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Summarv 

Sustainable Urban Drainage Systems (SUDS) is a generic term that refers to various measures 

aimed at minimising surface runoff (and consequent flooding and pollution problems) from 

urban catchments. SUDS technologies include local infiltration, storage and storm-water re-use 

devices. 

Although there is considerable international evidence of the successful incorporation of SUDS 

technologies in new developments, there is very little indication of the extent to which they 

represent a viable rehabilitation option for retrofit applications to problem urban catchments in 

the UK. It is believed that uncertainties about the design, hydraulic performance and cost of 

retrofit SUDS schemes, as well as some regulatory issues, have prevented UK engineers from 

exploiting the full potential of this approach. 

This thesis presents two case studies in which retrofit SUDS have been evaluated against 

'conventional' (i. e. in-sewer) drainage rehabilitation schemes. The case studies relate to the City 

of Leeds in Northern England, UK. In both cases it was found that SUDS technologies were 

viable, both in terms of hydraulic performance criteria (number and volume of CSO spills or 

flooding events) and in terms of comparative construction costs. Novel procedures were 

developed for evaluating hydraulic performance and SUDS scheme costings. 

The identification of the most cost-effective from all feasible SUDS technologies for a given 

location is not straightforward. This thesis, therefore, proposes a design methodology for 

retrofit SUDS. The methodology comprises a decision making model (flow chart) that indicates 

whether SUDS-based approaches are likely to be viable, and cost-effective for a particular 

application. The flow charts make reference to SUDS design criteria (such as land-take, slope 

and infiltration capacity) and regulatory constraints (such as Building Regulations and local 

groundwater protection policies). Fundamental to the flow charts arc hierarchies that 

characterise urban surface type, the treatment train concept, the disposal mechanism, and cost. 
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CHAPTER I 

1 OVERVIEW 

1.1 BACKGROUND 

In most UK cities, storm-water run-off from paved and roofed areas is generally directed into 

conventional sewerage systems. During times of high rainfall the capacity of these systems may 
be exceeded, resulting in catchment flooding, pipe surcharging, or in excess dilute sewage being 
discharged through combined sewer overflow structures into urban watercourses. In many cases 
these overflows cause unacceptable river pollution. The traditional means of resolving these 

problems is to upgrade the capacity of the existing infrastructure. However, such solutions can 
be costly, difficult to maintain and disrupt the natural water cycle. 
The term 'Sustainable Urban Drainage Systems' (SUDS) describes a set of structural devices 

that are designed to drain surface water in a more sustainable fashion than conventional 
techniques. Example SUDS technologies include infiltration devices, permeable pavements, 
ponds and swales. SUDS generally operate by reducing, or attenuating, the peak storm-water 
runoff conveyed from the urban catchment to the sewer system. Flooding and pollution events 
can be prevented through the use of structural SUDS in conjunction with good site management 
strategies. 
Although there is considerable international evidence of the successful incorporation of SUDS 

technologies in new developments, there is very little indication of the extent to which they 

represent a viable rehabilitation option for retrofit applications to problem urban catchments in 

the UK. 

1.2 AIMS AND OBJECTIVES 

This thesis aims to investigate the merits of applying retrofit SUDS as a rehabilitation strategy 
for conventional urban drainage problems, and to evaluate the practical and economic issues 

associated with their design and use in a UK context. 
This thesis adopts the following objectives to achieve this overall aim: 

0 To undertake preliminary analysis (using existing literature sources and new case study 
data) to establish, in broad terms, whether retrofit SUDS approaches might represent a 
feasible sewer rehabilitation strategy - either when used on their own, or when 
integrated with conventional rehabilitation technologies. It is worth noting that 

subsequent objectives assume this to be the case. 
To establish those issues that affect in practical terms, the design and implementation of 
retrofit SUDS to existing UK catchments. 
To develop modelling procedures to enable the hydraulic effectiveness of retrofit SUDS 

to be evaluated and compared with conventional rehabilitation options. 
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0 To explore the financial costs associated with the construction of retrofit SUDS, and 
develop costing procedures to enable the cost-effectiveness of retrofit SUDS to be 

evaluated and compared with conventional rehabilitation options. 

To develop a decision-making framework for the design and evaluation of retrofit 
SUDS. 

0 To demonstrate the application of the decision-making framework to a representative 
UK case study. 

1.3 STRUCTURE OF THESIS 

The following Sections highlight how the structure of this thesis reflects the key aims and 
objectives of this study. 

1.3.1 Chapter 2- Literature Review 

The second Chapter of this thesis presents a review of the key literature that was considered to 
be relevant to this research project. This review explores: 

1. The background to the UK's urban drainage problems 
2. Conventional rehabilitation strategies that are generally employed to address these 

problems 

3. The concept of sustainable water management 
4. A range of alternative urban drainage rehabilitation strategies that are collectively 

known as Sustainable Urban Drainage Systems (SUDS) 

5. The issues associated with implementing retrofit SUDS to a UK context 

1.3.2 Chapter 3- Gipton catchment 
Chapter 3 investigates the implementation of retrofit SUDS to the Gipton catchment, the first of 
the two case-study catchments explored in this thesis. The main objectives of this investigation 

were to evaluate the potential for applying retrofit SUDS to this catchment, and to establish 

whether such measures could be used to eliminate the catchment's hydraulic problems. The 

secondary aims of this investigation were to develop preliminary design, costing and modelling 
methodologies for retrofit SUDS, that could subsequently be applied to the second of two case- 

study catchments, and ultimately used to derive a set of design guidelines for retrofit SUDS 

applications. 

1.3.3 Chapter 4- Design issues 

Chapter 4 reviews the design issues that are considered to influence the viability of retrofit 
SUDS applications. This Chapter seeks to build upon the lessons learnt from the Gipton study, 
and the other SUDS studies highlighted in Chapter 2, in order to comprehensively explore the 
design issues associated with retrofit SUDS. The primary aims of this Chapter are to establish a 
list of factors that most influence the viability of retrofit SUDS (in terms of different 

technologies and applications), and to define basic guidelines for their design. These design 
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guidelines are subsequently applied to the Meanwood catchment, the second of the two case 

study catchments, in order to establish best-case catchment coverage scenarios for individual 

SUDS technologies. 

1.3.4 Chapter 5- Modelling issues 

Chapter 5 presents modelling techniques that were developed to simulate the hydraulic 

performance of retrofit SUDS schemes. At the time these investigations were conducted, none 

of the main commercial urban drainage models contained direct procedures for the simulation of 
SUDS devices. The work presented in this Chapter assesses the potential for applying the 

HydroWorks model (Wallingford Software, 1994) to represent the hydraulic performance of 

retrofit SUDS. The Chapter reviews a number of alternative options for modelling retrofit 
SUDS using HydroWorks, and applies the most appropriate of these to the Meanwood 

catchment. 

1.3.5 Chapter 6- Economic issues 

Chapter 6 develops methodologies for calculating the construction costs of a range of retrofit 
SUDS technologies. These costing methodologies are subsequently applied to the Meanwood 

catchment. Costs are presented in unit terms (i. e. per SUDS device) and for specific SUDS 

schemes (i. e. that serve a designated part of the Meanwood catchment). 

1.3.6 Chapter 7- Decision making framework 

Chapter 7 presents a 'decision making' framework/methodology that develops the lessons learrit 

in the preceding Chapters. The methodology also draws from other work reported in Chapter 2 

(Literature Review) and technical guidance provided in relevant UK design guidelines (CIRIA 

C522,2000; CIRIA 124,1992; CIRIA 156,1996; BRE 365,1991). This tool intends to address 

some of the problems/difficulties that were encountered whilst performing design work in 

conjunction with the case study catchments. It is envisaged that this framework could be used as 

a design tool to assist designers/engineers compile both retrofit SUDS and integrated 

(SUDS/conventional) solutions for comparison with conventional storm water management 

solutions. This design methodology is subsequently applied to the Meanwood catchment, and its 

performance assessed. 

1.3.7 Chapter 8- Conclusions and Recommendations for further work 
Chapter 8 seeks to summarise the research that was undertaken in this thesis, draw a number of 
conclusions and highlight the potential for further work. 
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2 LITERATURE REVIEW 

2.1 INTRODUCTION 

This Chapter presents the literature review that was undertaken in conjunction with this thesis. 
Section 2.2 explores the background issues associated with problem urban drainage catchments 
in the UK. Section 2.3 investigates the conventional rehabilitation strategies generally employed 
to address urban drainage problems. Section 2.4 introduces the concept of sustainable water 

management, and Section 2.5 presents a range of alternative (more sustainable) stormwater 

rehabilitation devices that are collectively known as Sustainable Urban Drainage Systems 

(SUDS). Sections 2.6 and 2.7 investigate the issues associated with implementing SUDS 

, 
Aechnologies (in respect to global and UK contexts). Section 2.8 explores uncertainties 

associated with the hydraulic effectiveness of SUDS. Section 2.9 explores the cost/benefit 
issues associated with SUDS technologies, and Section 2.10 presents cost/benefit case studies 
for SUDS technologies. 

2.2 BACKGROUND 

2.2.1 Historical development of sewer systems within UK 

Many of the UK's urban drainage systems date back to the Nineteenth Century. These systems 

were initially built in the central areas of large towns and cities, and were intended to carry 
surface storm runoff, industrial effluent and domestic foul sewage. These drainage systems were 
later followed by the development of sewage treatment works, which were introduced to 
improve the quality of wastewater discharged into local watercourses. However, in many cases, 
the capacities of these sewers and sewage treatment facilities were not sufficient to meet the 
demands of these growing cities. This led to the introduction of in-sewer detention tanks, and 

overflow structures to discharge excessive storm flows directly into receiving waters, without 
having to pass through the treatment works. 

2.2.2 Basic definitions 

Combined Sewer System (CSS) - Around 70% of the sewers in the UK are combined sewer 

systems (Andoh and Declerck, 1997). 'Combined' systems carry both foul sewage and storm 

water runoff (Figure 2.1). Most combined sewers were constructed at a time when it was 

considered acceptable to discharge untreated raw sewage directly into rivers. Today, it is 

customary practice for combined sewer flows to be treated at wastewater treatment plants. 
Howeveý during heavy rainfall events wastewater treatment plants typically lack the capacity to 

treat all the flow conveyed through the sewer system. In such circumstances, excess flow is 
discharged directly to a receiving watercourse. 
Combined Sewer Overflow (CEQ) - CSOs are designed to prevent flooding from combined 
sewer systems by allowing excess flow to pass directly from the system into receiving 
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watercourses. Such overflows typically discharge during, or shortly after, periods of heavy 

raint'all, when it is hoped that I'Oul sewage in the systern is well diltitcd with SUrface water, and 

that levels within the receiving waters have also risen. 

Figure 2.1 Combined sewer system 

Figure 2.2 Separate sewer system 

Bypass sewers - The by-pass sewer is another technique that has been adopted to address the 

problenis of insufficient capacity within urban sewer systerns. Such structures are generally 
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constructed in order to divert flows around overloaded sewer sections. However, this approach 

can often lead to problems being passed downstream through the system. 

In-sewer Storage tanks - The use of in-sewer storage facilities to detain excessive storm flows 

has been an established practice since the early 1980s. Storage facilities may be used to control 

excessive storm flows upstream of problem sewer sections. The use of such storage can 

alleviate network flood ing/surcharging and excessive CSO emissions. However, storage 
facilities are not without their own problems, these problems largely relate to the high costs 

associated with construction (i. e. due to their large volume, and location) and maintenance 
(i. e. due to sedimentation within the tank). 

Separate Sewer System (SSS) - Separate sewer systems were developed to address some of the 
hydraulic and environmental problems associated with the traditional combined sewer systems. 
In a 'separate system' foul sewage is conveyed to treatment via a separate network to that which 
is used for the collection of storm water runoff (Figure 2.2). This avoids the discharge of 

untreated foul effluent into receiving watercourses during storm conditions. Separate Sewer 

Overflows (SSO) are generally used to convey excessive surface runoff directly to local 

watercourses. 

2.2.3 Problems associated with conventional sewer systems 
There are a number of problems associated with the use of conventional urban drainage 

systems. Most of these are the result of insufficient capacity during extreme storm events - and 

are exhibited in the form of excessive CSO/SSO emissions and network flooding/surcharging. 

ZZ3.1 Problems associated with CSOISSO emissions 
The main problems associated with excessive CSO emissions from overloaded combined sewer 

systems are outlined below: 

L Health Problems -A variety of pathogens are present within raw sewage; and depending on 

rates of exposure and concentration, these may cause illness. Although sewage overflows are 
diluted by rain and river water, they may still represent a slight health hazard (FWR 1994). 

Z Aesthetic Problems - Another major problem associated with CSO discharges is the release 

of unsightly material (e. g. condoms, sanitary towels) into the natural environment (Saul, 1997). 

This produces obvious public concern, and complaints to the responsible water authority. 
3. Environmental Problems - Combined sewer overflows contain a variety of organic, 

chemical and industrial wastes. If the concentrations, or spill frequencies, of CSO discharges are 

significantly high then the receiving water and its aquatic life may be harmed. 

Discharges from separate sewer systems can also pose pollution problems within receiving 

watercourses - especially in catchments with a high number of foul water misconnections into 

the surface water system, or where high levels of surface pollutants are conveyed into the 

stormwater sewer system. 
It is evident, that in light of these problems, there are obvious benefits to be gained by 

eliminating, or limiting, CSO discharges. The main legislative issues associated with the control 
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of CSO discharges are discussed in Section 2.2.5, and the main design and planning strategies 

used to meet these standards within the UK are presented in Section 2.3. 

2.2.4 Sewer Flooding/Surcharging problems 
Network flooding and surcharging are further problems often associated with overloaded 
separate and urban combined sewer systems. These problems generally occur when the 

hydraulic capacity of the system is exceeded during extreme storm conditions. Flooding or 

surcharging events are considered problematic when they occur on a regular basis. This largely 

relates to the health risks associated with flooding from combined sewer networks, but also 

reflects the damage to property and general inconvenience that can result from flood events 
from both combined and separate sewer networks. 
Acceptable levels of surface flooding from UK urban drainage systems are defined and 

monitored by levels of 'performance' and 'service' parameters. 
Level of performance criteria - are used by design engineers to define unacceptable 
frequencies (in terms of design storms) for flooding or surcharging events from a given drainage 

system (See Table 2.1 and Table 2.2). 

Level of service criteria - Monitored performance of drainage system in terms of actual 

recorded surface flooding. 

CIRIA report 124 (1992) and the Sewer Rehabilitation Manual (WRc 1994) recommend 
acceptable 'levels of service' (See Table 2.1 and Table 2.2). Drainage systems with 'Levels of 

service' that do not conform to these criteria should be upgraded through appropriate remedial 

works. Recommendations on how such remedial works should be undertaken are presented 

within the Sewer Rehabilitation Manual (WRc 1994) (See Section 2.3.3). 

Table 2.1 Suggested design 'levels of performance' criteria 
for stormwater drainage systems (CIRIA Report 124,1992) 

Land use Design level of performance Comments 

Residential development I in 25 year 
Public open space 

I in I year 
I in 10 year 

Dependent upon use 

Non-domestic residential I in 25 years Hotels, HosteIs, etc 
I 

Retail trading, offices, industrial areas I in 25 years 

Table 2.2 Example Performance Criteria (Sewer Rehabilitation Manual, WRc 1994) 

Level 
Aspect Triggerfor early Targetfor New design 

rehabilitation upgrade 
PUBLIC HEALTH 
Flooding Frequency: 
i) Inside occupied premises Twice in 10 years I in 30 years I in 50 years 
ii) Streets Twice per year I in 20 years I in 25 years 
STRUCTURAL 
Frequency of Surcharge N/A I in I year I in 2 years 
RECEIVING WATER QUALITY 
CSO Operation Unsatisfactory CSOs 
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2.2.5 Lcgislative contut 
The UK is required to comply with EU water quality directives: these directives are usually 
incorporated into UK law. Within England and Wales, laws that relate to issues such as land 

drainage and the control of pollution within inland and coastal waters are established by Acts of 

Parliament. These acts establish a general framework, and provide authority to the Secretary of 

State to issue more specific regulations. However, where regulations are not made, as is the case 
for discharges into and from surface water sewers, then interpretation of the law is more 

difficult. 

In practice, the sewer owners (e. g. the privatised water companies, the Scottish water 

authorities) and their environmental regulators (e. g. Local Authorities, the Environment Agency 

and the Scottish Environment Protection Agency) are responsible for administering the 

provisions of these Acts. This is achieved, in respect of the control of intermittent discharges, 

through the granting of consent orders, which impose limits upon the concentrations, volumes 

and rates of effluent that may be discharges through any given CSO/SSO. 

ZZ5.1 Legislation - CSO Emissions 

The Water Framework Directive (EU, 2000) is considered to be the most significant piece of 
international legislation that has been published in relation to the field of water management in 

recent years. This directive, unlike the Urban Wastewater Treatment Directive (UWWTD) 

described below, takes a more holistic view of water management, and may be applied to a large 

swath of the natural water cycle ranging from inland surface waters, groundwater, estuarine and 

coastal waters. Its three key objectives are: i) the prevention and enhancement of aquatic 

ecosystems/associated wetlands; ii) addressing the effects of floods and droughts; iii) the 

promotion of more sustainable water consumption patterns. These driving principles have been 

summarised by the single overriding objective of achieving good status in all waters (Chavc, 

2001). 

The Water Framework Directive (EU, 2000) adopts the guidance provided in the Urban 

Wastewater Treatment Directive (UWWTD) (Directive 91/27 1 /EEC, 199 1) for the management 

of surface waters. The Water Resource Act (HMSO, 199 1) and the Urban Waste Water 

Treatment Regulations (UWWTR) (HMSO, 1994) apply the UWWTD in the context of 

England and Wales. These acts adopt the following criteria to help define and control problem 

CSO emissions: 
1. A dilution ratio between the quality of the sewerflow and that in the receiving watercourse 
2. The capacity of the sewer system in relation to the dry weatherflow 
3. A specified number of overflows per year. 
A guidance note on the UWWTR issued by the Department of the Environment in 1997, 

endorses the use of the UPM Manual (FWR, 1994/1998) as an appropriate planning tool for 

sewer and sewage treatment improvements within England and Wales. The UPM Manual is 

reviewed in Section 2.3, alongside a number of other conventional stormwater management 
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strategies. These tools arc widely used by UK water companies to help achieve the 
improvements in CSO discharges, and river quality, required as part of the government's AMP 

(Asset Management Programme) periodic reviews of the privatised water companies. The third 
Periodic Review (AMP3), which covers the five-year period between 2000 and 2005, seeks an 
improvement in discharges from 3,800 unsatisfactory CSOs that pollute nearly 3,600 krn of 

rivers. 

ZZ5.2 Legislation - Land drainagelUrhan Flooding 

The legislation relating to drainage practices within England and Wales is complex. Few SUDS 

were in operation within the UK when this legislation was introduced, and as a result SUDS are 

not addressed directly. The following extract from CIRIA report 124 (1992) briefly outlines the 

legislation that relates to land drainage: 

The procedure for the approval of a planning application submitted in accordance with the 
requirements of the Town and County Planning Act 1990 provides the facility for informing the 
public and initiates a check of the drainage proposals by the relevant authorities. This check 
should ensure that the proposals meet the requirements of the Public Health Acts 1936 and 1961, 
the Land Drainage Act 1976, the Water Acts 1973 and 1989, the Control of Pollution Act 1974 
and the Highways Act 1980. 

See Volume 4 of CIRIA report 124 (1992) for further details. 

CIRIA report C552 (2000) presents a more up-to-date list of legislation that affects the 

implementation of SUDS devices: 

Highways Act (1980) 
Sewers for Adoption (WRc, 1985) 
Sewer Act (1989) 
Town and Country Planning Act (1990) 
Environment Protection Act (1990) 
Water Industry Act (1991) 
Water Resources Act (199 1) 
Land Drainage Acts (1991,1994) 
Environment Act (1995) 
Policy and Practice for the Protection of Groundwater (EA, 1998) 

See CIRIA reports C521, C522 and C523 (2000) for further details. 

It should be noted that a new edition of Sewers for Adoption was published in 2001. This 

edition acknowledges the potential role of SUDS technologies in stormwater management, but 

excludes the approach from its recommended procedures due to uncertainties associated with 

their design, ownership and maintenance. The revised guidelines (WRc, 2001) also point out 

that sewer undertakers are generally only constrained to accepting pipe systems when adopting 

drainage from new developments. 
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2.3 CONVENTIONAL STORMWATER MANAGEMENT STRATEGIES 

2.3.1 Introduction 

There are three key publications that relate to the design of sewer rehabilitation schemes for the 

UK: 
1. Urban Pollution Management (UPM) Manual (FWR, 1994/1998) 

2. The Sewer Rehabilitation Manual (WRc, 2002) 

3. FR0488 guidelines - Guide to the design of CSO structures (FWR, 1994) 

A brief review of each of these publications is presented within the following Sections. 

2.3.2 Urban Pollution Managcmcnt (UPM) Manual 

Z3. Zl Definition 

'Urban pollution management' has been defined as the management of wastewater discharges 

from urban sewer and sewage treatment facilities under wet weather conditions (taken from the 
UPM manual; FWR, 1994). 

Z3. Z2 Purpose of UPM 

The UPM manual was initially compiled in 1994 with the intention of creating a cost-effective 

strategy that could adequately protect natural receiving waters against pollution, without the 

over provision of storage or treatment capacity. Since then the UPM methodology has been 
developed and refined, by way of a second edition that was published in October 1998. The 

second edition presents a similar set of design procedures for the development of cost-effective 

sewer systems, but adopts a more generic tone than the original manual. 
The UPM guidelines were developed through consultations with regulatory agencies 
(e. g. the National Rivers Authority, now part of the Environment Agency), and regulated bodies 

(e. g. water companies). This cooperative approach was adopted in order to help promote the 

UPM procedures as a standard tool within the UK water industry, and to promote common 

understanding for future negotiations between these two groups. 

Z3. Z3 UPM manual - Basic Procedure 

The basic methodologies described within the First and Second editions of the UPM manual 
(FWR, 1994 and 1998) are very similar (Table 2.3). Both methodologies start with an initial 

problem identification phase, then progress to data collection, model building, development and 

testing of a solution, and conclude with post planning issues, such as obtaining consents and 
undertaking detailed designs. 

Tahla 2-3 Cnmnariqnn nf UPM Prnr-pditrpq- Ist and 2nd Frlitinns 
UPM 1" Edition (1994) UPNf2-"'-EP dition (1998) 

Phase A Initial planning Initial planning 
Phase B Assembling data and tools Construct UPM tools 
Phase C Developing solutions Test compliance 
Phase D Consenting and detailed design I-Post planning study issues 
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The following Sections provide an overview of the UPM methodology using the original 
framework. Significant differences between the procedures contained within the 1" and 2 nd 

editions of the UPM Manual (FWR, 199411998) are highlighted: 
Phase A- Initial planning: The initial phase relates to assessing the existing 'wet weather' 
pollution problem; particularly in terms of the impacts that CSO discharges have upon receiving 
waters. This assessment is difficult to perform, as intermediate discharges are difficult to 

monitor, and their effects are usually of a short-term nature. The manual suggests a number of 

steps that can be taken to investigate the extent of such pollution problems. These procedures 
should indicate whether a problem is severe enough to be addressed. The manual recommends 
that environmental criteria be agreed between the quality regulator (e. g. the Environment 
Agency) and the sewer operator; these criteria should form the basis for the subsequent 
management and planning phases. These standards will typically define the level of 

performance required of the sewer and sewage treatment works (STW) to prevent harm to 

receiving waters. The stringency of these standards usually relates to the nature of the receiving 
water and its pattem of usage. Once these environmental standards have been established, 
decisions may then be made regarding the particular data and tools required to analyse the 

system. 
Phase B- Assembling data and tools: The manual recommends that this phase involves the 

compilation of appropriate data (e. g. population and low river flow conditions) and of the 
tools/models required to simulate the wet weather performance of the urban drainage system. A 

number of techniques are suggested. These range from the use of simplistic models, such as 
SIMPOL (see Section 2.7), through to detailed deterministic urban drainage models such 
HydroWorks/InfoWorks (see Section 2.7). The second edition of the UPM manual is less 

prescriptive with regards to which specific urban drainage models should be adopted for this 

task, and recognises that a wide range of modelling packages is available. The second edition 

also contains guidance on the practical aspects of field data collection for the calibration and 

verification of detailed models. 
Phase C- Development of solutions: UPM recommends that this phase should lead to the 
definition of appropriate environmental standards for the release of wastewater to receiving 
waters. Typical values representing ambient conditions (e. g. rainfall events, upstream flows and 

quality) are assigned for use with the modelling tool developed in phase B. This tool may then 
be used to simulate the performance of the system, and to compare this with the designated 

environmental standards. Repeating this process for different input data sets enables alternative 
solutions to be compared, and for the best solution to be ascertained. 
The UPM methodology typically promotes the use of in-sewer storage facilities, or improved 
CSO screening, to address the problems associated with excessive CSO discharges. However, 
the UPM methodology does not rule out the use of SUDS-based solutions - i. e. provided that 
compliance can be demonstrated with the relevant performance criteria highlighted in Section 
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2.2. It is therefore important that relevant background data and models be collected in order to 

establish/simulate the performance of such SUDS-based proposals. 

Phase D- Obtaining consent and detailed design: This phase should involve the application 

process for formal consent to discharge and the granting of appropriate consent conditions. The 

UPM procedure requires that this should be received before detailed engineering design works 

are undertaken. 

Z3. Z4 Water quality standards 
The UPM manual presents two sets of water quality standards for the protection of freshwater 

aquatic life from wet-weather pollution episodes. 
Intermittent standards (Section 2.3.2.5) - these are directly related to the characteristics 

of spill events that cause problems to river ecosystems. These standards are usually 

expressed in terms of concentration-duration thresholds with an allowable return period 

or frequency 

High percentile standards (Section 2.3.2.6) - these are based on 90/95 percentile water 

quality thresholds that are selected for the protection of river ecosystems. 

Z3. Z5 Intermittent Standards 

Discharges from CSOs are intermittent in nature, and the pollution resulting from them may 
have a range of harmful effects. Pollution problems may either be caused by acute incidents, 

which last for short periods of time, or by less severe incidents which are prolonged over the 

longer term. In response to this, the first UPM manual (FWR, 1994/1998) outlined a set of 

standards that have been developed to ensure protection of river aquatic life during short-term 

pollution events. These standards are often referred to as Fundamental Intermittent Standards, 

and are typically expressed in terms of DO and unionised ammonia (i. e. two parameters which 
have a significant impact upon the survival of aquatic life). However, as these are difficult 

parameters to deal with in practice, BOD and total ammonia are commonly used in their place. 

The second edition of the UPM manual contains a more comprehensive range of Fundamental 

Intermittent Standards than the original manual. 

Z3. Z6 High percentile standards 
The second edition also pays a greater emphasis to the potential use of high percentile 

standards. This relates to the fact that regulatory bodies, such as the Environment Agency, often 

specify percentile-based water quality standards to define river use classifications - e. g. the 

Rivers Ecosystem Classification (FWR, 1994). These standards include constraints for BOD, 

dissolved oxygen (DO), total ammonia and un-ionised ammonia, which are expressed in terms 

of percentile values (90 or 95 percentiles for BOD, ammonia and un-ionised ammonia and 10 

percentiles for DO) - examples of percentile-based river quality standards are presented within 
Table 2.4. 
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Table 2.4 Examole nercentile-based river nualitv standards (FWR. 199AI 
Dissolved BOD (ATU) Total ammonia 

Un-ionised 

Class Oxygen 
mg/I mg N11 Ammonia 

% saturation 90 percentile 90 percentile mg N11 
10 percentile 90 percentile 

REI 80 2.5 0.25 0.021 
RV 1) E2. 70 4.0 0.6 0.021 
RE3 60 6. o 1.3 0.021 
RE4 50 8.0 2.5 
RE5 1 20 1 15.0 9.0 1 

Note: Recommended standards for pH, Hardness, Dissolved Copper and Total Zinc are not illustrated. 

Z3. Z 7 Summary of UPMprocedure 

The UPM procedure is one the UK's main urban drainage planning tools for the protection of 

river quality/control of CSO discharges. It is claimed that these procedures significantly reduce 
the level of uncertainty associated with water quality impacts from proposals that are derived by 

traditional planning methods (Gent et aL, 1996). 
The UPM methodology is widely used by UK's water industry and is endorsed by regulatory 
bodies (e. g. EA and SEPA) as a means of defining CSO discharge consents, and subsequently is 

of considerable importance to the application of retrofit SUDS in a UK context. 

2.3.3 The Sewer Rehabilitation Manual (SRM) (WRc, 2002) 

The Sewer Rehabilitation manual (WRc, 2002) was compiled for designers and planners 
involved with the rehabilitation of UK sewer systems. The manual contains a set of procedures 

and guidelines that were intended to assist the decision making process associated with such 

works. The aims of the Sewer Rehabilitation Manual (WRc, 2002) methodology are described 

as being able to produce: 
1. Significant cost savings in necessary rehabilitation works 
2. The ability to control the growth of future rehabilitation costs as the network gets older 

3. The means of quantifying and justifying the financial requirements for future upgrading 

programmes 
The SRM seeks to meet these aims by focusing investigation and planning resources on to 'core 

areas 9 within the sewer system. The term 'core area sewer9 is used to describe: i) critical sewers 

where the consequences of structural failure are severe; ii) sewers where hydraulic performance 

problems are severe; and iii) other sewer sections that link the two previous types of sewer. 
The Sewer Rehabilitation Manual (WRc, 2002) recommends the investigation of structural 
condition, hydraulic (e. g. flooding or surcharging problems) and environmental performance 
(e. g. CSO discharges) associated with each system. This approach is termed a 'full 
investigation' (Figure 2.3) and should lead to the development of a long-term 'drainage area 
plan' covering all 'identified needs' for the system. 
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INITIAL PLANNING Determine performance criteria 
2 

Assess current performance 

I Is fuU investigation appropriate? I 

YES 

NO I 

Abbreviatcd investýation 

I Adopt full investigation. Check regional priorities I 

DIAGNOSTIC STUDY I Check system records 

Phase I Identify critical sewers 
Records 

I 

I Pian records upgrading and improved access I 

Phase 2a 
Assessing 
Structural Plan inspection programme Build hydraulic model 
Condition Phas 2b 

Assessing 
I 

Carry out inspections I Envionmcntal 
Verify model I 

Performance 

Environmental 
Assess structural condition assessment to be Use model to assess hydraulic 

carried out performance 
simultaneously by 

-I Identify lengths needing water quality Identify locations and causes of 
Rehabilitation planners performance deficiencies 

I Set priorities against each problem and need I 

Phase 3 Consider rehabilitation options. Develop integrated 

Development solutions to problems 

of the drainage I 
area plan Identify most cost effective solution 

I Establish drainage area plan. Seek regional approval 

IMPLEMENTING TIEE PLAN 

Design and construct rehabilitat Monitor structural, hydraulic and I 
works environmental performance 

i Update drainage area plan I 

Figure 2.3 Sewer Rehabilitation Manual - Full investigation procedure (WRc, 1994) 

It should be noted that although Phase 3 of the SRM procedure is generally used in practice for 

comparison of conventional rehabilitation proposal (e. g. upgrading in-sewer storage, or CSO 

facilities) there is no real reason why it could not be extended to include SUDS-based options 
(See Section 2.5). Phase 3 of the SRM procedure uses the term 'development of integrated 

solutions', to imply the combined use of different conventional sewer rehabilitation strategies 
(e. g. in sewer storage, upgrading CSOs and re-sewering). However, once again, there is no 

reason why this guidance could not be extended to include SUDS-based options. 
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2.3.4 FR0488 CSO design guidelines 
The FR0488 guidelines (FWR, 1994) are widely used within the UK water Industry for the 

design of CSO structures. These guidelines complement the SRM (WRc, 2002) or UPM (FWR, 

1994/1998) planning guidelines - both of which can be used to define 'acceptable levels' for 

CSO discharges. The FR0488 procedure specifically addresses the design of CSO structures - 
in order to meet the discharge targets specified by either the SRM (WRc, 2002) or UPM (MR, 

1994/1998) planning guidelines. These guidelines utilise the 'Formula A' methodology for 

defining CSO overflow settings (See Section 2.3.4.1). 

It is worth noting that these guidelines have since been superseded by WaPUG's guide on 'The 

Design of CSO Chambers to Incorporate Screens' (WaPUG, 200 1). 

Z3.4.1 CSO design guidelines - Formula. A 

The fundamental design parameter for CSO structures is the overflow setting. This defines the 

flow rate at which the CSO will start to spill. CSO settings were traditionally designed with 

reference to the downstream sewer sections, and the flow volumes that were appropriate to 'pass 

forward'. This led to the adoption of fixed pass-forward flow criteria, such as the 'Formula A' 

methodology (MIILG, 1970): 

Qc = DWF + 1360P + 2E (Equation 2.1) 
Where: Q, - the continuationflow, 

D WF - dry weatherflow (11day), 
P- population, 
E- industrial effluent ald) 

Z3.4.2 Alternative CSO design guidelines - SDD methodology 

The Rivers Pollution Prevention Sub-Committee of the Scottish Development Department 

(SDD, 1977) presented a simplified design approach for establishing CSO settings that was 
based upon 'available dilution' within the receiving watercourse. This dilution parameter is 

calculated in relation to dry weather flow sewer effluent and minimum stream flow at the point 

of discharge (i. e. the mean daily discharge that is exceeded on 95% of occasions). The 

guidelines are presented in Table 2.5. 

Tnhla 94 nacinn niflefolinna fnr 4mtnrrn nvprfinw installations (SDD. 19771 

Minimum dilution in terms of Approx. percentage of total 
95% exceedence mean daily polluting load of storm sewage Type of storm overflow 
discharge in receiving water spilled from sewer that may installation 

course and sewer DWF be discharge to stream (%) 

8 100 Overflow setting = Formula A, 
no tank 

Overflow setting = Formula A+ 

6 75 455P, no tank, if sewer capacity 
available. Alternatively adopt 

next recommendation 
4 50 Overflow setting = Formula A+ 

tank of capacity 40 1 per head. 

2 25 Overflow setting = Formula A+ 
tank of capacity 80 1 per head. 

1 12 Overflow setting = Formula A+ 
tank of capacity 120 1 per head. 

_] 
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This methodology defines a CSO setting that is equivalent to that calculated by Formula A, plus 
an additional storage volume of between 40 and 120 litres per head. The level of additional 
storage required is determined by the available dilution. Storage capacities within this range 
would typically store between 50 and 80% of the excess flow. 
The SDD method does not predict the impact upon receiving watercourse - it simply attempts to 

reduce the impacts of spill discharges to acceptable levels. Whether this is achieved depends on 
the capacity or amenity classification of the receiving river. The SDD (1977) design guidelines 
generally produce more conservative solutions than the FR0488 methodology. 

2.3.5 Review of conventional stormwater management strategies 
It should be noted that all three of the conventional stormwater management strategies reviewed 
within this Section largely focus upon hard-engineering solutions, such as the construction of 
additional in-sewer storage facilities. However, this thesis seeks to demonstrate that in many 
cases innovative urban drainage technologies, which have been broadly classified as 'SUDS', 

provide a viable alternative. The following Section briefly introduces the concept of 
'sustainable' stormwater management. Section 2.5 explains what SUDS are, whilst Section 2.6 

explores the issues associated with retrofitting SUDS to urban catchments. 

2.4 SUSTAINABLE STORMWATER MANAGEMENT 

2.4.1 Sustainable development 

"Sustainable development is that which meets the needs and aspirations of the present 
generation without compromising the ability offuture generations to meet their own needs ". 

The Brundiland Report (JVCED, 1987) 

The subject of 'sustainable development' has received much attention in recent years. The 

global importance of this issue was highlighted by the findings of the Brundtland Report 
(WCED, 1987), and later reiterated at the Rio Conference in 1992 (United Nations, 1992). 
'Sustainability' is consequently seen as having an important role to play with respect to the 
future of urban development. However, there has been some debate as to what the term 
'sustainable' actually means in practice (Laursen and GuJer, 1997; Chen and Beck, 1997). Much 

of this confusion relates to the multidisciplinary nature of the topic. The popular view is that 
'sustainability' is solely an ecological issue. However, this ignores the fact that a diverse range 
of social, economic and technical issues also impact the natural environment (Brooks, 1992). 
Chen and Beck (1997) describe 'sustainability' in terms of an economic analogy, as a condition 
where the present generation bequeaths the next generation no less capital than it currently 
holds. This again, illustrates that 'sustainability' can be defined by any number of different 

criteria - since the term 'capital' in this analogy may be considered to represent a number of 
different factors (e. g. monetary, technological or environmental). It has been argued that 
'sustainability' can be pursued to varying degrees; in its most rigorous form this would involve 
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the consideration of a large number of sustainability criteria, whilst its weakest would only 

consider those that are easily achievable (Chen and Beck, 1997). 

It is therefore difficult to draw a precise definition for the word 'sustainability' from the current 
literature. However, there is broad agreement that the term 'sustainable development' implies 

characteristics such as durability, endurance and stability (Butter and Parkinson, 1997; Jeffrey et 

al, 1997; WCED, 1987). 

2.4.2 Sustainable urban water management 
2.4. Z1 Background 

It is debatable whether urban water management is, or can ever be, a truly sustainable 
technology (Laursen and Gujer, 1997). Indeed, it has been argued that since it may never be 

possible to derive a completely sustainable urban drainage system, resources would be better 

spent on identifying the least sustainable elements of conventional drainage systems and 

seeking to replace them with more sustainable alternatives. The benefits of such an 'incremental 

response' to the 'sustainability' question are that it avoids major economic, technical and 
logistical problems, which would otherwise be incurred by making dramatic changes to existing 
pieces of urban infrastructure (Butler and Parkinson, 1997). 

Z4. Z2 Reported aims of sustainable urban water management 
There have been a number of different reported aims for sustainable urban water management 

schemes over the last decade, and these have focused upon a wide variety of issues. Much 

attention has been given to the ecological aims of sustainable urban water management 

(Andoh, 1995; Kaiser, 1997; Niemczynowicz, 1994). Other proposed objectives that have been 

discussed in connection with sustainable urban water management relate to a range of 

economic, social and technical issues (Andoh and Declerck, 1997; Ilarrcmoes, 1997; Varis and 

Samlyody, 1997), and have addressed issues such as user acceptance, affordability and 

appropriateness. 
There has also been some discussion as to whether 'flexibility' should be the prime 

characteristic of a truly sustainable technology (Jeffrey el al., 1997). This is based on the 

premise that the challenges facing a system in the future may significantly differ from those it 

faces today. Therefore, if a system cannot be easily adapted to meet these new challenges, it is 

not truly sustainable. This may have particular relevance in light of the possible climatic 

changes that may accompany global warming (Bridgeman and Gregory, 1999; The Guardian, 

24th Nov. 1998). This viewpoint is reinforced by Costanza (1996), who suggests that 

'sustainability' may be more a matter of prediction rather than definition, since it will only be 

apparent that a system is truly sustainable at some point in the future. 

These proposed objectives have been used to develop a number of more detailed Sustainable 

Urban Water Management strategies which are discussed in the following Section. 
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2.4.2.3 Develolmytent of'Snwainable Urban Water Management strategies 

A number of' sustainable urban water management strategies have been developed in recent 

years (11WIcr and Parkinson, 1997, Krebs and Latirscil, 1997, CIMA Reports ('521, ('522 and 

C523,2000). Unlike design procedures for conventional urban drainage systems, which tend to 

I`OCLIS Upon the Specific ISSLICS Of"hydratilic performance' and 'water quality', thesc sustainabIc 

urban water management strategies advocate a more holistic design approach. In CARIA Reports 

('521. C'522 and C'5223 (2000) this holistic approach is illustrated by the 'urban triangle' 

concept 

(Figure 2.4), which views 'amenity valLIC' as being of equal importaricc to the 'hydratilic 

performance' and/or 'water quality'. The urban triangle Illustrates a key element ol'the SUDS 

design manual methodology - i. e. that SLIstainable systems should seek to balance urban 

drainage's three main impacts upon the local environment: quantity, quality and amenity 

(see Figure 2.4). 

Figure 2.4 The urban triangle (from CIRIA Report C522,2000) - balancing the impact of 
urban drainage on the environment 

Each component of the urban triangle is briefly discussed within tile following three Sections: 

2.4.2.4 Quantity 

Most urban drainage problems are associated with peak flow conditions within overloaded 

sewer systems. Traditional Solutions to such problems seek to utilise conventional technologies 

Such as upgrading CSO structures, sewer pipes or storage facilities, to detain or divert excessive 
flows once they are within the sewer system. 
Sustainable urban drainage systems aim to alleviate peak flows within overloaded sewers by 

reducing all inputs (i. e. both foul flows and surface run-off) into the sewer network. The two 

main mechanisms used to achieve this alleviation of peak flows arc: i) the promotion of 'natural 

catchnient' conditions and ii) the reduction of water consumption rates. 
The 'Natural catchinent' - Natural catchnient systems have various featurcs that store and 

attenuate storrnwatcr runoll'before it is released into receiving waters. 'I'llis mechanism has been 
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described as the 'nulurol disiributed control svvem' (Andoli, 1995). Urbanisation ol' a 

catchmcnt disrupts the natural mechanisms that provide this 'distributcd control', and as a 1-csult 

causcs a number of' adverse ciTects. The progressive urbanisation of' a catchnicnt (i. e. the 

introduction of' roads, bUildings, car parks, etc. ) produces an inci-casc in Impermeable SUrfacc 

intiltratcd to the subsoil. This in turn causes a reduction in tile volullics of' watet iI area. 
Urbanisation will also mid to reduce flic capacity of'dcpression storagc' that is availabic within 

a catchnient. Similarly, cvapo-transpiration will dccrcasc wlicn flIC Urbanisation proccss 

involvcs the rcmoval or vcgetation. Thc cumulative cffect of all of thesc factors will bc to 

reduce the natural storagc of stormwater within the catclinicilt and subscquently increase thc 

volurnes of runoff cntering the drainage system (Andoh and Dcclcrck, 1997). 

Thc idcaliscd rcsponse of a natural catchment to a rainfall cvent is compared with that of ail 

urbanised catchnient in Figure 2.5. The main effects of urbanisation are sunimarised below: 

I. Shorter response time (time of conuntration) and steeper rising limb ot'hydrograpli 

2. Increascd surface runoff volume and decreased baseflow contributions - overall 
incrcasc in dischargc 

3. Highcr pcak runoff 

4. Rcduccd storage within catchnient (Figure 2.6). 

Rainfall 

Discharge 

Urban profile 

Natural profile 

00000 0 

Time 
Figure 2.5 Schematic representation of natural and urban catchment hydrographs 

Runoff from 

_, -*""catch m ment**"-. 

Storage 
in basin 

Urban Natural 
Catchment Catchment 

Figure 2.6 Runoff and storage characteristics of typical 'urban' and 'natural' catchments 
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Wtifer comumption It is reported that the average daily water consumption per capita in the 

UK has increascd by approxiniatcly 65% in the last 30 ycars (Yorkshire Water, 2000, 

Southern Waler 2000). MLICII MAUS ilicreascd watcr Lisagc may bc attributcd to the growth in 

ownership of' domestic and inclustrial water appliances (e. g. washing machines, dish washers). 

Tlicsc devc1opnicnts havc sLibscqLlClltly placed additional demands on urban drainagc systcnis, 

in many cases exacerbating the probicnis of insufficient capacity. Rcducing urban water 

consumption rates will tliercforc rcdLice the foul watcr input componcnt to the scwcr system, 

and may in some cases help alleviate overloaded systerns. Strategies that may be pursued to 

rcducc urban water consumption rates include grey-water and rainwater reuse schemes. 

2.4.2.5 Qualitv 

Storm rLI110tT from urban surfaces can contain a range of'pollutants (see Table 2.6). This largely 

relates to the dirtiness of most urban surfaces - for example, roads, car parks and industrial 

areas are generally contaminated with oil, rubber and other vehicle materials, as well as 

chemical spillages, mud, litter and organic matter. The cumulative effects of these mechanisms 

obviously represent a significant pollution problern at the catchnicnt level, especially in terms of 

their impacts upon CSO discharges. 

Conventional urban drainage systems (UDS) do not generally seek to control the quality of 

Urban runoff, but to contain/limit problerns within the sewer system. In fact, in many cases 

conventional UDS can actually contribUte additional pollutants (e. g. through tile erosion of 

sediments) to peak flows that are discharged via CSOs to local watercourses (l, 'WR, 1998). 

Table 2.6 Pollutants in urban sewers (Aclaoted from EA/SEPA. 19971 
Sciver Type M ean pollut nt concentrations (mg 1) 

Solids BOD COD N"4-N 11% PAH 
(ng/1) 

E Coli 

Separate sewer 21-582 7-22 33-265 0.2-4.6 0.03-3.1 29-200 102-101 

Combined sewer 237-635 43-95 120-560 2.9-4.8 0.15-2.9 12-215 101-101 
I lighway runoff 28-1,178 12-32 128-171 0.02-2.1 0.15-2.9 365-60,000 10-10, 
Roof ruiloff 12.3-216 2.8-8.1 57.9-90.6 0.4-3.8 0.001-0.03 na 10 2 

Residential areas 12-1,104 LL - 
-56 7 37-120 0.3 -3.3 0.094) 44 na 10-10, 

commercial areas I 5-17 71-160 I 1 003-5 1 1-0,1 101-101 
Notes: BOD, COD indication of oxygen required for degradation of pollutant 

N 1.14 ammonia 
Pb lead concentration (non-degradable) 
PAII Poly Aromatic I lydrocarbons 
E Coh bacteria (presence of which can indicate sewage pollution) 

It should be noted that in addition to the 'attenuation' and 'redLlCtlOll' mechanisms highlighted 

previously, some innovative storrilwater management techniques might also be used to pollsh 

Urban runoff (i. e. to remove POIILltiOli froill Urban runoff). Improvements in runoff quality are 

IISUally achieved through Four main pollutant removal mcchanisms: prevention, advorplion, 
fillration and tile microbiological breakdown of organic maller. Each of these mechanisms is 

discussed in greater dctail within Section 2.5.5.6. 
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Z4. Z6 Amenity 

Surface water management strategies affect a diverse range of issues. These include factors such 

as landscape, land use, wildlife, water resources and recreational issues. The SUDS design 

manual (CIRIA, 2000) groups all of these issues under one 'amenity' heading. However, in 

many respects, the 'amenity value' parameter is a somewhat subjective criterion, and hence 

difficult to quantify in practical terms. The 'quality' and 'quantity' design criteria are already 

widely used in association with the design of conventional systems and as a result are much 

easier to quantify. Therefore, all comparative studies between alternative urban drainage 

strategies undertaken in this thesis will primarily rely upon the use of these two quantifiable 
design parameters. Some reference will also be made to the amenity value of alternative 

strategies, however this will have a much lower bearing upon these comparative procedures due 

to the high level of subjectivity associated with this criterion. 
It is evident that reducing or attenuating the peak levels of catchment runoff entering the sewer 

system will have a positive impact in terms of the 'quality' and 'quantity' design criteria 
highlighted above. Runoff polishing will also have a positive impact upon the 'quality' criteria, 

and possibly the 'amenity' criteria, but will have no affect upon 'quantity'. 

Section 2.5 introduces a number of SUDS technologies, and outlines how they might be used to 

achieve a reduction or attenuation of peak catchment runoff. Section 2.5 also reviews the current 
UK design guidelines associated with each of these SUDS technologies. 

2.5 SUDS TECHNOLOGIES 

2.5.1 Background 

Sustainable Urban Drainage Systems (SUDS) have been defined as a series of management 
practices and control devices that are designed to control stormwater in a more sustainable 
fashion than achieved by conventional techniques (CIRIA C522,2000). 

SUDS can be categorised as either being 'non-structural' or 'structural'. The term 'non- 

structural' SUDS describes an array of institutional, remedial and social issues that relate to the 

prevention of urban water pollution. Examples of non-structural SUDS include improved street- 
sweeping and public education on the disposal of oils. Structural SUDS are physical stormwater 

management devices that are generally used to reduce, or remove, the surface runoff component 

of peak storm flows that are conveyed through problem sections of the sewer system. Structural 
SUDS may also be used to improve the water quality of surface runoff conveyed to the sewer 
system, or as a public amenity. 
This thesis seeks to investigate the merits of retrofitting structural SUDS as an alternative 
rehabilitation methodology for overloaded sewer systems. 
Figure 2.7 presents a range of traditional and innovative urban drainage devices for the 
hydraulic control of peak storm flows (Note: SUDS devices are denoted as un-shaded options). 
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Details of each of these SUDS technologies are presented in the remainder of Section 2.5. The 

structure of this review is presented in Table 2.7. Note: the SUDS technologies displayed within 
Table 2.7 are grouped in terms of their primary functions for the hydraulic control of peak storm 
flows. The amenity value and the water quality polishing attributes associated with each of these 
technologies are also discussed. 

Table 2.7 Review of SUDS Technoloaies 
Primary Technology Secondary Functions Further details presented in: Function 

Swales Amenity/attenuation of flows/ Section 2 5 2 Conveyance: Infiltrationtwater quality . . 
Used to divert Filter (French) 
runoff flows to D i Infiltrationtwater quality Section 2.5.3 

another locationl ra ns 
SUDS technology Filter strips Attenuation of flows/conveyance/ Section 2.5.4 Infiltrationtwater quality 
Flow reduction: Infiltration Conveyancetwater quality Section 2.5.5 Trench 

Infiltration 
devices Soakaways Water quality Section 2.5.5 

Reuse devices Irrigation/ Attenuation of flows/infiltration Section 2.5.8 Reuse schemes 
Pondsand Amenity/infiltration/conveyance/ Section 2 5.6 Basins water quality . 

Attenuation of 
flows Porous surfaces Infiltration Section 2.5.7 

Roof-water Section 2.5.9 
storage 

An overview of the key SUDS design guidelines/tools that have been developed for the UK is 

presented within Section 2.5.10. Further details on the design of these SUDS technologies is 

presented within Appendix 2A (Note: All appendices are presented on the attached CD). 

2.5.2 Swales 

ZS. Zl Introduction 
Swales are shallow grass-lined ditches or channels that operate as runoff conveyance channels 
during storm conditions, and return to an empty state during dry periods. The most common 
locations for swales are within roadside grassed verges. 
In terms of urban drainage management, swales can be used in one of four roles: 

1. Runoff conveyance to transfer storm-water away from urban areas into a 
local watercourse or sewer system 

2. Runoff attenuation to help reduce the peak storm-water flows entering 

overloaded sewer systems 
I Runoff treatment due to settlement, or filtration through the swale's 

grassy channel surface 
4. Runoff disposal achieved due to infiltration from the base of the swale 
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Figure 2.8 Examples of Roadside swales (UWTC, 2000) 

2.5.2.2 Design issnes 

The following design guidance is largely taken frorn three key sources: SUDS design manual 

(CIRIA Report (. 7,5212,2000); A Guide to Sustainable Drainage (FA/SEPA, 1997); and the 

SUDS technical support CD (UWTC, 2000) compiled by the Urban Water Technology Centre 

at the University of Abertay, Dundee. There are a number of issues that influence the design of 

swales. 

Conveyance - Swales should be designed in accordance with fundamental hydraulic principles 

to ensure stiff icient capacity for the anticipated peak flows. Further details are presented within 

the following publications: 

Use of vegetation in Civil Engineering (CIRIA, 1990) 
Design of reinforced grass waterways (CIRIA. 1987) 

Detention - Swales intended for extended detention or infiltration should be designed to drain 

frorn full capacity design conditions within a period of 24 hours (CIRIA Report C-522,2000). 

This literature review was unable to establish the origins or basis for this leniptying within 24 

hours' design criteria. However, this seerns a sensible approach, as swales that cnipty shortly 

after a given period of a rainfall are ready to receive the next storm event. 

Treatment - SwaICS UtiliSC three main mechanisms to remove pollution: aclsorplion and 
fillering achieved within the vegetation on the base of the swale, and microbiological 
breakdown of organic matter in the tipper soil layers. In order to allow adequate aclsorj)tion and 
fillralion to occur, CIRIA Report C522 (2000) recon-n-ricnds that neither swalc vegetation nor 
maximurn flow depth should exceed 0.1 in, and runoff velocity should not exceed 0.3 ni/s at the 

design treatment volume. The E. A. 's Guide to Sustainable Drainage ( 1997) recommends that 

the optimurn depth of swale vegetation for treatment put-poses is 0.15 rn. 
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The width of the swale should not exceed 3.0 m (CIRIA Rcport C522,2000) - as this should 

ensure that gullies are not formed, and a constant flow rate is maintained. Swales intended for 

treatment purposes should be designed to drain from full capacity conditions within a period of 
24 hours. 

Infiltration - To ensure that effective infiltration can occur through the base of a swale, its 

longitudinal slope should not exceed I in 17. However, the longitudinal gradient should not 

exceed I in 50 to prevent erosion of the swale's base (UTWC, 2000). This literature review was 

unable to establish the basis for these gradient criteria. 
Maintenance - The side slopes of a swale should not exceed I in 4, in order to allow mowing 

and access for maintenance personnel (CIRIA Report C522,2000). This seems a sensible 

approach, as swales require regular maintenance, steeper side slopes would hinder maintenance 

access, and threaten the integrity of the swale. 

2.5.3 Filter drains 

Z5.3.1 Introduction 

A filter drain is a perforated, or porous, pipe in a trench surrounded by a suitable filter material, 

such as gravel, and contained within a geo-textile membrane. Runoff may directly enter the 

gravel material, either through the top of the trench, or via an inlet pipe (Figure 2.9). The gravel 

material within the filter drain provides some filtering of runoff pollutants, and also enables 

some organic breakdown to occur. Furthermore, these devices may also be used to slow runoff 

velocities, to store runoff, and in some cases to infiltrate runoff to the surrounding sub-soil. 

Optional piped drain inlet 

Direct inflow of sUrface water' 

lie membrane 
e. nt clogging 

Iter- mateflal 

Perforated PVC pipe Filtered water lost via Infiltration 150mfn dia. or overflow to ! Dut[et* pipe . 
Figure 2.9 Cross Section through a Filter drain (from EAISEPA, 1997) 

Filter drains have traditionally been used to intercept surface runoff on road verges, preventing 
ingression onto the pavement construction by conveying it to an appropriate drainage outlet. 
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These devices are widely used by the Scottish I lighways authorities for rural, urban and trUnk 

roads (1'. A, ISI, ', I'A, 1997). 

2.5.3.2 Desigii issties 

Filter drains arc typically designed to store 10 rrim of rainfall frorn the contributing area WIRIA 

Report C'522.2000). The return period of tile adopted design storm relates to the land use oftlic 

adjacent area, and tile risks associated with systern failure. 

2.5.4 Filter strips 

2.5.4.1 Infro(luction 

Filter strips are vegetated areas of land over which runoff is directed. Filter strips arc primarily 

used for slowing and filtering runoff. Tile filter strip's cover vegetation slows the flow, and 

traps silt and associated pollution. These structures are typically sandwiched between all 

impervious area and a surface water disposal system (e. g. a receiving water course, or a surface 

water collector, such as a swalc - see Figure 2.10). 

2.5.4.2 Design issues 

Filter strips, like swales, should be designed in accordance with ftindamental hydraulic 

principles, SLIch as Manning's equation. The filter strip surface should be level and free from 

gullies, to ensure that erosion does not occur, and that a constant flow rate is maintained. 
The performance of a filter strip is determined by a number of factors, including its slopes 
(longitudinal and cross), width and characteristics of its vegetation. 'rhc SUDS design manual 

(CIRIA Report C522.2000) recornmends that cross slopes should not exceed I in 20 and the 

minimum flow distance across a filter strip should be 6-7 rn, however this may be reduced to 3 
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in if the flow travels to an infiltration trench. The same manual also recommends that effective 

filter strips are generally between 6 in and 15 in wide, whereas the EA's guide to Sustainable 

Drainage (1997) suggests a minimum width of 15 m. 

A range of different vegetation types may be used for the cover material of filter strips, and 

these may vary from grass through to shrubs. The EA's guide to Sustainable Drainage (1997) 

suggests that effective filter strips should have a surface vegetation depth of 0.15 mm. 
It is reported that in relation to infiltration purposes, the slopes of filter strips, like those of 

swales, should not exceed gradients of 1 in 17 (CIRIA C522,2000). 

This literature review was unable to establish the origins of the critical gradients and widths 

adopted for the design of these devices. 

2.5.5 Infiltration devices 

Infiltration devices are used in urban drainage management as a means of storm-water disposal 

(i. e. to reduce the levels of storm runoff emanating from urban areas). Examples include 
infiltration basins, trenches and soakaways. Such structures are only viable for areas with free 
draining ground conditions. 

Z5.5.1 Soakaways 

Soakaways are a traditional form of surface water disposal that can be applied to both paved and 

roofed areas. In the past, many poorly designed soakaways malfunctioned, giving the 

technology somewhat of a tarred image. However, properly designed soakaways can operate 

without problems. 
There are two common forms of soakaway: i) the rubble, or stone filled pit and ii) the precast 

concrete ring unit or brick chamber. Both techniques utilise sub-surface storage, and infiltration 

to the local sub-soil. 

Z5.5.2 Infiltration trenches 
Infiltration trenches are essentially trenches that are filled with rubble or stone. Their mode of 

operation is similar to that of a soakaway, and like soakaways they can be applied to the 

disposal of both paved and roof runoff. But where soakaways require a vertical excavation, 
infiltration trenches require a narrow horizontal construction. It is worth noting that narrow 

trenches are more cost efficient in terms of construction costs. 
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Figure 2.11 Examples of Infiltration Trenches (UWTC, 2000) 

2.5.5.3 Other SUDS hifiltration t1evices 
There are a number of other SUDS devices that can be used for infiltration purposes. These 

include: infiltration basins/ponds, filter strips (flat vegetated surfaces - also known as plane 

infiltration), porous surfaces and swales. Many of the generic design issues associated this type 

of device are presented within Section 2.5.5.4. More specific issues that relate to individual 

SUDS technologies are discussed elsewhere in Section 2.5, under specific technology headings. 

2.5.5.4 Infiltration (levices - (lesign issues 

There are two main UK design guidelincs that relate to the design of infiltration-based SUDS: 

BRE Digest 365 Soakaway design (BRF, 1990 
Infiltration drainage - manual of good practice (CIRIA 156,1996) 

Both of these methodologies investigate the hydraulic behaviour of the design proposal for a 

range of 10-year return period storms. This approach is based upon tile design methods 

employed within the modified rational method (National Water Council, 198 1 ). 

The other important design issue associated with the design of infiltration-based SUDS is the 

infiltration rate of tile local soil. Soil infiltration rates of at least 12.5 i-nm/lir arc usually required 
for most infiltration devices to be considered feasible (F. A/M., 11A, 1997). It is important that site 
investigations be conducted prior to tile design of ail infiltration SUDS scherne in order to 

establish the soil infiltration rate at the location and depth of the proposed device, and to 

evaluate the geotechnical and hydro-geological characteristics of the local area. It is also worth 

noting that all infiltration devices should contain some form of inspection facility, to allow their 

performance to be monitored in the field. 

Furthermore, infiltration devices should be designed as shallow constructions, so as to maximise 
the length of flow path to water table. Maxinlising this distance will effectively maximise the 
level of treatment received (or number of pollutants removed). The provision of pre-treatinent of 
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runoff (see following Sections) entering the device is another strategy that can be used to help 

prevent contamination of the water table. This will also help to prolong the lifespan of these 

devices, through the removal of sediments that might otherwise clog/silt-up the device. 

Z5.5.5 Infiltration devices - Water quality constraints 
The infiltration of urban runoff presents a potential pollution risk to potable groundwater 

resources (e. g. wells, boreholes and springs). Source Protection Zones (SPZs) are defined by the 

Environment Agency (1998) to provide protection for potable groundwater resources against 

such threats; and restrictions are placed upon the infiltration of urban runoff within such SPZs 

(see Table 2.8). SPZs provide an indication of the risk to groundwater supplies that may result 
from potentially polluting activities and accidental releases of pollutants. Generally the closer 
the activity or release is to a groundwater source then the greater the risk. SPZs are generally 

subdivided into three zones (i. e. an inner, outer and total catchment zone), however in some 
instances a fourth zone (zone of special interest) is occasionally defined. 

Pre-treating urban runoff prior to infiltration is considered to reduce the pollution risk posed to 

groundwater resources. The SUDS design manual for England and Wales (CIRIA C522,2000) 

recommends different levels of pre-infiltration treatment for runoff emanating from different 

types of impertneable urban surface (Table 2.9) - this reflects the fact that some surfaces are 

more polluted than others. For example, runoff from paved areas is generally dirtier than runoff 
from roofs, due to vehicle pollutants, and will subsequently require additional treatment 

facilities prior to being infiltrated. The manual (2000) recommends different levels of pre- 
infiltration for runoff emanating from different urban surfaces, and in relation to a number of 

ground water classifications/source protection zones (See Table 2.8). This manual also 

recommends which SUDS may be used for pre-treating polluted urban runoff, and illustrates 

how these may be used individually or in series to treat runoff from different surfaces types. 
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Table 2.8 Summary of water quality design criteria for infiltration SUDS devices 
(Adapted from CIRIA, 2000 - Page 38) 

Ground watcr Su rface Type rorn which r unoff emana tes 

classification/ Roof Residential Car park Lorry Major Industrial Surface 

Source protection 
drainage area, park, road site, major water 

Amenity garage commercial sewer 
zone Area forecourt Site 

outside 

Non-aq uifer 
(infiltration 

to 
possible 
il) 

WAI* W11 W11 
Arm 

Other Deep 
areas of 
aquifer 

water 

--table outcrop Shallow 
water 
tabl e 

Ground- Deep 
water 

protection 
water 
table 

zone 11, Shallow 
outer 
zone 

water 
table 

Ground water 
protection zone 1, 

Innerz one 

KEV 

Shallow infiltration to the soil zone, discharge to soakaway or discharge to a borehole 
soakaway may be acceptable 

'-ýhallow infiltration to the soil zone, discharge to a conventional shallow soakaway may be 
accepatable 

Shallow infiltration to soil zone only may be acceptable 

No discharge to the ground; runoff must be conveyed to a more suitable area or discharged 
to a surface water body after treatment 

1'reatnient required before infiltration-, number of bars gives an indication as to the amount 
of pre-treatinent required - i. e. more bars represent more treatment 

Table 2.9 Levels of pre-treatment required prior to infiltration of runoff from 3 different 
surface tvpes (Adapted from CIRIA, 2000) 

Device Residential Non-residential Industrial 

Requi ed Level of treatment 

Prevention ýAf 

Containment N/A N/A N/A 

Permeable surfaccs /jCon ta ined) 

_Filter 
strips/treatment swales 

Filter drains/pavenient sub-base Af orff (Contained) 

Swales f orff ArAr 
J. xtended detention basins 

IfAr 
Iýetention ponds If If 
Wetlands 

- 
Iff 

KEY 
Always required First level oftreatment 
Second level ol'treatment Third level oftreatment 
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Table 2.9 illustrates how SUDS devices may be used to pi-c-treat runolf I'l'oni tlircc different 

urban stirl'accs: Rcsidciltial, Non-residential and Industrial. For each surface type the number 

and order of potential SUDS trcatnicnt dcvlces arc displaycd, with altcrilativc drainage nictliods 

shown for cach lcvcl. For cxample, runoll' cirianating from an IndUstrial sitc is considacd to 

rcqtiirc thrcc lcvcls of' treatniclit. 'I'lic first Icvel ol'trcatment nlay bc providcd by 'contaill"IcIlt' 

or by LISing a lined permeable pavement; with the second level oftreatment provided either by a 

filter strip, a filter drain or a swalc; and the third level of treatment provided by retention ponds, 

or wctlailds. The star dcnotcd in Table 2.9 inclicates that all sites should have good 
IIOLlsekceping (i. e. preventative measures). 

2.5.5.6 Runoffpolishing 

As described previously, some SUDS devices also have the capacity to remove pollution from 

urban runoff. These technologies generally rely oil one ofthree pollutant removal mcclianisms: 

ad sorpti oil, fi I tration and tile microb IoI ogica I breakdown of organic matter (See Table 2.10). 

Table 2.10 Summarv of Dollutant removal mechanisms utilised bv SUDS technoloaies 
Mechanism Description Examples 

A(Isorption 
AtIsorption ofpollutants by vegetation within Swales, filter strips, 

tile base ofvevetated SUDS Wetlands, basins 
Filtrating oflarger pollutants flowing through Swales, filter strips, Filtration 

vegetation on the base of vegetated SUDS wetlands, basins 
Microbiological Breakdown of organic matter in the upper soil breakilown of layers of vegetated SUDS Wetlands, ponds and basins 
organic matter I II 

2.5.6 Basins and Ponds 

Basins are Surface features that store runoff Linder storm conditions, but which are completely 
free of water under dry weather conditions. Examples of this approach include infiltration basin, 

flood plains, detention and extended detention basins. Ponds contain watcr in dry weather 

conditions and are generally designed to receive more water under storm conditions. 

Basins and ponds may both be used to attenuate excessive surface flows (i. e. storing floodwater, 

and releasing it when the risk ot'nooding has reduced). For example, in balancing ponds, flow is 

gencrally released via a controlled outlet, whereas in infiltration ponds flow is released through 
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the process of' infiltration. The volume of' stored water will obviously vary undcr dillcrcnt 

weather conditions, flici-dore ponds and basins should be dcsigilcd to operate in both dry and 

wet conditions. Overflows arc generally added to most basins and ponds i'()i- the disposal of' 

excessive storill flows. 

Basins and ponds call be used to treat runolT using a variety of mechanisms. The first 

mcchall I Sill Is by tile settlement of'solids that occurswithin calin waterconditions. The presence 

oFaquatic plants can promote calm water conditions and therel'orc settlement. The second way 

that basins and ponds call improve runoil'quality is by absorption into aquatic plants, and the 

third is through the biological activity that occurs within the ponds. 

Basins and ponds may also be used to cnilance tile urban landscape. Basins call be used for 

sporting and other recreational activities. Wet ponds may be used to store water ['or reuse, and as 

wildlif'e habitats. 

Table 2.11 and Table 2.12 present a briel'overview of the different basin and pond types, as well 

as highlighting relevant design guiddines. 

Table 2.11 Tvpes of basin 
Basin Type Description 
Natural or constructed flood plains Dry majority of time, store water For short periods 

of time after severe storms 
Detention basins or balancing ponds Store water until flood has receded. Restricted 
Oe, sigii (! 1flo"(1siorage rescrvoirs (CIRIA, 1993) outlet - allows basin to fill under severe rainfall 

conditions. 
Extended detention basin Designed to dctain flood volumes for longer times 
OcsýýZn o jloocl s toragc reservoirs (CIRIA. / 993) periods (e.,,. around 24 hours). Longer retention b 

times allow more settlement to occur. Structures 
therefore used t'or a combination of' attenuation 
and treatment. 
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Table 2.12 TvDes of Dond 
Pond Type Description 
Balancing ponds or flood storage reservoirs Uscd to store runoll'until flood peak has passcd, 
I)csigii ol. 110"(1slorup., rcscrvoirs (( IRIA, 1993) and its it result has limited treatment capacity 

compared with ponds that have longer retention 

Lagoons 

Retention ponds 
Design offlood storage reservoirs (CIRIA 1993) 

times 
Used to provide still water conditions I'Or the 
settlement ofsolids, but do not utillse biological 
treatment processes 
I lave detention pcriods ol'up to three weeks. 
Provide a greater degree of treatment than 
extended detention basins 

Wetlands Wetlands operate by allowing low levels of'runolf 
Review qf the design and management (ýf to continuously flow through aquatic plants 
constructed wellands (CIRLI, 1997) these structures used to attenuate and filter the 

flow. Wetlands have detention periods 01'Up to 2 
weeks, and are generally more efficient at treating 
Pollutants than retention ponds. 

Infiltration ponds Store water and allow it to gradually infiltrate 
through the soil ofthe basin floor. 

It is important that ponds and wctlailds rcceive a constant basc flow to prcvcnt thcm drying out. 

I lowever, exccssive storm flows may damage wetland plants and otheradequatc II fc, and should 

therefore be routed around tile ponds. 

2.5.7 Porous/permeable surfaces 

2.5.7.1 Intro(luction 

Permeable surfaces are 'load-bearing' paving constructions that allow runoff to permeate 

through a top surface layer through to ail underlying sub-base construction. The surface material 

may be formed by a porous coating layer, or by a series of blocks. These blocks may either be 

permeable or impermeable. If impermeable blocks are used, runoff can still enter the sub-base 

through joints or spaces in tile blocks. The key element of permeable surfaces is that runoff can 

be stored and conveyed through the SLib-base structure. 

SURFACE (BRICK) 

SURFACE (BEDDING) 
SURFACE (GLOTEXTILL-) 
PERMEABLE SUB-BASE 

SUB-GRADE MATERIAL 

Figure 2.14 Cross Section of permeable paving 
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Figure 2.14 illustrates how permeable surfaces are generally formed from three separate layers: 

Layer I- Surface materials, Layer 2- Sub-base (underlying layers, in which runoff is stored), 

and Layer 3- Sub-grade (supporting soil). 

Permeable surfaces can be utilised to fulfil a number of different roles (CIRIA Report C522, 

2000): 

1. To detain surface water runoff within the sub-base for flow attenuation purposes 
2. To detain surface water runoff within the sub-base for reuse purposes 
3. To reduce or eliminate the costs of conventional site drainage 

4. To provide treatment to surface water runoff prior to disposal 

5. To infiltrate water into the local sub-grade for disposal, or to maintain the soil moisture 

content 
Permeable pavements are another SUDS technique that can be used as an infiltration device. 

However the runoff collected by most permeable pavements should receive some form of 
treatment prior to being infiltrated to the local sub-soil (See Table 2.8) - this is particularly 
important if there is a high level of surface pollutants. 
The degree of treatment required for runoff emanating from less trafficked paved surfaces 

would be less than required for highway runoff, and would be determined by the surface's 

exposure to pollutants. For example, runoff emanating from an industrial area is likely to be 

heavily polluted, and hence require additional treatment than runoff emanating from a 

residential property. 

Z S. 7.2 Design issues 

This Section highlights a number of issues that relate to the design of permeable surfaces. 
Firstly, it is important that the surface is strong enough to support the loadings associated with 
its intended use. Secondly, the surface should be designed to adequately capture, store and 
discharge the volumes of runoff associated with the design storm event. Thirdly, provision 
should be made for some form of overflow structure, or additional storage - in order to 

accommodate rainfall that exceeds the design storm. Further information relating to the design 

of conventional and permeable pavements is presented within the following guidelines: 
Sustainable Urban Drainage Systems - design manual for England and Wales 
(CIRIA Report C522,2000) 

" Manual of contract documents for highway works Volumes 1-3 
(Ilighways Agency, 1998) 

" Specification for paving blocks 
(BS 6717Part 1 1993) 

" Specification for pavers 
(BS 6677 Part 1 1986) 

" Guide for structural design of pavements constructed with clay or concrete block pavers 
(BS 7533 1992) 

" Code of practice for laying precast concrete paving blocks and clay pavers for flexible 
pavements (BS 7533 Part 3 1997) 
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2.5.8 Reuse schemes 
Roof-water reuse schemes have the potential to reduce the volumes of roof runoff conveyed to 

the sewer system, and in that sense they constitute a source control methodology. There are a 

variety of reuse options for roof-water (i. e. the stormwater runoff emanating from roofs); these 
include non-potable domestic water usage (e. g. toilet flushing and washing), industrial and 
irrigation purposes. It has been speculated that between 30 and 60% of a typical household's 

total annual water consumption could be supplied by stormwater collected from its roof 
(Herrmann and Hasse, 1997). 

Roof water collection systems have already been successfully implemented within a number of 

countries (CIRIA Report 124,1992). In Japan, more than one hundred large buildings have on- 

site roof water utilisation systems (Sakakibara, 1996). Most of these are corporate and public 
buildings, but it is thought that such devices could soon begin to be used in residential 

properties. Herrmann et al. (1996) report the widespread use of 'Rain Water Utilisation' (RWU) 

systems within Germany. Roof water reuse programs are now beginning to appear within the 
UK (The Scotsman, 1998; Cooper, 200 1; Wearing et al., 200 1). 
Grey-water systems - The term 'grey-water' is commonly used to refer to water emanating from 

'non-foul' domestic usage (e. g. water from baths, showers, hand basins and washing machines). 
Grey-water systems collect water that would otherwise be directed into the local sewer and then 

reuse it for a further application (typically for toilet flushing). Grey-water systems can achieve 

reductions both in terms of the volumes of water conveyed to the sewer system and the demand 

for potable quality water. Grey-water systems do not require the use of roof-water, but it is 

possible to combine the two techniques within an integrated system (Dixon et aL, 1999). 

Irrigation - The informal reuse of roof water for irrigating gardens is also a relatively common 

practice within the UK. This is typically performed on an individual basis, in residential 

properties that have installed a water butt to store runoff from roof guttering. The increased use 

of water butts to collect roof runoff for irrigation purposes within the UK has coincided with the 

gradual introduction of domestic water metering, and financial incentives offered by Water 

Companies for customers that disconnect their roofs from the local sewer system 
(Yorkshire Water, 2000). These trends have demonstrated the viability of retrofitting water 
butts. 

2.5.9 Roof water storage 
Roof-watcr storage facilities, as the name suggests, are used to collect and store runoff from 

roofed areas. Examples of roof water storage devices are: water butts, ponds, porous pavements 
and tanks (above or below ground). Roof-water runoff collected within such facilities may be 

used for a variety of purposes, such as irrigation, car washing and domestic reuse (e. g. toilet 
flushing or laundry purposes). The overflow from such devices can either be: i) Returned to the 
local sewer system; ii) Disposed of locally (e. g. by infiltration or discharged into a local water 
course) or iii) Conveyed to another location. 
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2.5.10 SUDS design methodologies/selection tools 

This Section highlights two generic SUDS design methodologies that have been presented in 

previous UK guidelines. The first is taken from the CIRIA C'521, ('522 (in(] ('523 (2000) 

guidelines and the second from CIRIA Report 124 ( 1992). Both procedures were primarily 

developed for new SUDS applications. 

2.5.10.1 CIRIA C52 1, C522 and C523 giddefines (2000) 

'Stirface water managentent train' - The SUDS design methodologies iicloptcd in CIRIA 

Reports C521, C522 and C523 (2000) are based upon the 'management train' I'Ormat. The 

'surface water management train' (CIRIA, 2000) is a concept that illustrates how integrated 

SUDS-based systems might be used to alleviate/climinate flooding and pollution problems. It 

dcrnonstrates how SUDS technologies can be used in series to progressively change the quality, 

or quantity, of surface rL111Off passed down through the urban drainage catchment 

[:;; ýH: J 
Source Control 

ese 

OA 
Ihscharjge to watercourse 

or groundwater 

Conveyance Conveyance 

Site Control 

Remonal Control 

Discharýge to watercourse 
or groundwater [),,, 1,,, ge to watercourse- 

or groundwater 

Figure 2.15 Surface Water Management Train (Adapted from CIRIA, 2000) 

The first element of the management train is 'prevention' (e. g. good housekeeping meaSLires 

implemented at individual properties), then local 'source controls', followed by larger WNW' 

(e. g. 'site' and 'regional controls') at progressive points downstream. 

It is considered that SUDS techniqucs are gerierally most effective when located in the upper 

reaches of the urban catchnicrit (i. e. as close as possible to the point where the rainfall falls) 

since they provide attenuation, and some degree of water quality treatment, of' stormwatcr 

runoff flows - SUDS used in this capacity are often termed as 'soui-ce controls' since they 

control runoff at, or ncar, its source. SUDS tcchriologles that can be used to manage runoff 
further downstream in the urban catchment system are described as 'site controls' and 
'regional controls' - these techniques deal with runoff on a catchincrit scale rathcr than at 

SOUrce. The scale of SUDS schemes generally increases with distance down the SUrface water 
management train. Runoff does not have to pass all tile way along the management train. It 
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could be conveyed directly to site or regional control structures - however, it is generally better 

to deal with runoff at a local level - returning it to the natural drainage system as close to source 

as possible. 
Selection tool - The design procedure/selection tool adopted within the CIRIA C52 I, C522 and 
C523 guidelines (2000) is based upon four key principles: 

0 Drainage techniques are best used in series to meet design criteria 

0 Drainage techniques are generally preferable at the top end of the management train 

rather than in more downstream locations 

0 There is no single correct solution 

0 The drainage system should be inspired by the natural/original drainage pattern 
The design/selection procedures presented within the CIRIA C521-C522 guidelines (2000) take 

the form of recommended flow-paths for the SUDS design process. It should be noted that these 

procedures are not prescriptive, as the guidelines acknowledge that other catchment specific 
issues should also influence the design process. The advice presented within these guidelines 

appears to be sensible, based upon sound basic principles, and clearly represents a significant 

advance in the SUDS design within the UK. However it should be recognised that these 

procedures were not specifically developed for retrofit SUDS applications 

Z5.10.2 CIRLI 124 Guidelines (1992) 

The SUDS design procedures adopted within the CIRIA C521-C523 guidelines (2000) were 
developed from earlier concepts, many of which were presented within the CIRIA 124 (1992) 

guidelines. The principle factors considered by the CIRIA 124 (1992) guidelines to affect the 

selection and viability of SUDS technologies are presented within Table 2.13. Each of these 

issues is discussed in more detail within Volume 3 of CIRIA 124 (1992). Once again, the advice 

presented within these guidelines appears to be sensible and based upon sound basic principles. 

However, this advice was not specifically developed for retrofit SUDS applications, and in light 

of this fact it is recommended that further work be undertaken to develop more appropriate 

guidelines for retrofit applications. It is considered that many of the issues associated with the 

design of conventional SUDS are also applicable to retrofit applications (e. g. the permeability of 
local soils, local topography and water table level) - however it is evident that there are other 
issues that more relevant to the design of retrofit SUDS (e. g. available space). 
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rable 2.13 Selection tool for stormwa ter control devi ces (Adapt d from CIRIA 124,9 92) 
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Application (Suitable for) 

Flat or gentle gradients 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Steep gradients 

Pervious soils 

Impervious soils 0 0 9 0 9 0 0 0 0 9 

High groundwater table 

Limited land availability 

Alleviation of existing flooding 
0 0 0 0 0 0 

Very low permitted runoff 

Design considerations 
(Necessary for) 
Limit ingress of silt 

Consider low flow channel 

Provide for maintenance 

Consider consequences of 0 0 0 0 0 0 design flows being exceeded 
Design openings to avoid 0 0 0 0 0 0 0 blockage 
Include screens 

Operation & Maintenance 
(may) 
Require periodic refurbishment 9 0 0 9 0 

Have limited life 
(e. g. 10 years) 
Have low maintenance 0 '6 0 
requirements 
Have high maintenance 
requirements 
Others 
(may. ) 
Pollute groundwater 0 0 0 0 

Be designed to flood public 
areas 
Improve discharge water quality 

Be the responsibility of private 0 0 0 0 0 0 0 individuals 
Sustain groundwater reý-ha-rge 0 0 0 
Be abused by owner 0 0 
Minimise downstream impact 

Have amenity/recreation use 

Most stiitable/iipl)ropi-iittc/ileccssztry 
Possibly su 'tab le/appropriatchleccssary 
Unl1kciv to bc suitable/, tnni-onriift, /ii(,,, ( 
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2.5.11 Overview 

It is clear that SUDS technologies have the potential to provide full or partial solutions to most 

urban drainage problems (Section 2.2), and therefore represent an alternative design approach to 

the conventional 'hard engineering' approach. It is also acknowledge that advances have been 

made towards the development of design guidelines for SUDS applications, most noticeably in 

the form of CIRIA Reports R124, C521, C522 and C523. These guidelines provide a useful 
framework for the SUDS design process, and present basic design advice/calculations for a 

number of SUDS technologies. However, these guidelines fail to specifically address issues 

relating to the design of retrofit SUDS. These guidelines are also weak in relation to practical 

advice on the financial costs associated with SUDS, and the provision of detailed feedback from 

existing UK SUDS schemes. 
The following two Sections therefore examine the extent to which SUDS technologies have 

already been adopted both within the UK, and abroad, and will also highlight any real or 

perceived barriers to their widespread implementation (Section 2.7). 

2.6 IMPLEMENTATION OF SUDS-BASED STORMWATER 

MANAGEMENT STRATEGIES 

2.6.1 SUDS implementation to date 

Z6.1.1 Background 

The uptake of SUDS technologies within the UK has been somewhat limited in comparison 

with many other parts of the world, most notably Australia, Germany, Japan, Scandinavia and 

the USA. Most of Britain's SUDS devices serve new developments. In fact, this literature 

review failed to uncover any documented cases of large-scale retrofit SUDS schemes within the 

UK. 

SUDS have been promoted in Scotland since the mid-1990s, and during this period over one 
hundred Scottish SUDS installations have been constructed (Jefferies et aL, 1999; Ashley, 

1999). Most of these have been stand-alone installations, or part of small scale integrated 

schemes, that serve new housing, leisure or industrial developments. Jefferies et aL (1999) 

reported on an on-going assessment programme that was attempting to establish what specific 
issues have most affected the performance of approximately ninety of these existing SUDS 

installations. Many of the inspected devices were found to be performing well, whilst others 

were not as successful. This study indicated that poor performance amongst 'hydraulic control' 
type SUDS could generally be attributed to one of three key factors: 

Lack of suitable land on which to install system 
(unsuitable land would have excessively steep slopes, or low soil permeability) 

2. Administrative and Institutional issues 
(i. e. particularly relating to maintenance access, ownership and safety issues) 

3. Poor design, construction or maintenance 
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By comparison with Scotland, there are relatively few documented uses of SUDS devices 

(Kearns, 1999; Today, 2001) within the rest of the UK. This illustrates the positive effect of the 

SUDS promotional activities that have been undertaken in Scotland in recent years. 

Z6.1.2 Retrofit SUDS 

As highlighted within the previous Section, this literature review failed to identify any 
documented evidence of large-scale retrofit SUDS schemes within the UK. However, there are a 

number of documented schemes from other parts of the world, most notably within North 

America. A number of examples from the USA are presented within the ensuing Sections: 

Z6.1.3 City of Portland, USA 

The City of Portland, Oregon, USA introduced a 'downspout disconnection program' in an 

attempt to address the ecological problems caused by frequent overflows from the city's 

combined sewer system into the Willamette River and Columbia Slough (City of Portland, 

1998). The scheme encouraged local residents to disconnect their roofs from the sewer network, 

and to redirect the roof runoff into a 'water butt' or onto their garden. A financial incentive of 
US$ 53 was paid to every household that participated in the program (note: this payment was 

made after the 'disconnection' has been inspected by the local authority). Disconnections were 

performed by the householder, contractors or approved 'neighbourhood associations' (e. g. 

schools, churches and other community groups). These 'neighbourhood associations' received a 

token 'fund-raising' payment of US$ 13 for every downspout they disconnected. It was hoped 

that involving the community in this way would promote the program, and help educate local 

residents about the issues surrounding 'sustainable water management'. By March 1998,5200 

properties had been disconnected through this scheme, with roughly one third of these 
disconnections being performed by about 1600 volunteers. 
A cost benefit analysis that was conducted in conjunction with this study is presented within 
Section 2.10.1. 

Z6.1.4 Other American examples 
Another example is the scheme currently in operation within the Austin City, Texas, USA. The 

Austin City website contains a statement encouraging its residents to collect, reuse or irrigate 

their roof runoff (Austin City Council, 2000). An incentive of a 30% 'water bill' rebate (i. e. up 
to a total of US$ 500) is offered to all domestic and industrial consumers who participate in the 

program. 
Similar schemes have been conducted within a number of North American cities, including 

Edmonton, Minneapolis, Pittsburgh, Portland (Maine) and Toronto (Norris, 1999). 

Z6.1.5 Implicationsfor the UK 

Although the previous examples demonstrate that retrofit SUDS have proven to be viable within 
a North American context - it does not necessarily follow that they would also prove to be 

viable within a UK context. There are a number of differences between these two nations that 
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might significantly influence the viability of this approach in a UK context. These differences 

relate to factors such as climate, urban landscape (i. e. urban areas within the US are generally 

not as built up as those within the UK), and institutional arrangements (i. e. within many US 

cities the local municipality is responsible for the provision of water services, highways, public 

areas and town planning - whereas in the UK each of these roles are the responsibility of 

different agencies). 

It is worth noting that over the time-span of this thesis, a number of UK water companies have 

begun to offer financial incentives, in the form of reduced water bills, to customers that 

disconnect their roofs from the local sewer network. This indicates that these companies have 

undertaken some form of cost/benefit analysis to assess the merits of these schemes. However 

no details of such studies have yet been released into the public domain. It is likely that these 

would have been generic studies, and not focused upon specific problem catchments, such as 
described previously within Section 2.6.1.3. This assumption is based upon the fact that these 

companies offer financial incentives across their whole network, notjust in problem areas. 
The following sub-Sections describe two previous feasibility studies that were undertaken to 

assess the viability of retrofitting SUDS to UK catchments. These feasibility studies are both 

presented in two distinct parts with performance issues (e. g. hydraulic performance of the 

existing systems, and alternative future proposals), being considered in the following Section. 

Cost issues for these two catchments are discussed in Section 2.10. 

Z6.1.6 Previous UK retrofitfeasibility studies - Balmforth and Bailey (1985) 

Balmforth and Bailey (1985) investigated the potential use of on-site roof water storage as a 

source control methodology. This desktop study explored the impacts of installing attenuation 
devices at the base of 'gutter' down-pipes to collect roof-runoff from every house in a 'typical' 

UK housing estate (12 ha). The total roofed area of this estate was 1.6 ha, and the total number 

of required 'on-site' attenuation tanks was calculated as being 320. A 350 1 capacity PVC tank 

was modified to provide attenuation, rather than storage (Figure 2.16) and then subjected to 

both laboratory and field trials over a one-year period. The hydraulic performance of this system 

was then investigated using a deterministic model for a range of storm events, each of 2 year 

return period. It was subsequently found that the peak flow reduction achieved by the 

installation of 320 on-site attenuation tanks was roughly equivalent to that of a 85 M3 on-line 

underground storage tank located downstream in the sewer system. 
It's is worth noting that the appropriateness of adopting 2 year return period storms to form the 

rainfall input for these simulations is somewhat questionable in relation to issues of water 

pollution caused by excessive CSO discharges. The use of design storm events is appropriate for 

the investigation of a sewer system's hydraulic performance (i. e. whether it floods or 

surcharges). However, for the simulation of water quality parameters, such as BOD and COD, a 

time series rainfall input representing a 'typical year' would be more appropriate (FWR, 

1994/1998). 
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Figure 2.16 Section through 'roof downpipel attenuation tank 
(From Balmforth and Bailey, 1985) 

The Roof-water Source Control (RwSC) device proposed by Balmforth and Bailcy (1985) was 

essentially little more than a modified 'water butt'. There is some speculation that 4water butts' 

are not entirely appropriate flow reduction devices, for in the absence of supportive legislation 

there is nothing to prevent a house-holder from removing or modifying such devices (Balinforth 

and Bailey, 1985). It has subsequently been suggested that on-site underground tanks might be 

seen as a more permanent and acceptable solution by the relevant regulatory authorities (CIRIA, 

1992). However, if roof water were stored and reused to supplement a property's 'metered' 

domestic water supply the likely financial savings to the occupant Would probably serve as an 

incentive not to remove the device. 

An important issue associated with RwSCs, is that of 'user acceptability'. This is of particularly 

importance when RwSCs are used as a retrofit technology. It has been speculated that this will 

strongly determine both the size and appearance of 'on-site tanks'; and whether such tanks are 

located above, or below ground level (Balniforth and Bailey, 1985). 

A cost benefit analysis that was conducted in conjunction with this study is presented in 

Section 2.10. 

Z6.1.7 Previous UK retrofitfeasibility Studies - Catchment X (2001) 

It should be noted that the catchment names and locations associated with this case study have 

been withheld at the request of the UK water company that contributed this data. The 

contributor has also requested to remain anonymous - as they consider some of this information 

to be industrially and politically sensitive. 

42 



CIIAVI LR 2 

Catchinent X is a 5775 lia suburban catchnicnt locatcd in onc of' the I JK's major citics. Tlic 

catchmcnt contains two inain watercourscs. Thc south of' the catchnicnt is I`Ornicd on a clialk 

'downland', and the catchnicilt gcntly slopcs down in a South to North dircction. Thc catchnicnt 

cncompasses Cour local atithoritics, and has a resident population In cxccss of' 400,000. Sonic 

arcas of' the catchnicilt arc servcd by conibincd scwers, and otlicr arcas by scparate f'Oul and 

surt'acc watcr systcms. Figurc 2.17 shows a typical rcsidciltial arca From this catchnicni. 

( 

Figure 2.17 Typical residential area from Catchment X 

A major upgrade of the catchnicrit's infrastructure was conducted in 1999. This work involved 

linking two previously separate catclinients (Catchment XI and Catchment X2) via tile 

construction of a new combined sewer tunnel (X Tunnel), and up-grading tile new combined 

catchnient's only receiving WWTW. The new catchment ,s sewer systern has a history of 

flooding (foul and storm-water) events. In Deccrnbcr 1999 flooding also occurred at the X 

Tunnel. 

The local water company conducted a pilot study to assess the potential for retrofitting SUDS to 

this catcliment in order to remedy these flooding problems. Tile airris of this study were to 

identify whether retrofit SUDS/source controls could be used to significantly address tile 

hydraulic problerns associated with this catchnicnt, and to estimate tile costs associated with 
implementing any such SUDS option. 

An InfoWorks model of' catchment X was used to simulate tile effects of disconnecting 

different sources of' storm runoff using retrofit SUDS, oil tile peak flows reaching the 

overloaded X Tunnel after a (M 10-360 winter) critical design storm. Simulations were run for 

best-case disconnections scenarios for both roofed and paved areas. However, tile results of this 

analysis indicated that tlicse best-case retrofit SUDS scenarios would have limited effect upon 
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the critical peak flows through the X Tunnel. It was hence decided that there was little value in 

investigating other, more realistic retrofit SUDS options. 

2.7 BARRIERS TO THE IMPLEMENTATION OF RETROFIT SUDS IN 

THE UK 

This Section and Section 2.8 outline the main barriers that are considered to stand against the 

implementation of retrofit SUDS within the UK. These obstacles need to be addressed before 

retrofit SUDS are viewed as viable form by large parts of the UK water industry. 

It should be noted that the views expressed in this Section are not widely documented, but have 

repeatedly emerged in project discussions with industrial contacts. 

Z 7.1.1 Attitudes within Water Industry 

The UK water industry retains a strong reliance upon conventional rehabilitation solutions for 

urban drainage problems. This attitude is characterised by the industry's widespread use of the 

UPM methodology to generate 'hard engineering' solutions for CSO related problems. There is 

a reluctance to move away from these conventional solutions, especially to explore the use of 
SUDS, which are viewed as being 'untried' and 'untested' technologies. This reticence owes 

much to the 'familiarity' of conventional 'hard engineering' design methods, coupled with a 
lack of retrofit SUDS costings data and/or design guidelines. Conventional solutions are often 

used in preference to SUDS schemes, because of designers' familiarity with the design and 

costing procedures involved in their development. The water industry generally favours projects 

that incur a short-ten-n capital expenditure (construction costs) with fixed maintenance costs. 

The novelty of SUDS type solutions means that there is more uncertainty associated with their 

construction and maintenance costs, than those of conventional solutions. 
These attitudes are in stark contrast to those of the Environment Agency and SEPA, both of 

whom have been actively promoting the use of SUDS since 1997 (Protecting the Quality of our 

Environment -A guide to Sustainable Urban Drainage, 1997). 

Z 7.1.2 Lack of relevant design guidance 
The shortcomings of the existing UK guidelines for SUDS design were highlighted within 
Sections 2.5.10 and 11. These manuals neglect the design issues associated with retrofit SUDS 

schemes, in terms of the specific factors that relate to the implementation of SUDS within 

existing urban catchments rather than new developments. These manuals also contain very little 

data that relates to the financial costs of SUDS technologies (i. e. costs of construction, operation 

and maintenance). It is felt that both of these issues need to be addressed before retrofit SUDS 

will be given serious consideration by the water industry. 

Z 7.1.3 Issues relating to ownershipladoption 
The issues of ownership and responsibility are further barriers to the implementation of SUDS 

technologies. Due to their novelty, there are no clear precedents within the UK relating to the 
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ownership, maintenance and operation of SUDS technologies once constructed. This ambiguity 
leads to reluctance, particularly among developers, to adopt SUDS solutions, as they are unsure 

as to what their future responsibilities towards the technologies might be. For example, take the 

case of a house developer considering whether to include a network of grass roadside swales 

within a new housing development. The developer's obvious questions will relate to who will 

own, maintain, and operate this network after its construction? Until these questions are 

answered, the developer will be reticent about pursuing this scheme, and will therefore opt for a 

conventional solution - for which these future roles and responsibilities are well understood and 

clearly defined. It therefore seems necessary to establish clear roles and responsibilities for the 

ownership, maintenance and operation of SUDS schemes - this ideally needs to address the 

problem from the perspective of a number of different affected agencies (e. g. the Developer, 
Local Authority, affected Property owners, Sewer operator and Environmental Regulator). 

Although the example used in this Section relates to implementing SUDS to a new 
development, there are many parallels that may be drawn with the introduction of retrofit 
SUDS. 

Z 7.1.4 Uncertainty in cost effectiveness 
Another factor that limits the adoption of SUDS within the UK is the degree of uncertainty that 

relates to their financial costs (i. e. the costs associated with their construction and operation and 

maintenance). However, even if such costs were available, it is apparent that the costs of 
implementing specific SUDS technologies would be significantly different for retrofit, as 

opposed to new-build, SUDS. For example, whereas a porous pavement car-park might be 

readily (and cheaply) installed as part of a new development, the replacement of an existing, 

conventionally drained, car park with a porous pavement is likely to be significantly more 

expensive, due to the additional costs associated with disruption and loss of operational revenue. 

Equally, the introduction of filter strips and swales to drain roads in residential areas may 

become prohibitively expensive when disruption to existing services located within the road 

verges are considered. 
The uncertainty that surrounds the costs of SUDS is exacerbated by the limited experience of 

applying such schemes within the UK, and the lack of published UK costing data for SUDS 

devices. The SUDS design manual (CIRTA C522,2000) acknowledges that cost is an important 

factor in the evaluation of conventional and alternative SUDS proposals, but fails to provide any 

specific information as to how those costs might be obtained. Furthermore, the manual provides 

no indication as to the comparative costs of the different SUDS technologies that it presents. 
The financial costs associated with the construction and operation of conventional urban 
drainage are well understood, and documented. The uncertainty relating to the costs of SUDS 

obviously make them a much less attractive option than conventional approaches to the majority 

of UK urban drainage design engineers. 
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In summary, although SUDS might be shown to be hydraulically effective and environmentally 

more sustainable than conventional sewer rehabilitation strategies, it seems inevitable that, in 

the context of the current economic climate, cost-based comparisons will be required to justify 

the use of retrofit SUDS. Hence there appears to be a need for a selection tool that is specif ical ly 

aimed at the evaluation of retrofit technology options and which give due recognition to the 
importance of cost assessment. It is likely that this would need to utilise some form of Cost 

Benefit Analysis (CBA). Section 2.9 explores the fundamental principles behind CBA, and 
Section 2.10 presents two previous studies that have utilised CBA to investigate the merits of 
implementing retrofitting SUDS techniques to case study catchments. The following Section 

explores the uncertainties associated with the hydraulic effectiveness of SUDS, and the role that 

modelling packages might play in defining these issues. 

2.8 UNCERTAINTY RELATING TO HYDRAULIC EFFECTIVENESS OF 
SUDS 

English and Welsh sewer operators are generally required to demonstrate the compliance of 
proposed rehabilitation schemes for problematic CSO discharges with stipulated discharge 

consents, defined by the Environment Agency (Section 2.2.5). Similarly, proposed solutions for 

sewer flooding problems are usually designed to meet the performance criteria laid down within 
the Sewer Rehabilitation manual (WRc, 2002). In both instances, compliance with the required 

standards is typically assessed through the use of urban drainage software packages. There are 
two main types of urban drainage model: detailed deterministic models and simplified models. 
Deterministic urban drainage models, such as HydroWorksTM (Wallingford Software, 1994), 

InfoWorksTm (Wallingford Software, 1998) and Win-Dap Ver. W. 7TM (MicroDrainage, 1998), 

are widely used within the UK water industry. Complex deterministic urban drainage models 

are considered to produce relatively accurate hydraulic simulations when compiled and 

calibrated correctly against monitored flow data. However, the lack of appropriate quality data 

can also lead to difficulties when calibrating and verifying such models (Harremoes, 1997). 

Simplified urban drainage models such as SIMPOL (FWF, 1994/1998) are also widely used 

within the UK. 

2.8.1 Need for SUDS modelling packages 

The absence of previous UK retrofit SUDS schemes, means that modelling exercises still offer 

the most viable means of analysing the performance of such schemes, both in terms of their 

respective performance, and for comparison with conventional rehabilitation schemes. The 

ensuing Sections present a number of documented models that have been used to model various 

SUDS proposals. 

2.8.2 Modelling SUDS using detailed deterministic modelling tools 

Over the duration of this research project, work has been underway to upgrade the source-code 

of existing deterministic urban drainage models to allow the simulation of various SUDS 
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techniques. For instance, MicroDrainage's new Source Control module is now a fully integrated 

part of the WinDes suite of urban drainage modelling tools, and it is claimed that this can 

support the design and analysis of a number of source control devices, including infiltration 

trenches, ponds, porous pavements, soakways and swales. However, this software was not 

available early enough to be utilised within this study. 

However, many earlier versions of traditional deterministic urban drainage models (such as 
HydroWorks and MOUSE) have been used in their existing state (without the need to upgrade 
the software source code) to simulate the hydraulic impacts of most source control technologies 

(Andoh and Declerck, 1997). This was achieved by utilising the existing model input 

parameters in such a way as to represent the hydraulic behaviour of SUDS techniques. 
For example, Monster el aL (1998) describe how the runoff component of the HydroWorks 

software package was amended to enable the hydraulic simulation of a number of SUDS 

techniques. This up-dated package was then used to analyse a new housing project in the Dutch 

Town of Zeewolde. Similarly, Linde and Mikkelsen (1998) report that an amended MOUSE- 

SAMBA (v. 3.20) model was used to investigate the impacts of retrofitting, Real Time Control 
(RTC) and stormwater infiltration approaches to stormwater management for an hypothetical 

catchment. 

2.8.3 Modelling SUDS using simplistic modelling tools 

SIMPOL is one of the UK's most widely used simplistic urban drainage models. The SIMPOL 

model is a spreadsheet model that combines many of the key processes from the urban drainage 

cycle, in a simplified way, so that simulation times are kept to a minimum. It incorporates both 

hydraulic and water quality elements and is designed to assist in the implementation of the UPM 

Procedure (FWR, 1994/1998). The main use of SIMPOL is as a key element of the UPM 

methodology, to allow the performance of potential sewer rehabilitation schemes to be rapidly 

compared against the environmental and emission standards. SIMPOL was designed for use in 

conjunction with conventional stormwater management proposals, but there is nothing to stop it 

from also being applied to model the behaviour of SUDS-based schemes. 

2.8.4 Modelling SUDS using specialised SUDS models 
In recent years, a number of models have been specifically developed for representing the 
behaviour of an array of SUDS techniques. These models have generally been based upon 

simplistic modelling approaches, such as mass-balance flow analysis conducted over large, 

aggregated, time steps (Ashley et al., 1998; Ristenpart, 1998). These models tend not to be as 

sophisticated as the deterministic type models discussed previously. The following paragraphs 
contain a brief description of some of these models, together with details of their reported 
application to relevant case study modelling exercises: 

MIDUSS98 is a rainfall-runoff software model that incorporates a set of 'decision support' 
design tools (Smith, 1998). The MIDUSS98 model comprises both hydrological and hydraulic 
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modules. The hydrological component is adaptable, and allows the user to select from a variety 

of methods for 'storm description, rainfall loss estimation and overland flow routing'. The 

hydraulic component provides design tools for both centralised stormwater controls such as 

ponds and outflow devices; and on-site controls such as rooftop storage, parking lot storage, 

oversized pipes and infiltration trenches. Rainfall inputs are limited to single event storms. 

ERWin is a 'rainfall-runoff software model that supports a variety of SUDS, including storm 

tanks, ponds, Rain Water Utilisation (RWU) systems, soil filters and both centralised and on- 

site infiltration systems. The ER-Win model is able to perform long-term simulations as well as 

simulations for single storm events. Both types of storm event may be generated from either 

continuous historic, or time variable synthetic, rainfall data. 

Ristenpart (1998) describes how the ER-Win model was used to predict the effects of 
implementing various SUDS approaches to a 27 ha catchment in Berl in-Mahlsdorf, Germany. 

The adaptability of the ER-Win has been highlighted by Ashley et aL (1998), who report that 

the ER-Win model has been used to analyse a case study drainage problem in accordance with 
both UK and German design practices for infiltration devices. 

SMUSI is a conventional storm-water balance/pollution load model. The package is specifically 
designed for performing simulations driven by long-term rainfall input data (SMUSI website, 
2002) and as been updated to include a number of SUDS techniques. The hydraulic and quality 

performance of each SUDS technology were analysed by SMUSI for long-term simulations 

conducted for a hypothetical drainage system (Mehlur and Ostrowski, 1998). 

The SWIFT package is an urban drainage software tool constructed around the hydrological 

transport and pollution load module of the SMUSI model (Bente, 1998: a). SWIFT has the 

ability to simulate the effects of implementing a variety of stormwater management measures. 
The SWIFT model is essentially a decision support tool that enables the comparison of a range 

of both conventional and alternative stormwater control measures in relation to a variety of 

economic and ecological factors. Alternative approaches accommodated by SWIFT are 
decentralised stormwater infiltration and roof water usage schemes. The package may also be 

used to investigate the effects of a range of user 'up-take' and usage scenarios for such 
technologies. 
Bente (1998: b) describes how the 'SWIFT' model was used to investigate the effects of 
introducing a variety of roof water storage and infiltration techniques to 3 case study catchments 
in Germany. This exercise involved simulating the disconnection of roofed areas from the sewer 

system. An array of roof-water disconnection scenarios was investigated, ranging from the 

collection and storage of roof water from only the largest buildings (e. g. schools, hospitals and 
office blocks) in the catchment, through to the collection of water for every roofed area in the 

catchment. The findings of this study seem to indicate that there would be some value in 
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conducting similar investigations to encompass a greater number of case study catchments; with 

a more diverse set of catchment and rainfall characteristics. 

2.8.5 Modelling SUDS - Discussion 

Previous modelling exercises have attempted to assess and quantify the catclimcnt level effects 

associated with the widespread application of SUDS schemes (Vacs and Berlamont, 1999; 

Bente, 1998: a; Bettmann and Ostrowski, 1996; Herrmann et al., 1996). The findings of these 

studies have been inconclusive, and somewhat contradictory. Some of these studies have 

indicated that such schemes would constitute an effective rehabilitation technique for problem 

urban drainage systems (Vaes and Berlamont, 1999; Bettmann and Ostrowski, 1996; Rerrmann 

et al., 1996), whilst other work has questioned this premise (Bente, 1998: a). 
Most of the existing catchment-based studies investigating the implications of source-control 
SUDS have relied upon predictions from simplified 'urban drainage' modelling tools. The use 

of simplified models implies that modelling compromises have been made. For example, most 

simplified urban drainage models tend to use large, aggregated, time steps (e. g. of I hour) in 

conjunction with mass-balance analysis to represent catchment rainfall, runoff and sewer 
hydraulic processes. 
In the context of the current research it is believed that the use of a detailed urban drainage 

analysis software package, such as HydroWorksTm would offer a more rigorous form of 

analysis. For instance, HydroWorks offers the possibility of high-resolution simulations (e. g. 

HydroWorks may accept rainfall input data with 5 minute timesteps and produce results with I 

minute timesteps). One advantage associated with conducting higher resolution urban drainage 

simulations is that the impacts of pumps, and other components of the sewer system, can be 

incorporated within the analysis. The level of output produced by detailed models, such as a 

HydroWorks, is generally far more comprehensive than that generated from most simplified 

models. HydroWorks also offers an array of alternative models to represent the runoff, 
infiltration and pipe flow processes. HydroWorks is widely used within the UK water industry, 

and compatible catchment data is readily available. 
A major disadvantage associated with the use of HydroWorks relates to its lack of transparency 
in terms of the precise modelling processes used to produce urban drainage simulations. 
Another potential problem relates to the fact that HydroWorks only considers traditional urban 
drainage management techniques, and has no direct procedures for representing the effects of 
SUDS approaches. However, this problem could potentially be addressed by amending 

conventional HydroWorks modelling techniques in such a way as to represent the impacts of 
SUDS. For example, Monster et al. (1998) report that HydroWorks' runoff component was 

amended to enable the hydraulic simulation of a number of alternative Stormwatcr Management 

techniques. 

HydroWorks was selected as the main modelling tool for urban drainage simulations conducted 
in relation to this thesis. The HydroWorks/InfoWorks model packages are well established 
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within the UK water sector, and consequently have a large pool of experienced users and 

existing catchment data. This was the key factor in the selection of HydroWorks - since this has 

meant a wider range of catchment data from which case studies could be drawn. However, most 

of the verified HydroWorks catchment models currently are hydraulic models. The lack of 

appropriate quality data has lead to difficulties when calibrating and verifying the water quality 

component of such models (Harremoes, 1997). 

2.9 COST-BENEFIT ANALYSIS (CBA) 

2.9.1 Introduction 

There are two sets of considerations associated with every potential activity; one set relates to 

the demands for a given service (i. e. the desired benefit or benefits); whilst the other focuses on 
the resources required to achieve that activity (i. e. the costs) (Laursen and Gujer, 1997). 

Cost-Benefit Analysis (CBA) is a decision-maker's tool that enables the comparison of 

alternative options or investments. CBA has been defined as a set of procedures that are used for 

the definition and comparison of project costs and benefits (Zerbe and Divcly, 1994). CBA may 

also be extended to enable consideration of issues such as risk and uncertainty (Pearce and 
Nash, 1982). 

2.9.2 Costs 

The costs considered within a CBA can be classified in a number of different ways. Some 

authors speak of 'Primary' and 'Secondary' costs (Zerbe and Dively, 1994), others of tangible 

and intangible costs (Ashley et aL, 1998). In practice, the range of costs included within any 

given analysis is dependent upon a number of factors, such as the purpose of the study and its 

logistical constraints (e. g. time, financial and available data). Projects may incur a whole range 

of different costs, examples of which include investment, overhead and running costs. 

2.9.3 Benefits 

In simplistic terms 'profit' may be defined as 'income' minus 'costs'. Therefore benefits maybe 
expanded by either increasing income or reducing costs, or by any combination of the two. As 

with costs, both the range and type of benefits included within a CBA may vary greatly from 

project to project. The way in which benefits, like costs, are classified also varies on a project 
basis. 
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2.10 COST/BENEFIT ANALYSIS - EXAMPLE STUDIES 

This Section presents two documented cost-benefit studies that have utilised urban drainage 

modelling techniques to investigate the merits of retrofitting source control techniques to case 

study catchments. 

2.10.1 Assessing the benefits of Combined Sewer Overflow Abatement Measures 
(Attanasio, Hemphill and Lee, 1994) 

Attanasio el al. (1994) report the findings of an investigation conducted on behalf of the City of 
Portland. This desk top study investigated the hypothetical costs and benefits of introducing a 

variety of 'interim' measures to address the ecological problems within the Willamette River 

posed by discharges emanating from 42 of the city's 55 combined sewer outfalls (CSOs). The 

major water quality problem within the Willamette River relates to the persistent violation of 

bacteriological (i. e. permissible e-coli) standards. The PULSEQUAL model was utilised to 

investigate the in-stream e-coli levels at 6 points along the river, and in particular to establish 

whether failure criteria of 400 counts per 100 ml had been exceeded. A variety of 'average year' 

model simulations were generated in which the annual 'baseline' CSO load was reduced by 

between 0 and 90%. These simulations indicated that prevalent e-coli levels were not 

significantly reduced until CSO loads were lowered by at least 40%. However, for the purpose 

of comparing alternative stormwater management proposals, CSO reductions were confined to 

between 0 and 20% - since these values reflected the anticipated performance of the proposed 
techniques. 
A range of proposals were then evaluated in terms of their predicted effectiveness in reducing 
CSO loadings and assumed costs of implementation. These two factors were then equated to 

give the 'cost per hour of water quality violation avoided' -a parameter that allowed direct 

comparison between each of the alternative options. 

Table 2.14 Range of alternative proposals and their comparative costs 
from Attanasio R.. HemDhill B. and Lee L. E.. 1994 

Cost per hour of 
Alternative proposals investigated water quality 

violation avoided 
Screening and other technologies for removing large solids and floatables US$ 390,000 
Maximising in-line storage (including passive and automatic regulators) US$ 19,500 
Removing roof drainage connections from the sewer system US$ 56,000 
Increasing sewer flushing, including evaluating time and location of flushing US$ 998,000 
activities 
Increasing street sweeping and/or modifying the methods employed for US$ 1.06 million 

It is evident from the above table that the two most cost effective solutions were i) maximising 
in-line storage and ii) removing roof drainage connections from the sewer system. Both of these 

were significantly cheaper than the three remaining options. 
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2.10.2 BaImforth & Bailcy, 1985 

As described within Section 2.6.1.7, Balmforth and Bailey (1985) conducted a basic cost/benefit 
comparison of on-site roof water storage facilities and conventional CSO storage tanks for the 

management of stormwater runoff. The analysis related to the provision of an 85 m3 in-sewer 

storage tank or its on-site equivalent. The comparative costs of these two options were E24,000 
for the on-site option and E34,000 (excluding indirect costs) for the traditional approach 
(Note: these are 1985 prices). 

2.10.3 Problems with applying CBA to SUDS 

For the majority of previous CBA studies, SUDS have been compared against conventional 
sewer rehabilitation schemes with respect to their hydraulic performance, economic costs, and 
in some cases sustainability criteria. Hydraulic performance and economic costs are tangible 

cost/benefit issues (i. e. those for which an accurate monetary valuation may be readily 
established). However, the comparative merits of both conventional and SUDS schemes are 
affected by a number of intangible cost/benefit issues (i. e. for which it may be difficult to assign 
an accurate monetary value). Examples of intangible costs/benefits include amenity, 
environmental, social and sustainability issues (e. g. how can a monetary value be ascribed to 
factors such as environmental quality, or community well being). 

It should be noted that given the uncertainty associated with the financial costs for the 

construction, operation and maintenance of retrofit SUDS (see Section 2.5.11), even the 
tangible parts of these studies should be viewed with some care. 
It is envisaged that only tangible factors (i. e. direct and in-direct costs/benefits) will be directly 

considered within this any cost-benefit/performance studies conducted as part of this thesis. 

2.10.4 Summary 
The Literature Review presents a number of cost-benefit studies that have been undertaken to 

evaluate the merits of applying retrofit SUDS systems for the remediation of urban drainage 

problems (Icke el al., 1999; Herrmann and Hasse, 1997; Attanasio, Hemphill. and Lee, 1994; 
BaImforth and Bailey, 1985). These studies have generally compared SUDS against 
conventional urban water management methodologies using economic, and in some instances 

sustainability, criteria. 
Hypothetical studies conducted by Herrmann and Hasse (1997) and Balmforth and Bailey 

(1985) indicated that roof-water based retrofit SUDS were economically viable as a sewer 
rehabilitation methodology. 
An American study conducted by Attanasio el aL (1994) demonstrated that the use of retrofit 
SUDS was economically viable in conjunction with conventional techniques as part of an 
integrated programme of sewer rehabilitation works. Further 'roof-water disconnection 

schemes', in which roofed areas are effectively disconnected from combined sewer systems, 
have been shown to be valid, and subsequently adopted for a number of other North American 
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cities, including Minneapolis, Pittsburgh and Toronto (Norris, 1999). The North American 

experience runs contrary to the prevailing view within the United Kingdom, which assumes that 
SUDS are only viable for new development applications. The British perspective would seem to 

be supported by the results of the catchment X study, which rejected the use of rctrof it SUDS in 

terms of performance. No further UK studies were found within the public domain. This 
illustrates the need for a detailed analysis of the impacts of retrofit SUDS with respect to UK 

catchments. 
This thesis presents two new retrofit SUDS case studies to address this lack of UK experience. 
These case studies aim to compare the merits of using retrofit SUDS to address urban drainage 

problems against those of conventional sewer rehabilitation strategies. These investigations 

relate to the Meanwood and Gipton urban drainage catchments in Leeds, Yorkshire - these are 

two catchments, which exhibit two very different sets of drainage problems (Table 2.15). 
Table 2.15 Case studv catchments 

Catchment Name/ 
Location Description of primary catchment problems 

Mean wood catchment, 
Leeds, Yorkshire Catchmentflooding - associated with insufficient system capacity 

Giplon catchment, 
Leeds, Yorkshire Aesthetics problems - associated with excessive CSO discharges 

II 

The selection of the Gipton and Meanwood urban drainage catchments for investigation through 

these studies was influenced by a number of factors: 

1. The availability of data and verified models for these catchments 
2. The close proximity of these catchments to the University of Sheffield 

3. The range of catchment characteristics (e. g. catchment size, geographic location, 

performance problems, population, topography, etc) and urban drainage problems 
(Meanwood - Catchment flooding, Gipton - CSO/Aesthetics problems) represented by 

these two catchments. 
These case study investigations were conducted with the intention of developing a decision 

support tool for the design of retrofit SUDS in a UK context. It was envisaged that this design 

tool would complement existing design procedures for sewer rehabilitation works, such as the 
UPM methodology, and incorporate the philosophical concepts and practical guidance that are 
presented for SUDS in the CIRIA C521, C522 and C523 (2000) guidelines. The proposed 
design tool should also consider the evaluation of hydraulic performance, and costs, associated 
with retrofit SUDS. The following Chapters explore these issues, both with respect to the case 
study catchments and in more generic terms. 
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3. FEASIBILITY STUDY: GIPTON CATCHMENT 
3.1. INTRODUCTION 

This Chapter presents investigations that were performed for the Gipton catchment, the first of 
two UK case studies conducted for this thesis. The Gipton catchment contains four problem 
CSOs, which contribute to aesthetics problems within a local watercourse. This study aimed to 

explore the feasibility of retrofitting SUDS to a typical urban environment, and to establish 

whether such retrofit SUDS options offered a viable means of addressing the catchment's CSO 

problems. It was hoped that the experiences drawn from these feasibility investigations, and the 
information assimilated in the literature review (Chapter 2), could be used to develop a more 
detailed methodology for planning and evaluating retrofit SUDS. It was intended that this 
detailed methodology would be subsequently developed/improved, in relation to the Meanwood 

case catchment. Further details of the Meanwood investigations are presented in Chapters 4-7. 

This Chapter is the result of a collaborative study undertaken between Leeds City Council, 
Yorkshire Water and the University of Sheffield. The exact nature of the collaboration is 

explained here, in order to eliminate any potential for misunderstandings regarding originality 
and/or ownership of material. 
Yorkshire Water commissioned Norman Walker, then of Leeds City Council, to conduct a 

preliminary study to assess the merits of using retrofit SUDS as a sewer rehabilitation strategy. 
In January 2000 Norman Walker issued an open invitation to the 'urban-drainage' mailing list 

for collaborative input, to which the University of Sheffield responded. The collaboration 

provided the author with an excellent opportunity to work closely with a practising engineer on 

a local case study. 
Over a period of several months, several meetings and e-mail discussions between Walker and 
the author occurred. These included visits to the catchment, where discussions regarding options 
for retrofit SUDS took place. The author took all catchment photographs included in this thesis; 

either during these shared visits, or during subsequent independent site visits. Using Leeds City 
Council's existing hydraulic model, Walker and the author independently amended the model 
and undertook hydraulic simulation work. Where similar simulations were undertaken in 

parallel this provided an excellent opportunity to ensure that the predictions were reasonable 
and robust. At other times efficiencies were achieved as differing strategies were pursued by 
Walker and the author. An example of this was some preliminary feasibility work on the use of 
household water butts. The author undertook the modelling work for this, based on 
methodologies discussed in Chapter 5 (and also presented by Swan et al., 1999). This 

component of the study is not presented here, as it was eliminated at an early stage of the 

collaborative discussions. 

Leeds City Council undertook all the costings. Walker's (2000: b) report to Yorkshire Water 
forms the definitive report on the feasibility study. Walker (2000: a) provided a brief overview 
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of the project. Consequently, most of the basic data presented in this thesis was presented 

within these earlier reports. However, it should be noted that the present author is entirely 

responsible for the catchmcnt maps (Figures 3.1 to 3.5), the GIS-based presentation of the 

schemes shown in Figures 3.6 to 3.9, the presentation of hydraulic performance comparisons 

(Figures 3.10 and 3.11) and for the analysis and interpretation of cost versus performance 

(section 3.4.7; figures 3.12 to 3.14). Further details of this data analysis/ interpretation exercise 
have been reported previously (Swan et aL, 200 1). 

3.2. GIPTON CATCHMENT 

3.2.1. Background 

Gipton is a residential district of Leeds, located 5 km to the North of Leeds City Centre. The 

Gipton urban drainage system (Figure 3.1) serves a 297.8 ha contributory catchment, which is 

bounded by the A6120 (Leeds Outer Ring Road) in the North and Gledhow Beck/Lake in the 

South. This system contains four CSO structures (CSO135, CS0136, CS0137 and CS0138) 

that all discharge into Gledhow Beck. Three of these CSO structures (135,136 and 138) serve 
their own separate contributory sub-catchment systems, whilst CS0137 receives pass-forward 
flows from two upstream CSO structures (CSO135 and CS0136) in addition to runoff from its 

own small contributory sub-catchment system. Discharges from these CSOs have led to a series 

of aesthetic problems (i. e. an accumulation of sewer debris) within Gledhow Beck, a local 

watercourse). 
Sections 3.2.2-3.2.5 present a more detailed review of the four CSOs and their contributory sub- 

catchments. 

3.2.2. CS0135 

3. ZZI. CS0135 -Contributory Sub-catchment and Sewerage Network 

CS0135 is located at the downstream end of a dendretic sub-section of the Gipton sewerage 

network. This network receives flow from a predominately flat residential sub-catchment, with a 

contributory surface area of 79.7 ha. The Moorlands and Sandringham estates, located within 
the Central and Northern parts of this sub-catchment respectively, are representative of much of 
the housing found in this locality (Figure 3.2: a and Figure 3.2: b). These estates largely comprise 

semi-detached housing with garden plots (200-300 M2) . The sub-catchment also contains a 

number of institutional buildings, including two schools, some offices, and a shopping precinct. 
The northern part of the sub-catchment is predominately underlain by millstone grit and 

sandstone, and the southern part by mudstone. 

3.2. ZZ CSO 135 - Overflow Structure 
CS0135 discharges into the Gledhow Beek; its outfall is located within the front garden of a 

residential property (Figure 3.2: d). The accessibility of this location means that public 
complaints are often made in relation to aesthetic pollution events. The high number of public 
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complaints made in relation to this overflow has served as a trigger for investigating remedial 

proposals. 

The existing storage chamber of CS0135 is located under a busy public highway at thejunction 

of Harrogate Road and Stainbeck Road (Figure 3.2: c). The location of this CSO means that it 

would be difficult to upgrade this structure, using conventional rehabilitation techniques, 

without incurring major traffic disruption. This factor obviously increases the financial costs 

associated with any conventional up-grade options for this structure. 
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Figure 3.1 

Gipton urban drainage system overlaid onto an Ordnance Survey map with the 

contributory areas of each CSO denoted by different colours: 

CSOI 35 - Green, CSOI 36 - Red, CS01 37 - Grey and CSOI 38 - Blue 

a) Layout of Gipton sewerage system 

Notes: The North-South distance of Gipton catchment is 3554 m 

North/South axis always corresponds to the page's Top/Bottom axis 

Aspect ration is preserved for all ensuing representations of Gipton catchment 
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Figure 3.2 
CS0135 Sub-catchment: 

a) Moorlands Housing Estate (off Sweet Lane) Grid Ref: (30650,38550) (View: M 
b) Sandringham Drive (corner of Sandringham Cres. ) Grid Ref: (30850,39500) (View: S) 
c) Site of CSO 135 (Junction of Harrogate Road and Stainbeck Road) 

Grid Ref: (30450,37800) (View: N) 
d) Outfall of CSO 135 (off Harrogate Road) Grid Ref: (30600,37650) (View: NW) 
e) Outfall of CSO 135 (off Harrogate Road) Grid Ref: (30600,37650) (View: SE) 
0 Layout of CS01 35 sewerage sub-system 
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3.2.3. CS0136 

3. Z3.1. CS0136 -Contributory Sub-catchment and Sewerage Network 

CS0136 serves a small residential sub-catchment that contains the Allcrton Grange and Moor 

Allerton housing estates. These estates largely comprise semi-detached, and some terraced, 

properties (Figure 3.3: a and Figure 3.3: b), and are therefore generally more densely housed than 

those of the CS0135 sub-catchment. The sub-catchment also contains Allerton Grange School. 

The total contributory surface area of the sub-catchment is 56.1 ha. This is served by a small 

section of dendretic sewerage, which feeds into CS0136 (Figure 3.3: e). The sub-catchment is 

generally steeper than the CS0135 sub-catchment, and subsequently this sewerage system 

contains some steeper Sections of pipe-work. The main trunk sewer slopes moderately from the 

Northeast to the Southwest of the sub-catchment. The steepest sewers are the branch Sections 

that feed into the trunk, including those that serve the Allerton housing estate in the west of the 

sub-catchment. Sandstone underlies much of the northern and southern edges of this sub- 

catchment, whilst the central area is largely underlain by mudstone. 

3. Z3. Z CSO 136- Overflow Structure 

CS0136 discharges into a ditch that is located within a wooded area adjacent to the Allerton 

housing estate (Figure 3.3: d). This is a relatively inaccessible location, and as a result few public 

complaints are made about discharges/aesthetic pollution emanating from this structure. 

3.2.4. CS0137 

CS0137 receives pass forward flows from CSOs 135 and 136, and serves its own small 

contributory area. The characteristics of its feeder sub-catchment are similar to those of 
CS0135, particularly in terms of its topography and constituent building or housing types. 
However, as this structure receives pass-forward flows from two upstream CSOs, in addition to 
its own contributory sub-catchment, the performance of this structure may not be directly 

attributed to the flows it receives from its own locality. 
Like CS0135, this structure discharges within a publicly accessible area, and is the subject of a 
number of public complaints. 
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Figure 3.3 

CS0136 Sub-catchment: 

a) Allerton Grange Rise (comer of Stainburn Tier) Grid Ref: (30700,37800) (view: NW) 
b) Allerton Grange Rise (comer of Allerton Grange Gardens Grid Ref: (View: SE) 
c) Allerton Grange School (Talbot Ave) Grid Ref-. (31350,38475) (View: SE) 
d) Site of CSO 136 (Allerton Grange Way - CSO Outfall on left) Grid Ref: (31036,37839) 

(View: SW) 
e) Layout of CS01 36 sewerage sub-system 
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Figure 3.4 

CS0137 Subcatchment: 

a) Lake (Gledow Park) Grid Ref: (31700,36700) (View: S) 
b) Lake (Gledow Park) Grid Ref: (31700,36700) (View: S) 
c) Settlement Trap - Inflow to Lake (Gleclow Park) Grid Ref: (31500,36700) (View: NM 
d) Site of CSO 137 (Gledow Valley Road) Grid Ref: (31163,37302) (View: S" 
e) Site of CSO 137 (Gledow Valley Road) Grid Ref: (31163,37302) (View: SW) 
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3.2.5. CS0138 

3. Z5. I. CS0138 - Contributory Sub-catchnient andSewerage Network 

This CSO serves a residential area that largely consists of terraced and some semi-detached 
housing. The sub-catchment has two distinct residential areas that are formed by the Gledhow 

and Lidgett Estates. The Gledhow estate (Figure 3.5: d) contains late I 9th century terraced and 

some detached housing, and contains some large grassed areas (park/sports field). The Lidgett 

estate largely comprises newer semi-detached housing, and has fewer grassed areas. Both 

localities are generally more densely housed than those associated with CS0135 and 136. 

Garden plots within both the Gledhow and Lidgett estates are generally smaller than those 

within the sub-catchments of CS0135 and 136. Similarly, the roads that run through these two 

estates are generally narrower than those in these other areas, and are not lined by grassed 

verges. 
The majority of this sub-catchment is founded upon a relatively flat plateau area. This plateau 
falls steeply down towards the Gledhow Beck, in the southwest of the sub-catchment. This area 
is underlain by a variety of permeable strata. 

3. ZS. Z CSO 138 - Overflow Structure 
CSO 138 is located at the base of a dendretic section of sewerage, and receives runoff from 

63.3 ha of contributing surface area. The CSO is sited adjacent to the Gledhow Beck, at the foot 

of a steeply inclined section of sewerage. The CSO storage tank is located beneath Gledhow 

Lane. 

3.2.6. Overview of Gipton's CSO Spill-related Problems 
The Gipton catchment contains four CSO structures, all of which discharge into the Gledhow 
Beek at different locations upstream of Gledhow Lake. These discharges have led to a series of 
aesthetic problems (i. e. an accumulation of sewer debris) within the Beck. The water quality 
implications of these CSO discharges into the Gledhow Beck are unclear. 
A typical solution to these aesthetic problems would be to retrofit screens within each of the 
four CSOs. However in this instance, this approach was not considered viable due to spatial 
limitations within these structures (Walker, 2000: b), and the possible river quality implications 

of their discharges. Therefore, other strategies to address these aesthetic pollution problems 
were explored; these included traditional rehabilitation options and the use of retrofit SUDS. 
Traditional rehabilitation options generally seek to increase the capacity of the sewerage system 
in order to reduce the frequency of overflow discharges. SUDS-based options generally seek to 

reduce overflow discharges by attenuating and controlling the peak levels of catchment runoff 
entering the sewerage system. 
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Figure 3.5 

CS0138 Subcatchment: 

a) Lidgett Place (Corner of North Park Ave) Grid Ref: (31850,38000) (View: S) b) Lidgett Mount (Lidgett Park Estate) Grid Ref: (31980,38200) (View: S) c) Site of CSO 138 (Tank under Road: Gledow Park) Grid Ref: (31352,37182) (view: N) d) Lidgett Grove (Corner of Gledhow Wood Ave) Grid Ref: (31850,37350) (View: E) e) Layout of CS01 38 sewerage sub-system 
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3.3. GIPTON CATCHMENT - COMPARATIVE STUDY 

3.3.1. Background 

A comparative design exercise was conducted to evaluate a range of conventional and SUDS- 

based proposals for reducing aesthetic pollution within the Gipton catchmcnt. This collaborative 

study was commissioned by Yorkshire Water and jointly undertaken by Leeds City Council 

(Walker, 2000: b) and the University of Sheff ield (Swan el al., 2001). 
It is important that the theoretical nature of this study be acknowledge. Some of the procedures 

adopted in this case study diverge slightly from current regulatory requirements. For example, 

none of the rehabilitation (i. e. both conventional and SUDS) options presented in this Chapter 

fully comply with regulatory requirements for aesthetics control as outlined by the UPM 

methodology (FWR, 1998), which stipulate the removal of aesthetics using screens. Similarly, 

the use of TSR (as opposed to long rainfall time-scries) does not represent current UPM-based 

modelling practice (FWR, 1998). However, the exercise does provide a basic level of 

comparison between conventional and SUDS-based rehabilitation options, in terms of their 

associated costs and hydraulic benefits. 

3.3.2. Development of conventional rehabilitation proposals 
Conventional proposals were developed for the alleviation of CSO related aesthetic problems 

within the Gipton catchment. Leeds City Council conducted all detailed design work associated 

with these solutions (Walker, 2000: b). Each of the four Gipton CSOs was redesigned in 

accordance with the FR0488 (FWR, 1994) and SDD (SDD, 1977) design guidelines. The 

FR0488 guidelines are widely used within the UK for the design of sewer overflow structures. 
As described in Chapter 2, the SDD guidelines are an older methodology that was specifically 

compiled for the design of sewer overflow structures within Scotland. The SDD methodology 

generally produces more conservative solutions, and in this instance was used to assess whether 
further storage might be needed in addition to that included in the FR0488 designed solutions. 
This more conservative design approach was adopted because these structures were discharging 

into a high amenity watercourse. 
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Table 3.1 Conventional Design solutions for Gipton's four CSO structures 
(Adaoted from Swan et A. 20011 

Conventional 
Design Proposed Solutions 

Solution 
The redesigned CS0135 utilises an extended stilling bay overflow, with combined 

CS0135 storage of 50OM3 within the CSO and adjacent pipe-work. This solution 
incorporates screening and additional storage as calculated by the SDD method. 

e This solution adopts an extended stilling bay overflow, with sufficient storag, 
CS0136 ,J s achieved using the FR0488 design methodology. The provision of a screen was 

deemed unnecessary due to the public inaccessibility of the CSO's location. 
a This solution, which adopts an extended stilling bay overflow, was designed using 

the FR0488 approach with an additional 250 m3 of storage calculated using the CS0137 , SDD methodology. In this case, screens were incorporated into this design as the 
overflow was situated within a highly visible location. 
This structure is located on a steep hill, and surrounded by rock. These factors led 

CS0138 to the selection of a hydrodynamic separator design for this location, because it 
avoided the need for additional storage or screening. The design of this structure 
was conducted in accordance with FR0488 methodology. 

3.3.3. Development of SUDS proposals 

Preliminary observations 
The potential for retrofitting SUDS devices to the Gipton catchment was explored through a 

collaborative study between Leeds City Council and the University of Sheffield (Swan et al., 
2001). This analysis was conducted on a street-by-street basis, and sought to identify all 
locations where SUDS techniques represented a viable option. This investigation was conducted 
in accordance with the SUDS Design Manual methodology (CIRIA, 2000), and considered a 

range of geographic, geological, legislative and social issues. The preliminary findings of this 
investigation arc discussed below, with respect to each of the four Gipton CSOs. 

3.3.3. Z CS0135 Sub-catchment 

The southern part of this sub-catchment lies predominately upon mudstone soils, which have 

low percolation rates and are therefore not well suited to the use of infiltration-based SUDS. 

However the northern part of the catchment is largely underlain by millstone grit and sandstone, 
both of which are considered to be more appropriate for infiltration-based techniques. House 

gardens within this part of the catchment are typically large enough to allow soakaways, or 
other infiltration devices, to be constructed more than 5m away from any building, in 

compliance with the UK's Building Regulations (1991). 
Most roads within this sub-catchment are lined with 1.5-2 m wide grass verges; these were 
identified as viable locations for retrofit SUDS conveyance systems (e. g. filter drains or swales). 
It was considered that such structures might be used to drain surface runoff in conjunction with 
an existing land drainage network, located within the central swath of the catchment. All ground 
slopes within this part of the catchment are flat enough to comply with the recommended 
guidelines for swales contained with the SUDS design manual (CIRIA, 2000). The SUDS 
design manual (CIRIA, 2000) recommends longitudinal slopes of less than I in 17 for effective 
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infiltration from base of a Swale, and longitudinal slopes less than I in 50 to prevent erosion of 

the base of a Swale. 

There is potential to use source control storage devices, such as water butts or ponds, within 

most of the region's residential areas. However, there is very little potential to introduce larger 

scale storage devices due to the limited amount of available space within the region. 

3.3.3.3. CS0136 Sub-catchment 

The northern and southern parts of this sub-catchment are largely underlain by sandstone, and 

therefore considered to be well suited to the use of infiltration-based SUDS. The central zone is 

underlain by mudstones, and therefore deemed less suitable for infiltration devices. 

Houses in the northern part of the sub-catchment generally have big enough gardens for the use 

of source control infiltration devices (i. e. to allow the infiltration device to be placed more than 

5m from property), the southern part of the catchment is more urbanised, and hence less suited 

to the use of source control infiltration devices. The northern/central part of the sub-catchment 

also contains the Allerton Grange School, which is surrounded by a large green-field site. This 

was highlighted as a potential location for larger scale off-site devices - the local geology 

means that infiltration, as well as detention, facilities are feasible at this site. 
Many roads in this sub-catchment are lined with wide grass verges. These were highlighted as 

potential locations for filter drains or swales. However, it was envisaged that steep slopes would 

restrict the use of swales within the central swath of this sub-catchment, and limited open spaces 

would restrict their use within the far south of the sub-catchment. A separate sewer network 

already served some southern parts of the sub-catchment. 
The use of source control storage devices, such as water butts or ponds, is considered to be 

feasible within most of the region's residential areas. 

3.3-3.4. CS013 7 Sub-catchment 

The southern part of the catchment was largely considered suitable for infiltration, whereas the 

northern part is predominately underlain by muds and hence considered unsuitable for 

infiltration devices. The geological conditions and housing types within both the far north and 
far south of this catchment were considered to be appropriate for the use of source control 
infiltration devices. Harrogate Road and Gledhow Park Road run through the middle of this sub- 

catchment. Both roads are lined by grass verges, and therefore considered appropriate locations 

for the use of conveyance systems. The larger grass areas adjacent to this road were highlighted 

as potential locations for off-site infiltration devices - the local geology means that infiltration, 

as well as detention facilities are feasible at this site. 
Source control storage devices, such as water butts or ponds, are considered to be feasible 

within most of the region's residential areas. However, larger scale storage devices there are not 

considered feasible due to the limited available space within the region. 
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3.3.3.5. CS0138 Sub-catchment 

Most of the region lies upon permeable strata, considered to be well suited for infiltration. 

However, high housing densities render both source and off-site control devices impracticable 

within much of this sub-catchment. However, houses in the central/southern part of the sub- 

catchmcnt generally have big enough gardens for the use of soakaways, and some other source 

control infiltration devices. Most properties are considered large enough for the use of water 
butts, but not ponds. Larger scale off-site storage facilities are not considered feasible due to the 
limited available space within the region. 
There are very few roads within this region that contain grassed verges, and most pavements are 

tarmac scaled. The roads in this locality are generally narrower than those associated with the 

CS0135 and 136 sub-catchments - the use of swales or filter drains was deemed to be less 

viable within much of this region. 

3.3.3.6. Summary 

The preliminary observations described above were collated and used to define suitability maps 
for retrofitting infiltration SUDS and storage-based SUDS to the Gipton catchment. 
Figures 3.6-3.7 present suitability maps for retrofitting infiltration SUDS to the Gipton 

catchment, and Figures 3.8-3.9 present suitability maps for retrofitting storage-based SUDS. 

These suitability maps graphically highlight areas considered suitable for a range of retrofit 

SUDS: conveyance systems; source-control infiltration systems; off-site infiltration systems and 

off-site detention systems. It is evident that source control detention systems, such as water 

butts, were considered to be appropriate for retrofitting to most of Gipton's domestic properties. 

Maps were generated for each of the four feeder catchments that are served by the Gipton 

CSOs. The sub-catchment regions used in these maps correspond to those of a HydroWorks 

model that was derived for the Gipton catchment by Leeds City Council (Walker, 2000: b). 

3.3.4. Integrated retrofit proposal 
The preliminary observations described within the previous Section were used to develop an 
integrated SUDS-based solution (Walker, 2000: a) for the alleviation of the Gipton catchment's 

aesthetic pollution problems. This proposal is presented in Table 3.2 and the ensuing 

paragraphs. These proposals were developed in accordance with the SUDS design manuals 
(CIRIA, 2000). 
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Table 3.2 Summary of Leeds City Council's SUDS-based proposal for Gipton 
(Swan at A. 20011 

Proposed Solutions 
CSO 135 
Northern region Use of infiltration techniques and swales in conjunction with existing land drainage 
Central region Use of soakaways/Infiltration techniques and swales 
Southern region Use of swales in conjunction with existing land drainage 
CSO 136 
Northern region Small scale use of swales & infiltration techniques 
Southern region Large land drainage scheme at Allerton Grange School site 
CSO 137 
Northern region None 
Southern region Use of soakaways/Infiltration. 
CSO 138 
Northern region None 
Southern region Widespread use of soakaways/Infiltration techniques and small-scale use of swales 

This proposal comprises the disconnection of 12.26 ha of roofed area (31% of the existing total 

catchment roofed area of 39.52 ha) and 16.96 ha of paved area (28% of the existing total 

catchment paved area). It is worth noting that this proposal is based upon the assumption that 

all impervious (i. e. paved and roofed) areas deemed suitable for disconnection, within the 
feasibility studies, are completely disconnected from the catchment's sewers. However, it is 

unlikely that this idealised target of 'complete disconnection' for all areas, which were 
highlighted as being viable for the use of SUDS, would ever be achieved in reality. The actual 
levels of surface disconnection achieved within these areas would depend upon the take-up rate 

of individual roof-disconnections by local residents, and road-disconnections by local authority 

and the Highways Agency. To address this level of uncertainty, the hydraulic performance of a 

number of alternative SUDS options, which represented a range of disconnection scenarios for 

both paved and roofed surfaces (Table 3.3), were simulated using the HydroWorks model and 

compared with the simulated performance of the conventional rehabilitation scheme described 

in Section 3.3.2. Further details of this comparative modelling exercise are presented with the 

following Sections. 

For all the SUDS-based proposals it was assumed that complete disconnection of all 
institutional roofs and all dwellings that could be easily connected to the separate system would 

occur. This accounted for 3.78 ha, or approximately one third, of the roofed area for which 
disconnection was considered to be viable. The scenarios presented in Table 3.3 assume that 
between 20 and 100% of the remaining roofed area would be disconnected. Hcnce the notation 
201x, used in Table 3.3, actually refers to a scenario in which nearly half of the disconnectable 

roofed area has been removed. 
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CHAPTER 3 

3.4. COMPARATIVE STUDY 

3.4.1. Introduction 

Leeds City Council (Walker, 2000: b) undertook much of the modelling work for this 

comparative exercise, with independent validation conducted at the University of Sheffield (See 
Section 3.5). The results of these simulations were analysed collaboratively (Swan et aL, 2001). 
Leed City Council compiled and validated a HydroWorks model for the Gipton catchment, as 
part of a drainage area survey that was undertaken in 1994. This model was verified against 
monitored data collected from around each of Gipton's four CSOs. 
This model was used as the basis for these modelling investigations. Amended versions of the 
HydroWorks Gipton catchment model were used to simulate the hydraulic performance of the 
Gipton drainage system under each of the eleven rehabilitation proposals (one conventional, and 
ten SUDS-based) outlined in Table 3.3. 

The HydroWorks models used to represent the eleven alternative rehabilitation proposals were 
each derived by amending the 'existing state' HydroWorks model. For each SUDS proposal, the 

model's 'contributing surface' input parameters were updated to represent the paved, roofed and 
impervious area associated with each option - this required model parameters to be changed at 
the sub-catchment level. Further details on the SUDS modelling techniques that were developed 

for HydroWorks are presented in Chapter 5. The conventional rehabilitation proposal featured 

in Section 3.3.2 was represented by amending the catchment model's manhole parameters to 
increase the available in-sewer storage. 
The accuracy of the catchment model is obviously an important issue in relation to this form of 

analysis. Catchment models that have been verified against monitored flow data are likely to be 

more accurate than those that have not. The model was verified against monitored data collected 
from around each of Gipton's four CSOs. However, amended catchment models were used to 

represent the performance of each of the design proposals considered within this paper. It was 
therefore inevitable that, since these models represented proposals for future schemes, they were 
not, and could not have been, verified. 
The hydraulic performance of each of these options was compared with that simulated for the 

existing state catchment. These simulations were generated using HydroWorks' time series 

analysis for a 99 storm-event Time Series Rainfall (TSR) set. The 'Henderson' TSR 

(WRc, 1986) for the North East region of the UK was adopted for this study. However, this data 

set was not specifically localised for the Gipton site. This decision related to the fact that this 

exercise was intended as a comparative study of alternative proposals, not as an accurate 
representation of the catchment system's existing-state perfon-nance. 
A more detailed review of modelling retrofit SUDS is presented with respect to the Meanwood 

catchment within Chapter 5. 
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3.4.2. Hydraulic performance criteria 
For the purpose of this study, hydraulic performance was defined using two model output 

parameters: i) Total annual CSO spill volume, 

11 ) Total annual number of CSO spills. 
These parameters were adopted because they were considered to be key factors influencing tile 

severity of the aesthetic pollution within Gipton Beck. This rationale is based upon tile 

assumption that a reduction in both the annual number and volume of CSO spills into the Beck 

will produce a corresponding reduction in terms of the severity of aesthetic pollution - the 

effects of which will in turn be manifest through a reduction of public complaints received by 

the sewer operator. These criteria were used to assess tile performance of Gipton's four CSOs, 

both individually, and corporately as a complete system. 

3.4.3. Results - Hydraulic Performance 

A time series analysis was conducted for the 'existing-state' FlydroWorks model of the Gipton 

catchment that sought to Simulate the hydraulic performance of the current Gipton catchment 
system in terms of the two performance parameters highlighted in Section 3.4.2. These 
4existing-state' results were used as a benchmark against which the simulated performances of 

alternative proposals could be compared. 
The performance of the one conventional and ten SUDS-based rehabilitation proposals was then 

simulated using HydroWorks, and compared with that of the 'existing-state' model using these 

criteria. The results of this exercise are presented in Table 3.4 and Table 3.5 (located after 
Section 3.4.6), and graphically illustrated in Figure 3.10 and Figure 3.11. 
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Figure 3.10 Annual CSO Spill Volumes (M) from Gipton CSOs 135,6,7 &8 
For 'existing -state' conditions and alternative remedial proposals 

(Swan et al., 2001) 

(Refer to Table 3.3forfiirther details of the notation used in Figures 3.10-11) 
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Figure 3.11 Annual number of CSO Spill from Gipton CSOs 135,6,7& 8 
For 'existing -state' conditions and alternative remedial proposals 

(Swan et al., 2001) 

3.4.4. Discussion of Results 

Inspection of Table 3.4 and Figure 3.10 reveals that, where system performance is defined by 

the cumulative annual Spill Volume from all four of Gipton's CSOs, then the SUDS proposals 

produce much better results than the conventional option. This is demonstrated by the fact that 

all ten of tile SUDS proposals outperform the NewCSO option. The SUDS options also 

outperform tile conventional solution when the annual spill volurne emanating from each of the 

CSOs is considered individually. However, this is reversed when system performance is defined 

as the combined number of annual spills emanating from the catchment's four CSOs (Table 3.5 

and Figure 3.11). In such circumstances, the conventional proposal outperforms all ten of tile 

SUDS proposals. This is also true when the annual number of spills emanating from CSOs 135, 

137 and 138 is considered individually. However, in the case of CS0136 all tell of tile SUDS 

proposals out perform the conventional solution. This reflects the fact that the design criteria 

used in relation to the conventional proposal for CS0136 were much less stringent than those 

applied to the three other overflows; the reason for this being that CS0136 discharges within a 

much less publicly accessible area than the other structures. 

In terms of the SUDS options, the annual spill volume ranges from 39563 ill 3 (for tile SUDS 

100/100 option) to 63679 m3 (for tile SUDS 20/50 option). Tile least comprehensive option 

(SUDS 20/50) gives 61% more spill volume than the most comprehensive option (SUDS 

100/100). Tile annual number of spill events range frorn 106 to 146, with the SUDS 20/50 

solution giving 38% more spill events than the SUDS 100/100 solution. 
These results indicate that even the minimum SUDS option (SUDS 20/50) achieves significant 

gains in system performance, and that the incremental benefits associated with implementing 

the more comprehensive SUDS options are comparatively small. This reflects tile fact that there 

are only a limited number of easy opportunities for SUDS within this catchment, which if 

implernented would lead to significantly improvements in systern performance. These 'easy 
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pickings' include the disconnection of large institutional roofs/car-parks and redirecting roof- 

water to separate sewer sewerage. These easy pickings options were implemented within all of 

the SUDS options presented in Table 3.3, and hence account for the small level of variation 

associated with the performance of these schemes. 

3.4.5. Importance of performance parameters 
Total annual CSO spill volume and total annual number of CSO spills were adopted as 

performance indicators because they were considered to be key factors influencing the severity 

of the aesthetic pollution within Gipton Beck (See Section 3.4.2). However, it is apparent that 

when these two different performance indicators were used as the basis for comparing the 

eleven proposals, differing findings were reached; with conventional proposals generally 

outperforming SUDS when performance is defined by the 'total annual number of CSO spills' 

parameter, and SUDS outperforming conventional proposals when the 'total annual CSO spill 

volume' parameter is used. This demonstrates that although SUDS are more effective at 

reducing spill volumes, they do not deal with small frequent spill events as well as the 

conventional proposals. 
In terms of this analysis it might be argued that the number, not size, of annual CSO spill events 
is of greater importance - because every spill event, no matter how small, carries the potential 
for aesthetic pollution, and conssequently for public compliant. In fact a large single spill event 

might receive the same amount of public complaint as a smaller event. However, the annual 
CSO spill volume parameter is still a useful indication of system perform - especially when 
issues of water quality pollution are being considered. 

3.4.6. Summary 

This exercise identified the main factors considered to affect the viability of retrofitting SUDS 

to a typical urban catchment, and highlighted the potential benefits of using such devices rather 
than conventional approaches, particularly in terms of improving the hydraulic performance of 
the urban drainage system. However, an investigation into the comparative costs of both 

methodologies was required to establish the economic viability of SUDS. 
Section 3.4.7 presents corresponding construction cost estimates that were generated for each of 
these conventional and SUDS proposals. These costings are used as the basis for a set of 

scatterplots that compare the cost/performance of each of the rehabilitation proposals. 
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CHAPTFR 3 

3.4.7. Costs 

Walker (2000: a) generated cost estimates for each of these eleven proposals. The results of this 

analysis are presented within Table 3.6, and graphically illustrated within Figure 3.12. 
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Figure 3.12 Construction costs (E, 000's) of Gipton proposals (Walker, 2000: a) 

It may be observed frorn Figure 3.12, that only three of the ten SUDS proposals were estimated 

as more expensive to construct than Walker's conventional solution. These were the three most 

comprehensive SUDS solutions (100/100,100150 and 80/100). The most costly SUDS proposal 

(100/100) was 10% more expensive, and the least costly proposal (20/50) was 67% cheaper, 

than the conventional solution. Figure 3.13 and Figure 3.14 display the construction costs for 

each Gipton proposal together with associated CSO performance, in terms of annual CSO spill 

Volume and number of CSO spill-events respectively. 
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Figure 3.13 Gipton Catchment - Predicted annual CSO spill volume against cost of 
construction associated with each remedial proposal (Swan et al., 2001) 
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Figure 3.14 Gipton Catchment - Predicted annual number of CSO spill events against 
cost of construction associated with each remedial proposal (Swan et al., 2001) 

3.4.8. Discussion of results 

Figure 3.13 and Figure 3.14 both highlight that improved levels of performance amongst the 

SUDS proposals correspond to increased levels of expenditure and surface disconnection. The 

SUDS options that Litilise the larger disconnection components (as denoted on the scatter plot by 

the darker data points) achieve tile best levels of performance amongst the SUDS, but 

unsurprisingly have the highest associated construction costs. 

The cheapest SUDS option betters the performance of the more than twice as expensive 

conventional solution in terms of spill volume, whilst the SUDS solution that achieves 

comparable performance to the conventional solution in terms of number of spill events is only 

23.1% more costly than the conventional approach. This evidence strongly supports the 

economic viability of tile SUDS approaches. 

Another thing that this analysis reveals is that although Substantial gains in performance arise 

with even the minimum SUDS option (SUDS 20/50), the incremental benefits associated with 
implementing the more comprehensive SUDS are comparatively small. Indeed, the 20/50 SUDS 

option is calculated to cost only f20 per prevented m' of annual spill volume, whilst the most 

comprehensive SUDS options cost approximately twice as much at around f40 per prevented 

m3 of annual spill volume. This contrasts what would be expected for a conventional solution 

where the economies of scale and start up costs would make smaller schemes more expensive 

per unit cost of improvement. This reflects the fact that there are a limited number of relatively 

cheap opportunities for using SUDS within this catchment, which, if implemented, would lead 

to a significant improvement in catchment performance. These 'easy pickings' opportunities 
include tile disconnection of large institutional roofs and/or car parks and the division of sorne 

roof-water to separate sewerage. These types of approach are likely to be both cheaper, and 
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logistically simpler to implement because they would achieve the disconnection of 

comparatively large impervious areas with the cooperation of a small number of third parties. 
However, additional SUDS options, after these 'easy pickings' have been exhausted, are 

somewhat more expensive and yield little further improvement in terms of catchment 

performance. 

3.5. VALIDATION OF MODELLING TECHNIQUES 
The simulated hydraulic performance of the Gipton catchment was validated through further 

investigations conducted at the University of Sheffield. 

3.5.1. Amending 'Existing State' Gipton Model to include paved/roofed areas 
Introduction - It was unclear whether the HydroWorks models used by Walker (2000: a) within 

the previous exercise were an appropriate platform for the accurate simulation of retrofit SUDS. 

This uncertainty relates to the fact that these models had been compiled using two HydroWorks 

surface types (i. e. one for impervious, and the other for pervious areas), rather than three 
(i. e. one for paved areas, the second for roofed areas and the third for pervious areas). The 

HydroWorks's default paved surface type is represented as having a much slower response time 

than the default roofed surface type, with the default paved surfaces (Surface No. 10) generally 
having four times the initial depression storage associated with corresponding default roof 

surfaces (Surface No. 20). Therefore, in order to verify the accuracy of Walker's (2000) results, 

an independent modelling exercise was conducted at the University of Sheffield. This work 
involved modifying the existing-state HydroWorks model of the Gipton catchment so that it 

could be used to accurately represent retrofit SUDS schemes that involved the disconnection of 

paved or roofed areas. This modification called for the redefinition of all impervious area values 
into separate paved and roofed area values. However, it was not necessary to amend the model's 

pervious area values. The modification of this catchment model is described in the ensuing 
Section. 

Methodology - Digitised maps (1: 10,000) were used in conjunction with the MapInfo GIS 

software package (Maplnfo Corporation, 1995) to calculate the cumulative paved areas 

contained within each sub-catchment of the Gipton HydroWork model. Cumulative roofed areas 

were calculated by subtracting these paved areas away from the impervious areas as defined in 

the existing-state HydroWorks model for each sub-catchment. See Appendix 5D for further 

details of this methodology as applied to the Meanwood catchment. 

3.5.2. Comparison of results generated by 'IMP/PERVI model and 
'PAVED/ROOFED/PERVI model for existing state catchment 

3.5. Zl. Introduction 
The amended model of the Gipton catchment (i. e. with impervious areas redefined as separate 

paved and roofed areas) (Section 3.5.1) was analysed using HydroWorks time series 
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simulations. These simulations adopted the same TSR input data and Output performance 

parameters as the Walker (2000: b) study (Section 3.4). However, the results of this investigation 

were generated using a sampling strategy that analysed the first five storm events, and every 

fifth of the remaining 94 storm events. Results were extracted as normal for the first five events, 

but the results from the remaining events are multiplied by a factor of five to allow for tile 

missing events. Such sampling techniques are commonly used for time-series analysis, but 

require that the input TSR events are correctly ranked (Wallingford Software, 1999). 

3.5.2.2. Results 

HydroWorks time-series simulations were conducted for the redefined 

(PAVED/ROOFED/PERV) model of tile Gipton catchment. Tile results of this analysis were 

compared with Walker's results for corresponding Simulations conducted using the IMP/PERV 

model (Section 3.4). Table 3.7 and Table 3.8 compare the predicted hydraulic performance of 

these models; tills data is also represented graphically in Figure 3.15 and Figure 3.16. System 

performance is defined as annual CSO spill volurne (m 3) for Table 3.7 and Figure 3.15, and as 

the annual number of CSO spills for Table 3.8 and Figure 3.16. 
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Figure 3.15 Comparison of Gipton 'existing state' catchment model results 
(M) for original (Walker, 2000: b) and redefined models: Predicted Annual Spill Volumes 

Table 3.7 Comparison of Gipton 'existing state' catchment model results 
for original (Walker, 2000: b) and redefined models: Predicted Annual Snill Volumes 
Existing state catchment model CS0135 CS0136 CS0137 ý CS0138 All 
Original model (lValker, 2000. -b) 
(Impermeable and 

- 
Pern icable areas) 

42704 5970 36700 21181 106555 

Redefined model 
1 J(Paved, Roofed and permeable areas) 

43 123 6553 
I 

36449 233381 109506 II 
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Figure 3.16 Comparison of Gipton 'existing state' catchment model results 
for original (Walker, 2000: b) and redefined models: Predicted Number of Annual Spills 

Table 3.8 Comparison of Gipton 'existing state' catchment model results 
for orininal (Walker. 2000-bl and redefined models: Predicted Number of Annual Soills 

Existing state catchnient itiodel CS0135 CS0136 CS0137 CS0138 All 

Original model (Walker, 2000: b) 
66 18 57 52 1913 

(impermeable and permeable areas) 
Redefined model 64 19 64 59 206 I(Paved, Roofed and permeable areas) I 

3.5.2.3. Discussion of Results 

The discrepancy between the results for the original and the redefined 'existing-state' catchment 

models is relatively small, in the region of 3% for the combined annual CSO spill volume and 

6.5% for the combined annual number of CSO spills. This discrepancy may be the cumulative 

result of a number of factors. However, it is likely that it largely reflects the redefinition of 

roofed areas frorn the I-IW paved surface type (Surface type No 10) to the HW roofed surface 
type (Surface type No 20). This relates to tile fact the HydroWorks's default paved surface type 

is represented as having a much slower response time than the default roofed surface type (see 

Section 3.5.1. 

This highlights the sensitivity of the HydroWorks models, and reinforces tile importance of 

verifying such models against monitored flow data. 

However, the scale of these discrepancies would not seem to be overly significant, particularly 

when the nature of this modelling exercise is considered - i. e. because the study is of a 

comparative nature, and the margin of discrepancy will be consistent for all simulations 

conducted using this model. 

3.5.3. Verification of SUDS SIMULATIONS 
Additional simulations were Undertaken to check the acCUracy of Walker's simulations (2000) 

for tile Gipton catchment. Given the limitations of this project it was decided that only tile 
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results from one of the SUDS proposals (SUDS 100/100) should be investigated - it was hoped 

that the reliability of the other SUDS simulations could be extrapolated from these 

investigations. 

The SUDS100/100 proposal was Walker's most comprehensive SUDS proposal for the Gipton 

catchment, and comprised the disconnection of 31% of all roofed areas (=39.52 ha - 27.26 ha) 

and 28% of all paved areas (=59.65 ha - 42.69 ha) (see Table 3.3). Comparative simulations 

were undertaken as part of this thesis that investigated the affect of uniformly disconnecting 

30% of all impervious areas (paved and roofed) from the Gipton model. At this stage this was 

achieved simply by removing 30% of the impermeable area from each sub-catchment. The 

corresponding CSO discharge characteristics associated with this, and the Walker (2000: b) 

SUDS 100/ 100 simulation are presented in Table 3.9 and Table 3.10. 

Table 3.9 SUDS1001100 Proposal (Walker, 2000: b) v 30% disconnection of all impervious 
areas - Predicted annual snill volumes (m 31 

CS0135 CS0136 CS0137 CS0138 All 
SUDS 100/100 simulation 13862 1044 15908 8749 39563 (Walker, 2000: b) 
30% of Impervious areas disconnected 17342 2006 15283 8128 42759 
, (Thesis investigations) I 1- 1 1 1 

Table 3.10 SUDS1001100 Proposal (Walker, 2000: b) v 30% disconnection of all 
imnermeable areas - Predicted number nf annual snill events 

CS0135 CS0136 CS0137 CS0138 All 

SUDS 100/100 simulation 37 9 36 24 106 

1 

(Walker, 2000: b) 
30% of Impervious areas disconnected 44 9 39 24 116 
i(Thesis investigations) I I I I II 

The discrepancy between the results for Walker's SUDS 100/100 simulation and the 30% of 
disconnection of impermeable areas is relatively small, in the region of 7.5% for the combined 

annual CSO spill volume and 9% for the combined annual number of CSO spills. It is likely that 

this discrepancy relates to the fact that Walker (2000: b) modelled the disconnection of paved 

and roofed surfaces only in the specific areas where SUDS were considered viable, whereas the 
30% disconnection of impermeable area was performed uniformly across the whole catchment. 
However, the general level of conformity demonstrated by these results supports the validity of 
both of these the modelling investigations. 

3.6. OVERVIEW 

The Gipton investigations highlighted three key issues associated with retrofitting SUDS to UK 

catchments: i) These investigations illustrated that retrofit SUDS-based solutions can be 

economically viable; ii) These investigations highlighted that it was feasible to assess the 

performance of retrofit SUDS using HydroWorks; iii) These investigations indicated which site 
information was required to evaluate potential SUDS. 
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The lessons learnt from these feasibility investigations for the Gipton catchment were 

assimilated with the information presented within Chapter 2 (Literature Review) and used to 

develop more detailed methodologies for planning, modelling and evaluating retrofit SUDS 

schemes. These methodologies were subsequently applied to a second case study catchment 
(Meanwood, Leeds). 

It should be noted that simplistic costing data, design work, and modelling techniques were 

employed for the Gipton study. This level of analysis was considered to be appropriate for such 

a preliminary design exercise. More sophisticated methodologies were developed and employed 

for the Meanwood catchment. Further details of these methodologies, and their application to 

the Meanwood catchment are presented within the following Chapters. 
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4. RETROFIT SUDS EVALUATION - DESIGN ISSUES 

4.1. INTRODUCTION 

This Chapter builds upon the Gipton study, and other existing SUDS studies highlighted in 

Chapter 2, to comprehensively explore the design issues associated with retrofitting SUDS to a 

range of different urban applications and surface types. The main aim of this Chapter was to 

establish a list of the factors that most affect the viability of different retrofit SUDS, with 

respect to a range of urban settings. The first part of the Chapter reviews a number of SUDS 

applications and aims to define basic guidelines for their design, based upon observations made 
from the preceding SUDS studies. The latter part of the Chapter (from Section 4.3 onwards) 

attempts to apply these design guidelines to a second case study catchment, in order to establish 
individual best-case catchment coverage scenarios for a range of different SUDS technologies. 

4.2. USE OF SUDS TECHNIQUES IN RETROFIT CONTEXT 

This Section explores the use of retrofit SUDS in relation to 3 different SUDS applications: 
1. Source controls (Section 4.2.1) 

2. Conveyance systems (Section 4.2.2) 

3. Off-site (e. g. site and regional controls) (Section 4.2.3) 

The order in which these SUDS grouping are considered reflects the CIRIA treatment train 

concept (CIRIA, 2000) highlighted in Chapter 2. 

4.2.1. Retrorit Source controls 
Two types of retrofit source control were considered in this analysis; these were storage-based 

schemes (Section 4.2.1.1), and infiltration-based schemes (Section 4.2.1.2). The following 

Sections explore the design issues associated with retrofitting both forms of source control 
SUDS to a range of different contributory surface types. 

4. ZLL Storage-based retrofit source controls 
This Section reviews the main issues considered to influence the design, implementation and 

cost of storage-based retrofit source controls. It should be noted that financial issues are only 
briefly discussed within this Chapter; a more detailed review of the costs associated with retrofit 
SUDS is presented within Chapters 6 and 7. The importance of othiýr issues, such as the 

operation, ownership and maintenance of retrofit technologies is acknowledged. The next three 

subsections present the main design issues associated with retrofitting storage-based source 

controls to three different urban applications: 
1. Residential applications 
2. Institutional applications 
3. Other paved surfaces 
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Residential applications - It is considered that water butts and garden ponds are the most viable 

storage-based source controls that may be retrofit to a typical residential (property) roof. The 

overflows from such devices may be directed back into the sewer system, onto the garden, or 
disposed of by some other means. Sewer rehabilitation proposals involving the widespread use 

of such technologies would generally require the voluntary cooperation of local residents (i. e. to 

voluntary install water butts or ponds to properties). It is felt that a large proportion of the 

general public would be willing to support such voluntary schemes. This premise is supported 
by two observations. Firstly, by the large number of retrofit garden ponds and water butts 

already in use within the UK; and secondly, by the growing number of roof-water disconnection 

schemes initiated by local water companies (Yorkshire Water, 2000) - such schemes are often 

accompanied by a financial incentive (e. g. reduced water rates for customers who disconnect 

their roofs from the local sewer system). 
A number of other retrofit options were considered for application to domestic properties, 
including 'above surface tanks' and 'underground storage' facilities (e. g. underground tanks and 

porous pavements). However, it was felt that these options were much less feasible retrofit 

applications than ponds and water butts because of the level of disruption associated with the 

construction of underground technologies, and the excessive size of surface storage tanks. It is 

likely that this would mean low adoption rates for such technologies, unless compulsory 

schemes were pursued. However, introducing a compulsory element to these schemes would 

cause a range of problems, such as the need for compensation arrangements, additional 
legalisation and potential loss of public support/good will. Therefore, only water butts and 

garden ponds were considered within this analysis. 
The main design issues considered to affect the use of water butts and garden ponds for retrofit 

source control applications to residential properties are presented in Table 4.1. 
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Table 4.1 Storaae-based retrofit source controls for residential aonlications 
Technology Appropriate Uses Main design issues 

1. Size of roof/capacity of tanks 
Water butt 2. Available space 

Typical size: 0.3 m3 
Residential roofs 3. Direction of overflow 

4. Maintenance 
5. Social issues/take-up rates 
As above plus: 

Garden Pond Residential roofs or 6. Soil permeability (e. g. risk of infiltration into a SPZ) 
Residential paved 7. Water table level (should never reach bottom of pond) 

areas 8. Safety 
1 1 9. Amenity value 

Notes on Table 4.1: Desicin issues 
Size of rooVcapacity of roof - This constraint relates to whether the capacity of the storage device 
(e. g. pond, water butt, etc. ) is adequate for the collection of peak runoff from the contributory 
impermeable surface. The key factors that influence the magnitude of peak runoff are the 
characteristics of the rainfall event and the size of the contributory surface (e. g. roof). The key factors 
that limit the capacity of storage devices are available space and cost. 
Available space - One of the key factors that limit the capacity of retrofit storage devices is having 
sufficient available space in which to construct them. In the case of storage-based retrofit source 
controls for residential applications this will typically relate to having an enough space within a garden 
to install either a pond or a water butt. 
Overflow - Another important issue that relates to the design of retrofit source controls relates to how 
the overflow from the pond/water butt is to be disposed of. The main alternatives are to discharge the 
overflow back into the local sewer system or to dispose of it via other methods of disposal, such as via 
infiltration devices, or to directly discharge it to a local watercourse. 
Maintenance - The continued maintenance of storage-based SUDS devices, and other components of 
integrated SUDS schemes, is essential for the effective long-term performance of such a scheme. The 
maintenance issues that typically relate to storage-based retrofit source controls for residential 
applications are those that relate to responsibility (i. e. who will be responsible for monitoring the 
performance and maintenance of the ponds/water butts). 
Social issues/take-up rates - Social issues are important to the design of storage-based retrofit source 
controls for residential applications, since these techniques require the cooperation of individual 
homeowners. It is therefore important that the local community have favourable views towards the 
introduction of ponds/water butts. For retrofit source control schemes that require the voluntary 
purchase of SUDS devices by property-owners (i. e. as opposed to subsidised schemes) it is essential 
that the price of the technology is not prohibitively expensive. 
Soil permeability - The prevailing ground conditions should be considered as they will determine 
whether a pond needs to be lined to prevent unwanted infiltration - this may be the case within a 
designated Source Protection Zone (SPZ) I area, in which infiltration of runoff is not permitted. 
Water Table level - The water table should not reach the bottom of any infiltration device or pond - 
so as to minimise the risk of pollution to the water table. 
Safety - Safety is an issue that may have to be considered by some inhabitants, particular those with 
young children considering retrofitting a pond. 
Amenity value - Ponds may be considered to improve the amenity value of a residential property, 
whereas large water butts might detract from the amenity value of a residential property. 

The application of retrofit source controls to contributory surfaces other than roofs was not 
extensively explored because most residential properties contain negligible amounts of paved 

area that are directly connected to the local sewer system. 
Note: It is considered that there are negligible benefits, in terms of controlling or reducing 

extreme storm flows, to be attained through the use of storage schemes that return overflow 

volumes back into the local sewer. This relates to the limited storage capacity of retrofit source 
control facilities, and the high frequency of rainfall events within most parts of the UK - which 
means that such devices are often completely or partially full. 
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Institutional applications - One benefit of retrofitting source controls to institutional rather 

than residential properties is that large contributory areas can be disconnected from the sewer 

system with the involvement of fewer third parties. This means that institutional proposals for 

SUDS are likely to be easier and cheaper to promote, monitor and maintain than those for 

residential proposals. For example, if a typical residential property has a roofed area of 50 m2 

and a typical institutional property 200 mý, then the disconnection of 1000 m2 of roofed area 

could be achieved through the removal of 20 typical residential properties or 5 typical 

institutional properties. It is therefore likely that the institutional scenario would be the easier of 

the two options to coordinate, promote and manage. 

Many of the technologies discussed previously in relation to residential properties may also be 

applied to institutional properties (e. g. schools, hospitals and offices). However, the inherent 

differences between typical institutional and residential properties affect the design techniques 

that should be applied to retrofit source controls within either context. The major differences 

between institutional and residential properties relate to issues of scale and land usage. 

Institutional buildings tend to have larger roofs than domestic properties, and as a result would 

generally require larger retrofit roof-water storage facilities than appropriate for residential 

properties (e. g. water butts). However, institutional buildings generally have larger plots of land 

than residential properties, and can therefore accommodate larger storage facilities with few 

problems. For example, institutional properties would generally have available space that could 

be utilised for accommodating large above ground tanks, or for the construction of sub-surface 

storage facilities. It is felt, that given this additional available space, sub-surface storage 

facilities might be constructed without incurring the same degree of disruption (and 

consequently opposition from property owner/local residents) that would accompany their 

introduction to residential properties. 

Institutional properties are also likely to have large paved areas (e. g. car-parks and school 

playgrounds) and these represent further opportunities for the use of retrofit storage source 

controls. However, if the overflows from such storage facilities are intended to be disposed of 
by infiltration - then some form of treatment may be required in order to comply with the 

Environment Agency's policy and practice for the protection of groundwater (1998). See 

Chapter 2 for further details on the level of pre-inf iltration treatment required for different SPZs. 

It was concluded that the four most viable storage-based retrofit source controls for institutional 

applications were: 1) Above ground storage; 2) Below ground storage; 3) Porous pavements; 

and 4) Ponds. The main design issues that should be considered with respect to the use of these 

retrofit technologies are presented within Table 4.2. 
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Table 4.2 Storacie-based retrofit source controls for institutional anolications 
Technology Appropriate Uses Main design issues 
Above ground Institutional roofs 1. Size of roof/capacity of tanks 
storage tank 2. Available space 

3. Direction of overflow 
4. Maintenance 
5. Take-up rates 

Below ground Institutional roofs As for above ground storage tank, plus 
storage tank and paved areas 6. Local geology 
Porous pavements Institutional roofs As above plus 

and paved areas 7. Soil permeability (e. g. possible infiltration into a SPZ) 
8. Water table level (should never reach bottom of 
device) 
For further details relating to the design of porous 
pavementsfor infiltration purposes - See Table 4.4 

Detention Pond Institutional roofs As above plus 
and paved areas 9. Safety 

10. Amenity value 
For further details relating to the design of ponds for 
infiltration purposes - See Table 4.3 

Notes on Table 4.2: Desicin issues 
Size of roof/capacity of roof - See corresponding Notes on Table 4.1 
Available space - See corresponding Notes on Table 4.1. 
Overflow - See corresponding Notes on Table 4.1. 
Maintenance - The continued maintenance of storage-based SUDS devices, and other components of 
integrated SUDS schemes, is essential for the effective long-term performance of such a scheme. The 
maintenance issues that typically relate to storage-based retrofit source controls for institutional 
applications are those that relate to responsibility (i. e. who will be responsible for monitoring the 
performance and maintenance of the ponds/storage devices). 
Institutional attitudes/take-up rates - It is important that the local institutions have favourable views 
towards the introduction of storage SUDS devices. For retrofit source control schemes that require 
Institutions to voluntarily purchase SUDS devices (i. e. opposed to subsidised schemes) it is essential 
that the price of the technology is not prohibitively expensive. 
Local geology - It is worth noting that it will generally be cheaper and therefore more feasible to apply 
underground tanks, porous pavements and ponds within loose soils than to rock. 
Soil permeability - See corresponding Notes on Table 4.1. 
Water Table level - See corresponding Notes on Table 4.1. 
Safety - The safety implications of using ponds will have to be considered in some locations (e. g. 
schools) 
Amenity value - See corresponding Notes on Table 4.1. 

Paved surfaces - Permeable or porous pavements were the only storage-based source control 
technologies considered appropriate for retrofitting directly to existing roads and other paved 

areas. There are other technologies that can be used to store runoff from paved areas, but these 

generally require conveyance away from the source (e. g. using pipes or swales). Retrofit 

conveyance systems are discussed in more detail within Section 4.2.2. 
Runoff may be stored within the sub-base component of permeable/porous surfaces, and the 

overflow directed back into the local sewer or disposed of by other means. Pre-treatment would 
generally be required when the overflow is intended for infiltration (Environment Agency, 
1998). The other design issues associated with retrofit porous pavements for storage-based 
source controls were discussed within the previous Section (Table 4.2). 
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4. ZI. Z Infiltration-based retrofit source controls 
This Section reviews the main issues considered to affect the design, implementation and cost of 
infiltration-based retrofit source control technologies, with respect to residential applications, 
institutional applications and paved areas. 
Residential applications - Infiltration ponds and soakaways are considered to be the most 

viable infiltration-based source control technologies for retrofit applications to residential 

properties. Infiltration trenches and French drains are other feasible approaches. However, it is 

assumed that most homeowners would generally prefer to have a soakaway constructed at the 

bottom of their garden, rather than an infiltration trench running down the length of their 

garden, because excavations associated with a soakaway would be much more concentrated 

than those associated with an infiltration trench. 

It is worth noting that the Environment Agency's Policy and Practice for the Protection of 

Groundwater (1998) does not require runoff from residential roofs to undergo any form of 
treatment prior to infiltration, and states that runoff from residential paved surfaces only 

requires pre-infiltration treatment if located within a Zone I SPZ. 

The main design issues that should be considered in relation to the use of retrofit soakaways or 
infiltration ponds are presented within Table 4.3. 

Table 4.3 Summary of design issues relating to infiltration-based retrofit source controls 
for residential awlications 

Technology Appropriate Uses Main design issues 
1. Soil permeability 
2. Soil protection zones 

Soakaway Residential roofs and 3. Storage/Infiltration capacity 
paved areas 4. Building Regulations 

5. Social acceptability 
6. Maintenance 

Infiltration ponds 
Residential roofs and I As above plus: 

. 
paved areas 7. Safety 

Notes on Tables 4.3: 

Building regulations - The use of infiltration devices would generally not be feasible within densely 
urbanised catchments (i. e. with tightly packed buildings and narrow roads), as the UK's Building 
regulations Q 99 1) prohibit their use within 5m of any building. 
See the Notes on Tables 4.1 and 4.2 for further details of all other design issues 

Institutional applications - Many of the technologies presented for residential application may 
also be applied within an institutional context. However, as described previously, inherent 
differences between typical institutional and residential properties may affect the design process 
for retrofit source controls. Institutional buildings tend to have larger roofs than domestic 

properties, and as a result require larger infiltration facilities. However within an institutional 

context these larger facilities might be accommodated as a landscaping feature (e. g. basin or 
pond), or as porous car park. Most of these technologies may be used to infiltrate runoff both 
from paved surfaces and adjacent roofs. Once again, pre-infiltration treatment may be required 
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in some areas to comply with the Environment Agency's policy and practice for the protection 

of groundwater (1998). 

Paved areas - Permeable or porous pavements can also be used as an infiltration device. Runoff 

may be stored within the sub-base component of porous pavements, and the excess infiltrated 
into the local soil. Pre-infiltration treatment of runoff is generally required to comply with the 

Environment Agency's SPZ guidelines (1998). However, this relates to the level of traffic 

associated with the porous pavement. 
The main design issues that should be considered in relation to infiltration-based retrofit source 

controls for paved are presented within Table 4.4. 

Table 4.4 Summary of design issues relating to infiltration-based retrofit source controls 
for paved areas 

Technology Appropriate Uses Main design issues 
1. Permeability 
2. Source Protection Zones (SPZs) 

Residential roofs and 3. Type of permeable surface Porous pavements paved areas 4. Usage 
5. Location 
6. Maintenance 

Notes on Table 4.4: Desiqn issues 
Permeability - The permeability of the prevailing soils obviously affects the viability of infiltration 
devices. It considered that suitable Z! rcolation rates for most infiltration drainage systems are those 
that exceed 0.001mm/hr=4.63 x 10 m/s(BRE365,1991) 
Source Protection Zones (SM) - Another key factor that may determine the viability of infiltration 
drainage systems are the Environment Agency's 'Source Protection Zones' (SPZs). These prohibit the 
infiltration of all paved runoff within a Zone I designated area, and require varying degrees of 
treatment for runoff from institutional paved surfaces (e. g. car-parks) depending upon the designated 
SPZ. 
Type ofpermeable surface - An important consideration that relates that design of porous surfaces is 
the type of surface that should be adopted - this will be influenced by the type of usage the surface will 
be subjected to, cost and aesthetic considerations. 
Construction issues associated with location - The location in which it is intended to retrofit a porous 
surface will obviously influence the design process and the type of technology that may be appropriate. 
For example, the level of disruption that may be associated with construction will strongly influence 
the type of technologies that are appropriate within different areas. 

4.2.2. Retrorit conveyance systems 
It should be noted that retrofit SUDS conveyance systems are only worth exploring if feasible 

opportunities for off-site site controls exist downstream. It is considered that the most feasible 

retrofit SUDS conveyance systems are swales and French drains. Retrofit pipe-based systems 

are regarded as a conventional technology and hence not discussed within this Chapter. The 

main design issues associated with conveyance systems are presented below: 

Table 4.5 Summary of design issues relating to retrofit conveyance systems 
Technology Appropriate Uses Main design issues 

1. Available space 
2. Permeability 

French Drains Roofs and paved areas 3. Construction issues relating to location 
4. Level of water table 
5. Maintenance 

Swales Roofs and paved areas 
As above plus: 
6. Slope 
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Notes on Table 4-5: Desion issues 
Available space - See notes on Table 4.2. Retrofit French drains and swales are considered to be most 
viable on existing green urban areas, such as roadside grassed verges and fields. This largely relates to 
the additional costs associated with excavating paved surfaces. The minimum width requirements for 
these devices will depend upon their contributing surface area, and can be calculated using existing 
design guidelines (CIRIA, 2000). 
Permeability - See notes on Table 4.1 
Construction issues relating to location - See notes on Table 4.4 
Level of water table - See notes on Table 4.1 
Maintenance - See notes on Table 4.2 
Slope - Design manuals recommend that swales should not be used on slopes greater than 1: 50, and 
filter strips on cross-slopes greater than 1: 20; in both instances these restriction are to avoid surface 
erosion (UWTC, 2000) 

4.2.3. Retrofit Site and Regional controls 
For the purpose of this report the term 'retrofit off-site control' is used to describe both retrofit 

site controls and regional controls. The two main groups of rctrof it off-sitc controls arc: L) 

Storage-based controls and ii. ) Infiltration-based controls. Storage-based approaches are 
discussed within Section 4.2.3.1, and infiltration-based retrofit source controls within Section 

4.2.3.2. Retrofit off-site (e. g. site and regional) controls are only considered to be feasible in 

catchments where it is possible to retrofit conveyance systems for the transfer of runoff away 

from its initial point of contact, or 'source', to the off-site controls. 

4. Z3.1. Storage-based retrofit offsite controls 
The most common forms of large-scale storage-based off-site controls are basins and ponds. 
Basins are surface features that store runoff under storm conditions, but which are completely 
free of water under dry weather conditions. Examples of this approach include flood plains, 
detention and extended detention basins. Ponds contain water in dry weather conditions and are 

generally designed to receive more water under storm conditions. 
The main technical issues that affect the design of retrofit basins or ponds are presented within 
Table 4.6: 

Table 4.6 Summarv of desion issues relatina to storaae-based offsite controls 
Technology Appropriate Uses Main design issues 

1. Available space 

Basins or Ponds Roofs and paved areas 
2. Overflow 
3. Soil penneability 
4. Level of water table 

Other examples of storage-based offlite controls are conventional storage tanks. However, these 

techniques are not SUDS-based solutions, and hence not discussed in detail within this thesis. 

4. Z3.2. Infiltration-based retrofit offsite controls 

Retrofit SUDS devices that primarily utilise infiltration mechanisms are considered to be more 

effective for application to hydraulically overloaded urban catchments than those SUDS devices 

that rely on storage. This relates to the fact that infiltration options effectively remove runoff 
from the surface water/urban drainage system, rather than attenuating it within the surface water 
system. 
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Many of the infiltration devices described within Section 4.2.1.2 as source control technologies 

may also be applied as off-site controls. The issues that affect the design of such devices are 
similar within both contexts; however, off-site technologies are generally of a much larger scale. 

Table 4.7 Summary of design issues relating to infiltration-based retrofit SUDS for off-site 
enntrnht 

Technology Appropriate Uses Main design issues 
1. Soil permeability 
2. Soil protection zones 
3. Available space 

Porous pavements Roofs and paved areas 4. Storage/Infiltration capacity 
5. Building Regulations 
6. Maintenance 
7. Level of water table 

Infiltration trenches oofs and paved areas As above 
Infiltration ponds Roofs and paved areas 

As above plus 
8. Safety 

4.2.4. Review 

It has been demonstrated that many catchment features, such as geology, geography or 
topography, can act as constraints in terms of the extent to which retrofit SUDS may be 

implementation within a catchment. Many of these catchment constraints are technology 

specific, whilst others apply to all forms of retrofit SUDS. 

The rest of this Chapter relates to the Meanwood catchment, and the main constraints/factors 

considered to limit/influence the implementation of retrofit SUDS to this catchment. The 

Meanwood catchment represents the second of the two case studies that were undertaken for 

this thesis. 

4.3. CASE STUDY: MEANWOOD CATCHMENT 

4.3.1. Background 

4.3.1.1. Introduction 

Meanwood is a peri-urban district of Leeds, situated 4 km to the North West of the City Centre. 
The Meanwood urban drainage catchment (Table 4.1) covers an area of 55.8 ha, bounded by the 
A6120 (Leeds Outer Ring Road) in the North and Grove Lane/Stainbeck Road in the South. The 

catchment is concentrated along Meanwood Road, Parkside Lane and Tongue Road. 

4.3. ]. Z Meanwood Catchment Flooding Problems 

The Meanwood sewer system consists of a main trunk sewer, with a single split-cndcd branch 

section. The main trunk sewer receives foul and surface water from three small residential 

estates (Parklands, King Alfred's and West Lea) and a number of other properties clustered 
along Stonegate Road. The branched section serves contributory areas along both Parkside Lane 

and Tongue Road. 
During extreme storm events the Stonegate Road trunk sewer surcharges and produces flooding 

problems at four sites along Stonegate Road. The most severe of these flooding incidents occurs 
at the junction of Meanwood Road and Stonegate Road (Figure 4.2). This location corresponds 
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to a point on the main Stonegate Road trunk sewer where a steep section is immediately 

followed by a much flatter section of pipe-work (Figure 4.2: a). Under extreme flow conditions, 
flows backup from the flatter D/S section of pipe due to insufficient D/S capacity (i. e. due to a 

combination of inadequate gradient and pipe diameter). These flooding incidents occur at an 

approximate frequency of one per year. 
A number of retail outlets and public buildings (e. g. Church, Health Centre and Public House) 

are concentrated around the junction of Meanwood Road and Stonegate Road, where the 

system's worst flooding incidents occur. In addition to general 'area' flooding problems, four of 

these properties experience internal flooding under severe storm conditions. 

4.3.1.3. Contributory catchment 
The Meanwood catchment largely consists of 20th Century housing, retail premises and a small 

number of institutional buildings (schools, library and churches). The catchment also contains 

significant amounts of grassed and wooded areas. However, on the whole, these do not 

contribute large amounts of runoff to the local sewer system. 
Residential Areas - The largest contributory areas of the Meanwood catchment are three 

housing estates (Parklands, King Alfred's and West Lea) located adjacent to Stonegate Road, in 

the northern part of the catchment. A number of other smaller contributory surface areas are 

spread along Stonegate Road, Tongue Road and Parkside Lane. The Parklands, King Alfred's 

and West Lea estates contain mostly semi-detached housing, with a small number of detached 

and terraced properties, whilst the residential properties scattered along Stonegate Road, Tongue 

Road and Parkside Lane are generally detached or semi detached. 

A new housing development has recently been constructed upon the Meanwood Park Hospital 

site at the junction of Parkside Lane and Tongue Road. This development has its own surface 

drainage, and hence does not contribute storm-water to the Meanwood sewer system. 

Institutional Buildings -A number of shops and other institutional buildings (churches and 

schools) are scattered around the Meanwood catchment; these include a new retail park on 

Stonegate Road (located between Monk Bridge Road and Tongue Road). However, none of 

these institutional buildings are connected to Meanwood's combined sewerage system (Walker, 

2000: b). 

Geological Summary - The Meanwood catchment lies upon clay and mudstone deposits, 

sandstone and Stanningley rock. The use of infiltration devices was considered to be viable 

within the northern sections of the Meanwood catchment, since much of this region is founded 

upon sandstone deposits. However, the soil conditions of the remainder of the Meanwood 

catchment are less suitable for infiltration. 

The Meanwood catchment is not part of a Groundwater Protection Zone 1,11 or III, as defined 

by the Environment Agency (Policy and Practice for the protection of groundwater, 1998), and 

therefore the infiltration of surface waters is permissible within this locality. 
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Figure 4.2 

Meanwood urban drainage system: 

a. Point of main flooding indicated on longitudinal section of Stonegate Road 
b. Point of main flooding: Junction of Meanwood Road and Stonegate Road (136157) - 

Grid Ref: (28625,36925) (View: N) 
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Figure 4.2 

Meanwood urban drainage system: 

a. Point of main flooding indicated on longitudinal section of Stonegate Road 
b. Point of main flooding: Junction of Meanwood Road and Stonegate Road (136157) - 

Grid Ref: (28625,36925) (View: N) 

97 



CHAPTER 4 

4.3.2. Retrofitting SUDS to Meanwood catchment: Catchment constraints 
This Section investigates the potential for applying retrofit SUDS to the Meanwood catchment. 
This analysis sought to identify the main constraints to the application of retrofit SUDS within 

the catchment. The main factors considered as affecting the viability of SUDS approaches 

within the Meanwood catchment were: Geology, Urban Landscape, Topography, Source 

Protection Zones (SPZ), and Building regulations, each of these are summarised within 
Table 4.8 in terms of the constraints discussed in the previous Section. The impacts of these 

factors in relation to the Meanwood catchment are discussed within the ensuing sub-sections. 
The implications of these constraints upon different SUDS technologies are outlined within 
Section 4.4. 

Table 4.8 Summary of factors that are considered to affect the viability of SUDS in 
Meanwood catchment 

Factors considered to affect the 
viability of SUDS with respect to 
Meanwood catchment 

Constraints highlighted within Section 4.2 

G l Soil permeability eo ogy Water Table level 
Available space 
Size of roof/capacity of roof 

Urban landscape Building regulations 
Construction issues relating to location 
Overflow 

Topography Slope 

Source Protection Zones (SPZs) Source Protection Zones (SPZs) 

Amenity value 
h i Oth l t i Maintenance 

er (non p ys ca ) cons ra nts Social issues/Institutional attitudes/take-up rates 
Safety 

I 

4.3. ZI. Catchment constraints: Geology 

Background - Catchment geology is considered to be one of the major factors that can limit the 

extent to which retrofit SUDS may be implemented within a catchment. It has been reported 

that the use of infiltration devices (e. g. soakaways and infiltration trenches) is unfeasible within 

soils that have a percolation rate lower than 0.001 mm/h(=4.63xlO-6m/s) (BRE365,1991). 
Argue (2001) reports that infiltration trenches and soakaways have been used in Australian soils 

with percolation rates as low as IxIO-8 m/s. However, within a British context, it is likely that 

the time taken to empty soakaways within soils with such low percolation rates (IxIO-8 M/S) 

would be prohibitive - given the high frequency of rainfall within the UK. 

The point is reinforced by the worked example presented in Appendix 4A, which uses the BRE 

365 guidelines (1991) to design a soakaway for use within a soil with a percolation rate 
of IxIO-8 m/s. These example calculations produce an emptying time from full to 1/2 storage 
volume of 4452.8 hours for a 2.5 x 2.4 x 1.93 m soakaway. 
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Another geological factor that is considered to affect the viability of infiltration devices is 

whether the local water table ever reaches the base of the device, as this constitutes a pollution 

risk to the water table. 

Application to Meanwood Catchment - The Meanwood catchnient contains three broad 

soil/rock types: Sandstone; Mudstone; and Stanningley rock (Walker, 2000: b). Figure 4.3 shows 

the three predorninant soil/rock types associated with each sub-catchment of tile Meanwood 

model - this diagram was generated by overlaying the Meanwood catchment model (i. e. sub- 

catchment boundaries) and local geological maps. 

ie 
-Ic 
rock 

Figure 4.3 Predominate soil/ rock types underlying each sub-catchment of the 
Meanwood model 

Standard percolation rates were assigned to each of the Meanwood soils/rocks (Table 4.9). 

These values were obtained from CHUA Report 156 (1996) for cornparative soil/rock types. 

This approach was adopted because it was not feasible to physically establish percolation rates 

using site-based investigations due to the financial and time constraints of this project. 

Note: Existing guidelines (CIRIA 156,1996; BRE Digest 365,1991) recommend that site-based 

investigations be undertaken in order to establish the infiltration characteristics of local 

soils/rocks. For example, the design methodology for soakaways described within BRE Digest 

365, involves digging a trial pit and filling it oil several successive occasions, in order to 

measure the flow rate of water to keep it topped Lip. This gives a basis for estimating tile local 

infiltration rate (e. g. outflow from the soakaway) and hence the size of soakaway required. 
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Table 4.9 Summarv of Meanwood soil tvnes 

Zone Zone 
I Col No 

Soil Type 
Typical 

Soil percolation rate, f Assumptions 
. . (mm/hr) (m/s) 

Sandstone 0.001 4.63 3 E-06 týandslqqe fchalk 

2. Mudstone 0.0001 4.63E-07 fmudstone fc1ay 

Stanning ley rock 0.00001 4.6')E-08 fstanninglev rrock 

The only Meanwood soil/rock type considered appropriate for the use of infiltration devices is 

sandstone (See Table 4.9). 

It was not envisaged that infiltration devices would pose a credible threat to the local water table 
in relation to the Meanwood catchment. This is based on the fact that the catchment already 

contains a number of infiltration devices that do not directly affect the water table. However, it 

is still advisable that the depth of the water table level be established by borehole investigations. 

4.3.2.2. Catchment constraints: Urban Landscape 

Background - Urban landscape is another factor that may greatly affect the viability of retrofit 

SUDS. For example, as illustrated with respect to the Gipton catchment (Chapter 3), it is not 

viable to construct large off-site controls SLIch as basins, ponds and infiltration devices within 

catchments that have very little available land. Similarly, the use of infiltration devices would 

generally not be feasible within densely urbanised catchments (i. e. with tightly packed buildings 

and narrow roads), as the UK's Building regulations (199 1) prohibit their use within 5m of any 
building. The use of SUDS conveyance systems, such as swales, would also be significantly 

restricted under Such conditions by virtue of the limited number of locations in which they may 
be used. 
The location in which a retrofit device is to be applied will obviously influence its construction 

costs and the type of technology that may be appropriate. For example, the introduction of 

swales to densely urbanised areas (i. e. with narrow roads) would generally mean the loss of 

existing pavements, or the significant narrowing of existing roads - both approaches would 

result in high construction costs, and would be likely to be highly disruptive. However it is 

possible that such measures (e. g. street narrowing) might be cost effective if introduced in 

conjunction with traffic calming or pedestrianisation schemes. 
The urban landscape will also influence the adopted method of disposal for overflows from 

swales and SUDS storage devices. The conventional approach would be to direct flow into the 

local sewer, however alternative methods of disposal (e. g. infiltration and discharge into local 

watercourses) may be adopted if viable means of disposal exist near the technology. 

Application to Meanwood Catchment - For the purpose of this analysis SUDS conveyance 

systems were only considered viable for introduction to existing grassed areas (e. g. fields and 

grassed roadside verges) - since retrofitting swales, or filter drains, to paved locations would 
involve comparable construction costs and disruption as conventional pipe-based conveyance 
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systems. Figure 4.4 displays all roads within the Meanwood catchment that are lined with 

grassed verges, and hence considered to be appropriate for the use of SUDS conveyance 

systems. Figure 4.5 shows all large-scale grassed or undeveloped areas adjacent to the 

Meanwood catchrrient that were considered to be appropriate for the construction of retrofit 
SUDS off-site controls, such as infiltration trenches, ponds or porous car parks. It should be 

noted that most of these areas are located downstream of the grass verged roads (highlighted 

within Figure 4.4). It is worth noting that no appropriate locations for offsite controls could be 

identified immediately within the catchment boundaries. 

I 
(Dark regions denote roads with grassed verges) 

Figure 4.4 Meanwood sub-catchment breakdown showing roads with grassed verges 

Figure 4.5 Meanwood: sub-catchment breakdown showing grassed land available 
for off-site controls 

Shaded areas - grassed or 
undeveloved land 

Region A 265,100 m' 
Region B I 10,140 M2 
Region C 339,500 m2 
Region D 156,700 m" 

Total 
2 

771,440 n, 
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4.3.2.3. Catchment constraints: Topography 

Background - Topography is another factor that can influence the extent to which retrofit 
SUDS may be used within a catchment. It is recommended that swales should not be used on 

slopes greater than 1: 50, and filter strips on cross-slopes greater than 1: 20; in both instances 

these restrictions are to avoid surface erosion (UWTC, 2000). In regions containing much 
higher gradients it may become impracticable to operate other retrofit SUDS, such as porous 

pavements and other infiltration technologies. 

Application to Meanwood Catchment - It is evident from maps of the local area that none of 

the ground slopes in the Meanwood catchment are sufficiently steep to hinder the retrofit of any 
form of SUDS technology. 

4.3. Z4. Catchment constraints: Source Protection Zones (SPZ) 

Background - It was previously described (Chapter 2), that the use of infiltration devices is 

largely restricted within Source Protection Zones (SPZs), and in particularly within Class I and 
II Spzs. 

Application to Meanwood Catchment - However, no part of the Meanwood catchment lies 

within an SPZ, and hence the use of infiltration devices is not restricted by this factor. 

4.3. Z5. Other (Non-physical) Constraints 

There are other factors that may be considered to influence the viability of retrofit SUDS. These 

include factors such as land availability/prices, legislation, social issues and the planning 

policies of affected parties (e. g. Environment Agency, Local Authority, Highways Agency and 

Sewer operator). These factors are obviously important, but on the whole these are not 

considered to be as rigid as the issues presented in Sections 4.3.2.1-4.3.2.4. This primarily 

relates to the fact that non-physical constraints may be eliminated by a change in 

policy/legislation/public opinion, whilst physical constraints are generally harder to change. It is 

worth noting that non-physical issues were not considered to constrain the use of retrofit SUDS 

within areas of the Meanwood catchment in which they had been deemed to be physically 

viable. 

4.4. OPTIMUM AND BEST-CASE RETROFIT SUDS PROPOSALS FOR 

THE MEANWOOD CATCHMENT 

4.4.1. Introduction 

The previous section described how local constraints, such as geology and urban landscape, can 
limit the application of SUDS technologies in a particular catchment. 
In order to evaluate whether SUDS might be viable in a specific context, the engineer needs to 

prepare a range of scenarios for evaluation. In this section two types of scenario are described. 

The first is referred to as the 'optimum' scenario, which essentially considers the application of 
SUDS to all paved and roofed areas in a catchment (and the subsequent disconnection of their 
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contributory surface areas from the local sewer). Clearly, if this scenario does not produce a 
significant improvement in hydraulic performance, then there will be little value in pursuing 

more detailed design options. Disconnection of contributory surfaces may be achieved via either 
infiltration-based or storage-based SUDS, each of which exhibit different hydraulic behaviour. 

Storage-based SUDS generally have a much smaller capacity than infiltration devices, and as 

such may fill and overflow back into the combined sewer system during times of excessive 

rainfall. It is therefore important, even at this preliminary stage, to identify which parts of the 

optimum solution are based on infiltration and which depend upon storage. Due to the smaller 
capacity of storage devices, infiltration technologies are considered to be the more preferable 

option. The optimum SUDS scenario should therefore utilise infiltration devices wherever 

possible, with storage facilities used for the remainder of roofed/paved catchment. At this stage 

the only criterion for determining whether infiltration is feasible is geology (i. e. soil 

permeability); technical constraints affecting the construction of specific SUDS devices are 

discussed later. It is worth noting that the SUDS scenarios that utilise conveyance and offsite 

infiltration facilities may achieve greater coverage (in terms of the paved/roofed areas served) 

than those that only adopt source control devices. The only criteria considered to restrict the use 

of storage options are the assumptions that source-control storage facilities would practicably be 

limited to a capacity of between 0 to 6 litres per M2 for roofed areas, and 0 to 10 litres per m2 for 

paved areas (the rationale for these assumptions is presented in Section 5.3.4.1). 

Section 4.4.2 outlines five optimum SUDS scenarios that were investigated in relation to the 

Meanwood catchment - the first two consider infiltration alone, whilst the next two consider the 

use of storage facilities to supplement the use of infiltration devices, and the final option 

considers the use of storage facilities on their own (Table 4.10). 

T2hlo Ain -r%iimm2rvnf nnfimtim sumsf9r-priarins for the Meanwood catchment 
Scenario Description 
Optimum Proposal 1 Considers the use of Infiltration-based source-control technologies 
Optimum Proposal 2 Considers the use of Infiltration-based source-control technologies, with 

Conveyance and Infiltration-based off-site control technologies 
Optimum Proposal 3 As Optimum Proposal 1, but with source-control storage facilities adopted 

in the remainder of the catchment 
Optimum Proposal 4 As Optimum Proposal 2, but with source-control storage facilities adopted 

in the remainder of the catchment 
-Optimum Proposal 5 Source-control storage facilities adopted throughout catchment 

4.4.2. Optimum SUDS scenarios 

4.4. ZI. Optimum infiltration SUDS scenarios 

Two optimum scenarios were developed for infiltration-based SUDS, the first option explored 

the sole use of inf iltration-based source-control devices, and the second explored the combined 

use of infiltration-based source and off-site control devices. These scenarios are illustrated in 

Figure 4.6 and described in detail below: 
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Optimum proposal 1: Optimum proposal 2: 
Disconnection of all Disconnection of all 

impervious surfaces contained 'infiltratable' impervious 

within Meanwood's sandstone region surfaces 
using infiltration-based using infiltration-based 

source control SUDS source and offsite control SUDS 
Roofed area disconnected., 3.022 ha, Roofed area disconnected: 5.583 ha, 

or 41 % of all roofs or 75.8% of all roofs 
Paved area disconnected: 3.423 ha, Paved area disconnected: 6.369 ha, 

or 3 7.2 % of all paved area I or 69.2% of all paved area 

Figure 4.6 Optimum Source and Offsite control options using infiltration SUDS for the 
Meanwood catchment 

Optimum proposal I (the optirnurn infiltration-based source-control scenario) involves the 

disconnection of all impervious (paved and roofed) areas contained within Meanwood's 

sandstone region (i. e. suitable for infiltration). Optimum proposal 2 (the optimurn infiltration- 

based source and off-site control scenario) would involve tile disconnection of all 'infiltratable' 

impervious areas. These were defined as being upstream of what was considered to be the most 
down-strearn viable location for an off-site infiltration-based control facility within the 

Meanwood catchment. Those parts of the catchment located down-stream of this point were not 

considered viable for infiltration SUDS dUe to the fact that they were highly urbanised, coupled 

with unfaVOLirable ground conditions. 

4.4.2.2. Optintunt storage-based scenarios 
Three further optimum scenarios were developed in relation to use of storage-based source 

controls: the first option (Optimum proposal 3) related to the use of storage-based source 

control devices as a supplement to the optimum infiltration-based source control scenario; the 

second (Optimum proposal 4) related to the use of storage-based source control devices as a 

supplement to the optimum infiltration-based source and off-site control scenario; and the last 

option (Optimum proposal 5) related to the use of storage-based source controls in conjunction 
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with all impermeable surfaces contained within the Meanwood catchment. The first two of these 

storage-based source control options are presented in Figure 4.7. 

Optimum Proposal 3: Optimum Proposal 4: 
Combined in filtratio n/sto rage Combined infiltration/storage 
Optimum source control (infiltration) Optimum off-site control (infiltration) 

proposal in addition to: proposal in addition to: 
Storage to all impervious surfaces Storage to all impervious surfaces not 
not contained within Meanwood's considered to be 'infiltratable' 
sandstone region 
(SIC storage to all impervious areas (SIC storage to all impervious areas 
contain within un-shaded region) contain within un-shatled region) 

Figure 4.7 Optimum storage SUDS scenarios 

Further details of these optimum storage-based scenarios are presented in Chapter 

No further analysis was undertaken to develop optimum scenarios for the application of storage- 

based off-site controls to the Meanwood catchnient. This related to the fact that all viable 

locations for such facilities had already been earmarked for off-site infiltration-based facilities. 

It was considered that infiltration-based proposals were more appropriate for 

reducing/eliminating catchment flooding than storage-based options (see Section 4.2.3.2). 

4.4.3. Best case scenarios 
This Section explores the specific design issues associated with a range of SUDS technologies 

(see Table 4.11 ). Best-case scenarios (i. e. in terms of achievable coverage of the Meanwood 

catchment) were generated for each investigated technology - in order to establish which design 

factors influenced their use in a retrofit context. These scenarios represent tile best-case 

implementation proposals that were considered practicable for each individual retrofit 

technology with respect to the Meanwood Catchrrient, given the constraints outlined previously 

(Section 4.3). 
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Table 4.11 Summarv of followina Sections 
SUDS Category SUDS Technology Relevant Section 

Retrofit source controls 
Soakaways Section 4.4.4 
Infiltration trenches Section 4.4.5 

Retrofit conveyance devices Swales Section 4.4.6 
Infiltration trenches Section 4.4.7.1 

Retrofit offsite controls Porous pavements Section 4.4.7.2 
Infiltration basins Section 4.4.7.3 

It should be noted that this exercise only explored the use of infiltration-based technologies, 

since these were considered to be more effective than storage-based technologies at addressing 
the catchment's hydraulic problems (see previous Section). It is envisaged that these proposals 

could be used to form the basic component of more complex/integrated SUDS schemes, to 

which parts of other infiltration strategies and/or storage-based schemes might be added. The 
development of multi-technology solutions for the Meanwood catchment is discussed further in 
Chapter 7. 

Final design calculations were generated for each technology using relevant UK design 

guidelines. Further details of this design work is presented in Appendices 4A to 4F. The 

hydraulic performance associated with each of these schemes was simulated using HydroWorks 

catchment models; the results of this analysis are presented in Chapter 5. Corresponding scheme 
costings were derived, and are discussed in Chapter 6. 

It should be noted that source control devices were investigated as standalone technologies, 

whereas off-site controls were investigated in conjunction with conveyance devices. 

Section 4.4.8 compares each of these implementation scenarios with the optimum source and 

offsite control options (Figure 4.6). 

4.4.4. Source control proposal 1: Retrorit Soakaways 
The most extensive use of soakaways considered feasible given the constraints of the existing- 
state Meanwood catchment was the proposed connection of individual soakaways to every roof 

within the sandstone region. Table 4.12 presents a summary of this proposal. 

Table 4.12 Source control DroDosal 1: Soakawav 
Roofed area Roofed area Roofed area 
and No. of connected to connected to 
properties combined combined 
served by sewer sewer 
soakaways system (ha) system (0 0 

Soakaways to every roof 3.0221 ha 
within sandstone region (426 properties) 

4.346 ha, 59.0% 

It was assumed that each of the 426 properties roofs contained within the Meanwood sandstone 
region was connected to its own individual 1.5 x 1.8 x 1.8 m soakaway by a6m length of 

gulley. The design calculations used to generate these soakaway dimensions were based upon 
the BRE 365 methodology, and assumed that fsandstone = 4.63 x 10-6m/s and that a typical 

contributory property had a roofed area of 50 m2. 
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This proposal was considered to be viable because: i) sandstone soils are sufficiently permeable 
to allow the use of infiltration devices; ii) local gardens within this region are large enough to 

allow the use of soakaways without contravening Building Regulations (5 m rule); and iii) no 
part of the catchment lies within a ground water protection zone. See Appendix 4A for further 
details. 

The simulated hydraulic performance of this proposal is presented in Chapter 5, and 
corresponding costings are presented in Chapter 6. 

4.4.5. Source control proposal 2: Retrofit Infiltration trenches 
It was not considered practical to explore schemes that involved the construction of infiltration 

trenches within individual properties due to the high levels of disruption that would be 

associated with their construction (Section 4.2.1.2). However, the use of infiltration trenches in 

open land immediately adjacent to domestic properties was considered to be more feasible, and 

was therefore explored. It is considered that this proposal may be classified as a source control, 

as conveyance devices are only required to transfer runoff to the boundary of the receiving 

properties. 
The most extensive use of infiltration trenches that was considered feasible within Meanwood 

involved the construction of 1065 rn of infiltration trenches to serve 86 properties within the 

sandstone region (see Figure 4.8). This proposal adopted infiltration trenches to serve all 

properties within the sandstone region that bordered open grassland. These locations were 

selected due to favourable geological conditions, ease of construction, and the fact that 

infiltration technologies did not contravene any SPZs (E. A., 1998) or Building Regulations (5 in 

rule). 
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Fla 

Figure 4.8 Maximum infiltration trench proposal for existing Meanwood catchment 

Solid black lines indicate feasible locations for infiltration trenchesl- Solid grey areas indicate 
sub-catchments that are predominately underlain by sandstone 

A summary of this proposal is presented in Table 4.13. 

Table 4.13 Source control DrODosal 2: Infiltration trenches 
Proposal Roofed area Roofed Roofed area 

and No. of area connected connected to 
properties to combined combined 
served by sewer sewer 

infiltration system (ha) system (%) 
trenches 

Construction of 1065 rn of 
infiltration trenches to serve 0.4728 ha 6.896 93 6 

86 properties within (86 properties) . 
sandstone re, (,, ion I I II 

It was assumed that each of tile 86 roofs to be served by this proposed scheme would be 

connected to the infiltration trench by individual lengths of gulley. The CIRIA 156 (1996) 

methodology was used to design these infiltration trenches. These calculations were used to 

investigate the performance of a 0.6 xIx 1065 m infiltration trench assuming an fondstone value 

of 0.001 mm/h (4.63 x 10-6 m/s) and a total contributory roofed area of 0.4728 ha. This 

configuration produced an emptying time (i. e. for emptying from full to half full conditions) of 

76.57 hrs. This represents a significant amount of time, especially since it is recommended 

within BRE 365 (1991) that all infiltration devices should be designed to empty critical storm 

runoffs from full to half full conditions within 24 hrs. To produce a viable infiltration trench in 

relation to this criterion the length of the trench would need to be extended from 1065 m to 

8000 m, or the fsandstone value increased from 0.001 mm/h to 0.0031 mm/hr. (Note: as the soil 
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percolation rates of sandstone can range from 0.001 to 100 mm/hr (BRE 365,1991) this 

proposal would be viable within all but the least permeable of sandstones. ) 

See Appendix 4B for further design details. The simulated hydraulic performance of this 

proposal is presented in Chapter 5, and corresponding costings are presented in Chapter 6. 

4.4.6. Conveyance Proposal: Retrofit swales 
The potential for using swales within the Meanwood catchment was investigated. The most 

extensive swale-based proposal considered to be feasible was the construction of swales along 
all roads that currently contain grassed verges (Figure 4.4). These swales could be used to 

convey runoff from adjacent paved and/or roofed areas to downstream offlite control facilities 

that could be located within any of Meanwood's large undeveloped area (see green regions 

marked on Figure 4.5). Three different scenarios were explored in relation to this proposal, 

these related to the use of these swales to convey runoff from: i) all adjacent road surfaces; ii) 

all adjacent roof surfaces and iii) both adjacent roof and paved surfaces. Summaries of each of 
these scenarios are presented in Table 4.14. The offsite control proposals that were developed 

for use in conjunction with these conveyance schemes are presented in the next Section. 

Table 4.14 Disconnection options of impermeable area associated with the proposed 
introduction of Swales to all grassed verges within Meanwood catchment 

(Pronosed SW21e lenath, 4930 m) 
Roofed or Roofed or Roofed or 

Proposal (Paved) (Paved) (Paved) 
area and No. of area connected area connected 

properties to combined to combined 
served by sewer sewer 
proposal system (ha) system 

Swale Option A: 8998 1 Disconnection of all ROOFS . 246 properties 
5.469 74.2 

adjacent to swales 
Swale Option B: 

Disconnection of all PAVED (2.8860) (6.316) (68.6) 
areas adjacent to swales 

Swale Option C: 8998 1 Disconnection of both . (2.8860) 5.469 74.2 
ROOFED and PAVED areas Total: 4 7858 ha (6.316) (68.6) 

adjacent to swales . I II 

It should be noted that the typical length of connection required between the house and swale 

was defined as 10 in. See Appendix 4C for further details. 

4.4.7. Off site controls 
Three infiltration-based off-site technologies (i. e. Infiltration trenches, Porous pavements and 
Infiltration basins) were investigated as potential offsite controls for use in conjunction with 

each of the conveyance proposals highlighted within the previous Section (see Table 4.14). The 
following Sections present design dimensions that were defined for: infiltration trenches 
(Section 4.4.7.1); Porous pavements (Section 4.4.7.2) and Infiltration basins (Section 4.4.7.3). 

These design dimensions were generated using CIRIA 156 design methodologies corresponding 
to each of these technologies. It should be noted that these calculations were performed using 
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appropriate input parameter values to represent the physical characteristics of the catchment and 
of each of the three disconnection scenarios presented for the swale proposal in Table 4.14 of 

the previous Section. 

4.4.7.1. Offsite controlproposall: Infiltration trenches 

The potential for using infiltration trenches as an off-site control within the Meanwood 

catchment was invcstigated. 

The following tables present design dimensions that were generated for three separate 
infiltration trench proposals, to drain contributory areas of 1.8998 ha, 2.8860 ha and 5.469 ha 

respectively. These contributory areas correspond to the three disconnection options that were 

considered for the swale proposal presented within the previous Section (see Table 4.14). 

The design dimensions associated with these proposals were generated using the CIRIA 156 

design methodology for infiltration trenches. These calculations assumed a fixed trench width of 
I in and a fixed depth of 3 in, and were conducted with respect to two different soil percolation 

rates (0.0 1 and 0.00 1 mm/hr). Different percolation rates were considered in order to represent a 

wide range of permeability characteristics that may be associated with different sandstone types. 

Table 4.15 Required Infiltration trench dimensions to adequately drain 1.8998 ha 
(Disconnected roofed area associated with Swale Option A) 

All Desiqn work conducted in accordance with CIRIA 156 methodology 
Calculated Calculated Soil 

Infiltration Trench base Trench base Trench minimum time of 
width, length, base area, trench depth emptying from 

coefficient, Wb (in) Lb (m) Ab (m) required, full to half full, 
f (mm/hr) 

I I D (m) t (hrs) 
0.01 1 720 720 2.98 14.65 
0.001 1 885 885 2.99 146.67 

Table 4.16 Required Infiltration trench dimensions to adequately drain 2.886 ha 
(Disconnected paved area associated with Swale Option B) 

All Desian work conducted in accordance with CIRIA 156 methodolow 

Soil Calculated Calculated 

Infiltration Trench base Trench base Trench minimum time of 

coefficient width, length, base area, 
2 

trench depth emptying from 
, f (mm/hr) Wb (m) Lb (in) Ab (m ) required, full to half full, 

I I D (m) t (hrs) 
0.01 1090 1090 2.96 14.67 
0.001 1 1350 1350 2.99 146.60 

Table 4.17 Required Infiltration trench dimensions to adequately drain 4.7858 ha 
(Disconnected paved & roofed area associated with Swale Option C) 

All Design work conducted in accordance with CIRIA 156 methodology 

Soil Calculated Calculated 

infiltration Trench base Trench base Trench mmunum. time of 

coefficient width, length, base area, trench depth emptying from 
, f (mm/hr) Wb (in) Lb (in) Ab required, full to half full, 

I D (in) T (hrs) 
0.01 1 1800 1800 3.00 14.68 
0.001 1 865 2250 3.00 98.60 

For further details of these design calculations see Appendix 4B. 
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It is worth noting that in relation to the less permeable of the two investigated sandstone types 
(i. e. with a soil infiltration coefficient = 0.00 1 mm/hr) none of these infiltration trench proposals 
was considered to be viable. The emptying times (i. e. from full to half full conditions) 
calculated for each of these proposals were far larger than the 24 hour period recommended 

within the BRE 365 (1991) guidelines. 

4.4.7. Z Offsite control proposal 2: Porous pavement 
This Section explores porous pavements proposals to drain runoff from each of the conveyance 

options presented within Section 4.4.6. Porous pavements are only considered feasible as an off- 

site technique where there is an existing conventional car-park/paved area, or a need for a new 

car-parking facility and available land. There are no existing car parks, or any foreseeable need 
for car parks within the Meanwood catchment - therefore in practical terms this option was not 

worth exploring. However, as porous pavements would be feasible to construction in other 

catchments - the economical and technical merits of this option were investigated. 

The following tables present design dimensions for three proposals that were intended to drain 

their own surface areas in addition to the runoff conveyed from each of the three alternative 
impervious area disconnection scenarios presented in Table 4.14. The dimensions of the off-site 
facilities presented within this Section were calculated using the CIRIA 156 methodology. 

Table 4.18 Required dimensions of porous pavement to adequately drain its own surface 
and an additional 1.8998 ha of contributing area 

(i. e. Disconnected roofed area associated with Swale Option A) 
All Desion work conducted in accordance with CIRIA 156 methodoloav 

Soil Infiltration 
coefficient, 

Contributory Area, Width of paved Required length of 
Required area of 
paved strip, A 

f (mm/hr) C' (m strip, W, (m) paved strip L, (m) (M) 
0.01 18998 77 77.54 5970.46 
0.001 18998 1 120 1 121.55 14586.03 

Table 4.19 Required dimensions of porous pavement to adequately drain its own surface 
and an additional 2.886 ha of contributing area 

(i. e. Disconnected roofed area associated with Swale Option B) 
All npsian wnrk rnnrffirtPrI in arrordance with CIRIA 156 mothodnInav 

Soil Infiltration 
coefficient, 

Contributory Area, Width of paved Required length of 
Required area of 
paved strip, A 

f (mm/hr) C, (m strip, W, (m) paved strip L, (m) (M) 

0.01 28860 95 196.27 18645.49 
0.001 28860 150 196.27 29440.25 

Table 4.20 Required dimensions of porous pavement to adequately drain its own surface 
and an additional 4.7858 ha of contributing area 

(i. e. Disconnected Roof & Paved areas associated with Swale Option C) 
All Desidn work conducted in accordance with CIRIA 156 methodoinav 

Soil Infiltration 
coefficient, 

Contributo7 Area, Width of paved Required length of 
Required area of 
paved strip, A 

f (mm/hr) C, (m strip, W, (m) paved strip L, (m) (MI) 
0.01 47858 123 122.65 15086.51 
0.001 47858 185 193.78 35848.42 

It is worth noting that the porous pavement proposals generated with respect to the less 

permeable sandstone (i. e. with a soil infiltration coefficient = 0.001 mm/hr) were significantly 
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larger than those generated for the more permeable sandstone types. However, none of the 

required base areas of these porous pavements exceed the amount of undeveloped land available 
in the Meanwood catchment (see Figure 4.5). 

For further details of these design calculations see Appendix 4D. 

4.4.7.3. Offsite control proposal 3: Infiltration basin 

This Section investigates the use of infiltration basins as a potential off-site control technology. 

Infiltration ponds could be introduced as a landscaping feature to existing green areas. The 
following tables present design dimensions for three proposals that were intended to drain 

runoff from each of the three alternative impervious area disconnection scenarios presented 

within Table 4.14. These design dimensions were generated using the CIRIA 156 design 

methodology for infiltration basins. Calculations were conducted with respect to two different 

soil percolation rates (0.01 and 0.001 mm/hr), and assumed that the basin had a square base. 

Different percolation rates were considered in order to represent the wide range of penneability 

characteristics that may be associated with different sandstone types. 

Table 4.21 Infiltration basin dimensions required to adequately drain 1.8998 ha of 
contributing area (i. e. Disconnected roofed area associated with Swale Option A) 

AH Desian work conducted in accordance with CIRIA 156 methodoloov 
Soil Width of basin Length of Area of basin Minimum Time of 

Infiltration base basin base base basin depth emptying from 
coefficient, , Wb (m) , Lb (m) , Ab (m2) required, full to half full, 
f (mm/hr) D (m) t (hrs) 

0.01 50 50 1 2500 0.31 23.00 
0.001 160 160 1 25600 0.03 22.81 

Table 4.22 Infiltration basin dimensions required to adequately drain 2.886 ha of 
contributing area (i. e. Disconnected roofed area associated with Swale Option B) 

All Desim work conducted in accordance with CIRIA 156 methodoloev 
Soil 

Infiltration Width of basin Length of Area of basin Minimum 
basin depth 

Time of 
emptying from 

coefficient, 
base, 

Wb 
basin base, 

Lb 
base, 

Ab (m) required, full to half full, 
f (mm/hr) (in) (m) D (in) t (hrs) 

0.01 1 65 65 1 4225 1 0.27 20.32 
0.001 1 200 200 1 40000 1 0.03 22.04 

Table 4.23 Infiltration basin dimensions required to adequately drain 4.7858 ha of 
contributing area (i. e. Disconnected roofed area associated with Swale Option C) 

All Design work conducted in accordance with CIRIA 156 methodoloev 
Soil 

Infiltration Width of basin Length of Area of basin Minimum 
basin depth 

Time of 
emptying from 

coefficient, 
base, 

Wb (m) 
basin base, 

Lb (m) 
base, 

Ab (m) required, full to half full, 
f (mm/hr) D (m) ts 

0.01 80 80 6400 0.31 22.74 
0.001 250 250 62500 0.03 23.70 

It is worth noting that the emptying times (i. e. from full to half full conditions) calculated for 

each of these proposals were all less than the 24 hour period stipulated within the BRE 365 

(1991) guidelines. However, the design solutions associated with the less permeable of these 

sandstones (percolation rate = 0.001 mm/hr) produced basins with base areas around ten times 
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larger than corresponding design solutions for permeable sandstones (percolation rate = 0.01 

mm/hr). For further details of these design calculations see Appendix 4E. 

4.4.8. Comparison of Proposals 

Table 4.24 summaries the amount of impervious area (in terms of paved and roofed areas) 

considered to be disconnected by each of these proposals, and contrasts these against those of 

the optimum proposals highlighted in Section 4.4.2. All the scenarios presented below are based 

entirely on infiltration. 

Table 4.24: Comparison of technology specific and optimum disconnection scenarios 

Roofed, Ro ofe d, Roofed, 
Proposal (Paved) or (Paved) or (Paved)or 

Total Imp. Total Imp. Total Imp. 
area served by area connected area connected 
proposal (ha) to combined to combined 

sewer system sewer system 
(ha) M) 

Optimum Proposal 1: 
(Source control) 3.022 ha 4.346 ha 59.0% 
Disconnection of all impervious (3.423 har) (5.779 har 62.8%) L 
areas in sandstone sub-catchments 6.445 ha 10.125 ha 61.1% 
of Meanwood catchment 
Source control proposal 1: 3.022 ha 4.346 ha 59.0% 
Soakaways* to every roof Q ha) (9.202 harl (100%) 
(426properties) 3.022 ha 13.548 ha 81.8% in sandstone region 

Source control Proposal 2: 0 473 ha 6896ha 93.6% 
Construction of 1065 m of . (0 haj L9.202 hall (100%) infiltration trenches to serve 86 0.473 ha 16.098 ha 97.2% 
properties in sandstone region 

Optimum Proposal 2 
(Off-site control) 
Disconnection of all impervious 
areas in Meanwood 5.583 ha 1.786 ha 24.2% 
subcatchments u/s of Node L6.3 69 h qJ (2.833 ha) Q0.8 %) 
450 150 (i. e. the most d/s location 11.952 ha 4.619 ha 27.9% 
thatlis considered appropriate for 
an off-site control facility within 
the Meanwood catchment) 
Swales Option A: 
Of7site control proposals 1,2&3: 1.900 ha 5.469 ha 74.2% 
Disconnection of all ROOFS Q ha r) (9.202 ha) (100%) 
adjacent to swales 1.900 ha 14.671 ha 88.5% 
(246properties) 
Swales Option B: 0 ha 7.368 ha 100% Offsite control proposals 1,2&3: 

, (2.886 ha) L6.316 ha) (L8.6 %) Disconnection of all PAVED 
areas adjacent to swales 

2.886 ha 13.684 ha 82.6% 

Swales Option C: 
Offisite control proposals 1,2&3: 1.900 ha 5.469 ha 74.2% 
Disconnection of both ROOFED (2.886 ha J L6.316 ha) (68.6 Yo) 
and PAVED areas adjacent to 4.786 ha 11.785 ha 71.1% 
swales (246properties) I I II 

Note: 
Off-site control proposal 1,2 and 3 relate to the use of infiltration trenches, porous pavements and 
infiltration basins respectively. 
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It is clear that neither of the two technology specific source control proposals achieve anywhere 

near the same level of disconnection of impervious area (from the Meanwood combined sewer 

system) as Optimum proposal 1 (optimum source control proposal). This is illustrated by the 

fact that 61.1% of all impervious areas would remain connected to the Meanwood combined 

sewer under Optimum proposal 1, whilst it is considered that 81.8% and 97.2% of all 

impervious areas would remain connected under source control proposals I and 2 respectively. 

The shortfalls between Optimum proposal I and the two technology specific proposals may 

largely be attributed to the fact that it was not considered to be practicable to retrofit source 

controls to any of the paved areas contained within Meanwood's sandstone region. The low 

disconnection rate attributed to source control proposal 2 relates to the very limited 

opportunities for retrofitting infiltration trenches to roofs within the sandstone region. 

Similarly, none of the three technology specific offsite control proposals achieve anywhere near 

the same level of disconnection of impervious area (from the Meanwood combined sewer) as 

the Optimum Proposal 2. The main factor behind these shortfalls is the fact that not all roads 

within this region are considered appropriate for retrofitting SUDS conveyance systems (e. g. 

swales). Consequently, these proposals do not achieve the full coverage levels assumed within 

the optimum off-site infiltration option. It is possible that this problem could be addressed by 

the use of supplementary storage-based source-control technologies - i. e. to serve areas not 

covered by the off-site technologies. 

The scenarios developed in this Chapter have highlighted the fact that single technology SUDS 

schemes are unlikely to be able to deliver the full potential disconnection that might initially 

appear to exist within a catchment. It has been suggested here that combinations of device types 

(including both infiltration-based and storage-based technologies) would probably enable better 

coverage to be achieved. 

However, given that some areas might practically be served by more than one technology type, 

it is clear that the generation of multiple-technology SUDS schemes is not straightforward. 

Indeed, before an approach to this problem can be developed, it is necessary to incorporate 

information concerning the hydraulic performance and costs associated with each type of SUDS 

technology. 

Chapter 5 outlines how urban drainage modelling techniques were used to simulate the 

hydraulic performance associated with each of these scenarios, and Chapter 6 describes how 

corresponding costs were calculated. 
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5. RETROFIT SUDS EVALUATION: 
MODELLING ISSUES 

5.1. INTRODUCTION 

This Chapter aims to investigate the hydraulic performance of retrofit SUDS through the use of 
urban drainage catchment modelling tools, such as HydroWorks (Wallingford Software, 1999). 

HydroWorks v. 5.0 is a detailed deterministic model that utilises the Wallingford set of 

rainfall/runoff equations (National Water Council, 1981) and derivatives of the St Venant 

conservation equations for in-sewer flow routing. At the time these investigations were 

conducted, neither this model, nor any of its main competitors, contained direct procedures for 

modelling SUDS devices*. This Chapter reviews the HydroWorks model, and explores a 

number of different modelling options for representing retrofit SUDS. The best of these 

techniques were adopted for simulating the performance of the best-case retrofit SUDS 

proposals presented in Chapter 4, for the alleviation of flooding within the Meanwood 

catchment. 
* It should be noted that MicroDrainage's new Source Control module is now a fully integrated part of the 
WinDes suite of urban drainage modelling software tools, and it is claimed that this can support the 
design and analysis of a number of source control devices, including: infiltration trenches, ponds, porous 
pavements, soakways and swales. However, this software was not available early enough to be utilised 
within this study. 

5.2. BASIC PRINCIPLES OF HYDRAULIC MODELLING 

5.2.1. Background 

This Section introduces the HydroWorks v. 5.0, the main urban drainage model used in 

conjunction with this research, and outlines the basic principles upon which it is founded. 

The HydroWorks v. 5.0 (Wallingford Software, 1999) urban drainage software package was 

adopted as the main modelling tool for this thesis. HydroWorks, and its sister package 
InfoWorks, are both well established within the UK water sector, and consequently have a large 

pool of experienced users and existing catchment data (i. e. from which case studies could be 

drawn). This was a key factor in the selection of HydroWorks as the main modelling package 
for this thesis. One limitation of the HydroWorks package is that most of its verified 
HydroWorks catchment models are pure hydraulic models. The lack of field-based water quality 
data has lead to a shortage of verified water quality models within the UK (Harremoes, 1997). 

However, this is a problem common to all urban drainage models, and not just HydroWorks. 

Section 5.2.2 outlines the basic principles of the HydroWorks model. 

5.2.2. HydroWorks - Basic Hydraulic Principles 

5.2. Z1. Introduction 

HydroWorks is a deterministic model, which can simulate both hydraulic and water quality 
mechanisms within the urban water cycle. The hydraulic model comprises three interrelated 
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modules, which individually represent the 'Rainfall', 'Runoff and 'Sewer System' processes 
inherent within tile urban drainage catchnicilt (Figure 5.1 ). 

LAINFALL MODULE: RUNOFF MODULE: SEWER SYSTEM 
Used to define the Calculates the subsequent MODULE: 
characteristics of levels of storniNvater Calculates behaviour 

simulated storm events runoll'critering the sewer within the sewer network, 
falling upon the model systerri from each sub- using dry weather flow 

catchment catchincrit and storm runoff 

Figure 5.1 Simplistic flow-diagram of the HydroWorks process modules 
used to represent the Urban Water Cycle 

5.2.2.2. RainfalIlRitnoff Processes 

The 'Rainfall' and 'Runoff process modules are particularly relevant to tile modelling of 

SUDS, since these determine how much of the rainfall failing on the catchment is considered to 

become runoff and how quickly this then enters the drainage system. Tile HydroWorks 'Runoff 

process module comprises three distinct sub-i-nodules: i. ) Initial losses module, ii. ) Runoff 

Volume (net rainfall) module and iii. ) Runoff Routing module (See Figure 5.2). 

1Aý 
(mm/hr) 

IN- t 
(hrs) 

Figure 5.2 Simplistic Flow-diagram representing the 3 distinct sub-modules of 
HydroWorks' runoff module 

116 



CHAPTER 5 

HydroWorks assumes that a catchment is divided into a series of sub-catchments 

(Figure 5.3). The rainfall input falling upon one such sub-catchment is divided between 3 

surface types (See Figure 5.2). HydroWorks uses separate surface types to define distinct 

categories of surface, within each sub-catchment. Typically, three default surface types (i. e. 

paved, roofed and pervious) are adequate to describe the different areas of a sub-catchment. 

However, up to twelve surface types may be defined for any given sub-catchment. 

The following paragraphs describe the rainfall module and the three sub-modules of the runoff 

module. 
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Rainfall input - There are three main rainfall input types that are used in conjunction with 

urban drainage modelling applications: 
Synthetic Design Storms 

Intensity-Duration-Frequency Curves 

Time Series data (either historical, or stochastically generated, data) 

Appendix SA presents further infonnation on each of these rainfall input types. 

Initial losses model - The initial part of a storm event is generally assumed to cause no runoff 
because it is lost in wetting the ground surface and in depression storage (i. e. forming puddles). 

The quantity of rainfall required to just cause overland flow might be described as 'initial 

losses'. These losses are generally considered to depend upon surface type and slope. 

HydroWorks (Ver. 5.0) contains 3 initial losses models. The default 'initial losses' model is the 

'slope model', which relates depression storage to ground slope(s) using the expression: 

D= kl4s 

Equation 5.1 
Where: 

D Average depth of initial losses (M) 
S Slope (In1m) 
k CoejfIcient (M) 

The 'k' value is used to represent a number of factors, such as the surface micro-topography and 
layout. Typical 'k' values are: 7.1 x 10-5 in for paved and roof surfaces and 2.8 x 10-5 in for 

pervious surfaces (Wallingford Software Ltd, 1999). The HydroWorks model assigns the same 
'k' coefficient to pitched roof surfaces as to road surfaces, but adopts a slope value (s. f) of 
0.05. 

HydroWorks also contains the 'Absolute model', which allows an absolute initial loss value (D) 

to be assigned independently of surface slope. 
It is worth noting that depression storage values generated by either of these initial losses 

models may be partly or wholly taken up by rainfall that is considered to occur immediately 

before a simulated storm event; within HydroWorks this is represented by the antecedent 

rainfall parameter. 
Runoff Volume (net rainfall) models - Runoff volume models are used, after 'initial losses' 

have been accounted for, to determine how much of the rainfall runs off the sub-catchment into 

the drainage system. These models are generally used to account for continuing losses, such as 

those associated with infiltration or interception (Read and Vickridge, 1997). The default 

HydroWorks' runoff volume model is the Wallingford Procedure (Fixed) PR model, this 

calculates runoff for a given sub-catchment using Equation 5.2, and distribution between 

different surfaces types is achieved using weighting coefficients (See Equation 5.3). 
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PR = 0.829 PIMP + 25.0 SOIL + 0.078 UCWI - 20.7 

Equation 5.2 
Where: 

PR Percentage Runoff 
PIMP - Percentage of catchment area that is Impermeable 
SOIL - Soil Coefflicient 
UCWI - Urban Catchment Wetness Index 

The weighting procedure for different sub-catchment surfaces is defined by the following 

expression: 

PR =f "4' YR In-1,3fn All 

Equation 5.3 
Where: 

PRI - Percentage runoff (surface) 
A- Area ofSurface 
f- Weighting coejfIcient 

The default parameters, used by HydroWorks, for the weighting coefficients are shown in 

Table 5.1 

Tnhla AI 14wrlmW^rko rfafniilf wehinhfinn enafficients 

Weighting coefficient Surface Value 
fl Paved 1.0 
J2 Roofed 1.0 
J3 Pervious 0.1 

HydroWorks' alternative 'Runoff Volume (net rainfall)' models are outlined within 
Appendix 5B. 

Runoff Routing module - HydroWorks' runoff routing module contains five alternative 

models that may be used to predict how quickly the surface runoff emanating from a given 

rainfall event enters the drainage system. The default model is the 'Double linear reservoir' 

(Wallingford) model. This model is based on the use of two conceptual linear storage reservoirs 

that are combined in series and applied to each surface type with an equivalent storage-output 

relationship for each reservoir. This relationship between storage volume (S) and flow (q) is 

described by the equation: 

S=k 
Equation 5.4 

where k= Cil -0.39 , in which i. = 0.5(1+ilo), where i1o is the ten minute moving average of rainfall 

intensities and C is a constant coefficient. Combining the two storage relationships with the 

continuity equation leads to a second order ordinary differential equation in the form: 
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kd 2g 
+ 2kdcl +q= It 

Tt dt 

Where: 
q Flow rate (min/hr) 
it Rainfall intensity at time t (mtWhr) 
k Coefficient depending on surface type (hf 1) 
t Time (hr) 

Equation 5.5 

This equation is used to model runoff attenuation caused by the combined effects of surface 
storage and storage in minor drains that is not explicitly modelled within the in-sewer model. 
The double linear reservoir methodology generates a time lag between the time of rainfall on the 

catchment surfaces and the resultant flow of storm runoff into the sewer system. 
HydroWorks' four alternative runoff routing models are outlined in Table 5.2. 

Table 5.2 Runoff Routina Models Available in Hvdroworks Ver. 5.0 
Model file Comments 

Large contributing A double linear reservoir model developed for UK sub-catchments of up to 100 ha. 
area runiffmodel 
SPRINT runoff 

model 
A single linear reservoir model developed for the European SPRINT project. 

Desbordes runoff The standard routing model used in France. It is a single linear reservoir model. 
model 

SHWMrunoff 
model 

A non-linear reservoir model developed in the USA. 
II 

S. ZZ3. Sewer system processes 
HydroWorks represents the urban drainage system using a network of links and nodes. Nodes 

are used to represent manholes, and a range of other ancillary structures, such as attenuation 

tanks, sewer overflows and pumping stations. Conduit pipes are represented as links, which 

interconnect the network nodes. 
HydroWorks generates dry weather flows, and combines these with the storm runoff component 
described above. The simulation of these in-sewer flows is based on the solution of the Saint- 

Venant equations, which enables the detailed analysis of sewer flow at any point of the drainage 

network. Further details of this derivation are presented within Appendix 5C, along with a 

simple validation of the default HydroWorks methodology. 

5.3. MODELLING RETROFIT SUDS 

This Section explores the modelling issues associated with representing the behaviour of retrofit 
SUDS. The modelling issues associated with the representation of infiltration-based SUDS are 

discussed within Section 5.3.1 and applied to the Meanwood catchment in Section 5.3.2, and the 

modelling issues associated with storage-based SUDS are discussed in Section 5.3.3 and applied 
to Meanwood in Section 5.3.4. 
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5.3.1. Modelling infiltration-based SUDS 

5.3.1.1. Background 

This Section explores the issues associated with using urban drainage models to simulate the 

behaviour of 'infiltration-based' SUDS. The installation of infiltration SUDS may significantly 

reduce the levels of runoff contributed to the sewer system. The effects of such measures are 
likely to be especially dramatic if applied within highly pervious soils, such as loams or sand. 
Unlike most storage SUDS (Section 5.3), well designed infiltration devices can be assumed to 

completely remove the runoff component of design storm events from the local sewer. 
However, poorly designed infiltration devices will tend to pond during extreme rainfall events, 

and in some cases generate a delayed runoff component into the local sewer system. In such 

cases, the surface runoff component will start to appear in the sewer at some point after ponding 

starts to occur, and will gradually increase as less stormwater is infiltrated. 

It is also worth noting that groundwater penetrates into many sewer systems via cracks/damaged 

pipes. HydroWorks can represent this phenomenon, using a constant infiltration flow parameter 

value, regardless of prevailing storm conditions. This approach is acceptable when the flows 

penetrating the sewer system are small. However, the widespread use of infiltration SUDS 

within a catchment may significantly increase the levels of flow penetrating the local sewer 

system, and make such events more closely connected to prevailing rainfall conditions. It is not 

possible to represent these factors using HydroWorks v. 5. The latest version of InfbWorks has 

the capacity to represent such varying groundwater flows into the sewer (Swan et aL, 1999). 

However, due to financial constraints, it was not possible to use InfbWorks in conjunction with 
this research project - HydroWorks modelling options are presented within the next Section. 

5.3.1. Z Hydro Works modelling options 
Careful assessment of the modelling options available in HydroWorks suggested 3 alternative 

mechanisms that may be used to represent infiltration process: 
1. The Horton infiltration runoff volume model 
2. The Green-Ampt infiltration volume model 
3. The disconnection of all areas that are considered appropriate for infiltration (this 

may be achieved using the Wallingford (Fixed) PR model). 

Horton Infiltration model - The Horton infiltration model may be applied to HydroWorks 

surfaces to simulate the effects of infiltration on the rainfall-runoff process. The Horton model 
(1940) was derived from studies of rainfall-runoff responses in small catchments. This model 

uses an empirical expression (Equation 5.6) that only simulates runoff when rainfall intensity 

exceeds the capacity of the soil to infiltrate it. However, in practice, runoff can occur following 

rainfall events in which the rainfall intensities are less than the infiltration capacity of the soil. 
Consequently, the Horton infiltration model is generally only used in catchments where short 
intense rainfall events produce an almost instantaneous overland flow (Wallingford Software, 
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1999). The Horton model is considered appropriate for application to urban catchments because 

their surfaces generally have low infiltration capacities. 
The Horton equation expresses infiltration rate as a function of time: 

f, + V, 
- f, 

)e-" 

Where: 
Equation 5.6 

f infiltration rate at time t (mm/hr) 
initial infiltration rate (mm/hr) 
final (limiting) infiltration rate (mm/hr) 

k coefficient of exponential term (1/hr) 

The initial infiltration rate (f, ) is subject to an exponential decrease until it reaches a constant 
limiting rate (Q when the soil becomes saturated. The (k) constant expresses the non-linear rate 

of decay of infiltration after the beginning of a rainfall event. It should be noted, that as the 

equation is expressed as a function of time, it is not generally considered suitable for application 

to continuous TSR simulations. Within HydroWorks the Horton model cannot be used in 

conjunction with the default (Wallingford Procedure) fixed PR runoff model. This factor limits 

the general applicability of approach as most of the UK's HydroWorks models are typically 

generated using HydroWorks default settings. 

The Green-Ampt inflItration model - HydroWorks adopts the Green-Ampt infiltration 

equation (Mein & Larson, 1973) for use in conjunction with the SWMM runoff model. The 

Mein & Larson methodology is a two-stage model. The first stage estimates the volume of 

water that is infiltrated prior to saturation of the surface. The second stage uses the Green-Ampt 

equation to estimate the infiltration capacity when the soil is saturated. 
The model is represented by the following expressions: 

If F<F, 

If i>K,: Fs= Si IMD 

-1 Ks 
f=i 

If i =< K. No calculation of F, is made 
If F >= Fs 

=f =K, (I+ 
S. IMD,, 

.1 
fpF 

Where: 
f infiltration rate (mm/hr) 
fp infiltration capacity (mm/hr) 
i rainfall intensity (mm/hr) 
F cumulative infiltration (mm) 
F, cumulative infiltration required for saturation (mm) 
S average capillary suction (mm) 
IMD initial moisture deficit (dimensionless) 
K, saturated hydraulic conductivity (mm/hr) 
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The HydroWorks; package contains an integrated form of the Green-Ampt equation, which is 

solved iteratively using a Newton-Raphson routine. The excess rainfall is routed into the 

drainage network. However, the Green-Ampt approach, like the Horton model, cannot be used 
in conjunction with HydroWorks default models. 

Disconnection option - An alternative modelling approach for representing the behaviour of 
infiltration SUDS, is to perform preliminary design equations, such as those outlined within 
BRE 365 (1991) and CIRIA 156 (1996) to establish how much impervious area may be 

successfully drained using the proposed infiltration device, given prevailing catchment 

conditions and critical design equations. These devices may then be modelled by simply 

removing this amount of impermeable area from the HydroWorks catchment model, to 

represent its physical disconnection from the local sewer system. This approach is a relatively 

simple/transparent modelling methodology and incorporates the use of established infiltration- 

SUDS design methodologies (BRE 365,199 1; CIRIA 156,1996). 

Overview - The 'disconnection option' was considered to be the most appropriate of the three 

techniques highlighted above. This relates to the fact that it incorporates the use of existing 
design guidelines for infiltration devices (see Chapter 2), which have been widely used and 

verified within the UK - as opposed to the two other techniques, which are both novel, and 

therefore unverified, modelling approaches for representing the behaviour of infiltration 

devices. Furthermore, the disconnection option is a transparent approach. This transparency 

means that results may be easily checked, and therefore treated with a higher degree of 

confidence than results obtained from the other approaches. The 'disconnection option' may 

also be used in conjunction with a number of other urban drainage modelling tools, such as the 

SIMPOL or Win-Dap packages. 

5.3.2. Modelling infiltration-based SUDS: Application to Meanwood 

5.3. Z1. Introduction 

The performance of a range of retrofit infiltration SUDS proposals was investigated using 
HydroWorks analysis of the Meanwood catchment in conjunction with the 10 year design 

storm. 

This catchment model was compiled, and verified against monitored flow data, by Leeds City 

Council, as part of a drainage area survey that was conducted in 1994. An independent 

evaluation of this catchment model was conducted as part of this thesis (See Appendix 5D). 

5.3. ZZ Use of Hydro Works to model a range of infiltration scenariosfor Meanwood 

HydroWorks simulations were undertaken to establish the critical duration 10 year design storm 
(see Appendix 5E) with respect to sewer flooding within the Meanwood catchment. These 

investigations established that the critical storm was the MI 0-60S. 
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An additional fifteen simulations were conducted to assess the impact of a range of 
disconnection scenarios upon Meanwood's flooding problems under the critical MIO-60S 

design storm. These scenarios investigated the 0,25,50,75 and 100% disconnection of all 

roofed areas, in conjunction with the 0,50 and 100% disconnection of all paved areas. These 

areas were disconnected uniformly across every sub-catchment of the Meanwood system, and 

were used to crudely represent the disconnection of contributing surfaces associated with well- 
designed infiltration devices. The results of this analysis are presented within Table 5.3. This 

data was also used to generate the 3D plot presented within Figure 5.4. 

Table 5.3 Meanwood flood volumes (M) from a M10-60S design storm - 
Ranae of disconnection scenarios for oaved and roofed areas 

%age of Roads %age of oofs connected 
Connected 100% 75% 50% 25% 0% 

100% 1304 M3 1022 M3 723 M3 476 M3 248 M3 

50% 618 M3 388 M3 159 M3 51 M3 0 M3 

0% 87 M3 5 M3 0 M3 0 M, 0 M3 

1400 
1200 
1000 
800 Flood Volume 
600 (M) 
400 
200 
0 

00 CD C LO LO 

r- o01, - %age of %age of U) LO LO LO 
Roads C14 CN Roofs 

connected connected 

[10-200 0200-400 0400-600 0600-800 0800-1000 111000-1200 E1200-1400 

Figure 5.4 3D plot of Meanwood flood volumes (M3 ) associated with the critical M10-60S 
design storm and a range of disconnection scenarios for paved and roofed areas 

Note: Figure 5.6 suggests that the complete removal of flooding problems is feasible through 

the use of retrofit infiltration-based SUDS. However, this would require high levels of 

disconnection. The practical feasibility of achieving such high levels of disconnection is 

explored within the following Section. 
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Appendix 5F illustrates that these results are consistent with the results of a much smaller set of 

simulations that were conducted for the Meanwood catchment by Leeds City Council 

(Walker, 2000: b). 

5.3. Z3. Extrapolatedflood volumesfor Optimum infiltration proposals 
Flood volumes associated with Optimum proposal 1 (infiltration-based source-controls) and 
Optimum proposal 2 (infiltration-based source and/or off-site controls) proposals (Chapter 4) 

for the application of infiltration devices to the Meanwood catchment were obtained by 

extrapolating values from Table 5.3 (i. e. for percentage roofed and paved areas assumed to be 

connected to the system after each proposal had been implemented). 

Optimum proposal 1 (infiltration-based source-controls) (Figure 5.5) entailed the removal of 
37.20% of Meanwood's total paved area (3.423 ha from a total of 9.202 ha of paved area), and 
4 1.01 % of Meanwood's total roofed area (3.022 ha from a total of 7.3 69 ha of roofed area), that 

were contained within the Sandstone region. 
Optimum proposal 2 (Figure 5.5) involved the disconnection of all 'infiltratable' impervious 

areas that were upstream of what was considered to be the last (i. e. in terms of being the most 
down-stream) viable location for an off-site control facility within the Meanwood catchment. 
This process involved the removal of the 69.2% of Meanwood's total paved area (6.369 ha 

from a total of 9.202 ha of paved area), and the 75.8% of Meanwood's total roofed area (5.583 

ha from a total of 7.369 ha of roofed area) that was considered to be appropriate for infiltration 

via off-site controls. 
It should also be noted that Optimum proposals I and 2 assumed that all impervious areas 
contained within these 'disconnectionable' regions are fully disconnected from the sewer 
system. However, this complete disconnection may be difficult to achieve in practice due to 

other catchment limitations, and if achievable may require the integrated use of more than one 
type of SUDS device. For example, Optimum proposal 2 might only practically be achievable 
if source and off-site controls are used in conjunction. This relates to the fact that conveyance 
systems, such as swales, are not practicable throughout all of these regions, and as a result 
runoff from some impermeable surfaces in these areas would have to be infiltrated locally using 
source control devices. 
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Optimum proposal I Optimum proposal 2 
(source control): (off-site control): 

Disconnection of all Disconnection of 
impervious surfaces all Meanwood's'infiltratable' 

contained within impervious surfaces 
Meanwood's sandstone region I 

Figure 5.5 Optimum proposals 1 and 2 using infiltration SUDS for the Meanwood 
catchment (reproduced from Figure 4.6) 

The extrapolated values for these scenarios and tile critical MIO-60S storm (from Table 5.3) 

indicated that optimum proposal I would reduce flood volume from 1304 M3 to 383 M3 , and 
33 

optimum proposal 2 would reduce flood volume from 1304 M to 37 in 
It should be noted that these results represent a crude approximation of catchment flooding. This 

relates to the fact that Table 5.3 represents the uniform disconnection of roof and paved areas 

across every sub-catchment of the Meanwood system, whereas these optimum scenarios 

represent the concentrated removal of roof and paved areas in specific parts of the catchment. In 

other words, this 'extrapolation' approach accurately represents the quantity of roof and paved 

areas that would be disconnected in conjunction with the optimum scenarios, but fails to 

represent this surface disconnection in the specific parts of the catchment in which it should 

occur. This approach was adopted due to its simplicity and the speed of its simulation times. 

These factors meant that rapid comparisons of alternative proposals COUld be performed. The 

next Section presents a more detailed/accurate modelling analysis that was applied to the 

optimum proposals I and 2. 

Section 5.3.2.5 applies these 'extrapolation' techniques to the SUDS technology specific 

options that were highlighted within Chapter 4. 

5.3. Z4. Hydro Works flood volunies for Oplint uni proposals I and 2 
Detailed modelling exercises were undertaken for both the optimum proposal I (source 

controls) and optimum proposal 2 (offsite controls). This analysis was undertaken using 
HydroWorks, and sought to establish the accuracY of the crude procedures outlined in the 

previous Section. 
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Optimum proposal 1 (Figure 5.5) was modelled by disconnecting all of the sandstone sub- 

catchments from the Meanwood HydroWorks catchment model. This process entailed the 

removal of 3.423 ha of Meanwood's total paved area, and 3.022 ha of Meanwood's total roofed 

area, which were contained within the Sandstone region. The HydroWorks' flood volume for 

this optimum option under the MI 0-60S design storm was 480 m3. 
Optimum proposal 2 (Figure 5.5) was modelled by disconnecting all sub-catchments up- 

stream of Node 450_150 from the Meanwood HydroWorks catchment model. This process 
involved the removal of 6.3 69 ha of Meanwood's total paved area, and 5.5 83 ha of Meanwood's 
total roofed area that was considered to be appropriate for infiltration via off-site controls. The 

HydroWorks' flood volume for this optimum option under the MIO-60S design storm 

was 108 rn 3. 

Table 5.4 compares the results of this analysis with corresponding results that were attained by 

extrapolation (see previous Section). 

Table 5.4 Comparison of extrapolated Meanwood flood volumes (M) for Optimum 
Proposals 1 and 2 with corresponding events simulated using HydroWorks and a 

MIO-60S desian storm 
Proposal (Infiltration) Extrapolated flood volume (m) HydroWorks flood volume (m) 
Optimum source control 383 m3 78,0 M, 
Optimum off-site control 37 M3 108 M3 

The results presented in Table 5.4 confirm the crudeness of the 'extrapolation approach. It is 

likely that the discrepancies between these two sets are the result of the simplistic assumptions 
made in relation to the 'extrapolation' approach. These relate to the fact that 'extrapolation' 

approach accurately represents the quantity of roof and paved areas disconnected in conjunction 

with the optimum scenarios, but fails to represent this surface disconnection in the specific parts 

of the catchment in which it should occur. 
However, it is felt that despite these significant shortcomings the 'extrapolation approach' has 

some value for the initial comparison of alternative proposals, to highlight those options worth 
further/more detailed investigation. This relates to the speed of its simulation times, and the fact 
that its provides some indication as to the comparative performance of alternative proposals. 
Detailed SUDS design proposals would ultimately be modelled using the more sophisticated 
HydroWorks techniques to assess compliance with stipulated performance criteria 
(see Chapter 2). 

5.3-2-S. Extrapolatedfloodvolumesforteclinology-specificSUDSproposals(Cliapter4) 

This Section presents extrapolated flood volumes for each of the 'best case' disconnection 

scenarios highlighted within Chapter 4. Unlike the generic investigations presented within the 

previous Section, these simulations relate to the application of specific infiltration SUDS 
technologies to the Meanwood catchment. The results of this analysis are presented in 
Table 5.5. 
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These technology specific infiltration SUDS proposals were modelled using the crude 
extrapolation techniques, and not detailed HydroWorks-based analysis. This approach was 

adopted to in order to reduce simulation times, and because this was a comparative study that 

only required a crude approximation of a proposal's hydraulic performance. 

Table 5.5 Extrapolated Flood volumes for technology specific SUDS proposals for 
Meanwood catchment (See Chapter 4) 

Col mnsfrom Table 4.24 New Column 
Roofed, Roofed, Ro ofe d, 

Proposal LPaveo or (Paved)or (Paved)or Extrapolated 
Total Imp. Total Imp. Total Imp. Flood volume 

area served by area connected area connected (M35 

proposal (ha) to combined to combined 
sewer system sewer system 

(ha) (%) 
Optimum Proposal 1 3 022 ha 4 346 ha 59.0% Disconnection of all impervious . Q. 423 ha) . L5.779 ha) (L2.8 %) 383 
areas in sandstone sub-catchments 6.445 ha 10.125 ha 61.1% 
of Meanwood catchment 
Source control proposal 1: 3 022 ha 4.346 ha 59.0% Soakaways to every roof . Qh ar) L9.202 ha) (100 %) 831 (426properties) 3.022 ha 13.548 ha 81.8% in sandstone region 
Source control proposal 2: 0 473 ha 6 896 ha 93.6% Construction of 1065m of . Qh ar) (9.202 ha) (100 %) 1236 infiltration trenches to serve 86 0 473 ha 16.098 ha 97.2% 
properties in sandstone region . 

Optimum Proposal 2 
Disconnection of all impervious 
areas in Meanwood 
subcatchments u/s of Node 5.583 ha 1.786 ha 24.2% 
450 

- 
150 (i. e. the most d/s L6.369 haj L2.833 harl Q0.8 %) 37 

location that is considered 11.952 ha 4.619 ha 27.9% 
appropriate for an off-site control 
facility within the Meanwood 
catchment) 
Swales Option A: 
Offsite control proposals 1,2&3: 1.900 ha 5.469 ha 74.2% 
Disconnection of all ROOFS Q haj (9.202 ha) (100 %) 1010 
adjacent to swales 1.900 ha 14.671 ha 88.5% 
(246properties) 
Swales Option B: 
Offisite control Proposals 1,2&3: 0 ha 7.368 ha 100% 

Disconnection of all PAVED L2.886 ha) L6.316 ha) (ý8.6 %) 879 

areas adjacent to swales 2.886 ha 13.684 ha 82.6% 

Swales Option C: 
Offsite control Proposals 1,2&3: 1.900 ha 5.469 ha 74.2% 
Disconnection of both ROOFED L2.886 ha) (6.316 ha) (68.6%) 619 
and PAVED areas adjacent to 4.786 ha 11.785 ha 71.1% 
swales (246properties) I I II 

Note: 
Off-site control proposals 1,2 and 3 relate to the use of infiltration trenches, porous pavements and 
infiltration basins respectively. 
Existing-case flood volume is 1304 M3. 
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It is worth nothing that these results should be treated with extreme caution because they were 

generated using the crude 'extrapolation approach' (see Section 5.3.2.3). However, it is clear 
that the performances of the technology specific proposals are significantly worse than those of 
the corresponding optimum proposals. The reasons for these discrepancies are outlined below: 
Optimum Proposal I- The optimum infiltration source control scenario involved the 
disconnection of all impervious (paved and roofed) areas contained within the sandstone region, 
whereas source control proposal I (Soakaways) only disconnected roofed areas. Source control 

proposal 2 only served 86 of the 426 roofs contained within this sandstone region. Therefore 

these proposals do not achieve the full coverage levels assumed within the optimum infiltration 

source control proposal. 
Optimum Proposal 2- Not all roads within this region are considered to be appropriate for 

retrofitting SUDS conveyance systems (e. g. swales) (See Chapter 4). Subsequently, these 

proposals do not achieve the full coverage levels assumed within the optimum off-site 
infiltration option. 

5.3.3. Modelling storage-based SUDS 

5.3.3.1. Introduction 

There are a wide variety of 'storage-based' SUDS, ranging from simple garden water butts or 

tanks through to large off-site detention ponds. However, most storage devices may be crudely 

considered to behave in a similar manner - i. e. retaining a given storage volume of rainfall 

before contributing overflow into the sewer system. This overflow contribution may either be 

directly or indirectly connected into the sewer system. These similarities mean that comparable 

modelling techniques may be applied to a whole range of different storage SUDS devices. 

Section 5.3.3.2 explores the generic issues associated with modelling the behaviour of storage 
devices at the urban catchment level. Section 5.3.3.3 explores the more specific modelling 

options for representing storage SUDS using HydroWorks. 

5.3.3. Z Modelling Background 

Example 1: Single tank - The introduction of 'storage-based' SUDS to a catchment may 

significantly reduce the levels of surface runoff that are contributed to the local sewer system. 
The effects of such measures may be especially dramatic if applied to a catchment's impervious 

surfaces, such as roofs or paved areas. This point is illustrated by the example shown in 

Figure 5.6, which demonstrates the potential benefits of applying stormwater storage facilities 

to a typical domestic roof (0.3 M3 ). Figure 5.6 was generated using a simplistic Excel model, 

which simulates the rainfall, runoff, storage and overflow mechanisms associated with a simple 

roof and collection tank system. This model was developed from hydraulic first principles (i. e. 
initial losses, fixed percentage runoff and mass balance models) (Swan el al., 1999). 
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Figure 5.6 Comparison of runoff emanating from a single 5OM2 roof with: 
L) 0.3 M3 of available storage ii. ) no storage 

2 These results were generated with respect to a roofed area of 50 m connected to a storage 
facility with 0.3 m' available storage prior to the start of a sample TSR storm event. In practice 
it is unlikely that such a device would be empty prior to a storm event, due to water retained 

from previous rainfall. This example therefore represents an empty 0.3 m3 storage device 

(e. g. water butt or tank) prior to the start of a storm event; or a more realistic representation of a 

0.6 m' tank that is half full due to a previous rainfall event. 

It may be observed in this example that the impact of roof-water storage is to retain roof runoff 

during the first 2 hours of the storm. Therefore widespread introduction of a number of such 

facilities might be expected to produce attenuation and volunnetric reduction of runoff flows 

emanating from a sub-catchment's roofed surfaces. The magnitude of these impacts would 

obviously depend upon the number of roof-water storage tanks introduced, and their individual 

properties (capacities, feeder and overflow mechanisms). 

Example 2: 100 tanks - Simulating the more widespread effects of such storage facilities is a 

more complex task. From a modelling perspective, there are two approaches to representing the 

combined overflow of a number of stormwater storage devices. The first approach assumes that 

all storage facilities within a given sub-catchment are identical (i. e. in terms of capacity, volume 

of contents and connected roof area), subject to uniform prevailing conditions and hence 

overflow simultaneously into the local sewer system; this may be described as the 'identical 

tanks option'. The second approach assumes that each storage device within a sub-catchment is 

unique (i. e. in terms of capacity, volume of contents and connected roof area) and hence likely 

to spill at different times during the storm event; this may be described as the 
'non-identical tanks option'. 
Both of these approaches are illustrated by an example, portrayed in Figure 5.7, which considers 
the combined overflow into the local sewer from 100 storage facilities. In this example, the 

overflow profile for the 'Identical tanks option' was generated by directly scaling up the 
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overflow profile for tile single 0.3 m3 tank, from Figure 5.6, by a factor of 100. In essence, this 

simulates the hydraulic behaviour of a single 30 rn 3 tank, connected to a 5000 M2 roofed area 

(5 0 rn 2X 100 = 5000 1. n2) . The overflow profile for the 'non-identical tanks option' was 

generated using the cumulative overflow from 100 different pre-storm randomly generated tank 

capacities (of between 0 and 0.6 rn 3 ). These individual overflow profiles were generated using 

the simplistic Excel model, described previously, and combined to produce the cumulative 

overflow profile displayed in Figure 5.7. It should be noted that the cumulative storage 

associated with tile 'Identical tanks option' is approximately equal to that of the 'Non-identical 

tanks option'. This relates to the fact that the randomly generated tank capacities that were used 

to derive the 'Non-identical tank option' ranged from 0 to 0.6 rn 3, and hence had a mean value 

of around 0.3 m3. 
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Figure 5.7 Comparison of runoff emanating from 100x 50 m' roofs: 
L) with No Storage; ii. ) Identical Tanks (0.3 M3 ) and 

3 iii. ) Non-identical Tanks (randomly generated capacities between 0 and 0.6 m 

Non-identical tanks produce a gradual transition from full retention of storm-water to full 

surface runoff contribution, in contrast to the very sudden transition that characterises the 

'identical tanks' scenario. It may be argued that the 'non-identical tanks' scenario represents 

real catchrrient processes more closely than tile 'identical tanks' assumption. However, given 

that the 'non- identical tanks option' requires more analysis to establish appropriate pre-storm 

tank capacities, a pragmatic approach might be to use the 'identical tanks option'to explore the 

best, worst and average pre-storm available tank storage scenarios - as this may be applied to 

both: 1. ) a sub-catchment that contains a number of identically sized storage facilities subjected 

to non uniform conditions; and 2. ) a sub-catchment that contains un-identically sized storage 
facilities. 

Although this modelling example specifically relates to roof-water storage facilities, the same 
issues equally apply to the modelling of storrnwater storage facilities for other surface types, 

such as roads or paved areas. 
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5.3.3.3. Hydro Works modelling optionsfor Storage SUDS 

This Section presents and explores the merits of two alternative HydroWorks modelling options 
for representing storage-based SUDS. It should be noted that both options seek to represent the 
'identical tanks' scenario described previously, as it was considered impracticable to accurately 

represent a 'non-identical tanks' scenario using the HydroWorks modelling tools 
(Swan et al., 1999). Descriptions of these options are presented below: 

Option 1: Dummy storage - This option uses a single dummy storage tank, for each sub- 

catchment of the HydroWorks model, to represent the hydraulic behaviour associated with all of 
the SUDS storage devices within that sub-catchment (i. e. regardless of the size, type and the 

surface they serve). This dummy storage is inserted in the HydroWorks sewer system 
(i. e. entered within the dsd file of the sewer module) and is used to represent the cumulative 

storage of a group of SUDS devices. This approach may be used in conjunction with both 

HydroWorks' default and non-default runoff models. However, this methodology can only be 

applied to the simplified 'identical tanks' scenario - i. e. where all SUDS storage devices in a 

given sub-catchment are considered, when full, to simultaneously overflow into the local sewer 

system. This is because these storage devices are all assumed to have identical available storage, 
be directly connected to the local sewer system and subject to uniform conditions. 
Option 2: Initial Losses - This option uses HydroWorks' 'Absolute' initial losses model to 

represent the net storm-water that is required to fill the cumulative available storage within a 

sub-catchment's SUDS devices. This methodology represents the available pre-storm storage 

within a sub-catchment as an initial loss for any one of the default surface types (i. e. paved, roof 

or pervious areas). This means that SUDS storage devices may be modelled separately for 

paved, roofed and impervious surfaces (i. e. by amending the. rpf file of the runoff module). This 

approach may also be used in conjunction with HydroWorks' default and non-default 

runoff/routing volume models. It should be noted that this option should only be used to 

represent the simplified 'identical tanks'scenario. 
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5.3.3.4. One-node case study niodellitig exercise: Methodology 

A simple one-node case study sub-catchment was used to investigate the performance of these 

modelling options for representing SUDS storage. This sub-catchment was assurned to consist 

of 5000 m' of roofed area, directly connected to stormwater collection tanks (with a cumulative 

volume of 30 m'). These tanks were assumed to overflow directly into the local sewer network. 
The catchrrient configuration is illustrated within Figure 5.8. This scenario was intended to 

represent the roofed area in a sub-catchrrient containing 100 x 50 m' roofs, each connected to an 

individual 0.3 m3 collection tank. 

NODE 

L114K 

OUTFALL 

Figure 5.8: One-node case study sub-catchment 

The two modelling options presented in Section 5.3.3.3 were used to simulate the outflow 
hydrograph corresponding to ten separate input rainfall events. These scenarios were also 

simulated using the simplistic Excel model described in 5.3.3.2. 

The two main airns of this comparative modelling exercise were: firstly, to provide a 

quantitative comparison between the results obtained from each of these proposed modelling 

techniques; and secondly, to allow an assessment to be made relating to the logistical 

implications associated with each option. 

5.3.3.5. One-node case study modelling exercise: Results 

The results of this exercise (presented In Figure 5.9) indicated that the 'Initial Losses' option 

was the most appropriate of the potential modelling options. The rationale behind this decision 

was as follows. 

Tile 'Initial Losses' option was considered to form the most direct and transparent technique. It 

is possible to use this approach to define tank storage directly as an initial loss corresponding to 

an existing sub-catchment surface, whereas the alternative approach relied on more in-direct 

methods of defining tank storage within HydroWorks. In essence, this approach may be 

implemented to existing HydroWorks catchrrients data with minimal changes having to be made 
to the original model. This transparency means that results obtained using this method may be 
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easily checked, and hence treated with a higher degree of confidence than results obtained from 

the other approaches. 

Figure 5.9 Comparison of alternative modelling options for representing spill overflow 
from a group of rainwater tanks - (Rainfall Input: Low3. red) 

(Cumulative roofed area: . 500OM2 and Cumulative tank storage: 30 m3 
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The 'initial losses' solution was hence identified as the most appropriate HydroWorks 

modelling approach for localised roof-water detention schemes. However, it is recognised that 

the results of this exercise are limited to a simple one-node catchment and for TSR storm event. 

5.3.4. Modelling storage-based SUDS: Application to Meanwood 

This Section presents a set of HydroWorks studies that were undertaken to investigate a range 

of optimum source-control storage scenarios for the Meanwood catchment. 
As described in Chapter 4, no additional analysis was undertaken to investigate the optimum 
performance of off-site storage scenarios for the Meanwood catchment, because all viable 
locations for such facilities had already been earmarked for off-site infiltration facilities, and it 

was evident that inf iltration-based off-site facilities had greater potential for 

reducing/eliminating catchment flooding than storage-based facilities. 

Previous HydroWorks investigations (Section 5.3.2.4) demonstrated that the off-site infiltration 

proposals reduced catchnient flooding from 1304 M3 to 108 M3 for the critical MIO-60S storm 
event. It was therefore considered that the same level of performance could be achieved using 
adequate off-site storage facilities within the same locations - as there were large amounts of 
available space in which they could be constructed. 
The remainder of this Section presents a set of HydroWorks studies that investigated a range of 
optimum source-control storage scenarios for the Meanwood catchment. 
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5.3.4.1. Hydro Works modelling for Optitnuin Proposal 5 (source control storage to all 
Meanwood's IMP areas) 

HydroWorks simulatioris were coildLicted to Hivestigate the affect of Optimum Proposal 5 

(i. e. the catchment-wide use of source control storage - in the form of water butts for roofs and 

porous pavernents for paved areas) on Meanwood flooding. These investigations initially 

investigated the provision of 0 to 6 litres/m 2 of source control storage for all roofed areas, and 0 

to 10 1 itre s/rn2 for all paved areas within the Meanwood catchments. The rationale for these 

ranges was as follows: 

The practicable range of retrofit source control storage that is considered to be achievable for 

roofed areas is between 1.5 to 6 litres/m 2_ these values equate to an available storage capacity 

of between 150 to 600 1 itres for a 100 in 2 roofed area, or 75 to 300 litres for a 50 rn 2 roofed area. 
An indication as to the practicable level of sOUrce control storage provided by permeable 

surfaces is presented within SUDS design manual (CIRIA, 2000), which reports that a typical 

porous pavernent has a depression storage value of 5 mm. This would equate to a retrofit-source 

control unit storage of 5 litres/in 2 if permeable surfaces were retrofit to roads within tile 

Meanwood catchment. 

The results of this analysis are presented in the shaded part of 'Fable 5.6. It should be noted that 

these simulations were conducted using the HydroWorks 'initial losses technique' (See Section 

5.3.3.3), the Meanwood catchment model and the critical MI 0-60s design storm. 

Table 5.6 Meanwood flood volumes (M) from a MIO-60S design storm - For Optimum 
Proposal 5 and a range of source control storage scenarios for paved and roofed areas 

Storage to 
Paved surfaces 

Storage to all Roofed surfaces (lilres1m2) 

(litreslin) 0 3 6 9 12 
0 M3 13) 04 1220 in' I 146 m-1 M3 1071 997 m' 
5 3 10 13 nl 1113 986 _ 922 ni' M3 849 M3 771 

10 641 ni3 1 622 m' In3 568 M3 509 M3 449 
15 327 3 18 "SO III M3 236 190 M3 

20 M3 86 78 m' M3 58 M3 41 M3 26 
25 64 m' 56 M3 35 in 

3 18 1113 5 M3 

It is evident that the provision Of Source control storage to paved surfaces had a much greater 

impact on reducing the Meanwood catchment's flooding problems than the provision of source 

control storage to roofed surfaces (see Section 4.2.3.2). Therefore the paved option was 

subsequently investigated through a greater range, to the point where catchment flooding was 

practically eliminated (i. e. the use of 12 fitre S/M2 of pre-storm storage for roofed areas, in 

conjunction with 25 litre S/M2 for paved areas). The results of this exercise are presented in the 

remainder of Table 5.6, and in the form of a 3D plot (Figure 5.10). However, it should be noted 
that source control storage levels higher than 10 litre S/M2 would not be feasible to retrofit to 

most paved areas within the Meanwood catchrnent. 
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Figure 5.10: 3D plot of Meanwood flood volumes (M) from a MIO-60S design storm - 
Range of Source Control storage scenarios for paved and roofed areas 

The best 'practically feasible' retrofit source control option (i. e. tile use of 6 litreS/M2 storage for 

roofed areas in conjunction with 10 litres/m 2 for paved areas) was estimated to reduce critical 
33 

catchment flooding from 1304 rn to 568 m (i. e. a reduction of 44%). This level of 

improvement is significantly worse than those of the optimum infiltration options presented 

within Section 5.3.2.3. It is therefore evident that the use of storage-based source controls alone 

does not represent a feasible proposal for the elimination of Meanwood's flooding problems. 

The following Sections explore Optimum Proposals 3 and 4 (Chapter 4). These combined 

scenarios assume that source control storage is provided to those impervious areas not included 

within the optimum infiltration scenarios. 
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5.3.4.2. Iývtlro Works modelling of Optintunt Proposals 3 and 4 

Further HydroWorks simulations were undertaken to investigate Optimum Proposals 3 and 4 

(i. e. the use of source-control storage in addition to the optimurn infiltration source control and 

off-site control proposals for the Meanwood catchment) from Chapter 4. These scenarios are 
illustrated on the maps within Figure 5.11. 

2! ýr- 

9,0 

ýp 

Optimum Proposal 3 Optimum Proposal 4 
Combined in filtration/sto rage Combined infiltration/storage 
OptiML1111 Source control (infiltration) Optirnurn off-site control (infiltration) 

proposal in addition to: proposal in addition to: 
Storage to all inipervious surfaces Storage to all impervious surfaces not 
not contained within Meanwood's considered to be 'infiltratable' 

sandstone region 
(SICsforage to all impervious areas (SIC storage to all impervious areas 
eontained within un-shaded region) I contained within un-shaded region) 

Figure 5.11 Optimum Proposals 3 and 4 (reproduced from Figure 4.7) 

Four source control storage options were investigated for both of these proposals using the 

HydroWorks initial losses technique (Section 5.3.3). The results of this analysis are presented 

in Table 5.7 and Table 5.8, for Optimum Proposals 3 and 4 respectively. These results were 

generated directly using detailed HydroWorks modelling techniques, because the simplistic 

extrapolation techniques employed in Section 5.3 were not deemed appropriate for storage- 

based, or integrated (infiltration and storage-based) SUDS proposals. 

Table 5.7 Flood volumes (M) from M10-60s design storm for Optimum Proposal 3 
Souree control Source- control storage to Roofed surfaces 

storage to paved (litreslin 2) 
2 ) Surfaces (lilreslin 

0 6 

0 480 M3 427 ni 
3 

10 206 M3 178 n13 
Table 5.8 Flood volumes (M) from M10-60s design storm for Optimum Proposal 4 

Source- control 
Source control 

storage to paved storage to Roofed surfaces 
2 2 Surf (lit 1 (litresln, ) 

) aces res m 
0 

0 E 1 108 m3 97 m" 

=i o -3 8 nl' 35 ni 
3 
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The range of storage options explored in this analysis reflects the viable levels of source control 

storage that were considered to be feasible within these parts of the Meanwood catchment. It is 

evident that while neither Optimum Proposal 2, or 4, completely eliminates the catchment's 
flooding problems, both proposals do significantly reduce the level of flooding from its existing 

value of 1304 M3 . However, it is worth noting that these proposals, which supplement the use of 
infiltration SUDS with storage, achieve much higher levels of system performance than 

Optimum Proposals I and 3, which purely rely on infiltration-based approaches. This highlights 

the complexity of identifying optimal approaches where multiple-technology SUDS schemes 

are likely to be required. 
It is worth noting that in order to completely eliminate catchment flooding it would therefore be 

necessary to pursue hybrid solutions (i. e. to use SUDS in conjunction with some additional in- 

sewer storage - to remove the small amount of flooding that remains). The results of this 

exercise support the findings of a corresponding modelling exercise that was undertaken by 

Leeds City Council (Walker, 2000: a), and presented in the next Section. 

5.4. HYDROWORKS MODELLING: COMPARATIVE DESIGN EXERCISE 
(WALKER, 2000: b) 

Walker (2000: b) undertook a comparative modelling exercise to assess the performance of a 

range of conventional and SUDS-based proposals for alleviating flooding problems within the 

Meanwood catchment. 

5.4.1. Conventional stormwater management proposals (Walker, 2000: b) 

Three conventional proposals for alleviating flooding problems within the Meanwood 

catchment were developed. Leeds City Council's Department of Highways and Transportation 

conducted all costings and design work associated with these proposals (Walker, 2000: b). These 

options are presented within Table 5.9. 

Table 5.9 Conventional Prnnnqalq fnr Mpanwnnd Catchment (Walker. 2000: b) 
Conventional 
Option 1. 

The complete re-sewerage of all inadequate pipe-work along Meanwood Road and 
Stonegate Road. This option would require 2.1 Ian of new pipe-work (600 mm to 1200 
mm diameters) - with 1.3 km of this new sewerage laid under the main highway. 

Conventional Significant re-sewerage in conjunction with the construction of additional upstream 
Option 2. storage in the park area located to the south of Southgate Road. This option would 

require 500 m of off-line storage and 1.9 Ian of new sewerage (525 to 900 nun 
diameters). As with the previous option much of this new sewerage would be laid under 
the main highway - causing significant disruption to traffic and services. 

Conventional Limited re-sewerage work combined with increased storage. This would require 500 m" 
Option 3. of off-line storage as outlined in Option 2, used with an additional 1950 rný of storage at 

the junction of Parkside Road and Stonegate Road. Leeds City Council's investigations 
showed that this would require a total storage volume of 2450 rný with 0.7 km new 

I sewerage (600mm). 

It should be noted that all of these options required the implementation of major construction 
works within a busy highway. 

139 



CHAPTER 5 

5.4.2. SUDS proposals (Walker, 2000: b) 

Two SUDS scenarios were explored; the first assumed the application of retrofit SUDS to all 
impermeable surfaces that Walker (2000: b) considered to be viable for disconnection from the 

Meanwood catchment, and the second assumed a 75% take-up rate for these disconnectable 

surfaces. A comparison of these SUDS-based options is presented in Table 5.10. 

Table 5.10 Meanwood SUDS ontions - Areas of Disconnection (from Walker. 200ON 
No. of houses Approx. 

Area Disconnected Area Length of 
Proposal Housing connected (of 1280 Road connected Road 

(ha) houses in (ha) connected 
catchment) (km) 

Existing Existing 7.37 0 Existing 9.20 20.2 
case case Case 

100% of 100% of 
Walker's Walker's 

SUDS 
- 

100 (2000: a) 4.02 (2) 275(1)+72 (2000: a) 6.04 12.5 
Option viable viable 

surfaces surfaces 
disconnected disconnected 

75% of 75% of 
Walker's Walker's 

SUDS-75 (2000: a) 4 63 206+54 (2000: a) 7.42 15.3 
Option viable . viable 

surfaces surfaces 
disconnected disconnected 

(1) Number of dwellings that can be totally disconnected 
(2) Number of dwellings that can be partially disconnected 

Figure 5.12 compares the impermeable (IMP) surface contribution to the Meanwood sewer 

system associated with Walker's Meanwood SUDS options (2000: a) and the Infiltration SUDS 

presented in Table 5.5. It is worth noting that the SUDS_100 option is very similar to the 

optimum source control (infiltration) proposal, this relates to the fact that both schemes aim to 

disconnect all impervious surface areas contained within the Meanwood sandstone sub- 

catchments from the local sewer system. 
A further four hybrid (i. e. part SUDS / part conventional) solutions were developed and 

investigated; these are presented in Table S. 11. 

Table 5.11, Meanwood Hvhrid (SUDS/conventionall ontions 
Description 

Hybrid Option I SUDS 100 option+ re-sewerage 
Hybrid OptiOn 2 SUDS 100 option+ 5OOm' storage+ re-sewerage 
Hybrid Option 3 SUDS 75 option + re-sewerage 
Hybrid Option 4 1 SUDS 75 option +5 OOm' storage + re-sewerage 
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CHAPTER 5 

5.4-3. Comparison of hydraulic performance of alternative proposals 
Walker (2000: b) used a verified HydroWorks model of the Meanwood catchment to simulate 
and compare the performance of the 3 conventional, 2 SUDS and 4 hybrid proposals presented 
in the previous Section. This 'existing-state' Meanwood catchment model was amended to 

reflect the proposed changes to the sewerage system associated with each of these proposals. 
These amended models were used to simulate the hydraulic performance of the Meanwood 

catchment corresponding to each of these proposals, with respect to both I in 10 year and I in 

30 year design storms. 
Table 5.12 presents the simulated performance of each of these proposals, along with that of the 

existing-state Meanwood catchment. It should be noted that HydroWorks simulations conducted 
for the existing Meanwood catchment predict significant levels of system flooding from four 

locations. The performance of each of these proposals is defined by its simulated cumulative 

flood volume (i. e. the total flood volume emanating from all flooding Meanwood catchment 

nodes). 

Table 6.12: Meanwood: Predicted flood volumes (M) 
(Walker- 20(1(1-bl 

Option Description Predicted flood Predicted flood 
volume (M) volume (M) 

11 in 10yr] 11 in 30yr] 
Existing Existing state 1302 1730 

state 
Conventional Re-sewer 0 0 

Option I 
Conventional Storage & Re-sewer 0 0 

Option 2 
Conventional Increased Storage & 0 0 Option 3 Re-sewer 
SUDS-1 00 100% SUDS 397 713 Option 
SUDS-75 

75% SUDS 600 947 Option 
Hybrid SUDS 

- 
100 option & 56 160 Option I Re-sewer on1v 

Hybrid SUDS 100 option & 500 in' 0 0 Option 2 Storage & Re-sewer 
Hybrid SUDS 75 option & Re-sewer 216 420 Option 3 only 
Hybrid S 

_75 option & 500 in" 0 
I 

0 Option 4 Storage & Re-sawer 

These results highlight that all three of the conventional proposals and Hybrid Options 2&4 

eliminate flooding for both design storm inputs. Hybrid Options I&3 fail to eliminate flooding 

for either design storm, but still represent a significant improvement upon the existing case 

scenario and both of the SUDS proposals (see Table 5.12). Neither of the two SUDS proposals 
(SUDS-100 and SUDS-75) would appear to constitute a viable solution for this catchment 
because of their limited impact upon catchment flooding. 
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It is evident that these results are consistent with those presented for Optimum Proposals 1,2,3 

and 4. This factor provides added confidence in both sets of results. 
The following Chapter explores the financial costs associated with retrofit SUDS, and Chapter 7 

presents a decision-making procedure for the design of retrofit SUDS. 

143 



CHAPTER 6 

6. RETROFIT SUDS EVALUATION - 
ECONOMIC ISSUES 

6.1. INTRODUCTION 

The high level of uncertainty associated with the financial costs (e. g. for construction, operation 
and maintenance) of SUDS schemes is considered to be a major factor that limits their use in the 
UK. This uncertainty is exacerbated by the limited UK experience of SUDS schemes, and the 
lack of published UK costing data for such devices. The SUDS design manual 
(CIRIA C522,2000) acknowledges that cost is an important factor in the evaluation of 

conventional and alternative SUDS proposals, but fails to provide any specific information as to 
how those costs might be obtained. Furthermore, the manual provides no indication as to the 

comparative costs of the different SUDS technologies that it presents. Conversely, the financial 

costs associated with the construction and operation of conventional urban drainage are well 

understood, and documented. For many UK designers/engineers the uncertainty associated with 
the costs of SUDS schemes makes them a far less attractive option than tried and trusted 

conventional approaches. 
This Chapter proposes methodologies for costing a range of retrofit SUDS technologies, and 
applies these in the context of representative contributory areas and the Meanwood urban 
drainage catchment. Unit construction costs were developed for a range of retrofit SUDS 

technologies (further details of this exercise are presented within Section 6.2). These generic 
unit costs were subsequently used to create specific costings for a set I of representative 
contributory areas (Section 6.3) and the Meanwood catchment (Section 6.4). 
It is worth noting that the costs associated with implementing new SUDS schemes might vary 
significantly from those highlighted in this Chapter for retrofit SUDS. 

6.2. DEVELOPMENT OF UNIT CONSTRUCTION COSTS 

6.2.1. Background 
Unit construction costs were developed for a range of retrofit SUDS technologies. These unit 

costs were largely based upon basic cost data from the SPONS price guidelines for Civil 
Engineering and Highways Works (SPONS, 2001: a) and Landscape and External Works 

(SPONS, 2001: b) - both of these publications present costs for a wide range of basic Civil 
Engineering work items, such as excavation, back-filling and re-grassing. It should be noted that 
the costs presented within these SPONS publications exclude Value Added Tax (VAT), 

contractor's profit margins, design or supervisory works. All cost estimates presented within 
this Chapter include a contractor's profit margin of 10%, and VAT (17.5%), but exclude 
additional costs such as those associated with design, supervision and compensation payments 
to injured parties. OFWAT's set of published set of capital works unit costs for the water 
industry (1998) was another document used in this exercise. 
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6.2.2. Presentation of example unit costs for retrofit SUDS 

Table 6.1 presents the unit costs that were compiled for a number of retrofit SUDS technologies 

- the quoted appendices contain more detailed explanations of how these costing methodologies 

and finalised costs were generated. It should be noted that the retrofit SUDS examples presented 
in this table were selected because they were considered to represent appropriate design 

dimensions for typical urban applications. For example, the infiltration trench and soakaway 

examples presented in Table 6.1 correspond to the design examples adopted in the BRE (1991) 

guidelines (i. e. in terms of the design dimensions). 

Table 6.1 Generic construction unit costs for Retrofit SUDS 

Unit construction cost Appendix: 
f f h Technology Items included in costing High Low 
or urt er 

details 
(£/item) (£/item)_ (Notes) 

Water butt (0.3 M3) Water butt (0.3 M) 

Installation 
E242.93 
/property 

LIM 
/property 6A 

Connection of feeder pipe 
Infiltration Trench: Excavation 
BRE365 (1991) design Placing of filter material 
example dimensions: Horizontal distributor pipe 
0.6 m (width) Geotextile filter membrane L99.16 E73.88 6B 
x 2.5 in (depth) Back-filling /in length /m length 
(1.5 in effective depth) Reinstatement 

Note: all pipework 225 mm 
Excludes costs of connections 

Swales: 0 Excavation (by hand) 
2m wide by 200 mm 0 Disposal of excavated soil E20 28 /m L17 71 /in deep to be excavated in 0 Reinstatement . . 6C 
existing grass verges 0 Grassing (Turfing) Compacted Loose 

Excludes cost of connecting soil material Paved or Roofed areas 
Soakaway: 6D 
BRE365 (1991) design 0 Excavation (by hand) E551.80 E453.67 To drain 
example dimensions: 0 Geotextile filter membrane /soakaway /soakaway 95M2 iMp. 

2.4 m (long) 9 Back-filling area into a 
* 1.5 m (width) Reinstatement Compacted Loose 

soil withf = 
* 2.5 m (depth) Excludes costs of connections soil material 3.3x]0'5Ws 
(1.5 m effective depth) 
Porous car-park: 0 Lighting 
Using Grasscrete 0 Drainage 
precast concrete units 9 Forecourts 
filled with top soil and Aprons f 63.33 /m2 6E 
grass seeded 0 Access areas 

But excludes approach roads 

Ponds 0 All excavation ; E55 /m3 E35 /m3 6F 
0 Pipeworks 

Separate Sewerage 0 150 nun pipe - Im depth 
below paved surface E 173.84 /in 6G 
Reinstatement to paved 

Storage Tanks All excavation 
" Fill 
" Structural work f. 518.29 /M3 E448.50 /m3 6H 
" Valves 
0 Pipeworks 
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It is worth noting that when high and low unit costs are presented for a specific technology, 

these correspond to cost differences that result from different soil conditions or materials. 
Many of the unit costs presented in this table are not standalone items, but would generally be 

used in conjunction with one, or more of the other items to produce integrated SUDS solutions. 
For example, the cost of swales would typically be considered in conjunction with the costs of 
an off-site control facility. 

It is not appropriate to compare these unit construction costs with one another at this stage, as 

the area served by each is not consistent 

6.3. RETROFIT SUDS COSTINGS FOR REPRESENTATIVE 
CONTRIBUTORY AREAS - DIFFERENT URBAN SURFACE TYPES 

Further investigations were undertaken to explore the design and cost issues associated with the 

application of retrofit SUDS to four representative contributory impervious areas (50 m2, 

200 m2,500 m2 and 2000 m2). These examples were considered as representing typical 

contributory areas to which retrofit SUDS might be applied. The costings developed for these 

representative contributory areas were subsequently adopted for use in conjunction with the 

decision-making framework presented in Chapter 7. 

For the purpose of these investigations, a single residential roof was considered to have a 

contributory surface area of 50 m2, and an institutional roof a contributory surface area of 

200 M2. 

These investigations explored the use of retrofit SUDS devices as source control strategies to 

serve single residential/institutional roofs (e. g. 50 in 2 /200 m2), or as offsite controls to serve 

groups of ten residential/institutional roofs (e. g. 500 m2/2000 M2) . Further investigations 

explored the use of retrofit SUDS for both source control and off-site control applications in 

relation to a paved surface area of 500 M2 (i. e. adopted to represent a small car-park/stretch of 

road). A summary of these representative contributory impervious areas is presented in 

Table 6.2. 

Table 6.2 Summary of representative contributory areas used to 
npnpr; kfp rnmnarafivp rnqtq fnr differant suns tpChnninnip-q 

Scenario 
Contributory 

No Surface Type Description Area 
2 . In 

A) Source control option: 50 m2 Residential Considered for a 50 M2 residential roof 
roofs B) Offsite control option: 500 M2 Considered for 10 x 50 rn2 residential roofs 

A) Source control option: 200 M2 Institutional Considered for a 200 m2 residential roof 2 . roofs B) Offsite control option: 2000 m2 Considered for 10 x 200 m2 residential roofs 
A) Source control option: 500 M2 

3 Car parks & Considered for a 500 M2 car park / road 
. Roads B) Offsite control option: 500 M2 

I I Considered for a 500 m2 car park / road 
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Specific SUDS technologies were designed to drain runoff for each of these representative 

contributory areas. The design work for these SUDS proposals was undertaken in accordance 
with relevant UK design guidelines, and these were used to generate appropriate design 

dimensions for each technology specific proposal. Tables 6.3 to Tables 6.6 present the design 

dimensions that were developed for each of these representative scenarios. It should be noted 
that these design dimensions were generated using a critical 10 year rainfall event, and a 

prevailing soil percolation rate of 4.63 x 10"6 m/s. 

Table 6.3 SUDS design dimensions required to drain 50 M2 Of contributory area 
(e. a. a sinale residential roof) 

Technology Relevant Design Design Dimensions Guidelines 

Soakaways BRE 365 (1991) 1.5 x 1.8 x 1.8 m 
(Effective depth x length x width) 

Infiltration Trenches CIRIA 156 (1996) 0.6 xIx7.5 m. 
(Vidth x depth x length of base) 

Basins CIRIA 156 (1996) 1xIxIm 
Eldth x depth x length) 

Ponds 10 yr stonn (FoS = 2) 5.3 m' 
(Volume) 

Porous Pavements CIRIA 156 (1996) 16 e (Area) 
4x4m (Length x width) 

Table 6.4 SUDS design dimensions required to drain 200 M2 Of contributory area 
laxi- a --qinnlp inqfitutional roof) 

Technology Relevant Design%uidelines Design Dimensions 

Soakaways BRE 365 (1991) 2.5 x 2.9 x 2.9 m 
(Effective depth x length x width) 

Infiltration Trenches CIRIA 156 (1996) 1x1.5 x 14 rn 
ffidth x depth x length of base) 

Basins CIRIA 156 (1996) 4 m' (Volume) 
Ix2x2m x depth x length) 

Ponds 10 yr storm (FoS = 2) 21.3 m' 
(Volume) 

Porous Pavements CIRIA 156 (1996) 63 rný (Area) 
1 

7.95 x 7.95 m (Length x width) 
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Table 6.5 SUDS Design Dimensions required to drain 500 M2 Of contributory area 
to-n- a aroun of tan residential roof or a small car nark / stretch of road) 

Technology 
Relevant Design 

I)esign ffirnensions 
Guidelines 

Swales CIRIAC522 (2000) 0.4 x 0.2 m (1: 4) 
B, -, fve x ýIeplh (. ýide-slopcs) 

Highway Construction 
L5 x 0.6 rn x length 

Filter drains I)ctails (Highways (Depth x width) (+ 150nun Diu. pipe) Agency, 1998) 

Separate sewerage Manning's formula 150 mm 
(Diameter) 

Soakaways BRE 365 (1991) 
2x5.3 x 5.3 in 
(Ejjýclive depth x length x wid1h) 

Infiltration Trenches CIRIA 156 (1996) 
1xIx 51 m 
(Width x depth x length of base) 

Basins CIRIA 156 (1996) 
_ 1x3.2 x 3.2 m 

(Depth x length x width) 

Ponds 
10 yr storm 53.3 M3 
(FoS = 2) 

Porous Pavements CIRIA 156 (1996) 
1 

157 m'(Area) 
1 12.5 x 12.5 m (Length x width) 

Note: Shaded rows denole conveyance oplions 

Table 6.6 SUDS Design Dimensions required to drain of 2000 M2 contributory area 
(e. a. a aroun of tan institutional roofs) 

Technology Relevant Design Design Dimensions 
Guidelines 

Swales 
CIRIAC522 (2000) 0.4 x 0.2 m (1: 4) 

Base x depth (, 5ide-s1oj)es) 

Filter drains II ighway Construction 1.5 x 0.6 in x length 
Details (HMSO, 1998) (Depth x width) (+225 n7m Dia. pipe) 

Separate sewerage Manning's formula 
225 mm 
(Dianielet) 

Soakaways BRE 
-3365 

(1991) 
2.5 x 9.65 x 9.65 m 
(Effiective depth x length x width) 

Infiltration Trenches CIRIA 156 (1996) 
1x1.5 x 143 rn 
(Width x depth x length of base) 

Basins CIRIA 156 (1996) 1x6.6 x 6.6 m (Depth x lengath x width) 

Ponds 10 yr storm 213.3 m3 (FoS = 2) 

Porous Pavements CIRIA 156 (1996) 
629 M2 (Areu) 
25 x 25 m (Length x width) 

Note: Shaded rows denote conveyance options 

See Notes on Table 6.3 to 6.6 (Appendix 6) for further details on the derivation of these design 

dimensions. 

Costings were subsequently generated for each of these design solutions and then compared for 

each contributory area. The estimated construction costs of each of these scenarios are presented 
in Table 6.7. High and low cost estimates are presented for those technologies that have a large 

degree Of Uncertainty attached to their cost. Further details of these costing calculations are 

presented within the cited appendices. 

148 



CHAPTER 6 

Table 6.7 Constructinn rnqt-, nf altprnativp -qi in-q tprhnninnip-c. 
Technology Design option Construction Costs M Appendix 

(Surface area served) Highest Lowest 
SoakaNvays 50 m2 324.53 268.94 6D 

200 in 767.48 623.18 
500 ni-F 3055.77 2413.15 

2000 m2 11819.15 9156.17 
Infiltration 'I renclies 50m 1 638.78 503.26 613 

200 M-' 1622.13 1210.19 
500 m 7- 4959.63 3853.54 

2000 m2 16568.86 12361.26 
Basins 50m 91.20 80.51 6F 

200 m-F 266.57 223.81 
500 rný 588.11 478.65 

20067nýý 2071.69 1606.08 
Ponds 50 M2 391.10 6F 

200 M2 1365.30 
500 m T- 3413.30 

2006nýý 4716.10 
Porous Pavements 50 in 

2 1013.32 6E 
(costs for new car parks) 200 M2 3989.95 

500 n12 9943.20 
2000 m2 39836.14 

POI-OLIS PaVC111CMS 
(replacement surface) 

Price per in 2 27.13 6E 

Swales Price per m 20.28 17.71 6C 
Filter drains Price per rn 61.44 6B 

1 Separate seweragge Price er in 173.84 61 

Table 6.7 presents direct construction costs that were generated for these infiltration devices, 

and neglects the secondary costs associated with the connection of the contributory 
impermeable surface to these devices. An indication of the conveyance costs is presented (in 

unit terms) in the shaded part of the table. Figure 6.1 graphically portrays the comparative 

construction costs of alternative SUDS technologies to drain a 50 rn 2 contributory impervious 

area. 

1200 

looo 
800 

r_ 

o 600 

400 

200 

0 

0 High E Low_ 

Figure 6.1 Construction costs of alternative SUDS technologies - 50 M2 contributory area 
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These results indicate that infiltration basins represent the cheapest form of SUDS device, 

followed by soakaways, ponds, infiltration trenches and porous pavements. For example, in the 

50 m2 contributory area scenario the cheapest options are basins, soakaways are 3.3 times more 

expensive, ponds are 4.9 times more expensive, infiltration trenches are 6.3 times more 

expensive and porous pavements are 12.6 times more expensive (these comparisons are based 

upon the high costs for specific technologies). The large variation in these different technology 

costs underlines the need for accurate SUDS costings, and reinforces the fact that economic 

issues can have a significant bearing on the viability/feasibility of potential SUDS schemes. 

These results are discussed in further detail within the following paragraphs: 

Basins - It is not surprising that infiltration basins proved to be the cheapest form of SUDS 

technology, as they require less excavation than other surface-based SUDS devices (e. g. ponds) 

and fewer additional materials for backfilling than sub-surface SUDS (soakaways, infiltration 

trenches and porous pavements). 
Soakaways - Similarly, there is little surprise that soakaways were the next cheapest option 

after basins. This largely relates to the fact that they are the cheapest sub-surface option because 

excavations are concentrated in a specific location rather than being spread across a much larger 

area, as with infiltration trenches and porous pavements. 
Ponds - Ponds represent the more expensive of the two surface-based SUDS devices 

investigated in this study, and were also shown to have higher construction costs than 

soakaways. The high comparative costs of ponds schemes largely relate to the safety factor 

(FOS) of 2 that was included into their design in order to allow runoff from previous storms to 

be accommodated in such structures. Planting and landscaping are other factors that increase the 

costs associated with ponds. 
Infiltration trenches - represented the second most expensive of the three sub-surface based 

SUDS devices investigated in this study. This largely relates to the fact that the excavations 

required for the construction of such devices are much less concentrated than those associated 

with soakaways. 
Porous pavements - represented the most expensive of all the SUDS devices investigated in 

this study. This largely relates to the fact that these devices were retrofit to paved areas, whereas 

all the other technologies were applied to green areas. The porous pavements approaches 

therefore incurred additional site preparation costs. 
It is worth noting that the costs associated with porous pavements appear to vary linearly with 

respect to area served for the other contributory area scenarios (200 rný, 500 m2 and 2000 m2 ). 

However this is not the case for all technology types. For example, in the case of ponds the 

additional costs associated with serving additional areas diminish as the area served increases in 

size, this relates to the economics of scale (i. e. as applied to associated excavation, planting and 

waterproof lining costs). 
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These costings formed the basis for the comparative costs of alternative SUDS technologies 

used in the flow-chart methodologies that are presented in the next Chapter. 

6.4. RETROFIT SUDS COSTINGS FOR MEANWOOD CATCHMENT 

6.4.1. Background 

This Section presents a further set of construction costs that was specifically developed for the 
Meanwood catchment. These costings were generated for each of the technology-specific SUDS 

proposals presented for the Meanwood catchment in Chapter 4, and comprise of a combination 

of unit costs (e. g. cost per soakaway) and secondary unit costs. An example of a secondary unit 

cost is the costs associated with connecting typical Meanwood property roofs to local swales. 
Once again, detailed descriptions of the cost estimates are presented in the cited appendices. 
Table 6.8 illustrates how construction costs were developed for the example of a soakaway 
1.5 m (depth) x 1.8 in (width) x 1.8 in (length). These soakaway costs were specifically 
developed for residential properties in the Meanwood catchment - this is demonstrated by the 
fact that costs were generated for sandstone conditions, and that turf was adopted in preference 
to grass seeding for the reinstatement of excavated gardens. Customised costs generated for 

alternative SUDS devices applied to Meanwood are presented in Table 6.9. Once again, all 
design work was conducted in accordance with relevant UK guidelines, and all costs presented 
in this table were generated using the same basic costing methodologies as adopted for the 

previous Section. Complete workings for each of these costings are presented in the cited 

appendices. 
A secondary set of construction unit costs was also developed for application to the Meanwood 

catchment (Table 6.10) - these relate to the secondary unit costs that were considered to be 

associated with each of the technology-specific SUDS design proposals presented in Chapter 4. 
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CHAPTER 6 

6.4.2. Results 

The construction unit costs presented within the previous Sections were subsequently used to 

generate costings for each of the 'technology specific' SUDS proposals presented within 
Chapter 4. 

Source control proposal 1: Retrofit Soakaways - Table 6.11 presents the expected 

construction costs for the Retrofit Soakaways proposal (Option 1) highlighted within Chapter 4. 

This estimate was generated on the premise of 426 properties and unit costs for a 
1.5 x 1.8 x 1.8 m volume soakaway and for the connection of a typical residential roof 
(Meanwood) to a soakaway. 

Table 6.11 Source control nronosal I- Soakawav Costs 
Proposal Roofed area Soakaways Unit costs: Total costs (L) 

and No. of dimensions A. Soakaway 
properties required B. Roof 
served by (BRE, 1991) connection 
soakaways 

A. ) L 317.62 
Soakaways to every roof 3.0221 ha 1.8 x 1.8 /soakaway L 178,183 
within sandstone region* (426 properties) x 1.5 m B. ) f 100.65 

/roof 
- See Appendix 6D for more details 

11-1 
These soakaway dimensions were generated using the BRE (1991) guidelines for a 1: 10 year 
design storm event and the prevailing conditions of the Meanwood catchment. 

Source control proposal 2: Retrofit Infiltration trenches - Table 6.12 presents the 

anticipated construction costs for the Retrofit Infiltration Trench proposal (Option 2) 

highlighted in Chapter 4. This estimate was generated using unit costs for infiltration trenches, 

and secondary connection costs (i. e. the connection of atypical residential roof to an infiltration 

trench). These secondary unit costs were based upon an average distance of 18 m between a 
typical roof and the proposal infiltration trench. The derivation of this average distance is 

presented with Appendix 6B. 

Table 6.12 Source control nrooosal 2- Infiltration Trench Pronosal Costs 
Proposal Roofed area Required Unit costs: Total cost (; E) 

and No. of dimensions A. Per metre 
properties (BRE, 1991) oftrench 
served by B. Roof 
infiltration connection 
trenches 

Construction of 1065m of 
Width 0.6 m. x A. ) 

infiltration trenches to serve 0.4728 ha Depth Imx High: E85.17 /rn 
86 properties within (86 properties) 

Length 1065 rn B. ) f 111,478 

sandstone region* 
(BRE 365, Z 241.53 / roof 

1 
1991) 

See Appendix 6B for more details 
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These infiltration trench dimensions were generated using the BRE (199 1) design guidelines for 

a 1: 10 year design storm event and the prevailing conditions of the Meanwood catchment. 
Conveyance Component: Retrofit swales - The costs generated for the swale component of 

the off-site proposals highlighted within Chapter 4 are presented within Table 6.13. These 

estimates were generated using unit costs for swales, and secondary connection costs 

(i. e. the connection of a typical roof/paved area to swale). The derivation of these costings is 

presented within Appendix 6C. 

Table 6.13 BeSt CaSe Me2nwond SW2leS Prooosal Costs 
Roofed or Unit costs Total cost 

Proposal (Paved) Length of 1. Swale /m 
area and No. Swale required 2. Roof 
of properties (M) connection 

served by 3. Paved inlet 
soakaways 

Swales Option A: 1 8998 
1) 

E19 94 /m* f 133,864 + 
Disconnection of all ROOFS . 246 properties 

4930 . 2) costs of offshe 
adjacent to swales f 144.55 / roof control 

Swales Option B: E19.94 /m L 155,492 + 
Disconnection of all PAVED (2.8860) 4930 3) costs of offsite 

areas adjacent to swales L 232 / 20 m of control 
swale length** 

Swales Option C: E 191,052 + Disconnection of both 1.8998 4930 1., 2. & 3. from 
costs of offsite ROOFED and PAVED areas (2.8860) above control 

adjacent to swales 
f 19.94 Im length - Swales within sandstone soils 

1232.00 Im - Remove kerbstone, and replace with kerb drainage unit (assume I every 20 m ofswale) 

Off site control proposals 1,2 and 3- Costs were generated (Table 6.13) for the infiltration 

component of the Chapter 4 'off-site' proposals (Infiltration trenches, Porous pavements, and 

Infiltration basins). These costs were compiled using the primary unit costs from Table 6.1 and 

Table 6.9, and additional costings presented in Appendices 613,6E and 6F. Three scenarios, 

which related to the three different conveyance strategies highlighted above, were explored for 

each of these 'off-site' control devices. 

The combined costs of these off-site proposals with the corresponding conveyance proposal are 

presented within the next Section (Table 6.14), alongside a summary of the other Meanw9od 

SUDS proposals highlighted within Chapter 4. 

6.4.3. Summary 

Table 6.15 presents the construction costs that were generated for each of the Chapter 4 

technology specific SUDS proposals for Meanwood. This table also presents the amount of 
impervious area that was disconnected by each proposal, and its subsequent level of 

perfon-nance. It should be noted that the system performance indicators generated in Chapter 5 

were used for this analysis. 
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T2ble 6.14 Costs assOCi2ted with Ma2nwood offsite controls 
Technology Contributory area Required Unit costs Total cost 

(M 2) dimensions (f / item) (1) 
Infiltration trenches 1.8998 ha (Roofs) 720 xIx3m E 181.16 /m E130,433 
(See Appendix 6B) 246 properties (Ixwxd) 

2.8860 ha (Paved) 1090 xIx3m. 
(I xwx d) f 181.16 /m. E197,461 

4.7858 ha (Both) 1800 xIx3m f 181.16 /m E326,088 
(1.8998ha + 2.8860ha) (I xwx d) 

Porous pavement 
(See Appendix 6E) 1.8998 ha (Roofs) 77 x 77 x 0.2* rn 

(Ixwxd) 63.3 3f hn2 L375,484 
246 properties In2 Area = 5929 

95 x 95 x 0.2*m 
2.8860 ha (Paved) (Ixwxd) 63.33 f /mý L571,553 

Area = 9025 m2 

4.7858 ha (Both) 123x 123x 0.2'rn 
(Ixwxd) 63.33 f /m2 L958,120 (1.8998ha + 2.8860ha) Area = 15129 m2 

Infiltration basin 50 x 50 x 0.5'*m 
(See Appendix 6F) 1.8998 ha (Roofs) (Ixwxd) L63 983 

246 properties M2 Area = 2500 , 
Vol. = 1250 m3 
65 x 65 x 0.5"m 

2.8860 ha (Paved) (Ixwxd) 
Area = 4225 rný 

E107,699 

Vol. = 2112 5 M3 
80 x 80 x 0.5**m 

4.7858 ha (Both) (I xwx d) V62 733 
(1.8998ha + 2.8860ha) Area = 6400 rný , 

Vol. = 3200 m3 
Porous pavement: 0.2 rn deep: (50 mm. bedding layer + 15U mrn sub-base). 
Typical figures for permeable concrete block paving 
0.5 m is the minimum design depth recommended within SUDS CD (UWTC, 2000) 
CIRIA 156 design calculations that were conducted for these proposals indicated that a 
minimum depth of 0.3 m was required for each of these cases 

None of the technology specific proposals presented in Table 6.15 achieve a level of coverage 

that is comparable with the Optimum Proposals highlighted in Chapter 4. This relates to the fact 

that it is unfeasible to completely serve either of the two optimum infiltration-based proposals 
(Optimum Proposals I and 2), using a single technology type. 

Table 6.15 presents construction costs in both direct, and unit terms (i. e. per square metre of 

impermeable area disconnected). 

It is evident from Table 6.15 that Source Control Proposal 1 represents the cheapest of the 

infiltration options reviewed in this Section (i. e. at 5.90 ; E/M2 in terms of unit costs). However, 

this approach is only applicable to the 3.022 ha, roofed areas contained in Meanwood's 

Sandstone region. 
It should be noted that, although infiltration basins were demonstrated to be the cheapest retrofit 

source control SUDS by the representative surface area investigations presented in the last 

Section, they were not considered as appropriate for source control applications in the 

Meanwood catchment due to space restrictions in residential plots. 

157 



0 

il-, % 
m E 
E 
:3 

cn 

W 

r- CIA rq 

a 0 llý 
fl) 

(11 
Cl) ýo C: ) 

I 
rý kn 

;ý 
2 -t -ý 

I, -C A- - 
E 

(n 

00 
00 
r- 

r- 00 r- 
C', It 7T 

fn tn - C) r1l 

00 m 00 0" C) r- 

ýd 
00 

I-- - crý r--: \ . t ýo (: -ý a , in r1l \, o 
rl- N 

- r) 

'a mu 
0,0 4.0 f. ý C 6. CJ - = 

tro 
I trý C) C) C) \C ýQ ýo ýo ýo 1ý0 r- , .0., 

% 
r 

RT 

-t 
CA 
0 

r- 

ý 
Cý C) C) C) 00 00 00 00 00 00 

_= E C6 r Cý Cý C, 00 00 00 1- t- t- 0- ,6 - 

-0 (ad Cj 
C) C) CD C) C) C) 

C) 
C7, Cý CD C) C) 

C) C) 

CIO 

CD C) C) 
00 00 00 
00 00 00 

00 00 00 
00 00 00 

gL. ý0- C, C, ý 16 

"B 
> 'E m 00 - C) C) C) all Cý Cý C, a, Ol 

00 00 00 
.E 

CL U . 4- 
0 &- v cz E E CL Q ) U CL 

. 
r- >a > 

cz 
>r 

2 CL o 0 Cl. C) 0 
C> cz M r 0M CZ u t; :3 Zj L- w L- 

rq Cf) rq M 

.s ., = t 

Eýý 0ý. 

= tD C4 ob-o 

0 0 V 
- . 

0 00 "a - -0 E -0 0 
kr) CIS 0 cz m m C. " > Cj 

1) r \Z) 
C= " 'A "a 

01) ýA 
- 

"U 
bl) " 

" cz 
bD 

20 -o r- -0 - cz - = Q) 
C/I 

* -0 
C, _ ,M - 'A 

m0 7z -a u Lt > 
0 o C4 0> cz 0 C: L . 

cz I 
cz 

(A CZ r- 

u 

p u CL 0 o 
.3 

00 



CHAPTER 6 

It is considered that these off-site scenarios may be applied to 2.886 ha of paved area and/or 
1.900 ha of roofed area within the Meanwood catchment. Infiltration basins are the cheapest, in 

terms of unit costs, of the three off-site scenarios options considered. 
Chapter 7 explores the issues associated with compiling multi-technology retrofit SUDS 

proposals. This process obviously requires a decision to be made as to which SUDS technology 

takes precedence, when two or more devices are considered viable for a particular location. In 

most cases it is likely that this decision will be determined by cost effectiveness. An indication 

of cost effectiveness is presented in the last column of Table 6.15 (i. e. the unit cost to 

disconnect one m2 of IMP area) for each of these technology specific proposals. 
It is interesting to note that Source Control Proposal I is cheaper than all of the off-site based 

proposals. This observation supports the 'treatment train concept' (Chapter 2), in which source- 
based solutions would be preferred to the use of off-site controls. However, the cost of 
disconnecting I M2 of IMP using Source Control Proposal 2 (infiltration trenches) is more than 

four times that associated with Source Control Proposal I (soakaways), and perhaps surprisingly 

considerably more expensive than many of the off-site controls. This reflects the fact that this 

approach requires its own conveyance network (i. e. to convey runoff from the roof to the 

property's boundary with the field, with the infiltration trench is located). It might be fair to 

consider Source Control Proposal 2 as an off-site approach. However, for the purposes of this 

study this proposal was considered a source control approach because the length of the 

conveyance devices it required were much smaller than those required for the other off-site 

control proposals. This factor means that care should be exhibited when applying these 

observations as a blanket guide. 
None of the technology specific proposals explore the application of retrofit storage-based 
SUDS to the Meanwood catchment, or the associated costs. This relates to the fact that the 

simplistic modelling techniques employed for optimum and best-case infiltration SUDS 

proposals in Chapter 5 (Section 5.3.2), were not deemed appropriate for storage-based, or 
integrated (infiltration and storage-based) SUDS proposals. It was considered that these SUDS 

proposals should be modelled explicitly using the HydroWorks catchment model, but this 

avenue was not pursued due to the time constraints of this project. 
However, it is envisaged that the technology specific proposals, and associated cost data, 

presented in this Chapter for infiltration/conveyance SUDS could be used as a starting point that 

could be supplemented with storage-based SUDS. A similar concept was presented in Chapters 

4 and 5, in which Optimum Proposals 3 and 4 both consider the use of supplementary SUDS 

storage in addition to the infiltration SUDS considered in Optimum Proposals I and 2. The 

costings procedures associated with storage-based devices (e. g. ponds and tanks) are already 

well established, and presented explicitly in the SPONS (2001) publications. Further details of 
the unit costs of storage SUDS are presented in Appendices 6A, 6F and 6H. 
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It should be recognised that the costings, presented in this Chapter largely relate to the primary 

costs associated with construction, and do not reflect more long term (whole-life) cost issues 

such as maintenance and replacement, and need to address catchment-wide implications of 

surface disconnection. It is worth noting that reduced sewer flows and volumes to treatment 

may have important implications in some catchments, either for operational performance or cost 

or both. The importance of whole life costs to the assessment of retrofit SUDS is acknowledged, 
but the subject is not directly addressed here due to the time constraints of this research project. 
It is therefore recommended that further work be undertaken to more fully explore these whole 
life cost issues. It should be noted that some cost data appropriate to the maintenance of SUDS 

is presented in the SPONS guides (2001), including items such as grass-cutting. However, there 

are other SUDS maintenance costs (e. g. costs associated with cleaning filter-drains or porous 

pavements) that may need to be derived by other means. 
The following Chapter presents a decision-making framework that was developed for the design 

of retrofit SUDS using the methodologies outlined within this and preceding Chapters. This 

decision-making framework is subsequently reapplied to the Meanwood catchment, and used to 

generate a multi-technology retrofit SUDS proposal. 
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7 RETROFIT SUDS EVALUATION - 
DECISION MAKING FRAMEWORK 

7.1 INTRODUCTION 

7.1.1 Background 

The design of cost-effective SUDS-based solutions for problem urban catchments is not a 

straightforward process. The design work conducted in conjunction with the Gipton and 

Meanwood case studies (highlighted in previous Chapters) incorporated the use of site visits and 

map-based investigations. Site visits were required to establish a number of catchment 

characteristics, such as the density of buildings and availability of public and private green 

space; and map-based investigations to determine other catchment characteristics, such as slope 

and geology/soil conditions. The data collected from these investigations underpinned the 

decisions as to which (if any) SUDS technologies were considered feasible - i. e. this data was 

assessed against SUDS design constraints (such as land-take, slope, infiltration capacity and 
local Building Regulations) in order to rule out inappropriate technologies. 
However, the main problem with the approach outlined above is that the process of assembling 

the relevant information and designing the SUDS-based rehabilitation works was time- 

consuming and not well structured. Although the case study catchments were both found to be 

amenable to SUDS-based solutions, considerable time might have been spent in assembling 
information only to discover that SUDS-based proposals were basically unsuited to the 

catchment. 
Added to these problems is the fact that the UK designers currently lack both experience and 

guidance in relation to the financial costs associated with SUDS technologies. The importance 

of financial issues to the design of SUDS has been highlighted by previous UK design 

guidelines (CIRIA 124,1992; CIRIA 522,2000). However, none of these publications have 

attempted to quantify the costs associated with these devices. 

It is likely that these high information requirements, and the uncertainty surrounding the design 

and cost of retrofit SUDS, may be discouraging practitioners from considering such proposals, 

even where they might represent a cost-effective alternative to conventional rehabilitation 

procedures. 
This Chapter presents a 'decision making' framework/methodology that is intended to address 

some of these problems. It is envisaged that this framework could be used as a design tool to 

assist designers/engineers compile both retrofit SUDS and integrated (SUDS/conventional) 

solutions for comparison with conventional storm water management solutions. This 

methodology builds upon the experience attained through the case studies and investigations 

that have been conducted in conjunction with this thesis. The methodology also draws from 

other independent investigations that were reported in Chapter 2 (Literature Review) and 
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technical guidance provided in relevant UK design guidelines (CIRIA C522,2000; CIRIA 124, 

1992; Cl RIA 15 6,1996; B RE 3 65,199 1). 

7.1.2 Structure of Chapter 

This Chapter consists of three distinct Sections. The first Section presents the retrofit SUDS 

decision-making tool, and outlines the basic rationale upon which this is based. The second part 

explores the present and future contexts in which this tool might be used; and the last Section 

applies this tool in the context of the Meanwood case study catchment. 

7.2 PRESENTATION & JUSTIFICATION OF PROPOSED DECISION- 
MAKING TOOL 

7.2.1 Conceptual basis for Proposed decision-making tool 
The decision-making tool presented in this Chapter provides a crude framework for compiling 

and ranking alternative SUDS-based options. This framework is based upon four key 

concepts/criteria that are considered to affect the design of retrofit SUDS: 
1. The Type of urhan surface to which the SUDS device is to be applied 
2. The Surface water management train concept - i. e. whether the SUDS device is 

intended for use as a source control, conveyance structure or an off-site control 
3. The Mode of operation by which the SUDS device manages stormwater runoff 
4. The Costs associated with the SUDS device. 

The following paragraphs highlight the importance of each of these criteria to the viability of 

retrofit SUDS, and way in which they were incorporated into the proposed decision making 
tool. 

Type of urhan surface - The case study investigations indicated that the viability of retrofit 
SUDS might be strongly influenced by the type of urban surface to which they are applied. For 

instance, it has been speculated (Sections 4.2.1.1 and 4.2.12) that the application of retrofit 
SUDS schemes to large-scale contributory surfaces, such as institutional roofs or car parks, 

would be easier to promote, implement, manage and monitor than alternative schemes intended 

for smaller contributory surfaces, such as residential roofs. 
For the purposes of this study it was considered that all urban catchments could be broadly sub- 
dived into four impermeable surface types: 

1. Institutional roofs - hospitals, schools, offices, churches, (for the purposes of this 

study any single roof larger than 200 m2 is defined as being an institutional roof) 
2. Car parks and other lightly trafficked paved areas - such as pedestrianised. streets 

and school playgrounds 
3. Residential roofs - for the purpose of this study any single roof smaller than 200 m2 

is defined as being a residential roof 
4. Roads and all other well traffickedpaved areas 
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Institutional Roofs 

Ease of 
promotion, Car-parks (& lightly trafficked paved areas) 

implementation, 
monitoring and 

maintenance Residential Roofs 

Highways (& well trafficked paved areas) 

Figure 7.1 Preferred ranking of impermeable urban surface types 

The proposed decislon-makim, tool recorrimends a preferred ranking of these inipernicable 

surface types, in relation to their perceived suitability for use in conjunction with retrofit SUDS 

devices (Figure 7.1). Tile tool recommends the use of retrofit SUDS devices in conjunction with 

institutional roofs in preference to car parks, then residential roofs and finally highways. The 

rationale that supports this recommended hierarchy follows: 

0 The application of retrofit SUDS to Institutional Roofs and Lightly trafficked car 

jmrkslothei- I)aved m-eas was considered to be preferential to their use with other surface 

types. This relates to the assumption that a few large-scale schemes would be easier to 

implement, managge and monitor than many small-scale schemes (Sections 4.2.1.1 and Z: ) 
4.2.12). 

0 Insfilittionul Roqj, ý were considered to be more appropriate for use in conjunction with 

retrofit SUDS than Light1v irafficked car parkslother paved areas. This relates to the 

additional water quality problems associated with paved runoff. Additional pre- 
infiltration treatment facilities are usually required for runoff infiltrated frorn paved 

areas. Furthermore, storage facilities that receive runoff from paved areas often develop 

sedinientation/water quality problems. 

0 The benefits of applying source control SUDS to institutional, rather than residential, 

properties \\ere discussed previously (Sections 4.2.1.1 and 4.2.12). These largely relate 

to the comparative case of construction, monitoring and maintenance associated with 

their application in an Institutional rather than a Residential context. 
The use of retrofit SUDS in association with Residential roofs was considered to be less 

viable than for Instinitional roofs and car parks due the inherent logistical problems 
associated with inanaging/monitoring such schemes, and the limited opportunities for 
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introducim, large infiltration or storage facilities. However, soakaways might constitute 

a valid option in some instances, given appropriate soil conditions. 

0 The \N, ater quality problerns associated with runoff frorn Lightly trafficked carparks & 

paved areas were not considered to be as significant as those from Roads & other well 

trafficked paved areas. 

These observations were made in relation to the case study investigations presented in the 

preceding Chapters, and therefore specifically relate to the use retrofit SUDS. 

Surface water maiiagetiteitt traiii - The proposed decision-making tool recommends the use of 

source control SUDS devices in preference to conveyance and off-site controls (Figure 7.2). 

This hierarchy is drawn from the 'surface water management train'. 

Source control SUDS 

Conveyance and Offsite controls SUDS 

Figure 7.2 Preferred ranking of SUDS according to management train concept 

The 'surface water management train' concept was originally developed as part of the SUDS 

design manuals (CIRIA. 2000). and illustrates how integrated SUDS schemes might be used to 

alleviate/elirninate flood ing/pol I ution problems, and gives consideration to a number of 

sustainability criteria, Including cost. It also demonstrates how SUDS technologies can be used 

in series to prooressively change the quality, and/or quantity, of surface runoff passed down 

through tile urban drainage catchment. Further details of the 'surface water management train' 

concept arc presentcd in Section 2.5.10.1. 

Mode of operation - The classification of SUDS according to their function (mode of 

operation) is not a new concept (CIRIA Report 124,1992; EA/SEPA, 1997). However, the 

proposed decision-making tool develops this concept into a preferred 'Mode of operation' 

ranking scheme for retrofit SUDS that is purely based upon their primary hydraulic mechanism 
(i. e. the main way in which they provide hydraulic control of peak storm runoff flows). 
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0 Infiltration SUDS r0 
0 

Suitability for 

addressing 
hydraulic Disposal SUDS CL 

problems in 0 

overloaded urban 
4- 
0 

catchnients 
Storage SUDS 

0 

Figure 7.3 Preferred ranking of SUDS according to mode of operation 

The tool recommends tile LISC of hifiltralion SUDS, in preference to those that utilise surface 

disposal, storage and reuse techniques (FigUre 7.3). This ranking scheme was also developed 

from observations made in relation to tile case study investigations presented in the preceding 
Chapters. Tile rationale that supports this hierarchy follows: 

0 Retrofit SUDS devices that primarily Utilise Infiltration and/or Disposal mechanisms 

were considered to be more effective for application to hydraulically overloaded urban 

catchnients than those SUDS devices that rely on storage. This relates to the fact that 

the Injiltralion and Disposal options effectively remove runoff from the surface 

water/urban drainage system, rather than attenuating it within the surface water system. 

0 Infillmlion, Disj)os(il and %rage SUDS options were all considered to be preferable to 

Reuse options due to high economic costs associated with most reuse options. It is 

acknowledged that less complex reuse options (such as schemes that reuse storage roof- 

water for Irrigation purposes) may be more economically viable than other more 

complex systems. However, unless these schemes include large storage facilities (as 

described for tile 'storage' option) it is likely that they will have a very limited affect on 

reducino/climinating hydraulic problems within overloaded urban catchment (i. e. their 

use will have limited effect on peak stormwater flows). 

0 The Injillration and Local Disposal options represent slight pollution threats to 

groundwater and Surface water resources respectively, and as such may be subject to 
discharge restrictions within some sensitive locations (such as Source Protection Zones, 

SPZs - as described in Section 2.5.5.5). However, Infiltration options are considered to 

be lower risk than surface Disposal, due to the inherent water polishing effects 

associated with the infiltration process. Furthermore, it is considered that urban 

catchments Nvill generally contain more opportunities for Infillration devices than Local 

Disposal techniques. 
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It should be noted that the current hierarchy ranks SUDS devices according to hydraulic factors 

- i. e. how they control peak storm runoff flows. However, it is conceivable in future that these 

procedures might be extended to consider other modes of operation, such as runoff treatment or 

amenity value. 

Cost - The financial costs associated with the construction, operation and maintenance of 

retrofit SUDS are of obvious importance to the design process. It should be noted that some 

costs issues are implicitly considered by the three preceding criteria. However, the last of the 
four key criteria adopted for this proposed decision-making tool explicitly addresses the issue of 

cost. This recommended hierarchy ranks a range of retrofit SUDS technologies according to 

associated construction costs (i. e. with cheapest technologies preferred to expensive 
technologies). This hierarchy is underpinned by the construction costs developed in Chapter 6. 

7.2.2 Meta-hierarchy 

The order in which these four criteria are presented above corresponds to the order in which 

they are implemented in the proposed decision-making tool. This meta-hierarchy was 

structured/ranked in terms of the level of detail/complexity associated with each of the four sub- 
hierarchies (surface type, water management train, mode of operation and cost). 

The first hierarchy (surface type) provides a crude indication as to which impermeable surface 

types are considered most appropriate for the application of retrofit SUDS. The management 

train hierarchy recommends a preferred order for generic SUDS groupings (source controls, 

conveyance and off site controls) for application to the explored surface type. The mode of 

operation hierarchy presents a recommended set of rankings for different SUDS approaches, in 

relation to their primary hydraulic function. This ranks SUDS approaches in terms of those 

considered most appropriate for addressing the hydraulic problems associated with overloaded 

sewer systems. The final hierarchy uses the costs developed in Chapter 6 to recommend a 

preferred ranking scheme for specific SUDS technologies. 

The fact that these hierarchies are ranked in terms of complexity (i. e. in terms of the catchment 
data required to perform the assessment) means that the initial top hierarchies may be used to 

perform crude viability assessments on a catchment. These crude investigations would indicate 

whether it was worth pursuing more detailed studies, which utilise subsequent hierarchies to 

explore specific SUDS groupings, mechanisms or technologies. 

It should be noted that the proposed decision-making tool provides a crude framework for 

generating and ranking prospective SUDS options. This tool should not be viewed as a 

prescriptive set of design guidelines, but more as a flexible/adaptable set of procedures to assist 
designers compile and evaluate alternative SUDS-based options for problem catchments. It is 

not envisaged that designers would always adopt SUDS schemes that fully comply with the 

ranking schemes presented in this tool, as characteristics/circumstances that relate to specific 
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catchments may mcan that designers have to adopt their own criteria for tile design/cornparison 
I 

of alternative SUDS-based proposals. 

7.2.3 Proposed decision-making flowcharts 

Decision-inaking flowcharts were developed for each of the four main urban surface types 

highlighted ill the previous Section. It is recommended that these flowcharts be employed in the 

following order: Institulional roofs, car parks, residential roofs and finally highways, as this 

corresponds to the preferred ranking scheme highlighted in tile previous Section. 

The following Sections present tile decision-making flowcharts that were developed, from the 

previous discussions, for each of the four main urban surface types. These Sections contain 

basic guidance oil how these flowcharts should be used. Issues that are cornmon to all four 

surface types are discussed at length with respect to tile 'institutional roofs' flowchart (i. e. the 

first of the four surface types discussed within the following Sections). Other issues that are 

more specific to individual Surface types are discussed within the relevant Sections. 

7.2.4 Decision making flowchart - Institutional roofs 

This Section presents the 'dccision-making' flowchart that was developed for the design of 

retrofit SUDS for application to InstitLitional roofs. This methodology was developed from the 

concepts/discLission presented in the previotis Section. 

The initial flowchart question: 'Are roo connected lofoullcombined sysfem? ' is an important ýfv 

one, in so much that if the investigated Surface type, in this case 'institutional roofs', is not 

connected to the local sewer system then there is little value in exploring their use in 

conjunction with retrofit SUDS. 

mm 
......... I ..... 01 p- Infiltration ool. Disposal ........ 

I ..... Poo- Storage Reuse l 

SUDS SUDS Sul SUDS 

Figure 7.4 Outline of flowchart methodology for institutional roofs 
(Source control sub-section: Part 1) 

7.2.4.1 Smirce-confrol SUDSsub-section 

Tile second statement box recoinniends that the viability Of SOUrce-control SUDS is explored. 

This statement box provides the heading for the first of three sub-sections considered in this 

flow-chart, tile other two relate to the viability of conveyance and off-site controls. Source 

controls were considered First as their use was considered to be preferential to both conveyance 

and off-site control SUDS (see previous Section). 
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Figure 7.5 Proposed decision-making flowchart for the design of retrofit SUDS (with respect to Institutional Roofs) 



Infiltration Disposer ........ .... 111. Storage ........ .... 00, Rouse 
SUDS SUDS SUDS SUDS 

1 Suitable scil 1 Is there a local niesens of 1. Is alndent space 1 Isr"eafeasbie 
percolation rate7 cisposel, available for ccratruction? option 7 

(5 4 63 x 10' ftbilt) leg river) See Chapter 4 Note There is 
Sao Matter 4 Note these should be 2. Water table level ? more Potential for 

2. Groundwater adjacent watercourses (Water table should never, ralrofflimg complex rmse 
cortarninetion rl sk? - to which runoff may be reach the bass of device) schemes to 
(Some discharges diverted withod the need Sao Chapter 4 institutional buildings 

restricted in GWP Zone 1) for extiens" conveyance 3. SLMciwt capacity than most domestic 
See Chapter 4 to another location I" storms ? properties 

3. Water table level 7 2. Are c1scharges Sao detailed gwilelines 
(Water table should rwvw acceptable? 4 Is o,, erfloý drected 
reach the base ofdavice) (a g. discharge consents to sewer ? 

See Chapter 4 Water quality Nwt no arifiltrati-irsuis 
4. SLIM cient available Quantities - flooding) 

space for ccinstruction? 
Set ChWbr 4 

5 EUIcing Reglabý ? 
(Infiltration devices must 

be ý5m from any building) 
See Chapter 4 

6 Other is s, 
Responsibility/Martenterce, 

Safety (eg schods) 
Sao Chapter 4 

7 Check capacity of device 
(Detailed design 
caAculsbons) 

See d. tgd guidelms 
Guide to Viable technologies and associated constrution costs- 
(0. denotes FO-E2000 per device - for a 500 M2 contributory surface) 
Ilk- rAnresents lowest cost estimate. > hiahest. T denotes uncertaintv) 

A. ) Basins A. ) Redirect to A. ) Basin A. ) Rouse 
11. watwcourse POl >>>> 

B. ) Soakaways 0. ) Ponds 

DO. b. 10-10. T 

C. ) Ponds C. ) Porous pavements 

D. ) intiltratlon Trenches 
PI. PO. > 

E. ) Porous pavements 

8.8howaila Comsat Pawmemble surfoss Comsat: 
k Fhb on Tronehoo Local owwo-W IP64-701 CIRIA C522(2000) Specialist 
BRE 3650991) ngubtar (a 9 EA, Basins 
0 78.8 11 VRA C5220000) SEPA, ADcolougwrly) 105-871 CIRIA 05220000) 

Other 1411trodon clovioas to #$wish ADONI Ddendon Ponds 

easing alkhargo consents 088-9 11 CIRIA C522(2LXV) 

ID85-871 CIRA C522(2000) Retention Ponds 

Dotentim Ponds J)92-941 CIRIA C522(2000) 

J, 88-91] CIRIA C522(2000) 

Retention Ponds 

STOP 
A 
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Figure 7.6 Proposed decision-making flowchart for the design of retrofit SUDS (with respect to Car parks) 



Figure 7.7 Proposed decision-making flowchart for the design of retrofit SUDS (with respect to Residential Roofs) 
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Figure 7.8 Proposed decision-making flowchart for the design of retrofit SUDS (with respect to Roads) 
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The significance of the arrow styles used for this, and other Sections of the flowchart 

methodology are explained below: 
"I 

Bold arro-*v lines - indicate the preferred sequence for investigations to assess the viability of 

retrofit SUDS. 

Feint arro-vv lines - denote alternative sequences, which may be pursued if the favoured path is 

not possible due to catchment constraints. For example in the case of source controls, the 

preferred procedure advocates tile use of infillration devices above disposal, storage or reuse. 

However, for instances when Is it is not feasible to apply retrofit infiltration devices to all 

'institutional roofs' under investigation, tile next best approach would be to explore the use of 
disposal devices. and then storage techniques. It is apparent that this 'alternative path' approach 

may be used to derive integrated SUDS solutions (i. e. with some 'institutional roofs' served by 

infiltration devices. other roofs, that were not considered appropriate for infiltration, served by 

disposal techniques. and tile remainder that were not considered appropriate for infiltration or 

disposal, served by stora0e techniques). 

The next part ofthc source-control sub-section (Figure 7.9) presents design constraints for each 

of the four source-control SUDS groupings. These constraints are presented in terms of physical 

and non-physical constraints (i. e. physical constraints are denoted by dark shading). All of these 

constraints have been discussed in earlier Chapters - see flowchart for the relevant cross- 

references. 

Infiltration Disposal Storage Reuse 
SUDS SUDS SUDS SUDS 

1. Suitable soil 1 Is there a local means of 1. Is sufficient space 1. Is reuse a feasible 

percolation rate? disposal? available for construction? option? 
(> 4 63 x 10 M IS) (e g. river) See Chapter 4 Note: There is 

', ee Chapter 4 Note: these should be 2. Water table level? more potential for 

2 Grourd, vater adjacent watercourses (Water table should never retrofittimg complex reuse 
contamination risk? - to which runoff may be reach the base of device) schemes to 
(Some discharges diverted without the need See Chapter 4 institutional buildings 

restricted in G WP zone I) for extensive conveyance 3. Sufficient capacity than most domestic 
See Chapter 4 to another location - large storms? properties 

3. Water table level? 2 Are discharges See detailed guidelines 
(Water table should never acceptable? 4. Is overflow directed 
reach the base of device) (e g discharge consents. to sewer? 

See Chapter 4 Water quality If noL see infiltration issues 
4. Sufficient available Quantities - flooding) 

space for construction? 
See Chapter 4 

5 Building Regulations? 
(Infiltration devices must 

be >5m from any building) 
See Chapter 4 

6. Other issues: 
Responsibility/Maintenance, 

Safety (e g schools) 
See Chapter 4 

7 Check capacity of device 
(Detailed design 

calculations) 
See detailed guidelines , 

Figure 7.9 Outline of flowchart methodology for institutional roofs 
(Source control sub-section: Part 2) 

172 



CHAPTER 7 

It is intended that these design constraints could be used to help the designer rapidly assess 

whether these specific SUDS groupings are viable for the investigated surface. 

Guide to viable technologies and associated construction costs 
(10- denotes EO-E500 per device - for a 200 M2 contributory surface) 
(0- represents lowest cost estimate, highest, t denotes uncertainty) 
A. ) Basins A. ) Redirect to A. ) Basin 
10. watercourse DO. 

B. ) Soakaways B. ) Ponds 

1110ý 10. PI. t 

C. ) Ponds C. ) Porous pavements 
1111.10. PO. T 11.10.10.10. 

D. ) Infiltration Trenches 
111.0.10. > 

E. ) Porous pavements 
10- 110.111.111- 110.0- 0- 10- tI 

Guide to detailed Design guidance 
Soakaways Contact Pemeable surfaces 

Infiltration Trenches Local environmental [p 64-701 CMA C522(2000) 

BRE365(1991) regulator (e. g. EA, Basins 

[p 78-8 1] CIRIA C522(2000) SEPAjocaf aulhofity) [p8"71 CIRIA C522(2000) 

Other Infiltration devices to establM local Detention Ponds 

Basins dicharge consents fp88-9 11 VRIA C522(2000) 

[p85-871 CIRIA C522(2000) Retention Ponds 

Detention Ponds [p92-941 CIRIA C522(2000) 

[p88-9 11 CIRIA C522(2000) 

lRetention Ponds 

Figure 7.10 Outline of flowchart methodology for institutional roofs 
(Source-control sub-section: Part 3) 

The third part of the source-control sub-section (Figure 7.10) presents a list of viable retrofit 

SUDS technologies for each of the source control sub-groups. For example, the Infiltration 

group contains Basins, Soakaways, Ponds, Infiltration trenches and Porous pavements. These 

individual technologies are crudely ranked according to their estimated construction costs from 

Chapter 6 (i. e. cheapest first, most expensive last). It should be noted that for many of these 

technologies, the uncertainties associated with the calculation of costs, meant that high/low 

estimates are presented. The flowchart represents the comparative costs of each SUDS 

technology graphically, using a set of shaded and un-shaded symbols. The shaded symbols 

represent the lowest cost estimates for a given technology, and the un-shaded symbols, the 

highest cost estimates. See Chapter 6 for further details of the comparative costs of these SUDS 

technologies. 

The final part of source-control sub-section references the detailed design guidance that may be 

sought, if the designer wishes to pursue with a more detailed investigation of a given SUDS 

technology (i. e. subject to whether the crude level of analysis indicates that a given SUDS 

technology is feasible). 
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7. Z4.2 Conveyance SUDS sub-section 

The second sub-section of the flowchart explores the viability of SUDS conveyance schemes. 
This part of the flowchart should only be consulted after it has been established that source- 

controls cannot be used to serve all of the investigated surface type (i. e. institutional roofs in 

this case). 
Guide to viable technologies and associated construction costs 
(M denotes EO-E20 per m length of conveyance) 
(M represents lowest cost estimate, LI highest, T clenotes uncertainty) 
Swales Filter drains ep; ate sewerage 
ME] MMMM tM MMMMMM T 

+ Filter strips 

I 

Figure 7.11 Outline of flowchart methodology for institutional roofs 
(Conveyance SUDS sub-section) 

It is conceivable that in some catchments, it might be feasible to apply source controls to some 

institutional roofs and not others. However, it may be viable to drain those roofs not considered 

suitable for source controls, using conveyance systems and off-site controls. But whenever 

possible, it is favourable to pursue a source control approach rather than an integrated (source 

and off-site controls) approach, or a purely off-site approach - because source controls avoid the 

significant costs associated with conveyance and off-site facilities. 

Costs - The comparative construction costs of alternative SUDS conveyance technologies 

indicate that swales are significantly cheaper than the alternative options. Therefore, it is 

assumed that in most cases swales represent the only practical retrofit conveyance technology, 
because filter drains and separate sewerage would appear to be prohibitively expensive. 
However, these devices might be appropriate for cases where runoff only needs to be conveyed 

relatively short distances. Note: these swale construction costings were compiled for retrofit 

application to unpaved sites. It is envisaged that corresponding costs for retrofit applications to 

existing paved sites would be significantly higher. 

Constraints - Catchment slope is of particular significance to the viability of swales, since to 

prevent erosion their longitudinal slopes should not exceed 1: 50 (see Section 2.5.2). Sufficient 

urban space is another important factor, because swales are considered to be most viable for 

retrofitting to existing grassed areas (i. e. due to issues of available space and economic factors). 

The other main constraints assumed to affect the viability of swales are similar to those 
described previously in relation to source control storage facilities. 

Once again, generic constraints are presented for each alternative SUDS conveyance options. 
These constraints are also presented in terms of physical and non-physical constraints 
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(i. e. with physical constraints denoted by dark shading), and relate to previous Chapters 
(see flowchart for the relevant details). 

It is intended that these flow-charts provide a rough indication to the viability of retrofit 

conveyance SUDS within a given catchment/part of a catchment. If this crude analysis 
indicates that a given SUDS technology is viable then more detailed design work may be 

undertaken in accordance to the relevant UK guidelines - cited at the bottom of the sub-section. 
Note: The viability of retrofit conveyance schemes was considered prior to that of off-site 
facilities, as off-site devices are not viable without a means of conveying runoff to them. 

7. Z4.3 Offsite controls 
The third sub-section of the flowchart procedure explores the viability of off-site control SUDS. 

The main issues assumed to affect the viability of off-site controls are very similar to those 

described previously for source controls. The main differences between the two applications are 
those associated with scale, maintenance and ownership. 
Larger scale off-site facilities obviously require large urban spaces for their construction (e. g. 

parkland, open land, sports fields). The absence of such available spaces means that large-scale 

off-site facilities are impracticable. 

In terms of maintenance and ownership, off-site facilities are likely to be easier to promote, 

monitor and maintain than local source controls based within residential proposals. For 

example, it is envisaged that 50 source-control infiltration devices, at individual residential 

properties, are likely to be more difficult to maintain/monitor than a single corporate facility of 

equal capacity. 
Similar flow-chart procedures were generated for the three remaining impervious urban surface 

types: Car parks; Residential Roofs; and Roads. Specific issues that relate to these surface types 

are discussed within the following Sections. 

7.2.5 Decision making flowcharts - Other surface types 

7. Z5.1 Decision makingflowchart - Car parks 
The car parks flowchart adopted a similar set of procedures to those presented previously for 

institutional roofs. The main differences related to the fact that car park surfaces are likely to 

contain significantly more pollutants than roofs (i. e. largely due to debris and spillages from 

motor vehicles). Therefore additional runoff treatment facilities are generally required for runoff 

emanating from paved areas to account for these increased pollution risks. Treatment facilities, 

such as those described in Section 2.5, should be used in conjunction with infiltration devices 

and disposal methodologies to protect against the pollution of the local water-table/water- 

course. Furthermore, treatment facilities may also be used in conjunction with 

attenuation/storage structures to reduce sediment deposition/siltation problems. 
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7. Z 5.2 Decision makingflowchart -Residential Roofs 

The 'residential roofs' flowchart, like the 'institutional roofs' procedure (Section 7.2.4), 

considers source controls prior to conveyance systems and off-site controls - this reflects the 

fact that the source controls are assumed to be generally cheaper and more sustainable than 

conveyance and off-site approaches. 
The decision-making processes utilised for the design of retrofit SUDS for application to 

'institutional roofs' were also adopted for 'residential roofs'. The only significant modifications 

relate to differences in construction costs of alternative technologies, brought about by 

economics of scale. 
The proposed design procedures for conveyance systems are almost identical to those presented 

previously for institutional roofs. 

7. Z 5.3 Decision makingflowchart -Roads & Otherpaved surfaces 

The flowchart methodology adopted for this surface type was very similar to that proposed for 

car parks. Again, the main differences relate to issues of scale, available land, and increased 

pollutant levels. 

7.3 CONTEXT OF USE/LIMITATIONS/ADAPTABILITY OF 
FRAMEWORK 

7.3.1 Implementation of proposed methodology in current context 

This Section outlines how the proposed decision-making (flowchart) tools, for the design of 

retrofit SUDS, might be incorporated into the wider context of the design of rehabilitation 

schemes for problem urban catchments. Figure 7.12 outlines a conceptual design strategy for the 

rehabilitation of hydraulically overloaded urban catchments, which utilises the proposed 

flowcharts presented in this Chapter, and existing guidance for both conventional and SUDS- 

based rehabilitation technologies. This strategy contains a two-stage design process that 
incorporates a simplistic, followed by more detailed, level of analysis. 
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CONCEPTUAL DESIGN PROCESS 

Stage I 

Define performance criteria 

LLI Stage 2 
Use Conventional 

-, uidelines*, models** Identify viable locations For retrofit 
and costing data*** to SUDS within catchment 

oenerate conventional z rehabilitation proposals, 
and/or the conventional 
component ofhybrid Stage 3 

LLI 
in 

schemes Compile a number of SUDS n n 
e. g. and/or h ybrid (conventional/SUDS) 

OOM% UPM Manual (I Q9N) r)ror)o proposals that meet the defined 
SRAf Manual (2002) performance criteria 
SIMPOL (1998) 
OFWATbenchmark 

.J price gnidcline, ý Stage 4 
Use simplistic modelling techniques 

and unit cost data to generate 
cost benefit profiles for conventional, 

SUDS and hybrid proposals 
Note: 

The UPM & SRM 
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Figure 7.12 Conceptual design strategy (and notes) for the rehabilitation of hydraulically 
overloaded urban catchments 
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The following paragraphs provide an overview of each of the design stages presented in 

Figure 7.12. It should be noted that the decision-making tool presented in the earlier parts of this 

Chapter was developed to assist the designer to make well-informed choices/decisions in 

relation to stage 2 of the conceptual design strategy presented in Figure 7.12. The hydraulic 

modelling and costing methodologies presented in Chapters 5 and 6 respectively are also of 

relevance to Stages 3,4 and 5. 

Stage 1: Deriving performance criteria 
It is envisaged that the design performance of rehabilitation schemes for hydraulically 

overloaded catchments would be derived from the UPM manual (FWR, 1998) for CSO related 

problems, and the SR manual (WRc, 2002) for other hydraulic problems (see Chapter 2 for 

further details). 
Conventional design - It is also envisaged that the design of conventional components of 

sewer rehabilitation works would be conducted in accordance with one of the conventional 

strategies highlighted in Figure 7.12 and Table 7.1. Frameworks for the preliminary phase of the 

design of conventional sewer rehabilitation works are presented within the Urban Pollution 

Management Manual (FWR, 1994), and the Sewer Rehabilitation Manual (WRc, 2002). More 

detailed design guidance for conventional sewer rehabilitation works is presented in a number 

of technical guidelines (FR0488,1994; SDD, 1977; WaPUG, 200 1). 

The hydraulic performance of conventional proposals could be simulated using simplistic (e. g. 

SIMPOL) or more detailed modelling tools (e. g. HydroWorks/InfoWorks or Win-Dap/Des). 

The costs associated with conventional rehabilitation proposals could be generated using the 

existing pool of financial experience. 

TnhIn 74 Raviaw nf Pyiqtinn cIpQinn mdrinne-P fnr rnnvpntinnal sewer rehabilitation works 
Urban Pollution Management Manual The UPM manual was compiled in 1994 with the intention of 
(FWR, 1994) creating a cost-effective strategy that could adequately protect 

natural receiving waters against pollution, without the over 
provision of storage or treatment capacity. The UPM 
methodology has since been refined (1998). The second 
edition presents a similar set of design procedures for the 
development of cost-effective sewer systems, but adopts a 
more generic tone than the original manual. 

Sewer Rehabilitation Manual The Sewer Rehabilitation manual (WRc, 2002) was compiled 
(WRc, 2002) for designers and planners involved with the rehabilitation of 

UK sewerage systems. The manual contains a set of 
procedures and guidelines that were intended to assist the 
decision making process associated with such works. 
This methodology was originally developed for the 
comparison of conventional rehabilitation proposals (e. g. 
upgrading in-sewer storage, or CSO facilities). However, it is 
considered that the approach could be extended to include 
SUDS-based options. 

Stage 2: Identify viable locations for retrofit SUDS within catchment 
The proposed decision-making flowcharts outlined in this Chapter were developed to help 

designers/engineers identify potential opportunities for using retrofit SUDS in a problem 
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catchment. It is envisaged that these procedures would help the user compile a list of potential 

retrofit SUDS opportunities for the catchment. The hierarchal nature of the decision-making 

tool means that any list generated using these procedures should contain some inherent 

indication of cost-effectiveness - i. e. with most cost effective proposal likely to occur near the 

top of the list, and least effective near the bottom. 

Stage 3: Compile a number of hybrid (conventional technologies/SUDS) proposals 
Having established a list of potential retrofit SUDS opportunities the designer/engineer is 

required to use their engineering judgement, or a process of trial and error, to compile a group 

of proposals for addressing the catchment's hydraulic problems (i. e. that meet the defined 

performance criteria for flooding or excessive CSO discharges). It is likely that simplistic 

modelling tools may be required to simulate the hydraulic performance of these proposals. If it 

is established that a catchment's problems cannot be addressed solely using retrofit SUDS- 

based proposals, then it may be necessary to develop a set of hybrid proposals, which combine 

the use of retrofit SUDS with conventional sewer rehabilitation techniques. 

Stage 4: Generate cost/bencrit profiles for conventional and hybrid proposals (Using 

simplistic modelling techniques and approximate cost data) 

It is recommended that cost/performance profiles are generated for each of the proposed 

rehabilitation schemes, in order to establish which are the most cost-effective options. At this 

stage of the design process it is envisaged that performance would be established through the 

use of simplistic modelling techniques (as described in previous Section), and associated costs 

through the use of crude financial analysis. 
Simplistic modelling - It is envisaged that simplistic models, or modelling techniques, would 

generally be utilised within the preliminary stages of a project to help identify the best SUDS 

proposals, and how their performance compares to that of conventional solutions. The purposes 

of such investigations are to highlight which if any, SUDS proposals are worth pursuing in the 

more detailed phases of the design process. It is considered that simplistic models would be 

appropriate for this task because they may be used to perform rapid, yet crude, hydraulic 

calculations for large numbers of alternate retrofit SUDS proposals. 
Simplistic HydroWorks modelling techniques were developed for the Gipton and Meanwoood 

case studies (see Chapter 5), which represented infiltration SUDS devices in terms of their 

associated disconnected contributory areas, and storage SUDS devices in terms of their 

equivalent initial losses. 

Crude financial analysis - It is envisaged that undertaking a detailed cost comparison of 

alternative rehabilitation proposals would prove to be unnecessarily time consuming for the 

preliminary stage of the design process. It is therefore considered that crude cost comparisons, 

of the type presented in Chapter 6 for the Meanwood catchment, would be adequate at this 
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stage, to indicate which proposals were most cost-effective, and therefore merit further 

investigation. 

Stage 5- Compare the cost/performance profiles of hybrid proposals against that of the 
conventional solutions 

The cost/performance profiles generated for each rehabilitation proposal in the previous phase 

allow the designer to establish the most cost-effective options, and those that are worth 
investigating through the use of more detailed investigations. 

Stage 6- Detailed investigations 

This thesis has attempted to address the problems associated with preliminary phases of the 

design of retrofit SUDS. However, given the UK water industry's general reluctance to adopt 
SUDS-based schemes it is envisaged that a more detailed level of analysis will be required to 

fully justify the use of retrofit SUDS in preference to conventional sewer rehabilitation 

schemes. It is therefore likely that further work will be required to develop and verify 
deterministic SUDS modelling techniques, and more comprehensive guidance on the costs and 
design of retrofit SUDS approaches. 

Deterministic SUDS Modelling techniques - It is envisaged that deterministic models would 
be used to perform detailed hydraulic simulations for the final comparison of alternative 

proposals. This relates to the fact that detailed/deterministic models may be used to perform 

more sophisticated simulations than simplistic models. The use of accurate modelling strategies 
is viewed as crucial to the development of detailed design guidance for retrofit SUDS (i. e. to 

accurately simulate the performance of such devices). Until recently, there were few verified 

hydraulic models that could be applied to the simulation of SUDS technologies. However, the 

emergence of detailed/deterministic SUDS models is beginning to allow their hydraulic 

performance to be compared to that of conventional solutions. Work has been underway, over 

the duration of this research project, to upgrade the source-code of existing deterministic urban 
drainage models to allow the simulation of various SUDS techniques. One such example is 

MicroDrainage's new Source Control module, which is now a fully integrated part of the 

WinDes suite of urban drainage simulation software, that can support the design and analysis of 

a number of source control devices, including: infiltration trenches, ponds, porous pavements, 

soakways and swales. This specific software tool was not available early enough to be used in 

conjunction within this study. However, it is important that such tools are adequately verified 

against monitored field data to increase confidence in these models. 
Cost - It is considered that more detailed data need to be compiled on the inherent costs 

associated with SUDS schemes before such technologies can be widely used within the UK - 
i. e. to allow the comparison of conventional technologies and SUDS / retrofit SUDS proposals. 
The costs comparisons used in the proposed decision-making tool only relate to construction 
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costs of different SUDS technologies. It is envisaged that a fairer comparison of technology 

costs would consider secondary issues, such as maintenance, environmental benefits, safety 
issues, and institutional concerns about adoption. Many of these secondary issues relate more to 

whole life costs, than one off construction costs. 
Design - Detailed technical design guidance is already available for most SUDS technologies in 

a number of key UK publications (See Chapter 2 and Table 7.2). These publications were 
developed for new SUDS applications. However, it is considered that much of the technical 

advice contained within these guidelines is equally applicable to the retrofit context. It is 

therefore recommended that further work be undertaken to verify that this is the case, and to 

upgrade these publications where necessary, so that they may be applied with confidence to the 

retrofit context. 

Table 7-2 Review of existina desion ouidance for conventional SUDS 

CIRIA C521-523 Companion volumes (C521 and C522) discuss technical and 
(2000) planning issues surrounding SUDS in Scotland and Northern 

Ireland, and England and Wales respectively, whilst C523 
covers the wider aspects of SUDS best practice, the 
legislative issues surrounding SUDS and explores how 
organisations may work jointly pursue the use of SUDS 
technologies. 
These guidelines contain generic guidance on the design of 
SUDS, although none specifically relates to retrofit SUDS. 

CIRIA R124 (Vols. 1- 4) Scoping report on the use of SUDS technologies for urban 
(1994) applications - addresses issues of. planning, funding, design, 

construction and maintenance 
CIRIA R156 Contains important guidance relating to the planning, 
(1996) funding, design, construction and maintenance of infiltration 

systems, and their use as stormwater control methodology. 

Stage 7- Selecting final proposal 
Comparison of the costs and hydraulic performance associated with each of the detailed 

rehabilitation proposals will allow the designer to establish a final/preferred rehabilitation 

proposal. In most cases it is likely that the most cost-effective option would be selected as the 

preferred solution. 

7.3.2 Future context 
It is evident from previous discussions (Section 4.3.2.5) that the viability of retrofit SUDS, in 

the current UK context, is greatly affected by non-physical constraints, such as financial, 

institutional and regulatory issues. These factors mean that it is generally not possible to 

implement potential SUDS schemes to the full extent that would otherwise be achievable if 

physical factors were taken to be the only constraint. However, these non-physical constraints 

should not be considered as being irremovable. Many of these constraints could be eliminated 
by a change of institutional/regulatory policy. For example, financial backing from local or 

national government could be used to support the use of SUDS in the form of monetary 
incentives for sewerage operators to adopt retrofit SUDS rather than conventional technologies 

(e. g. comparable to the tax incentives that were used the promote the change over to unleaded 
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petrol within the UK in the 1990s). It is therefore conceivable that at some point in the future, 

the viability of retrofit SUDS might solely be influenced by physical constraints. 

The proposed decision-making flowcharts are a flexible set of procedures rather than a 

prescriptive set of design guidelines. This coupled with the fact that the flowcharts distinguish 

between physical and non-physical design constraints for retrofit SUDS, make the tools 

inherently future proof against the potential scenarios described above. 

However, it is recognised that the proposed tools also have inherent shortcomings and 
limitations - these are highlighted in the following Section. 

7.3.3 Limitations 

It is acknowledged that the guidelines/principles presented within this Chapter are only 

appropriate for limited applications. These guidelines were specifically developed for the design 

of retrofit SUDS applications for existing UK urban catchments. It is envisaged that retrofit 

SUDS schemes would generally constitute remedial works for problem urban drainage 

catchments. As such, these guidelines would be predominately limited to urban catchments, 

whose impervious surfaces are fully or partially connected to overloaded separate/combined 

sewer systems. 
This methodology was developed for a UK, and more specifically for an English and Welsh 

context, and should, therefore, be limited for use within these settings. 

The costings used in this methodology only apply in the context of the UK (i. e. because they 

were generated using the SPONS price guidelines), and retrofit SUDS applications. It is also 

worth noting that these costings were generated using 2001 prices. 

The methodology was developed in light of relevant UK legislation and planninglenvironmental 

policy. It is also acknowledged that the application of these guidelines will be affected by 

'Region/National' variations (e. g. variations in planning procedures, Governmental/Regulatory 

policy, legislation). 

The methodology has attempted to account for (in an indirect manner) institutional issues, such 

as adoption, and reservations regarding safety. However, it should be acknowledged at this 

stage that many water/local authorities still perceive retrofit SUDS to represent a high risk 

option, and may not be persuaded by the hydraulic and economic justifications alone. 

7.4 APPLICATION OF PROPOSED METHODOLOGY TO MEANWOOD 

The flowchart methodologies highlighted in the previous Sections were applied to the 

Meanwood case-study catchment. A review of these investigations is presented in the following 

Sections; these relate to each of the four impervious urban surface types. The order in which 
these Sections are presented reflects the preferred order in which such investigations should be 

performed. Estimates of the amount of impermeable surface area that may be disconnected 

using each of these technologies (and given the constraints of the Meanwood catchment) are 

presented on a Section-by-Section basis. 

182 



CHAPTER 7 

7.4.1 Institutional roofis (Meanwood) 

The potential for applying retrofit SUDS to large/illStitUtional roof's (>100 mI) was explored 

with respect to tile Meanwood catchment. However, it was established that no large roofs 

(>200 1112) were connected to the problern (overloaded) sections of the Meanwood sewer systern 

(Walker, 2000: c). 

Institutional roofs (Meanwood) 

Institutional ro(? ftd area viablefor disconneclion =0 ha 

Institutional roofed area disconnected =0 ha 

7.4.2 Car-parks (Meanwood) 

The potcritial for applying retrofit SUDS to car-parks in the Meanwood catchment was 

explored. These investioations established that no car parks were connected to the problem 

(overloaded) sections of the MeariNvood sewer svsteni (Walker, 2000: c). 

Car-parks (Meanwood) 

Cui-parking ai-ea viable, lbr disconnection ý0 ha 

Car-parking area disconneced -0 ha 

7.4.3 Residential roofs (Meanwood) 

It was established that most residential roofs within the Meanwood catcliment are connected to 

the local combined scwer systern, and therefore contribute to its flooding problerns 

(Walker, 2000: c). The potential for applying retrofit SUDS to Meanwood's residential roofs 

was investigated LISiII(I tile I'low-chart methodology highlighted in the previous Section. 

Figure 7.13 Outline of flowchart methodology - Meanwood 

louUcombined system? ..... 101. 

Yes STOP 

Consider. &1or Vor Vor 
7 Reuse Infiltration 1100. Disposal* Storage I 1ý 

SUDS SUDS SUDS 

The first sub-section of the 'Residential roofs' flow-chart methodology seeks to assess the 

viability of applying source controls to these surfaces types within the Meanwood catchment 

(See Figure 7.13). This is reflected by the 'Explore viability of source control SUDS' statement. 

It is recommended that tile viability of each of the four SUDS sub-groups 

(i. e. infiltration devices, disposal devices, storage devices and reuse devices) be assessed 

separately. Each of these appraisals is presented in the following sub-sections: 

7.4.3.1 Source coittrol - Mfiltration (levices 
The viability of' applying infiltration-based retrofit SUDS to the Meanwood catchrrient was 

investigated. The central region (FigLirc 7.14) was the only part of the Meanwood catchnient in 

which infiltration devices were considered to be valid. This relates to tile fact that this region is 
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largely underlain by Sandstone, whilst the remainder of the catchnient is underlain by less 

permeable strata. It is envisaged that retrofit infiltration source controls would be viable for 

most property roofs in this sandstone region - as preliminary investigations suggest that their 

viability would not be constrained by any of the other potential constraints presented in the 

flow-chart (e. o. building regulations, a high water table or catchnient landscape). 

Figure 7.14: Viable Region for Infiltration-based retrofit Source Controls 

The residential roofs flowchart recommends tile use of infiltration basins in preference to 

soakaways, infiltration trenches and/or other landscape features - this premise is based oil the 

anticipated construction costs and ease of implernentation. However given the space limitations 

associated with most residential properties in the Meanwood catchment, and the fact that 

infiltration basins require a larger surface area than soakaways of equivalent capacity, it is 

considered that soakaways would constitute the cheapest and the easiest to implement of these 

source control technologies. 

Soalkaways (Meanwood) 

Polential roqfe(l area io which soakaii, tývs maj, be qI)lVied 3.022 ha 

Roofed tireei t1isconnected 3.022 ha 

7.4.3.2 Source confrol - Local disposal 

The flowchart procedure recommends that local disposal is the next most viable form of retrofit 

source-control SUDS after lilfiltration-based devices. In the context of the Meanwood 

catchinent, the onlN, ý, iable forin of local disposal would be to divert roof runoff (via infiltration 

trenches) to existing land drains, which serve tile green-field sites adjacent to the catchment. 

These land drains I-Lill close to a number of residential properties (see Figure 7.15) - and so it 

may therefore be feasible to redirect runoff from these roofs into these existing drainage 

facilities, without the need for extensive new conveyance systems (e. g. swale networks). 

However, it should be noted that pursuing this Course of action might lead to the overloading of 

the existing land drainage network - this Would need to be established by more thorough 
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investigations/analysis. It is envisaged that such calculations would be conducted at the detailed 

stage of the desion process - depending upon whether the preliminary phase indicates that such 

SUDS proposals are viable, and worth further consideration. 

It should be noted that this proposal would only apply to 86 roofs that have already been 

identified as being appropriate for soakaways. Table 6.15 indicates that the use of infiltration 

trenches would be significantly more expensive than the use of soakaways - this option is 

therefore not pursued aily further. 

Figure 7.15 Adjacent fields/green land served by existing land drainage network 

Potential i-o(? ýd area to which injillration trenches may be applied = 0.47.3 h 
ýfc 

Roofed area disconnected -- 0 

Nole: soahnivy oplion considered lo be cheaper (see Chapter 

7.4.3.3 Source confrol - Storage options 

The flowchart procedure recommends storage devices as the third most viable form of retrofit 

source-control SUDS, after infiltration-based devices and local disposal schemes. 

It was considered that the most viable opportunities for adopting storage-based source controls 

for Meanwood's roofed area would be the use of water butts in Conjunction with those roofs not 

ear-marked for infiltration devices (see Figure 7.16). Retrofitting water butts to those roofs 

already deemed as appropriate for infiltration devices was not considered - since it had been 

established that these infiltration devices were capable of draining the critical design storm 

event. 
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Figure 7.16 Best storage-based source control opportunities 
for application to Meanwood's roofed area 

Other Source control SUDS storage devices were not investigated because it was envisaged that 

they Would prove to be more expensive (see Chapter 6) and difficult to il-riplement in the 

Meanwood context. For example, it is considered that the widespread application of residential 

ponds would be difficult to promote in relation to the Meanwood catchment, due to space 

limitations in most of the catchments residential properties, and possible safety fears (e. g. from 

families with YOU110 children). 

Local stora2e (Meanwood) 

Potential roofed area to which water butts may be applied = 3.973 hu 

Assuming water buns are applied to all roqfý not served by infiltration devices 

7.4.3.4 Soitree control - Reitse olVioits 

Reuse-based source control schemes were not explored for use in conjunction with Meanwood's 

residential roofed area because they were considered to be prohibitively expensive and/or 

difficult to irriplenicilt, and because all suitable roofs have already been earmarked for more 

preferential SUDS de\ ices. 

Reuse technologies (Meanwood) 

Pole1111,411 ro(? /ý(/ w0j)(11'e(I uretis to ii, hich reuse technologies may, he (jpj)lied -- 0 ha 

Cost constrtfinis are consi(lered to restrict the use of reuse technologies 

7.4.3.5 Coll 1'e. ), 1111ce 

The second sub-section of the residential roofs flow-chart explores the viability of applying 

conveyance systems to those roofcd surfaces for which source controls were not considered 

viable. 
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Considerý iV &/or 
Swales & 110. Filter Drains pop. Sepa; Z 

sewerage 
Filter strips (Piped) 

Swales Filter drains Separate sewerage 
0 NONE MEMEMEME T 

+ Filter strips 

I 

Figure 7.17 Outline of flowchart methodology (Part 2) - Meanwood 

The process of asscssing the viability of conveyance schernes was sub-divided into separate 

assessments of the three alternative conveyance options: swales, filter (French) drains or 

conventional separatc sewerage. 

Conveyance methods were only considered for use in conjunction with those roofs not already 

earmarked for infiltration devices or local disposal techniques (i. e. those roofs located within the 

sandstone region). It ShOUld be noted that the same roofs earmarked for conveyance schemes, 

were also considered appropriate for water butts. However, it was considered unlikely that water 

butts, alone, would be adequate to deal Nvith peak runoff from a peak 10-year storm. 

Tile only constraint listed within tile flow-chart methodology, which was practically considered 

as limiting tile application of retrofit swales to the Meanwood catchment was the issue of L, 

available space. This is reflected by the fact that swales were only considered viable for 

application within Meanwood's existing grass roadside verges (See Figure 7.18). Other 

locations \N, -cre not considered dLIe to their significant additional associated costs (e. g. the 

construction of a retrofit swale would be significantly higher for an existing paved site than for 

an existing grass ver-c). I 
Filter (French) drams and conventional separate sewerage were both considered prohibitively 

expensive and difficult to implement. 

Figure 7.18 Viable locations for retrofit swales 
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7.4.3.6 Of 
. 
fvife coiitrolv 

The third sub-section of tile 'residential roofs' flow-chart explores the viability of off-site 
facilities (See Figure 7.19). However, tile first issue that must be addressed is whether 

conveyance systerns are viable - this is reflected by the conditional link between the 

'conveyance' sub-section and the 'off-site controls' sub-section. 

The viability of off-Site controls should be addressed by the separate assessment of each of the 

functional SUDS SLib-oroups (i. e. infiltration devices, disposal devices, storage devices and 

reuse devices). It is Nvorth noting that these are the same groupings that are explored in tile 

6source controls' sub-section. 

The flowchart reconinlends that infiltration facilities are the most preferred form of retrofit off- 

site control SUDS approach. Preliminary calculations were conducted that indicated there was 

sufficient land. with appropriate properties (e. g. soil conditions, water table level, etc), located 

downstream of the viable Swale network (highlighted in tile previous Section) to support the use 

of any of the infiltration technologies presented in the flow-chart methodology. These 

preliminary calculations also indicated that any one of these infiltration technologies that could 

be constructed in the available space would adequately drain the feeder imperious area (i. e. tile 

impervious area considered to be connected to the swale network) for the 10 year critical design 

storm. However the Investigations undertaken in Chapter 6 indicated that infiltration basins 

were the cheapest of these three infiltration technologies. 

Figure 7.19 Viable locations for off-site controls 

No other viable locations were identified within tile Meanwood catchment for additional off-site 

facilities (i. e. the only viable locations for off-site facilities were those already car-marked for 

infiltration schemes), Therefore, no further off-site SUDS strategies were considered - since 

preliminary calculations had indicated that infiltration devices were capable of draining all the 

feeder area for the critical design storin event. 
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This proposal may be applied to 1.90 ha of roofed area. However, all but 0.375 ha of this area 

has already been identified as being appropriate for tile use of soakaways. Table 6.15 

demonstrates that soakaways are a more cost effective than infiltration basins (tile cheapest of 

the three off-site technologies considered). 

Off-site controls (Meanwood) 

Potential ro(? Iýd art, 4 /, /; )I. disconticetion using (iqfillration basin) offivile controls =1.90ha 

Roofed areafor disconneclion = 0.3 75 ha 

(we Appendix 7A firfurther delails ) 

7.4.4 Roads and other paved areas 

It was considered that the application of retrofit SUDS techniques to roads and other paved 

areas would not be viable mth respect to the Meanwood catchrricrit. This reflects the fact that 

additional treatment facilities are required for retrofit SUDS that serve roads and other heavily 

trafficked paved areas, and that the inclusion of such facilities would be prohibitively expensive 
for an 'cas\ pickings' tvpc design approach. 

Polenlial paved area to which local storage may be applied =0 

However, it may be viable to connect those roads that are adjacent to the proposed swale 

network for roof-xNater runoff (see Chapter 4). This relates to the fact that a swale network had 

already been advocated for use ill Conjunction with Meanwoods roofs, and that infiltration of 

paved runoff conveyed via these swales might be considered viable. Tile low traffic/pollution 

characteristics of these roads might mean that only one level of treatment would be required 

prior to infiltration, and the SUDS design manual states that this might be considered to be 

provided by swales. 
Preliminary calculations indicated that the downstream infiltration devices highlighted 

previously (Section 7.4.3.6) were also capable of draining the additional feeder area (including 

both upstream rool'S and these additional paved areas) for the critical 10 year design storm 

event. 
Off-site controls (Meanwood) 

l'oleiiiiiilptii, edat-ea. fordi, ýc, otiiiectioiiii, vitig(ýff, vitecoiilrol. v --2.886ha 
Paved ai-eci disconnected = 2.886 ha 

7.4.5 Combined I)roposal 

It is considered that the most cost-effective method of combining these recommended retrofit 

SUDS options would be to undertake the disconnection of 3.022 ha of roofed area using the 

soakaways option, and the disconnection of a further 0.375 ha of roofed area and 2.886 ha of 

paved area LISIMI the sicales-based off-site (infiltration basin) proposal. These options give a 
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combined disconnection of 3.397 ha (or 46Yq) of roofcd area and Z886 ha (or 31%) of paved 
area (or 6.283 ha of impervious area). These proposals are summarised in Table 7.3. 
There is additional scope to retrofit water butts to the remaining 3.973 ha of roofed area (i. e. 

=7.370 ha -3.397 ha) contained in this catchment, which were not served by infiltration devices. 

Table 7.3 Summarv of Combined SUDS nronasal for Meanwood catchrnpnt 
Running total 

Potential area Adopted area Running total of 
for the for the of adopted area adopted area 

application of application of for the for the 
Section specific specific application of application of 

infiltration infiltration infiltration specific 
SUDS SUDS SUDS storage 

technology technology technologies SUDS 
(ha) (ha) (ha) technology 

(ha) 
7.4.1 Institutional roofs 0 0 - 
7.4.2 Car-parks 0 - 0 - 
7.4.3 Residential roofs 

7.4.3.1 Infiltration 3.022 3.022 3.022 - 
7.4.3.2 Local disposal 0.473 - 3.022 - 
7.4.3.3 Storage - 3.022 3.973 

7.4.3.4 Reuse 0 - 3.022 3.973 

7.4.3.5 Conveyance/offsite 1.9 0.375 3.397 3.973 

7.4.4 Roads 

Source controls 0 - 3.397 3.973 

Conveyance/offsite 2.886 2.886 6.283 3.973 

TOTAL 6.283 3.973 

The construction costs associated with undertaking these combined proposals are presented in 

Table 7.4. This Table presents total costs both including, and excluding, the costs associated 

with the supplementary use of water butts. See Appendix 7A for further details on the derivation 

of these costs. 
It is evident that under this proposal 54% of roofs and 69% of paved areas would remain 
connected to the Meanwood catchment. This data was subsequently used to extrapolate a 
corresponding flood volume for the critical (MIO-60s) design storm using Table 5.3, and the 

methodology outlined in Chapter 5. This approach yielded an estimated flood volume of 414 rn 3 

for the 'excluding water butts' proposal. The extrapolation approach could not be used to 

estimate a flood volume for the 'including water butts' proposal - as the methodology was 
developed for infiltration-based (not combined storage and infiltration) proposals. This would 
have required a more detailed level of modelling (using HydroWorks), than considered 
appropriate for the preliminary stage of the design process. 
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Table 7.4 Derivation of total construction costs for joint proposal fnr Mannuunnrl r-mfj-hý^-# 

Paved Roofed 
Item/ Area Area 
Description Disconnected Disconnected Cost (L) 

(ha) (ha) 
Soakaways 
To all roofs in sandstone region 3.0221 ha E209,767 

Swales - Paved area 
Disconnection of all paved areas 2.886 ha - E298,746(2) 
adjacent to swales (Option B) 
Swales - non-sandstone roofs 
Disconnection of 62 non-sandstone 

- 0.3749 ha L8 962 (3) 

roofs served by swales (Option A) , 
(see Appendix 7A) 
Water butts 
The use ofwater buttsfor 

E79 460 (4) 

3.973 ha ofroofs not served by , 
infiltration devices 

Total (excluding water butts) L517,475 

Total (including water butts) L596,935 

"I krom'fable 6.11 
(2) From Table 6.15 
(3) L8,962 = Cost of connecting an individual property: f 144.5 5 (Table 6.12) x No. of properties (62) 
(4) L79,460 = Cost of providing a 0.3 M3 water butt per 5OM2 of roofed area for the 3.973ha of Meanwood's 
roofs not served by infiltration devices. Assuming cost of water butt = LIOO (Table 6.1) 

This proposal represents the best use of retrofit SUDS technologies that was considered to be 

practically achievable given the Meanwood catchment constraints highlighted by this thesis. 
Figure 7.20 compares the level of SUDS coverage achieved by this proposal with that 
considered feasible by Walker's (2000: b) best case Meanwood SUDS proposal (the 100% 

SUDSproposal). The Walker (2000: b) 100% SUDSproposal is described in Chapter S. 
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Figure 7.20 Disconnection rates achieved by use of combined proposal (Chapter 7) 
and Walker's 100% SUDS proposal (2000: b) 

The combined proposal, compiled using the flowchart methodology, achieved the disconnection 

of 3.397 ha (or 46YO) of roofed area and 2.886 ha (or 31,10) of paved area, whilst Walker's 

(2000: b) 100? /, /, S(-, 'DS proposal achieved the disconnection of 3.35 ha (or 45? 1(1)) of roofed area 

and 3.16 (or 34%) of paved areas. The high level of agreement between these two proposals 

may be considered to provide added confidence in tile decision-making methodology. The 

flowchart approach appears to have effectively mirrored the design process of an experienced 

SUDS design cri-Incer, in identifying viable locations for retrofit SUDS technologies within the 

Meanwood catchnient. 

It is relevant to hiflillolit some of tile differences between this approach and the development of 
SUDS-based proposals for Meanwood that was presented in Chapters 4 to 6. Tile initial designs 

presented in previous Chapters were developed without reference to the urban surface types 

hierarchy. ]'his implies that no account was taken of the logistical advantages of disconnecting 

institutional buildings, or of the pollution risks associated with runoff from paved areas. Use of 

the framework explicitly addresses these issues. Tile prioritisation of infiltration over storage- 
based schemes was evident in both approaches, but only in Chapter 7 was it feasible to develop 

a realistic inuitipic-technolooy SUDS-based scheme. 

The following Chapter seeks to summanse the research undertaken in this thesis, draw a number 

of conclusions and 111"Illglit the potential for further work. 
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8. CONCLUSIONS AND RECOMMENDATIONS 
FOR FURTHER WORK 

8.1. INTRODUCTION 

The first section of this chapter presents the main conclusions of this thesis. These are grouped 
into conclusions that relate to the literature review, the case studies, and the development of 
specific tools and methodologies for the assessment of retrofit SUDS. Section 5.3 presents a 
discussion, in which some limitations of the research are acknowledged and recommendations 
for further work are outlined. 

8.2. CONCLUSIONS 

8.2.1. Literature Review 

1. Urban areas in the UK are typically served by combined sewer systems. These systems 

often experience flooding and/or excessive CSO discharge problems during storms. 

Conventional approaches to this problem typically focus on engineered solutions, such 

as the incorporation of additional underground storage. It may be argued that this 

approach is neither sustainable (either in the sense of being 'close-to-nature' or from the 

perspective of providing a long-term solution) nor economically effective. However, the 

approach is supported by procedural guidelines (UPM manual, SRM and WaPUG 

Guide) and by well-established modelling approaches, which are required to 

demonstrate compliance with the relevant regulators. Information on costs is also 

widely available. 

2. At the same time, the advantages of using 'more-sustainable' approaches in the design 

of stormwater management controls are widely recognised in the context of new 
developments. Although the UK has been comparatively slow in adopting such 

measures, there is considerable international evidence. of the effective use of SUDS 

(Sustainable Urban Drainage Systems) and BMPs (Best Management Practices). UK- 

based guidance on the design of SUDS technologies is available (CIRIA Reports C521, 

C522 and C523,2000), but this largely relates to their application to new developments. 

3. Some preliminary feasibility studies have been reported that seem to indicate that the 

use Yof retrofit SUDS might be feasible in many urban contexts (Balmfortli and Bailey, 

1985; Attanasio et aL, 1994; Hermann and Hasse, 1997). It was also evident that several 

issues would need to be addressed before retrofit SUDS might be routinely considered 

as (part of) a drainage rehabilitation option for UK applications. The key obstacles to 
the broader implementation of retrofit SUDS were identified as: 
" Lack of design guidelines (i. e. that address issues relating specifically to retrofit); 
" Uncertainty associated with the costs of construction, operation and maintenance; 
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Legal issues and ownership/operational responsibilities. 

The thesis f6cused on the development of tools/methodologies aimed at addressing the first two 

obstacles highlighted above. It was felt that legal issues relating to planning, ownership and 

operation, although clearly important, were beyond the scope of the present research. 

8.2.2. Case Studies 

1. This thesis has reviewed a number of previous investigations that sought to evaluate the 

merits of applying retrofit SUDS systems for the remediation of urban drainage 

problems (Icke et aL, 1999; Herrmann and Hasse, 1997; Attanasio, Hemphill. and Lee, 

1994; BaImforth and Bailey, 1985). The studies conducted by Herrmann & Hasse 

(1997) and BaIniforth & Bailey (1985) indicated that roof-water based retrofit SUDS 

were economically viable as a sewer rehabilitation methodology. Attanasio et al. (1994) 

demonstrated that the use of retrofit SUDS was economically viable in conjunction with 

conventional techniques as part of an integrated programme of sewer rehabilitation 

works in an American context. Similar schemes have been shown to be valid, and 

subsequently adopted for a number of other North American cities. These North 

American experiences run contrary to the prevailing view within the United Kingdom, 

which assumes that SUDS are only viable for new development applications. The 

British perspective would seem to be supported by the results of the catchment X study 

(Chapter 2), which rejected the use of retrofit SUDS in terms of performance. No 

further UK studies were found within the public domain. This illustrated the need for a 

more detailed analysis of the impacts of retrofit SUDS with respect to problem UK 

catchments. 
2. Retrofit SUDS were investigated in relation to two UK case study catchments. These 

catchments were selected because they exhibited typical UK problem characteristics 

(i. e. excessive CSO discharges and hydraulic capacity problems). Both case studies 

related to areas in the city of Leeds, in the North of England. Industrial collaborators 

provided all relevant catchment data and the hydraulic models corresponding to the 

present status of the networks. The two case studies were examined at different levels. 

Preliminary analysis into the hydraulic feasibility and cost-effectiveness of using retrofit 

SUDS to address excess CSO spills were undertaken with respect to the Gipton 

catchment. The Meanwood catchment was utilised for the development of more detailed 

tools and methodologies for retrofit SUDS evaluation. 
3. The Gipton catchment, which comprised four sub-catchments each with an 

unsatisfactory CSO, had a total area of 297.8 ha. Housing types ranged from semi- 
detached to terraced properties, with a small number of retail and institutional buildings. 

The catchment geology varied from sandstone (permeable) to mudstone (impermeable). 

Modest slopes, reasonable garden sizes, some grassed verges, some institutional 

buildings and some open space meant that reasonably widespread use of SUDS was 
194 



CHAPTER 8 

feasible. The main techniques in the proposed SUDS schemes were garden soakaways, 

with somý swales conveying stormwater into existing watercourses or land drainage 

networks. The main findings from the Gipton study (as outlined in Chapter 3) were as 
follows: 

" Although SUDS-based approaches could not entirely eliminate the CSO-related 

discharge problems, they could provide cost-effective improvements, and would be 

useful components of a hybrid (part SUDS/part conventional rehabilitation) 

proposal; 

" The disconnection of institutional buildings enabled large areas to be disconnected 

cheaply, and was seen to be an important factor in the attractiveness of the SUDS- 

based proposals; 
Conventional urban drainage models were identified as being appropriate tools for 

simulating the hydraulic performance of retrofit SUDS schemes. However, this 

required the development of novel modelling techniques (as described in part 3. of 

the following section). 

8.2.3. Tools and Methodologies 

I. The literature review and the Gipton case study highlighted the complexity of the 

retrofit SUDS design and evaluation process, and confirmed the need for specific 

design, hydraulic modelling, costing and evaluation guidance. The second case study 

(Meanwood) was employed to develop, and subsequently illustrate, those design, 

modelling, cost and evaluation tools. 

2. Chapter 4 outlined the main design issues to affect those SUDS technologies judged to 

be widely applicable in the retrofit context. These were grouped in terms of geology, 

urban landcape, building regulations etc. Although the hydraulic performance and 

constructional detail of retrofit SUDS will generally mirror SUDS for new 
developments, there are unique, additional design factors that affect the viability of 

retrofit SUDS. These factors, including, for example garden size and whether or not 

road verges are grassed, were compiled into a unique checklist of design issues for 

retrofit SUDS. A fundamental distinction between infiltration- and storage-based SUDS 

was made. 
3. Chapter 5 evaluated hydraulic modelling approaches for use in conjunction with 

conventional urban drainage hydraulic modelling software. Two approaches were 
identified: area disconnection was used to represent infiltration-based SUDS, whilst the 
initial losses parameter was adjusted to account for storage-based SUDS. 

4. Chapter 6 reflected the fact that cost is an inescapable consideration in the evaluation of 
drainage rehabilitation options, and presented relevant costing data. The costing 
methodologies acknowledged the need to include connection and conveyance costs for 
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off-site technologies. Unit costs, as well as representative scheme costs have been 

derived. The latter enabled the comparative costs of alternative SUDS technologies to 

be assessed. Of the technologies considered, basins and soakaways were found to 

represent comparatively cheap options when compared with ponds, infiltration trenches, 

and porous pavements. 

5. The newly-developed tools were applied to the Meanwood catchment in Chapters 4,5 

and 6. The catchment's sewer network contains four sites that exhibit unsatisfactory 

surcharging / flooding problems. The Meanwood catchment serves a total contributory 

area of 55. ha, and is largely residential (containing semi-detached and terraced housing) 

with some public buildings and retail outlets. There is also a significant amount of 

grassed and wooded areas in the catchment's upstream reaches. The geology varies 

from sandstone (permeable) to mudstone and Stanningley rock (impermeable). The 

catchment's key characteristics (geology, slopes, garden sizes, availability of green 

spaces) mean that the widespread use of SUDS was considered a feasible option. 

Various SUDS-based rehabilitation options for Meanwood were presented. A 

distinction was made between optimum scenarios, i. e. the level of disconnection that 

might be achieved given only geological (permeability) constraints, and best-case 

single-technology implementation scenarios. Where appropriate, the hydraulic 

performance and cost of each scenario was also presented. As with Gipton it was found 

that SUDS alone would not fully address Meanwood's rehabilitation requirements, 

although SUDS solutions might usefully be combined with conventional components to 

produce a cost-effective proposal. 

6. In Chapter 7 the design and cost constraints were employed in the development of a 

decision-support framework for retrofit SUDS. The framework is presented as a set of 

decision flowcharts. The approach is based around four key decision-making 

hierarchies that relate to: 

The Type of urban surface to which the SUDS device is to be applied; 

The Surface water management train concept - i. e. whether the SUDS device is 

intended for use as a source control, conveyance structure or an off-site control; 

The Mode of operation by which the SUDS device manages stormwater runoff; 

The Costs associated with the SUDS device. 

7. An appraisal of the framework's potential role within sewerage rehabilitation 

procedures in the UK was also presented. It is believed that the flowcharts would be a 

useful tool in developing potential schemes. Similarly, the design checklist, hydraulic 

modelling protocols and costing methodologies that have been presented could 

contribute to the development of detailed schemes and their evaluation. In practice, 

schemes that include SUDS devices are likely to incorporate more that one type of 
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technology, and it is envisaged that hybrid (part SUDS/part conventional) solutions may 
frequently represent cheap and effective alternatives. 

8. In summary, the key conclusions of this research project have been: 

" The development of a novel database of construction costs for a number of retrofit 
SUDS technologies 

" The development of a decision-making tool for the design of retrofit SUDS, which 
addresses some of the deficiencies of the existing design guidelines. 

" The application of both of these novel tools to a real UK catchment (Meanwood). 

8.3. DISCUSSION AND SUGGESTIONS FOR FURTHER WORK 

The work described in this thesis addressed the potential utilisation of retrofit SUDS 

technologies in solving stormwater-related problems in existing urban catchments. These 

technologies are arguably 'more sustainable' and potentially cheaper than conventional drainage 

rehabilitation options. In the context of the current discussions on climate change, flooding and 
sustainability, it is clear that this is a timely and relevant topic for research. However, there are a 
number of limitations in the work that need to be appreciated and that should, ideally, be 

addressed in future research. These are discussed below: 

1. Verification of the hydraulic models and modelling strategies for SUDS. 

The accuracy of the catchment models used in conjunction with this analysis is 

obviously an important issue. Amended models were used to represent the performance 

of each of the SUDS-based design proposals considered within this thesis. It was 
inevitable that, since these models represented proposals for future schemes, they were 

not, and could not have been, verified. Furthermore, the modelling techniques 
developed to represent the impacts associated with infiltration-based and storage-based 
SUDS have not been verified. The lack of extensive SUDS implementation in the UK 

makes validation against field data difficult. However, it may be feasible to undertake 

some verification work using data from outside of the UK. 

2. Performance comparisons. The SUDS-based proposals were compared with the 

conventional options using conventional hydraulic criteria relating to spill frequency 

and flood/spill volume. The cost comparisons were restricted to construction costs 

alone. A broader investigation might have considered a range of other performance 

measures, including, for example environmental (water quality, ecological), aesthetic 

and social issues. Frameworks for assessing the comparative sustainability of scheme 

options exist (Ashley et aL, 2001), and might form the basis for future evaluations. 
SUDS-based schemes are likely to appear even more favourable once these intangible 

factors are incorporated into the decision-making process. Similarly, costings need to 

reflect whole-life costs that explicitly account for maintenance and replacement, and 

need to address catchment-wide implications of surface disconnection. Reduced sewer 
flows and reduced volumes to treatment may have important implications in some 

catchments, either for operational performance or cost or both. 
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3. Limitations in the case studies. It would be useful to extend the case studies to 

encompass a broader range of catchment types, in terms of location, geology, urban 
landscape, prevailing rainfall and sewer-related problems. This would enable some 

generalisations to be made with respect to the link between catchment characteristics 

and the viability of implementing retrofit SUDS. 

4. Universality. The flow charts, and the methodologies that underpinned them, were 

principally developed for the UK context, and in the light of relevant UK legislation and 

planning/environmental policy. However, the relative costings, which were generated 
for the different technologies are likely to be fairly robust for non-UK applications. 
Similarly, the surface type and mechanism rankings and the treatment train concept are 
likely to have high levels of universality. Therefore further work could be undertaken to 

customise the UK-specific parts of the methodology, such as the design constraints that 

relate to UK Building Regulations and environmental policy, in order that it may be 

applied internationally. 

5. Secondary issues relating to SUDS implementation. The methodology has attempted 

to account for secondary issues, such as institutional concerns about adoption, 

maintenance and safety. However, it should be acknowledged that many water/local 

authorities still perceive retrofit SUDS to represent a high-risk option, and may not be 

persuaded by the hydraulic and economic justifications alone. 

The research presented in this thesis indicated that retrofit SUDS constituted economically 

viable rehabilitation strategies for two typical problem urban drainage catchments. The most 

realistic application for retrofit SUDS, under current UK conditions, is as part of integrated 

(conventional/retrofit SUDS) rehabilitation proposals. This integrated approach was shown to 

be cost effective for both case studies, and is also supported by international experience. 
However, it is recognised that there is reluctance in the UK's water sector to adopt retrofit 
SUDS. It is therefore hoped that the preliminary design, modelling and costing tools presented 

within this thesis may go some way to help to overcome this reluctance. 
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