 

rise in opioid overdose mortality (Hall, 1999). 
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Figure 1.2. Notifications to the Home Office Addicts Index and National Drug Treatment 
Monitoring System (Hickman et a/., 2004; reproduced with permission) with an overlay (red 
line) showing the number of opioid related deaths between 1968 and 1998 (De Angelis et al., 
2004). 
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1.5 Conclusions 

Heroin dependence is considered to be a chronic, relapsing health condition 

(Leshner, 1998) and is associated with a range of potentially life-threatening 

health consequences. There are between 121,000 and 242,000 individuals in Great 

Britain at risk of mortality due to drug overdose (Frischer et al., 2001) and it is 

estimated that a heroin user's risk of death is up to 22 times that of his or her non- 

heroin-using peers. Opioid overdose is one of the leading causes of death among 

heroin users and, as a consequence of this, it is one of the largest contributors to 

the premature mortality of young people throughout North America, Europe and 

Australia. Overall, this cause of death is seen to account for a considerable 

proportion of the mortality of opioid-users to the extent that it also contributes 

significantly to the overall mortality of young people in the general population. In 

some locations it is the single largest cause of unnatural death, exceeding road 

traffic accidents and suicide (Stevens, 2000). Presently, it is estimated that fatal 

opioid overdose is responsible for between 6% and 10% of general mortality in 

persons aged 15 - 34 years in England & Wales (Hickman et al., 2003). 
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1.6 Thesis aims 
Despite the inherent dangers associated with the use of heroin, the extent of illicit 

heroin use and the number of individuals receiving N MT indicate that much of 

the use of these drugs takes place without serious acute medical complications. 

What are the conditions under which such use becomes fatally toxic? Zador 

(1999) observes that `Ambulance officers, witnesses and drug workers have noted 

on occasion that a batch of heroin which resulted in a fatal outcome for one 

person did not do so for another who shared the same deal'. Zimmy and Luke 

(1981) had earlier described 32 fatal heroin-related overdose victims who had 

shared their batch of heroin with others - in 27 of these 32 cases only one 

individual had died. Consequently, the notion that fatal opioid-related overdose is 

purely the result of higher than expected dose is challenged by much research in 

this area and is strongly suggestive of a role for other factors. This is recognised 

by the World Health Organization which has responded by calling for `further 

studies to identify remediable risk factors that may assist in the design of effective 

[opioid] overdose prevention and management interventions' as a priority action 

(WHO, 1998). Whilst it is important to acknowledge that heroin users represent a 

high risk group, deaths from overdose are considered to be eminently preventable 

(Abbasi, 1998; Best et al., 2000); firstly, by understanding their aetiology and, 

secondly, through the application of this knowledge in the form of prevention 

strategies. 

This thesis is concerned with attempting to better understand one of the potential 

pathways involved in fatal heroin and methadone overdose: concomitant drug use. 

This refers to the co-use of drugs in addition to heroin or methadone around the 

time of death. Existing evidence for a potential aetiological role for these 

substances is evaluated in the following two chapters. The first of these presents a 

review of the pharmacological and physiological mechanisms relevant to the 

understanding of this issue. In Chapter 3 the theoretical and empirical evidence 

for concomitant drug use as a risk factor for fatal heroin and methadone overdose 

is considered in a review and critique of the existing published literature. This 

chapter concludes with the research questions to be addressed in this thesis. The 

overall structure of the thesis is illustrated below (Figure 1.3). 
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Figure 1.3. Thesis structure 

Chapter Title Aims 
number(s) 

Background To review the pharmacological and 
2 physiological mechanisms of opioid 

overdose 

To provide a comprehensive review 
and critique of existing evidence for 
an aetiological role for concomitant 

3 Literature review drug use in fatal heroin and 
methadone overdose, and to 
describe the limitations to our 
knowledge which this thesis will 
address. 

Study 1: The effect of Study 2: Recent use of 
concomitant drugs on benzodiazepines and 

fatal heron and cocaine as risk factors for 
methadone blood levels heroin- and methadone- 

related overdose: a 
matched case-control study 

1 1 
To describe methodology used to 

4/5 Study 1: Study 2: address the research questions 
methods methods presented in Chapter 3. 

6n Study 1: Study 2: To present the results from the two 

results results research studies. 

To interpret the results from Chapters 
Discussion and 6// and discuss the implications of 

8 Conclusions these findings for the prevention of 
heroin and methadone related 
overdose. 
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Background 

Summary 

This chapter reviews the background information important to the understanding 

of fatal heroin- and methadone-related overdose. It begins with a brief overview 

of the historical development of these drugs followed by a description of their 

basic pharmacology and how this relates to their physiological effects. The 

mechanisms underlying fatal toxicity involving these drugs are then described. It 

will be seen that, in many instances, these basic mechanisms are incomplete 

explanations for why some individuals die from opioid-related overdose and that 

this suggests a role for other factors in the aetiology of this important cause of 

early mortality. 
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2.1 Opioid terminology 

The term opioid refers broadly to all compounds related to opium'. The term 

opiate is normally reserved for opioids specifically derived from opium; this 

includes the naturally occurring products morphine, codeine and thebaine as well 

as semi-synthetic derivatives such as heroin. Endogenous opioid peptides are the 

naturally occurring ligands for opioid receptors; these are the enkephalin, 

endorphin and dynorphin families. 

2.2 A brief history of heroin and methadone 
Opium, an extract of the poppy plant Papaver somniferum, has long been 

associated with human history. The first undisputed written account of opium is 

found in the writings of Theophrastus in the third century B. C (Gustein & Akil, 

2006) but references to the poppy can be seen in drawings and coins that pre-date 

Greek literature by thousands of years (Karch, 1996). Sumerian ideograms depict 

the poppy as the `plant of joy' as far back as 4000 B. C and its medicinal merits 

are discussed in Homer's Illiad and Odyssey, and Virgil's Aeneid. The infamous 

cup of poison given to Socrates at his execution, a standard solution for euthanasia 

at that time, contained opium and hemlock, whilst the great medieval Islamic 

physician Avicenna prescribed opium for cough, anaemia and diarrhoea (Merlin, 

1984). Dwale, a medieval herbal preparation containing opium, is mentioned by 

Chaucer in The Canterbury Tales and, in the medieval period, was used amongst 

other things as an early anaesthetic (Carter, 1999; Merlin 1984). Opium's 

popularity as a medicine increased throughout the Renaissance period, thanks in 

part to the work of Paracelsus who recognised that irrespective of the cause of a 

disease, pain relief and sleep (the two principal effects of opium) are always 

beneficial. 

Opium contains more than 20 distinct pharmacologically active molecules of 

which the phenanthrene alkaloid morphine is the most important. Morphine was 
first isolated by Sertürner in 1805 who named the substance after the Greek god of 
dreams, Morpheus (Karch, 1996). Wholesale production of morphine was begun 

i Since this thesis is concerned only with illicit heroin and methadone, the term opiolds will be used to refer to 
these collectively where appropriate. 
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by Merck around 1820 and, by the middle of the nineteenth century, the use of 

opioids in place of crude opium preparations began to spread throughout the 

world (Berridge, 1987). For all the beneficial effects of these opioids, the 

addictive potential of opium, which had been known for centuries, remained; as 
did the toxic side effects including respiratory depression, nausea, vomiting, 
dysphoria and hypotension (Gustein & Akil, 2006). This stimulated the search for 

synthetic and semi-synthetic opioid analgesics free of addictive potential and 

other unwanted effects. One of the products of this search was heroin. Diacetyl- 

morphine was first synthesized in 1874 by C. R. Wright by boiling anhydrous 

morphine with acetic anhydride resulting in the acetylation of the morphine 

molecule at positions 3 and 6. The addition of the two acetyl groups improved the 

lipid solubility of the morphine molecule and resulted in a dramatic increase in 

potency as well as toxicity (Gustein & Akil, 2006). This potency was recognised 
by the German pharmaceutical company Bayer who first registered the name 
heroin (meaning 'heroic treatment' from the German word heroisch) as a 

trademark in 1898 after mistakenly concluding that it produced less unwanted side 

effects. Heroin was marketed by Bayer up to the start of the First World War as a 

non-addictive morphine substitute and cough medicine for children. Today, 

according to the European Monitoring Centre for Drugs and Drug Addiction, 0.2- 

0.3% of the population of the European Union fulfil diagnostic criteria for heroin 

addiction (EMCDDA, 2005) and there are estimated to be 16 million people 

worldwide who have problematic use of heroin or other opioids (UNODC, 2006). 

Methadone is a fully synthetic opioid first synthesized by German chemists Max 

Bockmühl and Gustav Ehrhart in 1937 in their search for alternatives to morphine 
(Beckett et al., 1968). It belongs to a class of compounds referred to as 
diphenylpropylamine derivatives and whilst its two-dimensional chemical 

structure bears little resemblance to the basic morphine molecule, it shares the 

same basic structures common to morphine (Gustein & Akil, 2006). Following its 

synthesis, methadone was found to have a number of desirable features including 

high lipid solubility and excellent oral bio-availability (Wolff et al., 1997) but was 

generally dismissed as an analgesic, possibly due to it having a half life in excess 

of 50 hours in some individuals (Karch, 1996). This property was however to be 

used to great effect in the treatment of opioid addiction following the seminal 
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work of Dole and Nyswander in the 1960s (Dole & Nyswander, 1965). There is 

now widespread evidence for the effectiveness of methadone substitution therapy 

for the treatment for heroin dependence across a range of outcomes (Marsch, 

1998) including a major protective effect for mortality from overdose (Gronbladh 

et al., 1990). Accordingly, methadone-based therapies expanded in many 

countries throughout the 1990s and today methadone is the most commonly 

prescribed opioid substitute in the UK (Strang & Tober, 2003). However, since 

methadone is a potent respiratory depressant, it is dangerous in overdose and has 

historically made a visibly significant contribution to overdose mortality among 

heroin users (Corkery, 2004). This has led some commentators to suggest that 

methadone is more dangerous than the heroin that it replaces (Harding-Pink, 

1993; Newcombe, 1996). Despite these concerns, however, there is little empirical 

support for the hypothesis that the increase in opioid related mortality (section 

1.4) is attributable, in any significant way, to the expansion in MMT; since 

methadone deaths have increased either at the same or a slower rate than those 

involving heroin (Hall ei al., 2000; Hickman ei al., 2003; Neeleman & Farrell, 

1997). Nevertheless, methadone's contribution to mortality among heroin users 

continues to come under scrutiny (Luty el al., 2005). 

2.3 The endogenous opioid system in humans 
Opioids such as heroin and methadone exert their effects by mimicking the 

endogenous opioid peptides. In humans, the endogenous opioid system, 

comprising the opioid receptors and their endogenous ligands, is distributed 

throughout the body and serves a multiplicity of functions. In the brain, opioid 

receptors are present at the highest density in the brain-stem, medial thalamus, 

spinal cord, hypothalamus, and limbic system (Harvey & Champe, 1992). Four 

distinct opioid receptor types have been identified to date, mu (u), delta (b), kappa 

(x) and NOP2, each with a unique anatomical distribution throughout the brain, 

spinal cord and periphery (Waldhoer et al., 2004). Opioid receptor activation by 

2 The Nomenclature suggested by the International Union of Pharmacology Nomenclature for Opioid receptors 
(httpJ/www. luphar. org) refers to these as MOP (Morphine/Mu Opioid Peptide), DOP (Deferens/Delta Opioid 
Peptide), KOP (Ketocyclazocine/Kappa Opioid Peptide) and NOP (Nociceptin Opioid Peptin) receptors for the 
mu (p), delta (8), kappa (K) and NOP receptors respectively. The Greek symbols are adopted throughout this 
section as these appear more regularly In the heroin overdose literature. 
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endogenous and exogenous ligands in animal models has been shown to result in 

a number of actions including analgesia Cq, S, x), respiratory depression (u) 

euphoria Cub), sedation (u, K), feeding the release of hormones (u, 5), 

inhibition of gastrointestinal transit (u, x) and neuro-transmitter release (u, 5). The 

existence of opioid receptor isoforms has been proposed but remains controversial 

(Pasternak, 1986; Gustein & Akil, 2006). For example, two subtypes of the p- 

receptor have been proposed (uj and p2) and linked with specific responses: 

supraspinal analgesia, hypothermia and prolactin release in the case of the pJ 

subtype and spinal anaesthesia, respiratory depression, sedation and bradycardia 

for the 112 subtype. However, the validity of these isoforms is challenged by a 

failure to locate individually distinct genes (Gourlay, 2005). 

2.4 Heroin and morphine pharmacology 
Heroin is generally considered to be a pro-drug with no significant 

pharmacological activity of its own (Selley et al., 2001). Once administered, it 

crosses the blood-brain barrier within 15-20 seconds and is rapidly converted by 

deacetylation to 6-monoacetylmorphine (6-MAM) and then to morphine (Figure 

2.1). Both of these are pharmacologically active as u-receptor agonists, though 6- 

MAM has a short half-life (6-25 minutes). Heroin is completely converted to 6- 

MAM within around 15 minutes and overall conversion to morphine occurs 

within a few hours (Karch, 1996). About one third of morphine in the plasma is 

protein-bound aller a therapeutic dose (Olsen, 1975). This means that factors 

which have the potential to affect protein binding, such as hepatic failure, may 

indirectly increase the amount of circulating free morphine (Säwe, 1986). 

Morphine is eliminated in a biphasic manner in which it is quickly distributed 

throughout the tissues and then rapidly metabolised to its principle metabolite, 

morphine-3-glucuronide (M3G). Conversion to a second major metabolite, 

morphine-6-glucuronide (M6G) also occurs, though somewhat slower and to 

smaller amounts (10-15%) (Christrup, 1997; Karch, 1996). The enzyme uridine 

diphosphate glucuronyl transferase (UDPG-T) is responsible for the bio- 

conversion of morphine which takes place in the liver and, to a lesser extent, the 

brain (Wahlstrom et al., 1988). Drugs including rifampicin, tricyclic anti- 
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depressants and ethanol have been shown to affect glucuronidation of morphine 

(White & Irvine, 1999). The biological activity of M3G is not at present fully 

understood (White & Irvine, 1999); however, M6G is known to be an agonist for 

p and &opioid receptors and has been shown to be twice as potent as morphine 

with respect to analgesia (Osborne et al., 1992). This metabolite has also been 

shown to be 10 times more potent in depressing respiration in animals (Christrup, 

1997) though clinical data suggests that M6G has less potential for inducing 

respiratory depression, as well as a decreased emetic effect, than morphine in 

humans (Thompson el al., 1990). 

Figure 2.1. The metabolic pathway of diacetylmorphine (heroin). Reference: 
Moffat, at al. (2004). 
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Blood concentrations of morphine following administration of heroin have been 

reported. A 5mg intravenous injection of heroin resulted in a plasma concentration 

of 0.035mg/L after 25 minutes in one individual (Baselt & Cravey, 1995). 

However, plasma levels as high as 0.30mg/L were observed in heroin users self- 

administering intravenous doses of between 150-200mg/L (Bolelli et al 1979). 

Typical blood morphine concentrations in heroin users are in the range 0.05mg/L 

to 1.45mg/L, as measured by Darke et al. (1997) in an Australian study (median 
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0.09mgIL). Qualitatively, intravenous use of heroin produces a deeply intense 

sense of euphoria which occurs within a minute of injection and lasts from 45 

seconds to several minutes. Following this, there is a period of sedation 

(colloquially described as `being on the nod' or `gauging out') lasting for around 

an hour. Bio-availability of heroin when smoked has been reported to be variable. 
For example, peak levels after smoking 10.6mgfL of heroin were 299ng/mL in 

one subject but only 108ng/mL in another (Jenkins et al., 1994). 

2.5 Methadone pharmacology 
Commercially available methadone hydrochloride is a racemic mixture of two 

stereoisomers of which the L isomer is responsible for almost all of the 

pharmacological effects (Ferrari ei al., 2004). Methadone exerts its effects 
directly, principally as a u-opioid receptor agonist, with pharmacological 

properties qualitatively similar to those of morphine (Gustein & Akil, 2006). 

Following oral administration, it is rapidly absorbed with a mean time to peak 

concentration of between one and six hours, depending upon the preparation and 

individual differences (Garrido & Trocöniz, 1999; Ferrari et al., 2004). 

Methadone has an extended duration of action, reflected in its long half-life which 
is estimated to vary between 15 and 50 hours but is generally taken to be 24 hours 

(Wolff et al., 1997). This accounts for its popularity as a maintenance treatment 

for heroin dependence and in the treatment of chronic pain (Brown et al., 2004). 

A high degree of plasma protein binding occurs (up to 90%), predominantly to ai- 

acid glycoprotein (a-AGP) (Ferrari et al., 2004). These plasma proteins are 
known to exhibit variations in concentration in response to physiological and 

pathological conditions, for example, during stress, where levels of a-AGP may 
increase (Garrido & Trocöniz, 1999). Methadone may also be displaced from 

plasma proteins by drugs such as propranolol, some phenothiazines and 
imipramine, theoretically leading to increases in free methadone concentration 
(Brown et al., 2004). Metabolism of methadone takes place mostly in the liver 

where it undergoes N-demethylation and cyclisation to form the major 

metabolites, ethyl idene-di methyl-diphenylpyrrolidine (EDDP) and ethyl-methyl- 
diphenylpyrroline (EMDP), which are consdered to be pharmacologically inactive 

(Figure 2.2). The prinicple enzyme responsible for catalysing this reaction is the 
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cytochrome P450 isoenzyme CYP3A4, though CYP2D6 also appears to be 

important (Ferrari et al., 2004). 

Figure 2.2. The metabolic pathway of methadone. Reference: Moffat et al. 
(2004) 
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A number of factors may affect the metabolism and clearance of methadone. 

Inividuals with a chronic liver condition such as hepatitis may have deceased 

ability to metablise the drug and clearance appears to take significantly longer in 

methadone naive illicit opiate users (Wolff et al., 2000). This may lead to an 

accumulation of the drug from one dose to the next and a risk of overdose; a 

factor which has been used to explain the increase in rate of overdose for those 

commencing methadone maintenance treatment (Corkery et al., 2004). Bio- 

availability of methadone shows considerable inter-individual differences with a 

range from 41% to 99% and a rate of clearance that may vary by as much as a 

factor of 100 (Corkery et al., 2004). The major factor responsible for these 
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differences is inter-individual expression of CYP3A4 (Ferrari et al., 2004; Garrido 

& Trocöniz, 1999) though poor metabolism phenotypes have also been identifed 

with respect to CYP2D6 (Eap et al., 2002). A number of different drugs interact 

with methadone as inducers, inhibitors or substrates of CYP3A4 and CYP2D6, 

potentially influencing its bio-availabilty (Ferrari et al., 2004). This has 

consequences for overdose potential as well as the capacity to indirectly 

precipitate opioid withdrawl. Inducers of CYP3A4 such as rifampicin and 

carbamazepine can lead to an increase in the metabolism of methadone and a 

decrease in its concentration whereas drugs such fluoxetine, which have been 

shown to inhibit the N-demethylation of methadone (Iribarne et al., 1998), may 

have the opposite effect. Unsurprisingly, blood levels in methadone maintenance 

patients have been found to vary considerably with values ranging from 20- 

1,308ng/mL in one study (Lorimer & Schmid, 1992). 

2.6 Physiological effects and acute toxicity 
When administered, heroin and methadone produce a wide range of physiological 

effects reflecting the distribution of opioid receptors throughout the body. These 

include analgesia, mood alterations, drowsiness, mental cloudiness, respiratory 

depression, miosis, gastrointestinal effects, depression of the cough reflex, 

nauseant and emetic effects, histamine release, and immune system effects 

(Gustein & Akil, 2006). Opioids also have significant rewarding properties, 

exhibit tolerance effects and produce physical dependence (Gutstein & Akil, 

2006). Acute toxicity following opioid-related overdose is classically diagnosed 

as a triad of depressed level of consciousness, miotic pupils and decreased 

respiration (Sporer, 1999). Shock, cyanosis, hypertension, bradycardia and 

hypothermia may also be present (Wolff, 2002). The principle complications of 

opioid-related overdose include non-cardiogenic pulmonary oedema and 

aspiration pneumonia (Sporer, 1999). The mechanisms underlying pulmonary 

oedema associated with opioid-related overdose are not fully understood at 

present but are thought to be caused by increased pulmonary capillary 

permeability secondary to hypoxia. This may be more likely to occur in naive or 

weakly tolerant users (Sterret et al., 2003). Administration of the opioid-receptor 

antagonist naloxone rapidly reverses the respiratory depressant effects of heroin or 
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methadone and is the treatment of choice in emergency situations (Baca & Grant, 

2005). Increases in respiration rates are seen within one to two minutes and 

sedative effects also resolve, often abruptly. Because of the efficacy of naloxone, 

emergency intervention for opioid overdose is highly successful. Of 92 cases of 

acute opioid overdose treated by a mobile resuscitation team during a one year 

period in Lausanne, Switzerland only seven (8%) subsequently died (Cook et al., 

1998). 

2.7 Tolerance 

The development of tolerance, a diminished physiological response to a drug 

following repeated use, is considered to be a characteristic feature of all opioid 
drugs (Gustein & Akil, 2006). Thus, with use over time, a higher dose will be 

required to produce the same effect. Individuals dependent upon heroin and those 

in methadone maintenance treatment (MMT) will therefore be able to tolerate 

higher doses of heroin or methadone than an opioid-naive individual. For 

example, it is not unusual to find heroin users in MMT on doses of 200mg/day or 
higher without any adverse effects -a dose that would almost certainly result in 

death for someone who had never taken the drug (Karch, 1996; Corkery ei al., 
2004). Acquired drug tolerance can take a number of forms. It can include 

pharmacokinetic (or dispositional) changes such as those that result in an increase 

in the rate of metabolism of the drug, or pharmacodynamic changes such as those 

that result in modification in receptor density or efficiency of receptor coupling- 

to-signal-transduction pathways (O'Brien, 2006). Of these, the latter appears to be 

more important to the development of opioid tolerance (Waldhoer et al., 2004) 

and appears to vary, dependent upon brain region (White & Irvine, 1999). The 

consequence of this is that the rates of development of tolerance for different 

opioid effects such as euphoria and respiratory depression may have different time 

courses (White & Irvine, 1999). Of particular importance to the study of opioid- 

related overdose, is the fact that tolerance to the respiratory depressant effects of 

opioids in animals has been shown to be slow compared with other effects (Marks 

& Goldring, 1973). Similarly, tolerance for these different effects can be lost very 

quickly and in a non-uniform fashion (White & Irvine, 1999). Also relevant is 

classical (Pavlovian) learning in which conditioned tolerance (situation-specific 
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tolerance) develops. This can occur when environmental cues are consistently 

paired with the administration of a drug, resulting in a reflexive counteraction of 

the expected response. Thus, when the drug is received under novel or unexpected 

circumstances conditioned tolerance does not occur and the drug effects are 

enhanced (O'Brien, 2006). Such effects have previously been observed in heroin 

overdose by Siegal (1986). 

2.8 Physiological mechanisms of fatal opioid-related 
overdose 

Most fatal and non-fatal heroin overdoses are associated with intravenous use 

(Sporer, 1999), as are many methadone deaths (Capelhorn & Drummer, 2002). It 

has been estimated that, in around 17% of heroin overdose fatalities, death occurs 

immediately (Greene et al., 1974) and it is not unusual to find the deceased with a 

syringe still in an arm or leg - so called `on the end of a needle' deaths (Siegel et 

al., 1966). More typically, without intervention, death occurs between 1-3 hours 

after initial signs of toxicity show (Sporer, 1999). However, a significant 

proportion of fatalities (22% - 52%) occur over a period of longer than three hours 

(Zador et al., 1996; Garriot & Sturner, 1973). Because of its long duration of 

action, methadone has significant potential for delayed toxicity (Wolff, 2002); 

death is rarely instantaneous and signs of overdose may develop many hours after 

oral ingestion (Greene et al., 1974). Significantly less is known about the time 

course of toxicity following intravenous use of methadone but this would be 

expected to produce adverse effects more rapidly (Wolff, 2002). 

The principle mechanism of death from opioid-related overdose is considered to 

be hypoxia as a result of respiratory depression (White & Irvine, 1999). The term 

respiratory depression, as used here, refers to an increase in arterial carbon 

dioxide (C02) and decrease in arterial oxygen (02) and pH which remains 

uncompensated. The presence of pulmonary oedema fluid is observed in many 

instances of opioid-related poisonings (Sterrett et al., 2003). Whilst some opioid 

deaths may be attributed to non-cardiogenic pulmonary oedema, this is relatively 

infrequent (Bertini el al., 1992) and it is generally accepted that pulmonary 

oedema in heroin users is secondary to respiratory failure (Sporer et al., 1996; 
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Duberstein & Kaufman, 1971), though Karch (1996) cautions against making this 

assumption in all cases. 

Under normal conditions, central respiratory neurones located within brainstem 

regions adjust the rate and depth of breathing movements (tidal volume) in 

response to varying physiological conditions. Sensory input from peripheral 

sources to the dorsal respiratory group (DSG) include stretch receptors in the 

lungs and chemoreceptors in the carotid and aortic bodies which respond to 

changes in blood gases (Knowlton & Larrabee, 1946). The primary mechanism of 

respiratory depression by opioids involves a reduction in the sensitivity of the 
brainstem respiratory centres to CO2 (Yeadon & Kitchen, 1989). Opioids also 
depress neuronal activity in brainstem regions involved in regulating respiratory 

rhythmicity and the responsiveness of the medulla to electrical stimulation 
(Martin, 1983). At lower concentrations, opioids result in a decrease in tidal 

volume; this is accompanied by a reduced rate of respiration with higher blood 

levels (Santiago & Edelman, 1985). It has been noted that natural sleep also 

produces a decrease in the sensitivity of the medullary centres to CO2 and that the 

effects of morphine and sleep are therefore additive (Gutstein & Akil, 2006). This 

issue may explain why many methadone overdose fatalities appear to occur 
during the night (Wolff, 2002). 

2.9 Theories of fatal opioid-related overdose 
Non-deliberate fatal opioid overdose, almost by definition, suggests its own cause 

- accidentally taking too much. The illicit nature of heroin production, 

distribution and use means an absence of quality control mechanisms and 

uncertainty over how much heroin is being used (Best et al., 2000). Survivors of 

both heroin and methadone overdose frequently recall taking too much or being 

surprised by the strength of the dose (Gossop et al., 1996; Neale, 2000). A recent 

case-crossover study (Dietze et al., 2005) found a linear relationship between the 

amount of heroin used and the likelihood of overdose, even after controlling for 

known confounders such as the presence of other respiratory depressants. 

Nevertheless, the notion that fatal opioid-related overdose is purely the result of a 
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higher than expected dose is widely challenged throughout the literature (Zador, 

1999). 

Two observations in particular suggest that fatal outcome in acute opioid-related 

overdose amongst illicit opioid users may not follow a simple dose-response 

relationship. Firstly, the majority of those who die from a fatal illicit opioid- 

related overdose are experienced drug users with long histories of heroin use 
(Darke & Zador; 1996; Darke & Ross, 1999; Oliver et al., 2002); individuals who, 

on average, would be expected to have developed high tolerance to the respiratory 
depressant effects of opioids as well as high levels of awareness of safe doses. 

Secondly, opioid blood concentrations reported in toxicology studies tend to be 

relatively low (Warner-Smith et al., 2001) - often below the accepted toxic level, 

particularly for an individual assumed to have a strongly developed tolerance 

(Monforte, 1977). Research has also shown that mean blood opioid levels in 

opioid-related overdose deaths are frequently below those of living users or 
individuals who have died from other causes (Darke et al., 1997; Monforte, 1977; 

Karch & Stevens, 2000). Using hair analysis techniques, Tagliaro et al. (1998) 

found that hair morphine content among a group of 37 heroin overdose victims 

was significantly lower than in a group of active heroin users. Whilst toxicologists 

consider blood concentration data in isolation to be of limited utility (Drummer et 

al., 2004), these findings strongly suggest important roles for other factors; in 

particular, those which affect a heroin user's tolerance and the co-presence of 

other drugs in the blood. On this basis, Tagliaro and De Battisti (1999) suggest 

that acute heroin overdose deaths can be classified as falling into one of five 

categories: `absolute' overdoses (undoubtedly caused by excessive dosage); 

`relative' overdoses (attributed to loss of tolerance); deaths attributed to 

pharmacological interactions with other drugs; deaths due to toxicity of heroin 

contaminants; and fatal allergic reactions. 

A number of explanations have been put forward in an attempt to explain the 

putative increased risk of fatal overdose with age. White and Irvine (1999) point 

out that tolerance may not always convey the protection that is assumed. Based 

upon data which shows that the development of tolerance to different opioid 

effects may proceed at different rates, these authors propose a model in which the 
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margin between the opioid dose required to produce a desired state of euphoria 

and that which produces fatal intoxication converges to a limit with time (Figure 

2.3). Experienced users are therefore at greater risk of fatal overdose and perhaps 

even more susceptible to the effects of simultaneous administration of other drugs 

which affect the central breathing areas. The presence of systemic disease 

associated with longer heroin using careers such as hepatitis and pulmonary 
dysfunction may also explain the observed age pattern (Warner-Smith et al., 
2001). Prevalence of hepatitis C has been found to be strongly associated with 
duration of intravenous drug use and often results in acute liver damage (Tennant 

& Moll, 1995). Since the liver is the principal site of opioid metabolism (Elliot et 

al., 1971), impaired liver function may lead to delayed clearance and increased 

levels of toxicity. Similarly, the period of time exposed to the respiratory 
depressant effects of opioids may also be extended, potentially increasing the risk 

of death occurring (Warner-Smith et al., 2001). 

Figure 2.3. White & Irvine's hypothetical model for the differential accrual of tolerance 
to the intoxicating and lethal effects of opioids, showing the difference in fatal overdose 
margin between a novice (DI) and experienced user (D2). Adapted from White & Irvine 
(1999). 
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2.9.1 Is the term `overdose' accurate? 

Observations such as low fatal opioid blood concentrations and the rarity with 

which opioids are the only drugs detected at post-mortem have led many 

researchers to challenge the use of the term `overdose' (Manning et al., 1983; 

Zador et al., 1996; Darke & Zador, 1996; Darke & Hall 2003; Mirakbari, 2004). 

These researchers argue that the implicit suggestion contained within the term 

overdose - that death has been caused singularly by the individual using more 

than they could normally tolerate - is overly simplistic and may be misleading in 

many instances. Darke and Hall (2003) state that: `The extensiveness of polydrug 

use among "heroin overdose" suggests that "polydrug toxicity" is a better 

description of the toxicology'. For similar reasons, the World Health Organisation 

recommends replacing the term overdose with "acute intoxication" (WHO, 1993). 

Tagliaro and De Battisti (1999) however point out that whilst the co-presence of 

other drugs in post-mortem blood is a common feature, almost all instances of 

potentially fatal respiratory depression respond immediately to treatment with 

opioid antagonists - `Consequently, in our opinion, in most cases of death by 

acute intoxication following heroin intake, the definition "heroin overdose", 

although not fully explanatory, looks appropriate'. 

2.10 Conclusions 

Heroin and methadone are potent opioid analgesics whose effects are mediated 

principally through their interaction with ,u opioid receptors. Acute toxicity can 

result in a number of potentially fatal conditions including pulmonary oedema and 

aspiration pneumonia; however, for the most part, fatal overdose appears to be as 

a result of respiratory depression. Tolerance to the effects of opioids occurs 
following repeated use and undoubtedly offers protection against overdose; 

however, the cellular mechanisms underlying the development of tolerance for the 

different effects of opioids are at present not fully understood (Wolff, 2002). What 

is clear is that, once developed, tolerance needs to be maintained in order for any 

protection to be effective. Although brief, the proceeding summary of the 

pharmacology of heroin and methadone illustrates the importance of metabolic 
issues such as protein binding and the role of enzymes such as cytochrome P450. 
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A potential role for drugs that influence the metabolism of heroin and, 

particularly, methadone has also been highlighted. 
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Literature review 

Summary 

In any adverse health outcome, the identification and measurement of risk factors 

is an essential step towards providing measures of prevention. The causal nexus 
that ultimately results in opioid-related overdose is complex and characterised by 

a range of antecedent conditions. Post-mortem toxicology consistently reveals the 

presence of drugs such as alcohol and benzodiazepines, suggesting that these 

substances play an important aetiological role. The extent to which this is a 

reflection of multiple drug use within this population or an indication of increased 

risk is the focus of this literature review. In the first part of the review, the 

characteristics and circumstances of fatal opioid overdose are described. This is 

followed by a brief overview of some of the factors that have previously been 

associated with fatal opioid-related overdose. The type and prevalence of 

concomitant drugs detected in post-mortem studies is then presented along with 

research into the pharmacological potential for these substance to interact in a way 
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which may increase the risk of a fatal overdose occurring. A critical evaluation of 

empirical evidence for such an effect from three separate areas of research follows 

and from this emerge the research questions and hypotheses to be investigated in 

this thesis. 

3.1 Review aims and objectives 
The purpose of this literature review is to identify, synthesise, and critically 

evaluate existing theoretical and empirical research on the role of concomitant 
drugs in fatal opioid-related overdose. The specific objectives of this review are to 
(i) describe the characteristics and circumstances of fatal opioid-related overdose; 
(ii) review post-mortem case series studies to identify which concomitant drugs 

are typically detected in fatal heroin and methadone overdose; (iii) describe 

pharmacological evidence for an aetiological role for these concomitants; (iv) 

describe empirical evidence in support of such a role; (v) critically evaluate this 

evidence; (vi) identify limitations to our current knowledge. 

3.1.1 Review methods 

Literature on heroin and methadone overdose was identified through a 

comprehensive search of the following databases: Embase (1974-2005/12), 

ASSIA (1987-2005/12), Psyclnfo (1840-2005/12), Medline (1966-2005/12), 

Medline in Process (2005/12), Cumulative Index to Nursing and Allied Health 

Literature (1982-2005/12), and Web of Science (1900-2005/12). A search strategy 

was developed by combining the keywords: narcotic, heroin, methadone, opioid, 

opiate, injection/injecting, death, overdose, mortality, fatalities. Reference lists 

and bibliographies of relevant articles were also hand searched for additional 

citations. The criteria used for the inclusion of studies in this review were as 

follows: (i) the population under study could be identified as those who had died 

of a fatal heroin or methadone overdose; or who had experienced a non-fatal 

heroin or methadone overdose (i. e., mixed drug overdose studies were omitted); 

and (ii) the full text of the article was available in English. Abstracts obtained 

from the search results were assessed on the basis of the inclusion criteria. Those 

articles considered suitable for inclusion or for more detailed assessment were 
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obtained electronically, directly from the author, or through the inter-library loan 

system. 

3.2 Characteristics of the victims of fatal heroin- and 
methadone-related overdose 

The typical heroin overdose victim is a male in their late twenties to early thirties 

with a long standing history of heroin use (Darke & Hall, 2003; Warner-Smith et 

al., 2001; Darke & Zador, 1996). Similar characteristics are also reported from 

UK studies of methadone fatalities (e. g., Cairns et al., 1996; Scott et al., 1999; 

Seymour et al., 2003). The predominance of male fatalities, typically around 80%, 

has been suggested to reflect the overrepresentation of males among opioid users 

rather than increased risk (parke & Zador, 1996). Those who die from opioid- 

overdose have, on average, 10 year heroin-using careers at the time of death 

(Darke & Hall, 2003) and while non-dependent or `recreational' users do appear 

in case series, this is comparatively infrequent - for example, in one Australian 

study, only 17% of fatalities were classified as recreational heroin users (Zador et 

al., 1996). The ethnicity of overdose victims generally tends to reflect its 

distribution within the population of heroin users in each region of study (Oxman 

et al., 2000). Most fatalities are described as being single, with proportions 

ranging from 60% to 89% (Zimmey & Luke, 1981; Sunjic & Zador, 1999; Zador 

et al., 1996; Darke & Ross, 1999; McGregor et al., 2002; Oliver & Keen, 2003). 

A recent UK study of 94 heroin- and methadone-related deaths found that 45% of 

the fatalities lived alone at the time of death (Oliver & Keen, 2003). 

3.3 Circumstances of fatal heroin and methadone related 
overdose 

Whilst a few studies report relatively high numbers of deaths in public places such 

as on the street or in municipal toilets (Darke & Ross, 1999; Fugelstad et al., 

2003), more commonly, fatal overdose appears to take place either at the 

deceased's own home or that of a friend (Zador et al., 1996; Sunjic & Zador, 

1999; Gerostamoulos et al., 2001; Oliver & Keen, 2003). Despite this, those who 
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inject in public places may be at increased risk of overdose due to being forced to 
inject under hurried and unsafe conditions (Best et al., 2000). It has previously 
been noted that most fatal overdoses take place in the presence of others (Darke & 

Zador, 1996; Darke & Hall, 2003) although this is not always the case (Fugelstad 

et al., 2003; Gerostamoulos et al., 2001). Previous research conducted by the 

author found that only 20% of fatal opioid overdoses in Sheffield took place with 

another person present (Oliver & Keen, 2003). Where another individual is 

present, they are most commonly also injecting heroin users (Strang et al., 1999). 

Presence of another person at the point of overdose may be an important 

determinant of whether the overdose is fatal or not. Because opioid-related 

overdose is not usually a medically complicated event (Sporer, 1999) appropriate 

responses from bystanders will almost always result in a positive outcome. For 

example, where emergency services attend before the victim loses vital signs, 

survival rates approach 100% (Sporer et al., 1996). However, it has been shown 

that many bystander reactions to heroin-related overdose are not appropriate 

emergency responses (Darke et al., 1996). In one study of street injectors under 

the age of 30 asked to recall the responses of those present at a witnessed heroin- 

related overdose, only half stated that the emergency services were called and in 

one out of five incidents nothing was done (Davidson et al., 2002). 

3.4 Factors associated with fatal heroin and methadone 
overdose 

Several narrative literature reviews have been published describing factors 

associated with fatal opioid-related overdose (Darke & Hall, 2003; Warner-Smith 

et al., 2001; Best et al., 2000; WHO, 1998; Darke & Zador, 1996). In addition to 

factors related to the use of concomitant substances, the most commonly cited of 

these are using intravenously; incomplete tolerance; length of heroin using career; 

starting methadone treatment; dropping out (or not being in) methadone treatment; 

heroin purity; and the presence of toxic adulterants. Other factors such as using a 
larger than normal amount of heroin (Dietze et al., 2005); using in novel or 

unusual settings (Gerevich et al., 2004); the presence of biological contaminants 
in a heroin batch (Passaro et al., 1998); and the availability of heroin in a region 
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(Degenhardt et al., 2005), have received somewhat less attention but may also be 
important determinants of fatal outcome. Dietze et al. (2005) point out that the 

nature of the causal link between these factors and overdose has yet to be well 

established. Nevertheless, it is important to recognise that as an outcome, fatal 

heroin or methadone overdose may be influenced by a number of different 

parameters. In summarising these factors, Best et al. (2000) distinguished between 

those at the level of the individual and those at the population-level. The former, 

which have also been referred to as `behavioural' factors (Moore, 2004), are 

related to exposures which are under the control of the heroin user, such as 
injecting, whilst the latter are either characteristics of the users themselves (e. g., 

older age), or environmental factors (e. g., local heroin purity). 

3.5 The prevalence of concomitant drug detections in 
fatal opioid-related overdose 

For over 30 years it has been recognised that opioid-related overdose fatalities 

often have other substances detected in their blood following autopsy, suggesting 

concomitant use of drugs alongside heroin or methadone directly around the time 

of death (Cherubin et al., 1972; Garriot & Stunner, 1973; Baselt el al., 1975). 

Indeed, it would appear that fatalities involving `pure' opioid overdoses, in which 
heroin or methadone are the only drugs detected, are in the minority, representing 

subsets as small as 15% in some studies (Goldberger et al., 1994; Gerostamoulos 

et al., 2001). Cases series of blood toxicology findings from these deaths indicate 

that the most commonly detected concomitants are ethyl-alcohol', 
benzodiazepines, cannabis, cocaine, and additional opioids. Tables 3.1 and 3.2 

summarize the main toxicological findings from studies obtained for the present 

review. 

As detailed in previous reviews (Warner-Smith et al., 2001; Darke & Zador, 

1996), alcohol and benzodiazepines are detected in a large proportion of fatalities 

attributed to heroin overdose and although fewer studies of methadone overdose 

are available, a similar pattern is also evident. Most studies of fatal heroin-related 

I The presence of ethyl-alcohol (ethanol) in post-mortem blood toxicology is indicative of the consumption of 
alcoholic beverages prior to overdose. Alcohol and ethanol are used interchangeably throughout this thesis. 
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overdose report concurrent detection of alcohol in between 40% and 60% of 

cases; whilst benzodiazepine-heroin combinations appear in a slightly lower 

proportion, ranging from 25% to 40%. In contrast to heroin, methadone-related 
fatalities appear more likely to have benzodiazepines (50% to 70%) detected at 

post-mortem than alcohol (20% to 30%). Cannabis detections are frequently 

reported, at a rate of between 20% to 30% (Gerostamaloulos et al., 2001; 

Fugelstad et al., 2003; McGregor et al., 2002), though this would appear to be a 
benign finding. Opioid-related overdose deaths involving high rates of 

concomitant use of cocaine appear to be confined to the United States (e. g., Karch 

& Stevens, 2000; Oxman et al., 2000) and Latin American (WHO, 1998). Outside 

of these countries, this seems to be a far less consistent finding than for alcohol or 
benzodiazepines. However, there is emerging evidence that deaths involving 

cocaine combinations may be on the rise in some countries within the European 

Union (EMCDDA, 2003). Simultaneous detection of heroin and methadone is a 

common autopsy finding in deaths attributed to methadone-related overdose, with 

proportions ranging from 30% to 50% (Table 3.1). 

Overall, these data provide a clear indication that a great many opioid-related 

overdose fatalities involve substances in addition to that which has been attributed 

as the principal cause of death. In fact, post-mortem blood samples of opioid- 

related overdose often contain several different combinations of these substances. 

In one Australian study by Darke and colleagues, almost a third of 918 heroin- 

related overdose deaths had three or more substances detected at autopsy, with 

some having up to six (Darke et al., 2000). 
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Table 3.1. Summary of studies of fatal heroin-related overdose reporting concomitant drug detections. 

Study Methods Concomitant Comments 

Author(s) Year Country N Alcohol Bzd Mdn Mprh 
(%) (%) (%) (%) 

Bryant at a/. 2004 US 4627 49 - 14 n/a 
Proportions calculated from Table 
1, p849 (not given explicitly). 

* In which blood toxicology data 
Darke at al. 2000 Australia 918* 46 27 6 n/a was available (953 in total). 

Cocaine detected in 7% of cases. 

Risser at el 2000 Austria 506 57 n/a 
Proportion calculated from text, 

. pp. 377-379 (not given explicitly). 

Gerostamoulos 2001 Australia 434 36 44 10* n/a "'Otheropioids'. 
at al. 

Proportions calculated from text, 
Sheedy at al. 2003 Australia 265 40 31 - n/a pp. 54-55 (not given explicitly). 

Unintentional deaths only. 

Ruttenber & 1984 US 260 74 - - n/a Luke 

Steentoft at al. 1988 Denmark 245 32 - - n/a 

Baselt at al. 1975 US 217 47 - - n/a 

Fugelstad at al. 2003 Sweden 192 60 40 2 n/a 
meine on 

only 
of cases. in 0 

Unintentional ld ded eath hs only. 

In which blood toxicology data 
Darke & Ross 1999 Australia 173* 40 30 7 n/a was available (176 in total). 

Cocaine detected in 2% of cases. 
In which blood toxicology data 

Zador at al. 1996 Australia 150' 45 26 6 n/a was available (152 in total). 
Cocaine detected in 5% of cases. 

Oxman at el. 2000 US 115 10 16 n/a 
Unintentional deaths only. Cocaine 
detected in 26% of cases. 

Richards at al. 1976 US 114 34 22 - n/a 

McGregor at al. 2002 Australia 101 43 45 5 n/a Unintentional deaths only. 

Oliver & Keen 2003 England 70 23 37 - n/a Unintentional deaths only. 

Garriot & Stumer 1973 US 22 50 - - n/a 

Goldberger at al. 1994 US 21 74 9 - n/a 

Bzd = benzodiazepines; Mdn = methadone; Mprh = morphine 
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Table 3.2. Summary of studies of fatal methadone and mixed-opioid overdose reporting concomitant 
drug detections. 

Study Methods Concomitant (%) Comments 

Author(s) Year Country N Ethanol Bzd Mdn Mprh 
(%) (%) (%) (%) 

Mixed 

193 heroin deaths, 64 methadone, 
Zimney & Luke 1981 US 265 34 --- 21 combination; ethanol >0.1g/dL 

only. 

* For which blood toxicology data 

Walsh 1991 Australia 21 48 24'" - 
was available (23 in total). " 
Oxazepam. Unintentional deaths 
only. 

Methadone 

Bryant et al. 2004 US 1024 34 Na 47 Proportions calculated from Table 1, 
p849 (not given explicitly). 

For which blood toxicology data 
was available (196 in total). " 

Seymour et al. 2003 Scotland 191* 31 55" n/a 34 Diazepam (temazepam detected in 
26% of cases). Proportions 
calculated from text, p998. 

For which blood toxicology data 
Sunjic & Zador 1999 Australia 131' 28 52 n/a 37 was available (134 in total) 

Unintentional deaths only. 

Mikolaenko at al. 2002 US 101 - 60 n/a 

Capelhorn & Proportions calculated from text, 

Drummer 
2002 Australia 57 21 65 Na 

p360 (not given explicitly). 

* Temazepa 
Clark of el. 1995 England 18 50" Na 30 m, (diazepam detected 

in 39% of cases). 

cases Perret at al. 2000 Switzlnd 36 30 50 n/a 39 Cocaine was detected in 17% of 

Pima y al. 2004 France 35 54 74 n/a - 
Proportions calculated from Table 3 

Y and text, p983 (not given explicitly). 

Oliver & Keen 2003 England 22 - 64 n/a - Unintentional deaths only 

Bzd = benzodiazepines; Mdn = methadone; Mprh = morphine 
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3.6 Does concomitant drug use influence fatal outcome? 
Given the extent of polydrug use among heroin dependent individuals (Darke & 

Hall, 1995), the presence of additional illicit substances and/or prescribed 

medications is not entirely unexpected. The question is: do these observations 

indicate an increased risk of overdose? In the presence of these substances, would 

a usual dose of heroin or methadone prove fatal - or put another way, is 

concomitant drug use a risk factor for opioid-related overdose? A possible 

aetiological role for concomitant use of drugs was first highlighted by several 

early studies from the United States (Cherubin et al., 1972; Garriot & Sturner, 

1973; Richards et al., 1976). Monforte (1977) argued for a causative role for 

concomitant drugs as a potential explanation for why many heroin-related 

fatalities had similar levels of morphine in their blood as heroin-dependent murder 

victims: 

One must conclude that in the great majority of cases death was not a result 

of a toxic quantity of morphine in the blood. Lack of tolerance is a factor 

which is often argued, but it is unlikely that nearly 9 of 10 deaths in the 

country occur for this reason. (p. 720). 

A few years earlier, Garriot and Sturner (1973) had noted that alcohol use may 
influence fatal outcome through both pharmacological and behavioural 

mechanisms: 

The central-nervous-system depression induced by alcohol and sedative 
drugs is well known, and the increased carelessness and overconfidence that 

characteristically result from alcohol or other depressant drugs could 
increase the likelihood of an "overdose" from heroin. (p. 1277). 

Since the publication of these studies, more sophisticated analytical methods have 

been developed, enabling the quantitation of a large range of substances following 

death from opioid-related overdose. Empirical evidence for concomitant drug use, 

in particular alcohol, as a risk factor for fatal opioid-related overdose has also 
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emerged. Before examining these data, the pharmacological basis of such 
interactions is reviewed. 

3.7 Pharmacodynamic and pharmacokinetic evidence for 
an aetiological role for concomitants in fatal opioid- 
related overdose 

At present, our understanding of the causes of fatal opioid-related overdose, 

elucidated in Chapter 2, indicates that respiratory depression and associated 
hypoxia are the principal mechanisms by which death occurs. Although weak in 

comparison to opioids (Catchlove & Kafer, 1971), as sedatives, alcohol and 
benzodiazepines also have depressant effects on respiration and may therefore 

have the ability to directly potentiate the effects of any opioids consumed. This is 

believed to arise from the combined inhibitory effects of these drugs' activation of 

gamma-aminobutyric acid-A (GABAA) receptors and heroin or methadone's 

activation of µ-receptors within the breathing centres of the brain (White & Irvine, 

1999). Alcohol may further influence brain stem control of breathing through its 

antagonist effects at the N-methyl-D-aspartate (NMDA) receptor complex which 
has been shown to play an important role in the control of respiration in the dorsal 

and ventral respiratory groups (Pierrefiche et al., 1994; cited by White & Irvine, 

1999). An alternative mechanism for benzodiazepine-induced enhancement of 
heroin or methadone's effects is through the proposed action of benzodiazepines 

on endogenous opioid peptides. Such an interaction is suggested by experimental 

evidence which shows that the opioid antagonist naloxone blocks some of the 

effects of benzodiazepines (Duka et al., 1981). 

Less directly, respiratory depression may also be enhanced when the bio-. 

availability of opioids is increased via pharmacokinetic interactions. However, 

such interactions are complex and study findings often inconclusive (Eap et al., 
2002). For example, acute ethanol co-administration has been shown to increase 

levels of methadone reaching the central nervous system, either by inhibiting N- 

demethylation, increasing absorption from the gastrointestinal tract; or a 

combination of these effects (Donnelly et al., 1983; Borowsky & Lieber, 1978). 

Chronic administration, on the other hand, induces liver metabolism leading to 
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decreased brain and plasma methadone concentrations (Kreek, 1976). Similarly, 

glucuronidation of morphine has been shown to be inhibited by alcohol in some 

animal studies (Bodd et al., 1986) but enhanced in others (Narayan et al., 1991). 

Since morphine-6-glucuronide is a more potent opioid-receptor agonist than 

morphine the interpretation of these results is not straightforward and may differ 

according to the ethanol concentration in question (Aasmundstad et al., 1996). 

Diazepam, like other benzodiazepines, is a CYP3A4 substrate (Ketter et al., 1995) 

and thus shares a common, and therefore potentially competitive, metabolic 

pathway with methadone. However, the putative interaction between 

benzodiazepines and opioids remains controversial (Eap et al., 2002). Inhibition 

of methadone N-demethylation by diazepam has been demonstrated in animal 

studies (Eap et al., 2002) and, in an in vitro study by Iribarne et al. (1996) co- 

administration was shown to inhibit metabolism of methadone by as much as 
20%. 

Other potentially relevant opioid interactions in addition to those involving 

sedatives have been reported. Metabolism of heroin and cocaine have been shown 

to involve the same liver carboxylesterases which could lead to competitive 

inhibition resulting in prolonged or enhanced effects for both drugs (Polettini et 

al., 2005). Whether this could lead to an appreciable physiological effect in 

practice is open to question since the extent to which cocaine inhibits the 

metabolism of heroin in human liver homogenates is reported to be small 

(Kamendulis et al., 1996). Nevertheless, studies in mice have shown that co- 

administration of cocaine and heroin increases the lethality of heroin (Pickett & 

Graham, 1970). Drugs which are substrates for CYP3A4 and CYP2D6 or 
inhibitors of these enzymes also have the potential to influence the bio-availability 

of methadone. This list is extensive and includes: amitriptyline and sertaline 

(Ferrari et al., 2004); cimetidine and disulfram (Bochner, 2000; Ferrari et al., 

2004); ciprofloxacin, fluconazole, ketoconazole, erythromycin, moclobemide and 

SSRIs2 (Eap et al., 2002; Ferrari et al., 2004). 

2 SSRIs - selective serotonin re-uptake Inhibitors such as fluoxetine (Prozac), fluvoxamine, paroxetine and 
sertraline. 
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It is also important to note that further interactions between concomitants 

themselves are possible, affording the opportunity for supra-additive effects when 

multiple concomitant drug combinations are taken. Acute ethanol administration, 

for example, has been shown to affect the disposition of a number of drugs. The 

transesterification of cocaine to the more potent cocaethylene is well known in the 

presence of ethanol (Smith, 1984). Cocaine metabolism is also inhibited by acute 

alcohol administration (Roberts et al., 1993). In one study, ethanol was shown to 

reduce the rate of elimination of chlordiazepoxide, enhancing its sedative effect 

(Desmond et al., 1980). The area under the concentration curve for diazepam was 

increased by 30% following co-administration of ethanol in another study (Sellers 

et al., 1980). Interestingly however, Koski et al. (2002) found that diazepam and 

chlordiazepoxide posed a smaller risk of death than temazepam in fatal alcohol 

poisonings. 

3.8 Evidence from post-mortem toxicology studies of 
fatal opioid-related overdose 

All of the concomitants mentioned so far have overdose potential in their own 

right and there seems little question that, in high enough concentrations, these 

have the ability to affect fatal outcome in opioid-related overdose. In such cases, it 

can be difficult for the toxicologist to make a clear distinction between the main 

contributing substances and often a cause of death such as `poly-drug toxicity' 

may be concluded (Forrest, 2005; personal communication). However, in 

collections of opioid-related overdose fatalities in which concomitants are 

detected, the average blood concentrations of these substances are often found to 

be a great deal lower than the level at which significant toxicity would be 

expected. For example, where detected, the median blood alcohol concentration 

(BAC) reported in three Australian studies of fatal heroin-related overdose ranged 

from 80 mg/dL to 130 mg/dL (McGregor et al. 2002; Darke & Ross; 1999; Darke 

et al., 2000); whereas the accepted toxic and fatal concentrations of ethyl-alcohol 

lies between 240mg/dL and 400mg/dL (Stead & Moffat, 1983). Similarly, 

compared to a toxic range of between 1500 µg/L - 5000 µg/L (Schultz & 

Schmoldt, 1997), the median blood concentration of diazepam found in 29 opioid- 

related overdose deaths in one study was 253 µg/L (Oliver & Keen, 2003). 
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One way in which typically observed blood-concomitant concentrations' 
influence on fatal outcome has been studied is by assessing their effect on the 

post-mortem opioid levels following heroin and methadone overdose. This 

technique has previously been used to examine the role of concomitant drugs in 

other types of fatal overdose. These include alcohol in co-proxamol poisonings 
(Williamson et al., 2000); benzodiazepines in alcohol poisonings (Koski et al., 

2002); and barbiturates in alcohol poisoning (Poikolainen, 1984; King, 1982). The 

basis of this approach is that, where there is statistical evidence that the presence 

of a concomitant is associated with lower blood levels of the principal drug, then 

this is considered to be due to the concomitant having increased the lethality of 

the principle drug. Thus, under these conditions, all else being equal, it is 

predicted that less heroin or methadone would be required to fatally overdose. 

3.8.1 The effect of alcohol on fatal morphine blood levels 

Several investigators have conducted studies to examine the influence of alcohol 

on fatal blood morphine levels in this way. In a US study, Ruttenber et al. (1990) 

divided a group of 505 heroin-related fatalities with concomitant detection of 

alcohol into low- and high-ethanol concentration groups using an arbitrary cut-off 

value of 100 mg/dL (i. e., slightly over the legal UK driving limit at 80 mg/dL). 

These authors found that total morphine3 concentrations in the high ethanol group 

were significantly lower than the low ethanol group (0.3 mg/L vs. 0.5 gg/L), 

suggesting that intake of alcohol lowers the amount of heroin required to fatally 

overdose. Importantly, this study also found a statistically significant inverse 

relationship between the concentrations of heroin and ethanol (p=-0.39), 

indicating the presence of a dose response relationship. An effect for ethanol was 

reported by Zador et al. (1996) who found that the presence of alcohol was the 

only significant variable associated with blood morphine levels. Moderately 

strong correlations were also found in two Australian studies (rs= -0.41; rs= -0.39)4 

one of which reported median levels of morphine reduced by more than half in the 

presence of alcohol (0.26 mg/L vs. 0.70 mgfL) (Darke et al., 1997; Darke & Ross, 

3 Refers to the quantitation of morphine plus its major (conjugated) metabolites. 4 The correlation coefficient used In these studies was Spearman's rank coefficient (rs) a non-parametric 
version of Pearson's correlation coefficient (p). 
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1999). A more recent large scale Australian study compared those with and 

without concomitant alcohol detections in a group of 953 heroin overdose deaths 

(Darke et al., 2000). Median blood morphine concentration for cases testing 

positive for alcohol was 0.27 mg/L compared to 0.39 mg/L in the alcohol negative 

group (P <0.001). Fugelstad and colleague's (2003) study of 216 Swedish heroin- 

related overdose fatalities is noteworthy for its rigorous inclusion criteria which 
included presence of 6-mono-acetylmorphine (6-MAM)5 and evidence that the 

overdose was unintentional. In this study, a significant decline in both free 

(unconjugated) morphine and 6-MAM levels was observed but only where BACs 

greater than 0.5 mg/g were present. 

Some seemingly contradictory analyses have been published. Levine et al. (1995) 

found little effect on free morphine levels when moderate levels of ethanol were 

present, and whilst no statistical comparisons were made, with increased BAC 

levels (200 mg/dL - 290 mg/dL) a trend towards higher free morphine 

concentration was observed. One explanation provided by the authors for this 

result, that is consistent with an aetiological role for alcohol, was that the presence 

of alcohol increased the likelihood of an acute fatality and, hence, reduced the 

time available for morphine conjugation. Another was that ethanol inhibited 

glucuronidation of morphine increasing or prolonging its bio-availability, and 
hence, its. depressant effects. Indirect support for such a pharmacokinetic effect 

was provided by Polettini et al. (1999) who found that alcohol reduced the relative 

concentration of conjugated heroin metabolites in a similar study. Nevertheless, 

this does not explain why this effect should be in the opposite direction to that 
found by Fugelstad et al. (2003) who also reported free-morphine levels. Another 

discrepancy is that morphine concentrations measured from the brain tissue of 506 

heroin-related overdose victims also showed no association with blood alcohol 
levels in a study by Risser et al. (2000). However, the ratio of blood morphine to 
blood tissue levels is known to vary widely (Karch, 1996) and this may have 

militated against detecting such a relationship. Overall, despite some 
inconsistencies, these data provide reasonable evidence that alcohol increases the 
lethality of heroin when co-administered. The extent to which this is consistent (1 V/ fr ý 5 As a metabolic intermediary of the heroin with a half-life of around 15 minutes the presence of 6-MAM ýSy F9S/ý 
confirms recent ingestion of heroin (IGntz eta!., 1989). It Is also pharmacologically active and is considered to 
be responsible for all of the acute effects following heroin administration (Burt et at 2006) 

/ ýý 4KO ) 
., . V 
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with an additive pharmacodynamic effect; a pharmacokinetic interaction; or both, 

however, remains unclear. 

3.8.2 The effect of other concomitant drugs 

The putative effect of concomitant drugs other than alcohol has received 

considerably less attention. In particular, there are surprisingly few studies which 

report data on the influence of benzodiazepines on morphine levels, despite being 

one of the most frequently detected concomitants in opioid-related fatalities. The 

limited available data are also somewhat contradictory. For example, the presence 

of benzodiazepines did not affect total morphine blood levels in two studies 

carried out by the Australian National Drug and Alcohol Research Centre 

(NDARC); (Zador et al., 1996; Darke et al., 2000). In the only other post-mortem 
heroin study to examine this effect, flunitrazepam was associated with higher 

levels of free morphine and 6-MAM (Fugelstad et al., 2003). Whilst this suggests 

a possible pharmacokinetic effect, the absence of any data on the ratio of free-to- 

total morphine makes this difficult to evaluate. The role of cocaine in fatal heroin- 

related overdose has been examined in one study to date. Polettini et al. (2005) 

compared morphine levels in a group of 30 pure heroin overdose fatalities with a 

group of nine similar fatalities who also had cocaine detected. The latter group 

were found to have significantly lower total morphine concentrations, indicating 

that cocaine potentiated the toxic effects of heroin. 

There is a paucity of similar data with respect to fatal methadone overdose, with 

only three relevant papers being identified from the literature. Two examined the 

effect of benzodiazepines (Mikolaenko et al., 2002; Wolf et al., 2004), though it is 

somewhat difficult to draw any conclusions from these studies as one found that 

concomitant benzodiazepines increased the fatal methadone blood level whilst the 

other found an opposite effect. Furthermore, neither of these studies included a 

statistical comparison (nor in fact any measures of variation). Worm et al. (1993) 

compared a group of Danish methadone fatalities with concurrent detection of 

ethanol greater than 0.05mg/g (-50mg/dL) to a group with no evidence of ante- 

mortem alcohol consumption. These authors found lower median post-mortem 

methadone levels in the former group (0.15mg/kg vs. 0.28mg/kg) though, once 
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again, no statistical findings were presented. The extent to which the presence of 

concomitant substances influences fatal levels of methadone is, therefore, 

unknown at present. 

3.9 Evidence for a association between concomitant drug 
use and fatal opioid-related overdose 

With the possible exception of alcohol in heroin overdose, toxicological evidence 
for an aetiological role for concomitants does not appear to have been adequately 

assessed to date. Nevertheless, it is clear that a substantial number of fatal heroin 

and methadone overdose deaths involve co-intoxicants. An alternative approach to 

evaluating the extent to which this reflects an increase in risk associated with their 

use is to compare those who have died of a fatal opioid-related overdose with a 

suitable control group. For example, Australian researchers compared a group of 

39 heroin overdose fatalities to a group of 82 current heroin users recruited from a 

needle exchange programme who had injected in the previous 24 hours (Darke et 

al., 1997). Alcohol was detected in 51% of overdose victims compared with only 

1% of living injectors, corresponding to an odds ratio of 85.3 (95% CI = 10.8 - 
675.4). In contrast to this, there were no differences in the proportion of fatalities 

or current heroin users with respect to benzodiazepine use (21% vs. 27% 

respectively). To investigate an epidemic of heroin overdose deaths that occurred 
in the US District of Columbia between 1979 and 1982, Ruttenber & Luke (1984) 

conducted a case-control study in which they compared a group of heroin 

overdose fatalities to a control group comprised of heroin users who died from 

natural or traumatic causes during the same period. Seventy four percent of the 

cases were positive for ethanol and a crude odds ratio of 21.7 (95% CI = 5.4 - 
187.3) is reported. In another US study, Levine et al. (1995) found that 59% of 
heroin-related overdose fatalities had levels of ethanol greater than 20mg/dL 

compared to only 6.7% of a group of fatalities in which morphine was detected as 

an incidental finding (odds ratio=20,95% CI=6.2 - 64.0) 6, leading the authors to 

conclude that even small amounts of alcohol increase the likelihood of fatal death. 

6 No formal statistics were presented in the paper itself. The odds ratio was calculated from proportions given 
on page 809. 
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Two prospective cohorts are particularly relevant. Use of cocaine was found to be 

associated with risk of overdose death in one US cohort study by O'Driscoll et al. 
(2001). These authors followed 2,849 injection drug users for an average of 1.6 

years, during which time 32 died from an accidental overdose. The effect for 

cocaine was more pronounced with higher frequency of use - daily use was 

associated with a near five times increase in risk of fatal overdose (4.84; 95% 

CI=1.13 - 20.8). A four-year follow-up of the NTORS cohort conducted by 

Gossop et al. (2002) identified 34 (mostly opioid-related) drug overdose deaths. 

Comparisons were made between these and surviving members of the cohort in 

terms of measures collected at intake to the study. The main findings of this study 

were that general poly-drug use; regular non-prescribed use of benzodiazepines; 

regular use of amphetamines; and drinking alcohol above national recommended 
limits were associated with increase risk of death from overdose. After adjusting 
for correlations between these variables, regular non-prescribed use of 
benzodiazepines and regular use of amphetamines remained predictive of 

overdose with odds ratios of 2.86 (95% CI=1.32 - 6.16) and 2.66 (95% CI=1.01 - 
5.48) respectively. 

3.10 Evidence for an association between concomitant 
drug use and non-fatal opioid-related overdose 

It has been estimated that for every fatal heroin overdose there are around 25 that 

do not result in death (Darke et al., 2003; Neale, 2003). In the UK, around a 

quarter of heroin users have experienced a non-fatal heroin overdose (Gossop et 

al., 1996; Taylor et al., 1996). These non-fatal events are of concern in their own 

right, placing pressure on emergency medical services as well as being associated 

with a range of serious sequelae (Warner-Smith et al., 2002). Often, however, this 

research is conducted with the intention of providing insights into the causes and 

antecedents of fatal opioid-related overdose. The fact that the users are able to 

recount their experiences, coupled with the frequency with which non-fatal opioid 

overdoses are experienced and the accessibility of suitable controls, provides the 

opportunity to employ analytical epidemiological designs of the type infrequently 

used in fatal heroin overdose research. As a result, research into non-fatal opioid 
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overdose has grown considerably in recent years. Its findings are frequently cited 
in the context of fatal opioid-related overdose. 

The association between a greater propensity for concomitant drug use and 

experience of opioid-related overdose is one of the most widespread findings from 

this area. However, there is considerable methodological heterogeneity between 

studies which makes synthesising findings difficult. Sources of variability 
between studies include the period at risk (ranging from within 10 days to 
lifetime); the definition of overdose employed (from user-perceived to 

resuscitation with naloxone); and measures of concomitant drug use. 
Consequently, much of the research is fragmented and at times contradictory. 

Several cohort studies, including four with national coverage, have examined 
factors associated with non-fatal overdose. In a 12-month follow-up of 495 heroin 

users recruited to the Australian Treatment Outcomes Study (ATOS), Darke et al. 
(2005) found that the risk of a non-fatal overdose occurring during this time was 
increased by 40% for each additional drug class used at baseline. The English 

counterpart cohort study, NTORS, found that, at 12-month follow-up, frequency 

of benzodiazepine (but not alcohol) use at baseline was associated with non-fatal 

overdose in the three months prior to interview (Stewart et al., 2002). Neale and 

Robertson (2005) interviewed 793 heroin users about their most recent overdose 
during baseline assessment for the Drug Outcome Research in Scotland (DORIS) 

study. In univariate analyses, recent use of diazepam or temazepam was 

significantly associated with non-fatal overdose (OR=3.34,95% CI = 1.52 - 
7.38), as was recent use of stimulants (OR=1.79,95% CI = 1.12 - 2.86) but not 

alcohol. After controlling for various other variables in multivariate analyses, only 

recent use of diazepam or temazepam was independently associated with 

overdose. Conversely, in multivariate analyses, no concomitant drug use variable 

was significantly associated with experience of overdose in the six-months prior 

to assessment in a Canadian national study of 679 opioid users (Fischer et al., 

2004). 

Cocaine use has been implicated in two large scale cross-sectional studies. In a 

study of 795 young injecting drug users from San Francisco, Ochoa et al. (2005) 
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found that injecting cocaine use in the previous three months increased the risk of 

overdose in the 12-month period prior to interview by 67% even after statistical 

adjustment for other predictors (OR=1.67,95% CI = 1.14 - 2.45). Following 

interviews with 1,018 drug injectors from Glasgow, Taylor and colleagues (1996) 

found that the occurrence of a non-fatal overdose requiring medical attention in 

the previous year was associated with temazepam, cocaine and ecstasy use in the 

six months prior to interview with odds ratios of 2.7 (95% CI = 1.8 - 4.0), 1.8 

(95% CI = 1.3 - 2.5), and 2.0 (95% CI = 1.5 - 2.8) respectively. In another cross- 

sectional study, the risk of ever experiencing a non-fatal heroin overdose 

increased by 7% for each week in which alcohol was consumed every day in the 

six months prior to interview (Darke et al., 1996). 

One of the difficulties with these studies, from an aetiological point of view, is 

that the extent to which the non-fatal overdose event actually involved additional 

substances cannot be determined. Indeed, is not always clear that concomitant 

drug use even preceded overdose and, as such, these data refer more to general 

patterns of drug use around the time of death. Other studies have made attempts to 

overcome this limitation by adopting better anchored measures of concomitant 

drug use. McGregor et al. (1998) found that heroin users who reported having 

overdosed in the six months prior to interview were more likely to have reported 

drinking alcohol either "every time" or "often" when they used heroin (these 

authors also found similar findings in respect of benzodiazepine consumption). 

More substantive findings are provided by Dietze et al. (2005) who employed a 

case-crossover design to examine transient behaviour shortly before self-reported 

overdose. This design can be thought of as a variant of the case-control study in 

which the case serves as his or her own control by comparing their behaviour in 

the period directly prior to the outcome to behaviour during a suitable control 

period. The participant group in this study comprised 155 heroin overdose 

survivors recruited by ambulance staff after being resuscitated with naloxone. 

These individuals were interviewed within 10 days of the overdose and asked to 

recall events 12 hours prior to the injection of heroin that led to overdose. This 

information was then compared to that obtained from a similar previous heroin- 

use period. The findings from this study indicated that benzodiazepine use 

increased the risk of overdose by 28 times (95% CI = 3.81 - 205.79) both before 
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and after adjusting for other potential risk factors. Interestingly, this study also 
found evidence that benzodiazepine use as a risk factor confounded alcohol use, 

which was not significant in multivariate analyses. 

Other research conducted within emergency settings may also provide useful data 

on the effect of co-administration of substances prior to overdose. f degärd and 

Rossow (2004) collected information gathered by ambulance staff on 3,838 non- 

fatal overdose events which took place in Oslo between 1998 and 2000 to explore 

the involvement of alcohol. The main findings from this study were that alcohol 

intake prior to overdose increased the intensity of the overdose (as evidenced by 

increased likelihood of unconsciousness) but reduced the risk of a later 

subsequent overdose. The authors suggest that the second of these two findings 

reflects concomitant alcohol use as an a priori risk factor for non-fatal overdose, 

rather than a proxy for more risky patterns of drug use. But whilst concomitant 

alcohol use may result in a more serious overdose, it does not appear to increase 

the likelihood of serious medical complications. Mirakbari et al. (2003) studied 

1,155 opioid overdose cases who received naloxone as part of pre-hospital or 

emergency department treatment for suspected opioid overdose in Vancouver 

during 1997-1999 to examine whether concomitant drug use prior to overdose 

increased rates of adverse events (including death) in the 24 hour period following 

resuscitation. The authors of this study found that, as with post-mortem studies, 

most overdose survivors had administered one or more drugs in addition to 

opioids; however, rates of adverse events were similar between those with or 

without concomitant drug use and, furthermore, there were no statistically 

significant predictors of either major or minor adverse events. 

In another emergency department study, Gutierrez-Cebollada et al. (1994) 

compared 54 heroin overdose admissions with a group of individuals presenting 

for medical assistance unrelated to overdose who had injected heroin within an 

hour of admission. Participants in this study provided blood and urine samples for 

analysis and were interviewed about their drug use in the preceding 48 hours. The 

overdose group were found to be more likely to have consumed benzodiazepines 

during this period (59% vs. 37%). However, in multivariate analyses, the 

probability of heroin overdose was increased only for those with moderate levels 
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of benzodiazepines detected in their blood. Interestingly, this study did not find a 

correlation between the severity of overdose (as measured by the Glasgow Coma 

Scale) and blood concentration of benzodiazepines. Nevertheless, the authors 

concluded that simultaneous consumption of benzodiazepines was an independent 

risk factor for heroin overdose, particularly at levels greater than 900 gg/L. 

3.11 Critique of studies examining the aetiological role of 
concomitant drug use in fatal opioid overdose 

A number of different approaches have been used to examine concomitant drug 

use as a risk factor for opioid-related overdose. In order to evaluate how well 

these achieve this goal, it is helpful to consider for a moment what it means to 

describe an antecedent condition such as concomitant use of drugs as a `risk 

factor'. This is necessary because terms such as `risk', `risk factor' and `cause' are 

often used imprecisely within scientific literature (Finney, 1994). A risk factor is 

formally defined as an aspect of personal behaviour, environmental exposure or 

inherited characteristic that, if present, is associated with an increase in the 

probability of a particular outcome over the base rate of the outcome in the 

unexposed population (Kraemer et al., 1997). Thus, the demonstration of a 

statistically significant association between risk of fatal opioid overdose and the 

antecedent condition suspected of being a risk factor is a fundamental first step 

(Woodward, 2004). Post-mortem studies (which are essentially large case series 

studies), whilst useful for descriptive purposes, have limited utility in this regard 

as they do not allow comparisons to be made with the typical exposure rate within 

the population. The observation, say, that 75% of all opioid-related overdose 

deaths involve co-intoxicants is not, on its own, especially informative and does 

not represent a statistical association. For this to be demonstrated, analytical 

epidemiologic approaches are required. 

The gold standard research design for identifying risk factors is the prospective 

cohort study (Woodward, 2005). For the study of rare conditions, however, cohort 

studies are inefficient and can be prohibitively expensive to conduct (Mann, 

2003). Even with relatively common events, large cohorts and/or follow-up 

periods may be needed to provide enough cases for precise risk estimates. 
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Consequently, there are very few prospective cohort studies which have examined 
the role of concomitant drug use in fatal opioid overdose. Those which have been 

conducted have relied upon measures of drug use that may not reflect concomitant 

use of drugs at the time of death. For example, in Gossop et al. 's (2002) four-year 

follow-up of the NTORS cohort, the drug use measures employed were, in some 

cases, collected several years prior to the fatal overdose. And so even though 

measures such as regular use of non-prescribed benzodiazepines were associated 

with a greater risk of overdose, this does not causally implicate this type of drug 

use in the overdose itself; firstly, because it is not known whether 
benzodiazepines were actually involved in the fatality and, secondly, because this 

measure could be confounded by other factors such as a general tendency for 

more chaotic drug use practices. It is important to point out that this criticism is 

not unique to this study but is, in fact, applicable to a great deal of research from 

this area. 

The use of blood toxicology data largely overcomes this difficulty and, in the 

context of a case-control study, can also be used for the identification of risk 
factors. Case-control studies are analytical epidemiologic designs in which 

participants are selected on the basis of their disease outcome and then 

retrospectively compared to a suitable control group. In this way, fewer overall 

participant numbers are required to study a given effect (Woodward, 2005). In 

spite of their appeal, however, they have only infrequently been used to study the 

influence of concomitant drugs on fatal outcome in heroin-related overdose and 

no such studies of methadone-related overdose were identified during this review. 
In the few instances where they have been used to examine heroin-related death, 

(e. g. Ruttenber & Luke, 1984), only effects for alcohol have been examined. 
Where a comparison group of living heroin users has been included in more basic 

types of study design, such as Darke et al., (1997), sample sizes have been 

relatively small and consequently, even though significant effects for alcohol were 

observed, the 95% confidence interval for the odds ratios were sizeable (10.8 - 
675.4). 

For a risk factor to be considered to be causal, it is necessary to show that when it 

is altered, this has an impact on the likelihood of the outcome occurring. Adjuvant 
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evidence of the mechanisms involved in the risk-outcome relationship also 
reinforces such a status (Kazdin et al., 1997). In this regard, post-mortem 
toxicology studies in which the effect of concomitant drugs on fatal blood levels 

of heroin or methadone are particularly useful. But whereas research conducted 
by Ruttenber et al. (1990) and Fugelstad et al. (2003) have provided evidence for 

such an effect for alcohol in heroin-related overdose deaths, similar effects for 

benzodiazepines and cocaine, which are predicted from pharmacological and 

other areas of research, have not been adequately assessed. The few studies which 
have explicitly tested this hypothesis have been limited in their sensitivity to 
detect such a relationship by having small sample sizes. For example, if the effect 

of benzodiazepines is assumed to be no greater than ethyl-alcohol, then, in order 

to detect a relationship of similar magnitude to that detected by Ruttenber et al. 
(1990), a sample size of at least 350 is required7. The fact that most post-mortem 

toxicology studies to date have sample sizes below this might explain why such 

an effect has so far gone undetected. Pharmacological evidence also suggests that 

concomitant substances may interact with each other to produce more complex 

effects than that observed independently. Despite this, no attempts have been 

made to construct more complex statistical models to predict the lethal morphine 

or methadone levels. Similarly, in these studies the relationship between 

concomitant drugs and fatal opioid blood levels is always assumed to be linear, an 

assumption which may mask the detection of other forms of relationship. 

Finally, few studies have used this correlational approach to examine the effects 

of concomitant substances on fatal methadone blood levels despite a number of 
fatalities related to this opioid in recent years (ACMD, 2000). 

3.12 Limitations to our present understanding of the role 
of concomitant substances in the aetiology of fatal 
heroin and methadone-related overdose. 

Over the past decade, opioid-related overdose mortality in the UK has risen 
dramatically. But whilst a great deal of research has been conducted in countries 

7 Based on a two-tailed test for the significance of a correlation co-efficient of 0.15 - Ho: r-0.00, HI: r-0.15, 
significance level = 0.05, power = 80%. 
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such as Australia and the US, there is a paucity data specific to England and 
Wales. Consequently, little is known about the extent to which concomitant 

substances are involved in heroin or methadone deaths in these countries or how 

this has changed during this important period. Research from other countries has 

suggested that opioid-overdose rates may be partially related to the involvement 

of concomitant substances (Risser et al., 2000; Gilhooly, 1997). In addition to a 
lack of information specific to England and Wales, there is little in the way of 

quality statistical data on the effects of concomitant drugs on the lethal levels of 

opioids in fatal methadone and heroin overdose. In particular, the effects of 

benzodiazepines and cocaine have yet to be adequately evaluated. Similarly, 

despite being strongly implicated in non-fatal heroin overdose, the identification 

of a statistical association between fatal heroin or methadone-related overdose and 

concomitant use of benzodiazepines or cocaine has yet to be addressed. 
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3.13 Conclusions 

For over 30 years, the presence of concomitant substances in post-mortem 

toxicology data has been one of the defining features of fatal heroin and 

methadone-related overdose, to the extent that some commentators have called for 

the term opioid overdose to be replaced by `polydrug toxicity' (Darke & Hall, 

2003). Pharmacological evidence points to a number of potential mechanisms by 

which alcohol and benzodiazepines may influence fatal outcome. As sedatives, an 

additive pharmacodynamic effect is expected through these substances' ability to 

influence the respiratory centres of the brain. Influences on the bio-availability of 

morphine or methadone may also arise through pharmacokinetic interactions, with 

similar consequences. The nature of these interactions is however complex and 

not well understood. Similarly, the precise mechanisms underlying the respiratory 
depressant effects of these sedatives so far remain uncharacterised. Nevertheless, 

the putative influence of concomitant substances on risk of opioid overdose is at 

the very least biologically plausible. The extent to which this theoretical hazard 

translates to actual risk is the focus of a number of areas of research but, with the 

possible exception of alcohol in heroin overdose, empirical evidence is only 

weakly supportive and in some areas, particularly in respect of methadone-related 

overdose, the influence of concomitants has not been assessed to date. 

Several post-mortem studies have shown that morphine blood levels are lower in 

the presence of alcohol. This often manifests itself as a statistically significant 
dose-response relationship even in basic correlational studies and suggests that a 

normal or usual amount of heroin can prove fatal upon co-administration of 

alcohol. Our knowledge about whether other concomitant substances exert similar 

effects is limited by an overall paucity of research. The small numbers of studies 
that have examined this relationship have usually done so in a post hoc fashion, 

using basic statistical approaches, and with few exceptions, have had limited 

sample sizes. The findings from these studies should, therefore, be treated with 

caution. The limited amount of data available challenges the existence of an effect 
for benzodiazepines despite the great number of opioid-related fatalities in which 
these drugs are detected. In contrast, a recent small scale Italian study (Polettini et 

al., 2004) suggests a possible effect for cocaine even though this drug is far less 
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frequently observed in post-mortem toxicology studies. This finding deserves 

further attention, particularly as the concomitant use of cocaine by heroin users 

appears to be rising in many countries within the European Union (WHO, 1998). 

Whilst correlational study designs such as these are necessary to provide 
information about the nature of the risk associated with the use of concomitant 

substances, they are not sufficient to identify such use as an a priori risk factor. 

For this to be demonstrated, an epidemiological approach is more suited. Results 

from studies of non-fatal heroin-related overdose and, in particular, those 

conducted from emergency medicine settings are intriguing but largely 

inconclusive; whilst the few studies of fatal heroin overdose which have included 

suitable controls are either of insufficient size for precise risk estimates or, in the 

case of cohort studies, based on measures of drug use that may not accurately 

reflect concomitant use of drugs at the time of death. Research into methadone- 

related overdose has been largely overlooked both in respect of correlational and 

epidemiologic designs. Consequently, very little is known about the role of 

concomitant substances in these fatalities. 

Concomitant use of drugs in addition to heroin or methadone is frequently cited as 

one of the most important determinants of fatal opioid-related overdose. On the 

surface, this simply reflects common sense and, despite a great deal of uncertainty 

within the literature, when educating substance users about the risks associated 

with heroin and methadone use, it is undoubtedly prudent to ere on the side of 

caution; particularly since polydrug use is associated with significant harms other 

than overdose. Nevertheless, fatal opioid-related overdose is associated with a 

great number of risk factors and it is important to accurately measure the risks 

associated with each in order to maximise the effectiveness of these educational 

messages and further our understanding of one of the most widespread causes of 

death among young people. 
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3.14 Research questions and associated hypotheses 

3.14.1 Research questions 

From the review and critique of the literature presented in this chapter, the 

following research questions were formulated: 

(I) What are the concomitant substances most often involved in fatal heroin- 

and methadone-related overdose in England and Wales? 

(II) Have these changed over the past decade in a manner that would suggest 

their involvement in the rise in the number of opioid overdose fatalities 

during this period? 

(III) Is there evidence that the lethality of heroin or methadone is affected by the 

presence of these concomitants? 

(IV) Is concomitant use of benzodiazepines or cocaine around the time of death 

associated with an increased epidemiological risk of fatal heroin- or 

methadone-related overdose? 

These four research questions will be examined in two studies. The first, Study 1, 

entitled - The effect of concomitant drugs on heroin and methadone blood levels 

following fatal overdose - is presented in Chapters 4 and 6, and will examine the 

first three research questions. The second, Study 2, entitled - Recent use of 

benzodiazepines and cocaine as risk factors for fatal heroin- and methadone- 

related overdose: a matched case-control study (Chapters 5/7) - will examine 

question four. The findings from both of these studies will be discussed in Chapter 

8. 

3.14.2 Hypotheses 

On the basis of the existing literature, it is also possible to specify a number of 

hypotheses related to specific substances. These are as follows: 
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Hypotheses A-C 

(A) alcohol, (B) one or more benzodiazepines, and (C) cocaine will be 

associated with post-mortem morphine blood levels reflecting an increase in 

the lethality of heroin was used in conjunction with these substances. 

Hypotheses D-F 

(D) alcohol, (E) one or more benzodiazepines and (F) cocaine will be 

associated with methadone post-mortem blood levels reflecting an increase 

in the lethality of methadone was used in conjunction with these substances. 

Hypothesis G 

Concomitant benzodiazepine use will be associated with increased risk of 
fatal heroin-related overdose. 

Hypothesis H 

Concomitant cocaine use will be associated with increased risk of fatal 

heroin-related overdose. 

Hypothesis I 

Concomitant benzodiazepine use will be associated with increased risk of 
fatal methadone-related overdose. 

Hypothesis J 

Concomitant cocaine use will be associated with increased risk of fatal 

methadone-related overdose. 

Hypotheses A to F will be examined in Study 1, with the remaining hypotheses to 

be examined in Study 2. 
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Methodology of Study 1 

The effect of concomitant drugs on heroin and methadone 
blood levels following fatal overdose 

Summary 

This chapter describes the methods employed by the first of two studies in this 

thesis which examine the role of concomitant drug use in fatal heroin- and 

methadone-related overdose. The principle aim of this study is to examine the 

extent to which concomitant substances affect the lethality of heroin and 

methadone in overdose. Data came from 15,000 toxicology analyses held 

electronically by the Royal Hallamshire Hospital, Sheffield. These data were in 

the public domain after their use in Coronial investigations but due to the nature 

of their storage were comparatively inaccessible to statistical investigation. An 

inferential database was developed to extract blood concentration data on heroin 
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and methadone overdose fatalities from these records. One thousand, two hundred 

opioid-related overdose fatalities were identified and searched for the presence 

and level of over 100 potential concomitant substances. Concentration data 

extracted from the database followed an expected lognormal distribution. 

Variables were log transformed to ensure linearity. Multiple regression models 

were estimated to assess the relationship between morphine and methadone blood 

levels and those of concomitant drugs after adjusting for other important 

determinants. 

4.0 Research aims 
4.0.1 Primary 

  To determine the relationship between blood morphine and methadone 
levels and those of concomitant substances in a sample of opioid-related 
overdose fatalities. 

  To examine interactions between these variables that may suggest 
synergistic effects. 

4.0.2 Secondary 

  To identify the concomitant substances commonly involved in fatal heroin 

and methadone overdose fatalities in England and Wales and estimate their 
prevalence. 

  To examine prevalence trends in the detection of concomitant substances 
in post-mortem toxicology in England and Wales from 1991 to 2004. 

4.0.3 Specific null hypotheses to be tested 

(a) Alcohol, (b) one of more benzodiazepines, and (c) cocaine are not associated 
with total morphine (i. e., free morphine plus conjugates) blood levels in fatalities 

attributed to heroin overdose. 

(d) Alcohol, (e) one or more benzodiazepines, and (f) cocaine are not associated 
with methadone blood levels in fatalities attributed to methadone overdose. 
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4.1 Study design 

To test these hypotheses a correlational design was employed in which the lethal 

level of (i) heroin and (ii) methadone was predicted from a range of explanatory 

variables related to the presence of concomitant substances and anticipated 

confounders. Accordingly, the response variables (Y) were total morphine and 

methadone blood levels and the explanatory variables (X; ) were those derived 

from concomitant blood levels and potential confounders such as age and gender. 

4.1.1 Justification for choice of design 

The selection of the present study design was guided by previous studies which 

have examined the relationship between concomitant use of drugs and lethal 

poisoning by heroin (e. g., Ruttenber et al., 1990; Pollettini et al., 1999) or other 

substances (Williamson et al., 2000). Correlational study designs are concerned 

with assessing the effects on a response variable of any number of explanatory 

covariates or factors (Cohen & Cohen, 1975). This type of design is particularly 

suited to situations in which ethical and practical considerations prevent the use of 

experimental approaches (Thompson et al., 2005). Such studies also offer the 

potential to simultaneously evaluate a wide range of effects (Underwood, 1957). 

Correlational study designs have two principal weaknesses which should be 

acknowledged from the outset. Firstly, correlational designs cannot be used to 

directly infer causality because one can not be certain about the ordering of the 

effects. Secondly, since random allocation does not take place there will always 

be a degree of uncertainly vis-ä-vis the internal validity of findings - for example, 

the observed effect could be due to one or more un-measured confounding 

variables (Walter, 1991). Thompson et al. (2005), however, point out it is crucial 

to match research questions to designs, and that some questions are best addressed 

with non-experi mental study designs. 
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4.2 Data source 

4.2.1 Description of data source 

In accordance with the Coroners Act, 1988, and the Coroners Rules, 1984, all 

sudden, unexpected, or suspicious deaths in England and Wales are investigated 

by the Coroner's Office. When a death occurs that is considered to be from 

unnatural causes, an inquest is held. In preparation for this inquest, a full and 
detailed investigation into the circumstances and cause of death is carried out. 
This typically involves the collection of information such as emergency services 

reports; interviews with friends and family; interviews with witnesses present at 
the time of death; and reports from the decedent's general practitioner and/or 

other service providers. In addition, a full autopsy including thorough 

toxicological analyses is conducted where appropriate samples are available. 
These analyses are typically conducted by one of several registered toxicology 

laboratories located throughout England and Wales. Data for the present study 

come from toxicological analyses conducted by one of these laboratories - the 

toxicology section of the Department of Clinical Chemistry (DCC), Royal 

Hallamshire Hospital, Sheffield - and includes individuals who died between Ist 

Jan 1991 to 30th April 2004. The DCC is fully accredited by Clinical Pathology 

Accreditation (UK) Ltd which provides a regular external audit of the laboratory. 

Regions covered by the DCC laboratory include South Yorkshire, West 

Yorkshire, North Yorkshire, Humberside, Cumbria, the North East and South 

Wales. Following toxicological analysis of blood and/or other samples, a report is 

prepared and sent to the Coroner in question for consideration at inquest. 

4.2.2 Toxicology - analytical aspects 

The analytical strategy used by the DCC was individualised in each case, 
depending on the nature and volume of the samples available and the information 

provided by the pathologist or Coroner's officer. Blood samples will have 

typically been taken from the periphery and will usually be of femoral origin. In 

general, where the information provided indicated that there was a high 

probability of a death related to problem drug use in an adult; that criminal 
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charges are unlikely; and where blood, urine and stomach content were available, 

then, the following strategy was used. 

Urine was screened by immunochemical methods for the presence of the 

following drugs or groups of drugs: opioids, benzodiazepines, barbiturates, 

cannabinoids, methadone, cocaine metabolites and amphetamines. In the 

screening process, extracts of blood, urine and stomach content were made by 

either liquid-liquid extraction or solid phase extraction and screened by gas 

chromatography/mass spectroscopy (GC-MS). This technique can detect the 

presence of a large variety of therapeutic drugs and drugs of misuse. One lacunae 

of this method is that, if a naive opioid user dies very rapidly or the urine has been 

diluted because of alcohol use, a negative result can be found on screening for 

opioids in urine even though morphine may be present in potentially lethal 

concentrations in blood. Consequently, if there is even a shadow of a suspicion 
that illicit drugs might be involved in the death, morphine will be specifically 

measured in blood, whether or not there was a positive screening test for opioids 
in the urine. Ethanol was measured in blood and urine by headspace gas liquid 

chromatography. Salicylate (aspirin metabolites) and paracetamol were measured 
in blood by high performance liquid chromatography with diode array Detection 

(HPLC-DAD). This technique can also indicate the presence of non-steroidal anti- 
inflammatory drugs such as ibuprofen when they are taken in overdose. 

When a positive result was obtained on screening, then the drug putatively present 

was definitively identified by either GC-MS or HPLC-DAD and quantitated. In a 

non-criminal case, in the past, morphine has been measured by a specific radio- 
immunoassay technique with a limit of quantitation of 25mg/L. Total and free 

morphine concentrations were measured by GC-MS. This method was also used 

to confirm the presence of the other opioids, such as the specific heroin metabolite 

6-mono-acetylmorphine, and to confirm the presence of methadone and quantitate 
it. The limit of detection was 10mg/L using this method. Benzodiazepines are 

usually quantitated by HPLC-DAD although GC-MS may be used to identify and 

quantitate benzodiazepines present in low concentrations. Using HPLC-DAD the 

limit of quantitation is usually 50mgIL. 
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Example protocols followed by the DCC for screening, confirmation and 

quantitiation of drugs of misuse are given in Appendix A. 

4.2.3 Data extraction - the problem 
Between Ist January 1991 and 30th April 2004, more than 15,000 toxicological 

reports were produced by the' DCC laboratory at the request of Coroners. An 

example of one of these reports is shown in Figure 4.1. A library of these reports 

was held as computerised word processor documents by the chief toxicologist at 

the DCC, Professor ARW Forrest. In order to make the data within these files 

available for analysis, it was necessary to overcome a number of challenges. 

Firstly, suspected heroin and methadone deaths needed to be isolated. Preliminary 

discussions with the DCC suggested that fatalities involving morphine or 

methadone would represent around 20% and 5% of the total 15,000 records 

respectively. Secondly, in additional to levels of morphine and methadone (the 

response variables), for each fatality the presence and concentration of 

concomitant substances needed to be extracted for analysis (explanatory 

variables). However, the potential range of substances was vast. Over 500 

compounds could (theoretically) be tested for, and whilst even in extreme cases 

no more than 30 of these would appear on any single report, a method of 

extraction was required in which important concomitant substances could be 

readily identified. Thirdly, each substance could in theory be quatitated in one or 

more of over 20 different sample types (e. g., blood, stomach contents, urine, 

vitreous humour, liver, skeletal muscle etc. ). It was, therefore, necessary to select 

blood concentration data from the various different samples collected. Fourthly, 

blood concentration data within these documents were not always reported in the 

same measurement units. For example, diazepam could be reported as mg/L or 

µg/L. Consequently, recording errors could result in data that were incorrect by 

several orders of magnitude - potentially ruinous for correlation based analyses. 

Therefore, a method to ensure that these were accurately collected was essential. 

Finally, the storage of such a large quantity of information in a `flat file' database, 

analogous to a spreadsheet or statistical application data-file, would have been 

cumbersome and inflexible. 
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Figure 4.1. Sample toxicology report produced by the Royal Hallamshire Department of Clinical Chemistry 
laboratory. 

ARW FORREST 
LLM. FRCP, FRCPath 

Honorary Consultant in 
Clinical Chemistry and Toxicology 
Professor of Forensic Toxicology 

Direct Line No: 0114 271 2199 Royal Hallamshire Hospital 

Fax No: 0114 276 6967 Glossop Road 
Sheffield 
S102JF 
Tel: 0114 271 1900 

ARWFr " January 2003 

Report concerning the death of (aged 28 years) 

To: Mr ** ****"""' HM Coroner Sheffield/Bamsley 
Copy: Dr* "'" Medico Legal Centre Sheffield 

Sample dated: "". 01.03 

STH Lab Number: """/03 
Report Issued: "". 01.03 

Blood Urine Gastric contents 

Ethanol 76mg/100ml 116mg/100ml - 
Salicylate Not detected - - 
Paracetamol Not detected - - 
Opiates Present - - 
Benzodiazepines Present - - 
Barbiturates Not detected - - 
Cannabinoids Present - - 
Methadone Not detected - - 
Cocaine metabolites Not detected - - 
Amphetamine group Not detected - - 
Morphine - total 287µg/) Present - 
Morphine - free 182µgA - - 
Diazepam 318µg/) <1 mg/I - 
Nordlazepam 218µg/1 - - 
Temazepam 43µg/I - - 

There were no additional toxicological findings In blood or stomach content. The urine also contained 6- 

monoacetylmorphine and codeine. 

Comment: Compatible with potenti ally fatal misuse of illicit heroin with alcohol and diazepam. 
The temazepam is likely to reflect diazepam metabolism. 

ARW FORREST LLM, FRCP, FRCPath 
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In response to these challenges it was decided that a relational database would be 

developed and the entire library of 15,000 reports would be transferred 

electronically using appropriate programming algorithms. In a relational database 

system, all data are stored in tables according to a logical design. This type of 

structure minimises repetition of data and inconsistencies as well as allowing the 

flexibility to manipulate data ad infinitum. There is increasing recognition of the 

benefits of such systems within medical settings (Johnson et al., 1992) and for 

supplementary use with conventional statistical packages (Stockburger, 1998). 

Early into the development stage, however, considerable difficulties became 

evident. The most significant of which centred on the age of the word processor 
files, some of which dated back to 1991. At this age there were insurmountable 

technical difficulties in identifying and transferring data between applications and 
it quickly became clear that automated transfer of data between the word 

processor documents held by the DCC and a suitable database would be 

unfeasible. As a compromise approach, it was decided that the automatic data 

extraction would be abandoned whilst retaining the idea of a relational database. 

Data would, therefore, be extracted into the database by hand via a user interface 

with safeguards to minimise data entry errors, particularly in respect of 

measurement unit errors. In this way, the flexibility benefits of a fully searchable 
database were maintained. 

4.2.4 Database design 

A relational database was developed with the following specification: 

(i) It should facilitate accurate and rapid data entry in an intuitive manner. The 

target average time for each report was set at six minutes. 

(ii) It should allow more than one user to enter data at the same time over an 

intranet. Even at an average of six minutes per report, it was estimated that it 

63 



would take 1,500 person/hours to enter 15,000 records, equating to around 43 

weeks for a single individual'. 

(iii) It should automatically standardise concentration measurement units so that 
data can be entered in their original units. This condition was set to minimise data 

entry errors and to speed-up data entry. 

(iv) It should allow data to be transferred into a statistical package following 

appropriate searches. 

(v) It should allow data to be stored and used in accordance with the Data 

Protection Act (1998). 

As secondary functions, the database was specified to: 

(v) Allow toxicology reports to be produced in a similar manner to those currently 

provided by the DCC to coroners in England and Wales so that all future data can 
be stored appropriately without the need for retrospective data entry. 

(vi) Allow further toxicology research to be conducted in the future. 

The database was developed in Microsoft Access (Microsoft, 2002). Visual Basic 

was used for more complex tasks as necessary and table queries were written 

directly in SQL (Standard Computer Language). The table structure of the 

database is shown Figure 4.2. As the over-arching aim was to balance speed and 

accuracy, the design of the database centred on a data-entry interface form 

modelled on the word-processed toxicology reports. The database tables and their 

respective fields underlying this form are shown in Table 4.1. Four sets of 

reference data were added to the database: sample type (e. g., blood, urine); a list 

of compounds regularly tested by the DCC laboratory; typical measurement units; 

and a list of conversion factors used for standardisation. The forms used for 

entering these data are shown in Figure 4.3. 

1 15,000 records at 6 minutes per record = 90,000 minutes. Multiplied by 1/number of minutes in a normal 
working week (60 x7x5=2,100) = 42.86 weeks. 
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Figure 4.2. Database table structure and interrelationships 
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The inclusion of reference information negated the need to enter these data each 

time a report was added to the database. The database was designed so that 

concentration data entered by the user were stored as the entered value and as a 

standardised value associated with that particular compound. A parameter query 

was written to allow the database to be searched for a principal substance (e. g., 

total morphine or methadone) along with user specified secondary substances 

(concomitants). The `TransferSpreadsheet acExport' function was then used to 

allow this query to be exported into a flat spreadsheet format for statistical 

analysis. In addition to this type of report, a regular printed output report was 

written in the same format as the original reports so that the database could be 

used to replace the current system of storage of data purely as word processed 
documents. 
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Table 4.1. Database table descriptions and fields 

Table Fields Function 

Patient/PatientCList Patient ID Stores patient's details including name, age, gender as 
Surname, Forename, Title well as toxicologist's comments regarding the pattern 
Gender, Age of observations 
Toxicologist's comments 
Sample date 
Case reference 
Lab reference 
Total number of tests 
Total cost 
Toxicological cause of death? 

Patient analysis Patient ID Stores results of toxicology screen including all 
Sample ID quantitative data for each substance 
Compound ID 
Units 
Quantity 
Standardised quantity 

Patient sample Sample ID Stores a list of all possible sample types (e. g., blood, 
Sample type urine, vitreous humour etc. ) 

Compound Compound ID List of all substances detectable by the laboratory 
Compound name along with their associated default units of 
Default display unit measurement 
Standardised unit 

Sample default Sample ID The default list of compounds displayed on opening of 
Compound ID the principle data entry form 
Defaults 

Units Unit ID Stores the various different types of measurement units 
Unit description (e. g., mg/dL, µg/L, mmol/L). 

Conversion Unit name Stores a list of conversion factors - used to standardise 
Conversion factor user-entered units. 

The database was designed for use by more than one user at the same time. This 

involved splitting the database into two components, one representing the end- 

user interface, and the other containing all data. The latter of these could then be 

stored on a secure server whist files associated with the user interface could be 

installed onto separate machines. This is in accordance with guidance produced in 

relation to the Data Protection Act (1998) and protects data in the event that one 

or more of the personal computers was stolen. Correspondingly, the database was 

also password protected. All data exported from the database were anonymous. 

Upon installation, the user interface side of the database was set up to search the 

default directory for the data tables. If not found, it prompted the user for the 

location which could then be specified. The Visual Basic code for these and all 

other non-standard database functions are given in Appendix B. 
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4.2.4.1 Database in use 

The data-entry interface is shown in Figure 4.4, next to a sample toxicology 

report. After entering demographic data and selecting the sample type, a default 

list of compounds is displayed along with their unit of measurement. The default 

set is a list of compounds for which the DCC would routinely screen when 

provided with a post-mortem sample. Further substances could be added from a 

pull down menu list linked to the compound table. The measurement unit given in 

the report and the concentration value are then entered for each substance. 
Comments provided by the toxicologist could then be cut and pasted into the 

appropriate fields. Upon completion, if required, the user could then print out a 

standard report. Once transfer of the report data was complete, appropriate queries 

could be run via the report menu (Figure 4.5). In the example given in this figure, 

the query requested would provide a spreadsheet of all (anonymised) individuals 

with positive detections for blood total morphine along with standardised blood 

concentration values for concomitant presence of ethanol, diazepam, temazepam, 

cocaine, cocaine metabolites, cocaethylene and fluoxetine. Queries took between 

30 seconds and 10 minutes to complete depending upon the number of 

concomitants selected and the speed of the personal computer on which the 

interface was held. 

4.2.4.2 Data entry procedure 

Toxicology reports were transferred into the database by the author with the 

assistance of experienced data entry personnel. These individuals were briefed 

about the potentially upsetting nature of the data and asked if they felt 

comfortable working with such information. To accelerate the data entry process, 

only non-essential data from the reports was transferred. Concentration data from 

substances found in samples others than blood (e. g. urine, gastric contents) were 

not entered into the database. Toxicology reports were transferred over a period of 
four months between December 2003 and April 2004. Random checks were made 
by the author to verify the accuracy of the database. 
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Figure 4.4. Main database entry form (right) shown alongside a sample toxicology report. This on- 
screen arrangement was used by data-entry personnel to transfer data between the DCC reports and 
the database. 
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4.3 Study Population 
The database was searched to identify all individuals with detectable levels of 

either total morphine or methadone in their blood. One thousand five hundred and 

eighty six (1,586) individuals were identified with positive detections of total 

morphine and 553 in whom methadone was detected. All identified cases were 

assessed to determine the likelihood that death was caused by the toxicological 

effects of either illicit heroin or methadone. Since post-mortem pathology results 

were not available, this assessment was made principally on the basis of the 

toxicologist's comments contained within each report. In most cases the 

toxicologist had prior knowledge of the circumstances surrounding the death and 

this was typically reflected in his concluding remarks within the report. Following 

discussions with the chief toxicologist, each case was reviewed by the author and 

classified into one of four categories according to the probability that death was 

related to the toxicological effects of illicit heroin or methadone. These categories 

were termed `causative', `suspected', `alternative' and `unknown'. This is 

consistent with methods previously employed by Pirnay et al. (2004) and 

Mikolaenko et al. (2002). 

Where there was a clear indication that the fatality occurred as a toxicological 

consequence of heroin or methadone administration the detection was designated 

as `causative'. Actual examples of comments made by the toxicologist in such 
instances are: 

The results are consistent with death consequent on an overdose of illicit heroin, in an 
individual who was also taking dothiepin, chlordiazepoxide (Librium) and diazepam in 

therapeutic doses. The low concentrations of opiates in the urine suggest the deceased was 

not a regular user of opiates at the time of his death. 

Compatible with fatal methadone ingestion. It is slightly unusual to find tetra- 
hydrocannabinol in stomach content. This may reflect ingestion of cannabis or a product 
derived from cannabis. 

Compatible with rapid death occurring after use of heroin. The results suggest either the 
heroin was mixed with diazepam or diazepam was injected about the same time. 
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Compatible with potentially fatal misuse of Methadone and earlier use/misuse of Codeine, 

Morphine or Heroin. 

Cases in which the toxicologist suggested a possible fatal attribute to morphine or 

methadone were classified as `suspected'. These were deaths in which the 

toxicologist mentions the possibility of a fatal contribution from heroin or 

methadone. This would be reflected in comments such as: 

The results reflect misuse of heroin and use/misuse of methadone. The morphine 

concentration could reflect fatal overdose of heroin. The benzodiazepine results could 

reflect use of diazepam alone, or use of diazepam and temazepam. 

In a subject unused to methadone the results are compatible with fatal ingestion of 

methadone. The blood concentration found could be tolerated by a patient taking 

methadone on a regular basis without toxic effects. 

Compatible with use of illicit heroin and intoxication with alcohol. The combination is 

potentially lethal. 

These results are in the range found after fatal methadone overdose. However, many 

persons taking methadone on a regular basis could tolerate this concentration without 

apparent toxic effect. 

An `alternative' cause of death was ascribed where the toxicologist's comments 
indicated that the fatality was caused by a primary substance other than heroin or 

methadone (e. g., cocaine, dihydrocodeine); a non-illicit morphine source, such as 

morphine sulphate, was mentioned; or a conclusion which suggested a non- 

toxicological cause of death was made. For example: 

Consistent with ingestion of MST. The interpretation of the results is not straight forward. 

They could reflect situations other than acute overdose. 

Compatible with fatal inhalation of carbon monoxide and use/misuse of illicit Heroin, 

Cocaine and Amphetamine. 
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In cases where no comments were provided by the toxicologist; where no 

principal substance emerged as the cause of death; or where there was an 

equivocal conclusion, a classification of `unknown' was given. For example: 

This is a complex picture. It reflects use of heroin/morphine, methadone, pethidine, 
dihydrocodeine, paracetamol (possibly in excess), metoclopromide and ibuprofen. 

No toxicological cause of death has been demonstrated. The alcohol may reflect 

putrefaction. The methadone concentration would be unlikely to cause death even in a non 

tolerant subject. The chlordiazepoxide and nordiazepam concentration reflect therapeutic 

use. 

Cases under the age of 16-years were classified as ̀ alternative' irrespective of the 

pattern of results. This exclusion criterion was made in order to omit infants, who 

may have accidentally or otherwise consumed methadone/heroin, and very young 

opioid users. In practice, this resulted in very few exclusions. Four heroin positive 
individuals were omitted on this basis: two 1-year old infants who were 

administered significant quantities of morphine, a 13-year old child who 

overdosed on cyclimorph (a proprietary morphine preparation); and one 15-year 

old who may have injected heroin. Likewise, four methadone fatalities were 

excluded: two 2-year old infants; a 13-year old; and a 14-year old. Cases over the 

age of 65 years old were also omitted, principally as a secondary safeguard 

against including cases who may have died from non-illicit morphine overdose. 
Seventy eight morphine-positive cases were omitted along with four methadone- 

positive fatalities - all of whom would have been classified as either `alternative' 

or `unknown' on the basis of the toxicologist's comments. 

Of the 1,586 cases with positive morphine detections, 624 (39%) were classified 

as `causative' with a further 307 (19%) categorised as `suspected'. Four hundred 

and twenty (27%) cases were classified with an `alternative' cause of death and 

there was insufficient evidence to reliably assess 235 cases (15%). Of the 553 

methadone positive cases, 121 (22%) and 169 cases (31%) were rated as 

`causative' and `suspected' respectively. One hundred and six methadone cases 

(19%) were considered to be caused by factors other than methadone poisoning 

(alternative). Insufficient or equivocal evidence meant that 157 cases (28%) were 
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classified as `unknown' (Figure 4.6). For both heroin and methadone fatalities, 

only cases categorised into the first two of these groups ('causative' and 
`suspected') were entered into the statistical analysis stage. This gave a maximum 

sample size for heroin and methadone fatalities of 931 and 290 respectively. 

4.4 Identification of concomitant substances 
Based upon previous post-mortem research into opioid-related overdose and a 

search of the relevant pharmacology literature, a list of concomitant substances 

was compiled (Table 4.2). The rationale behind the selection of these substances 

was as follows: drugs were selected, in the first instance, on the basis of their 

detection as concomitant substances in previous research. This list was relatively 

small and comprised: ethanol, benzodiazepines, cocaine, amphetamines, other 

opioids and anti-depressants. Further concomitants were selected on the basis of 

their known or hypothesised pharmacologic interactions with morphine or 

methadone or their potential respiratory depressant effects. Other illicit drugs of 

misuse were also included. Whilst some of these may not have either interaction 

or respiratory depressant potential, their presence may have other relevance such 

as reflecting increased carelessness during drug use. In total, over 100 substances 

were initially considered. A proportion of these substances would not be identified 

during routine screening by the DCC. For example, whereas most of the tricyclic 

antidepressant drugs would be picked up, monoamine oxidase inhibitors, with the 

exception of moclobemide, require a specific test and, thus, are likely to be 

overlooked during routine screening. Similarly, certain substances would only be 

picked up in overdose and not in therapeutic concentrations, such as some typical 

antipsychotics. Table 4.2 indicates which of these substances would be expected 

to be quantitated under routine conditions. All heroin- and methadone-related 

fatalities within the database were searched to identify the presence and 

concentration of the substances listed within this table. 
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Figure 4.6. Toxicological contribution to cause of deaths for (a) 
morphine (n=1586), and (b) methadone (n=553). 
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Table 4.2. List of potential concomitant substances with relevance to heroin and/or methadone 
overdose 

Picked up Picked up in 
Substance in routine Substance routine 

screening? screening? 

Alcohol Anti-psychotics 
Atypical 

Ethanol � Amisulpride xý 
Clozapine � 

Anti-depressants Olanzapine � 
Tricyclics � Quetiapine � 
Amitryptyline � Risperidone x' 
Amoxapine � Sertinole � 
Clomipramine � Zotepine x 
Dosulepin (dothiepin) � 
Doxepin � Hypnotics 
Imipramine � Benzodiazepines 
Lofepramine �' Nitrazepam � 
Nortriptyline � Flunitrazepam X, 
Trimipramine � Flurazepam � 

Loprazolam � 
Related-antidepressants Lormetazepam � 
Maprotiline � Temazepam � 
Mianserin � 
Trazodone X1 Anxiolytics 

Benzodiazepines � 
MAOIs Diazepam 
Pheneizine X1 Alprazolam � 
Isocarboxazid xl Chlordiazepoxide � 
Tranylcypromine x1 Clorazepate dipotassium �' 
Moclobemide � Lorazepam � 

Oxazepam � 
Others Midazolam � 
Lithium X: 

Sedating Antihistamines 
Anti-psychotics Alimemazine Tartrate � 

Typical Brompheniramine maleate � 
Benperidol x Chlorphenamine maleate � 
Chlorpromazine � Clemastine x 
Flupentixol x1 Cyproheptadine � 
Fluphenazine x' Diphenhydramine � 
Haloperidol x1 Diphenylpyraline x 
Levomepromazine � Doxylamine � 
Pericyazine � Hydroxyzine � 
Perphenazine � Promethazine � 
Pimozide � Triprolidine � 
Prochlorperazine � Cyclizine � 
Promazine � 
Sulpiride x' SSRIs 
Thiolridazine � Citalopram � 
Trifluoperazine x' Escitalopram � 
Zuclopenthixol x1 Fluoxetine � 

Fluvoxamine Maleate � 
Paroxetine � 
Sertaline � 

As metabolite; t In overdose; $ Requires specific test. 
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Table 4.2 continued. 

Substance 

Opiate-based analgesics 
Codeine 
Dihydrocodeine 
Diphenoxylate 
Dipipanone 
Dextropropoxyphene 
Hydromorphone 
Meptazinol 
Methadone 
Nalbuphine 
Oxycodone 
Papaveretum 
Pentazocine 
Pethidine 
Tramadol 
Morphine 

Other drugs with potential 
cytochrorne P460 interactions 

Phenytoin 
Carbamazepine 
Ketoconazole 
Dexamethasone 
Fluconazole 
Erythromycin 
Rifampicin 
Rifabutine 
Cimetidine 

Picked up in 
routine 

screening? 

x 

� 

x 
x 
x 
x 
x 
x 

Substance 

Other anti-depressants 
Flupentixol 
Mirtazapine 
Tryptophan 
Venlafexine 

Drugs of abuse 
Cocaine 
Methylenedioxymeth- 
amphetamine (MDMA) 
Methylenedioxy- 
amphetamine (MDA) 
Ampethamine 
Ketamine 
Gammahydroxy- 
butyrate 
Lysergic Acid- 
diethylamide (LSD) 

Miscellaneous 
Ritonavir 
Barbiturates 

Picked up in 
routine 

screening? 

x 
� 

X' 

x" 

x 

' As metabolite; t In overdose; X Requires specific test 

4.5 Control variables 
The principal aim of this study was to assess the effects of concomitant substances 

on lethal blood morphine or methadone levels. A number of other factors may 

also be expected to influence these blood levels, some of which were available 

from the toxicology database. It was felt important to examine the effects of these, 

which, if correlated with blood morphine or methadone levels, may be considered 

as nuisance or confounding variables, potentially influencing final inferences. 

These variables were: an estimate of the time elapsed between use of heroin and 

death (free: total morphine ratio for heroin fatalities); age in years; sex; year of 

fatality; and category (`causative' or `suspected'). 
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In humans, maximal blood concentration of morphine is reached 3.6 to 8.0 

minutes after heroin administration (Rook et al., 2006) and terminal half-life2 is 

given as 1.7 hours (Karch, 1996). Thus, following administration, blood 

concentrations of free morphine will normally be present in measurable quantities 
for between four and six hours. Terminal half-life of M3G and M6G is given by 

Karch (1996) as 3.9 and 2.6 hours respectively. In overdose, it is, therefore, 

expected that individuals with extended survival times will have total morphine 

levels that are lower than an individual who died rapidly. In order to make 

allowance for this, it was decided that the ratio of free-to-total morphine be used 

as a proxy measure for the time elapsed since ante-mortem use of heroin (Spiehler 

& Brown, 1987; Staub et al., 1990). No equivalent measures for methadone 
fatalities were available. 

It was considered important to examine the effect of age. It has previously been 

suggested that low blood morphine concentrations detected in fatal heroin 

overdose may reflect less frequent use as the user matures out of heroin use and 
has correspondingly lower tolerance (Darke & Hall, 2003). Conversely, opiate 

naive individuals may be expected, on average, to be younger. Whilst these 

assumptions may be challenged, there were further reasons for examining the 

effect of age. In particular, it was considered worthwhile exploring the potential 
interaction between the effects of concomitants within different age groups. This 

hypothesis follows naturally from the systemic dysfunction and differential 

tolerance theories of opioid overdose described by White & Irvine (1999) and 
Warner-Smith et al. (2001) since both suggest an increased sensitivity to opioid 

overdose with age. 

The rationale for including sex as an explanatory variable was made on the basis 

that this variable may confound any concomitant effects. For example, Caplehorn 

and Drummer (2002) have recently shown that, for a given weight-adjusted 

methadone dose, post-mortem blood concentrations are significantly lower in 

males than in females. This was attributed to differences in the extent of post- 

2 
Following Intravenous administration, the terminal half-life is the time required for the plasma/blood 

concentration to decrease by 50% after pseudo-equilibrium of distribution has been reached (Toutain & 
Bousquet-Melou, 2004). 
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mortem redistribution between males and females. If females and males are then 
found to differ in the likelihood of having a concomitant substance detected, then 

this may affect inferences unless this variable was included. 

To control for any effects related to changes in toxicological analysis techniques 

over time, year of analysis was examined as a putative exploratory variable. 
Similarly, to account for potential differences in effects due to the coding of the 
death a dummy variable (i. e., ̀ causal' versus ̀suspected') was created. 

4.6 Comments on the potential direction of effects and 
their interpretation 

Under the assumption that post-mortem blood concentration of opioids are 

correlated with ante-mortem opioid dose3, then, where blood levels of morphine 

or methadone are seen to be lower in the presence of concomitant substances, the 

effect is assumed to have been caused by an increase in the lethality of heroin or 

methadone administration; the consequence of which, is that less heroin or 

methadone needs to be taken in order to fatally overdose. Interpretation of 

potential effects in the opposite direction (i. e. a positive correlation) is less 

straightforward since such an effect is conditional upon the fact that the study 

participants have already died. It is possible that such effects may represent an 
individual's fatal overdose threshold being increased in the presence of a 

particular concomitant; similarly, concomitant drug use may be a proxy for 

behaviours which lead the individual to use larger quantities of opioids. However, 

a pharmacokinetic effect, such as an inhibition of phase I metabolism of morphine 

or competitive inhibition of methadone metabolism, resulting in increased drugs 

levels, is also possible. With these considerations in mind, statistically significant 
increases in blood concentrations for morphine or methadone are also taken to 

indicate the presence of increased risk. Consequently all statistical calculations 

were based on two-sided tests. 

3 In a study of 31 methadone overdose victims, Caplehom and Drummer (2002) showed that weight-adjusted 
methadone dose was linearly related to post-mortem methadone blood concentration. 
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4.7 Statistics 

4.7.1 Sample size and power 
The sample size calculation for univariate analyses was based on the method 
described by Machin et al. (1997) in which the anticipated value for the 

correlation coefficient rho (p) served as the estimated effect size. A value for p of 
0.15 was chosen on the basis of correlations between total blood morphine and 

ethanol previously obtained from post-mortem studies (e. g. Ruttenber et al., 
1990). This corresponds to a value for Cohen's d of 0.30 or a `small to medium' 

effect size using Cohen's (1988) qualitative description4. Using tables given by 

Machin et al. (1997), a two-sided sample size calculation with a=0.05, power 1-ß 

= 0.90 and p=0.15 gave a required sample size of 347 cases. Since the maximum 

number of methadone cases that could be used for statistical analyses was 290, it 

should be noted that the power to detect a (two sided) correlation of 0.15 was 
70%. For multiple regression analyses, Maxwell (2000) has shown that sample 

size requirements increase as a function of the number of explanatory variables in 

the model. In the present study this parameter was not known a priori and 

therefore it was decided that all available observations would be used in the 

analyses. 

4.7.2 Statistical distribution of drug concentration data 

4.7.2.1 Distribution of outcome variables 

The possible values for the drug concentrations in post-mortem blood are bounded 

on the lower-value side by the limit of quantification (LOQ) of the analytical 

method, while the high-value end is theoretically open. Drug concentration data of 

this kind are often said to follow a log-normal distribution which is defined as a 

variable x for which log(x) is normally distributed. Figure 4.7 illustrates the 

transformation of total blood morphine and blood methadone from the causative 

and possible groups before and after transformation using the natural logarithm of 

the original observations. Summary measures for log-normal data were reported 

as the geometric mean and co-efficient of variation (cv) as recommended by 

4 To convert between Cohen's d and rho, the formulae d= 2p / 4(1 - p2) was used 
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Julious & Debarnot (2000). These were estimated from the mean (x ) and standard 

deviation (s) of the transformed loge(x) data by exp(x) and exp(s2-1)''' 

respectively. The 95% confidence interval for log-normal distributed data was 

calculated by back-transforming the interval given on the log scale. 

Figure 4.7. Distribution of total morphine (blue) and methadone (green) before (left) and after 
(right) loge transformation. 
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4.7.2.2 Distribution of concomitant substances 

The distribution of concomitant blood concentration data was best described as 

semi-continuous, typically with a spike of observations at zero followed by a 

continuous distribution. An example of this is shown in Figure 4.8 for detections 

of ethanol from heroin overdose fatalities. Where appropriate these explanatory 

variables were transformed, either by log or square-root transformations. 

Concomitant drug variables which were transformed are indicated as such by an 

asterisk at the start of each result section. 

Figure 4.8. Distribution of blood ethanol concentration for n=931 heroin-related 
overdose fatalities. Note scaling of the ordinate axis. 
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4.7.3 Statistical analyses 

4.7.3.1 Descriptive statistics 

0 Qý W ýO 

Where a concomitant was detected alongside heroin or methadone in 1% of cases 

or more, the proportion and 95% confidence intervals were calculated. 

Concomitant drugs detected in less than 1% of the total number of cases were not 

reported as these were considered too infrequent to have a significant aetiological 

role. 
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4.7.3.2 Univariate analyses 

Concomitant substances detected in more than 5% of heroin or methadone 

overdose fatalities were subjected to exploratory univariate analyses. This 5% cut- 

off threshold was arbitrarily selected to reduce the likelihood of large differences 

in the variance of blood morphine/methadone between those with or without a 

positive detection of a particular concomitant. 

To allow comparisons to be made between the present data and previous research, 
the effect of concomitant substances was examined in several ways. Firstly, 

concomitant blood concentration data was treated as a simple binary 0= absent, I 

= present variable. The null hypothesis that the presence of a concomitant does 

not affect total blood morphine or methadone concentration was then tested with 

an independent groups t-test. Secondly, blood ethanol concentration was treated as 

an ordinal categorical variable with arbitrarily selected levels. A one-way analysis 

of variance (ANOVA) was then conducted to test the null hypothesis that total 

blood morphine was equal across the four groups. In the case of statistically 

significant results, parameter estimates for each level were then contrasted to a 

reference category. Finally, two linear regression models were fitted, one with all 

observations and the other limited to cases in which non-zero values of a 

concomitant were detected. 

The effect of the control variables described in section 4.5 was also examined and 

all variables significant at the 5% level were entered into multiple linear 

regression analyses. 

4.7.3.3 Multiple linear regression analyses 

The relationship between log-transformed blood morphine/methadone 

concentrations (the response variable) and concomitant blood levels (explanatory 

variables) after adjusting for other relevant variables was modelled using multiple 
linear regression. Concomitant drug explanatory variables were, in the first 

instance, log-transformed where appropriate and treated as covariates, and then 

left untransformed and recoded into ordinal factors in separate models. This was 
done to: 
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  Simplify interpretation of the estimated coefficients 

  Investigate potential concomitant of ects limited to higher concentration 
ranges 

  Assess interactions between concomitant (and confounding) variables. 

  Overcome potential problems caused by the spike of zero values observed 
in the distributions of the explanatory variables. 

The multiple linear regression model takes the general form: 

Yl = ý0 +P XI 
I+/ 2'x2/ 

+"'ßnxnl + e, (1.0) 

where y, is the response variable (total-morphine or methadone) for the i th 

member of the sample, xil, x2,,..., xw are the set of explanatory variables or 

covariates (for example age, concomitant blood levels of ethanol etc), /iy, /i2,..., 

/1,,, are the regression coefficients (the estimated size of the effect for each 

associated explanatory variable), and c, is the residual or error term for the i th 

observation. In this model the regression coefficients represent the mean change 
in detected morphine or methadone blood concentration for a one unit change in 

the explanatory covariate (with all other explanatory variables in the model held 

constant). 

When considering log transformations for both the response variable and 

explanatory covariates model 1.0 becomes: 

Iob(y) _ /0 +Qi 1og(xu)+ß2loEft2i)+... f3 log(x�) +sr (2.0) 

The interpretation of the regression coefficients now changes; multiplicative 

changes in x1 are associated with multiplicative changes in y. This means that a 
doubling of xi results in y being multiplied by a factor of 2a. Where categorical 

explanatory variables are used the model becomes a semi-log model and therefore 

the regression coefficients are interpreted as representing the mean multiplicative 
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change in y of e -6 between the indicator and reference category. Overall model fit 

was assessed by examining the significance of the F-values following analysis of 

variance (ANOVA). Individual explanatory variables were assessed by calculating 
the 95% confidence intervals for the slope parameter fl. In addition, the R2 statistic 
is reported which describes the amount of variance within the response variable 
that is explained by the collection of explanatory variables within the model. 

A combination of stepwise and manual regression procedures were used to 

identify the best collection of control variables. These variables served as the 

initial model specification and were entered as a single block (Model Ao) into all 

subsequent analyses. Statistically significant concomitant drug variables were 

then entered into the model as a second block. In order to avoid over-specification 
interactions were assessed by creating separate interaction variables based upon 

substantive theory. All regression coefficients were estimated by ordinary least 

squares (OLS) using standard statistical software - STATA version 8.2 (Stata, 

2003) and SPSS for Windows version 14 (SPSS, 2005). 

4.7.3.4 Regression diagnostics 

Several statistical assumptions underlie multiple regression (Berry, 1993). 

Residuals should have a constant variance (homoscedasticity); be independent and 

normally distributed with a mean of zero; the relationship between the response 

variable and explanatory variables should be linear; and there should be an 

absence of multicollinearity (i. e., explanatory variables should not correlate with 

each other perfectly). These assumptions were investigated by assessing the 

residuals scatterplots following the methods described by Tabachnick & Fidell 

(1996). 

4.8 Ethics approval 

NHS research ethics committee approval was not required for this study as the 
data were not collected from within the NHS and had been available publically at 
the Coronial inquest. 
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Methodology of Study 2 

Recent use of benzodiazepines and cocaine as risk factors 
for heroin- and methadone-related overdose: a matched 
case-control study 

Summary 

The present chapter describes the methodology used in two matched case-control 

studies to examine benzodiazepine and cocaine use as risk factors for heroin- and 

methadone-related overdose. The chapter starts with a description of the aims of 

the study and the null hypotheses to be tested. This is followed by a description of 

the study design and the rationale behind its choice. Details are then provided for 

the case and control populations. In the final section of this chapter, the odds ratio, 

as a statistical measure of association, is introduced and the methods used for its 

estimation are described. 
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5.0 Research aims 
The aim of this study is to assess the risk of fatal heroin and methadone overdose 

associated with recent use of benzodiazepines and cocaine after controlling for 

potential confounding by age and sex. 

5.0.1 Specific null hypotheses to be tested 

(i) There is no association between recent use of benzodiazepines and death 

from fatal heroin-related overdose. 
(ii) There is no association between recent use of cocaine and death from 

fatal heroin-related overdose 
(iii) There is no association between recent use of benzodiazepines and death 

from fatal methadone-related overdose. 
(iv) There is no association between recent use of cocaine and death from 

fatal methadone-related overdose 

5.1 Study design 

A matched case-control study was conducted in which individuals who died from 

either a heroin or methadone-related overdose were compared to appropriate control 

groups comprised of living opioid users to determine differences in concomitant use 

of benzodiazepines or cocaine. 

5.1.1 Rationale behind choice of study design 

The choice of design for this study was based upon the following considerations. 
Since an intervention-type study such as a randomised controlled trial could not be 

conducted on ethical grounds, an observational design was sought. Whilst it was 

recognised that a cohort design represented the most rigorous approach for the 

determination of aetiological factors (Woodward, 2005), there were a number of 
difficulties in employing such a design to answer the present research question. 

Firstly, although the annual rate of death from opioid overdose is high in clinical 

terms, from a statistical analysis point of view, with an approximate annual rate of 

around 2%, opioid overdose deaths would be considered rare events. Consequently, 
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to detect even a moderately large difference in risk, a cohort design would require a 

substantial sample size; long follow-up period; or combination of both. Secondly, as 
interest was focussed on assessing the direct risk associated with concomitant use of 
benzodiazepines or cocaine alongside heroin or methadone, collection of drug use 
data would need to occur on a near daily basis, which would be impractical. One 

solution to the cost and inefficiency associated with studying rare outcomes is the 

case-control design used in the present study. 

A case-control design is an analytical epidemiologic method, suitable for 

identifying and quantifying risk factors associated with a particular disease or 

condition (Mann, 2005). Case-control studies, in general, require considerably 

smaller sample sizes than cohort studies to answer the same research question - 

typically around half (Woodward, 2005). And because of the retrospective nature of 

the design, biases related to differential follow-up are avoided. In a case-control 

study, a group of individuals with the outcome of interest (fatal opioid overdose in 

this instance) is compared to a similar group of individuals without this outcome 

with respect to certain factors which are believed to increase (or decrease) the risk 

of the outcome of interest occurring. This design is illustrated for the present study 

in Figure 5.1. Two separate case-control studies were conducted. In the first, a 

group of heroin overdose fatalities was compared to a group of living heroin users 

with respect to a measure of recent use of cocaine and benzodiazepines (urinalysis). 

This procedure was then repeated for methadone overdose fatalities. 

5.1.2 Confounding variables 

An important consideration in the design of any study is the identification and 

treatment of confounding factors. A confounding factor is an independent variable 

that distorts the association between another independent variable and the condition 

under study. For a variable to be confounding, it must therefore be associated with 

the exposure factor and, in itself, be an independent risk factor for the condition. 
Thompson (1994) points out that, within the context of a case-control study, 

uncontrolled confounding results in a biased estimate of the odds ratio with the 

degree of that bias being jointly dependent on the magnitude of the association 
between confounder and exposure, and confounder and disease. Two main 
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approaches exist to control for confounding factors in case-control studies. The 

effects of confounding can be adjusted by multiple regression during the analysis 

stage, or via stratification (matching) at the design stage. The advantage of the latter 

is that inefficiencies due to too many or too few subjects per stratum are avoided 

(Breslow & Day, 1980). Risk estimates are also found to be more precise using this 

method (Freidlander et al., 1993). When used appropriately, matching ensures that 

any differences between cases and controls cannot be due to differences in the 

matching variables (Bland & Altman, 1994). Existing research suggests that age 

and gender may be associated with risk of opioid overdose (Best et al., 2000) and 

independently associated with polydrug use (Darke & Hall, 1995). Gender and age 

were therefore used as matching variables. 

Figure 5.1. Diagrammatic representation of a case-control study to examine the 
influence of exposure factors on risk of opioid overdose (adapted from Petrie & 
Sabin, 2003). 
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5.2 Participants 

5.2.1 Case series 

Heroin and methadone overdose cases were selected from the Department of 
Clinical Chemistry (DCC) database developed for Study 1 (section 4.2). To recap, 

this database contained details of all individuals who died from an overdose 
involving heroin or methadone between 1991 and early 2004 throughout several 

regions of England and Wales. Within this database, there were 624 fatalities for 

whom a definite attribution of heroin overdose was made. Based upon sample size 

calculations described below, a random sample of these fatalities was selected as 

the heroin cases following the procedure outlined in section 5.5. Due to the smaller 

number of methadone deaths available, all 290 fatalities were selected as the 

methadone case series. 

5.2.2 Control series 

The control series were selected from two groups of patients receiving treatment at 

the Primary Care Clinic for Drug Dependence (PCCDD) in Sheffield between June 

1999 and December 2004. The PCCDD is a special-interest general practioner-led 

primary care service which specialises in the treatment of heroin dependence. The 

clinic is based within the North Sheffield Primary Care Trust and receives referrals 
from across the city. Referrals may come from any professional including GPs, 

criminal justice system workers, pharmacists, social workers as well as secondary 

care services. Most of the patients receiving treatment at the PCCDD during the 

data collection period received methadone maintenance treatment with prescribing 

protocols based upon the 1999 UK National Guidelines (Department of Health, 

1999). These recommend urine screening at assessment (prior to the start of 

prescribing treatment) and at regular intervals thereafter. 

Control group members for both heroin and methadone overdose cases were 

randomly selected from anonymised clinic audit lists containing information on the 

age and gender of the patient and their urinalysis results history. Heroin overdose 

controls were newly presenting, untreated, patients who tested positive for heroin at 
their assessment. Controls for the methadone overdose group were methadone 
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maintenance patients who had been in treatment for a minimum of three months 

and who had a positive urinalysis screen for methadone. 

5.2.3 Matching 

Cases and controls were matched on a 1: 1 basis. In order to minimise loss of data, 

matching was set to within (±) 4 years of age. Matching was conducted by hand, 

firstly by randomly ordering the PCCDD patient list within age and gender blocks, 

and then selecting the first individual within the list who fitted the case's matching 

criteria. 

5.3 Exposure variable: recent use of benzodiazepines 
and cocaine 

The measure of recent use of benzodiazepine and cocaine employed in this study 

was positive detection in urine. A summary of the urinalysis screening method 

employed is given in section 4.2.2 and full details are provided in Appendix A. The 

issues surrounding the timeframe for the detection of cocaine and benzodiazepines 

in urine are complex, depending on factors such as chronicity of use, dosage, and, in 

the case of benzodiazepines, type. In general, the following rules of thumb can be 

applied: the cocaine metabolite benzoylecgonine may be detected for two-to-three 

days after administration; short acting benzodiazepines such as triazolam may be 

detected for up to 24 hours; intermediate acting benzodiazepines, such as 

temazepam, are detectable for 40 to 80 hours and long-acting benzodiazepines, such 

as diazepam, may be detected for seven days or more (Wolff et al., 1999). 

Urinalysis data from the cases were obtained directly from post mortem toxicology 

reports linked to the DCC database. To account for rapid ̀ on the end of the needle' 
deaths in which a simultaneously administered concomitant drug may not have had 

time to be excreted into the decedent's urine, blood samples of cases were also 

examined and combined with the urine test results. Separate statistical analyses 

were conducted for urinalysis results only and for combined urine/blood results. 
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Data for the heroin controls were taken from the individual's initial `assessment' 

urine test result which, as part of the study inclusion criteria, was required to be 

positive for morphine. Data for the methadone controls were obtained from the 

urine test results closest to three months after the start of treatment where 

methadone was detected. Urines for the control group of PCCDD patients were 

analysed by the same laboratory as those of the overdose fatalities (The Department 

of Clinical Chemistry at the Royal Hallamshire Hospital, Sheffield) using 
techniques described in section 4.2.2. A positive detection of benzoylecgonine for 

both cases and controls was used to determine evidence of recent use of cocaine. 
This has a longer window of detection than cocaine, which is usually only 
detectable in urine for 6 to 8 hours after administration, and was used as it was more 

consistent with benzodiazepine data. 

5.4 Statistics 

5.4.1 Measures of risk: relative risk and the odds ratio 

The aim of the current study is to estimate to what degree, if any, `exposure' to 

concomitant use of cocaine or benzodiazepines affects the risk of death from heroin 

or methadone overdose. In cohort studies, a group of individuals is followed 

forward in time, with the aim being to study whether exposure to a particular factor 

affects the incidence of the outcome of interest. For such studies, the effect of the 

exposure variable is usually measured by estimating the `relative risk' of the 

outcome occurring. This is the ratio of the probability of developing, in a specified 

period of time, the outcome among those exposed to the risk factor, compared to 

those for whom the risk factor is not present. A relative risk (RR) of 1 indicates that 

the risk is the same in the exposed and unexposed groups (i. e., the exposure factor 

has no effect). If the estimated RR turns out to be statistically greater than 1, then 

this indicates that there is an increased risk of developing the outcome in the 

exposed group, compared to the unexposed group. An estimated RR of less than 1 

indicates a reduction in the risk of developing the outcome in the exposed group. In 

the former example, the exposure factor is referred to as a risk factor whereas in the 

latter it would be considered to be a protective factor. 
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In cohort studies, since individuals are followed longitudinally over time, it is 

possible to directly estimate the risk of developing the condition under study in the 

population by simply calculating the risk in the complete sample taken. Using Table 

5.1, where each box represents frequency counts for a cohort study with a single 
dichotomous exposure factor, let the total number of individuals be denoted by ii, 
then the estimated risk of death is given as: 

Number dying from opioid overdose over the study period 
_a 

+b 
Total number in cohort n 

In the same way, the risk of death for those in the exposed and unexposed groups is: 

risk = 
a+ c 

risk u, "p = bb d 

The estimated relative risk is then simply the ratio of these two values: 

risk ev a /(a + c) Relative Risk =_ 
risk,,. pb 

/(b + d) 

Table 5.1. Observed frequencies from a cohort study with one dichotomous 
exposure factor. 

Exposed to factor 

Concomitant use of 
drugs 

Yes No Total 

Developed Fatal Yes aba+b 
Condition overdose? No cdc+d 

Total a+ c b+ d a+b+c+d=n 

When employing a case-control study design, individuals are selected on the basis 

of their outcome status (disease, event, death etc) and it is, therefore, not possible to 
directly estimate the absolute risk of the outcome occurring. In such instances, an 

alternative measure of risk can be calculated using the odds ratio: 
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Odds Ratio = 
Odds of being a case in the exposed group 

Odds of being a case in the unexposed group 

The odds of an event occurring is defined as the probability that the event occurs 
divided by the probability that the event does not occur. For the exposed group this 
is equal to: 

Probability of being a case in the exposed group 
Probability of not being a case in the exposed group 

If the frequencies in Table 5.1 were derived from an unmatched case-control study 
involving a single dichotomous exposure factor, then the odds of being a case in the 

exposed and unexposed groups would be: 

odds = 
a/(a+c) a 

cxp cl(a+c) c 
odds, = 

bl(b+d) b 
dl(b+d) d 

and the estimated odds ratio: 

_a/c=ad bld be (1.0) 

The standard interpretation of an odds ratio is somewhat less intuitive than that for a 

relative risk. For example, an odds ratio of 1.5 means that the odds of being a case 
in the exposed group are 1.5 times the odds of being a case in the unexposed group. 
However, in studies where the outcome of interest is said to be rare within the 

population, the odds ratio is approximately the same as the relative risk, and so odds 

ratios in the current context have the same interpretation (Hosmer & Lemeshow, 

2000). Thus, an odds ratio of 1 indicates that there is the same ̀ risk' of fatal 

overdose in both the exposed (e. g. those with recent evidence of cocaine use) and 

unexposed groups; whilst an odds ratio of greater than 1 provides evidence that the 
`risk' of fatal overdose is increased for the exposed group. 
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5.4.2 Analysis 

Estimation of the odds ratio using equation 1.0 would result in an estimate which is 

biased towards unity since it does not take into account the matched nature of the 

sample (Breslow & Day, 1980). This is because the cases and controls would be 

more similar to each other than if independent samples had been taken. In effect, a 

matched case-control study design employs very fine stratification in which one or 

more controls are matched to each case according to the case's values on the 

matching variable(s). In this way matching performs the role of enhancing the 

precision with which the effect of a confounding variable can be controlled in 

situations in which the population of case and controls differ substantially in their 

distributions on the confounding variable. Paradoxically, however, matching 
introduces its own form of bias. For example, in a typical matched study with 1: 1 

matching and n case-control pairs, there are only two subjects per stratum. An 

analysis with p covariates would then need to estimate n+p parameters for each of 

the coefficients in the model. Thus, the number of parameters to be estimated 
increases at the same rate as the sample size increases. Breslow and Day (1980) 

show that in a simple model with a single binary covariate and 1: 1 matching, the 

bias in the estimate of the coefficient is 100%. One must therefore take proper 

account of the stratification within matched case-controls during analysis. 

The appropriate method for estimating the odds ratio in a matched case-control 

study with a2x2 contingency table is the Mantel-Haenszel pooled estimate. 
Considering the cell frequencies within Table 5.1 to represent a single stratum i, 

then this estimate is given as: 

1aid! 
nr yip _ (2.0) 

bici 

The standard method for displaying the results from matched case-control studies 

with a single dichotomous exposure is as shown in Table 5.2. In this table the data 
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are arranged so that the cell frequencies represent the results for each of case- 

control pairs. 

Table 5.2. Results from a paired case-control study. 

Control exposed to 
risk factor? 

Case exposed to Yes No the risk factor? 
Yes Cl d, 
No d2 c2 

Each member of the pair can be either exposed or not exposed to the risk factor and 
is either a case or a control, giving four possible outcomes. Where each case-control 

pair shares the same exposure status (ci and c2), they are known as concordant pairs. 
Pairs with different exposures (di and d2) are referred to as discordant pairs. When 

the data are arranged in this way, it can be shown that the Mantel-Haenszel pooled 

estimate takes a particularly simple form, being the ratio of the two discordant pairs: 

- 
d' 

(3.0) 

Confidence intervals (95%) for the odds ratio were constructed using exact methods 

and McNemar's Chi squared (2) test was used to test the null hypothesis that the 

OR=1. All statistical analyses were conducted using the STATA statistical package 

version 8.2 (STATA, 2003). 

5.4.3 Sample size determination 

The sample size calculations for McNemar's test require, along with type II error 

level (a) and power (1-ß), the anticipated odds ratio (w) and the percentage of cases 

that are expected to differ from their controls in terms of their exposure (7r). Based 

on the literature published comparing rates of benzodiazepine use amongst opioid 

users who had recently experienced an accidental overdose and controls (Taylor et 

al., 1996), the aim was to detect an odds ratio of at least yr =2.0, where concomitant 

drug use differs by 20% between cases and controls (7t =20%). Using tables 

published in Machin et at (1997), for a =0.05 and 1-0 =0.90 and these parameters, 
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approximately 350 pairs were required. As the maximum number of methadone 

cases that could be obtained was 290 we note that this analysis would have 75% 

power with these parameters. 

5.5 Selection of heroin cases 
The heroin case series (n=350) was selected at random from the 624 heroin 

fatalities classified as `causative' from Study 1 (section 4.3). This was done using 

the random sample selection function within SPSS for Windows. To verify that the 

extracted sample was representative of the full dataset, age, sex and percentage of 

positive blood detections of benzodiazepines and cocaine were compared between 

the randomly selected cases and the remaining dataset using independent groups t- 

tests and the chi-squared test. 

5.6 Ethics approval 
No NHS research ethics committee approval was required for the control-series data 

as this came from anonomised audit data. This was confirmed with the local 

research ethics committee prior to the start of the study. 
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Results from Study I 

The effect of concomitant drugs on heroin and methadone 
blood levels following fatal overdose 

Summary 

This chapter presents the results from the first of two studies which examine the 

role that concomitant drugs play in fatal heroin- and methadone-related overdose. 
Divided into two sections, the chapter firstly describes the results for the 931 

heroin-related fatalities and is then followed by a similar collection of analyses for 

the 290 methadone fatalities. Each section begins with a description of the sample 

characteristics along with a comparison between the numbers of fatalities included 

in the study and those from national statistics over the same period. Concomitant 

substances detected in more than 1% of fatalities are then described and changes 
in the prevalence for the most commonly detected substances are also explored. 
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Following this, these substances are subjected to detailed statistical analyses, 

using linear regression-based techniques, which will examine the extent to which 

their presence influences the lethality of heroin or methadone in overdose. 
Multiple regression models were estimated to assess the relationship between 

morphine/heroin blood levels and those of concomitant drugs after adjusting for 

other important determinants. The chapter concludes with an overview of the 

main findings. 

6.0 Results for heroin-related fatalities 

6.0.1 Descriptive statistics 

6.0.1.1 Sample characteristics 

Nine hundred and thirty one fatalities in which heroin was considered to have 

played either a causative or suspected role were included in the following 

analyses. These are referred to as ̀ heroin cases' throughout this section. The mean 

age of the sample was 30 years (range 16 to 68), most of whom were male (88%). 

The distribution of cases over the 13-year data collection period is presented in 

Figure 6.1. This shows that the heroin study group was comprised mostly of 

individuals who died during the later years of the study period (78% died between 

1998 and 2003). The number of heroin cases included in the study was compared 

to the total number of drug-related poisoning deaths in which heroin or morphine 

was mentioned on the Coroner's certificate as reported by the Office for National 

Statistics in England and Wales for the period 1993 to 2003 (ONS, 2006). Overall, 

based upon the ONS estimate, cases included in the present study represented 

around 14% of deaths from morphine-related poisonings nationally over this 

period (Figure 6.2). 
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Figure 6.1. Distribution of n=931 heroin-related overdose cases by year 
(Jan - April 2004 not shown). 
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Figure 6.2. Numbers of poisonings due to heroin/morphine poisoning in England and 
Wales 1993 - 2003 (ONS, 2006) and fatalities included in the study over the same period. 
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6.0.1.2 Concomitant drugs: overall detections 

Concomitant substances that were found in more than one percent of heroin 

fatalities are listed in Table 6.1. Ethanol was the most commonly detected 

substance, found in just over half of all cases, followed by diazepam, temazepam, 

methadone and the cocaine metabolite benzoylecgonine. Thirty seven percent of 

all heroin cases involved at least one benzodiazepine and nine percent involved 

either cocaine or its metabolite. Nordazepam, a metabolite common to diazepam 

and chlordiazepoxide was detected in 32% of cases. 

The proportion of cases involving each of the 19 concomitants was similar 

between the two classification groups with the exception of chlordiazepoxide, 

diphenhydramine, methadone and cocaine (plus metabolites) which were all 

detected in slightly higher proportions of `suspected' heroin overdose cases. Over 

80% of the 931 overdose fatalities had at least one of the substances listed in 

Table 6.1 detected at post-mortem. The most frequently detected number of 

substances was two (40% of all cases) followed by four (20%), zero (18%) and 

six (8%). 
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6.0.1.3 Concomitant drugs: study period trends 

In general, the prevalence of concomitant drug detections of these substances 

changed little over the 13 year data collection period. This is shown in Figure 6.3 

for the five most commonly detected concomitant substances. Chi-squared tests 

were used to test for overall differences. Ethanol and methadone detections 

deviated little from their respective overall means of 50% and 10% throughout the 

study period. Cocaine detections remained at a low level for most of the 

observation period but saw a dramatic increase in 2002 from less than 5% to over 
20%. Differences were observed in the respective rates of diazepam and 

temazepam detections which diverged after 1995 with temazepam detections 

falling and diazepam rising. The net effect of this is that the presence of 
benzodiazepines, as a drug class, remained at around 40% for most of the study 

period. 

Changes in the overall extent of concomitant detections in heroin-related overdose 

fatalities between 1991 and 2004 are examined in Figure 6.4 which shows the 

mean number of concomitant substances detected per fatality in each year. Of 

particular interest are differences between earlier and later years since fatalities 

due to heroin overdose increased dramatically during this time nationally. The 

mean number of concomitants rose by close to one between periods 1991-1995 

and 2003-April 2004. This difference was formally tested by treating the mean 

number of concomitant drugs as an outcome variable and fitting a simple linear 

regression model using year as a categorical explanatory variable. Results of this 

analysis are given in Appendix C (Table C7). The parameter estimates from this 

analysis suggest that individuals who died after 2001 had a statistically higher 

number of concomitant substances detected at post-mortem than individuals who 

died in 1991-1995. The F-value for this model also indicates an overall linear 

increase in the mean number of concomitants detected over the 13-year period 

(F8,922 = 2.26, P=0.021). 
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Figure 6.4. Mean number of concomitant drugs detected per case in heroin 
overdose fatalities examined by the DCC laboratory between 1991-1995 and 
2003 - April 2004. Error bars show 95% Cis. 
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6.0.1.4 Morphine toxicology 

Mean blood concentrations for free and total morphine were 297µg/L (cv=1.1) 

and 517pg/L (cv=0.98) respectively. The correlation between log free and log 

total morphine concentrations was 0.80 and the mean ratio of free to total blood 

morphine was 0.62 (sd=0.22). The latter measurement refers to the percentage of 

free morphine detected at post-mortem. 

6.0.2 Univariate analyses 

6.0.2.1 Control variables 

Mean age of the study group increased over the observation period, from 29.23 

years in the period 1991-1995 to 31.82 years in 2003/4 (F8,875=2.218, P=0.024). 

However, age itself was not significantly associated with the log-total morphine, 

either when treated as a continuous or categorical variable. Table 6.2 shows the 

effect of each of the putative control variables on post-mortem log total morphine 
blood concentration. Of the five variables, all except age were significantly 
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associated with the outcome variable. An overall effect was seen for the period in 

which the fatality occurred with parameter estimates suggesting this to be 

specifically due to the years 2000 and 2002. For example, as illustrated in Figure 

6.5, the mean total morphine blood concentration in 2002 was estimated to be 

25% higher than that of the reference period 2003 - April 2004. The ratio of free 

to total morphine was highly correlated with log free morphine levels (p=0.50, 

P<0.001) but only weakly correlated with log total morphine (p=-0.09, P=0.009). 

There was no difference in the mean age between males (30.03, sd=8.04) and 
females (30.40, sd=7.95; P858=0.662. 

Based upon these results, all of the control variables with the exception of age 

were considered for multiple regression analyses. 

Table 6.2. The effect of control variables on log total morphine concentration. 

Variable Categories n 
Mean (cv)/ 
Correlation 

Univariate regression 
results 

exp(ß) P-value 

Age 884 -0.027 1.00 0.416 

<20years 67 509.19 (0.84) - - 
21-32years 520 536.68 (0.84) 1.05 0.548 
33-44years 240 479.14 (0.85) 0.94 0.514 
45years+ 57 569.87 (0.89) 1.12 0.354 

Ratio of free to total 919 086 -0 0 77 0.009 
morphine . . 

Male 802 499.47 (0.96) 
Sex Female 105 645.88 (1.00) 1.29 <0.001 

Period 1991-1995 64 520.38 (0.96) 1.10 0.34 
1996 53 475.05 (0.86) 1.01 0.96 
1997 56 514.51 (0.99) 1.09 0.41 
1998 99 440.67 (1.00) 0.93 0.42 
1999 76 429.98 (0.89) 0.91 0.32 
2000 10 598.14 (1.00) 1.27 0.01 
2001 160 545.13 (0.99) 1.15 0.06 
2002 170 592.49 (0.98) 1.25 <0.001 
2003 - April 2004 141 472.47 (0.98) - - 

Overall effect F=3.52 0.001 

Classification Causative 620 585.69 (0.96) 0.68 <0.001 
Suspected 299 401.15 (1.89) - - 
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Figure 6.5. Mean total morphine levels in each year. Reference line is at 
477µg/L - the mean level of total morphine detected in the period 2003 - April 
2004. 
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6.0.2.2 Concomitant substances 

The effect of the most commonly detected concomitant substances, without 

adjustment for other measured factors, is presented in the following section. The 

number of positive detections of each of these substances, along with summary 

statistics is given in Table 6.3. Positive detection of any anti-depressant 

medication was also examined on the basis that there was substantive evidence of 

a potential effect for this group of substances. 

Table 6.3. Summary statistics for concomitant substances 

No of 
detections 

Median 
(pg/L) IQR Geometric 

mean(pg/L) cV 

Ethanol (mg/dL) 476 110 44 - 185 - - 
Diazepam 313 202 106 - 328 191.32 1.17 

Temazepam 121 155 79 - 376 190.12 1.51 

Methadone 91 160 80 - 317 166.30 1.27 

Benzoylecgonine 63 287 82 - 728 260.40 1.68 

Cocaine 52 36 21 -101 52.84 1.53 

Dihydrocodeine 39 622 245 - 1280 553.89 1.60 
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6.0.2.3 Ethanol 

The correlation between ethanol and total morphine was -0.276 for the whole 

sample and -0.335 when the calculation was based upon a subset of the sample 

with non-zero values for ethanol. Mean concentration of total morphine was lower 

in the presence of ethanol (470pg/L vs. 570µg/L, P<0.001). However, the error 

bar plot in Figure 6.6 suggests that the lethal morphine concentration is only 

reduced when blood concentrations of ethanol are greater than 100mg/dL, after 

which there appears to be a distinct negative linear relationship. The results of a 

one-way ANOVA of these data confirms an overall effect for ethanol (F=23.66, 

df 3,927, P<0.001, R2=0.071). Pairwise contrasts showed statistically significant 

differences between the group of individuals with no evidence of ethanol 

consumption and those with the two higher ethanol concentrations. 

Figure 6.6. The effect of ethanol concentration on geometric mean total 
blood morphine concentration. Error bars represent 95% confidence interval for 
geometric mean. Pairwise contrasts are summarised as: P<0.001 Not 
significant at the 5% level = ns. 
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Results from fitting a univariate regression model to log total morphine are given 
in Table 6.4 for both the whole sample and the subset defined by ethanol >0. A 

scatterplot showing the line of best fit for the latter of these analyses is shown in 

Figure 6.7. In both instances ethanol concentration is a statistically significant 

predictor of total blood morphine. The amount of variance in blood morphine 

explained by ethanol concentration (given by R) is lower when the analysis is 

conducted on the whole sample than when restricted to those with positive 
detections of ethanol. Values of RZ when ethanol was treated as a categorical 

explanatory variable or as a continuous covariate were similar, suggesting that the 
discretisation of the ethanol concentration variable does not result in a significant 
loss of information. The size of the effect for ethanol on total morphine 

concentration is given by the back-transformed parameter estimate (e) shown in 

Table 6.4. This indicates that the estimated fatal level of total morphine is reduced 
by a factor of 0.998 (or 0.2%) for every mg/dL of ethanol detected at post- 

mortem. 

Table 6.4. Univariate regression results for ethanol, diazepam and temazepam 

ANOVA Parameter estimates 

Variable F (df,, df. ) P R2 exp(p) P 

Ethanol (total sample) 76.67 (1,929) <0.001 0.076 0.998 <0.001 

Ethanol (n=476) 60.01 (1,474) <0.001 0.112 0.997 <0.001 

Diazepam (total sample) 0.704 (1,929) 0.402 0.001 0.993 0.402 

Diazepam (n=313) 0.453 (1,311) 0.564 0.002 1.037 0.751 

Temazepam (total sample) 0.788 (1,929) 0.375 0.001 1.011 0.375 

Temazepam (n=121) 0.001 (1,119) 0.974 0.000 0.998 0.974 

df, = regression degrees of freedom; df. = error (residual) degrees of freedom 
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Figure 6.7. Scatterplot of log total morphine against ethanol showing line 
of best fit and 95% confidence interval. 
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There was little evidence of correlation between total blood morphine and 

diazepam (p=0.043; P=0.447) and no difference in its mean concentration 

between those with or without detection this concomitant (501 gg/L vs. 525µg/L, 

t929= l . 
02, /1=0.382). The diazepam concentration was then arbitrarily grouped into 

four levels and its effect on total morphine assessed by a one-way ANOVA (Table 

6.5). Total morphine levels were similar across the four categories and no overall 

effect was detected. Following regression analyses, there was no statistically 

significant effect in evidence for diazepam, either for the whole sample or a subset 

defined by diazepam >0 (Table 6.4). 

The effect of diazepam was also examined for cases in which no ethanol was 

detected. There were 180 individuals in which concomitant detection of diazepam 

was observed in the absence of ethanol. The correlation between total blood 

morphine and diazepam for this group was 0.112 (P=0.136). To account for the 

fact that diazepam and nordazepam have similar pharmacological profiles 

(Dollery, 1999) the effect of the logged sum of their blood concentrations on total 

blood morphine was examined by way of a simple linear regression. The resulting 

109 



parameter estimate (1n[ß]=0.996; CI, 0.980 - 1.012) was not statistically 

significant (P=0.629). 

Table 6.5. ANOVA results for the effect of blood diazepam when treated as a categorical 
variable with four levels. 

Univariate regression results 

Lower 95% Upper 95% 
Level n Mean (cv) R Cl Cl P-value 

No diazepam detected 618 525.34 (0.95) - - - - 
1-200pg1L 156 494.63 (1.08) 0.94 0.84 1.06 0.320 
201-500µg/L 116 514.63 (1.04) 0.98 0.85 1.12 0.763 
501 µg/L plus 41 486.44 (0.87) 0.93 0.75 1.15 0.480 

6.0.2.5 Temazepam* 

There was an almost complete absence of correlation between total blood 

morphine and temazepam for cases in which this concomitant was detected 

(p=0.003, P=0.974). Similarly, there was no relationship between these two 

variables when the analysis was confined to a subset of individuals in which 

temazepam but not ethanol was detected at post-mortem (p=0.081; P=0.476). 

Cases in which temazepam was detected had similar mean blood levels of total 

morphine to those without evidence of temazepam use (512µg/L vs. 545µg/L, 

tfl9=-0.92, P=0.357). The results of one-way ANOVA (F=0.721, df 3,927 

P=0.540) and univariate regression of total morphine on blood temazepam 

confirmed the absence of a relationship between these two variables both for the 

sample as a whole and for observations with concurrent detections of both 

substances (Table 6.4). 

6.0.2.6 Benzodiazepines 

In addition to detections of diazepam, nordazepam (desmethyldiazepam), its 

principal metabolite, was detected in 301 cases with a mean blood concentration 

of 153.49µg/L (cv=1.22). The effect of benzodiazepines was further examined by 

creating a variable based on the summation of blood concentrations of diazepam, 

nordazepam and temazepam. Three hundred and sixty three cases had detections 
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of one of these substances. When summed, the mean concentration of the 

resulting variable was 356.17pg/L (cv=1.30). There was no difference in the total 

morphine concentration between those with or without a positive detection of at 

least one of these substances (511.66µg/L vs. 519.93µg/L, t928=0.354, P=0.724) 

and the correlation between total morphine and this compound variable was 

negligible (p=-0.010, P=0.764). 

6.0.2.7 Methadone, benzoyiecgonine, cocaine, dihydrocodeine 
and antidepressants. 

The four other concomitant substances detected in more than 5% of heroin 

overdose fatalities - methadone, benzoylecgonine, cocaine and dihydrocodeine - 

are summarised in Table 6.3. Due to small numbers of detections for these 

substances, their effects were examined simply by comparing levels of total 

morphine when concomitants were present with when they were absent. The 

results of these comparisons are shown in Table 6.6. With the exception of a 

marginal effect for cocaine there were no statistically significant differences 

found. There was also no difference in the mean concentration between cases with 

or without detection of an anti-depressant (502µg/L vs. 518gg/L, t929=0.365, 

P=0.715). 
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Table 6.6. The effect of concomitant detections of methadone, benzoylecgonine, cocaine 
and dihydrocodeine and fatal morphine concentration. 

Total 
morphine t-test results 

concentration 

Variable Level (n) Mean (cv) 95% cl P-value Lower Upper 

Methadone 

Benzoylecgonine 

Cocaine 

Present (91) 486.76 (1.02) 
-0.079 0.212 0.375 Absent (840) 520.04 (0.98) 

Present (63) 519.57 (1.06) 
-0.167 0.179 0.946 Absent (868) 516.48 (0.98) 

Present (52) 617.75 (1.13) 
0.001 0.378 0.049 Absent (873) 511.24 (0.97) 

Dihydrocodeine Present (39) 588.50 (1.02) 
-0.081 0.371 0.219 Absent (891) 513.75 (0.98) 

6.0.2.8 Regression diagnostics 

A scatterplot of the residuals against fitted (predicted) values following regression 

analysis of the whole sample with ethanol as a single explanatory variable is 

shown Figure Cl of Appendix C. The funnel shape of this figure suggests some 

evidence of heteroscedasticity (violation of the assumption of homogeneity of 

variance) and a small number of outliers. This could not be remedied by 

transformation of ethanol concentration and so this explanatory variable was left 

unchanged. Whilst investigating residual values it was noticed that two of the 

observations were misclassified. Existing inferences were unaffected and these 

classifications corrected for subsequent analyses. 

6.0.3 Multiple regression analysis 

6.0.3.1 Initial model specification: control variables 

Multiple linear regression analysis of the control factors significant at the 5% 

level following univariate analyses was conducted. Regression coefficients for 

sex, year', classification of death and ratio of free to total blood morphine were all 
highly significant (Model Ao, Table 6.7). These variables were therefore included 

I To avoid having to estimate too many parameters, the variable coding for year was collapsed to a binary 
variable representing the period 2000 - 2002 (years in which morphine blood levels were statistically high) and 
the remaining years. 
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in all subsequent models as an initial starting point and together accounted for 

11% of the total variance in blood morphine. 

Table 6.7. Model Ao, estimated coefficients, 95% CIs and t-tests for control variables significant 
following univariate analyses. 

Coefficients 95% Confidence Interval 
for exp(ß) 

Variable exp(p) t statistic P-value Lower Upper 
Bound Bound 

Sex (female) 1.31 4.07 <0.001 1.15 1.49 

Year (2000 to 2002) 1.15 

Classification (Suspected) 0.67 

Free: Total morphine ratio 0.68 

Overall model: F4, aeo=28.70, P<0.001, lip=0.11 

3.15 0.002 1.05 1.25 

-8.54 <0.001 0.61 0.73 

-3.96 <0.001 0.56 0.82 

6.0.3.2 The independent effect of ethanol and cocaine 

Univariate analyses indicated that two concomitant substances influenced post- 

mortem total morphine levels: ethanol and cocaine. The effects of these 

substances after adjusting for the four control variables was assessed by adding 

these variables to model A0. In the first instance (model Al) ethanol blood 

concentration was treated as a covariate whilst in the second (model A3) it was 

included as a categorical factor. In the first of these models ethanol concentration 

and the presence of cocaine were significantly associated with total blood 

morphine, with parameter estimates similar to those observed in univariate 

analyses (Table 6.8). The amount of variance explained by the explanatory 

variables rose to 18% with the addition of these two variables. Since the variable 

`ratio' was not significant within model Ai, this was dropped and the model 

refitted (model A2, Table 6.9). This had a slight effect on cocaine's influence on 

the model which became marginally non-significant at the 5% level. The partial 

correlation between total morphine and ethanol was -0.28. 
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Table 6.8. Multiple regression Model Al - estimated coefficients, 95% Cis and t-tests for control 
variables plus concomitant variables significant following univariate analyses. 

Coefficients 95% Confidence Interval 
for exp(p) 

Variable exp(ß) It statistic P-value Lower Upper 
Bound Bound 

Sex (female) 1.266 3.72 <0.001 1.118 1.434 

Year (2000 to 2002) 1.146 3.28 <0.001 1.056 1.243 

Classification (Suspected) 0.682 -8.37 <0.001 0.624 0.746 

Free: Total morphine ratio 0.868 -1.43 0.152 0.715 1.054 

Ethanol blood concentration 0.998 -8.15 <0.001 0.998 0.999 

Cocaine (Absent) 0.817 -2.19 0.031 0.682 0.979 

Overall model: Fe, u7=32.68, P<0.001, RZ=0.18 

Table 6.9. Multiple regression Model A2 - estimated coefficients, 95% Cis and t-tests for control 
variables (except ratio) plus concomitant variables significant following univariate analyses. 

Coefficients 95% Confidence Interval 
for exp(P) 

Variable exp(ß) t statistic P-value Lower Upper 
Bound Bound 

Sex (female) 1.278 3.86 <0.001 1.128 1.447 

Year (2000 to 2002) 1.154 3.48 0.001 1.064 1.251 

Classification (Suspected) 0.685 -8.65 <0.001 0.629 0.746 

Ethanol blood concentration 0.998 -8.68 <0.001 0.998 0.998 

Cocaine (Absent) 0.843 -1.90 0.058 0.707 1.006 

Overall model: Fs, ea7=38.76, P< 0.001, R2=0.18 

The result of treating ethanol as a categorical factor (model A3) is shown in Table 

6.10. A similar pattern of results was observed but it is noted that, as in univariate 

analyses, the contrast between no ethanol detected (the reference category) and 

ethanol 1- 100mg/dL is not significant. Further contrasts were conducted 

between the second and third levels of ethanol and the third and fourth, both of 

which were statistically significant. The putative interaction between the ethanol 
factor and cocaine was examined by adding an interaction term to model A3, 

however this was not significant at the 5% level (F2,994=2.074, P=0.102). 

Similarly, there was no evidence of an interaction between ethanol level and sex 

(F2,994=0.526, P=0.664). 
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Table 6.10. Multiple regression Model A3 - estimated coefficients, 95% Cis and t-tests for control 
variables plus ethanol and cocaine factors. 

Coefficients 95% Confidence Interval 
for exp(ß) 

Variable exp(ß) t statistic P-value Lower Upper 
Bound Bound 

Sex (female) 1.291 3.995 0.000 1.139 1.464 

Year (2000 to 2002) 1.153 3.451 0.001 1.063 1.250 

Classification (Suspected) 0.688 -8.516 0.000 0.631 0.750 

Ethanol: 1- 100mg/dL 1.271 0.470 0.638 0.927 1.132 

Ethanol: 101-200mg/dL 0.780 

Ethanol: 201 mgldL plus 0.595 

Cocaine (Absent) 0.832 

-4.390 0.000 0.698 0.872 

-7.240 0.000 0.517 0.685 

-2.046 0.041 0.697 0.993 

Overall model: F7,26.93, P<0.001, Rz=0.17 

The overall interpretation of ethanol and cocaine's effects on the post-mortem 

total blood morphine concentration was similar to that following univariate 

analyses except that it now controls for sex, estimated time between heroin intake 

and death occurring (ratio), year effects and uncertainty in the classification of the 

fatality. After adjusting for these variables a 0.2% reduction in the lethal morphine 

concentration was observed for every 1 mg/dL of ethanol detected. The influence 

of cocaine could only be estimated in terms of its presence or absence at post- 

mortem. Here, its effect was only marginally significant but suggests that cocaine 

use is associated with increased levels of total morphine. Those without 

concurrent detections of cocaine had total morphine levels around 16% lower than 

those in whom this substance was detected at post-mortem. 

6.0.3.3 Regression diagnostics 

Inspection of the residuals versus fitted values plot in Figure 6.8 revealed a small 

number of potential outliers. Removal of these resulted in a slightly improved 

overall model fit but did not change inferences in any way. 
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Figure 6.8. Scatterplot of residuals by fitted values following regression model 
A3. Reference lines delineate outliers at P I-0.001 (Tabachnick & Fidell, 1996). 
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6.0.4 Predicting the presence of ethanol 

Males were more likely to have ethanol detected at post-mortem than females 

(53% vs. 37%, respectively) and Figure 6.9 illustrates how this likelihood changes 

with age. This figure suggests that age is also associated with a greater likelihood 

of ethanol involvement but only for males. In a logistic regression analysis with 

ethanol presence as the response variable, age and sex were both significant 

explanatory variables. Adjusted odds ratios for both of these variables are given in 

Table 6.12. Adjusted for age, the odds of ethanol being detected at post-mortem 

were almost twice as high for males as for females. The odds ratio for age after 

controlling for gender indicates that the odds of ethanol being detected at post- 

mortem increases by around 5% for each year of age. The effect of age was 

examined more closely by conducting the analyses separately for males and 

females. This resulted in ORs that were statistically significant for males 

(ORR, =1.05, P<0.001) but not for females (ORc=1.01, P=0.80). 
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Figure 6.9. Line chart showing the relationship between age and likelihood of having 
ethanol detected at post-mortem following a fatal heroin-related overdose for males and 
females. 
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Table 6.11. Logistic regression results, 95% Cls and Wald test 

Coefficients 95% Confidence Interval 
for ORad 

Variable OR� Wald P-value Lower Upper 

Sex (male) 1.982 3.03 0.002 1.274 3.084 

Age 1.048 5.16 <0.001 1.030 1.068 

Overall model: LR x2= 37.83. df=2, P<0.001 

6.1 Results for methadone-related fatalities 

6.1.1 Descriptive Statistics 

6.1.1.1 Sample characteristics 

The majority of 290 methadone-related cases were male (86%) with a mean age of 

30 years (range 16 and 61 years). Most of the individuals in the sample died 

during the periods 1996 - 1999 and 2001 - 2003 (Figure 6.10). Using the total 

number of methadone deaths reported by the Office for National Statistics in 
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England and Wales for years 1993 to 2002 (ONS, 2006) as a denominator, the 

fatalities included in the present study are estimated to represent around 9% of 

national methadone-related deaths over this period (Figure 6.11). 
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Figure 6.10. Distribution of n=290 methadone-related overdose cases by year (2004 not 
shown). 
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Figure 6.11. Number of poisonings due to methadone poisoning in England and 
Wales 1993 - 2002 (ONS, 2006) and fatalities included in the study over the same 
period. 
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6.1.1.2 Concomitant drugs: overall detections 

Five concomitant substances were detected in more than five percent of 

methadone-related fatalities. In order of frequency these were: diazepam, ethanol, 

morphine, temazepam and the cocaine metabolite benzoylecgonine. The 

proportion (±95% CI) of methadone substances in which these and other 

substances were detected is shown in Table 6.13. One or more benzodiazepine 

was detected in 53% of cases and an anti-depressant was detected in 8% of cases. 

With the exception of ethanol, which was detected in a higher number of cases 

classified as causative, there were no statistically significant differences between 

the two classification groups. Overall, 82% of all methadone cases had at least 

one of the 11 concomitant substances listed in Table 6.13 detected at post- 

mortem. The most common number of concomitants was one (38%), followed by 

two (27%), zero (18%) and three (12%). 
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6.1.1.3 Concomitant drugs: study period trends 

Changes in the prevalence of concomitant substances over the data collection 

period are illustrated in Figure 6.12 for the five most commonly detected drugs. A 

steady decline in the prevalence of temazepam has occurred over the past decade; 

from around 40% during the period 1991-1995 to less than 20% in 2003/4. In 

contrast, diazepam detections appear to show cyclic variation, climbing from 32% 

during the period 1991-1993 to around 80% in 2000, before falling once again. 
Overall benzodiazepine detections exhibited slightly less variation in each period, 

ranging between 78% and 50%, with some evidence of a decline in recent years. 
Detections of ethanol rose from 22% in 1991-1995 to 59% in 2001. After this 

point a rapid decline is observed and during the period 2003 - April 2004 only 

18% of methadone-related fatalities involved ethanol. Concomitant detection of 

heroin fluctuated around 20% (±10%) for most of the data collection period but 

has risen in recent years and at the last period of data collection was detected as a 

concomitant substance in 37% of methadone-related overdose deaths. Cocaine 

detections are noteworthy for an almost complete absence up to 2001 followed by 

a steep increase during the last two periods of data collection. 

Figure 6.13 shows the mean number of concomitant drugs detected in methadone- 

related overdose fatalities during each period. There was a general trend towards 

an increase in the mean number of concomitants from 1.34 to 1.76, however as 

the confidence intervals around each mean indicate and an analysis of variance 

confirms, this difference was not statistically significant (F8,282 = 0.87, P=0.544). 
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Figure 6.13. Mean number of concomitant drugs detected per case in 
methadone overdose fatalities examined by the DCC laboratory between 1991 
and April 2004. Error bars show 95% Cis (04* = data up to April 2004). 
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6.1.1.4 Methadone toxicology 

Mean methadone blood concentration was 486.53µg/L (cv=1.51). The lowest 

concentration reported was 109µg/L with the highest reaching 7,060ggfL. This 

latter observation was considered an outlier during preliminary data screening 

and was removed from subsequent analyses. The mean of the methadone data 

then became 482.08pg/L (cv=1.03). 

6.1.2 Univariate analyses 

6.1.2.1 Control variables 

Three of the four control variables were significantly associated with blood 

methadone levels (Table 6.13). Age was positively correlated with methadone 

and as an explanatory variable in regression analyses was associated with a slope 

parameter estimate which suggests that each five-year increase in the age results 

in a 10% increase in the expected fatal methadone blood level. Analysis of age 

as a categorical factor showed a particularly large difference between the 

methadone blood levels of those under 20 years of age and older age groups. 
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There was no difference in age at time of death between males (29.78 years, 
SD=8.95) and females (31.05, sd=9.80; P=0.417). However, mean age at time of 
death did increase over the data collection period, from 27.56 years in 1991-1995 

to 35.36 years in 2003/04 (Fs, 27o=3.46; P=0.001). As in heroin-related fatalities, 

sex was a significant explanatory variable, indicating a 36% expected difference 

between males and females. In contrast to heroin, mean methadone blood levels 

were similar across the data collection period and consequently the period 

variable was not significant at the 5% level. 

On the basis of these findings, age, sex and classification were used as an initial 

model specification in multiple regression analyses. 

Table 6.13. The effect of control variables on methadone blood concentration. 

Variable Categories n 
Mean (cv)/ 
Correlation 

Univariate regression 
results 

exp(ß) P-value 

Age - 279 p=0.22 1.02 <0.001 

<20 years 46 317.87 (0.76) -- 
21 - 32 years 131 502.25 (0.87) 1.58 <0.001 
33 - 44 years 83 541.59 (0.88) 1.70 <0.001 
>45 years 19 573.80 (0.89) 1.81 0.030 

Sex Male 247 461.70 (1.03) 
Female 39 628.95 (1.14) 1.36 0.013 

Period 1991-1995 41 539.26 (0.97) 0.95 0.766 
1996 42 425.67 (0.77) 0.75 0.087 
1997 40 505.36 (1.14) 0.89 0.496 
1998 34 391.08 (0.98) 0.69 0.035 
1999 32 386.87 (1.00) 0.68 0.033 
2000 9 428.90 (0.97) 0.76 0.302 
2001 27 560.81 (1.23) 0.99 0.953 
2002 32 555.16 (1.07) 0.98 0.906 
2003-April 2004 33 566.95 (1.04) - - 

Overall effect Fa. 2a, =1.74 0.128 

Classification Causative 121 690.21 (1.02) 1.85 <0.001 
Suspected 169 372.84 (0.92) - - 

6.1.2.2 Concomitant substances 

Unadjusted analyses of the effect of concomitant drugs detected in more than 

five percent of methadone cases are presented in the following sections. 
Summary statistics for each of these drugs are shown in Table 6.14. 
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Table 6.14. Summary statistics for concomitant substances 

No of Median Geometric 
detections (Ng/L) IQR 

mean(pg/L) cV 

Diazepam 127 236 120 - 435 235.80 1.20 

Ethanol (mg/dL) 96 65 21 -160 - - 
Temazepam 63 401 150-1390 408.50 1.15 

Benzoylecgonine 21 407 103 - 873 285.89 1.29 

Cyclizine 18 1311 371 3105 1086.05 1.15 

Dihydrocodeine 17 795 137-1008 357.84 1.23 

6.1.2.3 Diazepam* 

The correlation between log-transformed diazepam and log-methadone was - 
0.113 (P=0.054) for the whole sample and -0.099 (P=0.270) for the 127 cases 

with non-zero detections of diazepam. The mean methadone concentration was 
higher in the absence of diazepam (514.38µg/L vs. 443.58gg/L) but this 

difference did not reach statistical significance at the 5% level (t288=1.735, 

P=0.084). The effect of different concentration levels of diazepam is shown in 

Table 6.15. Whilst there was a tendency towards lower methadone levels with 

increasing diazepam concentration these differences were not statistically 

significant. Regression analyses for the sample as a whole and for a sub-set of 

cases with concurrent detections of both substances are given in Table 6.16. 

Table 6.15. ANOVA results for the effect of blood diazepam when treated as an ordinal 
categorical explanatory variable with four levels. 

Univariate regression results 

Lower 95% Upper Level n Mean (cv) Cl 95% Cl P -value 

No diazepam detected 163 514.38 (1.03) - - - 
1-2004L 53 467.46 (1.11) 0.91 0.73 1.14 0.403 
201-500pg/L 38 423.07 (0.97) 0.82 0.64 1.06 0.135 
501 µg/L plus 36 431.67 (0.96) 0.83 0.65 0.84 0.189 

Overall effect - F=1.163, df=3,286 P--0.324, R2=0.012 
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Table 6.16. Univariate regression analysis results for diazepam, ethanol, morphine and 
temazepam. 

ANOVA Parameter estimates 

Variable F (dfr, df. ) P R2 exp(p) P 

Log-Diazepam (total sample) 3.74 (1,288) 0.054 0.013 0.971 0.054 

Log-Diazepam (1>0) 1.23 (1,125) 0.270 0.010 0.924 0.270 

Ethanol (total sample) 10.28 (1,288) 0.001 0.034 0.998 0.001 

Ethanol (1>0) 14.94 (1,95) <0.001 0.137 0.997 <0.001 

Morphine (total sample) 3.06 (1,288) 0.081 0.000 1.001 0.081 

Morphine (1>0) 9.11 (1,66) 0.004 0.121 1.003 0.004 

Log-Temazepam (total sample) 13.26 (1,288) <0.001 0.044 1.06 <0.001 

Log-Temazepam (1>0) 12.14 (1,61) 0.001 0.166 1.26 0.001 

df, = regression degrees of freedom; df. = error (residual) degrees of freedom 

6.1.2.4 Ethanol 

Ethanol concentration significantly affected the lethal methadone level in both 

samples (Table 6.16). This is illustrated for the restricted sample (ethanol >0) in 

Figure 6.14. Table 6.17 shows the mean methadone blood concentration 

according to the four levels of ethanol specified in previous analysis of heroin- 

related fatalities along with the results of a one-way analysis of variance of these 

data which was significant at the 5% level. Inspection of the parameter estimates 

from this analysis suggests that an effect for ethanol is present only at the highest 

level (blood concentrations greater than 200gg/L). The back transformed 

parameter estimate (or contrast) for the difference between this level and the 

reference category (no ethanol) indicates an estimated reduction in the lethal 

morphine level of 36% (95% CI=10% - 45%). The contrast between the second 

level of ethanol (1 xg/L - 100gg/L) and the highest level was also statistically 

significant (eß=0.55; 95% CI, 0.38 - 0.80; P=0.002). 
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Table 6.17. ANOVA results for the effect of blood ethanol when treated as a categorical 
explanatory variable with four levels 

Univariate regression results 

Lower 95% Upper 
Level n Mean (cv) Cl 95% Cl P-value 

No ethanol detected 194 485.90 (0.99) - - - - 1-100mg/dL 60 565.90 (1.08 1.16 0.95 1.43 0.149 
101-200mg/dL 17 407.09 (1.21) 0.84 0.59 1.20 0.327 
201 mg/dL plus 19 311.89 (0.87) 0.64 0.45 0.90 <0.001 

Overall effect - F=3.694, df=3,286, P=0.012 

Figure 6.14. Scatterplot of log methadone against ethanol where ethanol > 0, 
showing line of best fit and 95% confidence intervals. 
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6.1.2.5 Morphine 

There were no differences in mean methadone levels between individuals with 

(476µg/L, cv, 1.00) or without (484µg/L, cv, 1.04) positive detections of 

morphine (t288 0.0.161, P=0.872). However, methadone concentration was 

greatly increased for the small group of individuals with morphine detected at 

levels greater than 201 µg/L (Table 6.18), for whom there was an estimated 85% 

increase in blood methadone concentration. Treated as a continuous covariate in 

regression analysis, the effect for morphine was only evident when the analysis 
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was conducted on individuals with values of morphine greater than zero (Table 

6.16). Under this condition, each unit of morphine detected (i. e., every 1µg/L) 

was associated with a 0.3% increase in post-mortem methadone concentration. 

Table 6.18. ANOVA results for the effect of blood morphine when treated as a categorical 
explanatory variable with three levels. 

Univariate regression results 

Level n Mean (cv) Exp(ß) 
Lower 95% Upper P-value cl 95% cl 

No morphine detected 222 483.92 (1.04) ---- 
1-200µg/L 58 427.62 (0.94) 0.88 0.72 1.09 0.242 
201µg/L plus 10 888.09 (1.07) 1.85 0.46 2.89 0.009 

Overall effect - F=4.470, df=2,287, P=0.012 , R2=0.027 

6.1.2.6 Temazepam* 

Mean concentration of methadone was higher when temazepam was present 

(609gg/L; cv, 1.03) than when absent (452pg/L; cv, 1.02) and this difference 

was statistically significant following an independent groups t-test (t288 0.294, 

P=0.004). The results of treating temazepam as a categorical factor with three 

levels are reported in Table 6.19. Whilst similar levels of methadone were found 

in individuals with no temazepam detected compared low quantities (1- 

800gg/L), the highest category was associated with dramatically elevated levels. 

At levels of temazepam greater than 801gg/L, methadone concentrations were 

estimated to be double those found in decedents without positive temazepam 

detection. Temazepam levels were also significantly associated with methadone 

blood concentration following linear regression analysis (Table 6.16) both for 

the sample as a whole and for a smaller group with positive detections for 

temazepam (Figure 6.15). Because the explanatory variable is now on a log- 

scale, the interpretation of the parameter estimates is slightly different to 

previous examples. For example, for the sample as a whole, the back 

transformed coefficient in Table 6.16. is given as 1.06 - one interpretation of 

which is that for every two-fold increase in temazepam, methadone levels are 

increased by a factor of 2x (1.06), or 12%. 
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Table 6.19. ANOVA and parameter estimates for the effect of blood temazepam when treated 
as a categorical explanatory variable with three levels. 

Univariate regression results 

Level n Mean (cv) Exp((3) 
Lower 95% Upper 

P-value cl 95% CI 

No temazepam detected 227 451.77 (1.02) ---- 
1-800Eig/L 40 485.46 (0.94) 1.07 0.85 1.36 0.550 
801 1. tg/L plus 23 904.14 (1.02) 2.00 1.48 2.71 <0.001 

Overall effect - F=10.22, df=2,287, P<0.001 
, 

R2=0.066 

Figure 6.15. Scatterplot of log methadone against log temazepam showing 
line of best fit and 95% confidence intervals. 
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6.1.2.7 Benzoylecgonine, cyclizine, dihydrocodeine and anti- 
depressants 

Post mortem levels of methadone in the presence and absence of 

benzoylecgonine, cyclizine and dihydrocodeine are displayed in Table 6.20 

which also shows 95% CIs for the difference between the two levels and 

associated significance tests. Mean methadone levels were significantly higher in 

the presence of cyclizine but unaffected by either benzoylecgonine or 

dihydrocodeine. There was no difference in the mean concentration between 
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cases with or without detection of an anti-depressant (502µg/L vs. 518µg/L 

respectively; P=0.370). 

Table 6.20. Summary statistics for concomitant detections of benzoylecgonine, cyclizine and 
dihydrocodeine in methadone related fatalities. 

Methadone 
concentration t-test results 

(µg/L) 

Variable Level (n) Mean (cv) 95% Cl P-value Lower Upper 

Benzoylecgonine Present (21) 
Absent (269) 

Cyclizine Present (18) 
Absent (272) 

Dihydrocodeine Present(17) 
Absent (273) 

468.36 (0.91) 
-0.354 0.292 0.850 483.17 (1.04) 

1042.99 (1.01) 0.489 1.157 <0.001 458.08 (1.00) 

396.19 (0.97) 
-. 0559 0.142 0.250 488.01 (1.03) 

6.1.2.8 Regression diagnostics 

Scatterplots of the residuals versus fitted values are shown in Appendix C, 

Figure C8 for the three univariate analyses that were statistically significant. 

These did not indicate any areas of concern. 

6.1.3 Multiple regression analysis 

6.1.3.1 Initial model specification: control variables 

Regression coefficients for age, sex and classification were all significant in the 

initial model (model Ao, Table 6.21) with parameter estimates close to those 

provided from univariate analyses. There was no evidence of any interactions 

between these three variables (output not shown). The three control variables 

were therefore included in all subsequent models as an initial model 

specification and together accounted for 24% of the total variance in blood 

methadone. 
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Table 6.21. Multiple regression Model Ao - estimated coefficients, 95% CIs and t-tests for control 
variables significant following univariate analyses. 

Coefficients 95% Confidence Interval 
for exp(p) 

Variable exp(ß) t statistic P-value Lower Upper 
Bound Bound 

Age 1.02 4.06 <0.001 1.01 1.03 

Sex (female) 1.24 1.99 0.047 1.00 1.55 

Classification (Causative) 1.89 8.15 <0.001 1.62 2.21 

Overall model: F3,272=30.36, P<0.001, RZ=0.243 

6.1.3.2 The independent effect of ethanol and temazepam 

Following univariate analyses, ethanol and temazepam concentrations were 

shown to be significantly associated with lethal methadone level. Cyclizine was 

also associated with methadone levels when considered in terms of its presence 

or absence and these variables were therefore selected for multiple regression 

modelling. Diazepam was also included as its effects on the whole sample were 

close to significance at the 5% level following univariate regression (P=0.054). 

Morphine was not selected for inclusion as it only affected methadone blood 

levels when the analysis was limited to positive detections of morphine and this 

condition would not be satisfied in multiple regression models. 

The effects of ethanol, temazepam, diazepam and cyclizine after adjusting for 

the three control variables are examined separately (i. e., without other 

concomitant substances in the model) in Table 6.22. Statistically significant 

effects remained for each of the concomitant variables with the exception of 
diazepam (eß=0.981, P=1.93). The back-transformed beta coefficients for each of 

other concomitants were similar to those from univariate analyses. 
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Table 6.22. Multiple regression of the four concomitant substances significant in univariate 
analyses - estimated coefficients, 95% Cls and t-tests for concomitant when added to model 
Ao separately. 

Coefficients 95% Confidence Interval 
for exp(p) 

Variable exp(p) t statistic P-value Lower 
Bound 

Upper 
Bound 

Ethanol 0.997 -4.76 0.001 0.996 0.999 

Log temazepam 1.053 3.45 <0.001 1.022 1.084 

Log diazepam 0.981 -1.30 0.193 0.955 1.009 

Cyclizine (present) 1.868 4.057 <0.001 1.379 1.024 

Model Al, shown in Table 6.23, shows the results following multiple regression 

analysis in which all of the above concomitant substances were simultaneously 

entered into the model. Whilst the general pattern of results remain similar to 

previous univariate models, the effect of temazepam and cyclizine appear 

moderated to the extent that the parameter estimate for temazepam is no longer 

significant at the 5% level (P=0.052). The reason for this appears to be because 

these two variables are moderately correlated with each other (the point biserial 

correlation was 0.38). Since the aim of the analyses was to examine the effects of 

concomitants rather than explicitly produce a prediction model and given the 

greater extent to which temazepam is detected, cyclizine was dropped and the 

model refitted. In the resulting model, the parameter estimate for temazepam was 

1.046 (95% CI, 1.017 - 1.077, P=0.012). 
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Table 6.23. Multiple regression Model A, - estimated coefficients, 95% Cls and t-tests for 
control variables plus concomitant variables significant following univariate analyses. 

Coefficients 95% Confidence Interval 
for exp(ß) 

Variable exp(ß) t statistic P-value Lower Upper 
Bound Bound 

Age 1.017 4.07 0.000 1.009 1.025 

Sex (female) 1.235 2.03 0.044 1.006 1.516 

Classification (Causative) 1.852 8.32 0.000 1.601 2.143 

Ethanol 0.998 -4.37 0.000 0.997 0.999 

Log temazepam 1.031 1.95 0.052 1.000 1.063 

Log diazepam 0.998 -1.72 0.086 0.952 1.003 

Cyclizine (present) 1.504 -2.52 0.012 0.483 0.915 

Overall model: F7, x=21.15, P<0.001, R2=0.356 

The effect of specific levels of ethanol and temazepam was examined by treating 

these variables as categorical factors in Model A2 (Table 6.24). Main effects 

were significant for both of these factors. As in univariate analysis, the parameter 

estimates for temazepam indicate the presence of an effect when the highest and 
lowest levels are contrasted but not between the middle and lower levels. The 

former of these effects appears slightly moderated after controlling for other 

variables in the model. In contrast, a slightly stronger effect for ethanol was 

observed in comparison to univariate analyses. Whereas only levels of ethanol 

greater than 201mg/dL showed significant effects in earlier analyses, levels 

greater than 101mg/dL were also associated with lower post-mortem methadone 

concentration after controlling for other variables within model A2. From these 

results, it can be stated that, individuals with ethanol levels between 101mg/dL 

and 200mg/dL would be expected to have median post-mortem methadone 

concentrations around 30% lower than those without concurrent detection of 

ethanol, whilst methadone levels around 40% lower would be expected in those 

with ethanol levels greater than 201 mg/dL. 
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Table 6.24. Multiple regression Model A2 - estimated coefficients, 95% Cis and t-tests for control 
variables plus temazepam and ethanol factors. 

Coefficient 95% Confidence Interval 
for exp(p) 

Variable exp((3) t statistic P-value Lower Upper 
Bound Bound 

Age 1.02 4.12 <0.001 1.01 1.03 

Sex (female) 1.29 -2.40 0.017 1.05 1.59 

Classification (Causative) 1.87 -8.33 <0.001 1.61 2.17 

Ethanol (F3,267=6.13 P<0.001) 

No ethanol detected - - - - - 

1-100mg/dL 1.05 0.50 0.617 0.87 1.26 

101-200mgldL 0.70 -2.21 0.028 0.51 0.96 

201 mg/dL plus 0.58 -3.62 <0.001 0.43 0.78 

Temazepam (Fzn? =7.19, P=0.001) 

No temazepam detected - - - - - 

1-800µg/L 1.06 0.54 0.592 0.86 1.31 

801 µg/L plus 1.67 3.79 <0.001 1.28 2.18 

Overall model: F7. ß=20.17, P<0.001, R2=0.345 

Differences observed in parameter estimates for the ethanol and temazepam 

factors, compared to univariate analyses (sections 6.1.2.4 and 6.1.2.6), suggested 

a possible interaction between these and one or more of the control variables. 

This is illustrated in an interaction plot of the empirical mean log morphine 

levels at each level of ethanol for males and females (Figure 6.17). Two-way 

interactions for the two concomitant factors and the control variables were 

investigated by adding interaction terms to model A2. To ensure a degree of 

parsimony each interaction was assessed as a separate contribution to model A2. 

None of the interactions were significant at the 5% level (Table 6.25), however, 

the interaction between ethanol level and gender suggested by Figure 6.17 was 

significant at the 10% level. 
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Figure 6.16. Interaction diagram showing the effect of increasing levels of ethanol 
on the mean log methadone concentration for males and females 
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Table 6.25. Main effects for the putative interaction between control variables and 
temazepam/ethanol 

ANOVA 

Interaction term F df P-value 

Temazepam factor 
Age 1.239 6 0.287 
Sex 1.544 2 0.215 
Classification 0.293 2 0.746 

Ethanol factor 

Age 1.024 9 0.421 
Sex 2.018 3 0.073 
Classification 1.202 3 0.310 

6.1.3.3 Regression diagnostics 

Residuals from model A, are shown show in the scatterplot in Figure 6.18. There 

was no evidence of any violation of the assumptions underlying multiple linear 

regression from plots of the residuals versus fitted values. 
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Figure 6.17. Scatterplot of residuals by fitted values following 
regression model A,. 
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6.1.4 Predicting the presence of ethanol and temazepam 

A higher proportion of females were found to have positive detections for 

temazepam than males (31% vs. 20%). However, neither sex nor age was 

significantly associated with the presence of ethanol or temazepam in logistic 

regression models of these two outcomes (Table 6.26). 

Table 6.26. Logistic regression results for the association between demographic 
characteristics and presence of ethanol and temazepam, 95% Cls and Wald test. 

Coefficients 95% Confidence Interval 
for OR. d 

Variable OR, Wald test P-value Lower Upper 
bound bound 

Outcome= positive ethanol detection 
Sex (male) 1.011 0.001 0.975 0.490 2.086 
Age 1.023 2.663 0.103 0.995 1.052 

Outcome = positive temazepam detection 
Sex (male) 0.602 1.741 0.187 0.283 1.279 

Age 1.023 2.132 0.144 0.992 1.055 
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6.2 Summary of main findings 

6.2.1 Heroin-related fatalities 

  From an initial search of over 100 concomitant substances, 19 were 

detected in more than 1% of heroin-related overdose fatalities. Of these, 

only six were detected in more than 5% of cases. 

  These were ethanol (51%), diazepam (34%), temazepam (13%), 

methadone (10%), the cocaine metabolite benzoylecgonine (7%) and 

cocaine itself (6%). 

  With the exception of cocaine, the presence of these substances in heroin- 

related overdose fatalities changed little over the data collection period. 

  Concomitant detection of cocaine increased dramatically after 2001, to 

the point where, in 2003/4, it was the third most commonly detected 

concomitant after ethanol and diazepam. 

  Whilst in the earlier periods of data collection, diazepam and temazepam 

were detected in similar proportions, diazepam was much more likely to 

be detected in later years. The overall effect of this was to keep the 

prevalence of benzodiazepines fairly stable at around 40% in any given 

year. 

 A statistically significant increase in the number of concomitants 
detected at post-mortem was observed over the data collection period. 
The mean number of concomitants rose from just over two to three. 

  Post-mortem total morphine levels in males were estimated to be around 
30% lower than in females. 

137 



  The zero order correlation between total morphine and ethanol was -0.28 
for the entire sample and ethanol was found to be statistically associated 

with decreased levels of total blood morphine both in univariate and 

multivariate regression analyses. 

  The lethal concentration of total morphine was estimated to be reduced 
by 16% with ethanol blood concentrations at the UK drink-drive limit 

(80mg/dL). In other words, for every unit of alcohol consumed the lethal 

morphine concentration was reduced by 8%. 

  Statistically significant reductions in total blood morphine levels were 

only observed at ethanol concentrations greater than 100mg/dL. 

 A 40% reduction in the lethal morphine level is expected in decedents 

with ethanol blood concentrations greater than 201mg/dL. 

  Males were almost twice as likely to have ethanol detected at post- 

mortem than females. 

  The likelihood of ethanol being detected at post-mortem increased with 

age (OR=1.05, P<0.001) but only for males. 

  No effect was found for the benzodiazepines diazepam and temazepam 

either when considered separately or as a combined variable. 

  Presence of methadone, benzoylecgonine or dihydrocodeine did not 

affect mean total-morphine levels, suggesting an absence of effect for 

these substances. 

  Some evidence was found for increased levels of total morphine in the 

presence of cocaine. 
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6.2.2 Methadone-related fatalities 

  Eleven concomitant substances were detected in more than 1% of 

methadone-related overdose fatalities. 

  Diazepam was the most commonly detected substance (44%), followed 

by ethanol (33%), morphine (23%), temazepam (22%) and the cocaine 

metabolite benzoylecgonine (7%, 5% - 11%). These were the only 

substances detected in more than 5% of methadone cases. 

  One or more benzodiazepines were detected in 53% of cases (95% Cl = 

47%-59%). 

  Detection of temazepam fell from over 40% at the start of the data 

collection period to less than 20% during the period 2003/2004. The 

same period saw a rapid rise in the percentage of methadone fatalities 

involving diazepam - from 30% in 1991/1995 to almost 80% during 

2000. A similar, albeit less dramatic rise in ethanol detections was also 

seen during this time. 

  There was evidence of a decline in the involvement of ethanol and 

diazepam during the last two periods of data collection. However these 

periods also saw an increase in concomitant detections of cocaine (up to 

30% in the periods 2002 - 2004), which until later periods had been 

absent from methadone-related post-mortem data. 

  The mean number of concomitants detected in methadone-related 
fatalities rose slightly over the 14-year data collection period from 1.34 to 
1.76 but this difference was not statistically significant. 

  Post-mortem total methadone levels were estimated to be around 36% 

lower in males than in females. 
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  Age was moderately correlated with methadone blood levels (p=0.22) 

and as an explanatory variable in regression analyses associated with a 
10% increase in the fatal methadone blood level every for every five-year 

increase. 

  After controlling for age and gender effects, ethanol reduced the post- 

mortem methadone concentration by the same factor as for heroin 

fatalities (2% per mg/L of ethanol), i. e., 16% with ethanol blood 

concentrations of 80mg/dL. 

 A statistically significant reduction in post-mortem methadone blood 

levels was only observed at ethanol concentrations greater than 

100mg/dL. 

  There was some evidence that the effect of ethanol differed between 

males and females. The mean methadone level in female decedents was 

more affected the presence of ethanol it was for males. 

  Presence of benzoylecgonine or dihydrocodeine did not affect methadone 
levels, suggesting an absence of effect for these substances. 

  Diazepam was associated with decreased levels of methadone but its 

effect was model dependent and only significant at the 10% level. 

  In contrast, temazepam was associated with increased levels of 

methadone. After controlling for presence of ethanol, age and gender, 

two-fold increases in temazepam were associated with a 10% increase in 

the median methadone level. 
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Results from Study II 

Recent use of benzodiazepines and cocaine as risk factors 
for fatal heroin- and methadone-related overdose: a 
matched case-control study 

Summary 

This chapter presents the results of two case-control studies conducted to assess 

the risk of fatal heroin- and methadone-related overdose associated with the use 

of benzodiazepines and cocaine. Study results are presented separately for each 

opioid and begin with a description of the characteristics of the sample and the 

results of matching. Odds ratios estimating the size of the effect are then 

presented along with associated hypothesis tests. The latter provide a test of the 

null hypothesis that use of either concomitant has no effect on the risk of fatal 

opioid overdose. To allow for possible confounding by period, odds ratios were 

re-calculated using a subset of the sample. 
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7.0 Part One: Estimation of the risk of fatal heroin- 
related overdose in association with recent use of 
benzodiazepines and cocaine 

7.0.1 Sample characteristics and matching 

Suitable matches from the Primary Care Clinic for Drug Dependence (PCCDD) 

computerised audit records were found for 330 of the 350 heroin-related fatalities 

identified from the Department of Clinical Chemistry (DCC) database (94%). Of 

these, 242 were matched to within one year of age (73% of the sample), 61 to 

within two years (cumulatively 92% of sample), 26 within three years and I 

within four years. The 20 individuals for whom no matches could be found were 

similar to the remaining sample with respect to rates of detection of 

benzodiazepines and cocaine. Median age of the 330 heroin overdose fatalities 

was 29 years with a range from 18 to 54 years. Eighty nine percent were male. 

The distribution of age by sex (the two matching variables) for the sample is 

shown in Figure 7.1. 

Figure 7.1. Distribution of age by gender for the matched sample of heroin 
overdose fatalities (296 males, 34 females). 
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To verify that the extracted sample was representative of the full dataset, a 

comparison was made between the 330 randomly selected cases that were 

successfully matched and the remaining 294 heroin-related fatalities from the 

DCC database. Age, sex, and the percentage with positive blood detections of 
benzodiazepines or cocaine were similarly distributed between the two groups 
(Table 7.1). 

Table 7.1. Comparison between the randomly selected cases from the DCC database 
and the remaining sample. 

Cases Remaining 
Variable 

nä330 
fatalities 

statistic 
P-value 

n=264 

Mean age (sd) 30.18 30.41 t591=0.357 0.721 (7.59) (8.00) 

Sex -% male 89.7 89.0 x, =0.085 0.771 

% positive for benzodiazepines in 
blood 36.7 34.0 x1=0.478 0.489 

% positive for cocaine in blood 6.1 8.8 x1=1.763 0.184 

Post mortem mean free and total morphine levels for the 330 matched cases were 

374µg/L (cv=0.91) and 578pgfL (cv=0.91) respectively. Where detected in blood 

(108 cases), the mean diazepam concentration was 216µg/L (cv=1.14). 

Temazepam positive cases (n=47) had mean blood levels of 217µg/L (cv=1.58). 

Chlordiazepoxide was the only other benzodiazepine detected. This drug was 

found in two cases with concentrations of 871µg/L and 32µg/L. Twelve cases 

had cocaine detected in their blood at post mortem with a mean concentration of 

48µg/L (cv=1.52). Urinalysis data was available for 271 of the 330 cases. 

7.0.2 Risk of fatal heroin overdose associated with recent use 
of benzodiazepines 

As shown in Table 7.2, recent benzodiazepine use, as evidenced by positive 

urinalysis detection, was observed in 48 percent of the heroin overdose fatalities. 

Where both urine and blood samples for cases were simultaneously considered 
for evidence of recent benzodiazepine use, the proportion rose slightly to 51 
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percent. By comparison, 26 percent of the control group had urines which were 

positive for benzodiazepines. 

Table 7.2. Proportion of fatal heroin overdose cases and matched 
controls with recent benzodiazepine use as evidenced by (A) positive 
urinalysis detection, and (B) both positive urinalysis and blood detection. 

Controls Cases Cases 
A A B 

Yes 25.8 48.3 50.9 
Recent use of 
Benzodiazepines? 

No 74.2 51.7 49.1 

A summary reflecting the matched nature of the data is shown in Tables 7.3a and 
7.3b. Frequency counts for the matched pairs are given in each cell showing the 

number of pairs in which both case and control displayed evidence of recent 
benzodiazepine use (+ +); the case but not the control was positive for 

benzodiazepines (+ -); the control but not case was positive for benzodiazepines 

(- +); and neither case nor control tested positive for benzodiazepines (- -). The 

Mantel-Haenszel estimate of the odds ratio (approximate relative risk) is also 

given in this table, along with exact 95% confidence intervals and a test of the 

null hypothesis that the odds ratio (OR) is equal to one (McNemar's x). 

Table 7.3a shows the results of a comparison between the urinalysis results for 

cases and controls. In Table 7.3b both urine and blood results were used as 

evidence of recent benzodiazepine use. The principle interest in these tables is 

the two discordant cell frequencies (+ -) and (- +). In the comparison using only 

urinalysis data it can be seen that 94 of the cases tested positive for 

benzodiazepines when their matched control tested negative and 39 of the 

controls tested positive for benzodiazepines when their matched case tested 

negative. The ratio of these two numbers is the Mantel-Haenszel estimate of the 

odds ratio which in this instance is given as 2.41 with an exact confidence 
interval of 1.64 - 3.60. The probability of observing this odds ratio under the null 
hypothesis is given as <0.001 by McNemar's Chi-squared test. To account for 

rapid deaths in which benzodiazepines may not have had time to be excreted into 

the urine, both urine and blood results for cases were examined simultaneously 
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(Table 7.3b). Using this data, the estimated risk of fatal overdose associated with 

benzodiazepine use increased slightly to 2.67 (95% CI=1.81 to 4.01, X2=28.26: 

P<0.001). 

Table 7.3a & 7.3b. Frequency counts and odds ratios for the risk of fatal heroin overdose associated 
with recent benzodiazepine use (n=271 matched pairs). A comparison of urinalysis results is shown in 
Table A. In Table B both urine and blood results were used to determine evidence of recent 
benzodiazepine use for the cases whilst controls used urine data only. 

A Controls 

Cases 
+ 37 94 

- 39 101 

OR = 2.41: 95%Cl1.64-3.60 

x2 = 22.74, (P<0.001) 

B Controls 

Cases 
+ 39 99 

- 37 96 

OR=2.67: 95%C11.81 -4.01 
x2 = 28.26, (P<0.001) 

7.0.3 Risk of fatal heroin overdose associated with recent use 
of cocaine 

Recent cocaine use was seen in 41 percent of controls compared to 16 percent of 

heroin overdose fatalities (Table 7.4[A]). No additional positive detections of 

cocaine were seen when the post mortem blood results for the cases were also 

considered (Table 7.4[B]). The matched-pair frequency counts for the four 

possible outcomes are shown in Table 7.5. Examination of the discordant pairs 

shows that 25 cases tested positive for cocaine when their matched control tested 

negative whilst 95 of the controls tested positive for cocaine whilst their matched 

case tested negative. In contrast to benzodiazepines, therefore, the odds of fatal 

heroin overdose were decreased for those with evidence of recent use of cocaine 

(OR=0.26,95% CI = 0.16 - 0.4 1, x2=40.83: P <0.001). 
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Table 7.4. Proportion of fatal heroin overdose cases and matched 
controls with recent cocaine use as evidenced by (A) positive 
urinalysis detection, and (B) both positive urinalysis and blood 
detection. 

Controls Cases Cases 
AB 

Recent use of 
Yes 40.6 15.5 15.5 

Cocaine? 
No 59.4 84.5 84.5 

Table 7.5. Frequency counts and odds ratio for risk of 
fatal heroin overdose associated with recent cocaine use 
(n=271 matched pairs). 

Controls 

Cases 
+ 17 25 

- 95 134 

OR = 0.26: 95% Cl 0.16-0.41 

x2 = 40.83, (P<0.001) 

7.0.4 Post hoc adjustment for period effects 

The results from Chapter 6 suggested that the rate of detection of concomitant 

substances in heroin and methadone overdose deaths has been subject to changes 
during the 13-year period over which data for the present study was collected. In 

particular there was evidence that the rate of cocaine detections rose dramatically 

during the period 2001 to 2004. An attempt was therefore made to allow for the 

possibility of confounding by year of urinalysis test. 

To adjust for possible period effects, the analysis described above was repeated 
by limiting the data to only those pairs in which the case had died during the 

same period that the urinalysis data had been collected for the controls (1999- 

2004). Odds ratios for the effect of benzodiazepines and cocaine for this subset 

of observations are given in Table 7.6. These were found to be similar to those 

obtained for the full sample. It was possible to obtain the specific date of the 
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urinalysis test for a small number of controls (n=144). Frequency counts for 

these controls and their case-partner were similar in each of the six year periods 

(Table 7.7) and there were no statistically significant differences between the two 

groups ()? =5.37, df-5, P--0.372). When repeating the analyses on this subset of 

data it was found that the odds ratio for the risk of death associated with recent 

benzodiazepine use remained close to two (1.94,95% CI = 1.10 - 3.43; P=0.022) 

whereas that for recent cocaine use rose somewhat to 0.548 (95% CI = 0.30 - 
0.991). In the latter instance this was only marginally significant at the 5% level 

(P=0.047). 

Table 7.6. Odds ratios and associated statistics for case-control pairs for the period 1999 

- 2004 (n=448). 

95% Confidence 

Variable Odds ratio 
interval z (dt=1) P-value 

Lower Upper 

Benzodiazepines 2 33 1 52 00 <0.001 3 58 32 (urinalyses) . . . . 

Benzodiazepines (blood 11 1 43 2 90 <0.001 3 10 29 
plus urinalyses) . . . . 

Cocaine (urinalyses) 0.28 0.17 0.42 57.17 <0.001 

Table 7.7. Year in which data collection took place for the 
144 case-control pairs for which this data was available. 

Year No. of 
cases 

No. of 
controls 

Total 

1999 18 28 46 

2000 22 17 39 

2001 38 33 71 

2002 35 30 65 

2003 24 23 47 

2004 7 13 20 

Total 144 144 288 
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7.1 Part Two: Estimation of the risk of fatal methadone- 
related overdose in association with recent use of 
benzodiazepines and cocaine 

7.1.1 Sample characteristics and matching 

Two hundred and sixty of the 290 methadone overdose fatalities from the DCC 

database were successfully matched to a PCCDD control (90%). Of these, 190 

were matched to within one year of age (73% of sample), 45 to within two years 

(cumulatively 90% of the sample), 24 within three years and one to within four 

years. The distribution of age within male and female cases is shown in Figure 

7.2. The 31 cases for which no controls could be found had similar rates of 

benzodiazepine and cocaine detections as the rest of the sample. 
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Figure 7.2. Distribution of age by gender for the matched sample of methadone 
overdose fatalities (220 males, 40 females). 
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The median age of the study cases was 30 years (min, 18 years; max, 61 years), 

85% of whom were male. Mean post mortem methadone blood concentration for 

the 260 cases was 487. tg/L (cv=1.04). Where detected (n=115), the mean 

diazepam blood level was 226µg/L (cv=1.20). For temazepam positive cases 

(n=56) this was 454µg/L (cv=1.55). No other benzodiazepine drugs were found. 

Sixteen cases had positive detections of cocaine or its major metabolite 
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benzoylecgonine at post mortem. Cocaine was detected in seven cases with a 

median blood concentration of 21µg/L (IQR = 16µg/L - 247µg/L). 

Benzoylecgonine was detected in blood samples of 16 cases with a median 

concentration of 374pg/L (IQR = 80µg/L - 722µg/L). Urinalysis data was 

available for 199 of the 260 cases (77%). For these individuals, benzodiazepines 

were detected in 71% of cases and cocaine in 12% of cases. 

7.1.2 Risk of fatal methadone overdose associated with recent 
use of benzodiazepines 

Table 7.8 shows the proportion of cases and controls with evidence of recent 

benzodiazepine use. Twenty-six percent of controls compared with 71 percent of 

methadone overdose fatalities (cases) tested positive for benzodiazepines when 

comparing urinalysis results. When both urine and blood samples for cases were 

considered this proportion rose to 73 percent. Odds ratios for the risk of fatal 

methadone overdose associated with both measures of recent benzodiazepine use 

are given in Tables 7.9a and 7.9b along with the matched-pair frequency counts 

for the possible outcomes. The odds ratio for the former dataset is given as 9.16 

with a 95% confidence interval of 5.05 to 16.63. The value of McNemar's Chi- 

squared test confirmed this to be statistically significant beyond the 0.1% level. 

Little additional evidence of benzodiazepine use was provided by the inclusion 

of blood data for cases, and the estimated odds ratio for this data was similar to 

that for the urinalysis data (OR=10.27,95% CI = 5.53 - 19.08, x2=97.61, P 

<0.001). 

Table 7.8. Proportion of fatal methadone overdose cases and matched 
controls with recent benzodiazepine use, as evidenced by (A) positive 
urinalysis detection, and (B) both positive urinalysis and blood detection. 

Controls Cases Cases 
A A B 

Yes 25.5 71.0 73.0 
Recent use of 
Benzodiazepines? 

No 74.5 29.0 27.0 
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Table 7.9a & 7.9b. Frequency counts and odds ratios for risk of fatal methadone overdose associated 
with recent benzodiazepine use (n=199 matched pairs). A comparison of urinalysis results is shown in 
Table A. In Table B both urine and blood results were used to determine evidence of recent 
benzodiazepine use for the cases whilst controls used urine data only. 

A Controls 

Cases 
+ 31 110 

- 12 46 

OR=9.16: 95%CI5.05-16.63 

z2 = 78.72, (P<0.001) 

B Controls 

Cases 
+ 32 113 

- 11 43 

OR = 10.27: 95%C15.53-19.08 

X2= 97.61, (P<0.001) 

7.1.3 Risk of fatal methadone overdose associated with recent 
use of cocaine 

Recent cocaine use was seen in 12 percent of methadone overdose fatalities 

compared with 42 percent of controls (Table 7.10). No further positive detections 

of cocaine were seen when the post mortem blood results for the cases were also 

considered. The matched-pair frequency counts for the four possible outcomes 

are shown in Table 7.11 along with the estimated odds ratio. These results 

suggest that the risk of fatal methadone overdose is decreased by 84% for those 

with evidence of recent cocaine use (OR=0.16,95% CI = 0.08 - 0.30, x2=42.05: 

P <0.001). 

Table 7.10. Proportion of fatal methadone overdose cases and matched 
controls with recent cocaine use, as evidenced by (A) positive urinalysis 
detection, and (B) and both positive urinalysis and blood detection. 

Controls Cases Cases 
AAB 

Recent use of 
Yes 42.1 12.0 12.0 

Cocaine? 
No 57.9 88.0 88.0 
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Table 7.11. Frequency counts and odds ratio for risk of 
fatal methadone overdose associated with recent cocaine 
use (n=199 matched pairs). 

Controls 

+ 13 11 
Cases 

- 69 106 

OR = 0.16: 95% Cl 0.08-0.30 

x2 = 42.05, (P<0.001) 

7.1.4 Post hoc adjustment for period effects 

As with the heroin dataset it was possible to examine period effects by limiting the 

case-control pairs to those in which the case had died during the same period that 

the urinalysis data had been collected for the controls (1999-2004). The specific 
date of the urinalysis test was not available for the methadone control group and 

so it was not possible to ensure that the cases and controls were frequency- 

matched within each year. Odds ratios for the effect of benzodiazepines and 

cocaine for this subset of 87 pairs are given in Table 7.12. In each of the analyses 

a moderation of the effect determined earlier was seen. For example, the odds 

ratio for benzodiazepine use as evidenced by positive urinalysis result was 6.42 

(95% Cl, 2.88 - 16.89), compared to 9.16 (95%, 5.05 - 16.63) when the 

calculation is based upon the entire dataset. Notwithstanding these differences, 

the general inferences remained. 

Table 7.12. Odds ratios and associated statistics for case-control pairs from the period 
1999 - 2004 (n=87). 

95% Confidence 
Variable Odds ratio 

interval z (dt=1) P-value 

Lower Upper 
Benzodiazeplnes 
(urinalyses) 6.42 2.88 16.89 27.77 <0.001 

Benzodiazepines (blood 7 83 3 34 22 42 31 72 <0 001 
plus urinalyses) . . . . . 

Cocaine (urinalyses) 0.32 0.11 0.77 7.76 0.008 
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7.2 Summary of main findings 

7.2.1 Heroin-related fatalities 

  330 heroin-overdose fatalities were matched on age (within 4 years) and 

sex to a group of controls comprised of at-entry methadone maintenance 

clients. Due to missing post-mortem data, urine samples were available for 

271 heroin overdose fatalities resulting in a 271 matched pairs. 

  Up to 51% of the heroin overdose fatalities displayed evidence of recent 
benzodiazepine use compared to 26% of controls. 

  After adjusting for age and sex, recent benzodiazepine use was associated 

with an increased risk of fatal-heroin overdose of up to 2.67. The lowest 

and highest values for the 95% confidence intervals were 1.64 and 4.01. 

 A more precise estimate for the risk associated with benzodiazepine use 

was produced by post hoc adjustment for confounding by period. The 

estimated OR following this was 1.95 (95% CI, 1.07 - 3.64, P=0.027) - 

which indicates that benzodiazepine use roughly doubles the risk of fatal 

heroin-related overdose. 

  16% of the heroin overdose fatalities showed evidence of recent cocaine 

use compared to 41% of controls. 

  Before adjusting for period effects recent cocaine use was associated with a 

74% reduction in risk of fatal-heroin overdose. However this risk reduction 

estimate fell after post hoc adjustment for confounding by period to the 

point where it was only marginally significant. 
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7.2.2 Methadone-related fatalities 

  260 methadone-overdose fatalities were matched on age (within 4 years) 

and sex to a group of controls comprised of current methadone 

maintenance clients. Due to missing post mortem data, urine samples were 

available for 199 overdose fatalities resulting in a 199 matched pairs. 

  73% of the methadone overdose fatalities displayed evidence of recent 
benzodiazepine use compared to 26% of controls. 

  After adjusting for age and sex, recent benzodiazepine use was associated 

with a 10 fold increase in the risk of fatal-methadone overdose. The lowest 

and highest values for the 95% confidence intervals for the OR were 5.05 

and 19.08 respectively. 

  Crude adjustment for confounding by period was made by limiting cases to 

those who died between 1999 and 2004. Following this, the estimated OR 

for risk of fatal methadone overdose in association with use of 
benzodiazepines fell slightly to 7.83 (95% CI, 3.34 - 22.42) but remained 

statistically significant (P<0.001). 

  12% of the heroin overdose fatalities showed evidence of recent cocaine 

use compared to 42% of controls. 

  After crude adjustment for period effects, recent cocaine use was 

associated with a 68% reduction in risk of fatal heroin-related overdose 
(95% Cl, 0.11- 0.77, P=0.008). 
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Discussion 

8.0 Introduction 

The central theme of this thesis has been the role of concomitant drug use as a risk 
factor for fatal heroin and methadone-related overdose. After identifying the 

importance of this issue in Chapter 1 and providing the reader with the necessary 
background information in Chapter 2, existing evidence was evaluated in the 

literature review. This review found that the putative influence of concomitant 

substances on the risk of heroin or methadone-related overdose was biologically 

plausible; yet, with the possible exception of alcohol, the extent to which this 

translated to actual risk had not been adequately evaluated. In drawing this 

conclusion, the review of the literature identified a number of specific limitations 

to our knowledge of this area and these formed the basis of the research questions 

presented at the end of Chapter 3. 
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The current chapter of this thesis will discuss the results of the two studies 

conducted to address these questions. The discussion will be structured within the 

framework of the original research questions (section 3.1.4), each of which will be 

discussed in light of the main findings from Chapters 6 and 7 and the existing 
literature. The findings from both studies will then be brought together in order to 
determine the extent to which use of concomitant substances fulfils the criteria 

necessary to be considered an important contributor to the causal pathway of fatal 

heroin- or methadone-related overdose. Following a review of the study 
limitations, the final part of this chapter reflects on the application of this new 
knowledge to the prevention of death from illicit opioid overdose and implications 

for treatment providers. Inevitably, research of this nature invites further 

questions, and the implications of the findings from this thesis for future research 

will be considered in the closing section. 

8.1 Findings in relation to the research questions and the 
existing literature base 

8.1.1 What are the concomitant substances most often 
detected in fatal heroin- and methadone-related overdose 
in England and Wales? (Research question 1). 

In addition to the questions raised in relation to the role of concomitant substances 
in the aetiology of fatal heroin and methadone-related overdose, the literature 

review from Chapter 3 revealed few relevant studies to have been conducted in 

England and Wales. Some uncertainty, therefore, existed about the very identity 

of concomitant substances involved in heroin- and methadone-related fatalities in 

these countries which, along with the other Home Nations, have amongst the 

highest rates of death from fatal opioid overdose in the world (WHO, 1998). The 

present study represents one of the largest collections of fatal heroin and 

methadone toxicological assessments amassed worldwide and, notwithstanding 

regional variations, is therefore well placed to identify and estimate the prevalence 

of concomitant substances following such deaths. 
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One of the most striking findings from this study was the overall frequency with 

which concomitant substances were observed. Cases in which heroin or 

methadone were detected in isolation were in the minority - overall, more than 

80% of these fatalities had other substances detected at post-mortem. However, 

only a relatively narrow range of concomitant substances were detected in any 

significant numbers of cases. For the most part; these were limited to either illicit 

drugs or psychotropic medications. A similar pattern of results was found in both 

heroin and methadone fatalities, with alcohol, diazepam, temazepam and a second 

opioid considerably more likely to be detected than any other substances. 

The overall prevalence of drug detections for the two leading concomitant 

substances was similar to those reported in published findings from other 

countries. To illustrate this, data from Table 3.1 were pooled to give overall 

estimates for the proportion of heroin-related fatalities involving alcohol and 

benzodiazepines. As shown in the resulting Forrest plots (Figures 8.1 and 8.2), the 

pooled estimate for the proportion of heroin overdose deaths involving either 

alcohol or benzodiazepines is given as 47% and 31% respectively. The 

proportions from the present study (51% and 37% respectively), are seen to be in 

good agreement with these figures. As there have been comparatively fewer 

studies of methadone overdose, it is not possible to calculate a pooled estimate for 

these fatalities. Nevertheless, present data can be seen to be well within the range 

of values given in Table 3.2 and are congruent with the three largest methadone 

case-series studies (Bryant et al., 2004; Seymour et al., 2003; Sunjic & Zador, 

1999). 
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Figure 8.1. Proportion (95% Cl) of heroin-related overdose fatalities in which alcohol 
was concomitantly detected: data from 17 studies summarised in Table 3.1 with pooled 
proportion estimate (diamond). Box size indicates relative sample size. 
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Figure 8.2. Proportion (95% Cl) of heroin-related overdose fatalities in which 
benzodiazepines were concomitantly detected: data from 11 studies summarised in 
Table 3.2 with pooled proportion estimate (diamond). Box size indicates relative 
sample size. 
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In contrast to detections of alcohol and benzodiazepines, which appear to be 

almost universal findings, it was seen in Chapter 3 (section 3.5) that the presence 

of cocaine in heroin or methadone overdose deaths was dependent on the country 

in question, being much more of a feature of US fatalities than elsewhere. The 

overall rate of cocaine detections seen in this study (7% of both heroin and 

methadone cases) is more in line with Australian research (e. g., Darke et al., 

2000; Darke & Ross, 1999). However, in the latter years of data collection, 

cocaine detections for both heroin and methadone overdose cases increased 

dramatically, to the point where they were amongst the most common 

concomitant substances found. These data suggest that cocaine is becoming a 

more regular feature of these fatalities and the role of cocaine as a risk factor in 

fatal heroin and methadone overdose would therefore appear to be of increasing 

importance as highlighted by the World Health Organisation in 1998 (WHO, 

1998). 

The concomitant prevalence findings described here are important for descriptive 

purposes; however, concluding in isolation that they represent evidence for a 

causal role for these substances in fatal heroin or methadone overdose would be 

open to an accusation of confirmatory bias. Adjuvant use of multiple substances 

is common practice among heroin users both in the UK (Gossop et al., 2000) and 

other countries (Leri et al., 2003). For example, a cross-sectional survey of 329 

Australian heroin users found that almost the entire sample reported using more 

than one drug class in the preceding six months and only six percent used fewer 

than three categories of drug (Darke & Hall, 1995). While it is recognised that co- 

dependence on heroin and alcohol is rare (Gossop et al., 1998), many heroin users 

regularly consume significant quantities (Beswick et al. 2001; Liebson et al.; 

1973) and methadone clients have been reported to increase their alcohol use 

during maintenance treatment (Keen et al., 2003). Use of crack cocaine and 

benzodiazepines alongside heroin or methadone appears to be widespread. In one 

study of opioid dependent individuals from south London, 52% reported using 

heroin and crack cocaine during the same heroin-use episode (Beswick et al., 

2001). Rates of benzodiazepine use of up to 70% have been found in methadone 

maintenance clients (Stitzer et al., 1981), although regular use would appear to be 

somewhat lower than this (Klee et al., 1990; Darke et al., 1993). More recent UK- 
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based treatment outcome studies also provide useful data. Daily use of 

benzodiazepines was reported by 27% of patients at baseline in one Scottish 

MMT study (Hutchinson et al., 2000); while in a similar study, 42% of heroin 

users had positive detections of benzodiazepines in their urines at assessment prior 

to the start of MMT (Keen et al., 2003). 

The use of multiple drugs by heroin addicts has been suggested to reflect drug 

using careers which have progressed through sequential stages, with drugs used in 

earlier stages being carried through to later stages (Clayton, 1986). Often, 

however, polydrug use fulfils a specific purpose. For example, reasons for 

concurrent use of benzodiazepines by methadone clients include self medication 

for sleep disturbances or psychological problems; to enhance the effects of 

methadone; to suppress withdrawal effects; or the existence of a dependence 

syndrome (Seivewright, 2000). Because of this there is often considerable 

pressure placed on treatment providers and general practitioners to prescribe 

benzodiazepines to this group (Seivewright, 2000). Alleviation of opioid 

withdrawal symptoms is also considered one of the principal reasons that heroin 

users co-use cocaine (Leri et al., 2003). 

Anti-depressant medications deserve special mention. Lifetime prevalence of 

major depression amongst opioid user is estimated to be in the region of 40% 

(Rounsaville ei al., 1982) and prescription of anti-depressants to this population is 

accordingly common (Darke & Ross, 2000). Despite no single drug featuring 

particularly highly, as a combined drug class these substances were detected in 

8% of both heroin and methadone fatalities. Similar rates of concomitant detection 

for this drug class have been reported from other countries in both heroin- 

(McGregor et al, 2002; Darke et al., 2000) and methadone-related fatalities 

(Perret et al., 2000). However, a somewhat higher rate of detection was recently 

reported in a US study by Chan et al. (2006) who found that 17% of accidental 

methadone-related overdose fatalities who died in New York during 2003 had 

tricyclic antidepressants (TCAs) detected at post-mortem. The potential danger of 

opioid-TCA combinations has previously been raised by Darke et al. (2000) who, 

upon finding a greater number of concomitant TCA detections (e. g., amitriptyline, 

dothiepin) in comparison to SSRIs such as fluoxetine, speculated that this result 
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may have been due to higher levels of toxicity associated with the former drugs. 

The present study also found a higher proportion of fatalities with positive 
detections of TCAs (compared to SSRIs) but these differences were slight. 
Nevertheless, newer anti-depressant drugs are generally considered, in relative 

terms, to be safer in combination with CNS depressants than TCAs (Koski, 2005). 

8.1.2 Trends in the prevalence of concomitant drug detections 
(Research question 2). 

For heroin-related fatalities, the annual rate of detection for the five leading 

concomitant substances (with the exception of cocaine, which was discussed 

above), did not change to any great extent over the study period (Figure 6.2). In 

particular, alcohol detections appear to have been a remarkably stable feature of 

these deaths. The involvement of benzodiazepines was seen to rise somewhat 

during the early to mid 1990s but changed little between this period and the end of 

data collection in April 2004. Interestingly, over the study period, the long-acting 

anxiolytic, diazepam, became the predominant benzodiazepine class and, during 

the last period of data collection, this drug was found in almost three times as 

many fatalities as the shorter-acting hypnotic, temazepam (a pattern which was 

also observed for methadone-related fatalities). The divergence of diazepam and 

temazepam detections in both heroin- and methadone-related fatalities is reflected 

in similar data from Scotland (Jackson, 2001) and in the present context may be 

related to the imposition of controls on jelly-filled temazepam capsules which 

occurred at the start of 1996 (Gilhooly, 1997). 

Methadone fatalities contrasted with heroin-related deaths in a number of ways. 

The predominant substance-type detected in these deaths was a benzodiazepine 

(diazepam) rather than alcohol, which, rather than the stable pattern observed in 

heroin cases, appeared cyclic, significantly increasing between 1991 and 2001 

after falling back to former levels by the end of the data collection period. An 

additional opioid was also more likely to be observed in methadone fatalities and, 

as illustrated in Figure 6.16, this became an increasingly common feature of such 

deaths as the study progressed. 
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It is somewhat difficult to directly compare these findings with existing research 

as few studies have examined longitudinal trends in concomitant drug detections 

following fatal heroin- or methadone-related overdose. However some authors 
have previously observed an association between concomitant drug detection 

patterns and rates of death from opioid overdose (Gilhooly, 1997; Risser et al., 
2000; Coffin et al., 2003). Risser et al. (2000) attributed the rise in the number of 
heroin-related fatalities in Vienna between 1987 and 1995 to an increase in the 

detection of central nervous system depressants including benzodiazepines. In 

another study, overdose involving heroin and cocaine combinations was 

considered to be the principal contributor to opioid mortality rates in New York 

between 1990 and 1998 (Coffin et al., 2003). 

Several sources indicate that the number of deaths from heroin-related overdose 

rose dramatically in England and Wales over the period in which the present study 

was conducted (section 1.4). Data from the Office for National Statistics shown in 

Figures 6.1 and 6.14 suggest that this rise was not constant and, in fact, a decline 

in deaths involving these substances also occurred during this time, particularly in 

the case of methadone fatalities which fell from 400 to 200 between 1997 and 

2001. Any suggestions that are advanced to explain this distinctive pattern are 

necessarily tentative since any number of unmeasured factors may have played an 

important role, but, even without giving such factors direct consideration, it is 

difficult to relate the findings of the present study to the overall pattern of 

mortality from heroin or methadone overdose during this period. Notwithstanding 

the known limitations of ONS data (Christophersen et al, 1998), the decline in the 

number of fatalities associated with methadone poisoning occurred during a 

period in which concomitant detections of benzodiazepines and ethanol actually 
increased. A similar decline in heroin overdose fatalities from 2001 onwards 

coincided with significant increases in the proportion of heroin study cases with 

concurrent detections of cocaine, against a background of historically stable 

alcohol and benzodiazepine detections. And so, while a general increase in the 

extent of concomitant substances in heroin and, to a lesser extent, methadone- 

related overdose fatalities was observed in this study between 1991 and 2004 

(section 6.0.1.3 and section 6.1.1.3), there is insufficient evidence to conclude that 

this may have significantly influenced the pattern of mortality in England and 
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Wales during this period. Obtaining similar findings following a 10-year study of 
Australian heroin-fatalities, Gerostamoulos et al. (2001) point out that more 

complex patterns of polydrug use such as specific drug combinations or use in 

greater amounts may underlie the rate of mortality amongst heroin and methadone 

users and, therefore, a role for concomitant substances cannot be ruled out. 

8.1.3 Is there evidence that the lethality of heroin or methadone 
is affected by the presence of concomitants commonly 
detected in fatal overdose? (Research question 3). 

8.1.3.1 Control variables 

The effects of concomitant substances commonly observed in fatal heroin- and 

methadone-related poisonings were examined after controlling for a number of 

variables which were considered to either directly influence the post-mortem 
blood levels of these substances or potentially confound the findings (section 4.5). 

A strong gender effect was observed in both collections of post-mortem data. 

Male fatalities had blood levels of heroin and methadone that were 30% and 36% 

lower than females respectively. Such an effect for methadone was anticipated 
(section 4.5) and is attributed to a post-mortem artefact caused by the differences 

between males and females in the degree of post-mortem distribution of these 

drugs. As a lipophilic basic drug, methadone has a particularly large volume of 
distribution and exhibits considerable post-mortem diffusia (Wolff, 2002). 

Differences between males and females were expected because women tend to 

have more fat in areas from which peripheral blood specimens are typically taken 

(Caplehorn & Drummer, 2002) providing a higher gradient for passive diffusion 

after death. Heroin is generally considered to be less susceptible to such 

redistribution effects (Gerostamoulos et al., 2001) which may explain the slight 
differences observed here. A significant effect for age was found but only in the 

case of methadone fatalities. The observed correlation indicted a moderate 

positive relationship between age and post-mortem methadone blood levels. In 

view of a lack of consistency between heroin- and methadone-related fatalities, 

the clinical significance of this finding is unclear although a role for post-mortem 

redistribution or age-dependent differences in tolerance may be speculated. 
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8.1.3.2 Concomitant variables 

There is little question that ethanol has the potential to interact with a wide range 

of substances in overdose and that this ostensibly appears to influence the 

outcome of the poisoning. Studies of overdose fatalities involving co-proxamol 
(Williamson et al., 2000), dextropropoxyphene (King, 1982; Koski et al., 2005), 

amitriptyline (King, 1982; Koski et al, 2005), promazine (Koski et al, 2005) and 

barbiturates (King, 1982) have all shown lower fatal blood concentrations of these 

substances in the presence of alcohol. Consistent with these studies, the present 
findings provide, perhaps, the strongest evidence of this type, in support of the 

hypothesis that ethanol reduces the lethal morphine concentration in heroin- 

related overdose. This result confirms the findings of several authors (Ruttenber et 

al., 1990; Levine et al., 1995; Polletini et al., 1999) but as Rosenbaum (2007, 

from Rutter, 2007) points out, replication only strengthens evidence if it removes 

some weakness from existing studies. The present data add to the literature in a 

number of important ways. Firstly, they are based upon a larger collection of 

observations than any previous study; secondly, more careful consideration has 

been given to the distribution of the dependent (outcome) variable; thirdly, 

adjustment has been made for a number of variables that were shown to affect 

blood opioid concentrations; fourthly, different forms of potential relationship 

have been examined; and fifthly, potential interactions between concomitants and 

control variables have been explored. As a consequence, the estimated effect for 

alcohol is likely to have better precision and be more robust than previous 

findings. 

Following multiple linear regression analysis, the present study found a 0.2% 

reduction in the lethal morphine concentration for every 1 mg/dL of ethanol 
detected. If it is assumed that one unit of alcohol results in an average blood 

alcohol concentration of 40mg/dL, then another, tentative, interpretation of this 

result is provided by expressing the ethanol concentration as approximate ante- 

mortem units of alcohol consumed. This method suggests that the post-mortem 

concentration of total morphine is reduced by 8% for every unit of alcohol 

consumed. To provide some further context to this, alcohol intake resulting in 

blood alcohol concentrations at the UK legal driving limit (80mg/dL) would, 
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therefore, be expected to reduce the amount of heroin that would need to be taken 

to fatally overdose by 16%. 

After investigating the influence of ethanol at specific concentration levels, it 

would, however, appear that blood concentrations of ethanol greater than 

101 mg/dL are needed before a statistically significant effect is observed, though it 

should be acknowledged that this cut-off level was entirely arbitrary. Given that 

alcohol is a relatively weak central nervous system depressant in comparison to 

morphine, this result is somewhat intuitive but should, nevertheless, be interpreted 

with caution. At the range of ethanol concentrations contained within the lower 

category (lmg/dL - 100mg/dL) it may be difficult to distinguish between ante- 

mortem ethanol ingestion and post-mortem ethanol production (O'Neal & Poklis, 

1996). Shortly after death, microbes penetrate the portal venous system and 

contaminate the systemic vessels where glucose and lactate provide the substrates 

for microbial ethanol production (Pounder, 1998). It is, therefore, possible that 

some of the individuals classified within this category may not have consumed 

alcohol prior to death. The net effect of this would be to militate against detecting 

a difference in total blood morphine between those with no detectable levels of 

ethanol (the reference category) and this first level. Levine ei al. (1993) show that, 

in the absence of any information other than blood specimens, a post-mortem 

blood alcohol content of greater than 0.04% has a 92% specificity for evidence of 

ante-mortem alcohol consumption and one conservative solution to this issue is to 

classify all ethanol positive detections at or below this level as absent. The results 

of a univariate ANOVA on the heroin fatalities from Study 1 using this approach 

are shown in Table C2 of Appendix C. The previous inference (that levels of 

ethanol below 101mg/dL do not influence the fatal levels of total morphine) 

remains; however, the marginally non-significant result (P=0.081) warrants less 

confidence in this conclusion. Indeed, Fuglestad and colleagues (2003) found that 

ethanol blood concentrations of 0.5mg/g (-50mgIdL) were sufficient to produce a 

significant reduction in free-morphine levels, suggesting that such an effect is 

present even at blood concentrations that would be expected after little more than 

a single unit of alcohol. Perhaps more pertinently, a review of the distribution of 

ethanol concentration amongst the current fatalities (section 6.0.2.3) reveals that 

the median blood concentration of ethanol, where detected, was greater than 
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101 mg/dL, indicating that over half of the cases with evidence of alcohol 

consumption may have been placed at risk by their alcohol use. 

To the author's knowledge, this is the first time that post-mortem methadone 
blood levels have been shown to be significantly affected by alcohol consumption. 
Methadone levels were reduced by a similar factor to that seen in heroin fatalities. 

Again, there was a suggestion that quantities of ethanol below 100mg/dL may not 
be sufficient to effect the lethality of methadone but, in contrast to the analysis 
described above for heroin, this inference remained even after adjusting for the 

possibility that some ethanol concentrations up to 40mg/dL were `false positives' 
(Table C3, Appendix Q. Another important distinction between ethanol's effects 
in heroin- and methadone-related fatalities was that, in the latter case, the effect 

appeared to be more pronounced for females. This suggests that females may be 

more sensitive to the combined effects of ethanol and methadone than males, 

though it should be pointed out that the interaction between these two variables 
did not reach statistical significance. 

The findings for other concomitant substances are somewhat less conclusive. 

Despite the frequency with which they are detected, and the potential for at least 

an additive central nervous system-depressant effect, there was little evidence that 

diazepam or temazepam increased the toxicity of heroin even though the sample 

was sufficiently powered to detect even a relatively small effect. While it could be 

argued that the absence of such an effect is related to the relatively low blood 

levels of these substances observed in this study (particularly as the detected 

median concentrations of these substances would generally be considered to be at 

the lower end of the therapeutic range), these data appear to be typical of those 

found in fatal heroin overdose (Oliver & Keen, 2003). Furthermore, there was 

little evidence of an effect either when the blood concentrations of different types 

of benzodiazepines were summed or when comparatively high concentrations 

were considered separately. The Australian NDARC research group also failed to 

find evidence of an effect for benzodiazepines (when treated as a combined drug 

class) in two small studies of heroin overdose (Zador et al., 1996; Darke et al., 

2000). Thus, while concomitant use of benzodiazepines appears to increase the 

toxicity of other drugs such as paracetamol and alcohol in overdose (Schmidt & 
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Dalhoff, 2002; Koski et al., 2002), this does not appear to be the case in heroin- 

related poisonings. The observation that benzodiazepine blood concentrations may 

not be a reliable index of these drugs' pharmacological or toxicological effects 

(Gaudreault et al., 1991) could, however, partially explain the absence of this 

effect. 

Interpretation of findings for the effect of diazepam and temazepam in 

methadone-related fatalities presents somewhat more of a challenge. Whereas 

there was some evidence for a reduction in methadone blood levels in the 

presence of diazepam, concomitant temazepam concentrations above 800pg/L 

were associated with an increased median post-mortem methadone concentration 

in comparison to decedents without detection of this drug. This effect was also 

seen in a study conducted by Mikolaenko et al. (2002) who found that methadone 

fatalities in which benzodiazepines were simultaneously detected had fatal blood 

levels twice as high as decedents without evidence of benzodiazepine 

consumption. These authors suggest that this may be the consequence of an 

antagonistic effect for benzodiazepines and cite the work of Shannon and 

Holzmann (1976) discussed in section 3.7 in support of this interpretation. An 

alternative explanation for this finding is that temazepam has increased median 

blood methadone levels via pharmacokinetic interaction, for example by 

competitive inhibition of the hepatic cytochrome P450 mono-oxygenase system, 

though it is unclear why such an effect would not also have been seen for 

diazepam. Studies of benzodiazepine poisonings have shown that temazepam 

produces more sedation in overdose (Buckley et al., 1995) and appears more toxic 

than other benzodiazepines (Serfaty & Masterton, 1993) but such differences 

might be expected to manifest themselves in terms of a negative rather than 

positive correlation. 

Increases in post-mortem blood levels of heroin or methadone in association with 

the presence of concomitant substances have a less straightforward interpretation 

than reduced blood levels in terms of understanding how these substances may 
have influenced fatal outcome. In the case of benzodiazepines, individuals with no 
detectable blood levels of temazepam died with significantly less methadone in 
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their blood at the time of death than decedents with temazepam concentrations 

greater than 800gg/L. Assuming that both groups have similar levels of tolerance 

to opioids, this implies that the former group would still have succumbed to a fatal 

overdose even in the absence of temazepam. It is therefore clear that neither of the 

above explanations have an immediately obvious interpretation in terms of 
demonstrating that temazepam has increased the lethality of the methadone. This 

problem also applies to the interpretation of findings with respect to the presence 

of concomitant morphine, which was, somewhat paradoxically, also associated 

with increased methadone levels in a small group of individuals with morphine 
blood concentrations greater than 201 gg/L. Both pharmacokinetic and 

pharmacodynamic theories are predictive of an effect in the opposite direction to 

this - morphine has been shown to decrease the free fraction of methadone 
(Moolchan et al., 2001) and although it possible that this interaction may not 

manifest itself in post-mortem data, an additive CNS depressant effect would still 
have been expected. 

Several alternative, non-pharmacological interpretations are also possible for this 

pattern of findings. Temazepam use may be surrogate marker for greater levels of 

opioid dependence and, hence, higher tolerance levels. If the decedent was in 

MMT, this may, in turn, necessitate higher methadone dosing. It is also possible 

that temazepam was associated with more methadone deaths that were suicides or 

parasuicides. Although it is not possible to assess the likelihood of this with the 

present data, as the coroner's verdict was unavailable, Koski et al. (2005) found a 

higher proportion of suicides for deaths involving temazepam compared to those 

involving diazepam and this may, therefore, explain the discrepancy between the 

effects seen from these two benzodiazepines in heroin overdose cases. It is 

interesting to note, however, that there was no evidence that anti-depressant 

medications affected the lethality of heroin and methadone. 
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8.1.4 Is concomitant use of benzodiazepines or cocaine around 
the time of death associated with an increased risk of fatal 
heroin- or methadone-related overdose? (Research 
question 4). 

Study 1 found little evidence of a significant toxicological role for cocaine in 

either heroin and methadone fatalities and was generally unsupportive of a role for 

benzodiazepines. This implied that the presence of these substances at autopsy 

was simply a reflection of their use within this population, a theory that was tested 

in Study 2. In this study, it was found that heroin overdose fatalities were 

significantly more likely than the control group to show evidence of recent use of 

benzodiazepines. For methadone overdose victims, this difference was even 

larger. The prevalence of benzodiazepine detections amongst these four groups 

was broadly congruent with existing research, although the figures for both sets of 

overdose cases were somewhat higher than those seen in the post-mortem studies 

described in the literature review (Tables 3.1 and 3.2). The higher prevalence 

figures seen in the present data might be expected, given the dominance of 

diazepam, whose metabolites can be detected for up to seven days (or longer with 

chronic use) in urine (Wolff et al., 1999). Around a quarter of both control groups 

showed evidence of recent use of benzodiazepines which is consistent with self- 

report by heroin users at entry to methadone maintenance treatment (Ball & Ross, 

1991) and urinalysis data from in-treatment methadone clients (Stitzer et al., 

1981) but somewhat lower than more recent UK treatment outcome studies 

(Hutchinson et al., 2000; Keen et al., 2003), possibly due to the restricted 

sampling nature of the present study. 

In the context of a case-control study, these findings suggest that, after controlling 

for confounding by age and gender, and adjustment for period effects, concurrent 

use of benzodiazepines approximately doubles the risk of fatal heroin-related 

overdose and results in an eight times increase in risk of fatal methadone 

overdose. As it was not possible to ensure the equivalence of the methadone case 

and control groups with respect to the period of data collection it is possible that 

this latter figure somewhat over-estimates the effect size in a similar way that it 

was overestimated for heroin fatalities before the post hoc adjustment described in 

section 7.0.4. Nevertheless, it is clear that these results suggest that risk of 
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overdose is significantly elevated for those with evidence of concurrent use of 
benzodiazepines and heroin or methadone. 

The only existing study that could be identified from the literature that compared 
benzodiazepine use by heroin overdose victims with a living control group, using 

a biological indicator, found little difference in prevalence rates (Darke et al., 
1997). However, the estimated odds ratio from the present study is, considering 

methodological differences, remarkably similar to that found from the four-year 

follow-up of the NTORS cohort which employed a self-report measure of 
benzodiazepine use (Gossop et al., 2002; OR=2.86) as well as those from the non- 
fatal heroin overdose literature such as Neale and Robertson's (2005) Scottish 

cohort study (OR=2.56) and Taylor et al. (1996; OR=2.7). 

There is a paucity of similar data for methadone-related overdose but two recent 

studies are broadly relevant. Chan et al. (2006) found that amongst a group of 

individuals who died with a positive detection of methadone at post-mortem, the 

odds that the death was from an accidental overdose were increased by 66% (95% 

CI - 12% to 145%) for those with positive detections of benzodiazepines at post- 

mortem. In other words, methadone users who die are more likely to die from an 

accidental overdose than other causes if they show evidence of recent use of 

benzodiazepines. Capelhorn and Drummer (2002) found evidence that decedents 

who died from an overdose of methadone, when in receipt of a prescription for 

this drug, had 4.8 times the odds (95% CI 1.7 - 14.4) of having benzodiazepines 

detected in their blood at post-mortem than decedents who died from diverted 

methadone or a non-methadone-related cause of death. These authors also found 

observational evidence that benzodiazepines increased the risk of overdose during 

the first two weeks of methadone maintenance treatment, a period which is known 

to be sensitive to fatal overdose (Drummer et al., 1990) due to differences in how 

methadone is metabolised during steady state induction (Wolff et al., 2000). 

In contrast to the findings for benzodiazepines, prevalence of cocaine use was 

more common amongst living controls than either heroin or methadone fatalities 

and after controlling for confounding by age and gender, the estimated odds ratios 

were suggestive of a reduced risk of fatal overdose for those who had recently 
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used cocaine. These results seem unlikely to be due to unrepresentative sampling 

since the rates of cocaine use amongst the two control groups - 41% for the heroin 

group and 42% for the methadone group - are within the range found by other 

researchers (Leri et al., 2003), and the overall rate of detection of cocaine for the 

overdose victims (16% and 12% respectively) is similar to that reported in 

previous post-mortem studies (Perret et al., 2000; Gueye et al., 2002). The natural 

conclusion of these findings - that cocaine use may afford protection against fatal 

heroin and methadone overdose - is tempered, however, by the fact that, in the 

case of heroin fatalities, the effect was only marginally significant after adjusting 
for period effects. Furthermore, this adjustment could not be made for methadone 
deaths and so the possibility that this result was similarly affected cannot be ruled 

out. Caution in making this inference is further warranted by findings from the 

non-fatal overdose literature (section 3.10) such as those of Ochoa et al. (2005) 

and Taylor et al. (1996), both of whom found an association between cocaine and 
increased risk of overdose. Nonetheless, it is interesting to find that evidence for a 

protective effect for other stimulants has previously been found in two studies of 

fatal opioid overdose. In Ruttenber and Luke's (1984) case-control study of heroin 

overdose, for example, phenmetrazine, an amphetamine-like stimulant, was 

associated with decreased risk of death from heroin overdose, with an odds ratio 

of 0.3 (95% CI = 0.1 - 0.8). Similarly, Bryant et al. (2004) found that presence of 

cocaine at post-mortem reduced the likelihood of death from heroin or methadone 

overdose (compared to death from another poisoning) by around half. 

8.2 Synthesis of findings 
Taken together, the findings form this thesis suggests that if benzodiazepines do 

have a causative role in fatal heroin or methadone overdose, then, in contrast to 

alcohol, the mechanism does not appear to be mediated by pharmacological 
interaction. Other biological explanations have been suggested. For example, 
Capelhorn and Drummer (2002) discuss the possibility that concomitant use of 
benzodiazepines may, through relaxation of the muscles controlling the upper 

airway, exaggerate obstructive sleep apnoea during slowly developing methadone 
intoxication. The observation that the majority of methadone fatalities occur at 

night (Wolff, 2002) and that in many such deaths a loud distinctive snoring is 
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reported (Oliver et al., 2003), are consistent with this theory, which is also 

attractive because the muscle relaxant effects of benzodiazepines would be 

expected to occur even at the relatively low blood concentrations observed in 

Study 1 (Guilleminault, 1990). 

If a biological explanation does not underlie the increased risk implied from Study 

2, then, collectively, these findings are suggestive of confounding by one or more 

unmeasured variables. In addition to the potential for a pharmacological 

interaction with opioids during overdose, use of benzodiazepines by intravenous 

drug users has previously been associated with general risk-taking behaviours that 

may place them at increased risk of experiencing opioid overdose (Darke, 1994). 

It remains unclear to what extent these behaviours are due to the effects of the 

drugs themselves, for instance, by affecting judgement during injecting (Byrne, 

2002), or because users of benzodiazepines have certain characteristics that place 

them more at risk of fatal overdose - for example, a greater tendency to use heroin 

when alone or a general ambivalence to one's own well-being. There is some 

evidence that suggests that opioid users who also use benzodiazepines do have 

such characteristics. One study, for example, found that methadone maintenance 

clients with a history of benzodiazepine use had higher levels of depression, and 

poorer social functioning than those who did not use benzodiazepines (Darke et 

al., 1993). 

The notion that heroin users who die from non-deliberate opioid overdose have 

psychological characteristics that place them at increased risk has gathered 

increasing support within the literature in recent years (Zador, 2005). This is 

based around the idea that deliberate and non-deliberate opioid overdose may 

share some underlying mechanisms (Rossow & Lauritzen 1999). Farrell (1996) 

suggests that there may be a continuum between non-fatal overdose, fatal non- 

deliberate overdose and fatal deliberate overdose. This idea is supported by the 

fact that suicides involving opioid overdose are especially difficult to differentiate 

from accidents (Cantor et al., 2001). These authors state that `the self-destructive 

lifestyle associated with opiate abuse may be associated with a `Russian roulette' 

mindset and a much greater ambivalence regarding life'. 
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Similar explanations to these may be used to explain the frequency with which 

alcohol appears in case series of heroin and methadone overdose but these do not 

easily account for the apparent toxicological effect that was seen in Study 1. This 

effect could, however, be due to an association between alcohol use and a 

decreased tolerance to heroin or methadone. The association seen in this study 

would, therefore, not be due to changes in the disposition of opioids or a 

pharmacodynamic effect, but as a consequence of lower metabolic tolerance for 

opioids. This alternative explanation, which has been suggested by others 

(Ruttenber, 1990; Hickman et al., 2008), is important to consider because it could 

also be extended to explain the findings from other contexts such as the 

relationship between benzodiazepines and risk of overdose suggested by Study 2. 

There is evidence of a possible association between reduced tolerance to heroin 

and consumption of alcohol. For example, several outcome studies have observed 

that heroin users in methadone maintenance treatment appear to replace their 

opioid use with moderate to heavy alcohol intake (Hutchinson et al., 2000; Keen 

et al., 2003). Alcohol use has also been implicated in studies of factors that lead to 

relapse into heroin use following a period of abstinence (Shah et al., 2006). This 

explanation has been rejected by a number of authors as a satisfactory account for 

the effect of ethanol on post-mortem heroin levels, firstly on the basis that it does 

not explain the apparent dose-response relationship (Levine et al., 1995; Polettini 

et al., 1999) and secondly because, similar concentrations of morphine have been 

found in those who die from heroin overdose whether they were tolerant or 

abstinent prior to death (Druid et al., 2007). Another, argument that can be raised 

against this explanation is that, since concomitant drug use features more 

prominently than reduced tolerance in case-series of heroin and methadone deaths, 

it is unlikely to fully explain ethanol's effects. However, this may simply be due 

to a general difficulty in ascertaining ante-mortem opioid tolerance in this 

population -a challenge which would need to be overcome in order to further 

investigate this issue. 

Given the increasing frequency with which concomitant detections of cocaine 

were seen in this study (section 6.0.1.3), understanding the role of this substance 
in fatal heroin- and methadone-related overdose would seem to be particularly 

172 



important. A conservative interpretation of the findings presented in Chapters 6 

and 7 is that cocaine does not play a major role in fatal opioid overdose - there 

was no evidence that this concomitant drug increased the risk of fatal overdose 

amongst heroin or methadone users and little support for a pharmacological 

interaction in post-mortem toxicology data that could be interpreted as increasing 

the lethality of heroin or methadone in overdose. Indeed, a less cautious 
interpretation would be that cocaine use is protective against such overdose 

fatalities. When considered alongside findings from research into non-fatal 

overdose described previously, these results suggest that although cocaine use 

appears to be associated with a greater risk of heroin or methadone overdose 

occurring, it may, at the same time, reduce the likelihood that this overdose 

becomes fatal. There are several mechanisms by which this might occur. Firstly, 

the presence of cocaine may antagonise the respiratory depressant effect of heroin 

or methadone thereby helping an otherwise fatal overdose to resolve itself. This 

view is consistent with the known antagonist relationship between these 

substances on respiratory depression and the findings from Study 1 in which 

individuals who died from a heroin overdose had average morphine levels that 

were 16% higher than those without this substance detected. However, it is 

unclear whether concomitant use of cocaine would, in practice, positively 

influence fatal outcome in this manner, particularly at the blood concentrations 

typically associated with opioid overdose. Jorens et al. (1996) describe a heroin 

overdose survivor following co-ingestion of the amphetamine-derived stimulant 

3,4-methylenedioxyethamphetamine (MDEA) and suggest that the antagonist 

effects of these two drugs probably saved the individual's life. Yet, this person 

was reported to have taken a considerable quantity of MDEA (40 tablets, or four 

grams) and had not injected the heroin detected. In similarly large quantities, 

cocaine may be associated with considerable toxicity in its own right (Karch, 

1996). Furthermore, co-administration of cocaine and methadone has also recently 

been associated with irregular heart function (Krantz et al., 2005) and so the 

negative consequences of concomitant use of these drugs could outweigh any 

putative protective effect. 

An alternative (though not mutually exclusive) interpretation of these findings is 

that individuals who use opioids and cocaine concurrently on a regular basis have 
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drug using behaviours which protect against fatal overdose - such as using in the 

company of others or being more likely to smoke rather than inject heroin - 
though there would however appear to be little empirical support for this 

association within the literature. Moreover, poly-drug use is, in itself, considered a 

marker for more chaotic drug use and risk-taking behaviour. Heroin dependent 

individuals who co-abuse cocaine also appear to have poorer treatment outcomes 

and more severe co-morbid psychopathologies (Leri et al., 2003). In view of a 
lack of convincing evidence for either a pharmacological or behavioural 

explanation for this pattern of findings, the most appropriate conclusion would 

seem to be that cocaine, at least in the concentrations observed here, does not 

negatively affect outcome in heroin or methadone poisonings. 

8.3 Study critique 
8.3.1 Critique of general methods 

Confidence in the findings from the research presented in this thesis and their 

interpretation rests on several issues. The quality of research itself is dealt with in 

later sections when study limitations are discussed, however, the somewhat more 

philosophical issue of the use of non-experimental research in identifying causal 

risk factors also needs to be considered. 

It is well recognised that observational study designs represent weaker levels of 

evidence than randomised controlled studies (Concato et al., 2000). Nevertheless, 

such designs are the most widely used methods for assessing the role of putative 

risk factors for the reasons outlined in sections 4.1.1 and 5.1.1. The analyses of 

such studies attempts to account for random error or `chance' effects and 

measured confounders, but the role of other potential biases and causal 

explanations are only dealt with by way of informal discussion (Greenland et al., 

2004). Correlational studies are on somewhat less firm foundations, especially 

when considered in terms of counterfactual definitions of causality'. For example, 

despite finding a relationship suggestive of an effect in which ethanol increased 

' The counterfactual definition of cause Is based upon considering what happens to the outcome when the 
exposure Is absent (Parascandola & Weed, 2001). 
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the lethality of heroin and methadone can we, with any confidence whatsoever, 

state that the fatality would not have occurred in the absence of ethanol? 

Despite their limitations, non-experimental research has identified a great number 

of determinants of disease, including folic acid in neural tube defects (Milunsky et 

al., 1989), lipids in coronary artery disease (Wilson et al., 1980) and, most 

famously, tobacco smoking in lung cancer (Doll & Hill, 1950). In recent years, 

however, there has been an increasing level of scepticism aimed towards the 

findings from non-experimental research, centered on a number of high profile 

pharmaco-epidemiologic findings that were later discredited. Perhaps the most 

widely quoted example is the protective effect of hormone replacement therapy 

(HRT) on coronary artery disease suggested by several case-control studies 

(Grodstein et al., 2001) but later falsified by randomised controlled studies 

(Rossouw et al., 2002). In this instance, the initial findings were probably due to 

selection effects related to lifestyle factors and subsequent bias (Beral et al., 

2002). One of the reasons why the scientific community appeared so keen to 

accept this finding was that it was consistent with the known effects of estrogens 

on lipid metabolism (Manson & Martin, 2001). 

It may, therefore, be asked - what distinguishes the failures of non-experimental 

research from the successes? And whether any of these factors are relevant to this 

thesis. According to a recent Academy of Medical Sciences report tacking this 

issue, 

By far and away the main explanation of misleading claims that 
have not stood up to scrutiny is that they were based on small-scale 
weak, pilot studies that involved inadequate controls and highly 
specialised samples. 

... 
In the longer term, the stronger test of quality is replication by 

independent research groups - preferably using improved methods 
of measurement and analysis and using additional steps to rule out 
(or rule in) the likely operations of the various forms of bias. 

(Rutter, 2007, p. 71) 
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Rutter et al. (2007) also argue that it is the quality of the research per se that is 

paramount in avoiding misleading conclusions and not something inherent in non- 

experimental designs, going on to conclude that non-experimental research can 

`provide the basis of reasonably secure causal inferences'. It should also borne in 

mind that whilst randomised controlled trials are quite rightly regarded as the gold 

standard in making causal inferences, they are not immune to incorrect or 

misleading conclusions (Mayor, 2002). Nevertheless, the absence of 

randomisation and the protection that it confers against unmeasured confounding 

relegates observational research to a comparatively weak scientific position that 

will always be vulnerable to criticism. 

One way in which the evidence from epidemiological-type research can be 

strengthened is by the application of causality criteria such as that proposed by 

Hill (1965) to distinguish between causal and non-causal associations. The use of 

these criteria are seen as useful in providing a framework for assessing evidence 

towards a causative role for a particular risk factor (Susser, 1991; Phillips & 

Goodman, 2004). Can the application of this framework to the present study 

findings be used to enhance support for any causal interpretations? 

The first of Hill's criteria is based upon the argument that strong associations are 

more likely to be causal because if they could be explained by some other 

determinant, this would have to have an even stronger observed association and 

should therefore be evident. If the issue of methodological validity is put aside for 

a moment, the effect sizes produced in Study 2 are indeed large. However, as 

Rothman (2002) argues, there are numerous instances of strong associations that 

are non-causal due to confounding effects. He gives the example of the 

association between birth rank and Down's syndrome, which is confounded by 

maternal age. Strength of association is therefore by no means a sine qua non, or 

essential condition, for causality. Indeed, many of the most well accepted causal 

risk factors, such as tobacco smoking and cardiovascular disease, have relatively 

small effects due to being one of several components in a causal pathway. 

Temporality is perhaps the most straightforward of Hill's causal criteria, in so 

much as it is difficult to argue for a causal factor that did not precede the outcome. 

176 



But is of little practical use for present purposes due to the nature of the outcome. 

Biological plausibility, on the other hand, is directly relevant and has been 

considered in some detail in the introductory chapters when deriving the thesis 

hypotheses. But for this reason, it would be somewhat circular to use this point in 

support of a causal relationship. Even if the present research was conducted as so 

called `Black Box' epidemiology (Greenland & Sander, 2004) and had not 

considered plausibility a priori, the validity of this criterion rests not on objective 

logical argument but on the state of knowledge at the time, which, in the present 

case, is by no means complete. The biological plausibility of a risk factor is also 

no protection against supporting misleading conclusions, as were seen in the 

example of HRT and cardiovascular disease. 

Table 8.1. Bradford Hill's principles of causality2 

Criterion' Description 

Strength There should be evidence of a strong-association between the risk factor and the 
condition 

Temporality There should be evidence that exposure to the risk factor preceded the onset of 
the condition 

Plausibility There should be a plausible biological explanation 

Consistency The association should be supported by other investigations In different study 
settings 

Biological There should be evidence of a biological gradient gradient 

Hill (1965) also considered that associations repeated in different populations and 

study settings strengthen a causal inference for a given putative risk factor, a 

criterion he termed consistency. Evidence of similar associations from the 

literature have been reviewed elsewhere in this thesis and these were seen to be 

largely limited to the case of ethanol in the heroin overdose. Alternative forms of 

evidence are considered in Section 8.4, however, it is important to point out that a 

lack of consistent findings does not necessarily rule out a causal relationship 

because certain effects may be limited to specific circumstances that were not 

replicated (Rothman, 2005). 

2 Hill (1965) originally suggested eight criteria: strength, consistency, specificity, temporality, biological gradient, 
plausibility, coherence and analogy. Specificity, coherence and analogy have not been included here as they 
were not considered relevant. 
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One of the more general problems with the use of these criteria is highlighted by 

Hill's biological gradient (or dose-response) criterion. A degree of interpretation 

is necessary in order to apply this to the current findings. Strictly speaking, 
biological gradient refers to the notion that if a risk factor is causal, the greater the 

exposure the higher the risk, but since the variables used in the case-control study 

were binary it is difficult to evaluate this criterion. An argument could be made 
that the results of Study 1 for alcohol fall into this category but since this study 

was not an analytical epidemiologic design it would be somewhat misleading to 
interpret this criterion in this manner. 

It is clear that, with the possible exception, of consistency, the application of 

Hill's criteria of causality to the present study findings does little to enhance the 

causal status of the risk factors examined in this thesis. What is less clear, 

however, is how much this is simply due to the general validity of such criteria, 

the value of which have been questioned by some authors (Lanes & Poole, 1984). 

Other than the condition of temporality there would appear to be no necessary or 

sufficient aspect of non-experimental research that can be used to determine 

whether the observed association is unequivocally causal. The reason for this is, 

as Rothman (2002) points out, fundamental in nature - namely that causal 

inferences based on non-experimental research can never attain the certainty of 

logical deductions. Although such criticism could be considered to undermine the 

value of this thesis, and indeed all non-experimental research, it is, perhaps, more 

constructive to think of it as placing an upper limit on the confidence with which 

it is possible to make assertions. In this way, the main value of such research for 

the identification of causal risk factors lies in affording the opportunity for the 

falsification of specific hypotheses that have been formed on the basis of 

predictions made under the assumption of a causal relationship. Therefore, whilst 

the findings of this thesis cannot on their own test the hypothesis that concomitant 

substances are causal factors in heroin or methadone overdose, they can be used 

as evidence towards or against a causal relationship. The extent to which they can 
be seen to be good at doing this rests on the quality of the research and 

consideration of alternative explanations for the pattern of findings. This then sets 

the lower limit of our confidence. 
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8.3.2 Study limitations 

For the sake of continuity, the limitations of Study 2 will be considered first. 

8.3.3 Limitations of Study 2 

Grimes and Shultz (2002) outline three main components that need to be 

considered in order to evaluate the internal validity of observational research: 

confounding, selection bias and information bias. 

8.3.3.1 Confounding 

Several explanations have been suggested throughout this chapter that were not 
directly considered when formulating the original hypotheses. Some of these 

explanations have only a minor bearing on the interpretation of the findings. For 

example, an alternative biological effect has been suggested to underpin the 

increased risk of death associated with benzodiazepine use, which, whilst 
interesting from a basic science point of view, would not change the status of 
benzodiazepine use as a potential causal risk factor, nor the recommendations that 

would be made if this were the most appropriate conclusion. This is also true for 

the idea that benzodiazepines directly increase dangerous heroin- or methadone- 
taking behaviours. However, the difficulty for the theory that benzodiazepine use 
increases the risk of heroin or methadone overdose, and for the application of 
these findings, comes from explanations that imply a non-causal role for 

concomitants - i. e., that the results were confounded by an unmeasured variable. 

Psychological comorbidity has already been given as a potential confounder, but 

an equally plausible explanation could be that people, who use heroin in ways 

more likely to result in overdose, such as close to their personal overdose 

threshold or intravenously, also have a tendency to use benzodiazepines. How 

then, may the positive findings from this study for benzodiazepines be separated 
from these potential confounding effects? Several conditions would need to be 

met for one of these factors to either partially or fully explain the relationship 
between concomitant drug use and death from overdose. Firstly there would have 

to be an association between the confounder and benzodiazepine use and secondly 

there would have to be an independent association between the confounder and 

179 



the outcome. Here, analogy may be taken from the association between coronary 
heart disease and coffee drinking which is explained by tobacco smoking. A third 

condition is that the confounder should not lie on the causal pathway between the 

exposure and outcome or, relatedly, be an effect of the exposure itself (ref). 

It has already been seen that opioid users who also engage in regular 
benzodiazepine use often have various psychological comorbidites that may 
increase their risk of overdose. Similarly, several authors have shown that this 

sub-population also appears to engage in more harmful drug-using behaviours. It 

is difficult, however, to systematically evaluate the second and third propositions 

since there is, at present, a lack of research showing these alternative explanations 

are themselves independent risk factors (Oliver et al., 2007). These explanations 

may, therefore, be non-casual risk factors themselves rather than true confounders. 
Although this may seem like a semantic argument the distinction is important 

because it is incorrect to modify study design, for example through matching or 

restriction, on the basis of a `potential' confounder as this can lead to biased 

results (Jaggar et al., 2008). Nevertheless, it would have been useful to have some 

measure of these variables so that exploratory analyses could be used to rule out 

such a relationship. 

Given the complexity in the lives of heroin users, the likelihood is that some or 

even all of the factors discussed here play a causative role in fatal heroin or 

methadone overdose. This is consistent with the notion of the component-cause 

model of causality suggested by Mackie (1974) in which any given effect has 

several component causes that act together and are only sufficient given that the 

other components are in place. It remains necessary to try to understand more 

about how these factors interact and under which circumstances they have the 

greatest influence. These are issues that require further research. 

8.3.3.2 Selection bias 

In a case-control study, the control group is intended to provide an estimate of the 

exposure (recent use of benzodiazepine or cocaine in this instance) in the 

population from which the cases are drawn and should therefore preferably come 
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from the same population (Bowling, 2002). This is to ensure that the two groups 

are equivalent in all important aspects. The two control groups in the present 

study were probably more homogeneous than the heroin and methadone fatalities 

as they were selected from a group of heroin dependent methadone maintenance 

treatment clients. In this regard, although most of the cases will be dependent 

users of heroin (Oliver & Keen, 2003), a proportion will have been either 
`recreational' or even first-time users and this sub-group may, therefore, be less 

likely to simultaneously use benzodiazepines or cocaine. This may be more 

relevant to the results for methadone since it is known that a large proportion of 

those who die from methadone overdose are not themselves MMT clients but 

have used illicitly obtained supplies (Cooper et al., 1999; Clark et al., 1995). 

The probable effect of this sampling bias is that benzodiazepine and cocaine use 

amongst controls may be higher than would be expected if the group were drawn 

from the same population as the cases. Consequently, the estimated odds ratio for 

cocaine may be biased towards zero whereas the odds ratio for the risk of 

overdose from use of benzodiazepines may be biased in the direction of one. In 

other words, the effect for cocaine may have been somewhat overestimated 

whereas that for benzodiazepines may have been underestimated. For the 

methadone analysis, this bias may have been moderated by the fact that the 

control group was in treatment, the effect of which would be to decrease rates of 

poly-drug use (Keen et al., 2003). A related issue is that cases were drawn from a 

wide geographical region while the controls were limited to the Sheffield heroin- 

using population. The differences observed between cases and controls with 

respect to benzodiazepine and cocaine use may, therefore, in part, reflect 
differences in patterns of poly-drug use between Sheffield opioid users and those 
in other parts of the country. However, any such effect will have been partly offset 
by the fact that the majority of fatalities included in this study will have come 
from the Yorkshire region. 
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8.3.3.3 Information bias 

Information bias3 is said to occur when information about the exposure is gathered 
in different ways for cases and controls leading to biased determination of the 

exposure and/or outcome (Shultz et al., 1995). Since the measures of exposure 

were both taken from urinalysis data that had been screened using the same assays 
in the same lab, and additional methods were employed to overcome the issue of 
`on-the-end of the needle' fatalities (section 5.3), there is little reason to suspect 

any form of information bias in this study. 

8.3.3.4 Further issues: the use of urinalysis data 

The use of urinalysis data for positive detection of benzodiazepines which have 

timeframes in the order of days (Wolff et al., 1999) means that the findings may 

only relate to use of benzodiazepines around the time of opioid use. The results 

may not therefore be generalisable to the actual co-administration of these drugs. 

8.3.4 Limitations of Study I 

8.3.4.1 Generalisability 

The concomitant drug prevalence rates reported in this study may not be 

generalisable to the whole of England and Wales since drug using patterns may 

differ from region to region and the collection of fatalities presently reported did 

not constitute a random sample. However, the study was based upon data from a 

wide range of different areas, and according to the number of heroin- and 

methadone-related fatalities reported by the Office for National Statistics over the 

period of data collection, accounted for a significant proportion of all deaths 

attributed to fatal heroin and methadone-related overdose (sections 6.0.1.1 and 

6.1.1.1). 

8.3.4.2 Selection of cases 

It is possible that the dependence on only the toxicologist's conclusions to 

determine cause of death may have resulted in the inclusion of fatalities that were 

Also known as observation, classification or measurement bias. 
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not directly related to the pharmacological effects of heroin or methadone. In 

order to minimise such misclassification, all comments were rated by a single 
individual using a conservative criteria for inclusion. Cases with ambiguous 

conclusions were excluded and the effect of classification (causative and 

probable) was also included as an explanatory variable in multiple linear 

regression analyses. While this approach remains reliant upon the toxicologist's 

judgment, in many instances, this individual will have had access to the 

circumstances and pathology from the death. 

8.3.4.3 Extrapolation of effects to ante-mortem drug use 

The degree to which the effects of concomitants on post-mortem blood levels 

actually reflect effects on the ante-mortem lethality of heroin or methadone cannot 

be determined from the findings of this study. Blood levels of drugs following 

death are not considered to be a reliable indicator of ante-mortem drug 

consumption levels (Leikin & Watson, 2003; Drummer, 2004). Post-mortem drug 

concentrations may be affected by the site at which blood was collected (Hearn et 

al., 1991); redistribution throughout the body after death (Cook & Braithwaite, 

2000) and time between death and toxicological analysis (Wolff, 2002). For 

example, increases in post-mortem methadone concentration seen with delayed 

examination time are lower in peripheral blood compared to that taken from the 

heart (Wolff, 2002). The fact that the present data came from a single laboratory 

employing standard procedures, such as the use of peripheral blood 

measurements, will have minimised these effects in as much as is possible. 

Furthermore, in a large collection of observations such as those presented in the 

current study, these effects would be expected to average out. This is illustrated by 

Caplehorn and Drummer (2002) who showed that, despite the error induced by 

post-mortem changes, there remains an identifiable linear relationship between 

opioid dose and post-mortem blood concentration. 

8.3.4.4 Unexplained variance 

It is important to qualify the findings from Study I with a word of caution 

regarding the total amount of variance explained by the inclusion of concomitant 

explanatory variables. The amount of variance explained (indicated by the values 
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of R2) provides a measure of the substantive importance of any explanatory 

variable or collection of variables (Tabachnick & Fidell, 1996). Although higher 

than other concomitant variable in Study 1, the amount of variance explained by 

ethanol was modest at best, and in most models, a significant amount of variance 

remained unaccounted for. This highlights the potential diversity of factors which 
determine fatal post-mortem blood concentrations. 

8.3.4.5 Deliberate overdose deaths 

The question of intent was not addressed in this study. Although overdose of 
heroin is an infrequent method of suicide chosen by heroin users (parke & Ross, 

2002), in similar collections of post-mortem data, the proportion considered by 

the coroner to be suicides was between 10 - 15% (Cairn et al., 1996; Oxman et al., 
2000). These fatalities may be expected to have a greater tendency to use 

significant quantities of opioids and concomitant drugs, the effect of which would 
be to militate against detecting a negative linear relationship of the type expected 
following a pharmacologic interaction. It is possible, therefore, that the effect of 

concomitants would be greater for exclusively non-deliberate overdose fatalities. 

8.3.4.6 Statistical power issues 

In the case of methadone, a total of 290 observations were available, which gave 

this study a statistical power (1-0) of 70%. This is below the conventionally 

accepted level of 80% (Fox & Mathers, 1997). Some of the negative findings from 

this study, for example, the lack of effect seen for benzodiazepines, may have 

been due to inadequate power. However, this sample size would still be sufficient 

to detect a correlation of 0.17 which is only marginally larger than that used in the 

original sample size calculations. It is therefore unlikely that this study has missed 

any meaningful effects. 

There was, however, a lack of observations for some concomitant substances and 

so it was not possible to fully evaluate the effect tricyclic antidepressants, SSRls, 

cocaine and dihydrocodeine. Instead, these substances were treated as 
dichotomous indicator variables reflecting their presence or absence at post- 

mortem. This broad-brush approach somewhat limits the inferences that can be 
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made and may potentially mask relationships. For example, as seen for ethanol, 
low concentrations of a particular concomitant may not be sufficient to affect 

post-mortem blood concentrations of heroin or methadone (section 6.0.2.3). 

Grouping such observations with higher concentrations (which may show an 

effect) reduces the likelihood of finding a significant difference between these 

groups. Although further collections of post-mortem data are required to fully 

understand the role of these substances in fatal heroin- and methadone-related 

overdose, the lack of observations relative to the known use of these substances 

with this population suggests that the role of these substances is not appreciable. 

8.4 Supplementary evidence from animal studies and 
other relevant investigations 

From the preceding study critique it is clear that confidence in any conclusions 

that can be made on the basis of findings from this thesis are moderated by a 

number of study limitations and more generally by the limitations imposed by the 

use of a non-experimental methodology. If the findings of this thesis are, 

therefore, to have any weight in informing public health interventions or clinical 

practice it is necessary to look towards supportive evidence from other areas of 

research. 

8.4.1 Animal research 

Although it is was by no means a universal finding, the literature review in section 

3.7 revealed that co-administration of alcohol or benzodiazepines in animals can 

alter the disposition of opioids in a potentially synergistic manner. In addition to 

this, with central respiratory depressant effects of their own, it is reasonable to 

believe that simultaneous use of these drugs would result in some degree of 

pharmacodynamic interaction. In order to inform the present research question, it 

is necessary to ask whether, and to what degree, these effects actually influence 

the respiratory system and whether this is sufficient to increase the likelihood of 
death. Perhaps due to having more legitimate roles in medicine such as in 

anaesthesia, the vast majority of existing animal research has focused on the effect 

of co-administration of opioids with benzodiazepines. 
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8.4.1.1 Studies in rodents 

Evidence from studies conducted with rodents suggests that benzodiazepines can 
increase the toxic effect of opioids on the respiratory system. Bradshaw et al. 
(1973) showed that the fall in respiration rate of mice induced by 10mg/kg or 
20mg/kg of intravenous morphine was potentiated, in a dose-response fashion, by 

co-administration of 1.25mg/kg and 2.50mg/kg intraperitoneal (i. p) diazepam. In 

these animals there was also a more prolonged period of respiratory depression. 

Other studies suggest that such interactions are affected by several factors, 

including level of tolerance and the opioid in question. For example, McCormick 

et al. (1984) studied the effect of acute and chronic co-administration of diazepam 

and methadone in rats and found that 20mg/kg of subcutaneously administered 
diazepam was sufficient to induce significant changes in blood-gas parameters 
including PaCO2, pH and Pa02. This effect, however, was far more apparent when 
both drugs were co-administered for the first time than with chronic use. Whereas 

PaCO2 was increased from 19% above baseline with acute methadone alone to 

45% with acutely administered methadone and diazepam, the effect with chronic 

administration of both of these drugs was less than a third of this suggesting a 

significant habituation of the potentiating ability of diazepam. 

Borron and colleagues (2002) conducted a randomised study in opioid-naive rats 

to determine the extent to which flunitrazepam affected the median lethal dose of 

several common opioid preparations. Subjects in this study were randomly 

allocated to one of six groups receiving intravenous methadone, buprenorphine or 

morphine, with or without pre-treatment of 40mg/kg of intraperitoneal 

flunitrazepam. This dose of flunitrazepam resulted in death from methadone 

toxicity at a level that was 42% lower than if these drugs were administered alone. 
Even more profound effects were observed for buprenorphine (described below) 

but, paradoxically, only a small effect was seen for morphine. An additional 
finding from this study was that flunitrazepam generally increased the actual time 

to death, suggesting that a pharmacokinetic interaction was not responsible for 

this pattern of findings. These data are interesting as they suggest that 
flunitrazepam-opioid interactions are principally pharmacodynamic in nature and 

186 



occur differentially depending upon which opioid receptor isoforms are occupied4. 
There are, however, several issues that limit the generalisability of these findings. 

The dose of flunitrazepam used in this study was particularly high and so there is 

the question of whether similar affects would also be seen with lower doses. 

Whether such effects also extend to other benzodiazepines is also contentious, 

especially given the known differences in their relative potencies (Kemp et a1., 
1987). 

The role of benzodiazepines appears to be further complicated by the observation 

that any potentiating effect appears to be reversed at higher opioid doses. In a 

study of the effects of intracerebroventricular administration of alprazolam 
(Img/kg, i. p) on changes in respiratory function induced by the selective mu- 

receptor agonist dermorphin, Paakkari et at (1993) found that whilst minute 

volume was decreased, in an additive manner, by coadministration of these drugs, 

at low dermorphin concentrations, at higher opioid doses, alprazolam significantly 

attenuated changes in minute volume. A similar antagonistic effect to this has also 
been observed in mice where diazepam and oxazepam (an active metabolite of 

temazepam) have been shown to be effective in increasing the LD505 of morphine 

and methadone (Shannon & Holtzmann, 1976). Since relatively high opioid doses 

are a feature of heroin use in opioid dependent humans, these findings may be a 

reasonable reflection of the type of effect that could be expected in such cases 

and, as such, could be interpreted as evidence against the present hypotheses. 

8.4.1.2 Non-human primates and other species 

Relatively few studies relevant to this issue have been conducted in animals other 
than rodents and available data are somewhat inconsistent. Further evidence 

against the hypothesis that opioids and benzodiazepines in combination produce 
an additive or supra-additive effect on respiratory depression comes from a study 

conducted by Gerak et al. (1998) in rhesus monkeys. In this study, administration 

of 0.32mg/kg of midazolam did not produce any appreciable additional 

4 Morphine exerts Its effects principally at the mu receptor but also at the kappa receptor, methadone's affinity is 
mainly to the mu receptor and buprenorphine Is a partial mu agonist, a delta agonist and a kappa antagonist. 

LD50 (abbreviation for'Lethal Dose, 50%'). This Is the median lethal dose of a poison or radiation required to 
kill half the members of a tested population. 
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ventilatory-depressant effect on minute volume in monkeys treated with fentanyl, 

irrespective of the fentanyl dose. However, in rabbits, 4mg/kg of intravenously 

administered diazepam has been shown to enhance morphine's respiratory- 

depressing effects on several parameters, including minute volume and PaCO2, as 

well as prolonging such effects (Bradshaw el al., 1973). 

8.4.1.3 Animal studies of buprenorphine toxicity 

Buprenorphine is a semi-synthetic opioid derived from thebaine (Heel et al, 

1979). It has mixed agonist/antagonist activity and is licensed in the UK and other 

countries for the maintenance of heroin dependence as well at the treatment of 

moderate to severe pain (Connock, 2007). Because of its dual activity at the mu 

and kappa opioid receptors, its dose response curve exhibits an inverted U-shape 

and with higher doses, the effect of this drug on respiratory depression plateaus 

and eventually falls (Walsh el al., 1994). For this reason, buprenorphine is 

considered to be relatively safe in overdose, however, in France, where this drug 

has been the predominant substitute therapy for heroin addiction for over a 

decade, a number of fatalities have been observed (Tracqui et al., 1998). The 

finding that almost 80% of such cases are positive for benzodiazepines has led 

several authors to suggest a causal role for these drugs (Kintz, 2001). This 

association, whilst entirely descriptive, is difficult to dismiss on the basis of 

unmeasured confounding by factors such as reduced tolerance or careless use 

patterns because a plateau response would still have been expected to provide 

some protection against overdose. 

There appears to be consistent support for the hypothesis that benzodiazepines 

potentiate the lethality of buprenorphine. Nielsen & Taylor (2005) measured the 

respiratory function of opioid naive rats coadministered intravenous 

burprenorphine after pre-treatment with 20mg/kg of intraperitoneal (i. p) 

diazepam. The effect of diazepam was to remove the typically observed 

protective plateau effect of buprenorphine leading to significantly increased 

PaCO2 and respiratory acidosis. A similar effect has also been observed with pre- 

treatment of midazolam, again in opioid/benzodiazepine naive rats (Gueye et al., 

2002). Rats given a 160mg/kg i. p dose of midazolam alone had a mild increase in 
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arterial pH at 90 minutes (mins) and an increase in PaCO2 at 60mins but when 

combined with buprenorphine, there was a prolonged respiratory depression 

including changes in pH and PaCO2 observed within 20mins and delayed hypoxia 

at 180mins. As a result of the changes to these respiratory parameters, 
benzodiazepines appear to have the ability to profoundly affect the dose at which 
buprenorphine becomes fatal. For example, in another study in rats, 40mg/kg of 
flunitrazepam was sufficient to lower the median lethal dose of buprenorphine by 

84% (Boron el at, 2002). 

Whilst there appears to be reasonable evidence from animal studies of an 
interaction between benzodiazepines and buprenorphine, the nature of this 

interaction remains unclear. At present, it appears that these observations are not 

explainable in terms of a specific pharmacokinetic interaction and most 

researchers appear to favour a simple additive pharmacodynamic effect on central 
breathing areas (Ibrahim el al., 2000; Kilicarslan & Sellers, 2000). Such findings 

may, therefore, be generalisable to other opioid-CNS depressant combinations. 
However it could also argued that such effects may be due to the unique nature of 
buprenorphine's dose response curve, in Nielsen & Taylor's (2005) study, a 

combination of diazepam and methadone was at least as lethal as diazepam and 
buprcnorphine. 

8.4.2 Limitations of animal-based research 

There are a number of factors that limit the extent to which these data may be 

used to inform the present thesis. Most strikingly there is little in the way of 

evidence for concomitants other than benzodiazepines and in particular no 

relevant studies involving ethanol could be indentified from the literature. Given 

their mutual action at the GABAA receptor it may be possible that similar effects 

would be seen with ethanol but since this drug has additional CNS depressant 

effects and a different metabolic pathway it would be unreasonable to suggest that 

their findings would be interchangeable. 

A degree of caution is warranted when attempting to extrapolate from any animal 
data to human populations and there are numerous examples of positive findings 
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from animal studies that have subsequently been found not to translate at the level 

of human randomised trials (Hackam & Redelmeier, 2006). One of the most 

commonly cited examples of this being saccharine which was linked to bladder 

cancer in rats but after years of subsequent research found not to have any toxicity 
in humans (Jensen & Kamby, 1982). When evaluating the applicability of animal 

studies of drug toxicity to human populations, Karch (2006) recommends that a 

number of factors be taken into account including whether the results followed a 
dose-response curve; whether the doses involved were massive; and whether the 

routes of administration were appropriate. When considered in terms of these 

issues, it is possible to question the application of the data presented above to 

humans. Rarely were different benzodiazepine doses considered and little explicit 

consideration appears to have been given to realistic human equivalent doses of 

the benzodiazepines administered. Indeed, one of the authors acknowledged that 

the doses used were `far greater than those used by humans' (Gueye et al., 2002). 

As a consequence, the levels of benzodiazepines that were used in many of the 

studies reported above were sufficient to induce non-fatal comas in their own right 

-a situation that is generally not a true reflection of the use of these drugs in illicit 

heroin using populations. The use of excessively large doses that are not 

representative of human usage leaves studies open to criticism. This is illustrated 

by the validity of some animal data on the neurotoxicity of MDMA which was 

questioned for the use of dosages that were higher than that used by humans 

(Lieberman & Aghajanian, 1999). With the possible exception of the lowest 

benzodiazepine dose that was shown to influence arterial pCO2 (4mg/kg, i. p in 

rabbits6), this problem would appear to apply equally to much of the findings 

described above. 

Route of administration has major implications for the bioavailability of the drug 

as well as pharmacokinetic parameters (Shargel el al., 2005). Whilst intravenous 

injection of morphine may accurately reflect some illicit heroin use, this is not the 

case with methadone, which in the UK, at present, is almost exclusively supplied 
in a sucrose mixture to prevent its injection (Wolff, 2002). These issues are further 

6 In Bradshaw et al. 's (1973) study, diazepam (i. p, 4mg/kg) was administered to rabbits. This dose 
can be converted to a human equivalent dose (HED) using a conversion factor of 0.32 (FDA, 
2002). This gives a HED of 1.28mg/kg - the equivalent of a 90mg dose in man. 
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complicated by the fact that in general, smaller animals have more rapid heart 

rates and circulation times, leading to faster drug clearance (Lin, 1998). This may 
be particularly problematic for the study of toxic interactions of drugs such as 
benzodiazepines and methadone that, in man, have relatively stable blood 

concentrations over the course of several hours (Wolff, 2002; Chouinard et al., 
1999). 

8.4.3 Respiratory parameters in man 
There is limited available data on the toxic effects of concomitant use of drugs 

alongside opioids in man (Lintzeris el at, 2007) and the majority of these studies 
have again focussed on the role of benzodiazepines. Measurement of respiratory 

parameters in individuals treated simultaneously with opioids and 
benzodiazepines indicates that such combinations can blunt hypoxic ventilatory 
drive when administered intravenously to opioid nave individuals. In one study, 

co-administration of midazolam at a dose that produced no respiratory effects 

alone (0.05mg/kg, i. v), increased the incidence of hypoxemia induced by 2. Opg/kg 

(i. v) fentanyl from 50% (6/12) to 92% (11/12) (Bailey el at, 1990). Whilst 

fentanyl did not produce apnoea alone, when in combination with midazolam a 

profound apnoea was observed in half of the study group. Whilst relevant to 

clinical anaesthesia, given that fentanyl is an order of magnitude more potent than 

either heroin or methadone (Karch, 1996), and that the participants in this study 

were opioid nave, a key question is whether similar effects would be seen in 

dependent heroin or methadone users. Lintzeris el al. (2006) found that in heroin 

addicts receiving methadone and buprenorphine maintenance treatment, 

therapeutic doses of diazepam (20mg, per os) administered at the same time as 

their typical dose of daily opioid therapy did not result in significant reductions in 

oxyhaemoglobin saturation (Sp02). In a more recent study (Lintzeris et al., 2007), 

these authors found evidence that supra-therapeutic diazepam (40mg, per os. ) 

coadministered alongside a greater than normal methadone maintenance dose 

(150%) can lead to decreased Sp02 values. It is interesting to note however that 

the magnitude of this effect was not large. The mean peak reduction in peripheral 
Sp02 observed was approximately 3% from a baseline of 96%, with only one 

subject showing a Sp02 reading below the level used to define hypoxia (<90%). 
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The very limited available physiological evidence in man, therefore suggests that 

therapeutic doses of benzodiazepines do not significantly potentiate the toxicity of 

methadone to the respiratory system when coadministered alongside greater than 

normal maintenance doses. There is however, little in the way of evidence for 

other concomitant substances, or indeed for other opioids. The only other relevant 

study that could be identified by this author was a recent abstract by Setnik et a1. 

(2007), which looked at the effects on several physiological and pharmacological 

parameters, including Sp02, of co-administration of therapeutic doses of 
immediate release morphine (30mg, per os. ) and recreational levels of ethanol (up 

to 42.7g, per os. ). In this study, increasing amounts of ethanol did not alter 

distribution of morphine or lead to any significant change in oxygen saturation. 

The relatively low doses of both of these drugs probably limits the generalisability 

of this study to the present research questions. 

8.5 Future research directions 

Future research needs to consider, more explicitly, the issue of causality. A 

multidisciplinary approach is required, with clinically relevant animal research 

and further epidemiological study. Data from clinical studies in humans such as 

Lintzeris el al. (2006; 2007) are informative and should be replicated using more 

diverse clinical populations; other concomitant drugs (in particular ethanol); and 

importantly, with better statistical power. These studies would also be greatly 

enhanced by the use of more sensitive measures of respiratory function such as 

arterial blood gas analysis. Ultimately, however, this approach is constrained in its 

ability to accurately reflect many acute opioid overdose situations because the 

doses of concomitants seen in fatal overdose may be too high to assess in a 

sufficiently safe manner. The correlational methods used in this thesis, whilst 

arguably the most thorough to-date, are limited in the extent to which they can 
determine causality. Without modification, it is unlikely that any additional 

research using this method will be able to further inform this important topic. In 

order to address the potential issue of confounding by tolerance this method could 
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be supplemented by segmental hair analysis, which has been shown to be a 
reliable biomarker of opioid tolerance (Druid et a1., 2007). 

Research using animal models should address the shortcomings identified in 

section 8.4.2. In particular, careful consideration needs to be given to the 

assessment of a range of human equivalent doses, different tolerance levels and 

specifically to the role of ethanol. Consideration also needs to be given to the use 

of methods of administration that are able to accurately reflect the kinetics of the 

drugs in question in man. For example, one way of mimicking the steady state 
kinetics of benzodiazepines in rat models is by incorporation of this drug into a 
liquid diet (Skelton el al., 2000). At a more basic level, several competing 
hypotheses may be formulated to explain the pattern of findings observed in 

respect of the effect of ethanol on fatal morphine levels. The most parsimonious 

explanation would appear to be a simple additive pharmacodynamic effect 
(Levine et a!., 1995); however, Polletini el a!. (1999; 2005) argue for a 

pharmacokinetic interaction. In this regard, the characterisation of free and 

conjugated heroin metabolites may be informative. 

The essential role of animal research is in understanding the physiological 

mechanisms underlying causal pathways (Rutter, 2007). Since replicating the 

specific conditions of acute accidental opioid overdose in humans experimentally 
is inappropriate, other designs must be considered. The use of an appropriately 

conducted cohort design could overcome many of the methodological issues that 

have been seen in the present thesis, for example, by avoiding the problem of 

selection bias. Ideally, such a study should attempt to measure all of the factors 

that have been suggested as alternative explanations for the association between 

alcohol or benzodiazepines and fatal opioid overdose, including tolerance and 

psychological co-morbidities. It should also provide a biological measure of drug 

use, such as urine testing and be conducted with a large, representative sample, 

that would include heroin users both in an out of treatment. Given the known 

difficulties in retaining intravenous drug users in longitudinal research (Ball & 

Ross, 1991), in order to have appropriate statistical power, it is likely that such a 

study would need to be conducted on a wide geographical scale. 

193 



Further research into the role of psychological and sociological factors in fatal 

overdose could employ similar methods to those used in research into risk factors 

for suicide in the general population. In this area, the gold standard method is the 

psychological autopsy (Appleby et al., 1999). This method consists of 

reconstructing the life and personality of the deceased around the time of death 

and also provides details of the circumstances, behaviours and events that directly 

preceded death (Schneidman, 1981). This is most often achieved through 

synthesising information from multiple sources, most important of which is an 

extensive structured interview with one or more `informants' - typically a partner, 

parent, sibling or close friend (Isometsa, 2001). Within an appropriate study 

design this method is able to estimate the role of various psychosocial risk factors 

involved in a suicide (Appleby et al., 1999) or accidental death (Gau & Cheng, 

2004) and could be adapted for the investigation of the role of similar factors in 

fatal heroin- and methadone-related overdose. 

8.6 Application of research findings 

8.6.1 The need to inform and refine prevention strategy 

The most widespread strategy for the prevention of heroin- or methadone-related 

overdose is public and peer-based education to address the risks identified from 

research (Moore, 2004). Presently, statutory drug treatment services, needle 

exchange and outreach programs provide ongoing harm minimisation advice to 

heroin users and often conduct active campaigns to raise awareness. The advice 

given typically cautions users to: (i) sample their heroin first; (ii) avoid mixing 

heroin or methadone with other CNS depressants; (iii) avoid injecting alone; (iv) 

to respond appropriately during peer overdose; (v) monitor their own tolerance. 

Following the Advisory Council on the Misuse of Drugs' (2000) report into 

reducing drug-related deaths, the Department of Health set a target in the Updated 

Drug Strategy of a 20% reduction in drug-related deaths in England between 1999 

and 2004 (The Home Office, 2002). Data recently provided by the Office for 

National Statistics has shown that drug-related deaths fell by only 9% during this 

time and fatalities involving heroin remained at almost identical levels to those in 
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1999 (ONS, 2006). Assuming that the prevalence of illicit drug use has not 

changed during this period, this suggests that strategies employed have had only 
limited impact in terms of preventing fatalities from heroin overdose and that 

continued efforts are required to identify both significant risk factors for heroin 

and methadone overdose and those who are most likely to benefit from this 

knowledge. 

8.6.2 Practical application of study findings 

Evidence has been found that is consistent with a causal role for alcohol and 
benzodiazepines in heroin- and methadone-related fatal overdose. However, the 

practical application of these findings depends very much on the extent to which 

one believes that these findings are better explained by alternative factors. On 

balance, it would seem that benzodiazepine-use is a marker rather than true causal 

risk factor and the implications of this interpretation are discussed below. The 

evidence for a causal role for alcohol is somewhat stronger than that for 

benzodiazepines and given that this concomitant has no role in clinical medicine, 
it is possible to give less conservative advice about it's concurrent use with 

opioids. Nevertheless, since confounding by reduction in tolerance cannot be 

ruled out as at least a partial explanation then one suggestion would be to target 

alcohol-using heroin or methadone users with a view to improving their tolerance 

awareness. 

The finding that benzodiazepines were associated with an increased risk of fatal 

overdose without the expected pharmacological interaction may have implications 

for the general approach to overdose prevention as it implies that focusing on the 

co-administration of these drugs with heroin or methadone per se overlooks the 

potentially more important contribution of individual characteristics or transient 

life events for which opioid and benzodiazepine co-use use may be a selective 

marker. This suggests that risk awareness, more restrictive prescribing of 
benzodiazepines and even take-home naloxone may have limited impact because 

they may not, in many cases, address the underlying causes. Qualitative (Neale, 

2000) and quantitative (McGregor et al., 2002) research has shown that many 
heroin users have a high awareness of overdose risk factors but under certain 
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circumstances appear to ignore these dangers. Ethnographic research (Moore, 

2004) reveals that street-based injecting drug users place a high value on heavy 

polydrug intoxication and, in particular, the fine line between heavy intoxication 

and overdose. The motivation for this type of over-consumption is often 

emotional in nature: 

The emotionally numbing qualities of heroin intoxication were 
deemed perfectly suited to coping with family deaths, memories of 
childhood abuse and acrimonious struggles over child custody, and 
to dealing with emotional distress caused by engaging in street sex 
work. In the eyes of many, polydrug use, including heroin, was a 
recognised, available and appropriate response. 

(Moore, 2004, p. 1554). 

Other research has revealed a role for recent life events as risk factors for non- 

fatal heroin overdose (Neale & Robertson, 2005) and a co-variation between 

suicide attempts and life-threatening overdose (Rossow & Lauritzen, 1999; 

Vingoe cl al., 1998). Although it is not possible, with the present data, to evaluate 

the theory that benzodiazepine use amongst heroin and methadone users is a 

marker for underlying psychological risk factors, there is some support for this 

notion within the literature. For example, benzodiazepine use has been shown to 

be predictive of other forms of risk-taking such as needle sharing (Metzger et al., 

1991) and is associated with greater levels of psychopathology, poorer health and 

impaired social functioning (Darke, 1994). A relationship between 

benzodiazepine use amongst heroin users and personality disorder, the role of 

which has been identified in other forms of `accidental' death (Gau & Cheng, 

2004), has also been suggested (Seivewright, 2000). Collectively, these findings 

point towards the need for preventative strategies which provide a coordinated 

approach which broadens the traditional passive educational messages to include 

more proactive monitoring of the psychosocial wellbeing of heroin users. 

8.6.3 Implication for prescribing of benzodlazepines to 
methadone users 

The prescribing of benzodiazepines to MMT patients is a controversial issue but 

one which is faced by many doctors involved in the treatment of heroin use 
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(Seivewright, 1993). This situation may arise from the short-term use of 

benzodiazepines for the management of sleep disorder or anxiety or in reduction 

programs for the control of benzodiazepine dependence. The extent of sleep 

disorders within this population and their associated health consequences (Stein et 

al., 2004) suggest that instances in which the prescribing of benzodiazepines may 

be beneficial to heroin users in MMT treatment are common. More contentious, 

however, is use of these drugs to augment methadone in MMT patients who do 

not respond satisfactorily or in those who wish to manage on lower methadone 

doses (Seivewright, 2000). Greenwood (1996) has shown that illicit drug use can 

be reduced in such situations. The contrast between the effects of diazepam and 

alcohol found in the current study suggest that, at the levels of use implied by the 

mean blood concentrations observed here (i. e. therapeutic), diazepam does not 

affect the lethality of heroin or methadone. Although this suggests that therapeutic 

benzodiazepine use in this population may not increase the risk of overdose, this 

may not apply to supra-therapeutic doses. In this regard it is encouraging to see 

the introduction of pharmacy regulations that allow benzodiazepines to be 

prescribed to drug users on an instalment basis 7. 

8.7 Conclusions 

On the basis of Study 1, it was estimated that over 80% of fatal heroin and 

methadone overdose cases in England & Wales involve additional concomitant 

substances. The prevalence of the most commonly detected of these - ethanol and 

benzodiazepines - is at least as high, if not higher than other countries that have 

significant populations of heroin users and remained a stable feature of heroin and 

methadone deaths over the observation period. The thesis has been concerned 

with attempting to understand the significance of these observations and has tested 

a number of specific hypotheses that have been made under the assumption of 

causality. 

The notion that the prevalence of benzodiazepines in case series of opioid 

overdose is purely a reflection of the polydrug nature of heroin dependence can 

7 Amendment (SI 2005 No 893) to the NHS General Medical Service Contracts Regulations 2004 (SI No 291). 
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largely be rejected. Those who die from heroin or methadone overdose appear to 

be more likely to use benzodiazepines around the time of their death than age and 

gender matched peers. In the context of an analytic epidemiological design, it 

would be conventional, when observing a finding of this nature, to conclude that 

there is something about the exposure that increases the risk of the outcome. 
However, from the results of Study 1, it does not appear that benzodiazepines 

increase the risk of death via a pharmacological interaction and so it is left open to 

speculation as to what this `something' might be. Further research, both in 

humans and appropriate animal models is needed to corroborate these findings, 

which if confirmed, suggest that benzodiazepine use acts as a marker for other 
factors involved in opioid overdose. 

In contrast to the findings for benzodiazepines, using a more thorough 

correlational approach than has previously been used, evidence was found that is 

consistent with a pharmacological role for alcohol in both heroin and methadone 

overdose fatalities. It is, however, impossible to rule out non-causal explanations 
for this relationship on the basis of the methods employed in this study and in 

view of the fact that there is a paucity of supplemental evidence from animal 

studies, a degree of caution is required when making any causal inferences. 

Additional research is required to rule out alternative explanations such as 

changes in tolerance but at present, given the size of the effect seen in Study 1, the 

advice to avoid mixing alcohol, particularly at high levels must be seen as sound. 

There was little evidence for a significant role for any other concomitant drug. 

The notion that opioid users will reduce their risk of overdose simply by avoiding 

mixing other substances must be seen as overly simplistic and potentially distracts 

from other more established risk factors such as injecting whilst alone and using 

after periods of abstinence. The nature of opioid dependence is such that users of 

these drugs frequently tread a fine line between desired intoxication and life 

threatening overdose. The findings from this thesis suggest that the role of 

concomitant drugs in these overdoses is not as straightforward as first thought and 

that the mechanisms underlying the association between opioid overdose and 

concomitant drugs use may have as much to do with behavioural factors as 

pharmacological ones. 
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Appendix A- Toxicology methods 

Description 

This appendix contains details of the procedures and protocols followed by the 

Department of Clinical Chemistry for the screening, confirmation and quantitation 

of drugs in urine and blood. 
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fif ieffeld Tco thing hospitals NIIS Trust Procedure No; RCC TXo Ool 
" I2e` ýisipnl Yq, '1. l fiii' '""4+cjprat of Laboratory Mecliciuc 

tment: Clütical Chemistry `I'ä ýc1af2 
5tion: Toxicology 

SCREENING: FOR. BASIC DRUGS BY_GC-MS 

UNITS: - NIA 
TELEPATH' REQUEST COiiE: - CHRQMA 

CLINICAL. BACKGROUND 
A compfehetl'sý es tý'f fittte, plesen e: of: cji g in body fluids is fundamental to 
the toxicolo lcäl ý ýs i 

. Of ýlrl(C ! t1 'foj pýcs. This procedure will 
satisfactati i enfiýyýj itn ml?? on di9s"a_rid toXins where present in concentrations 
sufficient to oaiise; 6lihia: effects. 

ANALYTICAL . 
PRINCIPLE 

Them ajority of dcü, 4 ch '. 91, ly-basllr and r, =arlsequerltty ionised at low pH and 
non-ionised at high gH, BY, in ir0 S1hg the pH, most Of the drug will be non-ionised 
and extracted inti? o. K9fii, sdfiit" 
Gas chromatogrrpti . 

4$-ßaä'Xmi, ed auf-0 40. OGgani. G. eictract an a capillary column using 
a simple tempera1Ure. ptdg tnm . Aºi lytes°s paratgd by the chromatography 
process pass throUgh"the MäSS Setectiue-D. ete0tor (HUädropold). They may then be 
identified by comparison of retention time's and mass spectra held on the workstation 
libraries. 

SANIRLE, REGQUII MENTS 
Body"- d or ti8i =UZ-4i ogeut generally blood, urine or gastric contents. 

re 
1) 

2) butyl acetate 

3) internal standard - SKF 525a (Proadifen) 100mg/4 in methanol (bottle 301) 

SAFETY POINTS 
Gloves should be worn throughout the preparation stage of this procedure to 
minimise the exposure to biological material and harmful reagents. 
Refer to COSHH file for emergency and spillage procedures. 

Ammonia is corrosive and highly toxic. The fume hood or cupboard should be used when preparing 
reagents from concentrates (G116/COSHH/06, and associated RA2) and generally when pouring larger 
volumes of solvents such as methanol and butyl acetate (G116/COSHH/10 and associated RA2 and 
G116/COSHH/31). Minimal stock should be kept inflammable bins. 

The minimal risk of exposure to the various drugs used as calibration standards and to the irritant effects 
of solid chemicals should be avoided by good laboratory practice and the use of gloves. 

Hard copy issued by: CAW vton 
gnature in red: `l', 

ýý-""`ý 
Date or first issue: 2-0/2/O2 

Copy No. I 

Review Date: 20/12/04 
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Seff eld Teaching Hospitals NIIS Trust Procedure No. RCCTX6001 

pireetorate of Laboratory Medicine Revision'No. -1 
Mparlmant: 

Clinical Chemistry Page. 2 of 2 

$cction: Toxicology 

PROCEDURE 

To 600pl standard ortest add 100NI ammonia, 261x1 internal standard and 200pi butyl 
acetate. 

2) Vortex mix for 30 seconds. 

3) Centrifuge for 5mins to separate the phases. 

4) Take off the organic layer into micro vials (autosampler vial with insert)"apfd trsfer 
to autosampler. 

5) Ensure you are familiar with the general procedure for the operation öf=tt., ,, G' Al f: 
'(e. g. RCCTX3013) and programme for BASIC method. 

CHROMATOGRAPHY PARAMETERS 
_Refer to workstation for full method listing) 

Column type (HP5973) HP-5MS; 30m x 0.25mm xm 
Scan mass range 40 - 

400 

Solvent delay 4 mins 
Temperature programme initial temp 85°C time 1.5 mins 

final temp 280°C time 11 mins 
rate 10°C/min 

Run length 32 mies 

RETENTION DATA 
Refer to the list of retention times at the analyser unit. Note that-absolute retention 
times will vary as the column ages or is replaced. Retention. time relative to the 
internal standard (RRT) $hould, be used in preference although retention'tirne locking 
available on the HP5573 Will maintain retention times by adjusting thre. flow rate as 
necessary (see RT locking SOP). 

QUALITY CONTROL 
In-house five=component preparation (amphetamine, fluoxetine, amitryptiline, 
diazepam and strychnine) on an occasional basis. 
Participation in various EQA schemes for drugs of abuse and toxicology. 

ASSAY PERFORMANCE 
It is important to appreciate that no single method can satisfactorily identify all 
possible drugs/toxic substances. This extraction is not universally applicable and GC 
as a technique is limited to thermally stable molecules. Sensitivity may also be a 
factor, especially where the drug is active at very low concentration. 
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Shcffield'Teacliing Hospitals NIIS Trust Procedure No. RCCTX0003 
Dircclora(Gof Laboratory Medicine Revision4Noi 3 
Departtnent; Clinical Chemistry ?tl öf G 
Section: Toxicology 

. 
1. 

IDENTIFICATION/CONFIRMATION OF PRESENCE OF OPIATES IN 
URINEEBY AUTOMATED SOLID-PHASE "EXTRAC-TIÖN ÄNDt`GC=1ti1ý 

ZITS: - N/A 
LEPATH REQUEST CODE: - UDACON 

CLINICALBACKGROUND 
Th''e poferitiäl? problems associated with the reporting ' of'faJ$. ly osl f 1eresj, ýIts 
in'tl e-area of drug abuse cannot p over-enlphas ' d. Con e uen osifi e q. lY°p. 
results obtained from the Dade- hrifg., Xp ant RI 'kj rj 
assays must be confirmed and.. iienttfie, f by -Iternative- metho o1ogy whore 
the volume of sample allows. Where there is insufficient sample to confirm the 
assay it should be clearly stated on the report. 

ANALYTICAL PRINCIPLE 
Opiates are excreted into the urine as the conjugated form (glucuronides). 
The conjugates are cleaved by hydrolysis with glucuronldase and-the pH of 
the sample is adjusted to between 8 and 9 by the addition of M potassium 
hydroxide. It is then passed through a pre-conditioned bonded silica solid- 
phase extraction (SPE) column, which the drugs are first bound to and then 
eluted from. The dried eluates are propionylated for the simultaneous GC-MS 
analysis for all opiates including 6-monoacetylmorphine, a unique indicator of 
heroin abuse. Although this extraction procedure is sub-optimal for 
amphetamines, these may often be identified- as the propionylated derivatives. 
Methadone and its metabolite, normethadone; benzoylecognine (cocaine 
metabolite) and cyclizine are identifiable as native compounds. Actively 
searching for the absence or presence of the components of the routine urine 
drug screen proves a useful means of quality assurance. 

SAMPLE REQUIREMENTS 
Urine, 5m1 minimum. 

.. 
REAGENTS (refer to CoSIITI risk assessment file and safety points below before 
11a1)(Ilint; reagents) 

1) ß-glucuronidase: Type H-1 Sigma G-0751 (>300,000 units/g solid) 
Dissolve sufficient enzyme for the daily batch (5rng/mL in sodium acetate buffer [reagent 2]). 
Surplus reagent may be kept for up to two days in the refrigerator. 

2) sodium acetate buffer (M) pH 5.0: 
Dissolve 13.6g sodium acetate trihydrate in 100ml deionised water. Adjust the pH to 5.0 with 
glacial acetic acid. 

3) glacial acetic acid 
4) potassium hydroxide (M): 5.61 g/100ml aqueous 
5) methanol (Analar) 
6) potassium acetate buffer (0.1 M) pH 4.0 

To about 200ml deionised water add 1425µI glacial acetic acid. Mix and add 3 ml M 
potassium hydroxide. Adjust pH to 4.0 by the addition of further potassium hydroxide. Make 
up volume to 250ml. Stable for 10 weeks at room temperature. 

7) eluting solvent: 
Dichloromethane: propan-2-ol: conc. ammonia (80: 20: 2). Mix thoroughly before use. Stable 
for 2 weeks at room temperature. 

Hard copy issued by: CIMewlOn 
Signature in red: Copy No. 1 

Date of first issue: 1A/J04 Review Date: 14/09/04 
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Sheffield Teaching I-IospitalsNIISTrust troceaure aNu....:. <,. Directorate of Laboratory Medicine Revision No. 3 
Department: Clinical Chemistry Page 2 of 6 
Section: Toxicology 

8) Varian Bond Elut CertifyTM SPE columns (1 mi/130mg) part number All 210- 
2083 (via Kinesis [part number 220839]) 

9) derivatisation reagent: 
propionic anhydride: pyridine (2: 1) - prepare and use in fume cupboard 

10) * butyl acetate (Analar) 

SAFETY POINTS 
Gloves should be worn throughout the preparation stage of this procedure to 
minimise the exposure to biological material and harmful reagents. 
Refer to COSHH file for emergency and spillage procedures. 
Particular care should be taken when preparing and using the derivatisation reagent to limit exposure to 
pyridine and propionic anhydride by inhalation (G116/COSHH/12 and 13). A fume cupboard should be 
used where this is a risk, and bottles and vials should be closed immediately after use. 
Glacial acetic acid and potassium hydroxide are corrosive - gloves and safety glasses should be used 
when preparing reagents from concentrates and solids (G116/COSHH/ 02 and 08). 
Ammonia is corrosive and highly toxic, and chlorinated hydrocarbons such as dichloromethane are 
potential carcinogens and highly toxic. The fume hood or cupboard should be used when preparing 
reagents from concentrates (G116/COSHH/06,14, and associated RA2s) and generally when pouring 
Isfger volumes of solvents such as methanol, butyl acetate and propan-2-ol (G116/COSHH/15,09 and 
10 and associated RA2) 
The minimal risk of exposure to the irritant effects of solid chemicals should be avoided by good 
laboratory practice and the use of gloves (G116/COSHH/29,59). 

PROCEDURES 
,P ofworksheets 1. odüctii 

1) 'Verify with senior staff that all relevant work has been authorised 
2) Create worksheet from APEX computer system. 

a. Select Worksheet Generation (WGEN) 
b. Enter DAU for worksheet code 
c. Enter 1 Add samples <samples available will display> 

d. Enter 1 Add all-- 
3) Print worksheet to screen 

a. Enter 4 Print 
b. Enter through defaults (Start Cup Number 1; Finish Cup Number 30; 

All/Used: A) and 1. Accept 

c. Enter 5 User defined 

d. Enter Report Style KWSTOX 

e. Select Output Device VDU ignoring <WARNING: Preferred Output 
Type is A PRINTER> message 

--- f. Note the cup number and specimen number of any entries to be 
removed from the worksheet (i. e. those not requiring opiate 
confirmation/identification) using the return key to scroll down 
the worksheet and to return to the main WGEN menu. 
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d: VYf i: ; e; rwor s( jýs sätis ä to .. Getu_ rn. and 1 Accept to save it and 
{yarn= -r ?0 , 0,9 N! rM: 

5') T rmiri ti `l: miiiri 
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end=. drei teýf. tjr wotkshoets aS-necessary 
hhter 6) Print WOMMQ-ets'töýpr, 

a, 'Eiistif`: e. printeh°I10-r`e : i"tö:, printA4:; p, 4ger. 
b. Eilt r4 Print 

t t. 'Gup-Nummer 1; Finish Cup Number 30; c. Rifer thrcggjiA UIUIt L(S r 
Ail`/. sbi ; A)? "a d1 AQcept 

d. Enter 5 User-dafil ed 
e. Enter'Report Style, KWS` OX 

f. Select Output Device KTOX 

7) Locate original samples -from-storrge system and place in a rack in worksheet 
order. Deo not reject short samples until the sample tube from the 
Xpand enaf i er has been checked. If still insufficient - indicate as 
such on worksheet. 

2. Hydrolusis 

1) Label a clean 25mL sample tube with the surname and last three digits of the 
laboratory number of the first sample on the, worksheet. Transfer 
5mL of urine from the original sample to this secondary container, 
taking care to check the patient details tally. Repeat for each 
sample- on the worksheet. 

2) Add 1 ml of glucuronidase solution to each 5ml aliquot of urine to be analysed 
and adjust the pH to 5; 0 ± 0,5 where necessary and according to 
thegeneral procedure . (RCM. 301.0). Particular care must be 
taken ',, to wash: thheeelectrode well. ' between. samples. to avoid the 

3). Cap the sample tubes and incubate in a water bath for 4 hrs at 50°C. 
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1 Enter work ". Tcý., .: ýrý. ýý;. rx, R ýý}ýýýýýýF sheet %fo tiöii tQ GCMSti oät! (ýst e 1'59 
and sequence log; gn fhb'(P rrpe ý cq di gö tlie' ý 
procedure (RC. XSi 0 7) 'N, it qbýfor 

mat AddnimNnn (W}er.. ýOim riiönth äi dyiý, btl 
and programme förthie method t ÄU: ÖQ'NL 

4. Extraction 

1) Adjust the pH to 8.0-9.0 by the addition of M potassium-hydroxide.. 
2) Centrifuge for 10 minutes at 3000 rpm. 
3) Number and locate the appropriate number of 2m1 glass reaction vials in, the 

36 position polypropylene collect rack in the rightmost bayýof the 
Aspec system. 

4) Locate the appropriate number of SPE columns in the mobile polypropylene 
rack in the same bay, ensuring that polyethylene-sealing caps have 
been firmly fitted to each column. 

6) Aliquot 5ml urine samples to Sarstedt tubes (55.472) and locate in 
polypropylene sample rack (21) in leftmost bay of Aspec system. 

7) Place uncapped reagents in positions 1-3 of reagent bay using plastic 
bottles for methanol (1) and acetate buffer (2), and glass for eluting 
solvent (3). 

8) Ensure deionlsed water is connected to the input to the 402-syringe pump and 
prime via the keypad until air bubbles are expelled. 

9) Load DAUCON method-file and run from keypad (note programme requests 
position of first vial and total. number of vials; use number pad, 
cursor, enter and esc keys to input) 

10) As this is u$uagy an overnight procedure, ensure analyser is working 
corredtlr before leaving. 

5. Derivitisation and, loading. of GCMS 
K- 

1) Remove eluted samples from Aspec on completion. Safely dispose of empty 
sample vials and SPE columns according to laboratory disposal 
procedure. 

2) Evaporate to dryness under air at 600C taking care to clean evaporator probes 
with methanol before use, thus avoiding cross-contamination (see 
also RCCTX3005). 

3) Add 100µI derivatisation reagent to the dried residue, cap the vial, vortex mix 
for 15 seconds and incubate at 75°C for 40 minutes. 
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6: Identification and Interpretation; of ; GCMS': -Results 

The following instructions assume the, Qperator has. been, trained to a 
satisfactory standard in the principles and operation of GCMS 
instrumentation. 

Do not undertake them without this relevant training, 

1) Refer to the tables by the instrument for the most current retention time data. 
Identify opiates and amphetamines by using extracted ion chromatograms of 
the major relevant ions. It may be necessary to expand the scale and aloan up 
the peak by spectral subtraction in order to positively-identlfy the mass 
spectra from the library (PHHTQX). Frisur the reteritiorº =tt '- iS matohe aas 
well as the mass spectrum. If unable to identify- amphetamines'rOfertö 
AMPHET SOP. 

2) - Search for cyclizine, and ensure absence or presence of mothadone, W4: it e 
and metabolites. Note that slight discrepancies at the limits of deteotlen- 1o 
occur. 

RETENTION DATA - OPIATES 

prop ion lated aom ound major ions RRT 
SKF 525a 86 1.0Ö 
DIHYDROCODEINE 357,300,284 1.13 
CODEINE 355,282,229 1.16 
6-MONOACETYLMORPHINE 327,383,268 1.22 
MORPHINE 341,397,268 1.26 
PHOLCODINE 114,100 1.57 

RETENTION DATA - OTHERS 

compound major ions RRT 

. AMPHETAMINE propionylated 44,100,118 0.56 
METHAMPHETAMINE pro ionylated 58,114,91 0.60 
METHYLECOGNINE 82,182,96 0.62 
MDA propionylated 162,44,135 0.78 
EPHEDRINE ro ion lated 58,114 0.79 
PSEUDOEPHEDRINE propionylated 58,114 0.79 
MDMA ro ion lated 58,162,114 0.82 
MDEA propionylated 72,162,128 0.84 
CYCLIZINE 99,167,194 0.87 
METHADONE METABOLITE " 277,276 0.88 
METHADONE 72 0.96 
SKF 525a 86 1.00 
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Slie 1icld Teaching Hospitals NITS Trust 
Directorate of Laboratory Medicine 
D partincut: Clinical Chemistry 
Section: Toxicology 

ESTIMATION OF ETHANOL BY 
UNITS: - mg/100mL 
TELEPATH REQUEST CODE: - ETHAN 

CLINICAL BACKGROUND 
Most requests are from cases where alcohol int 
checks for patients under alcohol, free regires. 
blood and urine are also made in post-mori c 
of the state of intoxication at the time of death. 

ANALYTICAL PRINCIPLE 
A measured volume of'sample together with, a m'ea ggJj ili iire.; 
(propan-1-ol), are sealed in a vial and placed on thOA ;`C1 
at 65°C. Following equilibriation a measured volume of vapour i's 
column. Refer to the 'Varian Combipal' method sheet for more 4 

epce iu c`Tjo.;. R c 
Rcrisi 
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SAMPLE REQUIREMENTS 
Blood should be collected into fluoride oxalate vacutainers ortub. Os with no air space 
or a fresh random urine sample may be used. Both types of sample should' be stored 
at 4°C. 

REAGENTS(refer to CoSIIIT risk assessment rile and safety points below before 
handling reagents) 

1) Internal standard - prepared by adding 40p1 of propan-1-ol to 25m1 of de-ionised 
water. Store at 4°C. 

CALIBRATION 
1) Certified Ethanol Standard - 200mg/100ml (Obtained from the Laboratory of the 

Government Chemist). 

SAFETY POINTS 
Gloves should be worn throughout the preparation stage of this procedure to 
minimise the exposure to biological material and harmful reagents. 
Refer to COSHH file for emergency and spillage procedures. 
There is no risk of exposure to ethanol at the concentration used. The minimal risk of exposure to 
propan-1-ol should be avoided by good laboratory practice (G116/COSHH/52). 

The 'Combipal' presents hazards due to the automation of sample handling/injection; 
be aware of the warning systems on this machine. In addition gas chromatography 
equipment presents certain hazards. Ensure you are aware of the risks before 
proceeding. 

PROCEDURE 
Refer to Varian Combipal' SOP (RCCTX3097) in conjunction with these instructions. 

1) To 200 pl of sample/celIibrant add 400 pl of internal standard. 
2) We utilise two-200 mgil'OOinl calibrators, and, tWo internal quality control sera IQC1 

and IQC2); fdlloWec'öythe samples. 

4 ard . copy issued'by: CMNewton"" 
gºturc in red: 

[t'e%af fjýst issüe: '2-Fetr06 
Itcv140t i1atc: -2-Fob-=06 

I) ite, printcd : 2-rieb-06 

Copy No. I 

Review Date: 2-Feb-06 
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Sheffield Teaching Hospitals MIS Trust Procedure . Ni RC(; T 000 
Directorate of Laboratory Medicine 

Dcpartincttt: Clinical Chemistry -eP_ ä c7 öf2, 
F Section: Toxicology 

IMPORTANT: In all medico-legal samples the-presence of other: h0; -6f 'änoJ eäks" 
yn; 

should be reported. Acetone should be reported to the followfng-s. cäje: b'ä`sed 
height of the peak relative to the internal standard. F` 's` 

<0.25 Trace 
0.25-0.50 + 
0.50-0.75 ++ 
0.75-1.00 +++ 

Where an acetone peak is apparent the sample must be test_ �d1: (M i[ i; tic 7. 
;r 

ý1ý4J: 

Qse 
and ketones and p-hydroxybutyrate analysed where a blood sample is. -4g JIaa1 ; 

CHROMATOGRAPHY PARAMETERS 
Column : Fused silica with Poraplot Q coating, 10 mx0.32 mm i. d. 
Flow rate : 2.5 ml min''. 
Injection volume : 250 pl Split ratio : 20 

Initial Oven Tem p 
Initial Time , Q; 2: ärnj 
Gradient 32, nin°' -"ý 

Final Tem p 
Final Time 1, nrlrº 

Detector ternperature 
Carrier Flow 46 üüTmin 

Range (attenuation) 12 
Hydrogen, Flow 30 ml mini 

Air Flow 300 ml min' 

RETENTION TIMES 

RT a rox RRT 
Methanol 1.07 min 0.40 
ETHANOL 1.77 min 0.66 
Acetone 2,26 min 0.85 
Iso ro anol 2.37 min 0.89 
n-PROPANOL 2.67 min 1.00 

QUALITY CONTROL/ ASSAY PERFORMANCE 
Internal quality control BioRad Liquichek at two levels (S1 and S2) daily. 
External EQA schemes - Heathcontrol on monthly basis. 
Between batch CV should be better than 5% at 40 mg/100ml and 70 mg/100 ml. 
Consult latest IQC information. 
Linearity demonstrated up to at least 500mg/100mL (EQA). Samples with higher 
concentrations than this should be diluted 1: 1 with water. 

REFERENCE RANGE. 
The UK legal limit for driving a motor vehicle is 80 mg/100 ml in blood. At 300 mg/I 00 
ml an individual is considered to be clinically drunk. 

REFERENCES 
1. Varian Application Note 1481 GC 
2. JM. Galloway, after FIMLS Project 1980 
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Sheffield Teaching Hospitals NITS Trust 
Directorate of Laboratory -Medicine 
Department: Clinical Chemistry 
Section: TQxicolögyy 

UNI I'S: - µg71- 
TELEPATH REQUEST CODE: - MORPH 

Procedure No,. RGC' NQQ07 
Revisi*ii Nbr 1 

OIMMUNOASSAY 

CLINICAL BACKGROUND 
Morphine -is a; narcotic ana ggsic structurally related to codeine and ether opiates. lt is 
popularly used in-, theitreatthent of moderate to severe pain. 
It probably aocountsfor mQat-ofthe narcotic. activity of heroin (diacetylmorphine). from 
which it is rapidly'nTatäpölised. 
Whilst therapeutic monitQdOg of morphine concentration is not goneraIly indicated, 
quantitation is of importance in forensic toxicology where Its presence has been 
established by an alternative method. Occasional requests for quantitation in clinical 
cases may arise where brain-stem death is an issue. 

ANALYTICAL PRINCIPLE 
Morphine is ässäy"d by bIC Coat-a-Count RIA kit for both the total (i. e. including 
conjugated) and free fractions. 
1251 labelled drug competes with endogenous drug for binding sites on the antibody- 
coated tube. After incubation, the free fraction can be removed directly by 
decantation, no centrifugation being required. The remaining radioactive counts are 
compared with a series of standards using PC software. 

SAMPLE. REQUIREMENTS 
Ih eo bloöiiioläsmasetum. EDTA plasma is NOT suitable. Whole' 

1) Antiserum - Coated to the surface of the polypropylene tubes supplied with each kit. 
The tubes should be stored at +4°C and protected from moisture in their resealable 
bags. 

2) Tracer - Supplied ready for use in 105ml amounts, the tracer MUST be kept in its 
protective coloured bottle. It is stable for at least 30 days after opening or until the 
expiration date on the bottle. It should be stored at +4°C. 

3) Horse serum 

CALIBRATION 
Serum based calibrators are supplied ready for use in 1 ml vials (except the zero 
which is 3ml. ) They are labelled A to F. 

Calibrator* Conc. (Rg/L) 
A 0_ 
B 2.5 
C 10 
D 25 
E 75 
F 250 

Hard copy issued by: CMV 1 ewv on 
Signature in red: 

Date of first issue. ' 
/3/02 

Copy No. 1 

Review Date: 513106 
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Sheffield Teaching Hospitals NIIS Trust 
Directorate of Laboratory Medicine 
Department: Clinical Chemistry 
Section: Toxicology 

Procedure No. RCCTXO007 
Revision No. 1 

Page 2 of 3 

SAFETY POINTS 
Gloves should be worn throughout the preparation stage of this procedure to minimise the 
exposure to biological material and harmful reagents. 
Refer to COSHH file for emergency and spillage procedures. 

Ensure you are familiar with the Local Rules for Work Involving Unsealed Radioactive 
Sources before proceeding further 

Sodium azide is present as a preservative in concentrations less than 1g/l. Ensure reagents 
are disposed of with copious amounts of water to avoid the build up of explosive metal azides 

- in copper plumbing (G1 1 5/COSHH/01). 

Morphine calibrators are provided in liquid form and do not present a risk at these 
concentrations. 

PROCEDURE 
1) To 500pl of blood, serum or plasma in a 1.5 ml microvial add 2mg of glucuronidase 

from Helix Pomatia and incubate overnight at room temperature. This will be 
quantitated as total morphine. Take a further 500pl aliquot into a similar tube. This 
will be quantitated as free morphine. Label the tubes accordingly. 

2) After incubation dilute samples I in 10 in horse serum, unless otherwise indicated. 

3) Label, in duplicate, 6 standard tubes and an appropriate number of sample tubes 
using the coated tubes and a further2 polystyrene tubes for the totals. NSB's are not. 
required. 

4) Allow reagents to reach room temperature before proceeding. 

5) Into the appropriate tubes pipette 25ul of sample, standard and controls ensuring that 
the sample is at the bottom of the tube. 

6) Add 1 mI1251 Morphine tracer to all tubes using a Brand Handystep repeat dispenser. 
(Tracer volume is limited; care must be taken not to waste any whilst priming the 
pipette. After use rinse the pipette thoroughly with Decon and deionised wat`Or. ) 

7) 

8) 

9) 

Mix all tubes, place the rack into a plastic bag and incubate at room temperature for 
60mins. 

With care, decant the liquid from all tubes (except the totals) using a foam decanting 
rack. 

Count for 60s on the DPC Gamma C12 and process the results using the Assayzap 
32 software. Refer to the appropriate SOP (RCCENDM0001) next to the workstation 
for operation and curve fitting. 

CHECK that the tubes are placed in the order indicated in the Assayzap method file 
(morph. azm) and that the calibration standard concentrations are in agreement with 
those on the bottles (these may be subject to change with kit lots). 

QUALITY CONTROL 
Use Q1 and Q2 from the kit, no dilution necessary. It is generally satisfactory to set 
these up without replicates. Be aware of any change in lot number. 
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REFERENCES 
Refer to Kit Insert for further information. 

.> 
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Sheffield Tea clhingliospitals NITS Trust 
Directorate of Laboratory Medicine 
Department Clinical Chemistry 
Section: Toxicology 

I? roced_urr, NQ.. RCCT-XOQ12 
12evisiön r4ä;; 1~ 

Pg 1c 4 

ESTIMATION OF OPIATES BY GC-. MS. 

UNITS: - gg/L 
APEX REQUEST CODE: - n/a 

CLINICAL BACKGROUND 

In medicolegal cases, if an immunoassay screen (urine or blQQ. d), car. thpýpr s[c;, e ý of 
analysed by GC-MS indicates the presence of an Qi te. i1 is n ct s° qa tify: 
the opiate(s) in the blood and gastric contents. While afn=iºYtnýigri 's yq lti tj U_of 
morphine (RCCTX00D7) may be acceptable in so -M circ rill t1i1ed 

, i# cý s ý7, ä(yti e. 
the specificity of GCMS, making this the preferred, te: dhilique_ This r thQd 
provides a means of quantitating the heroin metabolite, 6-monaaoot itnarphihe ((ý 
MAM). 

ANALYTICAL PRINCIPLE 

The opiate is measured by GC-MS after solid phase extraction of the sample and 
derivatisation (propionylation). Selected ion-monitoring increases the analytical 
sensitivity. 

SAMPLE REQUIREMENTS 

Blood, diluted stomach contents and tissue preparations may be used. 

REAGENTS (refer to CoSHH risk assessment file before handling reagents) 

1) Ammonia buffer pH 8.7 
Dissolve 53.5g ammonium chloride in 950mL deionised water. Adjust pH to 8.7 with 
ammonia (0.88 Analar) and make up to 1 litre. 

2) Potassium hydroxide solution (M) 
Dissolve 5.61 g/100ml delonised water 

3) Methanol (Analar) 
4) Potassium acetate buffer (0.1 M) pH 4.0 

To about 200ml deionised water add 1425µI glacial acetic acid. Mix and add 3 ml M 
potassium hydroxide. Adjust pH to 4.0 by the addition of further potassium hydroxide. 
Make up volume to 250ml. Stable for 10 weeks at room temperature. 

5) Eluting solvent; 
Dichloromethane: propan-2-ol: ammonia 0.88 (80: 20: 2). Mix thoroughly before use. 
Freshly prepare sufficient for use. Generally 20mL : 5mL: 0.5mL 

6) Derivatisation reagent: 
Propionic anhydride: pyridine (2: 1) - Prepare and use in fume cupboard 

7) Butyl acetate (Analar) 
8) Varian Bond Elut Certify " SPE columns (10ml/130mg) part number 12113050 (via 

Kinesis 

Hard copy issued by: CNie? tQýº 
ý, ý- - 

Signature in red: 

Date of first issue: 07/03/99 
öö`rrý 

ýi} 

Copy No. 1 

Review Date: 113/05 
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Slieffjeld Teaching Hospitals NIIS Trust Procedure No. RCCT o12 
Directorate of Laboratory Medicine Reyisitin'No. 1 
Department: Clinical Chemistry Pago 2. of 4 
Section: Toxicology 

CALIBRATION 
1) Stock standards (100mg/I) 

Dissolve 10mg of the appropriate opiate base in 100ml methanol. Store at 4°C. 
CHECK! Adjustments to the amount weighed may be necessary to allow for 
associated anions. 
Where available primary calibration material is used in preference to in-house. 

2) Working combined standard (10mg/U1 mg/L) 

3) 

4) 

Opiate Stock 
Bottle code 

Stock standard methanol 

Morphine 466 1mL 

Codeine 375 1 mL 
Dihydrocodeine 380 1mL 
Pholcodine 468 1mL 

6"MAM 467 0.1 mL 
5.9m1 

Working standards 

Concentration 
(µg/L) 

Working 
Combined 

Standard (µL) 

Horse serum 
(mL) 

1009/100 100 0.900 
500/50 50 0.95,0 
250/25 25 0,975 

Working Internal standard (nalorphine 33.33mgIL) 
Dilute I part stock nalorphine (bottle code 469) with 2 parts methanol 

SAFETY POINTS 
Safety glasses and gloves should be worn throughout the preparation stage of this 
procedure to minimise the exposure to biological material and harmful reagents. 
Refer to COSHH file for emergency and spillage procedures. 
Particular care should be taken when preparing and using the derivatisation reagent to limit exposure to 
pyridine and propionic anhydride by inhalation (G116/COSHH112 and 13). A fume cupboard should be 
used where this is a risk, and bottles and vials should be closed immediately after use. 
Potassium hydroxide is corrosive - gloves and safety glasses should be used when preparing reagents 
from solid (G116/COSHH/08). 
Ammonia is corrosive and highly toxic, and chlorinated hydrocarbons such as dichloromethane are 
potential carcinogens and highly toxic. The fume hood or cupboard should be used when preparing 
reagents from concentrates (G116/COSHH/06,14, and associated RA2s) and generally when pouring 
larger volumes of solvents such as methanol, butyl acetate and propan-2-ol. (G116/COSHH/15,09 and 
10 and associated RA2) 
The minimal risk of exposure to the irritant effects of solid chemicals and drugs should be avoided by 
good laboratory practice and the use of gloves (G116/COSHH/29,59,81-86). 
Opiates are controlled drugs and are kept in the laboratory safe. Two authorised signatures will be 
required when removing these from stock. 
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ShoffeldTeachingIBospitalsMIS Trust j? x[tceiJure"IVq R' C(1012.. _, __.. _ _-_ Direcioratt of Lpboratory Medicine R wisiýn ?o ;1 
I)ep l tmcttt: Clinical Chemistry Iä 3ýqi g 
Section: ToIC01o y 

PROCEDURE 

1. To 1 mL of standard, control or &ample in a1 CýiCt : käs tu päý. 3tnt:. rprpögj 
buffer, lmL deionised water and 25141-Working. intOrnoFt tt? ld. 

2. Mix for 2 mins on the rollover mixer, then aentrif f r; .rý . ßt. 31 Qü jý 

3. According to VacElut general procedure (RCCTX3gO4) pr. porelth Q Cs. 4y., passjjig 
through in sequence: - 

2mL methanol 
2mL deionised water 

Using a low vacuum to prevent drying out of the sorbent bed. 

4. Apply 5mL sample/standard supernatants and allow to pass through the colutrrns at a 
rate of 1-2mUminute. 
NB. Where samples are viscous due to post-mortem degradation avoid bloeka. ge of Me 
sorbent bed by adding a small quantity of aluminium oxide granules prior to the samples and 
filtering through 3.1, um syringe filters. Ensure safety glasses are used. 

5. Rinse columns by passing through in sequence 

2mL deionised water 
1 mL acetate buffer (pH 4) 
2mL methanol 

Avoid drying of the column until the final stage. Increase vacuum and dry for at least 
3 minutes. 

,, - . ý.. .:, J__ t-ýr ý; ", ). 
:ý 

.. 

6. Elute into glass tubes with 2mL eluting solvent at a rate of 1-2mUminute. 

7. Transfer to vials and evaporate to dryness at 60°C taking care to clean evaporator 
probes with methanol before use, thus avoiding cross-contamination (see also 
RCCTX3005). 

8. Add 100µI derivatisation reagent to the dried residue, cap the vial, vortex mix for'15 
seconds and incubate at 75°C for 45 minutes. 

9. Evaporate to dryness under air at 60°C, reconstitute in 10011I butyl acetate and mix 
thoroughly. 

10. Transfer to microvials and GC-MS autosampler if safe to do so. 

11. Programme samples to run method OPIATES on HP5973 according to SOP 
(RCCTX3013). 
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Sheffield Teaching Hospitals NIIS Trust 
Directorate of Laboratory Medicine 
Department: Clinical Chemistry 
Section: Toxicology 

CHROMATOGRAPHY PARAMETERS 

(Refer to workstation for full method lisiinn) 

Procedure No. RCcTxooUU 
RcvisibXENO4. 

P: igo 4 o14 

Column type (HP5973) HP-5MS; 30m x 0.25mm x 0,25 m 
Solvent delay 18,5 min 
Temperature programme initial temp 85°C time 1.5 min 

final temp 2.80°C time 11 min 
rate 1.. 0°C/min 

Run length 32 mins 

RETENTION DATA 

ÖOIl[ OUf1Ci Target On Ch i iifierions Rat 19nt me 12 7¬ " °' 
NalorPh: ne (ant std) 367 3 0; ? 54 14.1. 

_ Dih droco eine 3$7 300; 284 19,. 8Q 1 
Codeine 355 282; 229 1 20, x? tlf8rý ä 

�ý 6*MAM 327 383: 268 21 18 CQ 
Mot 'hide 341 268: 324 _ 

Pholcocline 114 100 29.42 1.21 

CALCULATION 

1. Using the standards set up with each assay, calculate and check the identity of the 
mass spectrometry data according to SOP (RCCTYOO35). 

2. Produce standard curves for both analytes and check the quality of match for each 
substance. Print the curves. 

3. If calibration is satisfactory calculate and print QC and sample results. 

QUALITY CONTROU ASSAY PERFORMANCE 

Frozen in-house spiked QC material. 
CV better than 12% for all parameters at 400ug/L (morphine, codeine, 
dihydrocodeine and pholcodine) -and 20ug/L (&MAM) 

Limit of detection/linearity Morphine 1 Opg/U15mg/L; 6-MAM 5pg/UO. 5mg/L 
Correlation with RIA: morphineR, A = (1.09xmorphineGcMs) - 6.1 

REFERENCES 

After J. Galloway et al JCP 1998 
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S1, cfGcId Teaching Hospitals NIIS Trust 

Directorate of Laboratory Medicine 

Department: Clinical Chemistry 

Section: Toxicology 

Procedure No.. RCCTX001G 
Revision No. 1 

Page 1 of 6 

SCREENING FOR COMMONS DRUGS-IN. URINE 

UNITS: - N/A 
APEX REQUEST CODE: - TUS (set also includes UETHAN, CHROMA and UDAB51) 

CLINICAL BACKGROUND 
The following simple test-tube reactions are used when a toxicology screen of 
urine (TUS) is requested. These will generally be supplemented with an 
ethanol (UETHAN), a7 parameter drugs of abuse screen (UDABS1) and a 
GC-MS screen (CHROMA) in order to cover most of the common drugs of 
overdose. 

SAMPLE REQUIREMENTS 
20m1 random urine, no preservative. 

ýýýýýý; 

Hard copy issued byrGAf I wton 
Signature in red: 

Date of first issue: 1-Oct-97 

Copy No. I 

Review Date: 1/10/05 
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Shhefficld Teaching Hospitals NIIS Trust 

Directorate of Laboratory Medicine 

Department: Clinical Chemistry 

Section: Toxicology 

IDENTIFIC 
ZODIAZEPIN 

Procedure No. RCCTX0009 
Revision No. 1 

Page-1-of 4 

ONFIRMATIONiOF-; PRESENCE OF 
INE BY`SOLlD-PHÄSE-ýEXTRi? CTION. AND 

UNITS: - N/A 
APEX REQUEST CODE: - N/A 

CLINICAL BACKGROUND 
In general, it is not considered necessary to identify/conflrm, tho prrsonce of 
benzodiazepines in urine following screening, as tho- consequences of a positive 
result are usually less contentious than when 4 EItTr, with illicit substanoes. However, 
in those cases (pre-employment screening, for example) where this is deemed 
necessary, the following procedure should be employed. 

ANALYTICAL PRINCIPLE 
Most benzodiazepines are excreted into the urine in the conjugated form 
(glucuronides). The urine sample is therefore subjected to glucuronidase hydrolysis 
overnight priorto extraction. It is then passed through a pre-conditioned bonded silica 
solid-phase extraction (SPE) column, which is washed prior to the elution of drugs 
bound to the column with ammonia/ethyl acetate. The eluates are dried and BSTFA 
is used to produce TMS (trimethylsilyl) derivatives to be analysed by GC-MS. 

SAMPLE REQUIREMENTS 
Hydrolysed urine, 5m1 minimum. 

REAGENTS(referto CoSHH risk assessment file and safety points below 
before handling reagents) 

1) ß-glucuronidase: Type H-1 Sigma G-0751 
2) sodium acetate buffer (0.1 M) pH 5.0: Dissolve 1.36g sodium acetate trihydrate in 

deionised water. Adjust the pH to 5.0 with g' 
acetic acid. 

3) glacial acetic acid 
4) potassium hydroxide (M): 
5) potassium acetate buffer (0.1 M) pH 4.0: 

6) methanol (Analar) 
7) methanol: deionised water 
8) ammonium hydroxide 5% aqueous 

9) ammonium hydroxide 3% in ethyl acetate 

10) Varian Bond Elut CertifyTM SPE columns 
11) N, O-bis(trimethylsilyl)trifluoroacetamide 

12) ethyl acetate (Analar) 

Hard copy issued by: /C, 1 , cwton 
Signature in red: / 
Date of Erst issue: 2/5/93 

5.61 g/100ml aqueous 
To about 200ml deionised water add 1425ui glac 
acetic acid. Mix and add 3 mL M potassium 
hydroxide. Adjust pH to 4.0 by the addition of 
further potassium hydroxide. Make up volume to 
250ml. 
Stable for 10 weeks at room temperature. 

10: 90 
5ml conc. ammonia to 95ml deionised water. 
Stable for 1 week at room temperature. 
300pl conc. ammonia to 9.7ml ethyl acetate. 
IMPORTANT: Shake vigorously to mix. Store in 
glass at 5°C. Prepare fresh daily. 
(10mi/130mg) part number AI12113050 

BSTFA derivatisation reagent: SIGMA T-5634 
IMPORTANT., Store at 5°C. Avoid skin contact. 

Copy No. 1 

Review Date: 22/5/04 
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Sheffield Teaching Hospitals NHS Trust 

Directorate of Laboratory Medicine 

Department: Clinical Chemistry 

Section: Toxicology 

Procedure No. RCCTX0009 
Revision No. 1 

Page 2 014 

SAFETY POINTS 
Gloves should be worn throughout the preparation stage of this procedure to 
minimise the exposure to biological material and harmful reagents. 
Refer to COSHH file for emergency and spillage procedures. 

Glacial acetic acid, potassium hydroxide and BSTFA are corrosive - gloves and safety glasses should 
be used when preparing reagents from concentrates and solids (G116/COSHH/ 02 and 08). BSTFA 
should be used in a fume cupboard to avoid inhalation of the vapour (L001/CbSHH/06). 
Methanol is considered highly toxic although there is little risk of exposure to significant amounts 
(G1161COSHH/10-A5). 
Ammonia is corrosive and highly toxic. The fume hood or cupboard should be used when preparing 
reagents from concentrates (G116/COSHH/06 and associated RA2) and generally when pouring larger 
volumes of solvents such as methanol and ethyl acetate (G116/COSHH/20 and 10 and associated 
RA2). 
The minimal risk of exposure to the irritant effects of solid chemicals should be avoided by good 
laboratory practice and the use of gloves (G116/COSHH/29,59 and 69). 

PROCEDURE 

C Preparation 
1. ) Adjusf the pH of each 1Oml aliquot of urine to be analysed to 5.0 
2) Add 1ml öf sodium acetate buffer and sufficient glucuronidase to cover the tip of a 

small spatula (approx 2500 Units). 
Cap the sample tubes and incubate overnight at 37°C. 

4) In the morning, adjust the pH to 4.0(±0.5) by the addition of acetic acid. 
5) Centrifuge for 10 minutes. 
6) Place SPE column in Vac But system. Add, in sequence, and applying vacuum 

appropriately: 
2 ml methanol 
2 ml potassium acetate buffer (0.1 M) pH 4.0 
5 ml sample 
10 ml methanol: deionised water (10: 90) 

Note: 1. Sample must take at least 2 minutes to pass through column. 
2. Column must not be allowed to dry out between these reagent additions. 

7) Dry column under full vacuum for 15 minutes and pass through column: 
1ml ammonium hydroxide 5% aqueous 

8) Dry column under full vacuum for 3 minutes, transfer to eluting rack and elute 
benzodiazepines to vials with 3ml ammonium hydroxide 3% in ethyl acetate. 

9) Evaporate under nitrogen at 50°C taking care to keep evaporator probes. clean, thus 
avoiding cross-contamination. 

10) Add 30µI derivatisation reagent (BSTFA) and 20µi ethyl acetate to the dried residue, 
cap the vial, vortex mix for 15 seconds and incubate at 60°C for 30 minutes. 

11) Add a further 20µI ethyl acetate; transfer to microvials and to GC-MS autosampler if 
safe to do so. 

12) Programme to run samples using the BZO method according to SOP RCCTX3007. 

iQe. 



, cffig1d Tcachi1M IIospitals MIS Trust 

prcctot'ate of. 1 aboratory 
Medicine p"'` 

. rtinfnt: Ch1üca1,01cinbitiy 

c{ion: 'I'ozicology 

Procedure No. RCOTX0009 
Rmýis{tin: No, 1 

1? ägc, 3'öf 4 

2 °Identification: and: Interpretation ýof" GCMS=Rd's ülts. 
T-641606, Vtg. i ti_uctions assur`me the operator has beeng räfirw d to a 
satisfactory standard in the principles and: operation "of GCýVIS' 
instrumentation. 

Do, not undertake them without-this releý! a ä g; 

1) ReferýIQ-the4 ble below and identify benzodi ze0ý 
It maybe necessary- to di pi 1f , jid s: f, t 'dl äjt °up f; the major relevant ions 

peak by spectral subtraction in order to positive-ly, icI iltify, t110 tngs'$- p. ctcatfpm the 
libraries (RHI-ITOX, PMW, NBS). Ensure the retentlon, tiimo, is<rnd i e: 1 as iN II as ttie 
mass spectrum. 

2) Figure 1 is a guide to the possible interpretation of C C-IMS ti dings. In 
general, positive findings confirmed by GC-; MS should Ede reported-as 
positive Benzodiazepine Screen confirmed by GC-MS. No reference 
should be made to the individual drugs observed but results should be noted 
and retained. 

r`WPr)MAT(' PAP{-1Y PARAMETERS _R7() 
Cý lumn type HP6ýIS; 30m x 0.25mm x 0,25 ;m 
Scan mass range 200 - 500 
Solvent delay 3 mies 
Temperature programme initial temp 8511C time 1.5 mins 

final temp 280°C time 9 mins 
rate 10°C/min 

Run length 30 mans 

PFTFh1TIOM FATA - RPN7C)fIA7FPINF- 

Dring or rfiiefätidliýe rn j6r ions retention time 
rains 

RRT to 
prate am 

NO DI "Z 'PAM 341,342,343 15.9 0.83 

OXAZEPAM 4 9., 430,431 16.8 0.88 
DIAZEPAM 25P, 283,284 17.6 0.92 
LORAZr=PAM 4291430,431 17.8 0.93 
TEMAZýPAM 343,372,257 18.8 0.98 
PRAZEPAM 269,295,298 19.2 1.00 

a-WYbýOXYALPRAZOLAM 381,383,306 21.9 1.14 

ACETAMIDONITRAZEPAM 293,265,264 23.1 1.20 

a 

c 

,+ 

. ý' 
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Sheffield Teaching Hospitals NIIS Trust 

])]rectorate of Laboratory Medicine 

Dcpartinent: Clinical Chemistry 

Section: Toxicology 

Procedure No. RCCTX0009 
Revision No. I 

Pac4of4 

CHLORDIAZEPOXIDE CL. ORA-IrPATE 

DIAZEPAM NORDIAZEPAM I_ 
OXAZEPAM 

TEMAZEPAM ý" -> 

LORAZEPAM 

NITR/1ZEPAM 7-ACETAMIDONITRAZEPAM 

Q-AMINÖ. S-NITRO BeNZOPHENONE F3-, H YQROXY 2-AMINO -5 NITRO"BENZdPHENONE 

ALPRAZOLAM 
4-HYDROXY- 

MIDAZOLrAM fa, HYDRO 
figure 1. metabolism of major benzodiazepines. 

QUALITY CONTROL 
In-house spiked urine at expected therapeutic concentrations. 

ASSAY PERFORMANCE 
Under assessment., 

REFERENCES 
CM Newton, Unpublished Work (1998) 
JL Valentine et al, J. Anal. Tox 20: 416 (1996) 

i 
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L^` 
Sheffield Teaching IIospitals NITS Trust " Procedure No. PC- MO011' 
DirectQr? te of Laboratory Medicine Rev bn' ö. 3 
7? cpaýtment. clinical Chemistry i'a6rc"1 of 4 
Sectidn Toxicology 

ESTIMATION OF BENZODIAZEPINES BY-HPLC- 
UNITS: - µg/L 
APEX REQUEST CODE: - CHLORD; DIALPM tORAZ; MIDI; 
NIFRAZ; OXAZ; TEN4AZE 

CLINICAL BACKGROUND 
The four major pharmacological-effectsýof the benzodia Qpines, are. anxioIytic, 
sedative, muscle relaxant and anticonvul ant; In par lchlar, they ̀ have peep 
considered safer and more suitable than-ýbarbiturates-in4h. e short4errn1reatment of 
insomnia and anxiety states. 
Therapeutic monitoririq of' benzodiazepines is. rtot Oeilorally indicated except in 
questions of anticonvu)sant therapy compliance. HQW, ver, th'ey: arp, -noW considered 
to be the largest category of abused drugs aftar, ttia tine and . 

Iaahel: With a 
consequent potential for over dosage in al_tempto: -suicidos. 'lohe following method is 
designed to identify and quantitate benzodiazepines in such cases. 

ANALYTICAL PRINCIPLE 
Betlzodiäzepines ; -re-: `e` into ether from alkaline serum or plasma. The ether 
layer is evaporated to dryness, the residue dissolved in HPLC solvent and applied to 
a reverse phase column for identification and quantitation. 

SAMPLE. REQUIREMENTS 
Bialogi6l fluids, but typically whole blood and gastric contents.. 
Nitrazepam and halogen-substituted benzodiazepine's are unstable and should 
ideally be collected into fluoride oxalate preservative. It is appreciated that most 
samples derive from cadavers and a variable degree of deterioration will already 
have occurred. 

REAGENTS(refer to CoSHH risk assessment file before handling reagents 
1) Ammonia 0.88 - Analar 
2) Diethyl Ether - HPLC grads 
3) Methanol - HPLC grade 
4) Propan-2-ol - HPLC grade 
5) Triethylamine - Sigma T-0886 
6) Orthophosphoric acid 
7) HPLC Buffer 

Dilute 4.5ml triethylamine to I litre with deionised water and adjust pH to 3.7 by the 
addition of approximately 2ml concentrated orthophosphoric aoid. 

8) HPLC Mopile' Chase 
Methanol: buffer. propan-2-ol (12: 7: 1) 
For 1 litre mix together 600ml methanol, 350ml buffer and 50ml propan-2-ol. 
Filter and degas prior to use. 

Ilard copy issued by: Gý1T 
I/ 

-- ' 
Signature in red: Copy No. 1 

Date of first issue: 4l 
-Ucc-97 Review Date: 16/10/04 
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Sb field Teaching Hospitals NILS Trust Procedure No. RCCTXO011 

ijircc44raje of Laboratory Medicine Revision No. 3 

I}Cp: u'tment: Clinical CLemistry Page 2 of 4 

Section: Toxicology 

CALIBRATION 
Stock standards (100mg/I) 

Dissolve 10mg of the appropriate benzodiazepine in 100ml methanol. Store at 4°C. 
2) Working combined standards of four common benzodiazepines are prepared as 

follows: - 

Benzodiazepine Diazepam Nordiazepam Temazepam Nitrazepam 

Bottle code 327 328 329 33.1 
Concentration (NgI9 Horse Serum ml Stock Standard (PO 

250 1.98 5 5 5 5 
500 1.96 10 10 10 1: 0 
1000 1.92 20 20 20 20 

Individual working calibration standards for other benzodiazepines should be 
prepared as required. Their concentrations should reflect the expected therapeutic 
range of the benzodiazepine in question. 

CHECK! Chlordiazepoxide is stable for no more than 2 months in solution. Fresh 
stock standard may be required. 

2) Internal standard (Prazepam 40mg/l) 
Dissolve 1 0mg Prazepam in 250m1 methanol and store at 4°C (bottle code. 326). 

SAFETY POINTS 
Gloves should be worn throughout the preparation stage of this procedure to 
minimise the exposure to biological material and harmful reagents. 
Refer to COSHH file for emergency and spillage procedures. 

Ammonia, orthophosphoric acid and triethylamine are corrosive - gloves and safety glasses should be 
used when preparing reagents from concentrates (G1161COSHH/ 06,07 and 72). 
The fume hood or cupboard should Wused when pouring ammonia, methanol (G116/COSHH/10 and 
associated RA2), diethyl ether (G116/COSHH/25) and propan-2-ol (G116/COSHH/15). 
Triethylamine and diethyl ether are flammable and should be kept in the flammable cupboard and bin 
respectively. 
The minimal risk of exposure to drugs used as calibration standards should be avoided by the use of 
gloves and good laboratory practice (G116/COSHHl73.80). 

PROCEDURE 
1) To 400pl standard or unknown add 500p1 deionised water and 1 OOpl 0.88 Ammonia. 
2) To each of the above, add I Opl internal standard and extract with 5ml ether for 

1 Omins. 
3) Centrifuge to separate the phases. 
4) Transfer the ether layer to a clean tube and evaporate to dryness at 60°C. 
5) Redissolve the residue in 130pl of mobile phase and transfer to HPLC autosampler 

vials. 
6) Run method BENZODIA on HP1 100 HPLC system according to SOP (RCCTX3002). 
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jrclöflfaachiiigtIIospitals NIIS Trust Procedure No. 12CcTX0011 

jýrcctpi'ale zýf E: iWi-a Dry Aledicine 12_e isionNp, 3 
)cIf ü`"i ricilt: °Clinical, Chemistiy Page3, 

of 4 

jqbf "I'. o cci ögy 

'GOIÜmwtype -IyovýPäkýC1-8 3,9'Itim. j 1,5Omm 
4m 

Gpard. column 'N : 
"P"äk 

Sent mm x 20mM 
Flew RIte 0 6rnI/ruin 
Threshold 

., 
p': 1' 

WayeIgngth 2nm (-21 b 262,230nm 
Injection volume Z5''I 
Rijn length 14 mirk 

RETENTION DATA 

Compound 
. 

Retention time 
mins (approx) 

RRT 

Flurazepam 3.0 0.28 
Clonaze am 3.2 0,2 

Flunitraze 
, am 3.2 ,2 Norclöba, -am 3.4 0.31 

IViträzepam 3.5 O3 
Norfiiraz e am 3.5 0. _2 

Triazolain 3.5 Q.. 32 
Clobazäm 3.7 0.34' 
Loraze 

, 
am 4.0 0,37 

Oxaze am 4.1 0.. . 
Lormetazepam 4.4 0.40 
Temazep am 4.5 0,41 

Chlor diaze oxide 5,0 04 
Nordiaze äm 5.5 UM 

Midazolam 5.7 Ö. 52 
Diazepam 6.3 0157 

Prazepam (int. std) 110.9 1.00 

QUALITY CONTROL/ ASSAY PERFORMANCE 
In-house spiked horse serum (diazepam, nordiazepam, temazepam, nitrazepam). 
CV better than 10% at 600µg/I (all analytes); better than 8% diazepam/temazepam. 

Potential interferences: 
Dothiepin may co-elute with Temazepam 
Carbamazepine may co-elute with Nitrazepam 
Dextropropoxyphene RRT 0.38 
Amitriptyline RRT 0.49 
Thioridazine RRT 0.76 

Lack of sensitivity precludes the use of this method for the measurement of 
therapeutic levels of Triazolam, Flurazepam, Flunitrazepam and Clonazepam. 
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Shc fIidd Tcaciiipg Hospitals MIS Trust 

Directorate of Laboratory Medicine 

Department: 
Clinical Chemistry 

Section: Toxicology 

SUGGESTED THERAPEUTIC RANGES 

Procedere No. RCCTXUP11 
RevisojNo. 3 

Page qp4 

Analyte Rang (gli) 
iiäzeßäm 1,00 - 1-0OÖ 
Nord ae am 1'. p'd -1'5äp 
Temaze'am 4p0 - 85o 
örazepain 50 - 25,0 

Niträz`o' äm 30 - 100 
CIII, iazepoxide 1.00 - 'f: UÖ0 
Cföpazäm gss. th'an 2QÖ 

orcIdbazam Less thän 2000 

REFERENCES 
Kinberger B. and Wahrgren P., Anal. Letters, 15(136), 549-557(1982) 
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Appendix B- Visual Basic code 

Description 

This appendix contains the Visual Basic code for non-standard database 

procedures used in the Microsoft Access database developed for this thesis. 
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1. Creating a new user. 
Code underlying creation of a new database user. Occurs on create user 
maintenance form. 

Private Sub Confirm 
_Button_Click() On Error GoTo Err_error_handlingl 

Dim MyDb As Database 
Dim MyUser As Recordset 
Dim Criteria As String 

Set MyDb m CurrentDb() 
Set MyUser = MyDb. OpenRecordset("tbl_Users", dbOpenDynaset) 

If IsNull(Me. [User]) Or IsNull(Me. (Password]) Then 
MsgBox "You Must Not Leave Blank User Name Or Password" 

Else 
'Check that user name is unique 
Criteria - "(User_Name) = "" & Me. (User] & "'" 
MyUser. FindFirst Criteria 
If Not MyUser. NoMatch Then 

MsgBox "That User Already Exists" 
Else 

MyUser. AddNew 
MyUserl[User Name] = Me. [User] 
MyUser! (Password] = Me. (Password) 
MyUserl[Group_Level] = Me. [Group] 
MyUser. Update 
MsgBox "User "& Me. User &" Has Been Created" 

End If 
End If 

2. Deleting a user. 
Code underlying deletion of an existing database user. Occurs on create user 
maintenance form. 

Private Sub Confirm Button Clicko 
On Error GoTo Err_error_handling2 

Dim MyDb As Database 
Dim MyTable As Recordset 
Dim Title As String, Msg As String, Criteria As String 
Dim Response As Variant, DgDef As Variant 

Const MB_OK = 0, MB_OKCANCEL =1' Define buttons. 
Const MB_YESNOCANCEL = 3, MB_YESNO 4 
Const MB_ICONSTOP = 16, MB_ICONQUESTION - 32 ' Define icons. 
Const MB_ICONEXCLAMATION - 48, MB_ICONINFORMATION 64 
Const MB_DEFBUTTON2 - 256, IDYES - 6, IDNO =7' Define other. 

Set MyDb - CurrentDb() 
Set MyTable - MyDb. OpenRecordset("tbl_Users", dbOpenDynaset) 

Title a "Confirm Delete" 

If Not IsNull(Me. User) Then 
Msg - "Are You Sure You Want To Delete User "& Me. User & 
DgDef a MB_YESNO + MB_ ICONEXCLAMATION + MB_DEFBUTTON2 ' Describe dialog box. 
Response = MsgBox(Msg, DgDef, Title) ' Get user response. 

If Response = IDYES Then ' Evaluate response 
Criteria "[UserName]= & Me. User & 
MyTable. FindFirst Criteria 
MyTable. Delete 
MsgBox "User Has Been Deleted" 
Me. User. Requery 
Me. User - Me. User. ItemData(O) 

End If 
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End If 

MyTable. Close 
MyDb. Close 

Exit error handling2: 
Exit Sub 

Err_error 
_handling2: MsgBox Error$ 

Resume Exit error_handling2 

End Sub 

3. Logging in to database. 
Code underlying database login actions. Occurs on login screen form. 
Private Sub Cancel Button Click() 
On Error GoTo £rr_error_handling 

DoCmd. Quit 

Exit_errorhandling: 
Exit Sub 

error_handling: Err 
_ MsgBox Error$ 

Resume Exit_error_handling 

End Sub 

Private Sub Continue_Button_Click() 
On Error GoTo Err error_handlingl 

Dim MyDb As Database 
Dim MyWork As Workspace 

Dim MyUser As Recordset, MyNumber As Recordset 
Dim CRLF As String, Criteria As String 
Set MyDb - DBEngine. Workspaces(0). Databases(0) 
Set MyUser - MyDb. OpenRecordset("tbl Users", dbOpenDynaset) 

CRLF - Chr$(13) & Chr$(10) 

If IsNull(Me. Password) Then 
Criteria = "[User_Name] _"& Me. (User Name) & "' And [Password) = Null" 

Else 
Criteria - "[User Name) _"& Me. (User Name) & "' And (Password) _ 

Me. [Password) & 
End If 

MyUser. FindFirst Criteria 

If Not MyUser. NoMatch Then 

DoCmd. Close 

'Set Global Constants 
DoCmd. OpenForm "frm GlobVar", ,,,, acHidden 

Set MyNumber - MyDb. OpenRecordset("tbl_Data_Info") 
MyNumber. Edit 
If IsNu11(MyNumber! UserNumber) Then 

MyNumbert[UserNumber] -1 
Else 

If MyNumberl[UserNumber] < 200 Then 
MyNumberl[UserNumber] - MyNumberl(UserNumber) +1 

Else 
MyNumbert(User Number] m1 

End If 
End If 
MyNumber. Update 
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MyNumber. MoveFirst 

[Forms]! [frm_G1obVar3! Glob_UserNumber = MyNumber! [UserNumber] 
[Forms]! [frm_G1obVarJ! GlobUserName = MyUser! User_Name 
[Forms]! [frm_G1obVar]! Glob_UserLevel = MyUser! Group_Level 

MyNumber. Close 

DoCmd. OpenForm "frm SwitchBoard" 

Else 
MsgBox "Invalid User Name or Password" 
DoCmd. GoToControl "[User Name]" 

End If 

MyUser. Close 
MyDb. Close 

Exit error_handlingl: 
Exit Sub 

Err_error_handlingl: 
MsgBox Error$ 
Resume Exit error handlingl 

End Sub. 

4. Entering data and printing basic report. 
Code underlying main data entry screen. 

Private Sub Form Currento 
Dim MyDb As Database 
Dim MyPatientSample As Recordset, MyPatientAnalysis As Recordset, 

MyDefaultCompound As Recordset 
If Not IsNull(Formst(frm_Patient]1[PatientlD]) Then 

Set MyDb = CurrentDb() 
Set MyPatientSample = MyDb. OpenRecordset("SELECT tbl_PatientSample. * From 

tbl_PatientSample WHERE (tbl_PatientSample. PatientlD ="& 
Formsl[frm Patient]1[PatientlD] & ")", dbOpenDynaset) 

If Not MyPatientSample. EOF Then 
Me. SampleType = MyPatientSampleISampleID 
Me. SampleType. Requery 
Me. PatientAnalysis. Requery 
Me. DataEntered. Requery 
Me. DataEntered. Visible - True 
Me. Data_Entered_Label. Caption = "Data Entry Complete for "& 

[Forms]l[frm_Patient] [SampleType]. Column(l) &" Sample" 
Else 

Me. DataEntered. Visible = False 
Me. SampleType - Null 
Me. SampleType. Requery 
Me. DataEntered. Requery 

End If 
MyPatientSample. Close 
MyDb. Close 

Else 
Me. DataEntered. Visible = False 
Me. SampleType = Null 
Me. SampleType. Requery 
Me. DataEntered. Requery 

End If 
DoCmd. GoToControl "SurName" 

End Sub 

Private Sub Form Open(Cancel As Integer) 
On Error GoTo Err_Form Open 

If Deny_Access(MY_L2) Then 
Lock Fields Me, True 
Lock Form Me. frmCirculationList. Form, False 
Lock Form Me. PatientAnalysis. Form, False 
Lock Form Me. DataEntered. Form, False 
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End If 

Exit ForrrL_Open: 
Exit Sub 

Err_Form_Open: 
MsgBox Err. Description 
Resume Exit-Form. 

-Open End Sub 

Private Sub Preview Clicko 
On Error GoTo Err P7review Click 

Dim User_ID As String 
Dim X As Integer 

Me. Refresh 

If IsNull(Me. PatientlD) Then 
MsgBox "You must select a Case to preview" 
GoTo Exit-Preview-Click 

End If 

User ID = CStr(Get_UserNumber()) & "T" 
X= _elete_Temp_Tables(User_ID) 

DoCmd. OpenReport "rep_CaseAnalysis", A 
_PREVIEW 

Exit Preview Click: 
Exit Sub 

Err Preview Click: 
Select Case Err 

Case 2501 
Msgßox "There Is No Data For This Report" 

Case Else 
MsgBox Err. Description 

End Select 
GoTo Exit-Preview-Click 

End Sub 

Private Sub PrinRep_Click() 
On Error GoTo Err_PrinRep_Click 

Dim User_ID As String 
Dim X As Integer 

Me. Refresh 

If IsNull(Me. PatientlD) Then 
MsgBox "You must select a Case to preview" 
GoTo Exit_PrinRep_Click 

End If 

User ID - CStr(Get_UserNumber()) & "T" 
X= Delete Temp_Tables(User_ID) 

DoCmd. OpenReport "rep_CaseAnalysis", ANORMAL 

Exit 
_PrinRep 

Click: 
Exit Sub 

Err_PrinRep_Click: 
Select case Err 

Case 2501 
MsgBox "There Is No Data For This Report" 

Case Else 
MsgBox Err. Description 

End Select 
GoTo Exit PrinRep Click 

End Sub 

Private Sub SampleType AfterUpdateC) 
On Error GoTo Err_SampleType_AfterUpdate 

Me. Refresh 
If Not Deny_Access(MY_L2) Then 

Dim MyDb As Database 
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Dim MyPatientSample As Recordset, MyPatientAnalysis As Recordset, 
MyDefaultCompound As Recordset 

Set MyDb = CurrentDb() 
Set MyPatientSample = MyDb. OpenRecordset("SELECT tbl_PatientSample. * From 

tbl_PatientSample WHERE (tbl_PatientSample. PatientlD ="& 
Formal[frm Patient]I[PatientlD] &" AND tblPatientSample. SampleID ="& 
Formsl[frm_Patient]I[SampleType] & I')", dbO_penDynaset) 

If MyPatientSample. EOF Then 
MyPatientSample. AddNew 
MyPatientSample! PatientlD = Forms! [frm_Patient]! [PatientlD] 
MyPatientSamplelSamplelD = Forms! [frm Patient]I[SampleType] 
MyPatientSamplelDataEntered = False 
MyPatientSample. Update 

MyPatientSample. Close 

Set MyPatientAnalysis = MyDb. OpenRecordset("SELECT tbl_PatientAnalysis. * 
From tbl_PatientAnalysis WHERE (tbl_PatientAnalysis. PatientlD ="& 
Formsl[frm_Patient]I[PatientID] &" AND tbl_PatientAnalysis. SamplelD ="& 
Forms][frm_Patient]t[SampleType] & ")", dbOpenDynaset) 

Set MyDefaultCompound = MyDb. OpenRecordset("SELECT tbl Compound. CompoundlD, 
tbl_Compound. DisUnitID FROM tbl_Sample_Defaults INNER JOIN tbl_Compound ON 
tbl_Sample_Defaults. CompoundlD = tbl_Compound. CompoundlD WHERE 
((tbl_Sample_Defaults. SampleID)= "& (Forms]t(frm Patient]t(SampleType] & ")", 

dbOpenDynaset) 

Do While Not MyDefaultCompound. EOF 
MyPatientAnalysis. AddNew 
MyPatientAnalysis! PatientlD Forms! [frm_Patient]! [PatientlD] 
MyPatientAnalysis! SampleID = Forms! [frm_Patient]I[SampleType] 
MyPatientAnalysisICompoundlD = MyDefaultCompoundl[CompoundID] 
MyPatientAnalysislUnits = MyDefaultCompoundl[DisUnitlD] 
MyPatientAnalysis. Update 
MyDefaultCompound. MoveNext 

Loop 
MyPatientAnalysis. Close 
MyDefaultCompound. Close 

End If 

MyDb. Close 
End If 

Me. PatientAnalysis. Requery 
Me. Data_Entered_Label. Caption a "Data Entry Complete for "& 

[Forms]! (frm_Patient]. [SampleType]. Column(l) &" Sample" 
Me. DataEntered. Visible - True 
Me. DataEntered. Requery 

Exit 
_SampleType_AfterUpdate: Exit Sub 

Err_SampleType_AfterUpdate: 
MsgBox Err. Description 
Resume Exit_SampleType_AfterUpdate 

5. Storing standardised units 
Code underlying collection and storage on units of measurements for compounds. 
Occurs on main data entry screen. 

Private Sub Compound 
_AfterUpdate() Me. Units - Me. Compound. Column(2) 

Me. Units. Requery 

If (Not IsNull(Me. Units)) And (Not IsNull(Me. TAMT)) Then 
Call TAMT_AfterUpdate 

End If 
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End Sub 

Private Sub Form Beforelnsert(Cancel As Integer) 

Me. PatientlD - [Forms]1[frm Patient]! [PatientlD] 
Me. SamplelD - [Forms]! [frm_Patient]! [SampleType] 

End Sub 

Private Sub TAMT_AfterUpdate() 
On Error GoTo Err TAMT AfterUpdate 

Dim Msg As String, Title As String 
Dim AnalysisAmt As Variant, MyDefault As Variant 
MyDefault -0 
Title = "Input Quantity For Statistical Analysis" 
Msg @ "Please Input the Quantity which will be used for Statistical Analysis" 

If IsNumeric(Me. TAMT) Then 
Me1NumAmt = CDbl(Me. TAMT) 
MelStandardAmt = Get_ConvF(Me. Units, Nz(Me. Compound. Column(3))) 

CDbl(Me. TAMT) 
End If 

If Left(Me. TAMT, 1) Then 
Do 

AnalysisAmt - InputBox(Msg, Title, MyDefault) 
If Not IsNumeric(AnalysisAmt) Then 

MsgBox "Value Entered Must Be In Numerical Format! " 
Else 

Exit Do 
End If 

Loop 

MelNumAmt -0 
MelStandardAmt - Get_ConvF(Me. Units, Nz(Me. Compound. Column(3))) 

CDbl(AnalysisAmt) 

End If 

Exit_TAMT_AfterUpdate: 
Exit Sub 

Err TAMT_AfterUpdate: 
MsgBox Error$ 

Resume Exit_TAMT AfterUpdate 

End Sub 

Private Sub Units_AfterUpdate() 
If (Not IsNull(Me. Units)) And (Not IsNull(Me. TAMT)) Then 

Call TAMT_AfterUpdate 
End If 

End Sub 

6. Storing reference data 
Code underlying the collection and storage of reference data for sample type, 
compound and conversion factors. Occurs on reference data form. 

Private Sub DefaultAnalysis_Button_Click() 
On Error GoTo Err_DefaultAnalysis_Click 

If IsNull([Forms]! [frm_Reference_Data]! (Sample]. [Form]. [SampleID]) Then 
MsgBox "You must select a Sample Type" 
GoTo Exit_DefaultAnalysis_Click 

Else 
DoCmd. OpenForm "frm DefaultCompounds" 

End If 

Exit_DefaultAnalysis_Click: 
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Exit Sub 

Err_DefaultAnalysis_Click: 
MsgBox Error$ 
Resume Exit_DefaultAnalysis_Click 

End Sub 

Private Sub Form Open(Cancel As Integer) 

If Deny_Access(MY_L1) Then 
Lock Form Me. Sample. Form, False 
Lock Form Me. Compound. Form, False 
Lock Form Me. Unit. Form, False 
Lock Form Me. ConvF. Form, False 

End If 

End Sub 

Private Sub Tab_Change_Change(1 

'(Forms]l[frm_Reference_Data] I[Compound]. [Form]. [Displayed Units]. Requery 
(Forms] I(frm_Reference_Data]! [Compound]. [Form]. (Standard Units]. Requery 
(Forms]I[frm_Reference_Data]I[ConvF]. [Form]. [Unit (a)]. Requery 
[Forms]I(frm_Reference_Data]I(ConvF]. (Form]. [Unit (b)]. Requery 

End Sub 
Private Sub Command59Click() 
On Error GoTo Err Command59 Click 

DoCmd. Close 

Exit Command59 Click: 
Exit Sub - 

Err_Command59_Click: 
MsgBox Err. Description 
Resume Exit_Command59_Click 

End Sub 

7. Exporting data to spreadsheet for further analysis. 
Code underlying the process of exporting data into Microsoft Excel. Occurs in 
association with the report form. 

Private Sub ExportXL_Click() 

On Error GoTo Err_error_handlingl 

If DCount("[PatientlDJ", "ROO1Q2") =0 Then 
MsgBox "No Data to Export" 
DoCmd. CancelEvent 
Exit Sub 

End If 

Dim MyDb As Database 
Dim MyData As Recordset, MyCompounds As Recordset, MyResults As Recordset, 

MyPatients As Recordset 
Dim Criteria As String 
Dim SaveFile As String, Default_SaveFile As String, Msg As String, Title As 

String, MyDataPath As String 
Dim qdf As QueryDef, Qdfl As QueryDef 
Dim prm As Parameter 
Dim I As Integer 
Dim NoSecondary As Boolean 

DoCmd. SetWarnings False 
DoCmd. RunSQL "DELETE tbl R001A. * FROM tbl ROOlA" 
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Set MyDb = CurrentDb() 
Set qdf = MyDb. QueryDefs("R001Q1") 
For I=0 To gdf. Parameters. Count -1 

Set prm = gdf. Parameters(I) 
prm. Value = Eval(prm. Name) 

Next I 
Set MyPatients = qdf. OpenRecordset(dbOpenDynaset) 

Set Qdfl = MyDb. QueryDefs("R001Q2") 
For I=0 To qdf. Parameters. Count -1 

Set prm = Qdfl. Parameters(I) 
prm. Value = Eval(prm. Name) 

Next I 
Set MyData Qdfl. OpenRecordset(dbOpenbynaset) 

Set MyCompounds = MyDb. OpenRecordset("tbl_RO01", dbOpenDynaset) 
NoSecondary = MyCompounds. EOF 

Set MyResults = MyDb. OpenRecordset("tbl R001A", dbOpenDynaset) 

Do While Not MyPatients. EOF 
MyResults. AddNew 
MyResults]PatientID - MyPatientsIPatientID 
MyResultslCompoundlD = (Forms]I(frm Reports]I(PCompound_ID] 
MyResultslCompound = [Forms]I[frm Reports]! [PCompound_ID]. Column(1) 
MyResults! StandardAmt = "0" 
MyResults. Update 

MyResults. AddNew 
MyResultsIPatientlD = MyPatientslPatientlD 
MyResults! CompoundlD = 10000 
MyResults! Compound = "(Toxologically Related)" 
MyResultsiStandardAmt - CStr(MyPatients! (IsTox]) 
MyResults. Update 

MyResults. AddNew 
MyResultslPatientlD - MyPatientsIPatientID 
MyResultslCompoundlD = 10001 
MyResultslCompound - "(Age)" 
If Not IsNull(MyPatientsf(Age]) Then 

MyResultslStandardAmt - CStr(MyPatientsl[Age]) 
Else 

MyResultsIStandardAmt - "Unknown" 
End If 
MyResults. Update 

MyResults. AddNew 
MyResultsIPatientlD - MyPatientsIPatientlD 
MyResults! CompoundlD = 10002 
MyResultslCompound = "(Gender)" 
If Not IsNull(MyPatients! [Gender]) Then 

MyResults! StandardAmt - MyPatients! (Gender] 
Else 

MyResultslStandardAmt - "Unknown" 
End If 
MyResults. Update 

MyResults. AddNew 
MyResultslPatientlD = MyPatientsIPatientID 
MyResults! CompoundlD = 10003 
MyResults! Compound = "(Commentsl)" 
MyResultstStandardAmt = Left(MyPatientsi[Commentsl], 255) 
MyResults. Update 

MyResults. AddNew 
MyResults! PatientlD = MyPatientsIPatientID 
MyResults! CompoundlD = 10004 
MyResultsICompound - "(Comments2)" 
MyResults! StandardAmt = Left(MyPatientsl[Comments2], 255) 
MyResults. Update 

MyResults. AddNew 
MyResults! PatientlD = MyPatientsIPatientID 
MyResultslCompoundlD - 10005 
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MyResults I Compound = "(SarnpleDate)" 
MyResultslStandardAmt = CStr(MyPatientsl[SampleDate]) 
MyResults. Update 

If NoSecondary = False Then 
MyCompounds. MoveFirat 

End If 

Do While Not MyCompounds. EOF 
MyResults. AddNew 
MyResults! PatientlD = MyPatients! PatientlD 
MyResults! CompoundlD = MyCompoundsICompoundlD 
MyResultslCompound = MyCompoundsICompound 
MyResults! StandardAmt =0 
MyResults. Update 
MyCompounds. MoveNext 

Loop 
MyPatients. MoveNext 

Loop 

MyPatients. Close 
MyCompounds. Close 

Do While Not MyData. EOF 
Criteria - "[PatientlD] & MyDatalPatientlD &" AND [CompoundlD] ="& 

MyDatalCompoundlD 
MyResults. FindFirst Criteria 
MyResults. Edit 
MyResultsl[StandardAmt] - MyData! [StandardAmt] 
MyResults. Update 
MyData. MoveNext 

Loop 

MyData. Close 
MyResults. Close 
MyDb. Close 

MyDataPath - Get_DataPath() 
Default_SaveFile - Left(MyDataPath, (Len(MyDataPath) - 11)) 
Default_SaveFile - Default_SaveFile & 

(Forms]1(frm_Reports]. [ReportName]. Column(3) & ". xls" 
Title - "Enter Save File" 
Msg - "Please Enter the Path and Name of your Save File" & vbCrLf & "Or Press 

Cancel" 
SaveFile - InputBox(Msg, Title, Default_SaveFile) 
If SaveFile <> "" Then 

DoCmd. TransferSpreadsheet acExport, acSpreadsheetTypeExcel9, "ROO1Q3", 
SaveFile, True 

End If 

DoCmd. SetWarnings True 

Exit error handlingl: 
Exit Sub 

Err_error_handlingl: 
MsgBox Error$ 
MsgBox Error. Num 
Resume Exit_error_handlingl 

End Sub 

Private Sub Form Activate() 
On Error GoTo Err Form Activate 

'DoCmd. ShowToolbar Me. ReportName. Column(4), acToolbarNo 
'DoCmd. ShowToolbar "Ciientman MenuBar", acToolbarYes 

Requery Combos Me, True 

DoCmd. SetWarnings True 
DoCmd. Restore 

Exit Form Activate: 
Exit Sub 
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Err_Form_Activate: 
MsgSox Error$ 
Resume Exit-Form-Activate 

End Sub 

Private Sub Form Closeo 
On Error GoTo Err Form Close 

Dim User_ID As String 
Dim X As Integer 

User ID a CStr(Get_UserNumber()) & "T" 
X- Delete_Temp_Tables(User_ID) 
DoCmd. SetWarnings False 
DoCmd. RunSQL "DELETE tbl_RO01. * FROM tbl_R001" 
DoCmd. SetWarnings True 

Exit Form Close: 
Exit Sub 

Err_Form_Close: 
MsgBox Err. Number 
Resume Exit-Form-Close 

End Sub 

Private Sub Form_Open(Cancel As Integer) 
On Error GoTo Err_Form Open 

ReportName_BeforeUpdate (Cancel) 
ReportName AfterUpdate 

Exit-Form Open: 
Exit Sub 

Err_Form Open: 
MsgBox Error$ 
Cancel - True 
Resume Exit Form Open 

End Sub 

Private Sub PCompound_ID_AfterUpdateI 
DoCn . SetWarnings False 
DoCmd. RunSQL "DELETE tbl_R001. * FROM tbl_R001" 
DoCmd. SetWarnings True 
Me. SCompounds. Requery 
[Forms]I(frm_Reports]I[SCompounds]. [Form]. [Compound]. Requery 

End Sub 

Private Sub Preview Click(j 
On Error GoTo Err eview Click 

Dim User ID As String 
Dim X As' Integer 

User ID - CStr(GetUserNumber() & "T" 
X- Delete Temp_Tables(User ID) 
'DoCmd. SetWarnings False 
'DoCmd. RunSQL "DELETE tbl_GraphData. * FROM tbl GraphData WHERE 

(((tblGraphData. User_Number)=Get_UserNumber()))° 
'DoCmd. SetWarnings True 
'DoCmd. Hourglass True 
'DoCmd. ShowToolbar "Clientman MenuBar", acToolbarNo 
'DoCmd. ShowToolbar Me. ReportName. Column(4), acToolbarYes 
DoCmd. OpenReport Me. ReportName. Column(2), A , _PREVIEW 

Exit Preview Click: 
DoCmd. Hourglass False 
Exit Sub 

Err Preview Click: 
Select Case Err 

Case 2501 
MsgBox "There Is No Data For This Report" 

Case Else 
MsgBox Err. Description 
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End Select 

'DoCmd. ShowToolbar Me. ReportName. Column(4), acToolbarNo 
'DoCmd. ShowToolbar "Clientman_MenuBar", acToolbarYes 

Resume Exit-Preview-Click 

End Sub 

Private Sub PrinRep_Click() 
On Error GoTo Err Print Click 

Dim User ID As String 
Dim X As Integer 

User ID = CStr(GetUserNumber()) & "T" 
X Delete_Temp_Tables(User_ID) 
'DoCmd. SetWarnings False 
'DoCmd. RunSQL "DELETE tbl_GraphData. * FROM tbl_GraphData WHERE 

(((tblGraphData. User_Number)=Get_UserNumber())" 
'DoCmd. SetWarnings True 
'DoCmd. Hourglass True 
DoCmd. OpenReport Me. ReportName. Column(2), ANORMAL 

Exit Print Click: 
DoCmd. Hourglass False 
Exit Sub 

Err 
- 

Print-Click: 
Select Case Err 

Case 2501 
MsgBox "There Is No Data For This Report" 

Case Else 
MsgBox Err. Number 

End Select 
Resume Exit-Print-Click 

End Sub 

Private Sub ReportName AfterUpdate() 
On Error GoTo Err_ReportName AfterUpdate 

Dim MyDb As Database 
Dim MySet As Recordset, MyTable As Recordset 
Dim Criteria As String 
Dim X As Integer 

Set MyDb = CurrentDb() 
Set MySet = MyDb. OpenRecordset("tblReport_Options", DB_OPEN_DYNASET) 
Set MyTable = MyDb. OpenRecordset("tbl_Reports", DB OPEN DYNASET) 

Criteria = "(Report Number] =" & MelReportName. Column(0) 

MyTable. FindFirst Criteria 
(Forms]I[frm_GlobVar]IGlob_Report = MyTablel[Report Code] 

MySet. FindFirst Criteria 
Do Until MySet. NoMatch 

Select Case MySet! (Report Option] 

Case "Sample" 
Me! Sample_ID. Requery 
If MySetlMandatory = True Then 

Me! Sample_ID = Me! Sample_ID. ItemData(0) 
End If 
Me! Sample ID. Visible = True 

Case "PCompound" 
McIPCompound_ID. Requery 
If MySet! Mandatory = True Then 

Me! PCompound_ID = Me! PCompound_ID. ItemData(0) 
End If 
Me! PCompound_ID. Visible = True 

Case "SCompound" 
Me. SCompounds. Visible = True 
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Case "EndDate" 
If MySetlMandatory = True Then 

MelEndDate = Now() 
End If 
MelEnd Date. Visible = True 

End Select 

MySet. FindNext Criteria 

Loop 

MyTable. Close 
MySet. Close 
MyDb. Close 

If Get_ReportCode = "RO01" Then 
Me. PrinRep. Visible = False 
Me. Preview. Visible - False 
Me. ExportXL. Visible = True 

Else 
Me. PrinRep. Visible = True 
Me. Preview. Visible - True 
Me. ExportXL. Visible - False 

End If 

Exit 
_ReportName_AfterUpdate: Exit Sub 

Err ReportName AfterUpdate: 
MsgBox Error$ 
Resume Exit_ReportName AfterUpdate 

End Sub 

Private Sub ReportName_BeforeUpdate(Cancel As Integer) 
On Error GoTo Err_ReportName_BeforeUpdate 

Me. [Sample_ID]. Visible = False 
Me. [Sample_ID] = Null 
Me. PCompound_ID = Null 
Me. PCompound_ID. Visible = False 
Me. SCompounds. Visible = False 
Me! End_Date. Visible = False 
MelEnd_Date - Null 
DoCmd. SetWarnings False 
DoCmd. RunSQL "DELETE tbl_R001. * FROM tbl_R001" 
DoCmd. SetWarnings True 

Exit_ReportName_BeforeUpdate: 
Exit Sub 

Err_ReportName_BeforeUpdate: 
MsgBox Error$ 
Cancel - True 
Resume Exit_ReportName_BeforeUpdate 

End Sub 
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Appendix C- Supplementary Statistics 

Description 

This appendix contains supplementary statistical output referred to in Chapter 6. 
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Table Cl. Simple linear regression of number of concomitants detected with Year 
variable as a categorical predictor (from section 6.0.1.3). ANOVA table and parameter 
estimates. 

char year2(omit] 9 

. xi: regress consum i. year2, plus 
i. year2 

_Iyear2_1-9 
(naturally coded; 

_Iyear2_ 
9 omitted) 

Source SS df MS Number of obs = 931 

-------------+------------------------------ F( 8, 922) = 2.26 
Model I 74.2746065 8 9.28432581 Prob >F = 0.0214 

Residual I 3784.12926 922 4.10426167 R-squared = 0.0193 

-------------+-------------------- ---------- Adj R-squared = 0.0107 
Total 1 3858.40387 930 4.14882136 Root MSE = 2.0259 

------------- 
consum º 

--------------------- 
Coef. Std. Err. 

--------------- 
t P>ItI 

--------------- 
(95% Conf. 

-------------- 
Interval] 

-------------+-------------------- -------------------------------------------- 

_Iyear2_2 . 4079861 . 3743447 1.09 0.276 -. 3266804 1.142653 
Iyear2_3 . 3407346 . 368963 0.92 0.356 -. 38337 1.064839 

_ Iyear2_4 . 5241477 . 3249404 1.61 0.107 -. 1135609 1.161856 
_ Iyear2_5 . 3758224 . 3437041 1.09 0.274 -. 2987108 1.050356 
_ 
_Iyear2_6 . 046875 . 3243019 0.14 0.885 -. 5895805 . 6833305 

Iyear2_7 . 821875 . 2996343 2.74 0.006 . 2338306 1.409919 
_ Iyear2 8 . 6669315 . 2954945 2.26 0.024 . 0870116 1.246851 

_ _ Iyear2_9 . 8107639 . 3043533 2.66 0.008 . 2134584 1.408069 
_ 
_cons 
------------- 

2.203125 . 2532372 

--------------------- 

8.70 0.000 

--------------- 

1.706137 

--------------- 

2.700113 

-------------- 
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Figure Cl. Scatterplot of residuals by fitted values following 
regression of log total morphine on ethanol. Reference lines 
delineate outliers at F0.001 (Tabachnick & Fidell, 1996). 
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Figure C2. Scatterplot of residuals by fitted values following univariate analyses of log 
methadone on (A) log-diazepam, (B) ethanol, and (C) log-temazepam. 
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Table C2. ANOVA results for the effect of blood ethanol on total 
morphine when treated as a categorical explanatory variable with four 
levels. Ethanol levels <40mg/dL were treated as absent (section 8.1.3). 

Total morphine 
Univariate regression 

results 

Level n Means (sd) ß P-value 

Absent 564 581.43 (1.92) -- 
41 mg/dL - 100mg/dL 112 516.92 (1.85) 0.89 0.081 
101-200mg/dL 164 445.13 (1.97) 0.77 <0.001 
201 mg/dL plus 90 323.34 (1.80) 0.56 <0.001 

Overall effect: F=24.66, df=3,926 P<0.001 
, 

R2=0.074 

Table C3. ANOVA results for the effect of blood ethanol on methadone 
when treated as a categorical explanatory variable with four levels. 
Ethanol levels <40mg/dL were treated as absent (section 8.1.3). 

Total morphine 
Univariate regression 

results 

Level n Means (sd) ß P-value 

Absent 232 506.59 (2.04) -- 
41 mg/dL - 100mg/dL 22 474.42 (1.98) 0.94 0.681 
101-200mg/dL 17 407.08 (2.47) 0.80 0.225 
201 mg/dL plus 19 311.87 (1.75) 0.62 0.005 

Overall effect: F=3.03, df=3,286 P<0.030, R2=0.021 
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