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Abstract

Federated Learning (FL) has achieved huge successes in training machine learning

models on remote devices. However, FL traditionally relies on devices with equal

and sufficient computing capabilities. Resource-constrained devices, often termed

stragglers, struggle to contribute their knowledge to FL due to limited computa-

tional resources. This issue significantly renders FL performance sub-optimal, espe-

cially when applied at large scales, as stragglers can offer unique data perspectives

that other participants cannot provide. Therefore, it is important to alleviate the

straggler issue by enabling the participation of resource-constrained devices that

would otherwise be declared stragglers.

This research addresses the straggler issue by advancing efficient machine learn-

ing approaches to improve participation of resource-constrained devices in FL. No-

tably, three efficient machine learning approaches are explored in this thesis: 1)

partial model training; 2) reduced-size models; 3) active data selection. Identified

research gaps limiting the efficacy of existing FL works are addressed through pro-

posed methods: 1) few-shot fine-tuning; 2) attention transfer and metadata training;

3) clustering-based and entropy-based data selection. Novel FL algorithms and wor-

thy insights are delivered through this research, including: 1) few-shot fine-tuning

not only reduces workloads on stragglers but also accelerates FL convergence, re-

ducing energy consumption on resource-constrained devices. 2) attention transfer

and metadata training enhance knowledge transfer from custom-size client models

to the global model, improving the efficacy for addressing the straggler issue. 3)

entropy-based data selection improves both learning efficiency and generalisation

ability, achieving better FL performance with less resource consumption on small
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devices.

This research opens the field for other cross-strategy approaches to address the

bottleneck of training large models on resource-constrained devices. In light of

the emerging large language models, many current devices that generate user data

are deemed stragglers if efficient machine learning approaches for FL will not be

considered moving forward.
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Chapter 1

Introduction

Smart devices, such as mobile phones, wearable devices, Internet of Things (IoT)

have surged in recent years. They generate a wealth of user data on a daily basis,

offering unique insights into various aspects into our daily lives. These on-device

data can provide a variety of opportunities for machine learning applications across

various domains, such as human activity recognition, automatic voice recognition,

recommendation systems, health monitoring, etc, enabling businesses and organi-

sations to develop data-driven tools and deliver enriched user experiences.

However, the widespread utilisation of on-device data in machine learning has

been hindered by two primary factors, data privacy concerns and computational

limitations of devices. On one hand, user-generated data commonly contains sensi-

tive information about individuals. While traditional centralised machine learning

collects and stores user-generated data, people are getting increasingly concerned

that their sensitive information could be at significant risk. To protect user in-

formation, AI service providers have to invest a fortune on security measures to

guarantee data safety. According to the government report of AI activity in UK

businesses in 2022 (Capital Economics and DCMS, 2022), the challenges of reach-

ing sufficient training data and the cost to follow the privacy laws with regards

to personal data, such as General Data Protection Regulation (GDPR) (European

Parliament and Council of the European Union, 2016), have become major obsta-

cles for adopting machine learning techniques in small or medium-size enterprises.

On the other hand, developing machine learning models, particularly deep learning
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Introduction 2

models, requires substantial computational resources, which can be challenging to

satisfy resource-constrained devices typically found on the user side. Consequently,

machine learning applications miss out the unique perspective offered by a large

amount of unique user-generated data.

Federated Learning (FL) (McMahan et al., 2017) has emerged as a promising

machine learning paradigm to approach the challenge of leveraging user-generated

data on resource-constrained devices to train models while preserving data privacy.

1.1 What is Federated Learning?

Federated Learning (FL) is a distributed machine learning paradigm that pushes the

training of machine learning models to the edge without revealing user data to third

parties. Smart devices with suitable computational resources and organisations

with siloed data, such as banks, hospitals, and research institutions are typical FL

participants at the edge. FL employs a server on the cloud to orchestrate the model

training on participants, collect their training results and update a global model

(GM) as the final model for future deployment. The formal notion of federated

learning originates from McMahan et al. (2017): “We term our approach Federated

Learning, since the learning task is solved by a loose federation of participating

devices (which we refer to as clients) which are coordinated by a central server”.

In this groundbreaking work, the model training on the client is termed as local

updates, and the update of parameters of the global model on the server is referred

to as global updates. These originally defined terms, including “client”, “server”,

“local updates”, and “global updates”, are consistently used in this thesis.

The increasing popularity of FL is mainly driven by its ability to tackle prac-

tical challenges of training machine learning models, particularly the advancement

of data demands for large model training and privacy concerns associated with col-

lecting sensitive user data (Li et al., 2020a, 2021c). Deep neural networks (DNN)

with millions or even billions parameters, such as convolutional neural networks

(CNN) (LeCun et al., 2015) and the Transformer (Vaswani, 2017), require vast

amounts of training data to be effective in practical machine learning tasks like
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computer vision and natural language processing (NLP). FL enables model training

to access a wealth of user-generated data while ensuring this data never leaves their

devices and is only used to perform local updates. Moreover, FL broadly adopts

a range of defense techniques, such as robust aggregation (Muñoz-González et al.,

2019), differential privacy (El Ouadrhiri and Abdelhadi, 2022), and encryption (Liu

et al., 2021b), to further safeguard client-extracted features from adversarial at-

tacks (Kumar et al., 2023). Due to the decentralised nature of FL, even trained

models and extracted features on devices are not often safe to share. Notably,

leveraging model inversion techniques (Haim et al., 2022; Fang et al., 2024), ma-

licious attackers are able to recover sensitive user information by studying model

parameters and features during training, communication, and server aggregation

stages (Khowaja et al., 2022; Yin et al., 2023). The integration of advanced defense

techniques enables FL to further improve its privacy-preserving capability while

scaling to a large population of participants. By doing so, FL encourages more

users to participate in model training by addressing their privacy concerns, as it

does not reveal user information to any third parties. Consequently, FL is able to

transform the machine learning paradigm from data scarcity into data richness.

Impressive successes have been recently achieved by FL. Google was among

the pioneers in utilising FL for training machine learning models on millions of

mobile devices, including on-device item ranking, content suggestions, next word

prediction on keyboards (Bonawitz et al., 2019; Chen et al., 2019a; Kairouz et al.,

2021). Similarly, Amazon has employed FL to train its speech recognition system

for Alexa applications (Dupuy et al., 2022). To assist large-scale federated learning

in business, tech giants and startup companies have developed a number of pop-

ular FL frameworks, such as the Project Florida by Microsoft (Diaz et al., 2023),

Flower (Beutel et al., 2020), FedML (He et al., 2020b). Despite its increasing popu-

larity and significant successes, FL faces challenges inherent in decentralised devices

and data.

To leverage decentralised devices and data without risking user privacy, FL

sacrifices the control over training data and computing resources. In centralised

machine learning, the training centre has authority over managing the training data
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effectively to train the model. For instance, samples collected for model training are

drawn from the distribution close to the target distribution to ensure the learned

model generalises well on the target task. In addition, training centres are typically

equipped with extremely powerful machines assumed to have sufficient computing

resources for model training.

In contrast, edge devices participating in FL display high diversity in both hard-

ware and on-device data. The hardware variability among participants in FL is

referred to as system heterogeneity, while on-device data variability is termed data

heterogeneity. System heterogeneity leads FL to favour powerful devices capable

of completing local updates quickly. Conversely, data heterogeneity results in the

model shift problem in FL (Karimireddy et al., 2020; Wang et al., 2020a; Li et al.,

2021b), where inconsistencies in local datasets across devices hinder FL convergence.

Both system heterogeneity and data heterogeneity discourage resource-constrained

devices from participating in FL, leading to the straggler issue and ultimately di-

minishing the overall performance of FL.

1.2 Straggler Issue

A critical problem that hinders the performance of federated learning is the straggler

issue. In FL, stragglers are typically those resource-constrained devices that are less

likely to contribute their learning results due to limited computational resources.

Excluding contributions from stragglers leads to deteriorated FL performance in

terms of global model generalisation, convergence, fairness, etc, particularly when

stragglers generate and store valuable data essential for training a robust model.

For instance, through their nature, battery powered devices are pervasive in places

where other more powerful devices would not operate (e.g., remote sensing in agri-

culture, wildlife monitoring), so they can capture unique perspectives not shared

by more powerful devices though critical for robust and generalisable models in FL.

Formally, FL terms this problem as the straggler issue.

The straggler issue in FL is mainly attributed to the variability of hardware

across devices, or the system heterogeneity. At a scale of hundreds of thousands
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or even millions of participants in FL, edge devices are highly diverse in terms of

their hardware capabilities, making them unable to finish local updates in close

time. To avoid running local updates infinitely, the FL server typically demands

participants to complete their local updates within a hard-imposed deadline. For

devices that cannot complete local updates before the deadline, their learning results

are simply discarded by the server, making both their knowledge and computing

efforts wasted and subsequently penalising the aforementioned FL performance. As

such, there is a great need to tackle the straggler issue by reducing workloads on

resource-constrained devices so that their participation is improved.

It is worth noting that the definition of resource-constrained depends on the

learning task. Even powerful devices can become stragglers when dealing with

heavily-parameterised models or large datasets. Therefore, in FL, stragglers are

not necessarily resource-constrained devices. However, for simplicity, this thesis

will not discriminate between stragglers and resource-constrained devices unless

explicitly stated, due to the common sense that resource-constrained devices are

highly likely to become stragglers.

In addition to the hardware constraints, straggler issue is further aggravated by

the model shift problem (Li et al., 2020b). The model shift problem arises from

data heterogeneity, characterised by non-Identically and Independently Distributed

(non-IID) local data generated on the client side. Similar to centralised learning,

the global optimisation objective of FL is to minimise the training losses on data

across all participants. However, when the model is offloaded to the client side for

training, it is optimised to minimise the training losses on local data. With non-

IID local data, local updates could significantly deviate locally updated models

from the global objective (Hsu et al., 2019; Li et al., 2020c; Wang et al., 2020a;

Reddi et al., 2020). The deviation from the global objective significantly slows

down FL convergence, imposing a heavier resource burden on stragglers, such as

battery, bandwidth, connectivity, etc., throughout FL and consequently making

them struggle more to contribute effectively to FL.

The straggler issue significantly diminishes the effectiveness and efficiency of

FL compared to centralised machine learning. Recently, there are a number of
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FL works studying the negative impacts of stragglers. Their findings show that

FL under heterogeneous conditions, including both system and data heterogeneity,

requires significantly more communication rounds to converge (Zhao et al., 2018;

Hsu et al., 2019; Li et al., 2019c). Most importantly, the straggler issue introduces

a substantial model performance gap between the federated learned model and

the centralised learned model. Empirical studies reveal that the generalisation

capability of the federated learned model can degrade by up to 4× (Abdelmoniem

et al., 2023) under extreme heterogeneous environments with substantial straggler

dropout.

To this end, this thesis aims to contribute to research endeavours addressing

the straggler issue, a primary obstacle in advancing FL applications at large scales.

Particularly, this thesis focuses on advancing approaches that can effectively reduce

workloads on stragglers and mitigate model shift, thereby significantly improving

the participation of resource-constrained devices.

1.3 Addressing the Straggler Issue

This research aims to address the straggler issue, improving the participation of

stragglers in training FL models. To address the straggler issue, it is critical to re-

ducing the computational cost of on-device model training. Two key factors decide

the computational cost: the number of trainable model parameters and the size of

the training data (Cai et al., 2018; Zhou et al., 2020a). By reducing the number

of model parameters, operations required for both forward and backpropagation

are reduced, thereby decreasing the overall computing footprint during training. In

centralised learning, several approaches have been proposed to achieve the reduction

of training parameters, such as parameter-efficient fine-tuning (PEFT) (Hu et al.,

2021; Han et al., 2024b), model pruning (Liu et al., 2017; Hoefler et al., 2021),

and neural architecture search (NAS) (Zoph et al., 2018). These methods improve

the training efficiency by minimizing the training parameters without compromising

model competitiveness. Another effective strategy to reduce training cost is to train

with less data. If a model can be learned using fewer but more informative sam-
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Figure 1.1: This thesis advances three efficient machine learning ap-
proaches to address the straggler issue. They are: 1) Partial model
training; 2) Custom-size client models; 3) Active data selection.

ples—without sacrificing its performance—then the training budget is significantly

lowered. This insight propels the advancement of active learning, where selectively

querying the most valuable data can considerably reduce the volume of training

data while preserving model accuracy (Mindermann et al., 2022; Yang et al., 2023;

Li et al., 2022).

Through the literature review, three dominant machine learning approaches have

been identified to reduce the training parameters and training data in the context

of FL. And this thesis aims to fill the research gaps in these approaches. The three

approaches are illustrated in Figure 1.1. They are:

• Partial model training: This approach reduces the computing burdens for

stragglers by training a part of the model instead of the entire model. A

handful of FL works, including FjORD (Horvath et al., 2021), HeteroFL (Diao

et al., 2020), FedRolex (Alam et al., 2022), etc, have developed algorithms to

tackle the straggler issue using this approach.

• Custom-size client models: This approach encourages straggler participation

by deploying custom-size client models that match local computing capabili-

ties. Given a smaller-sized model, both the forward pass and back-propagation

leave less computing footprint during local updates. Typically, knowledge

distillation (KD) (Hinton et al., 2015) is adopted to allow custom-size client
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models transfer their learned knowledge to the global model. Representative

works on this track include FedMD (Li and Wang, 2019), DS-FL (Itahara

et al., 2021), FedAUX (Sattler et al., 2021), etc.

• Active data selection: This approach alleviates workloads on stragglers by

significantly reducing the size of training data for local updates. Active data

selection constructs a subset of training data by identifying instances beneficial

for learning. Without compromising learning performance, training efficiency

is improved when feeding the model with fewer samples. Despite active data

selection has been proven effective in centralised learning to reduce training

costs (Mindermann et al., 2022; Yang et al., 2023; Li et al., 2022), its adoption

in FL for addressing the straggler issue remains limited (Li et al., 2020a).

These three efficient machine learning methods play pivotal roles in reducing the

workload of stragglers. Within them, critical research gaps are further identified in

existing research. This thesis aims to bridge the research gaps by raising research

questions, proposing methods to address research questions, and finally demonstrat-

ing the effectiveness and practical feasibility of proposed methods through rigorous

evaluation. To this end, this thesis makes substantial contributions to the research

endeavours enabling less capable devices to contribute to FL with their unique

knowledge, particularly when smart devices are becoming increasingly ubiquitous

and generating valuable on-device data that can be leveraged to advance machine

learning applications.

1.4 Identifying the Research Gaps

1.4.1 Research Gaps

Our Chapter 2 will introduce critical research gaps identified in the approaches of

partial model training, custom-size client models, and active data selection. They

are summarised here as follows:

• While partial model training methods aim to reduce client workloads dur-

ing local updates, they often fail to mitigate model shift. Model shift poses
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a significant challenge for partial model training methods, such as FjORD,

HeteroFL, FedRolex, making them extremely difficult to train distributed

models evenly across clients (Alam et al., 2022). Consequently, this leads to

inconsistent performance and slow convergence, discouraging stragglers from

participating in FL due to increased energy costs. Therefore, there is a press-

ing need to mitigate model shift for the partial model training approach to

stabilise performance and accelerate convergence.

• The approach of custom-size client models faces challenges with knowledge

transfer from client models to the global model. Notably, traditional parame-

ter fusion methods, widely adopted in FL with homogeneous client models, be-

come impractical when client models have varying sizes. As such, FL methods

with custom-size client models, such as FedMD, DS-FL, and FedAUX, utilise

KD to transfer client learned knowledge to the global model. However, these

methods commonly rely on a single source of knowledge by simply aligning

the output space across models. This single knowledge source is particularly

unreliable given drifted client models, leading to degraded FL performance.

Hence, it is necessary to advance the custom-size client models approach by

improving the quality of knowledge transfer (Chen and Chao, 2020; Itahara

et al., 2021), making them more practical for addressing the straggler issue.

• The efficacy of active data selection for addressing the straggler issue is under-

studied in FL (Li et al., 2020b). Two key research gaps are identified within

limited works on this direction. First, primary studies, such as LoGo (Kim

et al., 2023b) and F-AL (Ahn et al., 2024), aims to ease data labelling rather

than reducing workloads on clients, thereby lacking the evaluation relevant

to training efficiency. Second, methods like FLRD (Nagalapatti et al., 2022)

commonly introduce substantial workloads to clients for identifying useful

training instances rather than reducing workloads. Therefore, these studies

fail to effectively address the straggler issue with active data selection, de-

spite its established efficacy for improving training efficiency in centralised

learning. To this end, essential research is needed to advance the approach of
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active data selection to effectively reduce workloads on stragglers in FL.

1.4.2 Major Research Questions

To fill the aforementioned research gaps, this thesis derives the following major

research questions:

• With previous works missing to leverage partial model training to tackle both

the straggler issue and model shift problem, the first majorResearchQuestion

(RQ) addressed in this thesis is “How can partial model training reduce work-

loads for stragglers and mitigate model shift simultaneously?”

• Given the adoption of custom-size client models to address the straggler is-

sue, the second major RQ is “How can we improve the knowledge transfer

from custom-size client models to the global model using multiple knowledge

sources rather than a single source?”.

• While previous data selection methods in FL less focus on addressing the

straggler issue or even introduce additional workloads to clients, the third

major RQ approached in this thesis is “How to leverage active data selection

to address the straggler issue, and what impact does the active data selection

bring to the global model performance under heterogeneous data?”

1.4.3 Proposed Methods to Approach the Identified Major

Research Questions

Three methods are proposed and evaluated in this thesis to approach the research

questions and bridge the research gaps. They are: 1) few-shot fine-tuning; 2)

attention transfer and metadata training; 3) clustering-based and entropy-based

data selection. They are summarised as follows:

• This thesis proposes few-shot fine-tuning to approach the first research ques-

tion, tackling both the straggler issue and the model shift problem with partial

model training. Particularly, few-shot fine-tuning allows clients to fine-tune
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the classifier locally in a few-shot learning manner (Chen et al., 2019b; Tian

et al., 2020), facilitated by a universal feature extractor learned within FL

loops. Few-shot fine-tuning can be particularly tailored for stragglers due

to its computational efficiency. Most importantly, stragglers contribute few-

shot updated classifiers that can effectively alleviate model shift, leading to

accelerated FL convergence and reduced energy consumption on stragglers.

• To address the second research question, this thesis introduces attention trans-

fer (AT) (Zagoruyko and Komodakis, 2016a) and metadata training as addi-

tional knowledge sources for transferring knowledge from custom-size client

models to the global model. Notably, AT leverages attention maps formulated

with latent representations to transfer attention styles between models. Meta-

data training uses feature maps extracted from custom-size client models as

the metadata to refine the global model. Despite their success in centralised

learning (Zagoruyko and Komodakis, 2016a; Sung et al., 2018; Wang et al.,

2020b), both AT and metadata training have not been adopted in FL for

enhancing knowledge transfer.

• Finally, clustering-based and entropy-based active data selection are proposed

to address the third research question. They are chosen for their minimal

computational burden on stragglers compared to previous active learning ap-

plications in FL (Sinha et al., 2019; Haussmann et al., 2019; Nagalapatti

et al., 2022). Given selected training samples, this thesis hypothesises that

we cannot only reduce workloads on stragglers but also overcome the penal-

isation on FL performance resulted from training data reduction. In this

work, the clustering-based method performs K-means clustering (MacQueen

et al., 1967) in latent representations to select the most representative samples

for refine the global model. The entropy-based algorithm constructs subsets

of training instances by ranking their importance with calculated Shannon

entropy (Shannon, 1948). Additionally, a unique pretraining phase is intro-

duced to initialise a global model resistant to model shift, further improving

FL convergence.
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1.4.4 Research Paths to Bridge the Research Gaps

This section outlines our research paths to bridge the gaps. As described in Sec-

tion 1.3, three efficient machine learning approaches–partial model training, custom-

size client models, and active data selection–are commonly employed in FL for

easing the workload on clients. Section 1.4 identifies the research gap of each ap-

proach in existing literature. To address these gaps, this thesis establishes three

sub-research paths. Each path aims to fill the corresponding research gaps by con-

structing research questions, proposing methods to answer these questions, and

evaluating the efficacy of the proposed methods. Figure 1.2 is an overview of these

three sub-research paths.

1.4.5 Research Contributions

By bridging the research gaps in the three efficient machine learning approaches

in FL–partial model training, custom-size client models, and active data selection–

this thesis contributes advanced algorithms and substantial findings to the research

endeavours aimed at improving the participation of resource-constrained devices in

FL. They are summarised as follows:

• This thesis demonstrates that the proposed few-shot fine-tuning not only re-

duces the training time on clients by 90% but also generates a classifier that is

less biased under model shift compared to a fully updated classifier. Based on

these discoveries, FedFSC (Shi et al., 2023b) is proposed to integrate few-shot

fine-tuning into FL, constructing the global model with the few-shot updated

classifier that is contributed by stragglers. FedFSC is observed to outper-

form popular FL baselines significantly on image, speech, text classifications

in terms of both generalisation and convergence. FedFSC successfully fills

the research gap by reducing workloads on stragglers and mitigating model

shift within one framework, thereby minimising overall energy cost for strag-

glers. This work contributes one first-author publication at DistributedML

2023 (Shi et al., 2023b).
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Figure 1.2: An overview of the three sub-research paths. This research
consists of three interconnected paths, all aiming to improve the partic-
ipation of resource-constrained devices in FL. Each path approaches a
specific research gap (RG) by formulating a research question (RQ), and
proposing a method (PM) to answer it.
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• With the adoption of custom-size client models, this thesis demonstrates that

AT and metadata training effectively enhance the knowledge transfer from

custom-size client models to the global model. Given clients with heteroge-

neous data, the global model is capable of generalising on unseen classes with

the assistance of AT and metadata training (Shi and Radu, 2021). Moreover,

it is found that AT has a regularisation effect to prevent the global model

from overfitting to the generic data used for knowledge distillation, leading

to improved global model performance on unseen classes. These studies con-

tribute novel knowledge sources to improve the knowledge transfer in FL

with custom-size client models, which resulted in a first-author publication at

EdgeSys 2021 (Shi and Radu, 2021).

• This thesis further reveals that prototype feature maps–metadata in a com-

pressed form, which preserve intra-class knowledge learned across custom-

size client models–can be utilised as an additional source to correct negative

knowledge transfer induced by model shift (Shi et al., 2023a). The delivered

FL algorithm, namely FedKAD, further improves global model performance

through regularising knowledge distillation with prototype feature maps. This

work leads to a first-author publication at MLSys, EuroSys 2023 (Shi et al.,

2023a).

• By adopting clustering-based data selection, the global model performance is

only penalised by 4.35% on CIFAR-10, given that the size of metadata for re-

fining the global model is significantly reduced by over 98%. It demonstrates

that the global model can largely preserve its performance despite selecting

only a small fraction of training data in order to address the straggler is-

sue (Shi and Radu, 2022). This work contributes to a first-author publication

at MLSys, EuroSys 2022 (Shi and Radu, 2022).

• With the assistance of pretraining, this thesis finds that the proposed entropy-

based data selection successfully prevents the penalisation of FL performance

induced by reduced training data. First, pretraining is found to generate a

global model resistant to model shift, significantly accelerating FL conver-
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gence. The entropy-based data selection further demonstrates that over half

of the client data is not beneficial for FL performance. It is evident that FL

adopting entropy-based data selection not only triples client learning efficiency

but also boosts global model performance by a large margin over baselines by

training models on local instances selected based on their entropy informa-

tion. With these insights, FL can leverage active data selection to effectively

reduce workloads on stragglers without penalising its performance. The work

is expected to be published later this year (2024).

1.5 Thesis Outline

The rest of this thesis is organised as follows:

Chapter 2 first introduces the fundamental workflow and categories of FL as

preliminaries. Then related FL works that aim to solve the straggler issue and

model shift problem are reviewed. Finally, research gaps in existing literature are

identified in the final section.

Chapter 3 describes the joint experimental setup used in this thesis. We conduct

our research on image classification and speech recognition tasks widely used in

existing FL works so that our comparison with state-of-the-art methods can be

straightforward.

Chapter 4 is the technical chapter for the first sub-research path. It presents the

proposed method of few-shot fine-tuning and the developed FL algorithm, namely

FedFSC, which is built on few-shot fine-tuning. FedFSC aims to address both

the straggler issue and the model shift problem induced by the data heterogeneity.

Chapter 4 answers the first research question in this thesis, “How can the approach

of partial model training address the straggler issue and model shift problem simul-

taneously?”, and fills the research gap that previous partial model training methods

fail to mitigate model shift.
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Chapter 5 is the technical chapter for the second sub-research path. It intro-

duces the proposed methods of attention transfer and metadata training to address

the knowledge transfer problem in previous works that adopt custom-size client

models. Particularly, two FL algorithms, FedAT and FedKAD, are delivered. In

the first part of Chapter 5, FedAT demonstrates the efficacy of attention transfer

and metadata training for transferring locally learned knowledge from custom-size

client models to the global model. The second part develops FedKAD to mitigate

negative knowledge transfer induced by model shift using prototype feature maps,

which are metadata with a compressed form. Chapter 5 addresses the research

question, “How can we improve knowledge transfer from custom-size client models

to the global model with multiple knowledge sources?”, and fills the research gap

that relying on a single knowledge source at the output space of models leads to

degraded FL performance.

Chapter 6 is the technical chapter for the third sub-research path. It depicts

the proposed clustering-based data selection and entropy-based data selection. The

clustering-based data selection leads to the design and evaluation of the proposed

FL algorithm, FedSplit, which is introduced in the first part of Chapter 6. FedSplit

demonstrates the penalisation on FL performance when reducing the size of training

data. In the second part, FedFT-EDS, the FL algorithm that leverages entropy-

based data selection is proposed and studied. FedFT-EDS shows it can prevent the

performance penalisation and further boost FL performance with selected client

data. Chapter 6 successfully approaches the research question, “How can active

data selection addresses the straggler issue and what impact does the active data

selection bring to the global model performance under heterogeneous data?”, and

fills the research gap that active data selection has not been proven to successfully

reduce workloads on stragglers in FL.

Chapter 7 concludes the research presented in this thesis and proposes three

promising future research directions.
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1.6 Publications

This thesis has contributed four first-author conference papers and one journal

manuscript currently being under review to this date. They are listed below in a

chronological order.

• The work described in Chapter 5, Section 5.3 and Section 5.4 is published at

EdgeSys ’21, EuroSys conference, titled “Towards Federated Learning with

Attention Transfer to Mitigate System and Data Heterogeneity of Clients”,

Hongrui Shi, Valentin Radu.

• The work introduced in Chapter 6, Section 6.2 and Section 6.3 is published

at MLSys ’22, EuroSys conference, titled “Data selection for efficient model

update in federated learning”, Hongrui Shi, Valentin Radu.

• The work detailed in Chapter 5, Section 5.5 and Section 5.6is published

at MLSys ’23, EuroSys conference, titled “Distributed Training for Speech

Recognition using Local Knowledge Aggregation and Knowledge Distillation

in Heterogeneous Systems”, Hongrui Shi, Valentin Radu, Po Yang.

• The work depicted in Chapter 4, is published at DistributedML ’23, CONEXT

conference, titled “Lightweight Workloads in Heterogeneous Federated Learn-

ing via Few-shot Learning”, Hongrui Shi, Valentin Radu, Po Yang.

In the next chapter, we will introduce relevant FL literature for addressing the

straggler issue and identify the existing research gaps.
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Preliminaries and Related Work

This chapter first introduces the preliminaries of FL. The standard workflow of

federated learning is described in Section 2.1.1, providing fundamental FL concepts

used throughout this thesis. Section 2.1.2 outlines various FL scenarios and justifies

the scenario targeted by this research. Previous works for tackling the straggler issue

and model shift problem are introduced in Section 2.2 and Section 2.3 respectively.

Finally, the research gaps in existing literature and the necessities to address them

are described in Section 2.4.

2.1 Preliminaries

To better understand the background of federated learning, this section introduces

the standard FL workflow and various FL scenarios.

2.1.1 Standard Federated Learning Workflow

In contrast to centralised learning, the training data of FL is scattered across clients

without pooling in advance. For a indexed client k, its local training data is denoted

as Dk, which consists of a number of samples defined by {(x(i)
k , y

(i)
k )}|Dk|

1 , where x
(i)
k

and y
(i)
k are the i-th local instance and its associated label respectively. The model

trained in FL is called the global model, denoted asMg whose its parameters defined

by wg. The learning objective of FL is to find the wg to minimise the combined

18
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Figure 2.1: Standard FL workflow. It comprises five steps at each
iteration: 1) Client selection; 2) Model distribution; ) Local updates; 4)
Aggregation; 5) Global updates.

local losses across the clients described by Equation 2.1.

argmin
wg

L(wg) =
N∑
k=1

pkLk(wg) (2.1)

where, N is the size of the client pool, Lk(w) = E(x,y)∼Dk
[ℓk(w; (x, y))] is the local

empirical loss. pk = |Dk|
|D| is the coefficient to weight individual losses, determined

by the fraction of local data over the entire client data D ≜
⋃

k∈[N ]Dk.

FedAvg (McMahan et al., 2017) is widely recognised as the standard workflow

of FL (Kairouz et al., 2021; Ye et al., 2023). Particularly, a server sits on the

cloud to synchronise the federated learning with iterations. For each iteration, the

main steps of FL are summarised as: 1) Client selection; 2) Model distribution; 3)

Local updates; 4) Aggregation; 5) Global updates. This workflow is illustrated in

Figure 2.1.
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Client selection. Not all clients in the client pool are supposed to participate in

the model training due to eligibility requirements. Thus, the server samples a set

of clients from the pool every iteration to perform the model training. The size of

the set of participant clients is denoted as K.

Model Distribution. At iteration t, the server distributes copies of the global

model, M t
g, to the selected clients. Once the model is distributed to the client side.

We use the set {M t
k}K1 to denote the client models. For an indexed client k, M t

k is

associated with the parameters denoted by wt
k.

Local updates. Distributed models are trained locally on clients. The local

training objective is the empirical risk minimisation (ERM) over local data. For

client k, the local training objective is defined by Equation 2.2.

wt+1
k = argmin

wt
k

E(x,y)∼Dk

[
ℓk(w

t
k; (x, y))

]
(2.2)

where, ℓk(·) is the local loss function on client k. More concretely, we update wt
k to

wt+1
k with stochastic gradient descent (SGD) under a local learning rate λl.

wt+1
k ← wt

k − λl∇wt
k
ℓk(w

t
k;Dk), (2.3)

Conventionally, local updates are performed for a fixed number of epochs, which

is arbitrarily instructed by the server. The number of local epochs is denoted as E.

Aggregation. The server collects updated client models before a preset deadline.

In an ideal scenario, all K clients are supposed to upload their updated models

to the server. However, due to realistic hardware variability, resource-constrained

clients could fail to complete local updates timely. Those clients that fail to deliver

their updated models in time for the iteration deadline are called stragglers and end

up not contributing to the global updates.

Global updates. The global updates are performed on the server to transfer

client learned knowledge to the global model, commonly known as knowledge trans-
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fer from client models to the global model. The server updates the global model

parameters by aggregating the locally updated client models. In an ideal scenario

without stragglers, the global updates on the server are defined by Equation 2.4.

wt+1
g ←

K∑
k=1

pkw
t+1
k (2.4)

where, pk is similar to the one defined in Equation 2.1, but is calculated based on the

selected clients pk = |Dk|
|D| with D ≜

⋃
k∈[K]Dk. Finally, wt+1

g will be distributed to

the client side to start the next FL iteration. As the server and clients communicate

models repeatedly. The iteration is commonly referred to as the communication

round.

2.1.2 Federated Learning Scenarios

When Federated Learning (FL) is formally proposed by McMahan and Ramage;

McMahan et al. (2017), it emphasises the offload of machine learning to edge devices

on a large scale (Kairouz et al., 2021). Since then, academics and industry have

adapted FL to a range of scenarios, significantly expanding the family of FL.

Cross-device FL and cross-silo FL

Defined by the scale and properties of participants, Kairouz et al. (2021) categorises

FL into the cross-device FL and the cross-silo FL. Figure 2.2 illustrates the differ-

ences between the cross-device FL and cross-silo FL. The cross-device FL typically

involves a great number of edge devices, such as mobiles or IoTs, with the total

number of FL devices potentially reaching billions. However, the participation rate

of devices is often extremely low, with only a small fraction, for instance 10% or less,

of the device population available for federated learning at any given time. Over

the entire iterations of federate learning, a device may only be able to participate in

a few or even fewer iterations. Computation and communication are considered as

the primary bottlenecks for cross-device federated learning as the majority of the

smart devices are equipped with limited computing resources (CPU and memory)

and uses wifi or slower connections such as 4G (Li et al., 2020a). Representative
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Figure 2.2: Cross-silo FL and cross-device FL.

industrial achievement from the cross-device FL are the next word prediction on the

keyboard by Google (Hard et al., 2018; Chen et al., 2019a) and the Apple applica-

tions of the QuickType keyboard and “Hey Siri” vocal recogniser (Apple). Instead

of collecting user-generated data to train their models, these companies utilize FL

to train models directly on millions of user devices, subsequently aggregating these

user-trained models to create a federated model deployed in their AI applications.

Conversely, the cross-silo FL is defined by its participants coming from a rel-

atively small number of data centers compared to the numerous edge devices in

the cross-device FL. Typical data centers are often organisations in the area of fi-

nance (Liu et al., 2023) or medical (Courtiol et al., 2019), who are poised to embrace

machine learning applications to promote business or research but are not allowed

to share their siloed customer data with third parties. By adopting federated learn-

ing, organisations can collectively train a machine learning model using their unique

data with the privacy protected. In contrast to the cross-device FL, the compu-

tation and communication are often not major bottlenecks of the cross-silo FL as

participants such as banks or medical institutes typically have much more power-

ful hardware than the edge devices. Some exemplary applications of the cross-silo

FL in the industry are the drug discovery (Oldenhof et al., 2023), medical data

segmentation (Courtiol et al., 2019), financial crime detection (IBM).
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Horizontal FL, vertical FL, and federated transfer learning

Federated learning scenarios can be also categorised with respect to the data parti-

tion on the client side. Yang et al. (2019) classify FL into the horizontal FL, vertical

FL, and federated transfer learning (Kairouz et al., 2021) based on the split of the

client data. In the horizontal FL, data is assumed to be partitioned horizontally in

the sample space but shares the same feature space. Training samples on different

clients are typically not overlapped. On the other hand, the vertical FL emphasises

the data partition in the feature space but shares overlapped sample space. Feder-

ated transfer learning is the hybrid scenario of horizontal FL and vertical FL, where

the data across clients is not only split in the feature space but also in the sample

space. In the cross-device FL, data split is commonly assumed to be horizontal

rather than vertical. Conversely, both horizontal and vertical data split could prac-

tically be present in the cross-silo FL. Examples are businesses, such as banks and

retail companies, could have non-overlapped customers and have access to different

sets of customer information.

Personalised FL performance

The original FL and the main stream of follow-up FL studies focus on the generalisa-

tion of the global model on the learning task. The learned global model is deployed

fore inference. However, most recently, a stem of studies put the personalised FL

performance into the spotlight. The personalised FL performance highlights the

generalisation of the federated learned model on individual clients rather than the

global distribution (Tan et al., 2022a).

In the early works of personalised FL, Multi-Task Learning (MTL) (Zhang and

Yang, 2021) and Meta Learning and (Thrun and Pratt, 2012) become particularly

relevant techniques if we consider the learning problem in each client as a sepa-

rate task. MOCHA (Smith et al., 2017) integrates MTL into FL framework to

simultaneously learn a set of different weights for all the clients. However, the

assumption of convex loss function in MOCHA limits its further applications. A

potential exploration of applying MTL to learning personalised models is modelling
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the relationship between the tasks and clients. MTL learns a model per task. How-

ever, this does not necessarily mean each client should learn a distinct model if

a subset of clients can be grouped as a learning task (Kairouz et al., 2021). On

the other hand, Model Agnostic Meta Learning (MAML) (Finn et al., 2017) has

stemmed from Meta Learning to learn a global model that can be used as an ini-

tialization for further learning a good model adaptive to a new task in only a few

local gradient steps (Kairouz et al., 2021). Both Khodak et al. (2019) and Jiang

et al. (2019) explore the relationship between MAML and FL to address the data

heterogeneity challenge. The global update in FL is compared to meta-training an

initial model in MAML and local updates performed by each client can be associ-

ated with the meta-testing to adapt the initial model to an individual local task,

resulting in personalised client models. Recently, Per-FedAvg (Fallah et al., 2020),

LG-FedAvg (Liang et al., 2020), KT-pFL (Zhang et al., 2021), FedPCL (Tan et al.,

2022b), FedPAC (Xu et al., 2023), pFedHR (Wang et al., 2024a) are among the

most representative works that advances personalised FL.

The Targeted FL Scenario

As the straggler issue tackled by this thesis practically exists in the cross-device FL

scenario with horizontally split client data (Kairouz et al., 2021), this thesis sets up

experiments to simulate this scenario. Global model performance is emphasised in

this research rather than personalised FL performance. This is because the straggler

issue primarily affects the global model performance due to device dropout during

FL.

This thesis will solely focus on addressing the straggler issue through efficient

machine learning approaches and does not intend to cover all research aspects in FL,

as FL is a highly integrated research topic in machine learning (Ding et al., 2022;

Ji et al., 2024). For instances, FL is intertwined with popular machine learning

topics, such as unsupervised learning (Zhang et al., 2023a; Kim et al., 2023a),

lifelong learning (Liu et al., 2019a; Yu et al., 2022), adversarial learning (Bhagoji

et al., 2019; Zhang et al., 2019), model optimisation (Wang et al., 2021; Chen et al.,

2023), and more. To protect user privacy, differential privacy (El Ouadrhiri and
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Abdelhadi, 2022; Wei et al., 2020), cryptography (Mansouri et al., 2023; Zheng

et al., 2023), secure aggregation (Bonawitz et al., 2016; Fereidooni et al., 2021) are

also widely studied in FL. Finally, works on the device topology (Marfoq et al.,

2020), communication protocols (Shahid et al., 2021) and systems (Khan et al.,

2021) pave the way for delivering practical FLs. Each of these directions addresses

various challenges in FL. This work specifically focuses on addressing the straggler

issue.

2.2 Efficient Machine Learning Methods for

Tackling the Straggler Issue

This section first demonstrates the impact of the straggler issue in FL. Then three

efficient machine learning approaches for solving the straggler issue in current re-

search are rigorously reviewed. They are: 1) partial model training; 2) custom-size

client models; 3) active data selection.

2.2.1 Straggler Issue Deteriorates FL Performance

Clients selected to participate in a FL communication round train the downloaded

global model for a few local epochs and are expected to finish before a deadline.

But as our computing ecosystem flourishes with a wider spectrum of computing

devices – such as in the Internet of Things (IoTs) space – system heterogeneity rifts

a gap in the theoretical validation of FL, if more diverse devices are involved in FL.

Straggler issue. The straggler issue primarily arises from the mismatch between

client hardware and the computational demand for training machine learning mod-

els, particularly deep learning models. Traditional FL distributes a uniform model

for all participating clients and requires them to perform a fixed number of train-

ing epochs on the distributed model before a deadline. Some clients with limited

computational resources cannot complete the required training within the deadline.

Consequently, these clients are discarded by the server during the communication
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Figure 2.3: Stragglers are discarded by the server due to incomplete
local updates. The diagram is a remade version of Figure 2 from Li
et al. (2020a).

round, contributing no knowledge to FL. As stragglers often hold essential data for

learning, their dropout compromises global model performance. Figure 2.3 illus-

trates the dropout of stragglers in FL. Figure 2.4 demonstrates how the straggler

issue deteriorates global model performance in FL. The significant performance de-

crease mainly results from discarding the learning results from stragglers. With

more devices being discarded, the global model performance is more heavily pe-

nalised. Further, it is observed that the straggler issue affects datasets differently

in Figure 2.4. Given 50% device dropout (equivalent to 50% device participation),

the GSC dataset displays more resilient performance compared to the CIFAR-10

dataset. Our hypothesis for this observation is that the GSC dataset is less com-

plex than the CIFAR-10 dataset. More detailed discussions about the performance

differences on GSC and CIFAR-10 are provided in Section 4.5.1.

Several research directions have been explored by the FL community to tackle

the straggler issue. These include efficient machine learning approaches (He et al.,

2020a; Diao et al., 2020; Horvath et al., 2021; Mei et al., 2022), asynchronous

FL (Nguyen et al., 2022; Zhu et al., 2022), and one-round FL (Guha et al., 2019;
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Figure 2.4: The straggler issue diminishes global model performance in
FL. A total of 10 clients on CIFAR-10 and GSC datasets are simulated
in FL. With more stragglers being dropped out, the learning curve of
the global model is slower and more unstable.
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Zhou et al., 2020b; Gong et al., 2021; Zhang et al., 2022a; Su et al., 2023).

This thesis narrows down its focus to the direction of efficient machine learning

as it is one of the most well-studied and widely accepted approaches for addressing

the straggler issue due to its high efficacy and competitive performance. Through

the literature review, efficient machine learning in FL is summarised into three

approaches: 1) partial model training: 2) custom-size client models; 3) active data

selection. Related works of the three approaches are reviewed in the subsequent

subsections.

2.2.2 Partial Model Training

Partial model training reduces workloads on clients by allowing them to train only a

portion of the model rather than the full model. A series of FL works have proposed

updating submodels of the global model on clients. These submodels are extracted

in a way that fits local computational power, thereby improving the participation

of less capable clients. Generally, submodels are formulated by masking units in

hidden layers of the model. Once updated on clients, the updated model parameters

can be fused into different parts of the global model on the server.

FjORD (Horvath et al., 2021) proposes an ordered dropout strategy to extract

submodels from the global model and broadcast them to the client side. The sub-

model is obtained by dropping out inside units with ordered probabilities. The

ordered probabilities come from a set of dropout probabilities broadcast to clients

for deciding how many units of the model is pruned in accordance to their compu-

tational capabilities. Those pruned units do not participate in the local updates,

thus reducing training cost on clients. FjORD compares its ordered dropout with

random dropout, demonstrating better global model performance. In a very close

study to FjORD, HeteroFL (Diao et al., 2020) diminishes the size of every hidden

layer in the model with a fixed ratio to extract the submodel. The ratio is decided

by the capability of the participating client. Server aggregates updated submod-

els and uses them to complete the global model. FedRolex (Alam et al., 2022)

criticises that the parameters of submodels are unevenly trained in FjORD and

HeteroFL, leading to a degraded global model performance under data heterogene-
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ity. To address this problem, FedRolex introduces a rolling window for extracting

submodels across communication rounds, enabling all parts of the global model to

be exposed to different local data distributions, improving the global model perfor-

mance in scenarios of strong data heterogeneity. Following FjORD and HeteroFL,

InclusiveFL (Liu et al., 2022) adapts the submodel solution to large model learning

on the edge, such as training the Transformer. FLANC (Mei et al., 2022) inter-

prets the submodel extraction with tensor decomposition on model parameters. It

proposes a more flexible tensor decomposition than FjORD and HeteroFL, where

original parameters can be approximated by the multiply of two tensors, a neural

basis tensor that is shared among all clients and an adjustable tensor that can adapt

to client capability. Similarly to FedRolex for addressing the uneven model training

for FjORD and HeteroFL, the neural basis tensor in FLANC is utilised to transfer

the knowledge learned on all clients to every part of the global model.

2.2.3 Custom-size Client Models

Partial model training improves the training efficiency of local updates by reducing

trainable parameters. Based on the same idea, recent FL studies alternatively

reduce the trainable parameters by diminishing the model size. Specifically, these

studies leverage custom-size client models to address the straggler issue.

Instead of distributing a global model uniformly to the participant clients, which

is challenging for various devices to complete the local updates in the same amount

of time, we can assume that the client is assigned with a model with a specific size

that matches its computational capability, ensuring its local updates are completed

timely. Specifically, a client with less powerful hardware is given a lightweight model

requiring less effort to update. Therefore, the client can successfully complete local

updates and subsequently upload its training results to the server. Given this

premise, stragglers are transformed into non-stragglers in heterogeneous FL by the

deployment of custom-size client models.
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Approaching Custom-size Client Models with Knowledge Distillation

However, while addressing the straggler issue, the distribution of custom-size client

models introduces another problem: creating knowledge barriers between the global

model and client models during global updates. Recall Equation 2.4, given uniform

client models, the global model is formulated by simply fusing parameters of up-

dated client models. This is not feasible when client models have various sizes, as

we cannot match the parameters of client models. Hence, alternative global up-

dates methods are needed to transfer the learned knowledge from custom-size client

models to the global model.

Knowledge distillation (KD) (Hinton et al., 2015) is widely adopted to transfer

the locally learned knowledge to the global model. KD is also known as knowledge

transfer (KT). It is a popular machine learning approach for model compression (Bu-

ciluǎ et al., 2006; Polino et al., 2018). With KD, a heavily-parameterised model

with superior performance can transfer its knowledge to a lightweight model that

aims to achieve similar performance to the heavily-parameterised model. KD is

model structure agnostic, thereby perfectly fitting to the knowledge transfer among

heterogeneous models.

Early applications of KD to FL were motivated by improving the communication

efficiency rather than supporting custom-size client models to address the straggler

issue. Compared to communicating full models between clients and server, KD-

based FLs transmit logits (Jeong et al., 2018). Logits are model outputs of much

smaller size than the model itself, significantly reducing communication costs in the

network. Later works (Chang et al., 2019; Sun and Lyu, 2020) demonstrated that

KD-based FL is robust to adversarial attacks and noise pollution, further advancing

its application in FL. More recently, with growing research interest in addressing the

straggler issue in FL, a number of KD-based FLs are proposed to facilitate custom-

size client models in tackling this challenge. These methods focus on improving

knowledge aggregation in the presence of data heterogeneity and relaxing the need

for a public dataset to assist KD.
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Advancing Knowledge Aggregation and Relaxing the Public Data

FedMD (Li and Wang, 2019) and FedDF (Lin et al., 2020) are among the most

popular KD-based FLs tailored for custom-size client models. In FedMD, a public

dataset is assumed to be accessible by all clients. After local updates, client models

upload their logits generated on a public dataset to the server. Uploaded logits are

aggregated by the server to form a consensus as the global knowledge which is used

to supervise client models to learn on the public dataset. Client models approximate

their outputs to the consensus, thereby learning from the global knowledge. FedMD

demonstrates the efficacy of KD for transferring knowledge among custom-size client

models. FedDF follows a similar approach to FedMD in terms of forming the

consensus and transferring the global knowledge. However, FedDF proposes to use

KD to improve the performance of the fused global model in a homogeneous client

model setup. Nevertheless, its solution can adapt to custom-size client models.

Later, DS-FL (Itahara et al., 2021) and FedAUX (Sattler et al., 2021) advances

FedMD by assuming the public data is not labelled, as FedMD relies on a labelled

public dataset to pretrain client models in advance of FL. Particularly, FedAUX

performs unsupervised representation learning on the unlabelled public dataset to

learn a feature extractor before starting FL. Additionally, FedAUX advances the

formulation of the consensus with certainty weights, improving the reliability of the

consensus. Similarly, Fed-ET (Cho et al., 2022) introduces a weighted consensus,

selecting credible logits to transfer knowledge to the global model. Also using

an unlabeled public dataset, FedKEM (Nguyen et al., 2023) proposes performing

mutual knowledge distillation between the global model and client models.

On another track, FedBE (Chen and Chao, 2020) proposes using the averaged

prediction from ensemble models to enhance the robustness of the global perfor-

mance. A number of models are sampled from an estimated conditional distribu-

tion of the global model to form the ensemble. KD is used later to distill ensemble

models into a single model for faster inference. Finally, FedGEN (Zhu et al., 2021)

and DENSE (Zhang et al., 2022a) completely remove the need of public data for

transferring the global knowledge. Particularly, FedGEN learns a lightweight data
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generator using predictors learned on the client side. The data generator can yield

augmented global representations for class labels and is offloaded to the client side to

transfer the global knowledge by regularising the predictor in local updates. DENSE

advances FedGEN by learning a generator on the server to create synthesised raw

data rather than feature representations, without breaking the privacy-preserving

rule of FL. The synthesised data is then used to assist knowledge transfer from

client models to the global model.

Utilising Latent Feature Representations

FedGKT (He et al., 2020a) is proposed to split the learning of the global model

between the server and clients. FedGKT addresses the straggler issue by having

clients train small-size feature extractors, while the large part of the global model is

learned on the server. Particularly, it trains local feature extractors on clients and

uses them to extract feature representations for local data. Clients upload these

feature representations to train the majority of the global model on the server. KD

is employed to assist the split training on both server and client sides by aligning

the outputs between the paired client model and global model.

FedAD (Gong et al., 2021) uses latent feature representations to enhance the

knowledge transfer from custom-size client models to the global model. Notably,

during the global model training on the public dataset, FedAD not only aligns the

global model to the consensus in the output space but also approximates its latent

output to the top-down class-specific attention maps aggregated from client models,

leading to improved global model performance.

2.2.4 Active Data Selection

Rather than reducing the number of parameters to learn, another popular strategy

to improve the training efficiency is to reduce the amount of training data. Active

data selection is an established approach to achieve training data reduction. It

has been well studied in centralised machine learning, leading to a popular research

branch in machine learning known as active learning (Settles, 2009; Ren et al., 2021).
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Active learning is driven by the fundamental premise that machine learning algo-

rithms can perform better with actively selected training samples. For supervised

machine learning, active learning is leveraged to reduce labeling efforts (Fu et al.,

2013; Zhan et al., 2021). Conversely, works such as Mindermann et al. (2022); Yang

et al. (2023); Li et al. (2022) demonstrate that active data selection can improve

the training efficiency for deep learning models.

Typical FL works that adopt active learning, such as LoGo (Kim et al., 2023b)

and F-AL (Ahn et al., 2024), are mainly driven by the objective of reducing labeling

burdens on clients (Jeong et al., 2020), the same motivation behind the development

of active learning in centralised machine learning. These works have not conducted

studies on reducing the workloads on stragglers through active data selection. On

the other hand, there are only a limited number of works that leverage active data

selection for improving FL performance in heterogeneous environments. Inspired

by the active learning method proposed in centralised learning (Katharopoulos and

Fleuret, 2018), Li et al. (2021a) use the gradient upper bound norm of the global

loss to calculate importance scores for selecting local instances. FLRD (Nagalapatti

et al., 2022) learns a relevant data selector on the client side using reinforcement

learning. The learned selector can select local samples most beneficial for global

model performance. To train the data selector locally, the client is assumed to hold

a public dataset for computing the reward for reinforcement learning. Sun and Lyu

(2020) proposes a once-for-all data selection phase in advance of FL. It filters out

relevant training instances on clients with a loss threshold calculated on the server.

The threshold loss is determined using instance losses uploaded by all participating

clients.

Uncertainty-based data selection (Beluch et al., 2018; Liu et al., 2021c; Yuan

et al., 2021) is one of the most widely used approaches for identifying useful learning

instances. By calculating the uncertainty of the instance on a proxy for the learning

task, the most difficult samples are unearthed to train the model. These difficult

samples are more useful for learning as more knowledge is conveyed to the model

by using them. In centralised learning, entropy is among the most popular metrics

for measuring the uncertainty for data points (Joshi et al., 2009; Luo et al., 2013;
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Aggarwal et al., 2014; Li et al., 2019a). In the realm of FL, FedEntropy (Orlandi

et al., 2023) leverages entropy to select the most useful client models for global

aggregation. Each participating client uploads an averaged entropy on its local

data to the server. Then the server prunes clients that reduce the overall entropy,

resulting in a subset of clients that achieve maximal global entropy. FedEntropy

demonstrates that fusing models uploaded by those selected clients leads to better

global model performance. FedAvg-BE (Orlandi et al., 2023) utilises entropy to

select batched local data for updating the client model. The batched local data is

hard for the client model to learn, consisting of selected training samples having

maximal entropy calculated by the client model.

2.3 Related Work on Model Shift Mitigation

2.3.1 Model Shift Aggravates Straggler Issue

Besides addressing the straggler issue, solving the model shift problem needs is es-

sential for improving the participation of resource-constrained devices. Model shift

can significantly slow down the convergence of FL, resulting in higher energy costs

for clients throughout FL. The higher energy costs can discourage the participation

of clients, particularly those with resource constraints. Both theoretical and em-

pirical studies (Karimireddy et al., 2020; Wang et al., 2020a; Li et al., 2021b) have

demonstrated that model shift is induced by the data heterogeneity across clients.

Therefore, to understand the model shift problem, we first need to introduce data

heterogeneity in FL.

Modelling Data Heterogeneity with Non-IID Client Data

Data heterogeneity poses a major challenge to federated learning. Since Federated

Averaging (FedAvg) (McMahan et al., 2017), many subsequent works (Zhao et al.,

2018; Hsu et al., 2019; Li et al., 2019c; Abdelmoniem et al., 2023) have revealed that

data heterogeneity can negatively impact generalisation, convergence and fairness

in FL. Data heterogeneity refers to the non-IID client data, reflecting the diverse
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distributions of user-generated data.

Mathematically, a client i is sampled from distribution Q, denoted as i ∼ Q,

where Q is the distribution over available clients, to participate in federated learn-

ing. Considering a supervised learning task, the local data on client i is represented

by the distribution of Pi(x, y), where x is the data point and y is its assigned label.

Kairouz et al. (2021) and Ye et al. (2023) define the non-IID client data in feder-

ated learning with Pi ̸= Pj for client i and j. They distinguish non-IID client data

scenarios with respect to the marginal distributions and conditional distributions,

as we can decompose Pi(x, y) into Pi(y | x)Pi(x) or Pi(x | y)Pi(y).

Feature skew. Feature skew refers to the feature differences across clients. It

includes two cases: 1) feature distribution skew, denoted by the marginal feature

distribution differences Pi(x) ̸= Pj(x); 2) feature condition skew, denoted by the

conditional feature distribution differences Pi(x | y) ̸= Pj(x | y). An exemplary

case in feature distribution skew is the handwriting styles from different people

can be various even though they may share the same conditional label distribution

Pi(y | x) ̸= Pj(y | x). With respect to feature condition skew, it describes that

the features from different clients can vary significantly under the same label. For

instance, horses from different countries can have different sizes. The horses from the

Mongolia region are typically shorter than the horses from the European countries.

Label skew. Label skew refers to the differences of label distributions among

clients, encompassing two categories: 1) label distribution skew, denoted by the

marginal distribution differences Pi(y) ̸= Pj(y); 2) same feature and different labels,

denoted by the conditional distribution differences Pi(y | x) ̸= Pj(y | x). The label

distribution skew is commonly observed in cross-device FL, reflecting varying users

preferences for categorised content. For instance, cat lovers may predominantly

watch cat videos on their devices, while dog videos are favoured by dog enthusiasts.

On the other hand, the same feature and different labels indicates that users may

class the same item differently due to their background differences, such as cultural

influences.
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Figure 2.5: Label skew and quality skew across three clients. P1, P2,
P3 represents different client data distributions.

Quality skew. Quality skew suggests substantial variations in the size of client

data. Active clients tend to generate a large amount of on-device data, whereas

samples from idle users are relatively limited. The disparity in data volume can

compound with label skew, as illustrated in Figure 2.5.

Model shift problem. Model shift occurs when locally updated models drift

away from the globally optimal model (Reddi et al., 2020). This problem is closely

related to the concept of dataset shift in machine learning (Quinonero-Candela

et al., 2008; Moreno-Torres et al., 2012; Kairouz et al., 2021). When the model is

updated through ERM on client data, it is optimised to fit client data distribution.

With non-IID client data, client updated models tend to shift drastically from each

other. As a result, the global model formulated during global updates deviates from

the global optimum. Figure 2.6 illustrates how model shift happens. Figure 2.7

shows the negative impact of data heterogeneity on the global model performance

by simulating different levels of data heterogeneity. The degraded FL performance

is mainly induced by the local optimisation shifting away from the global objective

given non-IID client data. In a practical FL setup, Pi(x, y) ̸= Pg(x, y), where

Pg(x, y) is the global distribution of the learning task (or the target distribution),

the aggregation of deviated client models leads to slow convergence and deteriorated
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Figure 2.6: The model shift problem. Updated models fit to local data
distributions.

generalisation.

Extensive studies have investigated the model shift problem and its detrimental

effects on FL performance (Zhao et al., 2018; Hsu et al., 2019; Li et al., 2019c,b;

Abdelmoniem et al., 2023). In the following section, existing works that address

the model shift problem will be reviewed. These approaches are categorised into

three groups: regularisation on local updates, federated optimisation, and server-

side centralised learning.

2.3.2 Regularising Local Updates

A common approach adopted to mitigate model shift is to regularise local updates.

This approach prevents the updated model from overfitting to the non-IID client

data by penalising the training loss function with a term indicating the global learn-

ing objective on the task. FedProx (Li et al., 2020c) is one of the most recognised

regularisation solutions to tackle the model shift problem. FedProx regularises the

local updates with a proximal term, which is essentially the global model formu-

lated by the server every communication round. As such, the updated model on
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Figure 2.7: Model shift induced by data heterogeneity penalises global
model performance on CIFAR-10 and GSC datasets. It is apparent
that both the generalisation and convergence are negatively affected
by heterogeneous client data. As data heterogeneity becomes stronger,
the detrimental impact on FL performance becomes more pronounced.
There is a noticeable performance gap between FL and centralised learn-
ing.
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the client cannot deviate much from the global model given non-IID client data.

However, FedProx suffers from slow convergence due to the constant restriction

on the local updates. FedDyn (Acar et al., 2021) criticises that FedProx fails to

match the minima of the proximal term to the global stationary point, resulting

in slow convergence. In addition to the original proximal term for aligning the

model parameters, FedDyn introduces a linear penalty term, which accelerates FL

convergence by restricting the deviation of local gradient descent.

Similarly, SCAFFOLD (Karimireddy et al., 2020) proposes that every client

additionally calculates a gradient-based term to correct its local update direction,

forcing it closer to the ideal IID local data scenario. Nevertheless, compared to

FedDyn, SCAFFOLD is disadvantaged by the additional communication overhead

as it transmits both model parameters and gradients in the network. The aforemen-

tioned works mainly consider the data heterogeneity as the label skew and quality

skew. To tackle the model shift induced by the feature skew, FCCL (Huang et al.,

2022), utilises the unsupervised representation learning on the server to maximise

same class invariance in different domains and the variance among different classes,

learning a class representation that is not only universal across domains but also

distinguishable to other class representations to combat the domain shift. FCCL

also introduces a dual knowledge distillation to clients for avoiding the knowledge

forgetting problem. However, the dual knowledge distillation adds an extra training

cost for updating the model.

The model shift problem in FL shares similarities with the catastrophic forget-

ting problem in lifelong learning. Comparing the local updates on one client to a

new task in lifelong learning, FL and lifelong learning both seek to avoid the model

overfitting to a single task. For instance, FedCurl (Shoham et al., 2019) adopts the

lifelong learning solution, Elastic Weight Consolidation (EWC) (Kirkpatrick et al.,

2017), to penalise the local loss function, aligning the client models to the global

optimum. Instead of penalising the entire model, as mentioned above, another

line of regularisation focuses on limiting the drift in the feature extractor during

local updates. This approach is based on the premise that the feature extractor

learned on the entire dataset is more generic than one learned on non-IID client
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data. MOON (Li et al., 2021b) introduces the contrastive loss to regularise the

feature extractor. The contrastive loss is formulated by differences between the

features extracted from the global model and the client model on the client data. It

pushes the client model to learn representations close to the global representations

but away from the representations learned in previous rounds. Penalised by the

contrastive loss, the feature extractors across the clients are aligned during local

updates.

FedPAC (Xu et al., 2023) also aligns the feature extractor with regularisation

during local updates. However, this paper proposes utilising prototype features

constructed on the server with features extracted from client models. Client subse-

quently download the prototype features and uses them to guide its local updates,

injecting global views to avoid local overfitting. On the other hand, FedBABU (Oh

et al., 2021) completely fixes the classifier across the clients to make the updated

feature extractor resistant to model shift. The frozen classifier acts as a regu-

lariser while updating the feature extractor. Similarly, FedETF (Li et al., 2023) and

FedNH (Dai et al., 2023) introduces the prototypical classifier specifically designed

for locally updates to avoid the classifier bias introduced by data heterogeneity.

Finally, FedAlign (Mendieta et al., 2022) examines standard regularisation meth-

ods used in local updates, particularly Mixup (Zhang et al., 2017), Stochastic

Depth (Huang et al., 2016), GradAug (Yang et al., 2020), comparing them to

methods adopting the proximal term like FedProx. FedAlign finds that the stan-

dard regularisation is on par with or even outperforms FedProx and MOON. They

adopt GradAug, modified to consume fewer computational resources, to regularise

local updates and suggest the academic community to rethink the regularisation

approach by focusing on improving learning generality in local updates.

2.3.3 Advanced Federated Optimisation

The global model optimisation in vanilla FedAvg has no particular measure to

mitigate model shift. As such, a branch of work addresses the model shift problem

by advancing federated optimisation on the server. Some of these works further

combine the advanced federated optimisation with regularisation on clients.
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FedAvgM (Hsu et al., 2019) improves FedAvg to mitigate model shift by intro-

ducing a momentum term to the global updates. The adoption of the momentum

is inspired by its mitigating effect on the gradient oscillations particularly induced

by data heterogeneity. FedNova (Wang et al., 2020a) revises the global model op-

timisation in FedAvg with the normalised local gradient descent and aggregation

weights decided by the times of the local updates to particular address running

uneven numbers of mini-batched gradient descent across clients. FedOpt (Reddi

et al., 2020) studies the application of adaptive optimisers from centralised ma-

chine learning to the federated learning setup. It points out the rigidity problem of

the server optimiser in FedAvg and proposes utilising adaptive optimisers, such as

ADAGRAD, YOGI or ADAM, to improve the flexibility of global model optimisa-

tion. They demonstrate that the adaptive optimiser can considerably improve FL

convergence through rigorous evaluations.

On a different track, FedDC (Gao et al., 2022) introduces a local variable to

track the model drift, which is then uploaded to the server. This strategy allows

the server to cancel out the model shift effect while updating the global model. Most

recently, Chen et al. (2023) propose to use the elastic aggregation to replace the

vanilla parameter averaging in global updates. The elastic aggregation introduces

a model drift mitigation strategy that measures the model output sensitivity to

individual parameters. During global updates, those less sensitive parameters are

updated, whereas more sensitive parameters are kept unchanged, thereby mitigating

model shift on the server.

Finally, FedBN (Li et al., 2021d) proposes to mitigate the feature skew by exclud-

ing the batch normalisation layers from the model aggregation. With this simple

modification to FedAvg, FedBN achieves impressive performance improvement in

FL under simulated feature skew scenarios.

2.3.4 Formulating Centralised Learning on the Server

Another branch of work aimed at mitigating model shift focuses on creating a cen-

tralised learning pathway within FL. This approach commonly involves extracting

information about the global data distribution from clients without breaking the
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privacy-preserving rule, using this information to generate a synthesised dataset on

the server. The global model is refined on the synthesised dataset in a centralised

learning manner to improve its performance.

CCVR (Luo et al., 2021) demonstrates that the classifier in the model is partic-

ularly susceptible to the shift problem. To address this, CCVR extracts prototype

representations of local images and uploads them to the server to synthesise a uni-

versal dataset. This dataset is specifically used to train a less biased classifier for

the global model in a centralised learning approach.

Similarly, DynaFed (Pi et al., 2023) synthesises a dataset that can approximate

the global data distribution by tracking the dynamics of the fused global model

on the server. The synthesised dataset is then used for refining the global model,

mitigating the model shift effect. FedFTG (Zhang et al., 2022b), on the other

hand, learns a data generator on the server to output synthesised data to assist the

knowledge distillation from client models to the global model, correcting the model

shift following model fusion.

In summary, previous works on addressing the model shift problem commonly in-

troduce additional workloads for clients. While achieving huge success in mitigating

model shift, they often do not encourage the participation of resource-constrained

devices.

2.4 Research Gaps in Approaches for Addressing

the Straggler Issue

Based on the review of the state-of-the-art FL works, we have identified three key

research gaps that have not been effectively addressed in previous studies aiming

to solve the straggler issue: 1) unmitigated model shift in the approach of partial

model training; 2) weak knowledge transfer with a single knowledge source in the

approach of custom-size client models; 3) understudied efficacy of the active data

selection approach for addressing the straggler issue.
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Unmitigated model shift in partial model training. In the partial model

training approach, the extraction of submodel proposed in previous works, such

as FjORD, HeteroFL, FedRolex, etc., has successfully reduced the workload on

resource-constrained devices. However, given data heterogeneity, these methods

face difficulties in extracting optimal submodels for individual participating clients,

leading to the problem of uneven client training (Alam et al., 2022). This uneven

training problem has an interplay with the model shift problem, resulting in slow

FL convergence and increased energy consumption for stragglers. Existing partial

model training methods typically miss an effective solution to mitigate model shift.

Conversely, previous methods focusing on model shift mitigation, such as FedProx,

FedDyn, MOON, SCAFFOLD, FedCurl, FedFTG, FCCL, etc., commonly intro-

duce additional computational overhead for clients. Hence, these methods are not

suitable for addressing the straggler issue, as they solve the model shift problem by

increasing computing burdens on clients. To this end, there is a need for the partial

model training approach to reduce workloads on clients as well as mitigate model

shift.

Weak knowledge transfer with a single knowledge source. Although many

efforts (Itahara et al., 2021; Sattler et al., 2021; Cho et al., 2022; Chen and Chao,

2020) have been made to improve the knowledge transfer in FL with custom-size

client models, previous works typically employ a single knowledge source–model

outputs at the top layer–to transfer the knowledge between client models and the

global model, including FedMD, FedDF, DS-FL, FedAUX, Fed-ET, etc. However,

with drifted client models, top outputs of client models are often inconsistent and

unreliable while they are aggregated, significantly weakening knowledge transfer

and compromising the global model performance. The problem of weak knowledge

transfer has become a major obstacle for the approach of custom-size client models

to address the straggler issue. Therefore, it is necessary to employ more credible

knowledge sources that can effectively enhance knowledge transfer between clients

and the server regardless of the differences in model sizes. By adding new sources

for knowledge transfer and demonstrating their efficacy, we can fill the research gap
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in existing literature where only a single knowledge source is utilised. The study

can lead to improved global model performance in FL adopting custom-size client

models, significantly strengthening its application in addressing the straggler issue.

Understudied active data selection for solving the straggler issue. There

are two major problems in existing FL literature that employs active data selection.

First, mainstream FL methods, such as LoGo and F-AL, have not fully explored

the potential of active learning to address the straggler issue, despite its proven

success in centralised learning for improving training efficiency. Their methods

primarily focus on alleviating the labelling efforts for client data and lack a in-

depth study on the learning efficiency of clients that adopt active learning. Second,

methods like FLRD introduce substantial computational workloads to clients for

strategically selecting beneficial training instances, further aggravating the straggler

issue. To this end, it is recognised that the potential of using active data selection

for addressing the straggler issue is understudied in current research. It is crucial

to adapt and transfer the success of active data selection in approaching efficient

machine learning to the framework of FL. By filling this research gap, we can enrich

the toolbox for addressing the straggler issue by leveraging the strengths of active

data selection.

In summary, closing these critical research gaps is vital for enhancing the effec-

tiveness of approaches aiming to tackling the straggler issue in FL. By mitigating

model shift in partial model training, strengthening knowledge transfer with diverse

sources in custom-size client models, and advancing active data selection methods,

these approaches can significantly boost the participation of resource-constrained

devices, empowering a broader range of devices to contribute valuable knowledge

to FL.

2.5 Summary

This chapter systematically reviews existing FL research in addressing the straggler

issue. They are categorised into three approaches: 1) partial model training; 2)
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custom-size client models; 3) active data selection. Despite the extensive research

in these areas, specific challenges remain in these approaches, diminishing their

effectiveness in addressing the straggler issue in practice. They are: 1) Unmitigated

model shift in partial model training. 2) Weak knowledge transfer with a single

knowledge source in the approach of custom-size client models. 3) Understudied

active data selection for solving the straggler issue. This review highlights the

importance of addressing these research gaps in FL. In the next chapter, we will

introduce the joint experimental setup used throughout this thesis.



Chapter 3

Joint Experimental Setup

In this Chapter, we introduce the joint experimental setup used throughout this

thesis. The following chapters also include specific experimental setups, which are

tailored for particular methods.

3.1 Datasets

We implement and evaluate our methods on both image and speech classification

tasks. CIFAR-10 and CIFAR-100 (Krizhevsky and Hinton, 2009) are adopted for the

image classification, which are very popular for evaluating FL algorithms. CIFAR-

10 is an image dataset with 60,000 data points, which are evenly split among a

total of 10 classes. The sizes of the training set and test set are 50,000 and 10,000

respectively. Each data point is an image of 32 × 32 pixels with RGB channels.

CIFAR-100 is similar to CIFAR-10, except it is divided into 100 classes with each

class containing 600 images. CIFAR-100 also includes coarse labels, which group 5

fine-grained labels into one coarse label. We use the fine-grained labels of CIFAR-

100 in the experiments. Public CIFAR-10 and CIFAR-100 do not have exiting sets

for the validation purpose. So for both of them, we uniformly draw 5000 random

samples from the training set to construct the validation set for validating the

hyperparameter setup for our methods.

On the other hand, the application of FL to Automatic Speech Recognition

(ASR) in practice is becoming increasingly important. Large-scale solutions for

46
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ASR usually rely on audio data from multiple sources that are collected in realistic

conditions. While in early-days ASR systems evolved by training on lab collected

speech data, nowadays the strength of ASR systems comes from the realistic condi-

tions under which data samples are collected – background noise, different locations

and accents (Watanabe et al., 2020; Cornell et al., 2023). With data privacy be-

coming a greater concern in society, and with the proliferation of powerful mobile

devices connected through low latency connections (e.g., 5G), distributed training

for ASR is receiving increasingly more attention (Nassif et al., 2019; Cui et al., 2021;

Granqvist et al., 2020; Hard et al., 2020; Leroy et al., 2019). To this end, we employ

Google Speech Commands (GSC) Warden (2018) to evaluate our FL algorithms.

GSC consists of 105,829 recorded utterances of 35 different words. Each recording

holds an isolated word utterance lasting for one second. The training, validation

and test sets of GSC are split disjointly into 84,843, 9,981 and 11,005 samples re-

spectively. we follow the practice proposed by BalanceFL (Shuai et al., 2022) to

transform the recordings from a sound wave to a 32×32 frequency map by applying

Mel Spectrogram. Particularly, the sample rate of the sound waves is 16kHz. We

set the number of Mel bank to 32. The FFT window size and hop window length

are set to 1024 and 512 respectively. Therefore, we convert a one-second sound

wave into a 32× 32 single-channel image.

Heterogeneous data split. Following many prior works (Hsu et al., 2019; Lin

et al., 2020; He et al., 2020b), the Dirichlet distribution, denoted by Diri(α), is em-

ployed to partition the non-IID local data in our experiments. Figure 3.1 visualises

the non-IID local data split on 20 clients with seed 0 on CIFAR-10. Each bubble

in the graph is associated with a class on a client. Its size indicates the number of

data points, with a larger size suggesting a greater number of data points. The dis-

tribution created by α = 0.1 is evidenced with a higher level of data heterogeneity

than the one generated by α = 0.5 as the bubbles have a wider range of sizes.
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Figure 3.1: Visualisation of non-IID local data across 20 clients using
CIFAR-10. Client IDs are presented on the Ox axis, CIFAR-10 classes on
the Oy axis, with bubble size indicating sample counts. Higher values of
α = 0.5 suggest client data approaching an IID scenario, whereas lower
α = 0.1 demonstrates a strong non-IID case, characterised by varying
bubble sizes.

3.2 Baselines and Models

Baselines. In addition to the standard FedAvg, this thesis compares its methods

against popular FL methods for addressing the straggler issue and the model shift

problem: FedProx, MOON, FedMD. FedAvg is one of the most widely used baselines

for FL studies. As introduced in the Section 2.3, FedProx adopts a proximal term

in local loss to restrict the entire model shift. Whereas, MOON limits the shift of

the feature extractor in the model by adding the contrastive loss that maximises

the similarity of feature representations created by the client model and the global

model. FedMD is a popular KD-based baseline allowing custom-size client models in

FL. It is employed to compare with our custom-size client model methods. FedProx

and MOON are tuned across key hyperparameters, including the proximal term

coefficient µprox and the contrastive loss coefficient µcon, within the range {0.01,

0.1, 1, 5} for optimal performance.

Models. Wide ResNet (Zagoruyko and Komodakis, 2016b) is employed for both

the global model and client models. In addition, MobileNetV3 (Howard et al., 2019),

EfficientNet (Tan and Le, 2019), LSTM, are involved in ablation studies. Specific

configurations of models are provided in the experiment sections of subsequent
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chapters.

Our algorithmic implementation is based on the FedML (He et al., 2020b) frame-

work. All the experiments are conducted on a single NVIDIA GeForce RTX 2070

SUPER GPU on a desktop machine and NVIDIA Tesla V100s provided by the

High Performance Clusters at the University of Sheffield. Regarding the number

of FL communication rounds, different configurations are applied to various meth-

ods and datasets in the technical chapters. We determine the number of rounds

by monitoring the validation performance of the global model. Notably, we focus

on the improved visibility of the learning curve from changing the number of com-

munication rounds and fixing the round number when the global model is already

saturated, with just incremental gains. We apply this criterion across all meth-

ods unless otherwise stated. Detailed hyperparameter settings, such as learning

rate, batch size, and number of local update epochs, etc., are also specified in the

experiment sections of forthcoming chapters.

3.3 Evaluation Metrics

We choose accuracy as our primary evaluation metric. Accuracy is one of the most

commonly used metrics for evaluating classification performance, as well as the

main metrics used by the majority of FL works, such as FedAvg (McMahan et al.,

2017), FedProx (Li et al., 2020c), MOON (Li et al., 2021b), and etc. By using

the same metric to existing FL works, our comparison with the baselines will be

straightforward.

Formally, accuracy is calculated by dividing the number of correction predictions

made by the model with the total number of predictions as follows.

Accuracy =
Number of Correct Predictions

Total Number of Predictions
(3.1)

Throughout this thesis, we use Top-1 accuracy unless stated otherwise. Top-1 ac-

curacy counts the number of correction predictions based on the highest-probability

output of the model.
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3.4 Summary

This chapter describes the joint experimental setup used in this thesis to avoid re-

peated introductions. Our methods are evaluated on popular image classification

and speech recognition tasks with data heterogeneity simulation. Accuracy is the

evaluation metric employed for reporting the performance of methods. For tai-

lored experimental setup, the details will be specified accordingly in the technical

chapters. In the next chapter, we will introduce the method, few-shot fine-tuning,

proposed in our first sub-research path.



Chapter 4

Mitigating Model Shift in Partial

Model Training

4.1 Introduction

4.1.1 Research Questions to Address

Our literature review, Section 2.2, exposes the limitations of previous works in

solving the model shift problem when adopting partial model training to reduce

workloads for stragglers. This problem slows down FL convergence and limits the

effectiveness of encouraging participation from resource-constrained devices. Our

first sub-research path focuses on filling this research gap. Particularly, the research

question to address in this sub-research path is, “How can partial model training

reduce workloads for stragglers and mitigate model shift simultaneously?”

This research question can be further broken down into two more specific ques-

tions: 1) “How efficient is partial model training in FL?”; 2) “How can model shift

be tackled using partial model training?”. By answering the first specific question,

we will demonstrate that the proposed partial training method is computationally

efficient, thus encouraging the participation of stragglers. Addressing the second

question will advance the partial model training approach to not only resolve the

straggler issue but also improve FL convergence by mitigating model shift, further

reducing overall energy consumption for stragglers.
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4.1.2 Proposed Methods and Rationale

Few-shot fine-tuning is the method proposed to approach the aforementioned re-

search questions and bridge the research gap within partial model training. It is a

partial model training method that is inspired by few-shot learning studies (Chen

et al., 2019b; Tian et al., 2020).

We choose few-shot fine-tuning to tackle both the model shift problem and

straggler issue because it has two main advantages over relevant state-of-the-art FL

works. First, few-shot fine-tuning can effectively alleviate the model shift by freezing

the majority of model parameters, avoiding additional computational overhead on

clients–a critical improvement over methods like FedDyn, SCAFFOLD, MOON,

FedDC, etc. Second, few-shot fine-tuning shares the entire feature extractor of

the model across clients, rather than training submodels on non-IID client data

proposed by previous partial model training methods, avoiding the uneven training

problem that exacerbates the model shift problem.

CCVR is a close work to the proposed few-shot fine-tuning. However, CCVR

performs the fine-tuning in a centralised manner requiring clients to upload ad-

ditional feature maps to the server. Conversely, FedBABU, FedETF, FedNH all

emphasise the important role played by the upper part of the client model, partic-

ularly the classifier, in mitigating model shift. Therefore they treat the classifier

differently from the rest of the model, which is similar to few-shot fine-tuning.

However, none of these works explore fine-tuning the upper part of the model for

addressing the straggler issue.

To this end, the novelties of few-shot fine-tuning are twofold: 1) this work is

the first to adopt few-shot learning methods for improving the participation of

stragglers in FL, to our best knowledge; 2) Few-shot fine-tuning will be deployed

on stragglers, enabling stragglers to contribute less shifted models with minimal

computational effort. Few-shot fine-tuning uniquely unifies the mitigation of model

shift with workload reduction in the approach of partial model training.

We hypothesises that few-shot fine-tuning can solve both the straggler issue and

model shift problem, leading to advanced partial model training algorithms. By rig-
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orously evaluating this method, this work will answer the research question and con-

tribute substantial knowledge to the partial model training approach. Particularly,

we designs and evaluates the proposed few-shot fine-tuning algorithm Federated

Learning with the Few-Shot Learned Classifier, namely FedFSC. FedFSC will

demonstrate that clients can complete few-shot fine-tuning significantly faster com-

pared to standard local updates. Further, its efficacy in mitigating model shift

will be studied. FedFSC aims to improve the convergence and generalisation of the

global model significantly by allowing stragglers to contribute a less biased classifier

for the global model. Therefore, the research questions outlined will be answered as

follows: “Few-shot fine-tuning is computationally efficient for stragglers to perform,

thereby addressing the straggler issue. The model shift is effectively mitigated by

few-shot fine-tuning, resulting in a less biased classifier that can improve both the

convergence and generalisation of FL.”

4.1.3 Introduction to FedFSC

This section outlines our design and evaluation of FedFSC. Few-shot fine-tuning

requires a generic feature extractor for parameter sharing and fine-tuning a partial

model, crucial for alleviating the computational burden on stragglers. To obtain

this generic feature extractor, FedFSC trains it within FL loops on non-stragglers,

which have sufficient computational resources to train the entire model. Assisted

by the generic feature extractor, stragglers then fine-tune only the classifier with a

few local samples during local updates, enabling their participation in FL despite

limited computational resources. In the context of FL, this local update method is

denoted as the few-shot updates, contrasting with the standard local updates where

the full model is updated using all local data.

FedFSC is inspired by prior studies in few-shot learning by Chen et al. (2019b)

and Tian et al. (2020). In few-shot learning, to prevent overfitting deep learn-

ing models to a few training samples, MatchingNet (Vinyals et al., 2016), Pro-

toNet (Snell et al., 2017), RelationNet (Sung et al., 2018) redesign the metrics for

generalisation by introducing similarity functions to compare the embeddings of

few-shot testing samples and few-shot training samples. MAML (Finn et al., 2017)
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and Retile (Nichol and Schulman, 2018), on the other hand, optimise a good ini-

tial model on multiple few-shot training tasks to facilitate fast adaptation to novel

few-shot testing tasks. However, Chen et al. (2019b) and Tian et al. (2020) demon-

strate that simply fine-tuning the classifier atop a fixed feature extractor pretrained

on a set of base tasks achieves comparable few-shot learning performance to the

aforementioned state-of-the-art approaches. FedFSC leverages this insight, allow-

ing clients to fine-tune the classifier while keeping the feature extractor fixed. This

method is well-suited for addressing the straggler issue in FL as it requires minimal

computational effort.

Figure 4.1 depicts the workflow of FedFSC. FedFSC fully updates the model,

comprising a feature extractor and a classifier, across clients, resulting in a fully

updated model termed the base model. The base model aids the few-shot update

by providing a generic feature extractor, allowing clients to subsequently fine-tune

the classifier with just a few local samples. Finally, FedFSC constructs the global

model with the feature extractor from the base model and the few-shot learned

classifier. FedFSC assumes all participants to update both the base model and the

classifier. To enable the contributions from stragglers, we further propose a variant

of FedFSC, denoted as FedFSC+. FedFSC+ allows stragglers to only perform few-

shot updates that require minimal training efforts, whereas the non-stragglers in

FedFSC+ are tasked to update the base model.

FedFSC and FedFSC+ are rigorously evaluated on CIFAR-10, CIFAR-100 and

GSC datasets, approaching our research questions: “How efficient is partial model

training?” and “How can model shift be tackled using partial model training?”.

Regarding the former, the few-shot updates are observed to reduce the training time

on clients by 90%, encouraging the participation of resource-constrained devices.

For the latter, the few-shot learned classifier shows resilience to model shift, making

less biased predictions compared to a fully updated model in visualised prediction

heatmaps. By performing the few-shot updates on stragglers, they are encouraged

to contribute to the global model with a less biased classifier, improving the global

model performance significantly by up to 6% over state-of-the-art FL baselines

under simulated data heterogeneity. On learning curves, FedFSC is evident to
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Figure 4.1: The workflow of FedFSC. This diagram illustrates a single
communication round in FedFSC. In local updates, participants perform
full model updates and few-shot updates separately. In global updates,
the server collects the fully updated models and the few-shot updated
classifiers to form the base model and the global model by fusing model
parameters.
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achieve faster convergence compared to the chosen baselines, reducing the overall

energy cost for clients throughout FL. In the following sections, we will provide the

details of the design and evaluation of FedFSC and FedFSC+.

4.2 Preliminary

Few-shot fine-tuning employs parameter sharing and fine-tuning. The parameter

sharing assumption adopted by few-shot fine-tuning is the main contributor to ad-

dress the straggler issue. The parameter sharing assumption originates from trans-

fer learning. Transfer learning seeks to improve learning performance in the target

domain by leveraging the knowledge learned from the source task (Zhuang et al.,

2020). One key advantage of transfer learning is improved learning efficiency in tar-

get domains, based on the assumption of parameter sharing (Houlsby et al., 2019).

Parameter sharing assumes a part of the learned model on the source task captures

the general pattern that can be further shared with target domains. Consequently,

we only need to fine-tune a part of the learned model on the target task, reducing

the number of training parameters and therefore improving learning efficiency.

Conversely, few-shot learning (FSL) approaches the challenge of the increasing

cost of acquiring sufficient data for training heavily-parameterised models. It is

defined as training machine learning model(s) to generalise with a limited number

of samples without overfitting (Wang et al., 2020c; Parnami and Lee, 2022). FSL

leverages the parameter sharing assumption to achieve this goal. While training

a heavily-parameterised model with a few training samples without overfitting is

challenging, it becomes practical if a large part of the model is fixed. Notably, recent

works (Chen et al., 2019b; Tian et al., 2020) find that simply fine-tuning the classifier

atop a fixed feature extractor pretrained on a set of base tasks achieves state-of-the-

art few-shot learning performance. Figure 4.2 details their approaches. Parameter

sharing and few-shot learning are also used in training Large Language Models

(LLM) with over billions of parameters (Brown et al., 2020), further demonstrating

their efficacy in reducing the training cost.

Formally, few-shot fine-tuning splits the model into a lower part, the feature
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Figure 4.2: The few-shot learning method proposed by Chen et al.
(2019b); Tian et al. (2020). In the few-shot training phase, the model
is pretrained on a collection of available datasets, consisting of the base
classes. In the few-shot testing phase, the feature extractor in phase
one is reused and fixed. The model further adapts itself to few-shot
learning tasks comprising novel classes by fine-tuning its classifier. The
illustration of N-way K-shot few-shot learning tasks is remade based on
the article by Sultanov (2020).

extractor ϕ, and the upper part θ. In FL, parameters of the global model are

expressed with wg = {ϕg, θg}. Similarly, parameters of the model on client k are

denoted by wk = {ϕk, θk}.

Local updates on stragglers adopt the few-shot fine-tuning to achieve training

efficiency. Formally, in the i-th local training epoch of client k, few-shot fine-

tuning fixes ϕk and fine-tunes θk on a subset of local data, which contains a few

local training instances randomly selected from the entire local data Dk, defined by

dk, i ∼ Dk.

θk, i+1 ← θk, i − λl∇θk, iℓk(θk, i;ϕk, dk, i), (4.1)

Notably, training instances in dk, i are not fixed during the local updates as they

are resampled at the start of each local training epoch.

Compared with the standard local updates shown in Equation 2.3, the few-shot

fine-tuning is more efficient as it only updates θk instead of all parameters wk, and

uses a very small subset of client data for training. Most importantly, the parameter
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sharing alleviates model shift by allowing clients to fix the parameters in the feature

extractor during local updates, without adding any computational cost.

4.3 Few-shot Learned Classifier is Less Biased

This section introduces how few-shot fine-tuning alleviates model drift in FL. Our

empirical study demonstrates the classifier updated by few-shot fine-tuning is less

biased than a fully updated model with non-IID local data.

4.3.1 Few-Shot Learning with the Frozen Feature Extractor

We adopt the few-shot learning approach presented by Chen et al. (2019b); Tian

et al. (2020). The model proposed for few-shot learning is split into a feature

extractor ϕ and a classifier θ, where θ = {W , b} is the top fully connected layer,

which sits right before the softmax layer to produce the model predictions. The

remaining lower part of the model ϕ is seen as a feature extractor on the input data.

The chosen few-shot learning approach is performed in two stages. The first

stage, defined as few-shot training, is the process of pretraining the model from

scratch on a pool of base datasets. Base datasets are those available datasets in

advance to deploy the model for few-shot learning on a target dataset. Trained

on base datasets, the feature extractor learns to encode the data into features in

the subspace. The second stage, few-shot testing, aims to generalise the pretrained

model on novel datasets given only a few training samples are available. To achieve

this, the feature extractor obtained in the few-shot training is frozen during the

few-shot testing whereas a new classifier is retrained on novel datasets.

4.3.2 Training a Less Biased Classifier with Few-Shot Up-

dates

We transform the aforementioned few-shot learning solution from centralised train-

ing to the distributed training scenario. We alike the local updates on the client

side to few-shot learning tasks and leverage the feature extractor trained inside the
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global model to perform the few-shot learning.

To this end, we propose the few-shot update for the client in FL. The few-

shot update borrows the training strategy in the few-shot testing stage, training

the distributed model with its feature extractor frozen on a few randomly selected

local samples. To approach the research question, we broadcast the global model

obtained at the end of a FL round to 100 clients with non-IID data to perform

few-shot updates. Similar to a model pretrained in the few-shot training phase, the

global model acts as a base model that provides few-shot updates with a feature

extractor that is well-trained during FL. We also make an alteration to the few-shot

testing setup introduced in their original work – instead of training the classifier

from scratch, parameters of the classifier are directly copied from the trained global

model.

We employ the image classification dataset, CIFAR-10 and the speech recog-

nition dataset, GSC, to evaluate the performance of few-shot updates on clients.

Data heterogeneity is created across clients using the Dirichlet distribution, denoted

as Diri(α). The hyperparameter α controls the degree of local data heterogeneity.

The smaller α is, the stronger of local data heterogeneity. α is set to 0.1 in the

evaluation, indicating a high level of data heterogeneity. For comparison, all 100

clients also perform full model updates on the global model separately. Sampling

the global model trained at 5, 10, 50 FL round, Figure 4.3 compares the mean

accuracy achieved by fully updated models and few-shot updated models on the

test set of CIFAR-10 and GSC over all clients. It is obvious that the few-shot up-

dated model that only trains its classifier performs significantly better than the fully

updated model. Compared with the original global model, the few-shot updated

model on average achieves either a marginal performance decrease or even a slight

performance improvement, benefiting from the strategy of freezing feature extrac-

tor without incurring significant model shift on heterogeneous data. In contrast,

fully updating the model yields noticeably lower performance, which is actually

diverging in the later rounds of FL. Few-shot updates and full updates behave dif-

ferently on CIFAR-10 and GSC at early rounds of FL. Notably, after local updates

on clients, both full updates and few-shot updates improve the global model per-
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formance at communication round 5 on CIFAR-10. In contrast, few-shot updates

and full updates slightly decrease the global model performance on GSC. This dif-

ference indicates local updates can impact the global model performance differently

at early FL rounds on different datasets. Our insight to this observation is that FL

learns faster on a less complex dataset such as GSC and thus more local updates

introduced in later communication rounds have reduced benefits for improving the

global model performance. Moreover, the negative impact from the model shift

starts to signify at early FL rounds on GSC, overweighting the benefits of more

local updates and leading to decreased global model performance. In Section 4.5.1,

we will discuss the details that GSC is a simpler dataset than CIFAR-10, and fur-

ther provide the insight that the complexity of dataset also affects the effectiveness

of few-shot updates.

We hypothesise that fully updating the global model on non-IID local data leads

to a more pronounced model shift, forgetting of its global knowledge. This in the

end leads to a model with stronger biases in its predictions due to data heterogene-

ity. To validate this statement, Figure 4.4 displays the prediction heatmaps (mean

logits per class) produced on the test set by the global model updated on one picked

client. High data heterogeneity causes the heatmaps produced with the fully up-

dated model to indicate highlighted strips on certain local classes, whose values

significantly outweigh others. This is a clear signal of biased predictions towards

local dominant classes, while forgetting the other classes that are under-represented

on that client. In contrast, the few-shot updated model produces more symmetrical

heatmaps with more predictions matching the correct class, which indicates that

the learning is more robust to forgetting given non-IID local data. A similar pattern

is also observed on other clients.

This study demonstrates that the proposed few-shot update is an effective solu-

tion to mitigate model shift induced by non-IID local data by showing the few-shot

updated client model has better generalisation and less biased predictions compared

to a fully updated client model.
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(a) CIFAR-10

(b) GSC

Figure 4.3: Few-shot updates and full updates comparison: client test
performance. Mean test accuracy of the fully updated models and the
few-shot updated models on 100 clients. Global models sampled at 5,
10, 50 FL rounds are used. For reference, the test accuracy of the global
model before updating is illustrated as the solid line in the left of each
comparison group.
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(a) CIFAR-10

(b) GSC

Figure 4.4: Few-shot updates vs. Full updates: the prediction heatmaps
created by the updated global model. The numbers in the x-axis and
y-axis represent the class number in CIFAR-10 and GSC. The global
model updated by the few-shot approach has less biased predictions as
its prediction heatmap has a stronger diagonal line.
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4.4 Federated Learning with Few-shot Learned

Classifier

The previous section discusses the advantageous client performance with the

few-shot updates. This section formulates the FedFSC algorithm, integrating the

few-shot updates into the FL workflow so that the few-shot updated classifier is

utilised to boost the global model performance.

FedFSC constructs the global model with the fully updated feature extractors

and the less biased few-shot updated classifiers. More concretely, each participant

selected for FL performs both full model updates and few-shot updates on the

broadcast model using their local data. As such, the participant not only sends

a fully updated model to the server, but also uploads a few-shot updated classi-

fier every communication round. The server collects the fully updated models to

form the body of the global model, while also provides the few-shot updates with

a well-trained feature extractor. In return, the few-shot updates utilise this feature

extractor to specify the classifier while alleviating the model shift caused by data

heterogeneity. Finally, the classifier of the global model is constructed by aggregat-

ing the few-shot updated classifiers contributed by the clients with a naive averaging

defined by Equation 4.2.

θfs =
∑
k∈K

pkθfs, k, pk =
1

|K|
(4.2)

where θfs,k is the few-shot updated classifier on client k. K is the total number of

the clients selected by the server to participate federated learning.

Algorithm 1 details the proposed FedFSC, using the notations introduced earlier

in Chapter 2. Lines 3 describes client sampling, where a subset of clients is randomly

selected from the client pool to participate in the communication round t. The

base model, {θt, ϕt}, formed from fully updated models in the previous round is

distributed by the server to all participants at round t. It should be noted that

the base model is essentially the global model trained by a standard FL algorithm
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such as FedAvg. Line 4-14 present the local updates on the client side. Each

selected client first fully updates the base model {θt, ϕt} for E epochs using the

entire Dk with SGD to {θt+1
k , ϕt+1

k }. Then the client few-shot updates the classifier

θt of the base model with the feature extractor ϕt fixed for Efs epochs on a few

randomly selected samples per class from Dk, θtfs, k. We use t instead of t + 1

to superscript θtfs, k because this few-shot updated classifier is not distributed to

the client side in round t + 1. To initialise ϕ for the few-shot updates, the first

communication round is performed with only full updates on clients. Line 15-18

depict the server averaging the fully updated models according to Equation 2.4 to

form the new base model {θt+1, ϕt+1} that will be distributed in round t+1, as well

as according to Equation 4.2 averaging the few-shot updated classifiers {θtfs,; k}K

to create θtfs. Finally, FedFSC returns wt
g at the end of round t as the global

model, being constructed of the averaged few-shot updated classifier θtfs and the

fixed feature extractor ϕt.

Notably, FedFSC is compatible other FL solutions than standard FedAvg. As

suggested by Algorithm 1, different methods, such as regularisation approaches, can

be applied to full updates as long as it can train the base model for the proposed

few-shot updates. As such, we explore the performance of FedFSC on top of FedAvg

and more advanced FL approaches in the evaluation.

4.4.1 FedFSC+: Utilising Stragglers

While the model shift problem is tackled, FedFSC is advanced to FedFSC+ to solve

the straggler issue. Since the adopted few-shot update only trains the classifier part

of the model with a few samples, it requires minimal training effort and can fit

within the system constraints of those clients that would otherwise be stragglers.

Figure 4.5 visualises the superior computational efficiency achieved by the few-shot

updates. Running on a NVIDIA GeForce RTX 2070 SUPER GPU for 10 epochs,

the averaged training time over 100 clients is reported, with Diri(0.1) to split local

data, achieved by 10-shot updates and full updates. On both CIFAR-10 and GSC

datasets, 10-shot updates take less than 10% of time needed for a full model update.

If stragglers can be identified during a communication round, we can avoid their
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Algorithm 1 FedFSC: Federated learning with the Few-Shot learned Classifier.

1: Input: total T rounds, E full updates epochs, Efs few-shot updates epochs, θ

classifier, ϕ feature extractor, total N clients

2: for t = 1, . . . , T do

3: K random clients are available for training and they download the base

model {θt, ϕt} from the server.

4: Clients:

5: for Client k ∈ [1, K] do

6: θt+1
k , ϕt+1

k ← Full updates (θt, ϕt;Dk, E) according to Equation 2.3.

7: if t ≥ 2 then

8: θtfs, k ← Few-shot updates (θt; ϕt,Dk, Efs) according to Equa-

tion 4.1.

9: end if

10: Client k uploads θtk, ϕ
t
k and θtfs,k to the server.

11: end for

12: Server:

13: Collect fully updated models to form the full model set B = {θt+1
k , ϕt+1

k }K

and few-shot updated classifiers to define the classifier set F = {θtfs, k}K .
14: Form new base model {θt+1, ϕt+1} =

∑
i∈B pi{θt+1

i , ϕt+1
i }, where pi =

|Di|∑
i∈B |Di| .

15: Form few-shot updated classifier θtfs =
∑

j∈F pjθ
t
fs, j, where pj =

1
|F |

16: Return Global model wt
g = {θtfs, ϕt}

17: end for

18: Return Global model wT
g = {θTfs, ϕT}
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(a) CIFAR-10 (b) GSC

Figure 4.5: Training time of few-shot updates. The average training
time (s) needed for updating the full model (Full) vs few-shot (FS) up-
dates on CIFAR-10 and GSC with 100 clients.

dropout by allowing them to perform the computationally efficient few-shot updates

rather than full model updates, thus enabling their contribution to FL.

FedFSC+ improves upon FedFSC by enabling contributions from stragglers.

Algorithm 1 essentially designates K non-straggler to handle all the workload during

a FL round, performing both full updates and the additional few-shot updates.

There, stragglers are effectively discarded. However, FedFSC+ modifies the client

operation in Algorithm 1 (line 3-11) to allow the identified stragglers to perform the

few-shot updates and contribute less biased classifiers. Meanwhile, non-stragglers

are tasked only with training the base model. FedFSC+ selects stragglers to perform

the few-shot updates randomly at each communication round to reflect the realistic

situation where identified stragglers could be different every time.

FedFSC+ operates under the assumption that the stragglers can be identified

during a communication round. In practice, this assumption could be resolved by

including active client selection, disclosing local resource information and workload

capacity, keeping a history of client participation, etc. For instance, FedCS Nishio

and Yonetani (2019) proposes a client selection protocol where clients share their

resource information with an operator. Following this protocol, FedCS selects clients

in a manner that prioritises clients capable of successfully completing local updates

during a synchronised communication round. FedFSC+ could utilise such protocols

to identify its stragglers.
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Algorithm 2 FedFSC+ with reduced workloads for stragglers.

1: Input: total T rounds, E full updates epochs, Efs few-shot update epochs, θ

classifier, ϕ feature extractor, total C clients

2: for t = 1, . . . , T do

3: K random non-stragglers and additional S random stragglers are available

for training. They download the base model {θt, ϕt} from the server.

4: Clients:

5: for Client k ∈ [1, K] do

6: θt+1
k , ϕt+1

k ← Full updates (θt, ϕt;Dk, E) according to Equation 2.3.

7: end for

8: if t ≥ 2 then

9: for Client s ∈ [1, S] do

10: θtfs, s ← Few-shot updates (θt; ϕt,Ds, Efs) according to Equa-

tion 4.1.

11: end for

12: end if

13: Non-straggler client k sends θt+1
k , ϕt+1

k , and straggler client s uploads θtfs, s
to the server.

14: Server:

15: Identical to Algorithm 1.

16: end for
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4.5 Experiments

FedFSC and FedFSC+ are compared with FedAvg, FedProx and MOON. In ad-

dition to the general experimental setup introduced in the Section 3, the specific

setup in these experiments is detailed as follows.

FedFSC implementation details. CIFAR-10, CIFAR-100 and GSC datasets

are employed for the evaluation. We exercise Diri(α) with α = 0.1 for strong data

heterogeneity, and α = 0.5 for weak data heterogeneity. The Wide ResNet with

the depth of 16 (WRN-16-1) is used as the distributed model. Local updates adopt

the SGD optimiser. For full local updates, the optimiser has a learning rate of 0.1

with momentum of 0.5 and weight decay of 0.00001. Regarding the optimisation for

the few-shot updates, we refer to the setup used in the original few-shot learning

work (Chen et al., 2019b). Grid search among 0.001, 0.01 and 0.05 is applied for

tuning the learning rate for the few-shot updates on the validation set of CIFAR-10

as shown in Table 4.2. It is found that the learning rate used in the original work

performs best. So we borrow their setup for our few-shot updates, setting learning

rate to 0.01 with a momentum of 0.9 and weight decay of 0.001 for the optimiser.

We also follow the practice of the original work where the same optimisation setup

is applied universally to several datasets by transferring the few-shot optimiser of

CIFAR-10 to CIFAR-100 and GSC. The shot number for the few-shot update is set

to 10, meaning each class in the local data contributes 10 randomly selected samples

to train the classifier. Unless otherwise stated, the full updates epochs E is fixed to

10 for FedAvg, FedProx and MOON. Similarly, the few-shot update epochs Efs is

set 10 as well for a fair comparison. Table 4.1 summarises the specific experimental

setup for FedFSC and its compared baselines.

4.5.1 FedFSC with Full Client Participation

A simple FL scenario with 10 clients is set up to compare FedFSC with the baselines.

All clients are assumed to participate in FL at each round without being dropped

out.
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Hyperparameter
CIFAR-10 CIFAR-100 GSC

full fs full fs full fs

Optimiser SGD SGD SGD SGD SGD SGD

Learning rate 0.1 0.01 0.1 0.01 0.1 0.01

Momentum 0.5 0.9 0.5 0.9 0.5 0.9

Weight decay 1e-5 1e-3 1e-5 1e-3 1e-5 1e-3

Batch size 64 4 64 4 128 4

Local epochs 10 10 10 10 10 10

Reduced local epochs 1 na 1 na 1 na

Few-shot number na 10 na 10 na 10

µprox(Diri(0.1&0.5)) 0.1 na 0.01 na 0.1 na

µMOON(Diri(0.1)) 0.1 na 0.01 na 0.1 na

µMOON(Diri(0.5)) 1 na 0.01 na 0.1 na

Table 4.1: Hyperparameters used by the baseline/baseline+ and
FedFSC/FedFSC+. “fs” is the abbreviation for “few-shot”.

Learning Rate 0.001 0.01 0.05

Val. Acc. (%) 60.99 62.94 62.16

Table 4.2: The validation performance on CIFAR-10 by varying learning
rates for the few-shot updates in FedFSC.



Mitigating Model Shift in Partial Model Training 70

On all three datasets, we compare the test accuracy of the global model achieved

on the test set between FedFSC and the baselines. The details of the accuracy met-

rics have been introduced in Section 3.3. Recall that FedFSC collaborates with a

FL solution to train the base model inside FL loops, as the feature extractor of the

base model is subsequently utilised by the few-shot updates. For a fair compari-

son, pairwise comparisons between FedFSC and their corresponding baselines are

conducted. For example, FedAvg is compared with FedFSC using FedAvg to train

the base model, denoted as FedFSC(FedAvg). Table 4.3 reports the test accuracy

of the global model. In the scenario of FedFSC with full client participation, all

experiments are run for 50 communication rounds as we observe that the global

model learns very fast without the dropout of clients and starts showing saturated

performance beyond 40 rounds. Each configuration performs 4 repeated runs using

different seeds to generate non-IID local data. The mean and standard deviation

of the test accuracy are reported. In addition, the centralised training results are

reported for reference, showing the gap between heterogeneous FL and ideal cen-

tralised training.

Results and analysis. Owing to the model shift mitigation introduced by the

few-shot update, FedFSC is witnessed with advantageous performance across all

scenarios. It outperforms the employed baselines by up to 6%, 2.9%, 1.5% on

CIFAR-10, CIFAR-100, GSC respectively. In terms of the relative improvement,

the performance gap from FL to the centralised learning is reduced by up to 47%,

23%, and 65% on the three datasets. On the other hand, the performance boost

from FedFSC is less pronounced on GSC compared to CIFAR-10 and CIFAR-100,

particularly given a weak data heterogeneity with Diri(0.5). We hypothesis the mi-

nor improvement observed on GSC is due to the potential for FedFSC to mitigate

model shift. Particularly, GSC is a simpler dataset than CIFAR-10 and CIFAR-100

with respect to the information containing in the data. GSC instances are one-

channel images transformed by Mel spectrogram. In contrast, images in CIFAR-10

and CIFAR-100 have 3 channels. The strong performance achieved on GSC, with

over 91% test accuracy, further suggests GSC is simpler than CIFAR-10 and CIFAR-
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Diri(α) Method CIFAR-10 CIFAR-100 GSC

0.1

FedAvg 62.95±2.84 43.64±1.19 83.73±2.09

FedFSC(FedAvg) 68.98±2.75 ↑↑ 46.56±0.74 ↑↑ 84.90±1.81 ↑↑

FedProx 58.76±5.04 43.76±0.99 77.46±3.90

FedFSC(FedProx) 63.21±4.75 ↑↑ 45.82±1.03 ↑↑ 78.63±3.30 ↑↑

MOON 64.34±1.89 43.59±0.75 83.69±2.39

FedFSC(MOON) 69.75±2.10 ↑↑ 46.45±0.99 ↑↑ 85.11±1.84 ↑↑

0.5

FedAvg 80.48±1.79 51.00±0.98 91.27±0.22

FedFSC(FedAvg) 81.94±1.03 ↑↑ 53.95±0.59 ↑↑ 91.71±0.15 ↑↑

FedProx 76.03±1.18 50.49±0.11 87.13±0.32

FedFSC(FedProx) 77.66±0.76 ↑↑ 53.32±0.36 ↑↑ 87.62±0.25 ↑↑

MOON 80.89±1.21 50.45±0.60 91.23±0.38

FedFSC(MOON) 81.39±1.03 ↑↑ 53.55±0.29 ↑↑ 91.59±0.26 ↑↑

IID Centralised 83.57 64.00 91.95

Table 4.3: FedFSC with full client participation. Top test accuracy
achieved by FedFSC paired with FedAvg, FedProx, MOON. 10 clients
with 100% participation are assumed. The bracketed solution attached
to FedFSC indicates it is used by FedFSC to train the base model.
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Figure 4.6: Learning curves of FedFSC. Experiments assume 10 clients
with 100% participation.
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100 for the model to learn. With a simple dataset, the feature extractor could be

overly parameterised for encoding the raw data. Consequently, the feature extrac-

tor is capable of capturing high-level representations of simple data at its bottom

layers. And the model shift at lower layers is less significant with the presence of

data heterogeneity, as show by the study of CCVR (Luo et al., 2021). As FedFSC

mitigates the model shift by freezing the feature extractor during local updates, the

insignificant model shift of the feature extractor on a simpler dataset reduces the

effectiveness of FedFSC for mitigating the model shift, resulting in to marginal im-

provement. Although the improvement on GSC is marginal, FedFSC still achieves

a test performance just 0.2% below the ideal centralised training on GSC with

Diri(0.5). Figure 4.6 further visualises the test performance of FedFSC with base-

line FedAvg during training. After the feature extractor is initialised in the first

few rounds, it becomes evident that FedFSC consistently outperforms the baseline

by noticeable margins throughout the entire training period. In terms of FedProx

and MOON, similar patterns to Figure 4.6 are observed. Finally, the advantageous

performance achieved by FedFSC over its paired baseline, shown in Table 4.3, is

consistent across experiments using different seeds to simulate heterogeneous client

data. As showcased in Table 4.4, FedFSC(FedAvg) consistently outperforms Fe-

dAvg on our three chosen datasets across 4 runs with different seed numbers in the

Dirichlet distribution to generate hetergeneous data, confirming that the observed

performance gains from FedFSC are not due to randomness.

4.5.2 FedFSC+ with Partial Client Participation

FedFSC+ utilises stragglers to perform the few-shot updates. To evaluate it, the

total number of clients is increased from 10 to 100 so that client participation

and stragglers can be substantially simulated. The specific experiment setup for

FedFSC+ is detailed as follows.

Partial client participation. We follow the widely used client participation

setup introduced by FedAvg. A fraction of the clients, considered non-stragglers,

are randomly selected from the client pool every round to perform full updates.
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Dataset Method Seed 0 Seed 1 Seed 2 Seed 3

CIFAR-10
FedAvg 65.98 58.72 62.06 65.05

FedFSC(FedAvg) 71.22 ↑↑ 65.85 ↑↑ 66.70 ↑↑ 72.16 ↑↑

CIFAR-100
FedAvg 42.81 44.36 42.21 45.20

FedFSC(FedAvg) 46.90 ↑↑ 47.04 ↑↑ 45.28 ↑↑ 46.97 ↑↑

GSC
FedAvg 81.17 85.96 82.17 85.63

FedFSC(FedAvg) 82.75 ↑↑ 86.93 ↑↑ 83.48 ↑↑ 86.45 ↑↑

Table 4.4: The test accuracy (%) of FedFSC(FedAvg) and the paired
baseline FedAvg across 4 runs with different seed numbers for splitting
client data. Diri(α = 0.1) is used to simulate the data heterogeneity.

The remaining clients are regarded as stragglers. With respect to FedFSC+, non-

stragglers are tasked solely with full updates. Additionally, a fraction of clients are

randomly selected from stragglers to perform the few-shot updates. Based on the

client pool, we use the notation fn to define the fraction of non-stragglers and ffs

to determine the fraction of stragglers that perform few-shot updates.

Baseline+ for fair comparisons. For a fair comparison with FedFSC+, all

baselines are allowed to leverage the stragglers as well. The original FedProx al-

lows the stragglers to train the distributed model with a reduced number of epochs

and upload the training results to the server instead of being discarded. However,

FedAvg and MOON do not include any solution to address the straggler issue. In-

spired by FedProx, the reduced local training epochs is introduced to FedAvg and

MOON as well, letting the stragglers defined by ffs in the baselines to perform Er

epochs of local updates. Er is set to be smaller than the E full updates epochs

imposed on non-stragglers. By this, all baselines leverage the stragglers just like

FedFSC+. We use baseline+ to denote that a baseline is altered, including Fe-

dAvg+, FedProx+ and MOON+. With E being set to 10, the reduced epoch Er is

set to 1 in the experiments. This is because Figure 4.5 empirically shows that the

few-shot updates take approximately 90% less time than for full model updates. In
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terms of utilising the computational resources on stragglers, Er is 10% of E for a

fair comparison with few-shot updates.

FedFSC+(baseline+): no straggler identification needed. Based on base-

line+, FedFSC+(baseline+) is introduced as an advanced variant of FedFSC+

for comparison. We incorporate baseline+ into FedFSC+ to indicate it also al-

lows stragglers to perform full updates with reduced local update epochs, similar

to baseline+. FedFSC+(baseline+) can effectively relax FedFSC+ from identi-

fying the stragglers in advance. Specifically, a potential straggler participant in

FedFSC+(baseline+) initiates its local updates by fully training the model like

non-stragglers. Using the training information, the client can dynamically estimate

whether it can complete the full updates before the deadline or not. If negative, the

less powerful client can opt to perform the few-shot updates on the classifier. To

this end, it provides the server with a model fully trained with a reduced number

of epochs, along with a valuable few-shot updated classifier. For a fair comparison

with baseline+, the setup from the baseline+ is reused by setting Er to 1, which

assumes straggler participants transition to few-shot updates after completing 1

epoch of full updates.

Both fn and ffs are set to 0.1 for FedFSC+ and baseline+. fn is set to 0.1 to

simulate a low participation rate as commonly used in prior works. ffs is set to 0.1

to assume that not all the stragglers can be saved even by the reduced computations

by introducing the condition of fn + ffs < 1. This last condition is considered to

cover the cases when devices go offline for a prolonged period of time, or they simply

run out of battery during the update round. Experiments are run on CIFAR-10 and

GSC for 250 rounds and CIFAR-100 for 400 rounds until convergence. Since only

a fraction of clients participate in FL during each round in the scenario of partial

client participation, we observe significantly slower learning for the global model.

Consequently, the number of communication rounds is considerably increased com-

pared to scenarios with full client participation. Moreover, CIFAR-100 is the most

complex dataset among the three chosen datasets as it has more unique classes. As

a result, the global model learns even slower on CIFAR-100 compared to CIFAR-10
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and GSC, leading us to increase the communication rounds more drastically on this

dataset. Regarding the model, WRN-40-1 is employed for the scenario of partial

client participation.

Results and analysis. Table 4.5 and Table 4.6 reports the test accuracy of

the global model by comparing the baseline with FedFSC(baseline), baseline+ with

FedFSC+(baseline) and FedFSC+(baseline+). With the inclusion of stragglers and

partial client participation, our observations are twofold. First, both FedFSC and

FedFSC+ outperform their paired baselines in all scenarios, without any exceptions.

The superior global performance achieved by FedFSC and FedFSC+, up to over 2%

improvement on the global test accuracy, demonstrates the efficacy of the few-shot

learned classifier in approaching the data heterogeneity challenge given stragglers

are taken into account. Second, FedFSC+ performs on par with FedFSC, suggesting

the few-shot updated classifier is effective regardless of whether the few-shot update

is applied to non-stragglers or stragglers. This means that FedFSC+ can effectively

adapt to practical FLs where the straggler issue is combined with data heterogeneity,

without compromised performance.

4.5.3 Regularising Local Updates with Few-Shot Learned

Classifier

The base model trained in FedFSC+ provides the few-shot updates with the fea-

ture extractor. In this section, we approach a question, Can the base model training

benefit from utilising the few-shot learned classifier? Inspired by the regularisa-

tion method proposed by FedProx, the few-shot learned classifier is introduced to

regularise local updates.

Formally, θfs is distributed to the client side to formulate the regularisation

term, minimising the differences between the fully updated classifier and the few-

shot updated classifier in the local empirical loss, as described by Equation 4.3.

Lk(θ, ϕ; θfs) = Lk(θ, ϕ) + µfsc ∥θ − θfs∥2 (4.3)
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Diri(α) Method CIFAR-10 CIFAR-100 GSC

0.1

FedAvg 67.91±0.87 46.69±0.63 88.25±0.29

FedFSC(FedAVg) 70.14±1.12 ↑↑ 48.25±0.22 ↑↑ 88.85±0.39 ↑↑

FedAvg+ 68.70±1.08 47.96±0.82 88.21±0.67

FedFSC+(FedAVg) 70.29±0.54 ↑↑ 48.49±0.41 ↑↑ 88.81±0.31 ↑↑

FedFSC+(FedAVg+) 70.55±1.34 ↑↑ 48.77±0.49 ↑↑ 88.81±0.46 ↑↑

FedProx 66.48±0.61 46.68±0.14 87.78±0.58

FedFSC(FedProx) 68.49±0.85 ↑↑ 47.63±0.36 ↑↑ 88.34±0.39 ↑↑

FedProx+ 68.61±1.34 47.85±0.59 87.71±0.87

FedFSC+(FedProx) 68.74±0.47 ↑↑ 48.20±0.30 ↑↑ 88.38±0.42 ↑↑

FedFSC+(FedProx+) 69.53±1.08 ↑↑ 48.61±0.61 ↑↑ 88.32±0.59 ↑↑

MOON 68.60±0.83 46.93±0.10 88.16±0.49

FedFSC(MOON) 70.90±0.79 ↑↑ 47.86±0.40 ↑↑ 88.96±0.20 ↑↑

MOON+ 68.11±0.96 47.89±0.58 88.53±0.20

FedFSC+(MOON) 70.73±0.82 ↑↑ 48.36±0.24 ↑↑ 88.78±0.26 ↑↑

FedFSC+(MOON+) 70.61±1.02 ↑↑ 48.51±0.49 ↑↑ 88.75±0.31 ↑↑

Table 4.5: FedFSC and FedFSC+ with partial client participation.
With a total of 100 clients, fn = 0.1, and ffs = 0.1, the top test ac-
curacy achieved by FedFSC and FedFSC+ and their paired baseline and
baseline+.
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Diri(α) Method CIFAR-10 CIFAR-100 GSC

0.5

FedAvg 80.06±0.63 52.98±0.31 91.40±0.17

FedFSC(FedAVg) 80.96±0.27 ↑↑ 54.11±0.47 ↑↑ 91.46±0.16 ↑↑

FedAvg+ 80.05±0.63 53.26±0.23 91.13±0.11

FedFSC+(FedAVg) 81.23±0.35 ↑↑ 53.99±0.14 ↑↑ 91.55±0.16 ↑↑

FedFSC+(FedAVg+) 81.21±0.31 ↑↑ 54.00±0.33 ↑↑ 91.35±0.16 ↑↑

FedProx 78.44±0.31 52.86±0.26 90.78±0.14

FedFSC(FedProx) 79.60±0.12 ↑↑ 53.90±0.31 ↑↑ 90.96±0.06 ↑↑

FedProx+ 79.55±0.09 53.10±0.26 90.69±0.08

FedFSC+(FedProx) 79.48±0.29 53.61±0.11 ↑↑ 91.00±0.11 ↑↑

FedFSC+(FedProx+) 80.12±0.24 ↑↑ 53.77±0.19 ↑↑ 90.86±0.03 ↑↑

MOON 80.60±0.20 53.46±0.95 91.29±0.17

FedFSC(MOON) 81.11±0.37 ↑↑ 54.45±0.19 ↑↑ 91.47±0.11 ↑↑

MOON+ 80.56±0.24 53.45±0.26 91.18±0.08

FedFSC+(MOON) 81.34±0.18 ↑↑ 54.44±0.63 ↑↑ 91.45±0.13 ↑↑

FedFSC+(MOON+) 81.37±0.24 ↑↑ 54.06±0.33 ↑↑ 91.33±0.09 ↑↑

Table 4.6: FedFSC and FedFSC+ with partial client participation. Con-
tinue from Table 4.5.
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where the regularisation term is ∥θ − θfs∥2, which is weighted by µfsc. As the

regularisation term adopted above has a similar form to the proximal term pro-

posed by FedProx, it is therefore denoted as FSCProx. To demonstrate the efficacy

of FSCProx, we compare it with the regularisation method utilising the classifier

obtained directly from the base model, denoted as baseProx. We tune µfsc for the

best global performance of FL.

Our experiments show that global model performance in FedAvg is improved by

utilising the few-shot learned classifier. This observation equivalently demonstrates

that the base model learned in FedFSC+(FedAvg) can be improved using the few-

shot learned classifier, as the global model learned in FedAvg is essentially the

base model learned in FedFSC+(FedAvg). On CIFAR-10 and CIFAR-100 with

Diri(0.5), Figure 4.7 and Figure 4.8 compare FedAvg, FedAvg with baseProx, and

FedAvg with FSCProx in terms of the test accuracy and training losses of the global

model. Experiments are run for 250 and 400 communication rounds for CIFAR-10

and CIFAR-100 respectively. The introduction of baseProx is observed to bring no

benefit to global model performance in terms of either metrics. For training losses,

while FedAvg with baseProx is on par with FedAvg, the utilisation of FSCProx

effectively reduces the training losses of the global model. With respect to the

test accuracy, the adoption of baseProx even diminishes global model performance,

whereas FSCProx boosts the performance by a noticeable margin. Thus, this study

shows that global model performance is improved when its classifier is adjusted

to resemble a less biased classifier updated by few-shot learning in local updates.

Conversely, its performance deteriorates when approaching a biased classifier that

is fully updated.

Finally, on all three datasets, Table 4.7 further reports the test accuracy of

the global model achieved by FedAvg with FSCProx, FedAvg and FedProx. Ad-

ditionally, FedFSC+(FedAvg) is compared with its variant using FSCProx. With

data heterogeneity of Diri(0.1) and Diri(0.5), it is observed that FSCProx can

effectively boost the performance of FedAvg, outperforming FedProx across all sce-

narios. However, FSCProx has only a minor impact on FedFSC+(FedAvg). Given

Diri(0.5), the introduction of FSCProx slightly improves FedFSC+(FedAvg) on all
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Figure 4.7: Regularising local updates with the baseProx and FSCProx
(test accuracy of the global model). FedAvg uses baseProx or FSCProx
to regularised its local updates. Diri(alpha = 0.5) is used for client data
partition.
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Figure 4.8: Regularising local updates with the baseProx and FSCProx
(training losses of the global model). FedAvg uses baseProx or FSCProx
to regularised its local updates. Diri(alpha = 0.5) is used for data
partition.

three datasets. When Diri(0.1) is applied, FSCProx improves FedFSC+(FedAvg)

on GSC only.

4.5.4 Ablation Studies on FedFSC and FedFSC+

The impact of important hyperparameters in FedFSC and FedFSC+ is further

studied by varying their values.

Data heterogeneity with Diri(α) In addition to Diri(0.1) and Diri(0.5), vari-

ous α values are used to examine the impact of data heterogeneity on the proposed
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Diri(α) Method CIFAR-10 CIFAR-100 GSC

0.1

FedAvg 67.91±0.87 46.69±0.63 88.25±0.29

FedProx 66.48±0.61 46.68±0.14 87.78±0.58

FedAvg w/ FSCProx 69.39±0.55↑↑ 47.90±0.44↑↑ 88.56±0.41↑↑

FedFSC+(FedAvg) 70.29±0.54 48.49±0.41 88.56±0.41

FedFSC+(FedAvg) w/ f 70.05±0.91 48.02±0.38 89.01±0.31↑↑

0.5

FedAvg 80.06±0.63 52.98±0.31 91.40±0.17

FedProx 78.44±0.31 52.86±0.26 90.78±0.14

FedAvg w/ FSCProx 80.62±0.70↑↑ 54.03±0.62↑↑ 91.54±0.16↑↑

FedFSC+(FedAvg) 81.23±0.35 53.99±0.14 91.55±0.16

FedFSC+(FedAvg) w/ f 81.42±0.43↑↑ 54.13±0.49↑↑ 91.68±0.18↑↑

Table 4.7: Regularising local updates with FSCProx. The upper bracket
compares the global model performance of FedAvg, FedProx and Fe-
dAvg+FSCProx. The lower bracket compares the global model perfor-
mance of FedFSC+(FedAvg) and its variant using FSCProx.
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Figure 4.9: Ablation study 1: varying Diri(α). Global model test
performance of FedAvg and FedFSC(FedAvg) on CIFAR-100 and GSC
using various α values for Diri(α).

solution. This ablation study focuses solely on varying data heterogeneity without

the simulation of stragglers. Therefore, FedFSC(FedAvg) is evaluated using the

previous experimental setup involving 10 clients, with 100% client participation.

CIFAR-100 and GSC datasets are employed for this study. Figure 4.9 illustrates

the test accuracy of the global model trained with α ranging from 0.01 to 100,

simulating extreme data heterogeneity cases and approaching IID scenarios.

In terms of CIFAR-100, it is observed that the improvement of the global per-

formance made by FedFSC(FedAvg) is consistent given different data heterogeneity

levels, ranging between 2.3% and 3.4%. The performance gap between FedAvg and

the advantageous FedFSC(FedAvg) slightly narrows with smaller α values, such as

0.01 and 0.1. We suspect this is due to the slow convergence induced by strong

data heterogeneity. With α values greater than 1, FedFSC(FedAvg) consistently

outperforms FedAvg by around 3.3%.

On the other hand, FedFSC shows minor boosts in global model performance

on GSC, especially as local data approaches IID scenarios. With α values greater

than 0.5, the global test accuracy plateaued at round 92%. This finding aligns with

our earlier experiment results, suggesting the model shift has a minor impact on

the global performance with GSC.
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(a) Shot number: CIFAR-10 (b) Shot number: GSC

Figure 4.10: Ablation study 2: varying the few-shot number. The
performance of FedFSC+ using various few-shot numbers on CIFAR-10
and GSC.

Few-shot numbers. Choosing an appropriate few-shot number is critical for few-

shot learning. As such, different few-shot numbers are investigated to understand

its impact on FedFSC. Figure 4.10 depicts the performance of FedFSC+(FedAvg)

with 1, 5, 10, 20, full shots on CIFAR-10 and GSC. Full shots training suggests

all local data points are used to train the classifier instead of randomly select-

ing training samples. In summary, slight performance decreases are noticed in

FedFSC+(FedAvg) with both 1 shot and full shots on CIFAR-10. It is unsurprising

that performance degrades when fewer training samples are used. However, util-

ising more samples for few-shot updates does not come with further performance

increase. Full shots updates even incur a performance drop. We suspect the per-

formance decrease with full shots is due to the reenactment of model shift in the

classifier. Unlike few-shot updates, where each class selects an equal number of

training samples, training the classifier on the entire non-IID local data results in

classes contributing uneven numbers of training samples. Therefore, full-shots up-

dates shift the classifier to make predictions biased to dominant classes in the local

data. Finally, FedFSC+ on GSC is relatively more resilient to changes in the shot

number compared to CIFAR-10. This aligns with the observation that FedFSC+

achieves the least improvement over the baselines on GSC.
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(a) ffs: CIFAR-10 (b) ffs: GSC

Figure 4.11: Ablation study 3: varying the number of clients performing
few-shot updates (ffs). The performance of FedFSC+ using various
numbers of clients performing the few-shot updates on CIFAR-10 and
GSC.

The number of clients performing the few-shot updates. It is reasonable

to assume that quite a few clients may not even complete the efficient few-shot

updates in the real-world scenario. As such, a substantial ablation study is to un-

derstand how the number of clients performing few-shot updates affects FedFSC+.

To do this, we vary ffs with values of {0.05, 0.1, 0.15, 0.20}, which accounts for

5, 10, 15, 20 clients performing few-shot updates out of a total of 100 clients. Fig-

ure 4.11 presents the performance trend as ffs changes on CIFAR-10 and GSC. It

is observed that FedFSC+ maintains its advantageous performance even when the

number of clients performing few-shot updates are reduced to just 5. Therefore, we

can confidently rely on a small number of clients to perform the few-shot updates

to boost the global performance of FL. Such a relaxed criterion is substantially

valuable in practical applications. On the other hand, it is noticed that increasing

ffs cannot further improve the performance of FedFSC+ significantly.

Utilising the fully updated classifier. FedFSC and FedFSC+ use the few-shot

updated classifier as a component to form the global model. Alternatively, we can

create the classifier of the global model by combining both the few-shot updated

classifier θtfs and the fully updated classifier θt+1. To investigate this variant, we

perform a naive averaging of the classifier from the fully updated model, θt+1 and

the few-shot updated classifier, θtfs, both formed on the server, with equal weights.
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Dataset α w/o θt+1 w/ θt+1

Cifar10
0.1 70.29±0.54 69.89±0.48↓

0.5 81.23±0.35 80.46±0.17↓

GSC
0.1 88.81±0.31 88.75±0.38↓

0.5 91.55±0.16 91.54±0.17↓

Table 4.8: Ablation study 4: utilising the fully updated classifier. The
performance of FedFSC+ with or without the fully updated classifier in
the global model.

Then the averaged classifier is used to construct the global model.

This variant is compared with the original FedFSC+ in Table 4.8 in terms of

the test accuracy of the global model on CIFAR-10 and GSC. It is apparent that

combining the fully updated classifier introduces a negative impact on FedFSC+,

resulting in up to 0.8% performance decrease on CIFAR-10. Since the fully up-

dated classifier is shown to be more biased than the few-shot updated classifier

in this study, the observation indicates that its inclusion into the global model of

FedFSC/FedFSC+ damages its performance.

4.5.5 Model Architecture Variation

This section extends the evaluation of FedFSC+ to various model architectures

beyond Wide ResNet. Specifically, MobileNetV3 (Howard et al., 2019) and Effi-

cientNet (Tan and Le, 2019) are employed. MobileNetV3 and EfficientNet are com-

putationally efficient CNNs that are particularly developed for running on resource-

constrained devices (Rosero-Montalvo et al., 2024). By demonstrating the effective-

ness of FedFSC+ on them, we can bridge FedFSC+ to the practical FL applications

where resource-constrained devices are prevalent, such as FL on IoTs (Zhang et al.,

2022c; Choudhry et al., 2024; Han et al., 2024a). MobileNetV3 and EfficientNet

are improved with network architecture search (NAS). MobileNetV3 is particularly

designed for model training on mobile phones with CPUs, while EfficientNet is a

collection of CNNs that are known for their faster inference speed compared to some
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of the most powerful existing CNNs.

In addition to the image classification and speech recognition tasks, we further

investigate the performance of FedFSC+ in a Natural Language Processing (NLP)

task using the AG news dataset (Gulli, 2005). AG news is a corpus of news articles

collected from more than 2000 news sources. Articles are categorised by different

topics. We follow the practice proposed by Zhang et al. (2015) to select the four

largest classes, namely “World”, “Sports”, “Business”, “Sci/Tech”, to compose the

dataset. This results in a total of 120,000 training samples and 7,600 test samples.

This NLP task aims to train the model to categorise the news articles into correct

topics. In this experiment, the pretrained 100D Glove embeddings (Pennington

et al., 2014) are adopted to build the vocabulary and encode the tokenised samples

from the AG news dataset. All embeddings remain frozen during training.

MobileNetV3(small) and EfficientNet-B0 are trained with FedFSC+(FedAvg)

on the CIFAR-10 dataset. The local batch size is tuned to 32, while the rest of the

hyperparameters are borrowed directly from previous FedFSC+ experiments. For

AG news classification, a two-layer Long Short-Term Memory (LSTM) model with

a hidden dimension of 256 is used as the feature extractor and the classifier is a

fully-connected layer that is placed on top of the feature extractor. The local batch

size is set to 64, the full local epochs, E, is set to 5, and the learning rate is tuned

to 1. As shown in Table 4.10, few-shot updates are observed to need a few samples,

such as 10 and 20, drawn from each class for fine-tuning the classifier to achieve

optimal performance for FedFSC+ on CIFAR-10 and GSC. Detailed explanation

about the effect of the few-shot number on FedFSC+ can be referred to our second

ablation study in Section 4.5.4. As individual class in AG news has a significantly

larger number of samples (30000) than CIFAR-10 and GSC, we increase the few-

shot number used by FedFSC+ on AG news. We set the shot number to 60 and

the batch size for few-shot updates to 32 in this study.

Table 4.9 summarises the model details and compares the test accuracy of the

global model between FedFSC+(FedAvg) and FedAvg. All experiments are run

for 100 communication rounds with Diri(0.5) to split the client data. With the

simulation of partial client participation, FedFSC+ is observed to consistently out-
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Model #Para Dataset FedAvg FedFSC+(FedAvg)

MobileNetV3(small) 1.7m CIFAR-10 52.49±1.19 54.20±0.48↑↑

EfficientNet-B0 4.0m CIFAR-10 69.66±0.59 70.51±0.63↑↑

2-layer-LSTM 0.9m AG News 75.93±2.53 77.56±0.78↑↑

Table 4.9: Evaluating FedFSC+ with different model types. Top test
accuracy achieved by FedAvg and FedFSC+(FedAvg) with MobileNetV3
(small), EfficientNet-B0, LSTM, are reported.

perform the baseline FedAvg across all model architectures by nearly 2% in global

test accuracy.

4.6 Summary

In this chapter, FedFSC is proposed to close the research gap of tackling the model

shift problem in the partial model training approach. By adopting few-shot fine-

tuning on stragglers, FedFSC successfully answers the research questions: “How

efficient is partial model training?” and “How can the model shift be tackled using

partial model training?”.

This work demonstrates that the proposed few-shot update is an efficient partial

model training method, reducing the training time by 90% compared to the standard

full model update. Moreover, the few-shot learned classifier is shown to be less

biased compared to the fully updated classifier on non-IID local data. FedFSC is

constructed based on these profound discoveries, introducing few-shot updates into

FL to compose a global model that benefits from the contributions of stragglers and

is resilient to model shift. The only condition that FedFSC comes with is to have

at least a few computationally capable devices (non-stragglers) to train a generic

feature extractor that assists few-shot updates.

Our experiments demonstrate that FedFSC is compatible with popular FL so-

lutions. FedFSC consistently boosts the global model performance by up to 6% in

various scenarios, including image, speech and text data. It is also observed that

FedFSC achieves faster convergence compared to baselines, further reducing the
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overall energy cost across clients.

FedFSC reduces the workloads on resource-constrained devices by allowing them

to train a part of the models with a reduced number of parameters. Client models in

FedFSC are still assumed to have a homogeneous architecture. In the next chapter,

we will focus on improving FL performance in the approach of custom-size client

models, which also reduces the trainable parameters in client models by allowing

weak clients to design their own lightweight models rather than training a partial

model.



Chapter 5

Improving Knowledge Transfer to

the Global Model

5.1 Introduction

5.1.1 Research Questions to Address

The approach of custom-size client models allows clients to design models that

match their hardware capabilities, rather than the server distributing a uniform

model without discrimination. Notably, this model customisation enables strag-

glers with limited computing power to use lightweight models, reducing training

workloads and ensuring timely completion of local updates without being discarded

by the server. However, while custom-size client models solve the straggler issues,

traditional model fusion methods for updating the global model on the server are

no longer feasible due to size differences of updated client models.

Previous works, as reviewed in Section 2.2, commonly distill knowledge from

the output of custom-size client models and transfers the distilled knowledge to

the global model. However, given data heterogeneity, the effectiveness of knowl-

edge distillation is compromised due to the reliance on a single knowledge source,

which is negatively impacted by model shift. To this end, this sub-research path

approaches the research question “How can we improve the knowledge transfer from

custom-size client models to the global model with multiple knowledge sources?”.

89
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To address this research question, we aim to design and evaluate methods that

leverage multiple knowledge sources extracted from client models to strengthen the

knowledge transfer for the approach of custom-size client models. This work will

improve the performance of FL with custom-size client models, thereby increasing

its efficacy in addressing the straggler issue.

5.1.2 Proposed Methods and Rationale

Attention transfer and metadata training are the proposed methods to enhance

knowledge transfer in FL with custom-size client models and answer the research

question derived in the previous section. How client models are designed to meet

the client computing requirements is outside the scope of this thesis. The literature

reveals solutions for producing such models via hardware-aware Neural Architecture

Search (NAS) (Wu et al., 2019; Cai et al., 2018; Tan et al., 2019), reducing the block

size from teacher models (Turner et al., 2019) and specialising the computing model

to match the computing budget (Wen et al., 2020).

Attention transfer (Zagoruyko and Komodakis, 2016a) (AT) is a machine learn-

ing technique to enhance knowledge distillation in centralised learning. AT teaches

the learner which parts of internal feature maps should it focus on during learning.

This improves the performance of the learner by not only learning the representa-

tions in the output space but also the internal space. In the original study, AT has

been shown to significantly boost the performance of knowledge distillation across

a range of learning tasks.

Inspired by the success of AT in centralised learning, this thesis leverages AT as

an additional knowledge source to improve the knowledge transfer between custom-

size client models and the global model. In addition to its proven efficacy, AT is

ideal FL with custom-size client models because it can be formulated to train the

global model regardless of the size differences between client models and the global

model. Although FedAD also introduces AT to FL, it was published six months

after this work on leveraging AT to enhance knowledge transfer in FL.

On top of AT, metadata is further introduced as another knowledge source to

enhance knowledge transfer. Metadata consists of latent feature maps extracted
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from custom-size client models. After local updates, client models extract latent

feature maps locally and upload them as metadata to the server. There, the upper

part of the global model is refined on metadata, obtaining client learned knowledge.

Metadata is advocated for transferring knowledge in this work for two primary

reasons. First, similar to AT, metadata can be also constructed independently of

model size differences. Second, the utilisation of feature maps is an established

approach in centralised learning for transferring learned knowledge across domains

and models. Feature maps are widely adopted in a range of machine learning re-

search areas, including transfer learning (Xie et al., 2016; Li et al., 2019d; Neyshabur

et al., 2020; Zhuang et al., 2020), multi-task learning (Misra et al., 2016; Liu et al.,

2019b; Gao et al., 2020), few-shot learning (Sung et al., 2018; Wertheimer et al.,

2021; Li and Bian, 2022), knowledge distillation (Srivastava et al., 2015; Yim et al.,

2017; Wang et al., 2020b), just to name a few, demonstrating impressive success.

However, the use of feature maps in heterogeneous FL, particularly with custom-

size client models, remains very limited. FedGKT is a close study to this work in

terms of training the global model with feature maps extracted from client models.

However, this method adopts a different strategy for addressing the straggler issue,

transferring the training a major part of the global model on the server to alleviate

workloads for stragglers rather than employing custom-size client models.

The novelties of introducing AT and metadata training are twofold: 1) To the

best of our knowledge, this work is the first to leverage the attention transfer tech-

nique for improving the knowledge transfer in FL; 2) Unlike previous works, meta-

data training and attention transfer will be integrated and evaluated in the FL

framework with custom-size client models rather than unified client models, simu-

lating an effective strategy for reducing workloads on stragglers, where stragglers

are allowed to design their own models.

The adoption of AT and metadata training delivers two novel FL algorithms and

contributes profound findings that successfully address the research question. No-

tably, Federated Global Updates with Attention Transfer (FedAT) and Federated

Learning with Local Knowledge Aggregation and Knowlede Distillation (FedKAD)

are presented in this chapter. In FedAT, AT and metadata are hypothesised to en-
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able the global model on the server to generalise on unseen client data, demonstrat-

ing the efficacy of AT and metadata for transferring the knowledge. By enabling the

contributions of stragglers and improving knowledge transfer with multiple knowl-

edge sources, FedAT is expected to close the performance gap of the global model to

the ideal FL baseline, where no clients are discarded as stragglers. FedKAD, on the

other hand, will demonstrate that prototype feature maps, a compressed form of

metadata, can alleviate negative knowledge transfer to the global model induced by

model shift. To this end, the research question is answered with “We can effectively

improve the knowledge transfer from custom-size client models to the global model

through attention transfer and metadata training.”

5.1.3 Transferring Knowledge with Attention Transfer and

Metadata Training

FedAT is named after Federated Global Updates with Attention Transfer. Fe-

dAT facilitates knowledge transfer with AT and metadata training. Regarding AT,

the latent feature maps extracted from models are fused into attention maps. By

aligning the attention maps between the global model and client models, the global

model learns the attention styles of client models in its latent space. With respect

to metadata training, the upper part of the global model is further refined by the

metadata, which is the set of feature maps extracted from clients on their local

data.

Figure 5.1 displays an overview of the proposed FedAT. A generic dataset is

assumed available on the server side to facilitate the attention transfer. This generic

dataset does not break the FL paradigm because it does not hold any of the private

data of clients. On the generic dataset, the attention maps are constructed by

feature maps extracted from the global model and client models. The attention

transfer in FedAT aligns the global model and client models in their latent spaces,

leading to a more effective knowledge transfer. On the client side, after the client

completes its local updates, the updated client model extracts latent feature maps

locally, comprising the local data representations at a predetermined level of the
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network. The set of these feature maps alongside their associated labels is defined as

metadata in FedAT, encoding the locally learned knowledge on the client data. The

server aggregates metadata from all participating clients to train the upper layers

of the global model, further enhancing the knowledge transfer in heterogeneous

environments.

In a simple scenario with just one client, rigorous ablation studies are conducted

to demonstrate the effects of attention transfer and metadata training for transfer-

ring knowledge, finding that the metadata training imparts the global model new

knowledge learned from the client side and the attention transfer prevents the global

model overfitting on the generic data with regularisation. These experiments re-

veal that the global model can effectively improve its generalisation using attention

transfer and metadata training, by up to 6% in the single client scenario. Finally,

the evaluation of FedAT is extended to a multiple client scenario on CIFAR-10, com-

paring it with the hypothetical FedAvg where all the clients are non-stragglers and

the realistic FedAvg where some clients are stragglers and consistently discarded by

the server. It is observed that FedAT can significantly close the performance gap

between the realistic FedAvg and the hypothetical FedAvg, narrowing the gap from

over 19% to just 0.23% in a strong data heterogeneity case. To this end, FedAT

successfully demonstrates the efficacy of AT and metadata training in enhancing

the knowledge transfer between custom-size client models and the global model,

answering the research question.

5.1.4 Improving Knowledge Transfer with Prototype Fea-

ture Maps

Previous FL works adopting custom-size client models show that knowledge distil-

lation on the server is susceptible to negative knowledge transfer induced by client

model shift (Itahara et al., 2021; Cho et al., 2022). Typical FL works that allow

custom-size client models, such as FedMD (Li and Wang, 2019), FedDF (Lin et al.,

2020), DS-FL (Itahara et al., 2021), FedAUX (Sattler et al., 2021), etc, use knowl-

edge distillation assisted by a generic dataset to transfer knowledge from client
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Figure 5.1: FedAT overview. Each client uploads their updated client
models and metadata to the server. Global updates are performed with
attention transfer and metadata training, updating the global model and
client models.
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models to the global model on the server.

Notably, the server constructs a client consensus on the generic dataset by ag-

gregating client logits. The logits are the top layer outputs of client models. The

client consensus is used to supervise the global model and client models for learning

on the generic dataset, thereby transferring the knowledge. However, the client

consensus can be unreliable, particularly when client models are shifted drastically

due to strong client data heterogeneity. This can lead to the transfer of negative

knowledge to the global model, subsequently decreasing its performance.

We hypothesise that metadata can be leveraged to correct negative knowledge

transfer, thereby improving the global model performance when distilling knowl-

edge from custom-size client models to the global model. To justify this hy-

pothesis, Federated Learning with Local Knowledge Aggregation and Knowledge

Distillation, or FedKAD, is proposed. Concretely, FedKAD leverages prototype

feature maps, which are metadata in a compressed form. These prototype feature

maps are learned on clients to preserve intra-class information. FedKAD proposes

to regularise KD with prototype feature maps, using them as a trustworthy knowl-

edge source to prevent the global model from overfitting to the unreliable client

consensus induced by model shift.

FedKAD is evaluated on both CIFAR-10 and GSC, and compared with uniform

model baselines, FedAvg (McMahan et al., 2017) and FedProx (Li et al., 2020c),

as well as a KD-based solution allowing custom-size client models across clients,

FedMD. They are assessed under realistic conditions of client dropping from syn-

chronisation rounds due to limited computational resources in uniform model dis-

tributions. It is observed that FedKAD outperforms uniform model methods with

low participation rates. Compared with FedMD, FedKAD achieves advantageous

performance by leveraging trustworthy knowledge from prototype feature maps,

improving global model performance by up to 3% under strong data heterogeneity.

Moreover, FedKAD demonstrates that client model performance is further improved

by using prototype feature maps. The major contribution of FedKAD is the reve-

lation that prototype feature maps can correct the negative knowledge transfer in

knowledge distillation when the client consensus is compromised due to model shift.
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This strengthens knowledge transfer quality and global model performance for the

approach of custom-size client models, enhancing its application in addressing the

straggler issue.

This chapter is organised into the following sections. Section 5.2 introduces

the basics of knowledge distillation, attention transfer, and metadata. Section 5.3

details the FedAT algorithm, followed by Section 5.4 to present the evaluation of

FedAT. The FedKAD algorithm is then described in Section 5.5, with its evaluation

discussed in Section 5.6. Finally, section 5.7 concludes this chapter.

5.2 Preliminaries

Before diving into the details of FedAT and FedKAD, this section introduces the

fundamental concepts employed in custom-size client models for knowledge transfer,

including knowledge distillation, attention transfer, and metadata training.

5.2.1 Knowledge Distillation with Attention Transfer

Knowledge Distillation (KD) is widely accepted in previous works for facilitating

knowledge transfer in FL with custom-size client models (Li and Wang, 2019; Lin

et al., 2020; Sattler et al., 2021), as described in Section 2.2.3.

In centralised learning, KD is originally proposed for model compression (Bu-

ciluǎ et al., 2006; Hinton et al., 2015; Polino et al., 2018), which is commonly

adopted for deploying computationally cheap models at large scale. KD is built

on the Student-Teacher (S-T) learning framework. The fundamental idea of S-T

learning is to train a lightly-parameterised model, which is referred to as the stu-

dent, under the supervision of a heavily-parameterised model which is called the

teacher (Wang and Yoon, 2021; Gou et al., 2021). By distilling the knowledge

learned by the teacher to the student, the student model is able to achieve compa-

rable performance to the teacher model on the target task, but with a compressed

model size.

To achieve knowledge transfer, Hinton et al. (2015) proposes to align the student

and teacher at their output space, comparing their softmax outputs parameterised



Improving Knowledge Transfer to the Global Model 97

with a hyperparameter termed temperature, as described by Equation 5.1.

pi =
exp

(
zi
ρ

)
∑

j exp
(

zi
ρ

) (5.1)

where pi is the calculated probability of the i-th class, zi is the logit for the i-th

class, model output before it is translated into probability by the softmax, and ρ

is the temperature. The temperature is introduced to the softmax activation to

strengthen the information conveyed by the output.

On the target task, the student is optimised to minimise the training loss as

follows:

Ls (p (zs, ρ) , p (zt, ρ) , y) = LCE (p (zs) , y) + β ∗ LKD (p (zs, ρ) , p (zt, ρ)) (5.2)

where zs and zt are the logits from the student and teacher, y is the label of the

training data, LCE is the conventional cross entropy loss the student achieved on

the target task, LKD is the knowledge distillation loss introduced by aligning the

outputs between the student and the teacher. Notably,

LKD = −
∑

p (zt, ρ) log (p (zs, ρ)) (5.3)

where x is the input of the training data. N is the number of training samples.

With custom-size client models, model size differences prohibit the server from using

direct model fusion to transfer the learned knowledge. In contrast to direct model

fusion, KD is model structure agnostic, exploiting the knowledge from client models

through their outputs without requiring alignment of their structures. Thus, KD is

commonly adopted in the approach of custom-size client models.

Attention Transfer (Zagoruyko and Komodakis, 2016a) (AT) extends the knowl-

edge source of KD by focusing on transferring attention styles in the latent space

from a teacher model to a student model. Unlike traditional KD, which compares

final outputs, AT exploits the knowledge containing in the attention maps inside

the model.
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Formally, let us consider the feature maps output by a layer in the Convolutional

Neural Network (CNN) when it is fed with a sample. We denote the set of feature

maps as F = {fi}C , where F ∈ RC×H×W . F consists of feature maps from C

channels with each feature having a dimension of H × W . AT fuses the feature

maps from multiple channels to form an attention map, denoted as A.

F : RC×H×W → A : RH×W (5.4)

A =
C∑
i=1

|fi|p (5.5)

where the power p and absolute |·| operations on the feature map fi are element-wise.

Figure 5.2 illustrates the examples of attention maps extracted on the CIFAR-10

dataset by a wide ResNet. It shows that the attention map from the lower layer

has high resolution. As the layers go deeper, attention becomes more focused on

specific areas. This observation aligns with the classic finding in Krizhevsky et al.

(2012).

Once feature maps are fused into the attention map, the student compares its

attention maps with the teacher’s on training samples to form the attention transfer

loss as follows:

LAT =
∑
l∈I

∥∥∥∥ Ql
s

∥Ql
s∥2
− Ql

t

∥Ql
t∥2

∥∥∥∥
p

(5.6)

where we follow the original notation defined in (Zagoruyko and Komodakis, 2016a),

use I to denote all layer indices that the student and teacher compare their attention

maps. As and At are the attention map from the student and teacher, and Q =

vec(A) is the vectorised form of the attention map, p is the norm type, we use

p = 2 unless stated otherwise. Finally, the AT loss replaces the KD loss depicted in

Equation 5.3 to form the student training loss. Figure 5.3 depicts the S-T learning

with AT.

Ls (p (zs, ρ) , p (zt, ρ) , y) = LCE (p (zs) , y) + β ∗ LAT (At, As) (5.7)
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Figure 5.2: Visualising attention maps. Feature maps are extracted
from a wide ResNet at the lower layer, mid layer, upper layer on sam-
ples from CIFAR-10 to form corresponding attention maps. Specifically,
attention maps from lower layers highlight object outlines and basic
features, whereas upper layer attention maps combine these into more
abstract representations.



Improving Knowledge Transfer to the Global Model 100

Figure 5.3: S-T learning with AT. The student model is supervised with
AT by the teacher model on one single training sample from CIFAR-10.
The teacher model transfers its attention knowledge to the student model
across three distinct levels defined in the set I.

Supervised by attention maps from the teacher model, the student model is

forced to align its attention in the latent space with that of the teacher. The

original work of AT demonstrates its effectiveness in improving the performance of

KD. Inspired by the success of AT in centralised learning, we hypothesise that AT

can be leveraged to improve knowledge transfer in FL.

5.2.2 Refining the Global Model with Metadata Training

FL works, such as FedGKT (He et al., 2020a) and CCVR (Luo et al., 2021), have

highlighted the efficacy of training the upper part of the global model using feature

representations extracted from client models. On top of AT, this work is further

inspired to utilise feature maps extracted on client models to enhance knowledge

transfer between custom-size client models and the global model. As detailed in Sec-

tion 5.1.2, this work is orthogonal to the previous works, being specifically tailored

to custom-size client models. Figure 5.4 illustrates this method.

Concretely, feature maps are extracted from client models on local data after

local updates. The same notations defined in Section 4.2 are reused. On client k,
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Figure 5.4: Training the global model with feature maps extracted from
custom-size client models. A single client model is used for demonstra-
tion.

its local model parameterised by wk = {ϕk, θk}, where ϕk is the feature extractor

and θk is the upper part of the client model, is updated to wk, E = {ϕk, E, θk, E}

after E local training epochs. Then, the client extracts feature maps F
(i)
k for the

client data x
(i)
k ∈ Dk, i = 1, · · · , |Dk| as follows:

F
(i)
k = fϕk, E

(ϕk, E;x
(i)
k ) (5.8)

where fϕk, E
is the mapping function of the updated feature extractor. Client k then

forms the metadata with all the feature maps alongside their corresponding labels

in Dk.

Dk, meta =

|Dk|⋃
i=1

(F
(i)
k , y

(i)
k ) (5.9)

Dk, meta is then uploaded to the server for supervised training the upper part of

the global model, θg, as follows:
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θg ← θg − λg∇θgℓg(θg;Dk, meta), (5.10)

where λg and ℓg are the learning rate and loss function for the global updates. The

global model Mg is split into θ , ϕ in a way that the dimensions of the feature maps

can match the input dimensions of θ. Therefore, θ can be trained with the feature

maps. The feature maps are the representations of the local data encoded by the

updated client model. They convey essential local knowledge learned by the client

model. By training the global model with the feature maps, the global model learns

local knowledge without accessing raw user data.

5.3 Federated Global Updates with Attention

Transfer

This section details the algorithm of FedAT. Figure 5.5 depicts the federated learn-

ing loop in FedAT using a single client model, which applies to all other participants

as well. Conventionally, FedAT includes both global updates and local updates.

They are introduced separately in the following sections.

5.3.1 Local Updates of FedAT

FedAT assumes the size of the client model is customised to match its local comput-

ing capability such that all clients finish their local updates within a given budget

of time. Therefore, all participants in FedAT are non-stragglers, performing E local

training epochs and successfully sending their training results back to the server.

There are two operations for the custom-size client model on the edge: the

conventional model training on the local data and the extraction of feature maps.

Following the standard local updates defined by Equation 2.3, the client model Mk

parameterised by wk = {ϕk, θk} is first updated to wk, E = {ϕk, E, θk, E} after E

local training epochs with Equation 5.11.

wk, E ← wt
k − λl∇wt

k
ℓk(w

t
k;Dk), (5.11)



Improving Knowledge Transfer to the Global Model 103

Figure 5.5: The global updates and local updates of FedAT. This graph
showcases a single client scenario, which is applicable to all other par-
ticipating clients.

Unlike Equation 2.3, Equation 5.11 uses wk, E instead of wt+1
k because wt+1

k will be

obtained on the server side with attention transfer in FedAT, as depicted in the

following Section 5.3.2.

To facilitate knowledge transfer to the global model, FedAT asks the updated

client model to extract feature maps for the local data. As stated in Equation 5.8

in Section 5.2.2, we propose to utilise the feature extractor ϕk, E to encode the

local data that are not allowed to be shared originally with the global model. The

partition of wk, E into {ϕk, E, θk, E} can be determined by a predefined layer level

on the client model. In this work, the client model is split into three groups,

using notations of l ∈ {low,mid, up} to indicate the three layer levels, lower layers

l = low, mid layers l = mid, and upper layers l = up. Figure 5.6 visualises the

model partition and extracted feature maps. F
(i)
k can be extracted from one of these

three layer levels.

With the completion of feature extraction, the set of the extracted feature maps

is uploaded to the server together with their corresponding labels in Dk, defined as
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Figure 5.6: Client model split and feature extraction. The client model
is split into lower, mid and upper layer levels. The dimensions of feature
maps vary at distinct layer levels.

Dk, meta by Equation 5.9.

5.3.2 Global Updates of FedAT

FedAT trains a global model on the server for future deployments. To facilitate

AT, a generic dataset Dg, is assumed available on the server side. Same to client

models, here FedAT defines the upper, mid, lower levels for the global model. Even

though the sizes of the global model and client model are different, we can still

ensure all models have the same input dimensions at each corresponding layer level.

After the client models get updated and send their updated models and metadata

back to the server, the global optimization objective is formulated by averaging K

sub-optimisation objectives.

argmin
wg

L(wg) =
K∑
k=1

pkLk(wg;wk, E, Dg, Dk, meta) (5.12)
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Figure 5.7: The 3-step optimisation on the server to update the global
model with a custom-size client model and its metadata.

where pk uses the same definition described in Equation 2.1.

FedAT proposes a unique 3 steps to achieve the sub-optimisation objective,

transferring locally learned knowledge from client models to the global model on

the server. Each sub loss function Lk(wg;wk, E, Dg, Dk, meta) optimises a copy of wg

by first training the copy on Dg with the attention transfer from the updated client

model wk, E, and then training its upper layers on metadata, Dk, meta, collected

from the corresponding client. Finally, the copy refines its lower layers on Dg with

attention transfer from wk, E again. Figure 5.7 shows the 3-step optimisation in the

global updates.

Step 1. The global update starts with AT from wk, E to wg on the generic data

Dg data by minimising the loss as follows.

wg,s1 = argmin
wg

 ∑
(x(i),y(i))∈Dg

ℓce
(
fwg(x

(i)), y(i)
)
+ βLAT (Qwg , Qwk,E

)

 (5.13)

LAT (Qwg , Qwk,E
) =

∑
i∈Dg

∑
l∈I

∥∥∥∥∥ Q
l,(i)
wg

∥Ql,(i)
wg ∥2

−
Q

l,(i)
wk,E

∥Ql,(i)
wk,E∥2

∥∥∥∥∥
2

(5.14)

Recall the attention maps described in Section 5.2.1, Q
l,(i)
wg and Q

l,(i)
wk,E are the vec-
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torisied attention maps formed at the j level layer of global model and client model

on the i-th instance of Dg. FedAT sets p defined in Equation 5.6 to 2.

Step 2. FedAT exercises the upper layers of Mg using metadata from clients. As

stated earlier in Section 5.2.2, the global model is split into θg, ϕg in a way to match

the upper part θg with the dimensions of metadata. To this end, the global model

updated in step 1, wg,s1, is split into {θg,s1, ϕg,s1}. The feature maps from Dk, meta

are propagated through the upper part of the global model, θg,s1, starting from the

predetermined level. We minimise the loss presented in Equation 5.10 to formulate

the following optimization problem described by Equation 5.15.

θg,s2 = argmin
θg,s1

∑
(F

(i)
k ,y

(i)
k )∈Dk, meta

ℓce(fθg,s1(θg,s1 F
(i)
k ), y

(i)
k ) (5.15)

The role of this step is to specialise the features in the upper part of the network,

including for the under-represented classes due to non-IID data distribution, but

captured in Dk, meta as higher level feature maps.

Step 3. The global model updated at the end of step 1 and step 2 is wg,s2 =

{θg,s2, ϕg,s1}. Finally, its feature extractor ϕg,s1, is refined with AT by freezing the

upper part θg,s2 previously trained at step 2. As θg,s2 is frozen, we do not need to

transfer the attention from levels in the upper part. Hence, only attention maps

from a subset of I, denoted as Isub are compared between the global model and the

client model at step 3. Except for the fixed upper part θg,s2 and attention transfer

inside the trainable feature extractor ϕg,s1, step 3 is essentially the same as step 1.

ϕg,s3 = argmin
ϕg,s1

 ∑
(x(i),y(i))∈Dg

ℓce
(
fwg,s2(x

(i)), y(i)
)
+ βLAT (Qwg,s2 , Qwk,E

)

 (5.16)

LAT (Qwg , Qwk,E
) =

∑
i∈Dg

∑
l∈Isub

∥∥∥∥∥ Q
l,(i)
wg,s2

∥Ql,(i)
wg,s2∥2

−
Q

l,(i)
wk,E

∥Ql,(i)
wk,E∥2

∥∥∥∥∥
2

(5.17)

FedAT only updates the feature extractor at step 3, therefore the global model
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wg,s3 updated at the end of step 3 is composed of {θg,s2, ϕg,s3}. The refinement of

the feature extractor at step 3 aims to adapt it to the upper part updated at step

2. As θg,s2 is the training results on the metadata, which is substantially different

from the generic data utilised for updating the feature extractor ϕg,s1 at step 1, it

is critical to align ϕg,s1 and θg,s2 on a unified dataset to ensure the global model be

trained correctly. By fixing θg,s2, the training at step 3 can force ϕg,s1 to output

features further forwarded by θg,s2 to consistently minimise the loss on the generic

data. If the two parts of the global model are not aligned, the training loss would

be extremely high.

After each sub-optimisation is finished by completing all 3 aforementioned steps,

the server obtains a total ofK updated global models. Finally, FedAT forms a global

model that is distributed at t + 1-th communication round using the naive model

fusion, same to Equation 2.4.

wt+1
g ←

K∑
k=1

pkw
(k)
g,s3 (5.18)

where w
(k)
g,s3 is the k-th updated global model.

Upon obtaining the global model aggregated knowledge from custom-size client

models, FedAT updates client models on the server by transferring its knowledge

back to them. This is the analogy to the distribution of the updated global model

wt+1 to the client side introduced in Section 2.1.1. Again, FedAT uses AT to achieve

this, as illustrated by Figure 5.8.

wt+1
k = argmin

wk, E

 ∑
(x(i),y(i))∈Dg

ℓce
(
fwk, E

(x(i)), y(i)
)
+ βLAT (Qwk,E

, Qwg)

 (5.19)

LAT (Qwk,E
, Qwg) =

∑
i∈Dg

∑
l∈I

∥∥∥∥∥ Q
l,(i)
wg

∥Ql,(i)
wg ∥2

−
Q

l,(i)
wk,E

∥Ql,(i)
wk,E∥2

∥∥∥∥∥
2

(5.20)

Finally, client models wt+1
k for k ∈ {1, · · · , K} are sent back to the client side

to start round t+ 1. The FedAT algorithm is summarised in Algorithm 3
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Algorithm 3 FedAT: Federated Global Updates with the Attention Transfer.

1: Input: total T communication rounds, a generic dataset on the server Dg, E

epochs of local updates, wg = {θg, ϕg}, wk = {θk, ϕk} for all k ∈ [1, K], the

predefined layer level l to extract feature maps.

2: for t = 1, . . . , T do

3: K participant clients download client model wk = {θk, ϕk} from the server.

4: Clients:

5: for Client k ∈ [1, K] do

6: wk, E ← Local updates (wt
k;Dk, E) according to Equation 5.11.

7: Dk, meta ← Metadata extraction (;ϕk, E,Dk) according to Equa-

tion 5.8 and Equation 5.9.

8: Client k uploads wk, E and Dk, meta to the server.

9: end for

10: Server:

11: Server makes K copies of wt
g

12: for k ∈ [1, K] on each of the copied wt
g do

13: wt
g, s1 ← AT from client to global

(
wt

g;wk, E,Dg

)
according

to Equation 5.13 and Equation 5.14.

14: θtg, s2 ← Metadata training
(
θtg, s1;Dk, meta

)
according to Equa-

tion 5.15.

15: ϕt
g,s3 ← AT from client to global

(
ϕt
g,s1; θ

t
g, s2, wk, E,Dg

)
ac-

cording to Equation 5.16 and Equation 5.17.

16: Construct the updated global model copy w
(k)
g, s3 = {θtg, s2, ϕt

g, s3}.
17: end for

18: Aggregation of the updated global model to form wt+1
g according to Equa-

tion 5.18.

19: for k ∈ [1, K] on client model wk, E do

20: wt+1
k ← AT from global to client

(
wk, E;w

t+1
g ,Dg

)
according

to Equation 5.19 and Equation 5.20.

21: end for

22: end for

23: Return Global model wT+1
g , client models wT+1

k for k ∈ [1, K].
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Figure 5.8: AT from the aggregated global model to individual client
models.

5.4 FedAT Experiments

Specific experimental setup for FedAT. The evaluation of FedAT uses a

WRN model with a depth of 40 and width of 1 (WRN-40-1) as the global model,

whereas each client model has individual structure with a smaller size than the

global model. FedAT is evaluated on CIFAR-10, with each class referred to based

on its label (a number between 0 to 9). A simple FL scenario where there is only one

client is first studied. This case is used to demonstrate the effectiveness of AT and

metadata training for knowledge transfer. Then FedAT is evaluated in a realistic

FL scenario where multiple clients participate.

5.4.1 Single Client Scenario

FedAT proposes the unique 3-step global updates described in Section 5.3.2 for

transferring the knowledge locally learned by the client model to the global model.

To evaluate its efficacy, ablation studies are conducted to study the effects and

limitations of the 3 steps in a simply single client scenario. The generic data Dg
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held by the server and the client data D1 are partitioned with an IID scenario and

a non-IID scenario in the ablation studies to simulate applications in the wild.

The client model involves two WRNs with reduced depths, WRN-16-1 and

WRN-10-1, compared to the global model, WRN-40-1. It is observed that they

produce very close results, so only the results of using WRN-16-1 as the client

model is reported here. Attention maps are extracted from 3 paired layer levels

with the same output feature dimensions as illustrated earlier in Figure 5.7. A

SGD optimiser with a learning rate of 0.1 is applied to all the training steps in

global updates and local updates. Borrowed from the original setup in Zagoruyko

and Komodakis (2016a), the value of β that weighs the AT loss is set to 1,000. The

training epochs for the attention transfer, local training, and metadata learning are

tuned to 2, 1, 2 respectively.

The training set of CIFAR-10 is split into generic data Dg and the client data

D1. Notably, by assigning more data points or classes to D1 than Dg, the client

data is used to train the client model to achieve advantageous performance over

the global model trained on Dg. Therefore, the knowledge gap between the global

model and client model enables us to study whether we can narrow this gap using

attention transfer and metadata training.

In the IID data scenario, Dg consists of 20% of training samples randomly se-

lected from the training set and D1 holding the other 80% of the training set dis-

jointly. The random selection is uniform, making both Dg and D1 have the IID

distribution over. To simulate the non-IID data, the training instances of classes

0 to 8 (45,000 images) are allocated to the generic data Dg, and the local data D1

holds training images of class 9 on top of samples from the other classes (0..8).

This is intended to expose the performance of our FL training method in data het-

erogeneity, where some classes are unbalanced in representation across server and

clients (non-IID data). Training only on Dg, the test accuracy of the global model

is 84.53%, because it is never exposed to images of class 9.

Table 5.1 shows the baseline performance of the global model and the client

model, which is set up by training the global model with just the generic dataDg and

training the client model on the client data D1. As the client data has more samples
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Scenario Model Model config. Training data Test Acc (%).

IID
Mg

M1

WRN-40-1

WRN-16-1

20% training set

80% training set

85.30

88.18 ↑↑

non-IID
Mg

M1

WRN-40-1

WRN-16-1

samples from classes 0-8

samples from classes 0-9

84.53

91.61 ↑↑

Table 5.1: Baseline performance in the single client scenario on CIFAR-
10. There are performance gaps between the global model trained on Dg
and the client model trained on D1, as D1 has more training samples or
classes than Dg.

or classes than the generic data, it is obvious that the client model has advantageous

performance. The client model performance is defined in Table 5.1 as the upper

baseline, opposed to the global model performance as the lower baseline. The 3-

step global updates in FedAT aim to close their performance gap by transferring

the client knowledge to the global model.

Ablation Studies for Step 1

Table 5.1 shows that the client model, despite being smaller, outperforms the global

model because it is trained on D1, which has more samples or classes than Dg, where

the global model is trained. To this end, we approach a question: “How effective is

AT at step 1 for transferring knowledge learned by a small-size model to a model

with a larger size.”

Table 5.2 reports the global model performance after step 1, trained with AT

from the client model. It shows AT at step 1 improves the global model performance,

by up to 1.5% in the IID scenario due to the knowledge gap is created by the

differences of the training data size (D1 4× larger than Dg). However, in the non-

IID scenario, the improvement is very minimal as the knowledge gap exists in the

missing class in Dg, in our case is class 9. With attention transfer on Dg, the client

model can only supervise the global model on training samples in Dg. The global

model is unable to increase its performance significantly without learning knowledge
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Scenario Training strategy Test Acc (%).

IID
trained on Dg

trained with AT on Dg

85.30

86.82 ↑↑

non-IID
trained on Dg

trained with AT on Dg

84.53

84.74 ↑↑

Table 5.2: AT from the client model improves the global model perfor-
mance trained on Dg at step 1.

from class 9.

Ablation Studies for Step 2 and Step 3

This section studies the impact of step 2 and step 3 in the global updates on the

global model performance. It addresses the questions: “Which layer’s metadata is

more effective for knowledge transfer?” and “How important is the alignment of θg

and ϕg with AT from the client model for the global updates?”.

Figure 5.9 compares the global model performance after the global updates by

varying layer levels for extracting metadata, D1, meta and whether performing the

alignment of θg and ϕg. The bar charts to the left in Figure 5.9 describe the test

performance of the global model updated on the IID generic data. Compared to the

global model performance shown in the Table 5.1, 85.30%, it is observed that using

metadata training alone is ineffective to boost the global performance. Whereas

applying the model alignment with AT at step 3 increases the global performance

up to 86.59% (using metadata extracted from the upper layer level), outperforming

the baseline by 1.3% and closing the performance gap by almost 50% (from 2.9%

to 1.6%). This observation generally holds true for the non-IID data partition

scenario, where the global model performance is improved by over 6%. However,

the difference is, with the IID data partition, metadata extracted from 3 layer levels

are all effective to boost the global performance when the model alignment at step

3 is adopted.

In the non-IID data scenario, only metadata extracted from the lower layer
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level effectively improves the global model performance from the baseline, by 6%.

This observation suggests that the metadata at lower layers are more informative

for transferring knowledge between models trained on non-IID data. Finally, by

comparing the improved global performance using AT and metadata training to

the baseline performance achieved by the client model. It is apparent that the

performance gap between the global model and the client model is narrowed owing

to the proposed 3-step knowledge transfer. However, the student (the global model

in this case) still cannot achieve an equal or higher performance than its teacher

(the client model).

Aligning the Global Model Updates with AT

Figure 5.9 shows that metadata training negatively impacts global model perfor-

mance, decreasing the baseline performance after metadata training. This section

provides insights into this observation by exploring the effects of metadata training

in the global updates under the non-IID scenario.

In the non-IID scenario predetermined in our setup, D1, meta is the only knowl-

edge source containing knowledge about class 9 available to the global model. This

knowledge is in the form of feature maps from the output of the feature extractor

ϕ1, E updated locally on the client data. Metadata training aims to teach the global

model how to recognise the missing class not available in the server data Dg, class

9 in this case.

To understand metadata training, Table 5.3 reports the global model perfor-

mance on all 10 classes and specifically class 9 in CIFAR-10 at the end of step 1

and step 2. We use feature maps extracted from the upper layer level of the client

model to form the metadata for training θg, s1. The results demonstrate that meta-

data training at step 2 significantly degrades the global performance with increasing

training epochs. The table examines two distinct cases. In the first, the metadata

only contains feature maps from samples in class 9. It is observed the global model

gradually learns to recognise class 9 but forgets how to generalise on other classes,

showing the catastrophic forgetting effect typically found in the model trained on

multiple tasks. The network specialises on the features characteristic to the current
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(b) non-IID scenario

Figure 5.9: The global performance at step 2 and step 3 under both IID
data scenario and non-IID data scenario is compared, using metadata
formed at different layer levels. Metadata training at step 2 does not
effectively boost the global model performance. After step 3, FedAT im-
proves the global model performance using AT. In the non-IID scenario,
metadata extracted from the lower layer level most significantly boosts
the global model performance.
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task while forgetting representations crucial for the previous task. In the second

case, metadata includes feature maps sampled from all classes. It is evident the

generalisation on all classes quickly diminishes, consistent with observations in Fig-

ure 5.9. We suspect the performance decline stems from the misalignment between

ϕg and θg due to their updates on two distinct dataset Dg and D1, meta at step 1

and step 2.

In summary, Table 5.3 demonstrates that while the global model effectively

learns from metadata, changing training data is detrimental to its overall perfor-

mance.

The AT at step 3 can mitigate the negative impacts brought by changing training

data. Figure 5.9 empirically justified the benefits of AT step 3, as it restores global

model performance by aligning ϕg and θg on the same dataset Dg. Furthermore,

the global model achieves better performance than the baseline, demonstrating

the client knowledge is successfully transferred to the global model with AT and

metadata training.

The Regularisation Effect of AT at Step 3

Another critical question to approach in ablation studies is “What is the purpose

of using AT in step 3?” or “Can we just align ϕg and θg on Dg without AT?”. AT

adopted at step 3 aims to enhance the representation learning on the unseen data

in Dg.

After step 2, the upper part θg learns to generalise on new classes with feature

maps. While aligning the feature extractor ϕg with θg on Dg at step 3, AT from

the client model can act as a regularisation approach to avoid ϕg overfitting to Dg.

Table 5.4 reports the findings from ablation studies on using AT at step 3 in global

updates. Results show that the global model performance on all classes is nearly

identical between with AT and without AT, only 0.04% differences. However, the

performance on the missing class in Dg has a noticeable gap between using AT

and not using AT. When AT is applied at step 3, the performance on the missing

class is improved by over 2%, supporting the hypothesis that AT can regularise

the global model to learn representation for the missing class without overfitting to
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Training step Epochs
Test Acc. (%)

on all classes

Test Acc. (%)

on class 9

Step 1 2 84.74 0

Step 2 with D1, meta

sampled from class 9

1

2

3

4

84.47 ↓↓

84.14 ↓↓

77.01 ↓↓

36.43 ↓↓

0

0.1 ↑↑

19.8 ↑↑

86.7 ↑↑

Step 2 with D1, meta

sampled from all classes

10

20

30

40

70.72 ↓↓

65.91 ↓↓

45.27 ↓↓

25.70 ↓↓

0

0

0

0.6 ↑↑

Table 5.3: The global model performance at step 1 and step 2 in the
global updates, with step 1 serving as the baseline. D1, meta is derived
from two sources: exclusively from class 9, and from all ten classes. In
both cases, metadata training decreases the performance. The first case
demonstrates the catastrophic forgetting, specifically lowering accuracy
for other classes except for class 9. In the second case, we hypothesise
the performance drop is due to the misalignment between ϕg and θg.
Figure 5.9 shows that the performance can be restored when ϕg and θg
are aligned through joint training on Dg.
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Training step
Test Acc. (%)

on all classes

Test Acc. (%)

on class 9

Step 1

Step 2

84.74

57.92

0

80.0

Step 3 w/ AT

Step 3 w/o AT

90.76

90.80

92.20

89.80 ↓↓

Table 5.4: Comparison of global model performance on all classes and
specifically on class 9 inDg at step 3, with or without AT, using metadata
from the lower layer of the client model. AT prevents overfitting to Dg.
Applying AT at step 3 improves the performance on the missing class
without compromising overall performance.

other classes.

Training the Global Model with Reduced Metadata

This ablation study explores the minimal metadata required for effective knowledge

transfer from the client model to the global model, without compromising the global

performance. This study is substantial for reducing the communication overhead

arising from transmitting metadata in the network.

These experiments use feature maps, D1, meta, extracted at the lower layer level

of the client model, which Figure 5.9 shows improves the global model performance

the most. The client uploads varying proportions of metadata, ranging from 100%

to 1% of D1, meta by randomly selecting feature maps from the entire D1, meta, to

train the global model on the server at step 2.

Figure 5.10 illustrates the global model performance at each step in the global

updates. It is observed that the best global performance, over 90% on the test set,

is achieved when the entire set of D1, meta is transferred. Notably, this performance

remains robust until only 10% of D1, meta is used, accomplishing 89.65%. How-

ever, reducing the uploaded D1,;meta to 1% significantly decreases the global model

performance to 73.42%.

Interestingly, in terms of the global performance at step 2, there is an initial



Improving Knowledge Transfer to the Global Model 118

020406080100
Proportions of Metadata (%)

60

65

70

75

80

85

90

95
Te

st
 A

cc
ur

ac
y 

(%
)

Step 1
Step 2
Step 3

Figure 5.10: Global model performance across the 3 steps of global up-
dates with varying metadata proportions. The green line represents step
1 without metadata. Significant performance impact occurs only when
metadata used at step 2 is reduced to 1%. Removing 90% of metadata
leads to only a 1% performance drop, crucial for reducing communication
overhead. Consistent performance gaps among steps align with previous
observations.

performance increase with less metadata transferred. This observation aligns with

our earlier understanding that metadata training alone without model alignment

at step 3 degrades performance. Introducing step 3 clearly improves global perfor-

mance beyond the green line, which is the global performance at step 1. Since the

metadata is not associated with the AT in step 1, the green line serves as a baseline

to measure performance boosts introduced by metadata training at step 2 and AT

at step 3.

Conclusions of ablation studies in the single client scenario. In the single

client scenario, ablation studies are conducted on the global updates in FedAT,

notably the 3-step knowledge transfer, providing insights and justification on each
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step. It is observed that both AT and metadata learning are essential for trans-

ferring knowledge learned by a small-size model to a large-size model. AT scales

the weights of the larger model at the first step and fine-tunes the feature extractor

with regularisation at the third step, while metadata training at step 2 adjusts the

features of the upper layers of the network where representations from the missing

are otherwise absent. AT and metadata training collectively enhance the generali-

sation of the global model in FedAT. Furthermore, it is found that using just 10%

of the entire metadata still achieves comparable knowledge transfer to the global

model, reliving the communication overhead introduced by uploading the metadata

in the network.

5.4.2 Multiple Clients Scenario

This section experiments FedAT in a realistic scenario by using multiple clients with

non-IID client data.

Experimental setup for multiple clients. The client number for the multiple

clients FedAT is set to 20, with each client storing non-IID local data from a fraction

of CIFAR-10 training set partitioned by Diri(α). Similar to the single client sce-

nario, the generic data used in the multiple client scenario is assumed not to include

all CIFAR-10 classes. Notably, the server only collects a small amount of generic

data to facilitate AT in practice. Dg is confined to 2,500 CIFAR-10 training images

randomly drawn from 7 classes (1, 2, 3, 4, 6, 7, 9). The metadata consists of feature

maps extracted from the lower level layer of the client model. All experiments are

conducted over 300 FL rounds. SGD optimiser is adopted again for this scenario.

Learning rates are tuned to 0.1, 0.01, 0.1 for AT, local updates, metadata learning

respectively, for optimal performance. Table 5.6 reports the validation performance

on CIFAR-10 from a grid search over learning rates for AT and metadata learning,

ranging by an order of magnitude from 0.01 to 1.0. Extremely small or large learn-

ing rates significantly degrade the overall performance of FedAT. Training epochs

are set to 2, 5, 2 for AT, local updates, metadata learning respectively. The AT loss

coefficient β is set to 1,000. A WRN-40-1 is used as the global model on the server.
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Method Participant ID Depth Width #Para

FedAvg
Client 0-19

Server

40

40

1

1

567k

576k

FedAT

Client 0-5

Client 6-9

Client 10-13

Client 14-17

Client 18, 19

Server

10

16

22

28

34

40

1

1

1

1

1

1

79k

177k

274k

372k

469k

567k

Table 5.5: The configuration of custom-size WRN models over 20 clients
in FedAT, with varying depths. FedAvg baseline assumes distributing
a homogeneous model across the clients. FedAT assumes custom-size
models to match local computational power.

Learning Rate 0.01 0.1 1.0

Val. Acc. (%) 24.76 63.58 23.68

Table 5.6: The validation performance on CIFAR-10 by varying learning
rates for the attention transfer and the metadata learning in FedAT.

The 20 custom-size client models using WRNs with varying depths are described

in Table 5.5.

Straggler simulation. The key advantage of FedAT over homogeneous model

solutions, such as FedAvg, is that all clients are assumed as non-stragglers to fully

perform local updates and successfully upload their training results. In contrast,

FedAvg assumes a proportion of the clients are stragglers being dropped out by the

server. Specifically, we assume the stragglers in FedAvg are constant, simulating a

complete exclusion of some clients that cannot meet the computational requirements

in any communication round due to the distribution of a homogeneous model in

FedAvg. The same 8 clients, 12 clients, 16 clients, equivalent to 40%, 60%, 80% of
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all the clients, are assigned as stragglers, never finishing their local updates before

the deadline. As a result, their unique local knowledge learned by the models

are never utilised by the global updates in FedAvg. For FedAT, all 20 clients

send their updated client models and corresponding metadata back to the server

in every communication round. In addition to the realistic straggler simulation, we

also include an ideal baseline, where all the clients are able to complete their local

updates in FedAvg.

Experiment results. Table 5.7 compares FedAT and FedAvg under Diri(0.1)

and Diri(0.5), reporting their best test performance achieved by the global model

on CIFAR-10. For the weaker data heterogeneity level with Diri(0.5), the hypo-

thetical FedAvg achieves by far the top performance with 82.36%. Subsequently,

in the realistic scenarios with 40%, 60%, 80% of clients being stragglers, FedAvg

decreases its performance to 81.60%, 76.09%, 65.86% respectively. FedAT can out-

perform FedAvg with 60% stragglers, achieving more than 10% improvement over

the FedAvg with 80% stragglers and just 6% below the ideal FedAvg. In terms

of the stronger data heterogeneity with Diri(0.1), it is also evident that FedAvg

decreases its performance significantly as more clients become stragglers, reducing

from 68.98% with no stragglers to 49.13% with 80% stragglers. The deteriorated

performance of FedAvg gives FedAT a good gap to fill. It is observed that the per-

formance gap between the hypothetical FedAvg and FedAT is marginally 0.24%,

indicating FedAT outperforms realistic FedAvg baselines with stragglers by up to

19%. The experiment results show that FedAT with custom-size client models is

able to improve the performance of the global model by having all the clients con-

tribute to the learning, in contrast to a large number of clients being dropped out

by the server due to system constraints in standard FedAvg.

Generalisation on the missing classes. Similar to Table 5.3 and Table 5.4 in

the single client scenario, we evaluate knowledge transfer from client models and

the global model by assessing the generalisation of the global model to missing

classes in the generic data. Table 5.8 reports the test performance of the global
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Scenario Method
Straggler

Ratio (%)

Test Acc. (%)

Diri(0.5) Diri(0.1)

Hypothetical FedAvg 0 82.36 68.98

Realistic

FedAvg

FedAvg

FedAvg

40

60

80

81.60 65.89

76.09 52.99

65.86 49.13

Realistic FedAT 0 76.34 68.75

Table 5.7: Comparison of FedAT and FedAvg with varying straggler
ratios. FedAT closes the performance gap between realistic scenarios and
the hypothetical scenario, particularly under strong data heterogeneity
with Diri(0.1). The hypothetical case of FedAvg with no stragglers is
used as the ideal performance to reach. The other cases with stragglers
indicate more realistic approaches where stragglers are discarded. All
the clients in FedAT are assumed to be non-stragglers.

model on the classes 0, 5, 8, which are absent in the generic data but present in

the client data. It is observed that the global model achieves test performance

ranging from 20% to 84%, despite not having direct access to raw samples from

these classes. These results demonstrate that FedAT effectively transfers client

learned knowledge to the global model through AT and metadata training, while

following the privacy-preserving rule of FL.
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Method Diri(α)
Test Acc. (%)

Class 0

Test Acc. (%)

Class 5

Test Acc. (%)

Class 8

FedAT
0.5

0.1

70.6

84.7

61.4

62.4

75.3

20.0

Table 5.8: The performance of the global model on classes 0, 5, 8, absent
in the generic data but present in client data. The obtained performance
on these missing classes demonstrates successful transfer of client learned
knowledge to the global model.

5.5 Federated Learning with Aggregated Proto-

type Feature Maps

As stated in Section 5.1, FedKAD focuses on alleviating the negative knowledge

transfer from custom-size client models to the global model induced by model shit.

At a high level, FedKAD achieves this objective by regularising KD with prototype

feature maps which preserve intra-class knowledge.

FedKAD setup. FedKAD allows the distribution of custom-size client models. It

learns a global model on the server using client consensus and aggregated prototype

feature maps from clients under the coordination of a centralised server. The global

model Mg parameterised with wg is trained on the server. There are a total number

of K non-straggler clients, each using a custom-size client model Mk parameterised

with wk to perform the local updates on its local data Dk, k ∈ [1, K]. Dk has

class labels, denoted by c with (c ∈ [1, C]). Similarly to earlier setup, the global

model and these custom-size client models are constructed of a backbone with a

feature extractor ϕ and the upper part θ. Again, FedKAD assumes a generic dataset

Dg that is available on the server to facilitate knowledge distillation. The global

updates and the local updates of FedKAD are described in the subsequent sections.

Algorithm 4 provides an outline of FedKAD.
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Algorithm 4 Federated Learning with Local Knowledge Aggregation and Knowl-
ede Distillation.

1: Input: total T communication rounds, a generic a dataset on the server Dg, E

epochs of local updates, wg = {θg, ϕg}, wk = {θk, ϕk} for all k ∈ [1, K].

2: for t = 1, . . . , T do

3: K participant clients download the custom-size client model wk = {θk, ϕk}
from the server.

4: Clients:

5: for Client k ∈ [1, K] do

6: wk, E ← Local updates (wt
k;Dk, E) according to Equation 5.11.

7: {Fk,c}Cc=1 ← Local prototype feature maps (;ϕk, E, xk,c) according

to Equation 5.21.

8: Client k uploads wk, E and {Fk,c}Cc=1 to the server.

9: end for

10: Server:

11: {(Fg, c, c)}Cc=1 ← Global prototype feature maps ({{Fk, c}Kk=1}Cc=1)

according to Equation 5.26.

12: wt+1
g ← Global updates

(
wt

g; zcon,g,Dg, {(Fg, c, c)}Cc=1

)
according to Equa-

tion 5.29.

13: for k ∈ [1, K] on each of the uploaded wk, E do

14: wt+1
k ← Global updates

(
wk,E; zcon,g,Dg, {(Fg, c, c)}Cc=1

)
according to

Equation 5.30.

15: end for

16: end for

17: Return Global model wT+1
g , client models wT+1

k for k ∈ [1, K].
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5.5.1 Local Updates of FedKAD

FedKAD first follows standard FL to update the client model on local data. Similar

to FedAT, each client in FedKAD is assumed to be non-straggler with the adop-

tion of custom-size client models. Participants are capable of performing E local

training epochs and successfully uploading their training results to the server. At

communication round t, the client model is updated from wt
k to wk, E by following

Equation 5.11 previously described in FedAT.

Constructing Local Prototype Feature Maps

In addition to standard model updates, clients in FedKAD construct local prototype

feature maps, which can be used to correct the negative knowledge transfer during

the global updates.

Local prototype feature maps preserve intra-class information. These prototype

feature maps for a class are formulated by fusing latent representations of local

samples sharing the same class label. Using the updated feature extractor ϕk, E in

the client model, feature maps associated to the same class label c are first extracted,

then they are averaged to form the local prototype feature maps for class c on client

k as follows:

Fk, c =
1

|Dk,c|
∑

{xk,c}∈Dk,c

fϕk, E
(ϕk, E; xk,c) (5.21)

where fϕk, E
is the mapping function of the updated feature extractor. xk,c is the

instance attached with the ground-truth label c in Dk and Dk,c is a subset of Dk with

all instances belonging to label c. If a class is completely absent in the local data

Dk, FedKAD sets its corresponding feature map Fk, c to 0. By aggregating feature

maps locally, client k composes the set of local prototype feature maps, {Fk,c}Cc=1,

of fixed size of feature maps times the number of task classes C, regardless of the

size of the local data.

Finally, client k sends the updated client model parameterised by wk, E and the

set of local prototype feature maps {Fk,c}Cc=1 to the server. The server is unable to

relate local prototype feature maps to any particular data point in local data Dk,
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thus user privacy is also well protected in FedKAD.

5.5.2 Global Updates of FedKAD

Following local updates across clients, the global updates transfer the knowledge

learned by client models to the global model using knowledge distillation and local

prototype feature maps.

Distilling Client Consensus for Knowledge Transfer

Recall Equation 5.13, FedAT relies on the ground-truth labels of the generic data

to perform the knowledge distillation. In a more realistic scenario, the generic data

collected in advance on the server could be unlabelled (Chang et al., 2019; Lin et al.,

2020; Itahara et al., 2021), therefore FedKAD employs the knowledge distillation

using the client consensus to supervise the training of the global model instead of

using the labels in the generic data.

Client consensus. The client consensus is formed from the ensemble of predic-

tions made by individual client models on instances from the generic data. Each

unique client model predicts on a given instance, and their predictions are averaged

to form a consensus. This consensus can serve as a pseudo label for supervising

the learning of the global model on the server. Particularly, the predictions are the

logits of the model, which are the outputs before the softmax activation layer. For

an instance i in Dg, each uploaded client model performs a forward pass to generate

logits as follows:

z
(i)
k, g = fwk, E

(
wk, E; x

(i)
g

)
(5.22)

where x
(i)
g is the i-th instance of Dg and z

(i)
k, g are the corresponding logits output

by the client model. Then the client consensus on this instance is formulated with

Equation 5.23.

z(i)con,g =
1

K

∑
k

z
(i)
k,g (5.23)



Improving Knowledge Transfer to the Global Model 127

To transfer the knowledge, knowledge distillation teaches the global model with

the client consensus by minimising the difference between logits from the global

model and the consensus. During the global updates of FedKAD, the consensus is

used to supervise both the global model and uploaded client models. The knowledge

distillation loss therefore for the global model and uploaded model from client k are

defined by Equation 5.24 and Equation 5.25.

LKD (wg; Dg, zcon,g) =
∑

x(i)∈Dg

∥fwg(wg, x
(i))− z(i)con,g∥1 (5.24)

LKD (wk; E; Dg, zcon,g) =
∑

x(i)∈Dg

∥fwk; E
(wk; E, x

(i))− z(i)con,g∥1 (5.25)

FedKAD employs L1 loss unless otherwise stated. However, other loss func-

tions such as the cross entropy loss suggested by Equation 5.3 or L2(·) can also be

applied. Optimised with Equation 5.24 and Equation 5.25, the global model and

client models are optimised to approximate the client consensus on Dg, learning the

global knowledge distilled from all clients. The ground-truth labels of generic data

are no longer needed in the knowledge distillation.

Constructing Global Prototype Feature Maps to Regularise KD

With local prototype feature maps, the server further constructs the global proto-

type feature maps class-wise. Specifically, the server averages all local prototype

feature maps belonging to the same label c into the global prototype feature maps

for label c as follows:

Fg, c =
1

|Kc|
∑
k∈Kc

Fk, c (5.26)

where Kc is a subset of clients whose Fk,c are non-zero, Fg, c is the global prototype

feature maps for class c on the server. {(Fg, c, c)}Cc=1, The global prototype feature

maps are utilised to supervise the training of θg and θk,E, k ∈ [1, K] using the

cross-entropy loss.
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Figure 5.11: The formulation of the global prototype feature maps for
the “cat” class.

Lθg

(
θg, {(Fg, c, c)}Cc=1

)
=

C∑
c=1

ℓce
(
fθg(θg, Fg,c), c

)
(5.27)

Lθk,E

(
θk,E, {(Fg, c, c)}Cc=1

)
=

C∑
c=1

ℓce
(
fθk,E(θk,E, Fg,c), c

)
(5.28)

Finally, the global updates are performed by integrating the supervision from

prototype feature maps with the knowledge distillation. At communication round t,

the server updates the global model and client models to wt+1
g and wt+1

k , k ∈ [1, K]

by adding the KD loss defined by Equations 5.24, 5.25 and cross-entropy loss defined

by Equations 5.27, 5.28.

wt+1
g = argmin

wt
g

(
LKD

(
wt

g; Dg, zcon,g
)
+ βLθtg

(
θtg, {(Fg, c, c)}Cc=1

))
(5.29)

wt+1
k = argmin

wk,E

(
LKD (wk,E; Dg, zcon,g) + βLθk,E

(
θk,E, {(Fg, c, c)}Cc=1

))
(5.30)

where β is the coefficient for the cross-entropy loss Lθtg and Lθk,E .
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While KD aligns the global model and custom-size client models with client

consensus, their upper parts are refined simultaneously by the global prototype

feature maps encoding intra-class knowledge. The client models and the global

model are split at the penultimate layer for FedKAD unless otherwise stated. The

upper part, θ, is the classifier, and the feature extractor, ϕ, comprises the rest of

the model. The feature maps are extracted at the penultimate layer.

5.6 FedKAD Experiments

Specific experimental setup for FedKAD. FedKAD is evaluated on CIFAR-

10 and GSC datasets. The generic datasets used to facilitate KD are CIFAR-100

and the validation set of GSC respectively. The preprocessing of GSC is described

in Section 3. Again, data heterogeneity is simulated by partitioning client data

with Diri(α). FedKAD inherits the client setup from FedAT, with a total of 20

clients. The configuration of the global model and custom-size client models is

described in Table 5.5. SGD optimiser with a learning rate of 0.1 is used for local

updates and global updates. We randomly draw 5000 training samples from the

generic data every communication round for KD. The training epochs for KD is set

to 5. On CIFAR-10, the batch sizes for KD and local updates are set to 64 and 128

respectively. On GSC, the batch sizes for KD and local updates are set to 16 and 128

respectively. We tune the hyperparameter β in Equation 5.29, 5.30 for weighting

the loss on prototype feature maps in the range of {1, 0.5, 0.1, 0.01}. Table 5.9

reports the validation performance from the grid search. It is found that using

β = 1 and β = 0.5 achieve the best results for CIFAR-10 and GSC respectively.

β for FedKAD 0.01 0.1 0.5 1.0

Val. Acc. on CIFAR-10 (%) 59.64 60.78 61.02 61.32

Val. Acc. on GSC (%) 76.68 76.99 77.50 76.92

Table 5.9: The validation performance on CIFAR-10 and GSC by vary-
ing β values for FedKAD.
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Baselines. FedKAD is compared with FedAvg McMahan et al. (2017) and Fed-

Prox Li et al. (2020c), which distribute the same size model to all clients. In ad-

dition, FedKAD is compared with FedMD Li and Wang (2019), which also enables

custom-size client models and utilises KD in the global updates.

FedAvg does not introduce proper measures to mitigate system and data het-

erogeneity. The stragglers in local updates are simply discarded by the server and

non-IID local data can cause significant performance degradation Hsu et al. (2019);

Abdelmoniem et al. (2023). FedProx advances FedAvg to tackle system and data

heterogeneity by adopting a proximal term in local updates and practising a flexible

epoch number of local updates. Following the straggler setup proposed in FedAT,

FedAvg and FedProx are set to consider the case of clients running on devices with

limited computational resources. Particularly, we assume 0%, 40%, 60% of clients

are stragglers, being consistently dropped out by the server due to being unable

to finish the round before the synchronization deadline. Considering that original

FedAvg was designed to operate with as low as 10% client participation McMahan

et al. (2017), our baseline is not impairing FedAvg. FedProx also considers its vari-

ant allowing flexible local updates, denoted as FedProx+. FedProx+ assumes that

only 60% or 40% of clients are non-stragglers to perform full training epochs, the

rest clients are supposed to train randomly for 1 epoch to full local epochs E. We

compare FedKAD with FedProx+ as they both target the straggler issue, but by

adopting different approaches, distributing custom-size models or a universal model

updated with flexible training epochs.

FedMD is the KD-based baseline that allows custom-size models. The original

FedMD does not include the global model, only focusing on the averaged client

model performance. As FedKAD focuses on the global model performance, the

global model is also introduced to FedMD for a fair comparison. Concretely. This

global model on the server is trained with KD in FedMD. Its performance is reported

for comparison. We denote the original FedMD and the FedMD with the global

model as FedMD (clients) and FedMD (global). Similar to our earlier straggler

setup for FedAT, FedMD and FedKAD both assume all client participants are non-

stragglers. Additionally, to accelerate the convergence of FedMD and FedKAD,
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Method Cifar-10 GSC

Raw metadata

Compressed metadata

819.20

3.28 ↓↓

1390.07

11.47 ↓↓

Table 5.10: Compressing metadata with prototype feature maps.
Float32 data type is assumed with Megabyte (MB) as the unit. Using
prototype feature maps as metadata can greatly reduce its size, thereby
alleviating the communication overhead.

the practice of FedMD is followed by initialising client models, training each client

model only on its client data until convergence before starting FL.

5.6.1 Compressing Metadata with Local Prototype Feature

Maps

The feature maps are extracted from the penultimate layer of the client model.

With the WRN models, regardless of the depth of the custom-size client models.

The feature maps all have an identical shape of 64×8×8, which are channel num-

bers, height and width respectively. By applying Equation 5.21 to formulate the

local prototype feature maps, each client only contributes a set of features with a

fixed size, which is the number of unique labels in the learning task. Uploading the

local prototype feature maps reduces the size of metadata significantly. Table 5.10

compare the uploaded sizes of raw feature maps and local prototype feature maps.

The size of metadata decreases from 819.20MB to only 3.28MB on CIFAR-10, drop-

ping by 99.6%. Similarly, the size of metadata on GSC is reduced by 99.1%. The

compression of metadata with prototype feature maps can greatly alleviate the

introduced communication overhead.

5.6.2 Experiment Results

All experiments are run for 50 global rounds. The local training epochs E is set

to 10. Table 5.11 reports the global model performance on test set. In summary,

baselines that fuse a homogeneous model on the server, FedAvg and FedProx, still
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outperforms KD-based approaches, FedMD and proposed FedKAD.

However, FedKAD outperforms FedMD in three out of four scenarios. Par-

ticularly, with a high level of non-IIDness with Diri(0.1), FedKAD improves the

global performance by up to 3% on CIFAR-10. The only case where FedMD beats

FedKAD by 0.68% is on CIFAR-10 with Diri(0.5). Conversely, the performance

improvement of FedKAD over FedMD on GSC is marginal, indicating that the

introduction of prototype feature maps has a minor effect on GSC.

Compared with the strongest model fusion baseline FedProx and FedProx+,

FedKAD is able to achieve up to 93% of its top performance given α = 0.1 and up

to 87% with α = 0.5. In more realistic scenarios, where a significant proportion

of clients are often stragglers and subsequently discarded by the server–such as

40% on CIFAR-10 and 60% on GSC–and high levels of data heterogeneity like

Diri(0.1), FedKAD is evident to outperform both FedAvg and FedProx. Thus,

FedKAD demonstrates increasing effectiveness for knowledge transfer in extremely

heterogeneous environments.

FedKAD is observed to have accelerated convergence compared to FedMD. Fig-

ure 5.12 illustrates the learning curves of the global model. Regarding the total FL

rounds needed to reach top global model performance, FedKAD cuts the number

to less than half with α = 0.1. Even with weak data heterogeneity under α = 0.5,

it is clear that FedKAD hits its best performance much earlier than both FedMD

and FedMD (global).

5.6.3 Mitigating Negative Knowledge Transfer with Proto-

type Feature Maps

The adoption of prototype feature maps for regularising KD can mitigate the neg-

ative knowledge transfer during global updates. KD uses client consensus to su-

pervise the global model training. The consensus is constructed by the outputs of

client models, which have divergent parameters due to local updates on heteroge-

neous client data. Therefore, the reliability of the client consensus is compromised,

particularly under high levels of client data heterogeneity (Chen and Chao, 2020;
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Method
Straggler CIFAR-10 GSC

ratio (%) Diri(0.1) Dira(0.5) Dir1(0.1) Diri(0.5)

FedAvg 0 66.84 79.15 87.43 91.08

FedAvg 40 60.29 76.00 81.63 90.16

FedAvg 60 49.16 71.97 75.25 87.22

FedProx 0 66.18 80.28 87.57 91.11

FedProx 40 61.09 76.51 81.05 89.60

FedProx 60 48.02 72.09 76.04 86.55

FedProx+ 40 67.29 79.11 87.34 90.87

FedProx+ 60 65.46 79.34 86.82 90.48

FedMD (clients) 0 56.27 66.01 73.79 77.48

FedMD (global) 0 59.53 68.74 76.68 81.01

FedKAD 0 62.67 68.16 77.00 81.13

Table 5.11: Comparing global model performance (%) on CIFAR-10
and GSC test sets for baselines and FedKAD. The upper bracket of the
table are model fusion methods that broadcast a homogeneous model
across clients and the lower bracket are KD-based methods distributing
custom-size client models. FedProx(+) achieves the highest performance
overall. Among KD-based methods, FedKAD beats FedMD in three
out of four scenarios, particularly pronounced when α = 0.1. FedKAD
achieves up to 93% of the best performance achieved by model fusion
methods and show superior performance under high straggler ratios and
data heterogeneity.
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Figure 5.12: Comparing the global test performance between FedKAD
and FedMD with strong data heterogeneity Diri(0.1). It is obvious that
FedKAD achieves faster convergence on both CIFAR-10 and GSC.

Party
Proto. regularisation

on clients

E=5

Diri(0.5) Diri(0.1)

E=10

Diri(0.5) Diri(0.1)

Server
w/o 66.97 59.39 67.85 59.75

w/ 68.99 ↑↑ 61.25 ↑↑ 68.16 ↑↑ 62.67 ↑↑

Client
w/o 64.46 54.37 64.08 55.13

w/ 65.58 ↑↑ 57.43 ↑↑ 65.83 ↑↑ 59.13 ↑↑

Table 5.12: The adoption of prototype feature maps to regularise KD
improves client model performance in global updates, leading to im-
proved global model performance.
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Itahara et al., 2021). Unreliable client consensus can lead to negative knowledge

transfer in KD. The substantial decrease in global performance observed on both

CIFAR-10 and GSC, moving from Diri(0.1) from Diri(0.5) as shown in Table 5.11

underscores the impact of such negative knowledge transfer.

FedKAD integrates the upper part refinement with prototype feature maps into

the KD to train the client models as described by Equation 5.30. The training

loss on the prototype feature maps regularises knowledge distillation to prevent

the upper part of the client model overfitting to the compromised client consensus

induced by model shift. In this way, the negative knowledge transfer is mitigated.

To validate this hypothesis, we compare the standard FedKAD with the variant

that abandons the regularisation term, Lθk,E in Equation 5.30. Table 5.12 reports

both the client model performance (averaged) and the global model performance in

global updates on CIFAR-10.

The inclusion of regularisation from prototype feature maps in KD proves cru-

cial for FedKAD, benefiting both global and client performance. By leveraging

prototype feature maps in KD for client models, the averaged client performance

improved by up to 4%, particularly in the strong data heterogeneity scenario with

Diri(0.1). This observation empirically supports our hypothesis that training the

upper part of the client model with prototype feature maps formulates a regulari-

sation term to mitigate the negative knowledge transfer induced by model shift.

In contrast, the global model performance decreases by nearly 3% without the

regularisation, causing FedKAD to lose its performance advantage over FedMD.

Figure 5.13 further illustrates the learning curves of both client models and the

global model, demonstrating that incorporating prototype feature maps enhances

both global and client performance consistently.
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Figure 5.13: The effect of prototype feature maps regularisation in
KD. Without leveraging prototype feature maps, both client and global
performance decrease.

5.7 Summary

This chapter introduces methods that improve knowledge transfer in the approach

of custom-size client models for addressing the straggler issue. The adoption of

custom-size client models converts stragglers into non-stragglers by reducing model

size for resource-constrained clients. However, the knowledge transfer from custom-

size client models to the global model needs to be improved due to the limitations

of aligning outputs of models.

In the first part, FedAT is introduced to enhance the knowledge transfer between

custom-size client models and the global model. Two knowledge sources, attention

transfer (AT) and metadata training, are leveraged to transfer the learned knowl-

edge from clients to the global model. Rigorous ablation studies show that AT

is beneficial for transferring knowledge learned from a smaller-size client model to

a larger global model. In addition, AT can regularise global model training, pre-

venting overfitting on the generic dataset used for knowledge transfer. Metadata

training demonstrates its efficacy in teaching the global model to generalise on

classes absent from the generic data.

FedAT is further evaluated in a multi-client scenario. Compared with FedAvg

with varying straggler ratios, FedAT performs closely to the hypothetical FedAvg

where all clients are non-straggler in the strong data heterogeneity case, with only a
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marginal difference of 0.23%. FedAT improves the performance of realistic FedAvg

baselines by up to 19%. These results demonstrate FedAT is highly effective to

transfer locally learned knowledge to the global model. FedAT successfully solves

the research question derived in the approach of custom-size client models, demon-

strating that AT and metadata training are effective knowledge transfer methods

in heterogeneous FL with custom-size client models. This advances previous works

that employ model outputs as the sole transfer knowledge source.

In the second part, FedKAD is further proposed to mitigate negative knowledge

transfer induced by model shift and strengthen user privacy protection by con-

structing prototype feature maps–metadata in a compressed form–and leveraging

them to regularise knowledge distillation (KD) during the global updates. Pro-

totype feature maps are created to preserve intra-class knowledge. By leveraging

them to regularise KD, they effectively prevent the global model from overfitting

to unreliable client consensus, which is the source of negative knowledge transfer.

In extreme data heterogeneity scenarios, FedKAD improves global model perfor-

mance and accelerates FL convergence compared to another popular KD-based FL

method, FedMD, by noticeable margins, thereby reducing the overall energy cost

for clients.

FedAT and FedKAD contribute novel and effective methods to the approach of

custom-size client models by improving the quality of knowledge transfer between

custom-size client models and the global model, thereby enhancing the potential of

this approach to address the straggler issue.

Chapter 4 and Chapter 5 fill the research gaps in the approaches of reducing the

number of trainable parameters in client models for resource-constrained devices.

In the next chapter, we will introduce the approach of reducing the data for training

client models, thereby improving training efficiency for resource-constrained devices.



Chapter 6

Addressing the Straggler Issue

with Active Data Selection

6.1 Introduction

6.1.1 Research Questions to Address

While active data selection is a well-established approach for improving the training

efficiency (Mindermann et al., 2022; Yang et al., 2023; Li et al., 2022) in centralised

learning, its application in FL for addressing the straggler issue remains very lim-

ited (Kairouz et al., 2021). Reviewed in Section 2.2.4, previous FL works that

adopt active data selection either focus on easing the labeling effort (Kim et al.,

2023b; Ahn et al., 2024) for client instances or introduces significant computational

overhead, thereby aggravating the straggler issue for clients in order to identify

training samples beneficial for FL performance under heterogeneous data environ-

ments (Nagalapatti et al., 2022). Employing active data selection to address the

straggler issue has not been sufficiently studied in the context of FL. To this end,

the research question approached in this sub-research path is, “How to leverage ac-

tive data selection to address the straggler issue and what impact does active data

selection bring to the global model performance under heterogeneous data?”

By addressing this research question, this chapter aims to fill the aforementioned

research gap in existing literature by developing efficient on-device data selection

138



Addressing the Straggler Issue with Active Data Selection 139

methods that can lead to reduced workloads for clients and improved FL perfor-

mance. Particularly, with the developed data selection methods, We hypothesise

workloads on clients can be reduced by updating models with fewer training in-

stances, thereby addressing the straggler issue. The tradeoff of using fewer training

samples is that the performance of the global model could be penalised. However,

if the selected training samples are highly effective for learning, it is possible to

minimise the performance penalty. Moreover, the contribution from stragglers is

enabled by alleviating their workload. The additional contributions from them can

eliminate the negative impact on the global model performance induced by reduced

training samples. Therefore, the hypothesis is the global model performance can be

improved if the active data selection is effective and the contribution from stragglers

is enabled.

6.1.2 Proposed Methods and Rationale

The computational efficiency of data selection is the decisive factor for its success

in our work. Particularly, our data selection strategies shall not introduce heavy

computing efforts to clients for identifying useful learning instances, as contrast to

some active learning works where a significantly amount of computing is added to

the learning system due to the optimisation of additional deep learning models for

querying data for annotations (Sinha et al., 2019; Haussmann et al., 2019). Other-

wise, the data selection could aggravate the straggler issue rather than addressing

it. To this end, two computationally efficient active data selection methods, the

clustering-based data selection and entropy-based data selection are introduced for

selecting client data in this work.

Notably, clustering-based data selection utilising K-means clustering (MacQueen

et al., 1967) and entropy-based active data selection employing the Shannon en-

tropy (Shannon, 1948) with a hardened softmax activation function are proposed to

actively select useful local instances for FL. K-means clustering is arguably the most

popular clustering method due to its simplicity and computational efficiency (Yuan

and Yang, 2019; Kodinariya et al., 2013; Course). In terms of entropy-based data

selection, it only requires an additional forward pass through the client model on
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all client data to calculate their associated entropy once for all. The process adds

minimal computational overhead to the client, enabling resource-constrained clients

to strategically select useful training data for FL. FedEntropy and FedAvg-BE are

previous works close to this research in terms of adopting the entropy for select-

ing client data in FL. However, their studies mainly target to address the data

heterogeneity challenge rather than the straggler issue. Therefore, they lack a com-

prehensive evaluation of the learning efficiency of clients using the entropy-based

data selection. This thesis advances their works by not only tailoring the entropy-

based data selection to solve the straggler issue but also improving FL convergence

by mitigating model shift.

To conclude, the novelties of clustering-based data selection and entropy-based

data selection are threefold: 1) The introduction of K-means clustering and Shan-

non entropy in this thesis is based on their advantage of selecting data with minimal

computing efforts. Both methods have not been applied to FL particularly for ad-

dressing the straggler issue so far; 2) In entropy-based data selection, the hardened

softmax activation function adopted for calculating the Shannon entropy is unique

to this work. It is introduced to improve the effectiveness of data selection; 3) The

learning efficiency across clients will be evaluated for demonstrating its efficacy in

addressing the straggler issue. This metric has not been utilised in previous FL

works adopting active data selection.

By bridging the research gap in existing studies, this work contributes to the

knowledge of introducing active data selection to address the straggler issue. The

following sections provide overviews of the developed FL algorithms that adopt

clustering-based data selection and entropy-based data selection. They are Federated

learning setting by introducing a Split model training paradigm (FedSplit) and

Federated Fine-Tuning with Entropy-based Data Selection (FedFT-EDS). Fed-

Split will reveal the penalisation on global model performance when the size of

local training data is significantly reduced. FedFT-EDS will show its efficacy in

overcoming the performance penalisation by identifying the most beneficial local

instances for learning. On top of entropy-based data selection, FedFT-EDS pro-

poses a unique pretraining phase to initialise a good global model that can mitigate
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model shift, further boosting FL performance in terms of both the convergence and

generalisation.

This chapter conducts a comprehensive evaluation of client learning efficiency

to demonstrate the proposed entropy-based data selection method can significantly

reduce workloads on clients, as well as improve global model performance by large

margins. Therefore, the research question is answered as follows: “Assisted with

pretraining, clients can leverage entropy-based active data selection to significantly

improve their learning efficiency, thereby effectively reducing their workloads. The

global model performance is further improved rather than being penalised by se-

lecting the most beneficial client instances for learning.”

6.1.3 Selecting Latent Feature Maps with K-means Clus-

tering

In Chapter 5, FedAT and FedKAD have demonstrated that latent feature maps

are an effective knowledge source for transferring locally learned knowledge to the

global model. Based on this proven discovery, this chapter first focuses on using

active data selection to select the most representative feature maps by applying

K-means clustering to the latent representations. The upper layers of the global

model are trained using these representative feature maps rather than all feature

representations.

Concretely, we introduce a new paradigm for Federated learning called FedSplit,

which alters the transitional federated learning setting. In FedSplit, the federated

learned model is composed of two parts. The lower part serves as a feature extractor

to extract generic features across clients, while the upper part is more sensitive to

feature maps extracted.

To train the feature extractor, a process similar to federated averaging is em-

ployed, aggregating results of local updates into the lower part of the composed

model. Meanwhile, the upper part is trained using metadata consisting of feature

maps actively selected from centroids of clusters formed by K-means clustering.

FedSplit allows for examining the effectiveness of feature map selection based on
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the performance achieved by the composed model.

Evaluated on CIFAR-10, the performance of the composed model shows a sig-

nificant penalty when using selected feature maps that account for only 1.6% of

all feature maps extracted from clients. This performance gap is the biggest when

feature maps are extracted from lower layer levels of client models, with a gap of

up to 22%. However, this gap can be considerably narrowed by extracting feature

maps from higher layer levels. Notably, when feature maps are extracted from the

penultimate layer and selected using K-means clustering, the performance of the

composed model decreases by only 4%. This moderate performance penalty occurs

despite a significant reduction of 98% in the feature maps used to update the up-

per part of the composed model. This result demonstrates that a large portion of

the global performance can be preserved by training the upper part of the model

with a very small number of representative feature maps selected through K-means

clustering.

6.1.4 Selecting Client Data with Shannon Entropy

The promising results obtained in the study of FedSplit encourage this work to

further seek an effective client data selection solution that mitigates the penalising

effect on the global model performance associated with reduced training data.

To achieve this objective, transfer learning is employed in data selection, lever-

aging its capability to achieve competitive learning performance on target tasks

using less training data, assisted by prior learning on source tasks (Khan et al.,

2019; Alzubaidi et al., 2021). Particularly, this work proposes a pretraining phase

for FL, where the global model is pretrained on a source domain and is offloaded to

clients to perform a one-round FL. The pretraining phase learns a generic feature

extractor that effectively translates raw client data into representations in the latent

space. Consequently, the feature extractor can be shared across all clients without

retraining. By keeping the pretrained feature extractor fixed during local updates,

clients can fine-tune a partial model using a reduced set of selected samples, signif-

icantly enhancing the learning efficiency without compromised performance. This

method is termed Federated Fine-Tuning (FedFT).
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Building on FedFT, entropy-based data selection is further introduced to guide

the selection of data for fine-tuning the partial model. Participating clients select the

most useful training samples by evaluating their Shannon entropy. The proposed

method is denoted as FedFT-EDS, Federated Fine-Tuning with Entropy-based

Data Selection. FedFT-EDS allows clients to perform local updates efficiently and

intelligently.

Based on Centered Kernel Alignment (CKA) (Kornblith et al., 2019; Nguyen

et al., 2020) analysis, we demonstrate that the global model initialised the pre-

training phase can resist model shift. With mitigated model shift, FedFT greatly

improves FL convergence. Evaluated on CIFAR-10 and CIFAR-100, FedFT achieves

superior performance in terms of both top test performance of the global model and

learning efficiency–a metrics to measure client training time relative to the global

model performance–compared to the FedAvg baseline without pretraining.

Furthermore, FedFT-EDS demonstrates that entropy-based data selection is an

effective method for identifying the most useful client samples in heterogeneous

FL. FedFT-EDS achieves better performance than FedFT without data selection or

with random data selection. It not only improves the global model performance of

chosen baselines, including FedAvg, FedProx, and MOON, by up to 5% but also at

least triples the learning efficiency, reducing energy costs for resource-constrained

clients throughout FL.

FedFT-EDS is observed to consistently narrow the performance gap between

heterogeneous FL and ideal centralised learning by 30% to 75%. When compared

to FedFT using all local training samples, FedFT-EDS achieves even better global

model performance and faster convergence. We observe that FedFT-EDS trained

on 50% of client data outperforms FedFT trained on all client data, indicating

that 50% local instances bring no performance gains for FL if we include them for

training in this study case. Additionally, FedFT-EDS consistently demonstrates

faster convergences and superior global model performance compared to FedFT

with random client data selection.

The superior performance of FedFT-EDS is even more pronounced with an in-

creased size of the client pool, demonstrating its scalability in large-scale FL set-
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tings. Moreover, FedFT-EDS proves effective in the scenario of drastic domain shift

in transfer learning. It is observed that FedFT-EDS initialised with a global model

trained on Small ImageNet outperforms FedAvg and FedFT by up to 4% on GSC.

To this end, FedFT-EDS contributes valuable insights that address the the re-

search question derived in Section 6.1.1: “How to leverage active data selection to

addresses the straggler issue and what impact does the active data selection bring

to the global model performance under heterogeneous data?” Particularly,

• CKA analysis demonstrates that the pretraining can mitigate model shift,

thereby significantly accelerating FL convergence.

• Assisted with the pretrained global model, clients adopting entropy-based

active data selection improve their learning efficiency in FL, effectively solving

the straggler issue.

• Entropy-based data selection shows that over half of the client data is not

beneficial for FL performance under heterogeneous data. The global model

performance is further improved by selecting the most beneficial client in-

stances for learning rather than being penalised due to reduced training data.

With these findings, this study bridges the research gap by demonstrating that

active data selection can effectively address the straggler issue, making it an effective

approach to encourage the participation of resource-constrained clients in FL.

6.2 Selecting Feature Maps to Train the Global

Model

The proposed FedSplit partitions the global model into two parts: the lower part,

which is the feature extractor parameterised with ϕ, and the upper part parame-

terised with θ. The feature extractor is trained with the standard federated aver-

aging approach, where locally updated models are aggregated on the server to form

the feature extractor. Conversely, the upper part is trained exclusively on the server

using feature maps extracted and uploaded by clients. Figure 6.1 and Algorithm 5
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outline FedSplit. The subsequent sections detail K-means clustering data selection,

local updates and global updates of FedSplit.

6.2.1 K-means Clustering for Data Selection

Clustering (Jain and Dubes, 1988) is commonly used for data analysis as an unsu-

pervised machine learning technique to group data points without available labels

on the basis of their properties (Seif, 2018). Under a certain similarity criterion,

data points grouped in the same cluster share common characteristics, whereas data

points from different clusters have discriminating features. Clustering is widely in-

volved in feature selection and labelling in the unsupervised learning (Caron et al.,

2018; Hancer et al., 2020). By clustering features based on their similarity, it helps

to select the most useful features and remove redundant ones (Chormunge and Jena,

2018).

As this thesis centres on reducing workloads on resources-constrained clients,

the computational efficiency of clustering becomes a critical factor for its adoption

in selecting features on clients. K-means clustering (MacQueen et al., 1967) is

arguably one of the most popular clustering methods due to its simplicity and

computational efficiency (Yuan and Yang, 2019; Kodinariya et al., 2013; Course).

However, its adoption to select feature representations for FL is underexplored in

previous research.

K-means clustering measures the similarity of the features or data points with

the Euclidean distance. It iteratively assigns data points into clusters based on

the calculation of their Euclidean distances to the cluster centroids. K-means

initially assumes there is a total number of C disjoint clusters, denoted as S =

{S1, S2, · · · , Sk, · · · , SC}, to allocate the a set of data points {x1,x2, · · · ,xn}. For-

mally, the objective of K-means clustering is to minimise the within-cluster sum of

squares (MacQueen et al., 1967) as follows:

argmin
S

C∑
i=1

∑
x∈Si

∥x− µi∥
2 (6.1)

where µi is the centroid of data points in Si defined by Equation 6.2.
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Figure 6.1: Selecting feature maps to update the upper layers of the
global model.
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µi =
1

|Si|
∑
x∈Si

x (6.2)

K-means clustering solves the above optimisation with Expectation-Maximum

(EM) algorithm. Given an initial set of C centroids, K-means repeats the following

two steps until the assignment of data points stops.

• Assignment step: Assign each data point to its closest centroid, based on

the Euclidean distance between the data point and the centroid.

• Update step: Update the centroid for each cluster by calculating the mean

of all data points within the cluster.

In practice, there is no need to implement the K-means clustering algorithm

from scratch. Notably, popular machine learning libraries such as Scikit-Learn and

Faiss can perform the K-means clustering with just a few lines of code.

Once all data points are grouped, a subset of data points closest to each centroid

is selected to represent all instances within that cluster. These representative data

points are used for model training instead of the entire dataset, thereby reducing

training burdens.

6.2.2 Local Updates of FedSplit with Feature Maps Selec-

tion

Local updates on the client side start with the selection of feature maps. At the

start of t-th communication round, the participant client k downloads the global

model from the server as the client model parameterised by wt
k = {ϕt

k, θ
t
k} from the

server. Then, with Equation 6.3, feature maps are extracted by forward passing all

the local samples through the feature extractor, ϕg, forming the set of feature maps

F t
k with element of F

t,(i)
k corresponding to the client data x

(i)
k ∈ Dk, i = 1, · · · , |Dk|.

F
t,(i)
k = fϕt

k
(ϕt

k;x
(i)
k ) (6.3)
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Similar to the study conducted in FedAT, three different layer levels are exercised

to split the model, visualised in Figure 5.6. Notations of l ∈ {low,mid, up} are used

to indicate the three different layer levels, lower layers l = low, mid layers l = mid,

and upper layers l = up. F
t,(i)
k can be extracted from any of the layer levels.

After extracting the feature maps, the client k forms the metadata, Dt
k, meta, by

selecting the most representative feature maps from F t
k rather than using all feature

maps to construct the metadata.

K-means clustering is adopted to identify the most representative feature maps,

as described in Section 6.2.1. Feature maps are clustered into groups, and within

each cluster, samples closest to its centroid are selected as the most representative

samples for the group. Practically, the three-dimension feature maps are flatten

into a vector of single dimension. Principal Component Analysis (PCA) (Jolliffe,

2002) is then applied to reduce the dimension of vectors before clustering. K-means

clustering is performed on the dimension-reduced activation maps to group feature

maps with identical class labels.

The insight behind using K-means clustering is that feature maps sharing similar

characteristics can be projected into the same cluster. Within each cluster, we

choose the sample that is closest to the cluster centre determined by the Euclidean

distance as the most representative sample for its group. This selected sample

is assumed to include the most common characteristics of all other samples in

its cluster. Finally, the metadata for client k, Dt
k, meta, consists of the selected

feature maps identified as the most representative samples from Fk, along with

their assigned labels.

Dt
k, meta =

|F t
k,select|⋃
i=1

(F
t,(i)
k , y

(i)
k ) (6.4)

where, F t
k,select is the set of the selected feature maps.

The number of expected clusters in K-means is a crucial hyperparameter (Pham

et al., 2005). Choosing a smaller number of clusters can greatly reduce the size of

metadata. Ideally, with an appropriately tuned cluster number, the selected feature

maps are assumed to be capable of updating the global model effectively without a
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significant loss of generalisation. Details regarding the setup of the cluster number

in K-means clustering are described in Section 6.3.

After clustering and selecting feature maps, the client follows standard FL to

update its local model. For client k, with Equation 2.3, the parameters of client

model are updated to wt+1
k = {ϕt+1

k , θt+1
k } after E local training epochs. Client k

sends its metadata Dt
k, meta and the updated model wt+1

k to the server for the global

updates.

6.2.3 Global updates of FedSplit with Feature Maps Selec-

tion

The server collects all uploaded metadata from clients and merge them into a single

metadata set, defined by Dt
meta =

K⋃
k=1

Dt
k, meta. The upper part of the global model

is then trained using Dt
meta. The layer level for partitioning the global model is

predetermined by l, and the same value is used for creating the feature maps on

clients as introduced in Section 6.2.2. Hence, metadata from clients is able to match

the input dimensions of the upper part of the global model. By selecting feature

maps with K-means clustering, the size of the metadata set is significantly reduced.

To strengthen knowledge transfer using metadata, we train an initialised upper

part of the global model, denoted by θinig , from scratch for a specified number

of training epochs using metadata. This strategy ensures that the global model

effectively learns the knowledge conveyed in the metadata. θinig is updated to θtmeta

with Equation 6.5.

θtmeta = argmin
θini
g

∑
(F

(i)
k ,y

(i)
k )∈Dt

meta

ℓce(fθini
g
(θinig , F

(i)
k ), y

(i)
k ) (6.5)

Conventional federated averaging is used to update the lower part of the global

model. The server fuses the uploaded wt+1
k from all participant clients with Equa-

tion 2.4 to form the model wt+1
g distributed at the t + 1-th communication round.

Finally, the server composes the federated learned model, with its upper part from

θtmeta and lower part from ϕt
g. Consequently, w

t+1
g encompasses the updated parame-
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ters of the lower part, ϕt+1
g , which will be used to compose the model for distribution

in the t+1-th communication round. The composed model performance is evaluated

to analyse the efficacy of the proposed clustering-based data selection.

Algorithm 5 FedSplit with K-means clustering to select feature maps.

1: Input: total T rounds, E full updates epochs, θ classifier, ϕ feature extractor,

an initialised upper part of the global model θinig .

2: for t = 1, . . . , T do

3: K clients are available for training and they download the global model

wt
g = {θtg, ϕt

g} from the server.

4: Clients:

5: for Client k ∈ [1, K] do

6: F t
k ← Feature maps extraction (ϕt

k; Dk) according to Equation 6.3.

7: Dt
k, meta ← Selection with K-means clustering (F t

k) according to

Equation 6.4.

8: wt+1
k ← Standard local updates (wt

k; Dk) according to Equation 2.3.

9: Client k uploads wt+1
k = {θtk, ϕt

k} and Dt
k, meta to the server.

10: end for

11: Server:

12: Aggregates all uploaded client metadata Dt
meta =

K⋃
k=1

Dt
k, meta.

13: θtmeta ← Metadata training
(
θinig ; Dt

meta

)
according to Equation 6.5.

14: Averages all uploaded wt+1
k , k ∈ [1, K] into the global model wt+1

g dis-

tributed in communication round t+ 1 with Equation 2.4.

15: end for

16: Return Composed model {θTmeta, ϕ
T
g }

6.3 FedSplit Experiments

Special Experimental Setup for FedSplit. Experiments on CIFAR-10 are

conducted for evaluating FedSplit. A uniform WRN with a depth of 40 and width

of 1 (WRN-40-1) is used as the distributed model. The number of clients is set
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Model Layer level Feature maps dimensions

WRN-40-1

low

mid

up

16× 32× 32

32× 16× 16

64× 8× 8

Table 6.1: Feature map dimensions across layers in the WRN-40-1
model vary: higher layers generates lower-resolution feature maps with
more channels.

to 20 and all clients are assumed to be non-stragglers, completing feature maps

selection and local updates in time before finishing the round. To make a fair

comparison, chosen baselines also assume full client participation. We follow the

setup used (Liang et al., 2020) to partition the non-IID local data, setting up

an extreme data heterogeneity scenario, where each client hosts only 2500 images

randomly selected from two random classes of CIFAR-10. SGD optimiser with a

learning rate of 0.1 is used for both local updates and metadata training. The

batch size for local updates is set to 50. Training epochs are set to 1 and 100

respectively for local updates and metadata training. Experiments are run for 100

communication rounds.

6.3.1 Hyperparameter Studies for K-means Clustering

The efficacy of the proposed data selection method relies on PCA and K-means

clustering. As such, a series of experiments is conducted to shed insights into

selecting important hyperparameters for PCA and K-means clustering.

PCA projects a high-dimensional vector into a lower-dimensional space (sklearn).

The key hyperparameter of PCA is the number of components, denoted as ncom,

which determines the dimensionality of the projected space. For image inputs from

CIFAR-10, the dimensions of feature maps vary depending on the layer level from

which they are extracted in the model. Table 6.1 details the sizes of feature maps

extracted at three layer levels in WRN-40-1.

A commonly used tool used to decide the ncom is the Cumulative Explained
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Figure 6.2: Cumulative Explained Variance plot of PCA on feature
maps extracted from the low layer level. The y-axis, scaled from 0 to
1, indicates the percentage of variance preserved by PCA. With ncom =
2166, more than 99% of variance is preserved.

Variance (CEV) plot (Natarajan). Generally, the greater ncom is, the better the

compressed feature maps capture the variance in the original feature maps. In other

words, more original information of the data is retained with a larger ncom (Vander-

Plas, 2016). CEV shows how much percentage of variance can be preserved with

a given ncom. It helps in choosing an appropriate ncom to effectively compress the

data without losing substantial information. Using the feature maps extracted from

the low layer level, Figure 6.2 describes the variance preserved against ncom. With

ncom = 1000, PCA can retain more than 90% variance. By setting ncom to 2166,

more than 99% variance is preserved.

Figure 6.3 illustrates the attention map of a horse from CIFAR-10 reconstructed

by the feature maps compressed by PCA using various ncom values. With a smaller

ncom, such as 500, it is observed that the reconstructed attention map is blurred

slightly. In contrast, the attention map recovered with ncom = 2166 is nearly indis-

tinguishable from the original.

By observing Figure 6.3 and Figure 6.2, we set ncom to 500 for PCA to compress

feature maps. This choice significantly reduces the dimension of feature maps to a
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(a) Original AM (b) Reconstructed AM, ncom = 2166

(c) Reconstructed AM, ncom = 1000 (d) Reconstructed AM, ncom = 500

Figure 6.3: Attention map reconstruction. Smaller ncom leads to more
information loss. The original attention map of a horse from CIFAR-
10 and its reconstructions using PCA-compressed feature maps with
different ncom values are shown. The feature maps from the low layer
level of the WRN model are visualised on a 32× 32 grid.
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(a) Attention map of the selected feature maps

(b) Attention map of the centroids

Figure 6.4: Selected feature maps visualised through attention maps for
the airplane class. The number of clusters in K-means clustering is set
to 10. The top 10 represent selected feature maps, while the bottom 10
represent cluster centroids.

vector of size 500, thus improving the computational efficiency of K-means cluster-

ing. Additionally, it preserves more than 80% of the variance, and the reconstructed

attention map is observed to retain most of the details.

On top of the compressed feature maps, we further showcase the selected feature

maps using K-means clustering with an exemplary study. Specifically, we visualise

the attention maps constructed from the feature maps selected within the airplane

class in the CIFAR-10 training set. The clustering is based on 500 samples randomly

selected from the airplane class, simulating the feature maps selection performed

on one client.
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Figure 6.5: Visualisation of the clustering results with K-means. Dots
with the same colour are clustered in the same group. The large grey
dot represents the selected feature maps that are closest to the cluster
centroid.

The clustering number in K-means is set to 10, grouping the feature maps rep-

resenting the 500 airplane samples into 10 clusters. For each cluster, we select

the feature maps closest to its centroid for visualisation. Figure 6.4 displays the

attention maps formulated by the selected feature maps and centroids. The se-

lected feature maps represent the airplane samples with varying shapes and posi-

tions within the images. However, the attention maps associated with centroids are

mostly unidentifiable because the centroid is an average of the feature maps in the

cluster. Therefore, instead of using the feature maps of the centroid directly, the

feature maps closest to the centroid are selected.

Figure 6.5 uses t-distributed Stochastic Neighbour Embedding (t-SNE) (Van der

Maaten and Hinton, 2008) to visualise the clustering results with K-means in a 2D

plate. t-SNE is a widely used statistical tool to project high-dimensional features

into a two-dimensional map for visualisation purposes.

Finally, we investigate how the choice of ncom in PCA influences the clustering

results. Specifically, each group clustered by K-means is identified by a unique

label. The confusion matrix (CM) (Stehman, 1997) is used to assess the consistency

of cluster assignments using PCA with different ncom values. Figure 6.6 displays

the CMs for PCA with ncom = 500 and ncom = 1000. The seed for the random
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(a) CM with PCA (ncom = 500) (b) CM with PCA (ncom = 1000)

Figure 6.6: Confusion matrices showing clustering results with different
ncom values in PCA.

initialisation of K-means clustering is fixed for reproducibility. Notably, using K-

means labels with PCA (ncom = 2166) as ground truth, PCA (ncom = 500) achieves

67.3% labelling correctness, and PCA (ncom = 1000) achieves 73.5%. Moreover,

PCA with different ncom values for compressing feature maps leads to noticeable

differences in cluster assignments, up to 30% of the labels being reassigned.

In conclusion, ncom and Km are critical hyperparameters for PCA and K-means.

Their choice significantly impacts clustering results, influencing the final selection

of feature maps.

6.3.2 FedSplit Performance with Feature Maps Selection

The layer level in the network to extract feature maps is initially set to l = low.

The number of PCA components is set to 200, reducing the dimension of activation

maps from 16 × 32 × 32 to just 200 after flattening. K-means clusters the PCA-

compressed feature maps of each class into 20 groups by setting Km to 20. By

selecting the feature maps closest to the cluster centroid, each class inDk contributes

20 representative samples towards the metadata Dk, meta.

For comparison, we employ a baseline method using all feature maps to formulate

the set of metadata without applying any data selection strategy. Table 6.2 reports

the test accuracy of the composed model using the clustering-based data selection
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Composed model Data selection
Cluster

number
Test accuracy (%)

WRN-40-1
w/o

w/

na

20

70.03

48.47 ↓↓

Table 6.2: Test performance of the composed model in FedSplit. Each
client selects 40 feature maps from layer level l = low, reducing the
metadata to just 1.6% of its original size. The performance of FedSplit
significantly decreases with the adoption of clustering-based data selec-
tion.

method versus the baseline. When the upper part of the composed model is trained

on all 50,000 available feature maps without selection, it achieves a higher test

accuracy of 70.03%. In contrast, when the size of Dmeta is reduced to 800 by

selecting feature maps, the test accuracy diminished significantly to 48.47%.

Further, Table 6.3 compares FedSplit using feature maps from different layer

levels to train the composed model. In addition to the baseline without using

feature maps selection, we include a hypothetical case where the WRN-40-1 model

is trained on the entire CIFAR-10 training set in a centralised manner, as well as

the ideal FedAvg assuming full client participation.

The results show narrowed performance gaps between FedSplit with feature

maps selection and FedSplit without feature maps selection when l = mid and

l = up are chosen. Particularly, with l = up for feature maps extraction, the

composed model performance decreases by less than 5%, even though the number of

training instances is reduced by over 98% (selecting 800 feature maps from 50,000).

However, with l = mid for feature maps extraction, the performance gap enlarges

to over 13%.

It is apparent that if all the feature maps are used for metadata training, FedSplit

outperforms the ideal FedAvg when feature maps are extracted from layer level

l = mid and l = low, notably by over 4% with l = mid. This observation is

consistent with FedAT and FedKAD, demonstrating that metadata consisting of

feature maps can enhance knowledge transfer to the global model. On the other
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Method
Test Accuracy (%)

Global l = low l = mid l = up

Centralised 90.79 na na na

FedAvg 69.35 na na na

FedSplit (all meta) na 70.03 73.47 68.55

FedSplit (selected meta) na 48.47 ↓↓ 60.11 ↓↓ 64.20 ↓↓

Table 6.3: FedSplit using feature maps extracted from different layer
levels. Missing values indicate inapplicable notations. WRN-40-1 is
used as the global model. FedSplit outperforms the ideal FedAvg when
all feature maps from either level low or mid are used. When using
feature maps selected by K-means clustering, FedSplit shows the least
performance drop.

hand, with l = up, the performance of FedSplit slightly falls behind the ideal FedAvg

by 0.8%. This is because the knowledge carried by feature maps is only transferred

to a small part of the composed model and the rest of the composed model can not

benefit from metadata training.

In conclusion, FedSplit demonstrates consistent advantages of using metadata

to transfer locally learned knowledge to the global model, similar to FedAT and

FedKAD. Conversely, restricting the training of the composed model to only a few

feature maps selected by K-means clustering significantly penalises its generalisa-

tion. Nevertheless, the performance gap resulting from the reduced feature maps

can be mitigated by utilising feature maps extracted from higher layer levels of

client models.

The second part of this chapter introduces transfer learning and entropy-based

data selection to address the performance degradation caused by reduced training

data in FL, realising the potential of active data selection in addressing the straggler

issue.
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6.4 Entropy-based Data Selection with

Pretrained Global Model

Despite selecting representative training samples are selected, FedSplit shows com-

promised FL performance when significantly reducing the size of the training data.

This section introduces entropy-based data selection to address the decrease in FL

performance when fewer training instances are used for training client models. The

proposed entropy-based data selection method leverages the transfer learning ap-

proach. Concretely, a unique pretraining phase is proposed to learn a generic feature

extractor that can be shared across clients.

6.4.1 Pretraining a Global Model that Resists Model Shift

This section details the method of pretraining a global model prior to FL to aid

the proposed entropy-based data selection during FL. We demonstrate that the

pretrained global model is resistant to model shift with Centred Kernel Alignment

(CKA) (Kornblith et al., 2019; Nguyen et al., 2020) analysis.

Concretely, the pretraining phase consisting of two steps. In the first step, the

server trains the global model on a source domain closely related to the FL task,

obtaining valuable knowledge from the source domain. The second step involves

a one-round FL. During the one-round FL, the server does not impose a hard

deadline for local updates on clients. There, the pretrained model acquired at step

1 is broadcast by the server to all participating clients in FL. Then each client trains

the distributed model locally until convergence. The server allow sufficient time for

client updated models to be returned, regardless of their computational capabilities.

Such FL strategy is studied in the one-shot1 FL works (Guha et al., 2019; Gong

et al., 2022), demonstrating its efficacy for FL. Finally, the server aggregates locally

updated models using federated averaging to form the pretrained global model,

which initiates the FL process by distributing it to the clients.

1The term of one-shot in this particular context means there is only one communication round
in FL. All clients only update the distributed model once and upload them to the server without
any further actions.
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Method Model Pretraining Diri(0.1) Diri(0.5)

FedAvg WRN-16-1

na 67.46 79.53

CIFAR-100 70.46 ↑↑ 80.70 ↑↑

Small ImageNet 75.18 ↑↑ 81.73 ↑↑

Table 6.4: The pretrained global model improves the performance of
the downstream FL task significantly. Between the source domains ex-
perimented, Small ImageNet proves more effective than CIFAR-100.

Our preliminary experiments demonstrate that the proposed pretraining phase

significantly boosts the performance of FL. Specifically, we conducted experiments

on CIFAR-10 with 10 clients using FedAvg with full client participation. The

global model employed is a WRN-16-1. To access the effectiveness, the global

model is pretrained on two source domains separately: CIFAR-100 and Small Im-

ageNet (Chrabaszcz et al., 2017), which are domains close to CIFAR-10. Small

ImageNet is a downsampled version of the original ImageNet (Krizhevsky et al.,

2012; Russakovsky et al., 2015). It contains over 1.28 million training samples with

1000 unique labels. The Small ImageNet downsampled to the size of 32×32 is used

in the experiments.

Table 6.4 reports the test accuracy of the global model in FedAvg when the pre-

training phase is adopted. A comparison with FedAvg without pretraining clearly

shows that both pretraining on CIFAR-100 and Small ImageNet boost FedAvg per-

formance by noticeable margins. Notably, pretraining on Small ImageNet displays

greater efficacy in improving the performance compared to pretraining on CIFAR-

100. This is attributed to the Small ImageNet being a more comprehensive dataset

than CIFAR-100, exposing the global model with richer knowledge in image classi-

fication, which is transferable for learning on CIFAR-10.

Further, observing the performance differences under different levels of data

heterogeneity, it is evident that the pretrained global model has more pronounced

impact given strong data heterogeneity. It improves FedAvg by around 8% with

Diri(0.1), compared to a 2% improvement with Diri(0.5). Our insight into this

observation is the pretrained model is robust to model shift caused by heterogeneous
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client data.

To validate this hypothesis, the Centred Kernel Alignment (CKA) (Kornblith

et al., 2019; Nguyen et al., 2020) is adopted to study the feature similarity among

pretrained models on heterogeneous client data. CKA is a widely used tool for

accessing latent feature representations of neural networks, calculating similarity

scores for features from different models. A higher CKA similarity score indicates

that the compared models learn similar representations for the same instances.

As such, CKA similarity can serve as a metric to measure the magnitude of

model shift. Specifically, during the proposed pretraining phase, the pertained

global model is distributed to clients for local updates on heterogeneous data. Given

conditions of strong data heterogeneity, locally updated models deviate from each

other significantly, as described in Section 1.2. This deviation results in low CKA

similarity, indicating these updated models generate highly distinct representations

for the same instances.

In the scenario with 10 clients set up earlier, we pair the locally trained models

obtained from the one-round FL with all possible combinations and calculate their

CKA similarity. The pretrained WRN-16-1 model on Small ImageNet is used for

this analysis. The CKA similarity is measured at different layer levels of the WRN

model on all instances in the CIFAR-10 test set. Similar to the model partition

described in Section 5.3, CKA similarity is compared at levels l ∈ {low,mid, up},

respectively.

Figure 6.7 and Figure 6.8 visualise heatmaps of CKA similarity for the 10 locally

trained models with data heterogeneity of Diri(0.1) and Diri(0.5). Entry (i, j) in

the heatmap indicates the averaged CKA similarity score over CIFAR-10 test set

between locally trained model i and locally trained model j.

The similarities among locally trained models are notably increased when em-

ploying the pretrained model across all three layer levels, indicating successful miti-

gation of model shift. Figure 6.9 shows averaged CKA similarity scores in scenarios

of Diri(0.1) and Diri(0.5). It is evident that the similarity gap between using

the pretrained model and not using the pretrained model is more revealing in the

case of Diri(0.1) compared to Diri(0.5). For instance, at the most deviated layer
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(a) no pretrain, layer low (b) no pretrain, layer mid (c) no pretrain, layer up

(d) pretrain, layer low (e) pretrain, layer mid (f) pretrain, layer up

Figure 6.7: Heatmaps of the CKA similarity in the scenario of 10 clients
and Diri(0.1). A darker entry implies a higher similarity between the
paired models indexed by the coordinate, suggesting they are less de-
viated from each other on heterogeneous data. The pretrained model
resists model shift at all layer levels.

level, which is the up level, the pretrained model improves the overall similarity by

over 0.4 given Diri(0.1). In contrast, the improvement is less than 0.3 at the same

level with Diri(0.5). This observation suggests that the pretrained model can resist

model shift more effectively under high levels of data heterogeneity, consistent with

the results demonstrated in Table 6.4.

While pretraining on a source domain followed by one-round FL, we can initialise

a robust global model resistant to model shift to start FL. However, if only the one-

round FL is performed in the pretraining phase, the performance of the initialised

global model is much weaker. Table 6.5 compares the performance of the initialised

global model on CIFAR-10 when pretraining on Small ImageNet is included versus

excluded in the pretraining phase. The results show a substantial improvement in

the performance of the initialised global model , increasing from 10% to over 54%

with the pretraining on on Small ImageNet and subsequently leading to overall

better FL performance demonstrated in Table 6.4.
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(a) no pretrain, layer low (b) no pretrain, layer mid (c) no pretrain, layer up

(d) pretrain, layer low (e) pretrain, layer mid (f) pretrain, layer up

Figure 6.8: Heatmaps of the CKA similarity in the scenario of 10 clients
andDiri(0.5). Consistent with the observation in theDiri(0.1) scenario,
the pretrained model resists model shift across all layer levels.

Model Pretraining Diri(0.1) Diri(0.5)

WRN-16-1
w/o 10.01 9.99

w/ 54.62 ↑↑ 60.43 ↑↑

Table 6.5: The performance of the initialised global model is signifi-
cantly improved if the pretraining on Small ImageNet is included in the
pretraining phase.
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Figure 6.9: Averaged CKA similarity at different layer levels of the
locally trained models. The pretrained model displays greater robustness
to model shift under conditions of stronger data heterogeneity.
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6.4.2 Federated Fine-tuning with Entropy-based Data Se-

lection

The adoption of the pretraining phase can not only yield an initialised global model

resistant to model shift but can also substantially reduce the training time of local

updates and assist the proposed entropy-based data selection. This section de-

scribes the algorithm of Federated Fine-Tuning, abbreviated as FedFT, as well as

Federated Fine-Tuning with Entropy-based Data Selection (FedFT-EDS), namely

FedFT-EDS, which integrates entropy-based data selection and enables the data

selection approach to address the straggler issue.

At a high level, clients in FedFT perform efficient fine-tuning by fixing the pre-

trained feature extractor obtained in the pretraining phase. FedFT-EDS leverages

entropy information to actively select beneficial local instances, thereby improving

the efficiency of fine-tuning and FL performance.

Preliminary: Entropy-based Active Data Selection

In addition to selecting the most representative training samples with clustering

methods, we can alternatively select the most useful instances, as explored in

previous studies on active learning (Beluch et al., 2018; Liu et al., 2021c; Yuan

et al., 2021; Li et al., 2019a). This section proposes leveraging the Shannon en-

tropy (WIKIPEDIA) to actively select those most useful instances for FL, reducing

the training burden on stragglers through forming a small training set for local

updates.

In information theory, Shannon entropy measures the uncertainty associated

with a probability vector. While training a neural network, every instance sampled

in the task distribution can be associated with a probability vector output by the

softmax activation layer in the model. The probability vector indicates how confi-

dently the model categorises the instance for the task. For example, when a sample

is fed into the neural network, if the softmax activation layer in the network outputs

a much greater value in the i-th element of the probability vector than the other

elements, it suggests the model is highly certain in classifying this sample as the
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i-th category.

Formally, given a possibility mass vector P (X), produced by the softmax acti-

vation layer in neural networks for instance X, its Shannon entropy is calculated as

follows:

H(X) = E [− log(P (X))] = −
n∑

i=1

pi log pi (6.6)

where pi is the probability to label the instance X as the i-th class in the possible

outcomes {c1, c2, . . . , cn}. Since the log function is concave, the Shannon entropy

has an upper bound which is derived by the Jensen’s inequality (Jensen, 1906) as

follows:

H(X) = E [− log(P (X))] ≤ log

(
E
(

1

P (X)

))
= log(n) (6.7)

Take CIFAR-10 classification with n = 10 for instance, the maximal entropy

for a probability vector output by the softmax activation in the neural network is

log(10) ≈ 2.30. This is an extreme case where the model weights equally for all 10

classes, suggesting the model is completely uncertain about which class the instance

belongs to. In this scenario, the model essentially labels the instance randomly with

a uniform distribution. Hence, higher entropy associated with an instance signifies

greater uncertainty in its classification by the model.

In active learning, instances that the model finds difficult (i.e., those with high

entropy) to classify are considered more informative as they can provide new knowl-

edge to improve the model (Settles, 2009). In contrast, instances that the model

confidently classifies contribute relatively less new knowledge to the model. To

this end, we select instances with the highest entropy to perform local updates

on clients. Figure 6.10 a) illustrates the process to actively select the most use-

ful instances for local updates based on entropy. To implement this method, the

client model only needs to perform an additional forward pass on all client data

to calculate the entropy associated with each instance. Instances are then ranked

based on their entropy to identify the most useful ones. Unlike previous work such

as FLRD (Nagalapatti et al., 2022), the proposed entropy-based data selection
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adds minimal computational overhead on clients, ensuring efficient local updates

for resource-constrained devices.

Mitigate model shift with entropy-based data selection. On the other

hand, we hypothesise that performing local updates on instances with the high-

est entropy can mitigate model shift. These selected samples not only expose the

model with more informative knowledge about the learning task, but also alleviate

inconsistencies between the global learning objective and local learning objectives

caused by data heterogeneity in FL. Notably, consider a scenario where one client

has significantly more data points with stronger label skew than others, the global

model formulated at the server can become biased towards the dominant class in

this client’s data. However, when the entropy-based data selection is applied, the

global model would output low entropy for the dominant class once it is offloaded

to this client for local updates. Consequently, the local updates would avoid select-

ing samples in the dominant class because the model is already highly confident in

classifying them correctly. Instead, samples from the underrepresented classes are

selected for local updates due to their higher entropy. Therefore, using entropy-

based data selection can help local updates avoid deviating the model from the

global objective, which is ideally to generalise well across all possible classes rather

than the dominant class on a single client.

Using hardened softmax to distinguish the most useful samples. The ef-

fectiveness of selected training samples depends on the ability to accurately distin-

guish those most uncertain samples using the entropy. However, a critical property

of the Shannon entropy is that a small change in pi in the probability vector results

in only a small change in the entropy (Li et al., 2019a). This property can poten-

tially limit the effectiveness of Shannon entropy in selecting those most uncertain

instances. Intuitively, when pi increases slightly, it suggests that the model slightly

increases its confidence in classifying the instance to category i. Since the model

learns less on this instance it is more confident about, it is preferable that a small

increase in pi leads to a significant entropy decrease, thereby excluding the instance
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Figure 6.10: Entropy-based data selection: a) shows how the entropy is
used to select the most useful instances for local updates. b) illustrates
how the temperature in the introduced hardened softmax changes the
entropy distribution.
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from the training set for local updates. While we cannot alter the original Shannon

entropy defined by Equation 6.6, we can reshape the probability distribution in the

probability vector by amplifying the change in pi. To this end, we propose using

a hardened softmax activation to achieve this objective. Essentially, the hardened

softmax is the softmax parameterised by a temperature value, as defined by Equa-

tion 5.1. The term “hardened” implies the temperature is set to a value less than

1 rather than greater than 1. Therefore, even a tiny change in zi, the logit for the

i-th class, can lead to a huge change to pi, changing the entropy significantly.

The distribution of entropy shifts significantly when the temperature ρ is ad-

justed in the hardened softmax. Figure 6.10 b) visualises this shift by setting ρ to

1.0, 0.5 and 0.1. The entropy distribution is obtained by feeding a locally trained

neural network with its local instances sampled from CIFAR-100. As ρ decreases

to 0.1, it becomes obvious that a majority of the distribution shifts towards lower

entropy values, forming a narrow tail in the high entropy region. Data points with

the highest entropy are considered the most beneficial ones for learning and are

selected to form the local training set. Conversely, as ρ approaches 1, the high

entropy region becomes densely populated with data points, making it less effective

to distinguish useful instances.

Local updates of FedFT-EDS

The pretraining phase proposed earlier provides FL with an well-initialised global

model, including a generic feature extractor. Leveraging this feature extractor,

FedFT-EDS can efficiently and strategically perform local updates. Particularly,

local updates in FedFT-EDS comprises two steps, active data selection and partial

model fine-tuning.

Active data selection with entropy. At communication round t, client k first

downloads the global model as M t
k, which is parameterised with wt

k, it performs the

entropy-based active data selection described in Section 6.4.2. Concretely, the client

model is first fed with client data x
(i)
k ∈ Dk, i = 1, · · · , |Dk| to make predictions as

follows:
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Algorithm 6 FedFT-EDS: Federated Fine-Tuning with Entropy-based Data
Selection.

1: Pretraining Phase: Pretrain the global model on the source domain and

perform one-round FL, initialise the global model to w1
g = {ϕ, θ1g}, every

client and the server keeps a copy of ϕ.

2: Input: total T rounds, E local updates epochs, initialised w1
g , total N clients.

3: for t = 1, . . . , T do

4: K random clients are available for training and they download the upper

part of the global model θt from the server.

5: Clients:

6: for Client k ∈ [1, K] do

7: Dt
k,select ← Data Selection (; θt, ϕ,Dk) according to Equation 6.8 and

Equation 6.9.

8: θt+1 ← Local updates
(
θt; ϕ,Dt

k,select, E
)
according to Equation 6.10.

9: Client k uploads θt+1
k to the server.

10: end for

11: Server:

12: Updates the upper part of the global model to θt+1
g with Equation 6.11.

13: Form the global model wt+1
g = {ϕ, θt+1

g } to start the next iteration.

14: Return Global model wt
g = {ϕ, θtg}

15: end for

16: Return Global model wT
g = {ϕ, θTg }
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P
t,(i)
k = fwt

k
(wt

k; ρ, x
(i)
k ) (6.8)

where P
t,(i)
k is the probability vector output by the softmax activation layer and ρ is

the temperature in the softmax function. Recall the hardened softmax introduced

in Section 6.4.2, a temperature value smaller than 1 is applied to adjust the values

in P
t,(i)
k . Then the entropy associated with x

(i)
k is calculated with Equation 6.9.

H
t,(i)
k = −

∑
pj∈P

t,(i)
k

pj log pj (6.9)

Finally, client k ranks the usefulness of x
(i)
k ∈ Dk, i = 1, · · · , |Dk| based on

their entropy scores. Higher entropy scores indicate instances that are more chal-

lenging yet valuable for updating M t
k. FedFT-EDS decides the number of selected

instances arbitrarily, as detailed in the experiment section. Consequently, the client

constructs a subset of local data, Dt
k,select, containing these selected instances to

update wt
k.

Fine-tuning the upper part of the client model. In the second step, FedFT-

EDS fine-tunes the upper part of M t
k on Dt

k,select while keeping its feature extractor

frozen. The parameters of the client model are denoted as wt
k = {ϕ, θtk}, where ϕ

is the feature extractor in the lower part of the model and θtk denotes the upper

part. ϕ is not indexed with communication round t and client index k because it

has been well trained with the initialised global model in the pretraining phase and

each client keeps an unmodified copy of it. ϕ can effectively represent local data in

the latent space without requiring further training in FL. Finally, on Dt
k,select, θ

t
k is

updated to θt+1
k for a total of E local epochs as follows:

θt+1
k ← θtk − λl∇θtk

ℓk(θ
t
k;ϕ,Dt

k,select), (6.10)

Client k uploads the training results of local updates–upper part of the model

θt+1
k –to the server.
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Global updates of FedFT-EDS

FedFT-EDS follows standard FedAvg to update the global model. Specifically,

FedFT-EDS fuses the updated θt+1
k , k ∈ {1, . . . , K} as follows:

θt+1
g ←

K∑
k=1

ptkθ
t+1
k (6.11)

where, ptk is similar to the one defined in Equation 2.4, but is calculated based on the

selected client data ptk =
|Dt

k,select|
|Dt| with Dt ≜

⋃
k∈[K]Dt

k,select. The server constructs

the global model for the next communication round t + 1 with wt+1
g = {ϕ, θt+1

g }

and distribute it to the client side.

As discussed in the previous section, since the feature extractor ϕ is not updated

in the FL iterations, the server and clients only need to communicate the upper part

of the global model, θtg. Algorithm 6 describes the details of the proposed FedFT-

EDS.

6.5 FedFT and FedFT-EDS Experiments

Special Experimental Setup. We evaluate FedFT-EDS on CIFAR-10, CIFAR-

100 and GSC dataset. The global model is pretrained on the ImageNet Small 32×32

dataset for image classification before being pushed into the FL workflow. The

number local update epochs E is set to 5. As usual, SGD optimiser with a learning

rate of 0.1 and momentum of 0.5 is used for optimising the client model. We tune

the temperature for the hardened softmax activation within the range {0.01, 0.05,

0.1, 0.5, 1} to achieve the best global model performance. The layer level to separate

the training part and frozen part of the client model in FedFT-EDS is set to mid, as

it results in the best global model performance in our experiments. Table 6.6 and

Table 6.7 report the validation performance for tuning the temperature and layer

level on CIFAR-10 and CIFAR-100. To reduce computational costs, we conduct a

partial grid search: first varying the temperature with the layer level fixed at “mid”,

then fixing the temperature at 0.1 while exploring “lower”, “mid” and “upper” layer

levels. We find comparable and strong performance for temperatures at or below
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Temperature in Softmax 0.01 0.05 0.1 0.5 1.0

Val. Acc. (%) on CIFAR-10 78.71 78.91 78.39 76.76 74.70

Val. Acc. (%) on CIFAR-100 52.64 52.58 52.74 49.10 46.15

Table 6.6: The validation performance on CIFAR-10 and CIFAR-100
by varying the temperature values for the hardened softmax activation
adopted in FedFT-EDS. The layer level to split the client model is fixed
to “mid” in this set of experiments.

Layer to Split the Model Lower Mid Upper

Val. Acc. (%) on CIFAR-10 77.94 78.39 77.86

Val. Acc. (%) on CIFAR-100 51.00 52.74 52.36

Table 6.7: The validation performance on CIFAR-10 and CIFAR-100
by setting different layer levels to split the client model for the partial
model training in FedFT-EDS. Temperature in the hardened softmax is
set to 0.1 for this set of experiments.

0.1 (i.e., 0.01 and 0.05), and observe that “mid” layer level consistently performs

best on both datasets.

6.5.1 Evaluation on CIFAR-10 and CIFAR-100

FedFT-EDS is first evaluated on CIFAR-10 and CIFAR-100, which are in close

domains to the pretraining dataset, Small ImageNet.

In a simple scenario where a total of 10 clients are assumed to be all non-

stragglers, Table 6.8 compares the global model performance of FedFT-EDS with

baselines. Additionally, the variant of FedFT with Random Data Selection, de-

noted as FedFT-RDS, is also included for comparison. For FedFT-EDS, we select

the local instances in proportion to the size of the entire local data, defined by Pds,

which is smaller or equal to 100%. When Pds is set to 100%, it indicates no data

selection is performed and all local data points will be used for local updates. In

the baseline set, FedAvg w/o pret., FedAvg, FedAvg-RDS, FedProx and MOON are

used for comparison. The FedAvg w/o pret. is the baseline without using the pre-

trained global model on Small ImageNet. FedAvg-RDS is the FedAvg baseline with
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Method Pds

CIFAR-10 CIFAR-100

α = 0.1 α = 0.5 α = 0.1 α = 0.5

FedAvg w/o pret. 100% 67.46 79.53 44.66 51.44

FedAvg 100% 75.18 81.73 51.18 55.83

FedAvg-RDS 10% 75.05 81.37 50.22 53.27

FedProx 100% 78.48 80.96 50.80 55.43

MOON 100% 75.56 81.66 50.98 55.71

FedFT-RDS 10% 81.11 85.51 53.66 56.57

FedFT-EDS 10% 83.82 ↑↑ 86.24 ↑↑ 54.04 ↑↑ 57.03 ↑↑

Centralised 100% 87.47 58.79

Table 6.8: The global model performance of FedFT-EDS and baselines
with 10 clients of full participation (%). Pds is the proportion of lo-
cal data selected for local updates. All methods, except FedAvg w/o
pretraining, employ the proposed pretraining phase. “pret.” is the ab-
breviation for pretraining. Centralised learning performance is attached
for comparison. FedFT-EDS significantly narrows the performance gap
between FL and centralised learning by up to 30% to 75% (in propor-
tion to the performance differences between the strongest baseline and
centralised training).
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Figure 6.11: Learning curves of FedFT-EDS and baselines, showing test
accuracy of the global model. The pretrained global model greatly accel-
erates FL convergence. FedFT outperforms all baselines, with FedFT-
EDS slightly better than FedFT-RDS.

random local data selection. The rest baselines are their standard implementations

with the adoption of the same pretrained model on Small ImageNet, without ap-

plying any active data selection. In addition, the centralised learning performance

is reported to indicate the upper bound of the global model performance.

The experiment results are highly revealing in several ways. First, it is apparent

that the introduction of the pretrained model can significantly improve the global

performance on both datasets. The most substantial boost is witnessed in the

scenario of a strong data heterogeneity, Diri(0.1), consistent with the observation

in Section 6.4.1. Second, both FedFT-RDS and FedFT-EDS outperform baselines

by obvious margins, up to 5% on CIFAR-10 and up to 3% on CIFAR-100. They can

significantly close the performance gap between FL and the centralised learning by

30% to 75%. The superior performance achieved by FedFT-RDS over FedAVG-RDS
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Figure 6.12: Comparison of the learning efficiency, calculated by divid-
ing top test accuracy by total local training time. FedFT-EDS at least
triples the learning efficiency of baselines and achieves the best global
model performance in all cases, demonstrating significant improvement.

in the condition of both selecting 10% of local data demonstrates that fine-tuning

the upper part of the pretrained model is more beneficial than updating it entirely.

Finally, the entropy-based data selection displays its superiority over the naive

random data selection. FedFT-EDS increases the performance of FedFT-RDS by

0.4% to 2.7%.

Further, Figure 6.11 illustrates the learning curves of FedFT-RDS, FedFT-EDS,

and baselines over FL iterations. FedFT-RDS and FedFT-EDS clearly outper-

form all baselines, with faster convergence and better generalisation. Conversely,

FedFT-EDS has a noticeable edge over FedFT-RDS in terms of both convergence

and generalisation of the global model by actively sampling useful training instances

with their entropy information. Additionally, leveraging the pretrained global model

leads to significantly improved FL performance, as seen by comparing FedAvg with-
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out pretraining to other baselines using the pretrained model.

FedFT-RDS and FedFT-EDS are also observed with better learning efficiency.

Learning efficiency is calculated by dividing the top test accuracy of the global model

by the total local training time on all participating clients over FL iterations. It is

a metric that measures how much global model performance is achieved per unit of

local training time. Better learning efficiency implies that learning on clients is more

energy efficient, requiring less training effort while contributing more to the global

model performance. Figure 6.12 compares the chosen baselines with FedFT-RDS

and FedFT-EDS. With only 10% of client data selected for learning, FedFT-EDS

not only achieves the best absolute global model performance but also at least

triples the learning efficiency of baselines, including FedAvg, FedProx and MOON,

on CIFAR-10. The learning efficiency is further increased by 5 times on CIFAR-

100. Although FedAvg-RDS has a learning efficiency close to that of FedFT-EDS,

its global performance is substantially penalised by up to 10% on CIFAR-10 and

4% on CIFAR-100, disqualifying it as an practical FL solution. Regarding FedFT-

RDS, it has a better learning efficiency than FedFT-EDS because the calculation of

entropy introduces minimal computation overhead to clients in FedFT-EDS. How-

ever, FedFT-EDS achieves the best global model performance compared to all other

methods, demonstrating the efficacy of entropy-based data selection.

The superior performance achieved by FedFT-EDS is even more pronounced in

a realistic scenario involving 100 clients with straggler dropout simulation. Specifi-

cally, Table 6.9 compares the global model performance of FedFT-RDS, FedFT-EDS

and FedAvg with varying client participation rates. The notation of fn defined in

Chapter 4 is reused to indicate the proportion of non-stragglers in the client pool.

The remaining clients are assumed to be stragglers and are discarded by the server.

fn is set to 100%, 20%, 10% to simulate scenarios ranging from full client partici-

pation to low client participation.

Meanwhile, local updates in FedFT-RDS and FedFT-EDS are computationally

efficient, as demonstrated in Figure 6.12. Hence, all clients are assumed to be non-

stragglers in their setups. Besides selecting 10% local data for local updates, we

additionally study the impact of increasing the number of selected instances by
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Method fn Pds

CIFAR-10 CIFAR-100

α = 0.1 α = 0.5 α = 0.1 α = 0.5

FedAvg w/o pret. 100% 100% 55.79 72.00 25.97 30.66

FedAvg 100% 100% 77.54 80.00 46.60 49.78

FedAvg 20% 100% 77.03 80.77 45.94 49.80

FedAvg 10% 100% 75.20 80.49 44.17 49.20

FedFT-RDS 100% 10% 78.20 80.25 47.64 50.23

FedFT-EDS 100% 10% 78.92 ↑↑ 81.74 ↑↑ 48.22 ↑↑ 50.74 ↑↑

FedFT-ALL 100% 100% 78.96 81.26 50.39 53.23

FedFT-RDS 100% 50% 79.02 81.57 50.51 53.33

FedFT-EDS 100% 50% 79.80 ↑↑ 82.46 ↑↑ 51.54 ↑↑ 54.22 ↑↑

Table 6.9: 100 clients scenario with straggler simulations. All variants
of FedFT assume full client participation as their partial model fine-
tuning are highly efficient. FedFT-EDS remains the best method in this
scenario and its advantageous performance is further enhanced when
FedAvg is penalised by the straggler issue. A critical finding is not all
local data is beneficial for federated learning as FedFT-EDS with 50%
outperforms FedFT-ALL.
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setting Pds to 50% and 100%. In the special case where Pds = 100%, data selection

is trivial as all local instances are used for local updates. Therefore, this setup is

denoted as FedFT-ALL in Table 6.9. The performance of FedAvg without using

the pretrained model is also included in the Table to demonstrate the advantage of

pretraining.

Table 6.9 demonstrates that FedFT-RDS and FedFT-EDS consistently outper-

form FedAvg with full client participation in the scenario involving a larger client

pool. When practical straggler dropout is considered in FedAvg, their performance

gap is further enlarged to over 4% to 7%, particularly under a strong data hetero-

geneity with Diri(0.1). The significant performance boost achieved by FedFT-RDS

and FedFT-EDS underscores their advantages in allowing contributions from strag-

glers. Once again, FedFT-EDS outperforms FedFT-RDS in all scenarios, highlight-

ing the efficacy of entropy-based data selection in improving global model perfor-

mance. However, the improvement from FedFT-RDS to FedFT-EDS is marginal.

Our insight on this observation is that the benefit from learning on hard client

samples diminishes as the global model has repeatedly learned from these hard

samples. Consequently, Fed-RDS can catch up the performance of Fed-EDS at

later FL rounds. This hypothesis is supported by the learning curves shown in

Figure 6.14, as we observe that the performance of Fed-RDS starts closing to that

of Fed-EDS. Although the absolute improvement made by Fed-EDS is limited, Fed-

EDS demonstrates its effectiveness in accelerating learning. At early FL rounds,

Fed-EDS is evident with faster performance growth compared to Fed-RDS, making

FL less demanding on resource-constrained devices for reaching a desired perfor-

mance level.

Compared to selecting 10% of local instances, selecting 50% of local instances

increases the performance of FedFT-RDS and FedFT-EDS by around 1% on CIFAR-

10 and 3.5% on CIFAR-100. Finally, by comparing FedFT-ALL and FedFT-EDS

selecting 50% of local data, the most insightful conclusion from Table 6.9 is not all

client data is beneficial for the global model performance. Training the client model

on half of the local data actively selected based on entropy, FedFT-EDS outperforms

FedFT-ALL by around 1% in all cases. The result suggests that including the other
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Figure 6.13: Learning curves of FedFT-EDS and baselines. FedFT-
EDS consistently outperforms all baselines throughout FL iterations,
with a particularly notable advantage over FedFT-RDS in the 100-client
setup, demonstrating the scalability of entropy-based data selection in
FL. Also, leveraging the pretrained global model greatly accelerates FL
convergence.

half of local data, which is pruned by entropy, degrades global model performance.

As discussed in Section 6.4.2, training client models on selected local data with

high entropy can mitigate the model drift on heterogeneous data, whereas using

all local data indiscriminately to update client models aggravates the model shift.

This telling observation underscores the significance of employing an effective data

selection method to actively identify useful local training instances in heterogeneous

FL. However, our observation that half of the local data is non-beneficial for FL

is limited to our chosen experimental scenarios, such as datasets, heterogeneity

simulation, and etc. We anticipate the proportion of non-beneficial data could vary

in different FL setups.

Figure 6.13 illustrates the learning curves of FedFT-EDS and FedAvg baselines
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Figure 6.14: Comparison of FedFT-RDS and FedFT-EDS with 10% or
50% local data selection for local updates. In both cases, FedFT-EDS
outperforms FedFT-RDS significantly in convergence and top test accu-
racy. The performance of FedFT-ALL falls behind FedFT-EDS (50%)
by a large margin, indicating not all local instances are beneficial for FL.

in the scenario with 100 clients. Compared to the 10-client scenario, FedFT-EDS

achieves a more substantial improvement in both convergence and top test accu-

racy of the global model, demonstrating the adaptability of entropy-based data

selection in heterogeneous FL at scale. Figure 6.14 compares the learning curves of

FedFT-RDS and FedFT-EDS with different volumes of selected data. It is appar-

ent that FedFT-EDS greatly accelerates FL convergence and improves global model

performance compared with FedFT-RDS.

Finally, Figure 6.15 compares the learning efficiency achieved by FedFT-EDS

and the baselines in the scenario with 100 clients. FedFT-EDS consistently exhibits

superior learning efficiency while achieving the best global model performance,

demonstrating entropy-based data selection effectively addresses the straggler is-

sue without incurring performance penalisation. Figure 6.15 further shows that
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Figure 6.15: The learning efficiency of FedFT-RDS, FedFT-EDS,
FedFT-ALL, and the baselines in the 100-client scenario. FedFT-EDS
(50%) trades a small amount of learning efficiency to achieve the best
global model performance. While FedAvg achieves the best learning ef-
ficiency with 10% client participation, its global model performance is
significantly compromised by the straggler issue.

FedFT-EDS (50%) slightly sacrifices efficiency to boost the test accuracy of the

global model by up to 3.5%. This observation indicates that FedFT-EDS is only

marginally penalised in learning efficiency even when up to 50% of local data is

selected for local updates. This is because the main reduction in local training time

in FedFT-EDS comes from partial model fine-tuning, with the reduction in training

data playing a lesser role. However, including more training data leads to improved

global model performance.

In contrast, FedAvg, despite showing the best learning efficiency with only 10%

of clients as non-stragglers, suffers significantly in global model performance due to

the straggler issue.
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Method Pds ImageNet GSC valid

Centralised w/o pret. 100% 91.22

Centralised w/ pret. 100% 89.81 91.18

FedAvg w/o pret. 100% 41.33

FedAvg w/ pret. 100% 55.40 86.31

FedFT-RDS 10% 54.96 83.67

FedFT-EDS 10% 55.60 ↑↑ 84.39 ↑↑

FedFT-RDS 50% 55.56 86.08

FedFT-EDS 50% 59.32 ↑↑ 86.47 ↑↑

Table 6.10: The test performance of FedFT on GSC using Small Ima-
geNet and GSC validation set for the pretraining phase. The pretrained
model from Small ImageNet and GSC validation set is applied to the
GSC learning task separately. The former case creates a strong domain
shift for FedFT, whereas the latter case minimises the domain shift.
FedFT is still effective even in the strong domain shift case. However,
it is preferred to employ a model pretrained on a similar domain to the
downstream FL task. The entropy data selection is more effective for
improving the model performance than random data selection regardless
of the domain shift.

6.5.2 Evaluation on GSC

With respect to the adopted pretraining method, the evaluation of FedFT-EDS

on CIFAR-10 and CIFAR-100 focuses on scenarios involving closely related source

and target domains. This section extends the evaluation to GSC, a significantly

different domain from the source. The experiment sets the total client number

to 100 and partitions client data with strong data heterogeneity with Diri(0.1).

All clients are assumed to be non-stragglers in the simulation. For comparison, a

pretraining phase is additionally conducted on the GSC validation set, simulating

minimal domain shift. This setup complies with the privacy-preserving principle of

FL, as clients only hold data from the GSC training set, ensuring the global model

remains unexposed to client data prior to FL.
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Table 6.10 reports the test performance of centralised training, FedAvg without

pretraining, FedAvg with pretraining, FedFT-RDS, and FedFT-EDS. In centralised

learning, using a model pretrained on Small ImageNet results in a slight decrease

in performance, indicating limited transferability of ImageNet knowledge to GSC

in this context. However, FedAvg benefits significantly from Small ImageNet pre-

training, improving the text accuracy of the global model by over 14%. However,

pretraining on the GSC validation set boosts the performance by over 45%. This

observation suggests: 1) Pretraining the global model on a different source domain

can still improve FL performance. 2) A reduced domain shift between pretraining

and FL can lead to a substantial performance improvement.

Similar to FedAvg, although FedFT-RDS and FedFT-RDS demonstrate their

performance advantages in this case with a significant domain shift, the results sug-

gest the importance of employing a source domain closer to the FL domain whenever

possible. Finally, FedFT-EDS is evident to consistently outperform FedFT-RDS re-

gardless of the source domain utilised, showing the effectiveness of the entropy-based

data selection independent of domain shift. Specifically, when the GSC validation

set is used for pretraining, FedFT-EDS achieves the best global performance with

50% of local data selected, outperforming the FedAvg baseline using all local data

for training. Again, this observation implies that not all local instances are benefi-

cial for FL.

6.6 Summary

This chapter advances active data selection methods for addressing the straggler

issue. Two primary goals are approached: 1) The introduced active data selection

methods should be computationally cheap for clients to perform. 2) FL can preserve

or even improve its performance when less data is used for local updates. To achieve

these goals, two efficient data selection methods, clustering-based data selection and

entropy-based data selection, are introduced and explored.

The first part of this chapter introduces a split FL paradigm for clustering-

based data selection. This paradigm splits the global model into a lower part that



Addressing the Straggler Issue with Active Data Selection 185

is trained with standard FedAvg, and an upper part of the model that is trained

on the server side using selected feature maps that are representative for local data.

Representative feature maps are selected using K-means clustering from the latent

space of client models. The selected feature maps are then uploaded by clients to

the server for training the upper part of a composed global model. The experiments

show that with just 1.6% of the feature maps, the composed global model preserves

most of its generalisation capability, decreasing by just 4.35% on CIFAR-10.

FedFT-EDS is proposed in the second part of this chapter to completely elim-

inate performance penalties resulting from reduced training data. FedFT-EDS

adopts two key ingredients to achieve this objective, a unique pretraining phase

to initialise the global model and an entropy-based client data selection method.

CKA analysis shows that the pretraining can initialise a global model that resists

model shift in downstream FL tasks. On the other hand, the entropy-based data

selection designs an importance ranking method for local data with Shannon en-

tropy and harden softmax activation to effectively identify useful instances for the

learning task at minimal computational cost.

On CIFAR-10 and CIFAR-100, FedFT-EDS is observed to consistently improve

FL performance over chosen baselines in various scenarios, tripling the learning

efficiency and boosting test accuracy of the global model by up to 6%. FedFT-EDS

effectively enhances FL performance rather than penalises it while fewer training

instances are selected for learning. Most importantly, FedFT-EDS demonstrates

that over half of local instances are detrimental to FL performance. In a drastic

domain shift scenario where GSC is the target domain, FedFT-EDS retains its

efficacy in improving FL performance.

In summary, the development of FedFT-EDS successfully addresses the research

question derived for the approach of active data selection. Active data selection

leveraging pretraining and entropy information to select the most beneficial learn-

ing instances significantly: 1) improves the learning efficiency of FL, thereby ad-

dressing the straggler issue; 2) enhances the global model performance rather than

compromising it, even with substantially reduced training data.

By bridging the research gap in the approach of data selection in FL, Chapter 6
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is the final chapter of the three technical chapters that aims to address the straggler

issue. In the next chapter, we will summarise our work and propose future research

directions for encouraging resource-constrained devices to participate in FL.



Chapter 7

Conclusions

7.1 Summary of Thesis

This thesis conducts substantial research to improve the participation of resource-

constrained devices in Federated Learning (FL) through advancing efficient machine

learning approaches. Through comprehensive literature review, this thesis identifies

critical research gaps existing in partial model training, custom-size client models,

and active data selection–three efficient machine learning approaches that are com-

monly employed in FL to address the straggler issue. These research gaps are

unmitigated model shift, weak knowledge transfer with a single knowledge source,

and understudied active data selection. To bridge these research gaps, this thesis

proposes and evaluates novel methods: few-shot fine-tuning, attention transfer and

metadata training, clustering-based data selection and entropy-based data selection.

This research contributes valuable novelties and insights that can inspire future FL

studies aiming to encourage more resource-constrained devices to contribute their

knowledge to FL. They are summarised as follows.

FedFSC, the proposed FL algorithm adopting few-shot fine-tuning, bridges the

research gap of unmitigated model shift in the partial model training approach.

FedFSC allows stragglers to perform few-shot updates, assisted by a feature extrac-

tor learned on non-stragglers. It demonstrates that few-shot updates can reduce the

training time on stragglers by 90% and result in a less biased classifier on hetero-

geneous data compared to traditional local updates. With these profound insights,

187
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FedFSC alleviates training efforts on stragglers and mitigates model shift simul-

taneously, by constructing the global model with the few-shot updated classifier

contributed by stragglers. Extensive experiments show that FedFSC outperforms

popular FL baselines by significant margins. FedFSC advances the state-of-the-art

research by allowing partial model training to not only improve the participation of

stragglers but also mitigate model shift, accelerating FL convergence and reducing

straggler energy consumption.

FedAT and FedKAD, the two proposed FL algorithms that adopt attention

transfer and metadata training, address the research gap in the approach of custom-

size client models, which is the weak knowledge transfer with a single knowledge

source. FedAT leverages attention maps and metadata as knowledge sources to

transfer locally learned knowledge from custom-size client models to the global

model. We demonstrate that AT and metadata training successfully enable the

global model to generalise on unseen classes and prevent the global model from

overfitting to generic dataset during knowledge transfer. Further, FedKAD ad-

dresses the negative knowledge transfer problem induced by model shift by regulat-

ing knowledge distillation with prototype feature maps–metadata in a compressed

form. In strong data heterogeneity environments, FedKAD outperforms FedMD,

another FL baseline allowing custom-size client models but using a single knowl-

edge source for knowledge transfer. The results show that prototype feature maps

convey essential intra-class knowledge to improve the quality of knowledge trans-

fer. FedAT and FedKAD contribute to the approach of custom-size client models

by proposing novel knowledge sources to enhance knowledge transfer and proving

their efficacy with improved global model performance. The application of custom-

size client models for addressing the straggler issue is significantly improved with

contributions from FedAT and FedKAD.

Finally, the proposed FedSplit and FedFT-EDS, algorithms adopting clustering-

based data selection and entropy-based data selection respectively, enrich the re-

search of leveraging active data selection to address the straggler issue. FedSplit

uses K-means clustering method to formulate a small subset of training data con-

sisting of most representative feature maps on clients to refine the global model on
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the server. It is observed that the global model performance is slightly penalised

when the size of training data is significantly reduced. FedFT-EDS is proposed to

address the performance penalisation for active data selection exposed by FedSplit.

FedFT-EDS first introduces a unique pretraining phase that can initialise a global

model resistant to model shift. Shannon entropy calculated with the hardened

softmax is proposed to identify the most beneficial client instances for learning.

FedFT-EDS shows that it can not only reduce workloads for stragglers but also im-

prove FL performance in terms of both convergence and global model performance.

FedSplit and FedFT-EDS broaden the research of active data selection in FL, an

area that has been understudied for its potential to address the straggler issue. This

work successfully demonstrates that active data selection can effectively address the

straggler issue.

The three efficient machine learning approaches studied in this thesis can be

adopted simultaneously to further enhance their utilities for reducing the workloads

for resource-constrained devices. Take our proposed FedFT-EDS for instance, it is

a such method that employs the partial model training and active data selection,

where participating devices only need to update a subset of model parameters on

reduced training data. FedFT-EDS is observed to improve the federated learning

efficiency by at least three times comparing to the baselines in our experiments,

demonstrating the advantages of leveraging the approaches of both training param-

eter reduction and training data reduction.

7.2 Limitations and Future Research

7.2.1 Limitations

• A major limitation of FedFSC is that it cannot mitigate the model shift in the

feature extractor. Therefore, the global model performance is limited by the

quality of feature extractor trained on non-stragglers. This limitation is indi-

cated by the observation that as fewer non-stragglers contribute to learning

the feature extractor, performance of FedFSC gets worse.
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• A critical problem of FedAT and FedKAD is that metadata adds communica-

tion overhead to FL while it is introduced as an additional knowledge source

for improving knowledge transfer. This increased overhead raises the expenses

related to storage, connectivity, bandwidth, etc., for stragglers.

• The performance of FedFT-EDS is highly sensitive to the tuning of the tem-

perature ρ in the hardened softmax. When this hyperparameter is not opti-

mally tuned, it is observed that the performance of FedFT-EDS could even

fall behind that of the chosen baselines.

7.2.2 Future Research

This research can inspire future works that aims to encourage resource-constrained

devices to participate in FL. The following are a few directions that are worthy to

explore starting from this thesis:

• One-round FL. This thesis has demonstrates the benefits of accelerating

FL convergence to improve learning efficiency. An extreme case is FL con-

vergences within a single communication round. This research direction has

been explored by a handful of previous works (Guha et al., 2019; Zhou et al.,

2020b; Gong et al., 2021; Zhang et al., 2022a; Su et al., 2023), dubbed one-

round FL or one-shot FL. In one-round FL, the server collects updated client

models from participants once for all. With this strategy, there is no need for

the server to set a deadline for local updates in order to start the next com-

munication round. As such, one-round FL offers resource-constrained devices

with maximal computing tolerance. However, the challenge of one-round FL

is how to effectively optimise the global model to acquire all of the learned

knowledge from clients, particularly in the presence of model shift induced

by data heterogeneity. Although substantial research endeavours have been

made, such as DOSFL (Zhou et al., 2020b) that leverages KD, FedPCL (Tan

et al., 2022b) that employs pretrained models, FedDISC (Yang et al., 2024)

that generates synthetic dataset, one-round FL remains largely underperforms

the traditional multi-round FL.
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• Model quantisation. Besides knowledge distillation discussed in this thesis,

another popular approach for compressing machine learning models is quanti-

sation. Model quantisation not only saves the memory for storing models but

also reduces the computational overhead of model training by reducing the

number of bits of model parameters (Liu et al., 2021a). Recent research (Liu

et al., 2021a; Thakur et al., 2024) demonstrates that quantised models save a

significant among of energy and time while being trained on the edge. How-

ever, quantising client models often leads to a tradeoff in the global model

performance. Hence, there is a need to mitigate this tradeoff for the model

quantisation approach in FL. We can further explore the combination of model

quantisation and knowledge distillation for compressing client models while

achieving competitive model performance.

• Pretraining and fine-tuning large models. Recently, large models, par-

ticularly Foundation Models (FM), including stable diffusion models and

LLMs, which are commonly built with stacks of Transforms, are the driving

forces of some of the most groundbreaking AI applications, such as ChatGPT

and SORA. FL has a great potential to provide sufficient data for training

these large models (Babakniya et al., 2023; Sani et al., 2024). However, a large

number of the edge devices will be deemed resource-constrained and become

stragglers when dealing with large models. Hench, there is a great need to

mitigate this bottleneck so that large models can leverage a wealth of user-

generated data on various devices. An increasing number of FL works are

proposed to approach this challenge. They utilise various efficient model tun-

ing techniques, such as prompt tuning (Che et al., 2023), parameter-efficient

fine-tuning (PEFT) (Jiang et al., 2023), instruction tuning (Zhang et al.,

2024), etc., to alleviate training efforts on FL participants. With the rapidly

growing data need for learning large models, we can envision that adapting

large model training to FL through efficient on-device learning will be a hot

research topic in near future.

• Addressing client data challenges. FL faces significant data challenges
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when training on a large number of diverse clients. Notably, client data could

be unlabeled, non-stationary, and maliciously poisoned, potentially hindering

the capability and scalability of FL (Ji et al., 2024). As such, it is becoming

increasingly important to advance FL to tackle these data challenges, ensuing

the success of FL in the wild. On one hand, unsupervised FL (Zhuang et al.,

2021; Han et al., 2022; Zhuang et al., 2022; Rehman et al., 2023) and lifelong

FL (Yu et al., 2022; Zhang et al., 2023b; Jin et al., 2023; Wang et al., 2024b)

are in the frontiers of FL research for dealing with unlabeled data and non-

stationary data in various machine learning fields, such as computer vision,

robots, IoTs, etc. On the other hand, techniques of protecting FL from ad-

versarial attacks (Roy Chowdhury et al., 2022; Shejwalkar et al., 2022; Kumar

et al., 2023) has gained a wider research attention recently for their utilities

of preserving the integrity of client data in practice. In summary, data het-

erogeneity only represents one aspect of data challenges that FL is facing. In

the further, we can project that the FL research community will shift its con-

centration to tackle practical data challenges that could be more significant

for production FL systems.

• Novel FL paradigms with confidential cloud computation. FL is

evolving fast. Recently, novel FL paradigms that allow clients to upload their

data to powerful and secured computing nodes on the cloud have been ex-

plored (Daly et al., 2024). Such FL paradigms could eliminate the straggler

issue by equipping the computing nodes with powerful hardware, further en-

abling the potential of FL for training large models. However, novel security

measures are needed in place to ensure that user privacy is not rendered.

Particularly, researchers in Google recently propose the Trusted Execution

Environments (TEEs) (Eichner et al., 2024) for FL to establish the client

trust of uploading their encrypted data to the cloud. TEEs leverage pub-

lic key infrastructure and ledger service to allow clients to verify and approve

privacy-preserving workloads requested from the server, providing clients with

full control of how their data is used during FL. With these works, we are
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witnessing the transformation of FL paradigms, offering FL with more flexible

ways of leveraging decentralised data for training machine learning models.

This thesis paves on three avenues of FL optimisations, yet other optimisations

could be equally impactful. No matter which routes or methods will become popular

in future, there is a stringent need for FL optimisation to eliminate stragglers. With

a growing scope of FL to extract knowledge from data silos on the edge, enabling the

participation of all clients, irrespective of their computational resources, becomes

paramount.
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Sören Mindermann, Jan M Brauner, Muhammed T Razzak, Mrinank Sharma, An-
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