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Abstract

Segmentation of cerebral vessels and aneurysms is vital for diagnosing cerebrovas-
cular conditions, developing treatment plans, and supporting in silico trials.
The intricate nature of cerebrovascular anatomy and the small and irreg-
ular characteristics of aneurysms pose significant challenges for obtaining
high-precision segmentation, which is vital for accurate clinical evaluations
and planning of interventions.

The motivation stems from the necessity to address several critical
challenges that compromise the efficiency of existing segmentation mod-
els. These challenges include class imbalance, where smaller structures, like
aneurysms, are often under-represented in datasets, leading to suboptimal
segmentation performance. Moreover, the insufficiency of labelled data con-
strains the potential of fully supervised models. In addition, the issue of
domain shifts across various imaging modalities and patient populations
can cause models trained on one dataset to perform inadequately on an-
other. Finally, there is a need for models that can generalise effectively
across diverse datasets from various clinical data sources, ensuring consist-
ent performance regardless of the data source.

In response to these challenges, this thesis presents several novel con-
tributions. It introduces a 3D patch-based multi-class model that effect-
ively manages class imbalance and inter-class interference in vessel and an-
eurysm segmentation, employing advanced network elements and paired
preprocessing and postprocessing techniques to enhance accuracy. A semi-
supervised learning approach is also developed to leverage both labelled
and unlabelled data, significantly improving segmentation consistency and
continuity, particularly in scenarios with limited annotations. Furthermore,
the thesis proposes a transwarp contrastive learning framework for unsuper-
vised domain adaptation, allowing the model to handle domain shifts and
perform robustly across different data modalities. Finally, a gradient-based
domain generalisation method is introduced to ensure that segmentation
models can generalise well across various imaging conditions, overcoming
the challenges posed by data source variability.

Evaluation results demonstrate that the proposed methods significantly
improve segmentation performance across multiple benchmarks. The 3D
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patch-based multi-class model achieves a significant improvement in an-
eurysm segmentation, achieving a Dice score of 81.63% on the Aneurist-
3DRA dataset, which is agnostic to data sources and aneurysm sizes. This
performance notably surpasses the best state-of-the-art method, nnUNet,
which achieves a Dice score of 66.86%, demonstrating the effectiveness of
the proposed approach. The semi-supervised learning approach significantly
enhances vessel segmentation accuracy while reducing annotation require-
ments, maintaining robust performance even with limited labeled data. On
Aneurist-3DRA dataset with a resolution of 0.35 mm/pixel, this method
achieves a surface distance of 0.2075 mm. The transwarp contrastive learn-
ing framework effectively mitigates domain shifts, ensuring consistent seg-
mentation quality across diverse imaging modalities. On the MRA dataset,
it achieves a Dice score of 72.65% for vessel segmentation, demonstrating its
robustness in handling cross-domain variations. Finally, the gradient-based
domain generalisation method enhances the ability of model to general-
ise to unseen datasets, reducing performance degradation when applied to
new clinical settings. Trained on only a small subset of data from a single
data center within the Aneurist-3DRA dataset, the model achieves a Dice
score of 71.89%, demonstrating its strong generalisation capability across
diverse clinical scenarios. Collectively, these contributions advance the field
of cerebrovascular image segmentation by addressing key challenges and
improving model adaptability and robustness.
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Introduction: Background, Motivation and
Contribution

1
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1.1 Background on Brain Vessel Structure, Imaging, and
Disease

1.1.1 Brain Vessel Structure

Brain vessels [7] refer to the vascular system that supplies and drains brain tissue,
including the arteries, veins, and capillaries. The primary function of the brain vascular
system is to deliver oxygen and nutrients to brain tissue and to remove metabolic waste
and carbon dioxide. The blood supply to the brain comes primarily from the internal
carotid artery system and the vertebrobasilar artery system. In the internal carotid
artery system, blood flows from the internal carotid artery (ICA) to the brain, then
to the anterior cerebral artery (ACA), the middle cerebral artery (MCA), and others.
These arteries supply different regions of the brain. In the vertebrobasilar artery system,
blood flows from the basilar artery into the brain, then to the posterior cerebral artery
(PCA), among others. The anterior cerebral arteries of the left and right sides of
the internal carotid artery system are connected by the anterior communicating artery
(AComA), and the internal carotid artery from the internal carotid artery system is
connected to the posterior cerebral artery from the vertebrobasilar artery system via
the posterior communicating artery (PComA).

The Circle of Willis [8] connects the main cerebral arteries (ACA, MCA, PCA)
through the anterior and posterior communication arteries. The Circle of Willis forms
a redundant blood supply system, allowing blood to be redistributed in case of arterial
blockage or narrowing, thereby maintaining the blood supply to various brain regions.

Regarding the main functions of these vessels, the internal carotid artery and the
basilar artery are responsible for delivering blood from the heart to the brain [9]. The
anterior cerebral artery supplies the midline region of the frontal part of the brain and
part of the parietal lobes. The middle cerebral artery supplies the lateral surface of the
brain. The posterior cerebral artery supplies the occipital lobe and the medial aspect
of the temporal lobe in the back of the brain. The anterior communicating artery and
the posterior communicating artery primarily connect the arteries, providing collateral
circulation to the brain to prevent ischemic damage caused by occlusion of a single
artery [10].
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Figure 1.1: Anatomical and imaging visualisation of the Circle of Willis. The left
image depicts a schematic of the Circle of Willis, showing key arteries like the Anterior
Cerebral, Internal Carotid, and Posterior Cerebral Arteries. The right image is an MRA
scan showing the Circle of Willis in a real human brain, with the same arteries labelled.
This comparison highlights both the anatomical structure and its clinical significance
in assessing blood flow and identifying potential vascular issues.

1.1.2 Aneurysm and Corresponding Analysis

A cerebral aneurysm [11, 12, 13, 14] is a localised abnormal bulge or weakening of the
blood vessel wall [15]. There are various types of aneurysm [16], including the most
common saccular aneurysm [17], which presents as a balloon-shaped bulge on one side
of the blood vessel. Another common type is the fusiform aneurysm, where the entire
circumference of the blood vessel wall expands in a spindle-like shape. When an an-
eurysm ruptures, it can cause severe brain haemorrhage or subarachnoid haemorrhage
(SAH), which is known as a ruptured aneurysm [18, 19].

The causes of aneurysms [20] are complex and varied, including congenital factors
such as poor development or structural abnormalities of the vessel wall and acquired
factors such as atherosclerosis, hypertension, and infection. The occurrence of an-
eurysms is also influenced by various other factors, such as family history, smoking,
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Small Medium Large Extra Large

Figure 1.2: Variations in aneurysm sizes across different patients. This figure show-
cases different aneurysm sizes, including small, medium, large, and extra large, observed
in various patients’ cerebral arteries. Each model represents a distinct case, emphas-
ising the variability in aneurysm dimensions. The red regions indicate the aneurysms,
with larger sizes typically associated with higher risks of complications, such as rup-
ture. The large variation in the size of various aneurysms reinforces the importance of
tailoring the treatment strategy to the patient’s specific situation.

hypertension, and demographic factors, such as age and gender (with women at higher
risk than men).

The prevalence of aneurysms in the general population is approximately 3 % [21].
Many aneurysms are asymptomatic before rupture and are often discovered incidentally
during health check-ups. Furthermore, non-ruptured aneurysms, due to their abnormal
size and structure in Fig 1.2, may also cause symptoms by compressing surrounding
tissues and causing local neurological dysfunction.

Quantitative and qualitative analyses in Fig. 1.3 are essential for evaluating and
diagnosing aneurysms. Quantitative analysis includes measurements of the aneurysm’s
diameter, volume, shape, and growth rate. Typically, aneurysms can be classified by
size [22]. Aneurysms smaller than 5 millimetres in diameter are classified as small an-
eurysms [23], which are the most common and have a lower risk of rupture. Aneurysms
between 5 and 10 millimetres are medium aneurysms, requiring individualised treat-
ment based on the patient’s specific conditions (such as family history, hypertension,
etc.). Aneurysms larger than 10 millimetres are classified as large aneurysms and carry
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Figure 1.3: Quantitative factors for aneurysm analysis. This figure presents the
key parameters used in the evaluation of cerebral aneurysms through geometric and
hemodynamic analyses. On the left, the geometric analysis includes factors such as
aneurysm volume, sac maximum width, and various size and aspect ratios, which help
in assessing the aneurysm’s physical dimensions and structural impact. On the right,
the hemodynamic analysis examines factors like velocity, pressure, and wall shear stress,
which are critical for understanding the blood flow dynamics within and around the
aneurysm. These quantitative measures provide a comprehensive approach to assessing
the risks associated with aneurysms and inform treatment decisions.

a higher risk of rupture, requiring a more aggressive diagnosis and treatment manage-
ment, including possible surgical intervention. In particular, aneurysms larger than
25 millimetres are classified as giant aneurysms and almost always require immediate
surgical treatment. These size-based classification standards help physicians assess the
rupture risk of the aneurysm and formulate appropriate treatment plans.

Qualitative analysis [24] includes the location of the aneurysm, hemodynamic ana-
lysis, and other factors. Computational fluid dynamics (CFD) can evaluate factors
such as internal blood flow velocity, pressure, shear stress, and other factors within the
aneurysm. This information is crucial to understanding the formation of aneurysms,
providing treatment recommendations, and simulating the performance of implanted
devices. Managing aneurysms involves qualitative and quantitative analyses and de-
pends on demographic factors such as the patient’s age and health condition.

In Fig 1.3, Systole STAWSS (Spatially Time-Averaged Wall Shear Stress) refers
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Figure 1.4: Diagrams of different aneurysm treatment options [5]. (A) Endovascular
coiling of the aneurysm sac. (B) Surgical clipping of the aneurysm neck. (C) The
endovascular treatment combines the use of coils and a stent. (D) Endovascular treat-
ment with a flow diverter.

to the time-averaged shear stress on the arterial wall during the systolic phase of the
cardiac cycle. Systole WSSMin (Minimum Wall Shear Stress) and Systole WSSMax
(Maximum Wall Shear Stress) represent the minimum and maximum shear stress dur-
ing systole. The mean OSI (Oscillatory Shear Index) indicates the average oscillat-
ory shear index over time, whereas the Std OSI (Standard Deviation of Oscillatory
Shear Index) represents the standard deviation of these oscillations. TA LSA 2 (Time-
Averaged Local Shear Angle) refers to the time-averaged local shear angle. TA LSA
Std 2 (Standard Deviation of Time-Averaged Local Shear Angle) is its standard de-
viation. Systole TADVO (Time-Averaged Directional Velocity Oscillation) represents
the time-averaged directional velocity oscillation during systole. At the same time,
Systole DVOStd (Standard Deviation of Directional Velocity Oscillation) indicates the
standard deviation of this oscillation [25].

There are various methods for the treatment and management of aneurysms [26].
Monitoring with regular imaging studies is an option to track any changes in small
asymptomatic aneurysms. Treatments aimed at managing hypertension and reducing
blood lipid concentrations can help slow the progression of aneurysms. For aneurysms
requiring surgical intervention, clipping and endovascular treatment are the two main
methods. Clipping involves a craniotomy to place a clip in the neck of the aneurysm,
preventing blood flow to it. Endovascular treatment involves using a catheter to insert
embolic materials (such as coils or stents) into the aneurysm, similarly preventing blood
flow into the aneurysm.
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3DRA MRA CTA DSA

Slice

MIP

Figure 1.5: Comparative imaging modalities for brain vessel and aneurysm analysis.
This figure illustrates the use of four different imaging modalities, including 3DRA,
MRA, CTA, and DSA, to visualise brain vessels and aneurysms. The top row presents
cross-sectional image slices that highlight the detailed anatomical structures captured
by each modality. The bottom row shows maximum intensity projections (MIP), which
emphasise the vascular structures and provide a clearer view of the aneurysms. Each
modality offers unique advantages in resolution, contrast, and spatial details.

1.1.3 Brain Vessel Imaging Modalities

The diagnosis analysis and treatment planning for vascular disease utilise various ima-
ging modalities, each with specific strengths and limitations. Fig. 1.5 illustrates four
key techniques that provide different perspectives and levels of detail. This section dis-
cusses these modalities and outlines their unique advantages and clinical applications.

3D rotational angiography (3DRA) [27] is an advanced vascular imaging technique
compared to other modalities. Generate high-resolution 3D vascular images by ro-
tating a C-arm X-ray device and injecting a contrast agent. During surgery, doctors
can constantly reposition and magnify aneurysms or other vascular structures, provid-
ing high-resolution local vascular structure information. The advantage of the 3DRA
modality is its high resolution, making it particularly suitable for detecting complex
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aneurysms and downstream image analysis tasks. However, 3DRA requires ionising
radiation and contrast agents, which requires consideration of radiation exposure and
the risks associated with patients who cannot use contrast agents.

Magnetic resonance angiography (MRA) [28] generates 3D vascular images through
the interaction of magnetic fields and radio waves and is a unique sequence within
Magnetic Resonance Imaging (MRI). The advantage of the MRA modality is that it
is non-invasive and can be performed without the injection of contrast agents. Fur-
thermore, MRA does not use ionising radiation, resulting in lower radiation exposure
for patients, making it suitable for long-term follow-up and monitoring. However, the
resolution of the MRA modality is relatively low, which is suitable for early screening
but less effective for precise downstream quantitative and qualitative analysis.

Computed tomography angiography (CTA) [29] uses X-rays and computed tomo-
graphy to obtain 3D vascular images by injecting contrast agents. CTA can quickly
scan and obtain medium-resolution vascular images that clearly show the vascular ana-
tomy. However, the high brightness of the bones in the CTA images can interfere with
the quantitative and qualitative analyses. Also, CTA requires ionising radiation and
contrast agents, so radiation exposure and contrast agent allergies must be considered.

Digital Subtraction Angiography (DSA) [30] is the gold standard for clinical dia-
gnosis of aneurysms. DSA involves inserting a catheter and injecting a contrast agent to
capture high-resolution, real-time dynamic images of blood vessels under X-ray. How-
ever, the resulting images are multi-angle 2D images, which makes DSA more suitable
for clinical procedures rather than downstream analysis compared to other modalities.

1.1.4 InSilico Trials

In silico trials [6, 31] represent a sophisticated approach to medical research, employing
advanced computer simulation and modelling techniques. These trials replicate the
dynamics of human organs and tissues using high-performance computing and detailed
physical models. They are particularly advantageous for evaluating the efficacy and
safety of medical devices and therapeutic strategies. Compared to conventional in vivo
(within a living organism) and in vitro (outside a living organism) experiments, in silico
trials offer significant reductions in cost, duration, and invasiveness. They facilitate the
rapid acquisition of precise and reproducible data from extensive population datasets.
Through in silico trials, researchers can rigorously evaluate various hypotheses within
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Figure 1.6: Workflow of in silico trials [6]. This illustration shows the key stages in
the execution of in silico trials, beginning with the acquisition and segmentation of
medical images to isolate vascular structures. The subsequent boundary labelling stage
delimits the regions of interest, followed by the modelling of devices and procedures.
Mesh generation is then used to render these models amenable for computational ana-
lysis, encompassing CFD modelling and simulation. The integration of physiological
and lifestyle factors is critical for assessing device performance. The INSILEX trial
infrastructure supports this workflow and facilitates precise and effective simulations
for medical research.

a virtual framework, refine experimental designs, and mitigate risks and uncertainties
associated with actual clinical trials.

In Fig. 1.6, in silico trials involve a comprehensive workflow that begins with im-
age acquisition, where high-resolution vascular images are obtained using techniques
such as 3DRA, MRA, CTA, and DSA. These images form the foundation for subsequent
steps. Segmentation [1] uses automated algorithms to isolate vessel and aneurysm struc-
tures, generating accurate three-dimensional models. These models undergo boundary
labelling to accurately define regions of interest, such as the aneurysm neck and ves-
sel walls. Following this, device and procedure modelling simulates the interaction of
medical devices, such as stents and coils, with vascular anatomy. The models are then
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converted into computationally suitable mesh structures composed of three-dimensional
elements representing the geometry of the vessels and aneurysms. Physiological and
lifestyle regimes are integrated to simulate different conditions and assess the impact
of lifestyle changes on vascular structures. CFD modelling and simulation [32, 33, 34]
are used to evaluate hemodynamic characteristics, such as blood flow velocity, wall
shear stress, and pressure distribution within vascular models. The INSILEX trial
infrastructure supports these processes by integrating computational tools, data man-
agement systems, and collaborative platforms. Physical performance testing ensures
the devices function correctly in the simulated environment, validated against real-
world data. The final step, functional performance, assesses how well these devices
perform under physiological conditions, completing the in silico trial process.

In silico trials offer significant advantages, including efficiency, non-invasiveness, and
the ability to process large numbers of cases quickly, generating high-quality data for
large-scale statistical analysis and personalised treatment planning. However, they also
face challenges such as the need for specialised expertise, complex model construction,
and substantial computational resources. The accuracy and verifiability of the models
are crucial for the success of these trials. In the development of aneurysm treatment
devices, in silico trials have been instrumental in optimising stent and coil designs by
simulating their performance and predicting their impact on blood flow, thus reducing
the risk and cost of clinical trials. As computing power and modelling techniques ad-
vance, the application of in silico trials is expected to expand in more medical fields,
further enhancing personalised medicine. Integration with big data and artificial intel-
ligence will improve the accuracy and efficiency of these simulations, providing more
reliable support for clinical decision-making [35].

1.2 Challenges in Vascular Disease Analysis

The analysis of vascular disease in both clinical and research settings presents several
challenges, including class imbalance [36, 37], insufficient labelling [38, 39], domain
shifts [40, 41], and source-agnostic learning difficulties [42, 43]. These challenges arise
from various factors, including data characteristics, technical limitations, and patient-
individual differences. In the diagnosis of aneurysms, these problems are particularly
pronounced. A single approach is often inadequate to address the diverse complexities
encountered in practical applications. The following are the main challenges in vascu-
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lature analysis, especially in aneurysm analysis, and how these challenges have led us
to propose corresponding solutions.

1.2.1 Class Imbalanced Data

In brain vascular images, there is often a significant imbalance in the proportion of
different anatomical structures and lesion areas.

For example, vascular structures typically account for less than 5% of brain tissue,
and the size of aneurysms generally accounts for less than 1% of brain tissue. This im-
balanced distribution leads to the dilemma: Traditional deep learning (DL) algorithms
tend to focus on the dominant categories during training while neglecting the minority
categories. However, the segmentation results we need are precisely these minority cat-
egories, such as aneurysms. If traditional deep learning-based medical image segment-
ation algorithms are used, the results often exhibit considerable over-segmentation. To
address the class imbalance issue, we propose a method for class imbalanced segment-
ation in Chapter 3 to improve the model’s segmentation performance on imbalanced
data, particularly for small targets such as aneurysms.

1.2.2 Insufficient Labelled Data

High-quality vascular image data typically require manual annotation, which is a time-
consuming and labour-intensive process. In medical imaging, the annotation process
especially requires in-depth expertise from specialists. As a result, there is a large
amount of unlabelled data that cannot be directly used for fully supervised training.
Additionally, even when data are labelled, they are often partially annotated rather
than fully annotated. This issue of insufficient labelling limits the performance of main-
stream fully supervised deep learning models, as these models rely on large amounts
of fully annotated data to learn accurate segmentation features. To address the is-
sue of insufficient labelling, we propose a method for Semi-supervised Segmentation
in Chapter 4. This method combines a small amount of labelled patch data with a
large amount of unlabelled patch data, using semi-supervised techniques to enhance
the model’s segmentation performance. Semi-supervised learning can effectively utilise
the unlabelled regions within partially annotated data and the entirely unlabelled data,
reducing the dependency of deep learning on labelled data and significantly improving
overall segmentation accuracy.
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1.2.3 Domain Shift

The acquisition of vascular images can come from different modalities, and there is often
a significant domain shift between these modalities. For example, the resolution, noise
levels, and pixel value distributions of the images can vary. In practice, our datasets may
come from multiple modalities, with annotations often available only in one modality
and not in others. For instance, only the 3DRA modality data might be annotated,
while the MRA modality data is not. In addition, these data are often not from the
same batch of patients and are unmatched. When we train a model on one modality
and then directly apply it to another, this domain shift between modalities can affect
the model’s performance on the target modality. So, how can we use these unannotated
modality data to improve the model’s performance on the target modality? To address
this issue, in Chapter 5, we propose a new unsupervised domain adaptation algorithm
that enables the model to adapt to datasets from different modalities, reducing the
impact of domain shift, and thus enhancing the model’s application scenarios.

1.2.4 Source Agnostic Data

The acquisition of vascular images can come from different devices, imaging parameters,
and patient populations. Data sources are often agnostic. The image resolution, noise
levels, and pixel value distributions can vary across source-agnostic data. When a model
is trained on one dataset and then applied to new data, the domain shift between the
inference data and training data can affect the model’s performance. In Chapter 6, we
propose a new Domain Generalization method aimed at training models that perform
well on source-agnostic data. By incorporating new parameter update mechanisms
during training, the model can learn to capture invariant features, enabling effective
application to new unseen data.

1.3 Thesis Contribution and Overview

1.3.1 Thesis Contributions

In this thesis, we address several key challenges in the analysis of vascular diseases by
proposing a series of significant innovative methods and techniques, both theoretically
and practically. The main contributions of this thesis are as follows:
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• Class Imbalanced Segmentation: To tackle the issue of class imbalance in
brain vascular images, we designed a new segmentation algorithm that signific-
antly improves the recognition of minority categories (aneurysms) while maintain-
ing high precision. By adjusting the small target-aware network structure and
utilising patch-based majority voting and self-refinement, our model performs
exceptionally well on aneurysm data, overcoming the limitations of traditional
methods in detecting small lesions.

• Semi-supervised Segmentation: To address the problem of insufficient la-
belling, we developed a semi-supervised learning method that combines a small
number of labelled patches with a large number of unlabeled patches, effect-
ively enhancing the performance of the segmentation model. The semi-supervised
learning technique reduces the reliance on expensive annotated data and improves
the robustness of the model.

• Unsupervised Domain Adaptation: To solve the issue of domain shift in vas-
cular images, we proposed an unsupervised domain adaptation method, enabling
the model to adapt to datasets from different modalities. With domain adapta-
tion techniques, our model shows greater robustness in cross-dataset applications
and can be effectively applied to the unlabeled target modality.

• Domain Generalization: To address the performance degradation of mod-
els when dealing with source-agnostic data, we explored domain generalization
techniques aimed at training models that perform well across multiple different
domains. Through multi-domain training and advanced learning paradigms, our
model maintains high efficiency in completely unknown environments, effectively
handling the diversity of devices, imaging parameters, and patient populations.

1.3.2 Thesis Overview

The structure of this thesis is as follows:

• Chapter 1: Introduction: This chapter introduces the research background
and motivation, provides an overview of brain vessel structure and aneurysm ba-
sics, and discusses vascular imaging techniques and the application of in silico
trials. It also outlines the main challenges in vascular disease analysis and pro-
poses innovative methods to address these challenges.
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• Chapter 2: Literature Review on Deep Learning in Vessel Aneurysm
Segmentation: A comprehensive review of deep learning techniques in the field
of vessel and aneurysm segmentation, covering existing data processing methods,
network architectures, optimisation techniques, and advanced learning paradigms.

• Chapter 3: Class Imbalanced Segmentation of Brain Vessel and An-
eurysm: This chapter details the segmentation method we designed to address
the issue of class imbalance and validates its effectiveness and advantages on
imbalanced data through experiments.

• Chapter 4: Semi-supervised Segmentation: This chapter introduces the
semi-supervised learning method we proposed and demonstrates how it enhances
the performance of the segmentation model by leveraging a small number of
labelled patches and a large number of unlabeled patches.

• Chapter 5: Domain Adaptation: This chapter discusses the unsupervised
domain adaptation technique we developed, explaining its role and effectiveness
in handling domain shifts between different modalities.

• Chapter 6: Domain Generalization: This chapter explores domain generaliz-
ation methods, showing how we trained models to maintain good performance on
source-agnostic data and validating these methods through related experiments.

• Chapter 7: Conclusions: This chapter summarises the main findings of the
thesis, discusses the limitations of the research, and proposes future research
directions.
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Literature Review on Deep Learning in Medical
Image Segmentation
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2.1 Introduction

Medical image segmentation is an important part of medical diagnosis and treatment.
In recent years, the development of deep learning technology has brought new op-
portunities for the segmentation of medical images, and deep learning methods have
achieved remarkable results in this field.

This engineering-focused review aims to systematically review the recent advances
in deep learning in medical image segmenting, focussing on the foundation models,
key modules, loss functions, optimisation algorithms, data processing techniques, some
advanced learning paradigms, and future research directions. Through this review, we
hope to provide a comprehensive reference for researchers and clinicians to help them
better understand and apply deep learning techniques for medical image segmentation
and to promote the development and progress of this area.

2.1 Introduction

2.1.1 Overview of Medical Image Segmentation

Medical image segmentation [44] distinguishes different structures, organs, and lesions
from the background in a medical image. This process is one of the tasks in medical
image analysis and an essential part of many downstream analysis tasks. Medical image
segmentation gives doctors more information to help them better diagnose diseases
and develop treatment plans. Traditional medical image segmentation methods are
usually based on image processing techniques and machine learning algorithms, which
typically require a lot of manual design and feature extraction. In recent years, the
development of deep learning technology [45] has brought new opportunities for medical
image segmentation, and deep learning methods have achieved remarkable results in
medical image segmentation tasks. This chapter aims to provide a comprehensive
understanding of medical image segmentation while laying the knowledge for subsequent
discussions on vessel and aneurysm segmentation.

2.1.2 Challenges of Deep Learning in Medical Image Segmentation

Although deep learning performs well in medical image segmentation, it still faces many
challenges. Below is a categorisation of the major challenges.
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Figure 2.1: Medical Image Segmentation. This figure is used from or adapted from
pictures provided by Servier Medical Art, licensed under a Creative Commons Attri-
bution 4.0 Unported License.

Challenges of data

The complexity and variability of medical image data is one of the major challenges
for deep learning models. Anatomical structures and lesion features vary significantly
from patient to patient, and image quality varies across imaging devices and imaging
conditions. In addition, noise and artefacts are often present in medical images, which
can affect the performance of modelling training and prediction. Multimodality of data
is also a problem; for example, the integration of data from different modalities, such
as MRI and CT, requires complex processing and calibration. In addition, the category
imbalance of medical image data is significant, where the target region of interest (e.g.,
tumour or lesion) occupies only a small portion of the image while normal tissues take
up the majority of the image, resulting in a tendency for the model to ignore small
targets during the training process. Missing and incomplete data can also adversely
affect model training and performance. Finally, the large volume of high-resolution
3D medical image data leads to high computational resource requirements for training
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deep learning models, which poses a great challenge for practical applications.

Challenges of labelling

High-quality medical image annotation requires in-depth knowledge and a lot of time
from experts, which leads to the high cost of annotating datasets. In addition, the
problem of inconsistent annotation quality is also common and different annotators
can produce subjective errors, leading to inconsistent annotation results. The labelling
process is not only time-consuming and laborious but also prone to errors, especially
in complex medical images, which can further affect the optimization direction and
final performance of the model. For some special lesions or rare diseases, it is even
more difficult to obtain high-quality labelled data, which limits the application and
promotion of deep learning models in these fields.

Challenges of model robustness and generalization ability

The robustness and generalisability of deep learning models are critical in clinical ap-
plications. Although models perform well when trained on specific datasets, they often
perform poorly on different datasets or under different imaging conditions, indicating
that the cross-modality and cross-domain generalization ability of models needs to be
improved. In addition, the model needs to have the ability to handle noise, artefacts,
and incomplete data to ensure stability and reliability in real clinical settings. Inter-
pretability and reliability of the models are also key issues, especially in the medical
field, where the decision-making process of the models needs to be transparent and in-
terpretable to gain the trust and recognition of clinicians. Improving the performance
of deep learning models in data from different sources and conditions is an important
direction of current research.

By overcoming these challenges, the application of deep learning in medical image
segmentation will become more extensive and efficient, providing more accurate and
reliable support for clinical diagnosis and treatment.

2.1.3 Objectives of This Literature Review

This review aims to systematically review recent advances in deep learning in medical
image segmentation, focussing on current challenges and solutions. By combining and
analysing the existing research results, this chapter will summarise the current status of
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deep learning applications in medical image segmentation and introduce the main deep
learning models and techniques. In this review, we discuss data preprocessing tech-
niques, including normalisation and data augmentation methods. We also evaluate the
performance of different deep learning models and modules, exploring their advantages,
disadvantages, and applicable scenarios. Additionally, we introduce the latest advanced
techniques, such as semisupervised learning, transfer learning, and multimodal learn-
ing, and analyse their potential applications and future prospects in medical image
segmentation. Finally, we summarise the limitations and challenges of current research
and propose future research directions along with possible solutions. Through this re-
view, we hope to provide a comprehensive reference for researchers and clinicians to
help them better understand and apply deep learning techniques for medical image
segmentation and to promote the development and progress of this field.

2.2 Dataset and Processing

A simple model can effectively accomplish segmentation tasks when powerful processing
techniques are applied. In contrast, even a powerful foundation model may not meet
basic segmentation requirements without adequate data processing. nnU-Net [46] ex-
emplifies this by improving segmentation outcomes through advanced data processing
strategies rather than modifying the network architecture. By employing various com-
binations of data processing techniques, nnU-Net has achieved remarkable success in
numerous image segmentation challenges.

2.2.1 Preprocessing

Table 2.1 summarises various preprocessing techniques designed to address common
issues in medical image segmentation, such as inconsistent image sizes, varying intens-
ities, noise and artefacts, and insufficient data. These techniques ensure that the input
data is standardised and robust, thus improving the performance and reliability of the
segmentation models.
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Table 2.1: Preprocessing Techniques in Medical Image Segmentation
Problem to Address Techniques

Inconsistent Image Sizes

Resampling (Patch-based Learning)
Interpolation

Resizing
Padding

Varying Intensities

Histogram Clipping
Intensity Normalisation

Intensity Standardisation
Intensity Scaling

Background, Noise, Artifacts

RoI Cropping
Gaussian Filtering
Median Filtering

Non-Local Means Filtering
Noise Addition

Artifact Reduction
Insufficient Data Data Augmentation

Medical images often originate from various devices and scanning protocols, result-
ing in varied image sizes. Several preprocessing techniques are employed to address this
issue. Resampling (Patch-Based Learning) adjusts image resolution by resampling to a
consistent patch size, ensuring uniform input data for training. Interpolation modifies
pixel values to a standard grid, standardising images in size and resolution. Resizing
scales images to a fixed size, standardising input dimensions for the model. The pad-
ding adds borders to images to achieve a consistent size, ensuring no information is lost
at the edges during resizing.

Differences in image intensities can arise due to varying imaging devices and pro-
tocols. Techniques to normalise these intensities include Histogram Clipping, which
excludes extreme values and only keeps the main content (usually 5 % to 95%, depend-
ing on the dataset and modality) on a histogram map to reduce intensity variations.
Intensity Normalisation scales pixel values to a specific range (usually 0 to 1). Intensity
standardisation converts pixel values to a standard distribution (usually zero mean and
unit variance), ensuring consistent contrast. Intensity scaling adjusts intensity values
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based on predefined scales, harmonising intensity levels across images.
Medical images often contain noise and artefacts that can interfere with model

training and predictions. Techniques to address these issues include RoI Cropping,
which focuses on relevant areas by cropping the region of interest (RoI) and removing
unnecessary background. Gaussian Filtering applies a Gaussian blur to reduce high-
frequency noise, smoothing the image. Median filtering uses the median of pixel values
in a neighbourhood to remove noise while preserving edges. Non-Local Means Filtering
reduces noise while preserving details by comparing similar patches in the image. Noise
addition adds synthetic noise to images during training to improve model robustness.
Artefact reduction involves techniques specifically designed to remove artefacts from
images, enhancing image quality.

Limited data can hinder model performance in medical image segmentation. Data
augmentation techniques generate additional training samples to improve model gen-
eralization by introducing variability in the training data. Various augmentation tech-
niques include geometric transformations (rotation, translation, scaling, shearing, flip-
ping, random cropping), intensity transformations (brightness adjustment, contrast ad-
justment, gamma correction), spatial transformations (grid distortion, elastic deform-
ation), noise addition (Gaussian noise, salt-and-pepper noise), colour transformations
(hue adjustment, saturation adjustment) and other advanced methods (random eras-
ing, mixup). Each of these techniques aims to enhance the diversity and robustness
of the training data, ensuring that the models can handle a wide range of real-world
(clinical) imaging scenarios.

These preprocessing techniques are essential for preparing medical images for deep
learning models, ensuring that data is standardised, robust, and ready for effective
model training and evaluation.

2.2.2 Postprocessing

Postprocessing techniques can refine and optimise the output from deep learning mod-
els. These techniques address various issues, such as noise reduction, edge refinement,
and structural coherence, thereby enhancing the overall accuracy and clinical utility of
the segmentation results.

Connected component analysis is commonly used to remove small, irrelevant regions
by identifying and retaining only the largest connected components, thus eliminating
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noise. Conditional processing based on Structure Size similarly removes small objects
based on size criteria to ensure only relevant anatomical structures remain. Techniques
like Conditional Random Fields (CRF) and Markov Random Fields (MRF) enhance
edge continuity, reduce noise, and improve the overall smoothness and consistency
of segmentation results by considering the spatial relationships between pixels. Aniso-
tropic diffusion smooths segmentation output while preserving critical edges, effectively
reducing noise and artefacts without blurring significant structural details. The hole-
filling addresses small gaps in the segmentation results, creating more continuous and
complete segmentations, which is essential for accurate medical analysis. Morphological
operations, including erosion, dilation, opening and closing, are crucial for boundary
smoothing, noise removal, and segmentation refinement. These operations ensure the
structural integrity of segmented regions. Statistical Shape Models utilise prior know-
ledge about anatomical shapes to correct deviations and ensure segmentation accuracy,
making the segmentation more reliable for clinical use.

By integrating these postprocessing techniques, the segmentation results become
more robust, accurate, and suitable for practical clinical applications. Even when
the segmentation output from deep learning models is less than ideal, postprocessing
can significantly improve the results. For example, in aneurysm segmentation, deep
learning models may struggle to locate aneurysms accurately. Using hybrid majority
voting [1] postprocessing can help generate multiple potential segmentation masks. This
approach increases the likelihood of identifying true aneurysms, shifting the focus from
avoiding false negatives to ensuring true positives are not missed. This transformation
emphasises thorough detection, ensuring critical areas are not overlooked.

Table 2.2: Postprocessing techniques and problems they address.
Technique Problem to Addressed

Connected Component Analysis Removal of small, irrelevant regions
Conditional Processing Based on Structure Size Removal of small objects based on size

Conditional Random Fields (CRF) Improving edge continuity and removing noise
Markov Random Fields (MRF) Enhancing smoothness and consistency

Anisotropic Diffusion Smoothing while preserving edges
Hole Filling Filling small holes in segmentation results

Morphological Operations Smoothing boundaries, refining segmentation
Statistical Shape Models Ensuring anatomical shape accuracy
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2.2.3 Vessel and Aneurysm Dataset

This section presents Table 2.3, which details various datasets related to brain vessels
and aneurysms. The table includes 13 public and private datasets related to different
modalities. Most of the datasets can be accessed by registering their challenge, or some
of them can be downloaded directly.

Each row represents a specific dataset and provides detailed information about it.
For instance, the Aneurist dataset contains 223 3DRA images, all of which have both
vessel and aneurysm annotations. Another example is the CROWN dataset, which
includes 300 MRA images but lacks vessel and aneurysm annotation information.

The purpose of this table is to offer a concise overview, helping researchers quickly
understand and compare the features and annotations of different datasets, thus aiding
in the selection of the most appropriate dataset for their research needs.

Dataset Modality Image Vessel Label Aneurysm Label
Aneurist [47] 3DRA 223 223 223

SHINY-ICARUS [48] 3DRA 35 35 -
Leeds General Infirmary 3DRA 163 - -

Aneurisk [49] 3DRA 99 - -
CROWN [50] MRA 300 - -

SMILE-UHURA [51] MRA 14 14 -
Aneurist [47] MRA 207 - -
ADAM [52] MRA 93 - 93

TubeTK [53] MRA 109 - -
Lausanne [54] MRA 284 - 284
Aneurist [47] CTA 198 - -

Aneurist-UPF [47] DSA 46 46 46
CADA [55] DSA 109 - 109
IntrA [56] MRA - 103 -

Table 2.3: Brain Vessel Aneurysm Dataset.
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2.3 Foundation Models for Medical Image Segmentation

2.3.1 CNN

Convolutional Neural Networks (CNNs) [57] are a class of deep learning models that
excel at processing data with grid-like topologies, such as images. The core principle
of CNNs involves the convolution operation, where filters or kernels are applied to
the input data to create feature maps. This process captures spatial hierarchies and
patterns in the data using layers of convolution, pooling, and nonlinear activations. For
image segmentation tasks, CNNs are particularly effective because they can learn to
recognise and delineate the boundaries of different regions within an image.

A prominent example of a CNN used for segmentation is the U-Net [58]. The
architecture of U-Net in Figure 2.2 is characterised by its U-shaped structure, com-
prising an encoder (downsampling path) and a decoder (upsampling path), connected
by skip connections that facilitate the transfer of high-resolution features from the en-
coder to the decoder. This design allows U-Net to localise and segment regions within
an image precisely. Table 2.4 summarises various types of U-Net, including backbone
block enhancement, bottleneck enhancement, skip connection enhancement, and learn-
ing structure enhancement.

(1) Backbone Block Enhancement

In Table 2.4 section 1, Backbone block enhancement refers to various advancements
and modifications made to the traditional U-Net feature, which extracts blocks in both
the encoder and decoder to improve its performance. These enhancements involve in-
tegrating additional blocks, layers, or mechanisms into the U-Net framework to address
specific challenges and improve accuracy, efficiency, and feature extraction capabilities.

The original U-Net [58] was designed for general biomedical image segmentation and
is known for its simplicity and effectiveness, particularly on small datasets. Building
upon this, V-Net [59] was developed to handle 3D volumetric data, making it suitable
for general 3D medical image segmentation. H-DenseUNet [60] introduced multiscale
feature fusion, which is particularly effective for gastric cancer image segmentation.
Thereafter, several enhancements were introduced: BCDU-Net [61] incorporated bid-
irectional, densely connected convolutions to improve breast cancer image segmenta-
tion; GP-Unet [62] employed gated-propagation for liver image segmentation; SUNet
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Figure 2.2: Variants of U-Net for Medical Image Segmentation. This figure illus-
trates various enhancements of the U-Net architecture categorised by modifications in
backbone networks, bottleneck layers, skip connections and overall network structures.
These advancements aim to improve segmentation performance by incorporating dif-
ferent design strategies and leveraging novel computational techniques.

[63] provided efficient segmentation for ultrasound images; and DUNet [64] utilised
a deformable block for retinal vessel segmentation. Dense Multi-path U-Net [65] in-
tegrated a multi-path block for stroke lesion segmentation, and Stacked Dense U-Nets
[66] applied dual transformation for accurate prostate segmentation. Additionally, Pro-
state U-net [67] achieved high accuracy in prostate segmentation, while LADDERNET
[68] enhanced multi-level feature integration for fundus image segmentation. Further
enhancements included USE-Net [69], which utilised squeeze-and-excitation blocks for
prostate zonal segmentation, and AnatomyNet [70], which provided efficient bone seg-
mentation with high accuracy for head and neck anatomy. Finally, nnU-Net [46] offered
automated configuration for diverse medical image segmentation tasks, establishing it-
self as a highly adaptable model for various applications.
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(2) Bottleneck Enhancement

In Table 2.4 section 2, bottleneck enhancement refers to improvements made to the
latent space in bottleneck layers within the deepest U-Net architecture. These enhance-
ments typically involve incorporating advanced attention mechanisms and multiscale
feature extraction techniques to improve the network’s ability to capture and utilise
relevant features.

Attention U-Net [71] introduces a deep attention-aware network designed specific-
ally for pancreas segmentation, allowing the model to focus on relevant areas of the
input image. SA-UNet [72] employs spatial attention for retinal vessel segmentation,
enhancing the model’s ability to learn spatial dependencies within the image. R2U-
Net [73] integrates a recurrent attention mechanism for skin lesion image segmenta-
tion, improving the model’s focus on lesion areas. RA-UNet [74] extends the attention
mechanism to liver and tumour segmentation, providing a deep attention-aware net-
work that enhances segmentation accuracy. MA-Net [75] utilises multiscale attention
for liver and tumour segmentation, capturing features at multiple scales to improve
performance. FRCU-Net [76] incorporates fusion and relation calibration for general
medical image segmentation, ensuring that features from different layers are effectively
combined. MDU-Net [77] applies a compound attention mechanism for skin lesion seg-
mentation, enhancing feature extraction and improving segmentation accuracy. JCS
[78] combines joint classification and segmentation for organs at risk, providing a com-
prehensive approach that improves both tasks simultaneously.

(3) Skip Connection Enhancement

In Table 2.4 section 3, skip connection enhancement refers to improvements and modific-
ations made to the skip connections within the U-Net architecture to enhance perform-
ance in medical image segmentation tasks. These enhancements typically involve in-
corporating advanced connectivity mechanisms and multiscale feature extraction tech-
niques to improve the network’s ability to capture and utilise relevant features effect-
ively.

U-Net++ [79] introduces nested U-Nets, which allow for improved feature fusion and
better gradient flow across the network, making it suitable for general medical image
segmentation tasks. Projective Skip-Connections [80] enhance connectivity for better
gradient flow, providing an efficient way to handle general image segmentation tasks.
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Table 2.4: Comparison of Different Segmentation Methods based on CNN
(1) Backbone Block Enhancement

Method Year Applications Highlight
U-Net[58] 2015 General Simple, effective for small datasets
V-Net[59] 2016 General 3D volumetric data

H-DenseUNet[60] 2018 Gastric cancer Multi-scale feature fusion
BCDU-Net[61] 2019 Breast cancer Bidirectional, densely connected
GP-Unet[62] 2020 Liver Gated-Propagation
SUNet[63] 2019 Ultrasound Efficient segmentation of ultrasound images
DUNet[64] 2019 Retinal vessel Deformable block

Dense Multi-path U-Net[65] 2021 Stroke Lesion Multi-path block
Stacked Dense U-Nets[66] 2019 Prostate Dual Transformation

Prostate U-net[67] 2019 Prostate High accuracy in prostate segmentation
LADDERNET[68] 2018 Fundus Multi-level feature integration

USE-Net[69] 2018 Prostate zonal Squeeze-and-Excitation blocks
AnatomyNet[70] 2019 Head and neck anatomy Efficient bone segmentation, high accuracy

nnU-Net[46] 2021 General Automated configuration for diverse tasks

(2) Bottleneck Enhancement

Method Year Applications Highlight
Attention u-net[71] 2018 Pancreas Deep attention-aware network

SA-UNet[72] 2019 Retinal vessel Spatial attention
R2U-Net[73] 2019 Skin lesion image Recurrent attention mechanism
RA-UNet[74] 2020 Liver and tumor Deep attention-aware network
MA-Net[75] 2020 Liver and tumor Multi-scale attention

FRCU-Net[76] 2020 General Fusion and relation calibration
MDU-Net[77] 2021 Skin lesion Compound attention mechanism

JCS[78] 2021 Organs at risk Joint classification and segmentation

(3) Skip Connection Enhancement

Method Year Applications Highlight
U-Net++[79] 2018 General Nested U-Nets

Projective Skip-Connections[80] 2018 General Enhanced connectivity for better gradient flow
Attention UNet++[81] 2020 Liver Nested attention mechanisms

U-Net 3+[82] 2020 General Enhanced multi-scale feature fusion

(4) Extra Structure Enhancement

Method Year Applications Highlight
Cascaded Unet[83] 2018 Brain tumor High segmentation accuracy for glioma

Probabilistic U-Net[84] 2018 General Probabilistic modeling, uncertainty estimation
Hierarchical Probabilistic U-Net[85] 2019 General Hierarchical modeling, uncertainty estimation

Polar Transformation U-Net[86] 2019 Retinal Polar transformation, multi-scale features
MRF-UNet[87] 2020 Brain tumor Markov random fields

Bayesian Skip Net[88] 2017 General Bayesian inference, uncertainty estimation
VAE U-Net[89] 2018 Brain Variational autoencoder

PMBR U-Net[90] 2019 Lung nodule Probability maps, recurrent connections
Path Aggregation U-Net[91] 2021 Brain tumor Deep supervision
Teacher-student network[92] 2021 Abdominal Knowledge distillation
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Attention UNet++ [81] employs nested attention mechanisms specifically designed for
liver segmentation, enabling the network to focus on relevant areas of the input image.
U-Net 3+ [82] enhances multiscale feature fusion, making it highly effective for general
medical image segmentation applications.

(4) Extra Structural Enhancement

In Table 2.4 section 4, learning structure enhancement demonstrates the improvement
based on the combination of the unet model and other task knowledge. These en-
hancements typically involve incorporating advanced probabilistic models, hierarchical
structures, and specialised transformations to improve the network’s ability to learn
and generalise from the data effectively.

Cascaded Unet [83] is designed for brain tumour segmentation and achieves high
segmentation accuracy for gliomas by employing a cascaded approach. Probabilistic
U-Net [84] introduces probabilistic modelling and uncertainty estimation, making it
suitable for general medical image segmentation tasks. Hierarchical Probabilistic U-
Net [85] extends this concept with hierarchical modelling to further improve uncertainty
estimation. Polar Transformation U-Net [86] applies polar transformations to enhance
multiscale feature extraction, making it effective for retinal image segmentation. MRF-
UNet [87] incorporates Markov random fields for brain tumour segmentation, enhan-
cing the network’s ability to model spatial dependencies. Bayesian Skip Net [88] uses
Bayesian inference for general medical image segmentation, providing robust uncer-
tainty estimation. VAE U-Net [89] combines the U-Net architecture with a variational
autoencoder for brain image segmentation, enhancing feature learning and representa-
tion. PMBR U-Net [90] leverages probability maps and recurrent connections for lung
nodule segmentation, improving segmentation accuracy. Path Aggregation U-Net [91]
employs deep supervision to enhance brain tumour segmentation. Finally, the Teacher-
student network [92] applies knowledge distillation techniques to improve abdominal
image segmentation.

2.3.2 Transformer

Transformer-based models in Table 2.5 have gained significant traction in the field of
medical image segmentation due to their ability to capture long-range dependencies
and contextual information effectively. These models can be broadly categorised into
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three main groups: Transformer-Enhanced U-Net Variants, Standalone Transformer
Backbone Designs, and Hybrid and Specialized Transformer Networks.

Transformer-Enhanced U-Net Variants

Transformer-enhanced U-Net variants integrate transformer architectures into the tra-
ditional U-Net framework to enhance feature learning and segmentation accuracy. Not-
able examples include TransU-Net[93], which incorporates enhanced contextual fea-
ture learning, and CoTr[94], which utilises a deformable transformer architecture for
abdominal organ segmentation. UTNet[95] integrates a transformer encoder block,
making it suitable for cardiac segmentation tasks, while Transclaw u-net[96] combines
convolution with a transformer in the encoder to handle multi-organ segmentation.
TransFuse[97] and TransBTSV2[98] improve feature fusion and brain tumour segment-
ation through transformer CNN feature fusion and enhanced swin transformer, re-
spectively. RTNet[99] focuses on retinal segmentation by leveraging relation and global
transformer blocks, whereas AFter-UNet[100] and UNETR[101] offer robust feature
representation through axial fusion transformers and robust feature representation,
respectively. MTU-Net[102] employs multiscale transformers for skin lesion segmenta-
tion, and UCTransNet[103] utilises multi-head attention in skip connections for multi-
organ and cell nucleus segmentation. Swin-UNet[104], DS-TransUNet[105], and Swin
UNETR[106] applies sliding window and self-supervised learning for multi-organ seg-
mentation. Recent developments include LeViT-UNet[107], which employs faster en-
coders, and TransAttUnet[108], which incorporates multi-level attention mechanisms.
PAG-TransYnet[109] introduces a hybrid dual pyramid transformer-CNN, further im-
proving segmentation performance.

Standalone Transformer Backbone Design

Standalone Transformer Backbone Designs replace traditional convolutional networks
with pure transformer architectures. ViT[110] and nnFormer[110] exemplify this ap-
proach by using pure vision transformers without CNNs and incorporating local and
global volume-based self-attention mechanisms. Medical-Transformer[111] employs a
Local-Global training strategy to enhance segmentation accuracy, while MISSFormer[112]
models local context and multiscale features. UNETR[101] applies pure vision trans-
formers for brain tumour and spleen segmentation, providing robust performance without
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CNNs. HT-Net[113] introduces a hierarchical context-attention transformer, and D-
former[114] utilises dilated transformers to improve segmentation accuracy. MedNeXt[115]
leverages a transformer-driven ConvNeXt architecture, offering enhanced performance
across various medical image segmentation tasks.

Hybrid and Specialized Transformer Networks

Hybrid and Specialised Transformer Networks combine transformers with other archi-
tectures or tailor them for specific applications. Multi-Branch Hybrid Transformer[116]
integrates multiple body-edge branches for corneal endothelial cell segmentation, while
Multi-Compound Transformer[117] learns cross-scale dependencies of different pixels
for cell nuclei instance segmentation. Cross-Teaching Transformer[118] employs semi-
supervised learning for cardiac segmentation, and Spine-transformers[119] use learnable
positional embeddings for spine segmentation. Boundary-aware Transformer[120] fo-
cuses on extracting local details for skin lesion segmentation. Dor polyp segmentation
task, Polyp-PVT[121] fuses different-level features and ColonFormer[122] provide en-
hanced multiscale feature extraction and hierarchical multi-level network. SE-Transformers[123]
incorporate squeeze and expansion mechanisms for general medical image segmentation
tasks. ST-GAN[124] combines GANs with transformers for cardiac segmentation.

2.3.3 Mamba

Mamba[125] is a novel sequence model architecture that enhances traditional state space
models through the use of Selective State Space Models (SSMs). Unlike previous mod-
els, Mamba adjusts SSM parameters in an input-dependent manner, allowing the model
to selectively transmit or forget information based on the current data, thus address-
ing the limitations faced by earlier models in handling discrete and information-dense
data such as text. Although this approach precludes the use of efficient convolution
calculations, researchers have developed a hardware-aware parallel algorithm to run in
a recursive manner, enabling Mamba to achieve inference speeds five times faster than
traditional Transformers and linear scaling with sequence length. Mamba’s unique fea-
tures include its rapid processing capability, selective SSM layers, and hardware-friendly
design inspired by FlashAttention[126], making it a significant advancement in the field
of machine learning. This innovative architecture is a simple generalization of the S4
architecture (Structured State Spaces for Sequence Modeling) previously developed by
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Table 2.5: Comparison of Different Segmentation Methods based on Transformer
(1) Transformer-Enhanced U-Net Variants

Method Year Applications Highlight
TransU-Net[93] 2021 General Enhanced contextual feature learning

CoTr[94] 2021 Abdominal organ Deformable transformer architecture
UTNet[95] 2021 Cardiac Transformer encoder block

Transclaw u-net[96] 2021 Multi-organ Combines convolution with transformer in encoder
TransFuse[97] 2021 General Transformer CNN feature fusion

TransBTSV2[98] 2022 Brain tumor Enhanced swin transformer
RTNet[99] 2022 Retinal Relation and global transformer block

AFter-UNet[100] 2022 General Axial fusion transformer
UNETR[101] 2022 General Robust feature representation

MTU-Net[102] 2022 Skin lesions Multi-scale transformers
UCTransNet[103] 2022 Multi-organ, cell nucleus Multi-head attention in skip connection
Swin-UNet[104] 2022 General Enhanced multi-scale feature extraction

DS-TransUNet[105] 2022 General Transformer interactive fusion module
Swin UNETR[106] 2022 Multi organs Self-supervised learning
LeViT-UNet[107] 2023 General Faster encoders

TransAttUnet[108] 2023 General Multi-level attention
PAG-TransYnet[109] 2024 General Hybrid dual pyramid transformer-CNN

(2) Standalone Transformer Backbone Design

Method Year Applications Highlight
ViT[110] 2021 General Pure vision transformer without CNN

nnFormer[110] 2021 General local and global volume-based self-attention mechanism
Medical-Transformer[111] 2021 General Local-Global training strategy

MISSFormer[112] 2022 General modeling local context, multi-scale features
UNETR[101] 2022 Brain tumor, spleen Pure vision transformer without CNN
HT-Net[113] 2022 General Hierarchical context-attention transformer

D-former[114] 2023 General Dilated Transformer
MedNeXt[115] 2023 General Transformer-driven ConvNeXt

(3) Hybrid and Specialized Transformer Networks

Method Year Applications Highlight
Multi-Branch Hybrid Transformer[116] 2021 Corneal endothelial cell Hybrid Transformer with multiple body-edge branches

Multi-Compound Transformer[117] 2021 Cell nuclei instance Learning the cross-scale dependencies of different pixels
Cross-Teaching Transformer[118] 2022 Cardiac Semi-supervised learning

Spine-transformers[119] 2022 Spine Learnable positional embeddings
Boundary-aware Transformer[120] 2021 Skin lesion extract local details

Polyp-PVT[121] 2021 Polyp Fuse different-level features
SE-Transformers[123] 2021 General Squeeze and expansion

ColonFormer[122] 2022 Colon polyp Hierarchical multi-level network
ST-GAN[124] 2023 Cardiac GAN combined with Transformer
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Albert Gu, allowing Mamba to rival or surpass Transformers in language modelling.
The Mamba-UNet family comprises various segmentation methods tailored for dif-

ferent medical imaging tasks, each with distinct enhancements and benefits. U-Mamba
leverages residual blocks followed by the SSM-based Mamba block, making it suitable
for abdominal organ segmentation [127]. Mamba-UNet integrates the Mamba archi-
tecture within a U-Net structure, excelling in abdominal organs and cardiac segment-
ation [128]. H-vmunet employs a high-order 2D-selective-scan, enhancing perform-
ance in general segmentation tasks [129]. Mamba-HUNet introduces a Hierarchical
Upsampling Network, specifically beneficial for Multiple Sclerosis lesion segmentation
[129]. P-Mamba incorporates a Perona Malik diffusion block for echocardiographic ap-
plications [130], while ProMamba utilises a prompt mechanism for polyp segmentation
[131]. TM-UNet features a Triplet SSM, applicable in general segmentation tasks [132].
Semi-Mamba-UNet integrates self-supervised pixel-level contrastive learning for cardiac
segmentation [133].

Swin-UMamba combines SwinUNet with a visual state space block for general
segmentation tasks [134]. UltraLight VM-UNet processes features in parallel Vision
Mamba, enhancing skin lesion segmentation [135]. VM-UNet adopts a pure SSM-based
model, suitable for general applications [136], while VM-UNET-V2 infuses semantics
and detail, excelling in general tasks [137]. Weak-Mamba-UNet utilises scribble-based
annotations, beneficial for cardiac segmentation [138]. LMa-UNet employs large Mamba
kernels for abdominal organ segmentation [139]. LightM-UNet focuses on long-range
spatial dependencies through a residual pure Mamba fashion [140]. SegMamba excels
in whole-volume feature modelling, particularly for brain tumour segmentation [141].
Lastly, T-Mamba uses shared positional encoding and frequency-based features for
tooth segmentation [142].

In Table 2.6, these methods collectively showcase the versatility and advanced cap-
abilities of the Mamba-UNet variants across a wide range of medical imaging tasks,
each tailored to address specific challenges and enhance segmentation performance in
their respective domains.
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Method Year Application Highlight
U-Mamba[127] 2024 Abdominal organ Residual blocks followed by the SSM-based mamba block

Mamba-UNet[128] 2024 Abdominal organ, cardiac Mamba in unet structure
H-vmunet[129] 2024 General High-order 2D-selective-scan

Mamba-HUNet[129] 2024 Multiple Sclerosis lesion Hierarchical Upsampling Network
P-Mamba[130] 2024 Echocardiographic Perona Malik diffusion block
ProMamba[131] 2024 Polyp Prompt
TM-UNet[132] 2024 General Triplet SSM

Semi-Mamba-UNet[133] 2024 Cardiac Self-supervised pixel-level contrastive learning
Swin-UMamba[134] 2024 General SwinUNet with visual state space block

UltraLight VM-UNet[135] 2024 skin lesion Process features in parallel Vision Mamba
VM-UNet[136] 2024 General Pure SSM-based model

VM-UNET-V2[137] 2024 General Semantics and detail infusion
Weak-Mamba-UNet[138] 2024 Cardiac Scribble-based annotations

LMa-UNet[139] 2024 Abdominal organ large Mamba kernels
LightM-UNet[140] 2024 Chest Residual pure Mamba fashion for long-range spatial dependencies

SegMamba[141] 2024 Brain tumor Excels in whole volume feature modeling
T-Mamba[142] 2024 Tooth Shared positional encoding, frequency-based features

Table 2.6: Comparison of Different Segmentation Methods based on Mamba.

2.4 Learning Paradigms

2.4.1 Fully-supervised Learning

Principles

Fully-supervised learning in medical image segmentation involves training models using
a comprehensive dataset where each image is paired with a corresponding ground truth
segmentation mask. This paradigm leverages the availability of detailed annotations to
learn direct mappings from input images to their respective segmentations.

Problem Formulation

In the fully-supervised learning framework, we aim to learn a mapping function f : X →
Y where X represents the input images and Y denotes the ground truth segmentation
masks. Given a training dataset {(xi, yi)}N

i=1, where xi ∈ X and yi ∈ Y , the objective is
to minimise the discrepancy between the predicted segmentation ŷi = f(xi; θ) and the
ground truth yi. Formally, this can be expressed as the minimisation of a loss function
Lfully:
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min
θ

1
N

N∑
i=1

L(f(xi; θ), yi)

Where θ denotes the parameters of the model. Commonly used loss functions in
fully supervised learning for medical image segmentation are introduced below. The
performance of fully-supervised models is evaluated using metrics such as the Dice
coefficient, Intersection over Union, etc. The details of evaluation metrics are described
in Section 2.5. Fully-supervised learning relies on large, annotated datasets to train
models that can accurately segment medical images. The effectiveness of these models
is highly dependent on the quality and quantity of the labelled data. With enough
data, the robustness and generalization of the network will be qualitatively enhanced.

Techniques in Fully-Supervised Learning

Fully-supervised learning primarily relies on labelled data to train models. One of the
key techniques in fully-supervised learning is the use of loss functions [143]. These
functions measure the discrepancy between the predicted outputs and the actual la-
bels, guiding the optimisation process to improve model performance. Various loss
functions are tailored to handle specific challenges, such as class imbalance, boundary
accuracy, and hard-to-classify examples. By carefully choosing and combining these
loss functions, fully-supervised learning can achieve high accuracy and robustness in a
wide range of applications.

(1) Pixel-based Losses
True positives (TP), false positives (FP), true negatives (TN), and false negatives

(FN) are commonly used terms in binary classification problems to evaluate the per-
formance of a model. TP means the number of correctly predicted positive samples.
FP means the number of incorrectly predicted positive samples. TN means the num-
ber of correctly predicted negative samples. FN means the number of missed positive
samples (i.e., incorrectly predicted as negative).

Dice loss [144] measures the overlap between the predicted segmentation and the
ground truth. It is particularly suitable for imbalanced datasets as it directly optimises
the Dice coefficient, a measure of similarity. The loss function is defined as:

Dice Loss = 1 − 2TP
2TP + FP + FN (2.1)
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This loss function balances precision and recall, ensuring that small structures are
adequately segmented.

Tversky loss [145] is a generalization of dice loss, which allows the weighting of false
positives and false negatives. It is defined as:

Tversky Loss = 1 − TP
TP + αFP + βFN (2.2)

where α and β control the penalties for FP and FN, respectively. This flexibility makes
it suitable for highly imbalanced datasets.

Surface-to-surface loss [143] measures the average distance between the surfaces of
the predicted segmentation and the ground truth. This loss provides a robust metric
for assessing the quality of the segmentation, particularly in 3D medical imaging tasks.
By focusing on the surfaces, it ensures that the predicted segmentation closely aligns
with the true anatomical boundaries.

Surface-to-Surface Loss = 1
N

N∑
i=1

(
min
y∈∂G

d(xi, y) + min
x∈∂P

d(yi, x)
)

(2.3)

where N = |∂P | + |∂G|, and ∂P and ∂G represent the sets of surface points of the
predicted segmentation and the ground truth, respectively, and d(x, y) denotes the
Euclidean distance between points x and y.

(2) Distribution-based Losses
Cross-entropy (CE) loss [143] measures the performance of a classification model

whose output is a probability value between 0 and 1.

CE Loss = − 1
N

N∑
i=1

[yi log(pi) + (1 − yi) log(1 − pi)] (2.4)

where yi is the ground truth label and pi is the predicted probability. CE Loss is widely
used in segmentation tasks for its effectiveness in handling multi-class problems.

Focal loss [?] down-weights the contribution of easy examples and focuses more on
hard examples. It is particularly useful for addressing class imbalance.

Focal Loss = − 1
N

N∑
i=1

αi(1 − pi)γ log(pi) (2.5)

where N is the total number of samples, yi is the ground truth label, pi is the predicted
probability for the positive class, αi is a weighting factor for class imbalance, and γ is
the focusing parameter that adjusts the down-weighting effect on easy examples.
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(3) Composite Losses
DiceCE loss [143] combines Dice Loss and Cross-Entropy Loss to improve perform-

ance, particularly on imbalanced datasets. Leveraging the strengths of both losses
ensures accurate class probabilities and good overlap with the ground truth.

DiceFocal loss [143] combines Dice Loss with Focal Loss to focus more on hard-to-
classify examples. It enhances the segmentation quality by addressing class imbalance
and difficult cases simultaneously.

TopK loss [143] focuses on the top K most difficult pixels to classify, improving
performance in challenging areas. By giving more weight to the hardest examples, it
enhances the model’s ability to handle difficult cases. The TopK Loss is defined as:

TopK Loss = 1
K

∑
i∈TopK

Li (2.6)

where Li represents the loss for each pixel i (i.e., Dice loss), and TopK denotes the
set of K pixels with the highest individual losses. This formulation ensures that the
model pays more attention to the hardest-to-classify pixels, thus improving overall
segmentation performance, especially in difficult areas.

Extended logarithmic (EL) loss [146] is designed to handle extreme class imbalance
by applying a logarithmic transformation to the predicted probabilities, enhancing the
distinction between different classes. The loss function is defined as:

EL Loss = − 1
N

N∑
i=1

(yi log(1 + pi) + (1 − yi) log(1 + (1 − pi))) (2.7)

Here, N is the number of samples, yi is the ground truth label for sample i, and pi is
the predicted probability for the positive class for sample i. By incorporating the logar-
ithmic transformation, ELL increases the penalty for misclassifying the minority class,
thus improving the model’s ability to distinguish between classes in highly imbalanced
datasets.

2.4.2 Semi-supervised Learning

Principles

Semi-supervised learning in medical image segmentation [38] is designed to utilise both
labelled and unlabelled data to improve the performance of segmentation models. Given
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the high cost and time associated with obtaining fully annotated medical images, semi-
supervised learning methods are increasingly valuable. These methods leverage a small
labelled dataset along with a larger unlabelled dataset to enhance the learning process,
often employing techniques such as consistency regularisation, pseudo-labelling, and
teacher-student frameworks.

Problem Formulation

In the semi-supervised learning framework, we aim to learn a mapping function f :
X → Y where X represents the input images and Y denotes the ground truth seg-
mentation masks. Given a training dataset consisting of labelled data {(xl

i, yl
i)}

Nl
i=1 and

unlabelled data {xu
i }Nu

i=1, the objective is to leverage both datasets to improve segment-
ation performance. Formally, this can be expressed as the minimisation of a combined
loss function L that includes supervised loss on labelled data Ls and unsupervised loss
on unlabelled data Lu:

min
θ

 1
Nl

Nl∑
i=1

Ls(f(xl
i; θ), yl

i) + λ
1

Nu

Nu∑
i=1

Lu(f(xu
i ; θ))


Where θ denotes the parameters of the model and λ is a weighting factor that balances
the contribution of the supervised and unsupervised losses.

Techniques in Semi-supervised Learning

Pseudo-labelling [147] involves initially training a model on the labelled dataset to
generate pseudo-labels for the unlabelled data. These pseudo-labels are treated as
ground truth in subsequent training iterations, effectively expanding the training set
and iteratively refining the model’s performance.

The teacher-student framework [148] comprises two models: a teacher and a student.
The teacher model, trained on labelled data, generates pseudo-labels for the unlabelled
data. The student model is then trained using both labelled and pseudo-labelled data.
Kullback-Leibler Divergence loss is often used to align the predictions of the student
model with those of the teacher model, ensuring effective learning from the teacher and
improving the student’s performance.

Uncertainty analysis [149] involves using uncertainty estimates to weight the loss
function, focusing on areas with high uncertainty. By prioritising these uncertain re-
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gions, the model can learn to handle challenging cases more effectively, thereby improv-
ing its robustness.

Confidence learning [150] penalises the model based on the confidence of its pre-
dictions. By encouraging high-confidence correct predictions, this technique helps in
improving the reliability and trustworthiness of the segmentation outputs.

Consistency regularisation [151] ensures that the model generates stable predictions
under various augmentations or perturbations of the input data. This technique in-
volves applying transformations such as rotation, scaling, or noise addition to both
labelled and unlabelled data and encouraging the model to maintain consistent output
despite these changes.

2.4.3 Unsupervised Learning

Principles

Unsupervised learning in medical image segmentation [152] focuses on training models
without using labelled data. This approach is advantageous when labelled datasets
are scarce or unavailable. The primary objective is to discover patterns and structures
within the data that can facilitate segmentation without explicit supervision. Tech-
niques such as clustering, autoencoders, and generative models are commonly employed
in this paradigm.

Self-supervised learning is a specific type of unsupervised learning where the model
learns to segment images using automatically generated labels or pseudo-labels. This
approach leverages abundant unlabelled data by creating supervisory signals from the
data itself, thus eliminating the need for large annotated datasets. Self-supervised
methods typically involve pretext tasks designed to train the model to understand the
underlying structure of the images.

Problem Formulation

In the unsupervised learning framework, the goal is to learn a mapping function
f : X → Y where X represents the input images and Y represents the latent seg-
mentation maps. Given a training dataset {xi}N

i=1 where xi ∈ X, the objective is to
identify underlying patterns and structures in the data that correspond to meaningful
segmentations. Formally, this can be expressed as the minimisation of an unsupervised

38



2.4 Learning Paradigms

loss function Lu:

min
θ

1
N

N∑
i=1

Lu(f(xi; θ))

Where θ denotes the parameters of the model. The loss function Lu is designed to
capture the intrinsic structure of the data without relying on labelled examples.

In the context of self-supervised learning, the goal is to learn a robust representation
f : X → Z from the input images X to a latent space Z using pretext tasks. These
tasks are designed to generate pseudo-labels that serve as the ground truth for training.
Given a dataset {xi}N

i=1 where xi ∈ X, the objective is to learn a representation that
can be transferred to downstream segmentation tasks. Formally, this can be expressed
as the minimisation of a self-supervised loss function Lss:

min
θ

1
N

N∑
i=1

Lss(f(xi; θ), g(xi))

Where θ denotes the parameters of the model and g is a function that generates pseudo-
labels from the data itself.

Techniques

Autoencoders are neural networks trained to reconstruct their input data. By learning
to compress and decompress the input images, autoencoders capture significant fea-
tures that can be used for segmentation. Variational autoencoders (VAE) [153] extend
this idea by incorporating probabilistic modelling, allowing the model to generate new
samples from the learnt latent space, which can facilitate the discovery of meaningful
segmentations.

Generative adversarial networks (GANs) [154] consist of a generator and a dis-
criminator network. The generator creates synthetic images, while the discriminator
distinguishes between real and synthetic images. When applied to segmentation, the
generator can produce segmentation masks that the discriminator evaluates. This ad-
versarial process encourages the generation of realistic segmentation masks.

Contrastive learning [155] involves learning representations by comparing similar
and dissimilar pairs of images. The model is trained to bring the representations of
similar pairs closer and push apart those of dissimilar pairs. Methods like SimCLR[156]
and MoCo [157] are popular in the unsupervised representation learning domain.
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By combining various techniques within the unsupervised learning paradigm, in-
cluding self-supervised learning as a specific approach, it is possible to effectively lever-
age unlabelled data to improve medical image segmentation, reducing the dependence
on large annotated datasets and enhancing the robustness of the models.

2.4.4 Hybrid Learning

Principles

Hybrid learning combines multiple learning paradigms to leverage their complement-
ary strengths and improve model performance. In medical image segmentation, hybrid
learning methods often integrate aspects of supervised, semi-supervised, and unsuper-
vised learning, as well as techniques like transfer learning and reinforcement learning.
The goal is to create more robust and generalisable models by utilising various sources
of information and different training strategies.

Techniques in Hybrid Learning

Transfer learning [158] involves using a pre-trained model on a large dataset (e.g.,
ImageNet) and fine-tuning it on a smaller, domain-specific dataset. This approach
leverages the knowledge gained from the large dataset to improve performance on the
target task. Transfer learning is particularly useful in medical image segmentation,
where labelled data is often scarce.

Domain adaptation [159] techniques aim to generalise a model trained on a source
domain to perform well on a target domain with different data distributions. Methods
like domain adversarial neural networks (DANN) and maximum mean discrepancy
(MMD) help align the feature distributions between the source and target domains.
This is crucial for medical imaging, where data from different scanners or protocols can
vary significantly.

Domain generalization [42] techniques extend the concept of domain adaptation by
enabling models to generalise to unseen domains. Approaches like learning invariant
representations and using meta-learning strategies help models perform well across
various domains without requiring access to target domain data during training.

Incremental learning[160], also known as continuous learning, involves updating
a model continuously as new data becomes available. Techniques such as memory-
augmented networks and rehearsal methods help the model retain knowledge of previ-
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ously seen data while adapting to new tasks. This is particularly important in medical
imaging, where new data and evolving protocols are common.

Multi-task learning [161] involves training a single model to perform multiple re-
lated tasks simultaneously. In the context of medical image segmentation, this could
mean combining segmentation with tasks such as classification, detection, or anatomical
landmark identification. By sharing representations across tasks, multi-task learning
can improve the performance and efficiency of the model. Techniques such as hard
parameter sharing and task-specific layers are commonly used in multi-task learning
frameworks.

2.5 Evaluation and Analysis

2.5.1 Quantitative Evaluation

Quantitative evaluation in medical image segmentation involves using specific metrics
to objectively measure the performance of segmentation algorithms. These metrics
provide a numerical assessment of how well the predicted segmentation aligns with the
ground truth. Table 2.7 are some common evaluation metrics along with their formulas:
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Table 2.7: Evaluation Metrics and Their Formulas
Metric Formula

Dice Similarity Coefficient 2×T P
2×T P +F P +F N

Jaccard Coefficient T P
T P +F P +F N

Volumetric Similarity 1 − |F N−F P |
2×T P +F N+F P

Hausdorff Distance max
{
maxp∈S minp′∈S′ ∥p − p′∥, maxp′∈S′ minp∈S ∥p′ − p∥

}
Average Hausdorff Distance 1

|S|
∑

p∈S minp′∈S′ ∥p − p′∥

Balanced Average Hausdorff Distance 1
2 (AHD(S, S′) + AHD(S′, S))

Mean (Average) Surface Distance 1
|S|
∑

p∈S minp′∈S′ ∥p − p′∥

Median Surface Distance medianp∈S

(
minp′∈S′ ∥p − p′∥

)
95th Percentile Hausdorff Distance percentile95

(
minp′∈S′ ∥p − p′∥, minp∈S ∥p − p′∥

)
Standard Deviation of Surface Distance

√
1

|S|
∑

p∈S

(
minp′∈S′ ∥p − p′∥ − MSD(S, S′)

)2
Sensitivity (Recall, True Positive Rate) T P

T P +F N

Specificity (True Negative Rate) T N
T N+F P

Precision T P
T P +F P

Accuracy T P +T N
T P +T N+F P +F N

Balanced Accuracy 1
2

(
T P

T P +F N + T N
T N+F P

)
F1 Score (F-Measure) 2×Precision×Recall

Precision+Recall

Mutual Information ∑
x∈X

∑
y∈Y p(x, y) log

(
p(x,y)

p(x)p(y)

)
Cohen Kappa po−pe

1−pe

Rand Index T P +T N
T P +T N+F P +F N

Adjusted Rand Index RI−E[RI]
max(RI)−E[RI]

Interclass Correlation σ2
b

σ2
b
+σ2

w

False Positive Rate (Fallout) F P
F P +T N

False Negative Rate F N
F N+T P

2.5.2 Qualitative Analysis

Qualitative analysis in Table 2.8 involves visual inspection of the segmentation results to
assess the accuracy and quality of the predictions. This can include various techniques
such as overlaying segmentation masks on the original images, using attention maps,
and employing other visualisation tools to intuitively understand the performance of
the model. Here are the key components of qualitative analysis in medical image

42



2.5 Evaluation and Analysis

segmentation.
Overlaying Segmentation Masks [162]: One of the most straightforward methods

for qualitative analysis is to overlay the predicted segmentation masks on the original
medical images. This helps in visually assessing how well the segmented regions align
with the actual structures in the images. By examining these overlays, researchers and
clinicians can quickly identify areas where the model performs well and areas where it
may need improvement.

Attention Maps [163]: Attention maps are another powerful tool for qualitative
analysis. These maps highlight the regions of the image that the model focuses on
when making its predictions. By visualising attention maps, one can gain insights into
the decision-making process of the model, understand which parts of the image are
considered most important, and identify any potential biases or errors in the model’s
focus. This is particularly useful in complex segmentation tasks where understanding
the model’s attention can lead to better model interpretation and refinement.

Saliency Maps [164]: Saliency maps indicate the importance of each pixel in the
image for the model’s prediction. These maps help in understanding which parts of
the image contribute most to the final segmentation output. Saliency maps are useful
for identifying key features and ensuring that the model correctly identifies relevant
anatomical structures.

Gradient-weighted Class Activation Mapping (Grad-CAM) [165]: Grad-CAM is a
technique that uses the gradients of any target concept flowing into the final convolu-
tional layer to produce a coarse localisation map, highlighting the important regions in
the image. This method is particularly useful for understanding deep learning models,
as it provides a visual explanation for the model’s decision.

Error Maps [166]: Error maps can be generated to highlight the differences between
the predicted segmentation and the ground truth. These maps can show false positives,
false negatives, and areas of disagreement, providing a clear visualisation of the model’s
performance and areas needing improvement. Error maps can be used on both point-
based mesh data and pixel-based image data.

3D Visualisations [167]: For volumetric data such as MRI or CT scans, 3D visual-
isations of the segmented regions can provide a more comprehensive understanding of
the model’s performance. By examining the 3D structures, researchers can assess the
spatial accuracy and continuity of the segmentation across different slices.
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Table 2.8: Qualitative Analysis Techniques for Medical Image Segmentation
Technique Highlight

Overlaying Masks Overlaying predicted masks on original images to check alignment and accuracy.

Attention Maps Visualises the model’s focus regions to understand its decision-making process.

Saliency Maps Indicates the importance of each pixel for model prediction, identifying key features.

Grad-CAM Uses gradients to create localisation maps highlighting important image regions

Error Maps Differences between predictions and GT, showing FP, negatives, and disagreements.

3D Visualisations Views of segmented volumetric structures, assessing spatial accuracy and continuity.

By incorporating these visualisation techniques, qualitative analysis can provide
valuable insights into the performance and reliability of medical image segmentation
models, complementing the quantitative metrics and enhancing the overall evaluation
process.

2.5.3 Statistical Analysis

Statistical analysis in medical image segmentation is crucial for validating the robust-
ness and reliability of segmentation models. It involves the application of various
statistical techniques to interpret, compare and understand the performance metrics
and outcomes of the segmentation models. Table 2.9 shows key components and meth-
odologies for conducting comprehensive statistical analysis.
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Table 2.9: Evaluation Metrics and Their Formulas
Statistical Approach Detailed Methods

Descriptive Statistics
Mean

Standard Deviation
Median

Inferential Statistics
Hypothesis Testing

T-Test
ANOVA

Chi-Square Test
Confidence Intervals
Regression Analysis

Correlation Analysis
Pearson Correlation

Spearman Rank Correlation

Agreement Metrics
Cohen Kappa

Intraclass Correlation Coefficient

Descriptive statistics summarise the basic features of the dataset and the results
from the segmentation models. Commonly used descriptive statistics include measures
of central tendency (mean, median, mode) and measures of variability (standard de-
viation, variance, range). These statistics help in understanding the distribution and
spread of performance metrics like the Dice coefficient, Jaccard index, and Hausdorff
distance. Specifically, the mean value provides the average value of the performance
metrics across all samples. Standard deviation indicates the amount of variation or
dispersion from the mean. The median value represents the middle value in the distri-
bution, offering a measure that is less sensitive to outliers.

Inferential statistics allow researchers to make inferences about the population from
which the samples are drawn. This includes hypothesis testing, confidence intervals,
and regression analysis. Hypothesis testing is used to determine if there are significant
differences between the performances of different models or between the predicted and
ground truth segmentations. Common tests include t-tests, analysis of variance (AN-
OVA), and chi-square tests. Specifically, the t-test assesses whether the means of the
two groups are statistically different from each other. ANOVA is used when comparing
the means of more than two groups. The chi-square test evaluates whether there is
a significant association between categorical variables. Confidence intervals provide a
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range of values that likely contain the true population parameter. It helps understand
the precision of the estimated performance metrics. Regression analysis examines the
relationship between dependent and independent variables. In segmentation, it can be
used to understand how various factors (e.g., image quality and patient demographics)
impact segmentation performance.

Correlation analysis measures the strength and direction of the relationship between
two variables. In the context of medical image segmentation, it can be used to ex-
plore the relationships between different performance metrics or between segmentation
performance and other clinical variables. Pearson correlation measures the linear re-
lationship between two continuous variables. Spearman rank correlation assesses the
monotonic relationship between two ranked variables.

Agreement metrics evaluate the concordance between the predictions made by dif-
ferent segmentation models or between the model predictions and ground truth. Cohen
Kappa measures the agreement between two raters or models, correcting for agreement
occurring by chance. Besides, the intraclass correlation coefficient (ICC) assesses the re-
liability of measurements or ratings, which is suitable for evaluating consistency among
multiple raters or segmentation methods.

Receiver Operating Characteristic (ROC) curves and the Area Under the Curve
(AUC) provide a graphical representation of the model’s diagnostic ability. The ROC
curve plots the true positive rate (sensitivity) against the false positive rate (1 spe-
cificity) at various threshold settings. AUC represents the degree or measure of separ-
ability, indicating how well the model can distinguish between classes.

By implementing these statistical analysis techniques, researchers can gain a com-
prehensive understanding of the performance and reliability of their medical image
segmentation models, ensuring that the models are robust, accurate, and clinically
applicable.
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Class Imbalanced Segmentation
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Background and Objectives: Automatic segmentation of the cerebral vasculature
and aneurysms facilitates incidental detection of aneurysms. Assessing aneurysm rup-
ture risk assists with pre-operative treatment planning and enables in-silico investiga-
tion of cerebral hemodynamics within and in the vicinity of aneurysms. However, ensur-
ing precise and robust segmentation of cerebral vessels and aneurysms in neuroimaging
modalities such as three-dimensional rotational angiography (3DRA) is challenging.
The vasculature constitutes a small proportion of the image volume, resulting in a sig-
nificant class imbalance (relative to surrounding brain tissue). Additionally, aneurysms
and vessels have similar image/appearance characteristics, making distinguishing the
aneurysm sac from the vessel lumen challenging.

Methods: We propose a novel multi-class convolutional neural network to tackle
these challenges and facilitate the automatic segmentation of cerebral vessels and an-
eurysms in 3DRA images. The proposed model is trained and evaluated on an internal
multi-centre dataset and an external publicly available challenge dataset.

Results: On the internal clinical dataset, our method consistently outperformed
several state-of-the-art approaches for vessel and aneurysm segmentation, achieving an
average Dice score of 0.81 (0.15 higher than nnU-Net) and an average surface-to-surface
error of 0.20 mm (less than the in-plane resolution (0.35 mm/pixel)) for aneurysm
segmentation; and an average Dice score of 0.91 and average surface-to-surface error
of 0.25 mm for vessel segmentation. In 223 cases of a clinical dataset, our method
accurately segmented 190 aneurysm cases.

Conclusions: The proposed approach can help address class imbalance problems
and inter-class interference problems in multi-class segmentation. Besides, this method
performs consistently on clinical datasets from four different sources, and the results
generated are qualified for hemodynamic simulation. Code available at https://github.

com/cistib/vessel-aneurysm-segmentation.

3.1 Introduction

Cerebral aneurysms are pathological protrusions of cerebral arterial walls (see Fig. 3.1,
for example), and their rupture is the leading cause of subarachnoid haemorrhage in
patients. Three-dimensional X-ray rotational angiography (3DRA) imaging is com-
monly used to visualize and characterize cerebral vessels and aneurysms through the
reconstruction of tomographic slices of a region of interest like computed tomography
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angiography (CTA), using single-plane radiographic equipment [168, 169]. In contrast
with 3D magnetic resonance angiography (MRA) imaging and CTA, 3DRA provides
images of higher spatial resolution and improved soft-tissue contrast [170, 171, 172],
capturing fine vascular structures and enabling precise characterization of aneurysm
morphology.

Figure 3.1: From left to right: 2D slice from a reconstructed 3DRA image; the maximum
intensity projection (MIP) of the 3DRA image; and a 3D simulation-ready mesh of a
cerebral aneurysm (blue) and the major vessels (white) in its vicinity reconstructed
from its corresponding main vessel segmentation.

An accurate, automated, and reproducible cerebral vessel and aneurysm segmenta-
tion technique would facilitate various computational imaging and clinical applications.
Segmentation of cerebrovasculature has found its use in pre-operative planning of invas-
ive procedures [173], delivering image-guided therapies/treatments [174], and assessing
cerebral hemodynamics through computational fluid dynamics (CFD) simulations [175].
Similarly, detection and segmentation of cerebral aneurysms are valuable as they facilit-
ate incidental identification and quantitative characterization of aneurysm morphology
[176]. The latter is especially useful as previous studies have shown that the size and
shape of a cerebral aneurysm are essential biomarkers for evaluating rupture risk [177].
Precise characterization of aneurysm location and morphology is necessary for selecting
a suitable/approved treatment strategy, pre-operative intervention planning, and post-
operative assessment and monitoring. While cerebral aneurysms and their surrounding
vessels can be detected and segmented manually, this process is time-consuming due to
the high dimensionality of 3D image volumes. It is subject to inter- and intra-observer
variability. Suppose the computer-assisted model can automatically detect the location
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of the aneurysm and characterize its morphological properties such as neck diameter,
aneurysm size, etc. In that case, these characteristics can support the clinical decision-
making process. For instance, depending on the size and location of the aneurysm, the
clinician would use coils or flow diverters to treat the aneurysm. Similarly, to decide the
type of medical device for treating the aneurysm, the clinician relies on the information
on whether there is a bifurcation around the aneurysm. On the one hand, the dir-
ect clinical needs involve automatically characterizing the location and morphological
properties of the aneurysm, which could inform the best course of treatment for the
aneurysm. On the other hand, to motivate clinical needs, in-silico trials [6] can help
identify the best operational regimes for the use of certain devices and better inform
the safety and efficacy of medical devices in clinical trials. In order to be able to scale
up in-silico trials to large-scale, both qualified vessel and aneurysm segmentation are
required to derive accurate geometrical and computational models.

Several previous studies have proposed automatic and semiautomatic techniques
for cerebral vessel and aneurysm segmentation in 3D imaging modalities such as MRA,
CTA, and 3DRA. Early work in the field relied on classical methods such as geodesic
active regions for segmenting vessels and aneurysms. Recent approaches have focused
on data-driven supervised learning-based methods due to the tremendous success of
convolutional neural networks (CNNs) at detecting and segmenting objects/regions in
images. As in several other domains, the segmentation performance afforded by deep
learning-based approaches for cerebral vessels and aneurysms far exceeds that of clas-
sical methods. For example, in a recent study [178], the authors proposed DeepVessel-
Net, a CNN designed to segment cerebral vessels in MRA images. Here, 2D orthogonal
cross-hair filters (convolutions) were used to preserve details of fine vascular structures
in the learned features while incorporating 3D contextual information. As vessels con-
stitute a small fraction of the overall image volume, the segmentation task suffers from a
significant class imbalance between the foreground (vessel) and background (surround-
ing brain tissue) classes. This was addressed by training DeepVesselNet with a class-
balanced cross-entropy loss function that minimizes the false-positive rate. Similarly,
to incorporate 3D contextual information and improve the accuracy of segmenting fine
vessels in digital subtraction angiography, Patel et al. [179] used DeepMedic, a powerful
segmentation approach proposed in a previous study [180]. To improve the performance
of deep learning on small object segmentation and obtain annotated training data at a
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rapid pace, Vessel-CAPTCHA [181] proposes a novel annotation-efficient deep learning
vessel segmentation framework. The framework only requires weak patch-level labels
to discriminate between the vessel and non-vessel 2D patches in the training set. This
framework can effectively segment vessels including both main and fine branches. Un-
like the original U-Net architecture [58], DeepMedic is a 3D CNN with two parallel
encoder pathways that learn features at different image resolutions to capture contex-
tual information while keeping the computational cost low. 3D image patches centered
at the same location in the image are used as inputs to the two pathways. The image
is downsampled to a third of its original size for the second pathway. Several U-Net
based approaches have been proposed for segmenting cerebral vessels and aneurysms.
The method proposed by Livne et al. [182] is trained to segment cerebral vessels using
2D patches extracted from MRA images [183] with a U-Net. The method proposed
by Shahzad et al. [184] segments ruptured intracranial aneurysms resulting in sub-
arachnoid hemorrhage in CTA images using DeepMedic. Zhou et al. [185] proposed
U-Net++ as a new framework for image segmentation to further improve segmentation
performance. The redesigned skip connections in U-Net++ aggregate features across
multiple scales within decoder sub-networks, leading to a highly flexible feature fusion
scheme. Attention modules have been widely used in vessel segmentation networks to
weigh the importance of relevant but under-represented structures/features. However,
stand-alone segmentation networks trained and applied to imaging data without using
appropriate pre- and post-processing steps typically lack robustness when segmenting
fine structures (such as vessels and aneurysms) in the presence of significant class im-
balance and variability in image appearance and soft-tissue contrast (typical of imaging
data acquired across multiple centres). Therefore, to facilitate robust segmentation of
diverse imaging data with imbalanced classes, Isensee et al. [46] proposed nnU-Net,
which can automatically configure itself, including pre-processing, network architec-
ture, and training and post-processing for any new task in the biomedical domain.
The nnU-Net improves the robustness of the model by learning fixed, rule-based and
empirical parameters.

The methods discussed thus far achieved state-of-the-art segmentation performance
for cerebrovascular structures. However, several challenges remain to enable precise
and robust characterization of cerebral vessels and aneurysms in 3D, namely, effect-
ively dealing with the severe class imbalance, the difficulty of distinguishing between
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the aneurysm and vessel lumen, and the lack of a robust deep learning framework
for segmenting cerebral vessels and aneurysms for multi-center studies. Firstly, the
aneurysm region often constitutes less than 1 % of the overall image volume. The fea-
tures extracted from the small regions, such as fine vessels and aneurysms, may not be
effectively propagated through a series of convolutional and up-/down-sampling layers
by conventional CNN-based networks. Secondly, vessel interference is the main reason
for over-segmentation due to the similarity of closed vessels in patch boundaries to
aneurysms in morphology. Last, multi-center imaging data varies considerably in im-
age appearance and spatial resolution due to different scanners and image acquisition
protocols across different institutions. All these factors make precise segmentation of
cerebral vessels and aneurysms challenging. Addressing these challenges is the main
focus of this study and here are the contributions:

1) A dual-class segmentation network is proposed for the automatic segmentation
of cerebral vessels and aneurysms in 3DRA images. To deal with the class imbalance
inherent in such a segmentation task, especially for aneurysms, we proposed a cascaded
transformer block at the end of the encoder to highlight aneurysm features. Multi-
view blocks are designed to receive continuous features in a lower feature dimension.
Learnable downsample blocks are proposed at the end of every encoder block to prevent
small features from being washed out during down-sampling. Wide blocks are designed
to extract high-level features in multi-dimensions.

2) For the inter-class interference challenge, we designed the multi-class network
with weighted Dice loss and set aneurysms as a subclass of vessels. The semantic
guidance from vessel features reduces the interference of brain tissue and skull with
aneurysms and can significantly improve aneurysm segmentation performance.

3) To further enhance the aneurysm segmentation performance, we designed a post-
processing pipeline including majority voting and self-refinement which can predict
accurate aneurysm localization and boundary.

4) For hemodynamics simulation analysis, to the best of our knowledge, previous
methods have segmented vessels or aneurysms individually, and most experiments have
been validated using image-based evaluation metrics like Dice. Whether the inde-
pendent outputs of these segmentation methods are suitable for vessel and aneurysm
simulation is still unknown. Our method allows the simultaneous segmentation of
shape-consistent vessels and aneurysms. More importantly, after generating the mesh
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from the image-based output, a mesh-based surface-to-surface error evaluation was per-
formed to verify that the output is suitable for simulation (surface-to-surface error 0.20
mm for aneurysm segmentation and 0.25 mm for vessel segmentation, less than the
in-plane resolution 0.35 mm/pixel). The automatic segmentation pipeline can bridge
the gap between clinical data and hemodynamic simulation input.

We comprehensively evaluated the proposed approach across two 3DRA datasets:
an in-house multi-centre @neurIS dataset [186] and a publicly available cerebral an-
eurysm detection and analysis dataset (CADA) [187].

Figure 3.2: Schematic of the proposed cerebral vessels and aneurysm segmentation
pipeline comprising three steps. Step 1: shows the pre-processing operations applied to
the original 3DRA images; Step 2: shows the architecture of the proposed multi-class
CNN-based segmentation model; Step 3: shows the post-processing operations applied
to segmented images based on majority voting and self-refinement.
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3.2 Methodology

This section describes the 3D multi-class cerebral vessel and aneurysm segmentation
network proposed in this study and the overall pipeline developed to ensure robust
and reproducible segmentation performance. The proposed multi-class CNN incor-
porates several architectural components dedicated to preserving fine structural details
in-plane across multiple orthogonal planes, and ensures consistency in 3D for the vascu-
lar structures of interest. The proposed pipeline comprises three steps: pre-processing,
multi-class segmentation, and post-processing in Fig. 3.2. Details of each step of the
pipeline and the architectural components developed for the multi-class segmentation
network are discussed in subsequent subsections.

3.2.1 Pre-processing

The first step in our segmentation pipeline focuses on processing the original 3DRA im-
age volumes to generate 3D image patches suitable for training the multi-class segment-
ation network. Before extracting patches from the image volumes, we use a sequence
of operations to reduce the variability across patients’ images and stabilize subsequent
segmentation network training. As the spatial resolution varies across patients’ im-
ages in the @neurIST database, we standardized the resolution of all image volumes
by resampling them to a fixed voxel size of 0.35 × 0.35 × 0.35 mm. We also applied
histogram equalization to the resampled image volumes to reduce differences in tissue
contrast across patients’ images. Then, we normalized voxel intensities in all images
to [0, 1]. Vascular structures are only partially labeled within the @neurIST dataset,
with ground-truth segmentations available just for the major cerebral arteries and their
branches in the vicinity of the aneurysm. Hence, we cropped each image volume using
a bounding box encapsulating the labeled structures to reduce label noise/confounding
information when training the segmentation network. Finally, we extracted 3D patches
of size 64 × 64 × 64 voxels from the cropped volumes, discarding all patches that had
no associated labels for the vessels or aneurysm, and used the remaining patches for
training our segmentation network. Each patch is labeled as follows: 0 for background,
1 for vessels, and 2 for aneurysms, ensuring that only relevant regions contribute to
model training.
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3.2.2 Multi-class Segmentation Network

The backbone of our multi-class segmentation network’s architecture is U-Net++ [185],
a deeply supervised encoder-decoder network with nested dense connections across
convolution blocks nestled between the encoder and decoder paths (as illustrated in
Fig. 3.2). The nested dense skip pathways help aggregate multiscale features at each
convolution block in the decoder from all convolution blocks at the same resolution
level or below (relative to the former) in the encoder. These dense connections help
alleviate the restrictive behavior of skip connections (allowing only for the same-scale
fusion of learned features) used in the original U-Net architecture and its variants.
They enable rich semantic multiscale features from different encoder blocks to be used
by each decoder block to generate segmentations. Additionally, we propose several
additional feature extraction modules (discussed in subsequent sections) integrated into
this backbone U-Net++ architecture to increase the network’s sensitivity to detect
vessels and aneurysms.

Cascaded Transformer

Cerebral vessels and aneurysms constitute less than 6% of the overall image volume in
3DRA images [188]. This leads to a significant class imbalance between the foreground
(vessels and aneurysms) and background (surrounding tissues) classes. We designed a
cascaded transformer block to address this challenge, which adaptively increases the
network’s attention on vessels and aneurysms [189]. As shown in Fig. 3.3., we first ex-
ploited this module at the end of the encoder to integrate local features with their global
dependencies along the spatial and channel dimensions in parallel paths. The spatial
attention module on the top left selectively highlights the locations that comprise ves-
sels and aneurysms by a weighted sum of the features from all locations. Meanwhile,
the channel attention module on the top right enhances the interdependence between
different channels through a sequence of permutation and dot product operations acting
channel-wise on the input feature maps. Then, we exploited three multi-head attention
modules cascaded with multilayer perception (MLP) in latent space to learn features
with a wider spatial context further. Since the model learns the feature order in lat-
ent space rather than by spatial position, we removed the position embedding layer
here to reduce artificial interference and provide more room for learning. Finally, we
add the features from different attention stages, increasing training stability and the
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weight of key features specific to vessels and aneurysms to enhance overall segmentation
performance.

Figure 3.3: Cascaded Transformer block. Given the small proportion of aneurysms
in the dataset, the attention mechanism enhances the weighting of aneurysm regions,
effectively addressing class imbalance by improving their representation in the segment-
ation process.

Multi-view Block

Learning representative features of fine vessels is challenging as they may be as few as
two pixels in diameter in Fig. 3.13. Because of noise points in the low-level features,
convolution with a kernel size of three has difficulty distinguishing noise from such
subtle features with a diameter of less than three. These noise-like features are either
filtered out or over-enhanced by using only small kernel 3D convolution filters. But in
large receptive field, this continuous and uniformly slender feature will be completely
different from the noise point feature. We propose a multi-view convolution block in
Fig. 3.2.2 composed of three branches to extract 2D features in the larger receptive field
along orthogonal planes of the 3D image volume to tackle this challenge. This enables
feature learning and orthogonal views, which are subsequently aggregated, to highlight
the slender features specific to fine vessels. As shown in Fig. 3.2.2, in the second and
third views, fine vessel features are less prominent due to their small proportion, whereas
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in the first view, the fine vessels exhibit a distinct elongated distribution, making them
more clearly captured by the neural network. This represents finer vascular structures
than conventional 3D convolutions. Besides, we are also interested in preserving the
3D structure and morphology of vessels and aneurysms, which is somewhat lost using
just 2D orthogonal convolutions. Hence, we also use a 3D convolution layer alongside
each multi-view block in our network, and add the features learned by the former and
latter. This combination of the multi-view block and a 3D convolution layer ensures
that 3D contextual features are learned and aggregated with detailed features of fine
vascular structures. The structure of the multi-view block is shown in Fig. 3.2.2.

Figure 3.4: Multi-view block. Extract features from three orthogonal views using 2D
convolutions in large kernels. The fine vessel feature is not obvious in the second and
third views, but the slender feature is easily captured in the first view. A 5×1×5 kernel
is used because, at the final downsampling layer, the feature map size is 8 × 8 × 8. The
kernel size is chosen to be ≤ 8 to effectively capture spatial features while maintaining
sufficient receptive field coverage within the downsampled resolution.

Learnable Downsample Block

Down-sampling of learned feature maps through pooling operations is essential in CNNs
to increase the receptive field size of the network and enable learning of hierarchical
features while keeping model complexity (i.e. the number of learnable parameters)
reasonable to reduce overfitting and ensure computational tractability. During down-
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sampling, weak features of small vessels and aneurysms are easily ignored/lost if stand-
ard pooling operations are used (e.g. max-pooling). We designed a learnable down-
sample block to retain weak features to compensate for this. This block halves the
size of the input feature maps along three parallel branches comprising two stridden
convolution branches and a max-pooling branch, as illustrated in Fig. 3.5 (left). These
three branches dissociate the spatial and channel information through a 3D convolution
layer (with a kernel size of 3) for the former and three parallel 2D convolutional layers
(multi-view block) of factorized asymmetric 3D convolutions for the latter (as shown in
Fig. 3.5). This enables effective learning of spatial and channel-wise features alongside
down-sampling the feature maps in each path. The max-pooling path downsamples the
input feature maps and aggregates them across channels using a 3D convolution layer
with a kernel size of one. The resulting feature maps from all three branches are con-
catenated, resulting in downsampled feature maps that have preserved weak features
across multiple scales and dimensions.

Figure 3.5: Learnable downsample block (left) and wide block (right).

Wide Block

To further increase the receptive field size of the network, with a limited increase in
model complexity, and learn features with a wider spatial context, we designed the wide
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block. This module comprises three branches in Fig. 3.5 (right). One branch aggregates
the feature maps across channels and learns local features with a 3D convolution of
kernel size three. The other two branches utilize asymmetric 3D convolutions applied
in parallel and serially with a large kernel size to learn multiscale features along all
dimensions. The resulting feature maps from each branch are finally concatenated and
provided as input to subsequent network layers.

Loss Function

The aneurysm regions account for only a small part of the brain image, and a critical
imbalance exists in the distribution of the positive and negative samples. Thus, fol-
lowing the generalized dice loss proposed in [190], in this work, we used the weighted
dice loss (Eq. 3.1) that weights inversely proportional to labels area to predict better
labels with general small regions, i.e., the aneurysms in our case. wa and wv are the
weights of the aneurysm and vessel volume in Eq. (3.2). Dice is calculated in Eq.
(3.3). Because of the class imbalance issue, we compensated for this by multiplying the
Dice of aneurysm segmentation, whose proportion is small by the larger weights, and
the vessel segmentation, whose proportion is big by the smaller weights.

Loss = (1 − wa) ∗ Dicea + (1 − wv) ∗ Dicev (3.1)

wa = Va

Va + Vv
, wv = Vv

Va + Vv
(3.2)

where Va is the volume of the aneurysm, and Vv is the volume of the vessel. We use
the volume proportion to balance class imbalance.

3.2.3 Post-processing

Majority voting

The multi-class segmentation network processes patch data. In the segmentation result
of a single patch, a vessel near the patch edge has a closed geometry and is, therefore,
incorrectly identified as an aneurysm. After ensembling the predictions of patches, there
will be over-segmentation of aneurysms like the fourth column of Fig. 3.2. As visualized
in Fig. 3.6 and Fig. 3.7, the 2D image is divided into four groups of patches represented
in red, yellow, green and blue boxes. Similarly, the 3D image is divided into eight groups
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of patches. Each group of patches is fed into the multi-class segmentation model for
prediction. For actual aneurysms in 3.6, all eight groups had positive prediction results
(eight votes). For fake aneurysms (vessels near the patch edge mentioned above) in
Fig. 3.7, only four groups (pred 2, 4, 6, 7) had positive prediction results (four votes),
the remaining four groups (pred 0, 1, 3, 5) did not predict the controversial area to
be an aneurysm. Therefore, after ensembling the results of eight groups, we keep only
the predicted area with the highest number of votes and use this area as the aneurysm
prediction of majority voting. The proposed approach decomposes each 3DRA image
volume into eight groups of patches and uses these to train the multi-class segmentation
network. The starting points of the eight groups are the eight vertices of the 3D image
after zero-padding, which is to ensure the eight groups do not overlap completely.
Patch-based learning allows semantic features to be learned from the 3DRA images in
their native resolution with a limited degree of down-sampling throughout the network,
not afforded by methods that learn features directly from the original image volumes
due to GPU memory constraints.

Figure 3.6: Actual aneurysm majority voting result. 2D image have four patch groups,
3D image will have eight patch groups. The different colours represent the different
patch selection strategies. The label shows here is an aneurysm and the prediction of
eight different groups is correct.
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Figure 3.7: Fake aneurysm majority voting result. The different colours represent
the different patch selection strategies. The label shows there is no aneurysm. The
predictions of pred0, 1, 3, and 5 are correct, and pred2, 4, 6, and 7 are incorrect, which
will cause over-segmentation.

Self-refinement

The fourth column of Fig. 3.2 shows that the aneurysm may still be inaccurately over-
/undersegmented. Therefore, we refine the segmentation results by selecting one patch
centered on the aneurysm prediction (after majority voting) and feeding this patch
into the multi-class segmentation model to predict the aneurysm’s shape. If there are
multiple independent aneurysms, patches will also be selected multiple times. During
this process, the predictions close to the edge of the patch are ignored to prevent
interference from vessels at the edges here. Finally, we can obtain aneurysm predictions
with correct locations and accurate boundaries in the fifth column of Fig. 3.2.

By combining majority voting with self-refinement, we can prevent vessels at the
edge of the patch from being predicted as aneurysms, effectively suppressing aneurysm
over-segmentation.
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3.3 Experimental Setup

3.3.1 Datasets

The proposed method is trained and validated on 3DRA images from 223 patients
acquired from the @neurIST project [186]. These images were acquired across four
different centers with different scanners and imaging protocols. There are significant
variations in image appearance and resolution across image data from different centers,
as shown in Fig. 3.8. Image data from the @neurIST database were split patient-
wise into training, validation, and test sets using a ratio of 7 : 1 : 2, respectively,
and five-fold cross-validation experiments were conducted to thoroughly evaluate the
segmentation performance of the proposed approach and the state-of-the-art methods.
The test sets in different cross-validation experiments traverse the entire data set. We
also trained and evaluated our approach on a publicly available dataset, CADA [187],
which comprises 3DRA images of patients with medium and large cerebral aneurysms.
These images were acquired as part of the Cerebral Aneurysm Detection and Analysis
challenge, hosted at the international conference on medical image computing and
computer-assisted interventions in 2020. The training data released as part of the
CADA challenge comprised 109 3DRA images with 127 annotated aneurysms. We also
split the labeled data into training, validation, and test sets by patient in a 7 : 1 : 2
ratio. When preparing the training data, we randomly extracted 3D patches around
the aneurysm. Negative patches that did not contain aneurysms were not selected for
training. When training the segmentation model, there were 904 patches extracted
from the cropped volumes, with 716 patches being used as the training set and the rest
patches being used as the validation set to monitor the training process. In addition, we
applied data augmentation for these patches including left and right 90-degree rotation.

3.3.2 Network Training

The proposed multi-class segmentation network was trained using the Adam optimizer
[191] with a learning rate of 0.0003. The model converged after ten epochs, and the
validation loss was minimized around 30 epochs. All experiments were conducted on
an NVIDIA 1080Ti GPU with 11 GB memory. The batch size was kept consistent
across all experiments and was set to four. The best model is chosen according to the
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Figure 3.8: Examples of images collected in the @neurIST dataset: 2D visualization
of data from different four sources showed great differences in pixel distribution and
aneurysm size.

validation loss. We trained the network of Step2 in Fig. 3.2 with the above setting and
shared the best weight to majority voting and self-refinement. Table. 3.1 provides the
comparison of model complexity in terms of model parameters and training time/epoch,
between the proposed method and the benchmarked networks. Table. 3.2 shows the
hyper-parameter configurations for the benchmarked networks and our method. The
loss functions of U-Net, Dual Attention Net, U-Net++, and 3DResU-Net in benchmark
methods are consistent with the proposed method, i.e., the weighted dice loss. The
loss function of DeepVesselNet and nnU-Net is Dice loss + CrossEntropy. We kept
their original loss functions since DeepVesselNet and nnU-Net are self-contained, highly
encapsulated frameworks with dedicated pre-processing and post-processing strategies,
and changing their loss functions may affect their overall performance.

Table 3.1: Comparison of model complexity in terms of model parameters and training
time/epoch between the proposed method and the benchmark networks.

Model complexity Total params Training time
U-Net++ 1,857,939 78 s/epoch

Dual Attention Net 1,633,747 60 s/epoch
DeepVesselNet 1,608,147 57 s/epoch

Vessel-CAPTCHA 16,337,666 161 s/epoch
Ours 16,812,195 182 s/epoch
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Table 3.2: Summary of the hyper-parameter configurations for the benchmarked net-
works and the proposed method.

Hyper-parameters U-Net++ Dual Attention Net DeepVesselNet 3DResU-Net Vessel-CAPTCHA nnU-Net Ours
Optimizer Adam Adam Adam Adam Adam SGD Adam

Learning Rate 0.0003 0.0003 0.0003 0.0003 0.0003 0.001 Decay 0.0003

Epochs 40 40 40 40 40 200 40

Batch Size 4 4 4 4 64 4 4

Patch Size 64 64 64 64 64 64 64

Dimension 3D 3D 3D 3D 2D 3D 3D

3.3.3 Evaluation Metrics

The proposed multi-class segmentation network is used to segment both cerebral ves-
sels and aneurysms, denoted as ypred. Several evaluation metrics are used to evaluate
the similarity of the masks predicted for vessels and aneurysms individually regarding
ground-truth masks (denoted as ytrue). These include the Dice (or F1) score, Jaccard
(JAC) index, and the volume similarity (VS) index.

The Dice similarity index [192] measures overlap between ypred and ytrue and is
calculated:

Dice = 2 × TP

FP + 2 × TP + FN
. (3.3)

The Jaccard index [192] is computed as the intersection over the union of two sets
and measures the similarity and diversity between two sets. It is computed:

JAC = TP

FP + TP + FN
. (3.4)

The VS index [192] measures the similarity between segmented regions of interest
volumes in the predicted and ground-truth masks. It represents the absolute volume
difference divided by the sum of the compared volumes.

V S = 1 − abs(FN − FP )
FP + 2 × TP + FN

. (3.5)

The surface-to-surface distance error metrics estimate the error between the ground-
truth surfaces S (the surfaces are obtained from the marching cube algorithm, the
computation is based on vertices on the surface), and the segmentation prediction
surfaces S′. The distance between a point pi on surface S and the surface S′ is given
by the minimum of the Euclidean norm. And we compare the similarity between
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the predicted and ground-truth vessel and aneurysm geometries by generating surface
mesh-based representations of these structures from their corresponding masks.

d(pi, S′) = min
p′∈S′

∥∥pi − p′∥∥
2 (3.6)

Doing this for all N points in the ground-truth surface S gives the average surface-
to-surface distance error:

d(S, S′) = 1
N

N∑
i=1

d(pi, S′) (3.7)

Overall, our surface-to-surface error is computed by measuring vertex-to-vertex dis-
tances, instead of face-to-face or vertex-to-face distances.

As highlighted, the ground-truth masks available for the @neurIST dataset are
only partially labeled, i.e. vessel masks cover only the major artery branches near the
aneurysm rather than the entire vascular tree visible within the 3DRA image field-of-
view. On the other hand, as our segmentation framework is trained patch-wise to retain
fine vascular details, during inference, our approach can segment the entire vascular tree
using the learned representations for identifying vascular structures within the image
volume. This results in a large proportion of correctly identified pixels as vessels, for
which no ground-truth labels exist. Thus, the surface-to-surface distance may be more
appropriate in this scenario as it only computes the distance errors for the GT labeled
region.

Across all comparative evaluations conducted comparing the proposed segmentation
framework with state-of-the-art approaches and in the ablation study evaluating the
impact of each module included in the proposed multi-class network, we assess the stat-
istical significance of the obtained segmentation results using paired-sample Student’s
t-tests.

3.4 Results

3.4.1 Visual Comparison

Fig. 3.9 the 3D renderings of obtained segmentation results captured in the entire field
of view in 3DRA images. These data samples were randomly selected from different
data collection centers. As can be seen, the proposed method can capture much more
abundant vascular structures in the images, which were mislabelled as the background
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in manual annotations. The segmented results preserve the continuity and topology of
the vascular trees and are visually comparable to the annotated regions.

Figure 3.9: 3D renderings of obtained segmentations. These data samples were selected
from different centers.

The surface meshes generated using the vessel and aneurysm segmentations pre-
dicted at different stages of our segmentation pipeline are shown in Fig. 3.10. These
figures demonstrate the utility of the proposed post-processing steps to suppress false-
positive predictions for the aneurysm and refine the same. Cropped vessels share simil-
arities in topology and appearance with aneurysms near patch boundaries. Therefore,

66



3.4 Results

initial segmentation using the proposed multi-class segmentation network (step 2 in
Fig. 3.2) is prone to incorrectly labeling tortuous vessels and vessels near patch bound-
aries as aneurysms (example in the third column of Fig. 3.10). These false-positive
predictions for aneurysms are artifacts of patch-based learning due to the limited spa-
tial context available to the network during feature learning and can be effectively
reduced using majority voting (described as part of the post-processing step earlier
in section 3.2.3-C). The resulting aneurysm segmentation following the suppression
of false positives by majority voting (see the fourth column of Fig. 3.10) is used to
provide aneurysm location and extract patches in the neighborhood, which are fed
back into the multi-class network to refine the segmentation near the aneurysm (called’
self-refinement). The improvement in aneurysm segmentation accuracy afforded by
these two post-processing steps involving majority voting and self-refinement is also
highlighted for the test set in Fig. 3.10.

Figure 3.10: 3D renderings of obtained segmentations after different steps.

Figure 3.11: Maximum intensity projection for vessel segmentation. The yellow box
is the golden standard area, where all quantitative evaluations are carried out. Our
method captures more fine vascular structures than its state-of-the-art counterparts.
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Figure 3.12: Surface-to-surface error. This error is calculated based on vertex-to-vertex
distance. Upper left: vessel overlap of ground-truth (blue) and prediction (translucid
white). Upper right: surface-to-surface vessel error. Bottom left: aneurysm overlap of
ground truth (red) and prediction (orange). Bottom right: aneurysm surface-to-surface
error.

Visual comparisons of the maximum intensity projections of segmentations pre-
dicted using our approach, and those predicted by state-of-the-art techniques for two
samples from the @neurIST test set are presented in Fig. 3.11. These figures highlight
our approach’s ability to preserve fine vascular structures greater than its state-of-the-
art counterparts. In the @neurIST dataset, ground-truth masks are available only for
large vessels near the aneurysm in the second column of Fig. 3.11. Therefore, for every
case, after getting the final segmentation result, we cropped the prediction into a mask
with the same size and position as the ground truth. Then the cropped mask is quant-
itatively evaluated with ground truth. Due to the lack of annotation of small vessels,
the image-based assessment does not provide the most reasonable evaluation of the
segmentation effect. In addition to evaluating segmentation quality using image-based
metrics such as Dice, we computed the surface-to-surface distance error between the
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predicted and ground-truth meshes by reconstructing the former just within the field of
view of the corresponding ground-truth mask. The surface-to-surface error metric also
provides information regarding the spatial distribution of errors across the anatomical
structures of interest, i.e., mapping the vertex-wise nearest neighbor distances between
the predicted and ground-truth meshes onto each former vertex (as shown in Fig. 5.1).
Evaluation of surface-to-surface errors in this manner thus provides spatial context
to where segmentation errors are incurred and help quantify localized errors, comple-
menting other global image-based metrics (such as Dice) used to evaluate segmentation
performance.

Figure 3.13: Comparison of maximum intensity projection between multi-view block
(yellow), three conv3D-3×3×3 layers, and one conv3D-5×5×5 layer (green). The multi-
view block can predict more small vessels even not annotated in the label.

Each block of our encoder is dual-path, one for 3D convolution and the other for 2D
convolution in multi-view blocks. In Fig. 3.13, to verify that the role of the multi-view
block is to provide additional fine features to the 3D convolution backbone pathway
rather than adding more parameters, we replaced the three orthogonal 2D convolution
layers in the multi-view block with three 3D convolution layers in kernel size 3 or one
3D convolution layer in kernel size 5. The multi-view block has fewer parameters than
the other two settings but can mine additional features that are different from the 3D
convolution features. Comparing the predictions in the red box, the multi-view block
can predict more small vessels even those not annotated on the label. We have also
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performed an ablation study with and without the cascaded transformer and visualized
the attention maps overlaid on the original images, as shown in Fig. 3.14. As can be
seen by comparing each case in the same column, with the cascaded transformer, the
model reduces focus on irrelevant context structures like vessel bend and bifurcation.
Besides, the aneurysm necks are better identified with the attention of the cascaded
transformer.

Figure 3.14: Visual comparison of attention maps with and without cascaded trans-
former. The first, second, third, and fourth rows are the image MIPs, vessel and an-
eurysm segmentation ground truth, attention maps without the cascaded transformer,
and attention maps with the cascaded transformer, respectively. As can be seen by
comparing each case in the same column, with the cascaded transformer, the model
reduces focus on irrelevant context structures like vessel bend and bifurcation.

3.4.2 Quantitative Evaluation

Quantitative metrics summarize our approach’s segmentation performance and the
state-of-the-art, namely, U-Net++, Dual Attention Net, DeepVesselNet, and nnU-Net,
across all test samples from the 5-fold cross-validation experiments conducted using the
@neurist dataset is presented in Table 3.3. All the quantitative evaluation results were
calculated within a bounding box encapsulating the GT labeled region (yellow box in
Fig. 3.11). These results indicate that our method consistently outperforms all com-
peting methods in the Dice score, Jaccard index, VS index, and the average surface-to-
surface error across the 5-fold cross-validation experiments conducted. The statistical
significance of the obtained segmentation results was evaluated (using paired-sample
Student’s t-tests), revealing that our approach achieved significant improvements over
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Table 3.3: Compare with state-of-the-art on whole @neurIST dataset. 5-fold cross-
validation experiments were conducted for each method. The results were calculated
in the golden standard area. Our method outperforms other methods on the main
evaluation metrics of segmentation and is statistically significant on most items.

Method U-Net++[185] Dual Attention[189] DeepVesselNet[178] nnU-Net[46] Ours

Anatomical Structure Vessel Aneu Vessel Aneu Vessel Aneu Vessel Aneurysm Vessel Aneu

Dice
0.8982±
0.1091

0.5980±
0.3398

0.8893±
0.1380

0.5949±
0.3372

0.8918±
0.0968

0.1558±
0.2347

0.8687±
0.1197

0.6686±
0.3190

0.9125±
0.0759

0.8163±
0.2672

Jaccard Index
0.8271±
0.1225

0.5035±
0.3216

0.8184±
0.1453

0.4993±
0.3205

0.8147±
0.1174

0.1083±
0.1899

0.7820±
0.1371

0.5745±
0.3058

0.8455±
0.0935

0.7486±
0.2655

Volume Similarity
0.9461±
0.0999

0.6579±
0.3372

0.9453±
0.0951

0.6634±
0.3338

0.9455±
0.0740

0.2619±
0.2767

0.9131±
0.1074

0.7321±
0.3072

0.9525±
0.0489

0.8693±
0.2520

Surface-to-surface
error (mm)

0.3441±
0.4422

1.1398±
2.3495

0.3518±
0.4668

1.0623±
2.3829

0.4227±
0.7354

4.3694±
7.4209

0.8903±
1.2450

1.0611±
2.9100

0.2586±
0.3066

0.2021±
0.1790

p-value (Dice) < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 / /
p-value (Surf) < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 / /

Table 3.4: Ablation study. These models are in the same pre-processing and post-
processing method (proposed). The experiments remove different modules separately.
Due to the dataset being partially labeled, the Dice values cannot measure unlabeled
fine vessels and small aneurysms, so we use surface-to-surface error to measure the
performance on labeled parts.

Surface-to-surface error (mm)

Model Model 1 Model 2 Model 3 Model 4 Model 5 Ours

Absent module Nested Block Multi-view Transformer L-Down Wide

Modules

U-Net
Multi-view

Transformer
L-Down

Wide

U-Net++

Transformer
L-Down

Wide

U-Net++
Multi-view

L-Down
Wide

U-Net++
Multi-view

Transformer

Wide

U-Net++
Multi-view

Transformer
L-Down

U-Net++
Multi-view

Transformer
L-Down

Wide

Vessel 0.3127 ± 0.2462 0.3329 ± 0.3466 0.3327 ± 0.3258 0.3286 ± 0.2876 0.3137 ± 0.2536 0.2586 ± 0.3066

Aneurysm 0.4630 ± 1.0255 1.0878 ± 4.2235 0.3658 ± 0.7354 0.2738 ± 0.3327 0.3921 ± 0.6521 0.2021 ± 0.1790
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the state-of-the-art in terms of Dice and the average surface-to-surface error metrics
for both vessels and aneurysms. For vessel segmentation, all methods achieved a Dice
score higher than 0.85, indicating that all methods (including ours) were well suited to
this task. On the other hand, aneurysm segmentation was more challenging as the tar-
get region often constitutes less than 1 % of the overall image volume. We found that
the state-of-the-art methods investigated in this study failed to perform adequately on
this task.The nnU-Net achieved the best results among the state-of-the-art methods
are dedicated pre-processing and post-processing approaches, with a Dice of 0.67 and
surface-to-surface error of 1.06 mm. Our approach provided the best aneurysm seg-
mentation performance, achieving a 15 % and 0.86 mm improvement over nnU-Net in
terms of aneurysm Dice and surface-to-surface error.

Tables 3.4 summarizes the results from the ablation study conducted to evaluate
the impact of each module included in the proposed multi-class segmentation network
on the quality of the predicted vessel and aneurysm segmentation, respectively. The
ablation studies which remove modules separately were conducted to verify whether
each module contributed positively to the final segmentation performance and determ-
ine the importance of different modules. Due to the dataset being partially labeled,
the Dice values can not measure unlabeled fine vessels and small aneurysms, so we
use surface-to-surface error to measure the performance on labeled parts. Model 1
to Model 5 represent the cases where one module is removed from the final model.
The results comparison between ours with Model 1 to Model 5 show that the surface-
to-surface error is increased no matter which module is discarded, proving that each
adopted technique contributes to the improved accuracy of vessel segmentation. The
final model yields the smallest surface-to-surface error in aneurysm segmentation. The
absence of certain modules can lead to completely incorrect segmentation results, thus
reducing overall segmentation performance on a test set, so each module is essential for
aneurysm and vessel segmentation.

We also compared single-class segmentation networks (trained individually for an-
eurysm and vessel segmentation) with the multi-class network, where identical network
architectures were used except for the output layer. Results from this comparison are
presented in Table 3.5, which highlights the added advantage of multi-class learning
relative to training independent networks for segmenting each structure individually.
Our multi-class network significantly outperforms the single-class network for aneurysm
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average surface-to-surface error (0.2021 vs 0.7051). However, for vessel segmentation,
the multi-class network only provided a marginal improvement over the single-class
network. Since aneurysms grow on blood vessels, the aneurysm part is also labeled as
part of the vessel during training, the learning of vascular features will have a positive
effect on the extraction of aneurysm features.

Table 3.5: Comparison between single-class and multi-class. The pre-processing and
post-processing of the experiments are the same.

Training type Single-class Multi-class
Anatomical Structure Aneurysm Vessel Aneurysm Vessel

Surface-to-surface error (mm)
0.7051±
0.9031

0.3024±
0.1641

0.2021±
0.1790

0.2586±
0.3066

The proposed approach was also trained and evaluated on the public cerebral an-
eurysm segmentation (CADA-AS) challenge dataset [187]. The segmentation perform-
ance of our approach was compared against the best-performing methods in this chal-
lenge, 3DResU-Net. When comparing these methods, instead of using 128 × 128 × 128
patch size described in the challenge paper, an input patch size of 64×64×64 was used
to analyze and segment the images due to limited computing resources of 1080ti GPU
card. Results summarizing aneurysm segmentation performance on test data from the
CADA-AS challenge are presented in Table 3.6. Since the data is fully labelled, we add
the Dice Similarity Index and surface-to-surface error. These results indicate that our
approach outperforms 3DResU-Net in terms of both metrics.

Table 3.6: Compare our method on the cerebral aneurysm segmentation (CADA-AS)
dataset with its champion methods. All models were retrained and tested on this single-
class dataset.

CADA-AS 3DResU-Net Ours

Dice Similarity Index
0.7464±
0.1379

0.8737 ±
0.0747

Surface-to-surface error (mm)
0.4102±
0.3924

0.3817 ±
0.3984

A key aspect of quantitative analysis of cerebral aneurysms, either in assessing cereb-
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ral hemodynamics or aneurysm rupture risk, is the precise characterization of their mor-
phological properties. Hence, besides evaluating aneurysm segmentation quality using
standard image-based and mesh-based metrics, we compared our approach with state-
of-the-art segmentation approaches to preserve each segmented aneurysm’s maximum
diameter and volume relative to the ground truth. The Bland-Altman plots in Fig. 3.15,
summarize the average errors between predicted and ground-truth measurements for
aneurysm maximum diameter and volume and their corresponding 95 % confidence
intervals for each method investigated. These results indicate no apparent bias in our
model’s ability to preserve critical morphological characteristics of aneurysms, unlike
DeepVesselNet, for example. Additionally, the average errors incurred by our approach
regarding the ground-truth measurements are consistently lower than all competing
approaches.

Table 3.7: False-positive prediction rate for the aneurysm with or without post-
processing.

Post-processing False-Positive Rate Dice Similarity Index
None 65/223 0.6432 ± 0.3333
Ours 23/223 0.8163 ± 0.2672

In addition, Table. 3.7 has included the false-positive rate and Dice score for the
aneurysm segmentation before and after applying the post-processing technique. As
can be seen, the proposed post-processing can fix 42 over-segmented aneurysm cases
while improving the overall Dice for aneurysm by 15 %. Table. 3.8 illustrates the
average prediction time for one volumetric image generated by the proposed framework
in different steps. The proposed method uses an average of 1.5 minutes to process an
image volume for vessel and aneurysm segmentation.

Table 3.8: Average prediction time for one image volume.
Step Time

Step1: Preprocessing 5 s

Step2: Multi-class Segmentation 45 s

Step3: Post-processing 46 s

Total 96 s
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3.5 Discussion

This chapter presents a multi-class convolution neural network and a 3D patch-based
pipeline for cerebrovascular and aneurysm segmentation on 3DRA images. Vessel and
aneurysm segmentation in 3DRA is very challenging due to the small percentage of
vessels and aneurysms and the interference of the skull. Compared to standardized,
homogeneous data, clinical data exhibit more noise, heterogeneous, diverse appear-
ance and resolution, making this task more challenging. With severe class imbalance,
automatic segmentation methods struggle to extract the complete contextual and local
information from images. To alleviate those issues, our proposed network has a trans-
former block sensitive to small-scale features, multi-view blocks sensitive to continu-
ous features, the learnable downsample block that prevents subtle features from being
lost, and wide blocks that expand local perceptual fields. Besides, the dedicated post-
processing methods of majority voting and self-refinement can effectively suppress the
over-segmentation of the clinical aneurysm, enhancing the entire pipeline’s clinical ro-
bustness.

3.5.1 Class Imbalance

In whole brain tissue, the percentage of blood vessels is less than 6% [188], and the
proportion of aneurysms is less than that of vessels. Hence, U-Net++ and Dual At-
tention Net are potent models that retain rich intermediate features and focus more on
critical target information. However, these models can only capture the main vessels
and obvious aneurysms. Still, these models lose subtle features during the convolution
operation, viz., small aneurysms whose diameter is less than 10 mm. Our method de-
signed multi-view blocks and wide blocks for the class imbalance problem by extracting
additional information to complement the backbone network feature. These blocks can
extract continuous information through cascade and parallel low-dimensional convo-
lution layers with large kernels. We also exploited a transformer block at the end of
the encoder to enlarge the proportion of target features. In Table 3.4, after adding
different new modules, the segmentation of both aneurysms and vessels is improved,
which also verifies that the proposed modules positively affect the final segmentation
results. In addition, in order to reduce the proportion of negative samples and thus
make the training converge, when preparing the training patches, we select the patches
around the aneurysm as input instead of feeding all patches obtained after cropping
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the data to a model. This can increase the proportion of aneurysms and vessels in a
single patch.

3.5.2 Inter-class Separability

Aneurysm segmentation usually suffers from inter-class interference. Due to the prior
knowledge that all aneurysms grow on vessels while extracting the vessel features,
the deep network also extracts and enhances more potential aneurysm features near
the vessels. Without proper guidance of vessel features in multi-class, the single-class
model may segment brain tissue or noise area into aneurysms. The multi-class learning
brings a huge boost to aneurysm segmentation. From Table 3.5, multi-class aneurysm
segmentation surface-to-surface error improved by 0.5 mm over single-class.

3.5.3 Inter-institutional Data Variability

Our data were obtained from four institutions. While data from different sources are
all from the same modality, viz. 3DRA images, there are large differences in image
appearance, intensity distribution, resolution and aneurysm size (Fig. 3.8). This poses
a great challenge to the robustness of the model. Automatic models such as nnU-Net
and Deep Vessel Net use pre-processing and post-processing methods like patch-based
learning and Gaussian standardization. These methods perform well on challenging
datasets with good pre-processing. However, these segmentation methods lead to an-
eurysm over-segmentation in clinical data. To improve clinical robustness, we propose
majority voting, which returns the prediction most like an aneurysm to find the exact
aneurysm localization. Then, self-refinement further corrects the aneurysm contour
details. Through our experiment, we found the necessity of the post-processing step
in our current framework setting because 1) it helps mitigate the over-segmentation of
aneurysms due to the morphological similarity between aneurysms and vessel endings
at the patch boundaries; 2) it avoids to use of larger patch sizes that would further
aggregate the data imbalance and result in performance degradation in aneurysm seg-
mentation.

The fourth column in Fig. 3.2 top shows majority voting returns the maximum
prediction probability and effectively suppresses over-segmentation. The later self-
refinement makes the aneurysm details more accurate. To validate the robustness of
the pipeline, besides clinical data, we also evaluated our method on the CADA-AS
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competition dataset (c.f. Table 3.6). Our segmentation method yielded results close to
the championship method [187]. For in silico clinical trials, the accuracy of aneurysm
localization is as important as Dice and Surface-to-surface error. Table 3.9 shows the
success rate of aneurysm prediction for each algorithm. Only cases with a surface-
to-surface error of less than 1 mm were defined as success cases, which means that
such cases have accurate localization and segmentation. In 223 clinical cases from four
different data centers, our method yielded accurate aneurysm prediction in 190 cases.
However, among other methods, the best is nnU-Net which only got 173 success cases.
In addition, our method outperforms these comparative methods in terms of clinical
indicators such as aneurysm diameter and volume. The Bland-Altman plots in Fig. 3.15
demonstrate that our method yields a difference of −0.03 ± 0.54 mm and −4.4 ± 71.1
mm3 in aneurysm diameter and volume with ground truth, which is the smallest (best)
compared to other methods.

Table 3.9: Compare our method on aneurysm segmentation success rate (surface-to-
surface error smaller than 1 mm) with SOTA methods.

Methods Aneurysm segmentation success rate
U-Net++ 150 / 223

Dual Attention Net 152 / 223
DeepVesselNet 144 / 223

nnU-Net 173 / 223
Ours 190 / 223

Although our method achieved improved performance for automatic segmentation
of vessels and aneurysms, due to the limitation of incomplete labeling of 3DRA datasets,
the wrongly labeled background pixels for missing vessels could interfere with the overall
training process. Thus, future work would involve leveraging semi-supervised schemes
to enhance the learning of unlabelled parts, e.g., relabelling the missing annotations
during the training process by introducing pseudo-labels. Meanwhile, since there are
still a large number of unlabelled 3DRA image data in our clinical dataset, the joint
training of the labeled 3DRA data and unlabeled data under a semi-supervised setting
is also a worthy direction of research.

There is still room for improvement in 3DRA vessel and aneurysm segmentation.
One key limitation of current methods is the constraint on computational resources,
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Figure 3.15: Bland-Altman plots: Mean and difference of aneurysm radius and volume
between ground-truth and predictions. Our method has a more compact distribution.
In terms of clinical criteria, our predictions are much closer to the ground truth.

which restricts the patch size to 64 × 64 × 64. This patch-based approach introduces
challenges, particularly when vessels near patch boundaries interfere with aneurysm
segmentation due to limited contextual information. If computational resources allow,
incorporating full-size 3D images into the segmentation pipeline (rather than relying on
patches) could significantly enhance performance. A global view of the entire vascular
structure would reduce boundary effects, improve the model ability to differentiate an-
eurysms from vessels, and ultimately lead to a more accurate and robust segmentation.
Hence, transitioning from patch-based processing to full-volume segmentation could be
a promising direction for future advancements.

3.6 Conclusion

This work proposed a 3D patch-based multi-class model for vessel and aneurysm seg-
mentation on 3DRA images. The proposed approach addressed class imbalance prob-
lems and inter-class interference problems in multi-class segmentation. Experimental
results showed that the proposed method outperformed several popular state-of-the-art
approaches for tackling similar challenges, such as U-Net++, DeepVesselNet, and nnU-
Net. This work aims to alleviate class imbalance and inter-class interference, which are
common and challenging problems in cerebrovascular and aneurysm segmentation. The
deliberately designed network architectures such as the cascaded transformer, multi-
view block, and wide block as well as the proposed post-processing strategies of the
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majority voting and self-refinement contribute positively to mining vascular and an-
eurysm features through the proposed end-to-end trainable network. The aforemen-
tioned issues are also present in brain MRA and CTA when it comes to cerebrovascular
and aneurysm segmentation. The proposed model is generic and can be applied to
mitigate the issues of class imbalance and inter-class interference in brain MRA and
CTA, promising to facilitate accurate clinical analyses. The systematic evaluation of
the model performance on other modalities would be the scope of future work.
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Chapter 4

Semi-supervised Segmentation
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Accurate segmentation of brain vessels is crucial for cerebrovascular disease diagnosis
and treatment. However, existing methods face challenges in capturing small vessels
and handling datasets that are partially or ambiguously annotated. In this chapter,
we propose an adaptive semi-supervised approach to address these challenges. Our ap-
proach incorporates innovative techniques including progressive semi-supervised learn-
ing, adaptative training strategy, and boundary enhancement. Experimental results on
3DRA datasets demonstrate the superiority of our method in terms of mesh-based seg-
mentation metrics. By leveraging the partially and ambiguously labelled data, which
only annotates the main vessels, our method achieves impressive segmentation perform-
ance on mislabelled fine vessels, showcasing its potential for clinical applications.

4.1 Introduction

Accurate segmentation of cerebral vessels is clinically significant as it provides crucial
anatomical information for the diagnosis and assessment of cerebrovascular diseases
[193]. Furthermore, segmenting small vessels is essential as they play important roles
in brain function and pathological processes. Accurate segmentation of small ves-
sels provides comprehensive morphological information about the vascular network,
facilitating patient-specific modeling of cerebral hemodynamics, which can be used
to better understand pathologies, plan interventions, and design treatment devices
[194, 166, 195, 196].

However, the task of accurate vessel segmentation is challenging due to several reas-
ons. Firstly, the small proportion of vessels in brain tissue makes segmentation difficult,
particularly for small arterioles [197, 198]. To address this, convolution-based methods
[46] designed for medical imaging are enhanced in segmentation capability through ex-
perienced pre-processing and post-processing techniques. Further, transformer-based
methods [104, 93] have been proposed to leverage fully supervised learning to explore
the features of small targets in-depth. Secondly, clinical vessel annotations are focused
only on regions surrounding pathologies such as aneurysms [199, 200], and only the
main vessels are labelled, leaving out fine vessels. This ambiguously labelled data negat-
ively impacts the performance of fully supervised learning approaches. Semi-supervised
learning methods with pseudo-labeling techniques [201, 202] have been proposed to
overcome this limitation. Thirdly, clinical images often exhibit high noise levels [186],
and there are significant variations in pixel distribution across different imaging cen-
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ters. Traditional semi-supervised methods[203, 204, 205, 206] using pseudo-labeling
[201] tend to overly incentivize the confidence of the model in vessel segmentation,
leading to excessive over-segmentation [149].

Therefore, we propose the adaptive semi-supervised model in Fig.4.1, aiming to
address the challenge of partially annotated intracranial vessel segmentation. The
model employs a Teacher-Student structure, with the Swin-UNet [104] serving as the
backbone network. We partition the partially annotated data into labelled patches and
unlabelled patches, which are fed into the teacher and student networks, respectively.
Instead of the conventional approach of directly supervising the student network in
knowledge distillation, the teacher network learns vessel knowledge from the labelled
patches and teaches it to the student network. Additionally, the teacher network’s
output is used as refined pseudo-labels for further learning by the student network.
The key innovations are as follows:

• We introduce the adaptive semi-supervised model, utilizing a progressive semi-
supervised learning strategy. Ground truth is used to teach the teacher network,
and the teacher network, in turn, instructs the student network, leading to incre-
mental improvements in segmentation performance.

• We propose addressing the challenges associated with semi-supervised learning
through unsupervised domain adaptation techniques. This enables the adaptation
of knowledge from labelled patches to unlabelled patches without any domain
shift.

• We introduce the Fourier high-frequency boundary loss. Except for Dice and
Cross-Entropy loss, we extract the high-frequency boundary features using the
Fourier transform and calculate their mean squared error.

• We introduced a data augmentation technique called adaptive histogram atten-
tion (AHA) to address the variations in pixel distribution within clinical data.
AHA enables the model to better focus on discriminating between other brain
tissues and vessels, facilitating the extraction of vessel structural features.
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Figure 4.1: Schematic of the proposed adaptive semi-supervised model.

4.2 Methodology

4.2.1 Preprocessing

The purpose of preprocessing is not only to remove noise but also to facilitate the model
in extracting size, structural, and generalization features specific to the vessels.

Resolution standardization: To tackle the resolution inconsistencies in clinical data,
all data is standardized to a spacing of 0.35mm/pixel. This allows the model to learn
the size/shape features in cases with initially different resolutions.

Adaptive Histogram Attention: The distribution patterns in 3DRA data histo-
grams show that vessels are typically in the higher pixel value range, brain tissues in
the middle, and backgrounds in the lower range. While deep learning models can easily
distinguish between the background and vessels, they may struggle with distinguishing
between brain tissues and vessels, leading to over-segmentation. AHA tackles this by
identifying areas of abrupt shifts in the histogram, using them for normalization, effect-
ively eliminating the background from the histogram, thereby enabling the model to
focus on distinguishing between vessels and other brain tissues. This method emphas-
izes the extraction of structural features rather than mere threshold-based features.

Patch Grouping: We extract overlapped 3D patches from both the annotated and
unannotated regions. These two groups of patches are subsequently fed into the teacher
and student networks, respectively. This approach enables the model to learn local
generalized vessel features rather than specific fitting features of individual cases.
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4.2.2 Problem Formulation

In this chapter, we have datasets sampled from two groups. The labelled group contains
labelled patches Dl =

{(
xl

i, yl
i

)}Nl

i=1
, and the unlabled group contains unlabelled patches

Du = {(xu
i )}Nu

i=1. We use adaptive histogram attention to get labelled and unlabelled
vessel-like patches D̂l =

{(
x̂l

i

)}Nl

i=1
and D̂u = {(x̂u

i )}Nu
i=1. Our model consists of teacher

and student networks. We update the weights in the student network (encoder Fs,
decoder Gs) as an exponential moving average (EMA) of weights in the teacher network
(encoder Ft, decoder Gt) to ensemble the information in different training steps. The
prediction of teacher network on labelled and unlabelled patches are denoted as pl

i =
Gt

(
Ft

(
xl

i

))
and pu

i = Gt (Ft (xu
i )). We also denote the prediction of the student

network on labelled and unlabelled vessel-like patches as p̂l
i = Gs

(
Fs

(
x̂l

i

))
and p̂u

i =
Gs (Fs (x̂u

i )). Our goal is to learn a task-specific student network using Fs and Gs to
accurately predict labels on test data from the unlabelled patches.

4.2.3 Supervised Learning

In the teacher network, labelled patches Dl are passed through the CNN-based feature
extractor Ft, which are then passed through the task-specific segmentation generator
Gt to minimize the supervised loss Lfull sup which includes cross-entropy LCE , Dice
similarity coefficient loss LDSC , and boundary loss LB.

Lfull sup = LCE + LDSC + LB (4.1)

LCE = − 1
Nl

Nl∑
i=1

yl
i log

(
pl

i

)
(4.2)

LDSC = 1
Nl

Nl∑
i=1

1 −
2
∣∣∣pl

i ∩ yl
i

∣∣∣∣∣pl
i

∣∣+ ∣∣yl
i

∣∣
 (4.3)

LB = 1
Nl

Nl∑
i=1

(
H
(
pl

i

)
− H

(
yl

i

))2
(4.4)

H
(
pl

i

)
= F−1

(
F
(
pl

i

)
· 1mask

)
(4.5)

where F and F−1 are the Fourier transform [207] and the Fourier inverse transform
respectively. The high-frequency filter mask 1mask with value zero in the middle and
value one on the edge has the same shape as pl

i.
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4.2.4 Semi-supervised Learning

To perform alignment at the instance level, the adaptive vessel-like labelled and unla-
belled patches are passed through the teacher network to get segmentation prediction
pl

i and pu
i . Meanwhile, we input labelled and unlabelled patches to HSDA to get new

patches, and they are passed through the student network to get segmentation pre-
diction p̂l

i and p̂u
i . Next, we employ the mean square error (MSE) [208] and cosine

similarity [209] as defined in Eq 5.3 and Eq 4.8 to reduce the discrepancy between the
two predictions and thus increase the vessel invariance of the student model.

Lsemi sup = Lmse + Lsim (4.6)

Lmse = 1
Nl

Nl∑
i=1

(
pl

i − p̂l
i

)2
+ 1

Nu

Nu∑
i=1

(p̂u
i − pu

i )2 (4.7)

Lsim = 1
Nl

Nl∑
i=1

h
(
pl

i, p̂l
i

)
+ 1

Nu

Nu∑
i=1

h (p̂u
i , pu

i ) (4.8)

h(u, v) = exp
(

uT v

∥u∥2∥v∥2

)
(4.9)

The weight ratio between fully supervised and semi-supervised losses is 4:1. We pri-
oritize the fully supervised loss to ensure training robustness and prevent the network
from becoming overly confident and introducing noise during the initialization stage.

4.3 Experiments and Results

4.3.1 Datasets

In our experiments, we utilized 3D rotational angiography (3DRA) modality dataset
Aneurist [186], which comprises 223 partially annotated 3D brain vessel images. These
images were acquired from four different centers using different scanners and imaging
protocols. As shown in Fig. 4.2, there are significant variations in image appearance
and resolution across the data from different centers. we trained our models using full-
size images and partially and ambiguously annotated labels. Due to the incomplete
annotations, quantitative analysis was performed within the bounding box of annotated
regions, while qualitative analysis was conducted across the entire image.
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Figure 4.2: Examples of 3DRA images in grayscale collected from AneurIST dataset:
2D visualization of data from four different sources showed great differences in pixel
distribution and noise levels.

4.3.2 Experimental Setup

The experiments were conducted using a high-performance computing setup. We util-
ized an NVIDIA GeForce RTX 3090 GPU with 24GB of VRAM. The experimental
system was equipped with a high-capacity RAM of 128GB, enabling the handling of
large datasets and memory-intensive tasks.

Our proposed adaptive semi-supervised model was implemented based on the Swin-
UNet architecture [104], serving as the backbone of both teacher and student networks.
During training, we employed a batch size of 1 and utilized patch-based learning with a
patch size of [128, 128, 128]. The models were trained for 100 epochs, during which the
optimization was performed using the Adam optimizer. We employed data augment-
ation techniques, such as random rotations and flip, to enhance model generalization.
The learning rate was initially set to 0.001, and a learning rate decay strategy was ap-
plied, reducing the learning rate by a factor of 0.1 every ten epochs. The parameters of
the teacher network are updated normally, and the parameters of the student network
are updated according to the exponential moving average (EMA) [210]. To achieve the
effect of the EMA during the training process, we employed the no gradient decorator
to ensure that gradient calculations are not performed during the EMA process. Prior
to optimizing the parameters, we updated the parameters of the teacher network by
invoking the EMA function in Eq 5.10. In this function, the weight factor decay is cal-
culated based on the iteration count and the initial decay rate of 0.999 in Eq.5.11. The
student network parameters are updated by applying the weight factor decay, thereby
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incorporating the knowledge learned by the teacher network gradually.

Wstu = decay × Wstu + (1 − decay) × Wtea (4.10)

decay = min
(

1 − 1
iteration × 10 + 1 , decay

)
(4.11)

The image data from these databases were split on a patient-wise basis into training,
validation, and test sets using a ratio of 7:1:2, respectively. To ensure a thorough
evaluation of the segmentation performance, we performed five-fold cross-validation
experiments, with the test sets in different cross-validation folds covering the entire
dataset.

We use the well-trained student network for inference.

4.3.3 Evaluation Metrics

We utilized six evaluation metrics to assess the segmentation performance of our method:
Dice similarity coefficient (DSC): Measures the overlap between predicted and ground
truth segmentations. Sensitivity: Calculates the proportion of correctly identified pos-
itive instances. Precision: Quantifies the accuracy of positive predictions. Specificity:
Measures the ability to correctly identify negative instances. Jaccard index (Jac):
Evaluates the overall agreement between predicted and ground truth segmentations.
Volume similarity (VS): Measures the similarity of segmented volume with the ground
truth.

However, due to the ambiguous annotation of the dataset, most of the fine ves-
sels are not labelled. This can lead to situations where segmentation results with
higher accuracy actually have lower DSC. To provide a more comprehensive evaluation
of segmentation performance, we employed surface-to-surface distance error (Surface
Error) metrics to measure segmentation accuracy based on mesh representations. Fur-
thermore, in our qualitative analysis, we employ visualization techniques to further
evaluate the segmentation results, including the degree of over-segmentation and the
accuracy of fine vessel segmentation.

The surface error metrics estimate the error between the ground-truth surfaces S,
and the segmentation prediction surfaces S′. The distance between a point pi on surface
S and the nearest point on surface S′ is given by the minimum of the Euclidean norm.
And we compare the similarity between the prediction and ground-truth by generating
surface mesh-based representations of these structures from their corresponding masks
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in Eq.4.12. Doing this for all N points in the ground-truth surface S gives the average
surface-to-surface distance error in Eq.4.13. The p-value is calculated based on surface
error.

d(pi, S′) = min
p′∈S′

∥∥pi − p′∥∥
2 (4.12)

d(S, S′) = 1
N

N∑
i=1

d(pi, S′) (4.13)

The surface-to-surface error is computed by measuring vertex-to-vertex distances,
instead of face-to-face or vertex-to-face distances.

4.3.4 Qualitative Results and Analysis

In Fig. 4.3, we compared the proposed method with state-of-the-art approaches on
four different data sources. Our method demonstrated superior performance in seg-
menting fine vessels without introducing excessive over-segmentation noise, especially
in datasets with high levels of noise, such as ANSYS, ASD, and UPF. Notably, the
nnUNet [46] was greatly affected by ambiguous labels and could only segment major
vessels. The Swin-UNet [104], utilizing the swin-transformer structure for feature ex-
traction, outperformed convolution in nnUNet by extracting a larger number of vessel
branches. VASeg [1], employing majority voting and thresholding techniques, achieved
a better recovery of fine vessels. CPS [201], due to the utilization of semi-supervised
cross pseudo-supervision, exhibited increased segmentation uncertainty and introduced
excessive noise when handling datasets with higher noise levels. Because of our semi-
supervised model’s emphasis on training robustness, the fully supervised loss is as-
signed a higher weight compared to the semi-supervised loss. As a result, the network
becomes more conservative in its predictions. When dealing with datasets containing
lesser noise, the model does not fully unleash its predictive capabilities. Instead, it
tends to be more cautious and restrained in making predictions to ensure reliability.
In contrast, our method showcased the ability to segment a significant number of fine
vessels while maintaining robustness and avoiding the introduction of excessive noise.

4.3.5 Quantitative Results and Analysis

Due to the uncertain and ambiguous nature of our dataset annotations, where only the
main vessels near the aneurysm are labelled, we utilized mesh-based evaluation metrics
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Figure 4.3: Comparison with State-of-the-Art Methods on four different data sources.
The yellow box is the golden standard area where all quantitative evaluations are carried
out.

as our primary performance measure, while pixel-based evaluation metrics such as the
DSC were used as supplementary reference metrics.

In Table. 4.1, we compared our method with several approaches, including the
convolution-based fully supervised method nnUNet, the transformer-based fully super-
vised method Swin-UNet, the VASet method that addresses ambiguous label issues
through preprocessing and postprocessing, and the traditional semi-supervised method
CPS using cross pseudo-supervision. Due to the incomplete annotation, pixel-based
metrics such as DSC and VS cannot accurately measure the segmentation accuracy.
Segmenting more unannotated vessels may lead to a decrease in DSC and similar met-
rics. Therefore, we employ mesh-based surface error as a more reliable metric for
evaluation. By comparing the surface error, we found that our method achieved the
highest accuracy in vessel surface segmentation, with an average mesh error of 0.20mm
(0.35mm/pixel). Additionally, it is worth noting that our method achieves high sensit-
ivity, second only to CPS. This indicates that our method successfully identifies a larger
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proportion of positive instances, meaning that it effectively captures the majority of
the annotated vessels.

Table 4.1: Compare with state-of-the-art on whole Aneurist dataset. When annota-
tions are incomplete, a higher Dice score may indicate worse performance. Thus, the
mesh-based surface error serves as the primary evaluation metric, while pixel-based
metrics such as the DSC are used as supplementary evaluation criteria due to incom-
plete annotation. Quantitative analysis was performed within the annotated regions
instead of the full image.

Methods nnUNet Swin-unet VASeg CPS Ours
Sensitivity 0.9196 ± 0.0637 0.8967 ± 0.1219 0.9572 ± 0.0510 0.9872 ± 0.0189 0.9793± 0.0183
Precision 0.9300 ± 0.0345 0.8689 ± 0.0487 0.8792 ± 0.0761 0.6636 ± 0.1238 0.8018 ±0.0877
Specificity 0.9956 ± 0.0028 0.9932 ± 0.0032 0.9934 ± 0.0044 0.9740 ± 0.0129 0.9881± 0.0056

Jac 0.8605 ± 0.0680 0.7889 ± 0.1091 0.8440 ± 0.0763 0.6572 ± 0.1209 0.7873± 0.0817
VS 0.9728 ± 0.0263 0.9424 ± 0.0649 0.9450 ± 0.0509 0.7968 ± 0.0996 0.8977± 0.0602

DSC 0.9236 ± 0.0408 0.8772 ± 0.0787 0.9134 ± 0.0479 0.7862 ± 0.0960 0.8786± 0.0536
Surface Error 0.8903 ± 1.2450 0.6801 ± 1.6093 0.2586 ± 0.3066 0.3068 ± 0.1210 0.2075 ± 0.0640

p-value <0.05 <0.05 <0.05 <0.05 /

Table.4.2 presents the results of the ablation study conducted to analyze the impact
of different components in our method. We used the fully supervised Swin-UNet as the
baseline, trained solely using the teacher network with Dice Cross Entropy loss. In
the second set of experiments, we introduced the Fourier boundary loss to the fully
supervised loss. The inclusion of this loss led to a noticeable improvement in surface
error, indicating enhanced boundary delineation. In the third set of experiments, we
employed vessel adaptation by feeding the data into the student network. We also
incorporated the semi-supervised loss to train the student network. The results showed
a significant increase in the number of predicted vessels, as evidenced by the improved
sensitivity. Additionally, the surface error achieved a level of 0.20mm, indicating precise
vessel segmentation at the boundary. After transitioning from fully supervised to semi-
supervised learning, the sensitivity increased from 0.92 to 0.97, demonstrating the
validity of our hypothesis to utilize the teacher network’s predictions to complement
ambiguous labels and jointly supervise the student network’s output. As a result, the
network predicted more segmentation regions that are likely to be vessels.
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Table 4.2: Ablation study.

Modules
Supervised Loss

(Dice + CE)
Supervised Loss
Boundary Loss

Supervised Loss
Boundary Loss

Semi-supervised Loss
Sensitivity 0.8967 ± 0.1219 0.9236 ± 0.0600 0.9793 ±0.0183
Precision 0.8689 ± 0.0487 0.9116 ± 0.0577 0.8018 ±0.0877
Specificity 0.9932 ± 0.0032 0.9954 ± 0.0035 0.9881 ±0.0056

Jac 0.7889 ± 0.1091 0.8456 ± 0.0652 0.7873 ±0.0817
VS 0.9424 ± 0.0649 0.9636 ± 0.0440 0.8977 ±0.0602

DSC 0.8772 ± 0.0787 0.9149 ± 0.0417 0.8786 ±0.0536
Surface Error 0.6801 ± 1.6093 0.3483 ± 0.3111 0.2075 ± 0.0640

p-value <0.05 <0.05 /

4.4 Conclusion

In summary, our semi-supervised model brings forward innovative techniques for cereb-
ral vessel segmentation. With semi-supervised learning and domain adaptation-like
strategies, Fourier high-frequency boundary loss, and adaptive histogram attention, we
achieve better segmentation accuracy and robustness on whole vessels, paving the way
for clinical uses such as treatment planning. However, our model might underperform
on lower noise datasets due to our focus on robustness. Future research will explore
contrastive learning to improve performance on low-noise datasets. We also plan to
expand the state-of-the-art (SOTA) comparison to include not only architecture-based
comparisons but also models performing similar tasks in the literature [211, 212].
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Chapter 5

Unsupervised Domain Adaptation
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Unsupervised domain adaptation (UDA) aims to align the labelled source distribution
with the unlabelled target distribution to obtain domain-invariant predictive models.
Since cross-modality medical data exhibit significant intra and inter-domain shifts and
most are unlabelled, UDA is more important while challenging in medical image ana-
lysis. This chapter proposes a simple yet potent contrastive learning framework for
UDA to narrow the inter-domain gap between labelled source and unlabelled target
distribution. Our method is validated in cerebral vessel data sets. Experimental res-
ults show that our approach can learn latent features from labelled 3DRA modality
data and improve vessel segmentation performance in unlabelled MRA modality data.

5.1 Introduction

Cerebral vessel segmentation provides invaluable assistance in precise diagnosis, surgical
planning, monitoring disease progression, and evaluating treatment results. In silico tri-
als [34] using segmentation-derived vascular models enable the simulation of biological
behaviours and support drug development efforts, ultimately improving the efficacy
of personalised treatment strategies. Traditional manual segmentation methods, while
highly accurate, are labour intensive and time consuming. This has motivated the
exploration of automated segmentation techniques [1] as a more efficient alternative.
However, the transition to computerised methods poses a new challenge: the reliance
on fully labelled data for training.

Figure 5.1: Visualization of 3DRA and MRA data reveals significant intra- and inter-
domain shifts.

In scenarios where clinical vessel annotations in 3D Rotational Angiography (3DRA)
[213] modalities are ambiguous, semi-supervised learning methods [2] with teacher-
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student structure leveraging both labelled and unlabeled patches have been proposed
to address the issue. However, when the challenge escalates further, with the network
fed unlabelled magnetic resonance angiography (MRA) [214, 215] data as input, semi-
supervised methods become inadequate for supervision. To address the challenge of
data of different modes without labelled data, unsupervised domain adaptation (UDA)
techniques, such as FDA [216], DAFormer [217], HRDA [218], MIC [219], and MSCDA
[220], have emerged. These methods transfer knowledge from well-annotated source
domains to unlabelled target domains.

These methods address the domain shift between the source and target data. How-
ever, the domain shift is considerable, even from inner source data in the context of
cerebral vascular images. Therefore, the network needs stronger content feature ex-
traction capabilities while reducing its reliance on style features. Fig.5.1 shows that
3DRA and MRA exhibit a substantial domain shift, with a significant domain shift even
within the 3DRA modality when clinical data from different data centres are scanned.
Mitigating domain shifts for segmentation across other modalities is more challenging
due to the intricate nature of blood vessels, individual variabilities, and inherent noise
and artefacts in imaging techniques.

Our work introduces a unique method integrating insights from unsupervised do-
main adaptation, semi-supervised learning, and contrastive learning to address signi-
ficant domain shifts in cerebral vascular images. The key innovations are as follows:

• This work presents an innovative symmetric adaptation network tailored for cross-
modality segmentation of brain vasculature. This represents the first study to
apply UDA techniques to the segmentation of the cerebral vessels from 3DRA to
MRA.

• We introduce transwarp contrastive learning, a method that investigates features
in the time and frequency domains within the latent space to achieve the align-
ment of content and style.

• Furthermore, we design a new homocentric squares Fourier domain adaptation to
handle cross-domain nuisance variability without explicit feature alignment.
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5.2 Methodology

This section presents our novel unsupervised domain adaptation approach (see Fig.5.2)
to learning instance-specific and domain-invariant representations.

Freq

Teacher Teacher

Student Student

Swin-ViT

Swin-ViT

Pull
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EMAEMAHSDA
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Pull

Time

Figure 5.2: Schematic of the proposed method. The method utilizes a composite loss
function incorporating fully supervised, semi-supervised, and transwarp Contrastive
Learning.

5.2.1 Method Overview and Problem Formulation

For image style transfer, FDA has demonstrated that low-frequency components of im-
ages represent style features [216]. Therefore, we utilise the low-frequency components
of latent features to extract style features from different inputs. This novel paradigm
in transwarp contrastive learning utilises a student-teacher network architecture, incor-
porating both content and style features using Fourier transform with a low-frequency
mask, with the ultimate aim of narrowing the gap caused by different data modalities
and magnifying the invariant feature extraction capabilities of the model.

As shown in Fig. 5.2, the student receives two inputs: labelled source domain
data (xs

i ) and unlabelled target domain data undergone style transfer (xt→s
i ). On the
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contrary, the teacher processes unlabelled target domain data (xt
i) and style-transferred

labelled source domain data (xs→t
i ). At the same time, we undertake the extraction of

both content and style features. From the teacher and student and teacher networks,
the characteristics of the content in the time domain are defined as zs

i , zt→s
i , zt

i and
zs→t

i . In parallel, we extract style features in the frequency domain, capturing the
Fourier low-frequency attributes. These style features are expressed as ss

i , st→s
i , st

i, and
ss→t

i .

Figure 5.3: Homocentric squares Gaussian kernel KHSG for image adaptation on 3DRA
(source) and MRA (target) vessel patch.
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The prediction of the teacher network on the source domain and the target on the
source domain is denoted as ps

i and pt→s
i . We also denote the prediction of the student

network in the target domain and the source in the target domain as pt
i and ps→t

i . Our
goal is to learn a task-specific network using a labelled source data set {(xs

i , ys
i )}Ns

i=1 and
an unlabelled target data set {(xt

i)}Nt
i=1 to predict labels on test data from the target

domain accurately.

5.2.2 Homocentric Squares Domain Adaptation

The purpose of pre-processing is to remove noise and facilitate the model extracting
features specific to the vessels. FDA proposes that the style of an image can be mi-
grated by removing the low-frequency amplitude between the target image and the
source image [216]. However, as observed in [216] [221], the generated images consist
of incoherent dark patches caused by abrupt changes in amplitude around the rectan-
gular mask. Also, considering that the distribution of the spectrum is square instead
of circles, we propose a 3D homocentric square Gaussian mask in Fig. 5.3 to exchange
the target and source amplitude to make a smooth transition in their style.

Let FA(·) and FP (·) be the amplitude and phase spectrum in frequency space of a
3D image, and F−1 indicate the inverse Fourier transform. We define a 3D homocentric
square Gaussian mask (in Fig. 5.3) KHSG of the same size as FA, with σ being the
standard deviation. Given two patches xs

i and xt
i, our proposed homocentric squares

domain adaptation (HSDA) can be formulated as:

xs→t
i = F−1[FP (xs

i ),FA(xt
i) · KHSG + FA(xs

i ) · (1 − KHSG)] (5.1)

where the target patch is randomly selected from the target dataset.

5.2.3 Fully-supervised Learning

In the student network, labelled source samples {(xs
i , ys

i )}Ns
i=1 are passed through the

task-specific segmentation network to minimise the supervised loss Lfully, which in-
cludes Dice similarity coefficient loss and cross-entropy:

Lfully = 1
Ns

Ns∑
i=1

(
1 − 2 |ps

i ∩ ys
i |

|ps
i | + |ys

i |
− ys

i log (ps
i )
)

(5.2)
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5.2.4 Semi-supervised Learning

We employ semi-supervised learning, as the source data is labelled while the target data
lacks labels. This involves using the predictions of the teacher network as pseudo-labels
to supervise the output of the student network.

To perform alignment at the instance level, for the source patches, there are two
predictions ps

i and ps→t
i . For the target patches, there are two predictions pt

i and
pt→s

i . First, for the teacher network, the model’s ability to segment the source style
is improved in fully supervised learning, where ps

i is supervised from ys
i . After style

migration, the teacher network also improves the segmentation performance of pt→s
i .

We then use the output of the teacher network as a pseudo-label to supervise the output
of the student network. Specifically, we employ the mean square error defined in Eq.
5.3 to reduce the discrepancy between the two predictions of the same patch.

Lsemi = 1
Ns

Ns∑
i=1

(
ps

i − ps→t
i

)2
+ 1

Nt

Nt∑
i=1

(
pt→s

i − pt
i

)2
(5.3)

5.2.5 Transwarp Contrastive Learning

Our objective in the time domain (content) is to enable the network to learn instance-
specific features.

In our framework, we define the latent vector z in Fig.5.2 as a combination of two
components:

• c: The content latent features capture instance-specific features from input data.
It represents the shared structural information across different modalities.

• s: The style latent features encode modality-specific features that distinguish
different domains.

First, we aim to achieve positive content pairs (see Eq. 5.5) by reducing the dis-
tance between content features derived from similar patches. The cosine similarity is
computed to pull ss

i closer to ss→t
i and st→s

i closer to st
i. As these pairs originate from

identical patches and have only undergone processing through different networks, their
latent features should closely align. On the contrary, we set negative content pairs (
see Eq. 5.6), derived from different modalities and patches, to maximise their inher-
ent distance. This involves using the cosine similarity to push apart cs

i from ct→s
i and

similarly, distance cs→t
i from ct

i.
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Venturing into the frequency domain (style), we aim for the network to become
predominantly agnostic to modality regarding feature style. The fundamental objective
is for the network to encapsulate the inherent vasculature data style, surpassing the
intricacies of specific patches or modalities. The post-encoding outcome should display
a more consistent style representation irrespective of the data’s source, whether from
various patches or modalities.

To achieve this goal, we take advantage of the low-frequency component of the latent
feature as the style feature, aiming to ensure stylistic consistency across all segments.
To accomplish this, we calculate the upbeat style pairs as outlined in Eq. 5.7, aligning
ss

i , ss→t
i , st→s

i , and st
i to be near each other. Furthermore, to preserve the integrity of

the latent feature and mitigate excessive distortion, we restrict the number of encoder
blocks to three, allowing for just two layers of max-pooling.

h(u, v) = uT v

∥u∥2∥v∥2
(5.4)

posc
i = h

(
zs

i , zs→t
i

)
+ h

(
zt→s

i , zt
i

)
(5.5)

negc
i = h

(
zs

i , zt→s
i

)
+ h

(
zs→t

i , zt
i

)
(5.6)

poss
i = h

(
ss

i , st→s
i

)
+ h

(
ss

i , st
i

)
+ h

(
ss→t

i , st
i

)
+ h

(
ss→t

i , st→s
i

)
(5.7)

Ltranswarp = − 1
N

N∑
i=1

log (eposc
i + eposs

i )/τ

eposc
i + eposs

i + enegc
i

(5.8)

In summary, transwarp contrastive learning leverages Fourier transformation to
extract temporal components as content features while utilising low-frequency com-
ponents as style features. This approach enhances contrast in content aspects while
reducing contrast in style aspects and enhancing network adaptation capabilities across
domains.

5.2.6 Overall Framework and Training Objective

The weight ratio of fully supervised loss is higher than that of semi-supervised loss
and contrastive loss of the transwarp (8:1:1). We prioritise the fully supervised loss
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to ensure training robustness and prevent the network from becoming overly confident
and introducing noise during the initialisation stage.

L = λ1 · Lfully + λ2 · Lsemi + λ3 · Ltranswarp (5.9)

5.3 Experiments and Results

5.3.1 Datasets

Our study trained the network using labelled 3DRA and unlabelled MRA from the
Aneurist data set and tested it with the SMILE data set.

Aneurist-3DRA [186]: This dataset includes 223 partially annotated 3D brain
vessel images from four different centres, each using unique scanners and imaging pro-
tocols. This dataset is the same as the one used in Chapter 3; however, while Chapter 3
utilizes the full dataset for training, here we train with only 1/4 of the data. This subset
is sourced from a single data center among the four data centers in Aneurist-3DRA.

Aneurist-MRA [186]: Consisting of 207 high-quality clinical MRA data, this
dataset lacks vascular segmentation labels and is not paired with Aneurist-3DRA.

SMILE-UHURA [222]: This dataset offers 14 fully labelled cerebral vessel cases
in MRA. ToF angiography images were initially pre-segmented automatically and un-
derwent extensive manual refinement to ensure accuracy.

5.3.2 Experimental Setup

Our experiments used an NVIDIA GeForce RTX 3090 GPU (24GB VRAM) with 128GB
RAM. We use Swin-UNet [104] for both teacher and student networks, using patch-
based learning with patch size [128, 128, 128]. We aim to have 100 training epochs
with optimisation using the Adam optimiser. Data augmentation techniques, including
random rotational adjustments and flipping, were applied. The initial learning rate is
0.001 and decreases by a factor of 0.1 every ten epochs. Teacher network parameters
θtea received standard updates, while student network parameters θstu were updated
using the exponential moving average approach in Eq. 5.10.

θstu = α · θstu + (1 − α) · θtea (5.10)
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α = min
(

1 − 1
iter + 1 , decay

)
(5.11)

5.3.3 Quantitative Results

In Table 5.1, we present a summary of segmentation performance compared to state-
of-the-art (SOTA) techniques, which encompasses various scenarios: (1) Source-only
learning on the target image, (2) Different UDA methods, and (3) Fully supervised
learning with labelled target data. MSCDA is designed for medical images in UDA
methods, and DAFormer, MIC, and HRDA are natural image UDA methods. Our
approach excels in critical metrics, including the Dice similarity coefficient (DSC),
Sensitivity (Sen), Jaccard index (Jac) and Volume similarity (VS), highlighting its
effectiveness in detecting positive instances, achieving overall agreement, and ensuring
volume matching accuracy. While we outperform other domain adaptation methods
and the source-only learning baseline, there is room for further enhancement in our
unsupervised approach compared to fully supervised methods.

Table 5.1: Comparison of Segmentation Performance with UDA SOTAs and different
training strategy.* indicates p < 0.05 in t-test.

Methods DSC (%) ↑ Sen (%) ↑ Jac (%) ↑ VS (%) ↑
S → T[1] 31.48 ± 6.76 18.89 ± 5.00 18.88 ± 5.00 31.52 ± 6.75

FDA [216] 61.84 ± 7.08 46.29 ± 8.48 45.16 ± 7.77 64.88 ± 8.47
MSCDA[220] 41.18 ± 4.70 27.57 ± 4.96 26.04 ± 3.84 49.12 ± 8.69

DAFormer[217] 57.75 ± 6.35 42.84 ± 8.07 40.89 ± 6.52 63.37 ± 9.70
MIC[219] 67.16 ± 2.02 59.07 ± 7.16 50.59 ± 2.27 84.18 ± 9.49

HRDA[218] 68.35 ± 2.74 60.03 ± 8.57 51.98 ± 3.14 83.31 ± 9.68
Ours 72.65± 6.65 * 64.75± 8.06 * 57.46± 7.80 * 85.47± 9.65 *

T → T[104] 79.76 ± 1.92 74.61 ± 7.77 66.37 ± 2.69 90.06 ± 5.74

Table 5.2 presents an ablation study that builds upon the foundation of the FDA
and progressively integrates various components into our approach. As we observe
improvements in the experimental results, it becomes evident that each component in
our method contributes positively to the outcome.
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Figure 5.4: Visualisation comparison on MIP maps. Ours shows less over-segmentation
on local area.

Table 5.2: Ablation Study: Gradual Addition of Components from Top to Bottom.
Components DSC (%) ↑ Sen (%) ↑ Jac (%) ↑ VS (%) ↑

Lfully 61.84 ± 7.08 46.29 ± 8.48 45.16 ± 7.77 64.88 ± 8.47
Lfully + Lsemi 64.60 ± 7.36 49.08 ± 8.75 48.00 ± 8.17 67.48 ± 8.42

Lfully + Lsemi + Ltranswarp 67.55 ± 6.81 52.75 ± 8.65 50.95 ± 7.67 72.16 ± 8.47
Lfully + Lsemi + Ltranswarp + HSDA (Ours) 72.65± 6.65 64.75± 8.06 57.46± 7.80 85.47± 9.65

5.3.4 Visual Inspection

In addition to conducting quantitative comparisons, we also performed visual com-
parisons of results with similar numerical values in Table 5.1. In Fig. 5.4, we visually
compared maximum intensity projection (MIP) maps between our method and the top-
performing algorithm MIC and HRDA from UDA-SOTAs. It is evident from the image
that within the red bounding box, MIC and HRDA tends to exhibit over-segmentation.
Its capacity to distinguish between vessels and brain tissue noise is significantly inferior
to our approach.
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5.4 Conclusion

In conclusion, our novel transwarp contrastive learning framework represents a signi-
ficant advancement in the field of UDA in the segmentation of brain vessels. We have
effectively managed the challenges posed by diverse data modalities by utilising content
pairs from the time domain and style pairs from the frequency domain. This innovat-
ive approach not only facilitates knowledge transfer from source domains with domain
shift but also ensures exceptional precision in feature extraction for application in target
domains. Future work will focus on enhancing domain generalization capabilities.
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Domain Generalization
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6.1 Introduction

The automated segmentation of cerebral aneurysms is pivotal for accurate diagnosis and
treatment planning. Confronted with significant domain shifts and class imbalance in
3D Rotational Angiography (3DRA) data from various medical institutions, the task
becomes challenging. These shifts include differences in image appearance, intensity
distribution, resolution, and aneurysm size, all of which complicate the segmentation
process. To tackle these issues, we propose a novel domain generalization strategy
that employs gradient surgery exponential moving average (GS-EMA) optimization
technique coupled with boundary-aware contrastive learning (BACL). Our approach is
distinct in its ability to adapt to new, unseen domains by learning domain-invariant
features, thereby improving the robustness and accuracy of aneurysm segmentation
across diverse clinical datasets. The results demonstrate that our proposed approach
can extract more domain-invariant features, minimizing over-segmentation and captur-
ing more complete aneurysm structures.

6.1 Introduction

The accurate segmentation of cerebral aneurysms is vital for diagnosing and treating
patients effectively. This process is not just about detecting aneurysms early; it involves
precise measurements of their size and shape, which are critical for formulating treat-
ment plans [34, 31]. However, the variability in imaging data quality (see Fig.6.1) from
different medical centers presents a significant challenge, complicating the segmentation
process.

This variability necessitates a domain generalization (DG) approach, where a model
trained on data from multiple sources can adapt to new, unseen domains. The diversity
of multi-source data makes DG a daunting challenge in medical imaging, pushing the
need for models that generalize well across different medical centers and data types.

Unlike traditional DG approaches such as domain alignment [223], data augmenta-
tion [224], ensemble learning [225], self-supervised learning [226], disentangled repres-
entation learning [227], and others, our method takes a different approach. We enhance
domain generalization by leveraging gradient surgery exponential moving average (GS-
EMA), offering an innovative solution to address DG challenges.

In deep learning, EMA is a frequently used technique for parameter averaging in
models, aimed at enhancing the generalization performance and stability of the model.
In a teacher-student [2] network setup, the teacher network undergoes a process of
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Figure 6.1: Illustration of the variability in imaging data quality from different medical
centers.

parameter smoothing, driven by the student network. However, initially, there are no
specific conditions set for this transfer. Consequently, all parameters learned by the
student network, whether they are domain-invariant or domain-specific, are updated
into the teacher network at some rate. This approach poses a challenge as it fails to
distinguish between domain-invariant and domain-specific parameters. To address this
issue, we introduce the concept of gradient surgery.

Deep neural networks are trained using gradient descent, where gradients guide the
optimization process across the landscape defined by the loss function and training data.
The gradient surgery framework [228, 229] aims to resolve conflicts arising in multi-task
learning. The conflicting gradients are typically averaged to obtain a final gradient for
parameter updates. GSMorph [230] propose alternative methods like normal vector
projection to derive the ultimate gradient for parameter updates. Instead of devising a
new projection method as suggested by others, we approach the problem by analyzing
the relationships between gradients to determine whether EMA parameter updates
should occur.

Additionally, there is a class imbalance problem in 3D data segmentation due to the
small proportion of aneurysms. After multiple downsampling steps, these small features
are more likely to be overlooked in the latent space. To tackle this, we introduce the
concept of boundary-awareness to traditional contrastive learning [231].

Contributions: Our study introduces innovative techniques that enhance model
adaptability. We integrate gradient surgery with EMA updates, strengthening the
ability of model to learn domain-invariant features. This novel approach promises to
elevate the performance of DG tasks in medical imaging, ensuring that our model can
generalize effectively to new datasets and medical centers. Additionally, we pioneer the

106



6.2 Methodology

use of boundary-aware contrastive learning, enabling our model to discern small target
features especially for cerebral aneurysms.

6.2 Methodology
Fig. 6.2 depicts our neural network architecture dedicated for domain generalization
tasks. It initiates with 3D source images, which undergoes image transformation to
produce target images. Once both the source and target images are obtained, they are
separately fed into the encoders of the student and teacher networks.

After acquiring the latent space features, a boundary-aware contrastive learning
loss is computed. The central notion here is to amalgamate the same instance sub-
jected to diverse transformations, while distancing different instances, aiming to grasp
instance-aware representations. This contrastive learning differs from transformation
predictions, as it strives to attain transformation-invariant representations. The latent
space features are then decoded to yield predictions, which are supervised using ground
truth.

Within the student network, the green arrow signifies fully supervised learning for
the source images, and the yellow arrow represents the same for the target images.
By analyzing the gradient relationship between these two losses, a novel GS-EMA
strategy is devised to update the parameters of teacher network. If the gradient angle
between the losses is less than 90 degrees, it indicates that the network has learned
domain-invariant features, prompting an EMA update. Conversely, if the gradient
angle exceeds 90 degrees, no EMA update is performed, as this suggests the network
has grasped domain-specific features, which is not conducive to domain generalization
tasks. Ultimately, after several updates, a teacher network enriched with more domain-
invariant features is achieved, readying it for domain generalization tasks.

6.2.1 Problem Definition and Data Transformation

Let X be the input (image) space and Y be the segmentation (label) space, a domain
is defined as a joint distribution PXY on X × Y. In the context of DG, we have access
to K similar but distinct source domains

{(
xk

s , yk
s

)}K

k=1
, each associated with a joint

distribution P k
XY . Note that P i

XY ̸= P j
XY with i ̸= j and i, j ∈ {1, ..., K}. The goal

of DG is to learn a predictive model using only source domain data such that the
prediction error on an unseen target domain is minimized.

To enhance the model adaptability to previously unseen data domains, we use data
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Figure 6.2: Schematic of the proposed model.

transformations to simulate the distribution of the target domain data. The simulated
target data is represented as

{(
xt

k, yt
k

)}K
k=1. The process of data transformation en-

compasses several key steps, including geometric transformations, intensity alterations,
noise injection and smoothing, histogram shifting, as well as bias field correction. These
operations collectively aim to generate diverse target data, empowering the model with
enhanced generalization capabilities to adapt to various data sources and target do-
mains.

6.2.2 Gradient Surgery Exponential Moving Average

In a teacher-student network setup, when the student network is tasked with learning
from data originating from different domains, we calculate distinct losses for each do-
main in Eq. 6.2. This allows us to obtain gradient information specific to each domain.
Our fundamental hypothesis is that when the angle between gradients from different
domains is less than 90 degrees, it suggests that the student network has effectively
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learned how to extract domain-invariant features. In such cases, we employ EMA to
update the parameters of student network, subsequently transferring these parameters
to the teacher network. This transfer is performed to better capture universal features.

However, when the angle between gradients from different domains exceeds 90 de-
grees, it indicates that the student network is primarily focused on learning domain-
specific features. In such scenarios, we abstain from utilizing EMA for parameter
updates and refrain from transmitting these parameters to the teacher network. This
strategic approach ensures that the student network can efficiently discriminate between
features originating from different domains, enabling it to adapt effectively to the chal-
lenges of multi-task learning.

LDCE(p, y) = 1
N

N∑
i=1

(
1 − 2 |p ∩ y|

|p| + |y|
− y log p

)
(6.1)

Lsrc
stu = LDCE(ps

stu, ys), L
trg
stu = LDCE(pt

stu, yt) (6.2)

Data: Student network parameters θstu; Teacher network parameters θtea;
Loss on source data in student network Lsrc; Loss on target data in
student network Ltrg; EMA decay coefficient α.

Result: Decide whether updated θtea with EMA from θstu.
for each mini-batch do

∇Lsrc
stu → gsrc;

∇L
trg
stu → gtrg;

if ⟨gsrc, gtrg⟩ ≤ 0 then
θ′

tea = θtea · α + (1 − α) · θstu;
else if ⟨gsrc, gtrg⟩ > 0 then

θ′
tea = θtea;

end
Update θtea with θ′

tea;
Update θstu as needed;

end
Algorithm 1: Gradient Surgery Exponential Moving Average
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6.2.3 Boundary Aware Contrastive Learning

In our study, we tackle the challenge of uneven distribution of classes in the segment-
ation of aneurysms by proposing a unique contrastive learning approach that operates
within a teacher-student network configuration. This method enhances the distinction
between matching (positive) and non-matching (negative) sample pairs by employing a
Fourier transformation strategy, which is particularly adept at isolating high-frequency
elements that delineate boundaries. Transitioning from volume-based to boundary-
based analysis ensures that the presence of small aneurysms is not disproportionately
low compared to larger vessels.

Both the student and teacher branches receive two distinct sets of data: the original
data from the source domain, represented as xs, and the corresponding transformed
data xt. Consequently, the latent feature representations from the student network are
symbolized as zs

stu and zt
stu, while those from the teacher network are signified as zs

tea

and zt
tea.

Advancing further, we harness the power of Fourier transformation paired with a
high-frequency filter in Eq. 6.3 to extract features that are cognizant of the boundaries
within the data. These extracted features from both student and teacher networks are
represented as bs

stu, bt
stu, bs

tea, and bt
tea respectively. Our primary objective within this

feature space is to cultivate instance-specific representations that are closely aligned
when the same instance is encoded differently, while simultaneously ensuring a clear
demarcation between distinct instances, irrespective of the encoder used.

To clarify the relationships within our contrastive learning framework, we delineate
the instances processed through different encoders as positive pairs when they originate
from the same instance. This includes pairs like zs

stu with zs
tea, and zt

stu with zt
tea. In

contrast, negative pairs consist of different instances that have been encoded either by
the same or by different encoders, such as zs

stu with zt
stu, and zs

tea with zt
tea, as well as

cross-encoder pairs like zs
stu with zt

tea, and zs
tea with zt

stu. These delineations form the
basis of our contrastive learning process.

Moving forward, we apply a Fourier transformation to the volume features to con-
struct an amplitude map, which is crucial for identifying the salient high-frequency
components that highlight boundaries in Eq.6.3. A specialized square mask is then
utilized to isolate this high-frequency information in Eq.6.3. Here, the Fourier trans-
form and its inverse are denoted by F and F−1 respectively. The mask ⊮mask, with
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value zero in its center and one at the periphery, has the same shape as z.
For boundary features, positive pairs are formed by analogous instances across the

student and teacher networks, such as bs
stu with bs

tea, and bt
stu with bs→t

tea . Conversely,
negative pairs are created by combining features from distinct instances, which may
be within the same network or across both, exemplified by pairs such as bs

stu with bt
stu,

and bs
tea with bt

tea, as well as inter-network pairs like bs
stu with bt

tea, and bs
tea with bt

stu.

b = F−1 (F (z) · ⊮mask) (6.3)

h(u, v) = uT v

∥u∥2∥v∥2
(6.4)

Lc = − log
∑Np

i=1 e(h(u+
i ,v+

i ))∑Np

i=1 e(h(u+
i ,v+

i )) +∑Nn
j=1 e(h(u+

j ,v−
j )) (6.5)

To quantify the similarity of these pairs, we compute the cosine similarity for each
within both the time and frequency domains in Eq.6.4 and Eq.6.5. The similarity for
positive pairs is expressed as h(u+

i , v+
i ) where i spans all positive pair indices, and

the similarity for negative pairs is articulated as h(u+
j , v−

j ) where j represents the
indices of all negative pairs. Here, Np stands for the count of positive pairings, and Nn

corresponds to the count of negative pairings.
The contrastive learning loss for these high-frequency boundary pairs is then cal-

culated using the same equation as for the volumetric pairs. By summing up the
volumetric contrastive learning loss with the boundary contrastive learning loss, we
derive a comprehensive boundary-aware contrastive learning loss. This loss function
is designed to finely tune our model to discriminate between the nuanced features of
aneurysms, enhancing its segmentation performance.

6.2.4 Overall Framework and Training Objective

The loss function consists of two parts. LDCE fully supervises the four outputs of
the teacher and student networks. BACL includes volume contrast Lz

c and boundary
contrast Lb

c. The ratio of λ1 to λ2 is set at 0.25:0.5.

L = λ1 · (Lsrc
stu + L

trg
stu + Lsrc

tea + L
trg
tea) + λ2 · (Lz

c + Lb
c) (6.6)

We chose the ratio of 0.25:0.5 because the two parts of the loss function contain a
different number of components. The first term, LDCE , consists of four loss compon-
ents: Lsrc

stu, L
trg
stu, Lsrc

tea, and L
trg
tea, while the second term, BACL, consists of only two
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components: Lz
c and Lb

c. To balance the contributions of these terms, we normalized
their relative weight based on their component ratio of 4:2, setting λ1 to 0.25 and λ2

to 0.5. This ensures that each individual loss term has a comparable influence on the
optimization process and prevents any part from dominating due to differences in the
number of components.

6.3 Experiments and Results

6.3.1 Experimental Setting

Dataset: We tested our method with 3DRA images from 223 patients from the @neur-
IST dataset [186]. These images were collected from four distinct medical institutions,
each employing varied scanning equipment and imaging protocols. Consequently, this
dataset exhibits a broad various in both visual characteristics and resolution. The
data diversity can evaluate the robustness and adaptability of our proposed GS-EMA
method.

Implementation details: Our study was conducted on a NVIDIA RTX 3090
GPU. We utilized the Swin-UNet [104] architecture for both the student and teacher
networks in our framework. The training was set to 100 epochs. To determine whether
to apply EMA updates, we experimented with setting the EMA coefficient α to either
0.9999 or 0.9. We started with an initial learning rate of 0.001 and adjusted it down-
wards by multiplying by 0.1 after every ten epochs. The code will be publicly available
soon.

6.3.2 Quantitative Results
Table.6.1 includes comparison with state-of-the-art (SOTA) methods and two ablation
studies. Our model outperforms traditional segmentation approaches like nnUNet [46]
and VASeg focussing on aneurysms [1], as well as domain-generalising methods for med-
ical image segmentation, including CMDG [232] and FedDG [224]. The ablation study
highlights that our GS-EMA algorithm, which regulates EMA updates with gradient
relation, surpasses regular and non-EMA methods in segmenting aneurysms. It also
indicates superior results for BACL when integrating volume (BACL-V) and boundary
(BACL-B) learning, compared to using either alone.
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DSC (%) ↑ Sen (%) ↑ Jac (%) ↑ VS (%) ↑
nnUNet [46] 59.61 57.51 47.38 70.91
VASeg [1] 60.28 54.47 49.82 67.91

FedDG [224] 64.50 64.31 54.26 74.73
CMDG [232] 65.01 64.10 54.11 73.38

Ours 71.89 70.88 62.36 80.00

no EMA 61.52 55.64 50.91 69.01
EMA 64.71 62.86 54.03 72.64

GS-EMA 68.49 72.79 58.40 76.63
BACL-V 68.49 72.79 58.40 76.63
BACL-B 70.62 75.14 60.54 78.22
BACL 71.89 70.88 62.36 80.00

Table 6.1: Quantitative results including compare with SOTAs and ablation studies.
Critical metrics includes the Dice similarity coefficient (DSC), Sensitivity (Sen), Jaccard
index (Jac) and Volume similarity (VS).

6.3.3 Visual Inspection

Fig. 6.3 offers a visual comparison of aneurysm segmentation between our method and
SOTAs. It is evident from the comparison that our approach is less prone to over-
segmentation while also being able to segment aneurysms more completely.

Fig. 6.4 shows a t-SNE comparison of latent features using EMA and GS-EMA.
The larger overlap achieved by GS-EMA indicates a stronger capability of the model
to extract domain-invariant features.

6.4 Conclusion

In summary, our study introduces an effective GS-EMA algorithm and a boundary-
aware contrastive learning technique for aneurysm segmentation. These methods out-
perform existing approaches by minimising over-segmentations and capturing more
complete aneurysm structures. For future work, we plan to apply our GS-EMA tech-
nique to a wider array of medical imaging datasets for further validation and enhance-
ment.
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Figure 6.3: Comparative visualization of SOTAs and ours method on aneurysm seg-
mentation.

Figure 6.4: The t-SNE visualization of latent features from EMA (left) and GS-EMA
(right).
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7.1 Summary and Achievements

The motivation of the thesis stems from the critical need to improve the robustness of
brain vessels and aneurysm segmentation. Challenges such as class imbalance, insuffi-
ciently labelled data, domain shifts, and data source agnosticism hinder the perform-
ance of existing models. This thesis helps to address these challenges by developing
and integrating advanced class-imbalance learning, semi-supervised learning, domain
adaptation, and domain generalization techniques to enhance segmentation robustness.
The primary contributions of this work can be summarised as follows.

Chapter 2 offers an engineering-focused review of medical image segmentation, in-
cluding data processing techniques, foundational models, learning paradigms, and eval-
uation methods. This tutorial-style review serves as an invaluable resource, offering
direct reference points for practitioners in medical image segmentation. It provides a
solid foundation for novice and experienced researchers, aiding in their understanding
and implementation of advanced segmentation techniques.

In Chapter 3, we introduced a 3D patch-based multi-class model for segmenting
vessels and aneurysms in 3DRA images, addressing challenges such as class imbalance
and inter-class interference through innovations in network structure and data pro-
cessing strategy. To enhance the extraction and representation of small target features,
the model incorporates architectural innovations like cascaded transformers, multiview
blocks, and wide blocks. For the common aneurysm over-segmentation problem, we
proposed combined post-processing strategies called majority voting self-refinement.
Our method demonstrates significant advances compared to existing methods, partic-
ularly in aneurysm segmentation.

In Chapter 4, we presented a semi-supervised model for cerebral vessel segmentation
to tackle the problem of partial and incomplete labelling. The proposed pseudo-label-
based semi-supervised network, along with novel Fourier high-frequency boundary loss
and adaptive histogram attention, can significantly improve the consistency in whole
vessel segmentation, especially can improve fine vessel continuity. The results indicated
that the semi-supervised approach outperformed fully supervised methods, especially
when labelled data were scarce.

In Chapter 5, we introduced a novel transwarp contrastive learning framework for
unsupervised domain adaptation in brain vessel segmentation. This framework effect-
ively addresses the challenges posed by the diverse data modalities using content pairs
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from the time domain and style pairs from the frequency domain. Additionally, the
proposed Fourier transformed homocentric square domain adaptation filter is effective
for vascular image style transfer, enabling the segmentation model to adapt to new
domains without requiring labelled data from the target domain. This innovative ap-
proach not only facilitates knowledge transfer from source domains with domain shift
but also ensures exceptional precision in feature extraction for applications in target
domains.

In Chapter 6, we introduced a domain generalization framework for aneurysm seg-
mentation. This framework proposed an effective gradient surgery exponential moving
average algorithm to achieve feature disentanglement and employed novel boundary-
aware contrastive learning for self-supervised learning. These innovative methods sur-
pass existing approaches by minimising over-segmentations and capturing more com-
plete aneurysm structures. The experimental results demonstrated that the proposed
methods could generalise well to unseen domains, maintaining high aneurysm segment-
ation accuracy.

The contributions of this thesis include the development of innovative segmentation
methods, the integration of advanced learning paradigms, and the thorough evaluation
of these methods in various challenging scenarios. The integration of class-imbalance
learning, semi-supervised learning, domain adaptation, and domain generalization tech-
niques culminated in a highly effective segmentation framework. This framework not
only addressed existing challenges in brain vessel and aneurysm segmentation, but also
set new benchmarks in terms of precision and robustness. The outcomes of this re-
search have significant implications for improving the accuracy and clinical utility of
vessel and aneurysm segmentation models.

Beyond these applications in vessel and aneurysm images, the proposed approaches
are well suited for segmenting vessel-like structures in other domains, such as retinal
vessel analysis and pulmonary airway segmentation. Additionally, its capability to
enhance small target detection makes it applicable to tasks like pulmonary nodule
detection.

7.2 Limitations and Future Research Directions

Although this thesis presents significant advances in the segmentation of brain vessels
and aneurysms, several limitations remain. Addressing these limitations provides a
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foundation for future research directions to further enhance the efficacy and applicab-
ility of the proposed methods.

7.2.1 Deep Learning-based Haemodynamic Analysis

One limitation of the current approach is the lack of integration with haemodynamic
analysis. Traditional segmentation methods often fail to capture the dynamic and
physical properties of blood flow within vessels and aneurysms. The absence of physics-
informed constraints in our deep learning models means that the predictions may not
fully align with the underlying haemodynamic principles.

To address this, future work could explore the integration of physics-informed neural
networks (PINNs) with deep learning models to better capture these physical properties
and constraints. In this framework, segmentation and PINNs would be performed
synchronously, where the segmentation results serve as direct input to the PINNs for
haemodynamic analysis. By incorporating domain-specific knowledge through PINNs,
this approach could improve the physical consistency of segmentation results while
simultaneously enhancing the accuracy of haemodynamic simulations.

7.2.2 Domain Incremental Learning

Another limitation is the model’s ability to adapt to new domains without forgetting
previously learnt knowledge. Current domain adaptation and generalization techniques
are effective but do not fully address the challenge of continuous learning in diverse
data sets and imaging modalities. Developing models that can incrementally learn
and adapt to new domains is crucial for their long-term applicability and robustness.
Future research in domain incremental learning could enable models to continuously
improve and generalise across diverse datasets and imaging modalities, making them
more robust and versatile.

7.2.3 Virtual Population and Generative Models

The issue of insufficient medical image data remains a significant challenge. Despite
using advanced data augmentation techniques, the diversity and volume of available
training data are often limited. This limitation affects the model’s performance and
generalization capabilities. Addressing this issue through generative models could be
a promising direction. Creating a virtual population that simulates diverse anatomical
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variations and pathologies can provide abundant and varied training data, significantly
enhancing the model’s performance and generalization capabilities. Future work could
focus on developing sophisticated generative models to simulate realistic and diverse
medical images for training purposes.

While the proposed methods demonstrate significant improvements in brain vessel
and aneurysm segmentation, addressing these limitations will be critical for further
advancements. Integrating deep learning with haemodynamic analysis, developing do-
main incremental learning techniques, and leveraging generative models to create vir-
tual populations are promising future research directions that can enhance the accuracy,
robustness, and applicability of segmentation models in clinical practice.
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F. Maes, and H. Heidbüchel, “Adenosine-induced ventricular asystole or rapid
ventricular pacing to enhance three-dimensional rotational imaging during cardiac
ablation procedures,” Europace, vol. 11, no. 6, pp. 751–762, 2009.

[170] T. Sugahara, Y. Korogi, K. Nakashima, S. Hamatake, S. Honda, and M. Taka-
hashi, “Comparison of 2d and 3d digital subtraction angiography in evaluation
of intracranial aneurysms,” American Journal of Neuroradiology, vol. 23, no. 9,
pp. 1545–1552, 2002.

[171] R. Anxionnat, S. Bracard, X. Ducrocq, Y. Trousset, L. Launay, E. Kerrien,
M. Braun, R. Vaillant, F. Scomazzoni, A. Lebedinsky, et al., “Intracranial an-
eurysms: clinical value of 3d digital subtraction angiography in the therapeutic
decision and endovascular treatment,” Radiology, vol. 218, no. 3, pp. 799–808,
2001.

[172] P. M. White, J. M. Wardlaw, and V. Easton, “Can noninvasive imaging accurately
depict intracranial aneurysms? a systematic review,” Radiology, vol. 217, no. 2,
pp. 361–370, 2000.

138



REFERENCES

[173] F. Taher, A. Soliman, H. Kandil, A. Mahmoud, A. Shalaby, G. Gimelfarb, and
A. El-Baz, “Accurate segmentation of cerebrovasculature from tof-mra images
using appearance descriptors,” IEEE Access, vol. 8, pp. 96139–96149, 2020.

[174] M. Russ, R. O’Hara, S. S. Nagesh, M. Mokin, C. Jimenez, A. Siddiqui, D. Bed-
narek, S. Rudin, and C. Ionita, “Treatment planning for image-guided neuro-
vascular interventions using patient-specific 3d printed phantoms,” in Medical
Imaging 2015: Biomedical Applications in Molecular, Structural, and Functional
Imaging, vol. 9417, pp. 580–590, SPIE, 2015.

[175] J. R. Cebral, F. Mut, D. Sforza, R. Löhner, E. Scrivano, P. Lylyk, and C. Putman,
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