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Abstract

This thesis addresses critical challenges in the application of deep learn-
ing to medical imaging, particularly focusing on brain vasculature. Deep
learning, a specialized branch of machine learning, has shown remarkable
potential in tasks such as object classification, detection, and image seg-
mentation. However, its effectiveness is often limited by the scarcity of
large, diverse, and labeled datasets in the medical domain. This scarcity
stems from the time-consuming and expertise-dependent nature of medical
image annotation, making it impractical to manually create extensive data-
sets for training deep learning models. The research tackles three primary
challenges: the disparity in data availability across different imaging mod-
alities, the underrepresentation of certain phenotypes in medical imaging
datasets, and the limited availability of data for rare conditions. To address
these issues, the thesis explores innovative approaches to data generation
and synthesis, aiming to augment existing datasets and create new ones.
The work employs advanced techniques such as cross-modality synthesis
using learned local attention masks to generate MRA images from T2-
weighted brain MR images, addressing the data availability discrepancy
between modalities. Furthermore, the thesis investigates the use of diffusion
models for synthetic generation of brain vasculature, particularly focusing
on the intricate Circle of Willis to address phenotype underrepresentation.
The research also introduces few-shot learning with diffusion models to en-
able conditional generation of brain vessels with aneurysms, tackling the
challenge of limited training data for rare conditions.
By systematically addressing these challenges, this thesis contributes to ad-
vancing the field of medical imaging and enhancing the training of deep
learning models in healthcare applications.
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1.1 Background and motivation

1.1 Background and motivation

Deep learning is a specialised branch of machine learning recently rising in popularity
which involves a set of mathematical operators (neurons) arranged in a layered architec-
ture, designed to perform non-linear operations on the input and converge to a specific
output. One of the major branches of deep learning would be supervised learning,
which requires a paired set of input and output data. The deep learning network then
tries to model a relationship between the input and the corresponding outputs. These
techniques can be used to tackle several problems such as object/scene classification,
object detection and image segmentation.

An inherent challenge within the domain of deep learning pertains to the susceptib-
ility of its techniques to overfitting. Overfitting denotes a scenario wherein the neural
network excessively assimilates the nuances of the training dataset, resulting in great
performance on the training data but notably diminished efficacy when applied to un-
seen or test data. The main contributing factor to overfitting is the inadequacy of the
training data. This deficiency arises due to the substantial volume of training data
required for deep learning models to achieve optimal performance and increased gen-
eralizability, as elucidated in the existing literature [4]. In tasks such as brain tumor
segmentation or classification of neurodegenerative diseases, the need for large and di-
verse datasets is paramount to ensure the model’s ability to accurately identify subtle
patterns and variations indicative of pathological conditions.

One of the main roadblocks in applying supervised deep learning methods to medical
imaging problems is the scarcity of labelled or annotated data. Medical images require
expert knowledge and skills to annotate, and this process is often tedious and time-
consuming. Therefore, it is not practical to manually create large and diverse datasets
for training deep learning models. This motivates the need for exploring alternative
ways of generating or simulating data that can augment the existing datasets or create
new ones.

Data generation offers a viable solution to this challenge by augmenting existing
datasets with synthetic images. These generated images can be used to increase di-
versity, mitigate class imbalances, and improve model robustness. While data augment-
ation techniques such as affine transformations, intensity perturbations, and contrast
normalization are widely used, they do not create fundamentally new data instances.
Deep generative models, such as Generative Adversarial Networks (GANs) and Diffu-
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1.1 Background and motivation

sion Models, can synthesize realistic medical images by learning the underlying data
distribution. This is particularly useful for capturing rare cases that are underrepres-
ented in clinical datasets.

It is necessary however to first distinguish between the concepts of simulation and
synthesis. Simulation relies on first principles, such as physical laws or mathematical
models, to produce images from scratch. Synthesis, on the other hand, uses existing
data, such as photographs or videos, to create new images based on some criteria. We
also usually assume behind these concepts a natural information processing direction:
from data to models with synthesis; and from models to data with simulation [5].

However, if we generate a dataset consisting mainly of simulated images it could lead
to poor performance in the network (and overfitting) as important edge cases could be
severely under sampled and overlooked by the model. This is a huge problem when the
real dataset consists of a very small sample of the edge cases which we want to detect,
for e.g., detecting a brain tumour which is found in less than 1% of the population [6],
the dataset will have a very low frequency of the edge cases (where brain tumour is
present).

When we generate synthetic image, we usually know all the image components such
as its location and attributes, which makes synthetic images really good for testing
out new algorithms. However, this generation of synthetic images also could shift the
mean simulated image too far from the real image distribution. This would make them
unsuitable to be used in real world scenarios. Also, for most fields, we require the help
of experts while generating / annotating synthetic images and sometimes even experts
who know the ground very well can remember things that are not actually present in the
image which could lead to a faulty dataset and eventually a faulty model. Therefore,
it is important to research the domain shift between real and simulated images and
develop algorithms to generate synthetic images in such a way that they can be used
for deep learning in medical imaging.

Deep learning methodologies have been effectively utilized to overcome the chal-
lenges posed by limited data and class imbalance in medical imaging across various mod-
alities, including Computed Tomography (CT), Magnetic Resonance Imaging (MRI),
and Positron Emission Tomography (PET) [7]. Despite these advancements, synthesiz-
ing virtual vascular structures remains underexplored due to the additional complexity
of accurately representing intricate vascular topologies and ensuring the continuity of
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vessels. Magnetic Resonance Angiography (MRA) is an imaging modality specifically
designed to visualize blood vessels in the brain and other regions. It plays a crucial
role in diagnosing vascular conditions such as aneurysms, arteriovenous malformations
(AVMs), and stroke. Unlike other imaging modalities, such as Computed Tomography
Angiography (CTA), MRA is non-invasive and does not require ionizing radiation or
contrast agents in many cases, making it a preferred choice for cerebrovascular assess-
ment.However, acquiring high-quality MRA scans is challenging due to the sensitivity
of the imaging process to motion artifacts, long acquisition times, and variations in
scanner protocols across institutions. These challenges contribute to inconsistencies in
MRA datasets, limiting their utility for deep learning applications. Additionally, small
aneurysms and subtle vascular anomalies often go undetected due to limited resolution
or contrast variations in standard MRA scans.Given these challenges, synthetic MRA
generation has the potential to significantly impact the field of cerebrovascular imaging.
Thus, the primary aim of this thesis is to design novel deep learning techniques for gen-
erating synthetic data, particularly focusing on cerebral vasculature. This research
addresses three key issues: the uneven distribution of data among different imaging
modalities, the inadequate representation of certain phenotypes in medical imaging
datasets, and the scarcity of data for infrequent conditions. The thesis investigates
strategies for data synthesis and generation to enhance existing datasets and develop
new ones.

1.2 Contributions

In this thesis, we present several novel methods for generating and synthesizing brain
vasculature with a particular focus on synthesizing the Circle of Willis (CoW) and brain
aneurysms.

• Learned local attention maps for cross modality image synthesis [Chapter
4:] In brain imaging, certain modalities like T1/T2 tend to have a sufficient
amount of available data compared to other modalities such as MRA (Magnetic
Resonance Angiography) which have limited data available. By focusing on the
cross-modality synthesis of T2-weighted brain MR images to MRA using learned
local attention mask’s. This work aims to enrich population imaging datasets
which have a large amount of medical imaging data available for T1/T2 modal-
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ities but limited data available for MRA.

• Shape guided diffusion models to model brain vasculature [Chapter 5]:
The next contribution lies in the generation of different phenotypes of the intric-
ate Circle of Willis (CoW), which serves as the meeting point of major vessels
at the anterior portion of the brain. This is particularly motivated by the chal-
lenge related to the under-representation of certain phenotypes within available
datasets. By addressing this disparity through conditional synthesis of realistic
vascular structures, we aim to enrich the existing pool of data, thereby fostering
a more comprehensive understanding of brain vasculature. This augmented data-
set holds the potential to enhance the accuracy and robustness of neuroimaging
analyses, ultimately improving diagnostic capabilities and treatment planning in
various cerebrovascular disorders.

• Few shot diffusion models to generate vessels with aneurysms [Chapter
6]: The study of aneurysms in different locations in the brain is important to un-
derstand variations in their pathophysiology, prognosis, and optimal treatment
strategies, contributing to improved patient outcomes and personalized medical
interventions. However,given the infrequent occurrence of aneurysms, data avail-
ability is severely constrained, particularly for specific anatomical locations.To
address this we build upon the previous contribution by further refining the ap-
proach by introducing few-shot learning with diffusion models to address the
challenge of conditional generation with very limited training data available, spe-
cifically targeting the generation of brain vessels with aneurysms.

1.3 Thesis Structure

Chapter 2 provides the clinical background of this study, offering a concise intro-
duction to relevant medical imaging concepts. The clinical background covers brain
anatomy and vascular structure. The medical imaging background focuses on brain
resonance imaging including its theory, physics, and various sequencing techniques in
image acquisition.

Chapter 3 conducts a comprehensive literature review from both technical and
methodological standpoints. It delivers a concise introduction to Deep Neural Net-
works (DNNs) and generative models, elucidating the fundamental components and
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theoretical underpinnings. Special attention is given to Generative Adversarial Net-
works (GANs) and Variational Auto-Encoders (VAEs).

Chapter 4 [based on publication ’Learned local attention masks for synthesising
vessel segmentations’] presents an encoder-decoder model for synthesising segmenta-
tions of the main cerebral arteries in the circle of Willis (CoW) from only T2 MRI.We
propose a two-phase multi-objective learning approach, which captures both global and
local features by using learned local attention maps generated by dilating the segment-
ation labels, which forces the network to only extract information from the T2 MRI
relevant to synthesising the CoW.

Chapter 5 [based on publication ’Shape-guided conditional latent diffusion models
for synthesising brain vasculature’] proposes a novel generative approach utilising a con-
ditional latent diffusion model with shape and anatomical guidance to generate realistic
3D CoW segmentations, including different phenotypical variations. Our conditional
latent diffusion model incorporates shape guidance to better preserve vessel continu-
ity and demonstrates superior performance when compared to alternative generative
models, including conditional variants of 3D GAN and 3D VAE.

Chapter 6 [based on publication ’Few-shot learning in diffusion models for gen-
erating cerebral aneurysm geometries’] Explores the efficacy of training latent diffu-
sion models (LDMs) for fewshot generation, enabling the generation of detailed vessel
segmentations from as few as five images per class. By incorporating set-based vis-
ion transformers for class embeddings and leveraging signed distance functions (SDFs)
as a novel form of conditioning, our method reduces the need for extensive datasets
for training. Comparative studies with established generative models, including vari-
ational autoencoders (VAEs) and generative adversarial networks (GANs), highlight
the robustness of our approach.

Chapter 7 Proposes an approach which uses conditional latent diffusion models
to generate paired images of both the MRA and the corresponding binary mask. By
incorporating , multi-task auto-encoders to generate the latent space and using features
extracted from Vision transformers we are able to acheive superior results to other
established generative models.

Chapter 8 Concluding the thesis, this section provides a summarization of the
methodologies and findings presented in the preceding chapters. It critically examines
the limitations inherent in the current research and proposes potential avenues for
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future investigations.
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Clinical background
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2.1 Medical Imaging

2.1 Medical Imaging

Medical imaging serves as a cornerstone in modern healthcare, facilitating the non-
invasive visualization and analysis of anatomical structures, physiological functions,
and pathological conditions within the human body .In the context of neurological
assessment and brain imaging, medical imaging techniques offer invaluable insights
into the structure, function, and pathology of the central nervous system. This section
provides an introductory overview of medical imaging, encompassing a spectrum of
modalities employed in clinical practice and research with a focus on brain imaging.

2.1.1 Introduction to Medical Imaging

Medical imaging encompasses a diverse array of techniques, each leveraging different
physical principles and technologies to generate images of internal organs and tissues.
These imaging modalities are indispensable tools for healthcare professionals, aiding
in the diagnosis, treatment planning, and monitoring of various medical conditions.
The evolution of medical imaging has been marked by significant milestones, from the
discovery of X-rays by Wilhelm Conrad Rontgen in 1895 to the development of advanced
modalities such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT),
and Nuclear Medicine Imaging. Over the decades, technological advancements have
propelled medical imaging to new heights, enabling improved spatial resolution, faster
image acquisition, and enhanced diagnostic accuracy.

At the core of medical imaging lie fundamental concepts that underpin the gener-
ation and interpretation of images. These concepts include the interaction of energy
with human tissues, principles of image formation, and the manipulation of acquired
data to extract diagnostic information. Understanding these fundamental principles is
essential for healthcare professionals involved in the interpretation and utilization of
medical imaging in clinical practice.

2.1.2 Imaging modalities in medical practice

Medical imaging encompasses a multitude of modalities, each offering unique strengths
and applications in clinical practice. A short overview of some of the common imaging
modalities used in practice is given below.
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X-Ray - X-ray imaging involves the emission of ionizing radiation to produce images
primarily of bones and dense tissues. It is commonly used for detecting fractures,
assessing joint alignment, and diagnosing conditions such as pneumonia and certain
tumors.

Computed Tomography (CT) - Computed Tomography (CT) utilizes X-rays to
generate detailed cross-sectional images of the body. CT scanners rotate around the
patient, acquiring multiple X-ray projections that are reconstructed into 3D images. CT
imaging is valuable for diagnosing acute conditions such as trauma, vascular disorders,
and abdominal pathologies.

Magnetic Resonance Imaging (MRI) - Magnetic Resonance Imaging (MRI)
utilizes strong magnetic fields and radiofrequency pulses to generate detailed images of
soft tissues and organs without ionizing radiation. MRI provides exceptional soft tissue
contrast and multi-planar imaging capabilities, making it indispensable for imaging the
brain, spine, and musculoskeletal system.

Nuclear Medicine Imaging - Nuclear Medicine Imaging techniques involve the
administration of radioactive tracers that emit gamma rays, which are detected by
specialized cameras to create images depicting physiological processes at the molecular
level. Positron Emission Tomography (PET) and Single-Photon Emission Computed
Tomography (SPECT) offer insights into conditions such as cancer, cardiac diseases,
and neurological disorders.

Ultrasound Imaging - Ultrasound imaging utilizes high-frequency sound waves
to produce real-time images of internal organs and structures. It is widely used in
obstetrics for monitoring fetal development and in various clinical scenarios for imaging
abdominal organs, the heart, and blood vessels.

2.2 Medical imaging techniques for brain imaging

Brain imaging plays a central role in the diagnosis and treatment planning of neur-
ological conditions. By visualizing structural abnormalities, such as tumors, vascular
malformations, and lesions, imaging techniques help clinicians localize pathology, de-
termine its extent, and assess its impact on surrounding brain tissue. Brain imaging
techniques have revolutionized the field of neuroscience, allowing for the detection,
characterization, and monitoring of various neurological conditions.Brain imaging en-
compasses a diverse array of techniques, each offering unique insights into different
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aspects of brain structure and function. These techniques include Magnetic Reson-
ance Imaging (MRI), Computed Tomography (CT), Positron Emission Tomography
(PET), Single-Photon Emission Computed Tomography (SPECT), and Ultrasound,
among others. Each imaging modality has its own strengths and limitations, making
them suitable for different clinical scenarios and applications. In the context of this
thesis we focus on MRI and the 3DRA modalities.

2.2.1 Computed Tomography (CT)

Computed Tomography (CT) and Computed Tomography Angiography (CTA) are
among the most widely used techniques in clinical practice for brain imaging, particu-
larly for vascular imaging and emergency diagnostic scenarios. CT is valued for its rapid
acquisition time, widespread availability, and ability to detect acute conditions such as
hemorrhages, skull fractures, and mass effect due to trauma or tumors. Its angiographic
counterpart,Computed Tomography Angiography (CTA), involves the use of iodinated
contrast agents to visualize cerebral vasculature with high spatial resolution. CTA
is pivotal in diagnosing and characterizing conditions such as intracranial aneurysms,
stenosis, arteriovenous malformations (AVMs), and acute ischemic strokes, particularly
during the planning of thrombolytic therapy or endovascular interventions. Addition-
ally, CTA is a non-invasive alternative to Digital Subtraction Angiography (DSA), of-
fering a detailed assessment of vessel anatomy with less procedural risk. While CT and
CTA have limitations such as ionizing radiation exposure and potential nephrotoxicity
from contrast agents, their speed, accuracy, and accessibility make them indispensable
tools in both acute and elective brain imaging workflows.While CT is briefly discussed
as a general modality, its specialized application as CT Angiography (CTA) for brain
imaging warrants deeper exploration due to its clinical significance.

2.2.2 Magnetic Resonance Imaging (MRI)

An MRI is one of the most critical tools used in the field of neurology and neurosurgery
as it can generate high resolution images which provide details about the brain, spinal
cord, and vasculature. MRI is based on the magnetization properties of atomic nuc-
lei. A powerful, uniform, external magnetic field is employed to align the protons that
are normally randomly oriented within the water nuclei of the tissue being examined.
This alignment (or magnetization) is next perturbed or disrupted by introduction of
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an external Radio Frequency (RF) energy. The nuclei return to their resting alignment
through various relaxation processes and in so doing emit RF energy. After a certain
period following the initial RF, the emitted signals are measured [8]. A Fourier trans-
form is applied to convert this frequency information into a grey scale image. An MRI
machine can generate different types of images by varying the sequence in which the
radio waves are applied and collected along with changing parameters such as Repeti-
tion Time [TR] (time difference between pulse sequences applied to the same slice) and
Time to Echo [TE] (time difference between release and collection of the pulse). [8] .
Common MRI sequences are explained below .

T1-weighted MRI -T1-weighted imaging accentuates the differences in tissues’
longitudinal relaxation times (T1). The contrast on T1-weighted imaging results from
the rate at which excited protons return to their equilibrium, influenced by the tissue
environment. For T1-weighted images, a short TR (400-600 ms) and short TE (10-20
ms) are employed. Typically, T1 images depict fat as bright (hyperintense) and water
or fluid-filled regions as dark (hypointense). Thus, anatomical structures with high fat
content, such as adipose tissue, appear brighter on T1-weighted images, whereas fluid-
filled structures, like the brain’s ventricles and the spinal canal containing cerebrospinal
fluid (CSF), appear dark. [9]

T2-Weighted MRI - T2-weighted imaging accentuates differences in tissues’ trans-
verse relaxation times (T2). On T2-weighted images (T2WI), contrast arises from the
rate at which excited protons lose phase coherence due to their interactions with the
surrounding environment. For T2-weighted images, a long TR (3000-6000 ms) and a
long TE (90-110 ms) are employed. In T2WI, fluids appear bright (or hyperintense),
making areas filled with cerebrospinal fluid (CSF), such as the brain ventricles or the
spinal canal, highly visible. [9]

Magnetic Resonance Angiography (MRA) - Magnetic Resonance Angiography
(MRA) is a versatile and non-invasive imaging modality used to visualize blood vessels
within the brain. MRA techniques, including Time-of-Flight (TOF), Phase Contrast
(PC), and Contrast-Enhanced MRA (CE-MRA), offer distinct advantages in diagnos-
ing vascular conditions such as intracranial aneurysms, arteriovenous malformations
(AVMs), and stenoses. TOF-MRA leverages the inflow effect of unsaturated blood into
the imaging volume, providing excellent spatial resolution without requiring contrast
agents. PC-MRA measures blood flow velocities and directionality, which is particu-
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larly useful for characterizing stenotic lesions or abnormal hemodynamics. CE-MRA
uses gadolinium-based contrast agents to enhance vessel visibility, offering superior
delineation of complex vascular structures.

However, MRA also has significant limitations that influence its clinical application.
TOF-MRA can suffer from artifacts due to slow or turbulent blood flow, leading to an
underestimation of vessel stenosis or occlusion. Phase contrast techniques are sensit-
ive to motion artifacts and require long acquisition times, making them less suitable
for emergency scenarios. Contrast-enhanced MRA, while highly effective, carries the
risk of nephrogenic systemic fibrosis (NSF) in patients with renal insufficiency due to
gadolinium-based contrast agents. Additionally, MRA generally has lower spatial resol-
ution compared to Computed Tomography Angiography (CTA) or Digital Subtraction
Angiography (DSA), limiting its ability to detect small vascular abnormalities such as
tiny aneurysms. These limitations underscore the importance of integrating MRA with
other imaging modalities to achieve comprehensive vascular assessment.

In summary, the combination of T1-weighted MRI, T2-weighted MRI, and MRA
provides comprehensive information for the diagnosis and treatment of neurological
disorders, offering detailed anatomical images and vascular mapping capabilities. T1-
weighted imaging excels at displaying anatomical details and distinguishing between
gray and white matter, while T2-weighted scans are superior for detecting fluid-related
abnormalities such as edema, lesions, and certain pathologies. MRA complements these
by offering detailed visualization of blood vessels without the need for contrast agents.
A visual comparison of the three modalities is given in Figure 2.1.

2.2.3 Three-Dimensional Rotational Angiography (3DRA)

3DRA is a specialized form of angiography that combines X-ray imaging with rota-
tional movements to create three-dimensional reconstructions of blood vessels within
the brain. During a 3DRA procedure, a contrast agent is injected into the bloodstream,
and a series of X-ray images are acquired as the X-ray source rotates around the pa-
tient. These images are then reconstructed using computer algorithms to generate a
three-dimensional model of the cerebral vasculature.

3DRA utilizes principles similar to conventional angiography, with the added cap-
ability of acquiring images from multiple angles around the patient. This rotational
acquisition allows for the visualization of blood vessels from different perspectives,
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Figure 2.1: This figure shows a visual comparison between a slice of a brain scan
taken in T1 , T2 and MRA modality. The T1 weighted scan highoights areas with fat
tissues while T2 weighted scan highlight areas with fluids. The MRA on the other hand
highlights vascular structures in the brain.

providing a comprehensive view of the vascular anatomy. By reconstructing these im-
ages into a three-dimensional model, 3DRA enables precise localization of vascular
lesions, assessment of vessel morphology, and planning of endovascular interventions.

3DRA is important for the diagnosis and management of various cerebrovascular
disorders, including aneurysms, arteriovenous malformations (AVMs), and stenotic le-
sions. The three-dimensional reconstructions provided by 3DRA offer detailed inform-
ation about the size, shape, and spatial relationship of vascular structures, facilitating
the identification of abnormal vessels and planning of therapeutic interventions. In
addition, 3DRA plays a crucial role in guiding endovascular procedures such as embol-
ization, stent placement, and coiling by providing real-time visualization of catheter
navigation and device deployment.

Each MR modality T1-weighted, T2-weighted imaging, MRA, and 3DRA has dis-
tinct strengths and limitations, making them suitable for different clinical applications.
T1-weighted imaging excels in providing detailed anatomical structures, particularly
for fat-containing tissues, but is less effective for detecting pathologies with high wa-
ter content. T2-weighted imaging, on the other hand, is ideal for identifying edema
and inflammation, though it requires longer scan times and may need fat suppression.
MRA offers a non-invasive method for vascular imaging, although it has lower spatial
resolution and can be prone to artifacts. In contrast, 3DRA provides highly detailed,
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real-time vascular images crucial for interventional procedures, but it is invasive, in-
volves radiation, and is less widely available. This makes cross-modality image synthesis
important in this context because it can potentially combine the strengths of these dif-
ferent imaging techniques while mitigating their individual limitations. By synthesizing
information from multiple modalities, clinicians can obtain a more comprehensive and
accurate picture of a patient’s condition without subjecting them to additional scans
or invasive procedures.

2.3 Introduction to brain vasculature

The brain vasculature consists of a complex network of arteries and veins that supply
oxygenated blood to the brain and facilitate the removal of metabolic waste products.
This intricate system ensures adequate perfusion of brain tissue and plays a crucial
role in maintaining neurological function. The arterial supply to the brain originates
from the internal carotid arteries and vertebral arteries, which give rise to a series of
interconnected vessels that form the Circle of Willis and its associated branches. Under-
standing the anatomy and function of the brain vasculature is essential for diagnosing
and managing cerebrovascular diseases, including aneurysms.

2.3.1 Circle of Willis

The Circle of Willis is a vital anatomical structure located at the base of the brain
that serves as a key collateral pathway for cerebral blood flow. It is formed by the
convergence of the anterior cerebral arteries (ACAs), middle cerebral arteries (MCAs),
posterior cerebral arteries (PCAs), and communicating arteries (anterior and posterior)
that connect the anterior and posterior circulation. The Circle of Willis plays a crucial
role in maintaining cerebral perfusion and ensuring adequate blood supply to different
regions of the brain. The complete architecture of CoW is shown in Figure 2.2.

While the Circle of Willis is a critical component of cerebral circulation, it’s im-
portant to note that not all individuals possess a complete or ”textbook” version of this
arterial network. Studies have shown that a complete Circle of Willis is present in only
about 42-52% of the population [10]. Variations in its structure are common and can
have significant implications for cerebrovascular health. The most frequent variation
is the absence or hypoplasia of one or both posterior communicating arteries (PCoA),
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Figure 2.2: Inferior view of the Circle of Willis and major cerebral arteries. This
diagram illustrates the critical arterial network at the base of the brain, including the
anterior communicating, anterior cerebral, middle cerebral, internal carotid, posterior
communicating, posterior cerebral, basilar, and vertebral arteries. The Circle of Willis,
formed by these interconnecting vessels, provides crucial collateral circulation to ensure
consistent blood supply to different regions of the brain, offering protection against
potential ischemic events. The figure was taken from [1].

occurring in up to 30-60% of individuals [11]. Other common variations include ab-
sence or hypoplasia of the anterior communicating artery (ACoA) in 5-10% of people,
a fetal-type posterior cerebral artery (PCA) in 15-20% of cases, and asymmetry in the
A1 segments of the anterior cerebral arteries in about 10% of individuals. [11].These
anatomical differences can impact the brain’s ability to maintain adequate blood flow in
case of occlusion or stenosis in one of the main feeding arteries. For instance, individu-
als with an incomplete Circle of Willis may be at higher risk for ischemic events during
carotid endarterectomy or may have reduced collateral flow capacity in the event of a
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stroke [12]. However, it’s worth noting that many people with variations in their Circle
of Willis remain asymptomatic throughout their lives, as the brain can often adapt to
these differences in vascular anatomy [13]. While variations in the Circle of Willis are
well-documented, it is important to note that significant vascular variability also exists
in other major cerebral vessels, including the MCA and ACA, as well as the posterior
circulation.

Variability in the MCA can include differences in branching patterns, such as early
bifurcation, accessory MCA branches, or variations in the length of the M1 segment.
These variations can influence the presentation and outcomes of cerebrovascular dis-
eases, such as stroke or aneurysms, by altering blood flow distribution or collateral
circulation. The ACA similarly exhibits variability in its A1 segment, including hypo-
plasia or asymmetry, which can affect perfusion in anterior brain regions. Moreover,
variations in posterior circulation vessels, such as the basilar artery and posterior cereb-
ral arteries, can impact the brainstem and occipital perfusion, particularly in cases of
occlusion or ischemia.

The functional significance of these variations extends beyond the Circle of Willis,
as they can influence both the risk of ischemic events and the outcomes of interven-
tions. For example, incomplete or asymmetrical branching patterns may compromise
collateral flow, increasing susceptibility to ischemia during vascular events or surgeries.
These variations highlight the importance of a comprehensive understanding of cereb-
ral vasculature when diagnosing and managing cerebrovascular diseases, as well as the
potential for advanced imaging techniques to map these variations more accurately.

2.3.2 Cerebral Aneurysms

Cerebral aneurysms are abnormal dilations or bulges in the walls of cerebral arter-
ies, often occurring at branching points or bifurcations . These vascular abnormalities
pose a significant risk of rupture, leading to potentially life-threatening subarachnoid
hemorrhage (SAH) and neurological deficits [14]. Aneurysms can develop as a result
of various factors, including genetic predisposition, hemodynamic stress, and under-
lying vascular diseases such as fibromuscular dysplasia or connective tissue disorders
[14]. Common locations for cerebral aneurysms include the anterior communicating
artery (ACoA), posterior communicating artery (PCoA), and the bifurcations of the
anterior and middle cerebral arteries [15]. The diagnosis and management of cerebral
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aneurysms involve a multidisciplinary approach, including advanced imaging studies,
neurosurgical interventions, and endovascular treatments. Medical imaging plays a
crucial role in the detection, characterization, and monitoring of aneurysms. Com-
puted Tomography Angiography (CTA) serves as an initial screening tool, providing
detailed 3D images of cerebral vasculature. Magnetic Resonance Angiography (MRA)
offers high-resolution images without radiation exposure, particularly useful for de-
tecting small aneurysms and assessing their relationship with surrounding brain tissue
[16]. Digital Subtraction Angiography (DSA) remains the gold standard for aneurysm
detection and characterization, offering real-time, high-resolution images valuable for
treatment planning and during endovascular procedures [17]. Advanced techniques
like 4D-CTA and 4D-Flow MRI allow for the assessment of blood flow dynamics within
aneurysms, providing insights into hemodynamic stress and rupture risk . Treatment
options include microsurgical clipping, where a metal clip is placed across the aneurysm
neck, and endovascular techniques such as coiling, which involves deploying platinum
coils into the aneurysm sac to promote thrombosis [17]. Flow diversion devices and
stent-assisted coiling represent more recent advancements in endovascular treatment,
particularly useful for complex aneurysm morphologies. The choice of treatment mod-
ality depends on various factors, including aneurysm characteristics, patient age, and
comorbidities. Regular imaging follow-ups are essential for monitoring unruptured an-
eurysms and assessing treatment effectiveness. Ongoing research focuses on improving
treatment outcomes, developing novel endovascular devices, and enhancing our under-
standing of aneurysm pathophysiology to identify potential targets for pharmacological
interventions [17].
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Figure 2.3: This figure shows a 3 Dimensional Rotational Angiography (3DRA) scan
(left) which shows contrast enhanced vessels and the segmented vessels (right) and
aneurysm (denoted in red) from the scan
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3.1 Deep Learning Background

Deep Learning has emerged as a transformative approach in the field of artificial in-
telligence, driven by its ability to allow computational models composed of multiple
processing layers to learn representations of data with multiple levels of abstraction.
This powerful capability enables deep learning models to effectively handle large-scale
data and complex tasks, making them indispensable in various domains, including
medical imaging.

Before delving into the specifics of artificial neural networks (ANNs), it’s important
to understand the historical context and foundational concepts that led to the devel-
opment of deep learning. The journey began in the 1940s, with the pioneering work of
Warren McCulloch and Walter Pitts, who proposed the first mathematical model of a
neuron in 1943 [18]. Their model laid the groundwork for the development of artificial
neural networks, inspired by the biological processes of the human brain. Despite the
initial enthusiasm, progress was slow due to the limited computational resources and
theoretical understanding available at the time.

Artificial Neural Networks (ANN)

Deep Learning can be described as something which “allows computational models that
are composed of multiple processing layers to learn representations of data with multiple
levels of abstraction” [19]. An artificial neural network (ANN) is the backbone of deep
learning. Although deep learning has risen in popularity quite recently, the original
concept of an artificial neural network (ANN) was initially proposed in 1943 [20]. A
neuron (also called Perceptron) is a building block of an ANN and consists of four parts:
the input, the output, the weights, and the bias. The way a neuron works is that all
inputs are multiplied by their respective weights and a bias is added. This weighted
sum is fed to an activation function, which decides if and how a neuron should be
activated (for example, the step activation function returns 1 if the weighted sum is
greater than a particular value, otherwise 0). The purpose of an activation function
is to introduce non-linearity into a neural network. The output is then compared to
the ground truth, and the error is back-propagated through the network, updating the
weights and biases , this is how a neuron ‘learns’. Modern neural networks consist of
several neurons arranged in layers where the first layer is called the input layer and the
last layer is called the output layer, with all the layers in between called the hidden
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layers. The structure of the perceptron and the general architecture of the neural
network is show in 7.1

Figure 3.1: Part A of the figure shows the general structure of a perceptron while Part
B showcase the general structure of an ANN .

However, traditional neural networks had significant drawbacks, such as being very
prone to overfitting and suffering from the vanishing gradient problem. These issues
led researchers to favor machine learning techniques such as Support Vector Machines
(SVMs) [21]. The resurgence of neural networks was due to a combination of several
factors. Firstly, breakthroughs in the field of deep learning brought significant changes
to the structure of neurons and introduced algorithms such as Dropout [22], which
tackled the overfitting problem. The introduction of activation functions such as the
Rectified Linear Unit (ReLU) [23] helped avoid the vanishing gradient problem, making
neural networks a viable choice again.

In addition to these algorithmic advancements, improvements in modern computing
allowed researchers to use a large number of neurons and hidden layers in their neural
architectures. This development enabled them to create far more complex models
than those traditional machine learning techniques were capable of. Despite these
advancements, the amount of data required to train deep neural networks was still
very high and not readily available. However, this problem was soon alleviated with
the rapid advancement of the internet, which made massive, labeled datasets readily
available for researchers to use.

In conclusion, the convergence of theoretical advancements, innovative algorithms,
and enhanced computational power has propelled deep learning to the forefront of
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artificial intelligence research. Today, deep learning models are not only feasible but also
outperform many traditional approaches, especially in complex tasks such as medical
imaging, where they have demonstrated remarkable accuracy and efficiency.

CNN

Traditional artificial neural networks (ANNs) face significant challenges when it comes
to handling image data. One major issue is that ANNs do not scale well with the
increasing dimensionality of images. For example, a color image of size 256x256 pixels
has 196,608 input features (256 * 256 * 3), which results in an overwhelming number
of parameters to be learned, leading to increased computational cost and risk of over-
fitting. Moreover, ANNs lack the ability to capture the spatial hierarchies in images,
meaning they cannot effectively recognize patterns such as edges, textures, or shapes
that are critical for understanding visual content. These limitations necessitated the
development of specialized architectures that could handle the high dimensionality and
spatial nature of image data more efficiently.

Convolutional Neural Networks (CNNs) are a type of neural network architecture
that has gained tremendous popularity in recent years, especially in the field of com-
puter vision. CNNs consist of a special kind of layer called convolutional layers. Each
cell in the convolutional layer applies a convolution operation on the input. A convo-
lution consists of a filter, also known as a kernel, which converts all the pixels in its
receptive field into a single value by performing element-wise multiplications followed
by a summation.

The neurons in CNNs adopt a ”weight sharing” approach, which allows them to
detect complex patterns present in the input data efficiently. This approach signific-
antly reduces the number of parameters in the model, making it more computationally
efficient and less prone to overfitting. Owing to this, CNNs have been used very suc-
cessfully for a wide range of computer vision and image processing tasks.

CNNs use convolutional layers to extract patterns from the input data. In the early
layers, simple patterns such as edges and textures are detected. These simple patterns
are then combined in the deeper layers to form more complex patterns, such as shapes
and objects. After the patterns are extracted, a pooling operation is performed. The
function of pooling is to progressively reduce the spatial size of the representation,
which helps to reduce the number of parameters and computation in the network, as
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well as to control overfitting.
Max pooling, which selects the maximum value from each patch of the feature map,

and average pooling, which computes the average value of each patch, are common
pooling strategies used in CNNs. These operations help to make the detection of
features invariant to small translations of the input, thereby improving the robustness
of the model.

Autoencoders

Autoencoders are a type of artificial neural network designed for unsupervised learn-
ing tasks, particularly for dimensionality reduction and feature learning. Unlike PCA,
which is limited to linear transformations, autoencoders can model non-linear relation-
ships, making them more flexible and powerful for capturing complex data structures.

Structure and Functionality

An autoencoder consists of two main components:

• Encoder: The encoder maps the input data x to a latent representation z in a
lower-dimensional space. This process captures the essential features of the input
data.

• Decoder: The decoder reconstructs the original data x from the latent repres-
entation z. The goal is to minimize the difference between the input and the
reconstructed output, often measured by a loss function such as Mean Squared
Error (MSE).

The objective of an autoencoder is to learn a compact and meaningful representation
of the data while preserving as much information as possible. The loss function used
to train the autoencoder is given by:

L(x, x̂) = ∥x − x̂∥2

where x̂ is the reconstructed output.

Advantages and Applications

Autoencoders offer several advantages over linear techniques like PCA:
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• They can capture non-linear dependencies in the data, making them suitable for
complex datasets.

• Autoencoders can be used for various tasks, including dimensionality reduction,
anomaly detection, denoising, and feature learning.

• They can automatically learn useful representations from raw data, which can be
used for downstream machine learning tasks.

Autoencoders are a foundational concept in deep learning, paving the way for more
advanced models like variational autoencoders (VAEs) and generative adversarial net-
works (GANs). They provide a flexible and powerful tool for reducing dimensionality
and uncovering the underlying structure of complex datasets.

RNN

Recurrent Neural Networks (RNNs) [24] represent a powerful class of artificial neural
networks designed specifically to handle sequential data. Unlike traditional feedfor-
ward neural networks, which assume independence between inputs and outputs, RNNs
incorporate feedback connections. These connections allow the network to maintain an
internal state, effectively creating a form of memory that captures information from
previous inputs. This unique architecture makes RNNs particularly well-suited for tasks
involving time series, natural language processing, and other sequence-based problems.
The core idea behind RNNs is to leverage sequential information. They are called ”re-
current” because they perform the same task for every element of a sequence, with the
output being dependent on previous computations. In essence, RNNs have a ”memory”
which captures information about what has been calculated so far. In its basic form,
an RNN consists of an input layer, a hidden layer with recurrent connections, and
an output layer. At each time step t, the hidden layer receives input from both the
current input xt and its own output from the previous time step ht−1. This recurrent
connection is what allows information to persist. Mathematically, we can describe the
operation of a basic RNN as follows:

ht = f(Whhht−1 + Wxhxt + bh) (3.1)

yt = g(Whyht + by) (3.2)
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Where xt ∈ Rd is the input vector at time step t, ht ∈ Rh is the hidden state, yt ∈ Ro

is the output vector, Whh ∈ Rh×h, Wxh ∈ Rh×d, and Why ∈ Ro×h are weight matrices,
bh ∈ Rh and by ∈ Ro are bias vectors, and f and g are activation functions. The hidden
state ht serves as the network’s ”memory”, capturing information about what has been
seen in previous time steps. Figure 3.2 shows the ’unfolding’ process of the hidden state
in an RNN.

Figure 3.2: This figure demonstrate the working of the hidden state of the RNN .

The output yt is computed based on this hidden state. Training RNNs involves
a process called Backpropagation Through Time (BPTT). This algorithm unfolds the
recurrent network into a full network for the entire sequence and then applies standard
backpropagation. For a sequence of length T , the total loss L is the sum of the losses
at each time step:

L =
T∑

t=1
Lt(yt, ŷt) (3.3)

Where Lt is the loss function at time step t, yt is the true output, and ŷt is the predicted
output. The gradients of the loss with respect to the weights are computed by summing
over all time steps:

∂L

∂W
=

T∑
t=1

∂Lt

∂W
(3.4)

This training process, while powerful, can be challenging due to the vanishing and
exploding gradient problems, especially for long sequences. The vanishing gradient
problem occurs when gradients become extremely small as they are propagated back
through time, making it difficult for the network to learn long-term dependencies. Con-
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versely, the exploding gradient problem occurs when gradients become extremely large,
leading to unstable training. To address these challenges, researchers have developed
several variants of RNNs, including Long Short-Term Memory (LSTM) [25] networks
and Gated Recurrent Units (GRUs) [26]. These architectures introduce gating mech-
anisms that allow for better control of information flow through the network, mitigating
the vanishing and exploding gradient problems.

3.2 Attention Mechanisms in Deep Learning

Attention mechanisms were introduced to enhance the capability of neural networks
in processing sequence data, particularly in tasks where different parts of the input
sequence have varying levels of importance for generating the output. The concept of
attention in neural networks was inspired by the human cognitive process of selectively
concentrating on specific aspects of information while ignoring others. In the context
of machine learning, attention allows models to focus on the relevant parts of the
input when producing each element of the output. The first widely adopted use of an
attention mechanism was adopted for neural machine translation [27].

3.2.1 Transformers

Transformers, introduced by Vaswani et al. in their 2017 paper ”Attention Is All You
Need,” represent a significant leap forward in the field of sequence processing. Unlike
their predecessors, Recurrent Neural Networks (RNNs) and Long Short-Term Memory
networks (LSTMs), Transformers rely entirely on attention mechanisms, dispensing
with recurrence and convolutions entirely. This architecture has proven remarkably
effective, particularly in natural language processing tasks, and has since become the
foundation for many state-of-the-art models. The key innovation of the Transformer
model is its use of self-attention, a mechanism that allows the model to weigh the im-
portance of different parts of the input when processing each element. This enables the
model to capture long-range dependencies more effectively than RNNs, which process
sequences linearly.

The Transformer model is a highly efficient architecture for handling sequential data,
particularly in tasks like translation and text generation. It overcomes the limitations
of traditional sequence models, such as recurrent neural networks (RNNs), by allowing
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parallelization and eliminating the need for sequential processing. The Transformer is
composed of two main components: the encoder and the decoder. Let’s explore how
information flows through these components, step by step.

Encoder Workflow

The encoder processes the input sequence to generate contextualized representations.
Tokens are first embedded into continuous vector representations, and positional en-
codings are added to incorporate sequence information:

PE(pos,2i) = sin
(

pos

100002i/dmodel

)
, PE(pos,2i+1) = cos

(
pos

100002i/dmodel

)
Self-attention then enables each token to attend to all others, computed using query
(Q), key (K), and value (V ) vectors:

Attention(Q, K, V ) = softmax
(

QKT

√
dk

)
V

Multi-head attention extends this by applying multiple attention mechanisms in paral-
lel, enhancing the models ability to capture complex dependencies:

MultiHead(Q, K, V ) = Concat(head1, . . . , headh)W O

A feed-forward network (FFN) refines each tokens representation, followed by residual
connections and layer normalization for stability:

LayerNorm(x + Sublayer(x))

This process repeats across multiple layers, allowing the model to iteratively refine
token representations.

Decoder Workflow

The decoder generates the output sequence autoregressively while attending to the
encoders output. Target tokens are embedded, and positional encodings are applied.
Self-attention in the decoder is masked to prevent future tokens from influencing the
current position:

Attention(Q, K, V ) = softmax
(

QKT

√
dk

+ mask
)

V
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The encoder-decoder attention mechanism allows the decoder to selectively focus on
relevant encoded representations while generating output:

Attention(Q, K, V ) = softmax
(

QKT

√
dk

)
V

Similar to the encoder, a feed-forward network with residual connections and layer
normalization further refines token representations. During training, the decoder uses
teacher forcing, while at inference, it generates tokens sequentially, using previous out-
puts as inputs for the next step.

The combination of the encoders contextualized token representations and the de-
coders ability to attend to both previous tokens and the encoder output allows the
Transformer to generate high-quality sequences for tasks like translation, summariza-
tion, and beyond.

The loss is typically computed using cross-entropy, and the model is optimized us-
ing variants of stochastic gradient descent, often with adaptive learning rates like Adam.

Transformers have revolutionized natural language processing, forming the basis
for models like BERT [28],and GPT [29]. Moreover, the concept of self-attention
has proven valuable beyond NLP, finding applications in computer vision [30], speech
processing [31], and even protein structure prediction [32].

3.2.2 Vision Transformers (ViTs)

While Transformers were initially designed for natural language processing tasks, their
success has inspired adaptations to other domains, including computer vision. The
Vision Transformer (ViT), introduced by Dosovitskiy et al. in 2020, successfully applies
the Transformer architecture to image recognition tasks, challenging the dominance of
convolutional neural networks (CNNs) in this field.

Core Idea

The key insight of Vision Transformers is to treat an image as a sequence of patches,
analogous to how a Transformer processes a sequence of words. This approach allows
the direct application of the Transformer architecture to image data with minimal
modifications. By splitting an image into smaller patches and embedding them as
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input tokens, the Transformer can process the image in a similar manner to how it
processes text in NLP tasks.

Architecture

The Vision Transformer (ViT) processes images by converting them into sequences of
patches and passing them through a Transformer encoder for classification.

The input image of size (H, W, C) is divided into N fixed-size patches of P × P ,
treated as individual tokens. Each patch is flattened into a vector of size P 2C and
projected into an embedding space of dimension D using a trainable linear layer:

xp ∈ RN×D

Since Transformers lack inherent spatial awareness, positional embeddings are added
to retain spatial information:

z0 = [xclass; x1
pE; x2

pE; . . . ; xN
p E] + Epos

A learnable class token xclass is prepended to the sequence, serving as a global repres-
entation used for classification.

The sequence is then processed by a Transformer encoder consisting of L layers,
where each layer applies multi-head self-attention (MSA) and feed-forward networks
(MLP) with residual connections:

z′
l = MSA(LN(zl−1)) + zl−1, zl = MLP(LN(z′

l)) + z′
l, l = 1, . . . , L

Finally, the class token’s output representation undergoes layer normalization and is
used for classification:

y = LN(z0
L)

where z0
L is the final state of the class token after L Transformer layers. This approach

enables ViT to model global dependencies efficiently across image patches.

Training and Performance

Vision Transformers are typically pre-trained on large datasets (e.g., ImageNet-21k,
JFT-300M) and then fine-tuned on specific tasks. When pre-trained on sufficiently
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large datasets, ViTs have demonstrated the ability to outperform state-of-the-art con-
volutional neural networks (CNNs) in image classification tasks, while requiring fewer
computational resources during training.

In summary, the Vision Transformer architecture successfully adapts the self-attention
mechanism to image data by treating images as sequences of patches. This approach,
combined with large-scale pre-training, has allowed ViTs to rival or even surpass tra-
ditional CNN architectures in many vision tasks.

3.3 Generative models

Generative models are statistical models that learn a joint probability distribution, ,
over observed data and associated labels (if available). This foundational perspective
predates deep learning and has its roots in statistical modeling and probabilistic reas-
oning. The primary objective of a generative model is to understand the underlying
data distribution to allow sampling of new data points that are statistically similar
to those in the original dataset. In contrast to discriminative models, which focus on
modeling the conditional probability , generative models aim to capture the full joint
distribution, offering greater flexibility and broader applications.

Historically, generative modeling has been explored through a variety of approaches
such as Gaussian Mixture Models (GMMs), Hidden Markov Models (HMMs), and
Bayesian Networks. These traditional methods provided robust statistical frameworks
for capturing complex data distributions and were particularly effective for structured
data. However, they often struggled with scalability and handling high-dimensional
datasets, limiting their applicability in more intricate domains.

Deep learning has rejuvenated generative modeling by enabling the creation of mod-
els capable of learning intricate, high-dimensional data distributions. There are several
variations of deep learning based generative models, each with its unique approach and
applications. Variational Autoencoders (VAEs) and Generative Adversarial Networks
(GANs) are two of the most widely used generative models. VAEs use a probabilistic
framework to learn a latent representation of the data, which can then be used to gen-
erate new samples. GANs, on the other hand, employ a game-theoretic approach where
two neural networks, a generator and a discriminator, are trained simultaneously. The
generator creates new data samples, while the discriminator evaluates their authenti-
city, leading to the generation of increasingly realistic data. An overview of different
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generative model types is show in in Figure 3.3 .

Figure 3.3: Schematic illustration of Variational Auto Encoder (VAE), Generative Ad-
versarial Network (GAN), and Diffusion Models (DDPM). In a GAN, the process begins
with a noise vector (Z) that a generator uses to produce an image (X̂); this generated
image is then compared to a real image (X) by the discriminator, determining the
probability of the image being real or fake. Contrastingly, a VAE encodes the input
image (X) into distributions within a latent space defined by parameters µ and σ, with
the decoder sampling from this distribution to create new images. For a DDPM, noise
is progressively added to the input image (X) following a predetermined schedule, and
the network is trained to reverse this process to derive an image from the noise.

32



3.3 Generative models

3.3.1 Variations Auto-encoders

Variational Autoencoders (VAEs) are a class of generative models that combine prin-
ciples from Bayesian inference and neural networks to learn a probabilistic mapping
between data and latent variables. Introduced by Kingma and Welling in 2013 [33],
VAEs are particularly powerful for tasks involving high-dimensional data, such as image
generation and representation learning.

Architecture of VAEs

The VAE architecture consists of two main components: the encoder (inference net-
work) and the decoder (generative network).

• Encoder (Inference Network): The encoder maps the input data x to a latent
representation z. Instead of mapping directly to a point in the latent space, the
encoder learns the parameters of a probability distribution (typically Gaussian),
characterized by a mean µ and a standard deviation σ. The encoder network
outputs these parameters, which are used to sample z from the distribution:

qϕ(z|x) = N(z; µϕ(x), σϕ(x))

where ϕ denotes the parameters of the encoder network.

• Decoder (Generative Network): The decoder takes the latent representa-
tion z and reconstructs the original data x. The decoder network models the
conditional distribution pθ(x|z):

pθ(x|z) = N(x; µθ(z), σθ(z))

where θ denotes the parameters of the decoder network.

Learning Objective

The objective of training a VAE is to maximize the Evidence Lower Bound (ELBO)
on the marginal likelihood of the data. The ELBO can be decomposed into two terms:
the reconstruction loss and the regularization term. The reconstruction loss ensures
that the decoded samples are close to the original input data, while the regularization
term ensures that the learned latent space is smooth and follows a prior distribution,
usually a standard normal distribution.
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The ELBO is given by:

L(ϕ, θ; x) = Eqϕ(z|x)[log pθ(x|z)] − KL(qϕ(z|x)∥p(z))

where KL(qϕ(z|x)∥p(z)) is the Kullback-Leibler divergence between the approximate
posterior qϕ(z|x) and the prior p(z).

The first term, the reconstruction loss, can be interpreted as the negative log-
likelihood of the data under the decoder’s distribution. The second term, the KL
divergence, acts as a regularizer that penalizes deviations from the prior.

Reparameterization Trick

To enable backpropagation through the stochastic sampling of z, VAEs use the repara-
meterization trick. Instead of sampling z directly from N(µ, σ), we sample an auxiliary
variable ϵ from a standard normal distribution and then transform it:

z = µ + σ ⊙ ϵ, ϵ ∼ N(0, I)

This reparameterization allows the gradient to propagate through µ and σ during
training.

VAEs offer several advantages over traditional autoencoders , namely:

• Probabilistic Interpretation: VAEs provide a probabilistic framework for
modeling data, allowing for uncertainty quantification and principled Bayesian
inference.

• Continuous and Smooth Latent Space: The regularization term ensures
that the latent space is continuous and smooth, enabling meaningful interpolation
between points in the latent space.

3.3.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a class of generative models introduced by
Ian Goodfellow and his colleagues in 2014 [34]. GANs consist of two neural networks,
a generator and a discriminator, which are trained simultaneously through a process of
adversarial competition. This innovative approach has led to significant advancements
in generating realistic data across various domains, including images, text, and audio.

34



3.3 Generative models

Architecture of GANs

The architecture of GANs involves two main components:

• Generator: The generator network G takes a random noise vector z sampled
from a prior distribution (typically a standard normal distribution) and trans-
forms it into a data sample G(z). The goal of the generator is to produce data
that is indistinguishable from real data.

• Discriminator: The discriminator network D takes an input data sample (either
from the real dataset or generated by G) and outputs a probability D(x) repres-
enting the likelihood that the input data is real. The goal of the discriminator is
to correctly classify real and generated data.

Learning Objective

GANs are trained through a minimax game, where the generator and discriminator
have opposing objectives. The discriminator aims to maximize the probability of cor-
rectly classifying real and generated samples, while the generator aims to minimize the
probability that the discriminator correctly identifies generated samples as fake. The
objective function for GANs is given by:

min
G

max
D

Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))]

In this setup:

• pdata(x) is the distribution of the real data.

• pz(z) is the prior distribution of the noise vector z.

The generator G tries to fool the discriminator D by generating realistic data
samples, while D tries to distinguish between real and generated samples. This ad-
versarial process continues until the generator produces samples that are indistinguish-
able from real data.

Training Process

The training process of GANs involves iteratively updating the parameters of the gen-
erator and discriminator. The typical training algorithm is as follows:
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1. Sample a batch of noise vectors {z1, z2, . . . , zm} from the prior distribution pz(z).

2. Generate a batch of fake data samples {G(z1), G(z2), . . . , G(zm)} using the gen-
erator.

3. Sample a batch of real data samples {x1, x2, . . . , xm} from the real data distri-
bution pdata(x).

4. Update the discriminator by maximizing the objective function Ex∼pdata(x)[log D(x)]+
Ez∼pz(z)[log(1 − D(G(z)))].

5. Update the generator by minimizing the objective function Ez∼pz(z)[log(1 − D(G(z)))].

This process is repeated for many iterations until the generator produces high-
quality data samples that the discriminator cannot distinguish from real data.

3.3.3 Score Based Generative Models

Score-based models are a class of generative models that focus on estimating the gradi-
ent (or score) of the data distribution’s log density. These models aim to generate
new data samples by iteratively refining noisy data points based on the learned score
function. The score function provides a direction in which the data can be moved to
increase its likelihood under the target distribution. Score-based models have shown
great promise in generating high-quality data, particularly in scenarios where tradi-
tional generative models might struggle.

Diffusion Models

Diffusion models, a type of score-based generative model, have gained significant atten-
tion for their ability to produce realistic and high-quality data samples. These models
draw inspiration from non-equilibrium thermodynamics, specifically the process of dif-
fusion, where particles spread from regions of high concentration to low concentration
over time.

Diffusion models simulate a forward and reverse diffusion process to generate new
data samples. The forward process involves gradually adding noise to the data, trans-
forming it into a noisy distribution, while the reverse process aims to denoise the data,
reconstructing the original distribution.
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Forward Diffusion Process

The forward diffusion process transforms the data x0 into a series of progressively
noisier versions x1, x2, . . . , xT over T time steps. This process can be described as a
Markov chain, where each step adds a small amount of Gaussian noise to the data.
Mathematically, the forward process is defined as:

q(xt|xt−1) = N(xt;
√

1 − βtxt−1, βtI)

where βt is a noise schedule that controls the amount of noise added at each step.
The initial data x0 is gradually transformed into pure noise xT .

Reverse Diffusion Process

The reverse diffusion process aims to recover the original data from the noisy distribu-
tion. This process is also described as a Markov chain, where each step denoises the
data. The reverse process is defined as:

pθ(xt−1|xt) = N(xt−1; µθ(xt, t), Σθ(xt, t))

where µθ and Σθ are learned functions parameterized by a neural network. The
goal is to learn these functions such that the reverse process accurately reconstructs
the original data distribution.

Training Objective

The training objective of diffusion models is to learn the parameters of the reverse
process by minimizing the Kullback-Leibler (KL) divergence between the true forward
process and the learned reverse process. This can be formulated as minimizing the
negative log-likelihood of the data under the reverse process:

L(θ) = Eq(x0:T )

[
T∑

t=1
KL(q(xt−1|xt, x0)∥pθ(xt−1|xt))

]
This objective ensures that the reverse process learns to denoise the data effectively,

recovering the original distribution from the noisy data.
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Reparameterization Trick and Score Matching

To enable efficient training, diffusion models often use the reparameterization trick,
similar to VAEs. Additionally, score-based diffusion models can leverage score matching
techniques to directly estimate the score function (gradient of the log density). The
score function provides a direction for denoising the data at each step.

Latent Diffusion Models

Latent Diffusion Models (LDMs) [35] present an alternative approach to diffusion
models, addressing the computational challenges of standard diffusion models while
maintaining their high-quality output. The key innovation of LDMs lies in applying
the diffusion process to a compressed latent space rather than the original data space.
Mathematically, this can be expressed as a two-step process. First, an input image
x ∈ RH×W ×c is mapped to a latent representation z ∈ Rh×w×c by an encoder function
E. The diffusion process then operates on this latent space over t time steps, following
the forward process:

q(zt|zt−1) = N(zt;
√

1 − βtzt−1, βtI) (3.5)

where βt is the noise schedule. The reverse process, or denoising, is modeled by a
neural network, typically a U-Net, as:

pθ(zt−1|zt) = N(zt−1; µθ(zt, t), Σθ(zt, t)) (3.6)

where µθ and Σθ are learned parameters.
The training of LDMs involves two main loss functions. First, the autoencoder

(Typically a VAE) is trained using a combination of reconstruction loss and perceptual
loss:

LAE = Lrec + λLperceptual (3.7)

where Lrec is typically the mean squared error between the input and reconstructed
image, Lperceptual is a perceptual similarity metric (often based on VGG features), and
λ is a weighting factor.

The diffusion model is then trained in the latent space using a variant of the vari-
ational lower bound:
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LDM = Et,z0,ϵ

[
∥ϵ − ϵθ(zt, t)∥2

2

]
(3.8)

where t is randomly sampled from the time-steps {1, . . . , T}, z0 is the initial latent
representation, ϵ is random Gaussian noise, and ϵθ is the noise prediction network
(typically implemented as a U-Net). zt is obtained by adding noise to z0 according to
the forward process. [35]

The LDM architecture consists of three main components: an autoencoder for data
compression and reconstruction, a neural network (typically a U-net) operating in the
latent space for the diffusion process, and an optional conditioning network for con-
trolled generation. This design offers several advantages over standard diffusion models,
including improved computational efficiency, better scalability for high-resolution im-
age generation, and increased flexibility in model architecture and conditioning mech-
anisms. The training process occurs in two stages: first, the autoencoder is trained
to achieve perceptual compression, preserving semantically relevant information while
discarding fine details. Subsequently, the diffusion model is trained in the learned
latent space, following a process similar to standard diffusion models but operating
on compressed representations.LDMs have demonstrated remarkable success in vari-
ous applications, including high-resolution image synthesis, text-to-image generation,
image inpainting, and domain translation [36–38].

3.4 Deep Learning in medical imaging

In recent years, deep learning has revolutionized various domains, and medical imaging
is no exception. The advent of deep learning techniques has led to significant ad-
vancements in the analysis, interpretation, and processing of medical images, which are
crucial for diagnosis, treatment planning, and patient monitoring. Traditional methods
in medical imaging often relied on handcrafted features and statistical models, which,
despite their effectiveness, were limited by their ability to generalize across different
datasets and imaging modalities.

Deep learning, particularly with the rise of Convolutional Neural Networks (CNNs),
has transformed the landscape of medical image analysis. These networks have demon-
strated exceptional performance in tasks such as image classification, object detection,
and, most notably, image segmentation. The power of deep learning lies in its ability to
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automatically learn hierarchical features directly from raw data, eliminating the need
for manual feature engineering and allowing models to discover complex patterns in
medical images.

In this section, we conduct a comprehensive review of deep learning methodologies
as applied to medical imaging, with a particular emphasis on image synthesis and image
generation.

In the field of medical imaging, the terms ”image synthesis” and ”image generation”
are frequently used as if they were synonymous, although they entail distinct method-
ologies and applications. Image synthesis involves crafting images based on predefined
parameters or input data, ensuring that the produced images closely align with specific
anatomical structures or characteristics of the intended modality. This may include
tasks such as translating one image type into another (like converting MRI to MRA),
enhancing resolution, transferring styles, or image inpainting. Conversely, image gen-
eration generally encompasses a more adaptable and frequently probabilistic process,
producing new images rooted in learned data patterns. The primary distinction hinges
on the degree of control over the resultsâ€”synthesis is typically more deterministic,
whereas generation incorporates greater variability, often steered by learned distribu-
tions.

3.4.1 Deep Learning in medical image synthesis

Medical imaging plays an indispensable role in the diagnosis and monitoring of treat-
ment in clinical settings by providing detailed and specific information about the human
anatomy and physiology. Various imaging modalities, including Computed Tomography
(CT), X-Ray, and Magnetic Resonance Imaging (MRI), offer unique structural and
functional insights that are essential for making informed clinical decisions. However,
acquiring all these scans is not always feasible as certain modalities, such as CT, pose a
risk of radiation exposure [39], whereas others, like MRI, can be prohibitively expensive
and entail prolonged scanning duration, potentially introducing artifacts [40].

Medical image synthesis is an essential research area in clinical decision-making,
aimed at addressing the difficulties in obtaining multiple imaging modalities for an
accurate clinical workflow. This method is effective in generating an image of a target
modality from an existing source modality among the commonly used medical imaging
contrasts, such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI),
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and positron emission tomography (PET) [7]. Nevertheless, converting between two
imaging modalities is challenging due to the complex and non-linear nature of domain
mappings . Medical image synthesis offers a potential solution to these challenges
by mapping from a given source image modality to a target modality, enabling the
translation of images from one modality to another.

Recent studies have explored various applications of deep learning for image syn-
thesis within medical imaging. Most of these studies utilize additions to two architec-
tures: U-Net or GAN[7]. Examples of modifications made include :-

• Loss Function Enhancements: Incorporating perceptual, adversarial, or task-
specific loss functions to improve the fidelity of synthesized images.

• Attention Mechanisms: Integrating attention modules to focus on critical
features or regions within the images.

• Multi-Modal Fusion: Utilizing multiple imaging modalities as input to improve
synthesis accuracy and robustness.

• Post-Processing Techniques: Adding layers or modules for refinement to ad-
dress specific artifacts or inconsistencies.

• Domain-Specific Customizations: Tailoring models to handle unique chal-
lenges in specific imaging modalities or clinical applications.

U-net

U-net is a modified variant of a convolutional autoencoder, originally proposed for bio-
medical image segmentation in 2015 [41]. The architecture of the U-net is illustrated in
Figure 3.4. This model refines the traditional autoencoder by incorporating skip con-
nections that span a typically symmetric arrangement of encoder and decoder blocks.
Each encoding block transfers its weights and extracted features to the corresponding
decoding block via these ’skip connections’. This mechanism enables the initial encod-
ing blocks to more effectively assimilate global information, while subsequent blocks
focus on capturing local details. The weights shared across these skip connections en-
sure the retention of the global information initially captured. The ability of U-net to
capture both local and global features makes it particularly effective for tasks where
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preserving spatial information is crucial.

Figure 3.4: This figure showcases the architecture of the U-net.

While originally designed for segmentation tasks, U-nets have been adapted for vari-
ous tasks, including image synthesis in medical imaging.Various modifications of the
U-net architecture have been proposed for different medical imaging tasks, particularly
in the realm of image synthesis. Han et .al [42] pioneering work adapted U-net for CT
synthesis from MR images by removing fully connected layers and utilizing shortcut
connections. Jang et al. and Liu et al. [43, 44] transformed CT synthesis into a seg-
mentation problem by using discretized maps and removing skip connections. Dong et
al. [45] addressed the issue of irrelevant high-frequency components in skip connections
by introducing a self-attention strategy for generating CT scans from non-attenuation
corrected PET images, while Hwang et al. [46] opted to use skip connections only in
deeper layers to perform PET attenuation correction. Fu et al. made several improve-
ments over [42], including replacing batch normalization with instance normalization
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and using residual shortcuts in order to synthesize CT scans from MRI. Other research
has focused on modification of more specific components of the network such as the ac-
tivation functions and addition of new layers such as dropout, each modification aimed
at addressing specific issues or improving performance in particular aspects of image
synthesis [47–51].

While U-nets have shown great performance in various medical image synthesis
tasks, they have some limitations that led researchers to explore alternative approaches
like GANs. U-nets often struggle with generating high-frequency details and can pro-
duce overly smooth or blurry outputs, Which is partly due to their reliance on pixel-wise
loss functions, which tend to average out fine details [52]. Additionally, U-nets may
not capture the full range of image variations present in medical data, leading to less
realistic synthesized images. GANs, on the other hand, offer a promising alternative
by introducing an adversarial learning framework that can potentially generate more
realistic and detailed images [53].

GAN

The medical image analysis (MIA) field historically concentrated on supervised learn-
ing, paying less attention to generative tasks. However, this changed drastically with
the advent of generative adversarial networks (GANs). Since their inception in 2014
[34], GANs have become the backbone of both medical image synthesis and generation
due to their ability to generate realistic and diverse images that are often indistinguish-
able from real ones. As discussed in the previous section , GANs consist of two neural
networks, a generator that creates synthetic images and a discriminator that evaluates
their authenticity.

The evolution of GANs in medical image synthesis has seen a diverse array of ar-
chitectures and modifications, each of which addresses specific challenges in the field.
One of the earliest adoption of GANs for a medical image synthesis task utilized a
fully convolutional Autoencoder for the generator and a standard Autoencoder for the
discrimination, employing binary cross-entropy loss [54]. This approach was further
refined by Emami et al. [55] , who introduced conditional GANs (cGANs) for CT
synthesis from MR images, allowing both networks to observe input images and thus
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improving image-to-image translation.
Developing deep learning models for the synthesis of medical images across different
modalities is notably difficult due to the unavoidable misalignment in training data-
sets, stemming from the challenge of acquiring precisely matched images. This problem
was addressed with the advent of CycleGAN, which can handle misalignment and ex-
ecute unpaired image synthesis tasks [56]. Liang et al.’s [57] application of CycleGAN
for CBCT-based synthetic CT utilized a two-generator, two-discriminator architecture
capable of managing misaligned training data pairs.

Several components of the GAN architecture have been consistently revised to ac-
commodate various medical imaging modalities. Some researchers have integrated re-
sidual blocks into Autoencoders, demonstrating particular efficacy for tasks where the
source and target images are similar, such as in CT to CBCT or NAC PET to AC PET
conversions [58–60]. These residual connections help the network focus on learning the
differences between the image pairs. Conversely, dense blocks, which merge outputs
from earlier layers, are preferred for inter-modality synthesis tasks like MR-to-CT and
PET-to-CT, capturing multi-frequency data for enhanced modality mapping [61, 62].

Most advancements in GAN architecture target the Generator. Emami et al. [55]
altered the autoencoder within the generator network and modified ResNet by eliminat-
ing fully connected layers and incorporating transposed convolutional layers to achieve
CT synthesis from MRI. Similarly, Kim et al. [63] combined the U-net framework
with residual training to enhance MR image resolution. Olberg et al. [64] developed a
deep spatial pyramid convolutional structure featuring a spatial pyramid pooling mod-
ule within a U-net architecture, which facilitates multi-scale feature utilization and
supports CT image super-resolution.of Discriminators have stayed relatively straight-
forward, with innovations mainly improving loss functions. Besides common binary
cross-entropy and negative log-likelihood functions, Emami et al. [55] suggested using
least-square loss to enhance stability and output quality.

GANs were quite difficult to train however ,and suffered from various issues such
as overfitting and mode collapse. The introduction of Wasserstein GAN (WGAN) [65]
brought in a novel loss function called Wasserstein loss, as opposed to the Jensen-
Shannon divergence loss commonly used in GANs. This change has enabled easier
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training with smoother gradient flow and faster convergence. Additionally, to tackle
the challenge of vanishing gradients and mode collapse, Ouyang et al. [66] proposed
a feature-matching technique. This method encourages the generator to match the ex-
pected values of features at the discriminator’s intermediate layers, rather than merely
focusing on maximizing the discriminator’s final output.

These diverse methodologies showcase the swift progression and versatility of GAN
architectures in the domain of medical image synthesis. Each alteration is designed to
address distinct challenges, ranging from augmentation of image quality and realism
to the management of misaligned data and the assurance of stable training paradigms.
Nonetheless, despite these advancements, GANs persistently encounter obstacles such
as training complexity and, more critically, the generation of ’artifacts’ or ’phantoms’
in the produced images [67], which poses significant concerns in the context of medical
imaging.

Vision Transformers (ViT)

ViTs have recently gained prominence in medical image synthesis due to their ability
to model long-range dependencies and capture global contextual information without
the inductive biases of CNNs [68]. Unlike CNN-based architectures, which rely on
localized feature extraction, ViTs employ self-attention mechanisms that enable more
effective feature learning for complex medical image synthesis tasks.

One of the earliest applications of ViTs in medical image synthesis involved their
integration with generative models such as Generative Adversarial Networks (GANs)
and Variational Autoencoders (VAEs). For instance, Choudhury et al. [69] proposed an
autoencoder-ViT hybrid for synthesizing cardiac MRI images, demonstrating superior
quality and anatomical coherence compared to CNN-based counterparts. Similarly, Hu
et al. [70] utilized ViTs for multi-branch attention-based medical image synthesis,
showing improved image fidelity in cross-modality transformations such as CT-to-MRI
and PET-to-CT synthesis.

A key advantage of ViTs in medical image synthesis lies in their ability to general-
ize across imaging modalities. Unlike CNNs, which often struggle with domain shifts,
ViTs’ self-attention mechanisms allow them to retain structural integrity across diverse
datasets. Zhao et al. [71] demonstrated this in a study on synthetic CBCT image
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generation, where a ViT-based approach significantly outperformed CNN-based mod-
els in preserving fine anatomical details. Additionally, ViTs have been employed for
multi-view image synthesis in radiotherapy, enhancing the accuracy of sparse-view CT
reconstructions [72].

Despite these advancements, ViTs pose several challenges in medical image syn-
thesis. Their high computational cost limits deployment in resource-constrained set-
tings, and their data-hungry nature necessitates large-scale annotated datasets, which
are often unavailable in medical imaging. Researchers have attempted to address these
issues through hybrid architectures that combine CNNs and ViTs, leveraging the effi-
ciency of CNNs for feature extraction while utilizing ViTs for high-level reasoning [73].
Additionally, model compression techniques such as knowledge distillation and pruning
have been explored to make ViTs more computationally viable for clinical applications.

The rapid adoption of Vision Transformers in medical image synthesis highlights
their potential to revolutionize synthetic data generation. However, ongoing research is
required to optimize their efficiency, reduce computational overhead, and ensure clinical
applicability. As ViTs continue to evolve, they are likely to become a cornerstone of
medical image synthesis, addressing longstanding challenges in dataset augmentation,
cross-modality transformations, and synthetic image realism.

Diffusion models

While GANs have shown remarkable success in image synthesis tasks, including medical
imaging applications, they are not without limitations. GANs often struggle with
mode collapse, where the generator produces limited varieties of outputs, and training
instability, which can lead to unpredictable results [74]. Additionally, GANs may fail
to capture the full data distribution, particularly in complex medical imaging scenarios
[75, 76]. These drawbacks have prompted researchers to explore alternative approaches,
leading to the recent emergence of diffusion models as a promising new direction in
image synthesis and translation tasks. Diffusion models, including Denoising Diffusion
Probabilistic Models (DDPMs) and score-based diffusion models, have gained traction
due to their ability to generate high-quality images with greater stability and diversity
compared to GANs [77]. In the context of medical imaging, these models have shown
particular promise in addressing the challenges of inter-modality image synthesis [78]
. A notable example of this application is the work of Lyu et al. [79], who leveraged
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diffusion models to tackle the complex task of translating MRI images to CT scans. This
research addresses a significant challenge in medical diagnostics, where the limitations
of CT in visualizing soft tissue often require additional MRI scans, leading to increased
time, cost and potential image misalignment issues. In a comprehensive study using
the Gold Atlas male pelvis dataset [80], diffusion models consistently outperformed
CNN and GAN-based methods in terms of Structural Similarity Index Measure (SSIM)
and Peak Signal-to-Noise Ratio (PSNR) [81].

To further illustrate the versatility and potential of diffusion models in medical ima-
ging, recent research has explored their application in addressing the missing modality
problem and improving structure preservation in image translation tasks. Meng et
al. [82] introduced a unified multi-modal conditional score-based generative approach
(UMM-CSGM) to synthesize missing modalities based on available ones. This condi-
tional SDE model [83] uses a single score-based network to learn various cross-modal
conditional distributions. When tested on the BraTS19 dataset [84], which includes
four MRI modalities per subject, UMM-CSGM outperformed state-of-the-art methods
in generating missing-modality images with higher fidelity and better structural in-
formation of brain tissue. Despite the progress in diffusion models, they still encounter
difficulties in preserving structural information when translating images, since details
from the original domain may be lost during the forward diffusion process [78].To ad-
dress this, Li et al. [85] developed the Frequency-Guided Diffusion Model (FGDM),
which uses frequency-domain filters for structure-preserving image translation. FGDM
enables zero-shot learning and can be trained exclusively on target domain data, al-
lowing for direct deployment in source-to-target domain translation without exposure
to source domain data during training. An emerging trend in the field of generative
medical image synthesis addresses the challenges posed by both 2D and 3D data. For in-
stance, Make-A-Volume [86] offers a diffusion-based framework that circumvents issues
such as mode collapse and volumetric inconsistency, by incorporating 2D backbones and
fine-tuning volumetric layers for 3D synthesis, this approach offers a computationally
efficient solution that maintains coherence across volumes while reducing memory over-
heads.Additionally , multimodal approaches such as MedSyn [87] are able to generate
high feildity 3D CT lung images guided by text information. Apart from image trans-
lation tasks , diffusion models have also shown promise in several other image synthesis
tasks such as Super resolution [88, 89] image impainting [90]. These advancements
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demonstrate the ongoing evolution of diffusion models in medical imaging, addressing
critical challenges such as missing modalities and structure preservation, and pushing
the boundaries of what is possible in medical image synthesis and translation.

3.4.2 Deep Learning in medical image generation

Up until lately, most research in medical imaging concentrated on supervised learn-
ing, with generative tasks receiving less attention [91]. However, this direction took a
significant turn with the advent of generative adversarial networks (GANs) and, more
recently, denoising probabilistic diffusion models (DDPM).Generative models can po-
tentially alleviate the limitations of data scarcity and class imbalance in medical image
analysis by generating realistic-looking images from a learned distribution that follows
the real data distribution.

Deep Convolutional Generative Adversarial Networks (DCGAN) [92], designed to
tackle the instability in standard GANs by incorporating deeper generator and discrim-
inator architectures, have been extensively utilized in the field of medical image syn-
thesis. Notably, DCGAN has been applied to generate MRI images of prostate lesions
[93], X-rays of lungs with cancerous nodules [94], and brain MRIs [95]. More advanced
GAN variations, such as Laplacian GAN (LAPGAN) [96], which leverages Laplacian
pyramids for enhanced image quality, and progressive GAN [97], have achieved sig-
nificant success in producing high-resolution images of skin lesions [98]. Utilizing
GAN-generated data for training models, rather than relying solely on traditional data
augmentation techniques like rotation and shearing, can enhance model performance
by up to 16% [91].

Though GANs demonstrate potential in the field of medical image synthesis, they
face issues such as instability, mode collapse, and susceptibility to hallucinations [74].
Additionally, recent research indicates that datasets created by GANs do not possess
the same depth and variety as actual datasets [99]. On the other hand, diffusion models,
despite being relatively new, have been extensively utilized in research for addressing
these challenges, offering the promise of generating datasets that are richer and more
realistic than those produced by GANs [100].

One notable approach, HistoDiffusion [101], leverages latent diffusion models (LDM)
trained on large-scale unlabeled datasets for synthetic augmentation, reducing reliance
on expert annotations. This method demonstrated a 6.4% improvement in classifica-
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tion accuracy on colorectal cancer histopathology images, highlighting the potential of
pre-trained diffusion models in augmenting small labeled datasets.

In the realm of skin disease classification, diffusion models have shown promise
in generating diverse images, especially in data-limited environments. Latent diffu-
sion models were used to produce over 450,000 synthetic images, improving classifier
performance in underrepresented populations [102].

Furthermore, conditional diffusion probabilistic models (cDPM) have been utilized
to generate realistic brain MRIs, providing an alternative to the computationally ex-
pensive GAN-based methods. By conditioning on partial slices of MRIs, the cDPM
can generate full 3D brain volumes that maintain anatomical consistency, significantly
reducing computational requirements while producing high-quality images [103].

Another application of diffusion models is in generating counterfactual images for
anomaly detection in brain images. By combining Denoising Diffusion Probabilistic
Models (DDPM) with Denoising Diffusion Implicit Models (DDIM), researchers have
successfully modified pathological regions while preserving the normal anatomy in sur-
rounding areas [104].

Finally, the use of latent diffusion models in large-scale brain MRI generation has
allowed researchers to synthesize realistic high-resolution brain images, with control
over variables such as age and sex. The creation of synthetic datasets, such as a publicly
available set of 100,000 brain images, demonstrates the scalability and potential of
diffusion models in advancing medical imaging research [105].

These developments underscore the increasingly significant role of diffusion mod-
els and GANs in the realm of medical imaging, as they confront critical challenges
such as data scarcity, modality generation, and the preservation of anatomical accur-
acy.However, gains in model performance from using generated data for augmentation
saturate at higher synthetic-to-real image ratios, underscoring the continued import-
ance of real-world data collection [102].
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Chapter 4

Synthesizing Vascular segmentation from T2
Weighted MRI
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4.1 Introduction

This Chapter is based on the paper [ Deo, Yash, et al. ”Learned Local Attention
Maps for Synthesising Vessel Segmentations from T2 MRI.” International Workshop
on Simulation and Synthesis in Medical Imaging. Cham: Springer Nature Switzerland,
2023.]

4.1 Introduction

A magnetic resonance angiogram (MRA) contains vital information for visualizing the
brain vasculature, including an anastomotic ring of arteries located at the base of the
brain called the circle of Willis (CoW). Multiple different topological variants of the
CoW exist in the general population [106], and certain variants of the CoW can lead to
worse outcomes after stroke [107]. To that end, it would be useful to visualise the main
cerebral blood vessels in large imaging datasets and identify them by CoW phenotype
to understand their relevance to stroke in the general population. Vessel segmenta-
tion from MRA is a well-studied problem with state-of-the-art methods achieving high
quality vessel segmentation results [108] with Dice scores as high as 0.91 [109]. How-
ever, as MRA acquisition may require the injection of contrast agents and has longer
acquisition times, it is not commonly available in population imaging studies. T1-
and T2-weighted MRI scans are the most common MR imaging modalities available
and are used to study the presence of lesions or other abnormal structures in the brain.
While the blood vessels are not explicitly visible in these modalities, they contain latent
information that can be used to synthesise the major vessels in the brain.

Generative adversarial neural networks [34] (GANNs) have seen remarkable success
in the field of image synthesis, with networks like pix2pix [110] achieving impressive
results in paired image-to-image synthesis. GANNs have also been widely used in med-
ical image synthesis in various use cases such as generating T1, T2, and FLAIR images
of the brain using Wasserstein-GANNs [65]. Progressively growing GANNs [111] have
been used for the generation of retinal fundus and brain images. Previous works on
brain MRA synthesis used Steerable GAN (SGAN) [112] to generate MRA from paired
T1 and T2 images, or used starGAN [113] to synthesise MRA given T1, T2 and/or a
PD-weighted MRI as input. GANN-based approaches such as vox2vox [114] have been
used to synthesise segmentations of brain tumour directly from T1, T2, Gadolinium-
enhanced T1, and T2 FLAIR modalities. Most GANN based approaches synthesise
MRA from multiple other MR modalities, and then require the use of a separate seg-
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mentation algorithm, such as U-net (which is popularly accepted as baseline), to seg-
ment the brain vascular structures from the synthesised MRA. As the brain vessels
form a very small portion of the MRA image, attention mechanisms were introduced
to the segmentation algorithms to more accurately capture the small vessels. This has
been achieved in networks such as Attention U-Net [115] or more recently transformer
based networks such as TransU-Net [116].

In spite of their successes, GANs are notoriously hard to train due to various factors
such as training instability and mode collapse [117, 118], while t ransformers, on
the other hand, can be extremely computationally expensive to train due to the self-
attention mechanism (which has a complexity of O(n2) where n is the input sequence
length) and tend to be very data hungry [119, 120]. On top of that, GANNs tend
to produce phantoms (non-existent image features), especially when dealing with very
high-resolution images with intrinsic detail arising from medical imaging [121]. To alle-
viate these issues, we propose multi-task learnable localised attention maps to directly
generate vessel segmentations based on a U-Net architecture, which can capture both
global and local features from the input domain. Our method requires only the T2
modality as input, which eliminates the need of multiple input modalities. The learned
local attention maps enable the trained model to only look for vessels in specific parts
of the image, which drastically decreases the number of parameters required to train
the synthesis network. Our model consequently synthesises more accurate CoW seg-
mentations with fewer parameters than competing GANN-based approaches.

4.2 Methodology

We propose a deep convolutional encoder-decoder model, which is trained in two phases
with multitask learning. At training time, paired T2 images and ground-truth MRA
segmentations are available. Our encoder-decoder network captures both global in-
formation (by encoding input images into a latent space) and local information (by
learning soft attention maps for brain vessels based on MRA segmentations) from the
given input images. During training, the model utilizes a two-phase multitask learning
approach. In the initial phase, the network functions as a conventional auto-encoder,
capturing global features from the input images. In the subsequent phase, an additional
output branch is introduced to generate vessel segmentations from the input images.
Here, a learned local attention map identifies the most probable locations of vessels
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on the T2 images, thereby guiding the network’s focus on pertinent local features to
enhance the synthesized vessel segmentation masks.A multi-task learning approach is
used in the second phase to balance the learning of both the objectives. At inference
time, the model proficiently generates brain vessel segmentation masks using only T2
images.

4.2.1 Data and Pre-processing

The model was trained on the IXI dataset [122], which includes imaging data acquired
using 3T MRI scanners at Hammersmith Hospital. The dataset comprises paired T2-
weighted MRI and MRA scans from 181 patients. The following steps were taken to
preprocess the data before feeding it to the model for training :-

Image Registration To ensure that the T2 and MRA images are spatially aligned,
we first registered the T2 images with the MRA images using the Rigid registration
algorithm provided in the SimpleElastix Python package [123]. This step involves
aligning the images based on their geometric properties, correcting any misalignments
due to patient movement or differences in image acquisition times and ensures that we
have paired T2 and MRA images.

Cropping and Centering The images were centered and cropped from their original
resolution of 512×512 pixels to a resolution of 400×400 pixels. This cropping focuses on
the region of interest (the brain) and removes extraneous parts of the images, reducing
computational load and improving model efficiency.

Intensity Normalization To standardize the intensity values across all images, we
used min-max normalization as a pre-processing step. This step adjusts the pixel in-
tensity values to a common scale, ensuring that variations in brightness and contrast do
not affect the model’s performance. Normalization is crucial for handling the inherent
variability in MRI scans.

Ground-Truth Segmentation Generation Ground-truth segmentations of cereb-
ral blood vessels were generated from MRA images using a residual U-Net [2]. This
deep learning model was trained to accurately delineate the blood vessels in the MRA
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images, providing segmentation masks that serve as the basis for training the synthesis
model.

Dilation of Segmentations The fine vessel segmentations obtained from the re-
sidual U-Net were expanded by 10 pixels in each direction to create a more inflated
/ dilated version of the vessel segmentation masks. The optimal dilation width was
determined through experimentation.

Creation of Local Attention Maps To generate the local attention map, the dot
product is computed between the pairs of the dilated segmentation masks obtained
from the previous step and the corresponding T2 slices, as illustrated in Figure. 5.3.
These maps identify regions within the T2 images that contain blood vessels and serve
as local attention maps during the training phase of our model.

Figure 4.1: This figure demonstrates the method of creating local attention masks.
Initially, a binary vessel mask is derived from the MRA using a segmentation algorithm
[2], then the segmentations are dilated by extending the binary mask by a specified
number of pixels in every direction. Subsequently, a dot product of this dilation with
the corresponding T2 slice is calculated to form the local attention mask.
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4.2.2 Network Architecture

The proposed model follows the general architecture of the U-Net [41] with one encoder
branch and two output branches (Figure. 4.2). The encoder takes the T2 images (400×
400) as input and consists of 4 Encoding blocks followed by 3 Residual blocks , similar
to the vox2vox-model [114] (The residual blocks are defined the same as in [124]). Each
Encoding block consists of three strided convolution layers followed by a max-pooling
layer where each convolutional layer is also followed by an instance normalization layer
[125].The dimension of the latent space after the encoding branch is 50×50 . The latent
space branches out into two output branches: the decoding branch and the synthesis
branch (the decoding brach is used to reconstruct the input image and the synthesis
branch is used to synthesize the vessel segmentation). Both output branches consists
of 4 decoding blocks which follow the same structure as the encoding blocks except
the max-pooling layer is swapped with an up-sampling layer . The decoding blocks
in the synthesis branch receive skip connections from the corresponding blocks in the
encoding branch .

4.2.3 Training and Losses

The network is trained in two phases to effectively capture both the global and local
features required to synthesise the vessels from T2 images.

Phase 1:

We pre-train the network on T2 images by first freezing the synthesis branch and only
training the decoding branch, effectively training an autoencoder for T2 images. The
network is trained with an early stopping criteria based on the loss slope. The only
loss calculated in this stage is the T2 reconstruction loss from the decoder branch.The
loss function used is L1 and is specified below where XT2 is the ground truth T2 image
and X̂T2 is the generated T2 image:

Lphase 1 = MAE(XT2 , X̂T2) (4.1)
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Figure 4.2: Overview of our network architecture and training process. The encoder
takes T2-weighted MRI (400×400) as input and compresses it into a smaller latent space
(50 × 50) which then splits into two branches , the synthesis branch (which generates
the segmentation) and decoding branch (which reconstructs input). The training takes
place in two phases , in the first phase (left) the network is trained as a standard
auto-encoder with only the encoding and decoding branch with the reconstruction loss
calculated over the decoding branch output. In the second phase (right) both the
synthesis and decoding branch are trained simultaneously. The output of the synthesis
branch is dilated and multiplied with the output of the decoding branch to generate an
attention mask during training . The reconstruction loss is then calculated over this
attention mask and the segmentation loss is calculated over the output of the synthesis
branch.

Phase 2:

After we complete the pre-training step (Phase 1) , we unfreeze the synthesis branch
and train it together with the decoding branch. Although the decoding branch is being
trained in this step, the loss calculated for this branch is not the reconstruction loss
(as used in Phase 1), but a local loss, which is calculated over the dot product of the
output of the decoding branch and the dilated segmentation obtained from the output
of the synthesis branch (shown in Figure. 4.2). The loss function used to calculate local
loss is still MAE and can be formulated as shown in Equation 4.2 where XT2L is the
ground-truth local attention mask and X̂T2L is the output local attention mask.

Lloc = MAE(XT2L, X̂T2L) (4.2)
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For the synthesis branch, on the other hand, we calculate the segmentation loss
over the synthesized binary mask segmentation using the DICE score as shown in
Equation 4.3 where XGT is the ground truth segmentation and XSY N is the synthesized
segmentation.

Lloc = Dice(XGT , X̂SY N ) (4.3)

Multi Task Learning for Optimal Training: Developing models with multiple
outputs poses substantial challenges. Harmonizing the learning process across various
tasks can prove to be difficult, as tasks can compete for model capacity, exhibit dif-
ferent levels of complexity, or require different learning rates, Additionally, the naive
amalgamation of loss functions can yield suboptimal solutions, with certain tasks over-
shadowing others or the model failing to encapsulate critical interrelationships between
tasks [126, 127]. These challenges necessitate the exploration of multitask learning
(MTL) approaches/algorithms, which offer methods to address these issues and optim-
ize performance across all tasks simultaneously.Hence , To effectively train our model
across both tasks (reconstruction and synthesis), we employ a multitask learning al-
gorithm (MTL) to simultaneously converge the outputs of both branches. Multitask
learning involves the simultaneous training of a single model to perform multiple tasks,
leveraging shared information to enhance efficiency and performance. Research has
established that a single model with multiple complementary tasks (outputs) is more
efficient and yields performance on par with or superior to that of training separate
models for each task, by sharing information across tasks [128, 129]. However, in
scenarios where the tasks contrast significantly and one task is substantially harder
than the other, deep learning models tend to ’abandon’ the difficult task and focus
on optimizing the easier one [130]. This is particularly evident in our case, where
the decoding branch undertakes a considerably easier task compared to the synthesis
branch, causing the model to neglect optimization of the synthesis branch. This is
illustrated in Figure. 4.3, which compares the training loss of our model for the two
outputs (Reconstruction and Synthesis) with and without the application of MTL.

The landscape of MTL approaches is diverse, ranging from simple to highly sophist-
icated methods. At the simpler end of the spectrum, we find hard parameter sharing,
where a single shared network is used for all tasks with task-specific output layers, and
soft parameter sharing, where each task has its own model but parameters are regu-
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Figure 4.3: Comparison of Model Loss with and without MTL: The left graph shows
the loss curves for both segmentation and reconstruction outputs when trained with
equal weights, illustrating that the model quickly abandons the more difficult segment-
ation(Synthesis) task.In contrast, as shown in the graph on the right, applying MTL
[3] helps balance the optimization of both tasks.

larized to encourage similarity [131, 132]. These methods, while straightforward to
implement, can struggle with conflicting tasks or may not fully capture complex task
relationships. More advanced approaches have emerged to address these limitations.
NashMTL [133] takes a game-theoretic approach, formulating MTL as a multi-player
game and seeking a Nash Equilibrium, which allows it to handle non-convex loss land-
scapes and adapt to changing task difficulties. CAGrad (Conflict-Averse Gradient des-
cent) [134] goes a step further by explicitly finding a compromise between task-specific
gradients, particularly useful when tasks conflict significantly. However, these meth-
ods can be computationally intensive and may struggle with very heterogeneous tasks.
An additional well-regarded and theoretically grounded approach is uncertainty-based
MTL [3], utilizing a Bayesian framework to automatically balance tasks by modeling
task-specific uncertainties. We conduct a comparative analysis of NashMTL, CAGrad,
and uncertainty-based MTL using our model, as detailed in Table 4.1, to ascertain
the most suitable methodology for our current tasks. The results indicate that, al-
though all approaches generally achieve effective task balancing and performance, the
uncertainty-based method demonstrates superior performance on the synthesis task,
aligning with the primary aim of this paper. As the best performing approach was the
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uncertainty-based MTL, where both the losses are weighted based on the assumption of
homoscedastic uncertainty for each task , we use this approach to train our multi-task
model in phase 2.

Table 4.1: Performance across Synthesis and Reconstruction tasks across different MTL
optimization algorithms

MTL Approach Synthesis Task (Dice score) Reconstruction Task (SSIM)
NashMTL 0.75 0.93
CAGrad 0.76 0.88
Uncertainty based 0.79 0.89

Local Attention Mask The primary rationale for the implementation of local at-
tention maps is to direct the network’s focus to regions within the input T2 image
that likely harbor information crucial for the synthesis of vessels. This is achieved by
computing the dot product between the synthesized vessel mask and the reconstruc-
ted input image during the training process. Nonetheless, given that the output of
the segmentation branch encapsulates fine vessel details, the small dimensions of the
vessels render the segmentation masks inadequate for the generation of local attention
maps. To address this, we dilate these vessel segments by 10 pixels in each direction,
thereby forming a local attention mask. The optimal dilation width was determined
through empirical experimentation, as depicted in Table 4.3. Subsequently, we con-
duct pixel-wise multiplication of this local attention mask with the decoder output to
derive a local attention map, as illustrated in Figure. 4.1. During the model training
phase, the local attention map is derived by performing dilation on the output of the
synthesis branch, followed by the computation of the dot product with the output of
the reconstruction branch. This generated local attention map is evaluated against
ground truth local attention maps to compute the loss.The utilization of a local atten-
tion mask compels the network to exclusively learn from a minimal portion of the input
image, containing relevant information about the blood vessels, whilst disregarding the
extraneous parts. This characteristic significantly reduces the number of parameters
required for model training. Moreover, the intrinsic interdependence between these
tasks facilitates a synergetic interaction between them, mitigating the otherwise stark
contrast between them and enabling Multi-Task Learning (MTL) algorithms to con-
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verge more efficiently across both tasks. This assertion is substantiated through an
experimental setup wherein the model is trained using the uncertainty-based MTL ap-
proach, both with and without the incorporation of the local attention mask. In the
initial configuration, the reconstruction loss is computed over the entire image, whereas
in the subsequent configuration, the reconstruction loss is evaluated exclusively over
the local attention mask. (Figure. 4.4).

Figure 4.4: A comparative analysis of training losses and logarithmic variances for
both tasks, with and without the application of local attention maps. The blue line
delineates the segmentation loss, whereas the orange line illustrates the reconstruction
loss. The left-hand graphs depict the variations in loss and logarithmic variance when
the reconstruction loss is computed over the entire image. In contrast, the right-hand
graphs exhibit the variations in loss and logarithmic variance when the reconstruction
loss is assessed within the confines of the local attention mask.

In the end , the final loss function for the phase 2 of training of our model is
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described in (4.4), where W are the model parameters and we interpret minimising the
loss with respect to σ1 and σ2 as learning the relative weights for the losses Lseg and
Lloc adaptively. We used Dice score as the loss for Lseg and MAE as the loss for Lloc

Lphase 2 = 1
2σ2

1
Lseg(W) + 1

2σ2
2
Lloc(W) + log σ1σ2 (4.4)

4.3 Experiments and results

4.3.1 Implementation Details

All the models were implemented in TensorFlow 2.8 and Pytorch (for nnU-Net) and
Python 3. Out of the 181 cases in the dataset we used 150 for training and 31 for
testing and validation. All the models were pre-trained on T2 images and grid search
was used to optimise the following hyperparameters: (1) batch size, (2) learning rate,
(3) number of epochs, and (4) momentum. To train the transformer network, we first
used the parameters recommended in [116].

4.3.2 Quantitative Results

To evaluate the results of our model against other methods, we used the segmentation
metrics of Dice score and Hausdorff distance (hd95). The results were averaged over
the 3D volumes of the 11 leave-out cases and are shown in Table 4.2. Our method
clearly outperforms conventional GANN-based synthesis methods, such as vox2vox, and
also performs slightly better than state-of-the-art segmentation models like transformer
U-Net [116] and nnU-net [135], while also being easier to train with fewer trainable
parameters. We experimented with training our model with different input modalities,
which showed that using only T1 as an input had the worst performance (average
dice 0.64 ±0.04) while the performance of using only T2 (average dice 0.79 ±0.04)
and both T1 + T2 (average dice 0.78 ±0.05) was essentially the same, with T1 +
T2 requiring additional parameters (33.4 million) compared to using just T2 (26.7
million) as we would need an additional decoding branch for the T1 decoder. A crucial
hyperparameter in our model is the dilation width of the segmentations to generate the
local attention maps, which was optimised in a separate experiment. (Table 4.3).
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Table 4.2: Accuracy of synthesised vessel segmentation masks in a test set of 11 leave-
out cases
Model Model Dice HD95 Model Type

params. (×106) (95% CI) (95% CI)
Our model 26.7 0.79 ±0.03 9.1 ±0.5 Segmentation/synthesis
Transformer U-Net [116] 105.8 0.71 ±0.04 10.4 ±0.5 Segmentation
nnU-Net [135] 127.8 0.68 ±0.03 9.3 ±0.4 Segmentation
Vox2vox [114] 78.8 0.67 ±0.05 17.2 ±1.4 Segmentation/synthesis
Pix2pix [110] 36.9 0.55 ±0.04 23.1 ±3.0 Synthesis
U-Net [41] (base) 9.1 0.57 ±0.05 42.6 ±4.2 Segmentation

Table 4.3: Difference in loss with different values of dilation for the local attention mask
Attention mechanism used Dice (95% CI) Area covered by mask
No local attention mask 0.62 ±0.04 NA
Mask with no dilation 0.59 ±0.04 1.5%
Mask with dilation by 5 pixels 0.74 ±0.03 8.5%
Mask with dilation by 10 pixels 0.79 ±0.03 18%
Mask with dilation by 15 pixels 0.75 ±0.02 28%
Mask with dilation by 20 pixels 0.75 ±0.03 37%

4.3.3 Qualitative Results

Figure. 4.6 shows a qualitative comparison of our method against pix2pix, vox2vox,
U-Net, nnU-net, and transformer U-Net for two samples from the unseen test set. It
can be observed that pix2pix and the base U-Net are only able to capture the overall
structure of the CoW with a lot of noise. The vox2vox model synthesises the vessels
slightly better, but is still unable to capture the finer details and suffers from noise.
The nnU-net and transformer U-Net are able to synthesise the vessels with high quality,
but struggle to synthesise smaller vessels such as the posterior communicating arteries
(PComA) in the first case. An interesting observation can be made in the second
case, where the ground truth has faults in the segmentation (especially in the posterior
circulation) , the Transformer U-Net, nnU-net, and our model attempt to fix these
faults by synthesising a continuous PCA, but our model does better in restoring vessel
continuity. Figure. 4.4 shows the CoW synthesis results for the best case, worst case,
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Figure 4.5: CoW synthesis results compared between models. Pix2pix and U-Net are
able to capture the overall structure of the Cow but with a lot of noise. Vox2vox
performs comparatively better, but still suffers from noise in the outputs. NnU-Net,
Transformer U-Net and our method show good results with our method capturing more
details and dealing better with noise.

Figure 4.6: CoW synthesis results for the average case, the best case, and the worst
case in our unseen test set.

Figure 4.7: Local attention maps learned by the network compared against the ground
truth local attention maps.

and median case scenarios. It can be observed that in the worst case the model struggles
to synthesise the smaller vessels towards the end of the posterior cerebral circulation,
whereas in the median case scenario most of the major vessels are synthesised with only
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the small PComA artery missing. The best case is that all the major arteries of the
CoW are synthesised while also removing noise from the input image.

4.3.4 Limitations

While our method outperforms state-of-the-art approaches with a much smaller number
of trainable parameters and is able to generated the complete structure of the CoW,
it can be seen that in some cases the model can struggle to generate some of the
finer vessels branching from the main arteries (especially the posterior communicating
arteries). This could be either because the input data is of insufficient resolution (T2
images were acquired at 3T) or because the T2 modality does not contain information
that could be used to synthesise the anterior circulation. It is possible that additional
MR modalities, such as multi-view T1, or a fully-3D neural network architecture could
add more information about the posterior and anterior vessels and recover a complete
CoW.

4.4 Conclusion

We proposed a multi-output encoder-decoder -based network that learned to effectively
synthesize vessels from only T2-weighted MRI using local attention maps and multitask
learning. The qualitative and quantitative results show that our method outperformed
both the state-of-the-art and conventional segmentation/synthesis algorithms, while at
the same time being easier to train with fewer parameters. Future work could invovle
additional enhansmenets to the model such as convering the 2D model to a fully 3D
synthesis model to achieve even better connectivity of the CoW structure.

Addendum

This addendum addresses specific questions raised about the chapter ”Synthesizing
Vascular Segmentation from T2 Weighted MRI.”

Why is GANN used as an acronym, and not GAN? The term ”Generative
Adversarial Neural Network (GANN)” is used in this context to emphasize the neural
network aspect of the methodology. While ”GAN” is widely recognized, using GANN
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provides clarity in distinguishing it from broader GAN-based frameworks and highlights
the architectural nuances explored in this work.

Why is the problem called vessel synthesis and not just vessel segment-
ation? Vessel synthesis involves generating segmentation masks directly from T2-
weighted MRI, bypassing the intermediate step of creating an MRA. This broader
definition captures the generative nature of the task, which integrates aspects of both
synthesis and segmentation, as opposed to traditional segmentation that operates on
pre-existing MRAs.

Page 53, Creation of Local Attention Maps: Not really a dot product?
Isnt this a Hadamard (elementwise) product? Indeed, the operation described
corresponds to a Hadamard (elementwise) product rather than a dot product. The
description has been amended in this addendum to ensure terminological precision.

Why does the network in phase 1 not have any shortcut connections? Com-
pressing to 50 × 50 is not too little? The exclusion of shortcut connections in
phase 1 is intentional to ensure that the encoder-decoder framework learns robust fea-
ture representations without relying on direct residual connections. The latent space
of 50 × 50 balances the trade-off between dimensionality reduction and preserving suf-
ficient information for subsequent decoding tasks. Empirical results validated that this
compression retained the necessary details for accurate synthesis in later phases.

Why do you have a residual connection from the decoder to the segmenta-
tion branch? The residual connection from the decoder to the segmentation branch
enhances the network's ability to recover fine-grained vessel details by integrating in-
formation from both global encoding and local decoding pathways. This connection
ensures that the synthesis branch benefits from both reconstructed context and learned
attention.

Can you explain the rationale for the dilation a bit better? Dilation expands
vessel segmentations to encompass adjacent regions, mitigating the sparsity of vascular
features and providing the network with broader spatial context. This dilation was
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optimized experimentally to balance vessel prominence and noise suppression, with a
width of 10 pixels yielding the best performance.

Multi-task approaches. What are you trying to achieve? The multi-task
learning approach aims to jointly optimize reconstruction and segmentation tasks, lever-
aging shared representations to improve model efficiency and accuracy. If multi-task
learning is not utilized , the network typically tends to favor optimizing the easier task
while ignoring the hard task.

Why do you think masking for attention makes it better? Masking focuses
the network’s learning on regions containing vessels, reducing the influence of irrelevant
background features. This targeted learning enhances the precision of vessel synthesis
while lowering computational overhead by narrowing the models attention to areas of
interest.
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Chapter 5

Shape-guided conditional latent diffusion models
for synthesizing brain vasculature
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5.1 Introduction

This Section is based on the paper [ Deo, Yash et.al. ”Shape-guided conditional
latent diffusion models for synthesising brain vasculature.” In International Confer-
ence on Medical Image Computing and Computer-Assisted Intervention, pp. 164-173.
Cham: Springer Nature Switzerland, 2023.]

5.1 Introduction

The Circle of Willis (CoW) comprises a complex network of cerebral arteries that
plays a critical role in the supply of blood to the brain. The constituent arteries and
their branches provide a redundant route for blood flow in the event of occlusion or
stenosis of the major vessels, ensuring continuous cerebral perfusion and mitigating the
risk of ischaemic events [107]. However, the structure of the CoW is not consistent
between individuals and dozens of anatomical variants exist in the general population
[136, 137]. Understanding the differences between these variants is essential to study
cerebrovascular diseases, predict disease progression, and improve clinical interventions.
Previous studies have attempted to classify and describe the anatomical variations of
CoW using categorisations such as the Lippert and Pabst system [136, 137]. However,
more than 80% of the general population has one of the three most common CoW
configurations [138]. The study of anatomical heterogeneity in CoW is limited by the
size of available angiographic research data sets, which may only contain a handful of
examples of all but the most common phenotypes. The goal of this study is to develop a
generative model for CoW segmentations conditioned on anatomical phenotype. Such
a model could be used to generate large anatomically realistic virtual cohorts of brain
vasculature, and the less common CoW phenotypes can be augmented and explored
in greater numbers. Synthesised virtual cohorts of brain vasculature may subsequently
be used for training deep learning algorithms on related tasks (e.g. segmenting brain
vasculature, classification of CoW phenotype, etc.), or performing in-silico trials.

Generative adversarial networks (GANs) [34] and other generative models have
demonstrated success in the synthesis of medical images, including the synthesis of
blood vessels and other anatomical structures. However, to the best of our knowledge,
no previous study has explored these generative models for synthesising different CoW
configurations. Additionally, no previous study has explored the controllable synthesis
of different CoW configurations conditioned on desired phenotypes. The synthesis of
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narrow tubular structures such as blood vessels using conventional generative models
is a challenge. Our study builds upon the foundations of generative models in med-
ical imaging and focusses on utilising a conditional latent diffusion model to generate
visually realistic CoW configurations with controlled anatomical variations (i.e., by con-
ditioning relevant anatomical information such as CoW phenotypes). Medical images
like brain magnetic resonance angiograms (MRA’s) tend to be high-dimensional and
as a result are prohibitively memory intensive for generative models. Diffusion models
and latent diffusion models (LDM) have recently been used for medical image genera-
tion [139] and have been shown to outperform GANs in medical image synthesis [140].
Diffusion models have also been successfully used to generate synthetic MRIs [141–143]
but to the best of our knowledge there are no studies that use latent diffusion models
or diffusion models to generate synthetic brain vasculature and MRA.

We propose a conditional latent diffusion model that learns latent embeddings of
brain vasculature and, during inference, samples from the learnt latent space to synthes-
ise realistic brain vasculature. We incorporate class, shape, and anatomical guidance
as conditioning factors in our latent diffusion model, allowing the vessels to retain their
shape and allowing precise control over the generated CoW variations. The diffusion
model is conditioned to generate different anatomical variants of the posterior cerebral
circulation based on the presence or absence of the Peripheral Communiation artery
(PComA) [5.1] compares MRAs of two patients with and without PComA]. We evaluate
the performance of our model using quantitative metrics such as multiscale structural
similarity index (MS-SSIM) [144] and Fr’echet inception distance (FID) [145]. Com-
parative analyses are conducted against alternative generative architectures, including
a 3D GAN and a 3D variational auto-encoder (VAE), to assess the superiority of our
proposed method in reproducing CoW variations.

5.2 Methodology

5.2.1 Data and Pre-processing.

We trained our model on the publicly available IXI dataset [122] using the 181 3T MRA
scans acquired at the Hammersmith Hospital, London. Images were centred, cropped
from 512 × 512 × 100 to 256 × 256 × 60, and the intensity normalised. We then used
a Residual U-net [146] to extract vessel segmentations from the MRA. The authors
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Figure 5.1: Figure showing presence and absence of PComA in the MRA of two patients

manually labelled each case with the presence / absence of one or both peripheral
communicating arteries in the CoW. Class 1 includes cases where both the peripheral
communication arteries are present (PComA), Class 2 includes cases with only one
PComA, while Class 3 includes cases where both PComAs are absent.

5.2.2 Latent Diffusion Model.

Recent advances in diffusion models for medical image generation have achieved remark-
able success. Diffusion models define a Markov chain of diffusion steps to add random
Gaussian noise to the observed data sequentially and then learn to reverse the diffusion
process to construct new samples from the noise. Although effective, vanilla diffusion
models can be computationally expensive when the input data is of high dimensionality
in image space (256 × 256 × 60 in our study). Hence, we employ the latent diffusion
model (LDM), comprising a pretrained autoencoder and a diffusion model. The au-
toencoder learns a lower-dimensional latent embedding of the brain vasculature, while
the diffusion model focuses on modelling the high-level semantic representations in the
latent space efficiently. We employ a depth autoencoder for this objective, facilitating
compression of the input image strictly along the channel dimension, thereby eschewing
any max pooling or dimensional reduction in the X or Y axes. This process transforms
the image from its original dimensionality of 256 × 256 × 60 to 256 × 256 × 1. Despite
the challenge presented by such substantial compression, this is effectively achieved
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Figure 5.2: This figure shows the compressed latent space for two different input images

due to the nature of our dataset, which consists solely of binary masks of brain ves-
sels. The resultant compressed latent space closely resembles the Maximum Intensity
Projection of the image, preserving certain depth information and manifesting almost
as a binary mask. Figure 5.2 demonstrates the appearance of the latent space for two
distinct input images. Initially, the autoencoder undergoes a pretraining phase. Upon
successful training of the compression model, latent representations derived from the
training dataset are utilized as inputs to the diffusion model for subsequent analysis
and generation.

The diffusion and reverse diffusion process is the same as Following [140] and what
is described in the background section of this chapter. The simplified evidence lower
bound (ELBO) loss to optimise the diffusion model by Ho et al. [140] can be formulated
as a score-matching task where the neural network predicts the actual noise ϵ added to
the observed data. The resulting loss function is

Lθ := Ex0,t,Cϵ∼N(0,1)
[
∥ϵ − ϵθ (xt, t, Cclass, CAnt, CShape)∥2

]

where the conditional variables Cclass, CAnt, and CShape are employed for condi-
tional generation. Specifically, Cclass denotes the class variable responsible for de-
termining the class to be generated, while CAnt and CShape serve as anatomical and
morphological guidance conditions, respectively.

We employ a model with a U-net-based architecture as the diffusion model. Our
model has 5 encoding blocks and 5 decoding blocks with skip connections between
the corresponding encoding and decoding blocks. We replace the simple convolution
layers in the encoding and decoding blocks with a residual block followed by a multihead
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Figure 5.3: Overview of the latent diffusion process. The first panel (in blue) shows
the forward diffusion process where noise is gradually added to the image. The second
and third panels (in green) show the network architecute/reverse diffusion process and
the inclusion of the conditioning variables in the reverse diffusion process.

attention layer to limit information loss in the latent space. Each encoding and decoding
block takes the class category (based on CoW phenotypes) as an additional conditional
input, while, only the decoding blocks take shape and anatomy features as additional
conditional inputs.

5.2.3 Shape and Anatomy Guidance :-

Angiographic medical images exhibit intricate anatomical structures, particularly the
small vessels in the peripheral cerebral vasculature. Preserving anatomical integrity
becomes crucial in the generation of realistic and accurately depicted vessels. However,
diffusion models often face challenges in faithfully representing the anatomical struc-
ture, which can be attributed to their learning and sampling processes that are heavily
based on probability density functions [147]. Additionally, latent space models are
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susceptible to noise and information loss within the latent space [56, 148]. To this end,
we incorporate shape and anatomy guidance to improve the performance of our CoW
generation.

Shape Guidance

We introduce a shape guiding component to our network to primarily preserve the
maintain the shape and continuity of the vessels . Previous studies have demonstrated
that the inclusion of geometric and shape priors can improve performance in medical
image synthesis [149, 150]. We introduce shape guidance by incorporating class-wise
Hu and Zernike moments as conditioning variables during model training [151, 152].
This choice stems from the nature of our image dataset, which comprises both vessel
and background regions. By including these shape-related moments as conditions, we
aim to better preserve vascular structures within the synthesised images.

Hu Moments Hu moments, introduced by Ming-Kuei Hu in 1962 [151], are a set of
seven invariant moments derived from the second and third order central moments of an
image. These moments are invariant under image transformations such as translation,
scaling, and rotation, making them powerful descriptors for shape analysis. The central
moments of a 2D image I(x, y) are given by:

µpq =
∑

x

∑
y

(x − x̄)p(y − ȳ)qI(x, y)

where x̄ and ȳ are the coordinates of the centroid of the image:

x̄ =
∑

x

∑
y xI(x, y)∑

x

∑
y I(x, y) , ȳ =

∑
x

∑
yI(x, y)∑

x

∑
y I(x, y)
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Using these central moments, seven invariant moments are defined:

ϕ1 = µ20 + µ02

ϕ2 = (µ20 − µ02)2 + 4µ2
11

ϕ3 = (µ30 − 3µ12)2 + (3µ21 − µ03)2

ϕ4 = (µ30 + µ12)2 + (µ21 + µ03)2

ϕ5 = (µ30 − 3µ12)(µ30 + µ12)[(µ30 + µ12)2 − 3(µ21 + µ03)2]

+ (3µ21 − µ03)(µ21 + µ03)[3(µ30 + µ12)2 − (µ21 + µ03)2]

ϕ6 = (µ20 − µ02)[(µ30 + µ12)2 − (µ21 + µ03)2]

+ 4µ11(µ30 + µ12)(µ21 + µ03)

ϕ7 = (3µ21 − µ03)(µ30 + µ12)[(µ30 + µ12)2 − 3(µ21 + µ03)2]

− (µ30 − 3µ12)(µ21 + µ03)[3(µ30 + µ12)2 − (µ21 + µ03)2]

These moments are particularly effective for binary or grayscale images where shape
is the primary characteristic of interest. This makes them well-suited for analyzing
vessel masks because they are invariant to rotation, scaling, and translation, making
them robust to changes in viewpoint or image orientation.

Zernike Moments Zernike moments [152] are a set of orthogonal moments based on
Zernike polynomials, used for image analysis due to their robustness to noise and ability
to represent image features compactly and accurately. Zernike polynomials Vnm(x, y)
are defined on the unit disk (a circular region of radius 1) and are given by:

Vnm(x, y) = Rnm(ρ)eimθ

where ρ =
√

x2 + y2 is the radial distance, θ = tan−1(y/x) is the angular component,
and Rnm(ρ) is the radial polynomial defined as:

Rnm(ρ) =
(n−|m|)/2∑

s=0
(−1)s (n − s)!

s!((n + |m|)/2 − s)!((n − |m|)/2 − s)!ρ
n−2s

The Zernike moments of an image I(x, y) are calculated as:

Znm = n + 1
π

∑
x

∑
y

I(x, y)V ∗
nm(x, y)

where V ∗
nm(x, y) is the complex conjugate of the Zernike polynomial. Zernike moments

are orthogonal, meaning that each moment captures unique information about the im-
age, reducing redundancy. The magnitude of Zernike moments is invariant to rotation,
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making them ideal for analyzing objects that may appear in different orientations. Fur-
thermore, Zernike moments are less sensitive to noise compared to other moment-based
descriptors, providing stable and reliable shape representation.

Zernike moments are particularly advantageous for analyzing vessel masks due to
their ability to capture detailed information about the shape and structure of the
vessels. This is crucial for differentiating between various vascular patterns. Their
robustness to noise and rotation ensures consistent analysis even in varying imaging
conditions. Additionally, Zernike moments provide a compact representation of the
image, making it easier to store and process the shape descriptors for large datasets.

Both Hu and Zernike moments are powerful tools for shape analysis in medical
imaging. Hu moments offer simplicity and invariance to basic transformations, making
them suitable for straightforward shape characterization such as the mostly binary
nature of our latent space used for training. Zernike moments, with their orthogonality
and robustness, provide a more detailed and noise-resistant representation of complex
shapes like vascular structures which is useful as even tough our latent space looks
binary there is often noise introduce during the encoding process.

To incorporate the Hu and Zernike moments as conditions, we first calculate the
Hu and Zernike moments for each instance of each class, then the class-wise mean
is taken and the resulting Hu and Zernike moments for each class are concatenated
with each other. An embedding layer comprises a dense layer with a SiLU activation
function [153] and a reshape layer to ensure that the data are reshaped into a suitable
format for integration as a condition within the decoding branches.

Anatomy Guidance

To further enhance the performance of our model, we incorporate anatomy guidance
using principal component analysis (PCA) on images from each class. As the major-
ity branches within the CoW exhibit a consistent configuration with minor variations
attributed to the presence or absence of specific branches, the model tends to capture
an average or mean representation of the CoW and generates synthetic images with
very little variation between them. This characteristic becomes significant due to the
limited number of images available per class. To address this, we use PCA compon-
ents as conditions to enable the model to discern distinctive features specific to each
class. We extract seven principal components along with the mean component for
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Figure 5.4: Row 1: Comparison of output of the latent diffusion network with and
without using shape guidance as conditional input. In each column, the image on
the left shows the output of our latent diffusion model and the image on the right
shows the result of passing the output through the pretrained decoder and obtaining
the Maximum Intensity Projection (MIP); Row 2: compares the output of the network
with and without using anatomy guidance as conditional input. The generated im-
ages displayed on the right, which are produced without the incorporation of anatomy
guidance, consistently exhibit a similar variation of the circle of Willis. Conversely,
the images presented on the left, which are generated with the inclusion of anatomy
guidance, demonstrate a greater degree of realism and variability in the synthesised
circle of Willis variations.

each class, concatenate them, and reshape the data. The resulting features are then
passed through a multi-head attention block where each principal feature is treated as
a ’token’, followed by a dense layer and another reshape operation for integration into
the decoding branches.

Figure. 5.4 shows the effect of incorporating shape moments and PCA as conditions
in our diffusion process. By incorporating shape and anatomy guidance conditions
during the training of our diffusion model, we leverage specific features and knowledge
related to the vessel structures and the general anatomy of the images. This approach
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promotes the generation of more realistic images, contributing to an improved anatom-
ical fidelity.

5.3 Results and Discussion

5.3.1 Implementation Details.

All models were implemented in TensorFlow 2.8 and Python 3. For the forward diffusion
process we use a linear noise schedule with 1000 time steps. The model was trained for
2000 epochs with a learning rate of 0.0005 on a Nvidia Tesla T4 GPU and 38 Gb of
RAM with Adam optimiser.

5.3.2 Results and Discussion.

To assess the performance of our model, we compared it against two established condi-
tional generative models: 3D C-VAE [33] and a 3D-α-WGAN [154] along with a vanilla
LDM and an LDM with shape guidance. We use the FID score to measure the realism
of the generated vasculature. To calculate FID we used a pre-trained InceptionV3 as
a feature extractor. A lower FID score indicates higher perceptual image quality. In
addition, we used MS-SSIM and 4-G-R SSIM to measure the quality of the generated
images [155, 156]. MS-SSIM and 4-G-R SSIM are commonly used to assess the quality
of synthesised images. Typically, a higher score is indicative of better image quality,
implying a closer resemblance between the synthesised CoW and the ground truth ref-
erence. MS-SSIM and 4-G-R SSIM were calculated over 60 synthesised CoW cases for
each model. Table 1 presents the evaluation scores achieved by our model, 3D CVAE,
and the 3D-α-WGAN and the above metrics. As seen in Table 5.1, our model demon-
strates a better FID score, suggesting that the distribution of CoW variants synthesised
by our model is closer to that observed in real CoW data, compared to the other models.
Additionally, our model achieves higher MS-SSIM and 4-G-R SSIM scores compared
to the other methods. These higher scores indicate better image quality, implying that
the generated CoW samples resemble the real CoW images more closely. Figure. 5.5
provides a qualitative comparison among the generated samples obtained from the three
models to provide additional context to the quantitative results presented in Table 1.
As the output of each model is a 3D vascular structure, maximum intensity projections
(MIP) over the Z-axis which condense the volumetric representation into a 2D plane
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are used to visually compare the synthesised images.

Table 5.1: Quantitative evaluation of Synthetic CoW vasculature
Model FID ↓ MS-SSIM ↑ 4-G-R SSIM ↑
3D CVAE 52.78 0.411 0.24
3D-α-WGAN 12.11 0.53 0.41
LDM 176.41 0.22 0.13
LDM + Shape Guidance 8.86 0.58 0.47
Ours (LDM + Shape & Anatomy Guidance) 5.644 0.61 0.51

Figure 5.5: Comparison between the maximum intensity projections (MIPs) of a real
Circle of Willis(CoW) against those synthesised with 3D CVAE, 3D-α-WGAN, and our
model.

Figure. 5.5 reveals that the 3D CVAE model can only generate a limited number
of major vessels with limited details. On the other hand, although the 3D-α-WGAN
model produces the overall structure of the CoW, it exhibits significant anatomical dis-
crepancies with the presence of numerous phantom vessels. On the contrary, our model
demonstrates a faithful synthesis of the majority of CoW, with most vessels identifiable.
To generate variations of the CoW based on the presence or absence of the posterior
communicating artery, our latent diffusion model uses class-conditional inputs where
the classes represent different CoW phenotypes. Consequently, to demonstrate the
class-conditional fidelity of the proposed approach, we also evaluate the model’s per-
formance in a class-wise manner. The qualitative performance of our model for different
classes, compared to real images belonging to those classes, is shown in Figure. 5.6

The results presented in Figure. 5.6 demonstrate the performance of our model
in generating realistic variations of the Circle of Willis. Particularly notable is the
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Figure 5.6: Comparison between the real and synthesised maximum intensity projec-
tions (MIPs) for each of the three classes

Table 5.2: Quantitative class-wise evaluation of Generated CoW vasculature
Class FID Score ↓ MS-SSIM ↑ 4-G-R SSIM ↑
Class 1 4.41 0.65 0.65
Class 2 3.88 0.52 0.52
Class 3 7.63 0.41 0.41
Overall 5.64 0.61 0.51

model’s proficiency in producing accurate representations for classes 1 and 2, surpassing
its performance in class 3 due to the limited sample size of the latter. Our model
excels in synthesising the posterior circulation and the middle cerebral arteries, showing
remarkable fidelity to anatomical structures. However, it faces challenges in effectively
generating continuous representations of the anterior circulation. Further investigation
and refinement may be required to enhance the model’s ability in this specific aspect.
In addition to the visual assessment, we also compute class-wise FID scores, along with
the MS-SSIM and 4-G-R SSIM scores. These quantitative evaluations serve to provide
a more comprehensive understanding of the model performance with respect to each
class. The class-wise performance scores shown in Table 5.2 are consistent with our
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observations from Figure. 5.6, that the model’s performance for class 3 is worse than
its performance on classes 1 and 2.

5.4 Conclusion

We proposed a latent diffusion model that used shape and anatomy guidance to gen-
erate realistic CoW configurations. Quantitative qualitative results showed that our
model outperformed existing generative models based on a conditional 3D GAN and
a 3D VAE. Future work will look to enhance the model to capture wider anatomical
variability and improve synthetic image quality.

While our method demonstrates potential in conditionally generating CoW pheno-
types, it is not always feasible to have sufficient data for every phenotype. If a particular
phenotype has limited data, the generative model’s performance suffers when generating
instances of that phenotype (as illustrated in the class-wise quantitative evaluation in
this chapter). This problem is exacerbated in certain datasets where some phenotypes
are extremely rare. In the next section, we attempt to address this issue by utilizing a
diffusion model on a comparatively simpler dataset of cerebral vessels, which includes
aneurysms. We explored a possible approach for enabling the conditional generation
of images depicting specific anatomical features, despite the scarcity of data for these
features.

Addendum

This addendum addresses some of the specific questions raised about the contents of
this chapter and provides some clarifications :-

Why do you want to simulate data? The simulation of data is essential to over-
come the limitations posed by the scarcity of large and diverse datasets for rare ana-
tomical variations of the Circle of Willis (CoW). By generating anatomically realistic
virtual cohorts, we can augment the representation of underrepresented phenotypes,
enabling comprehensive studies of cerebrovascular anatomy and pathology. Simulated
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data also supports the training and validation of deep learning models for tasks such
as segmentation and classification, ensuring robustness and generalizability.

Why do you want to compress from 2562×60 to 2562×1? Why work in MIPs?
Why not do this in 3D? The compression from 2562 × 60 to 2562 × 1 is achieved
to reduce the computational complexity of the diffusion model while preserving critical
information. The resultant latent space closely resembles a Maximum Intensity Projec-
tion (MIP), which retains depth information effectively in a single 2D representation.
Working in MIPs simplifies the dimensionality of the data and aligns with the binary
mask nature of the dataset. While a fully 3D approach would provide volumetric fi-
delity, it introduces significant computational overhead. Our strategy strikes a balance
between computational efficiency and anatomical accuracy.

Is the class conditioning fed into the network via concatenation? Yes, class
conditioning is incorporated into the network via concatenation. Specifically, class-
wise anatomical and morphological guidance features are concatenated with latent rep-
resentations at specific layers, enabling the model to generate anatomically coherent
variations of the CoW based on the desired phenotype.

Validation: Why not compare to 3D VQVAE-Transformer models that were
out? While 3D VQVAE-Transformer models have shown promise in generative tasks,
the focus of this study is on leveraging latent diffusion models due to their superior
performance in preserving fine anatomical structures in high-dimensional data. Addi-
tionally, diffusion models offer a robust mechanism for generating synthetic data with
conditional guidance, which aligns more closely with the objectives of this research. Fu-
ture comparisons with transformer-based generative frameworks may further validate
the advantages of our approach.

In Table 5.1, can you explain the LDM being 176 of FID? Why so high?
Has it converged? The high FID score of 176 for the vanilla Latent Diffusion
Model (LDM) reflects its inability to generate anatomically accurate CoW configur-
ations without additional guidance. This model lacks the shape and anatomy guidance
mechanisms that significantly improve fidelity and reduce artifacts. While the model
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had technically converged during training, its lack of conditioning inputs resulted in
suboptimal performance, as evidenced by the poor FID score.

How does the validation show that the classes generated in Figure. 5.6 are
correct from an anatomical point of view? The validation demonstrates ana-
tomical correctness by comparing synthesized CoW configurations against real-world
examples within the same class. Quantitative metrics such as MS-SSIM and FID scores
confirm the visual fidelity of the generated images. Furthermore, the inclusion of class-
conditional anatomical features ensures that the generated configurations retain the
characteristic patterns of their respective classes. This is visually corroborated in Fig-
ure. 5.6, where synthesized CoW images exhibit realistic variations corresponding to
their designated phenotypes.
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Chapter 6

Few Shot Diffusion Models to Generate Brain
Vasculature
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6.1 Introduction

Cerebral aneurysms pose significant neurosurgical and neurological concerns and have
the potential to lead to life-threatening conditions, like subarachnoid hemorrhage (SAH).
Their prevalence in the general population underscores their contribution to morbidity
and mortality. A major challenge in this domain arises from the scarcity of compre-
hensive data, particularly for less common aneurysm phenotypes. This data limitation
poses significant obstacles in developing accurate and robust diagnostic models. Gen-
erative models, particularly in medical imaging, present a promising solution to this
issue. They hold the potential to synthesize high-quality, detailed images of cerebral
aneurysms, even in scarcity. However, the effectiveness of traditional generative models
is typically constrained by the availability of data, a notable hurdle in the context of
aneurysm imaging, where extensive datasets are often lacking.

In the domain of medical imaging, generative models such as generative adversarial
networks (GANs) [34] have emerged as a promising solution, offering the potential
to create detailed and accurate representations of anatomical structures [157] . More
recently, diffusion models (DDPM) have shown great prowess in generating synthetic
data [139] and outperforming GANs in image synthesis [140]. Diffusion models have
also been successfully used to generate synthetic brain magnetic resonance images
(MRIs) [143] and vascular structures [158]. However, the efficacy of these models is
often limited by the requirement for extensive training datasets, which are not always
available. Even when labeled datasets are available, medical imaging datasets suffer
from data imbalance due to certain anatomical phenotypes being underrepresented.

The concept of few-shot learning, a technique for training models with limited
data, has become increasingly relevant in medical imaging domains characterized by
data scarcity and class imbalance. This is especially true for rare or underrepresented
cerebral aneurysm types. While few-shot learning has been explored in diffusion models
in prior research [159, 160], our work is the first to our knowledge to apply this concept
to the generation of cerebral aneurysms in brain vessel imaging.

Our study addresses this gap by introducing an innovative approach using latent
diffusion models (LDMs) with few-shot learning, allowing for the generation of high-
fidelity models of brain vessels with aneurysms from a very limited number of samples in
each class. Through the integration of transformer-based class embeddings, we reduce
the reliance on having a large number of samples from each class to conditionally
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generate images. We also leverage signed distance functions (SDF) as a conditioning
variable to further enhance the quality of the generated vessels and maintain vessel
continuity. We compare the performance of our model against other generative models
such as a 3D GAN, 3D variational auto-encoders (VAEs), and also against vanilla
diffusion models. To assess the quality of the generated aneurysms, we use metrics
such as multi-scale structural similarity (MS-SSIM), Fréchet inception distance (FID),
and 4GR SSIM. To our knowledge, this is the first study to use generative/diffusion
models to generate synthetic brain vessels with aneurysms.

6.2 Methods

6.2.1 Data and Preprocessing

For training our model, we utilized the @neurIST dataset encompassing 225 3D Ro-
tational Angiography (3DRA) scans of the brain, each with at least one cerebral an-
eurysm. Out of these, detailed information regarding aneurysm location and other con-
ditional attributes was available for 105 cases. Within these 105 labeled cases, there
were more than 15 different classes of aneurysms based on their location with each class
having about 7 sample cases on average. In the initial phase of preprocessing, we ex-
tracted vessel segmentations from the 3DRA volumes. This extraction was facilitated
by the application of VASeg, a segmentation tool designed for vascular imaging [108].
Post-segmentation, the 3DRA volumes underwent a process of centerline cropping, en-
suring a focus on the most relevant vascular structures. These cropped segments were
then resized to uniform dimensions of 128 × 128 × 100, optimizing them for subsequent
processing and analysis. The final step involved the categorization of aneurysms based
on their location attributes and saving them as class variables to act as a conditioning
vector to the diffusion model. In this study, we mainly focus on basilar tip, medial
wall carotid, and ophthalmic segment carotid aneurysms. Each class contains around
5 samples.

6.2.2 Latent Diffusion Model

Diffusion models have demonstrated remarkable success in synthesizing high-quality
medical images and vascular structures. Central to the operation of diffusion models
is the concept of a Markov chain, which is employed to methodically introduce Gaus-
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sian noise into the observed data through a sequence of diffusion steps. The crux of
these models lies in their ability to reverse this diffusion process, thereby enabling the
generation of new samples from the noise-infused data.

Despite their effectiveness, a notable challenge with conventional diffusion models
arises when dealing with high-dimensional data such as the images of size 128×128×100
used in our study. To circumvent this computational complexity, we have opted to
utilize a latent diffusion model (LDM). The architecture of LDM comprises two pivotal
components: a pre-trained autoencoder and a diffusion model. The autoencoder is
tasked with learning a lower-dimensional latent representation of the brain vasculature
from 128 × 128 × 100 to 128 × 128 × 1. This reduction in dimensionality is crucial as
it allows for a more manageable and efficient manipulation of data. Concurrently, the
diffusion model is designed to focus on modeling the high-level semantic representations
within this latent space. By operating in a space of reduced dimension, the LDM
alleviates the computational burden but retains the capacity to capture and model the
intricate details and nuances of the brain vascular structures.

Like in [140], the diffusion process can be defined through forward and reverse
Markov chains, where the forward process iteratively transforms the data x0 into a
standard Gaussian XT as follows:

q (x1:T |x0) =
T∏

t=1
q (xt|xt−1) , q (xt|xt−1)

:= N
(
xt;
√

1 − βtxt−1, βtI
)

where q (xt|xt−1) is the transition probability at the time step t based on the noise sched-
ule βt. Therefore, the noisy data xt can be formulated as q (xt|x0) = N

(
xt;

√
ᾱtx0, (1 − ᾱt)I

)
,

where αt := 1 − βt, ᾱt := ∏t
s=1 αs.

Consecutively, the reverse process parameterised by θ can then be defined as:

pθ (x0|xT ) = p (xT )
T∏

t=1
pθ (xt−1|xt) , pθ (xt−1|xt)

:= N (xt−1; µθ (xt, t) , Σθ (xt, t))

The simplified evidence lower bound (ELBO) [140] loss can be formulated as a
score-matching task, where the neural network predicts the actual noise ϵ added to the
observed data:

Lθ := Ex0,t,C,ϵ∼N(0,1)
[
∥ϵ − ϵθ (xt, t, C)∥2

]
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where C is the conditioning vector in conditional generation. In our study, the condi-
tioning vector encodes the location of the aneurysm.

The 3D binary masks of the vessels generated from 3DRA volumes in our dataset are
passed through the encoder of the pre-trained autoencoder to obtain a dimensionally
reduced latent space. This latent space serves as the input for our diffusion model.
Consequently, the diffusion model's output is also in this latent space, which is then
processed through the decoder of the pre-trained autoencoder to reconstruct the 3D
binary masks.

We first train our latent diffusion model unconditionally with no additional condi-
tion features on the unlabeled samples in the dataset so that it can learn to generalize
the structure of the vessels. After pre training on the unlabeled data, we train the model
over limited labeled cases from the three selected classes (basilar tip, medial wall ca-
rotid and ophthalmic segment carotid aneurysms) along with class-wise conditioning
from a transformer and signed distance fields (SDF) based features.

6.2.3 Transformer based class conditioning

An inherent fault with generative models (especially diffusion) is their intrinsic reliance
on substantial data volumes to train effectively and produce convincing outputs. This
issue is particularly pronounced in our study, given the limited availability of data,
with some classes containing as few as five samples. Such a sparse dataset poses signi-
ficant difficulties for generative models, as they struggle to accurately approximate the
distribution of the data.

To address this challenge, we introduce an innovative approach that integrates trans-
former [161] -based class features to guide the diffusion process. We employed a set
based vision transformers (ViT) [162] model, designed to ingest the entire 3D volume
and function as a classifier, determining the specific location of an aneurysm within
the brain. Following the successful training of the ViT, we removed its final classi-
fication layer. Subsequently, we processed the images from each class through this
transformer to extract class-wise encoded features. These features, in conjunction with
the class conditioning variables, were then incorporated into the conditioning vector of
the diffusion model, enhancing its ability to generate data representative of each class.
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6.2.4 Signed Distance Field (SDF) based Conditioning

Although diffusion models show great success in generating medical images, generating
vascular structures is challenging as vessels have structural features that need to be
maintained, most importantly vessel continuity. Also, aneurysms are small compared
to the total size of cerebral vasculature, which makes them hard to track and generate.
Studies have shown that adding shape based features to the generative process can
improve performance in these tasks [149, 158].

To this end, we incorporate signed distance fields (SDF) as an additional input to
the diffusion process. The primary idea behind SDFs is to associate each point in space
with a distance value, and the sign of this distance value indicates whether the point
is inside or outside of the shape which makes them particularly useful for tasks like
shape analysis and 3D rendering. We first convert the segmentation masks for each
class into corresponding SDFs. These SDFs act as an input to a 3D ResNet, which
similar to the set-based ViT described in the previous subsection is trained to act as
a classifier. After successful training, the final output layer is removed and the class-
wise features are extracted and incorporated as conditions in the diffusion process.
The introduction of these features enhances the quality of the generated vessels by
promoting the generation of more continuous vessels as can be seen in Panel B in
Figure. 6.2. The overall architecture of the model is shown below in Figure. 6.1

Figure 6.1: Overview of the architecture of the model.
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Figure 6.2: Panel A compares the MIPs from the generated cases from different models.
Panel B showcases the effect of adding SDF based conditioning to the diffusion process.
Panel C compares the volumetric meshes generated from generated and ground truth
cases from each class

6.3 Experiments and Results

6.3.1 Implementation Details

All models were implemented in TensorFlow 2.8 and Python 3. For the forward diffusion
process we use a linear noise schedule with 1000 time steps. The model was trained
for 2000 epochs with a learning rate of 0.0005 on a Nvidia Tesla T4 GPU and 38 Gb
of RAM with Adam optimiser. The vision transformer was trained on a Nvidia V100
GPU with 38Gb of RAM.

6.3.2 Results and Discussion

The performance of our proposed model was compared against established generative
models serving as baselines. These include a 3D convolutional variational autoencoder
(3D C-VAE), a 3D-α-Wasserstein generative adversarial network (3D-α-WGAN)[154],
and a conventional diffusion model (Vanilla DDPM). The purpose of this comparison
was to ascertain the efficacy of our approach relative to these well-established models in
generating high-quality cerebral vascular images. To quantitatively assess the realism of
the generated vasculature by each model, we employed the FrÃ©chet inception distance
(FID) score. The FID-score was computed using a pre-trained InceptionV3 network
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as a feature extractor. It is important to note that a lower FID score is indicative
of higher perceptual image quality, reflecting greater realism in the generated images.
Additionally, to provide a comprehensive evaluation of image quality, we utilized the
multi-scale structural similarity index (MS-SSIM) and 4-G-R SSIM metrics, as outlined
in references [155, 156]. These metrics are extensively used in the field to assess the
quality of synthesized images. A higher score in both MS-SSIM and 4-G-R SSIM
typically signifies superior image quality, implying a closer resemblance to the actual
ground truth images. An extremely high score from MS-SSIM and 4-G-R SSIM however
could indicate very high levels of similarity between the synthesised cases and the
ground truth indicating low variablilty. The MS-SSIM and 4-G-R SSIM scores were
calculated over six synthesized cases for each model.

Table 6.1 encapsulates the evaluation scores achieved by our model, 3D C-VAE, 3D-
α-WGAN, and Vanilla DDPM, based on the aforementioned metrics. This comparative
analysis enables us to elucidate the strengths and limitations of our approach in the
context of existing generative models.

Table 6.1: Quantitative evaluation of Synthetic vessels
Model FID ↓ MS-SSIM ↑ 4-G-R SSIM ↑
3D CVAE 8.78 0.36 0.31
3D-α-WGAN 3.55 0.67 0.56
DDPM 4.41 0.69 0.55
Ours 2.56 0.71 0.61

Table 6.1 showcases that our model outperforms the other baselines in terms of
FID, indicating that the distribution of the synthesized variants by our model more
closely aligns with the real data distribution compared to other evaluated models.
Furthermore, our approach outperforms the others in terms of MS-SSIM and 4-G-R
SSIM scores, reflecting higher image quality and a closer resemblance of the generated
vessels to the real ones.

Figure 6.2 provides a qualitative evaluation through a visual comparison of the
synthesized samples from each model. Panels A and B employ maximum intensity pro-
jection (MIP) to render 3D binary masks of the vessels onto a 2D plane for analysis. In
Panel A, we present the comparisons based on the MIP of the cases generated by each
respective model. The convolutional variational autoencoder (VAE) primarily repro-
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duces the fundamental structure of the vessels, achieving continuous vessel formation
but lacking in variability and branching features. The generative adversarial network
(GAN) introduces greater variability and detail in the vessel structures; however, it
encounters challenges in maintaining vessel continuity. In contrast, our model excels in
generating realistic and continuous vascular structures, closely mirroring the intricacies
of actual vessels. Panel B delineates the differential impact of employing SDF-based
conditioning in our diffusion model, underscoring its essential role in preserving vessel
continuity, a feature that is notably compromised in its absence.

Recognizing the limitations of MIPs in accurately representing the complex three-
dimensional nature of vascular structures, we further conducted a comparison using
volumetric meshes which are showcased in panel C in Figure 6.2. These meshes were
generated from binary masks for each class and compared against their corresponding
ground truth samples. This analysis revealed that the cases synthesized by our model
not only bear key characteristics akin to the ground truth but also exhibit discern-
ible variability, demonstrating the model's efficacy in replicating both the fidelity and
diversity of real-world vascular formations.

While the quality of the generated vessels from our study seems promising, it is
important to acknowledge the limitations posed by the lack of extensive training data.
This scarcity potentially restricts the variability of the generated cases, as the model's
capacity to learn diverse vessel structures is directly tied to the dataset's breadth.
Additionally, it is crucial to consider anatomical accuracy in the context of variability.
Excessive variability in the generated structures might not accurately reflect the true
anatomical complexity of cerebral vessels. Therefore, while our model demonstrates
proficiency in replicating realistic vessel structures, the balance between variability and
anatomical fidelity remains a key consideration for the authenticity and applicability
of the generated outputs.

6.4 Conclusion

This study introduced a novel approach for generating brain vessel segmentations with
aneurysms, particularly under the constraint of having classes with limited data.
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Addendum

This addendum addresses specific questions raised about the chapter ”Few Shot Diffu-
sion Models to Generate Brain Vasculature.”

Why use Signed Distance Functions (SDF)? How does it actually work? If
it is needed to decode, how do you create them? Signed Distance Functions
(SDF) are employed to enhance the anatomical realism and structural continuity of
the generated vascular structures. SDF assigns a distance value to each point in space,
with the sign indicating whether the point lies inside or outside the structure. This
representation ensures that the vascular shape and continuity are preserved during gen-
eration. To create SDFs, the binary segmentation masks are transformed by calculating
the shortest distance of each voxel to the vessel boundary. Positive distances represent
points outside the structure, while negative values correspond to points inside. The
resulting SDFs are then used as input features during the diffusion process, promoting
more realistic synthesis outcomes.

Why is the segmentation dimension different from the image one? The seg-
mentation dimension differs from the image dimension due to the application of latent
space encoding in the diffusion model. By compressing the original 128×128×100 bin-
ary masks into a lower-dimensional latent representation (128×128×1), computational
efficiency is achieved without compromising the critical structural details necessary for
accurate segmentation. This dimensional reduction focuses the model's learning capa-
city on salient features, optimizing both training and synthesis processes.

Aren't segmentations and images almost the same thing? While segmentation
masks and images share similarities, they serve distinct purposes. Images provide
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pixel intensity information, whereas segmentation masks are binary representations
delineating specific anatomical structures. In this study, segmentation masks explicitly
define vascular structures, enabling the model to focus on generating anatomically
accurate and continuous vessels. The distinction is crucial as it allows for targeted
conditioning and improves the precision of the generated outputs.

What is the advantage of bringing them together? Integrating segmenta-
tion masks with corresponding images leverages complementary information. Images
provide global context, while segmentation masks offer detailed structural boundar-
ies. Combining these elements enhances the model's ability to synthesize anatomically
accurate vascular structures while maintaining continuity and preserving finer details.
This synergy ensures that the generated outputs align closely with real-world anatom-
ical variations, improving both the fidelity and applicability of the synthetic data.
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Anatomy-guided latent diffusion models for
generating brain MR angiography images and
vessel segmentation masks
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7.1 Introduction

The Circle of Willis (CoW) is a network of arteries that supplies blood to the brain.
The CoW plays a key role in providing a collateral pathway for blood flow in cases
where some primary vessels are obstructed, ensuring continuous cerebral perfusion and
reducing the risk of ischemic events ([107]). The anatomy of the CoW varies signi-
ficantly among individuals, with numerous variants observed across the population.
Understanding these variations is critical for advancing research into cerebrovascular
diseases, predicting disease progression, and enhancing clinical outcomes. Previous
research efforts have employed classification systems such as the Lippert and Pabst
system to describe these anatomical differences ([136, 137]). Nonetheless, while more
than 80% of individuals exhibit one of three most common CoW configurations ([138]),
rarer variations have not been as thoroughly investigated.

The exploration of CoW anatomical variations is constrained by the limited size of
publicly available angiographic datasets, which often include only a few examples of
the less common phenotypes. The aim of this study is to develop a generative deep
learning model conditioned on anatomical phenotype for CoW angiography images
and their vessel segmentations. Such a model would enable the generation of large,
anatomically accurate virtual cohorts of brain vasculature, particularly augmenting
the representation of rarer CoW phenotypes. These synthetic cohorts could improve
the training of deep learning algorithms for tasks such as brain vessel segmentation and
CoW phenotype classification, or could be used to generate virtual patient cohorts for
performing in-silico trials for new cerebrovascular treatments ([? ]).

Generative adversarial networks (GANs) and other generative models have ad-
vanced the field of medical imaging synthesis considerably in recent years, showing
particular efficacy in creating realistic representations of blood vessels and other com-
plex anatomical structures. More recently, diffusion models and latent diffusion models
(LDM) have shown considerable promise with results that outperform GANs ([139,
140]). Diffusion models have also been successfully used to generate synthetic MRIs
([141–143]). While diffusion models in particular have demonstrated encouraging out-
comes in generating medical images, there has been limited work done on using them
for synthesising vascular structures. This can be attributed to the need to preserve
their continuity and structure, particularly in more intricate vascular systems like the
CoW or retinal blood vessels. Although the generation of complex vascular structures is
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Figure 7.1: Examples of magnetic resonance angiograms from two different patients
with and withouth a posterior communicating artery

feasible with certain priors ([163]) or by cross-modality synthesis ([164]), the creation of
entirely novel vascular configurations remains challenging. The complexity of this chal-
lenge is exacerbated by the high dimensionality inherent in vascular imaging modalities
such as Magnetic Resonance Angiography (MRA) and Three-Dimensional Rotational
Angiography (3DRA). This high dimensionality necessitates a substantial increase in
the volume of data required for training generative models. However, assembling large
angiographic datasets is problematic given the limited availability of comprehensive
and accessible data in this field. To the best of our knowledge, no previous study has
explored these generative models for synthesising different CoW configurations. Ad-
ditionally, no previous study has explored the controllable synthesis of different CoW
configurations conditioned on desired phenotypes.

We introduce a conditional latent diffusion model paired with a multi-channel depth
autoencoder, which is engineered to learn latent embeddings of brain vasculature. Dur-
ing inference, this model samples from the learned latent space to synthesise realistic
representations of brain vasculature. We enhance the models capabilities by integrating
class and anatomical guidance through conditioning factors, including features extrac-
ted through VisionTransformer ([165]). This approach facilitates the generation of
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continuous vessels and allows precise control over the produced variations of the CoW,
even within the constraints of limited data availability. The diffusion model specifically
adapts its generation process to produce different anatomical variants of the posterior
cerebral circulation, conditioned on the presence or absence of the Peripheral Commu-
nicating Artery (PComA) – an artery linking the internal carotid and posterior cerebral
arteries (see Fig. 7.1). The performance of the model is quantitatively evaluated us-
ing metrics such as the Multiscale Structural Similarity Index Metric (MS-SSIM) and
the Fréchet Inception Distance (FID). Additionally, we conduct comparative analyses
against other generative architectures, such as a 3D GAN, 3D Variational Auto-Encoder
(VAE), and a 3D Denoising Diffusion Probabilistic Models (DDPM), to demonstrate
the efficacy and superiority of our proposed method in accurately reproducing CoW
variations.

7.2 Related Works

Diffusion models have become a focal point in the advancement of image generative
models because of their superior performance in generating realistic and high-quality
images. In the study conducted by ([166]), the authors highlight the exceptional capab-
ilities of diffusion models like the Med-DDPM in semantic 3D medical image synthesis.
Their work emphasizes how these models excel over traditional GANs by providing
enhanced stability and quality in generated images. The study also discusses how
Med-DDPM adeptly manages data scarcity and privacy issues, which are critical in the
clinical context, thus presenting a substantial improvement in handling the complexities
of medical data.

The research conducted by ([167]) investigated the adaptation of conditional dif-
fusion models for applications such as medical image segmentation. Their conclusions
reveal that these models adeptly employ image-level annotations to steer both the syn-
thesis and segmentation processes. This method holds particular promise in medical
imaging, where obtaining comprehensive annotations can be labor-intensive and costly.
The study's results suggest that diffusion models can substantially reduce the depend-
ence on extensive annotations while maintaining competitive accuracy in segmentation
tasks. This feature is vital in situations where manual labeling is impractical, thereby
enhancing the availability of sophisticated imaging technologies. Conversely, the His-
toDiffusion approach [101] takes advantage of latent diffusion models (LDM) trained on
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extensive unlabeled datasets for synthetic augmentation, thus decreasing the demand
for expert annotations. This technique achieved a 6.4% boost in classification accuracy
in colorectal cancer histopathology images, demonstrating the promise of pre-trained
diffusion models in bolstering small labeled datasets.

In brain imaging, conditional diffusion probabilistic models (cDPM) have been em-
ployed to create lifelike brain MRIs, offering a less compute-intensive alternative to
traditional GAN methodologies. By being conditioned on partial MRI slices, cDPMs
are capable of generating complete 3D brain volumes, preserving anatomical integ-
rity while notably lowering computational demands, thus ensuring high-quality visuals
[103]. Another use of diffusion models in this field includes crafting counterfactual
images for anomaly detection in brain scans. By merging DDPMs with Denoising Dif-
fusion Implicit Models (DDIM), researchers have been able to alter pathological areas
while keeping the normal structures intact [104]. Additionally, latent diffusion models
facilitate large-scale generation of brain MRIs, enabling the synthesis of realistic high-
resolution brain images with adjustable features like age and sex. The development
of synthetic datasets, such as an openly available collection of 100,000 brain images,
highlights the scalability and promise of diffusion models in advancing medical imaging
research [105].

Despite the success of diffusion models in generating realistic data in the field of
medical imaging, there are significant challenges posed in implementing these models
due the lack of high quality training data. Several studies have tackled the problem of
training a robust diffusion model with limited data available. In ([168]), the Discrim-
inative Stable Diffusion (DSD) model was developed for few-shot vision and language
tasks. DSD utilises pre-trained diffusion models and harnesses cross-attention scores to
conduct discriminative tasks, such as image-text matching. This research demonstrated
the flexibility of diffusion models to adapt to few-shot learning environments through
fine-tuning with attention-based prompt learning. The success of DSD in these tasks
underscores the potential of diffusion models to adjust and perform under constrained
data conditions. Similarly, ([162]) addressed the over-fitting challenges commonly faced
in few-shot image generation. The study proposed that pre-training diffusion models
along with feature embeddings as a conditional input from a vision transformer could
help the models learn and generalise over limited data and enhanced its generative
properties.
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7.3 Proposed Method

Standard diffusion models operate by defining a Markov chain of diffusion steps that
sequentially introduce random Gaussian noise into the observed data, and then learn to
reverse the noise process and reconstruct new samples from the introduced noise using
a deep neural network. Although this method is effective, standard diffusion models
often become computationally burdensome when handling high-dimensional data, such
as the 512 × 512 × 100 image space in our study.

To address this challenge, we develop a latent diffusion model (LDM), which con-
sists of a pretrained autoencoder and a diffusion model. In a typical LDM setup, a
variational autoencoder (VAE) is used to learn a compressed, lower-dimensional latent
representation of the input data. This allows the diffusion model to focus more effi-
ciently on modeling the high-level semantic features within this reduced latent space,
enabling the generation of high-quality medical images with reduced computational de-
mands. This approach not only enhances the efficiency of the image generation process
but also maintains the quality of the generated images, crucial for medical applications.

However, VAEs often encounter difficulties in compressing intricate images, such as
those obtained from brain angiography, without losing critical details. Vascular struc-
tures, which occupy a minimal portion of the overall image, are particularly challenging
to reconstruct accurately. To mitigate this issue, we employ a pre-trained multi-task
depth autoencoder that selectively reduces the input data across the channel dimension.
This approach is designed to preserve essential vascular details, thereby facilitating the
generation of more accurate latent spaces for training the diffusion model.

7.3.1 Multitask Depth Autoencoder

In our study, the effectiveness of the latent diffusion model hinges on the quality of
the autoencoder utilised during training. Given the direct relationship between the
performance of the diffusion model and the autoencoder, we utilise a multi-task depth
autoencoder tailored to compress the image stack of MRA scans into a single-channel
representation while preserving the spatial dimensions (x- and y-axes). This sort of
compression is needed in order to ensure a faithful and complete reconstruction of the
vessels, as standard compression using max-pooling layers makes reconstruction of the
vessels much more challenging. Given the importance of retaining vessel information
that accounts for less than 5% of the MRA image, we introduce a dual-branch ar-
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chitecture comprising an output decoding branch and a segmentation branch. The
decoding branch facilitates the faithful reconstruction of the input image stack, while
the segmentation branch facilitates the delineation of vessel structures within the MRA.

To effectively train this model, we employ multi-task learning (MTL), leveraging
the inherent complementarity of the reconstruction and segmentation tasks. Previous
research has demonstrated the efficacy of MTL approaches in enhancing model per-
formance across multiple tasks. We tested our model with various multi-task learning
(MTL) approaches: Nash-MTL ([133]); average Dice after evaluation 0.76), CAGrad
([134]; average Dice after evaluation 0.74), and uncertainty-based MTL ([3]; average
Dice after evaluation 0.79). The best performing version was the uncertainty-based
MTL, where both the losses are weighted based on the assumption of homoscedastic
uncertainty for each task. The loss function for our multi-output model is described
in (7.1), where W are the model parameters and we interpret minimising the loss
with respect to σ1 and σ2 as learning the relative weights for the losses Lseg and Lrec

adaptively. We used Dice score as the loss for Lseg and MAE as the loss for Lrec.

LTotal = 1
2σ2

1
Lseg(W) + 1

2σ2
2
Lloc(W) + log σ1σ2 (7.1)

Additionally, to ensure that the channel-wise information was not lost during the
compression stage we introduce spatial attention followed by squeeze-and-excitation
(SE) blocks in every layer. By allowing the network to adaptively recalibrate channel-
wise feature responses, SE blocks improve the model's representational power without
introducing a significant increase in computational cost or model complexity. An over-
view of the network architecture is given in Fig. 7.2.

In this work, we use a latent diffusion model (LDM) comprising a pretrained au-
toencoder and a diffusion model. The autoencoder learns a lower-dimensional latent
embedding of the brain vasculature, while the diffusion model focusses on modelling
the high-level semantic representations in the latent space efficiently. Following ([140]),
the diffusion process can be defined as forward and reverse Markov chains, where the
forward process iteratively transforms the data x0 (i.e. the latent features from the
autoencoder in our approach) into a standard Gaussian XT as following:

q (x1:T |x0) =
T∏

t=1
q (xt|xt−1) , q (xt|xt−1)

:= N
(
xt;
√

1 − βtxt−1, βtI
)
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Figure 7.2: Architecture of our multi-task autoencoder

where q (xt|xt−1) is the transition probability at the time step t based on the noise
schedule βt. Therefore, the noisy data xt can be formulated as

q (xt|x0) = N
(
xt;

√
ᾱtx0, (1 − ᾱt)I

)
,

where αt := 1 − βt, ᾱt := ∏t
s=1 αs.

The reverse process, achieved via a deep neural network parameterised by θ, can
then be defined as:

pθ (x0|xT ) = p (xT )
T∏

t=1
pθ (xt−1|xt) , pθ (xt−1|xt)

:= N (xt−1; µθ (xt, t) , Σθ (xt, t))

The simplified evidence lower bound (ELBO) loss to optimise the diffusion model ([140])
can be formulated as a score-matching task where the neural network predicts the actual
noise ϵ added to the observed data. The resulting loss function is

Lθ := Ex0,t,C,ϵ∼N(0,1)
[
∥ϵ − ϵθ (xt, t, C)∥2

]
where C is the condition in conditional generation.
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The encoder of the pre-trained depth auto-encoder transforms the brain image K0

into a compact latent representation x0 with dimensions of 256×256×1. Once the lower
dimensional latent spaces are generated, the latent representations from the training
set serve as inputs to the diffusion model for further analysis and generation.

We employ a model with a U-net-based architecture as the diffusion model. Our
model has five encoding blocks and five decoding blocks, with skip connections between
the corresponding encoding and decoding blocks. We replace the simple convolution
layers in the encoding and decoding blocks with a residual block followed by a multi-
head attention layer to limit information loss in the latent space. Each encoding and
decoding block takes the class category (based on CoW phenotypes) as an additional
conditional input, while only the decoding blocks take shape and anatomy features as
additional conditional inputs.

7.3.2 Anatomy Conditioning

Angiographic images can capture the small vessels in the peripheral cerebral vascu-
lature. Preserving anatomical integrity is therefore crucial in the generation of real-
istic and accurately depicted vessels. However, diffusion models often face challenges
in faithfully representing the anatomical structure, which can be attributed to their
learning and sampling processes that are heavily based on probability density func-
tions ([147]). Previous studies have demonstrated that the inclusion of certain priors,
such as geometric and shape priors, can improve their performance in medical image
synthesis ([149, 150]). Additionally, generative models based on diffusion techniques
inherently depend on large volumes of data to train effectively and yield convincing
results. This dependency poses a significant challenge in our study due to the limited
availability and high dimensionality of the data. The scarcity of the dataset exacerbates
the difficulty for generative models to accurately approximate the data distribution.
Moreover, despite phenotypic variations, the CoW generally maintains a consistent
structural configuration. This uniformity, coupled with data scarcity, predisposes the
model to predominantly learn the average shape of the CoW, thereby diminishing the
modelâ€™s variance.

To overcome these limitations, we incorporate transformer-based class features to
inform the diffusion process. Specifically, we utilise a set-based Vision Transformer
(ViT) model ([162]), which is tailored to process entire 3D volumes and initially serves
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as a classifier to distinguish between the three classes. After the ViT is successfully
trained, its final classification layer is removed. We then pass the images from each
class through this transformer to derive class-specific encoded features. These features,
along with class conditioning variables, are integrated into the conditioning vector
of the diffusion model, significantly enhancing its capability to produce outputs that
accurately represent each class.

7.3.3 Data and Implementation Details

We trained all models on the publicly available IXI data set ([122]) using the 181 3T
MRA scans acquired at Hammersmith Hospital, London. The images were centered,
cropped from 512×512×100 to 256×256×100, and the intensity normalized. We then
used a residual U-net [146] to extract vessel segmentations from the MRA. The authors
manually labeled each case with the presence / absence of one or both peripheral
communication arteries in the CoW. Class 1 includes cases where both PComA's are
present, Class 2 includes cases with only one PComA is present, while Class 3 includes
cases where both PComA's are absent.

All models were implemented in TensorFlow 2.8 and Python 3. For the forward
diffusion process, we used a linear noise schedule with 1000 time steps. The model
was trained for 2000 epochs with a learning rate of 0.0005 on a Nvidia Tesla T4 GPU
and 38 GB of RAM with Adam optimiser. After the images were generated by our
latent diffusion model, a post-processing step of thresholding and finding the largest
connected component was implemented to refine the output.

7.4 Experiments and Discussion

To assess the performance of our model, we compared it against three established gen-
erative models: 3D C-VAE ([33]), a 3D WGAN ([65]), and a Diffusion model (DDPM)
[147]. We use the FID score to measure the perceptual image realism of the generated
vasculature. Typically, for medical image models, FID scores are computed using pre-
trained features derived from medical datasets [169]. However, recent investigations
have revealed that networks like InceptionV3, pre-trained on more general datasets
such as Inception, provide a more stable metric for assessing perceptual image realism
[170]. Consequently, for our FID calculations, we employed a pre-trained InceptionV3
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Figure 7.3: The architecture of the latent diffusion model begins with the forward
diffusion process, depicted in the first panel, wherein noise is incrementally introduced
to the input image. The second panel illustrates the reverse diffusion process, during
which the network acquires the ability to predict the noise added at each timestep, thus
learning the reverse procedure. Additionally, two conditioning variables are employed:
class conditioning and anatomy conditioning. Class conditioning specifies the category
of the image that the network is tasked with generating. For anatomy conditioning, a
Vision Transformer (ViT) is initially trained to classify different categories of images.
Subsequently, the final classification layer is removed to extract class-specific features,
which are then input to the network.

104



7.4 Experiments and Discussion

Figure 7.4: [A] Maximum intensity projections of six generated paired MRA and binary
segmentation samples from our model. [B] A generated 3D mesh of four additional
samples to highlight the continuity and accuracy of the generated vessels.
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network as a feature extractor. A lower FID score indicates higher perceptual image
quality. In addition, we used MS-SSIM and 4-G-R SSIM to measure the quality of
the generated images ([155, 156]). MS-SSIM and 4-G-R SSIM are commonly used to
assess the quality of synthesised images. Typically, a higher score is indicative of better
image quality, implying a closer resemblance between the synthesised CoW and the
ground truth reference, In the realm of image synthesis, a higher score might suggest
that the diversity among generated samples is limited. This occurs when the outputs
closely align with the actual data distribution, possibly indicating that the model is
either producing images that are very close to the dataset's average or replicating im-
ages already present within the dataset. In order to compute the MS-SSIM and 4-G-R
SSIM scores, we generated 20 synthesized CoW instances for each model. For each
synthesized instance, we calculated the MS-SSIM and 4-G-R SSIM scores by compar-
ing against every ground truth data sample. The closest score for each instance was
recorded, and finally, we averaged these scores to yield the final score for the model.
Table 7.1 presents the evaluation scores achieved by our model, 3D CVAE, WGAN
and DDPM in the generation of the MRA. Our model achieved a better FID score
than the other models, suggesting that the distribution of CoW variants synthesised by
our model is closer to that observed in real CoW data, compared to the other models.
Additionally, our model in general achieves higher or comparable MS-SSIM and 4-G-R
SSIM scores compared to the other methods. These higher scores indicate better image
quality, implying that the generated CoW samples resemble the real CoW images more
closely. Similarly 7.2 compares qualitatively the generated binary mask from each of
the models across the same metric. These results are similar to results observed from
7.1 apart from the performance of the DDPM which perfrorms much worse in the vessel
synthesis task. We also performed a quantitative evaluation of the class-wise results
of our model in 7.3, which indicates that the performance of the model in generating
cases from class 1 and 2 is better than for generating 3. This could stem from the fact
that class 3 has the lowest number of cases in the training data.

Fig. 7.5 provides a qualitative comparison among the samples generated obtained
from the three models to provide additional context to the quantitative results presen-
ted in 7.1 and 7.2. As the output of each model is a 3D vascular structure, maximum
intensity projections (MIPs) over the Z-axis which condense the volumetric represent-
ation into a 2D plane are used to visually compare the synthesised images. Panel A of
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Figure 7.5: [A] Comparison of a MRA generated by our model against established gen-
erative models such as VAE, GAN (pix2pix) and a DDPM. The qualitative comparison
shows that our mode ourperforms other standard generative models in this task. [B]
Comparison of the binary mask generated by our model against established generative
models such as VAE, GAN (pix2pix) and a DDPM. The qualitative comparison shows
that our mode ourperforms other standard generative models in this task.

Figure 7.6: Illustration of two scenarios in which the generated MRA image is pro-
cessed by a pre-trained vessel segmentation network, and the resulting segmentations
are compared to the generated binary masks. Panel A depicts a scenario where the
segmentation closely approximates the generated binary mask, demonstrating a high
degree of accuracy. Panel B presents a scenario where the segmentation deviates slightly
from the generated binary mask, evidenced by visible discontinuities in the vessels and
some vessels not being segmented. Nevertheless, in both scenarios the major vessels
are distinctly captured, and the segmentation outputs remain closely aligned with the
generated binary masks.
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Fig. 7.5 offers a qualitative evaluation of the MIP derived from the MRA created by
our model compared to those from other models like 3D-VAE, pix2pix, and DDPM.
Clearly, neither the GAN nor the VAE model can precisely generate the Circle of Willis
(CoW) branches, apart from the main arteries like the Middle Cerebral Artery (MCA).
This shortcoming is likely due to the lack of an attention mechanism in these mod-
els, which is vital for emphasizing the smaller vessels that make up a lesser portion
of the MRA images. On the other hand, the DDPM model performs better in recon-
structing most CoW branches but still struggles with producing continuous vessels, as
evident from the structured discontinuities. Our model, however, excels at rendering
a more accurate and high-quality depiction of the CoW. The vessels in our generated
images, as seen in the MIP, exhibit markedly better continuity, marking a significant
advancement over both conventional and contemporary generative strategies used by
the compared models. Panel B of Fig. 7.5 conducts a similar comparison for the gen-
erated vessel masks of each model. The VAE can generate some major CoW vessels,
but the smaller vessels are inaccurately produced, and the vessels exhibit significant
discontinuity. Conversely, the GAN generates a very lifelike vessel mask, capable of
synthesizing both larger and smaller vessels, though the smaller vessels'structure may
not always appear credible. The Diffusion model, however, fails to produce plausible
vessel masks altogether. In contrast, our model successfully generates a realistic and
believable Circle of Willis with minimal or no discontinuities in the vessels.

We conduct a more comprehensive qualitative evaluation of the images produced by
our model, as illustrated in Fig. 7.4. Panel A of this figure displays the MIP represent-
ations of selected samples from both MRA data and the corresponding segmentation
obtained through our proposed method. This qualitative assessment reveals that our
model effectively recreates the entire CoW, with all primary arteries distinctly visible.
Nonetheless, it is essential to mention that the model occasionally generates minor
artifacts, especially in smaller vessels located in the posterior communicating area. Re-
cognizing that MIPs are 2D projections of a 3D image and may not always be optimal
for visualizing the generated Circle of Willis, we further convert the vessel mask pro-
duced by our model into a 3D mesh, represented in Panel B of Fig. 7.4. This 3D mesh
demonstrates that our model is capable of generating continuous and realistic variations
of the Circle of Willis.

Through qualitative and quantitative experiments, it becomes clear that a disparity

108



7.4 Experiments and Discussion

Figure 7.7: Comparison of a generated image that is close to mean of the real MRA
image distribution (Sample 1) and a sample image that is furthest away from the mean
of the real MRA image distribution (Sample 2)

exists between qualitative and quantitative outcomes. Evaluating diffusion models (or
generative models in general) quantitatively remains challenging due to the absence of
an objective ground truth. Although this field is active with various proposed evaluation
approaches to gauge the visual realism of generated images, there is still a lack of
established methods for assessing generative medical models where anatomical accuracy
alongside visual realism is crucial ([170–172]). This gap is notably apparent in our case,
particularly in the evaluation of the generated MRA. Despite the FID and MS-SSIM
scores for DDPM and GAN being nearly identical to those of our model, qualitative
assessments clearly reveal that our model significantly outperforms GAN and DDPM. A
similar trend is observed in the evaluation of the binary mask – in addition to GAN and
DDPM achieving scores comparable to our model, the VAE actually attains a much
higher MS-SSIM score than our model, indicating that the binary mask generated
by the VAE is closer to the real data compared to our model. However, this result
contradicts the qualitative comparison, where our model evidently resembles the real
data more closely with higher anatomical accuracy.

While quantitatively assessing the generated data poses difficulties, evaluating the
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performance of the binary mask i srelatively straightforward by examining the Max-
imum Intensity Projection (MIP). This method allows for easy identification of con-
tinuity and anatomical correctness of the major vessels (such as MCA and PCA). In
contrast, quantitatively evaluating the MRA is more complex due to the presence of soft
tissue information in addition to the vessels. This soft tissue information qualitatively
resembles noise, making it challenging to determine how closely the generated MRA
matches the real one. However, a segmentation algorithm trained to extract vessels
from real MRA images considers the latent soft tissue information to produce accurate
segmentations. To further assess the quality of the generated MRA, we conducted an
additional experiment where the generated MRA was input into a brain MRA segment-
ation algorithm ([108]) pre-trained on real MRA images to extract vessels. We then
compared the segmentation algorithm's output to the paired generated binary mask of
the MRA. If the segmentation and the generated binary mask match closely, it indic-
ates that the generated MRA contains similar latent information to that of the real
MRA, which enables the segmentation algorithms to work effectively. The results of
this experiment are shown qualitatively in Fig. 7.6. In Panel A, the segmentation from
the generated MRA closely matches the generated binary mask, with some areas even
showing improved vessel connectivity. In Panel B, the segmentation is less accurate
than the generated binary mask, displaying evident vessel discontinuities and missing
smaller posterior communication arteries. Nonetheless, in both cases, most major arter-
ies are segmented correctly, demonstrating good correlation with the generated binary
mask. This provides further evidence that the generated MRA closely resembles the
real MRA.

We also conducted an additional experiment to assess the quality of the long-tail
generated samples by comparing two distinct images: one generated sample that closely
aligns with the mean of the real data distribution and another that is the furthest
from the mean. The image near the mean closely resembles the real data, successfully
generating all major arteries but exhibiting minimal variance. In contrast, the long-tail
image, while generating a plausible-looking CoW, incorrectly positions some arteries
in a manner that may not be anatomically plausible. This experiment highlights the
challenges in balancing the accuracy and diversity of generated samples in our model.

The results presented demonstrate the performance of our model in generating real-
istic variations of the CoW. Particularly notable is the model's proficiency in producing
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Table 7.1: Quantitative comparison between generated binary mask for the CoW
Model FID ↓ MS-SSIM ↑ 4-G-R SSIM ↑
3D CVAE 8.34 0.71 0.14
Patch-GAN (pix2pix) 2.19 0.31 0.6
DDPM 2.50 0.66 0.11
Ours 1.16 0.64 0.40

Table 7.2: Quantitative evaluation of the generated MRA
Model FID ↓ MS-SSIM ↑ 4-G-R SSIM ↑
3D CVAE 1.47 0.71 0.51
Patch-GAN (pix2pix) 3.417 0.42 0.2
DDPM 11.10 0.31 0.17
Ours 4.58 0.56 0.41

Table 7.3: Quantitative class-wise evaluation of Generated CoW vasculature
Class FID Score ↓ MS-SSIM ↑ 4-G-R SSIM ↑
Class 1 4.41 0.65 0.65
Class 2 3.88 0.52 0.52
Class 3 7.63 0.41 0.41

accurate representations for classes 1 and 2, surpassing its performance in class 3 due
to the limited sample size of the latter. Our model excels in synthesising the anterior
circulation and the middle cerebral arteries, showing remarkable fidelity to anatomical
structures. However, it faces challenges in effectively generating continuous repres-
entations of the posterior circulation. Further investigation and refinement may be
required to enhance the model's ability in this specific aspect. Furthermore, the ad-
dition of further constraints or features may be necessary to prevent the model from
occasionally generating vessels that appear implausible. Incorporating these enhance-
ments could help improve the modelâ€™s fidelity and ensure the anatomical accuracy
of the generated vascular structures.
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7.5 Conclusion

We proposed a latent diffusion model that used shape and anatomy guidance to gen-
erate realistic CoW configurations. Quantitative qualitative results showed that our
model outperformed existing generative models based on a conditional 3D GAN and
a 3D VAE. Future work will look to enhance the model to capture wider anatomical
variability and improve synthetic image quality.
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8.1 Conclusion

This thesis explored the development and evaluation of advanced generative models
for synthesizing brain vasculature, focusing on the Circle of Willis (CoW) and cerebral
aneurysms. We implemented a variety of techniques, such as shape-guided conditional
latent diffusion models, multitask learning approaches, few-shot learning for aneurysm
generation, and the synthesis of paired magnetic resonance angiography (MRA) and
binary segmentation masks.

8.1.1 Key Findings and Contributions

• Synthesizing Vascular Segmentation from T2-Weighted MRI: In Chapter
4, we proposed a multitask learning-based encoder-decoder model designed to syn-
thesize CoW vessel segmentation from T2-weighted MRI using localized attention
maps. This work introduced an more parameter efficient segmentation approach
that eliminates the need for multiple input modalities and optimizes parameter
utilization by focusing on specific regions within the MRI images. The model’s
capability to produce precise CoW segmentations with fewer parameters than its
competitors underscores its significance for both clinical and research settings.
This is particularly valuable when vascular data from an MRA is crucial but not
accessible, yet other non-contrast imaging modalities like T2 are available.

• Shape-Guided Conditional Latent Diffusion Models: In Chapter 5, we
introduced a shape-guided conditional latent diffusion model, designed to syn-
thesize realistic brain vasculature with emphasis on CoW variations. The inclu-
sion of shape moments and PCA for anatomical guidance was crucial in ensuring
the generated vessels exhibited continuity and anatomical accuracy. The use of
diffusion models to generate both coarse and fine vascular structures advanced
the field of synthetic vascular imaging by allowing for more anatomically realistic
outputs.

• Few-Shot Learning for Aneurysm Generation: Also in Chapter 5, we
presented a novel approach to generating cerebral aneurysm images using lim-
ited data. By integrating a transformer-based approach to extract class-specific
features and employing signed distance functions (SDF) as shape-based condi-
tions, we were able to synthesize aneurysms with high anatomical fidelity. This
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method addressed the challenges posed by the scarcity of labeled data and offered
significant improvements in generating rare aneurysm phenotypes.

• Paired MRA and Segmentation Generation: A significant advancement
in this work was the development of a model capable of generating both MRA
and segmentation masks, allowing for the synthesis of complete vascular struc-
tures. Utilizing multitask learning, the model demonstrated strong performance
in generating high-quality MRAs while maintaining vessel integrity in segmenta-
tion outputs. This represents a major step forward in medical imaging synthesis,
offering the ability to synthesize both images and corresponding segmentations
from a single generative process.

8.1.2 Challenges and Limitations

Several challenges and limitations were encountered during this research. The primary
limitation of the segmentation model in Chapter 4 lies in its difficulty in generating
finer vessels, especially in the posterior communicating arteries. This may be due to the
limited resolution of the input T2 data or the model’s inherent limitations in capturing
complex vascular features from a single MRI modality.

In the context of Circle of Willis (CoW) generation, although our models demon-
strate the capability to produce realistic CoW architectures utilizing conditional ana-
tomical and shape guidance techniques, there remains potential for enhancement. The
current models exhibit limitations in accurately capturing the intricate anatomical
structures and occasionally yield implausible vascular topologies. This shortcoming
is primarily attributed to the absence of a physics-based framework that could assist
the model in ascertaining the feasibility of a given vascular structure.

In aneurysm generation, the scarcity of annotated cases remained a challenge. Al-
though the few-shot learning method showed promise, the generated aneurysm images
sometimes exhibited artifacts due to the limited data available for rarer aneurysm
phenotypes. The use of signed distance functions (SDF) improved vessel continuity,
but further refinement is necessary to fully address anatomical inaccuracies in certain
cases.

Overall , the biggest challenge that we face with the generative models is to find a
good quantitative reference metric to evaluate the outputs of the model. It is naturally
more challenging to evaluate the outputs of generative models due to the lack of ground
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truth reference , and while there is some promising research in this field with several
approachces that try to measure how ’real’ the generative images looks [170–172],
there is still limited research on how to evaluate generative medical models . The most
effective way as of now to evalatute the output of generative medical models still seems
to be validations from a clinician or a medical professional.

8.1.3 Future Directions

This work has paved the way for several future research directions:

• Expanding Data Modalities: Future research could focus on incorporating ad-
ditional MRI modalities, such as FLAIR or diffusion-weighted imaging, to capture
more detailed vascular structures. Combining multiple modalities could provide
richer data for training, allowing for more accurate generation of vascular images.

• 3D Network Architectures: One natural extension is the implementation of
fully 3D generative models to better capture complex vascular structures in three
dimensions, improving continuity and anatomical correctness.

• Clinical Applications and Validation: Moving forward, it is important to
validate the models in clinical settings, focusing on diagnostic applications. Col-
laborating with clinicians could help refine the models further and ensure that
the generated images are relevant and useful in real-world medical scenarios.

• Refining Anatomical Guidance: While the transformer-based approach for
anatomical guidance proved beneficial, further refinements and the exploration of
other feature extraction techniques could yield even more anatomically faithful
results.

• Evaluation Metrics: As discussed earlier , evalaution of generative medical
images is an open challenge and an area of active research. It would be very
interesting to explore some registration / physics based evaluation criterion that
have some prior information about the anatomy to act as a metric for evaluation
of these models.
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8.1 Conclusion

8.1.4 Final Thoughts

This thesis introduced several novel methods for generating brain vasculature, partic-
ularly focusing on the Circle of Willis (CoW) and cerebral aneurysms from MRI data.
These contributions address key challenges in medical imaging and open new avenues
for clinical and research applications.

A key achievement of this work is the ability to synthesize accurate vascular seg-
mentations from T2-weighted MRI, making vascular analysis accessible even in settings
without MRA. The generative models developed, particularly the shape-guided latent
diffusion models and few-shot learning techniques, enable the creation of large synthetic
datasets, which can improve model training for tasks such as aneurysm detection and
vascular segmentation in data-scarce environments. Furthermore, the paired generation
of MRA images and segmentation masks facilitates deeper analysis of the relationship
between brain anatomy and cerebrovascular conditions, allowing for a more precise
study of CoW configurations and their impact on stroke risk and other vascular dis-
eases. The ability to generate aneurysm images for rare phenotypes also supports the
development of better diagnostic and intervention strategies.

The research also significantly reduces the burden of manual segmentation by offer-
ing accurate, automated solutions that streamline the analysis of large imaging data-
sets. This innovation enables large-scale population studies and virtual clinical trials,
expanding the possibilities for understanding vascular phenotypes and their correlation
with neurological conditions. Standardized synthetic datasets created by these models
also allow for benchmarking segmentation algorithms, improving diagnostic accuracy
and data accessibility.

In conclusion, this thesis represents a step forward in medical image synthesis,
providing tools that enhance the accessibility, accuracy, and breadth of vascular research
and diagnosis. By bridging the gap between advanced imaging techniques and com-
monly available MRI modalities, this work has the potential to transform cerebrovascu-
lar research, enabling more effective diagnosis and treatment development for vascular
diseases.
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image translation using gans, Computerized medical imaging and graphics 79,
101684 (2020)

122



REFERENCES

[54] D. Nie, R. Trullo, J. Lian, L. Wang, C. Petitjean et al., Medical image synthesis
with deep convolutional adversarial networks, IEEE Transactions on Biomedical
Engineering 65, 2720 (2018)

[55] H. Emami, M. Dong, S. P. Nejad-Davarani and C. K. Glide-Hurst, Generating
synthetic cts from magnetic resonance images using generative adversarial net-
works, Medical physics 45, 3627 (2018)

[56] J.-Y. Zhu, T. Park, P. Isola and A. A. Efros, Unpaired image-to-image trans-
lation using cycle-consistent adversarial networks, in Proceedings of the IEEE
international conference on computer vision (2017), pp. 2223–2232

[57] X. Liang, L. Chen, D. Nguyen, Z. Zhou, X. Gu et al., Generating synthesized
computed tomography (ct) from cone-beam computed tomography (cbct) us-
ing cyclegan for adaptive radiation therapy, Physics in Medicine & Biology 64,
125002 (2019)

[58] J. Harms, Y. Lei, T. Wang, R. Zhang, J. Zhou et al., Paired cycle-gan-based image
correction for quantitative cone-beam computed tomography, Medical physics 46,
3998 (2019)

[59] X. Dong, Y. Lei, T. Wang, K. Higgins, T. Liu et al., Deep learning-based attenu-
ation correction in the absence of structural information for whole-body positron
emission tomography imaging, Physics in Medicine & Biology 65, 055011 (2020)

[60] Y. Liu, Y. Lei, T. Wang, Y. Fu, X. Tang et al., Cbct-based synthetic ct genera-
tion using deep-attention cyclegan for pancreatic adaptive radiotherapy, Medical
physics 47, 2472 (2020)

[61] X. Dong, Y. Lei, S. Tian, T. Wang, P. Patel et al., Synthetic mri-aided multi-organ
segmentation on male pelvic ct using cycle consistent deep attention network,
Radiotherapy and Oncology 141, 192 (2019)

[62] Y. Liu, Y. Lei, T. Wang, O. Kayode, S. Tian et al., Mri-based treatment plan-
ning for liver stereotactic body radiotherapy: validation of a deep learning-based
synthetic ct generation method, The British Journal of Radiology 92, 20190067
(2019)

123



REFERENCES

[63] K. H. Kim, W.-J. Do and S.-H. Park, Improving resolution of mr images with an
adversarial network incorporating images with different contrast, Medical physics
45, 3120 (2018)

[64] S. Olberg, H. Zhang, W. R. Kennedy, J. Chun, V. Rodriguez et al., Synthetic ct
reconstruction using a deep spatial pyramid convolutional framework for mr-only
breast radiotherapy, Medical physics 46, 4135 (2019)

[65] C. Han, H. Hayashi, L. Rundo, R. Araki, W. Shimoda et al., GAN-based synthetic
brain MR image generation, in 2018 IEEE 15th international Symposium on
Biomedical Imaging (ISBI 2018), IEEE (2018), pp. 734–738

[66] J. Ouyang, K. T. Chen, E. Gong, J. Pauly and G. Zaharchuk, Ultra-low-dose pet
reconstruction using generative adversarial network with feature matching and
task-specific perceptual loss, Medical physics 46, 3555 (2019)

[67] X. Zhang, S. Karaman and S.-F. Chang, Detecting and simulating artifacts in
gan fake images, in 2019 IEEE International Workshop on Information Forensics
and Security (WIFS) (2019), pp. 1–6

[68] A. Dosovitskiy, An image is worth 16x16 words: Transformers for image recogni-
tion at scale, arXiv preprint arXiv:2010.11929 (2020)

[69] Z. Choudhury, B. McCane et al., Medical image synthesis using autoencoder with
vision transformer, IEEE Transactions on Image and Vision Computing (2024)

[70] Y. Hu, S. Zhang, W. Li, J. Sun and L. Xu, Unsupervised medical image syn-
thesis based on multi-branch attention structure, Biomedical Signal Processing
and Control (2025)

[71] X. Zhao, Y. Du and Y. Peng, Deep learning-based multi-view projection syn-
thesis approach for improving the quality of sparse-view cbct in image-guided
radiotherapy, Journal of Imaging Informatics in Medicine (2025)

[72] A. Altalib, S. McGregor and C. Li, Synthetic ct image generation from cbct: A
systematic review, IEEE Transactions on Image and Plasma Medical Applications
(2025)

124



REFERENCES

[73] J. Huang, T. Tan, X. Li, T. Ye and Y. Wu, Multiple attention channels aggregated
network for multimodal medical image fusion, Medical Physics (2024)

[74] A. Brock, J. Donahue and K. Simonyan, Large scale gan training for high fidelity
natural image synthesis. arxiv 2018, arXiv preprint arXiv:1809.11096 (1809)

[75] M. Arjovsky and L. Bottou, Towards principled methods for training generative
adversarial networks, arXiv preprint arXiv:1701.04862 (2017)

[76] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford et al., Improved
techniques for training gans, Advances in neural information processing systems
29 (2016)

[77] Y. Song and S. Ermon, Generative modeling by estimating gradients of the data
distribution, Advances in neural information processing systems 32 (2019)

[78] A. Kazerouni, E. K. Aghdam, M. Heidari, R. Azad, M. Fayyaz et al., Diffusion
models in medical imaging: A comprehensive survey, Medical Image Analysis 88,
102846 (2023)

[79] Q. Lyu and G. Wang, Conversion between ct and mri images using diffusion and
score-matching models, arXiv preprint arXiv:2209.12104 (2022)

[80] T. Nyholm, S. Svensson, S. Andersson, J. Jonsson, M. Sohlin et al., Mr and ct
data with multiobserver delineations of organs in the pelvic areaâ€”part of the
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