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Abstract

Hilbert’s fourteenth problem asks whether invariant rings under algebraic group
actions are always finitely generated. There are a number of examples that have
been constructed since the mid-20th century which demonstrate that this is not the
case in general. This thesis is concerned with developing our understanding of these
non-finitely generated invariant rings. This goal is ambitious, as by their nature these
rings are difficult to work with and it is hard to build an intuition for what might be
true in general. The difficulty of trying to develop a solid intuition from examples
is exacerbated by the process of “removing symmetries,” which relates some of the
more well-understood invariant rings. A key construction we employ in order to
better understand the structure of these counterexamples to Hilbert’s problem is the
finite generation ideal, consisting of invariants which make the invariant ring finitely
generated after localisation.

We take a number of paths in order to achieve our aim, including computing
the finite generation ideal for existing examples, constructing new counterexamples,
and improving our understanding of both the process of removing symmetries and
the finite generation ideal itself. Specifically, we first compute the finite generation
ideal of a famous counterexample due to Daigle and Freudenburg. Next, we work
on constructing new non-finitely generated invariant rings, focusing primarily on
an example proposed by Maubach. We then investigate this process of removing
symmetries on some new examples. Finally, we study the finite generation ideal in
the setting of monomial algebras, with the intention of passing results obtained to
SAGBI-bases; a form of generating set we employ to compute the finite generation
ideal for invariant rings.
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1

Introduction

At the Paris conference of the International Congress of Mathematicians in 1900,
Hilbert proposed a number of problems. Later in 1902 these were published as a
complete list of 23 problems in the Bulletin of the American Mathematical Society.
The work undertaken to solve these problems has shaped much of the course of
mathematics across the 20th and 21st centuries.

In his fourteenth problem, Hilbert asks:
• Given K a field and L a subfield of K(x1, . . . , xn), the field of rational functions

in n variables over K, is L ∩ K[x1, . . . , xn] finitely generated?
Nagata answered this question in the negative in [29], finding a counterexample to
this problem in 1959. There is a special case where we have a positive answer: In
1954, Zariski [35] showed that if the transcendence degree of L over K is at most 2,
then L ∩ K[x1, . . . , xn] is finitely generated over K.

A more specialised version of this problem, which was Hilbert’s motivation for
posing it, focuses on invariant rings: Given a group G acting on Kn and a polynomial
ring R in n variables over an algebraically closed field K, we say a polynomial is
G-invariant if f(x) = f(g · x) for all x ∈ Kn and g ∈ G. RG is then the invariant
ring consisting of all such G-invariant polynomials. This specialised version of the
problem asks:

• Is RG always finitely generated as a K-algebra?
In 1990 Roberts [31] produced another counterexample to Hilbert’s fourteenth
problem as the symbolic blow-up of a power series ring. This was later realised
as the invariant ring of an action of the additive group Ga = (K,+) on A7 by
A’Campo-Neuen [1]. Nagata’s counterexample arises as an invariant ring under an
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10 Chapter 1. Introduction

action of G = G13
a ×G15

m , where Gm = (K, ·) is the multiplicative group. As with the
general formulation of Hilbert’s problem, this special case of the problem also has
some cases where it holds true. This includes Hilbert’s finiteness theorem, which
states that if G is reductive, then RG is finitely generated, see Theorem 2.2.2. We
also have the Maurer-Weitzenböck theorem [33], which states:

• If K is a field of characteristic 0, and if Ga acts by linear transformations on
An, then RGa is finitely generated.

It is unknown whether this theorem generalises to all fields.
Many counterexamples to Hilbert’s fourteenth problem have been found at this

point. In addition to those above, further ones have been constructed by Freudenburg
[17] and Daigle and Freudenburg [4], where they produce invariant rings under Ga-
actions which are not finitely generated in dimensions 6 and 5 respectively. Kuroda
[25] generalised Roberts’ counterexample. A family of non-finitely generated invariant
rings are constructed in relation to work on the moduli space M0,n by Castravet
and Tevelev [3] and Doran, Giansiracusa, and Jensen [7]. Van den Essen, Kuroda,
and Crachiola construct “a ‘factory’ that produces counterexamples to Hilbert’s
fourteenth problem,” [16, § 2].

A consistent theme in all of these counterexamples is that beyond showing that
they are non finitely generated, we understand little of the structure of these rings of
invariants. This is not surprising, as many counterexamples like as Nagata’s and the
examples due to Castravet and Tevelev and Doran, Giansiracusa, and Jensen exist
in high dimensions, and thus are difficult to work with. The examples of Roberts’,
Freudenburg and Daigle and Freudenburg are more tractable. However, these more
well-understood examples are related: Daigle and Freudenburg’s counterexample
can be related to Roberts’ counterexample by a process of “removing symmetries,”
[19, § 7.2]. Furthermore, there is a K-algebra homomorphism from Freudenburg’s
example to Daigle and Freudenburg’s which induces a surjective homomorphism on
the invariant rings [32, §2]. Thus, any intuition we build from working on these
examples may not generalise well to all counterexamples to Hilbert’s fourteenth
problem.

Our goal in this thesis is to further our understanding of counterexamples to
Hilbert’s fourteenth problem and the structure of non-finitely generated algebras in
general. We focus on invariant rings under Ga-actions. This is not too much of a
restriction: Winkelmann [34] notes that a geometric restatement of Hilbert’s four-
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teenth problem asks whether the ring of invariant functions is necessarily isomorphic
to the ring of regular functions on some affine variety. When G is non-reductive
Winkelmann showed that a K-algebra occurs as the ring of invariants for some
affine G-variety if and only if it is isomorphic to the algebra of regular functions
on some quasi-affine variety. When the underlying quasi-affine variety is normal,
this algebra corresponds to the invariant ring of a regular Ga-action on a normal
quasi-affine variety. Therefore, studying non-finitely generated invariant rings under
Ga-actions covers a broad class of counterexamples to Hilbert’s fourteenth problem
which arise as invariant rings. A useful property of working with additive group
actions in characteristic 0 is that these are in one-to-one correspondence with locally
nilpotent derivations [19, § 1], with the invariant ring corresponding to the kernel of
the derivation.

A notable construction to help build our understanding of the underlying structure
of these counterexamples is the finite generation ideal, introduced by Derksen and
Kemper [6]. For a field K, and R a K-domain the finite generation ideal is:

fR := {f ∈ R |Rf is finitely generated over K} ∪ {0}.

Derksen and Kemper showed that fR is a radical ideal, and that if R is a subalgebra
of a finitely generated algebra, then fR is non-zero. Thus fR is well placed as an
object of study in order to better understand the structure of these counterexamples.
Dufresne and Kraft [10, § 9] computed the finite generation ideal of Roberts’ coun-
terexample making use of a SAGBI-basis for the invariant ring. SAGBI-bases are
generalisations of Gröbner bases to subalgebras; they were developed independently
by both Robbiano and Sweedler [30] and Kapur and Madlener [24].

An alternative approach to understanding of these counterexamples can be taken
by working with separating sets: Suppose V is an affine variety with coordinate ring
R, and G is a group acting by automorphisms on R. A subset S ⊂ RG is a separating
set if for any two points x, y ∈ V and some invariant f ∈ RG with f(x) ̸= f(y),
then there is some g ∈ S with g(x) ̸= g(y). Derksen and Kemper [5, § 2.4], showed
that if V is an affine variety and G a group acting on its coordinate ring R, then
there is a finite separating set S ⊂ RG. Thus, separating sets attempt to understand
non-finitely generated invariant rings by means of finite subsets. Here we wish to
take a more direct approach and as such we do not focus on separating sets in this
thesis. We do however note that separating sets have been studied extensively, see,
for example, [12, 10, 9, 5].
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As stated above, we aim to further our understanding of counterexamples to
Hilbert’s fourteenth problem and the structure of non-finitely generated algebras
in general. There are multiple paths to achieve this aim. To name a few: we
can compute the finite generation ideal for existing known examples, construct
new counterexamples to Hilbert’s fourteenth problem to study, and develop our
understanding of the finite generation ideal in general. Contained within this thesis
is a computation of the finite generation ideal of Daigle and Freudenberg’s example,
study on a potential new counterexample to Hilbert’s fourteenth problem proposed
by Maubach [27] as well as work on methods of computing the finite generation
ideal when restricted to polynomial rings generated by monomials. Additionally,
we provide new approaches to showing that an invariant ring is finitely generated,
and note of a number of interesting examples which help us to develop some new
techniques and ideas.

In Chapter 2 we cover the relevant preliminaries for this thesis. This includes
an introduction to locally nilpotent derivations and some related concepts such as
the plinth ideal, degree functions and gradings. We give some simple but important
examples, such as the Weitzenböck derivation. Then we introduce invariant rings,
provide a proof that additive group actions are in one-to-one correspondence with
locally nilpotent derivations; and show that the invariant ring of an additive group
action equal to the kernel of a locally nilpotent derivation. We mostly follow [19]
in our exposition here. With this in hand, using [5], we then cover the concepts of
Gröbner and SAGBI-bases, which play a key role in computing the finite generation
ideal in later chapters. Finally, using [6], we focus on the finite generation ideal and
its properties, before giving a brief description of Roberts’ counterexample and its
finite generation ideal.

Chapter 3 comprises a paper which has been accepted by Communications in
Algebra. As such the content contained within is completely self-contained. This
chapter focuses on Daigle and Freudenburg’s counterexample to Hilbert’s fourteenth
problem and culminates in a computation of its finite generation ideal. We adopt a
strategy similar to Dufresne and Kraft in their work on Roberts’ example in [10, § 9].
In the course of computing the finite generation ideal, we construct a generating set
and show that it is a SAGBI-basis, which is key in allowing us to compute the finite
generation ideal. In addition, we compute plinth variety, nullcone and fixed-point
set for this example.

We cover Maubach’s example in Chapter 4, which was conjectured by Maubach
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to be a counterexample to Hilbert’s fourteenth problem in [27]. Our focus is on
proving this conjecture, which we attempt to do by exploiting the structure of
a subalgebra contained within the example, which is a copy of the Weitzenböck
derivation in 4 variables. Specifically, we make use of a bi-grading on the polynomial
ring which allows us to interpret the derivation as a linear map between the graded
pieces of the ring. We then show that we can locate all elements of the kernel of the
derivation purely by computing the difference between the domain and co-domain of
the linear map. Currently, the proof we present is incomplete, since we are unable to
finish an important induction argument. However, in the course of our development,
we make note of how this example, if not finitely generated, differs from existing
known counterexamples and does not fulfill the conditions of the non-finiteness
criterion shown by Daigle and Freudenburg [4, § 7.2]. Furthermore, our results on
the Weitzenböck derivation allow us to provide a new proof in section 4.2.1 that
Daigle and Freudenburg’s counterexample is not finitely generated. We expect the
techniques in this chapter to generalise in many interesting directions.

Chapter 5 comprises a study of the process of “removing symmetries” from
invariant rings in order to obtain new invariant rings. This is demonstrated in [19,
§ 7.2.3] where Daigle and Freudenburg’s counterexample is obtained from Roberts’
counterexample. It is achieved by introducing an action of G3

m and S3, where S3

is the symmetric group on 3 points. A subgroup H ⊂ G3
m is then taken for which

G := H ⋊ S3 and the Ga-action of Roberts’ example restricted to the invariant ring
under this action is precisely the Ga-action on Daigle and Freudenburg’s example.
Through this formulation it becomes clear that the example with symmetries removed
is non-finitely generated, then so is the example without the symmetries removed.
From work of Castravet and Tevelev and Doran, Giansiracusa, and Jensen in [3]
and [7] respectively, there is a family of invariant rings connected to a moduli space
M0,n which is known to be not finitely generated for n ≥ 10. We can remove
the symmetries from these invariant rings, and in each case obtain a copy of the
Weitzenböck derivation in n variables, which is finitely generated. Therefore we
show that it is possible to remove symmetries and obtain an invariant ring which is
finitely generated from one which is not. Furthermore, using our work in Chapter 4
on the Weitzenböck derivation we can determine when generalised cases of Daigle
and Freudenburg’s example are non-finitely generated. Kuroda [25], conjectures a
condition to classify when some generalised forms of Roberts’ counterexample are
non-finitely generated. By combining his work with our own, we show we can remove
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symmetries from two generalised forms of Robert’s counterexample, one finitely
generated and the other not, and obtain the same invariant ring.

In Chapter 6, we shift focus away from invariant rings and derivations to instead
study the finite generation ideal directly. Our aim here is to develop a deeper
understanding of the structure of this ideal, as well as methods to compute it. We
study subalgebras R ⊂ K[x1, . . . , xn] which are generated by monomials. As such,
many of our results pass naturally to SAGBI-bases. First we work with n = 2 and
make use of a function we term a ratio function in order to capture all the ways R can
be non-finitely generated, then compute the finite generation ideal in these cases. We
then generalise to n ≥ 3, and show that finitely generated monomial subalgebras can
be connected to polyhedral cones in Qn. A monomial corresponds to a point in Nn

through its exponents, and multiplication of two monomials becomes vector addition.
We show that R is finitely generated if and only if the semigroup in Nn generated by
the points corresponding to the monomials in R is contained in a polyhedral cone in
a suitably nice way. This result is already known as a generalisation of Gordan’s
lemma, and can be found in [2, p.53], we provide an alternate elementary proof of
this. With this result in hand, we then return to our study of the finite generation
ideal, which has much added complexity in at least 3 variables as demonstrated in
Example 6.2.4. The connection to polyhedral cones affords us a geometric approach
to understanding the finite generation ideal, and we can generalise our ratio functions
from the n = 2 case as well. However, both approaches have their own issues.
Starting with a semigroup in Nn and introducing a point in Zn corresponding to
the localisation of a monomial, it is difficult to deduce that this semigroup is sitting
nicely in a polyhedral cone. Whereas with ratio functions, generalising to n > 2
requires us to construct multiple ratio functions that must work in tandem to capture
the ways R can be non-finitely generated and compute the finite generation ideal.
But it is not clear that this can be done in all cases.

Included in Chapters 4, 5 and 6 is a section which makes note of further points
of study, highlights questions that have arisen in our exploration of these topics and
conjectures some future results.



2

Preliminaries

Throughout this thesis K is an algebraically closed field of characteristic 0. However
some of the definitions we provide and results we obtain are true in greater generality.

2.1 LOCALLY NILPOTENT DERIVATIONS

Here we follow [19, § 1] to introduce locally nilpotent derivations and their associated
concepts.

Definition 2.1.1. Let R be a commutative K-domain, a derivation D : R −→ R is
a linear map satisfying the Liebniz rule, that is, for all a, b ∈ R:

D(ab) = D(a)b+ aD(b).

By Dn, n ≥ 0 we mean the n-fold composition of D with itself, where D0 is the
identity map. We say that a derivation is locally nilpotent if for all a ∈ R there is
some n ≥ 0 such that Dn(a) = 0.

Definition 2.1.2. With R and D, as above, the kernel of a derivation is RD := {x ∈
R |D(x) = 0}, and the image of a derivation is D(R) := {y ∈ R | y = D(x), x ∈ R}.
The kernel of a derivation RD is a subring of R. The plinth ideal of R is pl(D) :=
RD ∩D(R)

Proposition 2.1.3. The plinth ideal pl(D) is an ideal of RD.

Proof. Note that for a ∈ RD, b ∈ R, D(ab) = aD(b), so D is an RD-module
endomorphism of R, and both RD and D(R) are RD-submodules of R. Therefore,
RD ∩D(R) is an RD-submodule of RD, an ideal of RD.

15
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An element s ∈ pl(D) which satisfies D(s) = 1 is called a slice of D, while any
element t ∈ pl(D) is called a local slice of D. In the literature, a local slice is also
referred to as a pre-slice.

Definition 2.1.4. A degree function on R is any map deg : R −→ Z≥0 ∪ {−∞}
such that, for all f, g ∈ R the following conditions hold:

1. deg(f) = −∞ if and only if f = 0,

2. deg(fg) = deg(f) + deg(g)

3. deg(f + g) ≤ max{deg(f), deg(g)}.
We understand that (−∞) + (−∞) = −∞ and (−∞) + n = −∞ for all n.

We now introduce some important degree functions, but first we make clear some
notation. Let f ∈ K[x1 . . . , xn], if f is of the form f = xa1

1 · · ·xan
n , where ai ≥ 0 for

all i, then we say that f is a monomial. A polynomial then is f = ∑k
i=1 λifi, where

each fi is a monomial and each λi ∈ K \ {0}. We refer to λi as the coefficient of the
monomial fi and their combination λifi is a term of f .

Example 2.1.5. Suppose that R ⊂ K[x1, . . . , xn] is a K-algebra, and D is a locally
nilpotent derivation. Consider the function ρ : R −→ Z≥0 ∪{−∞} defined as follows:
For a monomial m ∈ R we set

ρ(m) := max{i ∈ Z≥0 |Di(m) ̸= 0, Di+1(m) = 0},

then for a polynomial f ∈ R we define

ρ(f) := max{ρ(m) |m is a monomial of f}.

We set ρ(0) := −∞. Then ρ then defines a degree function, and we call ρ(f) the
ρ-degree of f .

To see this, we note that for monomials m1,m2 ∈ R it is clear that ρ(m1m2) =
ρ(m1) + ρ(m2) and ρ(m1 +m2) ≤ max{ρ(m1), ρ(m2)}. For polynomials f, g ∈ R, it
is clear that ρ(f + g) ≤ max{ρ(f), ρ(g)}. Now, let

Ri := {h ∈ R | ρ(h) = i}.

Suppose ρ(f) = k, ρ(g) = l, we can write f = f1 + f2 and g = g1 + g2, where f1 ∈ Rk,
g1 ∈ Rl and ρ(f2) < k, ρ(g2) < l. Then, as R is a domain, we must have f1g1 ̸= 0
and ρ(f1g1) = k + l as all monomials appearing in f1 and g1 have ρ-degree k and
l respectively. We therefore conclude that ρ(fg) = k + l since any combination of
monomials in f2 and g or f and g2 will have ρ-degree less than k + l.
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Example 2.1.6. Suppose R is a commutative K-domain and D : R −→ R is a
locally nilpotent derivation. Then D induces a degree function νD on R, defined for
f ∈ R \ {0} as

νD(f) := min{n ∈ Z≥0 |Dn+1(f) = 0},

additionally, we set νD(0) = −∞. A similar argument to the one used for ρ in
Example 2.1.5 can be used to show that νD is also a degree function. These are
similar degree functions, but an important distinction between these two is that given
f ∈ R with D(f) = 0, then we must have νD(f) = 0, but ρ(f) is not necessarily 0.
Furthermore for any f ∈ R, νD(D(f)) = νD(f) − 1, whereas ρ(D(f)) = ρ(f) − 1 or
−∞.

Now suppose R = ⊕
i∈Z Ri, is a Z-graded ring, each Ri is a K-module, and

RiRj ⊂ Ri+j for all i, j ∈ Z. Labelling this grading as ω, then we call an element
f ∈ Bi an ω-homogeneous element of R, and i is the ω-degree of f .

Definition 2.1.7. Let R be as above and D : R −→ R a derivation. We say that D
is an ω-homogeneous derivation if there is some k ∈ Z such that D(Ri) ⊂ Ri+k for
all i ∈ Z. We say that k is the ω-degree of D, or simply k = deg(D), when there is
no ambiguity.

For example both νD and ρ induce a Z-grading on R and under this grading
D(Ri) ⊂ Ri−1 for all i, so D is both νD-homogeneous and ρ-homogeneous, with
degree −1 in both cases.

Note that if D is ω-homogeneous and f ∈ R, then we can write f = ∑
i∈Z fi,

where fi ∈ Ri, and D(f) = 0 if and only if D(fi) = 0 for all i.

Definition 2.1.8. Given R, a commutative K-domain, a Z-filtration of R is a
collection {Ri}i∈Z of subsets of R satisfying the following properties:

1. Each Ri is a vector space over K.

2. Rj ⊂ Ri whenever j ≤ i.

3. R = ⋃
i∈ZRi.

4. RiRj ⊂ Ri+j for all i, j ∈ Z.
Additionally, a Z-filtration is a proper Z-filtration if it also satisfies:

5. ⋂i∈ZRi = {0}.

6. Given a ∈ Ri ∩RC
i−1 and b ∈ Rj ∩RC

j−1, then ab ∈ Ri+j ∩RC
i+j−1,
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where RC
i is taken to be the complement of Ri in R. Any degree function on R

will give rise to a proper Z-filtration. Additionally, we can define filtrations with Z
replaced by any ordered abelian semigroup.

Definition 2.1.9. Suppose R = ⋃
i∈ZRi is a proper Z-filtration, we define the

associated graded algebra Gr(R) as follows: The K-additive structure on Gr(R) is
given by

Gr(B) =
⊕
n∈Z

Rn/Rn−1,

and for elements a+Ri−1 and b+Rj−1 belonging to Ri/Ri−1 and Rj/Rj−1 respectively,
their product is the element of Ri+j/Ri+j−1 defined by

(a+Ri−1)(b+Rj−1) := ab+Ri+j−1.

Multiplication is then extended to all of Gr(R) by the distributive law. By property
6, Gr(R) is a commutative K-domain. From property 5, given non-zero a ∈ R, the
set {i ∈ Z | a ∈ Ri}, has a minimum, which we denote ι(a). Then we define the map

κ : R −→ Gr(R),

which sends each non-zero a ∈ R to its class in Ri/Ri−1, where i = ι(a), we also set
κ(0) := 0.

If R is already Z-graded, then R admits a filtration relative to which R and
Gr(R) are canonically isomorphic via κ. In particular, if R = ⊕

i∈ZRi, then a proper
Z-filtration is defined by Ri = ⊕

j≤i Rj.

Definition 2.1.10. Suppose R = ⋃
i∈ZRi is a proper Z-filtration and D is a deriva-

tion. We say that D respects the filtration if there is some integer t such that, for all
i ∈ Z, D(Ri) ⊂ Ri+t.

Returning to the degree function ρ from Example 2.1.5, for locally nilpotent D, it
induces a proper Z-filtration R = ⋃

i∈Z≥0 Ri which D respects. We have D(Ri) ⊂ Ri−1

for i ≥ 1 and D(R0) = 0, where Ri = {f ∈ R | ρ(f) ≤ i}. Similarly νD also induces
a proper Z-filtration, and in this case R0 = RD. We now move to discuss properties
of certain locally nilpotent derivations:

Definition 2.1.11. Let D be a locally nilpotent derivation on K[x0, . . . , xn] given
by:

D := a0
∂

∂x0
+ · · · + an

∂

∂xn

,

where each ai ∈ K[x0, . . . , xn]. Now:
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• If each ai is a term, by a slight abuse of notation to remain consistent with the
literature, we say D is a monomial derivation.

• If, for all i ≥ 1 we have that ai ∈ K[x0, . . . xi−1] and a0 ∈ K then we say that
D is triangular.

Example 2.1.12. Let Rn := K[x0, x1, . . . , xn] and consider the locally nilpotent
derivation

Dn := x0
∂

∂x1
+ · · · + xn−1

∂

∂xn

,

then Dn is a triangular monomial locally nilpotent derivation. This derivation is
called the Weitzenböck derivation and is well-known to be finitely-generated via the
Maurer-Weitzenböck theorem [33]. However, the number of generators of RDn

n grows
quickly with n, and minimal generating sets are only reliably known for n ≤ 7, [12].

In [26], Maubach completed the proof of the following result:

Theorem 2.1.13. Let R := K[x1, x2, x3, x4] and suppose that D is a triangular,
monomial locally nilpotent derivation on R, then RD is finitely generated by at most
4 elements.

Maubach’s proof of this result provides an explicit algorithm to compute the
generators of RD, which we make use of.

Example 2.1.14. Let S = K[x, y, z, u] and let ∆ be the Weitzenböck derivation on
S in 4 variables. Using Maubach’s algorithm we obtain that S∆ = K[x, γ, δ, g] where

γ := 2xz − y2,

δ := 3x2u− 3xyz + y3,

g := 9x2u2 − 18xyzu+ 8x3z + 6y3u− 3y2z2.

Suppose R = K[x1, . . . , xn] and D is a locally nilpotent derivation. Of interest to
us is whether RD is finitely generated. First we make clear some basic notions:

Definition 2.1.15. Let R be a commutative K-domain, a set G ⊂ R is a generating
set for R if G generates R as a K-algebra. That is, every r ∈ R can be expressed as

r =
k∑

i=1
λi

∏
g∈G

gig ,
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where λi ∈ K and all but finitely many ig = 0 for all i. We say R is finitely generated
if R has a finite generating set. R is not finitely generated if no finite generating set
exists.

Definition 2.1.16. We call a generating set G ⊂ R minimal if for all g ∈ G we
have G \ {g} is not a generating set.

Definition 2.1.17. R ⊂ K[x1, . . . , xn] is said to be generated by monomials if R has
a generating set G with each g ∈ G a monomial. We also call such an R a monomial
subalgebra.

Remark. If R is a finitely generated monomial subalgebra, then R has a finite
monomial generating set. Indeed, if {g1, . . . , gn} ⊂ R is a generating set, and H ⊂ R

a monomial generating set, then each gi is a combination of finitely many elements
of H. Taking the finite collection of these finitely many elements we obtain a finite
monomial generating set for R.

Let R be a finitely generated K-algebra, and D a locally nilpotent derivation on
R. Essen [14] provides an algorithm to compute generators for R which completes
in a finite number of steps if RD is finitely generated.

2.2 GROUP ACTIONS AND INVARIANT RINGS

Locally nilpotent derivations are very closely related to invariant rings under additive
group actions, and we introduce these here. If R is a K-domain then let V =
Spec (R) denote the corresponding scheme, which is an affine variety when R is
affine. Conversely, given an affine variety V , we denote its coordinate ring by R. We
denote affine k-space by Ak, with coordinate ring the polynomial ring K[x1, . . . , xk].
Suppose that G is an algebraic group acting by morphisms on an affine variety V ,
then G acts by K-algebra automorphisms on R as

(g · f)(v) := f(g−1 · v) for all x ∈ V, f ∈ R.

The invariant ring for this action is

RG := {f ∈ R | g · f = f for all g ∈ G}.
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An element f ∈ RG is called an invariant. The fixed point set of the action is defined
as

V G := {x ∈ V | g · x = x for all g ∈ G}.

Definition 2.2.1. Let G be an algebraic group acting on two varieties V and W ,
a morphism φ : V −→ W is called G-equivariant relative to these two actions if
φ(g · v) = g · φ(v) for all g ∈ G and v ∈ V .

The invariant ring of a group action is not necessarily finitely generated, though
if G satisfies certain properties then it must be. A group G is reductive if it contains
no nontrivial connected normal unipotent subgroup, we then have [18]:

Theorem 2.2.2. Hilbert’s Finiteness theorem: Suppose K is a field, and G is a
reductive algebraic K-group acting by algebraic automorphisms on an affine K-variety
V , then the ring of invariants RG is finitely generated over K.

Given an affine variety V and an algebraic group G acting on V , we can define a
quotient V//G. When G is reductive, the ring RG is finitely-generated, so we get a
corresponding variety V//G := Spec (RG). When G is not reductive, RG may not be
finitely generated. Nevertheless, we may still define V//G := Spec (RG) as an affine
scheme, and the usual universal property still holds in the category of affine schemes,
[28, p.3]. We record this in the following definition:

Definition 2.2.3. Given V , an affine variety, and G, an algebraic group acting on
V , there is a morphism induced by the inclusion RG ⊂ R:

πV : V → V//G := Spec (RG),

we call this the quotient morphism. V//G is the categorical quotient in the category
of affine schemes, satisfying the universal property that every G-invariant morphism
from V to some affine scheme W factors uniquely through πV .

Now suppose G = Ga = (K,+) is the additive group. It is known that in this case
we have a one-to-one correspondence between algebraic group actions and locally
nilpotent derivations, [19, §1.5]. Let D be a derivation on R, first we note

Proposition 2.2.4. If f ∈ R is nonzero, then fD is a locally nilpotent derivation
if and only if D is locally nilpotent and f ∈ RD.
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Proof. It is clear that if D is locally nilpotent and f ∈ RD that fD is also locally
nilpotent. Suppose fD is locally nilpotent, we may assume that D ̸= 0. Recalling the
degree function from Example 2.1.6, set N = νfD(f) ≥ 0, and suppose g ∈ R \ {0}.
On the one hand, if Dn(g) ̸= 0 for some n ≥ 1 then νfD(Dn(g)) ≥ 0, and we have

νfD(f ·Dn(g)) = νfD

(
(fD)(Dn−1(g))

)
= νfD(Dn−1(g)) − 1,

whilst on the other hand we have

νfD(f ·Dn(g)) = νfD(f) + νfD(Dn(g)) = N + νfD(Dn(g)).

Therefore
νfD(Dn(g)) = νfD(Dn−1(g)) = −(N + 1),

for all n ≥ 1. This implies

νfD(Dn(g)) = νfD(g) − n(N + 1),

which is impossible since νfD cannot take values in the negative integers. Thus, D
must be locally nilpotent. To see that f ∈ RD, note that (fD)(f) ∈ f(R). Suppose
that νD(f) ≥ 1 and let a ∈ R satisfy D(f) = a, then νD(a) ≥ 0 and

νD(f) − 1 = νD(D(f)) = νD(af) = νD(a) + νD(f) ≥ νD(f),

which is absurd. So f ∈ RfD; and since R is a domain we must have RfD = RD.

Furthermore, given a locally nilpotent derivation D on R, we can define an
exponential map exp(D) : R −→ R as

exp(D)(f) :=
∑
i≥0

1
i!D

i(f).

Proposition 2.2.5. 1. exp(D) defines a K-automorphism of R.

2. If [D,E] = DE − ED = 0 for a locally nilpotent derivation E, then D + E is
also locally nilpotent and exp(D + E) = exp(D) ◦ exp(E).

3. The subgroup of K-automorphisms of R generated by locally nilpotent derivations
is normal.
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Proof. Note that every function Di is additive, hence expD(f) is additive. Now
suppose that f, g ∈ R are nonzero, with νD(f) = m and νD(g) = n. Then

(expD)(f) · (expD)(g) =
(

m∑
i=0

1
1!D

i(f)
)

·
(

n∑
i=0

1
j!D

j(g)
)

=
∑

0≤i+j≤m+n

1
i!j!D

i(f)Dj(g)

=
∑

0≤i+j≤m+n

1
(i+ j)!

(
i+ j

j

)
Di(f)Dj(g)

=
∑

0≤t≤m+n

1
t!

 ∑
i+j=t

(
i+ j

j

)
Di(f)Dj(g)


=

∑
0≤t≤m+n

1
t!D

t(fg)

= (expD)(fg).

Thus expD is an algebra homomorphism.
Now for part 2 fix f ∈ R and m ≥ 0 so that Dm(f) = Em(f) = 0. Set n = 2m,

since D and E commute

(D + E)n(f) =
∑

i+j=n

(
n

i

)
DiEj(f) = 0,

as each term of this sum has either i ≥ m or j ≥ m. Furthermore, using this same
expansion for (D + E)n, the proof that exp(D + E) = exp(D) ◦ exp(E) now follows
by mimicking the argument used above, proving 2. Additionally, by Proposition
2.2.4, −D is also locally nilpotent, and so by part 2, it follows that

exp(D) ◦ exp(−D) = exp(−D) ◦ exp(D) = exp(0) = I.

Therefore we conclude that expD is an automorphism, completing the proof of part
1. Now part 3 follows from the observation that for a K-automorphism α we have

α(expD)α−1 = exp(αDα−1),

and αDα−1 is again locally nilpotent.

Suppose V = Spec (R) is the corresponding affine variety and let AutK(R) be the
set of all K-automorphisms of R. Combining these two propositions, given a locally
nilpotent derivation D, we obtain a group homomorphism

η : (RD,+) −→ AutK(R), η(f) = exp(fD).



24 Chapter 2. Preliminaries

If D ̸= 0, then η is injective. Now restricting η to the subgroup Ga, we obtain
the algebraic representation η : Ga ↪→ AutK(R). Geometrically, this means that D
induces the faithful algebraic Ga-action exp(tD) on X, t ∈ K.

Now conversely, let µ : Ga × V −→ V be an algebraic Ga-action over K. Then µ
induces a derivation µ′(0), where differentiation takes place relative to t ∈ Ga. In
this situation, we in fact have D = (exp(tD))′(0) and µ = exp(tµ′(0)). We have
therefore shown that there is a bijective correspondence between the locally nilpotent
derivations of R and the set of all algebraic Ga-actions on V , where D induces the
action exp(tD) and the action µ induces the derivation µ′(0). Additionally, the
kernel of the derivation coincides with the invariant ring of the corresponding action:

RD = RGa ,

as D(f) = 0 if and only if exp(tD)(f) = f for all t ∈ K.

Example 2.2.6. Consider the Weitzenböck derivation Dn on Rn from Example
2.1.12, the corresponding group action on Rn is given by

t · xi =
i∑

j=0

tj

j!xi−j.

For f ∈ Rn we have t · f = exp(tDn)f .

Now, given an additive group action of Ga on V , we can ask if there is some Gm-
action on V commuting with our Ga-action. If so, then Gm acts on V//Ga and hence
induces a grading on RGa , as well as on R, see for example [19, §10.2]. When V ⊂ Ak

is affine, there is some maximal subtorus of the natural k-dimensional torus action
on Ak that is Ga-equivariant. Since RGa = RD for some locally nilpotent derivation
D, this grading is also induced on RD, with the property that if f ∈ R(a1,...,ak) some
graded piece of R, then D(f) ∈ R(a1,...,ak) also. If we combine this grading with the
degree function ρ from Example 2.1.5 D then splits into linear maps

D : R(a1,...,ak,b) −→ R(a1,...,ak,b−1).

2.3 GRÖBNER AND SAGBI-BASES

Here we introduce the concepts of monomial orderings and Gröbner/SAGBI bases,
we follow [5, § 1.].



2.3. Gröbner and SAGBI-bases 25

Definition 2.3.1. Let M ⊂ K[x1, . . . , xn] be the set of all monomials. A total order
“ > ” on M is a monomial ordering if it satisfies the following conditions:

1. m > 1 for all m ∈ M \ {1}.

2. Given t,m1,m2 ∈ M , if m1 > m2, then tm1 > tm2.
A monomial ordering can also compare terms. Given a monomial ordering, for a
nonzero polynomial f we can uniquely write f = ct+ r where t ∈ M and c ∈ K \ {0}
and every term of g is smaller than t with respect to “ > ”. We write

LT (f) := ct, LM(f) := t, LC(f) := c,

for the leading term, leading monomial and leading coefficient of f . If f = 0, we
consider all three to be 0.

Example 2.3.2. On K[x1, . . . , xn], the lexicographic monomial ordering, “ >lex ” is
defined in the following way: We set xa1

1 · · ·xan
n > xb1

1 · · ·xbn
n if ai > bi for the smallest

i with ai ̸= bi. For example xj
1 > xk

2 for all j, k ≥ 1, and LM(6x1 + x2x
3
3 + 2x5) = x1.

The (reverse) lexicographic monomial ordering sets xa1
1 · · ·xan

n > xb1
1 · · ·xbn

n if ai > bi

for the largest i with ai ̸= bi. When we opt to use the lexicographic monomial
ordering, we indicate which one we are using by writing either x1 < · · · < xn or
x1 > · · · > xn.

Now fix a monomial ordering on K[x1, . . . , xn]. For a set S ⊂ K[x1, . . . , xn] of
polynomials, we write

L(S) := (LM(g) | g ∈ S) ,
Lalg(S) := K[LM(g) | g ∈ S].

L(S) is the ideal generated by the leading monomials from S, which we call the
leading ideal of S, and Lalg(S) is the subalgebra generated by the leading monomials
from S, which we call the leading algebra of S.

Definition 2.3.3. Let I ⊂ K[x1, . . . , xn] be an ideal. A finite subset G ⊂ I is called
a Gröbner basis of I if L(I) = L(G).

Remark. A Gröbner basis of an ideal I generates I as an ideal. If I \ (G) is
nonempty, then we can take f ∈ I \ (G) with minimal leading monomial. Since
L(I) = L(G), there is some g ∈ G with LM(g) = LM(f), and so f − g ∈ I \ (G) has
smaller leading monomial than f , a contradiction. Note also that I = K[x1, . . . , xn]
if and only if G contains a nonzero constant polynomial.
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We note Hilbert’s basis theorem:

Theorem 2.3.4. Hilbert’s Basis Theorem If R is a Noetherian ring, then R[x] is a
noetherian ring.

By Hilbert’s basis theorem, all ideals in K[x1, · · · xn] are finitely generated, thus
Gröbner bases can always be taken to be finite.

Definition 2.3.5. Let S ⊂ K[x1, . . . , xn] be a subalgebra. A finite subset S ⊂ S

is called a Subalgebra Analogue for Gröbner Bases of Ideals or SAGBI -basis if
Lalg(S) = Lalg(S).

Remark. Similarly to a Gröbner basis, a SAGBI-basis of a subalgebra S generates
S as an algebra. SAGBI-bases were first constructed by Robbiano and Sweedler in
[30] and Kapur and Madlener in [24] independently.

Contrary to Gröbner bases, we do not require that SAGBI-bases be finite. Fur-
thermore, even if S ⊂ K[x1, . . . , xn] is finitely generated then it may not admit a
finite SAGBI-basis. For example, the subalgebra K[x+ y, xy, xy2] ⊂ K[x, y] does not
admit a finite SAGBI-basis for any choice of monomial ordering [30, Example 1.20].

2.4 FINITE GENERATION IDEALS

In this section we define the finite generation ideal, first introduced by Derksen and
Kemper [6, § 2.2], before covering its properties. We then cover some examples
where the finite generation ideal has been computed.

Definition 2.4.1. Let R be a K-domain, the finite generation ideal of R is defined
as

fR := {g ∈ R \ {0} |Rg is finitely generated as a K-algebra } ∪ {0}.

Note that if R is finitely generated and f ∈ R \ {0}, then Rf is also finitely
generated. Thus in this case fR = R. Following [6, § 2.2], we show that the finite
generation ideal has the following properties:

Lemma 2.4.2. Let R be a K-domain, then fR is a radical ideal and if R is a
subalgebra of a finitely generated K-domain S, then fR ̸= 0.
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First we note that the radical of an ideal I ⊂ R is
√
I := {f ∈ R | fn ∈ R for some n ≥ 0},

an ideal is radical if it is equal to its radical. Additionally we require the following
result, a proof of which can be found in [11, § 14.2]

Lemma 2.4.3. Grothendieck’s Generic Freeness Lemma
Suppose that R is a Noetherian domain and S is a finitely generated R-algebra. If
M is a finitely generated S-module, then there is an element a ∈ R \ {0} such that
M [a−1] is a free R[a−1]-module.

Proof. Proof of Lemma 2.4.2 We begin by first showing that fR is a radical ideal.
To do so, we first prove the following:

Claim. If f, g ∈ R \ {0} with (f, g) = R and Rf and Rg finitely generated, then so
is R and R = Rf ∩Rg.

To show this, we write Rf = K[a1, . . . , ar, f
−1] and Rg = K[b1, . . . , bl, g

−1] with
ai, bj ∈ R. Then 1 = sf + tg with s, t ∈ R. Let z ∈ Rf ∩Rg, then

z = a

fm
= b

gn
, n,m ∈ N, a ∈ K[a1, . . . , ar, f ], b ∈ K[b1, . . . , bl, g],

and so

z = z(sf+tg)m+n =
m∑

i=1

(
m+ n

i

)
(sf)itm+n−igm−ib+

m+n∑
i=m+1

(
m+ n

i

)
sif i−m(tg)m+n−ia.

Thus
R ⊂ Rf ∩Rg ⊂ K[a1, . . . , ar, b1, . . . , bl, f, g, s, t] ⊂ R,

implying the claim.
Now suppose f, g ∈ fR are non-zero, then

Rfg = (Rf )g,

is finitely generated, as Rf is finitely generated, so fg ∈ fR. Now suppose that
f, g ∈ fR with f, g and f + g all non-zero. We have (f, g)Rf+g = Rf+g, and the
algebras (Rf+g)f = (Rf)f+g and (Rf+g)g = (Rg)f+g are finitely generated. By the
claim, Rf+g is finitely generated, so f + g ∈ fR, hence fR is an ideal. This ideal is
clearly radical since Rfr = Rf for every f ∈ R and any positive integer r.
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To prove that fR ̸= 0 when R is a subalgebra of a finitely generated K-domain S,
let T ⊂ R be a finitely generated subalgebra with the property that T and R have
the same quotient field. By Lemma 2.4.3, there is a nonzero f ∈ T with Sf a free
Tf -module. Let B be a basis of Sf over Tf , we can write

1 =
r∑

i=1
uiei,

with ei ∈ B and ui ∈ Tf for all i. Since Rf and Tf have the same quotient field, it
follows that the submodule Rf ⊂ Sf is contained in

r⊕
i=1

Tfei
∼= T r

f .

This shows that Rf is contained in a finitely generated Tf -module. Since Tf is a
finitely generated algebra, Rf is finitely generated as a Tf -module. It then follows
that Rf is a finitely generated algebra.

When working with locally nilpotent derivations, we can show more about the
finite generation ideal:

Proposition 2.4.4. Let R be a commutative K-domain, and let D : R −→ R be a
locally nilpotent derivation, then pl(D) ⊂ fR.

To show this, we follow [10, § 5]:

Definition 2.4.5. A Ga-variety V is called a trivial Ga-bundle if there is a Ga-
equivariant morphism

V −→ Ga.

Equivalently, there is a Ga-equivariant ismorphism

Ga ×X −→ V,

where X can be identified with the orbit space V/Ga.

In this case the quotient morphism π : V −→ V/Ga admits a section. If V is
affine, then V/Ga = Spec (R)Ga . We now prove Proposition 2.4.4:

Proof. of Proposition 2.4.4 Let d ∈ pl(D) and suppose p ∈ R satisfies D(p) = d,
then D

(
p
d

)
= 1 and so the morphism

p

d
: Vs −→ Ga,
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is Ga-equivariant. To see this, let x ∈ Vd, and α ∈ Ga, then as

α · p
d

= exp(αD)
(
p

d

)
= p

d
+ α · 1,

we have (
α · p

d

)
(x) =

(
p

d
+ α · 1

)
(x) =

(
p

d

)
(x) + α = α ·

((
p

d

)
(x)
)
.

where we have used that d ∈ RGa . We conclude then that Vd is a trivial Ga-bundle,
and Vd/Ga = Spec (Rd)Ga and, in particular, RGa

d = (RGa)d is finitely generated.

We now cover some examples where the finite generation ideal has been computed:

Example 2.4.6. Suppose R = K[x, xy, . . . , xyn, . . . ] ⊂ K[x, y] is the graded subal-
gebra generated by monomials of the form xyn for n ≥ 0. Let M := (x, xy, . . . ) be
the maximal graded ideal of R. We show that fR =

√
xR = M . Indeed, consider

first Rx, then x−1 · (xy) = y ∈ Rx and we conclude that Rx = K[x, y]x. Now
K[x, y]x is finitely generated and thus

√
xR ⊂ fR. For xyn with n ≥ 1, note that

(xyn)2 = x · xy2n ∈
√
xR, and we have shown M ⊂

√
xR, but since fR ⊂ M , we

conclude the result.

Example 2.4.7. Roberts’ Example Let R := K[x1, x2, x3, y1, y2, y3, z] and consider
the locally nilpotent derivation

D := xn
1
∂

∂y1
+ xn

2
∂

∂y2
+ xn

3
∂

∂y3
+ (x1x2x3)n−1 ∂

∂z
,

with corresponding group action:

t · (a1, a2, a3, b1, b2, b3, c) = (a1, a2, a3, b1 + tan
1 , b2 + tan

2 , b3 + tan
3 , c+ t(a1a2a3)n−1).

The kernel, RD of this derivation is non-finitely generated, and has a generating set
G = {βi,n, uj,k | i = 1, 2, 3, n ≥ 0, j, k = 1, 2, 3, j < k}, where

βi,n := xiv
n + terms of lower v − degree,

u1,2 := xn
1y2 − xn

2y1,

u1,3 := xn
1y3 − xn

3y1,

u2,3 := xn
2y3 − xn

3y2.
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Kuroda [25] showed that this generating set G forms a SAGBI-basis for RD using the
lexicographic monomial ordering with x1 < x2 < x3 < y1 < y2 < y3 < z. Then using
this SAGBI-basis, Dufresne and Kraft [10, § 9] showed that the finite generation
ideal of Roberts’ example is

fR =
√
x1, x2, x3R,

where βi,n ∈ fR for all i, n whilst uj,k /∈ fR for all j, k.
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Daigle and Freudenburg’s counterexample

3.1 PREFACE

The work contained in this chapter arises from my paper ‘The finite generation
ideal for Daigle and Freudenburg’s counterexample to Hilbert’s fourteenth problem’
[22]. As such the results within are entirely self-contained and the chapter has its
own introduction and preliminaries. The material in Chapter 2 may aid the reader
in providing greater depth to the preliminaries appearing in this chapter. This
paper is on arXiv with number 2203.15569, and has been accepted for publication in
Communications in Algebra.

This paper focuses on computing the finite generation ideal of Daigle and Freuden-
burg’s counterexample to Hilbert’s fourteenth problem, showing that it is the radical
of an ideal generated by 3 elements, which each comprise the first element in an
infinite family of generators for the invariant ring. In order to do so, we show that
these 3 infinite families, together with an additional invariant, form a SAGBI-basis
for the invariant ring.

3.2 INTRODUCTION

Let K be a field, and let K[x1, x2, . . . , xn] be a polynomial ring in n variables over K,
with K(x1, x2, . . . , xn) its field of fractions and L a subfield of K(x1, x2, . . . , xn). In
his fourteenth problem, Hilbert asked whether the subalgebra L ∩ K[x1, x2, . . . , xn]
is finitely generated. In characteristic zero, this has been shown to not always be the
case, with Nagata finding the first counterexample in 1959 [29]. Further examples
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have been found, for example by Roberts in 1990, [31]. In 1994, A’Campo-Neuen
showed that Roberts’ example arises as the invariant ring of a Ga-action on A7 in
[1], where Ga = (K,+) is the additive group. The smallest known counterexample
to Hilbert’s problem which arises as an invariant ring was found by Daigle and
Freudenburg in dimension five, [4]. Daigle and Freudenburg’s example arises as an
invariant ring of the following Ga-action on A5 in characteristic zero:

α · (a, b, c, d, e) =
(
a, b+ αa3, c+ αb+ 1

2α
2a3, d+ αc+ 1

2α
2b+ 1

6α
3a3, e+ αa2

)
.

The invariant ring of an additive group action is known to correspond to the kernel
of a locally nilpotent derivation, see for example [19, §1.5]. Daigle and Freudenburg’s
Ga-action corresponds to the kernel of the locally nilpotent derivation

D := x3 ∂

∂s
+ s

∂

∂t
+ t

∂

∂u
+ x2 ∂

∂v
,

on the polynomial ring R := K[x, s, t, u, v]. There are many algorithms which have
been developed to aid in computing kernels of locally nilpotent derivations which we
exploit in this paper. Daigle and Freudenburg’s example is also closely related to
Roberts’ example in dimension seven, and a counterexample found by Freudenburg
in dimension six, [17]. It is possible to construct Daigle and Freudenburg’s counterex-
ample by “removing symmetries” from Roberts’ example, [19, §7.2] and there is a
K-algebra homomorphism from Freudenburg’s example to Daigle and Freudenburg’s
which induces a surjective homomorphism on the invariant rings, [32, §2].

Castravet and Tevelev [3] provide an infinite family of non-finitely generated K-
algebras, which Doran, Giansiracusa, and Jensen [7] realised as the ring of invariants
of a Ga-action on a polynomial ring. Additionally, Kuroda has generalised Robert’s
example in [25]. However, it remains a difficult task to construct counterexamples
as invariant rings from Ga-actions; and little is known about the structure of these
invariant rings in general.

In this paper we determine the finite generation ideal of the invariant ring, RD,
defined below. That is, the radical ideal of elements f ∈ RD for which RD

f is finitely
generated, [6, §2]. Such an ideal can be understood to track how far a ring is from
being finitely generated, with it being the ring itself when RD is finitely generated.
Dufresne and Kraft computed the finite generation ideal for Roberts’ example in
[10, §9] and our computation shows that the finite generation ideal is what would be
expected by “removing symmetries” from Roberts’ example. Preliminaries and some
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early results on Daigle and Freudenburg’s example are covered in Sections 3.3. and
3.4 respectively.

In order to compute the finite generation ideal, we first construct a generating
set for the K-algebra generators of the invariant ring in Section 3.5 with useful
properties. This requires us to construct three infinite families of invariants using a
method similar to van den Essen in [13]. We then show that these families, together
with an additional invariant, generate the invariant ring. In fact, we show that this
generating set forms a SAGBI-basis for RD; that is, a Subalgebra Analogue for a
Gröbner Basis of Ideals, Definition 3.5.3. Our calculation of the SAGBI-basis uses
an argument similar to that of Kuroda for Roberts’ example, [25, §3]. SAGBI-bases
were first constructed by Robbiano and Sweedler in [30] and Kapur and Madlener
[24] independently. The properties of a SAGBI-basis and the relations between its
elements are key to our computation of the finite generation ideal in Section 3.6,
which comprises Theorem 3.6.1, our main result. We additionally show that the
leading terms of these three infinite families generate the subalgebra generated by
the leading terms of the finite generation ideal.

3.3 PRELIMINARIES

Throughout the following we fix K to be an algebraically closed field of characteristic
zero. We will begin with a few preliminaries, followed by a discussion of the invariant
ring of a group action. We follow parts of [14], [10] and [19]. Let R be a commutative
K-domain and recall that a derivation D : R → R is locally nilpotent if, for all a ∈ R,
there is some n ∈ N for which Dn(a) = 0. We denote the kernel of the derivation
by RD and its image by D(R). Note that RD is a subring of R. We call an element
p ∈ R with D(p) ∈ RD and D(p) ̸= 0 a local slice for D. The plinth ideal is defined
as pl(D) := RD ∩ D(R); it is simple to check that pl(D) is an ideal of RD, see for
example [19, p.17].

Definition 3.3.1. Let R be a K-domain, the finite generation ideal of R is defined
as

fR := {g ∈ R \ {0} |Rg is finitely generated as a K-algebra } ∪ {0}.

Note that if R is finitely generated, then fR = R. If R is a subalgebra of a finitely
generated algebra, then fR is non-zero; additionally, fR is a radical ideal, [6, §2.2].
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One can hence view the finite generation ideal as a form of measure of how far R is
from being finitely generated by comparing fR to R. Of particular interest to us in
this paper is fRD , where D is a locally nilpotent derivation.

If R = K[X1, . . . , Xn] we call an element of the form Xa1
1 · · ·Xan

n a monomial
and an element of the form α · Xa1

1 · · ·Xan
n , where α ∈ K \ {0} is called a term; a

polynomial is a sum of terms.

Definition 3.3.2. Suppose R = K[X1, X2, . . . , Xn] and suppose that D = a1
∂

∂X1
+

· · · + an
∂

∂Xn
is a derivation on R. We say that D is a monomial derivation if each

ai ∈ K[X1, X2, . . . , Xn] is a monomial; a derivation is called triangular if a1 ∈ K and
each ai ∈ K[X1, . . . , Xi−1] for 2 ≤ i ≤ n.

If R is a K-domain then V = Spec (R) denotes the corresponding scheme, which
is an affine variety when R is affine. We denote affine k-space by Ak, with coordinate
ring the polynomial ring K[x1, . . . , xk]. Suppose that G is an algebraic group acting
on an affine variety V , then G acts by K-algebra automorphisms on R as

g · f(v) := f(g−1 · v) for all x ∈ V, f ∈ R.

The invariant ring for this action is

RG := {f ∈ R | g · f = f for all g ∈ G}.

An element f ∈ RG is called an invariant. The fixed point set of the action is defined
as

V G := {x ∈ V | g · x = x for all g ∈ G}.

We focus on the case where G = Ga = (K,+) is the additive group of the field
K. It is known that in this case we have a one-to-one correspondence between
algebraic group actions and locally nilpotent derivations, [19, §1.5]. Let D be a
locally nilpotent derivation on R, an element α ∈ Ga acts on R as

exp(αD)(f) :=
∞∑

i=0

1
i!α

iDi(f).

Note that since D is locally nilpotent, for each f ∈ R the displayed sum has only
finitely many non-zero terms. Conversely a given Ga-action ρ : Ga × V → V induces
a derivation ρ′(0), which can be shown to be locally nilpotent, see for example [19,
§1.5]. Additionally, the invariant ring of the group action is equal to the kernel of
the derivation, that is RGa = RD.
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Given an affine variety V and an algebraic group G acting on V , we wish to
define a quotient V//G. When G is reductive, the ring RG is finitely-generated, so
we get a corresponding variety V//G := Spec (RG). When G is not reductive, RG

may not be finitely generated. Nevertheless, we may still define V//G := Spec (RG)
as an affine scheme, and the usual universal property still holds in the category of
affine schemes, [28, p.3]. We record this in the following definition:

Definition 3.3.3. Given V , an affine variety, and G, an algebraic group acting on
V , there is a morphism induced by the inclusion RG ⊂ R:

πV : V → V//G := Spec (RG),

we call this the quotient morphism. V//G is the categorical quotient in the category
of affine schemes, satisfying the universal property that every G-invariant morphism
from V to some affine scheme W factors uniquely through πV .

Given an additive group action of Ga on V , we can ask if there is some Gm-action
on V commuting with our Ga-action. If so, then Gm acts on V//Ga and hence induces
a grading on RGa , as well as on R, see for example [19, §10.2]. When V ⊂ Ak is
affine, there is some maximal subtorus of the natural k-dimensional torus action on
Ak that is Ga-equivariant.

If X is a variety with an action of the additive group Ga, we say that X is a
trivial Ga-bundle if there is a Ga-equivariant morphism X → Ga. In this case we
can identify X//Ga with X/Ga and the quotient morphism πX : X → X/Ga admits
a section. If X is affine, then X/Ga = Spec (R)Ga .

Suppose V = Spec (R) is an affine K-variety, with G an algebraic group acting
on V . Suppose also that R = ⊕

i≥0 Ri is a graded ring with R0 = K, and let z0

be its homogeneous maximal ideal. This means that V admits an action of the
multiplicative group Gm = K∗ with z0 ∈ Spec (R) the unique closed orbit. We say
that V is a fix-pointed G-variety with fixed point z0 if this Gm-action commutes
with the G-action. Note that V//G is also fix-pointed, and we define the nullcone as
NV = π−1(π(z0)). Thus, given an additive group action of Ga on an affine variety V ,
the nullcone can be defined using the induced Zr-grading on R.

Let D be a locally nilpotent derivation on an affine K-domain R, with V =
Spec (R). Suppose x ∈ V is a fixed point under the corresponding Ga-action and,
for f ∈ R, let n ∈ N be such that Dn(f) ̸= 0 and Dn+1(f) = 0. Then we have

f(x) = exp(αD)(f)(x) = f(x) + αD(f)(x) + · · · 1
n!α

nDn(f)(x).
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Letting α vary, we conclude that Di(f)(x) = 0 for all i ≥ 1, and in particular
D(f)(x) = 0. Now suppose that for x ∈ R we have D(f)(x) = 0 for all f ∈ R. Then
for f ∈ R

exp(αD)(f)(x) = f(x) + αD(f)(x) + · · · 1
n!α

nDn(f)(x) = f(x),

thus x is a fixed point. We have shown that:

V Ga = {x ∈ V |D(f)(x) = 0 for all f ∈ R} = {x ∈ V | f(x) = 0 for all f ∈ D(R)}.

Consider PV := V(pl(D)), the Plinth variety of V . We have

PV = {x ∈ V |D(f)(x) = 0 for all f ∈ R with D2(f) = 0},

and hence we have V Ga ⊂ PV . Given a Zr
≥0-grading on RGa induced by a (Gm)r-

action, we define RGa
+ := {f ∈ RGa | deg (f) ̸= (0, 0, . . . , 0)}, the maximal graded

ideal of RGa . Our definition of the nullcone may then be rewritten as

NV = {x ∈ V | f(x) = 0 for all f ∈ RGa
+ }.

3.4 DAIGLE AND FREUDENBURG’S COUNTEREXAMPLE

We now construct Daigle and Freudenburg’s counterexample. Let V = A5 and let
R := K[x, s, t, u, v] be the polynomial ring over K in 5 variables. We consider the
following locally nilpotent derivation on R

D := x3 ∂

∂s
+ s

∂

∂t
+ t

∂

∂u
+ x2 ∂

∂v
. (3.1)

This corresponds to a Ga-action on R defined by

exp(αD) · (x, s, t, u, v) = (x, s+αx3, t+αs+ 1
2α

2x3, u+αt+ 1
2α

2s+ 1
6α

3x3, v+αx2).

The Ga-action on A5 commutes with the following Gm-action

λ · (x, s, t, u, v) := (λ · x, λ3 · s, λ3 · t, λ3 · u, λ2 · v), (3.2)

which induces a grading on R with deg(x) = 1, deg(s) = deg(t) = deg(u) = 3 and
deg(v) = 2. In the sequel when we refer to f ∈ R as homogeneous, we mean
homogeneous with respect to this grading. Likewise, for f ∈ R, the degree of f is the
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maximal degree of some term of f with respect to this grading. In our treatment of
this example we will occasionally consider elements ordered by degv or degx, which are
defined for f ∈ R as degx(f) :=max{n | f has a term of the form α · xnsatbucvd, α ∈
K \ {0}, a, b, c, d ∈ N} and similarly for v. A polynomial f ∈ R has v-degree n if
degv(f) = n.

We also make use of the grading induced by the derivation D itself, which we
refer to as the ρ-grading. It is defined first on the monomials in R with

ρ(m) := {i ∈ Z≥0 |Di(m) ̸= 0, Di+1(m) = 0}. (3.3)

We then set, for f ∈ R, ρ(f) := max{ρ(m) |m is a term of f}. We set ρ(0) := −∞.
Elements homogeneous with respect to this grading will be called ρ-homogeneous.
Observe that ρ(xa) = 0, ρ(sb) = b, ρ(tc) = 2c, ρ(ud) = 3d and ρ(ve) = e. Note that
the ρ-grading is indeed a grading; set

Rn :=
{∑

i

λix
asbtcudve |λi ∈ K, a ∈ N, b+ 2c+ 3d+ e = n

}
.

Now, for p ∈ Ri, q ∈ Rj non-zero, their product is non-zero, and all terms in pq are
of the form mn, where m ∈ Ri, n ∈ Rj. We have

Di+j(mn) =
i+j∑
l=0

(
i+ j

l

)
Dl(m)Di+j−l(n) =

(
i+ j

i

)
Di(m)Dj(n) ̸= 0,

whilst Di+j+1(mn) = D(Di(m)Dj(n)) = Di+1(m)Dj(n) +Di(m)Dj+1(n) = 0, so we
conclude pq ∈ Ri+j.

Remark. ρ(2x3t − s2) = 2 whilst D(2x3t − s2) = 0, so for p ∈ R, ρ(p) can differ
from the unique non-negative integer m with Dm(p) ̸= 0 but Dm+1(p) = 0.

Now let S := K[x, s, t, u], and define

∆ := D|S = x3 ∂

∂s
+ s

∂

∂t
+ t

∂

∂u
.

Our notions of degree and ρ-degree restrict to f ∈ S. We observe that ∆ is a
triangular monomial derivation on K[x, s, t, u]. By a result of Maubach, [26, § 3], we
have that S∆ is generated by at most four elements. Through an application of van
den Essen’s algorithm, [14, § 4], using the local slice s ∈ S we find the following four
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generators of S∆:

β0 = x,

γ0 = 2x3t− s2,

δ0 = 3x6u− 3x3st+ s3,

g = 9x6u2 − 18x3stu+ 6s3u+ 8x3t3 − 3s2t2.

(3.4)

Observe that β3
0 , γ0, δ0 ∈ ∆(S), since

∆(s) = x3 = β3
0 ,

∆(3x3u− st) = 2x3t− s2 = γ0,

∆(3x3su− 4x3t2 + s2t) = 3x6u− 3x3st+ s3 = δ0.

We can compute the plinth variety, the fixed-point set and the nullcone for Daigle
and Freudenburg’s counterexample:

Lemma 3.4.1. 1. (A5)Ga = VA5(x, s, t).

2. PA5 = VA5(x, s).

3. NA5 = VA5(x, s).

Proof. 1. As shown above, we have(
A5
)Ga = {p ∈ A5 |D(f)(p) = 0 for all f ∈ R}.

Suppose p = (p1, p2, p3, p4, p5) ∈ (A5)Ga and f ∈ R, then

D(f)(p) = p3
1
∂f

∂s
(p) + p2

∂f

∂t
(p) + p3

∂f

∂u
(p) + p2

1
∂f

∂v
(p).

Clearly if p = (0, 0, 0, p4, p5), then D(f)(p) = 0 for all f ∈ R. Conversely suppose
at least one of p1, p2 or p3 ̸= 0, then one of D(s)(p), D(t)(p), D(u)(p) is non-zero, so
(A5)Ga = VA5(x, s, t) as claimed.

2. By our observations above we have β3
0 , γ0, δ0 ∈ pl(D), so

VA5(β3
0 , γ0, δ0) = VA5(x, s) ⊂ PA5 .

Let f ∈ pl(D), we will show that f ∈ VA5(x, s). Suppose that f is homogeneous, we
induce on the degree, n, induced by the Gm-action introduced in equation 3.2. Note
that there are no elements of degree 0 or 1 in the plinth ideal. The only elements
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in the plinth ideal of degree 2 or 3 are the monomials x2 and x3. Now suppose
f ∈ pl(D) has degree n > 3 and that f = xp1 + sp2 + g, where p1, p2 ∈ K[x, s, t, u, v]
and g ∈ K[t, u, v]. Observe that the partial derivatives ∂

∂t
, ∂

∂u
, ∂

∂v
all commute with

the derivation D, and so for any p ∈ RD, we have

0 = ∂

∂t
(D(p)) = D

(
∂

∂t
(p)
)

= ∂

∂u
(D(p)) = D

(
∂

∂u
(p)
)

= ∂

∂v
(D(p)) = D

(
∂

∂v
(p)
)
.

Hence ∂f
∂t
, ∂f

∂u
, ∂f

∂v
∈ RD since f ∈ RD. But note that these partial derivatives all

have degree n− 3, hence by induction we have that there are h1, h2, h3, h4, h5, h6 ∈
K[x, s, t, u, v] with

∂f

∂t
= xh1 + sh2,

∂f

∂u
= xh3 + sh4,

∂f

∂v
= xh5 + sh6. (3.5)

However
∂f

∂t
= x

∂p1

∂t
+s∂p2

∂t
+ ∂g

∂t
,

∂f

∂u
= x

∂p1

∂u
+s∂p2

∂u
+ ∂g

∂u
,

∂f

∂v
= x

∂p1

∂v
+s∂p2

∂v
+ ∂g

∂v
,

where ∂g
∂t
, ∂g

∂u
, ∂g

∂v
∈ K[t, u, v], hence these partial derivatives of g must all be zero by

equation 3.5. Since we have assumed f is homogeneous, this implies that g = 0.

3. Recall that the nullcone is given by

π−1
A5 (πA5(0)) = NA5 =

{
v ∈ A5 | f(v) = 0 for all f ∈ RGa

+

}
.

Suppose v = (v1, v2, v3, v4, v5) ∈ NA5 , then for β0, γ0 ∈ RGa
+ , we have β0(v) = v1 = 0,

γ0(v) = 2(0)3v3 − v2
2 = 0, so v = (0, 0, v3, v4, v5) and NA5 ⊂ VA5(x, s). Now suppose

that v ∈ VA5(x, s), and let f ∈ RGa
+ , the above calculation for the plinth variety

shows that RGa
+ ⊂ (x, s)K[x, s, t, u, v]. Therefore we can write f = xh1 + sh2

with h1, h2 ∈ K[x, s, t, u, v] and so f(v) = 0, implying v ∈ NA5 and hence that
NA5 = VA5(x, s).

3.5 A SAGBI-BASIS FOR DAIGLE AND FREUDENBURG’S
COUNTEREXAMPLE

3.5.1 Constructing three infinite families of invariants

We first show that RD is not finitely generated, to do this we show that RD has three
infinite families of homogeneous invariants. We call the members of these families
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βi, γi and δi respectively, with i ∈ N corresponding to the v-degree of the invariant.
Recall that S∆ is generated β0, γ0, δ0 and g, defined in equation 3.4. We construct the
βi, γi and δi so that βi := β0v

i + terms of lower v-degree, and similarly for γi and δi.
For i = 1 we must find, for example, some f ∈ R so that D(β0v+f) = x3 +D(f) = 0.
This is a simple task for β1, γ1 and δ1 since x2β0, x

2γ0, x
2δ0 ∈ pl(D), giving:

β1 = xv − s,

γ1 = (2x3t− s2)v + x2st− 3x5u,

δ1 = (3x6u− 3x3st+ s3)v − 3x5su+ 4x5t2 − x2s2t.

In general these invariants are difficult to construct, but we show that such invariants
exist. Once this is accomplished, we construct a SAGBI-basis for RD.

Definition 3.5.1. Let M be the set of all monomials in K[x1, x2, . . . , xn], A mono-
mial ordering is a total order “ > ” on M which satisfies the following conditions:

• m > 1 for all m ∈ M \ {1},

• m1 > m2 implies bm1 > bm2 for all b,m1,m2 ∈ M.
We write xi >> xj if xi > xa

j for all a ∈ Z≥0. Given a non-zero polynomial
f ∈ K[x1, x2, . . . , xn], we can write f uniquely as f = cm + g, where m ∈ M,
c ∈ K \ {0} and every monomial appearing as part of a term in g is smaller than m
with respect to our ordering. We call cm the leading term of f , and write LT(f) = cm.
Additionally, m is the leading monomial of f , denoted LM(f).

We now define a Gröbner basis, we use [5, p. 10].

Definition 3.5.2. Fix a monomial ordering on K[x1, x2, . . . , xn] and let
S ⊂ K[x1, x2, . . . , xn] be a set of polynomials. We write

L(S) := (LM(f) | f ∈ S) ,

for the ideal generated by the leading monomials from S, called the leading ideal of
S. Now let I ⊂ K[x1, x2, . . . , xn] be an ideal, then a finite subset G ⊂ I is called a
Gröbner basis for I if L(I) = L(G).

It is well-known that a Gröbner basis of an ideal generates the ideal. An analogous
concept for subalgebras also exists, called a SAGBI-basis

Definition 3.5.3. A Subalgebra Analogue for Gröbner Bases of Ideals or “SAGBI-
basis” is defined as follows: Let “> ” be a monomial ordering on the polynomial
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ring K[x1, x2, . . . , xn]. For a subalgebra A ⊂ K[x1, x2, . . . , xn], we write Lalg(A) for
the algebra generated by all leading monomials of non-zero elements in A. A subset
S ⊂ A is called a SAGBI-basis of A if Lalg(S) = Lalg(A).

Note also that a SAGBI-basis S of a subalgebra A also generates A as an algebra
as in the case of a Gröbner basis.

In the sequel we use the lexicographic monomial ordering on R = K[x, s, t, u, v],
which is defined so that xe1se2te3ue4ve5 > xf1sf2tf3uf4vf5 if ei > fi for the largest i for
which we have ei ̸= fi. For example tv > v since both monomials have v exponent 1,
u-exponent 0 but tv has t exponent 1 whilst v has t exponent 0. We also use the
lexicographic monomial ordering on S = K[x, s, t, u] with x < s < t < u.

Definition 3.5.4. Let S = {f1, . . . , fm} ⊂ K[x1, . . . , xn] be a finite set of polynomi-
als.

1. A polynomial p ∈ K[x1, . . . , xn] is said to be in normal form with respect to S
if no term of p is divisible by the leading monomial of any f ∈ S.

2. If p, p̃ ∈ K[x1, . . . , xn], p̃ is said to be a normal form of p with respect to S if
p̃ is in normal form with respect to S and there are h1, . . . , hm ∈ K[x1, . . . , xn]
with

p− p̃ =
m∑

i=1
hifi and LM(hifi) ≤ LM(p) for all i.

We now state the image membership algorithm, see van den Essen [15, §1.4].

Lemma 3.5.5 (Image membership algorithm). Let S = K[x1, . . . , xn] be a finitely
generated K-algebra, and D a non-zero locally nilpotent derivation on S. Fix a ∈ S,
and let m be the unique non-negative integer satisfying Dm(a) ̸= 0, Dm+1(a) = 0.
Let p be a local slice of D, with d := D(p) and s := p/d ∈ S[d−1]. Suppose
SD = K[f1, . . . , fl], put

b′ :=
m∑

i=0

(−1)i

(i+ 1)!D
i(a)si+1,

and set q := dm+1b′. Define the ideal Jm in K[X, Y ] := K[x1, . . . , xn, y1, . . . yl] as:

Jm := (y1 − f1, . . . , yl − fl, d
m+1),

and choose on K[X, Y ] a monomial ordering so that xi >> yj for all i, j. Let G be a
Gröbner basis of Jm. Let q̃ be the normal form of q with respect to G. Then a ∈ D(S)
if and only if q̃ ∈ K[Y ]. Furthermore, if q̃ ∈ K[Y ], then b := (q − q̃(fi))/dm+1 ∈ S
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satisfies D(b) = a. The polynomial q̃(fi) is defined by replacing each yi appearing in
q̃ with fi.

Now we show the existence of the βi, γi and δi:

Proposition 3.5.6. For each n ∈ N, there are invariants βn, γn, δn ∈ RD with
leading terms β0v

n, γ0v
n and δ0v

n.

A proof of Proposition 3.5.6 has been given by Tanimoto in [32, §2], making use
of the relation between Daigle and Freudenburg’s counterexample and Freudenburg’s
counterexample. Here we provide a direct proof.

Proof. We induce on the degree of v. Note that β0, γ0 and δ0 have already been
defined. For the sake of brevity we use ηi to denote either βi, γi or δi whenever it is
unnecessary to differentiate between them. Now suppose that for all i ≤ n, we have
defined

ηi = e
(i)
i v

i + e
(i)
i−1v

i−1 + · · · + e
(i)
0 = e

(0)
0 vi +

(
i

i− 1

)
e

(1)
0 vi−1 + · · · + e

(i)
0 ,

where e
(i)
j =

(
i
j

)
e

(i−j)
0 and 0 ≤ j ≤ i ≤ n. Note also that D(e(i)

0 ) = ∆(e(i)
0 ) =

−x2e
(i)
1 = −x2

(
i
1

)
e

(i−1)
0 , since D(ηi) = 0. Now we define

f η
n+1 := (−1)n

(
η0v

n+1 −
(
n+ 1

1

)
η1v

n + · · · + (−1)n

(
n+ 1
n

)
ηnv

)
.

We calculate D(f η
n+1), using that D(ηi) = 0 for all i ≤ n and i

(
n+1

i

)
= (n+ 1)

(
n

i−1

)
:

D(f η
n+1) = (−1)n

(
D

(
η0v

n+1 −
(
n+ 1

1

)
η1v

n + · · · + (−1)n

(
n+ 1
n

)
ηnv

))

= (−1)nD(η0)vn+1 + · · · + (−1)2n

(
n+ 1
n

)
D(ηn)v

+ (−1)n(n+ 1)D(v)η0v
n + · · · + (−1)2n

(
n+ 1
n

)
D(v)ηn

= −(n+ 1)D(v)
(

(−1)n−1
(
η0v

n + · · · + (−1)n−1
(

n

n− 1

)
ηn−1v

)
− ηn

)
= (n+ 1)D(v)(ηn − f η

n).

We now show that (n+ 1)D(v)(ηn − f η
n) has v degree 0. To do so we calculate

the coefficient of v-degree n− j in this expression above for 0 ≤ j < n. Note that
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the first j terms (−1)n−1(η0v
n + · · · + (−1)j−1

(
n

j−1

)
ηj−1v

n−j+1) appearing in f η
n all

have higher v-degree and so we may disregard them in our calculations. Examining
the term (−1)n+k−1

(
n
k

)
ηkv

n−k for k ≥ j we find

(−1)n+k−1
(
n

k

)
ηkv

n−k = (−1)n+k−1
(
n

k

)(
e

(k)
k vk + · · · + e

(k)
0

)
vn−k,

so the coefficient of v-degree n− j for (−1)n+k−1
(

n
k

)
ηkv

n−k is

(−1)n+k−1
(
n

k

)
e

(k)
k−j = (−1)n+k−1

(
n

k

)(
k

k − j

)
e

(j)
0 = (−1)n+k−1

(
n

j

)(
n− j

k − j

)
e

(j)
0 .

Summing these coefficients, we obtain

n∑
k=j

(−1)n+k−1
(
n

j

)(
n− j

k − j

)
e

(j)
0 = (−1)n+j−1e

(j)
0

(
n

j

)n−j∑
t=0

(−1)t

(
n− j

t

) = 0,

since
n∑

t=0
(−1)t

(
n

t

)
= 0 for n ≥ 1.

It remains to calculate the term of v-degree 0 in (n+ 1)D(v)(ηn − f η
n), but this is

simply (n+ 1)x2e
(n)
0 , and so we have shown

D(f η
n+1) = (n+ 1)D(v)(ηn − f η

n) = (n+ 1)x2e
(n)
0 .

Therefore, if we can show x2e
(n)
0 ∈ ∆(S) then we may define e(n+1)

0 := −(n + 1)h,
where D(h) = ∆(h) = x2e

(n)
0 and set ηn+1 := f η

n+1 + e
(n+1)
0 . To achieve this, we use

a method similar to van den Essen in [13] by considering the construction of the
element b′ in the image membership algorithm. In the notation of Lemma 3.5.5, we
choose our local slice to be p = s ∈ S so that d = ∆(s) = x3 and then

b′ =
n∑

i=0

(−1)i

(i+ 1)!∆
i
(
x2e

(n)
0

)( s
x3

)i+1
=

n∑
i=0

1
i+ 1

(
n

i

)
e

(n−i)
0 si+1x−i−1.

Note that xn+1b′ ∈ S and ∆(xn+1b′) = xn+3e
(n)
0 . Our aim is to show that there

is some h ∈ S∆ such that b := (xn+1b′ − h)/xn+1 ∈ S, so that ∆(b) = x2e
(n)
0 . To

achieve this, we must now treat the b(n)
0 , c(n)

0 and d(n)
0 separately due to their differing

degrees and ρ-degrees, though the arguments are very similar. We show only the
case for c(n)

0 . In this case fγ
n+1 is homogeneous of degree 2n + 8, and hence xn+1b′
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is homogeneous of degree 3n + 9. We now define S(a,k) to be the K-vector space
spanned by monomials of degree a and ρ-degree k, that is

S(a,k) :=
{∑

i

λimi ∈ S |λi ∈ K, deg(mi) = a, ρ(mi) = k

}
.

Note that xn+1b′ ∈ S(3n+9,n+1) and

β0 = x ∈ S(1,0), s ∈ S(3,1), t ∈ S(3,2), u ∈ S(3,3), γ0 ∈ S(6,2), δ0 ∈ S(9,3), g ∈ S(12,6).

Additionally, note that if f ∈ S(a,k), g ∈ S(b,l), then fg ∈ S(a+b,k+l). Define

M := {f ∈ S(3n+9,n+1) | degxD(f) ≥ n+ 1},

N := S∆ ∩ S(3n+9,n+1),

so xn+1b′ ∈ M . Finally, we define π : S → S, where π(f) removes all terms of f of
x-degree greater than or equal to n+ 1. We show that π(N) = π(M).

Let f ∈ N , note that x2n+8sn+1 ∈ M and π(x2n+8sn+1) = 0. If we set q :=
x2n+8sn+1 +f, then D(q) = D(x2n+8sn+1), so q ∈ M , and π(q) = π(x2n+8sn+1 +f) =
π(f), giving us that π(N) ⊂ π(M).

For h ∈ M , write

h =
∑

αa,b,c,dx
asbtcud, where a+ 3(b+ c+ d) = 3n+ 9, b+ 2c+ 3d = n+ 1,

then we find

D(h) =
∑

(bαa,b,c,d + (c+ 1)αa+3,b−2,c+1,d + (d+ 1)αa+3,b−1,c−1,d+1)xa+3sb−1tcud.

The condition that degxD(h) = a+ 3 ≥ n+ 1 gives us that

(bαa,b,c,d + (c+ 1)αa+3,b−2,c+1,d + (d+ 1)αa+3,b−1,c−1,d+1) = 0, (3.6)

whenever a+ 3 < n+ 1. Now, if a+ 3 < n+ 1 using that a+ 3(b+ c+ d) = 3n+ 9
and b + 2c + 3d = n + 1 we find that 2b + c > n + 10 meaning that we require
b > 0. Suppose that n = 3k, equation 3.6 can be applied iteratively to show that any
αl,p,q,r can be expressed as a linear combination of α3k+1,b,c,d where l < 3k + 1 and
3(b+c+d) = 6k+9. Similarly for n = 3k+1 and n = 3k+2 these can be expressed as
a linear combination of α3k+2,b,c,d and α3k+3,b,c,d respectively, with 3(b+c+d) = 6k+12
and 3(b + c + d) = 6k + 15 respectively also. Therefore the dimension of π(M)
for say n = 3k is at most the number of solutions to 3(b + c + d) = 6k + 15 and
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b+ 2c+ 3d = 3k + 1. Computing this dimension for each of these cases we find that
these again split into sub-cases depending on n mod 6. For n = 6k + i, 0 ≤ i ≤ 5,
the number of solutions is k + 1, hence dim (π(M)) ≤ k + 1.

Now for N , we know that S∆ = K[β0, γ0, δ0, g], so N is generated by βa
0γ

b
0δ

c
0g

d

where a + 6b + 9c + 12d = 3n + 9, as elements of N are homogeneous of degree
3n+ 9 and ρ-degree 2b+ 3c+ 6d = n+ 1. Counting the number of solutions to these
equations we find again that these split mod 6, with 1

2(k + 1)(k + 2) solutions for
n = 6k + i, i ∈ {0, 1, 2, 4} and 1

2(k + 2)(k + 3) solutions for n = 6k + 3, 6k + 5.
Consider the case n = 6k, the general solution for these equations is (a, b, c, d) =

(6y, 3k − 3z, 1 + 2z − 2y, y) with 0 ≤ y ≤ z ≤ k integers. But, since γ3
0 + δ2

0 = x6g,
we obtain, for example, that γ3k

0 δ0 + γ3k−3
0 δ3

0 = x6γ3k−3
0 δ0g. Using this relation we

find that all solutions with y ̸= 0 can be written as a linear combination of solutions
with y = 0, thus reducing the number of solutions to k + 1. The same argument for
other values of n mod 6 reduces the number of solutions to k + 1 for n = 6k + i,
i ∈ {0, 1, 2, 4} and k + 2 for n = 6k + 3, 6k + 5. Returning to n = 6k, we show that
π(N) has dimension k + 1. Let

np := (2x3t− s2)3k−3p(3x6u− 3x3st+ s3)1+2p, 0 ≤ p ≤ k,

and consider

(−1)pπ(np)|t=0,u=s/3 = π
(
s6k−6p(x6s+ s3)1+2p

)
= π

 2p∑
i=0

(
2p
i

)
x6is6k+3−2i

 .
Now since n+ 1 = 6k + 1, π removes all monomial terms of x-degree ≥ 6k + 1, we
therefore find

(−1)pπ(np)|t=0,u=s/3 =
min(2p,k)∑

i=0

(
2p
i

)
x6is6k+3−2i.

So the linear independence of the π(np) follows once we show that

det
((

2p
i

))
0≤i,p≤k

̸= 0.

But this is a special case of Corollary 2 of Gessel and Viennot’s article [20, p.301],
with ai = 2i and bi = i for i = 0, 1, . . . , k. The cases for n = 6k + 1, 6k + 2, 6k + 4
follow similarly. In the case of n = 6k + 5, we let

np := (2x3t− s2)3k+4−3p(3x6u− 3x3st+ s3)2p, 0 ≤ p ≤ k + 1,
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again we consider

(−1)pπ(np)|t=0,u=s/3 = π
(
s6k+8−6p(x6s+ s3)2p

)
= π

 2p∑
i=0

(
2p
i

)
x6is6k+8−2i

 .
Now n+ 1 = 6k + 6, and hence π removes all monomial terms of x-degree ≥ 6k + 6,
so

(−1)pπ(np)|t=0,u=s/3 =
min(2p,k)∑

i=0

(
2p
i

)
x6is6k+8−2i.

Considering only the first k + 1 terms, as above, we find these π(np) are lin-
early independent by Gessel and Viennot’s result. Using that π(N) ⊂ π(M),
and dim(π(M)) ≤ k + 1, we conclude that π(N) = π(M).

Remark. Note that the choice of the e(n)
0 is not unique in general. However, given

say b
(n)
0 and some b̃

(n)
0 , we must have D(b(n)

0 − b̃
(n)
0 ) = 0. As both are chosen to

be homogeneous with respect to our gradings, they must differ by an element of
S∆ ∩ S(2n+1,n). This vector space is non-empty precisely when n = 6k, with basis xgk

in this case. Since b(0)
0 = x, we observe that the b(n)

0 are unique for n ≤ 5. For c(n)
0

and d(n)
0 , we find that these are unique for n ≤ 3 and n ≤ 2 respectively.

3.5.2 A generating set for RD

Lemma 3.5.7. The set of invariants

S := {g, βn, γn, δn|n ∈ N} ,

generates RD.

Proof. We prove this by induction on n, the degree of v. Namely we show that the
set

Sn := {g, βm, γm, δm|m ≤ n} ,

generates An = {f ∈ RD | degv(f) ≤ n}.
When n = 0, we are considering the elements of v-degree 0, but these are the

invariants in K[x, s, t, u] = S where D|S = ∆, and we know S∆ is generated by
β0, γ0, δ0 and g, which is just S0. Now suppose that Ak is generated by Sk for all
k ≤ n − 1, and let f ∈ RD be an invariant whose terms have v-degree at most n.
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Without loss of generality we may assume that f is homogeneous with respect to
our Gm-grading and that

f = anv
n + an−1v

n−1 + · · · + a0,

with ai ∈ K[x, s, t, u] for all i, and an ̸= 0. Now D(f) = 0, meaning that

D(f) = D(anv
n + an−1v

n−1 + · · · + a0)
= D(an)vn + nx2anv

n−1 +D(an−1v
n−1 + · · · + a0) = 0.

Now comparing v-degrees, we see that we must have D(an) = 0, but an ∈ K[x, s, t, u]
and so an ∈ S∆ which is generated by g, β0, γ0 and δ0. So we may write

an = β0p1 + γ0p2 + δ0p3 + λgk,

for some p1, p2, p3 ∈ K[β0, γ0, δ0, g], λ ∈ K and k ≥ 0. But if we define

G = βnp1 + γnp2 + δnp3,

then D(G) = 0 and G is generated by Sn as βn, γn, δn ∈ Sn and p1, p2, p3 ∈ S0 ⊂ Sn.
We also have D(G− f) = 0, where

G− f = λgkvn + bn−1v
n−1 + · · · + b0.

We show that no such invariant can exist unless λ = 0, in which case each term
of G − f has v-degree at most n − 1 and therefore must be generated by Sn−1 by
induction. We can then conclude that f is generated by Sn, proving the result.

If λ ≠ 0 then we can take λ = 1 by re-scaling and our task reduces to showing
that there is no invariant of the form

h = gkvn + bn−1v
n−1 + · · · + b0.

To do this we consider

D(h) =D(gk)vn + (nx2gk +D(bn−1))vn−1 + (n− 1)x2bn−1v
n−2

+D(bn−2v
n−2 + · · · + b0).

Considering the terms of v-degree n− 1 we see that, to have D(h) = 0, we require
that D(bn−1) = ∆(bn−1) = −nx2gk. In other words, we require that −nx2gk ∈ ∆(S).
We show that this is not the case for all k ∈ N by use of Lemma 3.5.5, the



48 Chapter 3. Daigle and Freudenburg’s counterexample

image membership algorithm. By choosing our local slice to be p = s ∈ R, with
d = ∆(s) = x3, we compute the Gröbner basis of the ideal

J := (y1 − β0, y2 − γ0, y3 − δ0, y4 − g, x3),

with the lexicographic monomial ordering chosen so that u > t > s > x > y4 > y3 >

y2 > y1. Using computational software such as Maple, we are able to find that our
Gröbner basis is then

G = (y3
1, y

3
2 +y2

3, x−y1, sy2+y3, sy3−y2
2, s

2+y2, 6y2
2u−3y3t

2−y4s, 6y3u+3y2t
2−d).

Now, since ∆(x2g) = 0, we find that b′ = x−1gks and hence in the notation of
Lemma 3.5.5 we have q = x2gks. The normal form of q with respect to this
basis is q̃ = y2

1y
k
4s /∈ K[y1, y2, y3, y4], therefore by the image membership algorithm,

x2gk /∈ ∆(S) for all k ∈ N.

3.5.3 Computing a SAGBI-basis

Now we will show that the set S forms a SAGBI-basis for our invariant ring RGa . We
follow a method similar to that used in [25, § 3], where a SAGBI-basis for Roberts’
counterexample is computed. We recall from Definition 3.5.3 that for a subalgebra
R, a SAGBI-basis of R is a subset S ⊂ R which satisfies Lalg(R) = Lalg(S), where
Lalg(R) denotes the algebra generated by the leading monomials of the elements in
R. Note that for our chosen S we have

Lalg(S) = K[xvn, x3tvn, x6uvn, x6u2 |n ∈ N].

We set
bn := xvn, cn := 2x3tvn, dn := 3x6uvn, e := 9x6u2.

Also note that, as remarked above, since the e(n)
0 can be determined uniquely for

n ≤ 2, for the invariants βn, γn, δn we can write the terms of v-degree n, n− 1 and
n− 2. Namely, we have:

βn = xvn − nsvn−1 + n(n− 1)x2tvn−2 + l.o.t,

γn = (2x3t− s2)vn − n(−3x5u+ x2st)vn−1 + n(n− 1)(3x4su− 2x4t2)vn−2 + l.o.t,

δn = (3x6u− 3x3st+ s3)vn − n(3x5su+ 4x5t2 − x2s2t)vn−1

−n(n− 1)(3x7tu− 3x4s2u+ x4st2) + l.o.t,
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where l.o.t. refers to terms of lower v-degree. Recall from the proof of Lemma 3.5.7:

SN := {βi, γi, δi, g | 0 ≤ i ≤ N} .

Let BN be the subalgebra of RD generated by SN for all N ≥ 0.

Lemma 3.5.8. For all N ≥ 0 the subalgebra Lalg(BN ) ⊂ R is generated by Lalg(SN ),
hence SN is a SAGBI-basis of BN for all N ∈ N. As RD = ⋃

N BN , S is a SAGBI-
basis for RD.

Proof. Lalg(SN) = K[bi, ci, di, e | 0 ≤ i ≤ N ]. The relations between the bi, ci and di

are generated by

bncm − bn′cm′ = 0, bnbm − bn′bm′ = 0,
cndm − cn′dm′ = 0, cncm − cn′cm′ = 0,
bndm − bn′dm′ = 0, dndm − dn′dm′ = 0,

where n,m, n′,m′ ∈ N satisfy n + m = n′ + m′ ≤ N . We also have the relations
involving e

dmdn − e
6∏

i=1
bmi

= 0,

with n + m = ∑6
i=1 mi ≤ N . The relations between the bi, ci, di and e all arise

by noting that in any relation the terms must have equal v, t and u-degree and so
there must be an equal number of bi, ci and di terms on either side in any relation
involving just these three families. The relations involving e arise from comparing x
and u-degree.

We now show that when substituting in the polynomials βi, γi, δi and g, in the
relations above, the leading term of the result lies in Lalg(SN). By considering the
first two terms of the βi and γi and noting that m−m′ = n′ − n, we see that

LT(βnγm − βn′γm′)
= LT

(
(xvn − nsvn−1)((2x3t− s2)vm −m(−3x5u+ x2st)vm−1)

− (xvn′ − n′svn′−1)((2x3t− s2)vm′ −m′(−3x5u+ x2st)vm′−1)
)

= LT
(
(2(n′ − n)x3st− (n′ − n)s3 + (m−m′)x3st− 3(m−m′)x6u)vn+m−1

)
= LT

(
(m−m′)(3x6u− 3x3st+ s3 + s3)vn+m−1

)
.

So LT(βnγm − βn′γm′) = −3(m−m′)x6uvn+m−1 = (m′ −m)dn+m−1 ∈ Lalg(SN),
in fact we have shown that the coefficient of v-degree n+m− 1 is precisely δ0. Next
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we have

LT(βnδm − βn′δm′)
= LT

(
(xvn − nsvn−1)((3x6su− 3x3st+ s3)vm −m(x5su+ 4x5t2 − x2s2t)vm−1)

− (xvn′ − n′svn′−1)((3x6u− 3x3st+ s3)vm′

−m′(x5su+ 4x5t2 − x2s2t)vm′−1)
)

= LT
(
(4(m−m′)x6t2 + (3n− 3n′ +m′ −m)x3s2t− (n′ − n)s4)vn+m−1

)
= LT

(
((m−m′)(4x6t2 + x3s2t− s4))vn+m−1

)
.

Therefore LT(βnδm − βn′δm′) = 4(m−m′)x6t2vn+m−1 = (m−m′)c0cn+m−1, and the
coefficient of v-degree n+m− 1 is precisely γ2

0 . By the same method, we find that

LT(γnδm − γn′δm′) = 9(n′ − n)x11u2vn+m−1 = (n′ − n)eb4
0bn+m−1,

and the coefficient of v-degree n+m− 1 is precisely (n′ − n)β4
0g. Similarly we have

LT(δnδm − g
6∏

i=1
βmi

) = −8x9t3vn+m = −c2
0cn,

and the coefficient of v-degree n is precisely −γ3
0 . Note that this arises from the

relation γ3
0 + δ2

0 = x6g. Now we require the first three terms of the βi, γi and δi to
compute the remaining relations, as the terms of v-degree m+ n and m+ n− 1 are
both zero. We find:

LT(βnβm − βn′βm′)

= LT
((
xv2 − nsv + n(n− 1)x2t)(xv2 −msv +m(m− 1)x2t)

− (xv2 − n′sv + n′(n′ − 1)x2tv)(xv2 −m′sv +m′(m′ − 1)x2t
)
vn+m−4

)
= LT

(
((nm− n′m′)s2 + (n(n− 1) +m(m− 1))x3s2t)vn+m−2

)
= LT

(
−(nm− n′m′)(2x3t− s2)vn+m−2

)
, (3.7)

using that n2 + m2 − n′2 − m′2 = −2(nm − n′m′), thus LT(βnβm − βn′βm′) =
−(nm − n′m′)2x3tvn+m−2 = −(nm − n′m′)cn+m−2 and the coefficient of v-degree
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n+m− 2 is precisely −(nm− n′m′)γ0.

LT(γnγm − γn′γm′)

= LT
((
nm(x2st− 3x5u)2 − (n2 − n+m2 −m))(2x3t− s2)(3x4su− 2x4t2)

− n′m′(x2st− 3x5u)2

+ (n′2 − n′ +m′2 −m′)(2x3t− s2)(3x4su− 2x4t2)
)
vn+m−2

)
= LT

((
(nm− n′m′)(9x10u2 − 6x7stu+ x4s2t2)

+ (n2 +m2 − n′2 −m′2)(6x7stu− 3x4s3u− 4x7t3 + 2x4s2t2)
)
vn+m−2

)
= LT

(
(nm− n′m′)x4(9x6u2 − 18x3stu+ 6s3u+ 8x3t3 − 3s2t2))vn+m−2

)
.

(3.8)

So LT(γnγm − γn′γm′) = (nm−n′m′)9x10u2vn+m−2 = (nm−n′m′)eb3
0bn+m−2 and we

have shown that the coefficient of v-degree n+m− 2 of this expression is precisely
(nm− n′m′)β4

0g. Now finally we have

LT(δnδm − δn′δm′)
= LT((nm− n′m′)x4(2x3t− s2)(9x6u2 − 18x3stu+ 6s3u+ 8x3t3 − 3s2t2))vn+m−2).

(3.9)

We conclude:

LT(δnδm − δn′δm′) = (nm− n′m′)9x13tu2vn+m−2 = (nm− n′m′)b3
0c0ebn+m−2,

and we have shown that the coefficient of v-degree n+m− 2 of this expression is
precisely (nm− n′m′)β4

0γ0g.
Since SN generates BN , and any combination of elements in SN yields an element

whose leading term lies in Lalg(SN), we conclude that SN is a SAGBI-basis for
BN .

3.6 THE FINITE GENERATION IDEAL

We maintain our notation for BN and SN introduced in the previous section. Our
aim in this section will be to prove the following:
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Theorem 3.6.1. The finite generation ideal, fRD , is the radical of the ideal of
RD generated by β0, γ0 and δ0; that is, fRD =

√
(β0, γ0, δ0)RD. Additionally, G =

{βi, γi, δi | i ≥ 0} ⊂ fRD satisfies L(G) ⊂ L(fRD).

To prove the theorem, we first prove the following lemma and proposition,
analogues of results proven in Dufresne and Kraft’s paper [10, p.21] in order to
compute the finite generation ideal of Roberts’ example. For subalgebras S1 ⊂ S2 ⊂
R, we define the conductor as [S1 : S2] := {s ∈ S2 | sS2 ⊂ S1}.

Lemma 3.6.2. Fix an integer N ∈ N:
1. If f ∈ RD and degv(f) ≤ N , then f ∈ BN .

2. (β0, γ0, δ0)BN+1 ⊂ BN .

3. [BN : BN+1] ∩B0 = (β0, γ0, δ0)B0.

Proof. If degv(f) = 0, then D(f) = ∆(f) = 0 so f ∈ S∆ which is generated by
β0, γ0, δ0 and g. But B0 = K[S0] where S0 = {β0, γ0, δ0, g}, so f ∈ B0. Suppose
that this result holds for all f ∈ RD with degv(f) ≤ k. Now suppose that f ∈ RD

and degv(f) = k + 1, then LT(f) is a monomial in Lalg(S) of v-degree k + 1, and
hence there is some f̃ ∈ Bk+1 with LT(f) = LT(f̃). But degv(f − f̃) < k + 1, so
f − f̃ ∈ Bk ⊂ Bk+1 by induction. Hence

f = f̃ + (f − f̃) ∈ Bk+1.

This proves part 1.
For part 2, let η0 ∈ {β0, γ0, δ0} and consider η0BN+1. Since g, βi, γi, δi ∈ BN for

0 ≤ i ≤ N we need only show that η0βN+1, η0γN+1, η0δN+1 ∈ BN . Let LT(η0) = e0.
Now

LT(η0βN+1) = e0bN+1 = e1bN , degv(η0βN+1 − η1βN) ≤ N,

LT(η0γN+1) = e0cN+1 = e1cN , degv(η0γN+1 − η1γN) ≤ N,

LT(η0δN+1) = e0dN+1 = e1dN , degv(η0δN+1 − η1δN) ≤ N.

Applying part 1 of this lemma in each case gives us that:

η0βN+1 = η1βN + (η0βN+1 − η1βN) ∈ BN ,

η0γN+1 = η1γN + (η0γN+1 − η1γN) ∈ BN ,

η0δN+1 = η1δN + (η0δN+1 − η1δN) ∈ BN .

This proves part 2.
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Finally for part 3, note that if f ∈ [BN : BN+1]∩B0, then fβN+1, fγN+1, fδN+1 ∈
BN . Therefore all three of LT(f)xvN+1, LT(f)2x3tvN+1 and LT(f)3x6u are elements
of Lalg(BN) which must each have at least two factors of the form bi, ci, di for some
0 ≤ i ≤ N . Now LT(f), as a monomial in Lalg(S0) must therefore contain a factor
b0, c0 or d0, call this e0. Then LT(f) = e0LT(f̃) for some f̃ ∈ B0, giving f − e0f̃ < f

and our result follows by induction since we have shown β0, γ0, δ0 ∈ [BN , BN+1] in
part 2.

Proposition 3.6.3. Let f ∈ RD be a homogeneous invariant with f ≠ gk for any
k ∈ N. Then f ∈

√
(β0, γ0, δ0)RD, and hence βi, γi, δi ∈

√
(β0, γ0, δ0)RD for all i ∈ N.

Furthermore,
√

(β0, γ0, δ0)RD is generated by {βi, γi, δi}i∈N, with RD/
√

(β0, γ0, δ0)RD

a polynomial ring in one variable.

To prove this result, we begin by first showing that g /∈
√

(β0, γ0, δ0)RD. Suppose
that

gk = β0p1 + γ0p2 + δ0p3,

for some k ∈ N. We have deg(gk) = 12k and ρ(gk) = 6k. Now we may suppose that
p1 ∈ RD is homogeneous, with degree 12k − 1 and ρ-degree 6k; but there is simply
no invariant in RD which has both this corresponding degree and ρ-degree. This
same argument holds for the degrees and ρ-degrees of both p2 and p3. Therefore
g /∈

√
(β0, γ0, δ0)RD as claimed.

We focus now on showing that βi, γi and δi ∈
√

(β0, γ0, δ0)RD. Since doing so for
βi requires showing that γi ∈

√
(β0, γ0, δ0)RD we start with γi. We use the equation

3.8 from Lemma 3.5.8 to examine the expression γiγj − γi′γj′ . The v-degree 0 part
of this expression is c(i)

0 c
(j)
0 − c

(i′)
0 c

(j′)
0 . Our goal will be to construct an invariant, ξ,

which has the same v-degree 0 terms. In doing so we observe that γiγj − γi′γj′ − ξ

is an invariant with no v-degree 0 terms, therefore γiγj − γi′γj′ − ξ = vµ and
D(vµ) = x2µ+ vD(µ) = 0. Comparing the v-degree 0 terms of this expression, we
find that µ has no terms of v-degree 0, and hence γiγj − γi′γj′ − ξ has no terms of
v-degree 1. Continuing in this way, we see that we must conclude γiγj − γi′γj′ = ξ.
If we can show that ξ ∈ (β0, γ0, δ0)RD for all i, j, then we have in particular
(γi)2 = γ0γ2i + ξ ∈ (β0, γ0, δ0)RD, giving γi ∈

√
(β0, γ0, δ0)RD as required. In the

following, we let C be the vector space whose basis is given by finite combinations of
b

(i)
0 , c

(i)
0 , d

(i)
0 and g. Recall b(i)

0 , c
(i)
0 , d

(i)
0 are the v-degree 0 components of βi, γi and δi

respectively.
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Lemma 3.6.4. Fix n ∈ N, with n ≥ 2, then c
(i)
0 c

(j)
0 − c

(i′)
0 c

(j′)
0 = −λn

i,i′x3gb
(n−2)
0 +

r(n, i, i′), where r(n, i, i′) = b
(0)
0 h1 + c

(0)
0 h2 + d

(0)
0 h3, hi ∈ C for i = 1, 2, 3, and

λn
i,i′ := −(ij − i′j′), j = n− i, j′ = n− i′.

Proof. We prove this result by induction. First, for n = 2 we have

c
(0)
0 c

(2)
0 −

(
c

(1)
0

)2
= 12x7stu− 6x5s3u− 8x7t3 + 4x4s2t2 − 9x10u2 + 6x7stu− x4s2t2

= −9x10u2 + 18x7stu− 6x4s3u− 8x7t3 + 3x4s2t2

= x4g.

We also note that, as can be seen from equation 3.8, the coefficient of v-degree n− 2
in the expression γiγj − γi′γj′ is precisely λn

i,i′β4
0g.

Now, suppose that the result holds for all pairs i, j with i+ j = n, we consider

D
(
c

(i+1)
0 c

(j)
0 − c

(i′+1)
0 c

(j′)
0

)
= −x2

(
(i+ 1)c(i)

0 c
(j)
0 + jc

(i+1)
0 c

(j−1)
0 − (i′ + 1)c(i′)

0 c
(j′)
0 − j′c

(i′+1)
0 c

(j′−1)
0

)
= −x2

(
(i+ 1)

(
c

(i)
0 c

(j)
0 − c

(i′)
0 c

(j′)
0

)
− (i′ − i)c(i′)

0 c
(j′)
0

+ j
(
c

(i+1)
0 c

(j−1)
0 − c

(i′+1)
0 c

(j′−1)
0

)
− (j′ − j)c(i′+1)

0 c
(j′−1)
0

)
= −x2

(
(i+ 1)

(
c

(i)
0 c

(j)
0 − c

(i′)
0 c

(j′)
0

)
+ j

(
c

(i+1)
0 c

(j−1)
0 − c

(i′+1)
0 c

(j′−1)
0

)
− (i′ − i)

(
c

(i′)
0 c

(j′)
0 − c

(i′+1)
0 c

(j′−1)
0

))
= −x2

(
(i+ 1)

(
λn

i,i′x3gb
(k−2)
0 + r(n, i, i′)

)
+ j

(
λn

i+1,i′+1x
3gb

(n−2)
0 + r(n, i+ 1, i′ + 1)

)
− (i′ − i)

(
λn

i′,i′+1x
3gb

(n−2)
0 + r(n, i′, i′ + 1)

) )
= −x2

(
x3gb

(n−2)
0

(
(i+ 1)λn

i,i′ + jλn
i+1,i′+1 − (i′ − i)λn

i′,i′+1

)
+ (i+ 1)r(n, i, i′)

+ jr(n, i+ 1, i′ + 1) − (i′ − i)r(n, i′, i′ + 1)
)

= −x2
(

(n− 1)λn+1
i+1,i′+1x

3gb
(n−2)
0 + (i+ 1)r(n, i, i′) + jr(n, i+ 1, i′ + 1)

− (i′ − i)r(n, i′, i′ + 1)
)
.

If either i = n or i′ = n we instead obtain either (i′ + 1)r(n, n, i′) + j′r(n, n, i′ + 1)
or (i + 1)r(n, i, n) + jr(n, i + 1, n) in place of the other r(n, a, b). For all n ≥ 2,
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and all a, b we claim that there is some R(n + 1, a, b) = b
(0)
0 H1 + c

(0)
0 H2 + d

(0)
0 H3,

Hi ∈ C for i = 1, 2, 3 with D(R(n + 1, a, b)) = −x2r(n, a, b). Let CN ⊂ C be
the vector space whose basis is given by finite combinations e(a1)

0 · · · e(ak)
0 , where∑k

i=1 ai = N and each e appearing is one of b, c or d, not necessarily all the same.
Consider a term of r(n, a, b), by which we mean an element of the form λe

(0)
0 h, with

λ ∈ K, h = e
(a1)
0 · · · e(ak)

0 gl ∈ CN . Note that the expression c
(i+1)
0 c

(j)
0 − c

(i′+1)
0 c

(j′)
0 is

homogeneous of degree 2n+ 14 and ρ-degree n+ 5, so h ̸= 0 for n ≥ 2. Additionally
h ̸= gl since this would give the degree of r(n, a, b) as deg(e(0)

0 ) + 12l, and ρ-degree
ρ(e(0)

0 ) + 6l which cannot be 2n + 14 and n + 5 respectively for any choice of e(0)
0 .

We write h = glh′, where h′ ∈ CN for some N . Since ∆(e(N)
0 ) = −x2Ne

(N−1)
0 we can

consider ∆ as a linear map

∆ : CN+1 −→ x2CN .

We now show that ∆ is surjective, in which case we can find H ∈ CN+1 such that
D(H) = −x2h, and D(λe(0)

0 H) = −λx2e
(0)
0 h. Repeating this process for all terms

of r(n, a, b) then gives us R(n + 1, a, b). To show ∆ is surjective it is sufficient to
show that for all f = x2e

(a1)
0 · · · e(ak)

0 ∈ x2CN , we have f ∈ ∆(CN+1). We describe
the process of constructing an element F with ∆(F ) = f .

Firstly we let
F1 := − 1

a1 + 1e
(a1+1)
0 · · · e(ak)

0 ,

then ∆(F1) = f +G1, where all terms of G1 are of the form −x2λe
(a1+1)
0 · e(b2)

0 · · · e(bk)
0

with λ ∈ K, ∑k
i=2 bi = N − a1 − 1. Now set

F2 := F1 +
∑

κe
(a1+2)
0 · e(b2)

0 · · · e(bk)
0 .

Note that ∆
(
e

(a1+2)
0 · e(b2)

0 · · · e(bk)
0

)
contains precisely one term of the form e

(a1+1)
0 ·

e
(b2)
0 · · · e(bk)

0 . The remaining terms are of the form e
(a1+2)
0 · e(c2)

0 · · · e(ck)
0 , where∑k

i=2 ci = N − a1 − 2. Since this is the case we can choose κ appearing in F2 so that
∆(F2) contains no terms of the form e

(a1+1)
0 · e(b2)

0 · · · e(bk)
0 . Continuing in this way we

find
D(FN−a1−1) = f + ωe

(a1+···+ak−1)
0 · e(0)

0 · · · e(0)
0 ,

where ω ∈ K. Finally we define FN−a1 := FN−a1−1 + ω
N
e

(a1+···+ak)
0 · e(0)

0 · · · e(0)
0 and

observe that D(FN−a1) = f as required.
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Having constructed R(n+ 1, a, b) for all n, a and b we note that

D
(
c

(i+1)
0 c

(j)
0 − c

(i′+1)
0 c

(j′)
0 − λn+1

i+1,i′+1x
3gb

(n−1)
0 − (i+ 1)R(n+ 1, i, i′)

− jR(n+ 1, i+ 1, i′ + 1) + (i′ − i)R(n+ 1, i′, i′ + 1)
)

= 0.

Therefore this expression is an invariant of degree 2n+ 14 and ρ-degree n+ 5. If we
consider all homogeneous invariants with such degree and ρ-degree we find:

n S∆ ∩ S(2n+14,n+5)

6l 0
6l + 1 {λx4gl+1 |λ ∈ K}
6l + 2 0
6l + 3 {λx2(2x3t− s2)gl+1 |λ ∈ K}
6l + 4 {λx(3x6u− 3x3st+ s3)gl+1 |λ ∈ K}
6l + 5 {λ(2x3t− s2)2gl+1 |λ ∈ K}

Note that all of these elements are of the form b
(0)
0 h1 + c

(0)
0 h2 + d

(0)
0 h3, with hi ∈ C

for all i. Thus we can write

c
(i+1)
0 c

(j)
0 − c

(i′+1)
0 c

(j′)
0 − λn+1

i+1,i′+1x
3gb

(n−1)
0 − (i+ 1)R(n+ 1, i, i′)

− jR(n+ 1, i+ 1, i′ + 1) − (i′ − i)R(n+ 1, i′, i′ + 1) = µp,

with µ ∈ K and p ∈ S∆ ∩ S(2n+14,n+5). By setting

r(n+ 1, i, i′) :=λn+1
i+1,i′+1x

3gb
(n−1)
0 − (i+ 1)R(n+ 1, i, i′)

− jR(n+ 1, i+ 1, i′ + 1) − (i′ − i)R(n+ 1, i′, i′ + 1) − µp,

then r(n+ 1, i, i′) is of the form b
(0)
0 h1 + c

(0)
0 h2 + d

(0)
0 h3, hi ∈ C for i = 1, 2, 3 and we

obtain the required result.

Now using this proof we consider the following expression

(γn)2 − γ2nγ0 − λ2n
n,2nx

3gβ2n−2 − T (2n, n, 2n),

where T (n, a, b) ∈ RD is defined by replacing every e
(k)
0 in r(n, a, b) by the corre-

sponding ηk ∈ RD which has e(k)
0 as its v-degree zero term. From this and the

observation made above we see that

(γn)2 = γ2nγ0 + λ2n
n,2nx

3gβ2n−2 + T (2n, n, 2n) ∈ (β0, γ0, δ0)RD.

We now prove a similar result for δn.



3.6. The finite generation ideal 57

Lemma 3.6.5. Fix n ∈ N, with n ≥ 2, then d
(i)
0 d

(j)
0 − d

(i′)
0 d

(j′)
0 = λn

i,i′x3(2x3t −
s2)ga(n−2)

0 + r(n, i, i′), where r(n, i, i′) = b
(0)
0 h1 + c

(0)
0 h2 +d

(0)
0 h3, hi ∈ C for i = 1, 2, 3,

and λn
i,i′ := −(ij − i′j′), j = n− i, j′ = n− i′.

Proof. Firstly for n = 2, we have

d
(0)
0 d

(2)
0 −

(
d

(1)
0

)2
= x4(2x3t− s2)g.

Now suppose that the formula holds for all pairs i+ j = n, we have

D
(
d

(i+1)
0 d

(j)
0 − d

(i′+1)
0 d

(j′)
0

)
= −x2

(
(n− 1)λn+1

i+1,i′+1x
3(2x3t− s2)ga(n−2)

0 + (i+ 1)r(n, i, i′)

+ jr(n, i+ 1, i′ + 1) − (i′ − i)r(n, i′, i′ + 1)
)
.

If either i = n or i′ = n we instead obtain either (i′ + 1)r(n, n, i′) + j′r(n, n, i′ + 1)
or (i+ 1)r(n, i, n) + jr(n, i+ 1, n) in place of the other r(n, a, b). As before we show
that there is some R(n + 1, a, b) with D(R(n + 1, a, b)) = r(n, a, b) for all a, b ≤ n.
Let λe(0)

0 h be a term of r(n, a, b), λ ∈ K, h ∈ I and e ∈ {b, c, d}. Note that the
expression d

(i+1)
0 d

(j)
0 − d

(i′+1)
0 d

(j′)
0 is homogeneous of degree 2n + 20 and ρ-degree

n + 7, so h ̸= 0 for n ≥ 2. Now h ̸= gk for some k ∈ N since deg(e(0)
0 ) + 12k and

ρ(e(0)
0 ) + 6k cannot be 2n+ 20 and n+ 7 for any choice of e(0)

0 or k. Therefore we
can write h = f

(l)
0 h′ for some f ∈ {b, c, d}, l ∈ N and proceed as described in the

proof of Lemma 3.6.4. Now since

D
(
d

(i+1)
0 d

(j)
0 −d(i′+1)

0 d
(j′)
0 − λn+1

i+1,i′+1x
3(2x3t− s2)gb(n−1)

0 − (i+ 1)R(n+ 1, i, i′)

− jR(n+ 1, i+ 1, i′ + 1) + (i′ − i)R(n+ 1, i′, i′ + 1)
)

= 0,

this expression is then an invariant of degree 2n+ 20 and ρ-degree n+ 7. Considering
all such elements we find:

n S∆ ∩ S(2n+20,n+7)

6l 0
6l + 1 {λx4(2x3t− s2)gl+1 |λ ∈ K}
6l + 2 {λx3(3x6u− 3x3st+ s3)gl+1 |λ ∈ K}
6l + 3 {λx2(2x3t− s2)2gl+1 |λ ∈ K}
6l + 4 {λx(2x3t− s2)(3x6u− 3x3st+ s3)gl+1 |λ ∈ K}
6l + 5 {λ(2x3t− s2)3gl+1 + µ(3x6u− 3x3st+ s3)2gl+1 |λ, µ ∈ K}
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Note that all such elements are of the form b
(0)
0 h1 + c

(0)
0 h2 + d

(0)
0 h3, hi ∈ C. If we let

d
(i+1)
0 d

(j)
0 − d

(i′+1)
0 d

(j′)
0 −λn+1

i+1,i′+1x
3(2x3t− s2)gb(n−1)

0 − (i+ 1)R(n+ 1, i, i′)
− jR(n+ 1, i+ 1, i′ + 1) + (i′ − i)R(n+ 1, i′, i′ + 1) = µp,

with µ ∈ K and p ∈ S∆ ∩ S(2n+14,n+5), by setting

r(n+ 1, i, i′) := λn+1
i+1,i′+1x

3(2x3t− s2)gb(n−1)
0 − (i+ 1)R(n+ 1, i, i′)

− jR(n+ 1, i+ 1, i′ + 1) − (i′ − i)R(n+ 1, i′, i′ + 1) − µp,

then r(n + 1, i, i′) is of the form b
(0)
0 h1 + c

(0)
0 h2 + d

(0)
0 h3, hi ∈ C for i = 1, 2, 3, and

we obtain the required result.

Now as before by using this proof we consider the following expression

(δn)2 − δ2nδ0 − λ2n
n,2nx

3(2x3t− s2)gβ2n−2 − T (2n, n, 2n),

where T (n, a, b) ∈ RD is defined by replacing every e
(k)
0 in r(n, a, b) by the corre-

sponding ηk ∈ RD which has e(k)
0 as its v-degree zero term. From this we see that

the expression above has no v-degree 0 terms, and therefore the whole expression
must be zero. Thus we have that (δn)2 ∈ (β0, γ0, δ0)RD. Now all that remains is to
show that βn ∈

√
(β0, γ0, δ0)RD. Firstly, we proceed as we have before for γn and δn:

Lemma 3.6.6. Fix n ∈ N, with n ≥ 2, then b(i)
0 b

(j)
0 − b

(i′)
0 b

(j′)
0 = λk

i,i′c
(k−2)
0 + r(n, i, i′),

where
r(n, i, i′) = b

(0)
0 h1 + c

(0)
0 h2 + d

(0)
0 h3, hi ∈ C for i = 1, 2, 3, and λn

i,i′ := −(ij − i′j′),
j = n− i, j′ = n− i′.

Proof. Firstly note that for n = 2(
b

(1)
0

)2
− b

(2)
0 b

(0)
0 = s2 − 2x3t = −c(0)

0 .

Now assuming that the result holds for all pairs i+ j = n, we compute

D
(
b

(i+1)
0 b

(j)
0 − b

(i′+1)
0 b

(j′)
0

)
= −x2

(
(n− 1)λn+1

i+1,i′+1c
(n−2)
0 + (i+ 1)r(n, i, i′)

+ jr(n, i+ 1, i′ + 1) − (i′ − i)r(n, i′, i′ + 1)
)
.
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If either i = n or i′ = n we instead obtain either (i′ + 1)r(n, n, i′) + j′r(n, n, i′ + 1)
or (i+ 1)r(n, i, n) + jr(n, i+ 1, n) in place of the other r(n, a, b). As before we show
that there is some R(n + 1, a, b) with D(R(n + 1, a, b)) = r(n, a, b) for all a, b ≤ n.
Let λe(0)

0 h be a term of r(n, a, b), λ ∈ K, h ∈ I and e ∈ {b, c, d}. Note that the
expression b(i+1)

0 b
(j)
0 − b

(i′+1)
0 b

(j′)
0 is homogeneous of degree 2n+ 3 and ρ-degree n+ 1.

Therefore h ≠ 0 for n ≥ 2, and h ̸= gk for some k ∈ N as deg(e(0)
0 ) + 12k and

ρ(e(0)
0 ) + 6k cannot be 2n+ 3 and n+ 1 for any choice of e(0)

0 or k. Therefore we can
write h = f

(l)
0 h′ for some f ∈ {b, c, d} and l ∈ N, we can then proceed as described

in the proof of Lemma 3.6.4. Now since

D
(
b

(i+1)
0 b

(j)
0 − b

(i′+1)
0 b

(j′)
0 − λn+1

i+1,i′+1c
(n−1)
0 − (i+ 1)R(n+ 1, i, i′)

− jR(n+ 1, i+ 1, i′ + 1) + (i′ − i)R(n+ 1, i′, i′ + 1)
)

= 0,

this expression is then an invariant of degree 2n+ 3 and ρ-degree n+ 1. Considering
all such elements we find:

n S∆ ∩ S(2n+3,n+1)

6l 0
6l + 1 {λ(2x3t− s2)gl |λ ∈ K}
6l + 2 0
6l + 3 0
6l + 4 0
6l + 5 {λx2gl+1 |λ ∈ K}

Note that all such elements are of the form b
(0)
0 h1 + c

(0)
0 h2 + d

(0)
0 h3, hi ∈ C, and so if

we let

b
(i+1)
0 b

(j)
0 − b

(i′+1)
0 b

(j′)
0 − λn+1

i+1,i′+1c
(n−1)
0 − (i+ 1)R(n+ 1, i, i′)

− jR(n+ 1, i+ 1, i′ + 1) + (i′ − i)R(n+ 1, i′, i′ + 1) = µp,

with µ ∈ K and p ∈ S∆ ∩ S(2n+14,n+5). By setting

r(n+ 1, i, i′) := λn+1
i+1,i′+1c

(n−1)
0 − (i+ 1)R(n+ 1, i, i′)
− jR(n+ 1, i+ 1, i′ + 1) − (i′ − i)R(n+ 1, i′, i′ + 1) − µp,

then r(n + 1, i, i′) is of the form b
(0)
0 h1 + c

(0)
0 h2 + d

(0)
0 h3, hi ∈ C for i = 1, 2, 3, and

we obtain the required result.
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Now as before by using this proof we consider the following expression

(βn)2 − β2nβ0 − λ2n
n,2nγ2n−2 − T (2n, n, 2n),

where T (n, a, b) ∈ RD is defined by replacing every e(k)
0 by the corresponding ηk ∈ RD

which has e(k)
0 as its v-degree zero term. From this we see that the expression above

has its v-degree 0 term as 0, and therefore the whole expression must be zero, as
the expression is an invariant, and there is no invariant which is divisible by v. This
means we have

(βn)2 = β2nβ0 + λ2n
n,2nγ2n−2 + T (2n, n, 2n),

with both β2nβ0, T (2n, n, 2n) ∈ (β0, γ0, δ0)RD. We then square our expression to
obtain

(βn)4 = (λ2n
n,2n)2(γ2n−2)2 + p,

where p ∈ (β0, γ0, δ0)RD. Using our relations for the γi calculated in Lemma 3.6.4
we then have

(βn)4 = (λ2n
n,2n)2

(
(γ2n−2)2 − γ2nγ0

)
+ p+ (λ2n

n,2n)2γ2nγ0.

Each term on the right-hand side is in (β0, γ0, δ0)RD and hence we have (βn)4 ∈
(β0, γ0, δ0)RD. This concludes our proof of Proposition 3.6.3 and we are finally able
to prove Theorem 3.6.1.

Proof of Theorem 3.6.1. First we remark that β0, γ0, δ0 ∈ fRD since pl(D) ⊂ fRD .
Indeed, given d ∈ pl(D), with d = D(p) we have D(p

d
) = 1 and the morphism

p

d
: A5

d −→ Ga

is Ga-equivariant. To see this, let x ∈ A5
d, and α ∈ Ga, then as α · p

d
= exp(αD)

(
p
d

)
=

p
d

+ α · 1 we have(
α · p

d

)
(x) =

(
p

d
+ α · 1

)
(x) =

(
p

d

)
(x) + α = α ·

((
p

d

)
(x)
)
.

Hence the affine open set A5
d is a trivial Ga-bundle, and A5

d/Ga = Spec(K[x, s, t, u, v]Ga
d ).

Thus K[x, s, t, u, v]Ga
d = (K[x, s, t, u, v]Ga)d is finitely generated.

Additionally, since fRD is a radical ideal by [6, §2.2], we have
√

(β0, γ0, δ0)RD ⊂
fRD . Now suppose that f ∈ fRD . Note that RD = B0 + (βn, γn, δn)n∈NR

D, so
we may assume that f ∈ B0. Since (RD)f is finitely generated, we therefore
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have that (RD)f = (BN)f for some N ∈ N. Hence there is some k > 0 satisfy-
ing fkβN+1, f

kγN+1, f
kδN+1 ∈ BN and fk ∈ [BN : BN+1] ∩ B0 = (β0, γ0, δ0)B0 ⊂

(β0, γ0, δ0)RD by Lemma 3.6.2. Thus fRD =
√

(β0, γ0, δ0)RD, completing the proof of
the first statement of Theorem 3.6.1.

It remains to show that L(G) ⊂ L(fRD). By Proposition 3.6.3 we know that
G = {βi, γi, δi | i ≥ 0} generates the finite generation ideal. Note that the leading
monomials of these generators are the bn, cn and dn, n ∈ N described in the proof of
Lemma 3.5.8. We have shown that applying the relations of these monomials to the
corresponding generators yields an element with a leading monomial lying in L(G).
Additionally, we have shown that applying the relations between the generators
corresponding to these leading monomials and e, the leading monomial of g, yields
an element with leading monomial lying in L(G). Any element in L(fRD) is obtained
as the leading monomial of some combination of elements in fRD and elements in
RD, which is generated by G ∪ {g}. Since all such combinations yield an element
whose leading monomial lies in L(G), we conclude that L(G) ⊂ L(fRD).



4

Maubach’s Conjecture

The goal of this chapter is to study an example of a locally nilpotent derivation
on a commutative K-domain constructed by Maubach and conjectured to be non-
finitely generated and thus a counterexample to Hilbert’s fourteenth problem. Our
aim, which we do not quite achieve, is to show this example is indeed non-finitely
generated. In the course of doing so we demonstrate how this example differs from
existing counterexamples, which prevents us from simply using the same methods
applied in those cases in order to show that it is not finitely generated. Furthermore,
we show how our approach here can be applied to other examples to show whether
or not they are finitely generated.

To try to accomplish this goal we build upon methods we developed in Chapter
3, namely use of a bi-degree in order to write the derivation as a series of linear maps
between vector spaces consisting of all bi-homogeneous elements of a given degree.
We then try to show that these linear maps are surjective whenever the dimension
of the domain is at least as large as the dimension of the codomain and injective
whenever the dimension of the codomain is at least as large as the dimension of the
domain. We then show that if this is the case, then there is an infinite sequence of
invariants which cannot be generated by any finite set of invariants which would
then allow us to conclude that this example must be a counterexample to Hilbert’s
fourteenth problem.

62
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4.1 MAUBACH’S EXAMPLE

As in previous chapters we suppose that K is an algebraically closed field of charac-
teristic zero. Set R = K[x, y, z, u, w] and consider the locally nilpotent derivation

D := x
∂

∂y
+ y

∂

∂z
+ z

∂

∂u
+ u2 ∂

∂w
. (4.1)

Our main goal in this chapter is to try to prove the following, conjectured by Maubach
in [27, §5]:

Conjecture 4.1.1. RD is not finitely generated.

We provide an almost complete proof of this result, with the completion of the
proof of Conjecture 4.1.6 being the only remaining hurdle.

This example bears a striking similarity to Daigle and Freudenburg’s counterex-
ample, with the exception of the first and final term of the derivation. As with all
locally nilpotent derivations, there is a corresponding Ga-action on R defined by

exp(αD) · (x, y, z, u, w)

=
(
x, y + αx, z + αy + 1

2α
2x, u+ αz + 1

2α
2y + 1

6α
3x,

w + αu2 + α2zu+ 1
3α

3(yu+ z2) + 1
12α

4(xu+ 3yz)

+ 1
60α

5(4xz + 3y2) + 1
36α

6xy + 1
252x

2
)
.

Note that the derivation D commutes with the following Gm-action:

λ · (x, s, t, u, v) := (λ · x, λ · y, λ · z, λ · u, λ2 · w). (4.2)

This action yields a grading κ on R with κ(x) = κ(y) = κ(z) = κ(u) = 1 and
κ(w) = 2. The ρ-grading induced by the derivation yields

ρ(x) = 0, ρ(y) = 1, ρ(z) = 2, ρ(u) = 3, ρ(w) = 7.

For f ∈ R, the bi-degree of f is deg(f) := (a, b), where a = κ(f) and b = ρ(f).
We write R(a,b) := {f ∈ R, | deg(f) = (a, b), f is bi-homogeneous} ∪ {0}. Note that
R(a,b) is a vector space over K with basis given by the monomials of degree (a, b),
we set ra,b := dim

(
R(a,b)

)
. Note that if f ∈ R(a,b) then D(f) ∈ R(a,b−1) so we can

realize our derivation D as a collection of linear maps D : R(a,b) −→ R(a,b−1).
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Consider S := K[x, y, z, u] and

∆ := D|S = x
∂

∂y
+ y

∂

∂z
+ z

∂

∂u
.

The notions of degree defined above restrict to S and so we may define S(a,b) in the
obvious way, and we let sa,b := dim

(
S(a,b)

)
. As with D we can realize ∆ as a collection

of linear maps ∆ : S(a,b) −→ S(a,b−1). We note that ∆ is the Weitzenböck derivation,
and from Example 2.1.14 we know S∆ is finitely generated, with generators

x,

γ := 2xz − y2,

δ := 3x2u− 3xyz + y3,

g := 9x2u2 − 18xyzu+ 6y3u+ 8xz3 − 3y2z2.

(4.3)

We note that

deg(x) = (1, 0), deg(γ) = (2, 2), deg(δ) = (3, 3), deg(g) = (4, 6). (4.4)

Additionally, there is a relation between these generators:

γ3 + δ2 = x2g. (4.5)

For f ∈ R(c,d) we define the map

mf : R(a,b) ↪→ R(a+c,b+d),

where mf (g) := fg for all g ∈ R(a,b). This map is clearly injective as R is a domain,
similarly so when replacing R with S.

Note that for a monomial m = xj1yj2zj3uj4wj5 ∈ R(a,b) the ji must satisfy:

j1 + j2 + j3 + j4 + 2j5 = a,

j2 + 2j3 + 3j4 + 7j5 = b,

and hence ra,b is the number of non-negative integer solutions to these equations.
Observe that for a, b ∈ N and i ≤ a/2, b/7 there is an injection mwi : S(a−2i,b−7i) ↪→
R(a,b), the image consisting of all polynomials in R(a,b) which have w-degree precisely
i. Thus, for i ̸= j, mwi

(
S(a−2i,b−7i)

)
∩mwj

(
S(a−2j,b−7j)

)
= 0 and we can write

R(a,b) =
min(a/2,b/7)⊕

i=0
mwi

(
S(a−2i,b−7i)

)
,

so

ra,b =
min(a/2,b/7)∑

i=0
sa−2i,b−7i.
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4.1.1 The structure of S(a,b)

Observe that for a monomial m = xj1yj2zj3uj4 ∈ S, deg(m) = (j1 + j2 + j3 + j4, j2 +
2j3 + 3j4), in particular we have

j2 + 2j3 + 3j4 ≤ 3(j1 + j2 + j3 + j4).

Hence S(a,b) = 0 whenever b > 3a. Fixing a, we compute sa,k for all k. Recall that
the monomials of bi-degree (a, k) form a basis for S(a,k), and so sa,k is the number
of these monomials. Observe that if a monomial m ∈ S has bi-degree (c, k) with
c ≤ a, then xa−cm is a monomial of bi-degree (a, k). Thus, to count the number of
monomials in S(a,k) we can count all monomials m = yj2zj3uj4 of bi-degree (c, b) with
0 ≤ c ≤ a and then add them together. We write T(a,b) to represent the sub-vector
space of S(a,b) spanned by the monomials of bi-degree (a, b) and j1 = 0, that is:

T(a,b) :=
{∑

m

λmm ∈ S(a,b) | deg(m) = (a, b), degx(m) = 0
}
. (4.6)

Note that when b > 0:
S(a,b) =

a⊕
i=0

mxk−i

(
T(i,b)

)
,

we write ta,b := dim
(
T(a,b)

)
. Naturally we obtain for b > 0:

sa,k =
a∑

i=0
ti,b. (4.7)

We note that sa,0 = 1 for all a ∈ N, as S(a,0) is spanned by the monomial xa.
Consider T(a,k), it consists of monomials m = yj2zj3uj4 with

j2 + j3 + j4 = a,

j2 + 2j3 + 3j4 = k.

Rearranging, we obtain j3 + 2j4 = k− a and 2j2 + j3 = 3a− k allowing us to observe
that ta,k = 0 unless a ≤ k ≤ 3a. Additionally we have a general solution to these
equations (

3a− k

2 − l, 2l, k − a

2 − l

)
,
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where we require 0 ≤ l ≤ min
(

k−a
2 , 3a−k

2

)
. We observe then that

ta,k =



⌊
k − a+ 2

2

⌋
a ≤ k ≤ 2a

⌊
3a− k + 2

2

⌋
2a ≤ k ≤ 3a

0 otherwise

(4.8)

Note that this equation shows that ta,k = ta,4a−k for 0 ≤ k ≤ 2a. Indeed, there is a
bijection ψ : T(a,k) −→ T(a,4a−k) where ψ(yi1zi2ui3) = yi3zi2ui1 .

We give ta,k for 1 ≤ a ≤ 5, 0 ≤ k ≤ 15 below.


0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 2 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 2 2 2 1 1 0 0 0 0 0 0
0 0 0 0 1 1 2 2 3 2 2 1 1 0 0 0
0 0 0 0 0 1 1 2 2 3 3 3 2 2 1 1


sa,k for 1 ≤ a ≤ 5 and 0 ≤ k ≤ 15 is then:

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 2 2 2 1 1 0 0 0 0 0 0 0 0 0
1 1 2 3 3 3 3 2 1 1 0 0 0 0 0 0
1 1 2 3 4 4 5 4 4 3 2 1 1 0 0 0
1 1 2 3 4 5 6 6 6 6 5 4 3 2 1 1


Proposition 4.1.2. 1. sa,b = sa,3a−b.

2. For 0 ≤ b ≤ 3a/2, we have sa,b ≥ sa,b−1.

3. For 3a/2 < b ≤ 3a, we have sa,b ≤ sa,b−1.

Proof. For part 1, we consider ϕ : S −→ S defined on monomials by ϕ(xi1yi2zi3ui4) =
xi4yi3zi2ui1 . Note that ϕ2 = 1S, the identity on S. Now if xi1yi2zi3ui4 ∈ S(a,b) we
have that

i1 + i2 + i3 + i4 = a,

i2 + 2i3 + 3i4 = b.
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Observe that deg(xi4yi3zi2ui1) = (a, i3 + 2i2 + 3i1), and

i3 + 2i2 + 3i1 = 3(i1 + i2 + i3 + i4) − (i2 + 2i3 + 3i4) = 3a− b,

hence xi4yi3zi2ui1 ∈ S(a,3a−b). Therefore ϕ defines a bijection between S(a,b) and
S(a,3a−b), proving 1.

For parts 2 and 3 we induct on a, observing that these results hold for a = 1
and 2, as shown in the matrix above. Now suppose these results hold for a ≤ n and
consider

sn+1,b − sn+1,b−1 = sn,b + tn+1,b − sn,b−1 + tn+1,b−1.

Focusing first on part 2, by equation 4.8 we have that when 0 ≤ b ≤ 3n/2, tn,b ≥ tn,b−1,
and sn,b ≥ sn,b−1 by induction also and hence the result holds for 0 ≤ b ≤ 3n/2.

Now suppose that 3n/2 < b ≤ 3(n + 1)/2, then by induction sn,b ≤ sn,b−1 and
tn+1,b ≥ tn+1,b−1. We show that either:

1. sn,b = sn,b−1,

2. sn,b = sn,b−1 − 1 and tn+1,b = tn+1,b−1 + 1,
which yields the result in each case. Note b is one of (3n + 1)/2, (3n + 2)/2 or
3(n + 1)/2. Suppose first that b = (3n + 1)/2 in this case we have by part 1 that
since

3n− (3n+ 1)/2 = (3n− 1)/2 = b− 1,

we find immediately that sn,b = sn,b−1 and the result holds.
Now when b = (3n+ 2)/2, part 1 gives that sn,b = sn,b−2, but now

sn,b−2 = sn−1,b−2 + tn,b−2, sn,b−1 = sn−1,b−1 + tn,b−1,

and sn−1,b−2 ≥ sn−1,b−1 by induction. From equation 4.8 we note that tn,b−1 −tn,b−2 =
0 or 1. If either sn−1,b−2 > sn−1,b−1 or tn,b−1−tn,b−2 = 0, then sn,b−2 ≥ sn,b−1 and hence
sn,b−2 = sn,b−1 and we are done. Otherwise, tn,b−1 − tn,b−2 = 1 and sn,b + 1 = sn,b−1,
however in this case from equation 4.8 we see that we must have tn+1,b = tn+1,b−1 + 1,
and hence sn+1,b = sn+1,b−1 as required.

Finally, when b = 3(n+ 1)/2 we have sn,b = sn,b−3 and sn,b−1 = sn,b−2. But now
since

sn,b−3 = sn−1,b−3 + tn,b−3, sn,b−2 = sn−1,b−2 + tn,b−2,

and by induction sn−1,b−3 ≥ sn−1,b−2 we find that if either sn−1,b−3 > sn−1,b−2 or
tn,b−2 = tn,b−3, we have sn,b−1 = sn,b−2 = sn,b−3 = sn,b and we are done. So suppose
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tn,b−2 = tn,b−3 + 1 and sn−1,b−3 = sn−1,b−2, hence sn,b−2 = sn,b−3 + 1. But in this case
we again see from equation 4.8 that we must have tn+1,b = tn+1,b−1 + 1, and hence
sn+1,b = sn+1,b−1.

For part 3, if 3(n+ 1)/2 < b ≤ 3(n+ 1), then since we have shown sn+1,3(n+1)−b ≤
sn+1,3(n+1)−b+1 we immediately find that sn+1,b ≤ sn+1,b−1 using part 1.

Proposition 4.1.3. For all a, b ∈ N we have:
1. If sa,b ≥ sa,b−1, then ∆ is surjective.

2. If sa,b ≤ sa,b−1, then ∆ is injective.

Proof. Recall that the kernel of ∆ is known to be finitely generated by the four
elements x, γ, δ and g given in equation 4.3. These elements are bi-homogeneous,
and have bi-degrees (1, 0), (2, 2), (3, 3) and (4, 6) respectively. We also recall the
relation 4.5 between these generators, namely γ3 + δ2 = x2g. Up to an accounting
for this relation, the dimension of the kernel of D : S(a,b) −→ S(a,b−1) will correspond
to the number of ways these generators can be combined so they have bi-degree
(a, b). Specifically, if f = xa1γa2δa3ga4 ∈ S∆ and a1 ≥ 2, a4 ≥ 1 we can write f as

f = xa1−2γa2+3δa3ga4−1 + xa1−2γa2δa3+2ga4−1,

so we need only count the number of ways these generators can be combined to
have bi-degree (a, b) with a4 kept minimal. In Proposition 4.1.2 we showed that
whenever 1 ≤ b ≤ 3a/2 we have sa,b ≥ sa,b−1 and whenever 3a/2 ≤ b ≤ 3a we have
sa,b ≥ sa,b+1. Using 4.4, an element f = xa1γa2δa3ga4 ∈ S∆

(a,b) has

deg(f) = (a1 + 2a2 + 3a3 + 4a4, 2a2 + 3a3 + 6a4). (4.9)

Note that
b = 2a2 + 3a3 + 6a4 ≤ 3

2 (a1 + 2a2 + 3a3 + 4a4) = 3a
2 ,

and so whenever 3a/2 ≤ b ≤ 3a ∆ : S(a,b) −→ S(a,b−1) has no kernel and so is
injective.

To show the map is surjective whenever sa,b ≥ sa,b−1, we compute sa,b − sa,b−1

and show that this is equal to the dimension of the kernel of ∆ : S(a,b) −→ S(a,b−1).
To compute sa,b − sa,b−1 we return to our construction of S(a,b) from T(a,b), namely
that

S(a,b) =
a⊕

i=0
mxa−i

(
T(i,b)

)
.
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Note that
∆(T(a,b)) ⊂ T(a,b−1) ⊕mx(T(a−1,b)).

Projection on to the second component is surjective: given a monomial xaybzcud ∈
mx(T(a−1,b)) its image in T(a,b−1) ⊕mx(T(a−1,b)) is:

∆
( 1
b+ 1x

a−1yb+1zcud
)

=
(

c

b+ 1x
a−1yb+2zc−1ud + d

b+ 1x
a−1yb+1zc+1ud−1, xaybzcud

)
,

hence ta,b ≥ ta−1,b−1 for all a, b. Using equation 4.8, we find that:

tn,m − tn−1,m−1 =

1 2n ≤ m ≤ 3n

0 otherwise

We note that 2n ≤ m ≤ 3n is equivalent to m/3 ≤ n ≤ m/2 and thus,

sa,b − sa,b−1 =
a∑

i=0
(ti,b − ti,b−1)

=
a∑

i=1
(ti,b − ti−1,b−1) + t0,b − ta,b−1

=
⌊
b

2

⌋
−
⌈
b

3

⌉
+ 1 − max

(
0,
⌊
b− a+ 1

2

⌋)
,

where we have used that since 0 ≤ b ≤ 3a/2, ta,b−1 = max
(
0,
⌊

b−a+1
2

⌋)
by equation

4.8. In fact this formula holds in more generality, since⌊
b− a+ 1

2

⌋
=
⌊

3a− b+ 1
2

⌋
,

this formula holds for all 0 ≤ b ≤ 3a. Note however that from Proposition 4.1.2
we have sa,b − sa,b−1 = −(sa,3a−b+1 − sa,3a−b) and not −(sa,3a−b − sa,3a−b−1). Now
we compute the dimension of the kernel. As remarked previously S∆ is generated
by x, γ, δ and g, elements of the kernel with degree (a, b) of the form xa1γa2δa3ga4

satisfy equation 4.9. Suppose that b is even, then a solution to these equations is
given by (a− b, b

2 , 0, 0). Note that if (α1, α2, α3, α4) is a solution to these equations;
then both (α1 + 2, α2 − 3, α3, α4 + 1) and (α1, α2 − 3, α3 + 2, α4) are also. Hence, a
general solution to these equations is(

a− b+ 2y, b2 − 3x− 3y, 2x, y
)
.
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The dimension of the kernel will be the number of the positive integer solutions to
these equations, hence we require a− b+ 2y ≥ 0, b

2 − 3x− 3y ≥ 0, x ≥ 0 and y ≥ 0.
Additionally, since x2g = δ2 + γ3 the solution (α1, α2, α3, α4) is a linear combination
of (α1 − 2, α2 − 3, α3, α4 − 1) and (α1 − 2, α2, α3 − 2, α4 − 1) hence we need only
count the solutions where α1 is minimal. The number of solutions is then⌊

b

6

⌋
+ 1 − max

(
0,
⌈
b− a

2

⌉)
.

Now suppose that b is odd, a solution to these equations is (a− b, b−3
2 , 1, 0) and the

general solution is given by(
a− b+ 2y, b− 3

2 − 3x− 3y, 1 + 2x, y
)
.

The number of solutions in this case then is⌊
b− 3

6

⌋
+ 1 − max

(
0,
⌈
b− a

2

⌉)
.

Now we show that in all cases the number of these solutions corresponds exactly to
sa,b − sa,b−1. First, observe that

⌈
b−a

2

⌉
=
⌊

b−a+1
2

⌋
and a quick computation shows

that

⌊
b

2

⌋
−
⌈
b

3

⌉
=



⌊
b

6

⌋
b even

⌊
b− 3

6

⌋
b odd

thus completing the proof.

Now we would like to prove a version of this result for R(a,b), as doing so would
allow us to determine the dimension of RD

(a,b) simply by computing ra,b − ra,b−1.
Before we do so we first prove the following:

Proposition 4.1.4. Suppose 0 ≤ b ≤ 3a
2 , then the map

D3a−2b : S(a,3a−b) −→ S(a,b),

is a bijection.

Proof. By Proposition 4.1.2 we have that sa,b = sa,3a−b. In order to prove this
proposition we first observe that if f ∈ S∆

(a,k), then f ∈ D3a−2k(S). To start, observe
that
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1. D3(u) = D2(z) = D(y) = x, with u ∈ S(1,3),

2. D2(3yu− 2z2) = D(3xu− yz) = 2xz − y2 = γ, with γ := 3yu− 2z2 ∈ S(2,4),

3. D3(−3xu2 +3yzu− 4
3z

3) = D2(−3xzu+3y2u−yz2) = D(3xyu−4xz2 +y2z) =
3x2u− 3xyz + y3, with δ := −3xu2 + 3yzu− 4

3z
3 ∈ S(3,6).

Since x, δ, γ and g generate S∆, we can assume without loss of generality that f is
of the form

f = λxi1γi2δi3gi4 ,

where i1 + 2i2 + 3i3 + 4i4 = a, 2i2 + 3i3 + 6i4 = k and λ ∈ K∗. We then define

f = λui1γi2δ
i3
gi4 ,

and note that D3a−2k(f) = µλf , where µ ∈ K∗, hence f ∈ D3a−2k(S).
Now, suppose there are linearly independent invariants f1, . . . , fn ∈ S∆, of the

form
fi = xi1γi2δi3gi4 ,

where deg(fi) = (a, ki) and ki ≤ b for all i. Then D3a−ki−b(fi) ∈ S(a,b) \ {0} for all i.
These must be linearly independent since otherwise we would have without loss of
generality

D3a−k1−b(f 1) =
n∑

i=2
λiD

3a−ki−b(f i).

Hence
f1 = D3a−2k1(f 1) =

n∑
i=2

λiD
3a−2k1(fi),

and since D(f1) = 0 we must have for the nonzero λi that D3a−2k1(f i) = fi. But
then we have a contradiction since the fi are assumed to be linearly independent.

Recall from Proposition 4.1.2, we have for 0 ≤ b ≤ 3a/2 that sa,b ≥ sa,b−1,
therefore we must have

sa,b =
b∑

i=0
s∆

a,i,

where s∆
a,i ≥ 0 for all i. Thus, there are sa,b invariants {f1, . . . , fsa,b

} ⊂ S∆ which are
of the form fi = xi1γi2δi3gi4 , which together generate S∆

(a,k) for all 0 ≤ k ≤ b and the
set {

D3a−ρ(fi)−b ∈ S(a,b) | i = 1, . . . , sa,b

}
,

forms a basis for S(a,b), consisting entirely of elements in D3a−2b(S), proving the
result.
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Remark. The basis constructed in the proof above makes it very clear when an
element is in the image. For f ∈ S(a,b), we can write

f =
k∑

i=1
λiD

ki

(
uai1γai2δ

ai3gai4
)
,

then f ∈ Dmini(ki)(S) \Dmini(ki)+1(S). However this choice of basis does not respect
multiplication very well, for example

D2(u) · u = yu = 1
5
(
D2(u2) + γ

)
∈ S(2,4).

Proposition 4.1.5. Suppose R is a K-domain, and δ a locally nilpotent derivation
on R. Suppose that α, β ∈ R satisfy δk−1(α) ̸= 0, δk(α) = 0 and β ∈ δk+1(R) then
we have αβ ∈ D(R).

Proof. Suppose that β1, . . . , βk+1 ∈ R satisfy δ(βi) = βi−1, and δ(β1) = β. Then

δ
(
αβ1 − δ(α)β2 + δ2(α)β3 + · · · + (−1)k−1δk−1(α)βk

)
= αβ,

as required.

Having β ∈ δk+1(R) is not a necessary condition to have αβ ∈ δ(R), for example
zu = D

(
1
2u

2
)

but z /∈ D4(S) and u /∈ D3(S). To obtain a version of Proposition
4.1.3 for R a better understanding of when αβ ∈ D(S) is required. As a special case,
it is clear that when α = uai1γai2δ

ai3gai4 /∈ D(S) and β = ubi1γbi2δ
bi3gbi4 /∈ D(S),

then their product, αβ /∈ D(S). However, it is not true in general that if α, β /∈ D(S)
then αβ /∈ D(S). For example, if α = γ − 9D2(u2)), β = δ /∈ D(S),

αβ = 10
3 D(uγ2) − 5D2(u2δ) = D

(10
3 uγ

2 − 5D(u2δ)
)

∈ D(S).

As remarked previously, we would like to have a version of Proposition 4.1.3 for R,
however the proof we have of this result is incomplete. Thus instead we state the
result as a conjecture, provide an incomplete proof and outline the remaining steps
required to complete it

Conjecture 4.1.6. For all a, b ∈ N we have:
1. If ra,b ≥ ra,b−1, then D is surjective.

2. If ra,b ≤ ra,b−1, then D is injective.
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We begin our incomplete proof as follows: First, recall that

R(a,b) =
b/7⊕
i=0

mwi(S(a−2i,b−7i)),

and note that we can restrict D to the map

D : P n
(a,b) :=

n⊕
i=0

mwi(S(a−2i,b−7i)) −→ P n
(a,b−1) =

n⊕
i=0

mwi

(
S(a−2i,b−1−7i)

)
,

We write P n,D
(a,b) to mean the kernel of D restricted to P n

(a,b). Additionally, we let
pn

a,b := dim
(
P n

(a,b)

)
and, by slight abuse of notation, we write pn,D

a,b := pn
a,b − pn

a,b−1

and refer to this as the difference of P n
(a,b). For added convenience, we shall do the

same for s∆
a,b and rD

a,b. We prove the result by induction on n, showing that D is
surjective whenever pn

a,b ≥ pn
a,b−1 and injective whenever pn

a,b ≤ pn
a,b−1. We note that

this result is equivalent to showing

dim
(
P n,D

(a,b)

)
= max{0, pn,D

a,b },

By Proposition 4.1.3 and the observation that P 0
(a,b) = S(a,b) we note this result holds

when n = 0. Suppose the result holds for all k ≤ n − 1, and suppose first that
pn−1,D

(a,b) ≥ 1. Note that

P n
(a,b) = P n−1

(a,b) ⊕mwn

(
S(a−2n,b−7n)

)
,

Observe that b ≤ 3a/2, implies that b − 7 ≤ 3(a − 2)/2 , hence if sa,b > sa,b−1 we
must have sa−2,b−7 > sa−2,b−8. Since pn−1,D

(a,b) ≥ 1, and P n−1
(a,b) = ⊕n−1

i=0 mwi

(
S(a−2i,b−7i)

)
we must have sa−2n+2,b−7n+7 > sa−2n+2,b−7n+6 and hence sa−2n,b−7n > sa−2n,b−7n−1.

Let g1, . . . , gk ∈ S(a−2n,b−7n) generate S∆
(a−2n,b−7n). Consider giu

2wn−1 ∈ P n−1
(a,b−1),

since D : P n−1
(a,b) −→ P n−1

(a,b−1) is surjective by induction, there is some hi ∈ P n−1
(a,b)

with D(hi) = giu
2wn−1. Therefore, D(giw

n − hi) = 0 for all i = 1, . . . , k, where
giw

n − hi ∈ P n
(a,b). Now any invariant β ∈ P n,D

(a,b) with degw(β) = n can be written as
β = βnw

n + βn−1w
n−1 + · · · + β0 and

D(β) = D(βn)wn + (nu2βn +D(βn−1))wn−1 + · · · + u2β1 +D(β0) = 0.

Therefore βn ∈ S(a−2n,b−7n) has D(βn) = 0. Since the gi generate SD
(a−2n,b−7n),

invariants of w-degree n in P n
(a,b) are the K-linear span of the giw

n − hi, so we
conclude in this case

dim
(
P n,D

(a,b)

)
= s∆

a−2n,b−7n + pn−1,D
a,b = pn,D

a,b ,
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as required.
Now suppose that pn−1,D

(a,b) ≤ 0, which implies s∆
a,b ≤ 0. We note that for there to

be some invariant f ∈ P n,D
(a,b) it is necessary that to have pn−1,D

(a−2,b−7) > 0. Indeed, if

f = fnw
n + fn−1w

n−1 + · · · + f0 ∈ P n,D
(a,b),

then by re-scaling the coefficients we can construct

f ′ := fnw
n−1 + n− 1

n
fn−1w

n−2 + · · · + 1
n
f1 ∈ P n−1,D

(a−2,b−7),

If pn−1,D
a−2,b−7 < 0 then

max(0, pn,D
a,b = pn−1,D

a−2,b−7 + s∆
a,b) = 0,

satisfying the conditions of the result. Now, given some g = gn−1w
n−1 + · · · + g0 ∈

P n−1,D
(a−2,b−7), we construct

h := (−1)n−1

n− 1! gn−1w
n + (−1)n−2

n− 2! gn−1w
n−2 + · · · + g0w ∈ P n

(a.b),

where D(h) = g0u
2 ∈ S(a,b−1). If g0u

2 ∈ D(S(a,b)) with D(r) = g0u
2 then D(h−r) = 0

and we say that the invariant g lifts to an invariant in P n
(a,b).

Thus, in order to conclude the result we must show that if P n−1,D
(a−2,b−7) is generated

by f1, . . . , fk and sD
a,b = l ≤ 0 then precisely k + l linearly independent combinations

of these invariants lift to invariants in P n,D
(a,b). It is clear that at least k + l invariants

lift to invariants in P n,D
(a,b) so it remains to show that at most k+ l invariants can lift.

This concludes the portion of the proof that has been completed. At this point
we outline the remaining steps intended to complete the proof. First, suppose
that r1, . . . , rk ∈ S(a−2,b−7) are the w-degree 0 terms of f1, . . . , fk respectively. By
Proposition 4.1.5, if the ri ∈ D7(S(a−2,b)) for all i, then riu

2 ∈ D(S(a,b)) for all i. We
claim that in this case l = 0, meaning ∆ : S(a,b) −→ S(a,b−1) is surjective.

With this in hand, we suppose that the ri ∈ D6(S(a,b)) for all i and r1, . . . , rp /∈
D7(S(a,b)) whilst the remaining ri are. Let si ∈ S(a−2,b−1) satisfy D(si) = ri, the
invariants f1, . . . , fp lift if and only if x2si ∈ S(a,b). Note that we have a commutative
diagram:

S(a−2,b) S(a−2,b−1)

S(a,b) S(a,b)

D

mx mx

D
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and so if ti ∈ S(a,b) satisfies D(ti) = x2si, we must have x2 ∤ ti for i = 1, . . . , p. Now
by construction

s∆
a,b = s∆

a−2,b + t∆a,b + t∆a−1,b,

and using 4.8 we find

t∆a,b + t∆a−1,b =


1 a− 1 ≤ b ≤ 2a− 2

−1 2a+ 1 ≤ 3a+ 1

0 otherwise

Furthermore,

D : T(a,b) ⊕mx(T(a−1,b)) −→ T(a,b−1) ⊕mx(T(a−1,b−1)) ⊕mx2(T(a−2,b−1)).

Combining this with the above observations, we obtain that there is at most one
combination of monomials in T(a,b) ⊕mx(T(a−1,b)) which is divisible by x2, occurring
precisely when s∆

a−2,b = l − 1. Therefore, either we have sa−2,b−1 = l, in which case
p = −l and only r−l+1, . . . , rk lift, yielding k + l invariants. Or, sa−2,b−1 = l − 1,
p = −l+ 1 and only one combination of the r1, . . . , r−l+1 lift, as well as r−l+2, . . . , rk,
yielding k + l invariants once again.

The proof is then completed by performing a similar argument when supposing
that all the ri ∈ Dk(S(a−2,b−7+k)) for k = 5, . . . , 0, albeit with added complexity as
we cannot obtain a commutative diagram like we have for the k = 6 case.

4.2 INTEGRAL SEQUENCES

Let A ⊂ K[x1, . . . xn−1], and let d be a locally nilpotent derivation on A with Ad

finitely generated. Set B = A[xn] and extend d to B by setting d(xn) := h ∈ A\d(A).
We have shown in Chapter 3 that the existence of a sequence (gi)k

i=0 ⊂ A with the
property that D(gi) = hgi−1 and D(g0) = 0 is equivalent to the existence of an
invariant

g = g0x
k
n + · · · + gk−1xn + gk ∈ Bd,

Definition 4.2.1. We call such a sequence an integral sequence of length k, and g0

the base of the sequence.
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Daigle and Freudenburg define a similar notion in [4], which we now note to
explain how ours differs: Suppose that A = ⊕i∈NAi is an N-graded K-domain and
d : A −→ A is a homogeneous locally nilpotent derivation. A sequence {an}∞

n=1 of
nonzero homogeneous elements of AD with the property that there is some integer
p > 0, called the period, for which

an+p = an, for all n ≥ 1,

shall be called a kernel sequence. A sequence {bn}∞
n=0 where each term is nonzero

and homogeneous and satisfies

d(bn) = anbn−1,

for all n > 0 is called an integral sequence of (A, d) belonging to {an}∞
n=1.

Comparing their definition to ours, we only allow for a ‘kernel sequence’ of period
1, with this being just h. However we only require that h /∈ d(A), as opposed
to having h ∈ Ad as well. Thus, referring to h as a ‘kernel sequence’ would be
disingenuous.

We call an infinite sequence (gi)i∈N with D(g0) = 0 and D(gi) = hgi−1 an (infinite)
integral sequence. The existence of an integral sequence makes it possible to construct
invariants in B of arbitrary xn-degree k with leading term g0x

k
n. Now, suppose that

there is a Zr
≥0-grading on B which commutes with the derivation d. If we consider

this grading together with the ρ-grading we divide B into vector spaces B(a1,...,ak,b)

where d restricts to a linear map

d : B(a1,...,ak,b) −→ B(a1,...,ak,b−1),

where ai ∈ Z≥0 for all i, b ≥ 1. Suppose that h has degree (c1, . . . , ck, t), then if we
have an integral sequence (gi)i∈N ⊂ A, where g0 ∈ Ad has degree (p1, . . . , pk, q), then
each gi must have degree (p1 + ic1, . . . , pk + ick, q + i(t+ 1)). If the linear maps

d : A(p1+ic1,...,pk+ick,q+i(t+1)) −→ A(p1+ic1,...,pk+ick,q+i(t+1)−1),

are surjective for all i ≥ 0, then the existence of the integral sequence (gi)i∈N is
guaranteed, and so B is not finitely generated. Using Proposition 4.1.3, we can
obtain a new proof that Daigle and Freudenburg’s example is not finitely generated
using this method:
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4.2.1 Daigle and Freudenburg’s example

In order to not conflict with the notation of this chapter we shall set A = K[x, s, t, u]
and let d be the locally nilpotent derivation

d := x3 ∂

∂s
+ s

∂

∂t
+ t

∂

∂u
.

We set B = A[v], and extend d to B by setting d(v) = x2. As observed in chapter
3, Ad is finitely generated by β0 = x, γ0 = 2x3t − s2, δ0 = 3x3u − 3xst + s3 and
g = 9x6u2 − 18x3stu+ 8x3t3 + 6s3u− 3s2t2. Recall there is a grading arising from
a Gm-action on B which yields deg(x) = 1, deg(s) = deg(t) = deg(u) = 3 and
deg(v) = 2. The ρ-grading on B gives ρ(x) = 0, ρ(s) = ρ(v) = 1, ρ(t) = 2, ρ(u) = 3
allowing us to divide A and B in to vector spaces A(a,b) and B(a,b), a, b ≥ 0.

Now S(a,b) is in bijection with and A(3a,b), A(3a+1,b) and A(3a+2,b) by identifying the
monomial xi1yi2zi3ui4 with x3i1si2ti3ui4 , x3i1+1si2ti3ui4 and x3i1+2si2ti3ui4 respectively.
Thus using Propositions 4.1.2 and 4.1.3 we immediately obtain

Lemma 4.2.2. 1. A(3a+i,b) is in bijection with A(3a+i,3a−b) for i = 0, 1, 2.

2. If 0 ≤ b ≤ 3a
2 , dim(A(3a+i,b)) ≥ dim(A(3a+i,b−1)) and D : A(3a+i,b) −→ A(3a+i,b−1)

is surjective for i = 0, 1, 2.

3. If 3a
2 ≤ b ≤ 3a, dim(A(3a+i,b)) ≤ dim(A(3a+i,b−1)) and D : A(3a+i,b) −→

A(3a+i,b−1) is injective for i = 0, 1, 2.

Now, to construct an integral sequence (gi)i∈N with g0 = x and d(gi) = x2gi−1 we
must have x2gi ∈ A(2(i+1)+1,i) and using Lemma 4.2.2 we can guarantee x2gi ∈ d(A)
provided

3
⌊

2(i+1)+1
3

⌋
2 ≥ i.

Now if i = 3k, then we have

3
⌊

2(3k+1)+1
2

⌋
2 = 6k + 3

2 ≥ 3k,

and similarly if i = 3k + 1 we have

3
⌊

2(3k+2)+1
2

⌋
2 = 6k + 3

2 ≥ 3k + 1,

and finally if i = 3k + 2 we have

3
⌊

2(3k+3)+1
2

⌋
2 = 3k + 3 ≥ 3k + 2.
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Therefore Lemma 4.2.2 is sufficient to show the existence of such an integral sequence,
and consequently the existence of the infinite family of invariants we called (βi)i≥0

in chapter 3. It is a simple matter to repeat this check for the invariants 2x3t− s2

and 3x6u− 3x3st+ s3 and obtain the other two infinite families (γi)i≥0 and (δi)i≥0.
Showing that no integral sequence can be constructed using any power of g then
completes the construction of a generating set for B.

4.2.2 The non-finiteness criterion

We note and provide the proof for the non-finiteness criterion shown by Daigle
and Freudenburg, originating first as Lemma 2.1 in [4], we use the proof from [19,
pp.165-166]:

Lemma 4.2.3. Let R = ⊕i∈NRi be a graded K-domain with R0 = K and δ a locally
nilpotent homogeneous K-derivation on R. Given homogeneous α ∈ Rδ which is not
in the image of δ, let δ be the extension of δ to R[T ] defined by δ(T ) = α, where T
is a variable over R. Suppose βn is a sequence of non-zero elements of R[T ]δ having
leading T -coefficients bn ∈ R. If deg(bn) is bounded, but degT (βn) is not bounded,
R[T ]δ is not finitely generated over K.

Proof. Let M [T ] be the extension to R[T ] of the maximal ideal M = ⊕i>0Ri of R.
Recall from Definition 2.1.7 that the degree of a locally nilpotent derivation δ is d,
where δ(Ri) ⊂ Ri+d for all i ≥ 0. Setting m = degα − deg δ, and for every integer
n, define R[T ]n = ∑

i∈NRn−miT
i. Then ⊕n∈ZK[T ]n is a Z-grading of K[T ], and δ is

homogeneous.
If φ ∈ ker δ is homogeneous, then φ = ∑

φiT
i for homogeneous φi ∈ R. Since

δ = 0, it follows from the product rule that δ(φi−1) = −iαφi for i > 0. Thus, φi /∈ K∗

for i > 0, since otherwise α = δ(−i−1φ−1
i φi−1) ∈ δ(R). So if i > 0, then φi ∈ M ,

since each φi is homogeneous. Since also φ0 ∈ K +M , we conclude φ ∈ K +M [T ].
Now for a general element ψ ∈ ker δ, write ψ = ∑

ψn, where ψn ∈ K[T ]n. Since
δ is homogeneous, we conclude each ψn ∈ ker δ as well, meaning ker δ ⊂ K +M [T ].

Finally, suppose {βn} ⊂ K[f1, . . . , fN ] for fi ∈ ker δ. Then fi ∈ K+M [T ] for each
i, and so we can assume without loss of generality that each fi ∈ M [T ]. This implies
that any monomial expression fi1fi2 · · · fis ∈ M s[T ]. Note that every R-coefficient
of an element of M s[T ] has degree at least s. Since deg bn is bounded, there is a
finite set F of monomial expressions fi1fi2 · · · fis such that {β} ⊂ ⟨F ⟩, the K-linear
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span of F . However, the T -degrees in ⟨F ⟩ are bounded, whereas the T -degrees for
the sequence βn are unbounded, a contradiction. Therefore, the sequence βn is not
contained in any finitely generated subset of ker δ.

Remark. Note that the above proof still holds when α is simply taken to not be in
the image of δ, as it makes no use of α being an invariant.

Returning to Maubach’s example, the existence of an invariant of w-degree n
is equivalent to an integral sequence of length n, (ai)n

i=0 ⊂ S where D(a0) = 0 and
D(ai) = u2ai−1. Therefore, if a0 ∈ S(a,b), then ai ∈ S(a+2i,b+7i). Now if i > 3a − b

then we have b + 7i > 3a + 6i = 3(a + 2i) and so S(a+2i,b+7i) = {0}. Therefore a0

can only have an integral sequence of length at most 3a − b and so there cannot
be any infinite integral sequences in S. Consequently, if it is shown that RD is not
finitely generated, it shows that the non-finiteness criterion is only sufficient and not
necessary when we have α ∈ R \D(R).

4.3 COMPLETING THE PROOF OF CONJECTURE 4.1.1

In this section we complete the proof of Conjecture 4.1.1, assuming Conjecture 4.1.6.
In order to do so, we show that for each xk ∈ S, there is an integral sequence of
maximal length l(k), and hence an invariant of the form βk = xkwl(k) + l.o.t with
l(k) growing sufficiently quickly so that each βk is not generated by the previous βi

i ≤ k. We then show that there cannot be any finite set of invariants which generate
all βk and therefore must conclude that RD is not finitely generated.

In order to do this, we first make some observations

Proposition 4.3.1. Suppose that ra,b > ra,b−1, let l be chosen so that

R(a,b) =
l⊕

i=0
mwi

(
S(a−2i,b−7i)

)
,

then there is an invariant f in R(a,b) with degw(f) = l.

Proof. As observed in the proof of Proposition 4.1.6, we have that
1. rD

a,b = ∑l
i s

∆
a−2i,b−7i,

2. If b < 3a/2, then b− 7i < 3(a− 2i)/2 for all i ≥ 1.
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Since rD
a,b > 0, we must therefore have that s∆

a−2l,b−7l = k > 0. Now consider

D : P l−1
(a,b) −→ P l−1

(a,b−1),

suppose pl−1,D
(a,b) = l, then rD

(a,b) = k + l. If l ≥ 0, then we must have k invariants with
w-degree l, and if l < 0 we must have k + l > 0 invariants with w-degree l. In either
case we have an invariant with w-degree l, completing the proof.

With this in hand, we conclude:

Proposition 4.3.2. Suppose f ∈ S(a,b) where b ≤ 6 and ∆(f) = 0. Then for any
k ∈ N with rD

a+2k,b+7k ≥ s∆
a,b, there is an invariant in R with leading term fwk.

Having made these observations it is now clear that the maximal length l(k) of
an integral sequence with base xk is the largest integer such that rD

k+2l(k),7l(k) > 0.
Since we have that

rD
k+2l(k),7l(k) =

l(k)∑
i=0

s∆
k+2i,7i,

and we recall from the proof of Proposition 4.1.3 that for all 0 ≤ b ≤ 3a:

s∆
a,b =

⌊
b

2

⌋
−
⌈
b

3

⌉
+ 1 − max

(
0,
⌊
b− a+ 1

2

⌋)
.

Thus finding l(k) becomes a computational task:

rD
k+2l(k),7l(k) =

l(k)∑
i=0

(⌊7i
2

⌋
−
⌈7i

3

⌉
+ 1 − max

(
0,
⌊

5i− k + 1
2

⌋))
,

Note that when 0 ≤ 7i ≤ k + 2i − 1, or equivalently i ≤ k−1
5 , then tk+2i,7i−1 = 0.

Additionally, in order to have rD
k+2l(k),7l(k) < 0, we certainly require that 7l(k) >

3(k+2l(k))
2 , or equivalently, l(k) > 3k

8 . This allows us to rewrite the sum as follows:

rD
k+2l(k),7l(k) =

⌊ k−1
5 ⌋∑

i=0

(⌊7i
2

⌋
−
⌈7i

3

⌉
+ 1

)

+
l(k)∑

i=⌊ k−1
5 ⌋+1

(⌊7i
2

⌋
−
⌈7i

3

⌉
+ 1 −

⌊
5i− k + 1

2

⌋)
.

Due to the presence of the floor and ceiling functions this sum is difficult to compute
directly without taking a considerable number of cases. Instead, we shall find both
an upper and lower bound for l(k) and show that any value lying between these
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ranges will satisfy the required conditions to show that RD is non-finitely generated.
First we obtain an lower bound. To do so we will minimise each element taken in
the sum. Note that⌊7i

2

⌋
−
⌈7i

3

⌉
+ 1 ≥ 7i− 1

2 − 7i+ 2
3 + 1 = 7i− 1

6 ,

while ⌊7i
2

⌋
−
⌈7i

3

⌉
+ 1 −

⌊
5i− k + 1

2

⌋
≥ 7i− 1

6 − 5i− k + 1
2 = 3k − 8i− 4

6 .

Additionally the sum is made minimal when
⌊

k−1
5

⌋
= k−5

5 , leaving us with

rD
k+2l(k),7l(k) =

k−5
5∑

i=0

7i− 1
6 +

l(k)∑
i= k

5

3k − 8i− 4
6

= k(7k − 45)
300 − (11k − 20l(k) − 20)(k − 5l(k) − 5)

150 .

Setting this expression equal to 0 we obtain that l(k) is the largest integer satisfying

l(k) < 3k − 8
8 ±

√
105k2 − 360k

40 ,

and since we require l(k) > 3k
8 for all k, we take the positive root. As we are searching

for a lower bound we can simply use

l(k) = 3k − 8
8 +

√
105k2 − 360k

40 − 1.

To find an upper bound with the properties we will need to finish the proof we have
to be more precise. Note that we can rearrange this sum as

rk+2l(k),7l(k) =
l(k)∑
i=0

⌊7i
2

⌋
−

l(k)∑
i=0

⌈7i
3

⌉
+

l(k)∑
i=0

1 −
l(k)∑

i=⌊ k−1
5 ⌋+1

⌊
5i− k + 1

2

⌋
.
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Labelling each of these sums in order as (a), (b), (c) and (d), we find that

(a) = 1
2

7
⌊
l(k) − 2

2

⌋2

+ 21
⌊
l(k) − 2

2

⌋
+ 7

⌊
l(k) − 1

2

⌋2

+ 13
⌊
l(k) − 1

2

⌋
+ 20

 ,
(b) = −1

2

7
⌊
l(k) − 3

3

⌋2

+ 7
⌊
l(k) − 2

3

⌋2

+ 7
⌊
l(k) − 1

3

⌋2

+ 21
⌊
l(k) − 3

3

⌋
+ 15

⌊
l(k) − 2

3

⌋
+ 11

⌊
l(k) − 1

3

⌋
+ 26

,
(c) = l(k) + 1,

(d) = −

5
2

⌊
1
2

(
l(k) +

⌈
1 − k

5

⌉
− 1

)⌋(⌊
1
2

(
l(k) +

⌈
1 − k

5

⌉
− 1

)⌋
+ 1

)

+
⌊

1
2

(
−k + 5

⌊
k − 1

5

⌋
+ 6

)⌋(⌊
1
2

(
l(k) +

⌈
1 − k

5

⌉
− 1

)⌋
+ 1

)

+ 5
2

⌊
1
2

(
l(k) +

⌈
1 − k

5

⌉
− 2

)⌋(⌊
1
2

(
l(k) +

⌈
1 − k

5

⌉)⌋)

+
⌊

1
2

(
−k + 5

⌊
k − 1

5

⌋
+ 11

)⌋(⌊
1
2

(
l(k) +

⌈
1 − k

5

⌉)⌋))
.

Note that (a) is maximal when l(k) ≡ 0 mod 2, and the expression simplifies to

(a) ≤ 1
4 l(k)(7l(k) + 6),

similarly (b) is maximal when l(k) ≡ 2 mod 3, and the expression simplifies to

(b) ≤ −1
6(l(k) + 1)(7l(k) + 2),

Finally, we maximise (d) by supposing k ≡ 1 mod 5 and minimising each term, we
obtain that

(d) ≤ − 1
40(−k + 5p− 9)(−k + 5p+ 1) − 1

5(−k + 5p+ 1)

− 1
40(−k + 5p− 9)(−k + 5p+ 1) − 9

20(−k + 5p+ 1).

Taking these terms together and solving for l(k) we find that l(k) is the largest
integer satisfying

l(k) < 3k
8 − 3

16 +
√

420k2 + 1500k + 4705
80 ,
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and since we seek an upper bound we can use

l(k) = 3k
8 − 3

16 +
√

420k2 + 1500k + 4705
80 .

Now in order to show that RD is non-finitely generated we shall first show that the
corresponding invariants βk = xkwl(k) + l.o.t ∈ RD cannot be generated by a finite
subset of these invariants before continuing to show that these invariants cannot be
generated by any finite set of invariants. In order to do so we consider the function

λ : R −→ Q,

defined for monomials m ∈ R(a,b) as

λ(m) := b

a+ b
,

we then extend this definition to all of R by setting

λ(f) := max{λ(m) |m is a term of f}.

We note that the function λ has the following properties:
1. For f ∈ R and c ∈ K∗, λ(cf) = λ(f),

2. If f, g ∈ R with λ(f) ≤ λ(g), then λ(f) ≤ λ(fg) ≤ λ(g).
This function is an example of what we call a ratio function, and we explore the
properties of such functions in Chapter 6.

Now our invariants βk ∈ R(k+2l(k),7l(k)) and hence using our upper and lower
bounds

105k − 560 + 7
√

105k2 − 360k
175k − 720 + 9

√
105k2 − 360k

≤ λ(βk) ≤ 210k − 105 + 7
√

420k2 + 1500k + 4705
350k − 135 + 9

√
420k2 + 1500k + 4705

.

Note that both the upper and lower bounds tend to the limit

105 + 7
√

105
175 + 9

√
105

,

from below for k ≥ 4. We note that this is sufficient since we can compute directly
that l(1) = l(2) = 0, l(3) = 1 and l(4) = 2 which then gives us that λ(β1) = λ(β2) = 0,
whilst λ(β3) = 7

12 , λ(β4) = 14
22 and both of these are below the limit, meaning the

sequence λ(βk) tends to the limit from below also. Hence (λ(βk))∞
k=0 and consequently

(supi≤k(λ(βk))∞
k=0 tend towards the same limit. Now by property 2 of the function λ,
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each βj appearing in the sequence (supi≤k(λ(βk))∞
k=0 cannot be generated by the βi

with i ≤ j. Since (supi≤k(λ(βk))∞
k=0 defines an infinite strictly increasing sequence,

we must conclude that no finite subset of the βk can generate all βk.
To show that RD is not finitely generated we need to show that there is no finite

set of invariants {f1, . . . , fN} ⊂ RD which can generate all βk. If there were such a
set, we can assume each fi ∈ R(ai,bi). Now we must have

βk =
t∑

i=1
λif

i1
1 · · · f iN

N ,

and at least one of these terms has w-degree l(k). But, since the leading term of βk

is xk, all fi appearing in these terms must have leading term xaiwbi , for some ai ≤ k

and bi ≤ l(k). Thus, we have a contradiction since then we must have λ(fi) ≤ λ(βbi
)

and there are infinitely many βk with λ(βk) > λ(fi) for all i.

4.4 FURTHER RESEARCH

Our work in this chapter to show that Maubach’s example is non-finitely generated
relies upon results which we would like to generalise. First, we recall Proposition
4.1.3, which demonstrated that the Weitzenböck derivation in 4 variables on S

satisfies
dim

(
S∆

(a,b)

)
= max{sa,b − sa,b−1, 0}.

Meaning ∆ : S(a,b) −→ S(a,b−1) is surjective whenever the dimension of the domain is
at least as large of the dimension as the codomain and is injective whenever that
inequality is reversed. In general, suppose R = K[x1. . . . , xn] is a polynomial ring
and D a locally nilpotent derivation on R. Suppose there is a maximal k-dimensional
action of the torus (Gm)k on R which commuting with D and yielding a Zk

≥0-grading
on R. Combining this with the ρ-grading we divide D into a series of linear maps

D : R(a1,...,ak,b) −→ R(a1,...,ak,b−1).

Definition 4.4.1. With R and D as above, we say that they satisfy (†), if for all
ai, b we have

dim
(
RD

(a1,...,ak,b)

)
= max

{
dim(R(a1,...,ak,b)) − dim(R(a1,...,ak,b−1)), 0

}
. (†)
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Recalling Example 2.1.12, we let Rn = K[x0, . . . , xn] and

Dn := x0
∂

∂x1
+ · · · + xn−1

∂

∂xn

,

the Weitzenböck derivation in n variables. There is a Gm-action commuting with
Dn given by

λ · (x0, . . . , xn) := (λx0, . . . , λxn),

and this yields a grading on Rn with deg(xi) = 1 for all i. This is a maximal torus
action on Rn which we can combine with our ρ-grading, where ρ(xi) = i, and divide
Rn into vector spaces Rn,(a,b) spanned by the monomials of degree a and ρ-degree b.
Now, similar to the Weitzenböck derivation in 4 variables, we have a bijection

φ : Rn,(a,b) −→ Rn,(a,na−b),

where φ(xa0
0 · · · xan

n ) = xan
0 · · ·xa0

n . By a similar argument to Proposition 4.1.2, we
believe it is possible to show:

Conjecture 4.4.2. 1. For 0 ≤ b ≤ na
2 , we have dim(Rn,(a,b)) ≥ dim(Rn,(a,b−1)).

2. For na
2 < b ≤ na, we have dim(Rn,(a,b)) ≤ dim(Rn,(a,b−1)).

Using this, we could then show:

Conjecture 4.4.3. Rn and Dn have property (†).

In our proof that S = R3 and ∆ satisfies (†) in Proposition 4.1.3, we use a
generating set for S∆ and compute the dimension of the kernel S∆

(a,b) as well as
sa,b − sa,b−1 for all a, b, showing that these coincide. For general n we can take
a similar approach, though the combinatorics become increasingly complex. The
main difficulty posed in generalising our result is constructing a generating set for
general RDn

n , and accounting for their relations in computing the dimension of the
kernel RDn

n,(a,b). In [8, § 3], Drensky and Gupta construct a generating set for RDn
n

in K[x0, . . . , xn][x−1
0 ] which could potentially be converted to a generating set in

K[x0, . . . , xn]. Recalling Proposition 4.1.4, we claim a generalisation exists:

Conjecture 4.4.4. Suppose 0 ≤ b ≤ na
2 , then

(Dn)na−2b : Rn,(a,na−b) −→ Rn,(a,b),

is a bijection.
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With Conjecture 4.4.3 in mind, we are lead to the question:

Question 4.4.5. Which locally nilpotent derivations D on K[x1, . . . , xn] satisfy (†)?

We believe that all triangular monomial derivations should satisfy (†); it would
be interesting to investigate whether this is an equivalence.

Conjecture 4.1.6 is the only remaining piece needed to show in order to prove
that Maubach’s example is non-finitely generated, which states that Maubach’s
example satisfies property (†). With this attained, we then show in Section 4.3
that a sequence of invariants exist which cannot be finitely generated in order to
conclude that Maubach’s example is not finitely generated. To do so, we computed
rD

a,b = ra,b −ra,b−1 for certain values of a and b in order to determine how far invariants
of the form xk lifted to invariants of the form xkwl(k)+ terms of lower w-degree. We
can repeat this step for any invariant f ∈ S∆ to determine how far it could possibly
lift in order to try an obtain a generating set for the whole of R. Note however, that
if we are given say f1, f2 ∈ S∆

(a−2,b−7) and only one lifts to an invariant in RD
(a,b), it is

not immediately clear how to determine which of these invariants lift. Any efforts to
construct a generating set for RD must accommodate for this.

Generalising this, we can ask the question:

Question 4.4.6. Suppose R and D satisfy (†), can we use this to construct an
algorithm to compute a generating set for RD?

There are already algorithms to compute a generating set of RD which complete
in a finite number of steps if RD is finitely generated. This includes van den Essen’s
algorithm [14, § 4], which relies on the computation of a Gröbner basis. Use of
a Gröbner basis greatly impacts computational speed as opposed to determining
dimensions of vector spaces, as an algorithm using (†) would rely upon instead.
However, as remarked above we would not find the generators explicitly, instead
merely their degrees. One could also work with invariant rings of the form R = S[v],
where SD|S is finitely generated, and D(v) ∈ S, in order to determine which invariants
lift in v-degree.

To demonstrate the approach one might take, we return to S∆ = K[x, γ, δ, g].
We know that S and ∆ satisfy property (†) and so we can attempt to construct a
generating set for S∆ using only s∆

a,b. Firstly we have s∆
1,0 = 1, so there is an invariant

r1 ∈ S(1,0). Additionally s∆
k,0 = 1 for all k and we know that rk

1 ∈ S(a,0) for all k ≥ 1,
so there are no more generators to find here. Continuing by in this way, we next find
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an invariant r2 ∈ S∆
(2,2) and we have rk

1r2 ∈ S(2+k,2), which constitutes all invariants
with ρ-degree 2. Following this, we find r3 ∈ S∆

(3,3) and this is the only new invariant
required for ρ-degree 3. We finally obtain r4 ∈ S∆

(4,6), and since r3
2, r

2
3, r

2
1r4 ∈ S∆

(6,6)

but s∆
6,6 = 2, this indicates the existence of a relation between these three invariants.

What is tricky here is determining that {r1, r2, r3, r4} is a generating set for S∆. It
can be done combinatorially by an approach similar to the proof of Proposition 4.1.3,
though in general we would prefer not to make a combinatorial check as each new
element is added to our generating set.



5

Symmetries of Invariant rings

First, recall Roberts’ example from Section 2.4, set B := K[x1, x2, x3, y1, y2, y3, z]
with locally nilpotent derivation

∂n := xn
1
∂

∂y1
+ xn

2
∂

∂y2
+ xn

3
∂

∂y3
+ (x1x2x3)n−1 ∂

∂z
,

where n ≥ 3. As shown in [19, § 7.2.3], Daigle and Freudenburg’s counterexample
can be obtained from Roberts’ counterexample by a process of ‘removing symmetries’
as follows:

Consider the action of G3
m on K[x1, x2, x3, y1, y2, y3, z] defined as

(λ, µ, ν) ·(x1, x2, x3, y1, y2, y3, z) :=
(
λx1, µx2, νx3, λ

ny1, µ
ny2, ν

ny3, λ
n−1µn−1νn−1z

)
.

This action commutes with ∂n. Furthermore, there is an action of the symmetric
group S3 on B generated by

σ := (x1, x2, x3)(y1, y2, y3)(z), τ := (x1, x2)(x3)(y1, y2)(y3)(z). (5.1)

This action also commutes with ∂n. S3 also acts on G3
m via conjugation, with

τ(λ, µ, ν)τ = (µ, λ, ν) and σ(λ, µ, ν)σ−1 = (ν, λ, µ). Therefore, we obtain an action
of G3

m ⋊ S3 on B. Now consider the subgroup H ≤ G3
m defined by λµν = 1, which

is a 2-dimensional torus. The group G := H ⋊ S3 acts on B also and the invariant
ring of H is generated by the monomials

K[x1, x2, x3,y1, y2, y3, z]H =
K[x1x2x3, x

n
1x

n
2y3, x

n
1x

n
3y2, x

n
2x

n
3y1, x

n
1y2y3, x

n
2y1y3, x

n
3y1y2, y1y2y3, z].

88
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If we let

x = x1x2x3, s = 1
3 (xn

1x
n
2y3 + xn

1x
n
3y2 + xn

2x
n
3y1) ,

t = 1
6 (xn

1y2y3 + xn
2y1y3 + xn

3y1y2) , u = 1
6y1y2y3, v = z,

then, since H is normal in G, the invariant ring of the G-action is

BG = (BH)S3 = K[x, s, t, u, v],

Since G commutes with the action of ∂n, ∂n restricts to a locally nilpotent derivation
of BG, with

∂n(x) = 0, ∂n(s) = xn, ∂n(t) = s, ∂n(u) = t, ∂n(v) = xn−1.

When n = 3, this corresponds precisely to Daigle and Freudenburg’s counterexample,
allowing us to prove, [19, p. 168]:

Theorem 5.0.1. The kernel of ∂3 is not finitely generated.

Proof. As ∂3 is manifestly the same derivation as that introduced in Daigle and
Freudenburg’s counterexample, we can immediately conclude that BG×Ga = (BG)Ga

is not finitely generated. Now suppose that BGa were finitely generated, then
the reductive group G acts on the variety Spec(BGa). By Hilbert’s Finiteness
Theorem 2.2.2, the invariant ring (BGa)G = BGa×G would be finitely generated, a
contradiction.

The focus of this chapter will be on this process of ‘removing symmetries.’ This
process guarantees that when the subalgebra with the symmetries removed is non-
finitely generated the subalgebra with the symmetries is also non-finitely generated.
We demonstrate by means of a counterexample that the reverse is not guaranteed.
Furthermore, we use this method and our observations on integral sequences to apply
this method to generalised forms of Roberts’ counterexample.

5.1 THE INVARIANT RING CONNECTED TO M 0,n

Recall from our introduction that there is a family of non finitely generated invariant
rings under a Ga-action constructed by Doran, Giansiracusa, and Jensen [7] arising
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from a study of a moduli space called M0,n. In [3], Castravet and Tevelev show that
M0,n is not a so-called ‘Mori-Dream’ space for n ≥ 134 while it is one for n ≤ 6.
This result is then improved in [21], and then again in [23], where it is shown that it
is not a ‘Mori-Dream’ space for n ≥ 10.

To construct the above rings as invariant rings, we let

R := K [y1, . . . , yn−1, xI | I ⊂ { 1, . . . , n− 1}, 1 ≤ |I| ≤ n− 4 ] .

The additive group Ga then admits an action for n ≥ 6 defined by

xI 7→ xI , yi 7→ yi + t
∏
i∈I

xI , t ∈ Ga.

M0,n is then not a ‘Mori-Dream’ space precisely when this invariant ring is non-finitely
generated.

Now, the Ga-action on R corresponds to the locally nilpotent derivation

D :=
n−1∑
i=1

(∏
i∈I

xI

)
∂

∂yi

,

As notation we will write Ji := ∏
i∈I xI , so that D(yi) = Ji, let T = {1, . . . , n− 1}

and fix the notation I ⊂ T . Then for all a ̸= b, there are invariants

Jbya − Jayb,

In fact, letting Ja,b := ∏
a∈I,b/∈I xI we have invariants

Jb,aya − Ja,byb.

Similar to Roberts’ example, this example has a number of symmetries we can
remove. There is a maximal torus action commuting with D which we construct as
follows: Let

K :=
∑

1≤|I|≤n−4
1 = 2n−1 − n2 − n

2 − 2.

The (Gm)K-action on R given by

xI 7→ λIxI , yi 7→
(∏

i∈I

λI

)
yi,

commutes with D. Furthermore, there is an action of Sn−1 on R which commutes
with D also. For σ ∈ Sn−1, we let

xI 7→ xσ(I), yi 7→ yσ(i).
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Additionally, Sn−1 acts on (Gm)K by conjugation, with σλIσ
−1 = λσ(I). Now consider

the subgroup H ≤ (Gm)K defined by
∏

1≤|I|≤n−4
λ

|I|
I = 1.

Now H is a (K − 1)-dimensional torus, and we have an action of G := H ⋊ Sn−1 on
R. The invariant ring of H is generated by monomials, with

RH = K

n−1∏
i=1

Ji, . . . ,

(∏
i∈A

Ji

) ∏
j∈T \A

yj

 , . . . , n−1∏
i=1

yi

∣∣∣∣∣A ⊂ T, σ ∈ Sn−1

 .
Since H is normal in G, the invariant ring of the G-action on R is:

RG = (RH)Sn−1

= K

n−1∏
i=1

Ji, . . . ,
∑

A⊂T,|A|=k

(∏
i∈A

yi

) ∏
j∈T \A

Jj

 , . . . , n−1∏
i=1

yi

∣∣∣∣∣ k = 1, . . . n− 2
 .

Now let X0 := ∏n−1
i=1 Ji, and for i = 1, . . . , n− 1 let

Xi := (n− i− 1)!
(n− 1)!

∑
A⊂T, |A|=i

(∏
i∈A

yi

) ∏
j∈T \A

Jj

 .
Therefore we have

RG = (RH)Sn−1 = K[X1, . . . , Xn−1].

Since D commutes with the action of G, D restricts to a locally nilpotent derivation
on RG. We find that D(X0) = 0, and D(Xi) = Xi−1 for i = 1, . . . , n− 1 and so on
RG, D becomes

D = X0
∂

∂X1
+ · · · +Xn−2

∂

∂Xn−1
.

Note that D is linear, so (RG)D is finitely generated, however for n ≥ 10, RD is not
finitely generated.

5.2 KURODA’S CONJECTURE

In [25], Kuroda considers generalisations of the locally nilpotent derivation which
defines Roberts’ counterexample. Namely, for vectors

a = (a1, a2, a3), b = (b1, b2, b3), c = (c1, c2, c3), d = (d1, d2, d3) ∈ Z3
≥0,
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Kuroda sets

D := xa1
1 x

a2
2 x

a3
3

∂

∂y1
+ xb1

1 x
b2
2 x

b3
3
∂

∂y2
+ xc1

1 x
c2
2 x

c3
3
∂

∂y3
+ xd1

1 x
d2
2 x

d3
3
∂

∂z
.

We examine the cases of this generalisation where we can remove symmetries from this
example to obtain a locally nilpotent derivation similar to Daigle and Freudenburg’s
example. Note first that the action of S3 on B = K[x1, x2, x3, y1, y2, y3, z] defined in
equation 5.1 commutes with this derivation. Suppose a, b, c and d satisfy the relation

k(a+ b+ c) = ld = kle, (5.2)

where k, l ∈ Z≥0 and e = (e1, e2, e3) ∈ Z3
≥0. Now consider the G3

m-action on B

(λ, µ, ν) · (x1, x2, x3, y1, y2, y3, z) =
(λx1, µx2, νx3, λ

a1µa2νa3y1, λ
b1µb2νb3y2, λ

c1µc2νc3y3, λ
d1µd2νd3z).

This action commutes with D and S3 also acts on G3
m via conjugation, similar to

Roberts’ original counterexample. Let H ≤ G3
m be the subgroup of G3

m defined by
λe1µe2νe3 = 1. The group G := H ⋊ S3 acts on B also, and the invariant ring of H
is given by

BH = K[xe1
1 x

e2
2 x

e3
3 , x

a1+b1
1 xa2+b2

2 xa3+b3
3 y3, x

a1+c1
1 xa2+c2

2 xa3+c3
3 y2,

xb1+c1
1 xb2+c2

2 xb3+c3
3 y1, x

a1
1 x

a2
2 x

a3
3 y2y3, x

b1
1 x

b2
2 x

b3
3 y1y3, x

c1
1 x

c2
2 x

c3
3 y1y2, z].

Now let

x := xe1
1 x

e2
2 x

e3
3 ,

y := 1
3
(
xa1+b1

1 xa2+b2
2 xa3+b3

3 y3 + xa1+c1
1 xa2+c2

2 xa3+c3
3 y2 + xb1+c1

1 xb2+c2
2 xb3+c3

3 y1
)
,

z := 1
6
(
xa1

1 x
a2
2 x

a3
3 y2y3 + xb1

1 x
b2
2 x

b3
3 y1y3 + xc1

1 x
c2
2 x

c3
3 y1y2

)
,

u := 1
6 (y1y2y3) ,

v := y4.

As H is normal in G, the invariant ring of the G-action is

BG = (BH)S3 = K[x, y, z, u, v].

Since D commutes with the action of G, D restricts to a locally nilpotent derivation
on BG, with

D(x) = 0, D(y) = xl, D(z) = y, D(u) = z, D(v) = xk.
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Using our observations made in Section 4.2, we can find conditions on k and l

which guarantee that (BG)D, and hence BD, is non-finitely generated. Consider the
subalgebra A = K[x, y, z, u] ⊂ BG and the locally nilpotent derivation ∆ := D|A.
Note that ∆ is a triangular monomial derivation, and hence by Theorem 2.1.13 A∆

is finitely generated, with generators

x, 2xlz − y2, 3x2lu− 3xlyz + y3, 9x2lu2 − 18xlyzu+ 8xlz3 + 6y3u− 3y2z2.

Now if k ≥ l, then D(v − yxk−l) = 0 ∈ (BG)D, and (BG)D is finitely generated.
Thus, in order for (BG)D to not be finitely generated, we certainly require that k < l.
There is a Gm-action on BG commuting with D given by

α · (x, y, z, u, v) = (αx, αly, αlz, αlu, αkv),

which yields a grading on BG with

deg(x) = 1, deg(y) = l, deg(z) = l, deg(u) = l, deg(v) = k.

This, together with the ρ-grading, allows us to divide BG and A into vector spaces
BG

(a,b) and A(a,b) respectively, which are spanned by monomials with degree a and
ρ-degree b. Recalling S(a,b), from Chapter 4, we note that for i = 0, . . . , l− 1 there is
a bijection

ϕ : S(a,b) −→ A(la+i,b),

xt1yt2zt3ut4 7−→ xlt1+iyt2zt3ut4 .

Exactly as in Lemma 4.2.2, using Propositions 4.1.2 and 4.1.3, we can show:

Lemma 5.2.1. 1. A(la+i,b) is in bijection with A(la+i,3a−b) for i = 0, . . . , l − 1.

2. If 0 ≤ b ≤ 3a
2 , dim(A(la+i,b)) ≥ dim(A(la+i,b−1)) and ∆ : A(la+i,b) −→ A(la+i,b−1)

is surjective for i = 0, . . . , l − 1.

3. If 3a
2 ≤ b ≤ 3a, dim(A(la+i,b)) ≤ dim(A(la+i,b−1)) and ∆ : A(la+i,b) −→ A(la+i,b−1)

is injective for i = 0, . . . , l − 1.

Now to show that (BG)D is not finitely generated, using the non-finiteness
criterion, it is sufficient to show the existence of an integral sequence (fi)i≥0 ⊂ A. We
find conditions for such a sequence to exist with f0 = xl−k, and D(fi) = xkfi−1. Note
that xkfi ∈ A(l+ik,i) and by Lemma 5.2.1 we can guarantee xkfi ∈ D(A) provided

3
⌊

l+ik
l

⌋
2 ≥ i,
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for all i ≥ 0. Note that
3
⌊

l+ik
l

⌋
2 ≥

3
(

l+ik−l−1
l

)
2 ,

giving us
3
(

ik+1
l

)
2 ≥ i,

and rearranging we obtain
k ≥ 2li− 3

3i .

Now the right hand side tends to 2l
3 from below as i tends to infinity, so we are

guaranteed an integral sequence provided

2l
3 ≤ k < l.

Thus we have shown:

Proposition 5.2.2. Let S = K[x, y, z, u, v] and let D be the locally nilpotent deriva-
tion

D := xl ∂

∂y
+ y

∂

∂z
+ z

∂

∂u
+ xk ∂

∂v
,

then if 2l
3 ≤ k < l, SD is not finitely generated.

Now returning to Kuroda’s work in [25], we set tα,β = (α1 − β1, α2 − β2, α3,−β3),
where α, β ∈ {a, b, c, d}. Now let tiα,β be the i’th entry of tα,β and define

ξa :=
t1a,d

min{t1a,b, t
1
a,c}

, ξb :=
t2b,d

min{t2b,a, t
2
b,c}

, ξc :=
t3c,d

min{t3c,b, t
3
c,a}

,

For example, in Roberts’ derivation we have ξa = n−(n−1)
min{n−0,n−0} = 1

n
. As Theorem 1.4

in [25], Kuroda shows that if
ξa + ξb + ξc ≤ 1,

and each tiα,β > 0 for all i and α, β distinct, then BD is not finitely generated.
Furthermore, Kuroda also conjectures in [25], that if

ξa + ξb + ξc > 1,

with each tiα,β > 0 for all i and α, β distinct, then BD is finitely generated.
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If this conjecture is true, then it is possible to remove symmetries from both a
non-finitely generated invariant ring, as well as a finitely generated one and obtain
the same invariant ring. Consider

a = (7, 1, 1), b = (1, 7, 1), c = (1, 1, 7), d = (5, 5, 5),

note that these vectors satisfy equation 5.2 with k = 5 and l = 9, and thus when
removing symmetries we obtain an invariant ring (BG)D ⊂ K[x, y, z, u, v] with

D := x9 ∂

∂y
+ y

∂

∂z
+ z

∂

∂u
+ x5 ∂

∂v
,

Now ξa = ξb = ξc = 1
3 , so ξa + ξb + ξc ≤ 1 and hence BD is not finitely generated.

Now suppose instead that

a = (9, 0, 0), b = (0, 9, 0), c = (0, 0, 9), d = (5, 5, 5).

These vectors also satisfy equation 5.2 with k = 5 and l = 9, thus when removing
symmetries we obtain the same invariant ring as above. Now ξa = ξb = ξc = 4

9 ,
so ξa + ξb + ξc = 4

3 > 1. Thus, if Kuroda’s conjecture holds, then BD is finitely
generated and hence (BG)D is finitely generated also. With this we are able to remove
symmetries from both a finitely generated and non-finitely generated invariant ring
and obtain the same invariant ring.

5.3 FURTHER RESEARCH

Our approach in this chapter is somewhat ad hoc, taking the procedure performed in
[19, § 7.2] and applying it to different invariant rings. A natural continuation to this
work would be to develop a more systematic approach to this process of “removing
symmetries.” To speculate on what this would entail, suppose we have a locally
nilpotent derivation D on R = K[x1, . . . , xn], and there is a maximal Gk

m-action on R
commuting with D. We propose that the process of “removing symmetries” should
be as follows:

1. Find an action of Sl, the symmetric group on l points, on R which commutes
with D for some l and acts on Gk

m by conjugation.

2. Find some (k − 1)-dimensional subtorus of Gk
m given by ∏k

i=1 λ
ai
i = 1 for some

ai. This yields an action of G := H ⋊ Sl on R.
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3. On the invariant ring RG, D restricts to a locally nilpotent derivation on RG

and the maximal Gt
m-action commuting with D has t = 1.

Essentially, this process would construct a polynomial ring S ⊂ R on which there
is only a Gm-action commuting with D. Work needs to be done to show when this
might be possible. It is also worth considering what purpose this process might serve.
Firstly, we reduce the number of variables we are working with, making things more
tractable. Additionally, working with just one grading makes it simpler to work with
S using our approach from Chapter 4, especially if S satisfies (†). We are left with
some interesting questions:

Question 5.3.1. Suppose RD is not finitely generated, but by “removing symmetries”
we obtain a finitely generated SD, what does this tell us about the structure of RD?

Question 5.3.2. Suppose that we have R1 and R2 with locally nilpotent derivations
D1 and D2 respectively, and that by “removing symmetries” we obtain S, with
D1|S = D2|S. What does this tell us about the relation between R1 and R2?

We already have an examples from this chapter which satisfy both questions,
assuming Kuroda’s conjecture for the second question. Thus, a further examination
of these examples would be a good starting point to answer these questions.



6

Monomial Subalgebras

In Chapter 3 we computed a generating set for Daigle and Freudenburg’s counterex-
ample, showed that this generating set was a SAGBI basis and then used this to
compute the finite generation ideal. Additionally we found that the finite generation
ideal contained all but one element and was the radical of a finitely generated ideal.
From this work there are questions which naturally arise about the finite generation
ideal, such as:

• Are there methods computing the finite generation ideal which do not rely
upon a SAGBI-basis?

• Is the finite generation ideal always the radical of a finitely generated ideal?

• Can we construct a non-finitely generated subalgebra S with fS finitely gener-
ated?

In order to approach these questions from the most general perspective, we do
not wish to focus just on invariant rings. However, to tackle arbitrary subalgebras
of polynomial rings would be a step too far at this stage, so we first focus on
subalgebras which have generating sets consisting of monomials. The results we
prove on monomials are then easily generalised to SAGBI-bases, though with some
limitations.

In this chapter we focus on answering the following questions:
1. Suppose R ⊂ K[x1, . . . , xn] is generated by monomials. Under what conditions

can we conclude that R is finitely generated?

2. With R as above and non-finitely generated, what is fR?

3. Suppose R ⊂ K[x1, . . . , xn] be a subalgebra, with SAGBI-basis G. Under what
conditions can we conclude that R has a finite SAGBI-basis?

97
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4. With R as above not finitely generated, what is fR?

5. Is the finite generation ideal always the radical of a finitely generated ideal?
For convenience of notation in this chapter we assume 0 ∈ N.

6.1 MONOMIAL ALGEBRAS

We recall Definitions 2.1.15, 2.1.17 and 2.1.16 from Chapter 2:
For a commutative K-domain R, a set G ⊂ R is a generating set for R if G

generates R as a K-domain. We say R is finitely generated if R has a finite generating
set and R is not finitely generated if no finite generating set exists. A generating
set G ⊂ R minimal if for all g ∈ G we have that G \ {g} is not a generating set.
A subalgebra R ⊂ K[x1, . . . , xn] is said to be generated by monomials if R has a
generating set G with each g ∈ G a monomial. We also call such an R a monomial
subalgebra. As previously remarked, a finitely generated monomial subalgebra has a
finite monomial generating set.

6.1.1 Two variables

To tackle the questions posed at the start of the chapter, we first consider the problem
in a much simplified situation. Let R ⊂ K[x, y] be a subalgebra of K[x, y] with the
following properties:

• R is generated by monomials;

• x ∈ R.
We define a function λ : K[x, y] −→ Q first on monomials by λ(xayb) := b

a+b
and

then for f ∈ K[x, y], we set λ(f) = max{λ(m) |m is a term of f}. Observe that the
function λ has the following properties:

1. λ(cf) = λ(f) for all f ∈ K[x, y], c ∈ K \ {0}.

2. For f, g ∈ K[x, y] with λ(f) ≤ λ(g), then λ(f) ≤ λ(fg) ≤ λ(g), with equality
if and only if λ(f) = λ(g).

3. A monomial m ∈ K[x, y] can be uniquely recovered given any two of λ(m),
degx(m) and degy(m). For example, if λ(m) = α and degy(m) = k then
degx(m) = b−bα

α
.
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Properties 1 and 3 are clear, and a simple calculation shows that λ satisfies property
2 also. For any subalgebra, S ⊂ K[x, y], we denote the restriction of λ to S as simply
λ.

Definition 6.1.1. If λ : K[x, y] −→ Q is a function satisfying the above properties,
then we say it is a ratio function. For f ∈ K[x, y] we call λ(f) the ratio of f .

For the remainder of this section we shall set λ(xayb) := b
a+b

as above. For the
subalgebra R, we define a sequence (λk)k∈N ⊂ Q as follows: For each k ≥ 0, let

λk := max{λ(xayi) |xayi ∈ R, i ≤ k}.

Note that this sequence is non-decreasing.

Proposition 6.1.2. Suppose that S ⊂ K[x, y] is a subalgebra, and (λk)k∈N is the
sequence as above but defined on S, then, if (λk)k∈N has an infinite strictly increasing
subsequence, S is not finitely generated.

Proof. Let (λki
)i∈N be a strictly increasing subsequence of (λk). Suppose G =

{g1, g2, . . . , gn} ⊂ S is a generating set for S, and that the gi have y-degree at most
N > 0. Now choose t ∈ N so that kt > N . By property 2 of λ, the polynomial
f ∈ S which has λ(f) = λkt cannot be expressed as a combination of the gi, a
contradiction.

We now aim to show:

Lemma 6.1.3. R is not finitely generated if and only if (λk)k∈N has an infinite
strictly increasing subsequence (λki

)i∈N.

Before we show this, we first prove the following useful result:

Proposition 6.1.4. Let S ⊂ K[x, y] be a monomial subalgebra, fix some α ∈ Q and
set

Sα := K
[
{f ∈ S |λ(m) = α, for all terms m of f}

]
.

Then Sα is finitely generated.

Proof. Note that since S is a monomial subalgebra, then so is Sα. Suppose that
G ⊂ Sα is a minimal monomial generating set, label the elements of G as gi, i ∈ N
and assume that they are ordered by their y-degree, so that gi has y-degree bi, and
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if i ≥ j, then bi ≥ bj. Now we consider the bi ∈ N. Note that for any subset M ⊂ N
there is a finite subset M ′ ⊂ M such that gcd(M) = gcd(M ′). Thus, there is a finite
subset G′ of G satisfying

gcd ({bj | gj ∈ G′}) = gcd ({bi, | bi ∈ G}) .

Write G′ = {h1, . . . , hn} so that each generator hi has y-degree ci. We claim that
K[G′] contains all but finitely many of the elements of G and hence, since G is
minimal, G itself is finite.

We first aim to find some lower bound b ∈ N so that if g ∈ G has y-degree e ≥ b,
then g ∈ K[G′]. Let d denote the greatest common divisor of the ci so that there are
t1, . . . , tn ∈ Z satisfying

t1c1 + · · · + tncn = d.

We can assume, up to relabelling, that t1, . . . , tn′ ≤ 0 and tn′+1, . . . , tn ≥ 0 for some
n′ < n. Then, since d | ci for all i, we can write c1 + · · · + cn′ = ld so that

c1 + · · · + cn′ = l(t1c1 + · · · + tncn).

Rearranging, we obtain

(1 − lt1)c1 + (1 − lt2)c2 + · · · + (1 − ltn′)cn′ = ltn′+1cn′+1 + · · · + ltncn. (6.1)

We also have d | e so we can write e = e′d and e′ = kl + r for some r < l. Thus,
e = (kl + r)d = k(c1 + · · · + cn′) + rd and hence, using equation 6.1:

e = (kl + r)t1c1 + · · · + (kl + r)tn′cn′ + (kl + r)tn′+1cn′+1 + · · · + (kl + r)tncn

= (k + rt1)c1 + · · · + (k + rtn′)cn′ + rtn′+1cn′+1 + . . . rtncn.

Now, rti ≥ 0 for i ≥ n′ + 1 and k + rti ≥ k + lti for i ≤ n′ where l, ti are fixed.
Hence by choosing e, and hence k, sufficiently large we can guarantee k + rti ≥ 0
for all i ≤ n′. Now, when this occurs, as the hi all have the same ratio, and as
hk+rt1

1 · · ·hk+rtn′
n′ · hr

n′+1 · · ·hr
n has y-degree e we conclude

g = hk+rt1
1 · · ·hk+rtn′

n′ · hr
n′+1 · · ·hr

n.

Thus we can choose our lower bound b ∈ N to be any integer which guarantees
k + rti ≥ 0 for all i ≤ n′. The remaining generators in G must have their y-degree
bounded, and since for a given y-degree there is only one monomial with ratio α,
there must only be finitely many generators in G \G′.
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We can now prove Lemma 6.1.3:

Proof of Lemma 6.1.3. Proposition 6.1.2 shows that if (λk)k∈N has a strictly increas-
ing subsequence, then R is not finitely generated. We will now prove the converse
by showing that if there is some N ∈ N for which λk = λN = α for all k ≥ N , then
R is finitely generated.

Let H ⊂ R be a minimal monomial generating set for R. By Proposition 6.1.4,
there are only finitely many g ∈ H with λ(g) = α, it remains to show that there
are only finitely many g ∈ H with λ(g) < α. Suppose G = {g1, . . . , gn} ⊂ H

generates all elements in R with ratio α. Suppose the gi are ordered by y-degree
with gi = xaiybi . Observe that, since x ∈ R, a minimal generating set for R will
not contain any two generators with the same y-degree. Suppose that the greatest
common divisor of the bi is d and the greatest common divisor of the ai is δ. As
shown in the proof of Proposition 6.1.4, there is some constant constant N ∈ N, such
that for all kd > N , (xδyd)k can be expressed as a combination of the gi ∈ G. There
are clearly finitely many elements in H with y-degree at most N . For any generator
f = xeyc ∈ H with λ(f) < α and degy(f) > N we must have ld < c < (l + 1)d
for some ld ≥ N Write c = ld + r and e = lδ + s; given any g = x(l+t)δy(l+t)d,
fg = x(2l+t)δ+sy(2l+t)d+r. Therefore f together with G generates all elements in R

which have y-degree at least 2l and congruent to r mod (d).
We can repeat this argument for each r = 1, . . . d− 1 to obtain a finite generating

set for all elements of R with y-degree above a finite bound and conclude that H
must be finite.

Lemma 6.1.5. Suppose that R ⊂ K[x, y] satisfies the properties described above,
if R is not finitely generated then fR = {f ∈ R |Rf is f.g.} =

√
xR, and this is a

maximal ideal of R.

Proof. Identifying K[y] ⊂ K[x, y] ⊂ K[x, y]x, note that Rx ∩ K[y] is finitely generated,
being a subalgebra of K[y]. Since fR is a radical ideal, it is sufficient to show that√
xR is a maximal ideal of R. To do so, we show that all generators of R lie in this

radical. Now consider g = xayb ∈ R, where b ̸= 0, note that λ(g) = b
a+b

. Since R is
not finitely generated by Lemma 6.1.3, the sequence (λk) has a strictly increasing
subsequence. In particular there is some h = xcyd ∈ R, d ̸= 0 which has λ(h) > λ(g).
Now if we consider hb and gd, we see that both have the same y-degree, but since
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λ(hb) = λ(h) > λ(g) = λ(gd), we can write gd = xiha for some i > 0. In other words,
gd ∈ xR and hence g ∈

√
xR, proving the result.

Example 6.1.6. The subalgebra R := K[x, xy, xy2, . . . , ] discussed in Example 2.4.6
is non-finitely generated by Lemma 6.1.3. We have λ(xyn) = n/(n+ 1), which yields
a strictly increasing sequence. We have also shown in Example 2.4.6 that fR =

√
xR

and this is the maximal graded ideal of S

Example 6.1.7. Consider R := K[x, x3y, x5y2, x7y3, . . . , x2n+1yn, . . . ]. We have
λ(x2n+1yn) = n

3n+1 which tends to 1
3 from below as n tends to infinity. Hence R is

non-finitely generated. Recalling the non-finiteness criterion 4.2.3, if we let S = K[x]
so that R = S[y]. By writing βn = x2n+1yn, degx(βn) is unbounded whilst R is
non-finitely generated. This example does not arise as an invariant ring under a
Ga-action and so does not fit the conditions of the non-finiteness criterion. It does
however demonstrate how there could exist non-finitely generatied invariant rings
which do not satisfy the non-finiteness criterion.

We can relax some of the conditions on R in order to obtain similar results. Now
suppose that R ⊂ K[x, y] has the following properties:

1. R is generated by monomials,

2. xr ∈ R for some r ≥ 0.

Lemma 6.1.8. With the conditions above, R is finitely generated if and only if
(λk)k∈N is eventually constant.

Proof. Again, if a strictly increasing subsequence exists, then R is not finitely
generated by Proposition 6.1.2.

Suppose that the sequence is eventually constant with maximal ratio α, and that
H ⊂ R is a minimal monomial generating set. Note that for a given y-degree there
can be at most r generators with that y-degree. Let G = {g1, . . . , gn} ⊂ H be a
minimal monomial generating set for all elements in R of ratio α, which is finite by
Proposition 6.1.4. Order the elements of G by y-degree with gi = xaiybi . Suppose
that the greatest common divisor of the bi is d and the greatest common divisor of
the ai is δ. Choose N ∈ N suitably large so that for all kd > N , there is an element
of R with ratio α, k ≥ 0. Similar to the proof of Lemma 6.1.3, we will show that, in
addition to G and xr, at most r monomials of the form xeykd+s for each 0 ≤ s < d

are required to generate all but finitely many elements of R.
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Similar to Lemma 6.1.3, for a generator f = xeyc ∈ H with c ≥ N there will be
two elements p = xjδyjd and q = x(j+1)δy(j+1)d, generated by G with jd ≤ c < (j+1)d.
Write c = jd+ s, 0 ≤ s < d. Note that together with xr, f generates all elements
with y-degree c and x-degree e+ lr, l ≥ 0. As f is a generator, and H is minimal,
we have xe−lryc /∈ R whenever e− lr ≥ 0. Now, for

g = x(k+h)δy(k+h)d, k ≥ N/d, h ∈ N,

we have
fg = x(k+h)δ+ey(k+j+h)d+s.

So f ∪G ∪ xr generates elements t with degy(t) = kd+ s, where k ≥ (N + j) and
0 ≤ s < d. By repeating this process, we observe that at most r generators with
y-degree congruent to s modulo d are required to generate all elements with y-degree
congruent to s modulo d and sufficiently large. Repeating this process then for each
s modulo d, it is clear that we need at most rd generators to generate all elements
of R with sufficiently large y-degree. Since the remaining elements in R will have
bounded y-degree, we would require only finitely many more generators to generate
all of R.

Lemma 6.1.9. With R as above, let K[xa1 , . . . , xan ] = R ∩ K[x], and let G ⊂ R

be a monomial generating set for R. Then, if R is not finitely generated fR =√
(xa1 , . . . , xan)R and G ⊂ fR.

Proof. First we show that each xai ∈ fR. Consider Rxai , we note that if Rxai ∩K[x, y]
is finitely generated then so is Rxai . Let g ∈ G with degy(g) ≥ 1, then g = xαyβ and

gai

(xai)α
= xaiαyaiβ

xaiα
= yaiβ ∈ R ∩ K[x, y],

and hence on Rxai ∩ K[x, y], λaiβ = 1, meaning the sequence (λk)k∈N on Rxai ∩K[x, y]
is eventually constant, and so Rxai ∩ K[x, y] is finitely generated by Lemma 6.1.8.
Thus

√
(xa1 , . . . , xan) ⊂ fR and if we show g ∈

√
(xa1 , . . . , xan) for all g ∈ G then we

obtain the desired result. Clearly, for g ∈ G, if degy(g) = 0, then g ∈
√

(xa1 , . . . , xan),
so suppose g = xαyβ with β ≥ 1. Now λ(g) ≤ λβ, and since (λk)k∈N has a strictly
increasing subsequence there is some h = xγyδ with λ(h) = λδ > λβ ≥ λ(g). Now

gδa1 = xa1(αδ−γβ)ha1β ∈ (xa1 , . . . , xan)R,

where (αδ − γβ) > 0 since λ(gδ) < λ(hβ).
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With this in hand, we can in fact relax the statement of Lemma 6.1.3 fur-
ther. Suppose now that R ⊂ K[x, y] is simply just generated by monomials. We
define a ratio function µ : K[x, y] −→ Q as µ(xayb) = a

a+b
and extend to poly-

nomials in the same way as for λ. We also define the sequence (µk)k∈N with
µk := max{µ(xiyb) |xiyb ∈ R, i ≤ k}. Note that the results of Propositions 6.1.2 and
6.1.4 hold when replacing λ with µ by swapping x and y.

If there is no monomial xayb ∈ R with a ≤ k, then we set µk = 0, and similarly we
set λk = 0 if there is no monomial with b ≤ k. Additionally note that for monomials
m we have λ(m) = 1 −µ(m), hence λ(m) ≥ λ(m′) if and only if µ(m) ≤ µ(m′), with
λ(m) = λ(m′) if and only if µ(m) = µ(m′) .

Theorem 6.1.10. R is finitely generated if and only if both sequences (λk)k∈N,
(µk)k∈N are eventually constant.

Proof. Suppose, without loss of generality, that (λk)k∈N has a strictly increasing
subsequence. By Proposition 6.1.2, R is not finitely generated.

Now suppose that for some N ∈ N we have λk = λN and µk = µN for all k ≥ N .
Let H ⊂ R be a minimal monomial generating set. Using Proposition 6.1.4, let

G1 = {g1, . . . , gn} ⊂ H, G2 = {h1, . . . , hm} ⊂ H,

where G1 generates all f ∈ R with λ(f) = λN , and G2 generates all f ∈ R with
µ(f) = µN . Let gi = xaiybi and hi = xciydi , set

ρ := gcd(ai), r := gcd(bi),
ϵ := gcd(ci), v := gcd(di).

Let g∗ = xρyr, h∗ = xϵyv. Choose M ∈ N sufficiently large so that for all kr ≥ M

and lϵ ≥ M , we have (g∗)k, (h∗)l ∈ R.
We can associate any monomial xαyβ to the point (α, β) ∈ N2. The monomials

with ratios λN or µN can then be understood to be the points in N2 lying on the lines
in Q2 with equations y = r

ρ
x, y = ϵ

v
respectively. The points in N2 corresponding

to the monomials in R are therefore contained in a cone cut out by these ratios.
Multiplying two monomials corresponds to addition of vectors in N2, thus the points
corresponding to the monomials generated by G1 ∪G2 lie in the semigroup generated
by the points {(a1, b1), . . . (an, bn), (c1, d1), . . . , (cm, dm)} ⊂ N2.

Note that G1 ∪G2 generates three families of points:
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• (g∗)k, k ≥ M/d, corresponding to {(kρ, kr) ∈ | k ≥ M/r}.

• (h∗)l, l ≥ M/ϵ, corresponding to {(lϵ, lv) | l ≥ M/ϵ}.

• (g∗)k(h∗)l, k ≥ M/r, l ≥ M/ϵ, corresponding to {(kρ + lϵ, kr + lv) | k ≥
M/r, l ≥ M/ϵ}.

The third family of points gives rise to a family of parallelograms P(k,l), k ≥ M/r, l ≥
M/ϵ with vertices

(kρ+ lϵ, kr + lv), ((k + 1)ρ+ lϵ, (k + 1)r + lv),
(kρ+ (l + 1)ϵ, kr + (l + 1)v), ((k + 1)ρ+ (l + 1)ϵ, (k + 1)r + (l + 1)v).

−1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2
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6

7

8

P(0,0)

Note that within each parallelogram there are finitely many integer points, and this
number is the same for each parallelogram; call it A.

Claim. There is some L ∈ N and some finite set G′ ⊂ H such that G1 ∪ G2 ∪ G′

generates all monomials in R lying in all parallelograms P(k,l) with k, l ≥ L

To prove the claim, first consider some m = xeyf ∈ R with e,≥ M/r, f ≥ M/ϵ,
so m is one of the A points lying within some parallelogram P(a,b) say. If all such
m are generated by G1 ∪ G2, we are done, otherwise there are at most finitely
many generators p1, . . . ps ∈ H such that G3 := {p1, . . . , ps} ∪G1 ∪G2 generates m.
Now by construction, since m lies within P(a,b), (g∗)k(h∗)lm lies within P(a+k,b+l) for
k ≥ M/r, l ≥ M/ϵ. Thus, for q ∈ R a monomial corresponding to a point lying
within some parallelogram P(a,b) for a, b sufficiently large, there are at most A− 1
possibilities for this point corresponding to q to not be generated by G1 ∪G2 ∪G3.
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Therefore, continuing this process and setting G′ = G3 ∪ · · · ∪GA+2 we obtain the
desired result for some suitably large L ∈ N, thus proving the claim.

Now, given the claim, the point (Lρ+ Lϵ, Lr + Lv) ∈ N2 divides the cone into 4
parts by the lines

y = r

ρ
x+ L

(
v − rρ

ϵ

)
, y = v

ϵ
x+ L

(
r − vρ

ϵ

)
,

and G1 ∪G2 ∪G′ generates all monomials corresponding to points (a, b) with

b ≥ v

ϵ
a+ L

(
r − vρ

ϵ

)
, a ≥ ρ

r
b+ L

(
ρ− v

ϵ
r
)
.

There are are only finitely many possible points in the region bounded by

v

ϵ
a ≤ b ≤ v

ϵ
a+ L

(
r − vρ

ϵ

)
,

ρ

r
b ≤ a ≤ ρ

r
b+ L

(
ρ− vϵ

r

)
,

and hence only finitely many more monomials are required to generate all mono-
mials corresponding to the points in this region. What remains are monomials
corresponding to points satisfying either

b ≥ v

ϵ
a+ L

(
r − vρ

ϵ

)
,

ρ

r
b ≤ a ≤ ρ

r
b+ L

(
ρ− vϵ

r

)
, (6.2)

or
a ≥ ρ

r
b+ L

(
ρ− vϵ

r

)
,

v

ϵ
a ≤ b ≤ v

ϵ
a+ L

(
r − vρ

ϵ

)
. (6.3)

Note that for a monomial corresponding to a point in case 6.2, for a given y-degree,
there are at most L

(
ρ− vϵ

r

)
monomials in R in this region. Similarly in case 6.3,

for a given x-degree there are at most L
(
r − vρ

ϵ

)
monomials in R in this region. To

show that only finitely many elements of H are needed to generate all monomials
in these regions we can proceed similarly to Lemma 6.1.8. Given some monomial
m = xeyf ∈ R in the region 6.2, write f = lr + s, 0 ≤ s < r, and e = lρ + ρ

r
s + t,

0 < t < L
(
ρ− vϵ

r

)
. Then (g∗)km, for k ≥ M generates monomials corresponding to

points (u, v) with u = (l + k)ρ + ρ
r
s + t, and v ≡ s mod r for v sufficiently large.

This can be done for all possible t and s, and since only finitely many elements of H
are required to generate each m, we see that finitely many monomials are needed to
generate every monomial in this region. The proof for region 6.3 follows exactly the
same argument with the x and y-degrees swapped.

With this in hand we can now show:
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Theorem 6.1.11. Suppose R ⊂ K[x, y] is a non-finitely generated monomial sub-
algebra, and let G ⊂ R be a monomial generating set. Then G ⊂ fR and fR is the
radical of a finitely generated ideal.

Proof. Note that if R ⊂ K[x, y] is a non-finitely generated monomial subalgebra
then we have either:

1. Precisely one of the sequences (λn)n∈N, (µn)n∈N has an infinite strictly increasing
subsequence and the other is eventually constant.

2. Both sequences have an infinite strictly increasing subsequence
In case 1 suppose without loss of generality that (µn)k∈N is eventually constant
with maximal ratio κ, and let G = {(xδyd)a1 , . . . , (xδyd)am} be a generating set for
all elements which have this maximal ratio κ. We will show that fR =

√
GR =√

(xδyd)aiR and that fR is a maximal ideal of R.
Given an element xayb ∈ R, since (λn)k∈N has an infinite strictly increasing

subsequence there is some element xαyβ with λ(xayb) < λ(xαyβ), thus

yβa−αb = (xαyβ)a

(xayb)α
∈ Rxayb ∩ K[x, y].

Now, if µ(xayb) < κ, then

xba1δ−aa1d = (xδyd)a1b

(xayb)a1d
∈ Rxayb ∩ K[x, y].

Alternatively, we have µ(xayb) = µ(xδyd) and this remains the maximal ratio for κ
on Rxayb ∩K[x, y]. In either case, Rxayb ∩K[x, y] has both (λn)n∈N, (µn)n∈N eventually
constant, meaning Rxayb is finitely generated. Thus, fR is a maximal ideal.

Furthermore, if xayb ∈ R has µ(xayb) = κ, then xayb = (xδyd)k for some k and
hence (xayb)a1 = (xδyd)a1k ∈ (xδyd)a1R, otherwise µ(xayb) < κ. Let xαyβ ∈ R satisfy
λ(xαyβ) > λ(xayb), then we have:

(xayb)β = xaβ−bα(xαyβ)b, (xayb)aiδ = ybaiδ−aaid(xδyd)aia,

where both aβ − bα, baiδ − aaid > 0. Thus

(xayb)βα(baiδ−aaid)+aiδβ(aβ−bα) = (xαyβ)αβ(baiδ−aaid)(xδyd)ai(aβ−bα) ∈ (xδyd)aiR,

showing that fR =
√

(xδyd)aiR.
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In case 2 let G ⊂ R be a generating set, suppose that λk ≠ 0 but λk−1 = 0
and µl ̸= 0, but µl−1 = 0. Let xpyk, xlyq ∈ R be the corresponding elements with
λ(xpyk) = λk, µ(xlyq) = µl. Note that we must have q ≥ k and p ≥ l and hence

p
p+k

= µ(xpyk) ≥ l
l+q

= µ(xlyq). Let xayb ∈ R then, since both (λn)n∈N, (µn)n∈N have
infinite strictly increasing subsequences, there are xcyd, xeyf ∈ R with λ(xcyd) >
λ(xayb) and µ(xeyf ) > µ(xayb). Hence we must have

yad−bc = (xcyd)a

(xayb)c
, xeb−fa = (xeyf )b

(xayb)f
∈ Rxayb ∩ K[x, y],

therefore Rxayb ∩ K[x, y], has both (λk)k∈N, (µk)k∈N eventually constant, so Rxayb is
finitely generated and we must have G ⊂ fR.

We now show that fR =
√

(xpyk, xlyq)R. Note that if λ(xayb) = λ(xpyk) then
we must have xayb ∈

√
xpykR, and similarly if µ(xayb) = µ(xlyq) we must have

xayb ∈
√
xlyqR. In either case, xayb ∈

√
(xpyk, xlyq)R. Since µ(xpyk) ≥ µ(xlyq),

there are then three remaining cases for xayb:
1. λ(xayb) > λ(xpyk) and µ(xayb) > µ(xlyq),

2. λ(xayb) < λ(xpyk) and µ(xayb) > µ(xlyq),

3. λ(xayb) > λ(xpyk) and µ(xayb) < µ(xlyq),
In case 1 we have λ(xayb) < λ(xpyk) and µ(xayb) < µ(xlyq), since then

(xayb)p = ypb−ka(xpyk)a, (xayb)q = xaq−lb(xlyq)b,

where both pb− ka, aq − lb > 0. Using this, we find

(xayb)pk(aq−lb)+qp(pb−ka) = (xlyq)ak(aq−lb)(xpyk)pb(aq−lb) ∈ (xpyk, xlyq)R.

Now in case 2, since (µn)n∈N has an infinite strictly increasing subsequence, there
is some xcyd ∈ R with µ(xcyd) > µ(xayb). Repeating the above calculation for
case 1 replacing xpyk with xcyd we can show xayb ∈

√
xlyqR and similarly for case

3 we find that xayb ∈
√
xpykR. Thus, having dealt with all cases, we conclude

that fR =
√

(xpyk, xlyq)R, the radical of a finitely generated ideal, completing the
proof.

Example 6.1.12. Let α, β ∈ R and let R := K
[{
xayb |α < a

b
< β

}]
. That is, R

is generated by all monomials corresponding to points in N2 bounded by the lines
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y = βx and y = αx as shown in the following figure:

−2 −1 1 2 3 4 5 6 7 8 9 10 11 12 13
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For xayb ∈ R, we must have

α

1 + α
< λ(xayb) = b

a+ b
<

β

1 + β
,

1
1 + β

< µ(xayb) = a

a+ b
<

1
1 + α

.

If we consider (λk)k∈N, this defines a sequence which converges to β
1+β

from below
while (µk)k∈N converges to 1

1+α
from below also. Thus both (λk)k∈N and (µk)k∈N

have infinite strictly increasing sequences and R is non finitely generated.
If we let R := K

[{
xayb |α < a

b
≤ β

}]
and require β = p

q
∈ Q, then xpyq ∈ R

has maximal λ(xpyq) = q
p+q

= β
1+β

but 1
1+α

is not attained, hence R is not finitely
generated.

Finally, if R := K
[{
xayb |α ≤ a

b
≤ β

}]
with α, β ∈ Q, then both maximal λ and

µ are attained and R is finitely generated.

Definition 6.1.13. Let “ < ” be a monomial ordering on K[x, y], we say that a
function λ< : K[x, y] → Q is an ordered ratio function if:

1. For f ∈ K[x, y] λ<(f) = λ<(m) where m is the leading monomial of f .

2. For all f ∈ K[x, y], i ≥ 1, λ<(f) = λ<(f i).

3. For f, g ∈ K[x, y] with λ<(f) ≤ λ<(g), then λ<(f) ≤ λ<(fg) ≤ λ<(g).

4. A monomial m ∈ K can be uniquely recovered given any two of λ<(m), degx(m)
and degy(m).

Lemma 6.1.14. Let “ < ” be a monomial ordering, λ<(xayb) := b
a+b

and µ(xayb) :=
a

a+b
ordered ratio functions and R ⊂ K[x, y] a subalgebra. Let (λ<

k )k∈N, (µ<
k )k∈N be
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sequences defined by λ<
k := max{λ<(f)| degy(f) ≤ k}, µ<

k := max{µ<(f)| degx(f) ≤
k}. Then R has a finite SAGBI-basis if and only if both sequences are eventually
constant.

Proof. Consider Lalg(R), the algebra generated by the leading monomials of R. The
ratio functions λ, µ are well-defined on this algebra, and since for f ∈ R, λ<(f) =
λ<(m) and µ<(f) = µ<(m) where m ∈ Lalg(R), the sequences (λ<

k )k∈N, (µ<
k )k∈N are

the same on Lalg(R). Thus by Theorem 6.1.10, Lalg(R) is finitely generated if and
only if these sequences are eventually constant. Additionally, given a generating
set for Lalg(R), the corresponding elements in R with these leading terms form a
SAGBI-basis for R, which is finite if and only if the generating set for Lalg(R) is
finite, hence the result.

6.1.2 Three or more variables

Throughout this subsection, we suppose that R ⊂ K[x1, . . . , xn], n ≥ 3 is a monomial
subalgebra, unless stated otherwise. In order to obtain conditions on R which classify
when it is finitely generated we provide a geometrical interpretation of our results
obtained thus far. As noted previously, monomials xa1

1 · · ·xan
n ∈ K[x1, . . . , xn] can

be associated to vectors (a1, . . . , an) ∈ Nn ⊂ Qn. Multiplication of two monomials
corresponds to addition of their corresponding exponent vectors. Thus, the set of
vectors corresponding to all monomials in a subalgebra of K[x1, . . . , xn] have the
structure of a semigroup S in Nn under addition.

Definition 6.1.15. A semigroup S is affine if it is finitely generated and isomorphic
to a subsemigroup of Zd for some d ≥ 0. By finitely generated, we mean that there
are s1, . . . , sm ∈ S such that for all s ∈ S there are ai ∈ N such that:

s = a1s1 + a2s2 + . . . amsm.

R is then finitely generated as a subalgebra if and only if the corresponding
semigroup S is affine. Ratio functions also have a geometric interpretation. In two
variables, the set of monomials which have a fixed ratio λ ∈ Q lie on lines in Q2.
These functions can also be considered as functions from N2 \ {(0, 0)} to Q. The
existence of a maximal ratio corresponds to a line which bounds all points in the
semigroup. For example, given the ratio function λ(xayb) = λ((a, b)) := b/(a+ b), if
λN is the maximal ratio, then for all s = (s1, s2) ∈ S we must have s2/(s1 +s2) ≤ λN ,
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or equivalently λNs1 +(λN −1)s2 ≥ 0. When S is bounded by two lines it is contained
within a polyhedral cone:

Definition 6.1.16. [2, p. 10] A polyhedral cone C ⊂ Qn, is the intersection of a finite
number of half-spaces which have 0 on their boundary. Equivalently, a polyhedral
cone is the non-negative span of a finite number of vectors v1, . . . , vm ∈ C, meaning
for all v ∈ C

v =
m∑

i=1
λivi, λi ∈ Q, λi ≥ 0.

A vector v ∈ C is extremal if whenever we have vi = ui + wi, with ui, wi ∈ C, we
must have ui = αivi, wi = βivi, αi, βi ∈ Q.

Theorem 6.1.17. [2, p. 11] A polyhedral cone C is the non-negative span of a finite
number of extremal vectors.

Definition 6.1.18. Given a polyhedral cone C, a set of extremal vectors for C is
a collection of vectors {v1, . . . , vm} ⊂ C whose non-negative linear span is all of C.
Given an extremal vector v, the corresponding ray Rv := {λv ∈ Qn |λ ∈ Q} is called
an extremal ray.

Definition 6.1.19. A polytope P ∈ Qn is the convex hull of a finite set of vectors
v1, . . . , vm ∈ Qn, that is

P :=
{

m∑
i=1

aivi, |
m∑

i=1
ai = 1, 0 ≤ ai ≤ 1 for all i

}
.

A vector v ∈ P is a vertex of P if it cannot be expressed as a convex combination of
vectors in P . That is, if there are wi ∈ P such that

v =
k∑

i=1
aiwi,

where ∑k
i=1 ai = 1 and 0 ≤ ai ≤ 1 for all i, then k = 1 and w1 = v. Clearly the

vertices of P are some subset of {v1, . . . , vm}.

The result of Theorem 6.1.10 can therefore be restated for S in the following way:

Corollary 6.1.20. Let S ⊂ N2 be a semigroup. Then, S is affine if and only if S is
contained in a polyhedral cone, with half spaces defined by maximal ratios λN , µN ∈ Q,
and there are extremal vectors s, t ∈ S with λ(s) = λN and µ(t) = µN .
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In this section, we prove an analogue to this result for dimension n ≥ 3:

Theorem 6.1.21. A monomial subalgebra R ⊂ K[x1, . . . , xn] is finitely generated if
and only if its corresponding semigroup S ⊂ Nn ⊂ Qn is contained in a polyhedral
cone C ⊂ Qn with a set of extremal vectors v1, . . . , vm where for each i, there is some
µi ∈ Q with µivi ∈ S.

This Theorem, together with the subsequent Corollary 6.1.25 we make upon
completion of its proof, has been shown in [2, p. 53] using Hilbert’s basis theorem.
We provide an elementary proof.

Note that any subsemigroup of Nn is trivially contained in a polyhedral cone.
Indeed, the cone defined by the half spaces Hi := {(a1, . . . , an) ∈ Qn | ai ≥ 0}
will contain all points in Nn and hence all possible subsemigroups of Nn. When
a semigroup S satisfies the conditions of Theorem 6.1.21 we say that it has an
associated polyhedral cone. In order to prove this we first obtain some preliminary
results:

Proposition 6.1.22. Suppose S ⊂ Nn is a semigroup, v ∈ S and R := {λv ∈
Qn |λ ≥ 0} is the ray passing through v. Then the subsemigroup T := S ∩ R is
affine.

Proof. Let v = (a1, . . . , an) ∈ S ⊂ Nn, there is some λ ∈ Q such that λv ∈ Nn and
|v| is minimal. We claim that R ∩ Nn = {k(λv) | k ∈ N}. Indeed if w ∈ R has
|w| = q|v| + |u|, where u = w − qv and |u| < |v| we must have u = 0 since v was
chosen minimally. Thus, R ∩ Nn ∼= N and hence T is isomorphic to a subsemigroup
of N, hence is affine.

This following lemma is known as Gordan’s lemma, see [2, p.52].

Lemma 6.1.23. Let C ⊂ Qn be a polyhedral cone, and let S = Nn ∩ C, then S is
affine.

Proof. Suppose v1, . . . , vm ∈ C ⊂ Qn are a set of extremal vectors for C. We may
assume, since we can rescale the vectors, that vi ∈ Nn for all i. Now Let v ∈ C ∩ Nn,
then there are λi ≥ 0 such that

v =
m∑

i=1
λivi,
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since the λi ∈ Q we can rewrite this sum as

v =
m∑

i=1
aivi + bivi,

where bi ∈ N and 0 ≤ ai < 1. Note that since the vi ∈ Nn we must have ∑m
i=1 bivi ∈

Nn and hence
m∑

i=1
aivi ∈ Nn.

Consider the set
A :=

{
m∑

i=1
aivi ∈ Nn | 0 ≤ ai < 1

}
,

we note that A consists of all points within the polytope which is the convex hull of

{0, v1, . . . vm, v1 + v2, . . . , vm−1 + vm, . . . , v1 + · · · + vm}.

Clearly, we must have that |A| < ∞ and hence the set A ∪ {v1 . . . , vm} generates S
over N.

Lemma 6.1.24. Let C ⊂ Qn be a polyhedral cone, and v1, . . . , vm be a set of extremal
vectors of C. Let S ⊂ Nn ∩C be a semigroup, with the property that for each i, there
is some λi ∈ Q such that λivi ∈ S, then S is affine.

Proof. To prove this result, we generalise the proof of Theorem 6.1.10 to n variables.
We induct on n, with the aim to show that there is a generating set G = G1 ∪G2

for S with the property that each g ∈ G1 lies on an extremal ray of C, and for each
s ∈ S we have s = f + g, where g ∈ G2 and f lies in the semigroup generated by G1.
For n = 1 this result is trivial and for n = 2 this is the content of Theorem 6.1.10.
Now, let Ri be the extremal ray corresponding to each vi. By Proposition 6.1.22
each subsemigroup Ri ∩ S is affine and all elements in Ri ∩ S are of the form kwi for
some wi ∈ R ∩ Nn and k ≥ 0. Suppose the generators of Ri ∩ S are ki

1wi, . . . k
i
ji
wi,

ki
l ∈ N. Let di = gcd(ki

1, . . . , k
i
ji

). Let U ⊂ S be the subsemigroup generated by
G1 := {ki

1wi, . . . k
i
ji
wi | i = 1, . . .m}.

Now let T ⊂ C be the semigroup with generators diwi, i = 1, . . .m, note that T
is not necessarily a subsemigroup of S. For a ∈ T we define the polytope Qa which
is the convex hull of the vectors{

a, a+ d1w1, . . . a+ dnwn, . . . , a+
m∑

i=1
diwi

}
.
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Note that these polytopes cover the cone, meaning that for all c ∈ C, and hence all
s ∈ S there is some polytope Qa which contains c. We set

A :=
{

m∑
i=1

aidiwi ∈ Nn | 0 ≤ ai ≤ 1
}
,

as in the proof of Lemma 6.1.23 we remark that |A| < ∞. Note that since the vi,
and hence the diwi, generate C, given any g ∈ S we can write g as

g =
∑

qidiwi + ridiwi, qi ∈ N, 0 ≤ ri ≤ 1,

where r := ∑n
i=1 ridiwi ∈ A. We call r a root vector of g. Note that all g ∈ S have

at least one root vector. We claim that only finitely many generators are required to
generate all points contained in polytopes of the form Qu+v, where v ∈ T and u ∈ T

are fixed vectors to be determined.
Since each of the subsemigroups Ri ∩ S are isomorphic to a subsemigroup of N,

there is some M ∈ N such that (M + k)diwi ∈ S for all k ≥ 0. If g ∈ S is contained
in some polytope Qw say, set cr = w+p, where p = ∑m

i=1 Mdiwi. Now g+U contains
a point in every polytope of the form Qcr+v, where v ∈ T . Write g = w + r, where r
is a root vector of g. If f ∈ g + U , and lies in the polytope Q(w+p)+v, then we must
have f = w + p + v + r, where w, p, v ∈ T . Therefore all such f have r as a root
vector. Now for each possible root vector r, of which there are a finite number since
|A| < ∞, we can look for some gr ∈ S which has said root vector. If gr exists, then
by the argument above there is some vector cr for which all f ∈ S which have r as a
root vector and are contained in polytopes of the form Qcr+v, v ∈ T , are generated
by gr + U . Otherwise there are no f ∈ S with r as a root vector and we set cr = 0.
If we set

u :=
∑
r∈A

cr,

then we require at most |A| +∑m
i=1 k

i
ji

generators to generate all points contained in
polytopes of the form Qu+v, where v ∈ T , as required. In fact more so is true, since
the polytopes cover the cone, given any w ∈ T lying in u+ C, the cone shifted by u,
no additional generators are required to generate all points in Qw.

Let H1, . . . Hl ⊂ Qn denote the hyperplanes corresponding to the half spaces
which define the cone C. To complete the proof we show that there are vectors p1

0 =
0, p1

1, . . . , p
1
r1 , . . . , p

l
0 = 0, pl

1, . . . , p
l
rl

∈ Qn such that each point s ∈ S \ (S ∩ (u+ C))
is contained in Hi + pi

j for some i, j. With this in hand, we claim that by induction,
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only finitely many generators are required to generate all of S ∩Hi + pi
j. We start

by showing that (C \ (u + C)) ∩ Nn can be covered by finitely many hyperplanes.
For each Hi, we can describe Hi as

Hi :=
{
(p1, p2 . . . , pn) ∈ Q | ai

1p1 + ai
2p2 + · · · + ai

npn = 0
}
,

where ai
j ∈ Q for all i, j. Suppose that ai

j = pi
j

qi
j
, where if pi

j = 0 we set qi
j = 1, let

qi :=lcmj(qi
j). Note that for p = (p1, . . . , pn) ∈ Nn, we must have

ai
1p1 + ai

2p2 + · · · + ai
npn = s

qi

,

where s ∈ Z. Suppose for u = (u1, . . . , un) we have that

ai
1u1 + · · · + ai

nun = si

qi

,

Now, if si > 0, for each 1 ≤ j ≤ si we take pi
j = (t1, . . . , tn) ∈ Qn to be a vector

satisfying
ai

1t1 + · · · + ai
ntn = j

qi

,

and set ri = si If si < 0, we do the same for each si ≤ j ≤ −1 and set ri = −si. Now
given some v ∈ (C \ (u+C)) ∩Nn it must lie between some Hi and Hi +u and hence
lies in Hi + pi

j for some j, thus (C \ (u+ C)) ∩ Nn can be covered by finitely many
hyperplanes. Additionally, since given any b ∈ Hi + pi

j we have Hi + pi
j = Hi + b, we

can assume that pi
j ∈ Zn. Furthermore, if pi

j = (t1, . . . , tn) we can choose pi
j so that

ti ≤ 0 for all i, so that whenever we have b = c+ pi
j ∈ Hi + pi

j ∩ C, it follows that
c ∈ Hi ∩ C.

Now for each i suppose that λi
1v

i
1, . . . , λ

i
ai
vi

ai
∈ {λ1v1, . . . , λmvm} ⊂ S ∩C are the

extremal vectors contained in Hi ∩ C. By induction the subsemigroup S ∩Hi lying
in the polyhedral cone Hi ∩C is finitely generated with generating set Gi = Gi

1 ∪Gi
2.

To show that S is finitely generated, the only remaining task is to show that finitely
many elements are required generate all vectors in (Hi +pi

j) ∩S for all i, j. Note that
for pi

j ̸= 0, (Hi +pi
j) ∩ S is not a semigroup. Given a ∈ Hi ∩S and b ∈ (Hi +pi

j) ∩ S,
we must have a + b ∈ (Hi + pi

j) ∩ S. We claim that there is a finite subset
G ⊂ (Hi + pi

j) ∩ S with the property that each b ∈ (Hi + pi
j) ∩ S can be written

as b = a + g, where g ∈ G and a lies in the semigroup generated by G. It is clear
that a subset with this property exists, though may not necessarily be finite. Let
G ⊂ (Hi + pi

j) ∩ S be such a set which is minimal and let g ∈ G. We can write
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g = g′ + pi
j, where g′ ∈ (Hi ∩ C) ∩ Nn. Consider the semigroup U ⊂ (Hi ∩ C) ∩ Nn

generated by Gi
1 and G′ := {g′ | g′ = g − pi

j, g ∈ G}, by induction we must have
that U is finitely generated and hence G′ is finite as it was chosen to be minimal.
Thus we conclude that finitely many generators are required to generate all points
in (Hi + pi

j) ∩ S for all i, j, completing the proof.

Now we complete the proof of the theorem:

Proof of Theorem 6.1.21. Suppose that there is no polyhedral cone C ⊂ Qn with
extremal vectors v1, . . . , vn containing S with µivi ∈ S for some µi ∈ Q. Consider
any finite subset U := {u1, . . . , uk} ⊂ S, these generate a polyhedral cone

CU :=
{

k∑
i=1

λkuk ∈ Qn |λk ∈ Q≥0

}
,

where some subset of the vectors of U are the extremal vectors of CU . Since S cannot
be contained within CU , we must therefore conclude that there is some p ∈ S which
is not a combination on the ui and so no finite subset of S can generate S.

Note that this theorem has an immediate generalisation, our proof uses that we
are only able to take non-negative linear combinations of our points, but not that
the points themselves have non-negative entries. Thus we obtain the following result
for Laurent polynomials:

Corollary 6.1.25. Suppose R ⊂ K[x1, . . . , xn, x
−1
1 , . . . , x−1

n ] is generated by mono-
mials. Then R is finitely generated if and only if its corresponding semigroup
S ⊂ Zn ⊂ Qn is contained in a polyhedral cone C ⊂ Qn with a set of extremal vectors
v1, . . . , vm where for each i, there is some µi ∈ Q with µivi ∈ S.

Remark. Suppose that there are monomials m1, . . .mk ∈ R corresponding to points
a1, . . . , an ∈ Zn with the property that for all q ∈ Qn we have

q =
k∑

i=1
λiai,

where λi ∈ Q≥0 for all i. Then the proof of Theorem 6.1.21 can still be used, but
here the polyhedral cone generated by the vectors a1, . . . , an ∈ Zn is all of Qn.

As a second generalisation, note that Theorem 6.1.21 passes immediately to
SAGBI bases.
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Corollary 6.1.26. Suppose R ⊂ K[x1, . . . , xn] is a subalgebra and that “ < ” is
a monomial ordering on R. Then R has a finite SAGBI-basis if and only if the
semigroup corresponding to the leading algebra Lalg(R) has an associated polyhedral
cone.

Now with Theorem 6.1.21 in hand, we dedicate the rest of this chapter to studying
the finite generation ideal of non-finitely generated monomial subalgebras.

6.2 FINITE GENERATION IDEALS

Suppose R ⊂ K[x1, . . . , xn] is a non-finitely generated monomial subalgebra. Corol-
lary 6.1.25 re-contextualises our approach to determining whether a given monomial
m = xa1

1 · · ·xan
n ∈ R lies in fR. When determining whether Rm is finitely gener-

ated, we can take a geometric approach. m−1 ∈ Rm will correspond to the point
(−a1, . . . ,−an) and using Corollary 6.1.25 we can determine whether Rm is finitely
generated by determining whether the corresponding semigroup S, together with
the negative ray

R−m := {k(−a1, . . . ,−an) ∈ Zn | k ≥ 1} ⊂ Qn,

has an associated polyhedral cone. To demonstrate this, we return to Example 2.4.6
with R = K[x, xy, xy2, . . . , ].

−3 −2 −1 1 2 3 4 5 6 7 8

−4

−3

−2

−1

1

2

3

4

5
HI

If we examine Rxy, the vectors corresponding to x, xy2 and (xy)−1, namely (1, 0), (1, 2)
and (−1,−1), generate a polyhedral cone which is all of Q2, and hence Rxy is finitely
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generated. Indeed, the same is true for all xyn, n ≥ 1 using the vectors corresponding
to x, xyn+1 and (xyn)−1. When considering Rx however, the polyhedral cone which
is associated to the semigroup corresponding to Rx is the half space:

H := {(a, b) ∈ Q2 | b ≥ 0},

Note in this case the extremal vectors, (1, 0) and (−1, 0) do not generate the cone
and we require at least one other vector, such as (1, 1) to do so.

This example demonstrates a useful means of determining whether certain mono-
mials are contained in the finite generation ideal. Suppose R ⊂ K[x1, . . . , xn] a
non-finitely generated subalgebra, and S ⊂ R is a finitely generated subalgebra of R.
Suppose that the associated polyhedral cone of S is n-dimensional, meaning that
the extremal points generating the cone generate Qn as a vector space over Q. Now
suppose we localise by a monomial corresponding to a point contained in the interior
of the cone, meaning not lying on any of the cone’s faces. The localised vector,
together with all of the extremal points generating the cone, will generate all of Qn

as a polyhedral cone. Hence, these monomials must lie in the finite generation ideal.
It remains unclear whether monomials which correspond to points lying on one of

faces of the polyhedral cone associated to S, the semigroup corresponding to R, lie in
the finite generation ideal also. To approach a solution, it quickly becomes necessary
to understand the ways in which a subalgebra can fail to satisfy the conditions of
Theorem 6.1.21. To do this, as in the two dimensional case we shall make use of
ratio functions, which generalise as follows:

Definition 6.2.1. A function λ : K[x1, . . . , xn, y] −→ Q is a ratio function if it
satisfies following properties:

1. For f ∈ K[x1, . . . , xn, y], λ(f) = max{λ(m) |m is a term of f}.

2. λ(cf) = λ(f) for all f ∈ K[x1, . . . , xn, y], c ∈ K \ {0}.

3. Given f, g ∈ K[x1, . . . , xn, y] with λ(f) ≤ λ(g), then λ(f) ≤ λ(fg) ≤ λ(g) with
equality if and only if λ(f) = λ(g)

4. A monomial m can be uniquely recovered given any n of λ(m), degx1(m),
degx2(m), . . . , degxn

(m).
As an extension to property 4, given ratio functions λ1, . . . , λk : K[x1, . . . , xn] −→ Q
we say these functions are compatible if any monomial m ∈ K[x1, . . . , xn] can be
uniquely recovered given any n of λ1(m), . . . , λk(m), degx1(m), . . . degxn

(m).
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Example 6.2.2. Let {i1, . . . ik} ⊂ {1, . . . , n, } where 1 ≤ k ≤ n, and consider the
function λ : K[x1, . . . , xn] −→ Q defined first on monomials as:

λ (xa1
1 · · ·xan

n ) :=


pi1 ai1 +...pik

aik

qi1 ai1 +···+qik
aik

aij
not all 0,

0 otherwise.

Where the pij
∈ N, qij

∈ N \ {0} satisfy:
1. 0 ≤ pij

qij
≤ 1.

2. If pij
̸= 0, then gcd(pij

, qij
) = 1.

3. There is some s, t ∈ {1, . . . , k} with pis

qis
̸= pit

qit
.

4. If pik
= 0 then qij

= 1.
We can extend λ to f ∈ K[x1, . . . , xn] by setting

λ(f) = max{λ(m) |m is a term of f}.

Then λ defines a ratio function on K[x1, . . . , xn]: Clearly λ satisfies properties 1 and
2, and if

pi1ai1 + . . . pik
aik

qi1ai1 + · · · + qik
aik

= α,

rearranging we have

(αqi1 − pi1)ai1 + · · · + (αqik
− pik

)aik
= 0.

Since there is some s, t with pis

qis
≠ pit

qit
we must have (αqij

− pij
) ̸= 0 for all j, and so

a fixed ratio defines a hyperplane, and λ satisfies property 4. Suppose monomials
m = xa1

1 · · ·xan
n and n = xb1

1 · · ·xbn
n satisfy λ(m) = p

q
≤ λ(n) = r

s
, then

p+ r

q + s
− p

q
= qr − ps

q(q + s) ≥ 0,

since qr − ps ≥ 0 and we also have
r

s
− p+ r

q + s
= qr − ps

s(q + s) ≥ 0.

We then conclude that

λ(m) = p

q
≤ λ(mn) = p+ r

q + s
≤ λ(n) = r

s
,

with equality precisely when p = r, q = s. For general f, g ∈ R where λ(f) = λ(m),
λ(g) = λ(n), for monomials m,n appearing in f and g respectively, it is clear that
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λ(fg) = λ(mn) and so the property remains satisfied. We call this kind of ratio
function a linear ratio function.

As in the 2 dimensional case, we can define an increasing sequence (λk)k∈N with

λk := max{λ(f) | pi1 degxi1
(f) + · · · + pik

degxik
(f) ≤ k}.

If (λk)k∈N has an infinite strictly increasing subsequence, then R is non-finitely
generated, we call this the associated sequence of λ.

When this sequence is eventually constant, then geometrically these ratio functions
can be used to define a half-space with 0 on the boundary containing all monomials
in R, where the maximal ratio defines the hyperplane boundary. Suppose α ∈ Q is
the maximal ratio, then for a monomial xa1

1 · · ·xan
n ∈ R we must have

(αqi1 − pi1)ai1 + · · · + (αqik
− pik

)aik
≥ 0.

Additionally, given a half-space with 0 on the boundary containing R, we can define
a ratio function corresponding to it. Indeed, consider the half-space defined, for
q = (q1, . . . , qn) ∈ Qn by

ri1

si1

qi1 + · · · + rik

sik

qik
≥ 0,

where each rij

sij
̸= 0. By setting α = 1

si1 ···sik
we have:

α
(
ri1si2 · · · sik

qi1 + · · · + rik−1si1 · · · sik−2sik
qik−1 + rik

si1 · · · sik
(sik

+ 1)qik

)
− rik

qik
≥ 0.

Rearranging, we obtain:
rik
qik

ri1si2 · · · sik
qi1 + · · · + rik−1si1 · · · sik−2sik

qik−1 + rik
si1 · · · sik−1(sik

+ 1)qik

≤ α.

Thus, defining a ratio function µ on the monomials with

µ(xa1
1 · · ·xan

n ) :=
rik
aik

ri1si2 · · · sik
ai1 + · · · + rik−1si1 · · · sik−2sik

aik−1 + rik
si1 · · · sik−1(sik

− 1)aik

,

the half-space is then defined by the maximal ratio α.

Example 6.2.3. Ratio functions need not be linear. Indeed, consider λ : K[x, y] −→
Q defined on monomials by:

λ(xayb) := p1a
2 + p2ab+ p3b

2

q1a2 + q2ab+ q3b2 ,
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where the pi, qi satisfy the conditions from Example 6.2.2. Additionally suppose that
p1
q1

≤ p2
q2

≤ p3
q3

, and extend λ to polynomials by taking the maximum value among
all monomials in f . Then λ defines a ratio function on K[x, y]. To see this, we note
that it is clear that λ satisfies properties 1 and 2. For property 3, suppose that
λ(xayb) ≤ λ(xcyd), first we observe that

λ(xcyd) − λ(xayb)

= −(ad− bc) ((p1q2 − p2q1)ac+ (p1q3 − p3q1)(ad+ bc) + (p2q3 − p3q2)bd)
(q1a2 + q2ab+ q3b2)(q1c2 + q2cd+ q3d2) ≥ 0.

Since piqj − pjqi ≤ 0 for all i < j and a, b, c, d ≥ 0, we conclude that ad − bc ≥ 0.
Now by rearranging, we can obtain

λ(xa+cyb+d)

= (p1a
2 + p2ab+ p3b

2) + (p1c
2 + p2cd+ p3d

2) + (2p1ac+ p2(ad+ bc) + 2p3bd)
(q1a2 + q2ab+ q3b2) + (q1c2 + q2cd+ q3d2) + (2q1ac+ q2(ad+ bc) + 2q3bd)

.

Claim. Given a1
b1

≤ a2
b2

≤ a3
b3

, we have

a1

b1
≤ a1 + a2 + a3

b1 + b2 + b3
≤ a3

b3
.

To see this we simply have

a1 + a2 + a3

b1 + b2 + b3
− a1

b1
= (a2b1 − a1b2) + (a3b1 − a1b3)

b1(b1 + b2 + b3)
≥ 0,

since aibj − ajbi ≥ for i > j. The other inequality is similar. Now, given the claim,
it is sufficient to show:

α = p1a
2 + p2ab+ p3b

2

q1a2 + q2ab+ q3b2 ≤ β = 2p1ac+ p2(ad+ bc) + 2p3bd

q1ac+ q2(ad+ bc) + 2q3bd
≤ γ = p1c

2 + p2cd+ p3d
2

q1c2 + q2cd+ q3d2 .

For the first inequality, we have

β − α = −(ad− bc) ((p1q2 − p2q1)a2 + (p1q3 − p3q1)2ab+ (p2q3 − p3q2)b2)
(2q1ac+ q2(ad+ bc) + 2q3bd)(q1a2 + q2ab+ q3b2) ≥ 0,

using ad− bc ≥ 0, piqj − pjqi ≤ 0 for i < j and a, b, c, d ≥ 0. The second inequality
is similar. Thus, λ satisfies property 3, leaving just property 4. This final property
is satisfied, since for a fixed ratio α ∈ Q, we have

p1a
2 + p2ab+ p3b

2

q1a2 + q2ab+ q3b2 = α,
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and rearranging we obtain

(αq1 − p1)a2 + (αq2 − p2)ab+ (αq3 − p3)b2 = 0.

Note that we must have p1
q1

≤ α ≤ p3
q3

, and hence (αq1 − p1) ≥ 0 and (αq3 − p3) ≤ 0.
Solving this, we obtain

a =
−(αq2 − p2)b±

√
((αq2 − p2)2 − 4(αq1 − p1)(αq3 − p3)) b2

2(αq1 − p1)
,

where (αq2 − p2)2 − 4(αq1 − p1)(αq3 − p3) ≥ 0 by our observations. This equation
can only have one solution with a, b ≥ 0. This is because (αq2 − p2)2 − 4(αq1 −
p1)(αq3 − p3) ≥ (αq2 − p2), hence the numerator changes sign when changing the +
to −. We therefore conclude that λ defines a ratio function.

Remark. We expect this form of ratio function to generalise to larger variables,
and higher degrees of homogeneous polynomials in the numerator and denominator,
under some restrictions similar to our requirement that p1

q1
≤ p2

q2
≤ p3

q3
. However, the

combinatorics required to show properties 3 and 4 hold grow in complexity.

In two variables, we have shown that by looking at the associated sequences of
only two fixed linear ratio functions, we can determine whether any given subalgebra
R ⊂ K[x, y] is finitely generated. When working with 3 or more variables, this is no
longer the case. In fact, it is not possible to fix any finite number of ratio functions
in order to determine whether any given subalgebra R ⊂ K[x1, . . . , xn] is finitely
generated for n ≥ 3. Geometrically this makes sense as in 2-dimensions a polyhedral
cone can have only 2 faces, whereas in 3 or more dimensions a polyhedral cone
can have any arbitrary number of faces. In order to obtain results on the finite
generation ideal in n ≥ 3 variables with an approach similar to that of Theorem
6.1.11, we would require at least n− 1 compatible ratio functions. In the proof of
Theorem 6.1.11, when localising by a monomial, it is key that there are monomials
with larger ratio than that monomial in order to show some power of x or y is in the
localisation. With an increased number of variables, we would need an increased
number of monomials, and hence ratio functions which yield monomials with larger
ratios.

The following example is useful in demonstrating the added complexities that
come with determining the finite generation ideal when working with 3 or more
variables. Additionally, it provides a negative answer to the question of whether the
finite generation ideal is always the radical of a finitely generated ideal.
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Example 6.2.4. Consider the subalgebra

R := K
[
x, y, xyz, x3yz2, . . . , x

1
2 n(n+1)yzn, . . .

]
.

Note that Ry
∼= K[x, y, y−1, xz] and so y ∈ fR. Let gn := x

1
2 n(n+1)yzn and consider

Rgn , if m > n then

gm/gn = x
1
2 m(m+1)yzm

x
1
2 n(n+1)yzn

= x
∑m

i=n+1 izm−n.

We can consider just these elements as well as x as generators of a subalgebra
of K[x, z]; with the ratio function λ(xazb) := b

a+b
, the generators then have ratio

λ(x
∑m

i=n+1 izm−n) = m−n
m−n+

∑m

i=n+1 i
, which is strictly decreasing as m increases. There-

fore the sequence λk is eventually constant and by Lemma 6.1.3 the subalgebra
generated by these elements is finitely generated. Since there are only finitely many
generators in R with z-degree less than n we conclude that Rgn is finitely generated
and hence gn ∈ fR.

Suppose that Rf is finitely generated, where f ∈ K[x] and let G = {f1, . . . , fn}
be a generating set. Note that if h ∈ Rf and degy(h) = a and degz(h) = b, then
degy(hf t) = a and degz(hf t) = b for all t ∈ Z. Let N := maxi(degz(fi)) and let
m > N , since G generates Rf we must have gm = ∑

j λjf
aj

1
1 · · · faj

n
n . However, no term

of this expression can have z-degree m and y-degree 1 since all fi with degz(fi) ≥ 1
must also have degy(fi) ≥ 1. To obtain a term with z-degree m we require the
product of at least 2 fi with non-zero z-degree hence producing a term with y-degree
at least 2. We therefore conclude that that Rf is not finitely generated and hence
fR = (y, xyz, . . . ).

We will now show that for all n ≥ 1, (gn)k /∈ Jn := (x1, x2, g1, . . . , ĝn, . . . ). Note
(gn)k = x

1
2 nk(n+1)ykznk where k ≥ 1. Since R is generated by monomials it is

sufficient to show that (gn)k cannot be written as gi1 · · · gil
p, where p = xayb for

some a, b ≥ 0 and at least one of the ij ≠ n. We require then that gi1 · · · gil
has

x-degree at most 1
2nk(n+ 1), y-degree at most k and z-degree at most nk. Therefore

we must have l ≤ k and
l∑

j=1

1
2ij(ij + 1) ≤ 1

2nk(n+ 1),

where ∑l
j=1 ij = nk. Note that

l∑
j=1

1
2ij(ij + 1) = 1

2(nk +
l∑

j=1
i2j),
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and so we require
l∑

j=1
i2j ≤ n2k =

k∑
j=1

n2.

Order the ij so that ij = nk
l

+ dj for 1 ≤ j ≤ t, where dj ≥ 0 and ij = nk
l

− cj

for t < j ≤ l where cj ≥ 0. Note that (nk
l

+ dj)2 = (nk)2

l2
+ 2nkdj

l
+ d2

j whilst
(nk

l
− cj)2 = (nk)2

l2
− 2nkcj

l
+ c2

j . Now

l∑
i=1

ij = n2k2

l
+ 2nk

l
(d1 + · · · + dt − ct+1 − . . . cl) + d2

1 + . . . d2
t + c2

t+1 + . . . c2
l .

Observe that(
nk

l
+ d1

)
+ · · · +

(
nk

l
+ dt

)
+
(
nk

l
− ct+1

)
+ . . .

(
nk

l
− cl

)
= nk,

hence ∑t
j=1 dj = ∑l

j=t+1 cj. Thus

k∑
i=1

ij = n2k2

l
+ +d2

1 + . . . d2
t + c2

t+1 + . . . c2
l

which is strictly larger than n2k whenever l < k or the dj and cj are not all 0.
Therefore, we conclude that (gn)k /∈ Jn for all k ≥ 1 and gn /∈

√
Jn for all n.

Suppose fR =
√
I, where I = (f1, . . . , fm), then for all n ∈ N there is a nk so that

(gn)nk ∈ I. We can therefore write each gnk
n as

gnk
n =

∑
i

λif
ai

i
1 · · · fai

n
n ,

where λi ∈ K \ {0}, ai
j ≥ 0 for all i, j. Consider the map ϕ : R −→ R/Jn

∼= K[gn],
since (gn)k /∈ Jn for all k ≥ 1 we have that

gnk
n = ϕ(gnk

n ) = ϕ

(∑
i

λif
ai

i
1 · · · fai

n
n

)
=
∑

i

λif
ai

i
1 · · · fai

n

n + Jn,

where f j ∈ K[gn]. We therefore must conclude that for all n, there is some j such
that fj contains a term of the form λgl

n, l ̸= 0, λ ∈ K \ {0}. Since there are infinitely
many such gn, we conclude that there must be a polynomial fj with infinitely many
terms, a contradiction.

Consider the semigroup S ⊂ Q3 corresponding to this example, it is generated
by the set

G :=
{

(1, 0, 0), (0, 1, 0),
(
n(n+ 1)

2 , 1, n
)
, . . .

∣∣∣∣∣n ≥ 1
}
.



6.2. Finite generation ideals 125

The points corresponding to the gn all lie on the curve:

C :=
{

(a, b, c) ∈ Q3
∣∣∣∣∣ b = 1, a = c(c+ 1)

2

}
.

Another property of this example is that it shows that we cannot construct multiple
compatible ratio functions whose associated sequences have strictly increasing subse-
quences if we require all them to be linear. Indeed, consider the linear ratio function
λ : K[x1, . . . , xn] −→ Q defined by

λ(xaybzc) =


c

b+c
one of b, c ̸= 0

0 otherwise,
,

note that λ(x) = λ(y) = 0 and λ(gn) = n
n+1 . Hence the associated sequence

(λk)k∈N has an infinite strictly increasing subsequence. There is no other compatible
linear ratio function whose associated sequence has a strictly increasing subsequence.
Suppose µ : K[x, y, z] −→ Q were such a function, then to have µ compatible to λ,
µ must take one of the following forms:

µ(xaybzc) =



p1a+p2b+p3c
q1a+q2b+q3c

,


p1a+p2b
q1a+q2b

one of a, b ̸= 0,

0 otherwise,


p1a+p3c
q1a+q3c

one of a, c ̸= 0,

0 otherwise.

If µ were not one of these forms, a monomial m could not be uniquely recovered
from some fixed value of λ, µ and degy(m) or degz(m), as it would not be possible
to recover degx(m). Furthermore since x, y ∈ R, we require p3

q3
> pi

qi
for i = 1, 2 since

otherwise µ(x) or µ(y) would be the maximal value of (µk)k∈N, thus ruling out the
second form µ could take. Now

µ
(
x

n(n+1)
2 yzn

)
=
p1
(

n(n+1)
2

)
+ p2 + p3n

q1
(

n(n+1)
2

)
+ q2 + q3n

,

converges to p1
q1

as n tends to infinity, and would still do so if we precluded p2
q2

.
Hence for any choice of pi, qi under these conditions, there is some N ∈ N with
λ(gN) ≥ λ(gN+k) for all k ≥ 0 and so the associated sequence (µk)k∈N is eventually
constant.
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6.3 FURTHER RESEARCH

This chapter has prompted a number of questions and possible areas for further
study. Our main goal in this chapter has been to develop our understanding of
the finite generation ideal, with the hopes of applying this to invariant rings. The
method we employ to compute the finite generation ideal relies upon construction
of a SAGBI-basis and the results in this chapter on monomial generating sets pass
easily to SAGBI-bases. From our work in 2 variables with monomials, a natural
question to ask would be

Question 6.3.1. Suppose R ⊂ K[x, y], has a non-finite SAGBI-basis, what can we
say about fR?

Notably, there are finitely generated polynomial rings without finite SAGBI-bases,
such as K[x+ y, xy, xy2], and any result would have to account for this. Similarly,
once we obtain a further understanding of the finite generation ideal for monomials
in at least 3 variables, we would then try to pass to SAGBI-bases as well.

Returning to ratio functions, there is still much development to be done to use
these on algebras in 3 or more variables. We would like to obtain a result for n ≥ 3
variables similar to Theorem 6.1.11, which leads us to the question:

Question 6.3.2. Suppose R ⊂ K[x1, . . . , xn] is a non-finitely generated subalgebra,
are there n− 1 compatible ratio functions λ1, . . . , λn−1 whose associated sequences
(λj

k)k∈N have infinite strictly increasing subsequences?

In Example 6.2.4, we showed that we could not construct multiple compatible
linear ratio functions whose associated sequences had strictly increasing subsequences.
We do, however, believe it is possible to show:

Conjecture 6.3.3. Suppose R ⊂ K[x1, . . . , xn] is a non-finitely generated monomial
subalgebra, then there is some linear ratio function λ : K[x1, . . . , xn] −→ Q whose
associated sequence (λk)k∈N has an infinite strictly increasing subsequence.

Taking inspiration from Example 6.2.4, there is a simple way of constructing a
number of non-finitely generated monomial subalgebras. Indeed, take any infinite
subset A ⊂ Nn and consider

R = K [xa1
1 . . . xan

n xn+1 | (a1, . . . , an) ∈ A] ⊂ K[x1, . . . , xn+1],
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this subalgebra is non-finitely generated for any such A. We can, for example, take
A to be the the set of non-negative integer points on a curve or surface. For example,
we could take R = K

[
xa

1x
b
2x3 | a, b ∈ N

]
, which is not finitely generated. Comparing

this to Example 6.2.4, which relies on just one infinite sequence of invariants to be
non-finitely generated, this example has an infinite number of infinite sequences. We
propose that a new notion should be introduced to differentiate between these two
types of non-finitely generated algebras, introducing some idea of dimension. The
finite generation ideal is inadequate for this purpose, a simple computation shows
that fR is maximal for the above example.

There are still more questions we have about the possible structure of the finite
generation ideal. It is simple to construct a subalgebra with arbitrarily many genera-
tors not in the finite generation ideal, for example K[x1, x1x2, x

2
1x2, . . . , x3, . . . , xN ]

has xi /∈ fR for i ≥ 3. But we can also ask:

Question 6.3.4. Can we construct a non-finitely generated monomial subalgebra
R ⊂ K[x1, . . . , xn] with fR finitely generated?

Finally, while obtaining a greater understanding of non-finitely generated mono-
mial algebras is useful, we are really interested in invariant rings. As we have
constructed many novel monomial algebras which break our expectations, we would
like to demonstrate invariant rings, if they exist, which do the same. For example,
as seen in Example 6.1.7, it is simple to demonstrate a monomial algebra which does
not satisfy the non-finiteness criterion. Without completing the proof of Conjecture
4.1.6, we do not have an example of an invariant ring which does the same. Similarly
in Example 6.2.4, we have a monomial algebra whose finite generation ideal is not the
radical of a finitely generated ideal, we would like to know if it possible to construct
an invariant ring with this property.



7

Concluding remarks

The stated goal of this thesis is to deepen our understanding of non-finitely gen-
erated invariant rings, which notably are counterexamples to Hilbert’s fourteenth
problem. To achieve this, we honed in on the finite generation ideal. Our main
result from Chapter 3 is that the finite generation ideal of Daigle and Freudenburg’s
counterexample is fR =

√
(β0, γ0, δ0)RD, which is the radical of a finitely generated

ideal containing all but finitely many generators of RD. Coupled with Dufresne
and Kraft’s similar results on Roberts’ example in [10], this prompts us to question
whether all finite generation ideals arising from invariant rings shared these properties.
However, as demonstrated in Chapter 5, these examples are heavily related and may
not be indicative of general invariant rings. In Chapter 4, we worked on constructing
a new, unrelated example to test these questions on, and applied methods which
show promise in being generalised to compute generating sets for more new examples.
And in Chapter 6 we asked if these observed properties of the finite generation ideal
hold in greater generality, using monomial algebras to do so as they are far easier to
work with.

There are two significant obstacles to obtaining more general results on the
structure of non-finitely generated invariant rings; firstly, the task of computing a
generating set which is a SAGBI-basis; secondly, using this SAGBI-basis to compute
the finite generation ideal. Our approach in Chapters 4 and 6 can be seen as attempts
to mitigate these issues. By focusing on the ρ-grading in Chapter 4, which relies on
the maximum value of ρ from amongst the monomials appearing in a polynomial,
we bake in a way of building a generating set that can be made a SAGBI-basis
relatively easily. Our focus in Chapter 6 on monomial subalgebras, with the goal
of passing these results to SAGBI-bases builds our understanding of computing the

128
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finite generation ideal using a SAGBI-basis. There are myriad questions left to
answer along the way, but it is our hope that this thesis helps to lay the foundation
for overcoming these obstacles.
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