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Abstract

This research investigates complex phenomena during the polymer crystallisation and
self-assembly of chiral liquid crystals through theoretical concepts in physics and
molecular dynamics simulation.

Self-poisoning has been reported in three poly(ethylene brassylate) (PEB) polymers,
which also exhibit quantised lamellar thickening; where the crystalline layer increases by
multiples of the repeating unit’s length. The poisoning is characterised by two minima in
the crystallisation rate of the polymers. A one-dimensional quantitative model is
developed from the extension of the Higgs and Ungar model to study the self-poisoning.
The parameterised model agrees with the experimental curves, even capturing the
minima.

Another case of self-poisoning was identified in precision polyethylene derivatives,
specifically bromine-substituted poly(ethylene bromine) (PEBr). The three PEBr
polymers exhibiting self-poisoning showed a growth rate minimum near the melting point
of a less stable form of the polymer. The one-dimensional model developed for PEB was
found to better fit the experimental growth rate data of PEBr compared to models
attributing poisoning to competition between more and less stable forms.

A recent united-monomer model of polyethylene (PE) was extended by incorporating
bromine atoms to mimic PEBr, enabling further study of its crystallisation. In this
model, one bead represents a −C2H4− unit or −C2HBr2−. Two crystallisation
protocols were employed: self-seeding and continuous cooling. The self-seeded systems
displayed temperature-dependent quantised lamellar thickening, while the continuous
cooling systems did not. Quenching the system revealed bromine alignment into layers,
similar to experimental observations in PEBr.

The crystallisation of the high-molecular-weight poly(lactic acid) stereocomplex is
significantly hindered in a 1:1 mix. It has been suggested that this is due to the local
fluctuations in enantiomer concentration within the melt. A Monte Carlo simulation on a
two-dimensional lattice is employed to mimic the diffusion-driven motion of PLA
enantiomers, capturing the effects of temperature and diffusion on stereocomplex
formation. Crystallisation and melting probabilities are parameterised to investigate
their interplay with diffusion. Metrics such as crystallinity of the stereocomplex and
homochiral clustering are tracked during the simulations. The results of the simulation
suggest that the stereocomplex can grow at lower tempertures.

A liquid crystal phase (LC) with chiral columns composed of achiral molecules with
straight cores and aliphatic long chains is also reported. The observed LC phases exhibit
an equal number of left- and right-handed columns, rendering the overall phase achiral.
The chirality arises from a balance between the parallel stacking of the cores to maximise
π − π interactions and the avoidance of clashes by the tails. Two interacting dimers of
the molecules were found to prefer perpendicular arrangements to optimise packing and
minimise head-on clashes. A model of rotating quadrupoles was developed to capture the
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interactions of dimers within the columns due to their similarity to linear electric
quadrupoles. The experimentally observed Fddd configuration was found to have the
lowest energy per dimer compared to three alternative configurations.
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1 Introduction

Over the last century, there has been a shift from reliance on condensed hard matter to materials
designed for specific applications. Hard condensed materials are characterised by the arrange-
ments of its particles into highly ordered lattices. It is then possible to predict the behaviour
and properties of the material from the interactions of its particles. Many of these properties
are now well known and understood as compared to soft matter materials. Soft matter physics
is a subfield of condensed matter physics dealing with materials that are easily deformed by
thermal fluctuations and external forces. Materials in this category exhibit diverse properties
and include polymers, liquid crystals, colloids, gels, emulsions, foams, and surfactants. These
systems consist of basic units larger than atoms but smaller than the overall size of the mate-
rials, and exhibit weak interactions. Consequently, their properties, such as high sensitivity to
temperature changes, make them challenging to study.

The name ’soft matter’ was in fact coined by Pierre-Gilles de Gennes, a French physicist,
during his Nobel prize talk. He received a Nobel prize in physics for his work adapting methods
used to study hard matter ordering to soft matter, particularly liquid crystals and polymers.
These have been used in studying phase transitions in liquid crystals. However, there is still a
lot that remains unknown and misunderstood about polymers and liquid crystals to this day.
There are many attempts to synthesise new polymers and liquid crystals for specific use to take
advantage of some of their properties, yet this is limited by the fact that not many successful
theories exist to predict the results. It is clear that first principle approaches would not be
effective in computing the interactions of the systems with many atoms unlike in hard matter
systems, but rather it calls for effective potentials and coarse-grained approaches.

1.1 Objectives of the Study

Polymers are the most widely used soft matter materials. Polymers are materials composed
of large chain-like molecules formed from repeating units, synthesised from smaller molecules
called monomers. They have many functions in everyday life, from being used as simple carrier
bags to being used in construction.In most applications, polymers are used in their crystallised
form, where segments of their chains become ordered, resembling the structure of hard matter.
However because of their long chain nature and intrinsic polydispersity (the chains having a
distribution of lengths), their crystallisation is not as well understood as compared to met-
als. Liquid crystals are another significant class of soft materials, combining fluidity similar to
isotropic liquids with the long-range order characteristic of crystalline solids. However, phenom-
ena such as the self-poisoning effect in polymer crystallisation and the spontaneous formation of
chirality in liquid crystals remain poorly understood from a quantitative theoretical perspective.

This research focuses on exploring complex experimental phenomena in polymer and liquid
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1.2 Thesis Outline

crystal systems through theoretical concepts and computer simulations. To achieve this my
supervisors Professor Gillian Gehring and Dr Xiangbing Zeng, and I collaborated with Professor
Goran Ungar from the Materials department within the University to identify such systems. Dr
Zeng and Professor Ungar provided guidance on how to interpret the experimental data and to
the key interactions to consider in our coarse-graining. Our collaboration proved very fruitful as
insight offered from an experimental view would either point to an existing theoretical concept
or lead to novel ideas. The approach taken afterwards was to implement existing theories in
physics where possible to develop theoretical models that would able to interpret or reproduce
the experimental data. This thesis aims to:

• Identify polymer systems suitable for theoretical analysis.

• Understand and improve existing theories relevant to these systems or similar ones.

• To design appropriate models and simulations to capture the mechanisms of the systems.

• parameterise models to compare theoretical results with experimental data.

1.2 Thesis Outline

The remainder of this chapter introduces polymer crystallisation, chirality in polymers, and the
systems central to this thesis. It begins with the basics of polymer crystallisation, followed by
a discussion of secondary nucleation theories, such as the Lauritzen-Hoffman theory, and intro-
duces self-poisoning as a phenomenon these theories fail to explain. The chapter also highlights
recent cases of self-poisoning in precision polymers, specifically poly(ethylene brassylate) and
poly(ethylene bromine) (PEBr), as well as poly(lactic acid) which are investigated in this thesis.
It continues by exploring chirality in polymers and liquid crystals, focusing on its impact on
their assembly. The chapter concludes by presenting a newly discovered columnar liquid crystal
phase with chiral columns formed from achiral molecules, exhibiting Fddd symmetry.

Chapter 2 outlines the methodologies used in the results chapters. It begins by detailing the
curve-fitting method used to parameterise the quantitative models of self-poisoning developed
in Chapters 3 and 4. The chapter continues with an explanation of molecular dynamics simula-
tions, particularly the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
software, which is employed in Chapter 5 to simulate PEBr. Monte Carlo dynamics are then
introduced, along with the relevant algorithms. The chapter concludes by describing the model
of linear electric quadrupoles used in Chapter 7 to quantify interactions in the chiral liquid
crystal system.

Chapter 3 presents a quantitative coarse-grained model to explain self-poisoning in polymers
with quantised lamellar thickness, adapted from the Higgs and Ungar model for long-chain n-
alkanes. This model is parameterised for PEB, enabling comparisons with experimental data.
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1.3 Polymer Crystallisation

Chapter 4 extends the study of self-poisoning by examining PEBr. The one-dimensional model
developed for PEB is shown to fit experimental growth rate data for PEBr better than a model
based on competition between crystal forms.

Chapter 5 focuses on molecular simulations of PEBr using LAMMPS. These simulations in-
vestigate its growth and provide further insights into the mechanisms identified in Chapter
4.

Chapter 6 employs a Monte Carlo simulation to study the crystallisation of the poly(lactic acid)
stereocomplex. This chapter explores the effects of temperature and diffusion on crystallisation,
tracking metrics such as stereocomplex crystallinity and homochiral clustering.

Chapter 7 introduces a model of rotating quadrupoles to quantify interactions in a liquid crystal
system with chiral columns. The experimentally observed Fddd configuration is shown to have
the lowest energy per dimer compared to three alternative configurations.

Chapter 8 summarises the main findings of this research and discusses potential directions for
future work.

1.3 Polymer Crystallisation

1.3.1 Polymers

Polymers are made up of long flexible chain-like molecules consisting of repeating substructures
that are covalently bonded together [1, 2, 3]. They are made from smaller molecules called
monomers through a process known as polymerisation. One of these polymer chains could
range from several microns to mm in length. Polymers are ubiquitous in everyday life, with
applications ranging from shopping bags to construction materials, many of which require their
crystalline form for enhanced properties.
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1.3 Polymer Crystallisation

1.3.2 Crystallisation

Figure 1.1: Unit cell of sodium chloride (NaCl) and polyethylene. (a) The unit cell of NaCl
showing the position and order of the ions. The sodium ions are depicted as small red spheres
and the chloride ions as the green bigger spheres. (b) The unit cell of polyethylene which is
orthorhombic and contains 4 chains, with its chains arranged along the c-direction.
Reproduced from [4] and [5].

Crystallisation is a process by which atoms, ions, or molecules arrange themselves into a well-
ordered, repeating structure known as a crystal. The crystal is characterised by long-range
positional and orientational order [6]. In materials such as metals and ionic compounds, this
results in the formation of a lattice. The lattice is a three-dimensional (3D) array of points
representing the equilibrium positions of the constituent particles [7]. The lattice exhibits
periodicity, meaning the arrangement repeats uniformly throughout the crystal. Its structure
is defined by a unit cell, the smallest repeating unit that captures the symmetry and spatial
arrangement of the lattice. The entire crystal structure can be reconstructed by translating the
unit cell in three dimensions [8].

While metals and ionic compounds form simple lattices, polymers crystallise in more complex
patterns due to their chain-like molecular structure. The repeating units are small, and the
crystal’s periodicity is consistent across long distances. A typical example of this is sodium
chloride (NaCl), with the unit cell shown in figure 1.1(a), consists of sodium ions (in red) and
chloride ions (in green) arranged in a repeating pattern.
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1.3 Polymer Crystallisation

Polymers can undergo crystallisation akin to that of smaller molecules, where segments of chains
lose their mobility and become ordered as they are cooled or as the solvent they are dissolved
in is evaporated [3, 9]. In contrast, polymer unit cells are more complex due to the large, chain-
like nature of polymer molecules. Instead of simple atoms or ions, the unit cell of a polymer
contains segments of long molecular chains, as seen with polyethylene in figure 1.1(b), leading
to irregular shapes and arrangements.

1.3.3 Polymer Single Crystal

Early studies on polymer crystallisation suggested that polymers could only achieve low crys-
tallinity, with most segments remaining disordered [10]. Later, it was discovered that higher
crystallinity polymers could be grown with polymers made of chains that have less branching
and are more flexible like low-density polyethylene (PE) [11, 12]. Even more interestingly, near
100% crystallinity crystals, often with help of seeding, could be grown under special conditions
of slow crystallisation and from dilute solution (under 0.1% concentration), and these crystals
are called polymer single crystals [13, 14, 15, 11]. Polymer single crystals are regular shape,
plate-like, very thin crystals that are much larger laterally, shown in figure 1.2(a) and (b).
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1.3 Polymer Crystallisation

Figure 1.2: Molecular organisation in a polymer single crystal. (a) Illustration of a polymer
single crystal with the thickness significantly smaller than the lateral length. (b) Image of a
polymer single crystal under the microscope. (c) Diffraction pattern showing the direction of
the chain orientation, along the thickness of the polymer single crystal. (d) The folded chain
arrange into lamella with the straight side of the chains along the thickness of the lamella.
The chains are added to the lamella perpendicular to the thickness. This creates a fold
surface at the ends and another in the direction of growth of the lamella. Adapted from [10]

Experimental results from electron microscopy have revealed that the chains in polymer single
crystals are oriented along the thickness of the crystal, the shortest dimension of the crystal, the
c-axis of the unit cell [16] as shown in figure 1.2(c). The thickness of the crystal (about 10nm)
is much shorter than the full length of the molecules, (several microns to mm long) and hence
this result has led to a well-established concept of the chain folded crystallisation. The polymer
chains only go a short way perpendicular to the lateral dimensions before folding back and forth
many times on themselves. The folded chains arrange in thin, plate-like crystalline lamellar
structures [11]. Each fold occurs at the surface of the lamella, and the polymer chains are added
perpendicular to the lamellar surface. The chains then leave and re-enter the lamella at nearest
neighbouring positions [11]. The resulting structure has two surfaces, the lateral surface where
the chains are added to the lamella, and the fold surface at the ends figure 1.2(d).
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1.3.4 Crystal growth

Classically many substances crystallise through nucleation and growth, where nucleation starts
the process and then the crystal spreads [17]. Similarly, the process of polymer crystallisation
can be divided in these two stages. Nucleation, the initial step in crystallisation, involves the
spontaneous arrangement of polymer chains into an ordered structure [18]. This process can
be categorised into two main types: primary nucleation and secondary nucleation [19]. Each
type plays a distinct role in the formation and growth of polymer crystals. Primary nucleation
refers to the formation of the very first crystalline nuclei in a polymer melt or solution [17].
It can take place uniformly throughout the polymer melt or solution without any preferential
nucleation sites, homogeneous, or at specific sites within the polymer melt or solution, such as
impurities, additives, or surfaces of the container, heterogeneous [20].

Homogeneous nucleation occurs when polymer chains arrange into a crystalline structure with-
out external assistance. This process requires a significant amount of energy because it involves
the creation of new surfaces (interfaces between the crystalline and amorphous regions) without
any external assistance. While in heterogeneous nucleation the sites lower the energy barrier
required for nucleation by providing a template that facilitates the orderly arrangement of
polymer chains. The size of the critical nucleus required for stable nuclei formation depends on
the free energy barrier to crystallisation. This critical nucleus size determines the difficulty of
nucleation and is influenced by factors like undercooling, T − Tm or supersaturation.

Secondary nucleation occurs on the surfaces of pre-existing crystals, where new nuclei form. This
process is crucial during the growth phase of crystallisation. Primary nucleation is normally
dominant only at the start of the crystallisation in non-seeded (without a pre-existing nucleus)
processes [21]. Then polymer chains in the melt or solution can attach to the surface of these
nuclei, forming new crystalline layers. Then further nuclei are formed on the pre-existing
crystalline surfaces to allow for further crystal growth. This process continues, leading to the
growth as more chains attach and crystal grows.
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1.3 Polymer Crystallisation

1.3.5 Structural Hierarchy in Semi-crystalline Polymers

Figure 1.3: Structural Hierarchy in Semi-crystalline Polymers. a Represents the unit cell of
the crystalline structure (with a lattice spacing of 0.74 nm in one direction). This is the
smallest structural level, where the basic repeating units pack into a regular arrangement. b
Shows the formation of a lamellar structure, which consists of folded polymer chains. The
thickness of these lamellae is around 10 nm. The chains fold back and forth, creating a
layered structure with alternating crystalline and amorphous regions. c Illustrates the
formation of a spherulite. The lamellae branch out radially, creating a pattern that resembles
tree branches or a fan-like shape. This branching helps to fill space during the crystallisation
process. d Depicts the semi-crystalline arrangement of the crystalline layers sandwiching the
amorphous regions. e Shows a fully developed spherulite with a diameter of approximately
100 µm. The radial growth of the lamellae from the nucleation point creates this larger,
spherical structure. f Illustrates the macroscopic morphology of the crystallised polymer
material, with spherulites impinging into each other filling the entire volume. The size of
these spherulites can reach around 1 mm, and grain boundaries (blue line) form where
different spherulites meet. Taken from [22]

Melt-grown polymers also crystallise forming lamellar structures [15, 23]. Unlike in the ideal case
of single crystal polymers with one lamella (figure 1.3b), most melt- and solution-grown crystals
are semi-crystalline, with multiple lamellae separated by amorphous regions [24] (figure 1.3d).
The lamellar in these semi-crystalline polymers is similar to those in the single crystal polymers,
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1.3 Polymer Crystallisation

albeit less ordered. For semi-crystalline polymers, the lamellar thickness is the crystalline layer
thickness plus that of the amorphous layer. In some cases of high nucleation a chain can pass
through an amorphous region from one lamella and joins onto another. Such chains are called
tie molecules or tie chains [25].

In semi-crystalline polymers, the lamellar arrangement often evolves into more complex struc-
tures known as spherulites [26] such as in figure 1.3e. Spherulites are well-known phenomenon
that is ubiquitous to many compounds of small molecule solids [27, 28, 29]. In polymers they
form as the polymer crystallises, with lamellae radiating outward from a nucleus to create a
spherical, 3D structure. Unlike simpler lamellar arrangements, in spherulites, the lamellae can
twist and branch as they grow (figure 1.3c), adding to the complexity of the structure. Within
the spherulite, the lamellae are interspersed with amorphous regions. When viewed under po-
larised light, spherulites show that the polymer chains are arranged tangentially around the
nucleus, and thus the lamellae grow radially from the centre nucleus. The spherulites will grow
until they crash into each other, forming interspherulitic boundaries (figure 1.3f) that may
exhibit less perfect crystalline order compared to the core.

In many polymers, spherulites are often observed in the range of 1–100 µm, but they can
grow larger under slower cooling conditions, reaching sizes up to several millimeters [22, 30].
This makes them visible under an optical microscopy which allows for the evolution of their
crystalline layers to be directly measured. The rate at which the crystalline lamellae extend
outward from a nucleation site to form a spherulite is referred to as the growth rate of the
polymer. It describes how quickly the crystalline regions within the polymer grow, measured
as the distance travelled by the growth front per unit time. In most instances the radii of the
spherulites are seen to grow linearly with time [31].

The growth rate values obtained from directly measuring the change in the diameter of the
spherulites with time are very accurate. On the other hand, the process may take a long
time and in polymers with high-nucleation the spherulites may be too small for the growth
rate to be determined this way [32]. In such instances it is better to measure the overall
transformation from the amorphous to the crystalline state occurs in the polymer, referred to
as the crystallisation rate [31]. It includes both the nucleation rate and the growth rate of
crystalline regions. The crystallisation rate represents the speed of the entire crystallisation
process, resulting in a change in the degree of crystallinity over time. The crystallisation rate
ν is related to the growth rate by the equation below,

ν = GN(t) (1.1)

where G is the growth rate and N(t) is a time dependent function about the number of
spherulites growing [31].

It is traditionally measured using the Differential Scanning Calorimetry (DSC), where the heat
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released during crystallisation is monitored [33]. The area under the exothermic peak in a
DSC curve corresponds to the extent of crystallisation, and the time to reach half of the peak
height (half-time) gives an indication of the crystallisation rate. For polymers with high heating
and cooling rates, typically ranging from hundreds to thousands of degrees Celsius per second,
an advanced calorimetric Fast Scanning Calorimetry (FSC) is preferred over the conventional
DSC [34]. The core principle of FSC is similar to that of traditional DSC, where the heat
flow associated with thermal transitions is monitored. Techniques like X-ray diffraction (XRD)
or infrared spectroscopy (FTIR) can also track changes in crystallinity over time, providing a
measure of the crystallisation rate.

1.3.6 Thermodynamics of polymer crystallisation

Figure 1.4: Lamellar structure illustrating lateral dimensions x and y, average thickness l and
along with the surface energies per unit area σ for the lateral surfaces and σe for the fold
surfaces.

The formation of a lamella crystal begins with nucleation, followed by the addition of new
molecular chains to the growing crystalline structure. This process creates two distinct surfaces:
the fold surface, where chains change direction, and the lateral surface, where new chains
attach. The free energy change associated with this process forming a lamella crystal with
lateral dimensions x and y, average thickness l and along with the surface energies per unit
area σ for the lateral surfaces and σe for the fold surfaces as shown in figure 1.4, can be divided
into two, the bulk and surface energy changes.

The bulk free energy change (∆Φbulk) represents the difference between the crystalline and
amorphous states, and is given by,
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∆Φbulk = xyl∆Φc (1.2)

where xyl is the volume of the lamella and ∆Φc is the free energy change per unit volume for
the transition from amorphous to crystalline state and is taken to be positive. The change in
the surface energy accounts for the creation of new surfaces on the sides of the lamella and
creation of new surfaces at the folds surfaces. The total change due to surface energy ∆Φsurface

is then

∆Φsurface = 2xyσe + 2l(x+ y)σ (1.3)

The total change in the free energy ∆Φf is then

∆Φf = 2xyσe + 2l(x+ y)σ − xyl∆Φc (1.4)

If the lateral dimensions x and y of the lamella are significantly larger than the thickness l, the
term 2l(x+ y)σ becomes negligible compared to 2xyσe, simplifying the free energy calculation:

∆Φf ≈ 2xyσe − xyl∆Φc (1.5)

At the melting temperature of the crystal, Tm, ∆Φf is zero and

∆Φc(Tm) = 2σe/l (1.6)

For an infinitely large perfect crystals the free energy change per unit volume is,

∆Φc,∞(T ) = ∆Hc,∞(T )− T∆Sc,∞(T ) (1.7)

where ∆Hc,∞(T ) and Sc,∞(T ) are the enthalpy and entropy changes during the crystallisation
for the infinite crystal.

At the melting temperature of infinitely large crystal, Tm,∞, the crystal becomes in equilibrium
with the melt around it and ∆Φc,∞ becomes zero.

Then equation (1.7) can be rearranged to have ∆Sc,∞(Tm,∞) as the subject of the formula

∆Sc,∞(Tm,∞) = ∆Hc,∞(Tm,∞)/Tm,∞ (1.8)
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At Tm the free energy change per unit volume of the infinitely large crystal is non-zero and
given by,

∆Φc,∞(Tm) = ∆Hc,∞(Tm)− T∆Sc,∞(Tm) (1.9)

For high melting temperatures Tm the differences in entropy change between Tm and Tm,∞ tend
to be minimal. Therefore it is reasonable to approximate ∆Sc,∞(Tm) as,

∆Sc,∞(Tm) ≈ ∆Sc,∞(Tm,∞) (1.10)

Assuming that similarly there is little temperature dependence, then ∆Hc,∞(Tm) can be ap-
proximated as,

∆Hc,∞(Tm) ≈ ∆Hc,∞(Tm,∞) (1.11)

By substituting equations 1.10 and 1.11 into 1.9 we get,

∆Φc,∞(Tm) = ∆Hc,∞(Tm,∞)− Tm∆Hc,∞(Tm,∞)/Tm,∞ (1.12)

Equating equations 1.6 and 1.12 we get

2σe/l = Hc,∞(Tm,∞)− Tm∆Hc,∞(Tm,∞)/Tm,∞ (1.13)

This can be rearranged as,

Tm = Tm,∞

[
1− 2σe

l∆Hc,∞Tm,∞

]
(1.14)

This derivation leads to the well-known Gibbs-Thomson equation, which relates the melting
temperature of a lamella with a given thickness to the melting temperature of an infinitely large
crystal. The equation can also be rearranged to obtain the minimum stable lamellar thickness
at a given temperature,

lmin =
2σe

∆Hc,∞∆T
(1.15)
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where ∆T = Tm,∞−Tm. The critical lamellar thickness is inversely proportional to supercooling
as observed experimentally. Lamellae with greater thickness can also grow, contributing to
metastable states characteristic of chain-folded crystallisation. However, an increase in thickness
typically lowers the free energy, making the crystal more stable overall

1.3.7 Kinetic Theory of Polymer Crystallisation

Figure 1.5: The growth rate due to the competition between the barrier term and the driving
force. The barrier term is proportional to exp (−Eb/(kT )), where Eb is the barrier, The
driving force increases with l, but at a slower rate than the decrease of the force due to the
barrier term. Hence the overall growth rate is positive for l > lmin but decreases to zero at
large l, with a maximum in between. Adapted from [35]

It is assumed that polymers growth is controlled by kinetics and not thermodynamics [35].
This has led to a rise in many kinetic theory models. These models are all characterised by
a driving force and an energy barrier [35]. The driving force for crystallisation increases with
supercooling, leading to higher crystallisation rates at lower temperatures. This driving force
is also related to the thickness of the lamellar, for l > lmin, the driving force increases. It is
usually derived from the free energy difference from the melt and the crystal and is normally the
same for all the theories. The molecules then must overcome a barrier to attach to the crystal
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and increase its lamella [35]. The exact nature of this barrier is specific to each theory. Often
the barrier term is used instead of the barrier. The barrier term represents the energy required
for molecular attachment and is proportional to exp (−Eb/(kT )), where Eb is the barrier. The
growth rate of the polymer is then a result of the competition between the two forces, figure
1.5.

Lamella of any thickness greater than the minimum stable thickness can be formed, however it
is the thickness with the fastest growth rate that is observed to grow. The experimental findings
indicating that the growth rate is proportional to exp (−1/∆T ) and the formation of facetted
single crystals in solution provide strong evidence that polymer crystallisation is governed by
nucleation. The formation of well-defined, single crystals in the solution indicates a specific,
orderly process of crystal formation, rather than a more random or amorphous aggregation of
polymer molecules [35]. As a result, most kinetic theories are secondary nucleation theories.
In this introduction the two most famous secondary nucleation theories of Lauritzen - Hoffman
and Saddler - Gilmer are discussed, with attention paid to the former as it is analytical like the
models developed later in this work.

1.3.8 Lauritzen - Hoffman Theory

The Lauritzen-Hoffman (LH) theory is one of the most widely used kinetic theories, providing a
quantitative framework for understanding polymer crystal growth [36, 37]. The theory focuses
on secondary nucleation as the driving force for crystallisation, assuming the preexistence of a
crystal.
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Figure 1.6: Schematic for the Lauritzen - Hoffman theory and free energy landscape. (a) The
model of LH theory for stems of width a0 and depth b0. The surface tensions on fold and
lateral surfaces are σe and σ, respectively. Taken from [35]. (b) The possible transitions in the
LH theory. A’s and B’s are rate constants for addition and subtraction of a stem and depend
upon the number of neighbours of a stem, from [35]. (c) The change in free energy for the LH
theory with the number of stems. (d) The flux S(l) of crystals grown with length l, and
driving force (1−B/A) and the barrier term (N0A0), where N0 is the number of crystals
growing with lamella of thickness l, equation 1.22. The barrier favours growing of thin
crystals whilst the driving force favours thicker crystals. Adapted from [38]

In the LH theory, the growth front is taken to be the lateral surface and it is taken to be
smooth as in figure 1.6. The first step involves a single molecular stem weakly adsorbing to a
smooth crystal lateral surface, forming the initial foundation for growth [36]. This deposition
creates two lateral surfaces, increasing the free energy by 2b0σl, where b0 represents the layer
thickness and, l is the length of the segment and σ is the surface energy per unit area. This
initial step the faces the biggest energy barrier and this makes it the rate controlling step, and
the magnitude of the barrier increases with the length of the segment l [36].

The second step is the attachment of this stem to the surface, which result in it losing confor-
mational entropy and decreases the energy by a0b0l∆ϕc, where a0 is the width of the stem and
∆ϕc is the free energy change of crystallisation per unit volume. The LH theory assumes that
this single stem is sufficient to act as the secondary nucleus for growth. Another assumption of
the LH theory is that the subsequent stems of a folded chain are added adjacently. This means
that the next steps are of the stems of the same chain being attached either side of the nucleus
and they all grow with the same length as the nucleus. A result of this assumption is that no
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other chain can grow until the first is fully grown. Each of the subsequent stems contributes
two folded surfaces and this increases the energy by 2a0b0σe, where σe is the energy penalty for
creating a folded surface. The attachment of the stems reduce the energy by a0b0l∆ϕc.

The possible transitions of adding and removing stems are captured in figure 1.6b using the
rate A0, A and B. A0 is the rate of adding new stems onto a clean smooth crystal surface and
have an corresponding removal rate B. A is the rate of addition of the next stems adjacent an
existing stem of an equivalent length, and these steps are removed at rate B. These rates can
be estimated by the Arrhenius equation using the associated free energy changes as:

A0 = β exp (−2b0σl/(kT )) (1.16)

B = β exp (−a0b0l∆ϕc/(kT )) (1.17)

A = β exp (−2b0a0σe/(kT )) (1.18)

.

Where β is the number of times per second that a molecule attempts to attach to the surface,
l is the lamellar thickness, and k is the Boltzmann constant.

The dynamics and assumptions of the LH theory make for a simple theory of fundamental pro-
cesses, nucleation, and lateral growth as means of growing the crystal. This helps define natural
parameters that describe the polymer crystallisation [35]. The first parameter is the nucleation
rate, i, which is the rate of depositing stems per unit substrate. The second parameter is then
the lateral spreading rate, g, which is the difference between the attachment and detachment
of stems. By considering the behaviour of the two rates, the three-regime event arises, each
describing the interplay between the two rates.
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Figure 1.7: Schematic of the three regimes from the LH theory. The nucleus as depicted with
dark rectangles and the rest of the stems in white. (a) Regime I, (b) regime II and (b) regime
III.

In the first regime, which occurs at high temperatures, the lateral spreading rate (g) is signifi-
cantly greater than the nucleation rate (i). Once a nucleus is attached to the surface subsequent
stems are quickly deposited and wait for another nucleation step to take place (figure 1.7(a)).
In this case the nucleation is the rate controlling step. This results in the growth rate being
[39, 35]

GI = b0iLp (1.19)

where Lp is the persistence length [40, 41]. Since i is defined as the nucleation rate per unit
substrate length, the nucleation rate is iLp. The Lp used to be called the crystal size, however,
it changed due to the fact that this implied that wide crystals would grow faster, and this went
against experimental observations that the crystal growth is independent of the crystal size.

Another regime is one taking place at moderate temperatures. Here the rate at which new
nuclei are deposited and the rate at which the growth spreads at the surfaces created by nuclei
are comparable (figure 1.7(b)). The growth rate then only depends on the two [42],

GII = b0
√
ig (1.20)

At low temperatures when i >> g, nuclei are deposited multiple times within a short space
of time and the spreading rate becomes insignificant (figure 1.7(c)). This is normally called
regime III [42]. The growth rate becomes similar to the first but with Lp

′ now representing the
distance between two nuclei.
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GIII = b0iLp
′ (1.21)

The determined values of the rates from equation 1.16-1.18 were then used to find the values of
i and g, and by extension the value of G in the different temperature regions. The flux (S(l))
of crystals grown with length l due to nucleation and growth spread was determined to be,

S(l) = N0A0(1−B/A) (1.22)

Where N0 is the number of crystals growing with lamella of thickness l, and N0A0 as the barrier
term and (1−B/A) as the driving force. g was readily determined from the flux as,

g = a0A(1−B/A) (1.23)

However, i is found from the total flux of stems , ST , through the barrier, found by integrating
over stems of all lengths,

ST =

∫ ∞

2σr/∆Gf

S(l)dl (1.24)

i = ST/Lp (1.25)

The LH theory does a good job of predicting the growth rate as a function of the undercooling,
as well as the regime behaviour, however, it presents with several shortcomings as well [43, 44,
45, 46]. Initially the rates were to be determined by apportioning, that is, dividing the free
energy available to the different rates, and the apportioning factor ψ can be between 0 and
1. It has been observed that if the apportioning factor is greater than 0 then at some specific
temperature lamella of infinite length could grow without any energy barrier. This result has
never seen experimentally and is unphysical as the energy barrier increases with the length of
the stem. One of the ways around this so called δl catastrophe, was to use the apportioning
factor equal to 0 and as was done by Hoffman [47].

The LH theory assumes nucleation occurs on smooth surfaces, yet experimental observations
reveal crystals with curved edges in both solution and melt, challenging its applicability under
certain conditions [48, 49]. This inconsistency undermines a core assumption of the theory.
Another of the limitations associated with the LH theory is that no other chain can grow until
one chain has been fully attached or removed from the growth front. And because of the
size of the barrier that the initial stem needs to overcome, it can take a long time for this to
happen. This shows a defect in the theory because we could be waiting for a long time before
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the attachment is complete. There have been several developments of the theory to try and
address its limitations, however, it seems that any theory adapted from the assumptions of the
original model make it difficult.

1.3.9 Sadler - Gilmer Theory

As previously discussed, the LH theory is built off the idea that crystallisation takes place on
a smooth surface and thus the barrier comes from creating new clean surfaces from depositing
a stem on the existing surface. At sufficiently high temperatures crystals may be rough and
when new stems are deposited they fill the gaps created by the roughness, instead of creating
new surfaces. This would imply that as there are no new surfaces there is no barrier per the LH
theory. This is contrary to experimental observations that show that there is still nucleation
at these higher temperatures. To address this inconsistency, it was proposed that an entropic
barrier would be better suited to explain the observations. Point [43] theorised that stems could
have more choices on being deposited rather than in the previous theory. From this idea came
the birth of the Sadler – Gilmer (SG) theory.
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Figure 1.8: A schematic diagram shows a two-dimensional cross-section of a lamella polymer
crystal, which serves as the foundation for the two-dimensional version of the Sadler-Gilmer
model. The model allows for three possible configuration changes, shown with dashed lines.
Taken from [50]

The SG adopts the same concept that Point suggested that a chain being deposited can take a
range of different conformations [43]. By doing so it is possible for one of the subsequent stems
of a chain to take on wrong conformations. This would prevent the further deposition of the
other stems of the chain and thus stop the growth, leading to was they called pinning, and to
keep the growth going the wrong stem must be removed [51, 44]. By definition, any step that
limits crystal growth would be considered a barrier and, in this case, it is the removal of these
wrong conformed stems [51, 44, 52] (figure 1.8). The barrier to nucleation was taken to be
purely entropic and for enthalpic considerations to have no effect. The driving force was still
taken to be the difference in free energy between crystal and the amorphous and is proportional
to the lamellar thickness. As the barrier originates from deposition of the wrong stems, the
probability of such stems would increase with thicker lamella as there are more configurations.
This then means that the lamellar thickness is dependent on both the driving force and the
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barrier and thus the two compete for an optimum thickness [51]. The growth rate from the
model was found to be,

G ∝ exp (−Kl)(l − lmin)∆Φc/(kT ) (1.26)

where ∆Φc is the change in free energy of crystallisation and k is the Boltzmann’s constant, T
is the temperature, and K is a constant [38].

It is worth highlighting that though the SG and LH theories present models with differing
barriers, they both have somewhat similar growth rate that predict similar growths of crystals
and lamellar thickness. However, while the LH theory produces an analytical model, the SG
theory does not and is achieved by simulation. This is because it takes into account the different
configuration that the stem can take. Several authors [53, 54, 55] have attempted to create
unified models as they believe the SG theory is complimentary to the LH as the change in free
energy has both enthalpic and entropic contributions. Doye and Frenkel [53, 54] suggested a
model where the nucleus was made of several stems instead of one. The thickness of the layer
would then be resultant from a convergence process related to the entropy,instead of being
controlled by the nucleus.
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1.3.10 Growth Rate Minimum

Figure 1.9: Typical growth rate of polymers. The growth rate increases with supercooling
until it reaches a maximum and the decreases due to loss of mobility as it approaches glass
temperature (Tg).

According to the LH theory, the growth rate G of polymer crystals increase with supercooling
to a point, and then starts to go down as is shown in figure 1.9. This results in a characteristic
bell-shaped curve. This decline is due to the decrease in molecular mobility near the glass
transition, leading to a reduced growth rate.
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Figure 1.10: The growth rate for C246H494 and C198H396 showing a minimum as a function of
supercooling. (a) The growth rate for C246H494 and (b) the growth rate for C198H396. t10 is
the time to taken release 10% of the heat during crystallisation.Taken from [56], [57]

In an experiment involving pure long n-alkanes used to study the early stages of chain folding,
it was found that the chains may fold only if they had more than 150 carbons in the backbone.
The data from the Raman, small-angle X-ray and electron microscope [58, 56, 57] showed that
in these polymers the chains are either fully extended or grow as fold into integer fractions of the
original length. As well as this, it was found that the crystallisation rates of melt grown C198H396

and C246H494 as a function of the temperature, as calculated from the differential scanning
calorimetry (DSC), had a minima. The crystallisation rate was seen to initially increase as the
temperature was lowered until a certain temperature whereat it began to decrease to a nonzero
minimum as the temperature is further lowered, like it shows in figure 1.10. The crystallisation
rate then picks up again and increases with supercooling. It is worth pointing out that this
minimum occurs at higher temperature than Tg, therefore this result cannot be attributed to
the glass transition. This result was inexplicable by the LH theory as it did not predict any
minima in the growth.

The idea of surface polymer growth rate poisoning by impurities was a well-known subject by
the time of discovery [59]. However, in this case it was ruled out as the sample was extremely
pure. Instead, it was proposed that the extended chains growing at the higher temperature
ranges are poisoned by the growth of the once folded chains, and this phenomenon was termed
self-poisoning [58]. Initially the extended chains grow as found by the SAXS and DSC, however
their growth is blocked by the folded chains [60]. Though they are not stable above their own
melting point, it takes time for them to detach, thus slowing down the growth. The same
phenomenon was found in solution grown C198H396. Similar results have been observed in the
studies of lamellar thickening carried out on low molecular weight fractions of poly (ethylene
oxide) [61]. The minimum observed was not as well defined as that seen for the long n-alkanes,
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however, republication of the data showed that the growth of the extended chains slowed down
near where the kink was in the growth rate, which implied self-poisoning.

Current polymer crystallisation theories vary in their ability to reproduce the growth rate
minima, and such attempts are important in evaluating the assumptions made in such theories.
Classic coarse-grain Lauritzen-Hoffman (LH) theory could not reproduce them without some
strained assumptions [62], mostly because of its failure to take into account properly the self-
poisoning effect, where polymer chains at growth front are trapped in futile conformations
slowing-down crystal growth. Fine grain models such as Sadler’s roughness-pinning theory
could generate the growth rate minima naturally and qualitatively [63], but have a problem to
explain the smooth crystal surfaces observed in many polymers showing growth rate minimum.
Monte Carlo simulation based on segmented polymer chains was also able to show the minima,
even though less pronounced than in real alkane systems [64]. Based on mean-field theory
and computer simulation it was argued that self-poisoning is ubiquitous, as long as a molecule
can bind in two (or more) energetically non-equivalent ways to a crystal, and their binding
probability is sufficiently different [65].

1.3.11 Higgs – Ungar Model

Higgs and Ungar (HU) developed a model that was able to semi-quantitatively explain the
growth rate minimum at the transition between extended and once-folded forms of long chain
n-alkanes [60]. The model is based on a simplified version of the SG row model. Though
the latter does show a minimum in the growth rate, the former is analytically soluble. The
HU model is developed on the assumption that the once-folded form can be deposited on the
extended form but the reverse is not possible. Because of this assumption, the extended form
surface can readily has several m once-folded chains.
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Figure 1.11: A diagram of the HU model. (a) The chains fold precisely into two or three
segments, forming tight chain folds, with the chain ends consistently located at the crystalline
layer surfaces. (b) The growth of the extended chain form is hindered by the frequent
deposition of unstable, once-folded chains at the growth interface, which blocks further
extension and attachment of additional chains. (c) An earlier model for the growth of the
extended-chain form with self-poisoning. By allowing the crystallisation of covered
half-crystallised stems at the growth front to the extended form, then it is possible to obtain a
non-zero minimum growth rate when D < A. Taken from [56], [66]

The model also assumes that the extended form grows at the growth front by two consecutive
steps. The first step sees attachment of a half-crystallised stem at the growth front with attach-
ment rate A and an associated detachment rate of B. The second step involves attachment of a
second half of the stem to create the extended form stem at the same rate A, a fully extended
stem can revert to the half-crystallised stem by rate C. The dynamics are presented in figure
1.11(c)(i). It was assumed that the change in free energy for the deposition of the first half
stem was,

∆Φ1 = − ϵ

2
+

∆ST l

2
+ σe (1.27)

Where ϵ is the energy that each monomer gains due to the attractive forces between the chains,
∆S is the loss in entropy associated with the loss of mobility of the chain, σe is the energy from
crowding of the ends of the chains and the chain folds, with T at the temperature, and l as
the length of the fully extended stem segment. Attachment of the second half-crystallised stem
was assumed to have a free energy change of,
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∆Φ2 = − ϵ

2
+

∆ST l

2
(1.28)

Where the variables still mean the same thing, however here there is no overall new surfaces
created hence the absence of the σe. The growth rate of the once folded form, Vfold, would then
be the difference between the rate of the half-crystallised stems being deposited, A, and their
detachment rate, B,

Vfold = A−B (1.29)

The growth rate of the extended form (Vext) was found to the difference between the rate
of deposition of the second half-crystallised stem leading to the extended form, AP1 and the
number of extending form reverting to the half-crystallised, CP0,

Vext = AP1 − CP0 (1.30)

Where P0 is the probability of having a surface with 0 half-crystallised stems, and P1 is the
probability of having a surface with 1 half-crystallised stem. Here Pm represent the probability
of having m half-crystallised stems at the growth front. By constructing and combining dif-
ferential equations for the change of these probabilities, and the fact that

∑
m=0 Pm = 1, they

were able to obtain P0 and P1 in terms of the rates as,

P0 =
(A+B)(1− A/B)

(A+B)(1− A/B) + A+ C
(1.31)

P1 =
(A+ C)(1− A/B)

(A+B)(1− A/B) + A+ C
(1.32)
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Figure 1.12: The crystallisation rate as a function of temperature (K) of C246H494 compared
with that generated from the HU model. (a) Growth rate of C246H494. (b) Crystallisation rate
from the HU model. By using apportioning with A = 1, the HU model generated a minimum
in the crystallisation rate. The dashed line shows that using a small value of f = 0.005 a
non-zero minimum can be obtained by allowing crystallisation of covered chains. Adapted
from [60] and [57]

Above the melting point of the once-folded form, a half-crystallised stem at the growth rate is
not stable as B > A while the fully extended stem is stable as A > C. This means that the
extended form grows above the melting point of the once-folded form, T2. As the temperature
approaches T2, A grows and the number of half-crystallised stems arriving at the growth front
increases. As the extended stem can grow only when such additional half-chains are removed,
this poisons their growth and by the model the growth would drop to zero. In the observed
experimental results figure 1.12(a), the growth does not drop all the way to zero but is rather a
non-zero value. To account for this, it was suggested that inclusion of a conversion rate D for
covered half-crystallised stems near the extended form growth front would yield the observed
results, as seen by the dashed line not dropping all the zero in figure 1.12(b). D was defined
such that D = f , where f is a number small than 1.

1.3.12 Two Minima in Crystallisation Rate of Poly(ethylene Brassylate)

Figure 1.13: Poly(ethylene brassylate) molecule.
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It is possible to design materials with specific properties by choosing the right microstructure
and processing methods. One way to understand this is to synthesise and study polyethylene-
inspired polymer models with regularly spaced moieties substituted into the structure. An
example of such polymers is poly(ethylene brassylate) (PEB). PEB can be synthesised from
the ring-opening of ethylene brassylate [67]. Its repeating unit contains eleven methyl groups
sandwiched by ester groups at the ends, as shown in figure 1.13 [68]. PEB is biodegradable and
biocompatible which makes it a potential candidate for medicine and drug delivery.

Figure 1.14: The crystallisation rate from the inverse of the exothermic peak crystallisation
time vs crystallisation temperature for PEB27, PEB90 and PEB188. The higher temperature
data was obtained by conventional DSC while the lower temperature data was collected by
FSC, with the red dashed line separating the two regions. The vertical dashed line demarcates
data obtained by conventional DSC and data obtained via fast scanning calorimetry (FSC).
The inset shows a blown up picture of the crystallisation rate minimum at high-temperatures
in Cartesian coordinates. From [68].

Recently Marxsen et al [68] studied the isothermal crystallisation kinetics of PEB from melt
to better understand and predict the critical processing parameters for semicrystalline biopoly-
mers. In the study PEBs with average molar mass of 26.9, 89.9 and 188.1 kg/mol were stud-
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ied with differential scanning calorimetry (DSC) at higher temperatures, and fast scanning
calorimetry (FSC) at lower temperatures. The polymers are herein referred to as PEB27,
PEB90, and PEB188 according to their average molar mass to the nearest whole number.
The most surprising result from the study was the observation of two minima in the overall
crystallisation rate of the three PEB polymers (figure 1.14).

These minima occurred at temperatures where the average lamellar spacing increased by one
repeating unit of the polymer chain. It was deduced that this change was due to the quantised
change in the crystalline thickness. Analysis of the atomic-level order via the Wide Angle X-ray
Scattering (WAXS) confirmed the same crystal structure at all temperatures. The authors of
the paper thus deduced that the unusual behaviour is equivalent to the quantised self-poisoning
phenomenon in long chain n-alkanes and low molecular weight PEO fractions. The minimum
at higher temperatures is from the growth of the form with lamellar thickness of four repeating
units (herein referred to as the F4 form) being poisoned by the form with lamellar thickness of
three repeating units (F3 form). Whilst the minimum at at lower temperatures is due to the
growth of the F3 form being poisoned by the growth of form with lamellar thickness of two
repeating units (F2).

In Chapter 3 of this thesis, an analytical one-dimensional (1D) model for self-poisoning due to
quantised lamella thickness is developed from the 1D Higgs-Ungar (HU) model for long chain
n-alkanes. The model is then parameterised to fit the experimental results of PEB.
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1.3.13 Growth Rate Minimum in Poly(ethylene Bromine)

Figure 1.15: Crystal structure model of PE21Br form I and II crystal obtained by energy
minimisation. (a) The polymer chains in form I are planar zig-zagging at every carbon,
similar to the conventional polyethylene structure. The bromines are embedded within the
bulk of the crystal. (b) Form II chains bend at the carbons with the bromine and in between
the chain is linear. The bromines stick out at the bends and are aligned. Courtesy of [69]

Another example of polyethylene-inspired polymers are the halogen substituted polyethylene
precision polymers. Here a hydrogen atom is replaced by a halogen every m methylene groups
[70, 71, 72, 73, 74]. A key characteristic of these polymers is that they crystallise forming two
distinct crystals structures, Form I and Form II. Form I is observed when cooling the melt at
faster rates. Its chains have an all-trans planar conformation (figure 1.15(a)) and it was found
to be less stable than Form II [69, 75]. Form II is observed at slower cooling rates and its chains
favour a zigzagged structure, where an all-trans configuration occurs along the m long methyl
group and the bends at the carbon with a bromine [69, 75] (figure 1.15(b)). The melting point
of Form I is lower than that of Form II and upon heating above this melting point, Form I
melts and recrystallises to Form II.
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Figure 1.16: Linear spherulitic growth rates of Form II as a function of crystallisation
temperature. Experimental results are shown by the open circles and error bars are added.
(a) PEBr21 shows the most pronounced minimum, followed by (b) PEBr19, then (c) PEBr15,
while (d) PEBr9 does not show any poisoning. The melting temperature of Form I is shown
by the red dashed lines, the melting temperature gets closer to the rate minimum as the
spacing between the carbons with the bromine increases. Taken from [75]

In a research by Zhang et al [75], four samples of such precision polymers with bromine replacing
a Hydrogen every m= 9, 15, 19 and 21 methylene groups were studied. The poly(ethylene
bromine) (PEBr) polymers were named PEBr9, PEBr15, PEBr19 and PEBr21 according to the
number of carbons between the bromines. The investigation of the isothermal linear spherulitic
growth rates with decreasing temperature of Form II under an optical microscope revealed a
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minimum near the melting point of Form I (figure 1.16). The authors of the research concluded
that the observed minimum was due to self-poisoning. They suggested that the growth of Form
II was poisoned by that of Form I.

What makes the self-poisoning in PEBr peculiar is that Form II was observed to grow both above
and below the minimum. In other known cases of self-poisoning [58, 52, 68] the more stable
form grows above the poisoning and the less stable form grows below the poisoning. Zhang et
al [75] also investigated the possibility that Form I may have grown below the poisoning point
and subsequently been converted to Form II later. However, it was found that no solid-solid
transition took place from Form I to Form II, and in fact Form I converts to Form II upon
heating through melt and recrystallisation.

An alternative approach to this problem is to assume that the observed poisoning is due to two
forms of the Form II that have different lamella thickness, as with poly(ethylene brassylate)
and the long chains n-alkanes. Chapter 4 of this thesis is dedicated to exploring the differences
between a model of self-poisoning due quantised lamellar thickness and that self-poisoning of
Form II growth by Form I.

1.3.14 Poisoning of Stereocomplex crystallisation by Homochiral Poly-lactic acid

A stereocomplex (SC) is a structure formed when two molecules that are mirror images of each
other, enantiomers, combine in a complementary arrangement. A mixture containing equal
numbers of left- and right-handed enantiomers is known as a racemic mixture, or simply a
racemate. SC crystals are considered beneficial for improving properties of the homochiral
crystal (HC) polymers, such as the heat resistance and mechanical properties. A notable
example is poly(lactic acid) (PLA), where the SC form has a higher melting temperature (230◦C)
compared to its HC polymers (below 175◦C), poly(l-lactic acid) (PLLA) and poly(d-lactic acid)
(PDLA). This higher stability makes SC-PLA highly desirable for enhancing mechanical and
thermal properties in biodegradable applications [76, 77, 78, 79].

When a 1:1 mix of high-molecular-weight PLLA and PDLA (molecular-weight ≥ 4×104 g/mol)
is crystallised at high temperatures (∼ 180◦C), SC crystallisation tends to halt, with HC forming
upon further cooling [80, 81]. Early studies suggested that microscopic phase separation might
increase HC formation, but this was later refuted [82, 83]. He et al. [84] found that increased
molecular weight reduces SC formation by causing same-chain clustering, which suppresses SC
nucleation.

Recently, Cui et al. [85] investigated SC crystallisation in high-molecular-weight and low-
molecular-weight PLLA/PDLA racemates using DSC, optical microscopy, and X-ray scattering.
For low-molecular-weight, DSC showed single peaks above 200◦C for both cooling and heating,
indicating SC formation. In high-molecular-weight racemates, the DSC cooling curves showed
distinct behaviours based on the seeding temperature (Ts). Above 230◦C, SC crystallised be-
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tween 225◦C and 140◦C, while HC crystallised around 130◦C. Higher Ts resulted in slower
SC crystallisation and more prominent HC crystallisation, confirmed by two melting peaks at
∼ 230◦C (SC) and ∼ 170◦C (HC). Notably, slower cooling rates increased SC crystallinity,
showing that slower cooling favours SC formation over HC.
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Figure 1.17: Diagram illustrating the processes occurring during the cooling of high molecular
weight PLLA/PDLA racemate after brief annealing at three distinct annealing temperatures
(Ts). In each subfigure, the top row depicts the spatial variation of enantiomer ratios at
specific temperatures, while the bottom row illustrates the molecular configuration, with
“boys” and “girls” representing PDLA and PLLA molecular segments, respectively. (a) For
Ts = 230 ◦C, SC crystallisation proceeds smoothly as the melt remains well-mixed with
minimal compositional variability. Residual seeds promote continued SC growth upon cooling
to 200 ◦C and 110 ◦C. (b) At Ts = 242◦C, pronounced compositional fluctuations in the melt
create an excess of one enantiomer (indicated by filled symbols), which accumulates at the SC
growth front and halts further crystallisation. Homochiral (HC) domains emerge in these
regions, triggering HC growth at lower temperatures (110 ◦C). (c) When Ts = 250 ◦C,
compositional fluctuations remain unaltered, and sporadic intramolecular nucleation of HC
domains disrupts SC crystallisation. HC crystallisation becomes the dominant process as
cooling progresses. Taken from [85]
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Cui et al. offered a qualitative explanation for the observation, drawing similarities to the self-
poisoning in the long chain n-alkanes, PEO, PEBr and PEB. They suggested that at low Ts
values there are still some remaining crystallites in the melt and this reduces the fluctuations
at in the enantiomer concentrations (figure 1.17(a)). But as the Ts is increased the seeds
melt away and there is enantiomer build up ahead of the SC crystal (figure 1.17(b)). At high
temperatures all the seeds have melted away and the SC growth is highly suppressed (figure
1.17(c)). The growth of SC is controlled by the diffusion. In Chapter 6 of this thesis a lattice
Monte Carlo dynamics simulation is carried out to investigate the crystallisation of PLA SC
and the poisoning by purity.

1.4 Chiral Polymers and Liquid Crystals

1.4.1 Chirality

Chirality is an intrinsic property of a lot of polymers and liquid crystals. It leads to the
development of interesting structures and self-organisation of these polymers. An object is
said to be chiral if it has a broken mirror symmetry, that is, if its mirror image cannot be
superimposed on it. Chirality may arise in a polymer either by having a chiral centre or by
axial chirality. A molecule is said to have a chiral centre if it has a central atom that is bonded
to four different groups, and there are different arrangements of the groups in space around the
central atom that are not superimposable, as show in figure 1.18, [86, 87]. Axial chirality is
where an object winds into a helix along an axis [87].

Figure 1.18: The figure shows two molecules that have the same molecular formula and
sequence of bonded atoms, but have different orientations in three-dimensional space. The
molecules are called enantiomers and are not superimposable. The central atom is the chiral
centre and has 4 distinct groups attached to it.

This section of the introduces chirality in polymers and liquid crystals. It starts off by giving
a brief review of some of the helical structures that arise in biopolymers and polymer crystals
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and how these lead to different packing in space. Liquid crystals are then introduced and and
how chirality in different phases of liquid crystals influences packing.

1.4.2 Biopolymers

Biopolymers are polymers that are produced and found in cells of living things [86, 88]. They
are made up of monomers covalently bonded to give rise to larger molecules. There are three
main classes of biopolymers that are classified according to the monomers they are made from
and these are polynucleotides, polysaccharides, and polypeptides.

Figure 1.19: RNA and DNA molecules. (a) Single strand RNA and (b) DNA double helix .
From [89].

The two most studied biopolymers are deoxyribonucleic acid (DNA) and ribose nucleic acid
(RNA) [90] (figure 1.19). DNA stores genetic information, serving as the blueprint for an
organism’s development and function, while RNA transfers and interprets this information to
synthesise proteins essential for cellular processes. They are both made up of nucleotides, which
consist of a 5-carbon sugar, deoxyribose in DNA and ribose in RNA, a phosphate group and
one of four nucleobases. The nucleotides have chiral centres, making DNA and RNA chiral.
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A key characteristic of biopolymers that are chiral is internal molecular conformation. These
molecules interact with themselves producing certain structures, usually helical in nature. In
RNA and DNA, the complementary nucleobases along the strands form hydrogen bonds with
each other [86]. This results in RNA winding into a helix (figure 1.19(a)) and DNA into a
double helix (figure 1.19(b)).

1.4.3 Polymer Crystal

Segments of polymer chains can become ordered as they fold and align with each other. This
process is called crystallisation as mentioned in the last subsection. Polymers can crystallise by
being mechanical stretched, by cooling the melt, or by evaporation of a solvent they are dissolved
in. The method by which the crystal is obtained can also result in different helical conformation
as well as the different structure in the crystals. Most of these polymers crystallise into crystals
with chains wound up into helices [91, 92]. Isotactic Poly-1-butene (iPB) and PLA are examples
of polymers that crystallise forming helices. These polymers have been well studied because of
their wide range of applications.
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Figure 1.20: The polymorphs of isotactic Poly-1-butene. The planar zigzag of PE is shown on
the left. (A) Form I of iPB with a 3/1 conformation, (B) Form II with a 11/3 helical
conformation, and (C) Form III with a 4/1 helical conformation. The top pictures show the
side view of the helical chains, while he bottom picture is the projection view which is the
same as form I of iPP except the branches are ethyl groups not methyl groups. Taken from
[93]

.

iPB crystallises into three main crystals forms depending on the conditions as shown in figure
1.20. It crystallises forming trigonal unit cell with both left- and right-handed helices in Form
I, with the helices in 3/1 conformation [92, 94]. The conformation means that there are three
monomeric units every full turn of the helix. Form II of iPB is obtained from cooling of the
melt, and it has 11/3 helical conformation packed into a tetragonal crystalline lattice [92, 94].
Though this form is favoured by melt crystallisation, it is unstable and spontaneously changes
to Form I in about 10 days. The third form is obtained from evaporating the solvent. It has 4/1
helices, with two of them packed in an orthorhombic unit cell [92]. This form is also unstable
and it transforms into Form I upon drawing.
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Figure 1.21: Crystal structure of the α-form of PLLA, viewed along the c-axis (top) and
a-axis (bottom), showing the 10/3 helical chain conformation in a unit cell. Carbon atoms are
shown in black, oxygen atoms in red, and hydrogen atoms in white [95]

.

PLA that was discussed in the previous subsection exhibits various polymorphs, each charac-
terised by distinct helical conformations that impact their structural and mechanical properties.
The α-form, the most common polymorph, adopts a 10/3 helical conformation [96, 97]. This
is typically formed in PLLA via slow cooling rates or high-temperature annealing (figure 1.21).
The δ-form (also know as the α′-form) also has a 10/3 helical structure [98]. It is formed at
lower temperatures and lacks the complete ordering seen in the α-form, resulting in lower sta-
bility and crystallinity. Upon heating, it transitions into the α-form. The β-form, in contrast,
adopts a looser 3/1 helical structure [99, 100]. This form commonly appears under stretching
conditions. The γ-form is less well-defined and is thought to adopt a 3/1 helical structure
similar to the β-form, though it is even less ordered and less stable [101]. Finally, SC [102],
formed from blending PLLA and PDLA chains, consists of an extended 3/1 helical structure,
where alternating chirality allows for tightly interlocked packing in an orthorhombic lattice.
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This configuration provides the SC with enhanced thermal stability and mechanical strength
compared to homopolymer PLA forms.

1.4.4 Liquid Crystals

Liquid crystals are a state of matter that possess properties that are between those of solid
crystals and isotropic liquids [87, 103, 104]. Molecules that exhibit liquid crystal characteristics
are referred to as mesogens. There is no long-range order in the positions of centres of gravity of
molecules [105]. There are two classes of liquid crystals, lyotropic and thermotropic, and these
are classified according to how the liquid crystal state is obtained. Lyotropic liquid crystals
are obtained by dissolving the crystals in solvent [87, 103, 104]. They often have hydrophilic
cores and hydrophobic tails. Thermotropic LCs on the other hand are obtained by heating
the crystal. Normally the crystal goes from a crystalline phase to a LC phase then to isotropic
liquid upon heating. Sometimes however, it goes through more than one distinguished LC phase
before transitioning to an ordinary isotropic liquid crystal. This research is only concerned with
thermotropic LCs.

1.4.5 Thermotropic Liquid Crystals

Simple thermotropic liquid crystals (LCs) can be classified as calamitic or discotic [87, 103,
104]. Calamitic LCs consist of rod-like molecules, whereas discotic LCs are composed of disc-
like molecules. Typical phases in calamitic LCs include nematic and smectic phases. In nematic
phases, the LC molecules exhibit long-range orientational order, meaning that over large dis-
tances, the long axes of the molecules are on average aligned in the same direction. This
direction is specified by a vector called the director 1.22(a). Smectic phases, on the other hand,
exhibit both long-range orientational order and a layered structure, with positional order along
one dimension. The molecules in smectic phases can either align parallel to the layer normal
or be tilted with respect to it, as shown in figure 1.22(b-c).
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Figure 1.22: Simple thermotropic LC phases. The top row are the calamitic phases, namely
the (a) nematic, (b) smectic A, and (c) smectic C. The bottom row are disc-like molecule in
(d) nematic, (e) smectic and (f) hexagonal phases. From [106]

Discotic LCs, by contrast, are formed from disc-like molecules with planar cores that allow for
stacking interactions [107]. These LCs can form phases similar to the calamitic nematic and
smectic phases [103, 104]. In the nematic-like phase of discotic LCs, the short axis of each disc
aligns with the director, resulting in the discs lying perpendicular to the director on average
1.22(d). Additionally, discotic LCs can form more highly ordered columnar phases, where the
disc-shaped molecules stack into columns 1.22(e-f).
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1.4.6 Chirality in Liquid Crystals

Figure 1.23: Chiral nematic LC. (a) Chiral nematic LC having the director rotated from one
layer to the other. (b) Shows the helical rotation of the director well. Taken from [108]

Chirality is observed in certain nematic compounds composed of chiral mesogens. In achiral
nematic phases, the director remains uniform across the material. However, in chiral nematic
phases, the director undergoes continuous rotation along an axis, forming a helical structure, as
shown in Figure 1.23 [103]. This rotation results in a complete 360◦ twist over a characteristic
length known as the pitch. Chirality, however, does not always manifest as a helical structure.
In chiral smectic C phases, chirality arises from the tilt of the mesogens relative to the layer
normal (figure 1.24). This tilt creates a chiral, non-mirror-symmetric arrangement between the
tilt axis and the optical orientation of the mesogens [103]. This type of chirality is also observed
in discotic columnar phases, where the plane of each discotic molecule is tilted relative to the
central column axis, leading to a chiral arrangement [103].
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Figure 1.24: Chiral smectic LC. The arrangement of molecules in one pitch of a chiral smectic
C phase. The figure also shows the showing the layer planes, the layer normal k, the director
n, and the helix axis. Adapted from [109]

Chirality can emerge in LC phases composed of bent-core achiral molecules due to their unique
molecular shape. The bent shape disrupts the symmetry typical of rod-like molecules, creating
an inherent asymmetry that favours twisted or helical arrangements. This structural asymmetry
is amplified by the presence of dipole moments along the molecular arms or at the bend of the
molecule, promoting polar interactions that drive the molecules to align in a way that minimises
electrostatic repulsions [110, 111].
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1.4.7 Bicontinuous Phases

Figure 1.25: The minimal surfaces of the (a) double-gyroid (G) phase, (b) double-diamond
(DD) phase, and (c) plumber’s nightmare (P) phase. Taken from [112]

Not all liquid crystals form lamellae and columnar phases. Liquid crystals that are formed of
molecules with two opposing functional groups, such as hydrophilic and hydrophobic groups in
lyotropic LC, tend to form phases where the space occupied by the different groups is separated.
In bicontinuous phases, both of these spaces form a continuum [113], [114], [115]. An example of
these phases that has attracted the most interest and has been the cubic phases. Three lyotropic
cubic phases have been studied in detail and these are made up of two interpenetrating networks
and each network has junctions at which its columns meet. The space around the networks
is then filled by the solvent. These phases are the "double gyroid" (DG, space group Ia3d),
"double diamond" (DD, Pn3m) and "plumber’s nightmare" (PN, Im3m), and they have three-,
four- and six-way junctions respectively.
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Figure 1.26: Schematic representations of the self-assembly of achiral polycatenar molecules
into thermotropic bicontinuous phases. (a) Polycatenars with a rigid aromatic core and two or
three end chains which are depicted as fans. Two to four of these polycatenars join to form
(b) rafts which in turn stack into (c) helical networks. The networks meet each other at (d)
junctions (here a three-way junction is shown). (e–g) Ribbon models of (e) the double-gyroid
which is achiral, (f) the tetragonal Smectic-Q phase which is chiral, and (g) the chiral
triple-network cubic phase. The space group are shown in brackets for each bicontinuous
phase. [116]

For many years now, the double gyroid phase has been known to exist in some thermotropic LC
made from rod-like mesogens. Like its lyotropic counterpart, it is made up of two networks, each
with three-way junctions. Another common thermotropic cubic phase is one formerly known
as Smectic-D (SmD), named so because it was thought to be a smectic phase [114]. Initially,
Smectic-D was thought to be in the same space group as the plumber’s nightmare, (Im3m),
but was later moved to a lower symmetry group of I23 as it was found to always be chiral,
even if when made from achiral molecules [114]. Like PN it has three networks, but only has
three-way junctions joining each network. A third bicontinuous thermotropic LC that has been
observed is the so-called Smectic Q, but unlike the other two it has a tetragonal symmetry [113].
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It is made up of two networks, all thought to be of the same chirality and all having four-way
junctions. This phase has also been found to always be chiral, regardless of the chirality of
the molecules that make it up. Some of these achiral compounds even display chirality in the
isotropic liquid phase, termed Iso* [115].

These phases are made up of polycatenars, which are molecules characterised by having multiple
flexible chains (referred to as tails) attached to a rigid central core made of aromatic molecules.
In these bicontinuous phases the molecules have 1-3 aliphatic chains at the ends. The rod-like
molecules then bunch up into rafts of about three or four rods, see figure 1.26(a). The columnar
networks are then made up of these rafts stacked together (figure 1.26(b)). The rafts would
ideally prefer to stack up parallel to each other to maximise the π − π bonds between the
aromatic cores, but instead they are twisted through angles of 7-9◦ because of steric clashes of
the end chains (figure 1.26(c)). This then induces helicity within the columns. At the junctions
the columns come in with the same handedness for better packing and hence there is only one
handedness within each network. The junctions therefore stabilise the chirality and prevent
helical reversals, refer to figure 1.26(b). In the DG the networks are of opposing chirality and
hence it being achiral overall, while in the smectic Q has homochiral networks [113], [114], [115].
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1.4.8 Antiferrochirality in a Liquid Crystal Phase of Fddd

Figure 1.27: Liquid crystal phases in IC3/n and FO16 Compounds. (a) The electron density
map of (a) IC3/n and (c) FCN16, showing the helical columns. The stylised models of (b)
IC3/n and (d) FO16, created from the the electron density maps. Taken from [117].

A recent study by Li et al. [117] reported the observation of a chiral columns in a LC phase
of compounds that were made from achiral polycatenars. The chirality presents in the form
of helical columns [117] similar to networks in the bicontinuous phases (figure 1.27). The unit
cell is comprised of eight columns, four right-handed and four left-handed helices and this was
shown by the electron density maps and supported by the patterns in the small angle x-ray
diffraction. The overall LC phases are achiral because of the equal number of left and right
handed columns. The x-ray diffraction also reveals that the phase has an Fddd symmetry.

The chirality in these Fddd phases arise in the same way as the bicontinuous phases [114]
[115]. Unlike with the bicontinuous phases where the twisting is about 7-10°, the Fddd phases
have larger twists of about 18°. This is thought to be due to the six tails in the molecules as
compared to 1-3 in the bicontinuous phases. This observation was made in four compounds
of two types. The first type has a bent core with the molecules being IC3/n, where n is 12 or
14. The second type is the straight core compounds FCN16 and FO16. Upon further heating
the IC3/n compounds the columns lose their chirality and transition to a triagonal columnar
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LC phase. Similarly, the columns in the FCN16 and FO16 compounds lose their chirality upon
heating and transition into a hexagonal LC phase. Further heating of both types of compounds
results in a continuous phase transition into an isotropic liquid. The phases of each compound
are shown in figure 1.27.

Figure 1.28: (a) The chemical formulae of IC3/n, FCN16, and FO16. (b) The phase
transitions with temperature of the compounds IC3/n, FCN16, and FO16. Taken from [117]

Chapter 7 of this thesis will present a simple model and results of investigating the packing
of the columns in these complex systems for the straight core molecules. Significant time was
spent working on a model for the bent core molecule systems, however, could not reproduce
the results found from the experiments.
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2 Methodology

2.1 Curve Fitting

Curve fitting is a process in which a curve is constructed to best fit a series of data points.
Curve fitting is a fundamental tool in data analysis, allowing researchers to approximate the
underlying relationship between variables, model trends, and make predictions. In Chapters 3
and 4 of this thesis, theoretical models were parameterised to the experimental data by fitting
using Python language.In Python, this is often accomplished using the curve_fit function
from the scipy.optimize module. In this section, the curve_fit function and how it works
is explained.

2.1.1 The Mathematics of Curve Fitting

Curve fitting involves finding a mathematical function, f(x), that best approximates a set of
data points (xi, yi), where xi is an independent variable, and yi is a dependent variable. The
most common approach for curve fitting is the least squares method, which minimises the sum
of the squares of the residuals (the differences between the observed and predicted values).

Mathematically, the goal is to minimise the following objective function:

S(θ) =
n∑

i=1

(yi − f(xi; θ))
2 (2.1)

.

where:

• S(θ) is the sum of the squared residuals,

• yi are the observed data points,

• f(xi; θ) is the model function with a vector of parameters θ,

The optimal parameters θ are those that minimise S(θ).

The curve_fit function in Python uses non-linear least squares to fit a function to data. The
function requires the user to specify:

1. The model function in the form of the equation to fit.
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2. The data points (x, y) to which the function should be fitted.

3. Initial guesses for the parameters.

The function curve_fit uses the Levenberg-Marquardt algorithm [1, 2] by default, which is
a combination of the gradient descent and Gauss-Newton methods, to iteratively refine the
parameter estimates until convergence is achieved.

2.1.2 Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm is a popular optimisation algorithm that is particularly
effective for non-linear least squares problems. It is a blend of two minimisation methods: the
gradient descent and the Gauss-Newton method [3]. The algorithm adjusts the parameters of
the model iteratively to reduce the sum of the squared residuals.

• In regions where the parameters are far from their optimal values, the algorithm behaves
like gradient descent, making large steps in the parameter space.

• As the solution converges to the optimal values, the algorithm switches to the Gauss-
Newton method, which takes smaller, more precise steps.

The algorithm uses a damping factor to control the step size and direction. This hybrid approach
allows it to converge more quickly and robustly compared to other optimisation methods,
making it suitable for a wide range of curve-fitting applications.

2.2 Molecular dynamics

Molecular dynamics (MD) is a computational simulation method used to study the physical
movements of atoms and molecules. By simulating the interactions of particles under various
conditions, MD provides insights into molecular behaviour, thermodynamics, and kinetics at
the atomic scale. The technique originated in the mid-20th century, with the pioneering work by
Alder and Wainwright [4, 5] in the late 1950s and the subsequent development of algorithms by
Rahman [6] in the 1960s, who performed one of the first MD simulations of a liquid system using
a Lennard-Jones potential. Today, MD simulations are used in conjunction with experimental
research to study systems such as polymer, where quantum mechanical effects can be ignored.
Molecular dynamics are used in the simulation of poly(ethylene bromine) growth in Chapter 5
of this thesis.
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MD methods can be broadly categorised into two main types, based on the model and math-
ematical framework used to represent a physical system. In the classical mechanics approach
to MD simulations, molecules are modelled as classical objects, similar to the ball and stick
representation often used in chemistry. Here, atoms are represented as soft spheres, and bonds
are depicted as elastic connectors between these spheres. The motion and interactions of these
particles are governed by the laws of classical mechanics . In contrast, the quantum mechanical
(also referred to as first-principles) MD simulations, developed in the 1980s by Car and Par-
rinello [7], incorporate the quantum nature of chemical bonds. These simulations compute the
electron density for the valence electrons, which are responsible for bonding, using quantum
mechanical equations. Meanwhile, the dynamics of the ions (nuclei and their core electrons)
are still treated using classical mechanics. Quantum MD simulations provide a significant ad-
vancement over the classical approach by offering more accurate insights into the behaviour of
electrons and chemical bonds. However, they are computationally intensive and require signif-
icantly more resources. As such, in this thesis the simulation that is done is from the classical
approach and for the purposes of this discussion, MD will refer specifically to the classical MD
approach.

2.2.1 Nose-Hoover Thermostat and Barostat

The Nose-Hoover thermostat is a deterministic method used in molecular dynamics (MD)
simulations to maintain a constant temperature by mimicking the interaction of the system
with a heat reservoir [8, 9]. It introduces an extended system Hamiltonian by coupling the
system’s degrees of freedom to an additional variable, ξ, representing the thermal reservoir.
The equations of motion for the system are:

dri
dt

=
pi

mi

,
dpi

dt
= Fi − ξpi,

dξ

dt
=

1

Q

(∑
i

p2
i

2mi

− 3NkBT

2

)
. (2.2)

where ri and pi are the position and momentum of particle i, mi is its mass, Fi is the force
acting on it, T is the target temperature, N is the number of particles, kB is the Boltzmann
constant, and Q is a parameter determining the coupling strength between the system and the
thermostat.

The Nose-Hoover barostat, an extension of this approach, allows pressure control by intro-
ducing a degree of freedom η to couple the system’s volume to an external pressure reservoir
[10]. The volume V changes dynamically, and the system’s equations of motion are modified
to include a scaling factor λ related to η:

dV

dt
= 3V η,

dη

dt
=

1

W
(P − Pext) , (2.3)
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where P is the instantaneous pressure, Pext is the target pressure, andW is a coupling parameter
analogous toQ. The combined use of the Nose-Hoover thermostat and barostat ensures accurate
sampling of the isothermal-isobaric (NPT ) ensemble.

2.2.2 Langevin thermostat

The Langevin thermostat is a stochastic method that uses random forces to simulate the
effect of a heat bath [11]. It modifies the equations of motion by introducing a frictional force
and a random noise term:

dri
dt

=
pi

mi

,
dpi

dt
= Fi − γpi +Ri, (2.4)

where γ is the friction coefficient, and Ri is a Gaussian random force with zero mean and
variance satisfying the fluctuation-dissipation theorem:

⟨Ri(t) ·Rj(t
′)⟩ = 2γkBTδijδ(t− t′). (2.5)

This thermostat effectively maintains the system at a target temperature while introducing a
damping effect. The strength of the coupling is controlled by γ, where high values increase
damping and reduce temperature fluctuations, potentially disrupting dynamics.

2.2.3 Berendsen barostat

The Berendsen barostat is a weak-coupling approach that scales the system’s volume to
maintain the desired pressure [12]. Unlike the Nose-Hoover barostat, it does not aim to sample
the exact NPT ensemble but provides smooth and computationally efficient pressure control.
The change in volume is governed by:

dV

dt
=
β

τp
(Pext − P )V, (2.6)

where β is the isothermal compressibility, τp is the barostat relaxation time, and Pext and P
are the external and instantaneous pressures, respectively. The parameter τp determines the
strength of the coupling; a small value results in tight control but can distort dynamics.
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2.2.4 The coupling strength

The coupling strength in these methods determines how quickly the system responds to devia-
tions from the target temperature or pressure. In general:

• For the Nose-Hoover methods, the coupling parameters Q and W need to be chosen
carefully to balance responsiveness with maintaining physical dynamics.

• For the Langevin thermostat, the friction coefficient γ governs the balance between ther-
malisation and preserving natural dynamics.

• In the Berendsen barostat, τp acts as a relaxation time, controlling how gently or aggres-
sively the volume adjusts to pressure fluctuations.

2.2.5 Optimized Potentials for Liquid Simulations

OPLS is a force field used in molecular dynamics (MD) simulations to model the interactions
between atoms and molecules. Force fields provide the mathematical framework for calculating
forces and energies within molecular systems, which in turn determines their behaviour over
time [13]. The OPLS force field is specifically designed to simulate liquid systems and is often
used for organic molecules, polymers, and biomolecules.

OPLS was developed to strike a balance between accuracy and computational efficiency. It de-
scribes bonded interactions (such as bond stretching, angle bending, and dihedral torsions) and
non-bonded interactions (such as van der Waals forces and electrostatic interactions) between
atoms [13]. One feature of OPLS is the ability to accurately model conformations and energetic
states, especially by providing an adjustable torsional potential. This makes it particularly
useful for studying flexible molecules like polymers, where rotational barriers around bonds are
key to understanding behaviour like crystallisation.

2.2.6 All-Atom Molecular Dynamics

All-atom molecular dynamics simulations model systems at the level of individual atoms. The
atoms in the system interact through force fields or potential energy functions, which ap-
proximate the forces between particles. The most commonly used potentials in atomistic MD
simulations include the Lennard-Jones potential, Coulombic potentials for electrostatics, and
bonded potentials such as bond-stretching, angle-bending, and dihedral angle terms to account
for the bonded interactions . These force fields, such as CHARMM, AMBER, GROMOS, and
OPLS, are parameterised based on quantum mechanical calculations and experimental data to
accurately represent various molecular interactions .
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Atomistic MD provides a detailed picture of molecular interactions at the atomic level, capturing
the dynamics of every atom in a molecule. This allows for the accurate modelling of structural
changes, such as conformational shifts. The high level of detail in atomistic MD simulations
requires significant computational resources, especially for large systems or long timescales.
Simulations are often limited to nanoseconds to microseconds, which may not be sufficient for
observing slower processes such as crystallisation. Due to the computational cost, it can be
challenging to achieve adequate sampling of the conformational space, which is necessary for
statistically meaningful results.

2.2.7 Coarse-grained Molecular Dynamics

Coarse-grained MD is an approach that reduces the complexity of molecular simulations by
grouping atoms into larger units, known as beads. These beads represent a collection of atoms
or a functional group, reducing the degrees of freedom and the number of interactions that
need to be computed. The choice of how to group atoms into beads depends on the level
of resolution desired and the specific application of the simulation. The interactions between
beads are defined by effective potentials that are derived to reproduce the essential features
of the system’s behaviour, such as structural, thermodynamic, or dynamic properties. Often
smaller scale atomistic simulations are ran to configure the potentials concerning the group of
atoms or functional groups that are to be grouped, and then they are mapped onto effective
potentials for the coarse-grained model. A similar approach is taken in this work in Chapter 5,
where a coarse-grained model of poly(ethylene bromine) is simulated.

2.2.8 Velocity-Verlet algorithm

During the simulations the position, ri(t) and velocity vi(t), of the particles at a time t are
recorded and stored. The forces acting upon them are calculated according to the chosen
potential that best describes their interactions. The resulting equations of motions are then
integrated over the chosen time-step ∆t using an appropriate algorithm to compute the position
of the particles at time t + ∆t. In this work the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS)is used whose default algorithm is the Velocity-Verlet algorithm.
The Velocity-Verlet algorithm [14] is a second-order accurate, time-reversible algorithm that
conserves energy well over long run . To understand how it works we derive the algorithm by
two third-order Taylor expansions for the particle i positions, one forward and one backward
in time,

r(t+∆t) = r(t) + v(t)∆t+
f(t)

2m
∆t2 +

∆t3

3!

...
r +O(∆t4) (2.7)

,
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r(t−∆t) = r(t) +−v(t)∆t+ f(t)

2m
∆t2 − ∆t3

3!

...
r +O(∆t4) (2.8)

.

Where f(t) is the acceleration of the particle at time t and ...
r (t) is the the rate of change of

an object’s acceleration over time (jerk). By adding equations 2.7 and 2.8, and rearranging we
get,

r(t+∆t) = 2r(t)− r(t−∆t) +
f(t)

m
∆t2 +O(∆t4) (2.9)

.

Equation 2.9 provides a way to compute the new position (r(t+∆t)) using the current position
(r(t)), the previous position (r(t − ∆t)), and the current acceleration (f(t)). It also has an
intrinsic error of order δt4 that is independent of the time step. If we derived the velocity in a
similar manner it would only be accurate to the order of δt2. Instead, we want to incorporate
information about the acceleration change over the time step which gives a more accurate
estimate of the velocity over the interval. We first update the position using:

r(t+∆t) = r(t) + v(t)∆t+
f(t)

m
∆t2 (2.10)

,

After computing the new position r(t+∆t), we calculate the new acceleration f(t+∆t) at this
updated position. To update the velocity, we use the average of the acceleration at the current
and next time steps:

v(t+∆t) = v(t) +
f(t+∆t) + f(t)

2m
∆t (2.11)

.

This velocity update uses the fact that the acceleration (force divided by mass) changes smoothly
between time steps, so averaging the two accelerations gives a more accurate estimate of the
velocity over the interval. By using both the current and future accelerations to update the
velocity, the Velocity-Verlet algorithm efficiently balances computational cost with accuracy,
making it one of the most widely used methods in molecular dynamics.
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2.2.9 Boltzmann Inversion

Boltzmann inversion is a method used to derive coarse-grained (CG) potentials from detailed all-
atom molecular simulations. In CG models, groups of atoms are represented by fewer particles
(beads) to reduce the complexity of simulations [15]. Boltzmann inversion helps translate the
atomistic behaviour of the system into these simplified models.

The process works by taking distribution functions, such as the distribution of distances or
angles between atoms in the all-atom model, and converting them into effective potentials for
the CG model. These distribution functions represent the probability of different configurations
occurring at a given temperature. According to Boltzmann’s law, the potential energy (U(r))
between particles can be related to the probability distribution (P (r)) of their distances (or
angles) by the equation:

U(r) = −kBT lnP (r) (2.12)

where U(r) is the potential energy, kB is the Boltzmann constant, T is the temperature, P (r)
is the probability distribution of the distance r.

In reality U(r) is a free energy and is temperature dependent because P (r) is calculated at
a specific temperature. However, given the temperature range that is study in Chapter 5, it
is not expected that this will have a great effect on the results. This method has been used
successfully in several similar simulations in the past [16, 17, 18].

By applying this equation, the potential energy is inverted from the probability distribution,
creating a CG potential that captures the essence of the atomistic interactions.

2.3 Monte Carlo Dynamics

Monte Carlo (MC) simulations are a class of computational algorithms that rely on repeated
random sampling to obtain numerical results. The name "Monte Carlo" is derived from the
famous casino in Monaco, reflecting the method’s reliance on random chance, much like gam-
bling. These simulations are widely used in various fields, including physics, chemistry, finance,
engineering, and biology, to model complex systems and processes. In the context of polymer
simulations, MC methods are particularly valuable for studying the statistical and thermody-
namic properties of polymers, which can be computationally prohibitive to investigate using
deterministic methods because of the system’s high dimensionality and the complex potential
energy landscapes involved.

MC methods utilise random numbers to sample the states of a system according to some prob-
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ability distribution. The fundamental idea is to generate a large number of random configura-
tions of the system and calculate an average property over these configurations. The accuracy
of the result improves with the number of samples, thanks to the law of large numbers. Many
MC methods, especially those used in statistical physics and polymer simulations, are based
on Markov chains. A Markov chain is a stochastic process that moves through a sequence of
states, where the probability of each state depends only on the state immediately preceding it
(the Markov property). This property is leveraged in MC methods to generate new states from
old ones using a transition probability.

There are several algorithms used in MC simulations; however, in this thesis only two algorithms
are implemented. The first is the Metropolis-Hastings algorithm [19], and the second is the
Glauber dynamics [20].

2.3.1 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is a widely used Markov Chain Monte Carlo (MCMC)
method [19]. It generates a sequence of states according to a desired probability distribution
(often the Boltzmann distribution in physical systems). The algorithm does this by proposing a
new state based on the current state and accepting or rejecting the new state with a probability
that ensures convergence to the target distribution. It works as follows:

• Start with an initial state, X0 chosen randomly or based on prior knowledge of the system.
This initial state does not need to be in equilibrium.

• Generating a new state X ′ from the current state Xi using a proposal distribution.

• Calculate the acceptance probability A(Xi− > X ′) for moving from state Xi to X ′.

• Generate a random number r (r ∈ [0, 1)). If r < A(Xi− > X ′), accept the new state.
Otherwise, reject the move and keep the current state Xi+1 = Xi

The algorithm is adapted to the work in Chapter 6, where the transition probabilities are set.

2.3.2 Glauber Dynamics

Glauber dynamics is another MCMC method, but it is specifically designed for discrete-state
systems, such as spin systems like the Ising model in statistical physics. It is also used in
lattice gas models and for systems with discrete states such as lattice-based polymer models.
The focus of Glauber dynamics is on flipping individual states based on the configuration of
neighbouring states and thermal fluctuations. How it works:
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• Start with an initial configuration of the system.

• Choose a lattice site i at random.

• Calculate the energy change ∆E that would result from the flipping of the state at site
i. The energy change is calculated considering only the local environment of site i.

• Calculate the probability Pi of changing the state at i using the change in energy.

• Generate a random number r (r ∈ [0, 1)) and change the state only if r < Pi, otherwise,
keep it the same.

2.3.3 Depth-First Search

Depth-First Search (DFS) is a fundamental algorithm in computer science and mathematics
that is used to traverse or search through tree or graph data structures. It is particularly useful
in applications requiring a complete examination of all vertices and edges, such as pathfinding,
topological sorting, and detecting connected components within graphs [21]. The approach of
DFS is characterised by its systematic traversal, starting at a specified node (often referred
to as the “source” or “root” node) and exploring as far as possible along each branch before
backtracking. This behaviour is akin to the depth-first approach in which the algorithm seeks
to delve deep into one path until it can no longer continue, then retracts to explore other
unvisited paths.

At its core, the DFS algorithm is based on the principles of recursion. It employs a stack -like
structure, whether explicitly or implicitly, for managing the sequence of visited nodes. In the
recursive version, this stack structure is inherent within the function calls on the program’s
call stack. In the iterative version, an explicit stack data structure is used to track the nodes
awaiting exploration. When visiting a node, DFS marks it as “visited,” then recursively or
iteratively proceeds to each unvisited adjacent node, storing each encountered node within the
stack. If a node has no unvisited adjacent nodes, DFS will backtrack to the last node in the
stack with unvisited neighbours and continue from there.

The algorithm can be formally described as follows: given a graph

G = (V,E) (2.13)

where V is the set of vertices and E the set of edges, DFS begins at an arbitrary source node
s ∈ V . From s, DFS recursively explores each adjacent node v ∈ V until no further nodes are
reachable. The pseudocode for DFS can be summarised as:
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DFS(v) :


mark v as visited
for each adjacent node u of v
if u is not visited, call DFS(u)

(2.14)

The complexity of DFS depends on the graph structure. The time complexity is O(V + E),
where V is the number of vertices and E the number of edges. This is because DFS must
examine each vertex and each edge in the worst case. The space complexity, particularly in
recursive implementations, is determined by the depth of recursion and is O(V ) due to the
storage of nodes in the call stack. In iterative versions, the stack size grows in proportion to
the maximum depth of the graph.

2.4 The Linear Electric Quadrupole

The electric quadrupole is a higher-order multipole expansion used to describe the potential and
electric field distribution generated by a system of charges that is more complex than a simple
monopole (single charge) or dipole (two charges of opposite sign). The quadrupole consists of
either four charges or an arrangement of charges with zero net charge and zero dipole moment
but with a non-zero quadrupole moment.

The linear electric quadrupole consists of three point charges arranged linearly with the middle
charge opposite in sign to the two outer charges. If we consider charges +q,−2q, and +q
separated by distances d, the quadrupole moment tensor for such a configuration is aligned
along the axis of the charge arrangement.

For a linear quadrupole oriented along the z-axis, the quadrupole moment tensor ϕij has a
non-zero component ϕzz = 2qd2, assuming the system has symmetry about the z-axis. The
interaction energy between two linear quadrupoles (Eϕ−ϕ) falls off more rapidly with distance
than a dipole’s (decreasing as 1/r3). It is given by,

Eϕ−ϕ =
Aϕ2

r125
(2.15)

where A given below, is a complicated equation that is in terms of Euler angle β and α defines
as in figure 2.1 and r12 is the distance between the centres of interacting quadrupoles [22, 23].
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A =
3

2
(3 cos2 (β1)− 1)(3 cos2 (β2)− 1)− 12 sin (β1) sin (β2) cos (β1) cos (β2) cos (α2 − α1)

+
3

4
sin2 (β1) sin

2 (β2) cos 2(α2 − α1)

(2.16)

For quadrupoles restricted to a plane (α = 0) A can be rewritten as,

A = 3 cos (2β1 + 2β2) +
9

16
cos 2β1 cos 2β2 +

15

16
cos 2β1 +

15

16
cos 2β2 +

9

16
(2.17)

Figure 2.1: The interaction between two linear quadrupoles a distance r12 apart, with a
quadrupole moment ϕ, and with their orientation defined by angles β1, β2, α1, and α2.

The electric quadrupole interactions will be used in Chapter 7 to quantify the interactions of a
liquid crystal due to the similarity in interactions.
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3 Quantitative Modelling of the Growth Rate Minima in
Poly(ethylene Brassylate)

The work in this Chapter is aimed at developing a model to explain the double minima in
PEB as discussed in the introduction and [1]. It is adapted from the 1D HU model that was
developed for the growth rate poisoning in long chain n-alkanes. The results of this work have
been published in [2].

3.1 Introduction

Figure 3.1: Overall isothermal crystallisation rate, represented by the inverse of the
exothermic peak crystallisation time vs crystallisation temperature for PEB with different
molecular weight. The vertical dashed line demarcates data obtained by conventional DSC
and data obtained via fast scanning calorimetry (FSC). The high-temperature minimum of
the crystallisation rate data is emphasized in the inset, where the rate is plotted in Cartesian
coordinates [1].
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A study of the isothermal crystallisation kinetics of three homopolymers of poly (ethylene
brassylate) PEB recently revealed an unusual behave. When PEB27, PEB90 and PEB188
where studied by DSC and FSC, their heat flow curves showed two peaks around 40◦C and
60◦C, and melted around 70◦C [1]. Optical microscopy of their crystals also revealed that they
were small and irregular around the same temperatures that showed the peaks. The SAXS data
showed that the average lamellae spacing increased by one repeating unit of the polymer chain
at both minima temperatures compared to neighbouring temperatures. More specifically, from
60◦C to 61◦C the the average lamella spacing increased from an average of 3 repeating units
to 4, where each repeating unit is around 21.19Å. The minima at 40◦C was inferred from the
calorimetric data to be for a change between 2 and 3 repeating units. The overall crystallisation
rate of the three PEB polymers showed two minima as a function of temperature, coming near
the melt-recrystallisation event temperatures.

The behaviour of these polymers is similar to that of the poisoning of the growth of the extended
form by the once-folded form in the long chain alkanes [3], [4] and the poly(ethylene oxide)
fractions [5]. The WAXS confirmed that the structure of the crystal was the same at all
temperatures, it was suggested that this behaviour was due to the poisoning of the growth of
the crystals of the longer stems by the shorter. In particular, at higher temperatures (> 60◦C)
the growth of the more stable crystal with lamellar of four repeating units is poisoned by the
growth of the three repeating units crystal [1]. As the temperature decreases and approaches
the melting temperature (Tm,3) of the three repeating units crystal, non-integer stems, between
three and four repeating units long, are deposited at the growth of the four repeating unit
crystal. Though their crystal is not stable yet, their presence inhibits further growth of the
longer stems as they do not get converted or removed quicker than the next non-integer stems
are deposited. This results in the growth rate minimum. Below Tm,3 the crystal of the three
repeating unit long stems is more stable and takes over. The second minimum arises in a similar
way although from poisoning of the three repeating unit crystal growth by the non-integer stems
near the melting temperature (Tm,2) of the two repeating unit crystal.

The HU model, discussed in depth in the introduction Chapter, was developed to explain
the minimum observed in the growth rate of long chain n-alkanes [6]. It was assumed that
the growth of the more stable extended form was poisoned by the growth of the less stable
once-folded form closer to the melting pointing of the latter. The model had the extended
form growing via a two step process at the growth front. Initially, half a stem would be
deposited with attachment rate A, and then another half a stem would be attached at the same
rate (figure 3.2(c)i). A half-crystallised stem deposited at the growth front would be unstable
above the melting temperature of the once-folded form as the detachment rate, B, would be
larger than the attachment rate A. However, while unstable there can be many short-lived half
stems deposited at the edge of the growth front and this number increases as the temperature
approaches the melting point of the once-folded form leading to them blocking the growth of an
extended chain (figure 3.2(b)). Then the growth rate of the extended form drops to zero. By
introducing a conversion rate, D, for covered half stems near the growth front of the extended
form it is possible to have a nonzero minimum. After the minimum, it is the growth rate of the
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once-folded form that continuous to grow (Figure 3.2(c)iii).

In this Chapter, an analytical 1D model for self-poisoning due to quantised lamella thickness
is developed from the 1D HU model for long chain n-alkanes. The next section of this Chapter
will outlining the model, its assumptions and how it differs from the HU model. Then the rates
used in the model are defined, with the PEB90 used to visualise the different options. The
model is then parameterised to PEB specifically, including fitting the parameters to explicitly
obtain the rates and hence the growth rate. The results of the model are then discussed before
the Chapter is concluded by summarising the model, its assumptions and shortcomings.
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3.2 The Model

Figure 3.2: Self-poisoning in long-chain n-alkanes and in PEB. (a) In integer-folded forms,
long-chain n-alkanes fold precisely in two or three sections, with chain folds tightly packed
and chain ends located at the crystalline layer surfaces. (b) Growth of the extended chain
form can be “poisoned” when unstable, single-folded chains frequently attach at the growth
front, blocking further growth of the extended form [6]. (c) An earlier model of
extended-chain growth factored in self-poisoning effects. (d) Growth stages in PEB are
depicted with double ester units as circles and free energy differences shown schematically.
For simplicity, only chain ends are illustrated at the amorphous lamellar surface, excluding
chain folds. (i) Growth of the F4 unit proceeds via an intermediate F3 stem formation at the
growth front. Once an F4 stem forms in state-0, it’s automatically covered by an F2 stem, as
no new crowded end surfaces are required. The rate-limiting step is the crystallisation of two
end segments with a forward rate (A) and a backward rate (B). Crystallisation of one end
segment results in an intermediate F3 stem (state-1); completing the other end segment
returns the system to state-0. (ii) The formation of F3 stem sequences occurs with deposition
of a further F3 stem at rate ((A′) (state-n) to state-(n + 1), where (n > 1)), with detachment
at rate ((B′) (state-(n + 1) to state-(n), where (n > 1)). (iii) A covered F3 stem at the F4

growth front may convert to an F4 stem at a slower conversion rate (C), with an even lower
back-conversion rate (D). Taken from [2]
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The same line of thought is adopted in this research in order to qualitatively explain the minima
in PEB crystallisation rates. Unlike in the HU model where a stem is split in half, here a stem
corresponds to the monomer that makes up PEB. And similar to the HU model the crystal
grows in one dimension and thus there is no consideration of lateral surface energy. A general
model for the poisoning of an N repeating units thick lamellae by an (N − 1) repeating units
thick lamellae is developed and applied to PEB to reproduce the experimentally observed data.
All the while using N = 4 and PEB90 to provide visual aid at different stages of developing
the model. Herein, crystals of a lamellar thickness equal to N repeating units, will called be
FN forms, as each lamella consists of N crystalline sublayers. The melting temperature (Tm,N)
of the forms will depend on the number of sublayers. The model is applied in the area where
FN grows at a higher temperature to FN−1, their melting temperatures are such that Tm,N >
Tm,N−1 and the effects of the poisoning are mostly expressed close to Tm,N−1 from above.

In the schematics shown in figure 3.2(d) with N = 4, the smallest growth/melting step is the
deposition/detachment of a chain of one repeating unit and this is done at rate A. The rate
limiting step is the formation of the crystalline-amorphous interface, specifically the terminal
or folded surfaces of newly deposited stems at the growth front. Overcrowding at this interface,
due to high concentrations of stem ends, results in either a decrease in the amorphous stems’
entropy or an increase in energy due to forced tight folding. Consequently, an FN is considered
to be readily covered with a FN−2 unit as it would not create a crowded state. This is the
state-0.

The FN stem grows by two steps from the FN−2 stem at the growth front, first growing into a
FN−1 by having a stem deposited at the end, and forming a new end surface with the neigh-
bouring FN stem (State 1 in figure 3.2(d)i). The new FN−1 stem is readily covered with an
FN−3 stem. The growth of the FN stem is completed by the deposition of a further stem at
the other end of the FN−1 in State 1, and the FN−3 stem also grows into an FN−2 stem. The
growth kinetics of the two steps, from State 0 to State 1 and back to State 0, are considered to
be exactly the same with the formation a new end surface and growth of half of a FN stem and
reduces the free energy of the system by (N/)(Tm,∞ − T )∆S − σe, where Tm,∞ is the melting
temperature of an infinitely thick crystal, σe the surface energy and ∆S the change in melt-
ing entropy per repeat unit. The rates responsible for the forward and reverse are A and B,
respectively and act in the same way.

While the crystallisation temperature is well above the melting point of FN−1 form Tm,N−1, the
above kinetics fully describe the growth dynamics between the two forms. As the temperature
approaches Tm,N−1 from above, though unstable, the deposited FN−1 stems begin to build
up at the growth front, interrupting the growth of FN . The depositing of the FN stems at
the growth front, state-n to state-n+1, and the reverse are described by the rates A′ and
B′, respectively 3.2d,ii. The free energy change of the system associated with the process is
(N − 1)(Tm,∞ − T )∆S − 2σe and is positive above Tm,N−1, since B′ > A′. For an FN stem
covered by n FN−1 stems, the FN−1 stem adjacent the FN growth front can convert to an F4

stem by converting an amorphous chain to a stem. The conversion occurs at a rate C and the
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reverse at rate D 3.2d,iii. The conversion will be significantly slower than deposition of a stem
on an uncovered FN−1 stem and decreases the system energy by (N − 1)(Tm,∞ − T )∆s with no
overall surface energy change.

Let the probability that a surface is covered by n FN−1 stems be Pn, with P0 the probability of
having a clean surface with no FN−1 stems.A steady state growth model is employed with the
conditions:

∞∑
n=0

Pn = 1 (3.1)

,

dPn

dt
= 0 (3.2)

.

The growth equations are and their solution given by,

dP0

dt
= P1(A+B)− P0(A+B) = 0 so P1 = P0 (3.3)

,

dP1

dt
= P2(B + C)− P1(A+D) = 0 so P2 =

(A+D)

(B + C)
P0 (3.4)

,

dPn

dt
= Pn+1(B + C)− Pn(A+D) = 0 so Pn =

(A+D)

(B + C)

n

P0 (3.5)

.

FN grows through the attachment of a stem to FN−1 by the attachment rate A, and through the
conversion of an amorphous chain of an FN−1C stem. This grow is reduced by the detachment
rates B of a stem back to FN−1. Using this information, a the growth rate equation for FN can
be derived as

GN = (A−B)P0 + (1− 2P0)C − (1− P0)D (3.6)

.

Below Tm,N−1, the FN−1 becomes stable and its growth takes over as that of FN is poisoned.
The growth rate is just the difference between the attachment rate and detachment of a FN−1

stem,
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GN−1 = A′ −B′ (3.7)

.

The transition between the growth of the FN and FN−1 forms takes place at the temperature
when Pn = Pn+1, where,

B′ − C = A′ −D (3.8)

.

3.3 Estimation of Parameters

The pairs of rates A and B, C and D, and A′ and B′, are related by the free energy change
associated with both the process and its reverse. Let the melting temperature of the infinitely
long polymer be Tm,∞, σe be the energy needed to form a new a surface and ∆S the entropy
of melting each stem. For both the two steps involved in growing an FN stem from a FN−2

stem, i.e. from state-0 to state-1 and from state-1 to state-0, the free energy difference for each
repeating unit at temperature T is (Tm,∞ −T )∆S. The energy cost for the surface end created
is σe, then the free energy decreases by

∆F0−1 = (N/2)(Tm,∞ − T )∆S − σe (3.9)

,

∆F0−1 = 2(Tm,∞ − T )∆S − σe for N = 4 (3.10)

.

And then,

B = Aexp(−∆F0−1/kT ) (3.11)

.

The melting point of FN , Tm,N , is then calculated when A=B.

Tm,N = Tm,∞ − 2σe
N∆S

(3.12)

.

The free energy from depositing FN−1 at the growth front is given by
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∆Fn−(n+1) = (N − 1)(Tm,∞ − T )∆S − 2σe (3.13)

,

∆Fn−(n+1) = 3(Tm,∞ − T )∆S − 2σe for N = 4 (3.14)

.

With,

B′ = A′exp(−∆Fn−(n−1)/kT ) (3.15)

.

For an FN−1 stem cover by other n FN−1 stems, in state-n, converting to an FN stem, one
surface is created and one surface is destroyed, which cancel out the surface energy cost and
the free energy for crystallising one stem is

∆Fc = (Tm,∞ − T )∆S (3.16)

.

So,

D = Cexp(−∆Fc/kT ) (3.17)

.

To fit the model to the experimental data, the values of Tm,∞, ∆S, and σe are estimated from
the melting temperatures of FN , FN−1, and FN−2, which are derived from the experimental
observations. For PEB, the highest temperature at which growth of FN is observed is 69◦C,
taken as Tm,4, while the melting temperatures of FN−1 and FN−2 are assumed to be a few degrees
lower than the observed minima at 58–60◦C (near Tm,3) and 40–43◦C (near Tm,2). The ultimate
melting points, Tm,∞, were adjusted to be as close as possible, ensuring that Tm,4, Tm,3, and
Tm,2 were consistent with experimental data and provided the best fit to the crystallisation rate
measurements. The best-fit melting temperatures for PEB90 and PEB188 are 95.4◦C, while for
PEB27, it is slightly lower at 95.0◦C, likely due to its higher proportion of chain ends, which
increases the melt entropy [7].

By substituting N = N − 1 and N = N − 2 into equation 3.12 gives
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Tm,N−1 = Tm
∞ − 2σe

(N − 1)∆S
(3.18)

and,

Tm,N−2 = Tm
∞ − 2σe

(N − 2)∆S
(3.19)

,

respectively. Combining and rearranging these gives the ultimate melting temperature as,

Tm
∞ = (N − 1)Tm,3 − (N − 2)Tm,2 (3.20)

.

Polymer ∆H(Jg−1) ∆S(JK−1mol−1) σe(Jmol−1) Tm
∞ Tm,4 Tm,3 Tm,2

¯∆S = 119 σ̄e = 6327 (◦C) (◦C) (◦C) (◦C)
PEB27 82.3 121 6230 95.0 68.0 59.0 41.0
PEB90 70.8 104 5600 95.4 68.9 60.0 42.0
PEB188 90.6 132 7150 95.4 68.9 60.0 42.0

Table 3.1: Melting Enthalpy ∆H (Values Taken from [1]) and Melting Entropy ∆S of One
Repeating Unit, Surface Energy σe, Best-Fit Melting Points of Polymers with Infinite Fold
Length (Tm∞) and F4 (Tm,4), F3 (Tm,3), and F2 Forms (Tm,2) Used in the Fitting of
Experimental Crystallisation Data. [2]

The change in entropy of each stem, ∆S, was estimated from the melting enthalpy (∆H) and
by assuming that the polymers have a 0.5 crystallinity from the following equation;

∆S =
∆H ×M

0.5× Tm
∞ (3.21)

,

where M is the molar mass of the repeating unit, 270.36gmol−1. The resulting difference in the
∆S for each polymer is due to the fact that they probably all have differing crystallinities than
the assumed 0.5. The crystallinity of PEB90 was measured to be the lowest of the three by
WAXS, about 0.39–0.44, depending on crystallisation temperature, while that for PEB188 is
0.50–0.59. Because of this disparity in the crystallinity and ultimately in the ∆S, an averaged
∆S̄ was used in the fittings instead. The surface energy σe was then calculated from equation
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3.12 using the Tm∞ and ∆S. And for similar reasons to the entropy, an average surface energy
σ̄e.

To fit the experimental data to the model, explicit equations describing how A, A′ and C each
depend on temperature need to be derived. The simplest choice is to have all the three rates be
constant, and though this scenario does produce a minimum, it does not fit the experimental
curves well at lower temperatures 3.3. This can be seen in the case of F4 growing in the presence
of F3 used in figure 3.3. A better fit is obtained from assuming that for the rates A and A′

the minimum amount of energy (∆FB,N) required for a chain of form FN , decreases with an
increase in the undercooling ∆Tm,N = Tm,N − T , and that this barrier is proportional to the
driving force ∆Tm,N∆S. This then means that,

Figure 3.3: Comparison between best-fit theoretical growth rates to that of the experimental
data for PEB90 between 45 and 70 ◦C (from DSC data above 54.5 ◦C and FSC data below 50
◦C), subject to different choices of T-dependence of the fitting parameters [1]. The melting
points of 3- and 4-layer forms used are 59 and 68 ◦C for (a), 62 and 72 ◦C for (b), and 60 and
69 ◦C for (c). (a) Constant A and A′, C = 0. (b) Both A and A′ are exponentially
proportional to crystallisation driving force, with C remaining constant. (c) Both A and A′

are exponentially proportional to the crystallisation driving force, and C is proportional to A.
Taken from [2]

A = ANexp(∆FB,N/kT ) = ANexp(uN(Tm,N − T )/kT ) (3.22)

A′ = AN−1exp(∆FB,N−1/kT ) = AN−1exp(uN−1(Tm,N−1 − T )/kT ) (3.23)
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where AN and AN−1 are the respective attachments rates at the respective melting temper-
atures, and uN and uN−1 link the driving force to the free energy barrier for each respective
form. The assumption that the free energy barrier decreases with decreasing T can be justified
by the fact that at larger supercooling, the stem does not have to be fully crystallised in order
to be stable, i.e., a partial attachment already counts toward crystal growth. Therefore, it is
understandable that the entropy barrier for a molten stem to extend sufficiently will decrease
with decreasing temperature.

More specifically, equations 3.22 and 3.23 can be rewritten for PEB with N = 4 as,

A = A4 exp (u4(Tm,4 − T )/kT ) (3.24)

A′ = A3 exp (u3(Tm,3 − T )/kT ) (3.25)

Figure 3.3(b and e) show that indeed when C = 0 the crystallisation rate drops to zero, instead
of a small non-zero value. In fact this is similar to what was observed in the HU model until
covered once-folded stems near the growth front of the extended crystal were allowed to grow
into extended stems. In that model this rate of conversion of covered chains was taken to be
proportional to attachment of the second half stem into an extended stem. The same approach
is adopted in this study with C being proportional A, with the restriction that the conversion
rate for the covered FN−1 stems into FN stems be less than A otherwise there would be no
poisoning effect. Only a fraction of the covered FN−1 chains at the growth front of the FN

crystal would eventually convert to FN . The conversion rate is then given by

C = CNA (3.26)

C = C4A for N = 4 (3.27)

The dynamics for the growth of the F3 crystal in the presence the F2 form are capture and
fitted by a similar set of equations.

A = 2A3 exp (u3(Tm,3 − T )/kT ) (3.28)

A′ = A2 exp (u2(Tm,2 − T )/kT ) (3.29)

C = C2A (3.30)
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In the previous case, the F3 form grew via a single attachment step, whereas in the latter case
it grows via two attachment steps from an F1 stem. To account for this, there is a factor of two
multiplying the attachment rate in equation 3.27.

3.4 Results and Discussion

Figure 3.4: Individual fittings of experimental data. (a) Fit of the model to the growth curve
between the F3 and F2 forms and (b) between the F4 and F3 forms of PEB90. The
temperature regions for F3 growth are shaded in gray. Taken from [2]

The model was calibrated to the experimental data by using the curve fitting function in Python
module SciPy that fits a given set of observations, and it needs a defined mapping function.
The curve fitting function provides optimum parameters for the mapping function that fit the
observations, as detailed in Chapter 2. The fitting is done separately for the lower temperature
region, growth between F3 and F2 forms, and the higher temperature region, growth between
F4 and F3 forms. The two regions can be fitted independently because the minima are far away
enough that the effects of F4 can be ignored in the lower temperature region and similarly, in
the high temperature region the F2 growth can be ignored.

The model does a good job in capturing the general features of the experimental plots. The
melting temperature are about 1 to 2◦C below the minima, and this is to be expected because
of the conversion rate that allow the covered F3 stems to convert to F4 even below Tm,3 and
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similarly for F2 converting to F3. The fitting of the two regions does not overlap completely
where F3 is growing, even with PEB90 where the model fits the experimental data with an
overall of root mean squared error of 0.91 (figure 3.4). This deficiency may be brought on by
the fact that the experimental data was measured using two different methods (DSC and FSC,
respectively). Another possible explanation for this inconsistency could be the fact that the
contribution of the growth of F3 from F2 were included in the low-temperature (red) curves,
but not the high-temperature (blue) ones. Then the two regions were consolidated by using
weighted averages of A3 and u3 to construct the plots.
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Figure 3.5: Experimental (squares and circles) and best-fit theoretical (solid curves)
crystallisation rate curves on a logarithmic scale. There are two theoretical curves for each
polymer, one covering the growth of F4 and F3 forms and the other the growth of F3 and F2

forms. As for the blue curves, no conversion from F2 is considered for the growth of F3,
leading to differences in the parameters used in the red and blue curves if fitted separately.
Therefore, the same weighted averages of parameters A3 and u3 for the growth of the F3 form
are used for the blue (F4/F3) and red (F3/F2) theoretical curves. The melting points of F4,
F3, and F2 forms are shown by vertical dashed lines. Panels (a), (b), and (c) show the
experimental crystallisation rate and the two theoretical curves for the overall growth of
PEB27, PEB90, and PEB188, respectively. The temperature regions for the growth of F3

form are shaded in gray. Taken from [2]

From table 3.2 there is no clear trend between the parameters according to molar mass, except
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for u4 which increases with molar mass. This might be related to the fact that crystallisation
rates do not show a dependence on molar mass and as such none is inherited by the fitting
parameters. For instance, the medium molar mass PEB90 shows the highest crystallisation
rate in F3 and upper F2 regions.

Polymer u2 u3 u4 A2(/s) A3(/s) A4(/s) C3 × 100 C4

PEB27 0.912 3.90 7.95 4.17 0.217 7.34 7.26 0.100
PEB90 0.611 5.71 9.01 11.0 0.143 2.34 3.97 0.174
PEB188 1.35 3.41 11.6 7.21 0.312 1.97 4.63 0.043

Table 3.2: Best-Fit Parameters to Experimental Growth Curves of PEB27, PEB90, and
PEB188. A2, A3, and A4 are the attachment rates for F2, F3, and F4 forms at their respective
melting points, and u2, u3, and u4 define the temperature dependence of the attachment rates
on undercooling. C3 and C4 are the ratios between the conversion rates C and attachment
rates A, for F2 to F3 and F3 to F4 conversion, respectively.

It should be noted that the current model is highly simplified. For example, the growth of
the polymer crystal is considered as a 1D process, the attachment/detachment of a monomer
repeating unit is treated as a single thermodynamic step, and the details of the formation
of the crystal–amorphous surface are ignored. The effect of nucleation (primary as well as
secondary) and their possible different dependencies on supercooling are not considered either.
However, satisfactory quantitative fitting to the experimental data has been achieved with
reasonable fitting parameters, and the current model does have the advantage that it can be
solved analytically. It would be desirable to develop a model in which the presence of all three
different stem lengths could be taken into account at the same time, even though it is most
likely that numerical methods would be required.

3.5 Conclusion

We have developed a simple theory that enabled us to explain quantitatively the multiple crystal
growth rate minima observed in polymers with regularly spaced substituent groups. Our work
confirms in a quantitative way the qualitative mechanism proposed by Marxsen et al [1]. in
their experimental work on PEB, also based on similar ideas in the previous studies on long
alkanes [8, 9, 6]. The reason behind the abnormal temperature dependence of the growth rate
is confirmed to be self-poisoning resulting from temporary attachment to the growth surface
of stems that are too short to be stable. Such a model will also contribute to a better general
understanding of the complex process of polymer crystallisation and identify and determine the
key parameters controlling crystal growth rates. Since in more conventional polymers crystal
layer thickness changes continuously with crystallisation temperature Tc, discrete rate minima
are not seen. Nevertheless, self-poisoning is undoubtedly operative there too. At each Tc there
is a minimum thickness lmin below which the crystal cannot grow, but this does not prevent
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stems slightly shorter than lmin attaching, lingering at the growth surface and obstructing
productive growth with l > lmin. Ma et al. [10] provided direct evidence of this effect using
Monte Carlo simulations, showing that folded stems at the growth front can persist temporarily,
delaying chain extension and causing growth rate minima due to self-poisoning. Consideration
of the self-poisoning effect at a polymer growth front is needed for the development of a more
realistic analytical theory of polymer crystallisation. A considerable step in the right direction
was made by Sadler with his roughness-pinning theory [11] which, however, failed to reproduce
most polymer crystal habits.
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4 Competition between Different Fold-lengths or Crystal
Forms: A Quantitative Study of Self-Poisoning Mecha-
nisms in Precisely Bromine-Substituted Polyethylene

In this Chapter results from applying the model from Chapter 3 [1] to PEBr is compared with
a model of self-poisoning due to different forms. A paper detailing the results of the study is
under preparation.

4.1 Introduction

Figure 4.1: Crystal structure model of PE21Br form I and II crystal obtained by energy
minimisation. (a) The polymer chains in form I are planar zig-zagging at every carbon,
similar to the conventional polyethylene structure. The bromines are embedded within the
bulk of the crystal. (b) Form II chains are also planar, however the bend at the carbons with
the bromine and in between the chain is linear. The bromines stick out at the bends and are
aligned. Courtesy of [2]
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4.1 Introduction

Poly(ethylene bromine) (PEBr) is a precision polymers formed by replacing one hydrogen with
one bromine every m methylene groups. PEBr is known to crystallise forming two distinct
crystals structures, Form I and Form II. Form I is seen to be favoured by faster cooling rates
than Form II and has all-trans planar conformation (figure 4.1(a)) [2]. Form II on the other
hand an all-trans configuration occurs along the m long methyl groups and then bends at the
carbon with a bromine (figure 4.1(b)) [2]. Form I (Tm,I)has lower melting point that Form
II (Tm,II). Form I was found to have more nuclei per unit volume during the crystallisation
process than Form II [3].

Figure 4.2: Linear growth rates of Form II as a function of crystallisation temperature. The
red dashed lines indicate the melting temperature of Form I. Experimental error bars are
added. (a) PEBr21 shows the most pronounced minimum, followed by (b) PEBr19, then (c)
PEBr15, while (d) PEBr9 does not show any poisoning. Taken from [3]
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4.1 Introduction

Optical microscopy data of three out of four PEBr polymers studied by Zhang et al [3] has
shown a minimum in the linear spherulitic growth decreasing temperature of Form II. This
observation was made in PEBr15, -19, and -21, while PEBr9 which was also studied did not
show this minimum (figure 4.2). The growth was seen to increase with undercooling initially,
then near Tm,I it decreased to a none zero value. This led the authors of the research to conclude
that the minimum was a result of the growth of Form I poisoning Form II. They argued that
above the melting point of Form I, frequent but unstable attachment of Form I chains on the
growth front of the Form II crystal leads to momentary blocking of the growth of the crystal
until the chains detach. Here Form I and Form II are analogous to the once folded and extended
chains of the long chain n-alkanes, respectively.

WAXS results showed the crystal structure both below and above Tm,I were of Form II. This
result brings into question the explanation of poisoning in PEBr as a result of the growth of
Form I impeding Form II. This explanation looks even more unlikely given that solid-to-solid
recrystallisation of Form I to Form II was not found and therefore the idea that Form I might
grow below the poisoning temperature and then subsequently change to Form II from the time
the sample is moved to it being analysed is ruled out. It was found experimentally that Form
I only converts to Form II by completing melting and recrystallising.

According to Whitelam et al [4], the minimum requirement for self-poisoning for the molecule
to attach in more than one way to a crystal, that those ways not be energetically equivalent and
they have different attachment rates. In the previous cases of self-poisoning that are known,
the more stable form grows at higher temperatures and the poisoning occurs near the melting
temperature of the other form, before the crystal of the less stable form takes over the growth at
the lower temperatures. This is the case with the long chain n-alkanes with growth between the
extended and the once-folded forms [5], [6]. Similarly in PEB the poisoning results from growth
between the four and repeating unit forms at the higher temperatures, and the three and two
repeating unit forms at the lower temperatures [7]. These facts coupled with the experimental
observation of Form II growing both above and below the poisoning [3] brings into doubt any
explanation formed on the basis the poisoning in the PEBr compounds is due to Form II growth
being poisoned by Form I attachment. This research suggests the poisoning is due to the growth
of Form II with two different lamellar thicknesses instead. At higher temperatures Form II
crystal grows with a longer lamellar thickness, and its growth is poisoned by the attachment of
the chains of shorter lamella form, before it takes over at lower temperatures where it becomes
stable.

The aim of this Chapter is to examine two quantitative models that are developed from the
aforementioned schools of thought concerning the mechanism behind this poisoning. The first
section looks at applying the model of poisoning due to quantised thicknesses developed in
Chapter 3 to PEBr. Then the Chapter then proceeds to develop a 1D model based on poison-
ing of Form II growth by Form I. Then the Chapter concludes by discussing the merits and
shortcomings of both models in explain the growth of PEBr.
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4.2 Quantised Crystalline Layer Thickness

In this section of the Chapter it is argued that the same model that was developed to explain
the self-poisoning in PEB can be readily adopted to also explain the poisoning observed for
PEBr. Each stem is considered a repeating unit with m methyl groups between the bromine-
substituted carbons. The polymer crystallises with a layer thickness corresponding to Nm,
where N is an integer and m can be 21, 19, or 15. This crystalline form is referred to as the
FN form. The growth of this form is poisoned by FN−1. The FN form grows in the higher
temperature region and FN−1 grows at the lower temperature, with the melting points of the
two satisfying the inequality Tm,N > Tm,N−1. FN−1 stems can deposit at the growth front of
the FN crystal, however the FN stems cannot be deposited at the FN−1 growth front because
of the difference in length. Away from Tm,N−1, the lifetime of these chains is short as they
are unstable, however as the temperature approaches Tm,N−1 from above the lifetime becomes
longer. As with the poisoning in PEB and the long chain n-alkanes, the unstable FN−1 chains
can deposit on other FN−1 stems that are unconverted, further preventing the growth of the
longer chains and producing a more pronounced minimum as seen here.

The experimental data showed a lamella thickness of 200 Å in these polymers, corresponding to
between 5 and 9 repeating units [3]. Based on this an assumption was made that the polymers
had 0.5 crystallinity and that N = 5, without any loss in generality. However, it is possible to
get fits that are as good with other N , such as 6, and different optimal parameters. A model
that has Form II crystal growing both above and below the poisoning minimum is consistent
with the experimental results seen. It should be noted that this model is based on there being
a change in lamella thickness which was not observed in the region around the poisoning. One
possible explanation for this may be a decrease in crystallinity for F4, where an increased
amorphous layer thickness has made up for the thinner F4 crystal. Another concern of this
model is the treatment of the melting point of Form I near the poisoning as a coincidence.
Even with these drawbacks the model of two competing lamellae thicknesses does a good job
of fitting the experimental data.
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4.2 Quantised Crystalline Layer Thickness

Figure 4.3: Schematic drawings of the growth steps in precision polymer PEBr. The Br atoms
are shown as red circles. The free energy differences between different states are shown under
their schematics. (a) The growth of F5 through the intermediate formation of an F4 stem at
the growth front. The rate limiting steps of the growth an F5 stem are the crystallisation of
the two end segments, with forward rate A and backward rate B. (b) Formation of a sequence
of F4 stems at the growth front, with deposition rate of a further F4 stem as B′, and the
reverse detachment rate as A′. (c) A covered F4 stem at the growth font of F5 can convert to
a F5 stem, with conversion rate C, which is a fraction of A, and the back-conversion rate is D.

The mechanism through which F5 form grows at high temperature, how its growth is then
poisoned by the F4 form, which eventually dominates the growth at lower temperatures is
captured by figure 4.3. The rate limiting step in this process is one where a chain is deposited
at the ends of a chain resulting in the formation of a crystalline-amorphous interface and a
higher free-energy. A consequence of this is that an F5 form is readily covered by a F3 stem
that would not lead to overcrowding at the ends, and thus F5 is readily covered by an F3 stem,
which in turn is covered by F1. At high temperatures, a F5 stem grows in two steps, firstly by
growth of F3 to F4 , from State 0 to State 1, then by extension of the F4 into F5 back to State
0. In the first step, the newly formed F4 chain forms a new surface with the existing F5 stem
paying a surface energy σe, and in the second step another surface is formed at the other end
of F5 stem, still paying the surface energy σe. The F1 that covered the F3 stem grew into an F2

stem in the first step then finally into an F3 stem covered by an F1 in the second step. Because
of this, the two steps are equivalent and happen at a forward A, with reverse B.

As the temperature approaches Tm,4, the melting point for the F4 form, more of its chains
are attached at the growth front cover the already existent F4 chains, and this accumulation
slows down the growth of the F5. This further deposition is done at rate A′, with reverse B′,
and creates one surface, creating State n from State (n+1). Above Tm,4, the growth of the F5

does not slow down to a halt, instead some of the covered F4 chains at the growth front of
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4.2 Quantised Crystalline Layer Thickness

the F5 can extend to F5 through rate C, reverse D, with no overall change in surfaces made
or destroyed. This conversion rate is much slower than the growth through the attachment
of the stem because of the restriction to the movement of the covered chain. The conversion
rate prevents the growth plummeting to zero at the poisoning minimum. Below its melting
point, the F4 crystal becomes stable and it takes over the growth, with the rate of growth being
proportional to the difference between the attachment and detachment.

The fitting parameters are shown in table 4.1 for all three polymers where the melting points for
N = 4, 5 are related to Tm,∞ by Tm,N = Tm,∞ − 2σ

n∆S
. The melting points of F5 and F4 decrease

with decreasing methylene group numbers m between Br atoms along the chain, as expected
by the disruptive effect of a large bromine atom to the regular PE lattice, as well as end surface
free energy. The conversion rate C increases with decreasing m, i.e. decreasing length of the
repeating unit, also as expected. Most fitting parameters changes monotonically with m, with
the exception for the attachment rates A and A′, which is always highest in PEBr19 instead of
PEBr15. This slow-down of the attachment rates in PEBr15 is probably linked to the fact that
in PEBr15 the melting temperatures of F5 and F4 are 15 degrees lower than that in PEBr19,
bringing them closer to the glass transition temperature of the polymer hence its increased
viscosity in the melt.

Bromine atoms are large, and their presence along the polyethylene backbone can affect how
closely the chains pack in the crystalline region. When the bromine atoms are closer together,
the steric hindrance between adjacent bromines might interfere more with tight packing, result-
ing in less efficient crystal formation and potentially a lower surface energy. This might explain
why the surface energy is different for the three polymers, with the surface energy increasing
with the increase in the distance between the bromine. Similarly, the greater distance between
the bromines means greater flexibility of the chains. Then upon crystallisation there would be
a great change in entropy. This could also explain why PEBr21 has the highest entropy change
and PEBr15 has the lowest. Overall the quality of fit to the experimental data is satisfactory
and the best-fit parameters physically sensible and follows the expected trend.
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4.3 Poisoning of Form II growth by Form I

Figure 4.4: Comparison of experimental and theoretical growth rate data, according to model
1, of PEBr21 (a), -19 (b) and -15 (c). The experimental data is shown as circles and the
theoretical model as solid lines. The two vertical dashed lines show Tm,4 and Tm,5 respectively.

PEBr Tm,4 Tm,5 Tm,∞ ∆S σe u4 u5 A4 A5 C0

(◦C) (◦C) (◦C) (JK−1mol−1) (J) (µm/min) (µm/min)
15 46.0 52.0 76.0 74.5 4470 7.85 15.4 1.32 0.596 0.035
19 63.0 67.0 83.0 131 5220 8.17 9.16 0.383 0.829 0.048
21 67.0 71.0 87.0 144 5780 9.52 1.32 0.099 0.339 0.009

Table 4.1: Fitting parameters to experimental growth curves of PEBr15, PEBr19, and
PEBr21. The melting temperatures of the F4 and F5 forms (Tm,4 and Tm,5, respectively), the
ultimate melting temperature of the polymers with infinite fold length (Tm,∞), melting
entropy per repeating unit (∆S), and surface energy σe. A4 and A5 are the attachment rates
for F4 and F5 forms at their respective melting points, and u4 and u5 define the temperature
dependence of the attachment rates on undercooling, and C0 is the ratio of covered F4 stems
at the F5 growth front that convert to F5.

4.3 Poisoning of Form II growth by Form I

The fact that the PEBr polymers crystallise in two different conformations, with one of them
being more stable, coupled with the fact the melting point of the Form I is very close to the
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4.3 Poisoning of Form II growth by Form I

growth minimum of Form II make for a compelling case for assuming that the poisoning arises
from Form I hindering the growth of Form II. In this section an alternative one-dimensional
model is explored that works off this assumption. It is initially assumed that it is always Form
I that attaches to the growth front at a rate A and detaches at rate B, From state-0 to state-1.
Form II then only grows by conversion from Form I at the rate C and can convert back to
Form-I at rate D, from state-1 back to state-0. As more Form I chains attach to the growth
front closer to the melting point of Form I, this momentary build up slows down the growth of
Form II. Some of these Form I chains at the interface with Form II can convert to Form II by
C∗ which is smaller than C, and can convert to back at the rate D∗. For this model to hold
credibility it is further assumed that all Form I crystal will eventually convert to Form II.

Figure 4.5: Schematic steps of growth of Form II (blue) poisoned by Form I (red). (a) The
growth of a Form II chain happens by deposition first of a Form I chain (forward rate A,
reverse rate B), followed by its conversion (forward conversion rate C, backward rate D). (b)
Further deposition of Form I chains to the growth front, and conversion of the first Form I
chain to Form II happens at a slower rate (forward rate C∗, reverse rate D∗). (d) The free
energy landscape of the melt, Form I and Form II above the melting temperature of Form I.

PEBr21 is used as an example during the development of the model, to demonstrate how
the model and its parameters should be adjusted to fit the experimental data. To develop a
quantitative model the relations of the parameters A and B governing the growth of Form I,
and C and D (C∗ and D∗) governing growth of Form II need to be explicitly derived from the
change in free energy. Then these can be used to further find the growth rates of the two forms
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4.3 Poisoning of Form II growth by Form I

to later calibrate the model to the experimental results. The deposition of a Form I chain at
the crystal surface depends on the difference in free energy between the Form I crystal and the
melt (∆FI), and is

∆FI = (Tm,I − T )∆SI (4.1)

,

where Tm,I is the melting temperature of Form I and ∆SI is the melting entropy of a Form I
chain. Then,

B = A exp (−∆FI/RT ) (4.2)

.

The conversion of a Form I chain to a Form II chain depends on the difference in free energy
between the two crystals of the two forms. This holds for both uncovered and covered Form I
chains at the interface of the two crystals.During the conversion the free energy (∆Fc) decreases
by

∆Fc = (Tm,II − T )∆SII − (T − Tm,I)∆SI (4.3)

.

Where Tm,I is the melting temperature of Form II and ∆SI is the melting entropy of a Form II
chain. Thus,

D = C exp (−Fc/RT ) (4.4)

,

D∗ = C∗ exp (−Fc/RT ) (4.5)

.

The melting entropy of Form II, ∆S, of each segment can be estimated from the measured mass
melt enthalpy ∆H (assuming a 0.5 crystallinity), and that of Form I estimated by a further
reduction due to lack of registry of the Bromine positions along the chain R,

∆SII =
∆H ×M

0.5Tm,II

(4.6)

,
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4.3 Poisoning of Form II growth by Form I

∆SI = ∆SI −R logm (4.7)

.

Where M is the molar mass of the polymer, ∆H is the melting enthalpy of the polymer, and
m is the number of carbons between the bromine atoms.

PEBr Tm,I(
◦C) Tm,II(

◦C) ∆SI(JK
−1mol−1) ∆SII(JK

−1mol−1)
15 47.0 52.0 57.8 80.3
19 65.0 69.0 112 137
21 67.0 71.0 126 151

Table 4.2: The melting temperatures of form I and form II (Tm,I and Tm,II , respectively), the
melting entropy of form I (∆SI), and the melting entropy of form II (∆SII)

The probability of having a Form II surface that is not covered by a Form I chain, in State
0, is P0, and that of having a Form II covered by n Form I chains, in State n, is Pn, where n
is a natural number. Using this information we can set up steady state equations of how the
probabilities evolve, with the conditions that

∑∞
n=0 Pn = 1 and dPn

dt
= 0. Then we obtain,

dP0

dt
= P1(B + C)− P0(A+D) = 0 so P1(B + C) = P0(A+D) (4.8)

,

dP1

dt
= P2(B + C∗)− P1(A+D∗) = 0 so P2 =

(A+D∗)

(B + C∗)
P1 (4.9)

,

dPn

dt
= Pn+1(B + C∗)− Pn(A+D∗) = 0 so Pn =

(A+D∗)

(B + C∗)

n

P1 (4.10)

.

By combing the equations 4.8 to 4.10 and the fact that probability adds to unity we have,

P0 +
∞∑
n=1

(A+D∗)

(B + C∗)

n

P1 = 1 (4.11)

,

P1 =
(A+D)(B + C∗ − A−D∗)

(B + C∗)(A+D) + (B + C∗ − A−D∗)(B + C)
(4.12)
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4.3 Poisoning of Form II growth by Form I

,

P0 =
(B + C)(B + C∗ − A−D∗)

(B + C∗)(A+D) + (B + C∗ − A−D∗)(B + C)
(4.13)

.

Form II grows through conversion of Form I chains at the interface of the two crystals by rate
C for the uncovered and C∗ for the covered ones. Form II chains at the interface can also be
converted back to Form I by D and D∗, leading to a reduction in the Form II crystal. Therefore,
the growth rate of Form II is found to be,

GII = P1C + (1− P0 − P1)C
∗ − (1− P0)D

∗ − P0D (4.14)

.

Form I crystal grows by according to the difference in the deposition of chain at the growth
front and how fast they detach, leading to a growth rate of,

GI = A−B (4.15)

.

At higher temperatures Form I chains that are deposited at the growth front are either converted
to Form II or quickly detach as they are unstable, and the probability of having an uncovered
Form II surface, P0, is high. However, as the temperature decreases their lifetime at the surface,
as chains are deposited on top of existing Form I chains before they can convert or detach. This
increases especially closer to the Form I melting temperature and P0 decreases and eventually
drops to zero at the growth rate minimum. Here Form II growth does not drop to zero only
because a proportion of the covered chains can still convert. The temperature at which this
occurs is T ∗ which is when P0 = 0 and occurs when

B + C∗ = A+D∗ (4.16)

.

This can be rearranged to produce,

C∗ =
A−B

1− D∗

C∗

at T = T ∗ (4.17)

A is determined by fitting the growth below the growth rate minimum to the growth rate of
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4.3 Poisoning of Form II growth by Form I

Form I. Due to the reduced motion of the covered chains, C∗ must be less than C and figure
4.6 shows a range of fittings with different ratios of C to C∗

Figure 4.6: A plot of the model for Form II growing from Form I and being poisoned by Form
I for PEBr21. The solid line represents the theoretical model data, and the circles are the
experimental data. (a) represents the fitting with a constant A, while (b) is the plot where A
has a temperature dependence. In both cases the ratio between C to C* was varied from 1, to
100, then 10000 and finally 1000000. When the two are equal the poisoning disappears, but as
the ratio becomes bigger all the lines seem to merge into one and the line produce is not
affected by how big the ratio becomes. There is also a general decrease in the growth rate from
the model when A becomes temperature dependent in fitting of the high temperature data.

Figure 4.6(a) shows a plot of the growth rate fitted with a temperature independent A and it
is unable to fit the lower temperature well. The energy required for a Form I chain to attach to
the surface is proportional to the driving force and using this fact a temperature dependence
can be introduced to A. This improves the fit of the model to the experimental data and gives
A as,

A = A0 exp (uI∆SI(Tm,I − T )/RT ) (4.18)

.

Here the attachment rate at the melting point Tm,I is given by A0, and the driving force and
the free energy are related by uI .

Though a temperature dependent A improves the lower temperature fitting, it greatly hinders
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4.3 Poisoning of Form II growth by Form I

the rate at higher temperatures and the poisoning effect. Changing the ratio of C to C∗ from
1 to 10000, so that only a few covered chains can convert, does not to change the effects of
the poisoning by much. In fact, making C/C∗ bigger only increases the poisoning to a point
beyond which it has no effect. According to figure 4.6, once C/C∗ ≥ 10000, then increasing
the ratio has no effect on the fit, therefore C/C∗ is fixed to be 10000 for the rest of the fits of
the model. This surprising fact about the model shows that it cannot explain the poisoning by
having Form II grow by conversion only.

As previously discussed, the inclusion of direct attachment of Form II violates the initial as-
sumption posited in this model. This assumption is based on the higher entropy of Form I
compared to Form II, and as such an increased chance of attachment to the a Form II growth
front. However, in order to reconcile the experimental observations, it becomes necessary to
accommodate an independent direct attachment of Form II chains to the growth front. This
attachment only happens on clean Form II surfaces as the grow of Form II requires registry of
the bromine and does not disrupt the equilibrium among all state-n states. If it is assumed that
Form II chains from the melt deposit on the surface of Form II crystal at rate E and detach at
rate F , with F being related to E by the free energy difference between the melt and Form II
crystal, then the growth rate equation for Form II can be rewritten as,

GII = P1C + (1− P0 − P1)C
∗ − (1− P0)D

∗ − P0(D + F − E) (4.19)

Figure 4.7 shows that the model fits the data better when E has a temperature dependence
similar to that of A, rather than for a constant E.

E = E0 exp (uII∆SII(Tm,II − T )/RT ) (4.20)
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4.3 Poisoning of Form II growth by Form I

Figure 4.7: A plot of the growth rate of PEBr21 with direct attachment of Form II chains. (a)
Best fit when a constant direct attachment E of Form II is assumed. It increases the total
growth in the higher temperature region but does not fit the overall shape. (b) Introducing a
temperature dependence E produces a much better fit.

Figure 4.8 was constructed by fitting the model to the data for PEBr15, -19 and -21 using a
temperature dependent attachment rate A for Form I, and also a temperature dependent direct
attachment rate E for Form II. The model fits the general detail of the experimental curves
well.
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PEBr A0(µm/min) E0(µm/min) uI uII C ∗ (µm/min)
15 4.22 0.205 9.16 22.2 2.66
19 0.508 0.186 9.05 11.5 2.78
21 0.434 2.82 9.52 4.78 0.994

Table 4.3: Fitting parameters to experimental growth curves of PEBr15, PEBr19, and
PEBr21 for the model of self-poisoning of form II by form I. A0 and E0 are the attachment
rates for form I and form II at their respective melting points, and uI and uII define the
temperature dependence of the attachment rates on undercooling, and C∗ is the ratio of
covered form I stems at the form II crystal that convert to form II.

Figure 4.8: The overall growth of (a) PEBr21, (b) -19, and (c) -15 experimental data and
theoretical line as produced by the model of a competition between Form I and Form II. The
solid red line represents the theoretical curve from the model and the black circles the
experimental data. The vertical lines represent Tm,I (on the left), and Tm,II (right).

For a Form II chain to attach to the growth front from the melt, E takes into consideration
deposition and the bromine being in the correct registry. Whereas for a Form I chain, because
of the reduced level of order there is a smaller entropy barrier to overcome. It is then expected
that the rate A would be higher than E. However, on closer inspection of the rates A and E,
as shown together below in figure 4.9 for the different polymers, the best-fit parameters show
that E is in fact much bigger than A (several orders of magnitude) in PEBr21 and PEBr19,
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and also higher around the poisoning point for PEBr15. This adds to the problems that come
with model 2.

Figure 4.9: Plot of the attachment rate of Form I ,A, (solid line) and the direct attachment of
Form II, E, (broken line) as functions of temperature for the three polymers. The plot shows
that E is always larger than A below the poisoning in (a) PEBr15, and always larger by
several orders of magnitude for (b) PEBr19 and (c) PEBr21 within the area of interest. The
Plot of E is in blue, and that of A is in black. The two vertical lines show the respective
melting temperatures of Form I and Form II.

4.4 Conclusion

The model of different lamellar thicknesses does a good job of producing curves that fit the
trend and shapes of the curves very well. Most of the fitting parameters follow a trend, except
maybe for PEBr19 which seems to have a big uncertainty at the maximum before the poisoning
and that may affect the overall fitting.

An explanation of the self-poisoning in the PEBr compounds based on poisoning between Form
I and Form II is very unlikely as the model fails to reproduce the experimentally observed
curves unless unphysical assumptions were made. When A is temperature independent, the
lower temperature fit is poor, whereas when a temperature dependency is included, the higher
temperature is compromised, having a small kink instead of a clear minimum. Only by allowing
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Form II chains to attach directly on a clean Form II substrate, the fitting can be improved
drastically. However, this comes with an unphysical condition where the attachment rate of a
more ordered Form II is much faster than that of less ordered Form I. Adding to the difficulties
are the experimental observation that there is no solid-solid transition of Form I to Form II
below the melting point of Form I, while our model relies on the fact Form I must convert to
Form II below the poisoning point to be consistent with experimental observation that only
Form II crystals were observed both above and below the poisoning point.

It is worth acknowledging that the proposed alternative depends on treating the fact the melting
temperatures of Form I comes close to the poisoning region as a coincidence, and that the model
does not take Form I growth into consideration. Experimentally, further x-ray diffraction (XRD)
work for more accurate measurement of the crystallinity of the crystal forms formed at different
temperatures and determination of the crystalline layer thickness, may in the end provide the
evidence to distinguish between the two models. Molecular dynamics can also be used to
complement the experimental data and study the form of the crystal produce in the polymer
crystallisation of PEBr.
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5 Molecular Simulations of Quantised Lamellar Thicken-
ing in Polyethylenes with Regularly Spaced Brominated
Groups

The work in this Chapter follows from Chapter 4, where it was suggested that the self-poisoning
of PEBr -15, -19 and -21 is due to quantised lamellar thickness and not two competing forms. As
no experimental results have been seen to suggest quantisation of lamellar in PEBr, molecular
dynamics studies are carried out in this Chapter to study these systems further using PEBr21.
The results of this work have been accepted for publication in Macromolecules, with the preprint
available at [1].

5.1 Introduction

Polyethylene (PE) is one of the most ubiquitous and simplest homopolymers and as a result is
widely studied in both academia and industry. Its straightforward structure, a linear chain of
repeating ethylene units, serves as an ideal model system for understanding polymer behaviour.
The simplicity of the polyethylene backbone, combined with its tunable molecular weight and
degree of branching, makes it a fundamental reference for the study of polymer physics, chem-
istry, and material science. One of the intriguing aspects of polyethylene is its role as a precursor
for functionalised derivatives. By introducing chemical groups into the polyethylene backbone,
researchers can tailor the properties of the polymer for specialised applications.

A notable example of these polyethylene derived polymers is poly(ethylene bromine) (PEBr)
(studied in Chapter 4), where bromine atoms are substituted in place of hydrogen every m
carbons along the backbone [2], [3]. It was found that PEBr15, -19 and -21 crystallise with a
minimum in a plot of their growth rate with supercooling [3]. Though it was originally suggested
that the minimum was due to the growth of Form I poisoning Form II, experimental results have
suggested otherwise. Form II crystal is seen to grow both below and above the poisoning, which
would be unexpected if indeed Form I growth was poisoning it at high temperatures. In the
previous Chapter, Chapter 4, it was suggested that the self-poisoning phenomenon arises due
to quantised lamellar growth, where Form crystals of shorter stems are deposited at the growth
front of Form II crystal with longer stems. A model developed to explain self-poisoning in due
to quantised lamellar thickness in poly(ethylene brassylate) (Chapter 3) [4] fit the experimental
data of the three PEBr polymers very well compared to one developed for self-poisoning due
to different forms. However as no experimental results have shown quantisation of the lamellar
thickness in PEBr, this is all just theoretical.

While experimental studies like these provide valuable insights into PEBr crystallisation, un-
derstanding the detailed molecular structure of the crystals remains a challenge. This difficulty
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5.1 Introduction

arises due to the semi-crystalline nature of PEBr, which consists of coexisting crystalline and
amorphous regions. Structures are often inferred rather than directly observed, and traditional
experimental techniques, such as X-ray scattering, provide only averaged information, lacking
the resolution to capture individual chain conformations within the crystals. Furthermore,
critical phenomena in polymer crystallisation such as nucleation, growth, and chain folding,
are dynamic processes that remain difficult to capture experimentally, especially given the rare
events like nucleus formation or defect generation.

To address these limitations, computer simulations have emerged as a powerful tool to explore
the large-scale structures formed by long polymer chains [5, 6]. Advances in polymer models,
high-performance molecular simulation codes [7], and computational power have enabled re-
searchers to simulate polymer behaviour with increasing accuracy. In the case of polyethylene
systems, all-atom models have been successful in reproducing the orthorhombic crystalline unit
cell [8], but scaling these models to large systems remains challenging. Simulating long-chain
PE crystallisation, particularly nucleating crystals from the melt, requires long run times and
high computational resources, making all-atom simulations impractical for large systems. As
a result coarse-grained united-atom (UA) models, in which hydrogen atoms are grouped onto
into the heavier carbon atoms to reduce the number of interactions have been adopted. They
offer a simplified but computationally efficient representation of the polymer chain. However,
this simplification comes at the cost of not reproducing the exact crystalline unit cell of PE [9].
Despite these limitations, UA models have been widely used to study the crystalline proper-
ties of PE systems [8, 10, 11, 12]. For large-scale structures, such as semi-crystalline lamellae
upwards of 10 nm, even more heavily coarse-grained models, like united-monomer models, are
employed to overcome computational bottlenecks.

In this Chapter of the thesis, a united-monomer model for PEBr is developed from an existing
model that was originally developed for poly-vinyl alcohol PVA [13, 14, 15, 16, 17, 18, 19] and
used in several studies since. A more recent study by Fall et al. [20, 21], using a modified
CG-PVA model, showed successful control over the lamellar thickness in regularly branched PE
by growing crystals using a technique known as self-seeding. Their model will serve as a basis
for the one used here with modifications of adding two bromine atoms every 21st carbon. The
aim of the study is to investigate how the presence of regularly placed bromine atoms affect
the crystallisation behaviour and semi-crystalline morphology of monodisperse PEBr21. This
is to be studied by two different crystallisation methods, continuous-cooling and self-seeding,
for a series of different cooling rates and crystallisation temperatures. Then the results are to
be compared with current experimental results [22, 2, 23, 24].

The Chapter outlines the model development, the coarse-graining process, simulation condi-
tions, and the two crystallisation protocols used in the study. Analytical techniques are used
to compare the simulation results with experimental observations.
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5.2 Model & Methods

5.2 Model & Methods

The united-monomer model employed in this work is an extension of the renowned united-
monomer model originally adapted for poly-vinyl alcohol (PVA) by Meyer and Müller-Plathe
[13], and later used to capture the behaviour of a variety of macromolecules [13, 25, 20, 21].
Here C2H4 and CHCBr2 are represented by single coarse-grained beads as denoted by the blue
and red species in figure 5.1(a). The coarse-graining (CG) used in this method uses every
second backbone carbon as the distribution centre, as suggested by Vettorel and Meyer [26].
By choosing this mapping scheme, instead of the centre-of-mass, cross-correlations between
angles and bonds are minimised, ensuring that the angular configurations of the coarse-grained
model directly correspond to those in the all-atomistic simulations [15].

5.2.1 All-Atom Simulations

The coarse-grained potentials of the CG-PE model from [20] are unchanged because the bond
and radial distribution functions closely align. However, introducing bromide dimer (CH2CBr2)
required new all-atom simulations. Like in CG-PE, the Optimized Potentials for Liquid Simula-
tions (OPLS) force field from Jorgensen et al [27] was employed with the modification that the
leading torsional term was reduced from 1.76 to 0.8 kcal/mol. This modification came about
to address the well known problem that OPLS all-atom (OPLS-AA) simulations overestimates
crystallisation temperatures due to its elevated gauche energy for backbone torsions, which
favours the extended conformation. The AA simulations of C10H21CBr2C9H19 were conducted
identically to those of the CG-PE model at 500K, well above the melting point. The bromide
dimers were adjusted only in terms of the size of Br units and C− Br bond lengths, based on
halogen parameters from Jorgensen and Schyman [28], while the modified torsional potential
of OPLS-AA was applied across the entire backbone.

5.2.2 Coarse-Grained Model Development

In the united-monomer model, each bead is linked to its adjacent beads through harmonic bond
potentials, described by the equation:

Ubond = kbond(l − l0)
2 (5.1)

where Ubond represents the change in potential energy as the bond between the beads stretches
or compresses. Here, kbond is the spring constant, l is the current bond length, and l0 is the
bond’s equilibrium length. The parameters used for the model in this study can be found in
table 5.1
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5.2 Model & Methods

Figure 5.1: Coarse-grained model and angular potentials. (a) Schematic representation of the
coarse-grained model for PE, blue and red beads represent C2H4 and CH2CBr2 CG centres
respectively. Different bending potentials considered between bromine centres, their
immediate neighbours and tails, namely θBr, θN and θT are drawn in. (b-c) Mapping from an
all-atom torsional potential to CG tabulated angular potential, for the bromine centres
(U(θBr), red curve) and their neighbours (U(θN), black curve) respectively shown alongside
the potential of the tail groups. Note the angular potential of the tails (U(θT), dashed blue
curve) is identical to that of regular polyethylene reported previously [20]. The minima of the
CG potentials map to real all-atom conformers of precision PE chains as depicted in the inset
artistic representations at each of the respective minima. Taken from [1]
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Interaction Form Parameters

Bonds (C2H4)-(C2H4)
(CH2CBr2)-(C2H4)

Ubond(l)
kbond=53.69 (kcal/mol/Å2)

l0=2.225 (Å)

Angles
(C2H4)-(C2H4)-(C2H4) Tabulated figure1(b,c)-Tails (blue)

(C2H4)-(C2H4)-(CH2CBr2) Tabulated figure1(c)-neighbours (black)
(C2H4)-(CH2CBr2)-(C2H4) Tabulated figure1(b)-Centres (red)

Non-Bonded

(C2H4)↔(C2H4)

U
(9-6)
LJ

ϵ0=0.348 (kcal/mol)
σ0=4.45 (Å)
rc = (3/2)

1
3σ0

(CH2CBr2)↔(C2H4)
ϵ0=0.44 (kcal/mol)

σ0=5.19 (Å)
rc = 1.5

1
3σ0

(CH2CBr2)↔(CH2CBr2) U
(12-6)
LJ

ϵ0=0.45 (kcal/mol)
σ0=5.66 (Å)
rc = 2

1
6σ0

Table 5.1: Potential forms and parameter values for the united-monomer model of PE with
dibromo groups in real units. [1]

As in the PE paper [20], the bending valences in this work were derived from the Boltzmann
inversion (described in Chapter 2) of the bond angle distribution, P(θ), observed between coarse-
grained (CG) centers in all-atom simulations. This method inverts the bond angle probability
distribution P(θ) to generate the bending potential

Uangle(θ) = −kBT ln [P(θ)/ sin(θ)] (5.2)

Consequently, torsional angles from the atomistic model are converted into effective angular po-
tentials between every three consecutive CG beads, leading to the tabulated potential displayed
as the dashed blue line in figure 5.1(b) and (c). The inclusion of additional dibromo groups
necessitated the introduction of two new angular distributions: one centred on the dibromo
group itself and the other adjacent to it (referred to as ’Centres’ and ’Neighbours’), in addition
to the standard PE chain (referred to as ’Tails’), whose properties are already established in the
united-monomer model of PE. Notably, further angular distributions were unnecessary, as the
bond angle distribution quickly reverted to that of standard PE with increasing distance from
the Br group. The angular potentials in proximity to the Br dimer preserve the characteristic
triple-well structure of the standard PE model, though the gauche-gauche configuration is more
strongly disfavoured, marked by a pronounced shoulder at lower angles in the black curve in
figure 5.1(c).

A key variation arises at the Br group itself, which exhibits a quintuple-well potential, as
shown by the red curve in figure 5.1(b), with a deeper minimum at the gauche-gauche state
and a larger torsional barrier between the trans-gauche and trans-trans states. This leads to
a greater likelihood of chain bending at the Br group while disfavouring such conformations
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at neighbouring monomers. This result aligns with experimental observations of chevron-like
crystal structures, which feature consistent Br atom counts between adjacent chevrons, indi-
cating a strong propensity for bending at CBr2 units [2, 3]. These findings are corroborated
by inspecting the conformations along the atomistic chain, as depicted in the inset diagrams
in Figs. 5.1(b) and (c). It’s noteworthy that gauche-gauche and gauche-trans conformations
near the dibromo group push neighbouring hydrogen atoms further from the bulky Br group,
whereas when the Br group is positioned on a neighbouring monomer, the H and Br atoms are
forced closer together in a gauche-gauche conformation, which explains the prominent shoulder
at smaller angles.

Beads that are not directly bonded along the chain, as well as those from different chains,
interact through either a 9-6 or 12-6 Lennard-Jones (LJ) potential, see table 5.1 for the fitting
parameters. The equations for the 9-6 and 12-6 LJ potentials, respectively are:.

U
(9-6)
LJ = 4ϵ0

[(σ0
r

)9
−
(σ0
r

)6]
, r ≤ rc, (5.3)

U
(12-6)
LJ = 4ϵ0

[(σ0
r

)12
−
(σ0
r

)6]
, r ≤ rc, (5.4)

where ϵ0 is the depth of the potential well, σ0 is the particle size (or zero-crossing distance), r
is the distance between particles, and rc is the cutoff distance.

The exclusion of 1-2 interactions arises from the tubular configuration of the backbone, which
is a direct consequence of the choice of CG centers during coarse-graining. Neighbouring beads
overlap, and including 1-2 non-bonded interactions would result in large, unphysical forces, so
these interactions are switched off. Additionally, 1-3 interactions are omitted because the steep
barriers in the bending potential at small angles prevent the beads from coming close enough
to interact (see figure 5.1(b)).

110



5.2 Model & Methods

Figure 5.2: Non-bonded beads Lennard-Jones. (a) A Plot of the Boltzmann inverted
non-bonded interaction potentials between bromine centres, while (b) shows that between the
bromine centres and the carbon chain without the bromine, and lastly, (c) shows that between
the carbons without the bromine. The average potential was calculated from the iterative
runs (labelled run in the plot), and then the the Lennard-Jones fitted accordingly (shown as a
broken line). The well is deepest for the bromine-bromine interactions and shallowest for the
mixed interaction. Taken from [1]

Both the standard polyethylene (PE) chain (tails) and the mixed interactions between bromi-
nated (centre) and PE (tail) groups are represented by pairwise 9-6 LJ potentials 5.3. These
potentials are largely similar, though the mixed interactions between Br and PE groups have
a slightly deeper minimum that is shifted to larger distances to account for the larger size of
the Br atoms. A 9-6 LJ potential is chosen to model the softer effective interactions between
united-monomers. For interactions between two brominated groups, a 12-6 LJ potential is more
suited, which provides a more accurate representation of the CH2CBr2 CG units, compared to
C2H4, with a deeper potential minimum and a larger equilibrium separation. Both the 9-6 and
12-6 potentials are cut and shifted to zero at their respective cutoff distances rc, as shown in
table 5.1, ensuring only repulsive interactions between the CG beads are considered.

This methodology has been proven effective for crystallisation studies, where only the repulsive
portion of the potential is used. It has been successfully applied to quiescent systems [16, 17,
13, 14, 20], and recent simulations have reported the largest multi-lamella polymer crystals to
date for PE [21]. We follow this well-established approach here. Electrostatics are not included
explicitly in the model, as the monomer carries no net charge. While more precise potentials
could be generated for specific state points via iterative Boltzmann inversion with tabulated
potentials, this was not pursued in the current study. It is possible that brominated units
may behave differently below the 500 K temperature at which this model was parameterised.
Nevertheless, the crystallisation temperatures of the brominated PE chains in this study align
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closely with experimental results [2, 3], as we will demonstrate in the next section. This
indicates that the model successfully captures the essential physical behaviour of brominated
PE crystallisation.

5.2.3 The Simulations

The simulations comprise 96 chains, each consisting of 200 coarse-grained (CG) units, with bro-
mide units inserted at every 10th or 11th CG unit along the chain. This specific arrangement
was selected to maintain a direct correspondence between the CG chain and the all-atomistic
conformations of PEBr21, as outlined in [3], in anticipation of future studies where atomistic
monomers may be reintroduced into the large-scale structures obtained here. Initial topologies
were derived from simulations of polyethylene melts detailed in, ensuring that they were already
well equilibrated. Bromide units were subsequently introduced regularly along the linear back-
bone. It was demonstrated in [20] for the insertion of small butyl branches, that the addition
of a few small units causes minimal perturbation.

All equilibration and crystallisation runs were conducted using the Large-Scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) [7, 29]. Following the insertion of bromide monomers
into the existing PE melt, a brief equilibration run was carried out to allow the chains to fully
relax in the NPT ensemble (where the number of chains (N), the pressure (P), and the temper-
ature (T) are all constant) using a Langevin thermostat with a coupling constant Γ = 0.5 (1/τ)
and a Berendsen barostat with Pdamp = 100.0 (τ). The integration timestep used throughout
was 0.005 τ , where the LJ-time unit τ =

√
mσ2/kBT0 corresponds to 2.7 ps (m = 27.3881

g/mol), and the temperature was maintained at T0 = 500K or 227◦C (T = 1.0 in reduced
units). A high pressure of P = 8.0 (kBT0/σ3) was applied to achieve the desired density. Dur-
ing crystallisation runs, a Nosé-Hoover thermostat and barostat were employed for cooling and
self-seeding runs, with Tdamp = 2.0 (τ) and Pdamp = 100.0 (τ), respectively.

The initial all-atom simulations were ran on High Performance Computing Center CAIUS of
the University of Strasbourg, with 24 CPU cores for 135 ns over 100 hours in real life. The
subsequent coarse-grained isothermal and cooling (heating) runs were performed on the now
decommissioned ShARH HPC cluster on 16 CPU cores. The isothermal and cooling runs were
done using multiple packages, each with taking over 15 hours in real life.
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Figure 5.3: Density - time curves for potential seeding temperatures.

This study employed two methods of crystallisation to generate crystal structures: continuous-
cooling and self-seeding. The continuous cooling protocol involves rapidly cooling the melt from
a higher temperature to a lower temperature at a specified rate. In this case, a well-equilibrated
melt at 227◦C was quenched to 0◦C at rates of 0.1 K/ns and 0.4 K/ns, respectively. Additionally,
slower cooling rates of 0.04 K/ns and 0.01 K/ns were employed from a melt cooled to 127◦C at
0.4 K/ns. Continuous cooling is suitable for short-chain polymers; however, when long chains
are present, it can result in multiple nuclei and several disordered amorphous regions, leading
to poor crystal structure.
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Figure 5.4: Density curves for all systems during the self-seeding and continuous-cooling
simulations. (a) Density-temperature curves for the continuous-cooling starting from 125◦C to
0◦C with four different rates and their corresponding heating curves. The 0.1 K/ns and 0.04
K/ns cooling were bifurcated from the 1.0 K/ns cooling at 127 ◦C. (b) Density-time curves
during the self-seeding procedure. Each respective cooling, seeding, heating, crystallisation or
quenching stage is indicated in the figure with arrows. The seeding (blue) curve is bifurcated
from the 0.1 K/ns cooling (black) curve at Ts = 62 ◦C. This is followed by a 0.1 K/ns heating
(purple curve) to a series of crystallisation temperatures Tc = 67◦C, 72◦C and 77◦C (green,
red and pink curves) respectively at which the systems are held for 0.4µs and then quenched
(yellow curve) to 27◦C at 1.0 K/ns. Note the 0.1 K/ns cooling curve begins at ∼ 1µs due to
bifurcation from the faster 1.0 K/ns cooling at 127 ◦C for computational expedience. The
corresponding time-temperature protocol is similarly shown in panel (c). From [1]

The second method, self-seeding, was used to address the shortcomings of continuous cooling.
This process initiates crystallisation through existing crystalline structures within the polymer.
The time-temperature protocol for self-seeding employed in this study is depicted in Fig 5.4 (c).
Initially, the system is cooled steadily at a rate of 0.1 K/ns (represented by the black curve)
until it reaches the seeding temperature, Ts. At this point, the system is held at a constant
temperature (blue curve) for several hundred nanoseconds, allowing crystallisation to begin.
Various temperatures were initially tested for isothermal crystallisation by branching from the
cooling curve 5.3. The most effective crystallisation occurred at 62◦C, which was thus selected
as the seeding temperature.

Once sufficient nuclei had formed, the system was heated at a constant rate of 0.1 K/ns (purple
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curve) to a set of crystallisation temperatures Tc, causing most of the nuclei to melt. Following
this, another isothermal crystallisation step was conducted for several microseconds until the
system’s density stabilised, indicating that the remaining nuclei had fully grown and filled the
simulation box. After crystallisation at the various Tc, the systems were quenched to room
temperature (Tq = 27◦C at a rate of 1.0 K/ns to gather data for statistical analysis. This
self-seeding method enabled the growth of highly pure crystals, which allowed for a direct
comparison with recent experimental findings on competing polymorphs in periodically spaced
PEBr polymers.

5.3 Results & Discussion

Figure 5.4(a) displays the density-temperature profiles obtained during continuous cooling for
all cooling rates tested, spanning two orders of magnitude. The fastest cooling rate of 4.0 K/ns
(red curve) shows minimal hysteresis, which implies the absence of crystalline regions and an
almost fully amorphous structure. This is in contrast to simulations of linear PE chains [20, 14],
where rapid cooling induces at least some crystallisation. The presence of regularly spaced Br
units along the PE chains makes nucleation significantly more difficult. With a slower cooling
rate of 1.0 K/ns (green curve), some slight hysteresis emerges, indicating limited crystallisation
and the lack of well-defined crystalline structures, that is, the chains have not adopted an
orderly arrangement. Only at the slowest cooling rates feasible within simulation timescales,
0.1 K/ns and 0.04 K/ns, does significant hysteresis become apparent, as shown by the blue and
black curves in Fig 5.4 (a). The density gradually increases as the cooling rate slows down,
consistent with previous simulation studies [20]. However, the crystals formed via continuous
cooling remain of poor quality. To address this and to grow PEBr crystals that closely resemble
those observed experimentally, a self-seeding crystallisation approach is employed in this work.

As detailed earlier, self-seeding was used to carry out isothermal crystallisation for over 4
µs at three different temperatures: 67 ◦C, 72 ◦C, and 77 ◦C, as shown by the green, red,
and purple curves in Figure 5.4(b), respectively. The crystals obtained through continuous
cooling were inferior in quality when compared to those grown using self-seeding. The density
and degree of crystallinity achieved at the crystallisation temperature closely match those of
continuously cooled systems measured at room temperature. The self-seeding process also leads
to a more rapid crystallisation, as indicated by the sharp change in the slope of the density
curves. Furthermore, upon quenching to room temperature, the density of the self-seeded
crystals surpasses that of the continuously cooled systems, which is an indicator of improved
crystallisation quality.
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5.3.1 Snapshots of the Systems

Figure 5.5: Snapshots of the continuously cooled and self-seeded systems at 27 ◦C. Panels
(a-c) show the self-seeded crystals, grown at 67 ◦C, 72 ◦C and 77 ◦C respectively, after
quenching. Panels (d-f) show the crystals grown by continuous-cooling. Polymer chains are
coloured continuously according to their local P2 order parameter from P2 = 0 (purple,
amorphous) to P2 = 1 (yellow, crystalline) and the bromine species is shown in red. Adapted
from [1]

The distinction between the two crystallisation protocols becomes clearer when we compare
the final snapshots from the simulations, depicted in figure 5.5. In these images, the polymer
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chains are colour-coded based on their local P2 order parameter, which quantifies the degree of
alignment in the system. Mathematically, P2 is defined as the second Legendre polynomial of
the cosine of the angle between a particle’s orientation and a reference axis:

P2 =
⟨3 cos2 θ − 1⟩

2
(5.5)

Here, the angular brackets 〈〉 denote an average over all particles in a given local region. The
colour gradient used to represent P2 ranges from P2 = 0 (purple, indicating amorphous regions)
to P2 = 1 (yellow, indicating crystalline regions), with bromine atoms marked in red as used in
[21].

In the continuous-cooling protocol (figure 5.5(d-f)), large disordered regions are observed, par-
ticularly at the faster cooling rates, as shown in the snapshot for 1.0 K/ns in panel (d). These
disorganised structures likely form due to multiple nuclei growing in different directions and
interfering with each other, preventing further crystalline growth. Additionally, because the
cooling rate is so rapid, nucleation tends to occur at lower temperatures, where chain mobility
is significantly reduced, leading to suboptimal crystallisation. In the case of the system cooled
at 1.0 K/ns, the cooling rate seems to have been fast enough to nearly suppress nucleation
entirely. Slower cooling rates, such as 0.1 K/ns and 0.04 K/ns, result in improved crystallinity,
as evident in panels (e) and (f), respectively. This trend is expected, as slower cooling provides
the chains more time to rearrange into ordered structures. The slowest cooling rate, 0.04 K/ns,
produces the most crystallised regions with some chain alignment, but the overall structure
remains largely amorphous.

Interestingly, in previous studies of linear PE chains, crystallisation began at much higher
temperatures, around 105◦C, whereas the brominated PE chains in this study only start crys-
tallising below 70◦C [20]. This observation aligns well with experimental data, which report
peak crystallisation temperatures around 52◦C and melting temperatures near 70◦C. Consid-
ering the coarse-grained nature of the model and the finite-size effects commonly encountered
in polymer crystallisation simulations, it is noteworthy that the characteristic temperatures
reported here agree closely with experimental findings, as shown in figure 5.4(a) and (b).

The snapshots from the self-seeding protocol shown in panels (a-c) show a big jump in differ-
ence, with highly organized lamellar structures with large crystalline chain stems and distinct
amorphous regions at the edges. For the systems crystallised at 72◦C and 77◦C (panels b and c),
the crystal structure nearly occupies the entire simulation box, and the crystalline chain stems
are globally aligned in the same direction. However, at 67◦C (panel a), two large crystalline
regions appear to have grown simultaneously but in perpendicular directions. This suggests
the presence of two large nuclei after the system was heated from the seeding temperature,
which grew in different orientations and eventually collided, preventing one region from fully
consuming the simulation cell.
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5.3.2 Stem Length Distribution

Figure 5.6: Stem length distributions and static structure factors for all systems at the end of
the continuous-cooling and for the self-seeding runs at 27◦C. Panels (a) and (b) show stem
length distributions of all systems at the end of the self-seeding and continuous-cooling
protocols respectively. The dotted lines represent the distance between neighbouring bromines
lBr, along the chains. Panels (c) and (d) show the static structure factors after self-seeding
and continuous-cooling at 27 ◦C respectively. The dashed line represents the limit of the
simulation box corresponding to 2π/Lbox, dotted lines indicate the distance between
neighbouring bromines lBr in the SAXS region of the structure factor and q0 the hexagonal
lattice parameter. From [1]
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To further analyse the crystallisation behaviour of different systems, the distribution of stem
lengths and their structure factors are assessed, as shown in figure 5.6. The stem length distri-
butions are determined by evaluating the local bond vector alignment using the local P2 order
parameter, a common tool in simulations of polyethylene crystallisation to assess chain ordering
[21]. These distributions represent the number of consecutive bonds that remain unbroken in
nearly straight chain segments, where the bond angle falls within a range of approximately 150◦
to 180◦. This analysis highlights differences between systems crystallised at various tempera-
tures and contrasts the crystallisation outcomes between the self-seeding and continuous-cooling
methods.

Figures 5.6(a) and (b) illustrate the stem length distributions for the self-seeded and continu-
ously cooled systems, respectively. For clarity, each curve is vertically offset on the y-axis by
intervals of 0.02 for easier comparison. A key observation is that these distributions display dis-
tinct peaks, corresponding to integer multiples of the spacing between neighbouring dibromos,
indicated by vertical dotted lines. Additionally, as the crystallisation temperature increases,
the stem lengths shift to longer values, reflecting the traditional lamellar thickening associated
with higher crystallisation temperatures, but now in discrete steps. For example, the system
crystallised at Tc = 67◦C (red curve) shows two peaks, at 2 and 3 bromine segments, approx-
imately 5 nm and 7.5 nm in length, respectively. This likely results from the presence of two
differently oriented crystalline domains, as seen in the snapshots in figure 5.5 (a).

When the crystallisation temperature is raised to Tc = 72◦C, the stem lengths increase, as
shown by the blue curve. The most prominent peak shifts to 3 bromine segments (around
7.5 nm), with a secondary, smaller peak at 4 bromine segments (around 11 nm). This trend
is consistent with the stabilisation of longer stems at higher crystallisation temperatures, a
process that appears to be governed by preferential folding at bromine groups along the chain.
While chain entanglements typically influence lamellar thickness, their role here is likely minor
due to the short, monodisperse nature of the chains. Although entanglements are present, the
primary factor dictating lamellar thickness seems to be the controlled folding at bromine units,
as demonstrated in both experimental studies [2, 3] and, for the first time, in simulations. At
Tc = 77◦C, most stems further extend into the 4 bromine segment range (around 11 nm),
reinforcing this observation.

In contrast, the continuously cooled systems exhibit markedly different stem length distribu-
tions. Weakly defined peaks are only evident for the slowest cooling rates (<1.0 K/ns), cor-
responding to 1 and 2 bromine segments (approximately 2.5 nm and 5 nm). The stem length
distributions in these systems drop off rapidly, following a power-law pattern, with broader and
less pronounced peaks compared to those in the self-seeded systems. This indicates that fewer
stems grow and that most chains form shorter, less ordered crystal domains.

Notably, this distinct quantised lamellar thickening has not been observed in previous molecular
simulations. In linear PE chains, lamellar thickening usually occurs gradually, producing a
Gaussian-like distribution of chain lengths rather than the discrete, quantised pattern seen
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here.

5.3.3 Static Structure Factor

This behaviour is further validated by analysing the static structure factor, defined as:

S(q) =
1

Mtot
⟨
Mtot∑
i,j=1

exp(i · q · (ri − rj))⟩|q|=q±dq, (5.6)

where the sum runs over all monomers in the system, with Mtot = M · N , representing the
total number of monomers, M being the number of chains and N the monomers per chain.
The angular brackets denote averaging over all q-vectors within a range of q ± dq. A running
average is applied up to the box size, which is 10.3 nm. Since only q-vectors fitting within
the finite simulation box are considered, accuracy decreases as inverse q approaches the box
dimensions. The analysis covers both SAXS (small-angle X-ray scattering) and WAXS (wide-
angle X-ray scattering) ranges to capture both large-scale crystal features and finer atomic
structures. The curves are arbitrarily shifted along the y-axis on a logarithmic scale for easier
comparison between systems.

In the WAXS range, sharp peaks emerge, indicating the harmonics of the hexagonal lattice.
For the self-seeded systems, the first distinct peak, q0, appears at q = 13.98, 14.1, and 14.1
nm−1 for Tc = 67◦C, 72°C, and 77°C, respectively. These values correspond to an interchain
distance of approximately 0.45 nm, which is typical for crystalline polyethylene (PE) and the
hexagonal rotator phase observed in n-alkanes. Higher harmonics also appear at

√
3, 2, and

√
7

times the value of q0.

In contrast, the hexagonal lattice is only weakly expressed in the continuously cooled systems.
A single diffuse peak appears at q = 13.7, 13.98, and 14.14 nm−1 for the 1.0 K/ns, 0.1 K/ns,
and 0.04 K/ns cooling rates, respectively. The disappearance of higher harmonics reflects the
poorly ordered crystalline structures and lack of periodicity within these systems.

In the SAXS range, although the analysis becomes noisy as inverse q nears the box size, strong
peaks can still be identified that correspond to different stem lengths. These peaks are particu-
larly prominent in the self-seeded systems (panel c), where the positions of the peaks align well
with those predicted by the stem length distribution. However, since stem lengths represent an
average, some peaks do not match perfectly with the expected positions, which are marked by
the dotted lines indicating the distances between successive bromine atoms along the polymer
chains. For the slowest continuously cooled system (panel d), these peaks appear faintly, while
they are entirely absent for faster cooling rates, reflecting the lack of long-range order in those
systems.
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5.3.4 Chain conformations

Figure 5.7: Snapshots of typical chain conformations in the self-seeded and
continuously-cooled crystals at room temperature, 27◦C. Panels (a-c) correspond to systems
crystallised at 67◦C, 72◦C and 77◦C and panels (d-f) correspond to cooling rates 1.0K/ns,
0.1K/ns and 0.04K/ns respectively. Polymer chains are coloured continuously according to
their local P2 order parameter from P2 = 0 (purple, amorphous) to P2 = 1 (yellow, crystalline)
and the bromine species is shown in red. Note the pronounced folding at dibromo groups and
increasing stem lengths with crystallisation temperature in panels (a-c) not present in the
continuously cooled systems. Taken from [1]

The controlled folding observed in the stem length distributions and structure factors from
figure 5.6 is further made clear by examining the conformations of individual chains within the
crystalline domains. Representative chain conformations for all systems are shown in figure 5.7,
where panels (a-c) correspond to self-seeded systems and panels (d-g) to continuously cooled
systems. In panel (a), the chain from the system crystallised at Tc = 67◦C, can be seen to be
crystallised in two different configurations because it spans both crystalline regions within the
simulation box. Notably, there is distinct folding at the bromine groups (highlighted in red),
which act as preferred folding sites, with each stem containing four bromine segments. This
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tight folding pattern is consistently seen across the self-seeded systems. At higher crystallisation
temperatures, similar folding patterns are observed, but the stems are longer, with 5 bromine
segments per stem at Tc = 72◦C and 6 bromine segments per stem at Tc = 77◦C. Additionally,
some registry between adjacent bromine units is apparent, a feature that is explored in more
detail in the previous section.

Counter to this, the chain conformations in the continuously cooled systems (panels d-f) also
exhibit a tendency to fold at the bromine units. However, these chains fail to fully crystallise,
and the stems remain shorter and less ordered than in the self-seeded systems. The incomplete
crystallisation in the continuously cooled systems reflects the disorganised nature of the folding
process when rapid cooling is employed, as the chains have less time to properly align and form
extended, well-ordered crystalline stems.

5.3.5 Registry of Bromine Layers in Crystalline systems

To assess the degree of registry between bromine units in the crystalline regions of the lamella,
the radial distribution function (RDF) of bromine atoms was calculated for self-seeded systems
at both the crystallisation temperature and room temperature, as shown in figure 5.8 (a) and
(b). The crystallisation or quench temperatures are displayed in the upper right corners of the
respective panels. At the crystallisation temperature, all self-seeded systems exhibit a series
of repeating maxima, corresponding to successive bromine shells in the crystal, with peaks
that extend until the RDF reaches half the box size, as seen in panel (a). While these peaks
are pronounced, they are relatively broad, indicating that the bromine units are not perfectly
aligned. For reference, the red curve shows the RDF for bromine units in the melt state, where
only the first coordination shell appears, and no significant peaks are present beyond that.
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Figure 5.8: The radial distribution function calculated using only united-monomers containing
bromine groups at the crystallisation temperature and quench temperature and the structure
factor for the bromines in the system crystallised at 77◦C, before and after quenching. (a-b)
RDF calculated with 1200 bins, with a cutoff distance of 7.5nm, for the self-seeded systems at
T = Tc and T = 27◦C respectively, the RDF of the melt at 227◦C is shown in both panels for
comparison. In panel (c) the partial structure factor is calculated using only the
united-monomers containing bromine groups at the crystallisation temperature (red curve)
and room temperature (blue curve). From [1]

In contrast, the RDF at room temperature, displayed in panel (b), reveals sharper and more
defined peaks, suggesting stronger registry and long-range order between the bromine units.
This is further supported by the partial structure factor shown in panel (c) for the system
crystallised at Tc = 77◦C. At the crystallisation temperature (red curve), the hexagonal rotator
phase is evident with peaks corresponding to qa, but no sharp Bragg peaks at low q-values.
Upon quenching to room temperature (blue curve), very distinct peaks emerge, aligning with
the layer spacing between bromine layers in the crystalline lamellae. These peaks occur at
multiples of the fundamental layer spacing, indicating the formation of ordered bromine layers,
tilted relative to the stem direction, as visualized in figure 5.4 (a-c). This behaviour resembles
the Smectic-C phase seen in liquid crystals.

In the Smectic-C phase, molecules exhibit liquid crystalline positional order, with some trans-
lational entropy allowing for movement between layers. A similar phenomenon is observed
here, where the bromine units in Form I can shift around an average position to minimise the
energy penalty of neighbouring bromine atoms. However, upon cooling to room temperature,
the bromine units become more tightly registered, forming distinct layers as observed in Form
I’ [2]. Due to thermal fluctuations, it is difficult to capture the full layer ordering in a single
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snapshot, but the thermally averaged structure factor for bromine units reveals the quantised
layers more clearly. A smaller peak at qa ≈ 15nm−1 corresponds to the hexagonal lattice pa-
rameter of neighbouring bromine atoms within each registered layer. The tilt of the bromine
layers with respect to the stem direction may be a result of finite-size effects in the simulation,
a phenomenon also observed in previous simulations of linear polyethylene. The exact cause of
this tilting remains the subject of ongoing investigation.

Figure 5.9: Cartoon polymorphs exhibited by precision PE chains with dibromo defects
placed regularly on every 21st carbon atom. From [1]

Quantised lamellar thickening, while well-documented experimentally over the years [30, 31],
it is rarely observed in simulations. This behaviour is understood within the framework of the
Hoffman-Lauritzen theory, which explains lamellar thinning with increased undercooling [32].
However, quantised thickening has been observed only in a few macromolecular systems, such
as ultra-long n-alkanes and some polyethylene derivatives with regularly spaced defects such
as PEB [33]. Recent simulations of polyethylene chains have demonstrated stepwise thickening
via folding [34, 35] or short chain branching [21, 20], but this study is the first to demonstrate
quantised thickening driven by preferential fold sites along the chain.

A series of experimental studies by Tasaki et al [2] have revealed that PEBr crystallises into
four distinct forms, namely Form I′, Form I, Form II and the high temperature phase (HT) see
figure 5.9. Form I is obtained by rapidly quenching melt at room temperature. The polymer
chains align in an all-trans conformation similar to the classical structure of PE, then they
pack in a triclinic unit cell. On quenching Form I readily transforms to Form I′, which has a
similar chain conformation, except that the the bromines group together into registered layers
with pronounced positional order in the latter. In both forms the bromines are embedded into
the bulk of the polymer as hydrogen in PE would. The positional order that comes into effect
as the self-seed systems are quenched (figures 5.6 and 5.8) imply that the model is able to
simulate results comparable with real life experiments [2]. This is likely due to the repulsion
between neighbouring dibromo units that disrupt the layering at higher temperatures. Upon
heating both Form I and I′ in the narrow temperature region of 65 - 66 ◦C, they transform
irreversibly to form II through a melt-recrystallisation process. Because of how quick the
melt and recrystallisation takes place, the resulting structures also packs in a triclinic lattice.
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However, in Form II the chain structure consists of long all-trans methylene arrangements
between carbons with the bromine, and then back and forth bends at the carbons with the
bromine (gauche type links, see figure 5.9). The bromines also have positional order as in Form
I′. Form II can also be obtained from melt by slow cooling. Further heating of Form II beyond
the narrow temperature region sees a continuous phase transition to HT phase, where the
chains now pack in a hexagonal phase. While the chains maintain their non-planar herringbone
structure, the trans methylene groups between the bromine carbons become distorted and
shorter.

Though the study has shown clear it that it is possible to have quantised lamellar thicknesses in
the crystals of these PEBr polymers, no evidence of self-poisoning was observed. It is possible
that the size of the simulation box may have played a part in this as well.

5.4 Conclusion

By employing a united-monomer model of polyethylene (PE) and incorporating two bromine
atoms every 11th or 10th bead, it became possible to explore semi-crystalline structures at
length scales typical of PE crystals. Additionally, a carefully selected crystallisation method,
known as self-seeding, facilitated the growth of precision PE crystals. This approach allowed us
to demonstrate quantised lamella thickening in precision PE crystals as crystallisation tempera-
ture increased, driven by the systematic placement of bromine halogens along the PE backbone.
Notably, this behaviour was largely obscured when using the traditional continuous-cooling pro-
tocol, which is commonly applied in PE simulations. Rather than excluding bromine groups
from the crystal, their regular placement along the backbone limited the stem length through
controlled folding at each bromine group. Combined with temperature-dependent lamella thick-
ening, this process offers a novel method to control lamella thickness in multiples of the spacing
between bromine groups along the PE backbone. While bromine groups were well tolerated
within the crystal at the crystallisation temperature, quenching to room temperature revealed
their tendency to form registered layers within the crystalline lamella. These findings open up
new opportunities to explore how modifications in molecular architecture, such as the regu-
lar placement of chemical moieties, halogens, or short chain branches, affect semi-crystalline
morphology in detail.
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6 Monte Carlo Simulation of Stereocomplex in High-Molecular-
Weight Poly(Lactic Acid)

In this Chapter, we explore the claim that the formation of the poly(lactic acid) stereocomplex
is stopped by random fluctuations in the melting that lead to areas of high concentration of
one enantiomer and low concentration of the other [1]. The study uses a simple Monte Carlo
simulation with a diffusion to mimic the Brownian motion of the enantiomers. A paper detailing
the results of this work is currently in preparation.

6.1 Introduction

The stereocomplex crystal (SC) of poly(lactic acid) (PLA) is made from a mix of its enantiomers
poly(L-lactic acid) (PLLA) and poly(D-lactic acid) (PDLA). In its crystal structure, the SC
has helices of PDLA and PLLA paired up in an antiferromagnetic arrangement. When SC is
crystallised from a high-molecular-weight (≥ 4 × 104 g/mol) racemic mixture at temperatures
below 230◦C and fast cooling rates, its growth is seen to slow down [2, 3]. A differential
scanning calorimetry (DSC) study of low- and high-molecular-weight PLA revealed distinct
differences in their crystallisation behaviour [1]. For high-molecular-weight PLA, the DSC
results displayed two peaks: one corresponding to the crystallisation of SC crystals and the
other to the crystallisation of homochiral (HC) crystals. Notably, these peaks persisted even
with the addition of a nucleating agent. In contrast, the DSC results for low-molecular-weight
PLA showed a single peak during both cooling and heating cycles, occurring around 200◦C.
This single peak suggests the formation of SC crystals, as its melting point is higher than that
of HC, which melts below 175◦C.

This strange behaviour PLA has been likened to the self-poisoning of long chain n-alkanes,
low-molecular-weight poly(ethylene oxide) fractions, poly(ethylene bromine) and poly(ethylene
brassylate). Self-poisoning in polymers requires that they be able to attach to the crystal in more
than one way and that those ways not be energetically equivalent. However as the racemate was
polydispersed it ruled out it having quantised lamellar thickness, and with the wide-angle X-ray
scattering (WAXS) not showing any change in the crystal structure, poisoning due to different
forms was also ruled out. Cui et al [1] have claimed that this behaviour in the high-molecular-
weight SC can be explained by a poisoning due to purity. They suggest that growth of SC is
hindered by the build up of either PLLA or PDLA that remains unpaired during the formation
of SC. There is an excess of one of these at the SC growth front because of fluctuations in the
melt. The SC crystallisation is favoured by seeding as there are crystals remaining in the melt
and that reduces the fluctuations in the melt. This allows SC crystallisation to resume at lower
temperatures.

The explanation proposed by Cui et al [1] is qualitative and not quantitative. In this Chapter
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a quantitative model is developed to investigate the poisoning by purity explanation. This
is achieved through Monte Carlo simulations, where parameters relating to temperature and
diffusion can be quantified.

6.2 The Model

Antiferromagnetic systems have been studied with lattice models for many decades now, with
lattices such as the square lattice being preferred as they favour this arrangement. In this
study we employ the use of a MC simulation on a 2D 50 × 50 square lattice as the lattice is
big enough to see the effects of diffusion and the simulations run under a couple of hours and
use less memory compared to much bigger lattices. Each site on the lattice corresponds to a
segment of a chain in the the lamellar structure, that is either a left- or right-handed helix. The
site can be amorphous or crystalline. This is because each segment is expected to be either
PLLA or PDLA (not mixed), the 2D model is of course much simplified, but it is not so far
from the true 3D polymer crystal.

The MC simulation is a widely used Markov Chain Monte Carlo (MCMC) method [4]. Here it
is ran using the Metropolis-Hastings algorithm. It generates a sequence of states according to
a desired probability distribution. It is explained in greater detail in Chapter 2 of this thesis.
The lattice has periodic boundary conditions to simplify the calculations by not concerning
itself with surfaces. MC simulations are ran for 100 million steps, ensuring that on average
each site has a chance of being visited over 40 thousand times. The crystallisation is started
with a nucleus less than or equal to 2% of the total lattice to promote crystallisation and reduce
computation time.
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Figure 6.1: Crystallisation of PLA Stereocomplex on a square lattice. The left-handed and
right-handed crystalline (LHC and RHC) are shown as by green tiles on the lattice. While,
the left-handed and right-handed amorphous (LHA and RHA) sites are shown in black and
red respectively on the lattice.

In the simulation, the left- and right-handed crystalline sites are referred to as LHC and RHC
for short. The left- and right-handed amorphous sites are abbreviated as LHA and RHA. RHA
and LHA are shown in black and red respectively on the lattice, while both LHC and RHC
are shown in green, as shown in figure 6.1. When a site is chosen randomly during the MC
simulation, one of its four nearest neighbours is chosen at random and inspected. If the site
is amorphous it can crystallise if then chosen neighbour is a crystalline site, or swap positions
with another amorphous site of the opposite hand. Crystalline site on the other hand can only
melt if the chosen neighbour is amorphous. All these actions are dependent on the parameters
p, q and d.
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Figure 6.2: The MC simulation parameters for the PLA stereocomplex. A site is chosen at
random (shown by the blue star) and one of its four neighbours is examined (shown by the
blue circle). If the chosen site is (a) amorphous and the chosen neighbour is a crystalline site
of the opposite handedness it can crystallise with probability p. If the chosen site is (b)
crystalline and the chosen neighbour amorphous then it can melt with probability q. And if
the cite chosen is (c) amorphous and the corresponding neighbour is also amorphous and of a
different handedness, they two can swap positions with probability d.
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An amorphous site can crystallise with probability p if it is next to a crystalline site of the
opposite handedness (figure 6.2(a)). A crystalline site can melt with probability q if it next to
an amorphous site (figure 6.2(b)), and two amorphous sites of different handedness can swap
with probability d, simulating diffusion (figure 6.2(c)). The simulations are carried out at the
same temperature; thus p, d and q are constant. Moreover, increasing (or decreasing) q and d,
while simultaneously decreasing (or increasing) p is the equivalent of increasing (or decreasing)
the temperature, respectively. p is set to be equal to 1 so that all sampled amorphous sites next
to a crystalline site crystallise, and then d and q are to be found relative to this value of p.

We keep track of two metrics to measure the growth of the SC and to see if the rest of the
polymer will separate into HC clusters. The first metric is the crystallinity of the polymer,
which is measured by counting the crystalline sites as a fraction of the lattice. Because clusters
of pure left- or right-handed PLA are seen experimentally, we also keep track of the clusters
in the system. Amorphous lattice sites are considered to be in a cluster if they have at least
one amorphous neighbour of the same handedness. The counting is done using the deep-search
algorithm described in Chapter 2.

6.3 Results and Discussion

6.3.1 Parameters q and d

The parameter d controls the rate at which crystallisation proceeds. Higher d values allow the
crystallisation to happen faster than with lower d values. This can be seen from figure 6.3 for
constant q and different d values, where the crystallinity reaches maximum value quicker with a
higher d. There is no full crystallisation without q, as some of the amorphous sites are trapped
in environments where they can neither diffuse nor crystallise. Small fluctuations in the lattice
of melting and re-crystallisations can help the trapped amorphous helices. For the same value
of d, increasing q seems to allow melting at the growth front which in turn allows the melt to
reorganise into pairs of opposite-handed helices and allows higher crystallinity. Without d the
crystal grows as a fractal along the sites that are already ordered along the growth front, d can
bring the right site to the growth front allowing for the crystal to spread throughout the lattice.

The combinations of q and d that favour or suppresses SC crystallisation are dependent on
how the starting lattice was populated. In this study the starting lattice is either populated
randomly or with local clustering.
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6.3.2 Random Starting Lattice

For the random starting lattice, the middle four squares are the SC crystal seed. Then around
it equal numbers of left- and right-handed sites are randomly placed to fill the space.

Figure 6.3: The final lattice arrangements during the crystallisation of PLA stereocomplex
with varying melt and diffusion probabilities, starting from a random lattice. The LHA is
shown in red, the RHA in black and the crystal in green. with crystalline regions in green,
amorphous regions in red, and impurities in black. d is constant along a row, and q is
constant across the column. The crystallinity is represented as Cr. When both q and d are
zero ((a), (d) and (g)) the crystal grows into a fractal along the paths where the melt is
already arranged in the correct way as there is no diffusion. Increasing the d greatly increases
the crystallinity for low values of q ((b), (e) and (h)). When q > 0.45 the crystallinity drops
across all d values, peaking at 0.452 for d = 0.01 and decreasing to 0.211 at d = 0.5.
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When both q and d are zero, only a small fraction of amorphous sites crystallise. Only the
sites that are already arranged in the correct complementary state can crystallise into the SC,
resulting in a fractal growth. When d is non-zero, majority of the lattice crystallises as the
sites in the melt are able to swap and bring the correct sites to the growth front. Higher
d values allow the crystallisation to happen faster than with lower d values. There is no full
crystallisation without q, as some of the melt is trapped in environments where they can neither
diffuse nor crystallise.
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6.3 Results and Discussion

Figure 6.4: The change in the crystallinity with the simulation steps for different
combinations of q and d. q is constant along a row, and d is constant across the column.

When q is larger than 0.45, the melt is more stable than the SC crystal, and with larger d
values fluctuation in crystallinity in the lattice can be seen due to frequent crystallisation-
melting processes. This is better seen in figure 6.4(h)-(i), where the graphs displays erratic
behaviour, with frequent, irregular changes in the crystallinity.
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6.3 Results and Discussion

Figure 6.5: The crystallinity landscape for different q and d values. The crystallinity is shown
as cr, and both (a) and (b) are coloured according to the value of the crystallinity for each
combination of q and d. (a) Is the 3D surface representing the crystallinity. (b) is a 2D contour
showing points with the same crystallinity as the same colour and joined by the contour lines.

The HC cluster at the end of the simulation is largest for q greater than 0.45. However, the
clusters are not purely PLLA or PDLA but a mixture of both. The largest cluster reduces to
below twenty sites in the cluster for 0 < q < 0.45, where the crystallinity is highest.
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6.3 Results and Discussion

Figure 6.6: The largest homochiral cluster size landscape for different q and d values. The
largest cluster size is shown (a) as a 3D surface and a (b) is a 2D contour. (a) and (b) are
coloured according to the value of the size of the largest HC cluster for each combination of q
and d.

6.3.3 Clustered Starting Lattice

A study by He et al [5] found that the likelihood of helices of the HMW chains encountering
neighbours belonging to the same chain was increased. This means that there is more likely
to have small-scale segregation in the neighbourhoods of either PLLA or PDLA. This is im-
plemented by using MC simulations with Glauber dynamics to allow the random to segregate
before crystallising. In this case amorphous sites of the different handedness may swap with
probability D, either if the swapping increases the number of like-handed neighbours for both of
them, or if it increases same handed neighbours for one and the other is maintained. Otherwise,
they may still swap with probability d, where d << D. D is set as 1 and d is defined with
respect to it. The segregation is allowed to take place for 5 million, 10 million and 20 million
steps. Beyond this, the lattice separates into two unmixed HC domains.
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6.3 Results and Discussion

Figure 6.7: The final lattice arrangements for different values of q and d, with crystallisation
carried out at different segregations. The values of q and d that the crystallisation were
carried out at are the same across a row, and the results presented along each row had the
same starting lattice. When q and d are both zero ((a)-(c)) a fractal growth is seen as before
but with a lower crystallinity. The crystallinity is also lower than that in a random lattice at
lower values of q and d ((d)-(f)). Moreover, the crystallinity is just over 0.5 with the highly
segregated starting lattice with HC clusters as would be expected from the experimental
results. Ad again similar to the random starting lattice, the crystallinity drops beyond
q = 0.45.
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The way the crystallinity varies with q and d is similar to that done from a random lattice.
However, the clustering influences the value of he crystallinity and the sizes of the HC clusters.
This becomes more apparent when the starting lattice is highly segregated and for low q and
d values, i.e., low T values. As the value of q decreases, there is less melting of the crystal
and lower fluctuations in the lattice, this allows the crystal to grow fast toward the equilibrium
crystallinity. However, the reduced fluctuations also mean that the growth front is less likely to
melt and this makes it more difficult for reorganising the lattice for better crystallisation. This
results in crystal with pure HC clusters remaining. The sizes of the clusters are greater than
those from a random lattice as shown in figure 6.8.

Figure 6.8: The largest homochiral cluster size landscape for different q and d values from the
highly segregated starting lattice. The largest cluster size is shown (a) as a 3D surface and a
(b) is a 2D contour. (a) and (b) are coloured according to the value of the size of the largest
HC cluster for each combination of q and d. The clustering is highest at the q, d = 0 because
of the initial segregation.

This result is similar to what is observed with high-molecular-weight PLA at low temperatures.
At high temperatures the diffusion is high allowing for both good mixing between the PLLA
and PDLA. And because the crystal is less stable, it can melt to allow reorganising and mixing
of the remaining amorphous material. At lower temperatures the crystal is more stable, and
the growth is faster than the diffusion. Because of the stability of the crystalline structure, it
does not melt easily therefore does not allow good mixing that results in higher crystallinity.
In the low-molecular-weight PLA the initial segregation must be lower therefore mixing is still
relatively high.
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6.4 Conclusion

The crystallisation of PLA stereocomplex was explored using Monte Carlo simulations on a
square lattice, where each lattice site represents a helical segment of a chain in the lamellar.
The simulation is controlled by the parameters p, q and d, which correspond to the probabilities
of crystallisation, melting and diffusion, respectively. The simulation was done with p being
constant and different sets of values of q and d. Diffusion facilitates the rearrangement of sites,
enabling proper pairing of right- and left-handed helices at the crystallisation front, thereby
controlling the speed of the crystallisation. Smaller values of q allow melt-recrystallisation to
take place and promote higher crystallinity. At higher values of q the melt is more stable and
most the crystal melts.

The simulations demonstrated that intermediate values of q (0 < q < 0.45) yielded the most
effective SC crystallisation. Increasing the diffusion at each value of q increase the overall crys-
tallinity, or at least the rate at which the overall crystallinity is reached. When the simulations
are done from a random lattice the clusters trapped inside the melt are very small compared
to the sizes of the clusters when the simulation is done from a lattice with local clustering.

The study shows that when the stereocomplex growth is possible at low temperature (low q
values). Diffusion improves the crystallinity at these q values. The results have also showed
that the stereocomplex growth is suppressed at high temperatures as seen experimentally.
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7 Fddd - A Liquid Crystal of Rotating Quadrupoles

This Chapter presents a simple quantitative theory used to investigate the arrangement of the
chiral columns in the columnar LC phases of the straight molecules reported by Li et al [1] and
introduced in Chapter 1. The model is then used to evaluate four different arrangements of
the chiral columns, of which one is the experimentally observed Fddd structure which has the
lowest energy among the ones investigated. The work done here was included as part of the
publication [1].

7.1 Introduction

Figure 7.1: Liquid crystal phases in FCN16 and FO16 Compounds. (a) The molecular
structure of FCN16 and FO16. (b)(i) The electron density map of the FCN16 showing the
helical columns and used to create the stylised models of the Fddd. Taken from [1].

The straight compounds consist of a basic unit of a dimer, which forms the helical column
structure. Each dimer is made up of the FO16 or FCN16 molecules illustrated in figure 7.1(a),
featuring a core composed of aromatic rings with six attached aliphatic chains. The presence of
the aromatic rings in the core not only contributes to its rigidity of the cores of the dimers but
also encourages the molecules to align parallel to each other within the columns to maximise
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7.1 Introduction

the π − π bonds. However, this arrangement is not favourable for the end chains which want
to avoid clashes and as a compromise the dimers twist and form helices. In the study by Li et
al [1] the helical columns are arranged with a complex Fddd symmetry. The unit cell has eight
columns; four left-handed and four right-handed columns, with an overall achiral structure.
Each column has four neighbours of a different handedness and two neighbours of the same
handedness as shown in figure 7.1(b)(i) and (ii).

Figure 7.2: Schematic representation of the interactions between pairs of the straight dimers
and of pairs of quadrupoles. (a) The interactions of two dimers of straight molecules in
neighbouring columns with the minimum energy (i), moderate energy (ii-iii), and highest
energy (iv). The minimum energy energy state (a)(i) uses the energy effectively while
avoiding clashes, while the moderate energy interactions (a)(ii-iii) leave voids even though
they avoid clashes effectively well. In (a)iv the clashes between the aliphatic chains is the
highest and the energy is not used as efficiently as in (a)(i). These interactions are similar to
those between two linear quadrupoles with the same orientations (c)(i-iv). (b) The interaction
energy between two linear quadrupoles a distance r12 apart, a quadrupole moment ϕ, and
with their orientation defined by angles β1 and β2 can be calculated from equation 7.1.

In this work we investigate the arrangement of these chiral columns, specifically whether there
are any other configurations that are as energetically favourable for packing these columns as
the Fddd. In order to be able to compare the Fddd configuration with others, we develop a
model that can quantify the interaction of these columns. We start with the interaction of two
such dimers in adjacent columns, where they try to pack by minimising the space they are in
while also avoiding clashing between the aliphatic chains. The clashing between the chains is
the least when the two dimers are oriented perpendicular to each other and this is provides
the best packing between the two just like in figure 7.2(a)(i). While the clashing between the
chains is also not bad when the two dimers are parallel to each other as in figure 7.2(a)(ii) and
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(iii), the space is not used efficiently and therefore the arrangement is not as good as in figure
7.2(a)(i). The clashing is the highest when the two dimers are aligned end to end like in figure
7.2a(iv), they are also not utilising the space around the as efficiently.

These interactions are reminiscent of those of a linear electric quadrupole, where the high-
est interaction energy is seen when the quadrupoles are lined end to end as shown in figure
7.2c(i), and is lowest when the quadrupoles are perpendicular to each other. The linear elec-
tric quadrupole, hereafter referred to just as a quadrupole, is assumed to have partial positive
charge at the ends and a negative charge in the middle that is twice the magnitude. It has low
axial symmetry and only one non-zero electric quadrupole moment given by 3qd2, where the q
is the magnitude of the partial charge at the ends and d is the length of the quadrupole. The
interaction energy between two such low symmetry linear quadrupoles is given by the equation,

Eϕ−ϕ =
Aϕ2

r125
(7.1)

where A given below, is a complicated equation that is in terms of Euler angle β and captures
the rotation to principal axes in 2D. ϕ represents the average quadrupole moment of the two
interacting quadrupoles and r12 is the magnitude of the vector joining their centres [2, 3].

A = 3 cos (2β1 + 2β2) +
9

16
cos 2β1 cos 2β2 +

15

16
cos 2β1 +

15

16
cos 2β2 +

9

16
(7.2)

The angle β is defined as the angle the quadrupole makes with the line joining the centres of
the quadrupoles as shown in figure 7.2b. It is defined as the angle from the line joining the
centres to the quadrupole.
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7.2 The Rotating Quadrupoles Model

7.2 The Rotating Quadrupoles Model

Figure 7.3: Schematic representation of the minimum energy arrangement of neighbouring
co-rotating and counter-rotating quadrupole helical columns. Neighbouring co-rotating (a)
and counter-rotating (b) helical columns as seen from the side and top. The quadrupoles are
rotated by an angle t along the columnar direction (z-axis) to simulate the helicity. c The
lowest energy arrangement of quadrupole helical columns in 1D The minimum energy 1D
array for co-rotating (c) or counter-rotating (d) neighbours. The handedness of the columns is
indicated by the direction of the yellow arrows and the starting angles of the quadrupole at
z=0 is shown by the coloured rod at the centre. The interaction between two neighbouring
co-rotating and counter-rotating helices is determined by the z-direction independent
parameters ν and ω, respectively. For co-rotating helical columns ν = β1 − β2, and for
counter-rotating ones ω = β1 + β2. Where β1 and β2 are the starting angles of the
quadrupoles at z=0 defined according to figure 7.2(b), one from each column, at the same
elevation z. Taken from [4]

The similarities between the interaction coupled with the fact that the molecules have no overall
electric charge or dipole moment, allow for the dimers to be treated as a quadrupole to quan-
tify the interactions between the columns. Each column is modelled as sequence of quadrupoles
that twist along the helical axis as shown in figure 7.3 with the assumption that the helix is
continuous. The interaction between the two helical columns is calculated by averaging the in-
teractions of quadrupoles at the same heights along the columns, while disregarding interactions
between dimers at different heights. Although this approach is very simple, it effectively cap-
tures the essential features of the interaction, as it considers the average orientation of dimers
or quadrupoles in one column interacting with those in the other.

For two interacting columns of the same handedness, the difference between the β angles, ν at
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7.3 Rotating Quadrupole Columns on a Hexagonal Lattice

each elevation is constant. To calculate the interaction U for two helical columns of the same
handedness, co-rotating helical columns, we integrate A with the relevant β angles from 0 to π
along the helix. We let β1 = t and β2 = ν + t, with t being a small rotation applied to both
starting angles going up the helix. Then the interaction energy Uco is given by,

Uco =
ϕ2

r125π

∫ π

0

A(t) dt =
ϕ2

r125

[
9

32
cos 2ν +

9

16

]
(7.3)

The division by π in the expression for Uco normalises the interaction energy to reflect the
average value over one turn of the helix. This ensures that the calculation provides an aver-
age interaction energy per unit twist along the helix, ensuring the result represents the mean
interaction between quadrupoles at various angles, rather than a cumulative total.

For two interacting columns of the differing chirality, counter-rotating helical columns, the sum
of the β angles describing the orientation of the quadrupoles, ω, is constant. Let β1 = t and
β2 = ω − t, then the average interaction energy between two columns is given by:

Ucou =
ϕ2

r125π

∫ π

0

A(t) dt =
ϕ2

r125

[
105

32
cos 2ω +

9

16

]
(7.4)

The minimum energy occurs when both ν and ω are 90◦. This is comparable with the interaction
between two quadrupoles, where the energy minimum is when one quadrupole makes an angle
of 90◦ with the line joining the two, and the other is parallel to this line. However, the minimum
energy in units of ϕ2

r125
for the co-rotating helices is 9

32
, whilst that of the counter-rotating is

−87
32

. The stark difference in the energy of 77
32

shows that for co-rotating columns interacting
dimers in adjacent columns at the same level spend more time in unfavourable configurations
as compared to in interacting counter-rotating columns hence such a higher average energy per
dimer.

On a 1D chain, it is then better to have the columns arranged in a counter-rotating format with
alternating left- and right-handed columns. This arrangement would ensure that there a less
clashing as indicated by the interaction energy between the columns according to equations 7.3
and 7.4 and shown in figure 7.3(c) and (d).

7.3 Rotating Quadrupole Columns on a Hexagonal Lattice

The columns of systems of straight molecules are seen to arranged with a hexagonal symmetry at
high temperature. At the same time the Fddd phase is pseudo-hexagonal, that each column has
a coordination number of six, with six nearest neighbours. This has led this study to employ a
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7.3 Rotating Quadrupole Columns on a Hexagonal Lattice

hexagonal lattice as it is ubiquitous to the study of the packing of these systems. Studying these
systems of straight molecules with chiral columns on a triangular lattice reduces the number of
parameters as the distance between neighbouring lattice sites r12 is constant between all nearest
neighbouring lattice sites. As the interaction energy between two quadrupoles falls off as r12−5,
we can ignore next nearest-neighbour interactions and other further away interactions. Then
the theory developed above and the equations 7.3 and 7.4 can be readily used to investigate
different configurations of these columns on the lattice.

Figure 7.4: Beta angles definition in the triangular lattice. As with the case where the line
joining the quadrupoles is parallel with the horizontal axis, the clockwise angles from the
horizontal axis is taken as positive. Clearly the angle between the joining line and the
quadrupole is the difference between θ and η.

On the triangular lattice however, the line joining the centres is not always parallel to the
horizontal axis therefore the angle β is not necessarily the angle the quadrupole makes with the
horizontal axis. We define the angle that the quadrupoles make with the horizontal axis as θ,
and the angle the line joining the centres of the quadrupoles makes with the horizontal axis as
η. Then the positive angle β is from the joining line to the quadrupole in a counter-clockwise
direction, mathematically defined as

β = θ − η (7.5)
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7.4 Results and Discussion

We applied our model of rotating quadrupoles on a hexagonal to four different configurations
with different arrangements of columns, one of which is the Fddd, to calculate the average
energy per dimer. This is done by calculating the energy of the unit cell of each configuration
by summing up the interactions between the columns using the appropriate interaction energy
equation. Between each pair of interacting nearest-neighbour columns, the appropriate param-
eter (ν or ω) are determined from the relevant β angles at z=0, hereafter referred to as the
starting angles, which are in terms of the angles θ. The resulting energy of the unit cell will
then be in terms of the starting angles θ.

In order to determine the angles θ responsible for the minimum energy interaction in each
candidate configuration the basin-hopping algorithm [5] is used. The basin-hopping algorithm
(discussed in detail in Chapter 2: Methodology) is a powerful global optimisation technique
that effectively addresses the challenge of finding global minima in functions with multiple
local minima. By combining local optimisation, typically using the BFGS (Broyden-Fletcher-
Goldfarb-Shanno) method [6, 7, 8, 9, 10], with random perturbations to explore the parameter
space, basin-hopping iteratively refines solutions while avoiding local traps. After identifying
local minima, the algorithm applies random jumps to probe new regions of the parameter space,
utilising a probabilistic acceptance criterion to facilitate exploration. This approach results in
a robust method that enhances the likelihood of finding global minima.

The number number of columns per unit cell many vary between configuration, as such a way
of comparing their energies is needed. To be able to compare the different configuration, the
energy of the unit cell is calculated and divided by the average number interactions for each of
column in the unit cell. This then gives the average energy per dimer.
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7.4.1 The Fddd configuration

Figure 7.5: The calculated minimum energy configuration on a 2D hexagonal lattice. (a)
Lattice configuration with two left- and two right-handed columns in a 2x2 hexagonal unit
cell. The result is equivalent to the Fddd structure we have observed experimentally. The
different columns are labelled 0 to 3 and colour-coded to distinguish them, with starting
angles θ0 to θ3 that the coloured sold rods make with the horizontal axis. In the groundstate
energy, θ0 = 0◦, θ1 = −45◦, θ2 = 90◦ and θ3 = 45◦ which they are arranged in. The
handedness of each column is depicted by the yellow arrows. (b) Real space FCN16. The
starting angles of the configuration matches the arrangement of the FCN16. Taken from [1].

It is not possible to have all neighbouring columns be a different handedness on a triangular
lattice. The most likely solution would be to maximise the number of counter-rotating columns
compared to co-rotating columns by having two of three columns be of the same handedness
and the other a different handedness to the two as shown in Figure 7.5. This configuration is
equivalent to the Fddd with a 2 × 2 hexagonal lattice unit cell, with two left- and two right-
handed columns. Each column in the system has four neighbours of the opposite handedness and
two of the same handedness. For the four different columns in the unit cell labelled 0 through
to 3 as shown in figure 7.5, the associated starting angles are θ0, θ1, θ2, and θ3, respectively.
The θ angles are defined with respect to the horizontal axis as described in figure 7.2(b), with
corresponding β angles calculated between each pair according to equation 7.5. Without loss
of generality, we fix θ0 = 0, and let rest of the starting angles vary. The energy of the unit cell
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is given by,

UFddd =
3ϕ2

32r5

[
70
(
cos 2

(
θ1 −

π

3

)
+ cos 2

(
θ1 + θ2 +

π

3

)
+ cos 2

(
θ3 +

π

3

)
+cos 2

(
θ3 + θ2 −

π

3

))
+ 6
(
cos 2θ2 + cos 2(θ3 − θ1)

)
+ 72

] (7.6)

The energy groundstate of this configuration per unit dimer in units of 3ϕ2

32r5
is -45.6, obtained

from dividing the minimum energy of the unit cell by four because of the average number
of interactions for each dimer. This happens with starting angles θ1 = −45◦, θ2 = 90◦, and
θ3 = 45◦. Here ν = 90◦ and ω = 90◦ which ensures the lowest possible energy in for both the
co-rotating and counter-rotating rows of columns. Though this simple theory seems to show
that the Fddd is a solution to this system as seen by the similarity in the arrangement of FCN16,
figure 7.5(b), with the starting angles of the quadrupoles as seen in figure 7.5(a). However this
does not prove that it is the best and the only solution. It is unsurprising that it is a good way
of packing these chiral columns as it maximised counter-rotating interactions.
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7.4.2 Alternative Configurations

Figure 7.6: Possible candidates for the arrangement of chiral columns in the FCN16 and
FO16. (a) The minimum energy arrangement of a 2D hexagonal lattice, with three left- and
one right-handed columns in a 2x2 hexagonal unit cell (Configuration one). (b) The minimum
energy arrangement on a 2D hexagonal lattice, with four columns of the same handedness in a
2x2 hexagonal unit cell (Configuration two). (c) The calculated minimum energy
configuration on a 2D hexagonal lattice, with two left-hand one right-handed columns in a√
3×

√
3 hexagonal unit cell. The orientation of the right-handed (blue) columns can be

random without affecting the system energy. (Configuration three)

Three further configurations were explored to see if they could also be a solution. The first
alternative configuration shown in figure 7.6(a), is configuration 1, made up of another 2 × 2
hexagonal lattice unit cell with three columns of one handedness and one of the opposite
handedness (assumed to three left- and one right-handed columns in figure 7.6(a) for example) in
the unit cell and is overall chiral. The left-handed columns are surrounded by two right-handed
column and four left-handed column, while the right-handed column has all six neighbours
being left-handed. As seen from figure 7.6(a), the four columns in the unit cell can be labelled
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0 through 3 again and with corresponding angles θ0 to θ3, respectively. As with the Fddd,
assertion that θ0 = 0◦ is made to reduce the number of variables. The energy of the unit cell is,

U =
3ϕ2

32r5

[
70
(
cos 2(θ1 −

π

3
) + cos 2(θ2 − π) + cos 2(θ3 +

π

3
)
)

+6
(
cos 2(θ2 − θ1) + cos 2(θ3 − θ2) + cos 2(θ3 − θ1)

)
+ 72

] (7.7)

The minimum energy per dimer for this configuration was found to be -36.75 units of 3ϕ2

32r5
(found

by dividing the energy of the unit cell by four as well), occurring when θ1 = −30◦, θ2 = 90◦,
and θ3 = 30◦. The higher energy compared to the Fddd configuration is understandable, as
this setup includes two fewer counter-rotating interactions and two additional co-rotating pairs.
Furthermore, the angular parameters ν and ω vary between pairs, with average values ν̄ = 80◦

and ω̄ = 90◦. Although this configuration is not as good as the Fddd one, the energy is
comparable.

The second alternative configuration that was explored is yet another 2 × 2 hexagonal lattice
unit cell picture in figure 7.6(b). The unit cell comprised of four columns all of the same
handedness. As with the previous two configurations, the four columns in the unit cell can be
labelled from 0 to 3 with corresponding starting angles. The corresponding energy for the unit
cell, with the assumption that θ0 = 0◦, is

U =
3ϕ2

32r5

[
6
(
cos 2(θ1) + cos 2(θ2) + cos 2(θ3) + cos 2(θ2 − θ1)

+ cos 2(θ3 − θ2) + cos 2(θ3 − θ1)
)
72 +

]
.

(7.8)

The minimum energy per dimer for this configuration was found to be 15 units of 3ϕ2

32r5
, occurring

when θ1 = 90◦, θ2 = 0◦, and θ3 = 90◦. The average angular parameter ν is 60◦, which is less
favourable compared to the first configuration (ν̄ = 90◦) and the Fddd configuration. In this
setup, some dimers experience a ν of 90◦ (favourable for minimising repulsion), while others
have ν = 0◦, leading to more clashing. These extremes produce a moderate average value of ν,
where though the dimers in adjacent columns are not clashing as much, they pack insufficiently
in space leaving voids, as seen in Figure 7.2(a)(ii-iii) and (c)(ii-iii).

The last system that was considered consists of two left- and one right-handed columns in
a
√
3 ×

√
3 hexagonal unit cell, figure 7.6(c). The left-handed columns have three left- and

three right-handed neighbours, while the right-handed column is surrounded by all left-handed
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neighbours. This arrangement is similar to that seen in a set of discotic columnar liquid crystals
HHTT, mentioned in Chapter 2. For the three columns labelled 0 to 2 with corresponding
starting angles θ0, θ1, and θ2, the energy for the unit cell is

U =
3ϕ2

32r5

[
9 cos 2(θ1 − θ2) + 54

]
(7.9)

Interestingly, the energy in this configuration is independent of the angle of the right-handed
column, depending solely on the angular difference between the two left-handed columns. The
global minimum energy occurs when these two columns are out of phase by 90◦, while the
maximum occurs at 180◦. The minimum energy per dimer for this configuration is 15 units
of 3ϕ2

32r5
. Since the minimum energy occurs when ν = 90◦ packing within the system tries to

minimise the clashes within the co-rotating neighbours. However, this does not make it as
good as the Fddd, or even configuration one, where there are at least as many counter-rotating
columns as there are co-rotating. Each dimer experiences the same energy as in configuration
two with all columns being of the same handedness.

7.5 Conclusion

It is possible to build a simple model to quantify the interaction of the straight molecule chiral
LC columns using quadrupoles because of the similarity between the interactions of dimers
and quadrupoles figure 7.2, and the similarity in their structure figure 7.1. The dependency
of the quadrupole interaction energy on their orientation allows us to be able to simulate the
twisting in the helical columns by continually rotating the quadrupoles from z = 0 going up
the z-axis, until the come back to their starting angle at z = 0 figure 7.3. The interaction of
energy per dimer is then just the average of the interactions between quadrupoles at different
elevations. By integrating the quadrupole-quadrupole energy over pitch of the helical column,
the average interaction energy per dimer between columns is seen to only depend on either
angular parameter ν or ω, equations 4.14 and 4.15, respectively. The angular parameter ν is
the difference between the orientational angles of dimers in co-rotating neighbouring columns
at the same z-level, while ω is the sum of the β angles in counter-rotating columns at the same
elevation. Both are constant along the columns and are independent of the elevation. The
average minimum energy per dimer happens when both ν and ω are 90◦, with a value of 9

32

units of ϕ2

r2
for columns of the same handedness and −87

32
for those of different handedness.

Four candidate configurations were investigated using this model on a hexagonal lattice, with
the global minimum determined by the basin-hopping algorithm. The first three configurations
have a 2 × 2 unit cell, the first one having more counter-rotating neighbours than co-rotating
neighbours (Fddd), the second one with the same number of co-rotating and counter-rotating
columns and the last having columns of the same handedness. The last configuration had
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a
√
3 ×

√
3 unit cell with one column of one handedness and two columns of the opposite

handedness. The Fddd configuration showed the lowest energy per dimer of -45.6 in units of
3ϕ2

32r5
, while the first, second, and third configurations had energies of -36.75, 15, and 15 all in

units of 3ϕ2

32r5
.

It is unsurprising that these straight-core molecules form chiral helical columns in the columnar
phase with an Fddd structure as observed by experiments. On a 1D chain, the helices of
these straight-core molecules would rather have neighbours with a different handedness to their
neighbours to reduce clashing. On adding a third helix to form an equilateral triangle, the
new helix would have to have the same handedness as one of the already existing ones as a
compromise. Helices of the same handedness have more clashes as they interact, therefore it
would be best to have as many helices of opposite chirality as possible. The Fddd configuration
is a better way of packing these molecules in helices in tighter space as it maximises the
number of counter-rotating helices that are interacting. Configuration one is nearly as good
except for the central helix having its handedness flipped. This means there are more two extra
co-rotating pairs and two less counter-rotating ones. Configurations two and three are the
most unfavourable. The former only has co-rotating columns where avoiding clashes between
interacting dimers is not that easy. Whilst the latter does have a one column of a different
handedness to the others, its minimum energy configuration is not an efficient use of packing
the columns in space, which in turn makes it as bad as configuration one.
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8 Conclusion and Future Work

8.1 Conclusion

Poly(ethylene brassylate) shows two minima in its crystallisation rate as it crystallises [1]. A
1D quantitative model was developed to describe the two minima in the crystallisation rate
of PEB [1] based of the HU model [2]. The model agrees with the experimental data that
the minima are due to self-poisoning like with the long chain n-alkanes [3]. The more stable
crystal growing with longer stems are poisoned by the deposition of shorter stems. At high
temperatures the crystal of these shorter stems are not stable enough to crystallise. As the
temperature is lowered towards their melting point, their stems get deposited faster than they
are removed at the growth front of the more stable crystal of the longer stems. This causes
a build up and prevents the longer stems attaching. As the temperature is lowered below the
melting point of the crystal of the shorter stems, the crystal becomes more stable and grows
in place of the crystal of the longer stems. Most of the conversation involving self-poisoning is
either purely qualitative or uses simulations. This model though simple was able to reproduce
the crystallisation curves of very well, except at the crossing point between the DSC data and
FSC data. This allows for direct comparison between mode l and experimental result, which
even the HG model did not have. The model can be used to study crystallisation dynamics in
other work systems as shown in Chapter 4. The results of this study have been published in
[4].

Three polymers of bromine-substituted polyethylene (PEBr) are seen to crystallise with a ces-
sation in their growth rate as function of cooling [5]. These polymers have two differing forms,
Form I and II [6, 5]. It was suggested that the growth rate minimum was due to poisoning of
the growth of Form II by Form I growth, however, WAXS shows that both crystals above and
below the poisoning are that of Form II. A model was developed based on poisoning between
Form I and Form II. The model fails to reproduce the experimentally observed curves unless it
is assumed that the attachment rate of Form II is higher than that of Form I. However, Form I
was found to have a higher nucleation density than Form II which makes this assumption un-
physical. By assuming that PEBr crystallises with quantised lamellar thickness, it is possible
to explain these dynamics by poisoning due to competing lamellar thickness. The model of dif-
ferent lamellar thicknesses derived in Chapter 3 does a good job of producing curves that fit the
trend and shapes of the growth rate of PEBr [4]. Though the model is good at fitting the data
and provides an alternative take on the mechanism behind the self-poisoning, there is no exper-
imental data to support it. More x-ray diffraction (XRD) work for more accurate measurement
of the crystallinity of the crystal forms formed at different temperatures and determination of
the crystalline layer thickness need to be done to provide the evidence to distinguish between
the two models.

A united-monomer model of poly(ethylene bromine) (PEBr) was developed to study its crys-
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tallisation further. The model was made by extending the existing united-monomer model for
PE to include dibromo groups [7]. By employing the self-seeding crystallisation protocol, it
was possible to simulate PEBr crystallise. The resulting crystallises were seen to growth with
quantised lamellar thickening with increasing crystallisation temperature which seems to be
the result of the dibromo groups. Though quantised lamellar thickening is experimentally ob-
served in polymers like long chain n-alkanes [3, 8] and PEB [1, 4], it is rare in simulation. The
quantisation was not seen for crystals grown with continuous cooling. The PEBr chains seem
to prefer to fold at the Br groups. When the systems where quenched to room temperature
the Br groups formed registered layers within the crystalline layers similar to those seen in
Form I′ of PEBr [6]. However, they did not show the Form II structure. The discovery of the
quantisation in the these simulations present an insight into how to modify molecular architec-
ture. By systematically placing small chemical moieties, halogens, or short chain branches the
semi-crystalline morphology can be controlled.

Cui et al [9] carried out a study of the low- and high-molecular-weight poly(lactic acid) (PLA)
stereocomplex (SC). In the SC the enantiomers are arranged in an antiferrochiral structure. The
growth of the SC is highly suppressed in the high-molecular-weight case, while it crystallises to
near completion in the low-molecular-weight case. They suggested that in the high-molecular
weight case there are fluctuations in the melt that results in a build up of the HC at the SC
growth front, and this disrupts the antiferrochiral arrangement and slows down the growth. The
crystallisation of the PLA stereocomplex is simulated by a Monte Carlo simulation on a square
lattice, where each site represents a helical segment of a chain in the lamella. The simulation
uses the Metropolis-Hastings algorithm, where lattice sites undergo crystallisation, melting, and
diffusion processes with probabilities dependent on parameters that model temperature and
diffusion. The results reveal that diffusion and melting parameters, d and q, play significant
roles in determining the rate and extent of crystallisation. Higher diffusion rates (d) accelerate
crystallisation, while melting rates (q) above a critical threshold destabilise the SC. In the study
two different initial lattice configurations are explored, one which is randomly populated and
one which has local clustering. The clustered lattice showing increased likelihood of of having
HC clusters, which reduces the crystallinity of the SC. The results show that it is possible to
improve the SC growth with a seed and at lower temperatures, where q > 0.45.

LC phases made of straight achiral dimers of polycatenars have been observed to have chiral
columns [10]. Each unit cell comprises of four left- and four right-handed columns, making
the system achiral as a whole. It is possible to model the interactions of two such dimers as
linear electric quadrupoles because of the similarity between the interactions of dimers and
quadrupoles, and the similarity in their structure. The dependency of the quadrupole inter-
action energy on their orientation allows us to be able to simulate the twisting in the helical
columns by continually rotating the quadrupoles from z = 0 going up the z-axis, until the come
back to their starting angle at z = 0. For two interacting columns, the interaction of energy
per dimer is given by the average quadrupole-quadrupole interaction energy at different eleva-
tions. This average energy is seen to only depend on either the difference between the angles
for columns of the same handedness (ν) and the sum of the angles for columns of different
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handedness ω. Both ν and ω are constant and independent of height along the z-axis. The
average minimum energy per dimer happens when both ν and ω are 90◦, with a value of 9

32
units

of ϕ2

r2
for columns of the same handedness and −87

32
for those of different handedness. When the

Fddd was compared with four other configurations on a hexagonal lattice, with the energy per
dimer calculated using the quadrupole model, it had the lowest energy. Ideally two of these
columns would prefer to have neighbours of the opposite handedness because it would mean
less clashing. On a hexagonal lattice it is impossible to have all neighbours be of a different
handedness. The best arrangement is to maximise the number of neighbours of the opposite
handedness, and that is what the Fddd does.

8.2 Future Work

In future work, a rigorous error analysis will be performed to assess the reliability and va-
lidity of the results. For curve fitting using Python’s curvefit function, confidence intervals
for fitted parameters will be determined using covariance matrices, and residual analysis will
be conducted to identify systematic deviations. Additionally, bootstrapping techniques may
be employed to estimate parameter uncertainties. In molecular dynamics simulations using
LAMMPS, convergence tests will be implemented by running multiple independent simulations
with varying initial conditions to ensure statistical robustness. Sensitivity analysis will also be
applied to assess the effect of simulation parameters, such as time step and thermostat settings,
on the final results. For the Monte Carlo simulations on a 2D lattice, the model suggests that
initial conditions play a crucial role, as observed experimentally. Therefore, different initial con-
figurations will be tested to evaluate their impact on crystallisation dynamics. Furthermore,
ensemble averaging over multiple runs will be used to mitigate the effects of stochastic fluctu-
ations. In the case of BFGS optimisation, the stability of solutions will be checked by varying
initial guesses and monitoring the convergence behaviour. By implementing these validation
techniques, future work will strengthen the reliability of the numerical findings and ensure their
consistency with experimental observations.

Building on the findings of the molecular simulation of poly(ethylene bromine), future inves-
tigations can explore how both the spacing and quantity of bromine groups impact the semi-
crystalline structure and regulate lamellar thickening. Additionally, larger-scale systems may
be examined to study the recently observed chevron-shaped crystals, characterised by lamellae
approximately 70 nm thick, and to assess whether the united-monomer model accurately cap-
tures these key structural features. Models with the bromine atoms every 10th bead (PEBr20)
ensuring uniformity in chain would also be of interest, as well as having a single bromine atom
as opposed to two. Using multi-state iterative Boltzmann inversion for coarse-graining in future
work might improve the simulation and show Form II.

Currently the simulations in for PLA are done with nucleus seeds that are the same and of
different sizes. Future work could explore the effects of different nuclei, at different positions
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and the number of seeds, on the crystallisation of the SC. Another avenue that could be ex-
plored includes using non-isothermal simulations involve varying the temperature during the
simulation. This may yield results more comparable to the experimental results. It would also
be interesting to carry out the simulations on larger lattices such as a 100 by 100 lattice.

A lot of time was spent trying to find an equivalent model for the bent core molecules as in
the straight molecules, no success. They are thought to have a distorted hexagonal lattice
unlike in the straight molecules. Instead of the molecules rotating around their centres, they
are assumed to rotated off the centre, therefore the distance between molecules are not fixed.
The bent molecules may be studied using molecular dynamics in future to investigate their
assembly.
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