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viii Abstract

Abstract

Digital pathology is a rapidly growing field, allowing for the development of assistive diagnostic
tools. Many tools use artificial intelligence (Al) to automatically provide insights from whole slide
images (WSlIs), aiming to improve the accuracy, objectivity, and efficiency of the diagnostic
process. Research has typically focused on the most common cancers, but less common
cancers have received comparatively little attention. We focus on the histological subtyping of
ovarian cancer, an essential diagnostic task for determining optimal treatments and prognoses.
Through a systematic literature review, we find that previous research has been limited to model
prototyping with small homogeneous datasets, with little focus on clinical utility. We perform
the most thorough analyses of automated ovarian cancer histological subtyping to date, using
the largest training dataset and evaluating models through cross-validation, hold-out testing,
external validations, bootstrapping, and hypothesis testing. Analyses are based on attention-
based multiple instance learning (ABMIL) with an ImageNet-pretrained ResNet50 backbone,
a commonly used WSI classifier. The computational complexity of current Al models is a key
limitation, with pathology labs typically not having sufficient hardware for model deployment. We
propose an active tissue sampling technique and show that this approach can drastically reduce
the computational burden of inference with minimal impact on diagnostic performance. ABMIL
analyses tissue at only a single magnification, with high magnifications offering more cellular
detail and low magnifications providing broader tissue context. We find that 10x magnification
balances the cellular and histoarchitectural details to give the most accurate ovarian cancer
subtyping performance, while drastically reducing the computational burden compared to the
clinical standard 40x magnification. Recently, histopathology foundation models have promised
to revolutionise diagnostic Al. We analyse 14 foundation models and confirm that they give
significantly greater performance than previous feature extractors. In ABMIL, tissue patches are
treated as independent of each other. We propose a multi-resolution patch graph network to
better model spatial context and find this marginally improves performance. The optimal model,
a combination of a foundation model and a graph, achieved five-class balanced accuracies
of 88%, 99%, and 77% in three validation sets, where our baseline model achieved only
66%, 69%, and 52%, and individual pathologists achieved 74-91% concordance with similarly
determined labels. This gives us confidence that Al models could have clinical utility, so future

work should focus on the practicalities of implementation and real-world validation.
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Chapter 1
Introduction

Pathology is an increasingly digitised discipline, with tissue slides scanned at high
magnification to allow diagnostic pathologists to analyse them using a computer rather
than a microscope. Digital pathology offers an opportunity for the development of
computer-aided diagnosis tools to improve the efficiency and accuracy of diagnostic
workflows, which may help to mitigate the severe shortage of available pathologists as
diagnostic workloads continue to grow rapidly. There is a wealth of research in this
field for the most common cancers, such as breast and lung cancers, but much less for
lower-incidence malignancies such as ovarian cancer. Addressing such disparities in
research will be central to ensuring that any benefits from clinical artificial intelligence

(Al) are not confined to a handful of common diseases.

Digital pathology images are vastly larger than the images analysed in typical Al
models, making them particularly challenging to assess. Diagnostically relevant tissue
may form a very small proportion of the entire tissue area, and missing such diagnoses
may have severe consequences for the health of a patient. However, thoroughly
assessing every pixel in such huge images presents computational challenges, both in
the training of a model and in the inference of clinical samples. Therefore, it is pertinent
to design models specifically for use on digital pathology data, with mechanisms to
determine and focus on the most diagnostically relevant tissue, and with particular

consideration for computational efficiency.



2 Chapter 1 - Introduction

1.1 Aims and Objectives

The primary aim of this research is the development and thorough validation of Al
techniques to classify ovarian cancer subtypes from digitised pathology whole slide
images. It is hoped that such tools may offer significant clinical benefit in improving
the efficiency and accuracy of an essential aspect of cancer diagnosis which is often

time-consuming and resource-intensive. The specific objectives are to:

+ Conduct a systematic literature review to characterise and quantify the
risks of bias associated with all previous research investigating diagnostic &

prognostic Al using ovarian cancer digital pathology slides.

* Apply state-of-the-art Al approaches from other pathologies to ovarian cancer

subtyping using the largest ovarian cancer histopathology dataset to date.

« Build upon these previous approaches using novel classification techniques

to boost the efficiency and discriminative ability of the models.

* Rigorously analyse optimal model configurations using hyperparameter tuning
procedures and thoroughly validate classification performance using multiple
validation datasets. Measure discriminative power through multiple metrics,

assess model efficiency, and qualitatively investigate performance.

1.2 Thesis Structure

Following this introductory chapter are eight subsequent chapters. Chapter 2 provides
a clinical overview of ovarian cancer and digital pathology, and a technical overview
of relevant Al methods. Chapter 3 is an extensive review of published literature in
the domain of Al for ovarian cancer diagnosis and prognosis. Chapter 4 describes
the methodology applied throughout the thesis, including explanations of the standard
models, validation methods, and datasets which are used in subsequent chapters.
Chapters 5-8 are primary research chapters, with each focusing on a different aspect
of the slide classification process. Chapter 5 explores approaches for active sampling
for a more efficient slide classification. Chapter 6 is a thorough analysis of how the
tissue magnification affects the efficiency and discriminative ability of a whole slide

classifier. Chapter 7 is a thorough analysis of feature extraction techniques, including
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recently developed histopathology foundation models. Chapter 8 introduces a novel
multi-resolution graph network for slide classification, building upon the lessons learned
in previous chapters. Finally, Chapter 9 provides a summary of the thesis, including the

limitations of the presented work and a view towards the future of research in this field.

These chapters are based on my primary author peer-reviewed articles published in
journals and conference proceedings. Chapter 3 is based on a published systematic
literature review [1] in NPJ Precision Oncology. Chapters 5, 6, and 8 are under-
pinned by conference papers in SPIE Medical Imaging 2023 [5], ISBI 2024 [6], and
MICCAI 2024 [7], respectively. The work underpinning Chapter 7 has recently been
published in NPJ Precision Oncology [2]. Chapters 2 and 4 include work from each of

these publications, as well as a published book chapter [9].
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Chapter 2
Clinical and Technical Background

In this chapter, we provide a clinical background to ovarian cancer, pathological
diagnostics, and in particular, ovarian cancer histological subtyping. We then describe

the wider context of Al in digital pathology the modelling techniques used in the field.

2.1 Ovarian Cancer

In the female reproductive system, egg cells are produced in the ovaries and travel
through the fallopian tubes to the uterus. The ovaries are situated in the lower
(infracolic) compartment of the abdominal cavity, close to the lower digestive and
urinary systems, a dense array of lymph nodes, and a large section of fatty tissue
called the omentum. Ovarian cancer encompasses primary malignant tumours of the
ovaries, fallopian tubes, and peritoneum (the inner lining of the abdominal cavity), with
some research suggesting that these all originate in the fallopian tubes due to the
findings of precursor lesions (serous tubal intraepithelial carcinoma) in patients who

received prophylactic surgery (salpingo-oophorectomy) due to genetic risk factors [13].

Ovarian cancer is the eighth most common malignancy in women worldwide [14]. Itis a
notoriously difficult disease to detect due to the disease having vague symptoms similar
to those caused by menopause [15], which is particularly problematic since ovarian
cancer typically affects menopausal and post-menopausal women [16]. Furthermore,
a randomised controlled trial with 200,000 participants found that screening based
on ultrasound imaging and the blood biomarker CA125 did not improve early-stage

diagnosis rates sufficiently to save lives [17].

Without effective screening, ovarian cancer is typically only detected once it has spread
beyond the pelvis, giving a relatively poor prognosis. While overall survival trends
have somewhat improved [18], ovarian cancer remains a particularly deadly disease.
Worldwide, there are 324,000 new cases of ovarian cancer diagnosed each year,

leading to 207,000 deaths [14]. In the UK, overall 1-year and 5-year survival rates
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are around 76% and 38%, respectively, with the length of survival depending upon the

histological subtype and stage at diagnosis [19].

B
w

Figure 2.1 A digital pathology image containing ovarian biopsies.

In suspected cases, numerous tests may be used to confirm the presence of ovarian
cancer, including diagnostic imaging (radiology), blood tests, and biopsies. Biopsies
(Figure 2.1) contain very little tissue and are often only relied upon for confirming
the presence of cancer, with deeper pathological analysis performed after resection
surgery (Figure 2.2). In the initial surgery, resected tissue typically includes the ovaries,

fallopian tubes, uterus, omentum, and local lymph nodes.

Pathological diagnosis includes classification of the stage, grade, and subtype of the
cancer. International Federation of Gynecology and Obstetrics (FIGO) staging [20] is
used to quantify the spread of primary ovarian cancer based on the primary tumour,
local lymph nodes, and distant metastases. Stage | ovarian cancer is confined to the
ovaries, stage Il has spread within the pelvis, stage Il has spread within the peritoneum
or retroperitoneal lymph nodes, and stage |V has metastasized further away. Grading
instead measures the abnormality of the cancer cells, which in turn represents how
aggressively a cancer is likely to behave. This was historically a three-tier system,
with grade 1 tumours containing well-differentiated cells (most similar to normal cells),

grade 3 tumours containing poorly differentiated cells, and grade 2 falling somewhere
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Figure 2.2 A digital pathology image containing a slice of an entire resected ovary
from staging surgery. The upper left side shows connective tissue. The pale regions
towards the right side are corpus albicans, the scars left after egg cells are released.

in the middle. This system is still used for some ovarian cancer histological subtypes,
though serous ovarian cancers are instead categorised as being either high-grade or

low-grade, and clear cell ovarian cancers are all categorised as high-grade.

Treatment decision-making is influenced by a range of factors, including radiological
and pathological analysis, comorbidities, age, and the patient’s personal decisions [21].
Most patients will undergo both surgery and chemotherapy, though in some cases,
one of these will be sufficient alone, or treatment may not be administered due to
other factors. These treatments are highly variable, with variations in the extent of
surgery, the chemotherapy drugs used, and the number and timing of chemotherapy
cycles [22]. Additional pharmacological treatments may include VEGF inhibitors and/or
PARP inhibitors, which prevent blood vessel formation and DNA repair respectively.
The effectiveness of the latter depends upon genetic factors [23—25]. Optimal treatment
decisions require integrating data from a range of sources, with histological analysis
being an essential component, without which patients may be subjected to ineffective

treatments and have worse overall outcomes.
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The primary focus of this thesis is the diagnosis of histological subtypes, which are the
specific characteristics of the cancer determined by the cellular and histoarchitectural
features present in pathology samples. Most ovarian cancers are carcinomas (cancers
of epithelial origin), for which the World Health Organisation defines five main subtypes
[26] - high-grade serous carcinoma (HGSC), endometrioid carcinoma (EC), clear cell
carcinoma (CCC), low-grade serous carcinoma (LGSC), and mucinous carcinoma
(MC) (Figure 2.3). HGSC is the most common form of ovarian cancer, accounting
for approximately 70% of all cases [27]. Non-epithelial ovarian cancers account for
less than 10% of all ovarian malignancies and include germ cell, sex cord-stromal,
and mesenchymal tumours [28]. Histological subtypes are distinct in their genetics,

prognoses, and treatment options [29, 30], making their classification an essential

component of ovarian cancer diagnosis.

High-grade Endometrioid Low-grade Mucinous
serous (70%) (10%) (7%) serous (5%) (3%)

i

¥

Figure 2.3 Examples of the five major morphological subtypes of epithelial ovarian
cancer with corresponding frequencies [30]. These frequencies do not sum to 100%
due to the existence of rarer subtypes, which are not shown here.

2.2 Histopathology

Histopathology is the microscopic evaluation of tissue for medical diagnosis. It is an
essential part of the diagnostic pathway for many diseases, including autoimmune
disorders, infections, and cancers. Tissue samples are taken either as small biopsies
or larger tissue resections, and typically they are fixed in formalin, embedded in
paraffin, sectioned, and stained. Formalin-fixed, paraffin-embedded (FFPE) samples

are the diagnostic gold standard and are suitable for long-term storage at ambient
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temperatures. Some samples are instead flash-frozen, a faster process which
allows pathologists to provide rapid information during surgery, but at the expense
of increased cell damage and inferior staining quality. Pathologists typically interpret
tissue stained with haematoxylin and eosin (H&E), where haematoxylin stains cell
nuclei blue and eosin stains other cellular structures, such as cytoplasm and cell
membranes, varying shades of pink and red.

Histological subtypes are diagnosed by pathologists assessing standard H&E-stained
tissue samples for their varied morphologies. Important features include histological
patterns and architecture of tumour cells (solid, papillary, glandular etc.), the frequency
of typical and atypical mitotic figures (dividing cells), the degree of cellular and nuclear
pleomorphism (variation in size and shape), the nuclear to cytoplasmic ratio, the colour

and consistency of cytoplasm, and the presence or absence of necrosis.

Ideally, histological subtypes are diagnosed using primary surgery resection speci-
mens, where the surgical removal of the tumour was the initial treatment. However, in
many cases a patient will receive neoadjuvant chemotherapy to reduce the size of the
tumour before surgery, with any resection surgery performed after chemotherapy (or
after the primary surgery) referred to as interval debulking surgery (IDS). IDS samples
are not typically considered appropriate for subtyping because of chemotherapy-
induced morphological changes, such as varying amounts of cell death and associated
changes in surrounding stroma. If it is not possible to analyse a primary surgery
resection specimen the next-best option is a pre-treatment biopsy, with IDS samples

only relied upon in cases where such a biopsy is not available.

The interpretation of H&E slides can be a subjective, time-consuming process, with
some tasks having a high level of inter-observer variation [31-33]. From an individual
ovarian carcinoma slide, pathologists only achieved a median 86% concordance rate
with the central review subtype diagnosis, and individual pathologists varied between
74-91% [32]. In the assessment of difficult cases, generalist pathologists may seek
assistance from subspecialty experts (such as gynaecological pathologists), and/or
use ancillary tests, such as immunohistochemistry (IHC) staining. IHC stains indicate
the presence of specific antigens to aid pathologists in identifying known phenotypic
profiles, helping to distinguish primary tumour types or histological subtypes [29]. For

example, p53 protein expression can be profiled, with abnormalities suggesting TP53
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gene mutations, which are particularly common in HGSC but not in LGSC. IHC can
also provide some indication of prognosis, with the quantity of CD8+ tumour-infiltrating
lymphocytes being associated with longer overall survival of HGSC patients [34], and
the level of oestrogen receptor and progesterone receptor expression being associated
with disease-specific length of survival in HGSC and EC [35]. However, ancillary testing
increases the complexity of diagnosis, so we instead focus on improving the accuracy

and objectivity of the information extracted from the standard H&E slides.

Pathological workloads are currently increasing [36, 37] alongside increasing cancer
rates [14], causing pathology departments to often be unable to meet demand. Most
NHS pathology departments resort to outsourcing work or hiring temporary locums [36]
despite the United Kingdom being one of the best-resourced countries worldwide [38].
The number of histopathologists in the NHS is projected to slightly decrease in the

coming years, exacerbating current issues [39].

There are significant variations between pathology departments, with smaller depart-
ments typically having only a few generalist pathologists whereas larger departments
often have many subspeciality experts. When seeking a second opinion from these
experts, pathologists often need to send samples over a long distance with an
associated financial cost and delay in diagnosis. While pathologists prioritise cases to
reduce delays in urgent cases, the constantly rising workload threatens to overwhelm
the system. Any delays resulting from demand outstripping diagnostic resources
risk catastrophic impacts on patient outcomes, with a four-week delay in cancer
treatment being associated with an approximately 10% increased mortality rate among

patients [40].

In recent years digital pathology scanners have started to be adopted in some
pathology departments, allowing pathologists to assess histology specimens using a
computer rather than a microscope. Digitisation can drastically improve the efficiency
of the diagnostic process [41, 42] with minimal impact on diagnostic decisions [43, 44].
Digital pathology images can be stored and transported much more easily than
physical slides, significantly reducing the logistical burden of outsourcing or seeking
a second opinion. Digital images are also much more accessible for the training of new
pathologists. However, high start-up costs and technical training requirements have

slowed the rate of adoption of digital pathology, with very few departments routinely
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digitising all pathology slides [45]. Implementing a digital pathology workflow typically
costs hundreds of thousands of dollars, causing adoption to be much more common
in the largest university hospitals and cancer centres than in smaller community
hospitals [45].

2.3 Pathology Al

While the digital pathology workflow has primarily been developed for logistical and
long-term financial reasons, it has also allowed for the development of diagnostic Al
tools by facilitating the creation of huge digital pathology data repositories. Models
have been developed for a wide array of diagnostic and prognostic tasks, including
diagnostic classification, tissue type segmentation, cell detection, treatment response
prediction, and overall survival prediction [1, 46]. These computer-aided diagnosis
tools aim to further increase the efficiency, accuracy, and objectivity of diagnosis. Such
tools may be able to automate the most routine aspects of pathological analysis and

offer assistance to pathologists in more complex aspects.

One key factor limiting the development of digital pathology tools is the huge size
of its images relative to other 2D medical imaging modalities. While a typical 2D
slice of a resection sample is only around one square inch in size, the whole slide
image (WSI) generated by scanning it at a standard 40x magnification is around
100,000 x 100,000 pixels. At a standard printing resolution of 240 pixels per inch,
this single image would cover half of a tennis court. These gigapixel WSlIs are typically
stored in a pyramidal file format (Figure 2.4), including lower-resolution versions of the
same image to facilitate the multi-scale analysis which is required for many diagnostic
tasks. Each WSI file comprises gigabytes of information, and a single case of ovarian
cancer can generate dozens of samples. Individual data centres generate terabytes
of digital pathology data each year [45], and the largest studies are starting to utilise
petabytes of data [47]. Automatically analysing such a huge quantity of image data
can be incredibly computationally demanding, often requiring servers with expensive

graphics processing units (GPUs).
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Figure 2.4 lllustration of a pyramidal file including three native tissue magnifications.

The objective of diagnostic pathology is to classify the relevant anatomical differ-
ences between samples without being distracted by irrelevant sources of variability
(Figure 2.5). Digital pathology slides vary visually due to differences in the sample
processing [48] (e.g. cut-up, fixation, and staining protocol) and digitisation [49]
(e.g. scanner, magnification, file formatting), as well as anatomical differences [50]
(e.g. tissue type, disease, genetics). Such variations are likely to be minor over short
periods within a pathology lab, meaning that single-centre data will typically be more
homogeneous than multi-centre data. Models trained with single-centre data are likely
to generalise poorly to data from different data centres, and even to data from the
same centre over time due to changes in tissue processing and digitisation procedures.
Similarly, a model trained for a particular disease is unlikely to generalise well to other
diseases, with these models typically seen as narrow Al due to their focus on very

specific tasks.
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Scanner 1

Scanner 2

Scanner 3

Scanner 4

Figure 2.5 Examples of the visual variation in digital pathology images caused by
different scanners from the MIDOG 2021 Challenge training set [3]. Each tissue sample
was processed in the same laboratory following the same protocol and then digitised
with one of four available scanners.

The clinical implementation of digital pathology Al is at a very early stage, with the
United States Food and Drug Administration (FDA) having only approved the first
Al-enabled medical device in digital pathology imaging in 2021. This tool classifies
whether prostate biopsies contain malignant cells and indicates the most likely affected
area within the WSI [51]. While this is a success story for digital pathology Al, the
task of prostate biopsy malignancy classification has many enabling traits - it is a
very common disease [14], biopsy slides contain orders of magnitude less tissue than
resection slides, there are only two possible classes, and it has a relatively low level of
inter-rater variation, with pairwise consensus rates over 90% for the three pathologists
in the original study [51]. The high incidence rate of prostate cancer makes it possible
to collect vast quantities of varied data, and the relatively small size of biopsy samples
makes it possible to train a model with a huge number of samples, allowing for the

development of a robust model.

As of September 2023, pathology Al products had only been approved in Europe for
the analysis of primary breast, prostate, and gastrointestinal cancers (as well as the

detection of lymph node metastases) [52], which all have much greater incidence rates
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than ovarian cancer [14]. Most approved products focus on the detection/quantification
of cancer, with relatively few tools approved for more complex diagnostic or prognostic
tasks. It is notable that despite these products being approved, the evidence of
their efficacy is limited, with less than half of the products associated with peer-
reviewed external validations [52]. Further, evidence is extremely limited on the
cost-effectiveness and real-world usability of these models, with clinical validations
only starting to be published in 2023 [53]. To be used in the UK, it is expected
that Al tools will be evaluated by the Medicines and Healthcare products Regulatory
Agency (MHRA) as software as a medical device (SaMD). Only a handful of products
have successfully undergone this process and received the UK Conformity Assessed
(UKCA) marking [52]. While some Al tools are starting to achieve very limited
clinical adoption [45], none have yet undergone full evaluation by the National Institute
for Health and Care Excellence (NICE), so they are not routinely used in NHS
pathology departments [52]. Despite the limited adoption, most of the pathologists
who responded to an international survey reported optimistic views that Al would
complement their work in the future and many expressed an interest in tools to aid with
tumour classification (though with greater interest expressed in tools for the objective

scoring of IHC and the detection of lymph node metastases) [45].
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2.4 Technical Background

2.4.1 Neural Networks

Al comprises a very wide array of automated tools which mimic intelligence, typically by
making seemingly reasonable interpretations or taking seemingly reasonable actions
when given a specific type of input data. This includes machine learning (ML)
approaches, which learn the relevant patterns within the input data without explicit
instructions. The most common type of Al model applied to digital pathology is the

neural network.

Neural networks are mathematical models inspired by the neural pathways in the brain,
with nodes (neurons) connected by edges (synapses). Mathematical operations are
performed at each node using inputs from any previous nodes, and the result is passed
along the edges to any subsequent nodes. The mathematical operations in a node
are often described as a linear combination of the input values with a specific weight
0; applied to each input value z;, before an additional bias g value is added and an
activation function f(x) is applied to the result, giving the formula for the output y of the

given node:

N
y:f<291$i+5), (2.1)

for N inputs. The most simple approaches are feed-forward neural networks, where
the initial data is passed to an input layer, passed through a series of hidden layers,
before reaching a final output layer. Feed-forward neural networks are typically fully
connected, meaning every node is connected to all nodes in the immediate prior layer
and the immediate subsequent layer. The output layer contains a series of nodes with
numerical outputs to be interpreted for the given task (for example, in classification
each node may represent a possible class and the one with the highest output value is
taken to be the class predicted by the model).

A neural network with more than one hidden layer is considered to be a deep neural
network, with deep learning increasing the abstraction between the input and output.
The abstraction is so great that these models are often referred to as black-box models
because of how difficult it is to interpret the steps between the input and output of the
model.
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Feed-forward neural networks are trained using backpropagation [54], which starts by
calculating a loss function at the output node, then steps backwards through the layers
of the neural network calculating the gradient of the loss at each node. The size and
direction of the gradient is used to determine the adjustments to be made to the model
weights in a gradient descent approach. The loss function must be differentiable to
allow for the application of the chain rule to calculate gradients, and should ideally be

continuous to allow for stable convergence to a local minimum.

2.4.2 Computer Vision

Image data is computationally represented as a 2D spatial matrix with red, green and
blue (RGB) colour channels, giving a total matrix size of heightxwidthx3 per image.
Inputting this matrix directly to a neural network would disregard the inherent spatial
patterns, so instead a plethora of methods have been developed specifically for image
analysis. Traditional computer vision approaches used pre-defined image features to
capture the colours, textures, and edges within an image through approaches such as
filtering, thresholding, and histogram analyses [55]. This has been largely supplanted
in modern research by approaches which automatically learn relevant features, such

as convolutional neural networks (CNNs) and vision transformers (ViTs).

CNNs use convolutional layers in which many small filters (often only 3x3 pixels) are
passed over the entire image, with the trainable weights used in these filters multiplied
by the corresponding pixel values to quantify specific patterns. Stacking convolutional
layers iteratively increases the abstraction from the input image, allowing more complex
patterns to be modelled. These layers are interleaved with pooling layers, which
combine neighbouring pixels (often taking the average or maximum value) to reduce
the dimensionality of the feature representations. For image classification, the outputs
from the final pooling layer are typically flattened to generate a vector of image features

which are input to a fully connected neural network.

These models were first popularised in the 1990s, with CNNs increasingly capable
of classifying handwritten digits (0-9) in 28 x 28 greyscale images from the MNIST
dataset [56]. Their usage expanded in the 2010s as classification performance
drastically improved [57] on the 224 x 224 RGB images from the ImageNet dataset

[58], which included 1.4 million natural images from 1000 classes. Newer CNNs
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have been increasingly computationally intensive, from the five layers used in MNIST
classification and eight layers used in early winners of the ImageNet challenge [56, 57],
to newer models with tens or hundreds of layers [59], which can be impractical to train
without GPUs.

2.4.3 Transformers

Many computer vision approaches decompose the input image into many smaller sub-
sections, typically referred to as patches (Section 2.4.4). A sequence of patches in
an image is analogous to a sequence of words in a sentence, and so many modelling
approaches have been adapted from the field of natural language processing (NLP).
One such approach is the attention mechanism, which assigns weights to the tokens
in the sequence representing their relative importance, with these weights considered
when aggregating information from the tokens to make inferences about the sequence

as a whole [60].

The transformer extended the attention mechanism to self-attention, capturing the
pairwise relationships between tokens in a sequential input [61]. These were extended
from their origin in NLP to create the vision transformer (ViT), which captures
relationships between patches in images [62]. The patches are typically small to
maximise the learned relational information between pairs of patches (14 x 14, 16 x
16, or 32 x 32 pixels in the original paper [62]). The patch embeddings input to the
transformer blocks are simple linear encodings, where the flattened raw pixel values
are linearly projected to a desired dimension, which can be understood as passing the

input pixels through a single neural network layer.

The attention score matrix A in a transformer is calculated as a function of a query
matrix ¢ and a key matrix K, which is then multiplied by a value matrix V' to give the
transformer block output [61]. The query, key, and value matrices are calculated by
multiplying the patch embeddings matrix X by a trainable weight matrix Uyg k1. The
queries Q = XU represent what each token is seeking, and the keys K = XUy
are compared to the queries to determine the relevance of each token. The values
V = XUy are the encodings of the input tokens which will be aggregated using the

attention mechanism.
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The scaled dot product attention function is calculated as:

A = softmax (?Z_:) , (2.2)

where the scaling factor ﬁ is a function of the dimension of the keys and values
d,. The output of the transformer block is then simply the attention-weighted values,
AV. Several transformer blocks are typically used in parallel with different weights to
create a multihead self-attention. We use self-attention, where the queries, keys, and
values all originate from the same input. The alternative, cross-attention, allows the
use of multi-modal data by taking keys and values from one data source and queries

from another.

Transformers need position embeddings to be input alongside the input tokens in order
to learn the importance of the arrangement of tokens [61]. In NLP there is a 1D
input which typically does not have a fixed sequence length, so a flexible, unbounded
function needs to be used to encode the relative positions of tokens (typically based
on a sine wave). When using ViTs it is typical to use a fixed input image size, giving a
fixed number of patches n, and thus a 1D position embedding can be applied simply
by flattening the patch sequence and numbering it from 1 to n. Some more complex
approaches have been attempted to accurately map the 2D spatial positions or to
calculate relative distances between patches, though these have not demonstrated
a benefit over the simple 1D embedding [62], which appears to provide sufficient

information to allow the model to learn the spatial structure [63].

ViTs are rapidly growing in popularity as an alternative to CNNs in medical imaging
[64]. These models are incredibly scalable [65] and (as with the transformers used
in NLP) they benefit from pre-training with huge datasets to create foundation models
[66, 67], which can be adapted to specific use cases. ViTs and foundation models are

extensively evaluated for the task of ovarian cancer histological subtyping in Chapter 7.

2.4.4 Multiple Instance Learning

Slide-level classification is a difficult task because WSiIs are too large to be directly input

into standard computer vision methods such as CNNs and ViTs. Some researchers
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have applied these methods to small tissue subsections or heavily compressed WSils,
but such approaches discard a wealth of potentially relevant diagnostic information.
We focus on the much more popular approach of multiple instance learning (MIL) [68],
where multiple instances with shared properties are aggregated in a bag for modelling.
In digital pathology, this means splitting the WSI into smaller patches for modelling,

with patch-level information aggregated to make inferences about the whole slide.

In previous literature, the term multiple instance learning (MIL) does not have a single
agreed definition with clear boundaries. In this thesis, MIL refers to any approach in
which patch-level information is aggregated to make slide-level inferences, including
voting-based approaches, attention-based aggregations, and graph models. It may be
argued that patch-level encoders that decompose inputs into tiny sub-patches (such as

ViTs) are a form of MIL, though we focus on approaches which can be applied to WSIs.

While MIL approaches have been researched since the 1990s [69], applications to
digital pathology classification did not occur until the mid-2010s [70]. Earlier work would
have been impractical due to the rarity and expense of digital pathology scanners and
the limitations of computational hardware. Generating pixel-wise annotations for such
large images is very time-consuming, so digital pathology MIL is typically used in a
weakly-supervised setting, where only slide-level class labels are provided for model
training [68]. Most MIL methods in histopathology can be described in five stages -

preprocessing, patching, embedding, aggregation, and classification.

Preprocessing refers to the initial adjustments applied to the digital pathology image.
Given that a large proportion of most WSiIs is the non-tissue background region, it is
common to perform tissue segmentation as a preprocessing method [1], which allows
for the removal of the plain background to improve the efficiency of the model and to
increase the focus on tissue. Some researchers take this a step further by performing
tumour segmentation during preprocessing, further focusing the model on relevant
tissue. More complex methods may be employed to perform quality control, with
artefacts being detected and adjusted. Other typical preprocessing approaches include
downsampling to reduce the effective tissue magnification and hence the overall size of
the image, and chromatic adjustments to either reduce visual variability (normalisation)
or increase it (augmentation). Most approaches may be applied either before or after

patching.
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Patching is the process of splitting the WSI into computationally manageable subsec-
tions. Patch sizes can be variable, though 256 x 256 or 512 x 512 pixel patches will
typically be used for CNN-based models and 224 x 224 pixel patches for ViT-based
models. Larger patches give a greater context window, whereas smaller patches are
typically more computationally efficient. A standard 40x magnification WSI is around
100,000 x 100,000 pixels in size, so using a patch size of 256 x 256 pixels gives around
150,000 unique, non-overlapping patches.

Patch Extraction

Input WSI Tissue Detection

Figure 2.6 Example preprocessing and tissue patch extraction procedure, with tissue
segmentation preprocessing and 256 x 256 pixel patches extracted from a 40x
magnification WSI.

Embedding is the process of extracting features from the patches. While traditional
Al methods in histopathology used hand-crafted features, it is now more common to
use CNNs or ViTs to automatically learn relevant features [1]. Embedding patches
can drastically reduce their dimensionality to make further modelling computationally

tractable.

Transfer learning is typically employed during this stage, meaning that the feature
extractor is pre-trained using a particular source dataset and then adapted for usage
on a target dataset. Ideally a deep learning model would be trained end-to-end,
with all model weights updated in a single backpropagation pass, but this may be
computationally impractical when applying MIL to such large images. It is common
for the feature extractor to be frozen, meaning it is kept in a fixed state during the
training of the subsequent model weights, allowing patch features to be pre-computed
and stored before model training. The feature extractor may, however, be fine-tuned

to the target domain before being frozen within the MIL model. Transfer learning often
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improves the speed of model convergence and may also benefit the final classification
performance, especially when there is not a large enough target dataset to thoroughly
train a feature extractor from scratch, or when computational hardware is insufficient to

train a model end-to-end.

Aggregation approaches collate information from the different patches in a slide.
Aggregation methods can be grouped into instance classification and instance em-
bedding approaches based on whether the instances are individually classified. The
simplest instance classification approach is max-pooling, where the instance with the
highest individual classification score represents the entire bag. The simplest instance
embedding approach is mean-pooling, where a slide-level embedding is generated as

the mean of all patch-level embeddings and then passed through a slide-level classifier.

Classification approaches depend upon aggregation approaches. If an aggregation
approach generates slide-level embeddings then these can be classified through
standard classification approaches (support vector machines (SVMs), decision trees,
k-nearest neighbours, etc.), with neural networks being the most popular choice in
modern research [1]. For instance classification techniques, slide-level classification
depends upon instance scores/classes, for example taking the most common patch-
level class as the slide-level class. The phrases mean-pooling and average-pooling
in previous literature may refer to either the aforementioned instance embedding
approach [71] or to an instance classification approach in which the average patch
classification score is taken as the slide classification score [70], though this is more
commonly called average-vote. Bag classification techniques can also be adjusted to
perform bag-level regression, clustering, and ranking, though classification remains the

most common [72].

Instance Classification Approaches

Max-pooling is the simplest instance classification approach, but it is only suitable
when the traditional MIL assumption holds - if any instance is positive then so is the
entire bag, but if all instances are negative then the bag is negative. This applies
to malignancy classification, with a WSI classified as malignant if any patch within
it contains malignant tissue and classified as benign if no patch contains malignant

tissue. However, the assumption does not hold for multi-class subtyping.
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More complex instance classification approaches were introduced in the early 2000s,
leveraging multiple instances per bag. These approaches used instance classification
scores to identify a set of most relevant instances, then aggregated these using ML
approaches such as SVMs [73] and neural networks [74]. Often the number of relevant
instances per bag was set as a hyperparameter K, with the top-k instances used to
represent the bag. Some of these approaches have utilised instance embeddings,
but these are still instance classification methods since the aggregation depends upon
individual instance classification scores. These more complex approaches increased
the abstraction from the traditional MIL assumption and better accommodated multi-

class classification.

A modern application of top-k patch selection used a recurrent neural network (RNN)
to classify the slide based on the top-k patch feature embeddings [75]. This approach
achieved very high accuracy for malignancy classification with three different types of
cancer, and underpinned the first FDA-approved Al-enabled medical device in digital
pathology [51]. However, this was found to be a particularly data-hungry approach, with
an ablation study finding that at least 8,000 training WSIs were required to minimise
validation error in a homogeneous set of prostate biopsy slides. It is further noteworthy
that the top-k aggregation did not offer a significantly better performance compared to
a simple max-pooling aggregation in either the original study or a similar study which

applied the method in a fully-supervised manner [76].

Instance Embedding Approaches

Instance embedding is the more common MIL aggregation approach in digital pathol-
ogy, and is more directly applicable to multi-class classification. In instance embedding
approaches, patches are encoded to a latent embedding space and then combined to
generate a latent representation of the entire slide for classification. The most basic
approach is the aforementioned mean-pooling, with the average of the patch feature

embeddings used as the slide embedding for classification.
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Attention-based multiple instance learning (ABMIL) is a more advanced approach in
which the mean aggregation of instance embeddings is weighted based on trainable
attention scores [77]. The attention weight (a;) of an instance is calculated with the

following equation:

exp{w' tanh(Vh})}
ZKZI exp{w’ tanh(thT)}’

J

for 1x M instance embedding hy, € {hy,...,hx}, Lx 1 parameter vector w, and Lx M
parameter matrix V. Dimensions L and M are pre-defined hyperparameters. An
alternate version, gated attention, calculates weights similarly but includes a sigmoid

non-linearity in an attempt to better learn complex relations:

exp{w' (tanh(Vh]) ® o(Uh}))}
Z]K:l exp{WT(tanh(thT) ® U(Uth))} ’

ay = (2.4)
where U is also an LxM parameter matrix, o is the sigmoid function, and © is
an element-wise multiplication. The seminal approach also included trainable
transformations before and after aggregation to increase model flexibility. In the
original publication [77], ABMIL achieved state-of-the-art results on two histopathology
datasets, though the images used were particularly small at less than 1000 x 1000
pixels each, where a typical WSI is around 100,000 x 100,000 pixels. It was unclear
whether standard attention or gated attention was better, with each outperforming the

other in some experiments.

Cluster-constrained attention MIL (CLAM) attempted to further refine the feature space
by clustering within high-attention regions during training [78]. Within this study it was
shown how attention-based methods could be extended to multi-class classification by
using a parallel attention branch for each class, with each of the class-specific slide
representations passed to the final classification layer of the network. Surprisingly,
the classification performance of ABMIL was not compared in the original study
despite CLAM being an adaptation of this approach. CLAM has since become a very
commonly used benchmarking model despite it remaining unclear whether it is better
than ABMIL and whether the multiple attention branches provide a benefit [79-82]. The
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popularity of CLAM may be influenced by its particularly well-developed open-source

code repository.

2.4.5 Spatial MIL Networks

One key limitation of the MIL methods explored thus far is that patches are processed
independently, with the WSI modelled as a bag of patches without any spatial structure.
However, the spatial arrangement of a tissue sample is likely to be diagnostically
relevant as it contains information such as the size of the tumour, the extent of invasion,
and the immune response to the tumour. As such, many recent approaches have
focused on modelling these spatial relationships, typically using either transformer or

graph networks.
Transformers

ViTs have been successfully applied to the classification of natural images and written
digits [62], but are limited in their applicability to WSIs by the quadratic computational
complexity of capturing the pairwise relationship between patches. In the original vision
transformer paper [62], a typical image contained only 196 patches (224 x 224 pixel
inputs with 16 x 16 patches), but a typical WSI contains thousands or tens of thousands
of patches. Taking larger patches may help to compensate but this results in less fine-
grained spatial information in the transformer and it requires a more computationally

complex patch embedding model, thus it is not a sufficient solution.

Approaches to implementing transformers for slide-level classification have included
taking an approximation to self-attention which is of linear complexity O(n) rather
than quadratic O(n?) [71], and stacking multiple transformers at different tissue scales
[83], with both approaches reported to improve performance over non-transformer
aggregation techniques. Recent research has focused much more heavily on applying
transformers during the patch embedding stage to create histopathology foundation
models, which are trained on large domain-specific datasets to learn domain-specific

features. We explore histopathology foundation models in Chapter 7.
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Graph Networks

Graph networks offer a different approach to modelling spatial relationships. In a graph,
nodes are connected by edges, and information is passed along the edges to allow
nodes to gain contextual information. Computationally, a graph can be characterised
by a pair of matrices g = (X, A). For a graph with n nodes, the feature matrix X € R"*™
is composed of m-dimensional node feature vectors x;, ..., x,,, and the adjacency matrix

A € R™" is a sparse matrix encoding which nodes are connected by edges.

In histopathology, graphs can model tissue as connected cells or tissue patches.
Cell graphs are typically only applied to small regions of interest rather than entire
resection specimens [84—94] as the incredibly vast number of cells per tissue sample
is computationally limiting. When cell graphs have been applied to WSIs they have
relied on subgraph sampling approaches, with analyses limited to relatively few WSIs
[95, 96]. Only one previous approach has performed slide-level classification directly
from a cell graph, and this was only applied to IHC specimens with drastically fewer

visible cells than in a standard H&E sample [97].

Patch graphs are more directly applicable to slide-level classification as the number of
patches is typically orders of magnitude smaller than the number of cells - a single
WSI may contain millions of cells [95, 98] but only tens of thousands of patches.
Patch graphs are a natural extension of MIL, with the bag and instances defined in the
same way, but connections added between (spatially) related instances. Some graph
approaches are neither cell graphs nor patch graphs, with adaptive graphs modelling
regions determined by segmentation or clustering approaches [99-101]. This may
reduce the computational complexity of the graph compared to a cell graph with more
flexibility than a patch graph, though these approaches have been less thoroughly

explored in previous literature [101].

When a graph structure has been defined, the graphs may be input into a graph
neural network (GNN) [102]. GNNs utilise message-passing layers to share information
between connected nodes, and graph-pooling layers to reduce the number of nodes,
with several of each of these layers used to pass information to distant parts of the
graph and to iteratively reduce the graph size. Graph-based MIL has been applied to
image classification for many years, with the graph layers followed by a MIL aggregation
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approach to turn the remaining nodes into a whole-graph feature embedding for

classification [103]. We explore graph-based MIL in Chapter 8.

2.5 Classification Metrics

The most straightforward metric to quantify WSI classification performance is accuracy,
though this metric only provides information at a single decision threshold and
becomes distorted by class imbalances. Balanced accuracy is an improvement as
it takes the average of the accuracy score for each class, thus it is more robust
to class imbalances. The F1 score is a similar metric which takes the harmonic
mean of precision and recall at a single threshold. The most commonly reported
metric in previous research is the area under the receiver operating characteristic
curve (AUROC) [1]. The receiver operating characteristic curve compares true
positive and false positive rates across classification thresholds, so the area under
this curve (the AUROC) gives a more holistic measure of model performance which is
independent of the classification threshold. However, this metric is too abstract to be a

clear measure of clinical utility alone.

Each of the chosen metrics gives a score between 0 and 1 (with higher scores
being better, and 1 being perfect), meaning they can be expressed as percentages.
When classifying a dataset with N classes, where the most common class accounts
for a proportion ¢ of the dataset, to demonstrate predictive power a model should
outperform a model which always selects the most common class, which gives an
accuracy of ¢, balanced accuracy of i, macro-averaged F1 score of % and
AUROC of 0.5. For example, in our largest cross-validation experiments (in Chapters
7 and 8), we have N = 5 classes and ¢ = 0.68 as the proportion of the most common
class, giving baseline scores of 68% accuracy, 20% balanced accuracy, 0.16 F1 score,

and 0.5 AUROC.

Prediction
Positive Negative
Positive True Positives (TP) | False Negatives (FN)
Ground Truth
Negative False Positives (FP) | True Negatives (TN)

Table 2.1 Confusion matrix.
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Each metric can be expressed as a function of the number of true positive (TP), false
positive (FP), false negative (FN), and true negative (TN) class predictions (described

in Table 2.1) as follows:

TP+ TN

Accuracy = w5 TN T FP T EN”

TPR +TNR
2

1/ TP N
"2 \TPrENTTINTFP)

Balanced Accuracy =

2 x precision x recall

precision + recall
2TP

T 2TP+FP+FN’

F1 Score =

1
AUROC:/ TPR(FPR) d(FPR)
0
B /1 TP FP J(_FP
~ Jo TP+FEN \FP+TN FP+TN)’

where TPR is the true positive rate, TNR is the true negative rate, and FPR is the false
positive rate, and where TPR(FPR) is TPR as a function of FPR.

These metrics help to determine the discriminative performance of a model, but this
is not the only aspect of a model that is relevant to the clinical utility. Due to the
huge size of WSIs, classifiers are often computationally intensive, requiring multi-GPU
servers for training and inference. Such hardware is unlikely to be directly available to
clinicians, so it is also pertinent to measure the size and/or efficiency of models, which
can be done in terms of speed, memory requirements, or number of model parameters.
The efficiency of inference is more directly relevant to clinicians than the efficiency of
model training, as models can be trained in a research setting and then deployed to the
clinical setting for slide evaluation. Efficient model training may be beneficial in allowing
models to be trained with more data, more extensively tuned, or trained with additional
augmentation techniques, which can lead to benefits in the classification performance

of a model.
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Chapter 3
Systematic Literature Review

In this chapter, we explore published research for the diagnosis or prognosis of
ovarian cancer from digital pathology images. We systematically review such research,
characterising the methods used and the clinical tasks addressed. We assess the risks

of bias in each study and provide recommendations for subsequent research.

3.1 Introduction

Al in digital pathology is a broad and rapidly growing field. To conduct relevant,
high-impact research, it is essential to first understand the current state of the field.
Previous reviews of Al in gynaecological cancers have given broad overviews of the
field without a comprehensive synthesis of all published research using ovarian cancer
histopathology data [104—107]. We instead systematically reviewed all literature in
which Al techniques (comprising both traditional ML and deep learning methods) were
applied to digital pathology images for the diagnosis or prognosis of ovarian cancer
[1]. This included research which focused on a specific diagnostic factor (such as
histological subtype), and studies that performed computer-aided diagnostic tasks

(such as tumour segmentation).

In the review, we characterised relevant studies and assessed their quality. We then
provided insights and recommendations based on published literature to improve the
clinical utility of subsequent research, including reducing risks of bias, improving

reproducibility, and increasing generalisability.
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We developed and registered a study protocol (PROSPERO CRD42022334730)
defining the scope and methodology of the review. There were two research questions
to be addressed:

+  What diagnostic/prognostic tasks have been addressed using Al methods for

ovarian cancer using histopathology data?

+  What underlying Al methodology did these studies use, how well did they

perform, and how reliable was the research?

This was a multi-disciplinary effort in which | (JB) managed a group involving two
pathologists (KA, NMO), an oncologist (KZ), and a computer science academic (NR).
While | planned the review and wrote the manuscript, the other group members offered
regular feedback and were directly involved in the literature selection, risk of bias
assessment, and data synthesis stages to ensure a fair and balanced review process.
The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA)
2020 guidelines for reporting systematic reviews were followed, with the checklist
provided in Appendix B.

3.2 Literature Search and Selection

Literature Search

Searches were conducted in three research databases, PubMed, Scopus and Web
of Science, and two trial registries, Cochrane Central Register of Controlled Trials
(CENTRAL) and the World Health Organisation International Clinical Trial Registry
Platform (WHO-ICTRP). The chosen research databases only included journal papers
and conference proceedings which had undergone peer review, ensuring a basic level

of integrity in the included research.

The search strategy was composed of three distinct concepts - artificial intelligence,
ovarian cancer, and histopathology. For each concept, multiple relevant terms
were combined using the OR operator (e.g. "artificial intelligence" OR "machine
learning"), and then these were combined using the AND operator to ensure that
retrieved research included all three concepts. Many Al approaches build on statistical

models, such as logistic regression, which can blur the lines between disciplines.
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When conducting searches, a previously reported methodology was adopted [108]
in which typical Al approaches were identified by name (e.g. neural networks), and
other methods were identified by the authors describing their work using terms such as
artificial intelligence. Search terms are shown in Table 3.1 and the full search strategies

for each research database are shown in Appendix A.

Artificial Intelligence Ovarian Cancer Histopathology
Machine Learning Ovarian Carcinoma Histology
Al Ovarian Mass Digital Pathology
ML Ovarian Tumour Whole Slide Image
Deep Learning Ovarian Neoplasm Tissue Slide
Active Learning Ovarian Malignancy Pathology Slide
Computer-aided Diagnosis Fallopian Cancer' Pathology Image
Computer-assisted Diagnosis | Fallopian Carcinomaf Tissue Microarray
Computer Vision Fallopian Mass’ Immunohistochemistry
Neural Network Fallopian Tumourf Haematoxylin and Eosin
Deep Network Fallopian Neoplasm' | Computational Pathology'
Recurrent Network Fallopian Malignancy'
Convolutional Neural Network Peritoneal Cancer’
Graph Network Peritoneal Carcinoma’
Perceptron Peritoneal Tumourf
Multiple Instance Learning
Support Vector Machine
Random Forest
Ensemble
Nearest Neighbour
Gradient Boosting
Backpropagation
Segmentation

Table 3.1 Systematic review search terms grouped by concept. Wildcards were used
to allow for different spellings and suffixes (e.g. "patholog*" to allow for "pathology" and
"pathologist"), and "AND/OR" operators were used to allow different combinations of
words (e.g. "fallopian AND cancer" to allow for "fallopian tubes cancer" or "cancer of
the fallopian tubes"). "These terms were added after peer-review feedback.

The widest possible set of search fields was used for each search engine except for
Scopus, where restrictions were imposed to avoid searching within the citation list
of each article, which was not an available field in the other search engines. The
terms ML and Al were restricted to specific fields due to the diversity of their possible
meanings. To ensure the most rigorous literature search possible, no restrictions were

placed on the publication date or article type during searching. Searches were initially
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conducted on 25/04/2022 and were most recently repeated for the systematic review
on 19/05/2023 after the first round of peer review. To bring the thesis up-to-date,
searches were repeated again on 25/06/2024, with the most recent literature described
in Section 3.5.3.

Literature Selection

First, duplicate papers were manually removed with the assistance of the referencing
software EndNote X9. Then, two researchers (JB, KA) independently screened all
articles for inclusion in two stages, the first based on the title and abstract alone,
and the second based on the full manuscript. In any case where these researchers
disagreed on whether a paper should be included in their independent assessments,
their inclusion was discussed and, if necessary, arbitrated by a third researcher
(NR or NMO). Trials in WHO-ICTRP did not have associated abstracts, so only the

tittes were available for the initial screening.

The inclusion criteria required that research evaluated the use of at least one Al
approach to make diagnostic or prognostic inferences on human histopathology
images from suspected or confirmed cases of ovarian cancer. Studies were only
included where Al methods were applied directly to the digital pathology images,
or to features which were automatically extracted from the images. Fundamental
tasks, such as segmentation and cell counting, were included as these could be
used by pathologists for computer-aided diagnosis. Only conventional light microscopy
images were considered, with other imaging modalities, such as fluorescence and
hyperspectral imaging, excluded. Multi-modal approaches were included as long
as the pathology modality met this criteria. Publications which did not include
primary research were excluded (such as review papers and comments). Non-English
language articles and research where a full manuscript was not accessible were also

excluded.

The initial searches (25/04/2022) returned 1305 records, of which 28 were eligible
for inclusion, with the final searches (19/05/2023) bringing this up to 1573 records
and 45 inclusions. As shown in Figure 3.2, of the 1573 total records, 557 were
duplicates, 930 were excluded during the screening of titles and abstracts, and 41

were excluded based on full paper screening, including 3 records for which full articles
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could not be obtained. The remaining 45 studies included 11 conference papers and
34 journal articles. All accepted studies had originally been identified through searches
of research databases, with no records from trial registries meeting the inclusion
criteria. While the searches returned literature from as early as 1949, all of the research
which met the inclusion criteria had been published since 2010, with over 70% of the

included literature published since 2020, as shown in Figure 3.1.

16

=
N H

=
o

Number of Publications

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
Publication Year

Figure 3.1 Number of publications included in the systematic literature review by
publication year (final searches on 19/05/2023).

An Al model in an included study was considered to be a model of interest if it met
the same inclusion criteria as was used for selecting papers. Where multiple models
were compared for the same outcome, the model of interest was taken to be the newly
proposed model, with the best performing model during validation taken if this was
unclear. If multiple model outcomes were assessed in the same study, a model of
interest was taken for each model outcome, regardless of any similarity in modelling
approaches. Models investigating the same outcome at different levels of precision
(e.g. patch-level, slide-level, patient-level) were not considered to be different model
outcomes. Models didn’t need to be entirely independent, for example, the output of
one model of interest could have been used as the input of another model of interest
on the condition that model performance was separately evaluated for each model.
Applying these criteria, we found 80 models of interest in the 45 included studies, with

up to six models of interest per paper.
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Identification of studies via databases and registers
_E Recggﬂ;&ie(r:}hﬂe;i%r;m: Records removed before
S PubMed (n = 413) screening.
(= Web of Science (n = 404) ——> Duplicate records removed
5 WHO-ICTRP (n = 15) (n=2557)
= Cochrane CENTRAL (n = 10)
M) l
Records screened Records excluded
—>
(n=1016) (n =930)
v
Reports sought for retrieval Reports not retrieved
(n=86) ' (n=3)
o
(=
g I
o
7} N Reports excluded:
»n RePorts assessed for eligibility Not histopathology (n = 10)
(n=83) No Al (n = 9)
Not ovarian cancer (n = 6)
Al not applied to
histopathology (n = 5)
Earlier version of other
included paper (n = 3)
Not primary research (n = 3)
No prognostic/diagnostic
outcome (n = 2)
—/
) A4
9 Studies included in review
= (n =45)
° Reports of included studies
= (n =45)
—/

Figure 3.2 PRISMA 2020 flowchart of the finalised study identification and selection
process for the systematic review. Records were screened on titles and abstracts
alone, and reports were assessed based on the full-text content.
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3.3 Data Synthesis

Data extraction was performed independently by two researchers (JB, KA) using a
form containing 81 fields within the categories Overview, Data, Methods, Results, and
Miscellaneous. Several of these fields were added or clarified during data extraction
with the agreement of both researchers and retroactively applied to all accepted
literature. The final data extraction form is available on GitHub (www.github.com/scijjb/

OvCaReview), with a summary shown in Table 3.2.

Category Data Extraction Fields

Overview Internal ID. Lead author. Year. Conference/Journal name.

Number of development images. Total number of images. Type of samples.
FFPE/Frozen. Size of images. Tissue of origin. Number of development patients.
Total number of patients. Number of data collection centres. Type of stain.
Number of stainers. Scanners. Number of scanner types. Number of tissue
processing centres. Data origin countries. Number of pathologists for data labelling.
Online dataset. Prospective/retrospective. Clinical/research tissue. Data annotation.
Maximum magnification available. Supplementary datatypes.

Data exclusion reasons. Number of images excluded. Other cancer types included.
Outcome. Outcome measure/classes. Outcome standards/definition.
Magnifications used. Patch sizes. Patches per image. Task type. Feature extraction
type. Feature extractors. Al in main method. Other Al methods. Optimiser.
Number of external validations. Differences to external validation set. Total external
validation images. Number of cross-validation folds. Number of non-novel methods
compared. Number of GPUs. Type of GPUs.

Internal test accuracy. AUROC. Sensitivity/specificity. Other metric(s).
Results External training type. External test accuracy. AUROC. Sensitivity/specificity.
Other metric(s). Type of error bounds. Model training time. Visualisation type.
Miscellaneous Code availability. Data availability. Notes.

Data

Methods

Table 3.2 Summary of the fields used for data extraction in the systematic review.

Extracted data are presented in two tables, with Table 3.3 showing the 45 included
studies and Table 3.4 showing the 80 models of interest. The term model outcome
refers to the model output, whether this was a clinical outcome (diagnosis/prognosis),
or a diagnostically relevant outcome that could be used for computer-aided diagnosis,
such as tumour segmentation. Meta-analysis was not performed given the diversity of

included methods and model outcomes.
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Publication 0‘63"*‘“ Cancer Models of 1 ome Type(s) Model Outcome(s) Published Code
ata Source Interest
Dong 2010(a) [109] Unclear 1 Other Stain segmentation None
Dong 2010(b) [110] Unclear 1 Other Stain segmentation None
Signolle 2010 [111] Unclear 1 Other Tumour segmentation None
Janowczyk 2011 [112] Unclear 1 Diagnosis Malignancy None
Janowczyk 2012 [113] Unclear 1 Other Stain segmentation None
Kothari 2012 [114] TCGA-OV (Multi-city, USA) 1 Diagnosis Malignancy None
Poruthoor 2013 [115] TCGA-OV (Multi-city, USA) 2 Diagnosis, Prognosis Grade; Overall survival None
BenTaieb 2015 [116] -I—(r&r:jt?i?‘idgznzgjad)y 1 Diagnosis Histological subtype None
BenTaieb 2016 [117] T&Tﬁﬁiﬁ?ﬁjg:niy:)y 1 Diagnosis Histological subtype Inaccessible
BenTaieb 2017 [118] Unclear 1 Diagnosis Histological subtype Inaccessible
Lorsakul 2017 [119] Unclear 1 Other Cell type None
Du 2018 [120] Unique (Oklahoma, USA) 1 Other Tissue type None
Heindl 2018 [121] TCGA-OV (Multi-city, USA) 1 Other Cell type https://yuanlab.org/file/Ov3sweave2.pdf
Kalra 2020 [122] TCGA-OV (Multi-city, USA) 4 Diagnosis Primary cancer type None
Levine 2020 [123] OVCARE (Vancouver, Canada) 1 Diagnosis Histological subtype https://github.com/AlMLab-UBC/pathGAN
Yaar 2020 [124] TCGA-OV (Multi-city, USA) 1 Prognosis Treatment response https://github.com/asfandasfo/LUP!I
Malignancy, Grade,
Yu 2020 [125] TCGA-OV (Multi-city, USA) 4 Diagnosis, Prognosis Transcriptomic subtype; https://github.com/khyu/ovarian_ca/
Treatment response
Gentles 2021 [126] Unique (Newcastle, UK) 6 Other Stain quantity/intensity None
Ghoniem 2021 [127] TCGA-OV (Multi-city, USA) 1 Diagnosis Stage None
Jiang 2021 [128] Mayo Clinic (Rochester, USA) 1 Diagnosis Malignancy hitps //github.com/smujiang/

CellularComposition
Laury 2021 [129] Unique (Helsinki, Finland) 1 Prognosis Progression-free survival None
- Unique (Groningen & Zwolle,
Paijens 2021 [130] K Th(e Nethgrlands)
TCGA-OV (Multi-city, USA) &
Unique (Ajou, Korea)
TCGA-OV (Multi-city, USA) &
Unique (Shanghai, China)

TCGA-OV (Multi-city, USA) &

1 Other Tissue type None

https://github.com/ABMI/
HistopathologyStyleTransfer

Shin 2021 [131] 1 Diagnosis Malignancy

Genetic mutation, Transcriptomic

5 Diagnosis, Prognosis  subtype, Microsatellite instability; None
Overall survival

Malignancy; Overall survival,

Zeng 2021 [132]

Boehm 2022 [133] MSKCC (New York, USA) 3 Diagnosis, Prognosis Progression-free survival https://github.com/kmboehm/onco-fusion
Boschman 2022 [134] | OVCARE (Vancouver, Canada) 1 Diagnosis Histological subtype None
Elie 2022 [135] Unique (Caen, France) 3 Other Stain quantity/intensity None
K OVCARE (Vancouver, Canada) & . . . K . https://github.com/AIMLab-UBC/
Farahani 2022 [136] Unique (Calgary, Canada) 2 Diagnosis Malignancy, Histological subtype ModernPath2022
Hu 2022 [137] TCGA-OV (Multi-city, USA) 1 Diagnosis Epithelial-mesenchymal transition https://github.com/superhy/LCSB-MIL
Jiang 2022 [138] Mayo Clinic (Rochester, USA) 4 Diagnosis, Other Tumour-stroma reac}lon; https://gnhub.com/smquang/
Tumour segmentation TumorStromaReaction
N o . . K i https://github.com/kokilakasture/
Kasture 2022 [139] TCGA-OV* (Multi-city, USA) 1 Diagnosis Histological subtype OvarianCancerPrediction
Kowalski 2022 [140] Unclear 1 Other Tumour segmentation None
Lazard 2022 [141] TCGA-OV (Multi-city, USA) 1 Diagnosis Homologous recombination https:/github.com/trislaz/wsi_mil

deficiency status
Liu 2022 [142] TCGA-OV (Multi-city, USA) 1 Prognosis Overall survival

https://github.com/RanSuLab/

EOCprognosis
TCGA-OV (Multi-city, USA) & . . I
Mayer 2022 [143] Unique (Frankfurt, Germany) 1 Diagnosis Malignancy None
Nero 2022 [144] Unique (Rome, ltaly) 2 Diagnosis, Prognosis Genetic mutation; Relapse None
Salguero 2022 [145] TCGA-OV (Multi-city, USA) 1 Diagnosis Malignancy None
Wang 2022(a) [146] Tri-Service (Taipei, Taiwan) 4 Prognosis Treatment response None
Wang 2022(b) [147] Tri-Service (Taipei, Taiwan) 1 Prognosis Treatment response None
Yokomizo 2022 [148] Unique (Tokyo, Japan) 3 Prognosis Overall survival, Inaccessible
q Yo, Jap 9 Progression-free survival, Relapse
. . Genetic mutation; https://github.com/MSKCC-
Ho 2023 [149] MSKGC (New York, USA) 2 Diagnosis, Other Tumour segmentation Computational-Pathology/DMMN-ovary
. . . . . https://github.com/dreambamboo/
Meng 2023 [150] Unique (Beijing, China) 1 Diagnosis Malignancy STT-BOX-public
Ramasamy 2023 [151] |  TCGA-OV* (Multi-city, USA) 2 Diagnosis, Other TP rimary cancer type; None
umour segmentation
N . . . https://github.com/cwwang1979/
Wang 2023 [152] Tri-Service (Taipei, Taiwan) 4 Prognosis Treatment response OvaryTreatment_AnginPKM2VEGF
Wu 2023 [153] TCGA-OV (Multi-city, USA) 1 Prognosis Overall survival None

Table 3.3 Characteristics of the 45 studies included in the systematic review. Details
are shown for individual models in Table 3.4. Code is labelled as inaccessible where it
could not be found despite a link being provided in the publication. *Indicates papers
where significant discrepancies were found regarding the data source, as described in
Section 3.5.


https://github.com/smujiang/CellularComposition
https://github.com/ABMI/HistopathologyStyleTransfer
https://github.com/AIMLab-UBC/ModernPath2022
https://github.com/smujiang/TumorStromaReaction
https://github.com/kokilakasture/OvarianCancerPrediction
https://github.com/RanSuLab/EOCprognosis
https://github.com/MSKCC-Computational-Pathology/DMMN-ovary
https://github.com/dreambamboo/STT-BOX-public
https://github.com/cwwang1979/OvaryTreatment_AnginPKM2VEGF
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Table 3.5 Model characteristics continued - diagnostic and prognostic outcomes.
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Table 3.6 Model characteristics continued - other outcomes.



38 Chapter 3 - Systematic Literature Review

3.3.1 Data in Included Literature

The number of participants in internal datasets varied by orders of magnitude, with
each study including 1 to 776 ovarian cancer patients, and one study including over
10,000 total patients across a range of 32 malignancies [122]. Most research only used
data from the five most common subtypes of ovarian carcinoma, though one recent
study included the use of sex cord-stromal tumours [150]. Only one study explicitly
included any prospective data collection, and this was only for a small subset which

was not used for external validation [133].

As shown in Figure 3.3, the number of samples used was often much greater than
the number of patients included, with three studies using over 1,000 samples from
ovarian cancer patients [114, 125, 142]. In most studies, models were developed
using WSIs containing resected or biopsied tissue (34/45), with others using individual
tissue microarray (TMA) core images (5/45) or pre-cropped digital pathology images
(3/45). Most studies used H&E-stained tissue (33/45) and others used a variety of IHC
stains (11/45), with no two papers reporting the use of the same IHC stains. Some
studies included multi-modal approaches, using genomics [115, 124, 127, 132, 133],
proteomics [115, 132], transcriptomics [132], and radiomics [133] data alongside

histopathological data.

(a) (b)
25

N
o
L

=
6]
L

Frequency
Frequency

=
o
L

w
L

0 250 500 750 10'00 12'50 0 250 500 750 1000 1250
Patients Slides

Figure 3.3 Histograms showing (a) the number of ovarian cancer patients and (b) the
number of samples used in the development of each model. Many of these values are
uncertain due to incomplete reporting, as reflected in Table 3.4.
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The most commonly used data source was The Cancer Genome Atlas (TCGA) (18/45),
a project from which over 30,000 digital pathology images from 33 malignancies are
publicly available. The ovarian cancer subset, TCGA-OV [154], contains 1481 WSIs
from 590 cases of ovarian serous carcinoma (mostly, but not exclusively, high-grade),
with corresponding genomic, transcriptomic, and clinical data. This includes slides
from eight data centres in the United States, with most slides containing frozen tissue
sections (1374/1481) rather than FFPE sections. Other recurring data sources were
the University of British Columbia Ovarian Cancer Research Program (OVCARE)
repository [123, 134, 136], the Transcanadian study [116, 117], and clinical records at
the Mayo Clinic [128, 138], Tri-Service General Hospital [146, 147, 152], and Memorial
Sloan Kettering Cancer Center [133, 149]. All other researchers either used a unique
data source (12/45) or did not report the provenance of their data (8/45). TCGA-QV,
OVCARE, and the Transcanadian study are all multi-centre datasets. Aside from these,
few studies reported the use of multi-centre data [130—133, 136, 143]. Only two studies
reported the use of multiple slide scanners, with each slide scanned on one of two
available scanners [134, 136]. The countries from which data were sourced included
Canada, China, Finland, France, Germany, ltaly, Japan, the Netherlands, South Korea,

Taiwan, the United Kingdom, and the United States of America.

3.3.2 Methods in Included Literature

The 80 models of interest included 37 diagnostic models, 22 prognostic models,
and 21 other models predicting diagnostically relevant information. Diagnostic model
outcomes included the classification of malignancy status (10/37), histological subtype
(7/37), primary cancer type (5/37), genetic mutation status (4/37), tumour-stroma
reaction level (3/37), grade (2/37), transcriptomic subtype (2/37), stage (1/37), mi-
crosatellite instability status (1/37), epithelial-mesenchymal transition status (1/37),
and homologous recombination deficiency status (1/37). Prognostic models included
the prediction of treatment response (11/23), overall survival (6/23), progression-free
survival (3/23), and recurrence (2/23). Other models performed tasks which could
be used to assist pathologists in analysing pathology images, including measuring
the quantity/intensity of staining (9/21), generating tumour (5/21) or stain (3/21)

segmentation masks, and classifying tissue (2/21) or cell (2/21) types.
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A variety of models were used, with the most common types being CNNs (41/80),
SVMs (10/80), and random forests (6/80). CNN architectures included GooglLeNet
[120], VGG16 [125, 138], VGG19 [123, 136], InceptionV3 [131, 146, 147, 152],
ResNet18 [133, 134, 136, 137, 141, 143], ResNet34 [148], ResNet50 [144, 150, 153],
ResNet182 [149], and MaskRCNN [138]. Novel CNNs typically used multiple stan-
dardised blocks involving convolutional, normalization, activation, and/or pooling layers
[124, 139, 140], with two studies also including attention modules [142, 152]. One study
generated their novel architecture by using a topology optimization approach on a
standard VGG16 [127].

Most researchers split their original images into patches to be separately processed,
with dimensions ranging from 60 to 2048 pixels, and the most common patch sizes
being 512 x 512 pixels (19/56) and 256 x 256 pixels (12/56). A range of feature
extraction techniques were employed, including both hand-crafted/pre-defined features
(23/80) and features that were automatically learned by the model (51/80). Hand-
crafted features included a plethora of textural, chromatic, and cellular and nuclear
morphological features. Hand-crafted features were commonly used as inputs to
classical ML methods, such as SVM and random forest models. Learned features

were typically extracted using a CNN, which was often also used for classification.

Despite the common use of patches, most models made predictions at the WSI level
(29/80), TMA core level (18/80), or patient level (6/80), requiring aggregation of patch-
level information. The methods used for this aggregation may be referred to as MIL
(Section 2.4.4), though few models of interest were reported using this terminology
[124, 137, 141, 144]. Instance embedding approaches (Section 2.4.4) generated
slide-level features using summation [150], averaging [115, 132, 149], attention-based
weighted averaging [137, 141, 142, 144, 153], concatenation [117, 122], as well as
more complex embedding approaches using Fisher vector encoding [116] and k-means
clustering [118]. Instance classification approaches (Section 2.4.4) aggregated patch-
level predictions by taking the maximum [124, 152], median [148], or average [127],

using voting strategies [134, 147], or using a random forest classifier [136].

Most studies included segmentation at some stage, with many of these analysing
tumour/stain segmentation as a model outcome [109-113, 130, 138, 140, 149, 151].

Some studies used segmentation to determine regions of interest for further modelling,
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either simply separating tissue from the background [114, 122, 144, 153], or using tu-
mour segmentation to select the most relevant tissue regions [126, 129, 146, 147, 152].
One study also used segmentation to detect individual cells for classification [121].
Some studies used segmentation in determining features relating to the quantity and

morphology of different tissues, cells, and nuclei [114, 115, 117, 128, 132, 133].

While attention-based approaches have been applied to other malignancies for several
years [77, 78], they were only seen in the most recent ovarian cancer studies [136, 137,
141, 142, 144, 146, 147, 152, 153], and none of the methods included self-attention
(Section 2.4.5), an increasingly popular method for other malignancies [155]. Most
models were deterministic (in that they used fixed weights and would generate the
same output if the same image were to be input multiple times), though hidden Markov
trees [111], probabilistic boosting trees [112], and Gaussian mixture models [135] were

also used.

Aside from the common use of low-resolution images to detect and remove non-tissue
areas, images were typically analysed at a single resolution, with only six papers
exploring multi-magnification techniques which may better leverage both cellular-level
and broader tissue-level features. Four of these combined features from different res-
olutions for modelling [116—118, 149], and the other two used different magnifications
for selecting informative tissue regions and for modelling [146, 147]. Out of the papers
for which it could be determined, the most common modelling magnifications were
20x (35/41) and 40x (7/41). Few models integrated histopathology data with other
modalities (6/80). Multi-modal approaches included the concatenation of separately
extracted uni-modal features before modelling [115, 127, 132], the aggregation of uni-
modal predictions from separate models [133], and a teacher-student approach where
multiple modalities were used in model training but only histopathology data was used

for prediction [124].

3.3.3 Analyses in Included Literature

Analyses were limited, with less than half of all models being evaluated with cross-
validation (39/80) and with very few externally validated using independent ovarian
cancer data (7/80), despite small internal cohort sizes. Cross-validation methods
included k-fold (22/39) with 3 to 10 folds, Monte Carlo (12/39) with 3 to 15 repeats,
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and leave-one-patient-out cross-validations (5/39). Some other papers included cross-
validation on the training set to select hyperparameters but used only a small unseen
test set from the same data source for evaluation. Externally validated models were all
trained with WSiIs, with validations either performed on TMA cores (2/7) or WSIs from
independent data sources (5/7), with two of these explicitly using different scanners to
digitize internal and external data [134, 136]. Some reported methods were externally
validated with data from non-ovarian malignancies, but none of these included ovarian
cancer data in any capacity so they were not included in the review. However, there
was one method which trained with only gastrointestinal tumour data and externally

validated with ovarian tumour data [150].

Most classification models were evaluated using accuracy, balanced accuracy, and/or
AUROC, with one exception where only a p-value was reported measuring the
association between histological features and transcriptomic subtypes based on a
Kruskal-Wallis test [125]. Some models were also evaluated using the F1 score, which
was not tabulated (in Table 3.4) as the other metrics were reported more consistently.
Survival model performance was typically reported using AUROC, with other metrics
including p-value, accuracy, hazard ratios, and C-index, which is similar to AUROC but
can account for censoring. Segmentation models were almost all evaluated differently
from each other, with different studies reporting AUROC, accuracy, Dice coefficient,
intersection over union, sensitivity, specificity, and qualitative evaluations. Regression
models were all evaluated using the coefficient of determination (R?-statistic). For
some models, performance was broken down per patient [135, 143], subtype [150],
or class [121, 122, 132, 138], without an aggregated, holistic measure of model

performance.

The variability of model performance was not frequently reported (33/94), and when it
was reported it was often incomplete. This included cases where it was unclear what
the intervals represented (95% confidence interval, one standard deviation, variance,
etc.), or not clear what the exact bounds of the interval were due to results being plotted
but not explicitly stated. Within the entire review, there were only three examples in
which variability was reported during external validation [131, 134, 143], only one of
which clearly reported both the bounds and the type of the interval [131]. No studies

performed any Bayesian form of uncertainty quantification. Reported results are shown
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in Table 3.4, though direct comparisons between the performance of different models
should be treated with caution due to the diversity of data and validation methods used
to evaluate different models, the lack of variability measures, the consistently high risks

of bias (Section 3.4.2), and the heterogeneity in reported metrics.

3.4 Risk of Bias Assessment

3.4.1 PROBAST Assessment Tool

The risk of bias in research is the chance of reported results being distorted by
limitations within the study design, conduct, and analysis. The risks of bias of each
publication in the review were assessed using the Prediction model Risk Of Bias
ASsessment Tool (PROBAST) [156]. This includes 20 guiding questions which are cat-
egorised into four domains (participants, predictors, outcome, and analysis), which are
summarised as either high-risk or low-risk, or unclear if there is insufficient information
to make a comprehensive assessment and none of the available information indicates
a high risk of bias. As such, an unclear risk of bias does not indicate methodological

flaws, but incomplete reporting.

The participants domain covers the recruitment and selection of participants to ensure
the study population is consistent and representative of the target population. Relevant
details include the participant recruitment strategy (when and where participants were

recruited), the inclusion criteria, and how many participants were recruited.

The predictors domain covers the consistent definition and measurement of predic-
tors, which in this field typically refers to the generation of digital pathology images.
This includes methods for fixing, staining, scanning, and digitally processing tissue

samples before modelling.

The outcome domain covers the appropriate definition and consistent determination of
ground-truth labels. This includes the criteria used to determine diagnosis/prognosis,
the expertise of any persons determining these labels, and whether labels are

determined independently of any model outputs.

The analysis domain covers statistical considerations in the evaluation of model

performance to ensure valid and not unduly optimistic results. This includes many
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factors, such as the number of participants in the test set with each outcome, the
validation approaches used (cross-validation, external validation, bootstrapping, etc.),
the metrics used to assess performance, and methods used to overcome the effects of

censoring, competing risks/confounders, and missing data.

Different risk factors may be interrelated, for example, the risk of bias from using a small
dataset is somewhat mitigated by cross-validation, which increases the effective size
of the test set to match the size of the full dataset and can be used to assess variability,
reducing optimism in the results. Further, the risk caused by using a small dataset
depends on the type of outcome being predicted, for example, more data is required
for a robust analysis of 5-class classification than binary classification. There must also
be sufficient data within all relevant patient subgroups, for example, if multiple subtypes
of ovarian cancer are included, there must not be a subtype that is only represented by
a few patients. Due to these interrelated factors, there are no strict criteria to determine
the appropriate size of a dataset, though fewer than 50 samples per class or fewer than
100 samples overall is likely to be considered high-risk, and more than 1000 samples

overall is likely to be considered low-risk.

Risks of bias often arise due to inconsistent methodologies. Inconsistency in the
participants and predictors domains may cause heterogeneity in the visual properties
of digital pathology slides which may lead to spurious correlations, either through
random chance or systematic differences between subgroups in the dataset. Varied
data may be beneficial during training to improve model generalisability when using
large datasets, though this must be closely controlled to avoid introducing systematic
confounding. Inconsistent determination of the outcome can mean that the results of
a study are unreliable due to spurious correlations in the ground truth labels, or invalid

due to incorrect determination of labels.

While PROBAST provides a framework to assess risks of bias, there is some level
of subjectivity in the interpretation of signalling questions. As such, each model was
analysed by three independent researchers (any of JB, KA, NR, KZ, NMO), with at
least one computer scientist and one clinician involved in the assessment of each
model. The PROBAST applicability of research analysis was not implemented as it

is unsuitable for such a diverse array of possible research questions.
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3.4.2 Risk of Bias Results

Risk of Bias

s Low
Unclear

I High

Percentage

Participants Predictors Outcome Analysis Overall

Figure 3.4 PROBAST risk of bias results summarised for the 45 studies included in
the systematic literature review.

The results of the PROBAST assessments are shown in Table 3.7. While some studies
contained multiple models of interest, none of these contained models with different risk
of bias scores for any section of the PROBAST assessment, so one risk of bias analysis
is presented per paper. All studies showed either a high overall risk of bias (37/45) or
an unclear overall risk of bias (8/45). Every high-risk study had a high-risk score in the
analysis section (37/45), with several also being at a high risk of bias in the participants
(6/45), predictors (11/45), or outcome (13/45) sections. Less than half of all studies
achieved a low risk of bias in any domain (21/45), with most low risks being found in
the outcome (16/45) and predictors (9/45) sections. Nearly all of the papers had an
unclear risk of bias in at least one domain, most commonly the participants (36/45)

and predictors (25/45) domains. Quantitative summaries are presented in Figure 3.4.
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Publication Participants Predictors Outcome Analysis Overall
Dong 2010(a) [109] High High High High High
Dong 2010(b) [110] High High High High High
Signolle 2010 [111] Unclear Unclear High High High
Janowczyk 2011 [112] Unclear Unclear Low High High
Janowczyk 2012 [113] Unclear High Unclear High High
Kothari 2012 [114] Unclear Low Low Unclear Unclear
Poruthoor 2013 [115] Unclear High High High High
BenTaieb 2015 [116] Unclear Unclear Low High High
BenTaieb 2016 [117] Unclear High Unclear High High
BenTaieb 2017 [118] Unclear Unclear Low High High
Lorsakul 2017 [119] Unclear Unclear High High High
Du 2018 [120] Unclear Unclear Unclear Unclear Unclear
Heindl 2018 [121] Unclear Low Low High High
Kalra 2020 [122] Unclear Low Low High High
Levine 2020 [123] Unclear Low Low Unclear Unclear
Yaar 2020 [124] Unclear Unclear Low High High
Yu 2020 [125] Unclear Low Low High High
Gentles 2021 [126] High Unclear High High High
Ghoniem 2021 [127] Unclear Unclear Unclear High High
Jiang 2021 [128] High High Unclear High High
Laury 2021 [129] Low High High High High
Paijens 2021 [130] Low High Unclear High High
Shin 2021 [131] Unclear Unclear Unclear High High
Zeng 2021 [132] Unclear Unclear Low High High
Boehm 2022 [133] Unclear High Unclear High High
Boschman 2022 [134] Unclear Low Low High High
Elie 2022 [135] Unclear Low High High High
Farahani 2022 [136] Unclear Unclear Low Unclear Unclear
Hu 2022 [137] Unclear Unclear Unclear Unclear Unclear
Jiang 2022 [138] Unclear Unclear High High High
Kasture 2022 [139] High High High High High
Kowalski 2022 [140] Unclear Unclear Unclear High High
Lazard 2022 [141] Unclear Unclear Unclear Unclear Unclear
Liu 2022 [142] Unclear Unclear Unclear Unclear Unclear
Mayer 2022 [143] Unclear Unclear High High High
Nero 2022 [144] Unclear Low High High High
Salguero 2022 [145] Unclear Unclear Low High High
Wang 2022(a) [146] Unclear Unclear Unclear High High
Wang 2022(b) [147] Unclear Unclear Low High High
Yokomizo 2022 [148] Low Low Unclear Unclear Unclear
Ho 2023 [149] Unclear Unclear Unclear High High
Meng 2023 [150] Unclear Unclear Low High High
Ramasamy 2023 [151] High High High High High
Wang 2023 [152] Unclear Unclear Unclear High High
Wu 2023 [153] Unclear Unclear Low High High

Table 3.7 PROBAST risk of bias assessment results for the 45 studies in the review.
This is presented as one row per study because every study that contained multiple
models of interest was found to have the same risk of bias score for each model.
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3.5 Discussion

The vast majority of published research on Al for diagnostic or prognostic purposes
in ovarian cancer histopathology was found to be at a high risk of bias due to
issues within the analyses performed. Researchers often used a limited quantity
of data and conducted analyses on a single train-test data split without using any
methods to account for overfitting and model optimism (cross-validation, bootstrapping,
external validation). These limitations are common in gynaecological Al research using
other data types, with recent reviews pointing to poor clinical utility caused by predom-
inantly retrospective studies using limited data [107, 157] and limited methodologies

with weak validation, which risk model performance being overestimated [105, 106].

The more robust analyses included one study in which several relevant metrics were
evaluated using 10 repeats of Monte Carlo cross-validation on a set of 406 WSIs, with
standard deviations reported for each metric [123]. Other positive examples performed
both internal cross-validation and external validation for the same outcome, giving a
more rigorous analysis [136, 143, 147]. While external validations were uncommon,
those which were conducted offered a real insight into model generalisability, with a
clear reduction in performance on all external validation sets except one [136]. The
only study which demonstrated high generalisability included the largest training set
out of all externally validated approaches, included more extensive data labelling than
many similar studies, and implemented a combination of three colour normalisation

approaches, indicating that these factors may benefit generalisability.

Studies frequently had an unclear risk of bias within the participants and predictors
domains of PROBAST due to incomplete reporting. Frequently missing information
included where the patients were recruited, how many patients were included, how
many samples/images were used, whether any patients/images were excluded, and
the methods by which tissue was processed and digitized. Only three papers were
found to be at low risk of bias for participants, with these including clear and reasonable
patient recruitment strategies and selection criteria, which can be seen as positive
examples for other researchers [129, 130, 148]. Information about the predictors
(histopathology images and features derived thereof) was generally better reported,
but still often missed key details which meant that it was unclear whether all tissue

samples had been processed similarly to avoid risks of bias from visual heterogeneity.
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When patient characteristics were reported they often showed a high risk of bias. Many
studies included very small quantities of patients with specific differences from the
majority (e.g. less than 20 patients with a different cancer subtype to the majority),
causing a risk of spurious correlations and results which were not generalisable to the

wider population.

Reporting was particularly sparse in studies which only used openly accessible data,
possibly indicating that Al-focused researchers were not taking sufficient time to under-
stand these datasets and ensure their research was clinically relevant. For example,
many of the researchers who used TCGA data included frozen tissue sections without
commenting on whether this was appropriate, even though pathologists do not consider
them to be of optimal diagnostic quality. One paper handled TCGA data more
appropriately, with a clear explanation of the positives and negatives of the dataset,

and entirely separate models for FFPE and frozen slides [122].

Sharing code can help to mitigate the effects of incomplete reporting and drastically
improve reproducibility, but only 19 of the 45 papers did this, with some of these
appearing to be incomplete or inaccessible. The better code repositories included
detailed documentation to aid reproducibility, including environment set-up information
[125, 150], overviews of included functions [133, 141, 149], and code examples used

to generate reported results [121].

Two papers were found to have major discrepancies between the reported data and
the study design, indicating much greater risks of bias than those seen in any other
research [139, 151]. In one paper [139], it was reported that TCGA-OV data was used
for subtyping with 5 classes, despite this dataset only including high-grade serous
and low-grade serous carcinomas. In the other paper [151], it was reported that
TCGA-OV data was used for slide-level classification into ovarian cancer and non-
ovarian cancer classes using PAS-stained tissue, despite TCGA-OV only containing
H&E-stained ovarian cancer slides. In the former paper [139], it was notable that
some of the images included in the manuscript and shared data file contained
watermarks and copyright information indicating non-TCGA data sources (such as
https://www.webpathology.com/), and further analysis showed that many images used
in the paper had been cropped to remove copyright symbols which were present in

WebPathology. In the latter paper [151], the manuscript contained many figures which
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were indistinguishable from those in several disparate studies (without references),
including a pathology image from a bat ovary [158] and performance graphs from the
training of an MRI brain tumour detection model [159]. In both of these cases, concerns

were reported to the editors of the journals in which the papers had been published.

3.5.1 Limitations of the Review

While the systematic review protocol was designed to reduce biases and maximise the
quantity of relevant research included, there were some limitations. The review was
restricted to published literature in the English language, however, Al research may
be published in other languages or made available as pre-prints without publication
in peer-reviewed journals, making this review incomplete. While most of the review
process was completed by multiple independent researchers, duplicate detection was
performed by a single researcher, raising the possibility of errors in this step of the
review process which would have resulted in incorrect exclusions. Due to the significant
time gap between the initial and final literature searches (approximately 12 months),
there may have been inconsistencies in interpretations, both for data extraction and risk
of bias assessments. Finally, this review focused only on conventional light microscopy
images of human histopathology samples relating to ovarian cancer, so may have

overlooked useful literature outside of this domain.

3.5.2 Development of the Field

The field of Al in ovarian cancer histopathology diagnosis is rapidly growing, with more
research published since the start of 2020 than in all preceding years combined. The
earliest research, published in 2010-2013, used hand-crafted features to train classical
ML methods such as SVMs. These models were used for segmentation [109-111,
113], malignancy classification [112, 114], grading [115], and overall survival prediction
[115]. Most of these early studies focused on IHC-stained tissue (5/7), which would be

much less commonly used in subsequent research (6/38).

The field was relatively dormant in the following years, with only 6 papers published
between 2014-2019, half of which had the same primary author [116-118]. These

models still used traditional ML classifiers, though some used automatically learned
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features rather than the traditional hand-crafted features. The models developed were

used for histological subtyping [116—118] and cellular/tissue classification [119-121].

Since 2020 there has been a much greater volume of research published, most of
which has involved the use of deep neural networks for automatic feature extraction
and classification. Recent research has investigated a broader array of diagnostic
outcomes, including the classification of primary cancer type [122, 151], mutation
status [132, 144, 149], homologous recombination deficiency status [141], tumour-
stroma reaction level [138], transcriptomic subtypes [125, 132], microsatellite instability
[132], and epithelial-mesenchymal transition status [137]. Three additional prognostic
outcomes have also been predicted in more recent literature - progression-free survival
[129, 133, 148], relapse [144, 148], and treatment response [124, 125, 146, 147, 152].

Despite progress within a few specific outcomes, there was no obvious overall trend
in the sizes of datasets used over time, either in terms of the number of slides
or the number of participants (Figure 3.5). Similarly, there was no evidence that
recent research included more rigorous internal validations, though external validations
have been increasing in frequency - no research before 2021 included any external
validation with ovarian cancer data, but seven studies published more recently did
[131, 132, 134, 136, 143, 147, 150]. While these external validations were typically
limited to small quantities of data, the inclusion of any external validation demonstrates
progress from previous research. Such validations are essential to the clinical utility of
these models as real-world implementation will require robustness to different sources
of visual heterogeneity, with variation occurring across different data centres and within
data centres over time. As this field continues to mature, researchers must conduct
thorough validations with larger, high-quality independent datasets, including clearly
reported protocols for patient recruitment and selection, pathology slide creation, and
digitization. This will help to reduce the biases, limited reproducibility, and limited

generalisability identified in most of the existing research in this domain.
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Figure 3.5 Boxplots showing the number of ovarian cancer patients and the number
of samples used in the development of each model by publication year. Many of these
values are uncertain due to incomplete reporting, as reflected in Table 3.4. There were
no accepted studies in 2014 or 2019.

3.5.3 Recent Literature

To find the most recent research, systematic searches were repeated on 25/06/2024,
and ad-hoc searches were conducted in Google Scholar, ResearchGate, and the
references of other relevant papers. Since the publication of the systematic review,
the field has continued to grow, with over 30 new papers identified and two ovarian

cancer histopathology challenges conducted.
Histological Subtyping

Histological subtyping has remained one of the most common tasks in recent months.
The Ovarian Cancer subtypE clAssification and outlier detectioN (OCEAN) [160]
challenge focused on the robustness of ovarian cancer subtyping, with data from over
20 centres, including both WSIs and TMAs, and an other class alongside the five most
common ovarian carcinoma subtypes. Across training and testing sets, the challenge
utilised 1006 WSIs and 1462 TMAs, one of the largest datasets ever used in ovarian
cancer subtyping. The greatest performance in this challenge was 66% balanced

accuracy, indicating the difficulty in handling such diverse data.

Unfortunately, most of the recently published research on histological subtyping has
either used the OCEAN dataset while it was still under embargo [161, 162] or the
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previously mentioned dataset [139] which had been misrepresented as TCGA-OV data
[163—167]. Multiple versions of the latter dataset have been removed from the data
hosting website Mendeley in response to our concerns, with Mendeley citing suspected
copyright infringement (https://data.mendeley.com/datasets/kztymsrjx9/1 and https://

data.mendeley.com/datasets/w39zgksp6n/1).

Some other recently published studies have also been of questionable value. One
study used a particularly small set of ovarian cancer images to validate a subtyping
model, with 12 images used for four-class subtyping and 186 images for two-class
subtyping [168]. A different study performed patch-level four-class subtyping on a total
of 82 WSis, with it being unclear whether the train-test split was made at the patient
level. Another study reported 100% accuracy on the OCEAN challenge dataset [169],
but the veracity of this research was questionable due to numerous errors in the
manuscript, such as conflicting results, ROC curves made of only a single point, and
claims that an uncited ‘comprehensive literature review’ found only one study in ovarian
cancer histopathology. Another study reported 96% balanced accuracy on the OCEAN

dataset but with only a very small test set of 15% of the available data [170].

A few recent subtyping studies have been more promising. One used the largest
dataset from any previous study, consisting of 948 WSIs [136], to train and validate
a multi-scale graph network [82], reporting a cross-validation slide-level balanced
accuracy of 73%. Another study used a slightly larger set of 1113 WSis to investigate a
novel domain adaptation approach, achieving optimal balanced accuracies of 81% on
internal data and 76% on external data [171]. Two other studies applied histopathology
foundation models (see Chapter 7) to ovarian cancer subtyping, with one reporting an
82% balanced accuracy on the OCEAN dataset [172], and the other reporting around
88% balanced accuracy in six-class subtyping with 559 WSIs [173]. These are the

highest accuracies reported in any studies to have used such large datasets.
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Other Diagnostic and Prognostic Tasks

Prognostic models have remained common in recent literature, with studies focused
on predicting survival [174—180], treatment response [181-186], and recurrence [187].
Some of these studies have focused on interpretable features in the tumour microenvi-
ronment, using Al to quantify tumour infiltrating lymphocytes [175, 177, 178], segment
tumour and stroma [174, 176], or quantify collagen disorder [177], then using these
features for prognostication in Cox regression models. Other approaches included
MIL for prognostication of survival [179, 188] and treatment response [181, 183, 185].
Three studies used multimodal models, combining histopathology with clinical data
for predicting recurrence [187] and survival [180], and with proteomics for predicting

treatment response [184].

There was also a challenge based on prognostication. Automated Prediction of
Treatment Effectiveness in Ovarian Cancer using Histopathological Images (ATEC23)
[189] was built upon previous studies in predicting treatment response [147, 152]. Chal-
lenge participants were provided 288 training WSIs from 78 patients and were tasked
with classifying whether patients would have six-month progression-free survival after
treatment using individual TMA core images. None of the participants were able to
achieve an accuracy greater than 70% despite a 57% class imbalance in the test set.
This challenge is explored further with respect to our own participation in Appendix F.
Both the ATEC23 and OCEAN challenges had a training set composed of mostly WSls
and a test set of mostly TMAs. The tasks in these challenges (treatment response and
subtyping) are far from solved at the WSI level, so it is not surprising that participants
were not able to achieve great performance when using the vastly less informative
TMAs.

Six recent studies created patch-level malignancy classifiers [190—194], with these
using datasets derived from TCGA [192, 194], the ATEC23 challenge [190, 191, 193],
or an unclear dataset ‘from Kaggle’ [195]. These papers reported high classification
performance but exhibited several risks of bias including small validation sets, potential
data leakage between training and testing, and a lack of information concerning the
development of ground truth labels (with the open access datasets not containing

malignancy labels). Other studies included a cell segmentation model [196], and
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models for the classification of BRCA mutations [197] and ovarian cancer precursor
lesions [198], the first Al model for this task.

3.5.4 Current Limitations and Future Recommendations

A large proportion of previously published work did not provide sufficient clinical
and pathological information to fully assess the risk of bias. Researchers must
thoroughly report data provenance to understand the extent of data heterogeneity,
and to understand whether this has been appropriately accounted for in the study
design. Modelling and analysis methods must also be thoroughly reported to improve
reliability and reproducibility. It may be beneficial to refer to reporting checklists, such
as Transparent Reporting of a multivariable prediction model for Individual Prognosis
Or Diagnosis (TRIPOD) [199] and the recent Al-focused version, TRIPOD-AI [200], to
ensure that all relevant details of the given study are understood and reported. In many
studies, it was not clear how Al would fit in the clinical workflow, or whether there were
limitations in how the methods could be applied. Al research should be conducted with
an understanding of the clinical context of the data and any potential models, ideally
with the direct and regular involvement of expert clinicians, such as histopathologists
and oncologists.

Many previous studies did not make their data or code available, drastically reducing
their reproducibility. It is relatively easy to publish code and generate documentation
to enhance usability, and there are few drawbacks to doing so when publishing
research. Making data available is more often difficult due to data governance
requirements and the potential storage costs, but it can provide benefits beyond the
primary research of the original authors. Digital pathology research in ovarian cancer
is currently limited by the lack of openly accessible data, leading to over-dependence
on TCGA and, more recently, ATEC23 and OCEAN. Many researchers have also been
painstakingly collating similar but distinct internal datasets, which often contain little
of the heterogeneity seen in multi-centre, multi-scanner data, making it difficult to
train robust models or assess generalisability. Where heterogeneous data has been
included, it has often included small quantities of data which were different to the
majority, introducing risks of bias and confounding rather than helping to overcome

these issues. TCGA-based studies are prone to this, with significant differences
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between TCGA slides originating from different data centres [201], but with many of
these centres only providing small quantities of data, leading to a high likelihood of
spurious correlations between data subsets. These issues may also be present in
ATEC23 and OCEAN-based analyses, with ATEC23 being particularly heterogeneous
(Appendix F) and OCEAN not being well-documented (Section 4.2). Improved datasets
with detailed protocols describing data creation would allow researchers to conduct
more thorough analyses and significantly improve model generalisability and clinical

implementability.

For Al to achieve clinical utility in this field, it is essential that more robust validations are
performed, especially considering the limitations of the available datasets. This must
include thorough analyses, using techniques such as cross-validation, bootstrapping,
and external validations to ensure that results are robust and truly reflect the ability
of the models to generalise to unseen data, and are not simply caused by chance.
The variability of results should be reported (typically in a 95% confidence interval),
especially when comparing multiple models to help distinguish whether one model
is genuinely better than another or whether any difference is simply due to chance.

Statistical tests can also be beneficial for these evaluations.

Current literature in this field can be largely characterised as model prototyping with
homogeneous retrospective data. Researchers rarely consider the reality of human-
machine interaction, perhaps believing that these models are a drop-in replacement
for pathologists. However, these models perform narrow tasks within the pathology
pipeline and do not take into consideration the clinical context beyond their limited
training datasets and siloed tasks. These models are likely to be more beneficial
(and more realistic to implement) as assistive tools for pathologists, providing second
opinions or novel ancillary information. While current research is typically focused on
assessing model accuracy without any pathologist input, different study designs could
be employed to better assess the real-world utility of these models as assistive tools.
For example, usability studies could investigate which models are most accessible and
most informative to pathologists in practice, and prospective studies could quantify any
benefits to diagnostic efficiency and patient outcomes, and investigate the robustness
of models in practice. Al-clinician interaction has thus far been a relatively small field

of research [202], and we are not aware of any study in which pathologists have
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systematically compared the merits of different Al implementations for a specific task.

Such research would significantly benefit clinical translation.

3.6 Conclusion

In this chapter, we reviewed previous studies in which Al models were used for the
diagnosis or prognosis of ovarian cancer from histopathology slides. We identified
several weaknesses in previous research and explored how these may be addressed.
Many researchers did not sufficiently understand their data and ensure that planned
research was clinically relevant with direct oversight from clinicians. Many previous
studies had high risks of bias due to using small, heterogeneous datasets with minimal
validation techniques, which often did not involve cross-validation, external validation,
bootstrapping, or hypothesis testing. Many studies did not include key information
about the data used, including how patients were recruited and selected, and how
tissue specimens were processed to generate digital pathology images. Finally, few
researchers made their code or data accessible, reducing reproducibility and imposing
barriers on future researchers. While this field has been growing in recent years, it is
not clear that the quality of overall research is improving. The lessons learned through
this review have been instrumental in shaping the methodologies and reporting of our
primary research. The recommendations provided for future research included using
reporting checklists, publishing code, sharing data (where possible), performing deeper

validations, reporting variability, and assessing real-world utility.
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Chapter 4
Methodology

In this chapter, we detail recurring aspects of the methodology used throughout
the following chapters. This includes data acquisition, preprocessing, modelling,
hyperparameter tuning, and validation procedures. Some aspects differ in specific
chapters, for example, Chapter 5 contains much of the early work which influenced
subsequent study design, and Chapter 8 contains an entirely different classification

model developed based on the knowledge derived from earlier research.

4.1 Baseline Subtype Classification Model

Tissue Patching

Input Whole Slide Image (WSI) Tissue Detection

]

HGSC (0.60)
LGSC (0.21)

[ SuiSesany parysism ]

A

Jahkeq uonuany

—

Feature
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WSI Classification ~ WSI Feature Generation  Attention Scoring Patch Feature Encoding

Figure 4.1 Attention-based multiple instance learning (ABMIL) [77] model pipeline for
ovarian cancer subtyping.

We adopted the standard ABMIL classifier [77] (Figure 4.1) as a baseline model for
our experiments using the implementation from the CLAM repository [78]. This is a
commonly used MIL approach which gives consistently strong performance across

many tasks, even when compared to more complex MIL approaches [79-81, 136].
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The default preprocessing method from the CLAM code repository [78] was imple-
mented to perform tissue segmentation and colour normalisation, with the latter step
applied after patch extraction. For tissue segmentation, a downsampled version of
each WSI was converted from RGB images into the hue-saturation-value (HSV) colour
space and a median blurring was applied to smooth the saturation channel and reduce
noise. The segmentation was performed by applying a saturation threshold of 8/255,
where all pixels with saturation greater than the threshold were labelled as tissue and
all other pixels were labelled as background. Morphological closing was then used to
smooth the edges and close small gaps in the detected tissue mask. These tissue
masks were defined by their outer contours, and these masks were rescaled to match
the size of the WSI.

To extract tissue patches, a rectangular bounding box was placed around each tissue
contour and split into 512 x 512 pixel non-overlapping patches [78]. Any patch in which
the central point was outside the tissue contour was dropped, leaving the set of viable
tissue patches. These patches were downsampled from 512 x 512 pixels at 40x native
magnification to 256 x 256 pixels at 20x apparent magnification, an approach which
was very common in previous research (Chapter 3) to reduce the effective size of

WSiIs and hence the computational workload.

The baseline ABMIL model employed an ImageNet-pretrained ResNet50 encoder
to extract patch-level features. ImageNet (a set of 1.4 million natural images from
1000 classes) [58] is popular for model pretraining as the quantity and diversity of
labelled images enables the creation of a multi-purpose feature set. ResNet50 [59]
is a standard CNN which had been trained in a fully supervised manner, achieving
a reported 85.1% ImageNet classification accuracy. To use this model as a feature
extractor, outputs were taken from the end of the third residual block to give 1024
features per input patch. Before feature extraction, tissue patches were normalised
using the ImageNet standard RGB parameters (mean = (0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225)) using the standard statistical normalisation procedure
value—mean  Thg reduction from 256 x 256 x 3 (height x width x colour channels) to

std
1 x 1024 features compressed the patches by a factor of 192.

ABMIL feature aggregation used a trainable sigmoid gated-attention layer to give each

patch feature vector an attention score between 0 and 1, with an attention-weighted
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average of the patch features taken to generate a 1 x 1024 WSI feature vector. Finally,
this WSI feature vector was classified through a fully connected neural network with

one output node per class.

4.2 Datasets

The models presented in this thesis were exclusively developed and trained using ovar-
ian carcinoma WSils from cases treated at Leeds Teaching Hospitals NHS Trust (LTHT),
with ethics approval provided by the Wales Research Ethics Committee (reference
18/WA/0222). This dataset was developed by a histopathologist concurrently with the
research presented in this thesis, meaning that the full dataset was only available for
the most recent work (Chapters 7 and 8). All models were initially validated using the
internal dataset, and when performance started to reach reasonable levels, external

datasets were sourced to further validate performance.

4.2.1 Internal Ovarian Cancer Dataset

Carcinoma Training WSils Hold-out WSis
Subtype (Patients) (Patients)
High-Grade Serous
(HGSC) 1266 (307) 20 (7)
Low-Grade Serous
(LGSC) 92 (21) 20 (6)
Clear Cell
(CCC) 198 (45) 20 (7)
Endometrioid
(EC) 209 (38) 20 (5)
Mucinous
(MC) 99 (22) 20 (5)
Total 1864 (433) 100 (30)

Table 4.1 Dataset breakdown for the training (cross-validation) set and independent
internal hold-out test set. Numbers in brackets indicate the number of unique patients.

The LTHT ovarian cancer dataset was retrospectively collected by a histopathologist
(Katie Allen) from cases treated between 2008 and 2022. Cases were only included
if a gynaecological pathologist had diagnosed them as one of the five most common
epithelial ovarian cancer subtypes (HGSC, LGSC, CCC, MC, EC). Tumours were only

included if they were carcinomas of tubo-ovarian-primary peritoneal origin with a single
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epithelial subtype present, and with associated clinical metadata available in the patient
health records. The histopathologist independently verified all diagnoses, removing
any cases with discrepancies. Several representative H&E-stained adnexal tissue
glass slides were selected for each case, with only FFPE samples used. Any mounting
artefacts were corrected, and slides were cleaned and anonymised before being

digitised at 40x magnification using a single Leica AT2 scanner.

As shown in Table 4.1, the final training dataset consisted of 1864 WSIs from
433 ovarian carcinoma cases, consisting of 1412 primary surgery sample WSIs from
296 cases, and 452 IDS sample WSIs from 137 cases. The population-level class
imbalance was reflected in the training set, with the least common subtype (LGSC)
represented by only 92 WSIs from 21 cases, compared to 1266 WSIs from 307 cases
for the most common subtype (HGSC). This set also reflected the high frequency of
stage lll, high-grade cancers, particularly driven by the high proportion of HGSC cases
(Table 4.2). We aimed to classify primary surgery WSIs as these are generally of better
diagnostic quality than IDS specimens (Section 2.2). The training set included both
primary surgery samples and IDS samples as we found their inclusion to be beneficial

to model training [8].

An independent set was collected following the same protocol, from which 20 WSIs
of each carcinoma subtype were taken to form a class-balanced hold-out test set.
Rather than representing realistic clinical frequencies, this set focused on quantifying
performance across all subtypes equally. It also focused on the goal of accurately
classifying the clinical standard primary surgery samples, and so didn’t include any
IDS samples. Neoadjuvant chemotherapy usage is much more common in later-
stage cancers, so restricting this set to primary surgery samples (without neoadjuvant
chemotherapy) led to a much higher proportion of early-stage cancers than in the
training set (Table 4.2). Balancing the subtypes also led to the set containing a similar

proportion of high-grade and low-grade cancers.
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Training Set
Subtype HGSC LGSC CCC EC MC | Total
Stage | 23 5 24 24 15| 91
Stage Il 33 0 5 10 2 50
Stage I 210 12 11 3 4 | 240
Stage IV 41 4 5 1 1 52
Grade 1/ Low Grade - 21 - 15 8 23
Grade 2 - - - 17 10 | 27
Grade 3/ High Grade 307 - 45 6 1 359
Ungraded 0 0 0 0 3 3
Primary Surgery 188 11 39 37 21 | 296
Interval Debulking Surgery (IDS) | 119 10 6 1 1 137

Hold-out Test Set

Subtype HGSC LGSC CCC EC MC | Total
Stage | 3 3 5 5 3 19
Stage Il 2 1 0 0 0 3
Stage llI 2 2 2 0 1 7
Stage IV 0 0 0 0 1 1
Grade 1/ Low Grade - 6 - 2 2 10
Grade 2 - - - 3 1 4
Grade 3/ High Grade 7 - 7 0 0 14
Ungraded 0 0 0 0 2 2
Primary Surgery 7 6 7 5 5 30
Interval Debulking Surgery (IDS) 0 0 0 0 0 0

Table 4.2 Clinical features of the 433 training set and 30 hold-out test set patients.
Grade 1 is combined with low grade, and grade 3 is combined with high grade, though
these terms are not interchangeable. Grades which are incompatible with specific
subtypes have been marked with hyphens (-).
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4.2.2 External Datasets

Carcinoma Transcanadian [203]  OCEAN Challenge
Subtype WSis (Patients) [160] WSIs
High-Grade Serous
(HGSC) 30 (30) 217
Low-Grade Serous
(LGSC) 9(9) 42
Clear Cell
(CCC) 20 (20) 94
Endometrioid
(EC) 11 (11) 119
Mucinous
(MC) 10 (10) 41
Total 80 (80) 513

Table 4.3 Dataset breakdown for the external validation sets. Numbers in brackets
indicate the number of unique patients, which was not clear for the OCEAN dataset.

Ovarian cancer has a relative sparsity of available datasets, with the most commonly
used set in previous Al research (TCGA-OV [154]) only including serous carcinomas.
While there were no suitable external datasets available at the start of this research,
two sets recently became available. The first was a dataset from the Transcanadian
Study [203]. This set consisted of 80 WSIs from 80 cases digitised using an
AperioScope scanner and made available at 20x magnification, alongside subtype
labels that had been determined by a gynaecological pathologist. This dataset has
previously been used in the training and testing of a subtype classification model
[116, 117], but to the best of our knowledge, it has never previously been used as

a stand-alone validation set.

The second dataset was only made available for general research usage in April 2024,
following the OCEAN Challenge the previous year [160]. The publicly available part
of the dataset contained a total of 513 WSiIs digitised at 20x magnification (as well as
30 TMAs, which we did not utilise given our focus on classifying WSIs). Details were
sparse regarding the data collection, curation, and labelling procedures, though these
were likely heterogeneous considering data was sourced from over 20 data centres

(including the TMAs and test WSIs which were not publicly available).
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With the exception of confirming that the Transcandian Study contained only primary
surgery specimens through direct contact with the primary author, we were unable to

obtain the clinical characteristics of either external dataset.

4.3 Hyperparameter Tuning and Model Training

An iterative grid search strategy was used to perform hyperparameter tuning for the
classification stage of ABMIL, with 2-3 of the hyperparameters selected to be adjusted
and evaluated at a time, and all other hyperparameters frozen at their previous best
values. The performance of each hyperparameter configuration was evaluated using
the average loss of each validation set in five-fold cross-validation. These cross-
validation splits were stratified at the patient level to give relatively class-balanced
folds while avoiding data leakage. The iterative tuning procedure risked finding a local
optimum rather than a global optimum, but it was the most rigorous available method
considering that it was not computationally feasible to conduct a full hyperparameter
grid search. The standard hyperparameters are defined in this section, though other

hyperparameters varied based on the specific requirements of each set of experiments.

The loss function used for model training in the CLAM repository was the cross-
entropy loss [78], though given the class imbalance in our dataset we instead used

the balanced cross-entropy loss:

I(y,c) = —w;log Zmexp (ve) ) (4.1)

i=1 Wi €XP

forclassesc € 1,2, ..., m, class predictions y € [0, 1)™, and with class weights w;. These
class weights are inversely proportional to the class frequencies n; to n,, to balance
the relative importance of each class, and are normalised using the average number
of slides per class - >_i= n; such that the average weight per WSI equals 1, which

reduces the instability caused by the scaled loss values having varied magnitudes:

"o,
w; = Q. (4.2)
m X n;
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Models were trained with an adaptive moment estimation (Adam) optimiser [204]
(as in CLAM [78]), a stochastic gradient descent method in which moving averages
estimating the mean and variance of the gradient are used to smooth the optimisation.
The Adam update procedure for parameters 60, with gradients g; at timestep ¢ is as
follows, where m; and v, are the rolling estimates of the first and second moments (the

mean and variance) of the gradient, and «, 1, 5, € are hyperparameters:

_ Br -y + (1 — Br)

my 1 —ﬁl R (43)
_ Par v + g7 (1 — Ba)
Ve = 1 — /82 5 (44)
my
=01 — . 4.
0 =01 —« Ui+ € ( 5)

These hyperparameters are the learning rate («), first moment decay (5;), second
moment decay (3;), and numerical stability parameter (¢). As well as the initial
learning rate, hyperparameters controlled the rate of decay of the learning rate,
with one setting the LR decay patience (the number of training epochs without an
improvement before the learning rate was decreased), and another controlling the

LR decay factor (the factor by which the learning rate was multiplied during decay).

To attempt to reduce the effects of overfitting and hence improve model robustness,
three types of regularisation were employed during model training, each with a related
hyperparameter. The weight decay hyperparameter controlled the relative strength
of an imposed L2 regularisation penalty, which penalised the sum of squares of the
weights when calculating the loss function to incentivise small model weights and
hence a parsimonious model. The dropout rate controlled the proportion of model
parameters that were dropped (set to zero) before the final classification step in the
model. The max patches hyperparameter applied a similar procedure to the data, with
patches randomly selected from a slide and the other patches dropped. These dropout
procedures reduced overfitting by acting as efficient data and feature augmentation
techniques, making it more difficult for the model to take shortcuts and learn spurious
relationships [205].
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4.4 Model Validation

The best overall hyperparameter configuration from tuning was used to train a model
for each cross-validation fold, and these models were evaluated on the withheld test
splits, as shown in Figure 4.2. The cross-validation test sets were somewhat exposed
by their usage in the training/validation sets of other folds when determining the
optimal hyperparameters, so model performance was also evaluated using a hold-
out test set and external validation sets where possible. For such validations, the
five cross-validation model predictions were ensembled by taking the average of the
softmaxed classifier outputs. Classification performance was evaluated using the
balanced accuracy, AUROC, and F1 score (Section 2.5). Bootstrapping was used
to evaluate the variability of results, with all model predictions resampled 10,000 times

and the mean and 95% percentile confidence interval of each metric calculated.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Evaluation
Test Val Train Train Train Test
Train Test Val Train Train Test
Train Train Test Val Train Test
Train Train Train Test Val Test

Val Train Train Train Test Test

Figure 4.2 Five-fold cross-validation procedure for model training and evaluation.
Splits were made at the patient level and kept consistent between the different models.

We measured model efficiency both in terms of the number of model parameters and
the runtime in training and inference. We excluded the feature extraction requirements
from training time since this step is frozen, so only needs to be run once before any
tuning experiments. Feature extraction times were included when measuring inference

times to best represent the computational burden of a deployed model.
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441 Hypothesis Testing

In the most rigorous experiments, paired t-tests were used to statistically compare
model performance for each metric and each validation set across the cross-validation
folds. Where multiple models were compared against the same baseline, p-values
were adjusted for multiple testing using the Benjamini-Hochberg false discovery rate
correction [206]. Results were considered statistically significant given an adjusted

p-value < 0.05.

4.5 Software and Hardware

Experiments were conducted on two distinct devices which we refer to as the personal
computer (PC) and the high-performance computer (HPC). The PC was a standard
consumer desktop computer with a single NVIDIA GTX 1660 GPU with 6GB of VRAM,
an Intel i5-4460 central processing unit (CPU) @ 3.2GHz, and 16 GB of RAM. The
HPC was an NVIDIA DGX A100 server with 8 NVIDIA A100 GPUs and 256 AMD EPYC
7742 CPUs @ 3.4GHz. The HPC GPUs were each segmented into seven instances,
with only one instance used for all experiments except those using the largest feature

extraction models in Chapter 7.

All experiments were conducted using a PyTorch [207] code base developed as an
extension to the CLAM model pipeline [78]. WSIs were loaded from . svs files using the
Python openslide library and the cv2 package was used for many chromatic and mor-
phological operations in preprocessing and patch extractions. Hyperparameter tuning
was implemented using the Ray Tune Python library, with the TrialPlateauStopper
function used to stop training for any configuration where no improvement had been
found for a given number of epochs. Hypothesis testing was implemented with the
ttest_rel function in the scipy.stats Python module and p-values were adjusted
using the statsmodels function multipletests. The graph models in Chapter 8 were
implemented in Pytorch Geometric. For each set of experiments, a public GitHub
repository was published at https://github.com/scjjb, with code examples and further

guidance provided to aid reproducibility.
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Chapter 5

Active Sampling for Efficient Multiple
Instance Learning

In this chapter, we describe our initial experiments in ovarian cancer subtyping.
We use an ABMIL backbone and propose an active sampling approach for efficient
slide inference by leveraging spatial relationships and attention scoring to determine
discriminative tissue regions. This approach is validated using the earliest iterations
of the Leeds ovarian carcinoma dataset, with these analyses being fundamental in

shaping the full dataset and subsequent modelling techniques.

5.1 Introduction

The huge size of digital pathology slides presents a significant computational burden
for Al models. In research settings, it is increasingly common to classify WSIs using
HPCs [75, 78, 81, 208], but these are unlikely to be available in the clinical setting due
to the financial cost of acquisition and maintenance. It may instead be expected that
pathology slides or their digitised image files are outsourced to a location with greater
hardware access, but there is still an associated financial cost to hire or maintain off-
site resources, and doing so increases the logistical complexity of pathology, which
may delay diagnosis and present data governance and security issues. It would
be beneficial for classification algorithms to instead be made efficient enough to run
on standard clinical hardware (either standard clinical computers or digital pathology
scanners). Such an approach may also benefit access to Al diagnostic tools in lower-
resourced healthcare settings, where the potential benefit of Al models is greatest

given the unavailability of subspecialty experts.

The scalability of digital pathology Al models is essential due to the huge quantity of
data generated. For example, at LTHT alone, over 290,000 H&E slides are generated
each year [209]. Not all slides contain as much tissue as a typical ovarian cancer
resection slide, and they may not all be the targets of Al models, though to apply a
model to even 20% of them would require processing a gigapixel WSI every 9 minutes,

non-stop. This will become an even greater issue as labs start applying several different
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algorithms to perform tasks such as quality control, tumour segmentation, metastasis

detection, prioritisation, diagnostic classification, and prognostic prediction.

As described in Section 2.4.4, it is common for slide-level classification to be performed
using MIL methods, where information is learned at the patch level and aggregated
to model the WSI. When using MIL methods in a setting with many instances per
bag, such as modelling a WSI as a collection of many patches, it may be pertinent
to use within-bag instance sampling to effectively reduce the number of instances.
Instance sampling approaches are intended to focus on relevant instances, improve
robustness to outlier instances, or reduce the overall computational burden. Within-
bag sampling can be as simple as randomly selecting instances [210, 211], or only
selecting instances within a specific region when using spatially related instances, such
as patches from within an image [212]. Multiple magnifications of a histopathology slide
can be efficiently leveraged by random instance selection across magnifications [118],
or by performing discriminative region detection on the lower-magnification (smaller)

image to guide instance selection on the higher-magnification (larger) image [213].

Within-bag sampling has previously been integrated with ABMIL [77] by splitting
each bag into a group of mini-bags - overlapping subsets of the original bag [214].
The ABMIL model is trained with these mini-bags, and the slide-level classes are
determined by the majority vote of classified mini-bags. This approach reduces
memory requirements, but the duplication of instances across multiple mini-bags is
likely to increase inference time. Further, as the key instance detection is based upon
the ABMIL attention weights, all instances are passed through the feature extractor,
which is typically the part of the model with the greatest computational burden.
Subsequent work [215] showed this approach to be less accurate than conventional
single instance learning for cytological data, but it has not been evaluated for whole
slide histopathological data, where single instance learning is not feasible due to

significantly larger image sizes.

Some MIL sampling approaches identify relevant patches using patch classification
scores rather than attention scores, following an instance classification MIL approach.
For example, in top-k sampling [75] all patches are evaluated and those with the highest
patch classification scores for the positive class are used for slide-level classification.

Monte Carlo sampling [216] instead takes an initial random sample, then iteratively
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replaces the patches with the lowest individual classification scores with new random
patches to improve the overall discriminative power of the sample. Patches can
also be sampled using expectation maximisation [70]. It is not clear that any of
these classification approaches offer efficiency improvements, with top-k sampling
and expectation maximisation requiring all patches to be processed through a CNN
before sampling, and Monte Carlo sampling reported to be slower than whole slide
processing. While these classification approaches have not demonstrated an increase
in efficiency, similar approaches have been shown to benefit WSI segmentation speed

without sacrificing accuracy [217, 218].

In this chapter, we present a novel patch sampling approach for use during the
inference step of ABMIL. This is an iterative approach in which the attention scores
of previously sampled patches are used to assign sampling weights to neighbouring
patches, aiming to sample the most diagnostically relevant tissue without fully process-

ing the entire slide and thus achieve high accuracy with improved algorithmic efficiency.

5.2 Methods

To investigate instance sampling for WSI inference, we proposed the approach of
Discriminative Region Active Sampling for Multiple Instance Learning (DRAS-MIL).
This method uses the trained baseline ABMIL model described in Section 4.1 with
an adjusted methodology for instance selection during inference. Where ABMIL uses
all available tissue patches, DRAS-MIL aims to find a discriminative subset of patches
at a much lower computational cost. Initially, DRAS-MIL takes a random sample of
patches and passes these through the trained ABMIL model to calculate their attention
scores. These attention scores are then used to generate sampling weights for the
remaining patches, with higher sampling weights given to patches in close spatial
proximity to high-attention patches. This process is repeated for a fixed number of
iterations, and finally, the sampled patches are used to classify the WSI through the
trained ABMIL model. This approach leverages the spatial relationships inherent to
ovarian carcinoma pathology slides, with diagnostically important tissue areas likely to

be clustered together rather than evenly dispersed throughout the entire slide.
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We developed and validated the DRAS-MIL model in two stages, with the initial
development performed using the earliest iteration of the LTHT ovarian cancer dataset,
and the final validation performed on a slightly larger and more refined dataset.
As shown in Table 5.1, model prototyping was conducted using a set of 655 WSIs
from 127 patients, and final validations were conducted using 714 WSIs from 147
patients. Many slides in this iteration of the dataset contained common non-adnexal
tissue types such as omentum and lymph nodes. The initial prototyping dataset also
included several WSls containing rare metastases that had been erroneously included,
and so were removed for the final dataset. Despite this being one of the largest ovarian
cancer subtyping datasets at the time, there were only 11-16 patients for each of the
non-HGSC subtypes, so we focused on the binary classification of HGSC against all

other subtypes. The minority non-HGSC was class taken as the positive class.

Carcinoma Initial WSIs Final WSis
Subtype (Patients) (Patients)
High-Grade Serous
(HGSC) 416 (75) 455 (92)
Low-Grade Serous
(LGSC) 64 (13) 75 (14)
Clear Cell
(CCC) 47 (12) 60 (15)
Endometrioid
(EC) 78 (16) 76 (15)
Mucinous
(MC) 50 (11) 48 (11)
Total 655 (127) 714 (147)

Table 5.1 Dataset breakdown for the initial and final modelling. Numbers in brackets
indicate the number of unique patients.

5.2.1 |Initial Prototyping

For initial prototyping, a baseline ABMIL classifier was trained through a 10-fold cross-
validation for the binary classification of HGSC using the default hyperparameters from
the CLAM repository [78], except for the learning rate which was set to 5e-5 as the
default value of 1e-4 gave divergent behaviour. This model served as a backbone
for prototyping instance sampling techniques. The baseline version of the proposed

DRAS-MIL method started with a completely random sample of 100 patches and
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used the attention scores of these patches to assign initial sampling weights to the 20
nearest neighbours of each sampled patch. Any patch within the spatial neighbourhood
of multiple sampled patches was given the maximum attention-based sampling weight.
There were nine resampling iterations, with 100 extra patches sampled per iteration
(half at random, half through weighted sampling), each followed by recalculating the
sampling weights. A final weighted sample of 200 patches was then taken to give
a total of 1200 sampled patches per WSI. Finally, these 1200 patches were used to
classify the WSI through the trained ABMIL model.

Prototype models were compared with different numbers of nearest neighbours for
assigning sampling weights (20, 50, 80, 100), different numbers of sampling epochs
(4, 6, 10, 20), different final sampling strategies for classification (using all sampled
patches vs taking a smaller final sample), different random sampling strategies
(truly random vs spatially distributed in a grid), different sample weight combination
strategies (average vs maximum), and different proportions of random samples to
active samples (30%, 50%, 80%). A higher proportion of completely random sampling
would allow for more exploration, and a lower proportion would allow for greater
exploitation of the high-attention regions found in previous sampling iterations. The
baseline model, then, used 20 nearest neighbours, 10 sampling epochs, all previous
samples in the final sample, 50% truly random sampling, and maximum sample

weights.

Model prototypes were primarily evaluated using the AUROC across the ten cross-
validation folds, and this was repeated 10 times to measure the variability inherent to
sampling approaches. The best-performing active sampling model was also evaluated
with reduced quantities of patches per slide (specifically 250 and 500, where the
original approach used 1200), and these sampling approaches were compared to fully

random sampling.

5.2.2 Final Validations

Following the prototyping experiments, the most promising models were fully tuned
and validated using the refined set of 714 WSIs (Table 5.1). To make hyperparameter
tuning computationally feasible, the final validations were conducted using a 3-fold

cross-validation rather than the previous 10-fold. Three hyperparameters were tuned
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during the training of the baseline ABMIL model and four were separately tuned during
inference with the DRAS-MIL sampling method, all using a random hyperparameter
search (Table 5.2) to minimise the unbalanced cross-entropy validation loss on a
single cross-validation fold. A total of 100 configurations were evaluated for the
training hyperparameters and 500 configurations for the inference hyperparameters,
with this being a practical limit due to the computational complexity of the models. The
hyperparameters that were tuned during model training were the learning rate, weight

decay, and dropout rate (as described in Section 4.3).

The hyperparameters that were tuned during inference controlled the number of re-
sampling iterations, the number of nearest neighbours assigned sampling weights
around each previous sample, the initial completely random sampling proportion,
and the random sampling decay which reduced the random sampling proportion each
iteration. The options for the hyperparameters were influenced by the results of initial
prototyping experiments, which also influenced the decisions to sample a total of 800
patches per WSI, to use non-grid-based random samples, and to take the average
sampling weight rather than the maximum when a patch was spatially close to multiple
previous samples. The 800 patches per WSI were composed of 640 patches from the
iterative procedure (with the number of samples per iteration being 640 divided by the

number of resampling iterations), before a final set of 160 non-random samples.

Hyperparameter Function Distribution Best
The initial rate of change Log-Uniform (1e-5, 1e-2) | 0.0038
for model parameters
The relative strength of L2
regularisation on loss function
The proportion of model weights
dropped to reduce overfitting
The number of
resampling iterations
The number of nearest
neighbours assigned weights

Learning Rate

Training Weight Decay Log-Uniform (1e-10, 1e-2) | 0.00079

Dropout Rate Uniform (0.00, 0.99) 0.020

Resampling lterations Choice [2,4,6,8,10,12,16] 16

Nearest Neighbours Choice [4,8,16,32,48,64] 64

Sampling

Random ngpllng The proportion of samples Uniform (0.00, 0.75) 0.29
Proportion which are randomly sampled
Random Sampling The reductlorj in Rand_om . Log-Uniform (0.0001, 0.5) 0.36
Decay Sampling Proportion each iteration

Table 5.2 Hyperparameters tuned using a random search. The first three were tuned
during baseline model training, and the subsequent four during inference.

The 800 patches sampled per WSI represented approximately 5% of the tissue area in

a typical slide (the slides had 740-33961 tissue patches each, with a mean average of
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(a) Unprocessed WSI (b) ABMIL attention scores

Figure 5.1 Attention scores from ABMIL whole slide processing.

(a) 100 Samples (b) 400 Samples (c) 800 Samples

Figure 5.2 lllustrative example of sampling weights generated through spatial sam-
pling at different stages of the active sampling process. The closest 50 patches to each
previous sample are assigned the corresponding sampling weight, and the proportion
of random samples taken is 0.5, giving a relatively high level of exploration.

15990 and a median of 16230). Any slide with fewer than 800 patches was evaluated
with whole slide processing, though this only applied to one slide in the dataset.
800 samples were sufficient to generate sampling weights for the majority of patches
in a slide, as shown in Figure 5.2. We compared the performance of DRAS-MIL to
completely random sampling with the same number of patches, and to the baseline
ABMIL approach using all available patches. To account for randomness and the
relatively small available dataset, we repeated each sampling approach 50 times and
performed 100,000 iteration bootstrapping, where each slide was represented exactly
once per iteration by one of the 50 predictions made for the slide. While the AUROC
was sufficient to give a holistic measure of performance when comparing models during
initial development, this would not provide sufficient understanding of clinical utility
for final validations, which were evaluated using balanced accuracy, AUROC, and F1

score.
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We compared the efficiency of the proposed DRAS-MIL model to the baseline model by
measuring the average inference time and the maximum GPU memory requirements
using a fixed test set of 50 randomly selected WSIs. There was a trade-off between
inference time and memory requirements, so we measured both of these metrics for
different batch sizes (1, 4, 8, 16, 32, and 64), which represented the maximum number
of patches processed concurrently. Efficiency experiments alternated between active
sampling and the default whole slide processing of ABMIL, running each three times

and taking the median value for each batch size as the true value.

Model training and hyperparameter tuning were conducted on the HPC (Section 4.5).
Efficiency experiments were conducted on the PC with the same CPU as found in the
computers in the LTHT pathology lab. The code for this chapter was made available at
https://github.com/scjjb/DRAS-MIL.

5.3 Results

5.3.1 Prototyping Results

Figure 5.3 shows the results from 13 prototyping configurations alongside completely
random sampling. Compared to the default ABMIL score of 0.790, completely random
sampling had a median AUROC of 0.788 across 10 repeats, though it was highly
variable, with a range of 0.028. The baseline DRAS-MIL method had a lower median
AUROC of 0.784, but was much less variable, with a range of 0.014.

The greatest overall performance from a DRAS-MIL prototype model was a median
AUROC of 0.789 and range of 0.016, a marginal improvement over random sampling,
though still behind default whole-slide processing. In this optimal prototype, the initial
sample of 200 patches was selected randomly (not spatially distributed), and then there
were 10 resampling iterations of 100 patches each, with 50% selected at random.
Sampling weights were propagated to the 50 nearest neighbours of previous samples,
with the maximum weight (rather than the average weight) applied for any patch in the
receptive field of multiple previous samples. Finally, all previously sampled patches

were retained when making the final classification.


https://github.com/scjjb/DRAS-MIL
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Only the aforementioned active sampling prototype model outperformed completely
random sampling overall, though two other prototypes gave comparable performance.
Both of these also used 50 nearest neighbours to propagate sampling weights, with
one starting with 80% random samples and reducing this by 8% on each resampling
iteration, and the other taking 50 patches per resampling iteration and taking the
average sampling weight for any patch in multiple receptive fields. These prototypes
gave median AUROCs of 0.788 and 0.787, respectively. All other prototypes had
median AUROC scores between 0.779 and 0.784.

As shown in Figure 5.4, both random and active sampling gave worse performance
with a smaller sample size. From a median AUROC of 0.789 with 1200 patches, the
active sampling prototype performance fell to 0.773 with 500 patches and 0.767 with
250 patches. Similarly, from a median AUROC of 0.788 with 1200 patches, the random
sampling performance fell to 0.777 with 500 patches and 0.771 with 250 patches.
As such, random sampling performed better than the active sampling approach when

using smaller sample sizes.
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Figure 5.3 AUROC scores from 10 repeats of 10-fold cross-validation for binary
classification of HGSC in the initial prototyping set of 655 WSIs, with sampling methods
evaluated using 1200 total patches per slide.
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Figure 5.4 AUROC scores from 10 repeats of 10-fold cross-validation using different

sample sizes with the optimal active sampling prototype and random sampling.
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5.3.2 Final Validation Results

Hyperparameter Tuning Results

The best hyperparameters found for training the baseline ABMIL model were a learning
rate of 0.0038, weight decay of 0.00079, and dropout rate of 0.020 (Table 5.2). For
active sampling, the best hyperparameters were 16 resampling iterations (40 patches
per iteration before the final sample of 160 patches), 64 sampling nearest neighbours,
and a random sampling proportion of 29% with this reduced to 0% after the first
iteration. The number of sampling neighbours and sampling iterations each took
the greatest values available, with no greater options tested given the increased

computational requirements.

Subtyping Results

Evaluation Method | Balanced Accuracy AUROC F1 Score
Full ABMIL Evaluation 80.08% 0.8781 0.7472
Active Sampling 79.07%%0.69% 0.8679+£0.0035 0.7337+0.0093
Random Sampling 78.94%10.66% 0.8659+0.0034 0.7320+0.0089

Table 5.3 3-fold cross-validation binary classification results using different evaluation
approaches with the same ABMIL baseline model (mean * one standard deviation from
100,000 iteration bootstrapping of 50 repeats). The best results are indicated in bold.

The baseline method of full ABMIL evaluation without sampling gave the best classifica-
tion performance, outperforming active sampling by approximately 1% for each metric
(Table 5.3). Active sampling slightly outperformed random sampling for each metric,
though these differences were not significant and performance was not consistently
better across folds. The median AUROCs for DRAS-MIL across the three folds were
0.806, 0.932, and 0.895, compared to the random sampling scores of 0.804, 0.926,
and 0.896 (Figure 5.5). Random sampling marginally outperformed active sampling in
the third fold, though the difference was small enough that this may be attributed to
chance.
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Figure 5.5 Boxplots comparing the AUROC scores from 50 repeats of each cross-
validation fold for random and active sampling with 800 patches per slide.

Efficiency Results

On the computational benchmarking dataset of 50 randomly selected WSIs, active
sampling reduced GPU memory utilisation from a maximum of 340MB to 60MB
(Table 5.4). The best total run time for active sampling was 47 minutes compared to
140 minutes for default ABMIL processing. This represents approximately 56s per WSI
for active sampling and 168s per WSI for default ABMIL classification. The difference
in run times was much greater when evaluating only using a CPU, with total times of 4h
8m for active sampling and 30h 32m for full MIL evaluation, representing approximately
5 minutes and 37 minutes per slide, respectively. Overall, DRAS-MIL reduced GPU
memory requirements by at least 82% and inference time by 67% when using a GPU,
and by 86% when using the CPU alone.
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Inference Method | Batch Size Total Inference Time | Average Inference Maximum GPU
for 50 WSlIs Time Per WSI Memory Utilisation

1 4h 37m 332.0s 340MB

4 2h 46m 198.9s 342MB

8 2h 33m 183.8s 356MB

ABMIL 16 2h 24m 173.3s 471MB

32 2h 20m 167.8s 702MB

64 2h 21m 169.3s 1163MB
1 47m 56.0s 60MB

4 47m 56.2s 103MB

8 49m 58.6s 161MB

DRAS-MIL 16 53m 63.55 275MB

32 58m 69.4s 506MB

64 1h1m 73.6s 967MB
ABMIL (CPU) 32 30h 32m 2198.1s (36m 38s) 0MB
DRAS-MIL (CPU) 1 4h 8m 298.0s (4m 58s) 0MB

Table 5.4 |Inference efficiency on a subset of 50 WSIs. Each experiment was
repeated three times and the median value was taken. All experiments used a GPU
except those labelled CPU. The best results are indicated in bold.

5.4 Discussion

The results indicated that active sampling could drastically reduce the computational
requirements for WSI inference with minimal impact on the classification accuracy.
Completely random sampling also retained classification performance, with active
sampling only performing marginally better. While random sampling appears to be a
viable approach, DRAS-MIL has the advantage that its sampling maps improve model
interpretability as an efficient proxy to the ABMIL attention heatmap (Figure 5.6).

The relatively high classification performance of the sampling approaches compared
to whole slide processing may have been influenced by the slides in the dataset
containing a relatively high proportion of tumour tissue, making it likely that tumour
tissue would be sampled by chance. This is supported by the relatively low level
of random sampling used in the tuned DRAS-MIL model, which may indicate that
it was possible to find diagnostically relevant tissue without extensive exploration.
Such approaches are likely to be inappropriate in highly heterogeneous samples,
or those with relatively small regions of interest, where the sampling approach may
not find sufficient relevant tissue. It remains to be seen whether pathologists will
support the use of models that do not thoroughly analyse all available tissue, and
further investigations using varied datasets will be required to understand whether the

sampling procedure is sufficiently robust.
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Input WSI Random Sampling DRAS-MIL

Figure 5.6 Example WSIs with corresponding random sampling attention maps and
DRAS-MIL sampling weight maps. Each method takes 800 sample patches per WSI.
Red indicates a higher attention/weight, and blue indicates a lower attention/weight.

The main limitation of this analysis was the dataset. The inclusion of non-adnexal
tissue was a potential source of bias as the model may have learned shortcuts based
on the heterogeneous tissue types, rather than based on the morphological tumour
subtypes. This was a particularly limiting factor given the relatively small dataset used,
with only a handful of examples given for some tissue types. As such, the non-adnexal
tissue WSIs were removed from the dataset for all subsequent research. Without
any hold-out or external validations, it was unclear whether the sampling method was
robust to different sources of variability. The models in this chapter were also limited
to performing binary classification of the most common subtype. Considering HGSC
composes around 70% of all ovarian cancers, a binary classifier may be beneficial
as an ancillary tool to rapidly confirm the majority of diagnoses, though this utility is

limited compared to the target five-class classification, which would cover over 90%
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of all ovarian cancers. To truly achieve utility, these models would likely also need to

indicate when a WSI does not fit one of these subtypes.

Sampling during inference could be useful in the clinical utility of classifiers, with a
model being trained on an HPC in a research setting, then then deployed to the clinic for
slide inference. If these models could be feasibly run on standard desktop computers
or integrated within the slide scanner hardware it would reduce the investment burden
and avoid the need to share data outside of the pathology lab. It is important to focus on
reducing barriers to clinical implementation of computer-aided diagnostic tools as the
underlying models are increasingly being shown to work at an expert level of accuracy
in research settings and are receiving regulatory approval [52], but they are not being
widely adopted. In particularly under-resourced settings, it may be worthwhile to trade
a small level of diagnostic accuracy for drastically improved efficiency, as this may
be the only feasible way to access an expert-level second opinion. However, such

low-resource settings may struggle to access digital pathology infrastructure.

5.5 Conclusion

In this chapter, we proposed an active patch sampling approach called DRAS-MIL.
This utilised the attention mechanism of ABMIL to generate sampling weights for
tissue regions, allowing diagnostically relevant tissue regions to be discovered and
leveraged without processing the whole slide. This drastically reduced inference time
with only a marginal impact on the discriminative ability of the classifier. Completely
random sampling was found to give a discriminative performance almost as great
as DRAS-MIL, though it reduced the interpretability of the corresponding attention
heatmaps. Improvements in the efficiency of slide classification inference will be
essential if models are to be deployed directly to the pathology clinic given the limited
computational resources and, in this chapter, we have found that active patch sampling
is a promising approach. However, the underlying models did not offer sufficient
performance to be considered for clinical deployment, with performance limited by a
relatively small, heterogeneous dataset.
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Chapter 6
Analysis of Tissue Magnifications

In this chapter we describe our first five-class subtype classification model, using the
same ABMIL backbone from the previous chapter with a larger training dataset and a
hold-out test set. We investigate how the tissue magnification used in these models
impacts performance, both in terms of classification accuracy and computational
efficiency. Through this chapter, we formalise the iterative hyperparameter tuning and

validation procedures used in subsequent research.

6.1 Introduction

While MIL approaches have become increasingly common for WSI-level classification
tasks, it is not clear which tissue magnification is optimal for computational analysis.
Higher magnifications provide more cellular-level detail, whereas lower magnifications
offer greater architectural context at the tissue level. Pathologists typically assess a
slide at multiple magnifications, with slides scanned at 40x magnification to facilitate
the highest required cellular resolution. However, the requirements of an Al model are
likely to differ from those of a human pathologist since a model can thoroughly process

all available information at the pixel level.

The optimal magnification likely depends upon the given task. Comparative studies
have often found either 10x or 20x magnification to be best, with 10x reported as
best for bladder cancer subtyping [82], cervical lymph nodes metastasis classification
[219], cervical cancer prognostication [219], and melanoma immune subtyping [81],
and 20x reported to be best for lymphoma subtyping [220], breast cancer lymph
node metastasis classification [219], and lung cancer subtyping [219]. However,
most comparisons were made between only two different magnifications, which often

appeared to be arbitrarily selected.

The optimal magnification may also depend on the specific models used. For example,
in the aforementioned melanoma immune subtyping study, 10x was determined to be

the best overall, but each of the other evaluated magnifications (2.5x, 5x, 20x, 40x)
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achieved the greatest performance in at least one experiment using different feature
extraction and MIL classification models [81]. Further, in two studies classifying the
primary cancer type in TCGA WSils, one study found 10x to be best [221] and the other
found 20x to be best [222]. Both of these studies found 20x to be best specifically for
distinguishing ovarian cancer from other primary cancers, though both studies used

small ovarian cancer cohorts (<100 WSiIs).

Previous MIL models for ovarian cancer subtyping have primarily used tissue patches
at 20x magnification [5, 134, 136, 160, 171, 173], with relatively few studies using
different magnifications [118, 123, 136]. The effects of the different magnifications
on classification performance have not been directly compared, though one study
did find that a multi-scale attention model applied different levels of attention to
different magnifications (5x, 10x, 20x) for different subtypes [82], reflecting the inherent

differences between magnifications.

A key limitation in previous research has been the lack of separate hyperparameter
tuning at each tissue magnification, making it likely that some models underperformed
due to using sub-optimal hyperparameters for the given magnification. In this chapter,
we present the most extensive analysis of the effects of tissue magnification on ovarian
cancer subtyping to date. A separate ABMIL classifier was trained for five-class
subtyping at each of six magnifications from 1.25x to 40x. Hyperparameter tuning was
performed separately at each magnification and both the classification performance

and model efficiency were evaluated using cross-validation and a hold-out test set.

6.2 Methods

6.2.1 Classification Methodology

To compare the effects of tissue magnifications on subtype classification performance,
we used the baseline model training and hyperparameter tuning protocols (Section
4.1) for the original 40x WSIs, as well as for downsampled WSIs at 20x, 10x, 5x,
2.5x, and 1.25x magnification. Patches were extracted such that the resulting patch
size was 256 x 256 pixels after downsampling (for example, 8192 x 8192 pixel
patches were downsampled to 256 x 256 for the 1.25x experiments given the 32x

downsampling factor). Downsampling by a factor of two reduced the overall slide
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Figure 6.1 Examples of 256 x 256 pixel tissue patches from a single WSI (shown in
Figure 4.1) at six different apparent magnifications after downsampling from the 40x
native magnification.

area by a factor of four (% X "%) and so also reduced the number of patches
by an approximate factor of four. On average there were 68,913 patches per slide
at the highest magnification (40x), compared to only 81 at the lowest (1.25x). As in
the standard baseline model, an ImageNet-pretrained ResNet50 encoder was used
to extract 1 x 1024 feature vectors from the downsampled 256 x 256 pixel tissue
patches, and these features were used to train ABMIL classifiers [77] for ovarian cancer
subtyping.

6.2.2 Tuning and Validation

lterative grid hyperparameter tuning was used, with eight hyperparameters tuned
until the validation loss stopped improving (Table 6.1). The first three stages of
tuning were limited to 30 epochs of model training, the subsequent six stages to
100 epochs, and the final four to 150 epochs. The tuned hyperparameters were the
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standard Adam optimizer hyperparameters (learning rate, first and second moment

decay, stability parameter) and regularisation hyperparameters (weight decay, dropout

rate, max patches per slide) described in Section 4.3, as well as a model size

hyperparameter controlling the dimensions of the attention layer and subsequent fully

connected layer in the classifier. Initial hyperparameters were influenced by the CLAM

default hyperparameters [78] and by the experiments in Chapter 5. Approximately

80 unique configurations were evaluated for classification at each tissue magnification.

Tuning lteration

Hyperparameter i 2 3 4 5 6 7 8 9 10 11 12 13
Learning Rate v v v v v
First Moment Decay v v
Second Moment Decay v v
Stability Parameter
Weight Decay v v
Dropout Rate v v v v v
Max Patches v v v v v
Model Size v
Table 6.1 lterative hyperparameter tuning procedure. Tick marks indicate which

hyperparameters were adjusted at each stage of tuning, with all other hyperparameters
frozen at their previous best values.

Carcinoma Training WSlIs Hold-out WSils
Subtype (Patients) (Patients)
High-Grade Serous
(HGSC) 484 (107) 20 (7)
Low-Grade Serous
(LGSC) 23 (5) 20 (6)
Clear Cell
(CCC) 156 (33) 20 (7)
Endometrioid
(EC) 205 (36) 20 (5)
Mucinous
(MC) 95 (20) 20 (5)
Total 963 (201) 100 (30)

Table 6.2 Dataset breakdown showing the number of primary resection WSIs per
ovarian carcinoma subtype in the training (cross-validation) and independent hold-out
test sets for the analysis of tissue magnification. Numbers in brackets indicate the

number of unique patients.
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Five-fold cross-validation was conducted with a training set of 963 primary resection
adnexal specimen WSIs from 201 patients (Table 6.2), stratified at the patient level. An
average ensemble of the five-fold classifiers at each magnification was evaluated using
a class-balanced hold-out test set of 100 WSIs from 30 patients. Both datasets were
part of the internal LTHT dataset (Section 4.2).

As well as using the standard metrics to measure discriminative power (balanced
accuracy, AUROC, F1 score), we measured the classification efficiency through the
average training and inference times on the HPC, and the average inference time on
the PC (Section 4.5). Training times were measured as the average time to train a
classifier on a single cross-validation fold, whereas inference times were measured as
the average time to classify a slide using a class-balanced subset of 20 WSIs from
the hold-out test set. Preprocessing and feature extraction times were excluded from
training but included in inference times to represent the computational burden of a
deployed model. PyTorch-based code was made available at https://github.com/scjjb/
Ovarian_Subtype Mags.

6.3 Results

6.3.1 Hyperparameter Tuning Results

Magnification

Hyperparameter 40x 20x 10x 5x 2.5x 1.25x
Learning Rate 1e-3 5e-4 S5e-4 5e-4 1e-3 S5e-4
First Moment Decay 0.95 0.99 0.8 0.95 0.9 0.9

Second Moment Decay 0.99 0.99 0.99 0.999 0.9999 0.999
Stability Parameter 1e-10 1e-8 1e-4 1e-14 1e-4 1e-14

Weight Decay 1e-4 1le-4 1e-4 1e-6 1e-5 1e-5

Dropout Rate 0.6 0.7 0.6 0.6 0.7 0.5
Max Patches 50000 8000 1000 400 40 7
Model Size 512,256 256,64 256,64 128,32 256,64 256,64

Table 6.3 The hyperparameters used to train the final model at each resolution,
determined through the iterative hyperparameter tuning procedure to minimise the
average balanced cross-entropy validation loss in 5-fold cross-validation.

The optimal hyperparameters found through hyperparameter tuning are shown in

Table 6.3 for each magnification. The clearest trend was that the optimal number of


https://github.com/scjjb/Ovarian_Subtype_Mags
https://github.com/scjjb/Ovarian_Subtype_Mags

88 Chapter 6 - Analysis of Tissue Magnifications

patches used in training at lower magnifications typically covered a lower proportion
of the entire slide area, with the 7 patches at 1.25x covering only 9% of an average
slide, compared to the 50,000 patches at 40x covering 73% of an average slide. The
size of the optimal model weakly corresponded to the magnification, with the 40x
model being the largest (795,408 parameters), and the 5x model being the smallest
(141,424 parameters). Other hyperparameters did not exhibit clear trends across

magnifications.

6.3.2 Magnification Validation Results
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Figure 6.2 Classification performance at each magnification in cross-validation and
hold-out testing, with error bars indicating the 95% confidence intervals from 10,000
iteration bootstrapping.

No single magnification gave the best classification results across all metrics in both
validations (Figure 6.2). In cross-validation (Table 6.4), the greatest classification
performance across the five folds was achieved by the 1.25x magnification model,
with 55.6% balanced accuracy, 0.888 AUROC, and 0.558 F1 score. Performance
did not vary greatly between magnifications, with the lowest balanced accuracy being
50.6% (at 20x), the lowest AUROC being 0.800 (at 10x), and the lowest F1 being
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0.506 (at 20x). 95% confidence intervals for the balanced accuracy and F1 score
were overlapping for all models, and 95% confidence intervals for AUROC were also

overlapping for most models.

In hold-out testing (Table 6.5), the greatest classification performance was achieved by
the 10x model, with 62.0% balanced accuracy, 0.850 AUROC, and 0.549 F1 score. The
5x model performed similarly, with a marginally lower balanced accuracy and F1 score,
but a marginally higher AUROC. Performance varied more across magnifications than
in cross-validation, with the lowest balanced accuracy being 54.0% (at 40x), the lowest
AUROC being 0.829 (at 20x), and the lowest F1 score being 0.477 (at 40x). However,

the 95% confidence intervals were all overlapping for each metric (Figure 6.2).

Magnif. 2a'a“°ed AUROC F1 Score
ccuracy
40x | 51.3% (48.4-54.2%) 0.825 (0.794-0.856) 0.516 (0.487-0.545)
20x | 50.6% (47.9-53.3%) 0.846 (0.819-0.873) 0.506 (0.477-0.535)
10x | 52.3% (49.8-54.8%) 0.800 (0.775-0.825) 0.515 (0.486-0.544)
5x | 54.0% (51.5-56.5%) 0.817 (0.784-0.850) 0.538 (0.511-0.565)
25x | 55.6% (52.7-58.5%) 0.877 (0.855-0.899) 0.557 (0.530-0.584)
1.25x | 55.6% (52.3-58.9%) 0.888 (0.870-0.906) 0.558 (0.525-0.591)

Table 6.4 Classification results from five-fold cross-validation at each magnification.
Results are reported as the mean and 95% confidence intervals (in brackets) from
10,000 iterations of bootstrapping. The greatest results are shown in bold.

Magnif. 2a'a"°ed AUROC F1 Score
ccuracy
40x | 54.0% (46.2-61.8%) 0.860 (0.819-0.901) 0.477 (0.397-0.557)
20x | 55.0% (47.4-62.6%) 0.829 (0.790-0.868) 0.485 (0.405-0.565)
10x | 62.0% (54.9-69.1%) 0.850 (0.813-0.887) 0.549 (0.476-0.622)
5x | 61.0% (53.9-68.1%) 0.858 (0.813-0.903) 0.545 (0.472-0.618)
25x | 58.1% (50.8-65.4%) 0.857 (0.816-0.898) 0.516 (0.440-0.592)
1.25x | 58.0% (50.6-65.4%) 0.855 (0.814-0.896) 0.529 (0.447-0.611)

Table 6.5 Classification resulting from hold-out testing at each magnification, with
predictions generated by an ensemble of the five-fold classification models. Results
are reported as the mean and 95% confidence intervals (in brackets) from 10,000
iterations of bootstrapping. The greatest results are shown in bold.
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Performance varied drastically between subtypes in both validations (Figure 6.3). The
optimal model from hold-out testing (10x magnification) failed to correctly classify the
least common subtype (LGSC) a single time in either validation, whereas it classified
the most common subtype (HGSC) with F1 scores of 0.846 and 0.727 in cross-

validation and hold-out testing, respectively.

Cross-validation Hold-out Testing
Predicted Subtype Predicted Subtype
HGSC | LGSC | CCC EC MC HGSC | LGSC | CCC EC MC
@ | HGSC | 399 3 25 54 @ | HGSC 20 0 0 0 0
g LGSC 20 0 1 1 0 3‘3’ LGSC 5 0 8 4 3
;’g CcC 24 3 115 13 E" Ccc 6 0 13
8 ec | 14| 1 | 14 [ 165 9 |2 Ec | 3 0 17
MC 2 1 12 57 23 MC 1 0 0 12

Figure 6.3 Confusion matrices of the optimal ABMIL model from hold-out testing (10x
magnification). Correct classifications are indicated in bold.

6.3.3 Efficiency Evaluations

The fastest models to train were the 5x (10m 37s) and 1.25x (10m 49s) magnification
models (Table 6.6). Model training was always faster at lower magnifications, with the
exception of the 5x model, which trained faster than the 2.5x or 1.25x models due to
having fewer parameters. The fastest models in inference were the 10x model (1m 9s
per slide on HPC, 3m 8s on PC), and the 5x model (1m 11s per slide on HPC, 3m 15s
on PC). The 40x model was the slowest by a wide margin for both training (3h 45m) and
inference (3m 51s per slide on HPC, 7m 29s on PC). The highest magnification models
were slowed by the slides containing more patches, and the lowest magnification
models by the larger size of patches before downsampling, which took slightly longer
to process. The large patch size would not be a factor for slides with a lower native
magnification, where the lower magnifications would be expected to always be faster
during inference. Such lower magnifications may be accessible at lower levels of the
pyramidal WSI file, though we chose to downsample from 40x for consistency as not

all WSI had the same lower magnifications available.
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Training Inference Inference

Magnif. Time Time per Time per

per Fold Slide (HPC) Slide (PC)
40x 3h 45m 13s 3m 51s 7m 29s
20x 44m 23s 1m 20s 3m 56s
10x 12m 51s 1m 9s 3m 8s
5x 10m 37s im 11s 3m 15s
2.5x 12m 29s 1m 24s 4m 28s
1.25x 10m 49s 1m 58s 5m 42s

Table 6.6 Average training and inference times. Inference times were analysed
using a balanced subset of 20 WSIs from the hold-out test set on a high-performance
computer (HPC) and a personal computer (PC). The best times are indicated in bold.

6.4 Discussion

Our results indicate that the standard 40x and 20x magnifications used in the clinical
setting may not be optimal for computational ovarian cancer subtyping, with 10x and
5x each giving greater balanced accuracies in cross-validation and hold-out testing
while also running much faster. The balanced accuracy and F1 scores reported in this
chapter were lower than those in other studies using similar methodologies [82, 123,
136], likely due to the few available LGSC cases leading to very poor performance
at classifying this specific subtype. It is, however, worth noting that the models have
demonstrated discriminative power, with the optimal balanced accuracies of 56% and
62% in cross-validation and hold-out testing being much greater than the 20% baseline

from random 5-class classification.

The differences between results in the cross-validation and hold-out test sets were
likely influenced by the imbalance in the cross-validation set, with AUROC particularly
affected by class imbalance. The small size of the test sets caused a degree of
uncertainty in the results, reflected in the wide confidence intervals (Figure 6.2). As
such, most differences between results were not statistically significant, meaning we
cannot be confident that the improved classification at lower magnifications was not
caused by random chance. Differences in the efficiency of models were much clearer,
with the most efficient models running over twice as fast as the slowest across all

evaluations. While classification accuracies are highly dependent on specific datasets
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and modelling decisions, the improved efficiency is likely to hold across a range of

datasets and models.

Given the black-box nature of the deep learning models used in this analysis, it
is not entirely clear why performance was best at lower magnifications. The 40x
diagnostic standard allows pathologists to thoroughly assess aspects of cellular and
nuclear morphology that are less readily identifiable at lower magnifications, though
it may be that these features can be sufficiently analysed at a lower magnification
by computer vision models which can interrogate images down to a single pixel.
Wider histoarchitectural patterns and wider chromatic patterns may be possible to
assess at lower magnifications, and these lower magnifications may benefit the ABMIL
model by giving a wider context window within each patch. It may be the case
that no single magnification is optimal for the computational analysis of all subtypes.
A recent study [82] suggested that higher magnifications may be best for classifying
LGSC, where cellular features are necessary to determine the low grade, and lower
magnifications may be best for classifying EC, where the characteristic glandular
architecture may be readily assessed. The 10x magnification, which performed best
in our hold-out testing, may have offered the best trade-off between relevant features
from higher and lower magnifications, not so low as to lose relevant cellular and nuclear

features, and not so high as to miss the spatial context.

This investigation was limited to a single model type (ABMIL) which processed tissue
at a single magnification. Different models, such as graphs and transformers, may
perform differently due to their ability to model patch relationships (Section 2.4.5).
Multi-magnification models [82, 118] may be able to improve performance by combining
the cellular and histoarchitectural information from different magnifications, akin to how
pathologists interpret morphological features from multiple magnifications to obtain
overall diagnostic insight. This analysis was also limited to a single data centre,
so it is unclear how model generalisability may be affected by tissue magnification.
Implementation of these models will require improved accuracy and more extensive

validation to ensure model robustness.

While the routine collection of data at a lower native magnification would offer efficiency
benefits (reduced storage requirements and cost), this is unlikely to be clinically viable

as pathologists require higher magnifications for manual review. The benefit of lower
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magnification modelling (aside from improved classification performance) is in the
reduced computational requirements, allowing models to be deployed directly to the
pathology lab, avoiding any diagnostic delay and financial expense from exporting

samples off-site.

6.5 Conclusion

In this chapter, we reported the most extensive evaluation of tissue magnifications
for ovarian cancer subtyping conducted to date. We tuned ABMIL classifiers at six
different magnifications from 1.25x to 40x and found that downsampling to reduce
the apparent magnification from the standard 40x did not significantly degrade
discriminative performance, and in many cases, slightly improved it. The 10x and 5x
magnifications gave the greatest balanced accuracy in hold-out testing while also being
the fastest models in training and inference, classifying a slide in little over 3 minutes
on a desktop computer with a consumer-grade GPU. The classification performance
of even lower magnification models was also impressive, with 1.25x magnification
outperforming 40x and 20x by most metrics. The vastly reduced computational burden
of lower magnification models may allow them to be deployed directly to the clinic, but

classification accuracy and validation must first be improved.
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Chapter 7

Analysis of Histopathology Feature
Extraction Models

In this chapter we present our most comprehensive analysis of ovarian cancer subtype
classifiers, with ABMIL models trained using seventeen different feature extractors on
the final version of the Leeds ovarian carcinoma dataset, then validated through hold-
out testing and two external validations. Where previous classifiers used ImageNet-
pretrained CNNs for feature extraction, here we assess fourteen different histopathol-
ogy foundation models and an ImageNet-pretrained ViT to determine the extent of
the benefits that can be obtained through the newer architecture and domain-specific
pretraining. We perform an ablation study to quantify any benefits from hyperparameter
tuning, and we investigate the relationship between classification performance and
model efficiency. Finally, pathologists review the best models, assessing the ABMIL

attention heatmaps, and determining the potential causes of misclassified slides.

7.1 Introduction

Considering the vast size of histopathology WSIs, it is often impractical to train slide-
level classifiers end-to-end. It is common for these classifiers to instead be built using
frozen pre-trained patch encoders. As such, any limitation in the pretrained feature
extractor can limit the final classification performance. In applying MIL to WSI-level
classification, many researchers have used ImageNet-pretrained ResNet CNNs [59] for
patch feature extraction [5, 71, 78, 81, 134, 223]. ImageNet [58] is a huge set of labelled
natural images, making it very popular for model pretraining (Section 2.4.2). However,
the resulting generic features are likely to be suboptimal and computationally inefficient
when applied to histopathology images, which contain a relatively homogeneous and
restricted set of shapes and colours, with subtle differences being relevant to diagnostic
decisions [28, 203].

Recently, many researchers have attempted to create histopathology foundation
models, using self-supervised learning (SSL) techniques to generate broad histopatho-

logical feature sets which are not specific to a single organ/cancer type. The scale
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of these approaches has grown rapidly, from tens of thousands of WSIs used to
train models with tens of millions of parameters in 2022 and early 2023 [83, 224—
228] to millions of WSIs [47, 229, 230] and billions of parameters more recently
[178, 231]. Foundation models have typically been based on ViTs, utilizing the
impressive scalability of transformers seen across many fields, most notably with large

language models [232, 233].

Histopathology foundation models have exhibited impressive performance across
diverse tasks [208, 226, 234, 235] including ovarian cancer subtyping [172, 173],
although analyses have been relatively shallow, without thorough hyperparameter
tuning and rigorous statistical comparison of the resulting classifiers. Consequently,
it is unclear whether models were applied optimally (especially those exhibiting sub-
optimal performance), and whether the differences between them were significant.
Furthermore, many analyses have been conducted using single-centre data, limiting

the assessment of models’ generalisability.

In this chapter, we present the most comprehensive validation conducted to date
comparing feature extraction methods for ovarian cancer subtyping, including three
ImageNet-pretrained feature extractors and fourteen histopathology foundation mod-
els. The analysis includes rigorous hyperparameter tuning and evaluations through
five-fold cross-validation, hold-out testing, and external validations, and was conducted
with the largest collection of ovarian cancer WSIs used in any Al validation to
date. We aim to quantify any benefit of foundation models for this task and to find
which feature extractors give the best trade-off between diagnostic accuracy and
computational efficiency. We further investigate whether the classification performance
of the ImageNet-pretrained ResNet50 features can match those of the foundation
models through stain normalisation, tissue augmentation, or different tissue detection

techniques.
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7.2 Methods

7.2.1 Slide Classification Pipeline

Slide classification was performed using the baseline ABMIL classification pipeline
(Section 4.1), with different frozen patch feature extractors applied to 256 x 256 pixel
patches at 10x apparent magnification since this gave the best accuracy and efficiency
in Chapter 6. The patches were preprocessed following the specific procedure of
each feature extraction model, which typically involved first applying the standard
normalisation to the RGB colour channels (Section 4.1), and for ViT-based models
typically also involved resizing or cropping patches to 224 x 224 pixels. Patch features

were then used to train an ABMIL classifier for each feature extractor.

Analyses were conducted using the full LTHT training set of 1864 ovarian carcinoma
WSiIs of adnexal tissue from 433 cases. Internal validations were performed using a
five-fold cross-validation on the training set, as well as a five-model average ensemble
on a hold-out test set of 100 WSIs from 30 patients. External validations were
performed using the same ensembling approach on a set of 80 WSIs from 80 patients
in the Transcanadian Study, and a set of 513 WSlIs from an unknown number of patients

in the OCEAN Challenge. These datasets are described further in Section 4.2.

7.2.2 Feature Extraction Models

A total of seventeen patch feature extractors were compared (Table 7.1), three of
which had been trained through the traditional approach of supervised classification
on ImageNet data [58], and the other fourteen had been trained using histopathology
images through various SSL approaches. All feature extractors were available online,

with some requiring approval before they could be accessed.

The ImageNet-pretrained models were a ResNet50 [59], ResNet18 [59], and a large
vision transformer (ViT-L) [62]. The ResNet50 outputs were taken from the end of
the third residual block (as in CLAM [78]) to give 1024 features per input patch. The
ResNet18 does not have a layer this large, so 512 features were extracted from the end
of the fourth residual block instead. ViT-L was applied without a final fully connected

layer to give 1024 features per patch. ImageNet-pretraining for ResNet models had
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Feature Data Pretrainin Pretrainin Pretrainin Patch
Extractor Backbone Type Data Source Algorithn? Images ’ Magnificatiog(s) Parameters Features
RN50 [59] ResNet50 Natural ImageNet-1k Supervised 1,431,167 NA 8,543,296 1024
RN18 [59] ResNet18 Natural ImageNet-1k Supervised 1,431,167 NA 11,176,512 512
ViT-L [62] ViT-L Natural ImageNet-21k Supervised 14,197,122 NA 303,301,632 1024
RN18-Histo [224] ResNet18 Histology 57 Open Sets SimCLR >25,000 WSIs  10x,20x,40x,100x 11,176,512 512
Lunit [226] ViT-S Histology TCGA + Internal DINO 36,666 WSIs 20x,40x 21,670,272 384
RN50-Histo [226] ResNet50  Histology TCGA + Internal ~ Barlow Twins 36,666 WSIs 20x,40x 23,508,032 2048
CTransPath [225] | CNN + SwinT Histology = TCGA + PAIP Novel SSL 32,220 WSIs 20x 27,520,038 768
Hibou-B [229] ViT-B Histology Internal DINOv2 1,141,581 WSIs Unclear 85,741,056 768
Phikon [227] ViT-B Histology TCGA iBOT 6,093 WSls 20x 85,798,656 768
Kaiko-B8 [236] ViT-B Histology TCGA DINO ~29,000 WSIs  5x,10x,20x,40x 85,807,872 768
GPFM [172] ViT-L Histology 47 Open Sets  Novel Distillation 72,280 WSIs Unclear 303,228,928 1024
UNI [208] ViT-L Histology Internal + GTEx DINOv2 100,426 WSls 20x 303,350,784 1024
Hibou-L [229] ViT-L Histology Internal DINOv2 1,141,581 WSIs Unclear 303,659,264 1024
Virchow [230] ViT-H Histology Internal DINOv2 1,488,550 WSls 20x 631,229,184 2560
Virchow2-CLS [47] ViT-H Histology Internal DINOv2 3,134,922 WSIs  5x,10x,20x,40x 631,239,424 1280
H-optimus-0 [231] ViT-g Histology Internal DINOv2 >500,000 WSIs 20x 1,134,774,272 1536
Prov-GigaPath [173] ViT-g Histology Internal DINOv2 171,189 WSIs 20x 1,134,953,984 1536

Table 7.1

pretraining data type and ordered by model size).

been conducted using the original 1,000 class ImageNet dataset alone, whereas the
ViT-L was first trained on the much larger set of nearly 22,000 classes, and then
fine-tuned to the same set of 1,000 classes. The reported ImageNet classification
accuracies were 80.9%, 69.8%, and 85.1% for ResNet50 [237], ResNet18 [238], and
ViT-L [239], respectively.

The SSL pretraining of the foundation models allowed large quantities of diverse data to
be leveraged without the need for extensive labelling. One of the earliest histopathology
foundation models was a ResNet18 trained through the SimCLR contrastive learning
strategy [240] with 57 open datasets in 2021 [224], which we refer to as ‘RN18-Histo’.
A similar approach was taken in a subsequent study to pre-train a ResNet50 with a
combination of TCGA and proprietary data using Barlow Twins [241], which we refer
to as ‘RN50-Histo’ [226]. Another early approach, CTransPath [225], used a novel
backbone which combined a CNN with a Swin Transformer, and pretrained these

through a novel SSL strategy using multiple open datasets.

Newer histopathology foundation models have typically used vision transformer back-
bones. The smallest such model, Lunit [226], used DINO distillation [242] to train a
small vision transformer (ViT-S) to create a model of a similar size as RN50-Histo
which had been pretrained with the same dataset. Three of the foundation models

were built using the base vision transformer (ViT-B) backbone with different pretraining

Summary of the seventeen feature extraction models (grouped by the
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procedures, with Phikon [227] trained using iBOT [243] on a small subset of TCGA
data, Kaiko-B8 [236] on a much larger set of TCGA data using DINO [242], and
Hibou-B [229] on a huge proprietary dataset using DINOv2 [244]. The authors of
Kaiko-B8 also made their model available with four other backbone sizes, though the
B8 variation gave the best overall performance in their evaluations [236]. Hibou-B was
included as it was the best-available version of this model when initial validations were
conducted, although the authors reported their larger model, Hibou-L, to have given

better performance [229].

The largest histopathology foundation models (all published in 2024) have typically
been vision transformers trained with proprietary datasets of over 50,000 WSIs using
DINOv2. GPFM [172], UNI [208], and Hibou-L [229] are large vision transformers
(VIiT-L) trained with 72,280 WSlIs, 100,426 WSIs, and 1,141,581 WSils, respectively.
GPFM was the largest foundation model to not be trained using DINOv2, with a
novel distillation method used instead. Virchow [230] and its recent update, Virchow2
[47], are huge vision transformers (ViT-H) trained with the largest dataset for any
histopathology foundation model to date, with nearly 1.5m WSIs in the first version
and over 3m WSis in the second version. Virchow also has the largest feature space
as the class tokens are concatenated with the average patch tokens from the VIiT,
where typically only the class tokens would be used. As Virchow2 was reported by the
original authors to give better results using just the class tokens [47], we adopted this

version as ‘Virchow2-CLS'.

Prov-GigaPath [173] and H-optimus-0 [231] were the largest accessible histopathology
foundation models by far, with the ViT-g backbone giving over one billion parameters,
nearly twice as many as the next largest model (Virchow2-CLS), and over 100x as
many parameters as the smallest foundation model (RN18-Histo). These models had
also been trained with hundreds of thousands of WSIs using DINOv2. Prov-GigaPath
includes a patch-to-slide aggregator, though we focused only on the patch feature

extractor.

7.2.3 Normalisation and Augmentation Analysis

Previous studies have often used normalisations and augmentations to attempt to im-

prove the robustness of models based on ImageNet-pretrained CNNs [245], including
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models for ovarian cancer subtyping [134, 136]. To investigate whether the baseline
ImageNet-pretrained ResNet50 encoder could be made competitive with the modern
alternatives, we applied this feature extractor with a variety of data preprocessing tech-
niques, including normalisation, augmentation, and automated saturation thresholding.

These were compared to the default preprocessing approaches (Section 4.1).

Otsu thresholding [246] is applied during tissue segmentation to automatically deter-
mine the saturation threshold for each image by minimising the variance within the
separated high-saturation and low-saturation groups. Saturation thresholding is a
computationally efficient tissue segmentation approach, but risks including artefacts
such as bubbles, pen marks, and coverslip edges in the foreground region. While more
robust (and complex) tissue segmentation techniques exist [247, 248], we focused on
simple approaches as the attention mechanism in the classification models should
learn to ignore any remaining artefacts. We compared the CLAM [78] default static
saturation threshold (8/255) to Otsu thresholding with parameters manually adjusted to
qualitatively improve the segmentation (specifically by reducing the strength of median
blurring and increasing the strength of morphological closing to reduce separation

between small tissue segments).

Normalisation and augmentation techniques control data variability, which is par-
ticularly important for generalisability in histopathology, where varied staining and
scanning procedures between labs result in chromatic heterogeneity [4]. Normalisation
reduces variability, adjusting images into a consistent colour space to allow models to
learn general features. We investigated two commonly used [9] stain normalisation
techniques - Reinhard normalisation [249] and Macenko normalisation [250]. These
approaches work in logarithmic colour spaces, where stains behave linearly, making
them easier to separate and manipulate. Reinhard normalisation is a standard
normalisation technique applied in [« space (radiance [, blue-yellow «, red-green 3).
Macenko normalisation uses singular value decomposition in logarithmic RGB space
to separate stain and saturation values, before scaling the stain values. Basic RGB
normalisations were also applied to all images (after any other colour adjustments)
to match the ImageNet pretraining procedure. The normalisation approaches were
implemented using the torchstain default hyperparameters. A target stain profile was

already provided for Macenko normalisation but not for Reinhard normalisation, for



100 Chapter 7 - Analysis of Histopathology Feature Extraction Models

which we manually selected a single target image with a standard apparent colour
profile. These targets were fixed to give a consistent standardisation across both the
training and the validation sets. While many more sophisticated stain normalisation
techniques have been developed, it remains unclear whether any such approach is
better than Macenko normalisation overall [9].

Augmentation techniques conversely increase the variability of the training data to allow
the model to learn a more general domain. For such large images, training models
end-to-end to allow for online data augmentation (adjustments during training) is
extremely computationally intensive [251]. Some researchers have attempted to apply
online augmentations in the embedding space using generative models [223, 252],
though this adds an extra layer of complexity to an already resource-intensive model
pipeline. Instead, offline augmentation creates a finite set of augmented versions of
the original data, artificially increasing the diversity of training data to a lesser extent
than online augmentation. We investigated colour augmentations which adjusted
the brightness, contrast, saturation and hue of each patch using parameters from a

previous study [253], which we found to create plausibly altered colours (Figure 7.1).

Standard Patches Reinhard Normalised Macenko Normalised

Figure 7.1 Tissue normalisation and augmentation procedures illustrated using
256 x 256 pixel patches from a single whole slide image at 10x magnification.
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7.2.4 Hyperparameter Tuning and Validation Procedures

ABMIL classifiers were tuned using the iterative grid search procedure detailed in
Section 4.3. Ten hyperparameters were tuned, including the eight hyperparameters
tuned in Chapter 6, as well as the learning rate (LR) decay factor and LR decay
patience. The initial hyperparameters were taken from the tuned 10x magnification
ABMIL model with the ImageNet-pretrained ResNet50 encoder. Through 17 tuning
iterations (Table 7.2), over 150 unique hyperparameter configurations were evaluated
for each classifier. An ablation study was also conducted to investigate whether
hyperparameter tuning improved model performance, with the performance of the

tuned models compared to those using the default hyperparameters.

Tuning | Learning LR Decay LR Decay MF'rSt Second Stability | Weight Dropout Max Model
Iteration | Rate (LR) Patience Factor IZ;) ment  Moment Parameter | Decay Rate Patches | Size
ecay Decay
1 v v
2 v v
3 v v
4 v v
5 v v
6 v v
7 v v
8 v v
9 v
10 v v v
11 v v
12 v v
13 v v
14 v v
15 v
16 v v
17 v v v v v

Table 7.2 lterative hyperparameter tuning procedure, with check marks (v') indicating
the hyperparameters that were adjusted at each stage of tuning, with all others frozen.
These are grouped into hyperparameters relating to the learning rate, Adam optimizer,
regularisation, and model architecture.

Paired t-tests were used to test for statistically significant differences in the discrimi-
native performance of each model compared to the baseline ResNet50 across the five
cross-validation folds, with p-values adjusted for multiple testing using a false discovery
rate correction [206]. Results were considered statistically significant given an adjusted
p-value < 0.05. Paired t-tests were also used in the hyperparameter tuning ablation
to determine whether tuning the ABMIL classifiers had a statistically significant effect

on the final results. Model efficiency was evaluated as the average time to preprocess
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and classify a WSI using a consistent class-balanced set of 20 WSIs from the internal
hold-out test set, with the evaluation repeated three times for each model and the

median result used to account for variability.

This work was reported following the TRIPOD+AI checklist [200] to ensure thorough
reporting, with the completed checklist available in Appendix C. Experiments were
conducted using the HPC (Section 4.5), and the PyTorch-based code was made

available at https://github.com/scjjb/Ovarian_Features.

7.3 Results

7.3.1 Foundation Model Validation Results

No single model gave the greatest results in every validation (Figure 7.2). Virchow2-
CLS gave the greatest performance in cross-validation (Table 7.3), H-optimus-0 in
hold-out testing (Table 7.4), GPFM in the Transcanadian Study external validation
(Table 7.5), and Virchow in the OCEAN Challenge external validation (Table 7.6).
RN18-Histo had the worst performance of any foundation model in all validations and
was the only foundation model to perform worse than any ImageNet-pretrained encoder
overall (Table 7.7).

The H-optimus-0 model achieved the greatest averaged performance across all
validations (Table 7.7), with 83.0% average balanced accuracy, 0.965 average AUROC,
and 0.822 average F1 score. This performance very was closely followed by that of
UNI and Virchow2-CLS. The worst averaged performances were given by CNN-based
feature extraction models (RN50, RN18, RN18-Histo), followed by the ImageNet-
pretrained vision transformer. Confusion matrices for the optimal H-optimus-0 model
(Figure 7.3) show that no single class was the best (or worst) classified across all
validations. The worst F1 scores were found for the classification of LGSC in cross-
validation (0.443) and the OCEAN Challenge validation (0.582), and for EC in the
OCEAN Challenge validation (0.606). In these validations, LGSC was often confused
with HGSC and there was a moderate level of confusion between EC and MC. Further

class-level results are provided in Table 7.8.
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Figure 7.2 Ovarian cancer subtyping results for each feature extractor and validation
(mean and 95% confidence interval generated by 10,000 iterations of bootstrapping).
Blue indicates ImageNet-pretrained feature extractors, orange indicates histopathology
foundation models. Hold-out testing and external validation results are based on an
ensemble of five cross-validation models.

Confusion matrices for the optimal H-optimus-0 model (Figure 7.3) show that the model
did not completely fail at classifying any one subtype (as in Chapter 6), though there
was still variability in class-wise performance, especially in validations that included
IDS samples (cross-validation and the OCEAN Challenge). The least common class in
the training set (LGSC) was poorly classified in these validations (F1 scores of 0.443
and 0.582) but was much better classified in the other validations (F1 scores of 0.865
and 0.941). The most consistently classified subtype was the most common in the

training dataset (HGSC), with F1 scores of at least 0.807 in all validations.
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Feature Balanced AUROC F1 Score
Extractor Accuracy
RN50 57.1% (53.8-60.4%) 0.893 (0.879-0.907) 0.596 (0.561-0.630)
RN18 56.1% (52.8-59.4%) 0.882 (0.866-0.898) 0.584 (0.551-0.617)
ViT-L 62.6% (59.2-66.0%) 0.893 (0.877-0.909) 0.628 (0.596-0.660)
RN18-Histo | 59.1% (55.8-62.4%) 0.887 (0.871-0.902) 0.615 (0.582-0.648)
Lunit 66.6% (63.3-70.0%) 0.910 (0.894-0.926) 0.682 (0.649-0.714)
RN50-Histo | 62.4% (59.2-65.6%) 0.925 (0.911-0.938) 0.651 (0.618-0.684)
CTransPath | 67.3% (63.9-70.6%) 0.925 (0.912-0.938) 0.669 (0.638-0.700)
Hibou-B 67.7% (64.4-71.0%) 0.945 (0.935-0.954) 0.689 (0.656-0.720)
Phikon 67.0% (63.7-70.4%) 0.926 (0.912-0.938) 0.684 (0.653-0.715)
Kaiko-B8 70.3% (67.0-73.6%) 0.933 (0.919-0.946) 0.720 (0.688-0.751)
GPFM 70.9% (67.7-74.1%) 0.935 (0.923-0.948) 0.710 (0.680-0.739)
UNI 73.2% (69.9-76.4%) 0.945 (0.933-0.956) 0.734 (0.704-0.764)
Hibou-L 67.0% (63.6-70.3%) 0.930 (0.918-0.942) 0.690 (0.656-0.721)
Virchow 68.6% (65.3-71.8%) 0.936 (0.925-0.947) 0.688 (0.658-0.717)
Virchow2-CLS | 74.7% (71.5-77.9%) 0.943 (0.930-0.954) 0.742 (0.713-0.771)
H-optimus-0 | 72.2% (68.9-75.4%) 0.947 (0.936-0.957) 0.726 (0.695-0.756)
Prov-GigaPath | 71.2% (67.9-74.4%) 0.927 (0.913-0.941) 0.725 (0.696-0.754)

Table 7.3 Results of five-fold cross-validation. Results are reported as the mean and
95% confidence intervals (in brackets) from 10,000 iterations of bootstrapping. The
greatest results are shown in bold.
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Feature Balanced AUROC F1 Score
Extractor Accuracy

RN50 66.0% (58.1-73.7%) 0.916 (0.873-0.953) 0.634 (0.537-0.726)
RN18 64.0% (55.3-72.6%) 0.930 (0.893-0.963) 0.628 (0.530-0.723)
ViT-L 76.0% (67.8-83.7%) 0.926 (0.885-0.963) 0.747 (0.656-0.832)
RN18-Histo | 65.0% (57.1-72.5%) 0.890 (0.843-0.932) 0.613 (0.531-0.698)
Lunit 79.1% (71.4-86.3%) 0.943 (0.904-0.977) 0.778 (0.693-0.857)
RN50-Histo | 74.1% (65.7-81.9%) 0.946 (0.908-0.977) 0.730 (0.641-0.815)
CTransPath | 81.0% (74.0-88.0%) 0.950 (0.911-0.982) 0.797 (0.716-0.873)
Hibou-B 87.0% (81.0-92.6%) 0.956 (0.921-0.985) 0.858 (0.783-0.925)
Phikon 79.0% (72.0-85.7%) 0.946 (0.907-0.979) 0.772 (0.689-0.852)
Kaiko-B8 83.0% (75.8-89.9%) 0.947 (0.909-0.980) 0.823 (0.746-0.896)
GPFM 82.0% (74.8-88.7%) 0.955 (0.918-0.985) 0.809 (0.728-0.884)
UNI 88.0% (81.5-93.8%) 0.957 (0.919-0.989) 0.875 (0.805-0.937)
Hibou-L 82.1% (75.5-88.4%) 0.959 (0.921-0.990) 0.804 (0.722-0.880)
Virchow 85.0% (78.4-91.1%) 0.964 (0.928-0.993) 0.839 (0.763-0.909)
Virchow2-CLS | 88.0% (81.9-93.8%) 0.964 (0.926-0.994) 0.873 (0.802-0.937)
H-optimus-0 | 89.0% (83.1-94.3%) 0.963 (0.925-0.992) 0.883 (0.815-0.944)
Prov-GigaPath | 84.0% (77.4-90.3%) 0.958 (0.924-0.986) 0.830 (0.752-0.900)
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Table 7.4 Results of hold-out testing, with predictions generated by an ensemble
of the five-fold classification models. Results are reported as the mean and 95%
confidence intervals (in brackets) from 10,000 iterations of bootstrapping. The greatest
results are shown in bold.
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Feature Balanced AUROC F1 Score
Extractor Accuracy
RN50 69.2% (58.7-79.7%) 0.956 (0.928-0.980) 0.696 (0.582-0.807)
RN18 79.0% (68.8-88.6%) 0.959 (0.923-0.985) 0.804 (0.700-0.896)
ViT-L 80.7% (72.2-89.2%) 0.970 (0.937-0.993) 0.814 (0.712-0.908)
RN18-Histo 66.5% (55.2-77.5%) 0.930 (0.888-0.965) 0.653 (0.539-0.763)
Lunit 95.0% (89.3-99.1%) 0.998 (0.994-1.000) 0.930 (0.862-0.985)
RN50-Histo 94.4% (88.2-98.9%) 0.994 (0.985-0.999) 0.934 (0.870-0.985)
CTransPath 88.8% (80.9-95.6%) 0.982 (0.959-0.996) 0.861 (0.773-0.939)
Hibou-B 91.1% (83.0-97.9%) 0.990 (0.979-0.998) 0.921 (0.850-0.979)
Phikon 90.3% (81.9-97.8%) 0.994 (0.986-0.999) 0.919 (0.839-0.982)
Kaiko-B8 96.7% (93.8-99.2%) 0.997 (0.991-1.000) 0.937 (0.879-0.986)
GPFM 98.3% (95.6-100.0%) 0.999 (0.997-1.000) 0.977 (0.937-1.000)
UNI 93.2% (86.5-98.3%) 0.996 (0.988-1.000) 0.912 (0.835-0.974)
Hibou-L 89.3% (80.6-96.2%) 0.989 (0.975-0.998) 0.889 (0.805-0.959)
Virchow 87.5% (79.0-94.8%) 0.993 (0.984-0.999) 0.848 (0.750-0.931)
Virchow2-CLS | 88.0% (79.8-95.3%) 0.997 (0.993-1.000) 0.871 (0.779-0.952)
H-optimus-0 | 96.7% (91.1-100.0%) 0.999 (0.998-1.000) 0.975 (0.931-1.000)
Prov-GigaPath | 88.6% (80.2-95.9%) 0.995 (0.987-1.000) 0.878 (0.783-0.958)

Table 7.5 Results of external validation on the Transcanadian Study dataset, with
predictions generated by an ensemble of the five-fold classification models. Results
are reported as the mean and 95% confidence intervals (in brackets) from 10,000
iterations of bootstrapping. The greatest results are shown in bold.
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Feature Balanced AUROC F1 Score
Extractor Accuracy
RN50 52.4% (49.5-55.1%) 0.868 (0.847-0.889) 0.412 (0.380-0.444)
RN18 51.9% (48.6-54.9%) 0.841 (0.820-0.863) 0.412 (0.377-0.448)
ViT-L 59.5% (55.4-63.6%) 0.880 (0.857-0.902) 0.578 (0.532-0.625)
RN18-Histo | 57.3% (54.0-60.4%) 0.850 (0.828-0.872) 0.523 (0.484-0.563)
Lunit 73.6% (69.7-77.5%) 0.954 (0.941-0.967) 0.729 (0.681-0.775)
RN50-Histo | 68.0% (64.5-71.6%) 0.946 (0.930-0.959) 0.679 (0.634-0.725)
CTransPath | 67.8% (64.0-71.7%) 0.934 (0.917-0.950) 0.676 (0.629-0.724)
Hibou-B 65.4% (61.4-69.4%) 0.935 (0.920-0.949) 0.633 (0.582-0.682)
Phikon 66.4% (62.8-70.1%) 0.898 (0.879-0.917) 0.642 (0.595-0.689)
Kaiko-B8 70.0% (65.4-74.5%) 0.941 (0.925-0.956) 0.695 (0.644-0.744)
GPFM 74.5% (70.4-78.5%) 0.935 (0.919-0.949) 0.746 (0.702-0.788)
UNI 77.2% (73.0-81.4%) 0.954 (0.939-0.966) 0.758 (0.714-0.801)
Hibou-L 69.3% (66.2-72.3%) 0.946 (0.931-0.959) 0.663 (0.622-0.706)
Virchow 79.2% (75.2-83.0%) 0.959 (0.946-0.970) 0.765 (0.722-0.807)
Virchow2-CLS | 79.8% (75.8-83.6%) 0.958 (0.945-0.970) 0.759 (0.717-0.801)
H-optimus-0 | 74.0% (69.9-78.1%) 0.952 (0.939-0.963) 0.703 (0.656-0.748)
Prov-GigaPath | 75.4% (71.3-79.3%) 0.959 (0.946-0.970) 0.729 (0.684-0.771)

Table 7.6 Results of external validation on the OCEAN dataset, with predictions
generated by an ensemble of the five-fold classification models. Results are reported
as the mean and 95% confidence intervals (in brackets) from 10,000 iterations of
bootstrapping. The greatest results are shown in bold.
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Feature Balanced Avg Inference

Extractor Accuracy AUROC  F1 Score Tirgne (s/WSI)
ImageNet- RN50 61.2% 0.908 0.585 75.6
Pretrained RN18 62.8% 0.903 0.607 75.4
Models ViT-L 69.7% 0.917 0.692 99.3
RN18-Histo 62.0% 0.889 0.601 76.1
Lunit 78.6% 0.951 0.780 76.4
RN50-Histo 74.7% 0.953 0.749 75.1
CTransPath 76.2% 0.948 0.751 75.7
Hibou-B 77.9% 0.957 0.775 76.9
, Phikon 75.7% 0.941 0.754 76.9
H'E’L‘L‘?,""JZSL‘LQV Kaiko-B8 80.0% 0955  0.794 129.0
Models GPFM 81.4% 0.956 0.811 125.1
UNI 82.9% 0.963 0.820 99.9
Hibou-L 76.9% 0.956 0.762 130.4
Virchow 80.1% 0.963 0.785 243.1
Virchow2-CLS | 82.6% 0.966 0.811 2458
H-optimus-0 83.0% 0.965 0.822 425.0
Prov-GigaPath | 79.8% 0.960 0.791 319.8

Table 7.7 Averaged results across the four validations. The average inference times
were measured on a subset of the internal hold-out test set. The greatest result for
each metric is shown in bold.
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Cross-validation Hold-out Testing
Predicted Subtype Predicted Subtype
HGSC | LGSC | CCC EC MC HGSC | LGSC | CCC EC mMC
2| HGSC | 1172 52 23 17 2 | HGSC 20 0 0 0
33 LGSC 42 45 4 1 0 4‘3 LGSC 0 16 1
E" CccC 32 7 158 0 E" Cccc 6 13 0
Sl e | 19| 7 o | 167 | 16 |2 Ec | o 20
MC 2 0 5 33 59 MC 0 0 20
External Validation — Transcanadian Study External Validation — OCEAN Challenge
Predicted Subtype Predicted Subtype
HGSC | LGSC | CCC EC MC HGSC | LGSC | CCC EC MC
@ | HGSC 30 0 0 9| HGSC | 174 9 30 2 2
33 LGSC 1 8 0 33 LGSC 16 23 2
rﬁg Ccc 1 0 19 ‘2::" Cccc 0 0 94 0 0
E EC 0 0 11 g EC 23 5 20 53 18
MC 0 0 0 10 mMC 1 0 2 1 37

Figure 7.3 Confusion matrices for the optimal ABMIL classifier with features from the
H-optimus-0 foundation model. Correct classifications are indicated in bold.

The difference in performance between each foundation model (except RN18-Histo)
and the baseline ImageNet-pretrained ResNet50 was found to be significant by all
metrics in all validations (Table 7.9), except the AUROC in cross-validation (for nine
foundation models), RN50-Histo in internal validations, and Hibou-B in the external
validation on the OCEAN Challenge dataset. There was no significant difference
between the performance of the baseline model and either the RN18 or the RN18-Histo
model in most validations. The difference between the baseline ResNet50 and the
ViT-L feature extractor was statistically significant in most validations for the balanced

accuracy and F1 score, but not the AUROC.

There was a strong positive relationship (R? = 0.93) between the size of feature
extraction models and the runtime (Figure 7.4). The most computationally efficient
models were typically the smallest, with an average inference time per WSI between
75 and 77 seconds for each of the ResNets, Lunit, CTransPath, Hibou-B, and Phikon
models (Table 7.7). Feature encoding was the slowest step of slide inference, taking
over 90% of the total computational time for all models, with the remaining time divided

between the initial tissue patch extraction and the subsequent forward pass of patch
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features through the trained ABMIL classifiers. The average inference times did not

vary greatly for any model over the three repeats, with a maximum range of 1.7s
(75.3 - 77.0s) per WSI from the CTransPath model. The largest models were the

slowest overall, with Prov-GigaPath averaging 320 seconds and H-optimus-0 averaging

425 seconds per WSI, over 5 times as long as the fastest models. These largest feature

extractors also required much greater computational resources (particularly VRAM)

as they were each over 4GB in size, whereas the smallest models were each under
100MB (RN50, RN18, RN18-Histo, Lunit, RN50-Histo).

Subtype | F1 Score Precision S:::i?il\lli/ty Specificity 22?”':,:?:3

HGSC | 0.925 0.925 0.926 0.841 0.883

Cross. LGSC | 0.443 0.405 0.489 0.963 0.726

Valdation cCce 0.814 0.832 0.798 0.981 0.889

EC 0.782 0.766 0.799 0.969 0.884

MC 0.667 0.756 0.596 0.989 0.793

HGSC | 0.870 0.769 1.000 0.925 0.963

LGSC | 0.865 0.941 0.800 0.988 0.894

Fggﬁ;t cce 0.765 0.929 0.650 0.988 0.819

EC 0.976 0.952 1.000 0.988 0.994

MC 0.952 0.909 1.000 0.975 0.988

HGSC | 0.968 0.938 1.000 0.960 0.980

, LGSC | 0.941 1.000 0.889 1.000 0.944

Tra”sé‘iﬁgsd'a” cce 0.974 1.000 0.950 1.000 0.975

EC 1.000 1.000 1.000 1.000 1.000

MC 1.000 1.000 1.000 1.000 1.000

HGSC | 0.807 0.813 0.802 0.865 0.833

oo | 1950 | p9 gmome o o
Challenge

EC 0.606 0.946 0.445 0.992 0.719

MC 0.747 0.638 0.902 0.956 0.929

Table 7.8 Additional classwise classification metrics for the optimal H-optimus-0

ABMIL classifier.
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Figure 7.4 Model inference times. The average inference time per WSI for each
model, including tissue patch extraction, feature encoding, and ABMIL classification
time.
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Cross-Validation p-values Hold-out Testing p-values

Model Balanced - \;;p0¢c  F1 score | B213N®d  pyroc  F1 Score

Accuracy Accuracy

RN18 0.736 0.557 0.736 0.601 0.028 0.317
ViT-L 0.033 0.824 0.074 0.003 0.051 0.002
RN18-Histo 0.365 0.964 0.613 0.870 0.192 0.967
Lunit 0.019 0.183 0.009 0.010 0.035 0.008
RN50-Histo 0.232 0.072 0.152 0.214 0.009 0.189
CTransPath 0.009 0.082 0.007 0.003 0.012 0.003
Hibou-B 0.019 0.029 0.012 0.003 0.006 0.003
Phikon 0.009 0.149 0.007 0.003 0.012 0.003
Kaiko-B8 0.013 0.063 0.010 0.003 0.011 0.002
GPFM 0.007 0.063 0.007 0.003 0.006 0.003
UNI 0.015 0.020 0.009 0.003 0.006 0.002
Hibou-L 0.007 0.072 0.007 0.003 0.009 0.003
Virchow 0.011 0.020 0.006 0.003 0.006 0.003
Virchow2-CLS 0.011 0.063 0.009 0.002 0.006 0.002
H-Optimus-0 0.005 0.020 0.001 0.003 0.006 0.002
Prov-GigaPath 0.013 0.063 0.007 0.008 0.006 0.008

Transcanadian Study p-values = OCEAN Challenge p-values

Model | 2alanced  ,;p0c F1score | B3lANC®d pyRoC 1 Score
Accuracy Accuracy
RN18 0.446 0.773 0.399 0.237 0.034 0.541
ViT-L 0.021 0.090 0.022 0.170 0.265 0.019
RN18-Histo 0.490 0.211 0.403 0.235 0.987 0.002
Lunit 0.003 0.011 0.006 0.002 0.004 0.001

RN50-Histo 0.015 0.011 0.018 0.018 0.004 0.003
CTransPath 0.007 0.023 0.018 0.002 0.005 0.001

Hibou-B 0.008 0.024 0.007 0.107 0.009 0.019
Phikon 0.002 0.011 <0.001 0.001 0.013 0.001
Kaiko-B8 0.007 0.011 0.022 0.004 0.006 0.003
GPFM 0.003 0.011 0.006 0.001 0.004 0.001
UNI 0.006 0.011 0.015 0.001 0.004 0.001
Hibou-L 0.003 0.013 0.003 0.002 0.005 0.002
Virchow 0.006 0.018 0.015 0.002 0.004 0.001

Virchow2-CLS 0.007 0.011 0.015 0.001 0.004 0.001
H-Optimus-0 0.003 0.011 0.004 0.002 0.004 0.001
Prov-GigaPath 0.019 0.017 0.035 0.005 0.004 0.002

Table 7.9 Resulting p-values from paired t-tests comparing the subtype classification
results with each feature extractor to the ImageNet-pretrained ResNet50 baseline.
False discovery rate p-value adjustments were applied to account for multiple testing
[206]. Values below 0.05 are indicated in bold.
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7.3.2 Normalisation and Augmentation Results
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Figure 7.5 Balanced accuracy (mean and 95% confidence interval from 10,000
iterations of bootstrapping) for each standard ImageNet-pretrained feature extractor
(blue), the seven ResNet50 models with varied preprocessing techniques (green), as
well as the three worst-performing (RN18-Histo, RN50-Histo, and CTransPath) and
the single best-performing foundation models (H-optimus-0) in (a) cross-validation,
(b) hold-out testing, (c) external validation on the Transcanadian Study dataset,
(d) external validation on the OCEAN Challenge dataset. For validations (b)-(d),
predictions were ensembled from the five cross-validation models.

Different preprocessing techniques had inconsistent effects on the ImageNet-
pretrained ResNet50 feature extractor (Figure 7.5), with some modest benefits in
internal validations, and variable effects in external validations. In cross-validation
(Table 7.10), no pre-processing method improved the balanced accuracy or F1 score by
more than 0.02, and no improvement was seen in AUROC with any method. In hold-out
testing (Table 7.11), only the 20x augmentation improved performance, increasing F1
by 0.023 and balanced accuracy by 0.020, but reducing AUROC by 0.012. However,
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in the external validation on the Transcanadian Study dataset (Table 7.12), every

preprocessing method improved performance compared to the baseline by over 0.05

balanced accuracy and F1 score, and 0.002 AUROC. The greatest performances in
this validation were found by combining Otsu thresholding with Macenko normalisation

and by 20x colour augmentations, which each increased the F1 score and balanced

accuracy above baseline performance by over 0.1, and AUROC by over 0.016. For

the OCEAN Challenge dataset (Table 7.13), most preprocessing methods gave worse

results than the baseline approach, with only Otsu thresholding providing any benefit

over the baseline performance.

Preprocessing
Approach

Balanced
Accuracy

AUROC

F1 Score

Baseline
Reinhard Normalisation
Macenko Normalisation

Otsu Thresholding
Otsu + Macenko
5x Colour Augmentation
10x Colour Augmentation
20x Colour Augmentation

57.1% (53.8-60.4%)
51.3% (48.2-54.4%)
57.8% (54.5-61.2%)
53.9% (50.6-57.2%)
58.0% (54.6-61.4%)
57.4% (54.0-60.7%)
59.1% (55.7-62.4%)
59.1% (55.7-62.4%)

0.893 (0.879-0.907)
0.872 (0.856-0.887)
0.882 (0.867-0.896)
0.888 (0.873-0.903)
0.882 (0.865-0.898)
0.888 (0.873-0.902)
0.891 (0.877-0.905)
0.892 (0.877-0.905)

0.596 (0.561-0.630
0.520 (0.488-0.553
0.601 (0.567-0.635
0.566 (0.532-0.600
0.605 (0.571-0.638
0.592 (0.560-0.625
0.615 (0.581-0.649
0.596 (0.564-0.627

)
)
)
)
)
)
)
)

Table 7.10 Results of five-fold cross-validation for the ImageNet-pretrained ResNet50
with varied preprocessing approaches. Results are reported as the mean and 95%
confidence intervals (in brackets) from 10,000 iterations of bootstrapping. The greatest

results are shown in bold.

Preprocessing Balanced AUROC F1 Score
Approach Accuracy

Baseline 66.0% (58.1-73.7%) 0.916 (0.873-0.953) 0.634 (0.537-0.726)
Reinhard Normalisation | 65.0% (56.6-73.2%) 0.923 (0.881-0.961) 0.632 (0.534-0.727)
Macenko Normalisation | 63.0% (54.4-71.5%) 0.915 (0.873-0.951) 0.620 (0.521-0.715)
Otsu Thresholding 65.0% (56.7-73.4%) 0.916 (0.872-0.955) 0.637 (0.542-0.732)
Otsu + Macenko 59.0% (50.3-67.6%) 0.918 (0.878-0.952) 0.577 (0.475-0.674)
5x Colour Augmentation | 65.0% (57.0-72.9%) 0.916 (0.876-0.951) 0.630 (0.536-0.725)
10x Colour Augmentation | 64.0% (55.9-72.1%) 0.906 (0.864-0.944) 0.616 (0.522-0.710)
20x Colour Augmentation | 68.0% (59.7-76.0%) 0.904 (0.861-0.942) 0.657 (0.563-0.750)

Table 7.11

Results of hold-out testing for the ImageNet-pretrained ResNet50 with

varied preprocessing approaches, with predictions generated by an ensemble of the
five-fold classification models. Results are reported as the mean and 95% confidence
intervals (in brackets) from 10,000 iterations of bootstrapping. The greatest results are

shown in bold.
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1

15

Macenko Normalisation
Otsu Thresholding
Otsu + Macenko
5x Colour Augmentation
10x Colour Augmentation
20x Colour Augmentation

)
( )
74.5% (64.3-84.3%)
77.2% (66.4-87.6%)
80.5% (70.4-89.9%)
74.9% (63.8-85.6%)
76.1% (65.0-86.6%)
80.0% (69.2-90.0%)

( )
( )
0.959 (0.933-0.980)
0.963 (0.937-0.985)
0.983 (0.967-0.995)
0.966 (0.941-0.986)
0.962 (0.935-0.983)
0.973 (0.953-0.989)

Preprocessing Balanced AUROC F1 Score
Approach Accuracy
Baseline 69.2% (58.7-79.7%) 0.956 (0.928-0.980) 0.696 (0.582-0.807
Reinhard Normalisation | 75.8% (65.1-86.0%) 0.968 (0.943-0.986) 0.761 (0.647-0.861

(

(
0.756 (0.648-0.857
0.797 (0.685-0.895
0.834 (0.730-0.921
0.762 (0.647-0.866
0.768 (0.659-0.869
0.806 (0.706-0.897

)
)
)
)
)
)
)
)

Table 7.12 Results of external validation on the Transcanadian Study dataset for
the ImageNet-pretrained ResNet50 with varied preprocessing approaches, with pre-
dictions generated by an ensemble of the five-fold classification models. Results are
reported as the mean and 95% confidence intervals (in brackets) from 10,000 iterations

of bootstrapping. The greatest results are shown in bold.

Reinhard Normalisation
Macenko Normalisation
Otsu Thresholding
Otsu + Macenko
5x Colour Augmentation
10x Colour Augmentation
20x Colour Augmentation

)
51.0% (47.7-54.3%)
45.9% (41.8-50.0%)
54.7% (51.9-57.6%)
44.4% (40.7-48.3%)
51.7% (48.4-54.8%)
51.1% (47.8-54.2%)
51.4% (48.4-54.4%)

( )
0.870 (0.850-0.888)
0.837 (0.814-0.860)
0.883 (0.864-0.901)
0.840 (0.816-0.862)
0.867 (0.845-0.887)
0.877 (0.856-0.897)
0.874 (0.853-0.893)

Preprocessing Balanced AUROC F1 Score
Approach Accuracy
Baseline 52.4% (49.5-55.1%) 0.868 (0.847-0.889) 0.412 (0.380-0.444

(
0.392 (0.350-0.437
0.407 (0.360-0.455
0.440 (0.401-0.482
0.388 (0.347-0.432
0.401 (0.363-0.441
0.404 (0.367-0.443
(

0.391 (0.352-0.433

)
)
)
)
)
)
)
)

Table 7.13 Results of external validation on the OCEAN Challenge dataset for the
ImageNet-pretrained ResNet50 with varied preprocessing approaches, with predic-
tions generated by an ensemble of the five-fold classification models. Results are
reported as the mean and 95% confidence intervals (in brackets) from 10,000 iterations
of bootstrapping. The greatest results are shown in bold.
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Despite some modest improvements offered by different preprocessing techniques,
particularly in the Transcanadian Study external validation, the best-performing model
based on the ImageNet-pretrained ResNet50 backbone was still outperformed by every
foundation model (except RN18-Histo) in every validation (Figure 7.5). Furthermore,
none of the different preprocessing methods gave statistically significant differences in

performance compared to the baseline approach in any validation.

7.3.3 Hyperparameter Tuning Ablation Results

0.8

RN50
RN18
ViT-L
RN18-Histo
Lunit
RN50-Histo
CTransPath
Hibou-B
Phikon
Kaiko-B8
GPFM
UNI
Hibou-L
Virchow
Virchow2-CLS
0 2 4 6 8 10 12 14 16 H-optimus-0
Tuning Iteration = Prov-GigaPath

0.7

0.6

0.5 1

0.4

Balanced Cross-Entropy Validation Loss

Figure 7.6 Average validation loss from five-fold cross-validation for each model and
each hyperparameter tuning iteration.

Hyperparameter tuning improved the average validation loss for every model by at
least 0.034 (CTransPath from 0.504 to 0.470), with a median improvement of 0.150,
and a maximum of 0.301 (Kaiko-B8 from 0.752 to 0.451). As shown in Figure 7.6, the
majority of this benefit was found within the first iteration of hyperparameter tuning for
every model (except the ImageNet-pretrained ResNet50), with a median improvement

of 0.121 validation loss from tuning only the learning rate and ABMIL model size.
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Figure 7.7 Balanced accuracy results for each model compared with the ABMIL
classifier trained using the default hyperparameters (pink) and the tuned hyperpa-
rameters (blue) for (a) cross-validation, (b) hold-out testing, (c) external validation on
the Transcanadian Study dataset, (d) external validation on the OCEAN Challenge
dataset. For validations (b)-(d), predictions were ensembled from the five cross-
validation models. *Indicates a significant difference in the paired t-test at the 5%
significance level.
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The balanced accuracies of the tuned ABMIL classifiers are compared to the untuned
models (using default hyperparameters) in Figure 7.7. The median impact of
hyperparameter tuning across all models and validations was an improvement of 1.9%
balanced accuracy, 0.005 AUROC, and 0.025 F1 score, though the effect on any
specific model in any given validation was variable, with balanced accuracies changed
by —6.6% to +15.0%, AUROCs by —0.013 to +0.041, and F1 scores by —0.073 to
+0.146. The only models which did not benefit from hyperparameter tuning were
those using the ResNet50, ResNet18, Phikon, and H-optimus-0 feature extractors.
All of the other models had a statistically significant difference between tuned and
untuned results in at least one validation (Tables 7.14 and 7.15), with these significant
differences only occurring in cases where tuning improved performance. The extent
of the benefits varied across validations, with a median change in balanced accuracy
of +3.1% in cross-validation, +3.0% in hold-out testing, —0.8% in the Transcanadian
Study external validation, and +1.9% in the OCEAN Challenge external validation. The
only models to significantly benefit in every validation were the ImageNet-pretrained
ViT-L and Hibou-L, though these benefits were not present for every metric. Exact

p-values are provided in (Appendix D)
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Cross-Validation Hold-out Testing
EFeature Balanced AUROC F1 Score Balanced AUROC F1 Score
xtractor Accuracy Accuracy
RN50 575% - 0877 | 0593 - |680% + 0923 - 0670 1
RN18 55.3% - 0.857 | 0.561 | 64.0% - 0927 - 0626 -
ViT-L 56.2% JlJ* 0.857 ||* 0580 ||* |61.0% Jl|* 0917 - 0.601 J[J}*
RN18-Histo |56.0% (||/* 0879 - 0574 ||* |[621% | 0.889 - 058 |
Lunit 653% | 0.891 |* 0646 || |740% Jl| 0932 | 0727 |||
RN50-Histo | 63.1% - 0915 | 0.656 - 749% - 0.943 0.739 -
CTransPath | 68.8% 1  0.927 0690 1t |78.0% JJ* 0941 - 0.768 |*
Hibou-B 66.1% | 0911 || 0667 | |78.0% Jl/* 0958 - 0.765 |]l|*
Phikon 68.0% + 0912 | 0672 | [80.1% *+ 0941 - 0792 ¢
Kaiko-B8 62.7% JJJ* 0907 | 0633 |||*|79.0% |l 0949 - 0786 ||
GPFM 69.4% | 0912 |* 0690 | [84.0% 1t 0953 - 0.831 7
UNI 67.1% LlJ* 0.915 ||* 0.684 |||*|82.0% |J|* 0962 - 0.806 |||
Hibou-L 58.7% ||/l 0.889 ||* 0622 ||| |75.0% |l|* 0.959 - 0.730 JJ)*
Virchow 65.2% |l* 0896 || 0658 || |81.0% |l 095 - 0.801 ||
Virchow2-CLS | 69.8% || 0917 |* 0681 ||| |89.1% + 0963 - 0.883 ¢
H-optimus-0 | 66.1% ||| 0916 || 0678 || |850% || 0965 - 0.843 ||
Prov-GigaPath | 67.9% || 0919 - 0675 ||/ |83.0% | 0949 -* 0.820 |

Table 7.14 Results of internal validations without hyperparameter tuning. Arrows
indicate the absolute difference in performance compared to the tuned models, with
one arrow (1) for difference a of at least 1%, two arrows (11) for a difference of at
least 3%, and three arrows (111) for a difference of at least 5%. *Indicates a p-value
less than 0.05 when compared to the tuned model. While the Prov-GigaPath AUROC
only exhibited a reduction of 0.009 in hold-out testing, this was found to be statistically

significant.
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Transcanadian Study OCEAN Challenge
Feature Balanced  \;po0c  Fiscore | B21aNc€d  AyroC  F1 Score
Extractor Accuracy Accuracy
RN50 75.8% 111 0969 11 0.769 11T [51.0% | 0.857 | 0411 -
RN18 80.1% + 0946 | 0807 - |49.0% | 0.837 - 0370 ||
ViT-L 68.9% |lJ* 0960 | 0.702 |||*|48.3% ||l|* 0.843 ||* 0.506 |||*
RN18-Histo |[69.3% 1 0942 + 0.689 1+ |550% | 0.849 - 0504 |
Lunit 92.4% | 0.989 - 0879 J|]|l |688% |l 0935 [* 0661 |||
RN50-Histo |91.8% | 0995 - 0.902 || |666% | 0.934 |* 0684 -
CTransPath | 88.1% - 0.978 - 0.847 | 68.1% - 0934 - 0686 1
Hibou-B 85.3% |l 0987 - 0871 ||| |64.0% | 0928 - 0604 |
Phikon 94.6% 11t 0996 - 0944 1 63.2% |/ 0903 - 0598 ||
Kaiko-B8 93.3% JI 0.99% - 0926 | 64.1% (|}l 0929 |[* 059 [|*
GPFM 97.7% 0.998 - 0964 | 73.8% - 0937 - 0725 |
UNI 953% 1+ 0996 - 0952 11 |69.6% J|l|* 0948 -* 0.693 |||
Hibou-L 81.7% |}l 0988 -* 0813 [||"|647% ||l 0936 [|* 0.615 ||
Virchow 88.8% 1 0.991 - 0.864 1 785% -* 0948 |[* 0.766 -
Virchow2-CLS | 91.6% 1+ 1.000 - 0.915 1+ |74.0% JlJ* 095 - 0719 ||*
H-optimus-0 | 99.0% 1  1.000 - 0991 1 |748% - 0951 - 0.747 11
Prov-GigaPath | 89.4% 0.993 - 0.871 - 75.4% - 0957 - 0.720 -

Table 7.15 Results of external validations without hyperparameter tuning. Arrows
indicate the absolute difference in performance compared to the tuned models, with
one arrow (1) for difference a of at least 1%, two arrows (1) for a difference of at least
3%, and three arrows (111) for a difference of at least 5%. *Indicates a p-value less
than 0.05 when compared to the tuned model. In the OCEAN Challenge validation,
the UNI AUROC only exhibited a reduction of 0.006, and Virchow balanced accuracy
only exhibited a reduction of 0.7%, but these differences were found to be statistically

significant.
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Final Hyperparameters
. First Second - .

Feature Learning LR Decay LR Decay Stability | Weight Dropout Max Model
Extractor Rate (LR) Patience Factor Moment Moment Parameter | Decay Rate Patches Size
Decay Decay

RN50 2e-3 20 0.75 0.75 0.95 1e-2 1e-3 0.4 800 [512,128]
RN18 1e-4 20 0.9 0.8 0.99 1e-4 1e-5 0.5 700 [1024,256]
ViT-L 5e-5 10 0.35 0.85 0.999 1e-3 1e-1 0.0 800 [512,384]
RN18-Histo 2e-4 20 0.9 0.9 0.99 le-4 le-4 0.6 1000 [612,512]
Lunit le-4 10 0.75 0.99 0.9999 1e-5 1e-1 0.6 900 [1024,512]
RN50-Histo 2e-4 25 0.75 0.8 0.99 1e-4 1e-3 0.6 700 [512,384]
CTransPath 1e-4 25 0.9 0.7 0.99999 1e-3 1e-3 0.4 1000 [256,128]
Hibou-B 4e-5 10 0.9 0.99 0.9999 1e-3 1e-2 0.3 1600 [256,128]
Phikon 5e-5 25 0.75 0.99 0.999 1e-5 1e-5 0.8 1200 [512,256]
Kaiko-B8 2e-5 10 0.75 0.95 0.9999 1e-5 1e-1 0.2 600 [512,128]
GPFM 1e-4 25 0.9 0.95 0.99 1e-4 1e-6 0.8 1000 [512,128]
UNI 1e-5 10 0.75 0.9 0.999 1e-5 1e-3 0.0 1000 [512,256]
Hibou-L 5e-5 25 0.75 0.75 0.99999 1e-4 1e-7 0.6 400 [256,128]
Virchow 2e-4 20 0.9 0.95 0.99 1e-3 1e-2 0.8 1100 [512,256]
Virchow2-CLS 2e-5 10 0.75 0.55 0.999 1e-4 1e-4 0.6 1000 [512,256]
H-optimus-0 2.5e-5 5 0.75 0.5 0.9999 1e-4 1e-2 0.4 1000 [128,32]
Prov-GigaPath 5e-5 15 0.75 0.7 0.99 le-4 le-4 0.7 1300 [512,256]
RN50 Reinhard 2e-3 25 0.75 0.75 0.95 1e-2 1e-3 0.4 400 [512,256]
RN50 Macenko 2e-3 15 0.75 0.85 0.95 1e-2 1e-3 0.3 400 [512,128]
RN50 Otsu 2e-3 15 0.9 0.75 0.95 1e-2 1e-3 0.1 600 [512,256]
RN50 Otsu+Macenko 2e-3 25 0.9 0.75 0.99 1e-3 1e-4 0.3 1000 [512,256]
RN50 5Augs 1e-3 25 0.6 0.8 0.99 le-4 le-4 0.4 700 [128,32]
RN50 10Augs 2e-3 20 0.75 0.8 0.99 1e-2 1e-3 0.4 700 [512,256]
RN50 20Augs 1e-3 20 0.75 0.7 0.999 1e-3 1e-4 0.6 1000 [512,128]

Table 7.16 The final hyperparameters of each model determined by an iterative grid
search tuning procedure using five cross-validation folds, including the models from the
ablation study. These are grouped into hyperparameters relating to the learning rate,
Adam optimizer, regularisation, and model architecture. The model size is the number
of parameters in the attention layer and subsequent fully connected layer.

The optimal hyperparameters (Table 7.16) typically did not vary greatly for models
using the same feature extraction backbone, with a few notable exceptions. The
regularisation hyperparameters (weight decay, dropout rate, max patches) varied
greatly across all models, including those with the same backbone. The classifier
based on the five-times augmented training data was the smallest ResNet50-based
classifier by far (and had the smallest stability parameter and LR decay factor), with only
0.1M parameters compared to the next smallest at 0.7M. The ViT-based models had
between 0.2M (H-optimus-0) and 1.6M parameters (Virchow). The largest ViT-based
encoders typically had smaller values for the first moment decay (0.5-0.75) than the
smaller ViT-based encoders (0.9-0.99). Other hyperparameters were relatively stable
within a given backbone architecture.
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Some hyperparameters varied greatly between model architectures. The learning rate
was much smaller for ViT-based models (0.00001-0.0002) than ImageNet-pretrained
ResNet50 models (0.001-0.002) and often had a faster rate of decay. The Adam
optimiser first and second moment decay parameters were also often higher in ViT-
based models than in ResNet50 models. Other hyperparameters were relatively

consistent between model architectures.

7.4 Discussion

In this chapter, we have thoroughly compared the effects of different patch feature
extractors on the slide-level classification of ovarian carcinoma morphological sub-
types. The results clearly indicated that transformer-based histopathology foundation
models improved classification performance when compared to non-domain-specific
and ResNet-based feature extractors, with 13 out of 14 foundation models outper-
forming all ImageNet-pretrained models in all evaluations. The only foundation model
which did not exceed ImageNet-pretrained model performance was RN18-Histo, which
was the single worst-performing model in hold-out testing and external validation on
the Transcanadian Study dataset, though it did outperform the ImageNet-pretrained
ResNet models in the other two validations. RN18-Histo was the earliest published
histopathology foundation model and as such it was one of the few foundation models
to not use a transformer-based backbone. In this study, RN18-Histo was also the
smallest foundation model, had the second-smallest feature space, and was pretrained

with the second-smallest dataset.

As shown in Figure 7.8, in most validations there was a slight positive relationship
between performance (specifically, balanced accuracy) and each of the foundation
model size and pretraining dataset size. These relationships were fairly weak, with
the relationship between performance and foundation model size having R? values
between 0.02 and 0.36, and the relationship between performance and pretraining
dataset size between -0.01 and 0.24 (though the relationship between performance
and dataset size was unduly influenced by the particularly large dataset used in
Virchow2-CLS, with this causing clear outliers in Figure 7.8). The trends were weakly
positive for three validations, but there was no trend found in the Transcanadian

validation. It is not clear why this occurred, though as performance was consistently
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Figure 7.8 Balanced accuracy results for each histopathology foundation model-
based classifier in each validation shown in relation to the number of model parameters
and number of WSIs used in the pretraining of the foundation model. The line of
best fit and the corresponding coefficient of determination (R?) are provided for each
validation.

high on this dataset, it may be that a smaller model was sufficient. The greatest
performance in most validations was achieved by one of the largest models (Virchow,
Virchow2-CLS, H-optimus-0), though the smaller GPFM model performed best in the
Transcanadian Study external validation, and the single largest model (Prov-GigaPath)
did not achieve optimal results in any validation. Three models were trained with
over one million WSiIs, with two being among the best-performing models (Virchow,
Virchow2-CLS), and the other being one of the worst-performing ViT-based foundation

models overall (Hibou-B).

To investigate which foundation models outperformed expectations, we investigated
which models had positive residuals of at least 1% when compared to the lines of
best fit in Figure 7.8. UNI and Kaiko-B8 consistently performed better than expected
given their foundation model size, with GPFM and Virchow2-CLS performing better
than expected in three of four validations. The UNI and GPFM models consistently
performed better than expected given the pretraining dataset size, with Kaiko-B8,
Virchow2-CLS and H-optimus-0 all better than expected in three of four validations.
These results indicate that UNI is particularly data-efficient and computationally-

efficient for a foundation model of its ability. Where the H-optimus-0 classifier took



124 Chapter 7 - Analysis of Histopathology Feature Extraction Models

an average of 425s per WSI, UNI took only 100s (24% as long) with a reduction of only
0.1% average balanced accuracy across the four validations (Table 7.7). It was not
clear how UNI outperformed expectations in this way, with similar overall methodologies
employed in training models which did not achieve such great results. The proportion
of gynaecological WSIs in the UNI training set (5.8%) was exceeded in the training
of several other models [172, 224, 227, 229, 230], though for most models it was not
clear what proportion of the training set was specifically composed of the five ovarian

carcinoma subtypes of interest, so it was not clear whether this was an influential factor.

Different preprocessing techniques often had little impact on internal performance
(likely due to the homogeneity of the single-centre dataset) and the OCEAN Challenge
validation, but they did aid the generalisability to the Transcanadian Study dataset.
There was a modest positive trend between the number of augmentations used and
the resulting model performance which may continue beyond the 20 augmentations
per image used herein, though this may not be worth the considerable associated
computational burden since the normalisation approaches achieved a similar level of
performance. No individual normalisation, augmentation, or tissue detection approach
consistently improved performance, with each giving worse performance than the
baseline in at least one validation, and no statistically significant benefits found. As
such, we believe there is much greater value in selecting the optimal feature extractor
than there is in applying varied preprocessing techniques in the training of a WSI
classifier. This conclusion was also found in a recent study [254] which investigated
14 different feature extractors using ABMIL in the context of breast and colorectal

cancers (without hyperparameter tuning).

Hyperparameter tuning the ABMIL classifier had a modest but often significantly
beneficial effect on classification performance. This did not necessarily need to be
extensive to provide a benefit, with a large proportion of the benefit obtained simply
by adjusting the learning rate and model size. It is worth noting that the ABMIL
classifiers were orders of magnitude smaller than most of the feature extraction models,
making it much more computationally feasible to tune the classifiers rather than the
feature extractors. The variability in the benefits may reflect both the fitness of the
originally selected hyperparameters and the versatility of the models. The original

hyperparameters were taken from our previous work using the ImageNet-pretrained
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ResNet50 (Chapter 6), so the hyperparameters were likely better suited to this feature
extractor than those which used different architectures and training datasets. Most of
the benefit of hyperparameter tuning on the validation loss was achieved by adjusting
the learning rate and the size of the ABMIL classifier, so just tuning these may be
a more computationally efficient approach to improve model performance and the
robustness of validations.

Performance was generally higher in hold-out testing than in cross-validation and was
higher still in the external validation with the Transcanadian Study dataset. However,
the external validation with the OCEAN dataset gave a similar performance to that of
cross-validation. This may be influenced by the diagnostic quality of the data, with
the internal cross-validation dataset incorporating post-chemotherapy WSIs and the
OCEAN dataset being unclear in this regard. Validations using only staging data
achieved optimal balanced accuracies of 89% and 97%, compared to only 75% and
80% in the validations including IDS samples which can pose diagnostic challenges
(Section 2.2). In cross-validation, the balanced accuracy for IDS samples was only
64.7% (with all EC slides incorrectly classified), compared to 71.0% for primary surgery
samples (Figure 7.9). The challenge posed by neoadjuvant treatment is recognised by
pathologists, and it is recommended in these cases that tumour subtyping is performed

using pre-treatment biopsies rather than resection specimens [255].

Cross-validation — IDS Samples Cross-validation — Staging Samples
Predicted Subtype Predicted Subtype
HGSC | LGSC | CCC EC MC HGSC | LGSC | CCC EC MC
2| HGSC | 348 23 12 7 1 2 | HGSC | 824 29 11 10 1
13 LGSC 12 22 1 0 0 13 LGSC 30 23 3 1 0
Tg CCC 5 1 15 0 0 ;)g Ccc 27 6 143 0
2l Ec 0 o |2 Ec | 16 | 7 o | 167 | 16
MC 0 0 2 MC 2 0 5 33 57

Figure 7.9 Confusion matrices for the optimal ABMIL classifier with features from the
H-optimus-0 foundation model in cross-validation broken down by treatment status.
Correct classifications are indicated in green.

Two pathologists (KA and NMO) reviewed a subset of 100 WSIs in the OCEAN set and
found that eight exhibited extensive TMA coring, two were almost entirely necrotic, and

one displayed image stitching problems. Furthermore, the staining and colour balance
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was inconsistent across this cohort, which comprised both biopsies and resection
specimens. These characteristics may have contributed to the poorer performance
noted on the OCEAN dataset. In contrast, the Transcanadian Study set contained a
single representative staging slide of the tumour per patient and the slides were largely
devoid of artefacts. This particularly high-quality data may represent a best-case
research scenario, rather than a more realistic representation of the variable quality
and tumour content of clinical slides, where guidance recommends the sampling of
heterogeneous areas of tumour that have the potential to compromise the quality of
slide preparation and interpretation, with features such as calcification or necrosis. The
hold-out and external validations likely also benefitted from the five-fold ensembled
predictions when compared to the five-fold cross-validation. While this is the most
comprehensive study of Al ovarian cancer subtyping to date, the relatively small size
of the test sets still resulted in a high level of uncertainty, as reflected in the wide
confidence intervals. Thus, part of the difference in performance between datasets

may be attributed to random chance.

The results in this chapter are similar to those of the only previous studies to use
large ovarian cancer subtyping datasets (each with around 1000 WSIs) [82, 136, 171].
One study presented a multi-scale graph model [82] and reported an optimal cross-
validation balanced accuracy of 73% and an F1 score of 0.69. Another [136]
evaluated four MIL approaches and reported an optimal cross-validation balanced
accuracy of 81%, AUROC of 0.95, and F1 score of 0.79. In an external validation
using an ensemble of cross-validation models on 60 WSIs, the authors reported a
balanced accuracy of 80%, AUROC of 0.96, and F1 score of 0.81. The final study
focused on adversarial domain adaptation [171] and achieved optimal internal and
external balanced accuracies of 80% and 83% from a CTransPath-based MIL classifier.
Other studies applying foundation models to ovarian cancer subtyping have reported
optimal balanced accuracies of 82% and ~88% using UNI on the OCEAN dataset and
Prov-GigaPath on an internal dataset, respectively [172, 173]. These comparisons
are provided for context and should not be considered to be conclusive given the
differences in the datasets used. A sparsity of publicly available data has limited
external validations in most previous research [1], and for the largest accessible dataset
(the OCEAN Challenge set) very little information has been provided about the data

provenance.
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Whole Slide Image

Figure 7.10 Attention heatmaps from the ABMIL classifier using the ImageNet-
pretrained ResNet50 and UNI foundation model features. (Upper) A typical difference
between heatmaps with different diagnoses. (Lower) The most extreme qualitative
difference found between heatmaps in the internal test set. In both examples, the UNI
classification was correct (upper - MC, lower - CCC), and the ResNet50 classification
was incorrect (upper - EC, lower - MC). These heatmaps are based on 256 x 256
pixel patches with 50% overlap at 10x apparent magnification, with visual differences
caused by the variable size of resection samples.
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To qualitatively analyse the differences between foundation models and CNNs, two
pathologists (KA and NMO) qualitatively compared the ABMIL attention heatmaps
generated using the ImageNet-pretrained ResNet50 and the UNI foundation model
(Figure 7.10). Most heatmaps were well-focused on tumour and relevant stromal
regions for both models, with often only subtle differences between them. The UNI-
based heatmaps generally indicated a slightly greater focus on tumour tissue, whereas
the ResNet50 model also paid attention to some stromal regions of variable diagnostic
relevance (Appendix E). Attention heatmaps can be useful for identifying potential
sources of error but should be interpreted with caution since they cannot provide a

complete explanation of classification decisions [256].

All of the WSIs which were misclassified by the optimal H-optimus-0 model (Figure 7.3)
in hold-out testing were reviewed by the pathologists involved in the study, who found
that the majority (6/11) had incorrect ground truth labels, and had been correctly
classified by the model. This underscores the value of the model in detecting the
human errors which occur in the production of large-scale repositories. A subsequent
review to identify any possible further labelling errors affecting internal data did not
locate any issues. The five slides that were truly misclassified by the model in hold-out
testing (three CCC classified as HGSC, one CCC classified as LGSC, and one LGSC
classified as EC) showed the typical morphology (both architectural and cytological) of

their true subtypes, making it unclear why these errors occurred.

The pathologists also reviewed a selection of misclassified slides in cross-validation.
The 42 EC slides classified as other subtypes all exhibited potentially confusing
morphological features that occur within the broad spectrum of EC, including vil-
loglandular and papillary architecture as well as foci of mucinous and squamous
metaplastic differentiation, and squamous morule formation. ECs misclassified as
HGSCs were of a higher grade and featured both greater nuclear pleomorphism and
a more solid growth pattern. It would be interesting to determine whether any of
these misclassifications reflect shared genetic features. The most commonly confused
subtypes were HGSC and LGSC, which is not surprising considering their similar
histoarchitecture. These entities were historically considered a single entity with a
three-tier grading system until the characterisation of their distinct molecular alterations

and clinical behaviours [257]. Collecting additional training data may help to improve
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the discrimination of these similar subtypes, with LGSC having only formed 5% of the

training set (Section 4.2) due to it being a relatively uncommon subtype.

The strong performance of the foundation models was particularly impressive con-
sidering that they were applied here at 10x magnification, despite often only being
trained using 20x magnification data. This was a practical computational limitation
when performing hyperparameter tuning, as 20x magnification tissue would produce
approximately 4 times as many patches per WSI as 20x magnification tissue, thus
quadrupling the total runtime. While we previously found 10x magnification to be
best when using the ImageNet-pretrained ResNet50 (Chapter 6), it may not have
been optimal when using foundation models that had typically been trained at
20x magnification. However, a previous study of foundation models for slide-level

classification found no consistent benefit from increasing to 20x magnification [254].

In this chapter, we reported the second-highest ever external validation performance
of an Al model for ovarian cancer subtyping (behind only our subsequent graph model
in Chapter 8), with 97% balanced accuracy on the Transcanadian Study dataset.
However, results were variable across datasets. The improved performance from
histopathology foundation models is promising for the potential clinical utility of these Al
approaches, though further work is required to ensure that the models generalise to all
relevant sources of variation, especially across different histopathology labs and slide
scanners. This may require larger, more diverse training datasets. Models should be
made robust to the influence of lower-quality data and artefacts to reduce the burden of
quality control. Ideally, models should also be able to accurately classify post-treatment
tissue, though if this proves infeasible it may be necessary to restrict the scope of
the models to the classification of high-quality primary surgery tissue samples, for
which these models already excel. Furthermore, it is currently unclear how best to
present automatically generated information to pathologists to assist them, rather than
to distract, frustrate, or confuse them. This may require improved model interpretability
and a measure of model uncertainty, especially considering the existence of rare
subtypes which are notoriously difficult to collect sufficient data on outside the context

of multi-centre collections.

Ideally, algorithms would be made more computationally efficient for use in the clinic,

but the best-performing foundation models are much less computationally efficient than
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the ResNet. This problem is exacerbated by the limited digitisation of histopathology
services, with most pathological diagnoses still made under a microscope. Al adoption
will be contingent on it being accessible and beneficial given limited computational
infrastructure and users who may not be technological experts. While various issues
are inhibiting the clinical translation of ovarian cancer subtyping models, these seem

increasingly likely to be overcome in the near future.

7.5 Conclusion

In this chapter, we conducted a rigorous validation of feature extraction methods for
ovarian cancer subtyping. We found that the features generated by histopathology
foundation models drastically improved classification performance when compared
to ImageNet-pretrained feature extractors. Several different data preprocessing
techniques were evaluated in an attempt to improve the performance of the ImageNet-
pretrained ResNet50 baseline, and while these somewhat improved performance, they
were far from sufficient to match the performance of the foundation models. Through a
five-fold ensemble of ABMIL classifiers, the best overall foundation model, H-optimus-0,
achieved a five-class balanced accuracy of 89% on internal test data and 97% and
80% on external test sets, compared to 68%, 81%, and 55% respectively for the best
ImageNet-pretrained ResNet models. This represents the greatest performance for the
ovarian carcinoma subtype classification task in any peer-reviewed literature to date.
The largest models and those pretrained with the largest datasets generally gave the
best performance, though the UNI foundation model was one of the best-performing
models despite a relatively moderate model and dataset size, giving an average
balanced accuracy only 0.1% lower than H-optimus-0 while running over 4 times
as fast. Hyperparameter tuning the classifiers improved classification performance
by a median of 1.9% balanced accuracy, although this was variable. While the
improved classification performance offered by histopathology foundation models may
be sufficient for clinical implementation, the need to address logistical hurdles and

conduct larger-scale validations remains.
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Chapter 8

Multi-Resolution Histopathology Patch
Graph Networks

In this chapter, we describe a novel multi-resolution graph network for slide-level
classification. This model uses a histopathology foundation model to extract patch
features at multiple magnifications, and we assess several techniques for combining
these features into a single graph. We use attention-based graph layers to prioritise
patches and share information in spatial neighbourhoods, giving a more complete
slide representation for classification. We use the same robust training and validation
procedures and datasets as in the previous chapter to determine whether capturing

spatial relationships provides a benefit in ovarian carcinoma subtyping.

8.1 Introduction

Many MIL models (including ABMIL) treat all instances as functionally independent
of one another. This misses the inherent spatial relationships between neighbouring
patches and hence does not model the local tissue context around each patch.
GNNs [102] offer an approach to model these spatial relationships. Graphs are
composed of nodes and edges. Each node contains some local information, and
GNN message-passing layers are used to share information along edges to provide
contextual information from connected nodes. A message-passing layer updates
node features based on first-order neighbours, and by stacking multiple such layers,

information can be passed from distant parts of the graph.

Given the relatively high computational complexity of cell graphs (Section 2.4.5), we
focus on patch graphs, where each graph node represents a tissue patch. While pathol-
ogists analyse tissue at multiple magnifications, slide-level patch graphs have typically
used data at only a single magnification [99, 258-261]. When multi-resolution graphs
have been implemented, they have often sampled patches to reduce the computational
complexity and balance the relative importance of different magnifications [82, 262],
though this discards potentially relevant diagnostic information. This has also been the

case for non-graph MIL methods for ovarian cancer subtyping [116—118]. To ensure
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a rigorous analysis of each slide, we instead follow the strategy of using all available

tissue at multiple magnifications using a multi-level grid structure [263—-265].

Only one previous study has applied GNNs to ovarian cancer subtyping [82], where
it was reported that a novel multi-resolution graph model gave a better balanced
accuracy than other MIL methods including ABMIL, TransMIL [71], and single-
magnification graph models. This study used only a single set of hyperparameters
and a single dataset, making it unclear whether all models were optimally tuned to the

given task and data, and whether the models would generalise well to external data.

In this chapter, we present the most thorough evaluation of a GNN for ovarian cancer
subtyping to date, including hyperparameter tuning and both hold-out and external
validations. To the best of our knowledge, it was also the first multi-resolution
graph model implemented using features from the vision transformer (ViT)-based
histopathology foundation model, UNI [208].

8.2 Methods

8.2.1 Graph Model Pipeline

The WSI classification pipeline (Figure 8.1) included tissue patch extraction, patch
feature extraction, graph modelling for patch aggregation, and slide classification.
The tissue patch extraction procedures were the same as in the baseline model
(Section 4.1), with 256 x 256 pixel downsampled patches extracted at 5x, 10x, and
20x magnifications. At the native 40x magnification, this required taking 512 x 512
patches before downsampling for 20x, 1024 x 1024 patches for 10x, and 2048 x 2048
pixel patches for 5x, with each doubling of the apparent magnification quadrupling
the number of resulting patches. This was the only step that differed for the external
datasets, with smaller patches required before downsampling given the lower original
magnification. Features were extracted from all downsampled patches using the UNI
foundation model [208] (requiring further downsampling from 256 x 256 to 224 x 224
pixels), given its exceptional performance in the previous analysis of feature extractors
(Chapter 7). The models were also evaluated using the standard ImageNet-pretrained

ResNet50 feature extractor on 256 x 256 pixel patches [58, 59] to better understand
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Figure 8.1 Multi-resolution graph model pipeline for slide-level classification, illus-
trated using 5x and 10x magnification tissue patches. Graph blocks were composed of
at least one GATv2 message-passing layer [266] followed by a SAGPool graph-pooling
layer [267].

whether the UNI features were truly more discriminative, or whether the benefit was

dependent on using the ABMIL classifier.

As shown in Figure 8.2, graphs were constructed such that each patch was connected
to any other patch within a given spatial radius, which was set to allow connec-
tions to first-order lateral and diagonal neighbours. Connections were also made
between patches showing the same tissue at different magnifications, with each low-
magnification patch connected to four high-magnification patches (or fewer if not all

high-magnification patches contained tissue).
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Figure 8.2 Multi-resolution graph construction, with each node representing a single
patch. Actual graphs have many more patches/nodes, with an average of 1138
tissue patches per slide at 5x magnification and 4423 tissue patches per slide at 10x
magnification.

Each graph model block contained at least one graph attention (GATv2) convolution
layer [266] for message passing, followed by a ReLU activation and a self-attention
graph pooling (SAGPool) [267] layer to reduce the number of nodes in the graph.
The trainable attention mechanisms weighed the relative importance of the nodes,
with GATv2 using node features to prioritise neighbours during message passing, and
SAGPool using node features and the graph topology to prioritise important nodes
during pooling. The GATv2 attention score q; ; for the edge between nodes i and j is
calculated as:

a;; = softmax;{w'o(W - [x;||x,]) }, (8.1)

where o is the Leaky RelLU activation function, || is the concatenation function, m’ is
the chosen output node feature dimension, and w € R*™ and W € R™*™ are the
trainable weight vector and matrix, respectively. The SAGPool attention score vector
a € R" is calculated as:

a=o(D " AD**Xp), (8.2)

where ¢ is the tanh activation function, A € R"*" is the graph adjacency matrix with
self-connections and corresponding diagonal degree matrix D € R™*", and p € R™ is

the trainable weight vector.
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The outputs of each graph block were pooled using both mean and max pooling
across all remaining nodes, and these pooled features were concatenated together
to make a double-length feature set. All graph block outputs were summed to form a
WSI-level feature set (to which dropout was applied during training), and finally, these
were classified through a single fully connected network layer with five output neurons

corresponding to the five ovarian cancer subtypes.

One complexity in extending GNNs to multiple resolutions is in handling the features.
Different biological entities are represented by features at different magnifications; thus,
it may be naive to share the same features across magnifications. Further, the vastly
more common high-magnification patches may have an undue influence in a shared
feature space. Previous studies have concatenated features from different resolutions
[82, 262], though it is unclear whether this is beneficial. We compared the ‘naive’
approach in which the same features are shared across magnifications (making the
model magnification-agnostic) to two approaches in which there was a separate set of
features for each magnification. Each graph node initially represented a tissue patch
at only a single magnification, and so the features for the other magnification were
either initially set to zero (‘concat_zero’) or to the average of all patch features at the
relevant magnification (‘concat_avg’). The previous ovarian cancer GNN [82] instead
directly extracted multi-magnification features by analysing only one high-resolution
patch within each lower-resolution patch, though this discarded most of the high-
resolution tissue, where our proposed approach used all available tissue at multiple

magnifications.

8.2.2 Hyperparameter Tuning and Validation Procedures

GNN hyperparameters were tuned through the standard iterative grid search procedure
(Section 4.3), starting from the optimal hyperparameters of the UNI-based ABMIL
model in Chapter 7. At least 100 unique configurations were evaluated for each graph-
based model, with the ABMIL results taken directly from Chapter 7. As shown in Table
8.1, a total of 13 hyperparameters were tuned for the GNNs, including nine previously
described hyperparameters (Section 4.3) and four GNN architecture hyperparameters
controlling the number of message-passing layers per graph block, the number of

graph blocks (and hence the number of pooling layers), the graph pooling factor per
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graph block, and the node feature dimension per magnification. The node feature
dimension hyperparameter was applied within the first message passing layer, where
the dimension of the node features was reduced from the input dimension (from the
patch feature extractor) to the selected size, and this size was maintained through the
remaining graph network layers. In experiments where separate features were used
for two different magnifications, the number of node features was doubled to retain the

separate concatenated features for each magnification throughout the network.

Tuning lteration
Hyperparameter 1 2 3 45 6 7 8 9 10
Learning Rate (LR) v v
LR Decay Factor v
LR Decay Patience v
First Moment Decay (3;) v
Second Moment Decay (3,) v
Stability Parameter (¢) v
Weight Decay v
Dropout Rate v
Max Patches v v
Message-Passing Layers v
Graph Blocks v 7
Pooling Factor
Node Feature Dimension v v

v
v

Table 8.1 lterative hyperparameter tuning procedure, with check marks (v') indicating
the hyperparameters that were adjusted at each stage of tuning, with all others frozen.
These are grouped into hyperparameters relating to the learning rate, Adam optimizer,
regularisation, and model architecture.

Seven models were evaluated to compare feature extractors, magnifications, and MIL
models. For the comparison of different architectures, we first created a baseline GNN
which was a multi-resolution graph at 5x and 10x magnifications (chosen based on the
analysis of magnifications in Chapter 6), using separate magnification-specific features
with average initialisation (concat_avg). Comparisons were conducted using a multi-
resolution GNN at higher magnifications (10x and 20x), a single-magnification GNN
at 10x, and ABMIL at 10x. Another comparison swapped the UNI vision transformer
feature extractor to an ImageNet-pretrained ResNet50. To compare different multi-

resolution feature spaces, the baseline approach (concat_avg) was compared to the
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separate features with zero initialisation (concat_zero) and to magnification-agnostic
features (naive). Each model was compared to the baseline using a paired t-test across
the five cross-validation folds, with p-values adjusted for multiple testing using a false

discovery rate correction [206].

The finalised LTHT dataset was used in this chapter, consisting of 1864 WSIs of
adnexal tissue from 433 patients for training and 5-fold cross-validation, and a further
100 WSis from 30 independent patients for hold-out testing. The Transcanadian Study
dataset [203], consisting of 80 WSIs from 80 patients, and the OCEAN Challenge
dataset [160], consisting of 513 WSIs from an unknown number of patients, were
both used for external validation. These datasets are described further in Chapter 4.2.
All validations were conducted using the HPC (Section 4.5), and the code was made

available online at https://github.com/scjjb/MultiscalePathGraph.

8.3 Results

8.3.1 Hyperparameter Tuning Results

The best hyperparameters from tuning are shown in Table 8.2. The smallest tuned
classifiers were the single-resolution (10x GNN, 0.5M parameters; 10x ABMIL, 0.8M)
and magnification-agnostic models (naive features, 0.7M), followed closely by the zero-
initialised model (1.2M) and the higher magnification model (1.2M), with the largest
being the baseline model (7.9M) and the ResNet-based GNN (10.5M). In most cases,
the classifier was much smaller than the respective feature extractor, with the UNI
model having 303M parameters and ResNet50 having 9M. The multi-resolution GNNs
were typically larger than the single-resolution ABMIL classifiers in Chapter 7, which
had 0.1-1.6M parameters, with most under 1M.


https://github.com/scjjb/MultiscalePathGraph
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Model
ABMIL GNN GNN GNN Naive Concat_zero ImageNet-
Hyperparameter 10x only Baseline 10x only 10x+20x features features ResNet50
Learning Rate (LR) 1e-5 1e-4 5e-5 1e-4 2e-4 1e-4 2e-3
LR Decay Factor 0.75 0.9 0.9 0.9 0.45 0.9 0.6
LR Decay Patience 10 10 10 20 15 15 20
First Moment Decay (5;) 0.9 0.9 0.95 0.95 0.9 0.95 0.8
Second Moment Decay (6;)| 0.999 0.9999 0.999 0.999  0.99999 0.99 0.95
Stability Parameter (¢) 1e-5 1e-5 1e-7 1e-7 1e-7 1e-7 1e-2
Weight Decay 1e-3 1e-2 1e-1 1e-2 1e-3 1e-2 1e-3
Dropout Rate 0.0 0.2 0.0 0.1 0.2 0.4 0.2
Max Patches 1000 6000 4000 14000 4000 5000 5000
Message-Passing Layers N/A 3 1 1 1 1 1
Graph Blocks N/A 4 1 2 2 2 4
Pooling Factor N/A 0.9 0.6 0.6 0.45 0.75 0.6
Node Feature Dimension 512 512 256 256 256 256 1024

Table 8.2 Optimal hyperparameters for each model found through an iterative grid
search on the validation sets from five-fold cross-validation. These are grouped into
hyperparameters relating to the learning rate, Adam optimizer, regularisation, and

model architecture.
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8.3.2 Graph Model Validation Results

Balanced Accuracy F1l Score

Cross-Validation

Hold-out Testing

Transcandian Validation

OCEAN Validation

Figure 8.3 Ovarian cancer subtyping results (mean and 95% confidence interval from
10,000 iterations of bootstrapping) from cross-validation, internal hold-out testing, and
external validations [160, 203]. In hold-out testing and external validations, predictions
were ensembled from the five cross-validation models.
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Results are shown in Figure 8.3. The best-performing model in cross-validation (Table
8.3) was the zero-initialised multi-resolution GNN, with a balanced accuracy of 74.2%,
AUROC of 0.944 (second-best, behind the 0.945 of ABMIL), and F1 score of 0.759.
ABMIL performed best in hold-out testing (Table 8.4), with a balanced accuracy of
88.0%, AUROC of 0.957 (second-best, behind the 0.960 of the naive GNN), and an
F1 score of 0.875. In both external validations, the 10x+20x GNN performed best by
all metrics, with a balanced accuracy of 99.0%, AUROC of 1.000, and an F1 score of
0.991 on the Transcandian Study dataset (Table 8.5), and 77.2%, 0.962, and 0.770 on
the OCEAN Challenge dataset (Table 8.6).

Model Balanced Accuracy AUROC F1 Score
ABMIL 10x only 73.2% (69.9-76.4%) 0.945 (0.933-0.956) 0.734 (0.704-0.764)
GNN Baseline (5x+10x) | 66.4% (63.1-69.6%) 0.922 (0.909-0.935) 0.688 (0.657-0.719)
GNN 10x only 72.8% (69.6-75.9%) 0.935 (0.920-0.948) 0.747 (0.716-0.776)
GNN 10x+20x 72.8% (69.5-76.0%) 0.936 (0.922-0.950) 0.744 (0.714-0.774)
GNN Naive features 70.2% (67.0-73.4%)  0.929 (0.914-0.942) 0.715 (0.684-0.745)
GNN Concat_zero features| 74.2% (71.1-77.3%) 0.944 (0.931-0.956) 0.759 (0.729-0.787)
GNN ImageNet-ResNet50 | 57.0% (53.6-60.4%) 0.877 (0.861-0.893) 0.566 (0.534-0.599)

Table 8.3 Cross-validation results shown as the mean and 95% confidence intervals
generated by 10,000 iterations of bootstrapping. The best results are indicated in bold.

Model Balanced Accuracy AUROC F1 Score

ABMIL 10x only
GNN Baseline (5x+10x)
GNN 10x only
GNN 10x+20x
GNN Naive features
GNN Concat_zero features

88.0% (81.5-93.8%
79.0% (71.9-85.7%
87.0% (80.8-92.8%

85.0% (78.5-91.1%
84.0% (77.2-90.4%
70.0% (61.5-78.4%

0.957 (0.919-0.989
0.953 (0.914-0.984
0.957 (0.918-0.989

0.960 (0.924-0.989
0.952 (0.911-0.987
0.897 (0.850-0.938

0.875 (0.805-0.937
0.770 (0.681-0.852
0.861 (0.790-0.927

0.838 (0.761-0.908
0.830 (0.751-0.901
0.685 (0.589-0.777

) ( ) )

( ) ( ) ( )

( ) ( ) ( )
88.0% (81.8-93.8%) 0.953 (0.913-0.987)  0.873 (0.805-0.937)
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

GNN ImageNet-ResNet50

Table 8.4 Hold-out testing results (ensembled across the cross-validation folds)
shown as the mean and 95% confidence intervals generated by 10,000 iterations of
bootstrapping. The best results are indicated in bold.

No single model performed best in all evaluations, though the 10x+20x magnification
model was the most consistent, never more than 0.014 behind the best for any given
metric. In internal validations, it was slightly outperformed by ABMIL and the naive
GNN, but it was best in external validations, with a clear margin in the Transcanadian
Study validation (3.6% balanced accuracy, 0.001 AUROC, 0.029 F1 score).
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Model Balanced Accuracy AUROC F1 Score

ABMIL 10x only 93.2% (86.5-98.3%) 0.996 (0.988-1.000) 0.912 (0.835-0.974)
GNN Baseline (5x+10x) | 94.9% (88.1-100.0%) 0.998 (0.994-1.000) 0.962 (0.910-1.000)
GNN 10x only 93.5% (87.2-98.9%) 0.998 (0.995-1.000) 0.936 (0.863-0.992)
GNN 10x+20x 99.0% (96.7-100.0%) 1.000 (0.999-1.000) 0.991 (0.971-1.000)
GNN Naive features 92.7% (86.7-98.2%)  0.999 (0.996-1.000) 0.923 (0.845-0.984)
GNN Concat_zero features| 95.4% (89.7-100.0%) 0.999 (0.997-1.000)  0.957 (0.899-1.000)
GNN ImageNet-ResNet50 | 83.7% (73.2-92.9%) 0.983 (0.965-0.996) 0.849 (0.749-0.932)

Table 8.5 Transcanadian Study external validation results (ensembled across the
cross-validation folds) shown as the mean and 95% confidence intervals generated

by 10,000 iterations of bootstrapping. The best results are indicated in bold.

Model

Balanced Accuracy

AUROC

F1 Score

ABMIL 10x only
GNN Baseline (5x+10x)
GNN 10x only
GNN 10x+20x
GNN Naive features
GNN Concat_zero features

77.2% (73.0-81.4%
71.9% (68.0-75.6%
74.4% (70.7-78.3%

72.2% (68.7-76.0%

0.954 (0.939-0.966
0.939 (0.923-0.953
0.962 (0.951-0.972

0.958 (0.946-0.969
0.954 (0.942-0.966

0.758 (0.714-0.801
0.725 (0.676-0.770
0.730 (0.682-0.776

0.702 (0.653-0.750

) ( ) )
( ) ( ) ( )
( ) ( ) ( )
77.2% (73.3-81.1%)  0.962 (0.950-0.973)  0.770 (0.724-0.814)
75.7% (71.7-79.6%) ( ) 0.742(0.694-0.786)
( ) ( ) ( )
( ) ( ) ( )

GNN ImageNet-ResNet50 | 42.7% (39.0-46.6%) 0.860 (0.841-0.879)  0.345 (0.304-0.389

Table 8.6 OCEAN Challenge external validation results (ensembled across the cross-
validation folds) shown as the mean and 95% confidence intervals generated by 10,000
iterations of bootstrapping. The best results are indicated in bold.

The 10x+20x magnification GNN had the best average performance across the
validations (Table 8.7), with an average balanced accuracy of 84.3%, an average
AUROC of 0.962, and an average F1 score of 0.845. This was greater than the average
performance of any ABMIL-based model in Chapter 7 (balanced accuracy 83.0%,
AUROC 0.965, F1 score 0.822).

GNN (Figure 8.4) showed improvements to be fairly evenly spread across the classes

The confusion matrices for the optimal 10x+20x

when compared to the optimal H-optimus-0 ABMIL model in Chapter 7. Performance
remained particularly variable for the least common subtypes, with the F1 scores for
LGSC being 0.483 and 0.603 in validations including IDS data, and 0.824 and 1.000
in those without IDS data. The optimal GNN was, however, slightly more consistent at
classifying the most common subtype (HGSC), with an F1 score of at least 0.858 in
all validations, compared to 0.804 for ABMIL. Overall, the improvements of the graph

compared to ABMIL were relatively marginal.
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The GNN using the ImageNet-pretrained ResNet50 feature extractor performed worst
in every evaluation, with significantly lower performance compared to the baseline GNN
in all validations except the Transcanadian Study external validation (Table 8.8). It thus
had the lowest averaged performance of 63.3% balanced accuracy, 0.904 AUROC, and
0.611 F1 score. This performance was still greater than that of the ABMIL model using
the same features in Chapter 7, which had an average balanced accuracy of 57.1%,
AUROC of 0.893, and F1 score of 0.596.

Model 22:;":;23 AUROC F1 Score
ABMIL 10x only 82.9% 0.963 0.820
GNN Baseline (5x+ 10x) 78.1% 0.953 0.786
GNN 10x only 81.9% 0.963 0.819
GNN 10x+20x 84.3% 0.962 0.845
GNN Naive features 80.9% 0.962 0.805
GNN Concat_zero features| 81.5% 0.962 0.812
GNN ImageNet-ResNet50 63.3% 0.904 0.611

Table 8.7 Averaged results across the four validations. The best results are indicated
in bold.

The effects of modelling with different tissue magnifications varied across validations.
The 10x-only GNN typically performed better than the 5x+10x baseline, often with a
significant difference (Table 8.8), though it performed slightly worse in the external
validation with the Transcanadian Study dataset. The 10x+20x model outperformed
the 5x+10x model in all evaluations, though the differences were only statistically
significant for the AUROC in hold-out testing, and both the AUROC and balanced
accuracy in the OCEAN validation. The 10x+20x model gave a similar performance
to the 10x-only model in internal validations but performed much better in external

validations.

It was not clear which multi-resolution feature space was best overall. The baseline
average-initialised feature space generally performed worst by a small margin, with the
naive feature space best in hold-out testing and the OCEAN validation, and the zero-
initialised features best in cross-validation and the Transcanadian validation. However,
the improvements offered by the naive and zero-initialised features compared to the

average-initialised features were not significant in most cases.
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Cross-validation Hold-out Testing
Predicted Subtype Predicted Subtype
HGSC | LGSC | CCC EC mMC HGSC | LGSC | CCC EC MC
2| HGSC | 1191 38 18 16 2 | HGSC 19 0 0 1 0
33 LGSC 44 43 4 1 0 13 LGSC 0 14 1 2
ffg CcC 41 1 151 3 rﬂg CCC 5 15 0 0
Sl ec | 18 4 | o || 11 | 2] Ec | o 20 | o
MC 1 0 6 30 62 MC 0 0 20
External Validation — Transcanadian Study External Validation — OCEAN Challenge
Predicted Subtype Predicted Subtype
HGSC | LGSC | CCC EC mMC HGSC | LGSC | CCC EC MC
¥ | HGSC | 30 0 0 v | HGSC | 202 1 8 3 3
4‘3 LGSC 0 9 0 4‘3 LGSC 19 19 2 1 1
§ ccc | 1 0 19 E ccc | o 0 93 0 1
gl ec | o | o 11 S ec | 2| 1| 6 | 67 | 13
MC 0 0 0 10 MC 1 0 1 1 38

Figure 8.4 Confusion matrices for the optimal 10x+20x magnification GNN. Correct
classifications are indicated in bold.
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p-values
Balanced
Validation Set Model Accuracy AUROC | F1 Score
ABMIL 10x only 0.078 0.264 0.105
GNN 10x only 0.046 0.756 0.035
Cross- GNN 10x+20x 0.093 0.398 0.067
Validation GNN Naive features 0.226 0.360 0.158
GNN Concat_zero features 0.046 0.264 0.035
GNN ImageNet-ResNet50 0.050 0.049 0.035
ABMIL 10x only 0.015 0.023 0.020
GNN 10x only 0.015 0.044 0.020
Hold-out GNN 10x+20x 0.106 0.023 0.113
Testing GNN Naive features 0.106 0.017 0.136
GNN Concat_zero features 0.106 0.119 0.107
GNN ImageNet-ResNet50 0.021 0.008 0.032
ABMIL 10x only 0.926 0.312 0.681
GNN 10x only 0.418 0.464 0.166
Transcanadian GNN 10x+20x 0.926 0.312 0.681
Study GNN Naive features 0.418 0.364 0.166
GNN Concat_zero features 0.926 0.312 0.681
GNN ImageNet-ResNet50 0.103 0.272 0.114
ABMIL 10x only 0.007 0.037 0.379
GNN 10x only 0.065 0.053 0.379
OCEAN GNN 10x+20x 0.007 0.036 0.379
Challenge GNN Naive features 0.081 0.036 0.858
GNN Concat_zero features 0.425 0.053 0.858
GNN ImageNet-ResNet50 0.007 0.036 0.005

Table 8.8 Resulting p-values from paired two-tailed t-tests comparing each model to
the baseline 5x+10x GNN with UNI features and concat_avg initialisation. These were
calculated using the outputs of the five cross-validation models and were adjusted for
multiple testing [206]. Those less than 0.050 (before rounding) are indicated in bold.
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8.4 Discussion

The results indicate that multi-resolution GNN can offer modest improvements to
ovarian carcinoma subtyping. In particular, the 10x+20x magnification model achieved
near-perfect classification on the Transcanadian Study validation set, giving the
greatest reported performance for this task to date [1]. However, multi-resolution GNNs
offered only a small benefit over ABMIL overall, with the classification performance
only improved in one of the four validations. Considering the relatively small size of the
Transcanadian Study set, it was unclear how great a benefit the graph models offered
overall. Given the particularly poor performance of the ResNet-based GNN and the
relatively strong performance of the UNI-based ABMIL model, it was evident that the
chosen feature encoder had a much greater effect on model performance than the

subsequent MIL modelling approach.

The results may indicate that any spatial analysis required in ovarian cancer subtyping
is sufficiently achieved by applying ABMIL with a transformer-based patch encoder
at 10x magnification based on downsampled 1024 x 1024 pixel patches at 40x
magnification. The transformer-based approach may capture spatial relationships on a
cellular scale within patches, and the ABMIL aggregation may quantify relevant tissue
types across the slide. However, the ABMIL approach cannot represent inter-patch
(tissue-level) spatial relationships to the same extent as the graph model. Considering
the similar performance of these approaches, it appears that tissue-level spatial
relationships are not particularly important to ovarian cancer subtyping. Graphs may
be more beneficial for other slide classification tasks [90, 99], particularly prognostic
tasks in which spatial relationships between tumour, necrosis, and immune cells can
be particularly important [85, 264, 268]. However, it remains to be seen whether
graphs will still be relevant to these tasks when applied with the drastically improved
patch features from histopathology foundation models, and whether the local spatial
information encoded within the transformer-based patch encoders could be sufficient
within an ABMIL model.

In the external validation on the Transcanadian Study dataset, all models achieved
AUROC scores between 0.983 and 1.000, despite the balanced accuracy and F1
scores varying from 83.7%-99.0% and 0.849-0.991, respectively. In internal testing

models often also had highly similar AUROC scores but clearly distinct scores by the
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other metrics. This highlights the limitations of the AUROC for imbalanced multi-class
classification, with similarly high scores for all models despite obvious differences in

the balanced accuracy and F1 scores, which better represent clinical utility.

As in Chapter 7, performance was greatest in the hold-out test set and the Tran-
scanadian Study external validation set, which were the sets which specifically used
primary staging samples without any IDS samples. This indicates that this finding was
not unique to ABMIL-based methodologies, and is likely an inherent feature of this
type of data. As such, further work should be conducted to understand the variable

classification performance that can be achieved on different datasets.

One factor which was not accounted for in this study was the effects of constructing
graphs in different configurations - all graphs were constructed such that each patch
was connected to its direct neighbours (laterally and diagonally), though this may not
be the optimal approach. However, the effect of this was likely mitigated by the tuning
of the number of message-passing layers, with more layers having a similar effect
to longer connections in the graph. Further, the attention-based methods increased
the flexibility of the GNNs by allowing variable connection strengths between tissue

patches.

The five-class balanced accuracies of 88%, 99%, and 77% in hold-out and external
validations may be sufficient for clinical assistance tools, with these results comparing
favourably to the 74-91% concordance of pathologists [32], and so future work
should investigate whether pathologists can benefit from the assistance of such tools.
However, some limitations remain. The hold-out and Transcanadian Study validations
used data from only 30 and 80 patients, respectively, so cannot represent the vast array
of variability seen in clinical diagnostic cases. The models are also currently incapable
of indicating uncertainty, providing thorough explanations of classification decisions,
or coping with tissue which does not contain one of the five most common subtypes
of ovarian carcinoma (e.g. non-malignant tissue, carcinosarcomas and non-epithelial
malignancies). The large vision transformer and multi-resolution graphs also carry a
heavy computational burden, which is likely to lead to logistical difficulties in deploying
such models in the clinical setting. None of these issues are insurmountable, and
when they are overcome, these models could be invaluable as diagnostic assistive

tools offering a rapid second opinion to pathologists.
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8.5 Conclusion

Overall, we have shown that a multi-resolution GNN can slightly improve the accuracy
of ovarian carcinoma subtyping at the whole-slide level above the previous state-of-the-
art, though the benefit was not present in all validations. In an external validation of
80 WSIs, a GNN achieved a near-perfect 99% balanced accuracy, but in internal hold-
out testing this was 88%, and in another external validation only 77%, no greater than
ABMIL performance. The best GNN combined 10x and 20x magnification data, which
was better than combining lower magnifications or using only 10x magnification data,
though at an increased computational cost. While the highly accurate graph models
may offer a useful second opinion to pathologists, more extensive validations are
required to understand the reasons underlying performance variability across different

datasets and to improve model consistency.
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Chapter 9
Conclusions and Future Work

In this chapter, we provide an overview of the thesis, including our contributions and

key findings, the limitations of the research, and potential ideas for future research.

9.1 Thesis Summary

This thesis has focused on the development and thorough validation of an Al pipeline

for the classification of ovarian carcinoma subtypes at the whole slide level.

Chapter 1 introduced the thesis and set out the aims and objectives, which were to
be achieved by systematically reviewing relevant literature, applying state-of-the-art
approaches with a world-leading ovarian cancer dataset, building upon previous tech-
niques with novel classification approaches, and rigorously validating the performance
of the resulting classification pipelines. Finally, the overall structure of the thesis was

laid out, with the subsequent six chapters addressing the thesis objectives.

Chapter 2 introduced ovarian cancer and the current clinical problems faced in the
pathological diagnosis of ovarian carcinoma subtypes. It also gave context to the
current state of digitisation and Al utilisation in histopathology, and described how
an automated subtype classification pipeline could potentially improve the efficiency,
accuracy, and obijectivity of diagnosis. It also provided the technical background for the
thesis, in particular describing the computer vision methods that are applied to digital

pathology images.

Chapter 3 provided an in-depth analysis of previous Al research for the diagnosis and
prognosis of ovarian cancer from histopathology slides. This was underpinned by a
systematic literature review and brought up-to-date with recently repeated searches.
The risks of bias in previous research were assessed, and recommendations were

provided to reduce these risks and improve the clinical viability of future research.

Chapter 4 was a methodological chapter, describing the Al model development

and validation methods used throughout the rest of the thesis. The concept of
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multiple instance learning was described in terms of the preprocessing, patching,
embedding, and aggregation steps used, and the baseline ABMIL classification model
was introduced. Approaches for ensuring rigorous validations were explored, including
hyperparameter tuning, different classification metrics, and hypothesis testing. Break-
downs were provided for three ovarian carcinoma subtyping datasets, with a world-
leading internal dataset and two external validation datasets used. Finally, the software

and hardware used to create and test models were described.

Chapter 5 proposed an approach to improve the efficiency of slide-level classification
by leveraging the patch attention scores of ABMIL to create an iterative active
patch sampling approach for use during inference. This utilised the inherent spatial
relationships within WSIs, with diagnostically relevant tissue patches often forming
spatial clusters. Sampling drastically reduced the proportion of the total tissue area

that was fully analysed, aiming to reduce the computational workload of classification.

Chapter 6 thoroughly analysed the performance of the standard ABMIL classifier with
six different tissue magnifications from the clinical standard 40x down to 1.25x. This
investigated the trade-off between the cellular-level detail at higher magnifications and
the greater tissue-level context at lower magnifications. It also included analysing the

efficiency of model training and slide inference at different magnifications.

Chapter 7 thoroughly analysed different feature extraction techniques in an ABMIL clas-
sifier, with a focus on comparing the newly available histopathology foundation models
to traditional ImageNet-pretrained feature extractors. This included an exploration as
to whether the ImageNet-pretrained ResNet50 model could be made competitive with
the newer approaches through varied preprocessing techniques such as normalisation
and augmentation. It also included an ablation study into the effects of hyperparameter

tuning on downstream classification.

Chapter 8 proposed a novel multi-resolution graph MIL network, utilising the spatial
relationships between patches in a pathology slide to improve classification perfor-
mance. The graph model was compared in six configurations, using different tissue
magnifications and multi-magnification feature modelling approaches. The effects
of foundation models were further analysed in relation to this different classification

approach.
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9.2 Key Contributions and Findings

The key contributions of this thesis were the systematic review of previous literature
in ovarian cancer histopathology, the development of novel WSI pipelines for the
classification of ovarian carcinoma subtypes, and the rigorous analysis and validation
of these subtyping models. The chapters, presented in chronological order, detailed
the process of interpreting previous research, applying state-of-the-art histopathology
models, analysing the classification performance and efficiency of these approaches
in varied configurations, and finally, creating and thoroughly validating novel classifiers
based on all of the previously learned lessons. The main findings of this research are

as follows.

In Chapter 3, it was found that previous research had been conducted to investigate
the utility of Al for a wide array of diagnostic and prognostic tasks in ovarian cancer
histopathology, with subtyping being one of the most common. Key limitations
were identified regarding the datasets, validations, and reporting in previous studies.
The sparsity of available ovarian cancer datasets was a common issue, with few
researchers able to assemble large enough datasets to thoroughly train and validate
models. This was often compounded by methodological flaws, with studies conducted
without cross-validation, external validation, bootstrapping, hyperparameter tuning, or
statistical analyses. No study achieved an overall low risk of bias score, with the most

promising papers only achieving an unclear risk of bias due to incomplete reporting.

In Chapter 5, it was found that the proposed active patch sampling method during
inference gave a similar classification performance to the standard ABMIL approach,
but with a drastically reduced computational burden given the reduced proportion of
tissue being fully processed by the classifier. For binary classification of HGSC using
the earliest version of the internal LTHT dataset, the baseline ABMIL classifier achieved
an 80.1% balanced accuracy and 0.878 AUROC, while the sampling approach using
only 5% of the available tissue patches achieved 79.1% and 0.868, respectively. This
small reduction in classification performance allowed inference time to be reduced by
up to 86%.

In Chapter 6, it was found that the 5x and 10x magnifications gave the best overall

classification performance in the ABMIL classifier, with these also drastically reducing



Chapter 9 - Conclusions and Future Work 151

the computational requirements of model training and slide inference when compared
to higher magnifications. In five-class hold-out testing, the optimal 10x model achieved
62.0% balanced accuracy and 0.850 AUROC, while reducing training time by 94% and

inference time by 70% compared to the clinical standard 40x magnification.

In Chapter 7, it was found that histopathology foundation models drastically improved
subtype classification performance compared to ImageNet-pretrained feature extrac-
tors, though at an increased computational cost. Where the baseline ImageNet-
pretrained ResNet50 model gave balanced accuracies of 66.0%, 69.2%, and 52.4% in
hold-out testing and two external validations, the optimal foundation model, H-optimus-
0, achieved 89.0%, 96.7%, and 74.0%. Further, the UNI foundation model achieved
similar performance to H-optimus-0 at a quarter of the computational cost. It was
found that hyperparameter tuning was beneficial to classification performance even
when employing the greatest feature extractors, with a median improvement of 1.9%
balanced accuracy attained. The foundation model-based classifiers were the first
models that were accurate enough to potentially compete with real pathologists, and

thus, these may be able to aid pathologists in diagnostic decision-making.

In Chapter 8, it was found that graph networks gave modest classification improve-
ments over ABMIL, specifically when combining 10x and 20x magnification data,
though the benefit was variable and much smaller than the benefit given by using
a foundation model rather than an ImageNet-pretrained encoder. Where the ABMIL
model achieved balanced accuracies of 88.0%, 93.2%, and 77.2%, the optimal graph
model achieved 88.0%, 99.0%, and 77.2%, only improving performance on one of the
three validation sets. Given the graph networks had much greater computational costs
than ABMIL, and the only improvement was found on the smallest test set, it was not

clear that this benefit was worthwhile.

9.3 Limitations and Further Work

The eventual goal of this research is to create a clinically implementable assistive
tool for pathologists, but there are several factors currently preventing this from being
attained. These factors could all be addressed in future work, with the scope of

potential work being that of several additional PhD theses.
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While we conducted analyses with the largest ovarian cancer subtyping dataset to
date, this was still not sufficient to ensure that classifiers were robust to all relevant
sources of variation in histopathology data. The hold-out and Transcanadian Study
external validation set were composed of only 80 and 100 WSIs, respectively, and
the UBC-OCEAN dataset appeared to be of mixed diagnostic quality, without sufficient
metadata provided to fully understand the resulting classification variability. Ideally,
subtyping models would be made robust to lower quality data to reduce the burden
on quality control in the lab, though if this goal proves unattainable, greater automated

quality control measures will be required before subtyping models are applied.

The models reported in this thesis are limited to the slide-level classification of the
five most common histological subtypes of ovarian carcinoma. Such models have
no understanding of rare carcinoma subtypes, non-carcinoma ovarian cancers, mixed
subtypes, or even non-ovarian cancer tissue, yet all of these would be classified as one
of the five most common ovarian carcinoma subtypes. Future work may seek to collect
data for the rarer subtypes, though given their rarity, it may never be possible to collect
a sufficient quantity to attain high classification performance. As such, future work
may instead seek to quantify the uncertainty in the classification predictions. It may
be expected that any input data that does not match one of the common subtypes
would be classified with a high level of uncertainty, and such cases could be prioritized
for manual analysis by pathologists. Along with automated quality control methods,
uncertainty quantification could be seen as a guardrail to aid the pathologists in safely

using the Al models.

The analyses presented have been limited to resection specimens, with the best
performance found on the diagnostically preferable primary resection specimens rather
than IDS samples (Section 2.2). In many ovarian carcinoma cases, it is not possible to
analyse a primary resection specimen, and as such it would improve the applicability
of the models if they could be accurately applied to pre-treatment biopsies or IDS
specimens. Achieving a high accuracy on these samples may not be possible due
to the drastically reduced tissue quantity in biopsies and the degraded tissue quality in
IDS specimens, though if a model could demonstrate comparable performance to an

expert pathologist it may still be clinically beneficial in cases of imperfect information.
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The methods used in this study are not easily interpretable, with the black-box models
only interrogated in this study using attention heatmaps, which provide very limited
insight into model decision-making. Truly explainable approaches would require
the use of interpretable features, which could be achieved by the use of hand-
crafted features or by extensive interrogations of the automated features extracted by
histopathology foundation models. A better understanding of model decision-making
would make it clearer whether models should be trusted, drastically improving their
utility.

One of the key problems with translating these models into the clinic is that it is
unclear how to best present the class predictions generated by these models to the
pathologists. Usability studies could be key in uncovering key principles for presenting
automated inferences to pathologists. Such studies could include investigating whether
pathologists benefit from supplementary information, such as uncertainty scores and
attention heatmaps, to understand whether this improves diagnostic accuracy or
whether it simply distracts the pathologist. These investigations may also help to
determine whether pathologists would require extra training to safely leverage Al-
generated insights. Understanding the human elements of diagnostic Al assistance

will help to maximise the benefits of these technologies.

The best-performing models in this thesis were also some of the most computationally
expensive, which drastically limits the real-world utility of these models to pathology
departments that can afford expensive computational infrastructure and those that
are willing to export their data off-site. To broaden access to these models it will be
essential to reduce their computational burden. This will likely require the combination
of many efficiency gains, potentially including improved active sampling approaches
and using the lowest viable tissue magnifications, but it will also require techniques
not covered in this thesis, such as pruning, mixed-precision modelling, and knowledge
distillation. It also may be possible to extend these methods to smaller tissue samples
and lower-quality images, potentially even making it feasible that a pathologist could

take a photograph through the microscope for computational analysis.
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9.4 Closing Remarks

It is absolutely clear that significant progress has been made in Al for ovarian cancer
subtyping (and for pathological diagnosis more widely) in recent years. This thesis
has highlighted that modern classifiers (especially those built using histopathology
foundation models) can accurately classify ovarian cancer subtypes to the extent that
clinical trials may now be considered, and it has also shown that there are viable
techniques to reduce the computational burden of such classifiers. It now seems
inevitable that these technologies will achieve clinical utility in the coming years. While
many questions remain unanswered, it is notable that some Al technologies are
starting to receive regulatory approval, and many new companies are entering the
field of digital pathology. To ensure the equitable deployment of these models, further
work will be needed to broaden access to digital pathology services and to reduce
the computational burden of the models. If successful, such tools may mitigate the
worldwide shortage of pathologists and improve diagnostic accuracy to optimise the

delivery of precision medicine.
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A Systematic Review Search Strategy

The full searches used in the systematic literature review (Chapter 3) are shown
here, with any text which was not directly input to the search bar in bold. These
searches were each a combination of three aspects - artificial intelligence, ovarian
cancer, and histopathology. No filters were applied, and all options were left on their
default settings. The wildcard character, *, was used to search for multiple versions of
the same word, for example, “patholog*” searched for all of “pathology”, “pathologist”,

“pathologists”, and “pathological”.

A.1 PubMed

(“Machine Learning”[Mesh] OR *“Artificial Intelligence”[Mesh] OR “Neural Networks,
Computer’[Mesh] OR *“support vector machine’[MeSH] OR “Deep Learning’[Mesh]
OR “diagnosis, computer-assisted’[Mesh] OR “Machine learnx” OR “Artificial
Intelligen+” OR (ML[Title/Abstract] NOT (ugmi[Title/Abstract] OR p/mli[Title/Abstract]
OR mgmi[Title/Abstract] OR  pgml[Title/Abstract] OR  ngml[Title/Abstract]
OR  uiml[Title/Abstract] OR iuml[Title/Abstract] OR  miuml[Title/Abstract]
OR muiml[Title/Abstract] OR uml[Title/Abstract] OR gml[Title/Abstract] OR
mlkg[Title/Abstract] OR milliliter«[Title/Abstract])) OR Al[Title/Abstract] OR “Computer
Vision” OR “Neural network«” OR “Deep Network” OR “Computer-aided Diagnosis”
OR “Computer aided Diagnosis” OR Perceptronx OR “Convolutional Network” OR
“Recurrent Network«” OR “Graph Network+” OR “Deep Learn«” OR “Deep-Learnx”
OR Backpropx OR *“support vectorx” OR ensemblex OR “random forestx” OR
“nearest neighborx” OR “nearest neighbourx” OR “k-nearest neighbor+” OR “k-nearest
neighbourx” OR “Gradient boostx” OR “XGBoost+” OR “segmentation” OR “instance

learning” OR “multi-instance learning” OR “Active Learning”)

AND (((ovarx OR fallopian) AND (cancerx OR mass* OR carcinomax OR tumourx OR
tumorx OR neoplasmx OR malignanx OR “carcinoma’[Mesh] OR “neoplasms”’[Mesh]))
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OR “Ovarian Neoplasms”’[Mesh] OR “peritoneal cancer” OR “peritoneal carcinoma” OR

“peritoneal tumox”)

AND ((digitx AND patholog*) OR “computational patholog+” OR *“tissue microarrayx*”
OR histopath« OR histolog+x OR “Whole Slide Imag*” OR “Tissue slidex” OR “pathol-
ogy slidex” OR “pathology imagex” OR Immunohistochems OR ((Haematoxylin OR
Hematoxylin) AND Eosin) OR Histology[Mesh])

A.2 Scopus

TITLE-ABS-KEY(“Machine learn+” OR “Atrtificial Intelligen«” OR (“ML” AND NOT “x
p ml” AND NOT “xg ml” AND NOT “xui ml” AND NOT “xUl mlI” AND NOT “xiu ml”
AND NOT “xu mlI” AND NOT “xg mlI” AND NOT “«ml kg” AND NOT milliliter«) OR Al
OR “Computer Vision” OR “Neural network«” OR “Deep Network+” OR “Computer-
aided Diagnosis” OR “Computer aided Diagnosis” OR Perceptronx OR “Convolutional
Network+” OR “Recurrent Networks” OR “Graph Network+” OR “Deep Learnx” OR
“Deep-Learnx” OR Backpropx OR “support vectorx” OR ensemblex OR “random
forestx” OR “nearest neighbor«” OR “nearest neighbourx” OR “k-nearest neighborx”
OR “k-nearest neighbour+” OR “Gradient boost+” OR “XGBoostx” OR “segmentation”

OR “instance learning” OR “multi-instance learning” OR “Active Learning”)

AND TITLE-ABS-KEY (((ovar+ OR fallopian) AND (cancer« OR mass* OR carcinomas
OR tumourx OR tumorx OR neoplasmx OR malignanx)) OR “peritoneal cancer” OR

“peritoneal carcinoma” OR “peritoneal tumox”)

AND TITLE-ABS-KEY((digitx AND pathologx) OR “computational patholog+” OR
“tissue microarray+” OR histopath« OR histologx OR “Whole Slide Imag+” OR “Tissue
slidex” OR “pathology slidex” OR “pathology imagex” OR Immunohistochems« OR
((Haematoxylin OR Hematoxylin) AND Eosin))

A.3 Web of Science

(ALL=("Machine learn«” OR “Artificial Intelligenx” OR “Computer Vision” OR “Neural
network+” OR “Deep Networks+” OR “Computer-aided Diagnosis” OR “Computer aided

Diagnosis” OR Perceptronx OR “Convolutional Networkx” OR “Recurrent Networks”
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OR “Graph Networks«” OR “Deep Learnx” OR “Deep-Learnx” OR Backpropx OR
“support vector+” OR ensemblex OR “random forest«x” OR “nearest neighborx” OR
“nearest neighbour+x” OR “k-nearest neighbor«” OR “k-nearest neighbourx” OR “Gra-
dient boostx” OR “XGBoostx” OR “segmentation” OR “instance learning” OR “multi-
instance learning” OR “Active Learning”) OR TS=(Al OR (“ML” NOT (“« p ml” OR “xg
ml” OR “xui mlI” OR “«Ul mI” OR “xiu mI” OR “xu mI” OR “xg ml” OR “«ml kg” OR
milliliterx))))

AND ALL=(((ovarx OR fallopian) AND (cancerx OR mass:* OR carcinomasx OR tumoursx
OR tumorx OR neoplasms OR malignanx)) OR “peritoneal cancer” OR “peritoneal

carcinoma” OR “peritoneal tumox”)

AND ALL=((digitx AND pathologx) OR “computational pathologx” OR *tissue
microarray*” OR histopathx OR histologx OR “Whole Slide Imag*” OR “Tissue
slidex” OR “pathology slidex” OR “pathology imagex” OR Immunohistochems« OR
((Haematoxylin OR Hematoxylin) AND Eosin))

A4 Cochrane Central Register of Controlled Trials

Search #1:

All text: (“Machine learnx” OR “Atrtificial Intelligenx” OR “Computer Vision” OR “Neural
network«” OR “Deep Network«” OR “Computer-aided Diagnosis” OR “Computer aided
Diagnosis” OR Perceptronx OR “Convolutional Network” OR “Recurrent Networksx”
OR “Graph Network«” OR “Deep Learnx” OR “Deep-Learnx” OR Backpropx OR
“support vectorx” OR ensemblex OR “random forest+” OR “nearest neighbor+” OR
“nearest neighbourx” OR “k-nearest neighborx” OR “k-nearest neighbourx” OR “Gra-
dient boostx” OR “XGBoostx” OR “segmentation” OR “instance learning” OR “multi-

instance learning” OR “Active Learning”)

Search #2:

Title-Abstract-Keyword: (“Al” OR (“ML’ NOT (“x u mI” OR “xg ml” OR “xui mI” OR “xUl
ml” OR “«iu mlI” OR “xu mlI” OR “«g ml” OR “xml kg” OR milliliterx))) in Title Abstract
Keyword
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Search #3:

All text: (((ovarx OR fallopian) AND (cancerx OR massx OR carcinomax OR tumoursx
OR tumorx OR neoplasms OR malignanx)) OR “peritoneal cancer” OR “peritoneal

carcinoma” OR “peritoneal tumox”)

AND ((digitx AND patholog+) OR “computational patholog+” OR “tissue microarrayx”
OR histopath« OR histolog+x OR “Whole Slide Imag*” OR “Tissue slidex” OR “pathol-
ogy slidex” OR “pathology imagex” OR Immunohistochemx OR ((Haematoxylin OR
Hematoxylin) AND Eosin))

Final search:

(#1 OR #2) AND #3

A5 WHO-ICTRP

((“Machine learnx” OR “Artificial Intelligen«x” OR “Computer Vision” OR “Neural
networkx«” OR “Deep Network«” OR “Computer-aided Diagnosis” OR “Computer aided
Diagnosis” OR Perceptronx OR “Convolutional Network” OR “Recurrent Networksx”
OR “Graph Network«” OR “Deep Learnx” OR “Deep-Learnx” OR Backpropx OR
“support vectorx” OR ensemblex OR “random forestx” OR “nearest neighborx” OR
“nearest neighbourx” OR “k-nearest neighbor«” OR “k-nearest neighbourx” OR “Gra-
dient boostx” OR “XGBoost+” OR “segmentation” OR “instance learning” OR “multi-
instance learning” OR “Active Learning”) OR (“Al” OR (“ML’ NOT (“u/ml” OR “g/ml” OR
“ui/ml” OR “Ul/mI” OR “iu/ml” OR “u/ml” OR “g/ml” OR “ml/kg” OR milliliterx))))

AND (((ovar+ OR fallopian) AND (cancer+ OR mass* OR carcinomax OR tumoursx
OR tumorx OR neoplasm« OR malignanx)) OR “peritoneal cancer” OR “peritoneal

carcinoma” OR “peritoneal tumox”)

AND ((digitx AND patholog«) OR “computational patholog+” OR “tissue microarrayx”
OR histopathx OR histologx OR “Whole Slide Imag*” OR “Tissue slidex” OR “pathol-
ogy slidex” OR “pathology imagex” OR Immunohistochems OR ((Haematoxylin OR
Hematoxylin) AND Eosin))
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B PRISMA 2020 Reporting Checklist

The following PRISMA 2020 reporting checklist is from the published version of the

systematic literature review presented in Chapter 3.

PRISMA 2020 Checklist
Title ‘ 1 ‘ Identify the report as a systematic review. Page 1 line 1
ABSTRACT
Abstract [ 2] See the PRISMA 2020 for Abstracts checklist. Page 1
INTRODUCTION
Rationale ‘ 3 ‘ Describe the rationale for the review in the context of existing knowledge. Page 2 final paragraph
Objectives ‘ 4 ‘ Provide an explicit statement of the objective(s) or question(s) the review addresses. Page 2 final paragraph
METHODS
Eligibility criteria 5 | Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses. Page 3 - “Literature
Selection”
Information 6 | Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Page 2-3 “Literature
sources Specify the date when each source was last searched or consulted. Search”
Search strategy 7 | Present the full search strategies for all databases, registers and websites, including any filters and limits used. Page 20-21 “Appendix
A
Selection process 8 | Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened Page 3 - “Literature
each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the Selection”
process.
Data collection 9 | Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they Page 3-4 - “Data
process worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation | Synthesis”
tools used in the process.
Data items 10a | List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain Page 3-4 - “Data
in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to Synthesis”
collect.
10b | Listand define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Page 22 - “Appendix
Describe any assumptions made about any missing or unclear information. B”
Study risk of bias 11 | Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers Page 3 - “Risk of Bias
each study and whether they worked and if i details of ion tools used in the process. Analysis”
Effect measures 12 | Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results. Page 11-12 - “Analysis
in Included Literature”
Synthesis 13a | Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention Page 4 - “Data
methods characteristics and comparing against the planned groups for each synthesis (item #5)). Synthesis”
13b | Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or NA
data conversions.
13c | Describe any methods used to tabulate or visually display results of individual studies and syntheses. Page 4 - “Data
Synthesis”
13d | Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe Page 4 - “Data
the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used. Synthesis”
13e | Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta- NA
regression).

Figure B.1 PRISMA 2020 Checklist Page 1.
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PRISMA 2020 Checklist

Section and
T
13f | Describe any sensitivity analyses conducted to assess robustness of the synthesized results. NA
Reporting bias 14 | Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases). NA
assessment
Certainty 15 | Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome. NA
assessment
RESULTS
Study selection 16a | Describe the results of the search and selection process, from the number of records identified in the search to the number of studies | Page 4 & 5 — “Results”
included in the review, ideally using a flow diagram.
16b | Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded. NA
Study 17 | Cite each included study and present its characteristics. Page 7 - “Table 2"
characteristics
Risk of bias in 18 | Present assessments of risk of bias for each included study. Page 6 - “Table 1"
studies
Results of 19 | For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its | Page 9 — “Table 3"
individual studies precision (e.g. confidence/credible interval), ideally using structured tables or plots.
Results of 20a | For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies. Page 4 & 10-12 —
syntheses “Results™
20b | Present results of all statistical synlheses conducted. If meta-; analysw was done, present for each the summary estimate and its NA
precision (e.g. interval) and of heterogeneity. If comparing groups, describe the direction of
the effect.
20c | Present results of all investigations of possible causes of heterogeneity among study results. NA
20d | Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results. NA
Reporting biases 21 | Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed. NA
Certainty of 22 | Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed. NA
evidence
DISCUSSION
Discussion 23a | Provide a general interpretation of the results in the context of other evidence. Page 12 —
“Discussion”
23b | Discuss any limitations of the evidence included in the review. Page 13-14 “Current
Limitations and Future
Recommendations”
23c | Discuss any limitations of the review processes used. Page 13 - “Limitations
of the Review”
23d | Discuss implications of the results for practice, policy, and future research. Page 13-14 “Current
Limitations and Future
Recommendations”
OTHER INFORMATION
Registration and Provide registration information for the review, including register name and registration number, or state that the review was not

protocol

‘ 24a

|

registered.

Page 3 - “Literature
search”

Figure B.2 PRISMA 2020 Checklist Page 2.

PRISMA 2020 Checklist

Location where
rted

re
24b | Indicate where the review protocol can be accessed, or state that a protocol was not prepared. Page 3 - “Literature
search”
24c | Describe and explain any toi provided at or in the protocol. Page 3 - “Data
Synthesis”
Support 25 | Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review. Page 15 —
“Acknowledgements”
Competing 26 | Declare any competing interests of review authors. Page 15 — “Competing
interests Interests”
Availability of 27 | Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from Page 3 - “Data
data, code and included studies; data used for all analyses; analytic code; any other materials used in the review. Synthesis”
other materials

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi:

10.1136/bmj.n71

For more information, visit: http://www.prisma-statement.org/

Figure B.3 PRISMA 2020 Checklist Page 3.
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C TRIPOD+AIl Reporting Checklist

The following TRIPOD+AI reporting checklist is from the preprint paper created from

the work presented in Chapter 7.

TrRAPOD+,

Version: 11-January-2024

. X Development o
Section/Topic Ttem / evaluation' Checklist item Reported
TITLE on page
Title ) DIE Identify the study as developing or cvaluating the performance of a multivariable prediction model, the 1
: target population, and the outcome to be predicted
ABSTRACT
Abstract [ 2 D;E See TRIPOD-+AL for Abstracts checklist 1-2
INTRODUCTION
Background B . Explain the healtheare context (ineluding whether diagnostic or prognostic) and rationale for developing | »_g
a D:E -
or evaluating the model, including references to existing models
: Describe the target population and the intended purpose of the prediction model in the context of the
3b D:E | 2-3
care pathway, including its intended users (e.g., patients, public)
3c D:E Describe any known health inequalities between sociod hic groups 3
Objectives 4 DIE Specify the study objectives, including whether the study describes the development or validation of a 4
N prediction model (or both)
METHODS
Data Describe the sources of data separately for the P! and ion datasets (e.g.,
5a D:E trial, cohort, routine care or registry data), the rationale for using these data, and representativeness of 4-5
the data
sb DE Specify the dates of the collected participant data, including start and end of participant accrual; and, if 4.5
o i end of follow-up
Participants P D Specify key elements of the study setting (¢.g., primary care, secondary care, general population) 45
- including the number and location of centres -
6b DiE Describe the eligibility criteria for study T 45
6 DE Give details of any treatments reccived, and how they were handied during model development or 45
N if relevant i
Data preparation ; DE Describe any data pre-processing and quality checking, including whether this was similar across 4.5
: relevant sociodemographic groups B
Quitcome Clearly define the outcome that is being predicted and the time horizon, including how and when
8a DE assessed, the rationale for choosing this outcome, and whether the method of outcome assessment is 4-5
i across sociod hic groups
) If outcome requires subjecti pretation, describe the qualifications and demographic
8b D:E ! N 4-5
characteristics of the outcome assessors
8¢ D:E Report any actions to blind of the outcome to be predicted N/A
Predictors % D Describe the choice of initial predictors (e.g., literature, previous models, all available predictors) and 4-6
any pre-selection of before model building
o DE Clearly define all predictors, including how and when they were measured (and any actions to blind 4.5
N of predi for the outcome and olhcr di
. If predictor requires subjecti pretation, describe the qualifications and demographic
9 DiE characteristics of the predictor assessors N/A
Sample size Explain how the study size was arrived at for and ion), and justify that
10 D:E the study size was sufficient to answer the rescarch question. Include details of any sample size 4-5
Missing data 11 D:E Describe how missing data were handled. Provide reasons for omitting any data N/A
Analytical methods | |5 Describe how the data were used (e.g.. for development and evaluation of model performance) in the 6-10
analysis, including whether the data were partitioned, considering any sample size requi -
12b D Depending on the type of model, descnbe how predictors were handled in the analyses (functional form, 6-10
rescaling, transformation, or an: "
12¢ b Specify the type of model, rationale?, all model-building steps, including any hyperparameter tuning, 6-10
B and method for internal validation
Describe if and how any heterogeneity in estimates of model parameter values and model performance
12d DiE was handled and quanuucd across clusters (e.g., hospitals, countries). See TRIPOD-Cluster for N/A
126 DIE Specify all measures and plots used (and their rationale) to evaluate model performance (e.g., 910
N discr ion, clinical utility) and, if relevant, to compare multiple models -
ot E Describe any model updating (¢.g., recalibration) arising from the model evaluation, either overallor for |\
particular soci ic groups or settings
120 E For model evaluation, describe how the model predictions were calculated (¢.g., formula, code, object,
e interface) 9-10
Class imbalance 13 D:E If ¢l imbalance methods were used, state why and how this was done, and any subsequent methods to 9-10
N recalibrate the model or the model predictions
Fairness 14 D:E Describe any approaches that were used to address model fairness and their rationale N/A
Model ourput s b Specify the output of the prediction model (e.g., ilitics, classification). Provide details and
rationale for an ion and how the thresholds were identified 7,9-10
! D=items relevant only to the development of a prediction model; E=items relating solely to the evaluation of a prediction model; D;E=items applicable
to both the develoy and of a prediction model
2 Separately for all model building approaches.
3 TRIPOD-Cluster is a checklist of reporting dations for studies developing or validating models that explicitly account for clustering or explore
heterogeneity in model performance (eg, at different hospitals or centres). Debray cl al BMJ 2023; 380: ¢071018 [DOTI: 10.1136/bmj-2022-071018]
Page 10f 2

Figure C.1 TRIPOD+AIl Checklist Page 1.
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TRAPOD+XI

Version: 11-January-2024

Training versus 6 D Identify any differences between the pment and ion data in setting, cligibility 45
evaluation N criteria, outcome, and i
Ethical approval . DE Name the institutional research board or ethics committee that approved the study and describe the 23
; participant-informed consent or the ethics committee waiver of informed consent
OPEN SCIENCE
Funding 18a D:E Give the source of funding and the role of the funders for the present stud; 23-24
Clonflcts of 186 DE Declare any conflicts of interest and financial disclosures for all authors 24
Protocol 18¢c D:E Indicate where the study protocol can be accessed or state that a protocol was not prepared 23-24
Registration . Provide registration information for the study, including register name and registration number, or state
18d D:E ; 23-24
that the study was not registered
Data sharin, 18¢ D:E Provide details of the availability of the study data 23-24
Code sharin, 18f D; Provide details of the availability of the analytical code* 24
PATIENT & PUBLIC INVOLVEMENT
1o Provide details of any patient and public involvement during the design, conduct, reporting, 23-24
dy or state no involvement.
RESULTS
Participants 20a D:E Describe the flow of participants through the study, including the number of participants with and 4-7
N without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful, -
Report the characteristics overall and, where applicable, for each data source or setting, including the
200 DE key dates, key predi (including d hics), b received, sample size, number of 46
g outcome events, follow-up time, and amount of missing data. A table may be helpful. Report any -
differences across key demographic groups.
20¢ E For model evaluation, show a comparison with the development data of the distribution of important 4-6
i i i and outcome).
Model development || DE Specify the number of participants and outcome events in each analysis (e.g., for model development, 46
N tuning, model evaluation)
Model Provide details of the full prediction model (c.g., formula, code, object, application programming
specification 22 D interface) to allow ictions in new indivi and to cnable third-party ion and . 6-10
implementation, including any restrictions to access or re-use (c.g.. freely available, proprictary)®
Model ) Report model performance estimates with confidence intervals, including for any key subgroups (e.g..
performance 23 DiE sociodemographic). Consider plots to aid presentation. 11-12,28-31
23b DE If examlved, repgn resulls‘ni any heterogeneity in model performance across clusters. See TRIPOD N/A
Cluster for additional details’.
Model updating 24 E Report the results from any model updating, including the updated model and sub performance N/A
DISCUSSION
Interpretation Give an overall interpretation of the main results, including issues of fairness in the context of the
25 D:E e : 18-22
objectives and previous studies
Limitations 2% D:E Discuss any limitations of the study (such as a non-representative sample, sample size, overfitting, 18-22
" missing data) and their effects on any biases, statistical uncertainty, and generalizability
Usability of the 7 b Describe how poor quality or unavailable input data (c.g., predictor values) should be assessed and 1822
model in the handled when implementing the prediction model
context of current [~ b Specify whether users will be required to interact in the handling of the input data or use of the model, 21
care and what level of expertise is required of users
. Discuss any next steps for future rescarch, with a specific view to applicability and generalizability of
27¢ D:E 21
the model
From: Collins GS, Moons KGM, Dhiman P, et al. BMJ 2024;385:¢078378. doi:10.1136/bmj-2023-078378
4 This relates to the analysis code, for example, any data cleaning, feature engincering, model building, evaluation.
3 This relates to the code to implement the model to get estimates of risk for a new individual.
Page 2 of 2

Figure C.2 TRIPOD+AIl Checklist Page 2.
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D Results of Hypothesis Testing

The following results are supplementary to the hyperparameter tuning ablation in

Section 7.3.3.
Cross-Validation p-values Hold-out p-values
Model Balanced - \;;p0¢  F1 score | B2l pyroc  F1 Score
Accuracy Accuracy

RN50 0.617 0.264 0.133 0.171 0.252 0.133
RN18 0.967 0.259 0.170 0.326 0.252 0.170
ViT-L 0.012 0.005 0.010 0.006 0.095 0.010
RN18-Histo 0.002 0.095 0.145 0.086 0.671 0.145
Lunit 0.555 0.011 0.168 0.054 0.124 0.074
RN50-Histo 0.864 0.630 0.902 0.912 0.100 0.895
CTransPath 0.144 0.987 0.042 0.030 0.099 0.042
Hibou-B 0.159 0.069 0.009 0.008 0.207 0.009
Phikon 0.709 0.280 0.741 0.619 0.114 0.741
Kaiko-B8 0.039 0.089 0.124 0.099 0.063 0.124
GPFM 0.500 0.029 0.236 0.262 0.055 0.236
UNI 0.003 0.015 0.021 0.033 0.614 0.021
Hibou-L 0.104 0.050 0.070 0.019 0.193 0.016
Virchow 0.039 0.059 0.104 0.069 0.076 0.104
Virchow2-CLS 0.194 0.035 0.095 0.083 0.108 0.095
H-Optimus-0 0.111 0.069 0.133 0.119 0.089 0.133
Prov-GigaPath 0.412 0.297 0.215 0.194 0.035 0.215

Table D.1

ABMIL classifier. Values below 0.05 are indicated in bold.

Transcanadian Study p-values

OCEAN Challenge p-values

Balanced

Balanced

Model AUROC F1 Score AUROC F1 Score
Accuracy Accuracy

RN50 0.190 0.178 0.219 0.303 0.098 0.716
RN18 0.240 0.217 0.106 0.339 0.056 0.279
ViT-L 0.014 0.109 0.014 0.001 0.006 0.021
RN18-Histo 0.578 0.774 0.973 0.212 0.182 0.620
Lunit 0.099 0.774 0.099 0.104 0.049 0.056
RN50-Histo 0.601 0.135 0.479 0.818 0.023 0.605
CTransPath 0.853 0.341 0.998 0.790 0.630 0.562
Hibou-B 0.300 0.076 0.286 0.700 0.172 0.590
Phikon 0.740 0.085 0.306 0.119 0.467 0.189
Kaiko-B8 0.213 0.125 0.342 0.102 0.014 0.028
GPFM 0.386 0.120 0.405 0.861 0.080 0.176
UNI 0.370 0.085 0.959 0.002 0.008 0.014
Hibou-L 0.087 0.040 0.003 0.142 0.004 0.196
Virchow 0.478 0.379 0.460 0.049 0.012 0.057
Virchow2-CLS 0.057 0.871 0.057 0.017 0.066 0.035
H-Optimus-0 0.167 0.751 0.192 0.866 0.054 0.168
Prov-GigaPath 0.274 0.060 0.209 0.258 0.124 0.416

Resulting p-values from paired t-tests comparing the subtype classification
results for each feature extractor with and without hyperparameter tuning applied to the
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E Supplementary Attention Heatmap Analysis

This section contains supplementary information about the analysis of heatmaps
performed in Chapter 7. Two pathologists (KA and NMO) qualitatively compared the
UNI and ImageNet-pretrained ResNet50 attention heatmaps for ten class-balanced
example WSiIs from the internal hold-out test set. These WSIs (shown in Figures 5.1,
E.1, and E.2) were selected from those in which a different classification had been
determined by each model (specifically using the first-fold model of the five-model
ensemble). Out of 39 total disagreements, the UNI-based model gave the correct
classification in 26 cases, the ResNet50-based model in 3 cases, and neither was
correct in 10 cases. The pathologists were only provided the heatmaps, and were

blinded to the models used and the predictions made.

The heatmaps were determined to be similar between models, with both giving
high attention to tumour regions and low attention to most stroma regions. Where
differences occurred, the ResNet50-based model typically gave high attention to
a larger tissue area, often including relevant stromal features (e.g. necrosis and
psammoma bodies), but sometimes also including irrelevant stroma. When considering
whether heatmaps had focused on diagnostically relevant regions, the pathologists
expressed a preference for the UNI-based heatmap in four cases and the ResNet50-
based heatmap in three cases, with no preference expressed for the remaining three
cases due to their overwhelming similarity. In eight of the selected cases, the UNI
model had correctly determined the classification, including all three cases in which
the pathologists had preferred the ResNet50-based heatmap. In these cases, the
UNI model did not appear to give sufficient attention to all relevant tissue, though it
still determined the correct classification. Thus, there was some level of divergence

between the pathologists’ interpretations and the model heatmaps.
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Figure E.1 Attention heatmaps from the ABMIL classifier using ImageNet-pretrained
ResNet50 and UNI foundation model features, where the classification differed be-
tween the two models. (a) Ground truth: MC, ResNet50: CCC, UNI: MC. (b) Ground
truth: CCC, ResNet50: HGSC, UNI: CCC. (c) Ground truth: EC, ResNet50: HGSC,
UNI: EC. (d) Ground truth: LGSC, ResNet50: HGSC, UNI: LGSC.
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Whole Slide Image ResNet50 Heatmap UNI Heatmap

(e)

Figure E.2 Attention heatmaps from the ABMIL classifier using ImageNet-pretrained
ResNet50 and UNI foundation model features, where the classification differed be-
tween the two models. (e) Ground truth: LGSC, ResNet50: HGSC, UNI: LGSC. (f)
Ground truth: HGSC, ResNet50: HGSC, UNI: EC. (g) Ground truth: HGSC, ResNet50:
HGSC, UNI: EC. (h) Ground truth: EC, ResNet50: HGSC, UNI: EC.
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F Predicting Treatment Response

This section is based on work conducted to predict treatment response from ovarian
cancer WSiIs as part of the ATEC23 challenge [189] at MICCAI 2023. This strand of our
research has not yet been continued due to a lack of high-quality data for prognostic
tasks in ovarian cancer digital pathology. We instead continued to focus on histological

subtyping, where there was sufficient data to conduct rigorous validations.

F.1 Introduction

Treatment options are guided by the stage, grade, and morphological subtype of
ovarian cancer, and can often involve surgery, chemotherapy, and increasingly, im-
munotherapy. However, response to therapy can vary significantly, and the underlying
causes are not well understood despite significant progress in defined subgroups,
such as homologous recombination deficient tumours [269]. Due to this knowledge
gap, some patients may be exposed to the adverse effects of a given therapy without
deriving any clinical benefit. The ATEC23 challenge aimed to identify non-responders

using pre-treatment histopathology WSIs alone.

Studies reporting higher accuracy in this particular area have used IHC panels [152],
with performance being poorer in studies using H&E-stained tissue [124, 147]. A
prediction model using H&E WSIs alone would offer greater clinical benefit given
that this staining method is routine in all histopathological diagnostic interpretation of
ovarian cancer specimens. Instead, dependence on IHC staining would add financial

and time burdens to the diagnostic pathway.

An H&E baseline model was developed by the ATEC23 challenge organisers [147], in
which a hierarchical attention approach was used to segment the most relevant tissue.
ABMIL was then applied to this segmented tissue to classify WSIs. The reported
results from 5-fold cross-validation presented an accuracy of 88.2% and an F1 score
of 0.917, although the reported accuracy on an independent test set was no greater

than random guessing.

None of the previous ovarian cancer treatment response studies have employed

methods that capture spatial relationships within WSIs, such as vision transformers
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[62] or graph networks [270]. Such methods are likely to be beneficial as there are
established correlations between patient prognosis and the spatial arrangement of cel-
lular structures visible in WSIs, with tumour-infiltrating lymphocytes being associated
with survival in some ovarian cancer subtypes [34]. For this challenge, we combined
vision transformers with ABMIL to classify whether patients would respond to a specific
course of bevacizumab-based therapy from histopathology WSIs alone, as defined by

measurable recurrence/progression within 6 months of treatment.

F.2 Methods

Figure F.1 Eight whole slide images from the ATEC23 challenge training set

The challenge training data [271] comprised 288 H&E-stained tissue section WSIs from
78 tubo-ovarian and primary peritoneal cancer patients, of which 53 were determined
to have an effective response to treatment, and 25 were determined to have an
invalid response to treatment. We used 282 WSIs from 78 patients due to two
WSIs being inaccessible, two being duplicated, and two being erroneously excluded.
All patients received debulking surgery, chemotherapy, and bevacizumab therapy,
with treatment classified as effective if CA-125 levels fell and there was no tumour
progression/recurrence found in CT/PET images within 6 months of treatment. All
samples were originally collected from a single data centre and scanned using a single
Leica AT Turbo scanner at 20x magnification. Patients had a range of morphological
subtype diagnoses, including HGSC (n=58), CCC (n=7), unclassified carcinoma (n=7),
EC (n=4), and MC (n=2). The slides in the dataset were highly heterogeneous

(Figure F.1). Samples appeared to include a combination of adnexal, omental, and
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lymph node tissue, with some slides having differing colour profiles and artefacts,
such as pen markings. An independent challenge test set was collected at the same
data centre, consisting of 180 H&E-stained TMA single core images from patients
diagnosed with HGSC.

Our HIPT-ABMIL classification approach, shown in Figure F.2, used ABMIL to classify
WSiIs based on region-level (4096 x 4096 pixel) features encoded through a two-stage
vision transformer [83]. Before modelling, we used Otsu thresholding to segment
tissue, then extracted 4096 x 4096 non-overlapping tissue regions for modelling. On
average, the tissue patching procedure generated 91 regions per slide (range of 13 to
166).

Segment Tissue with Extract 4096x4096
Otsu Thresholding Pixel Tissue Regions

Take Whole Slide Image (WSI)

O
3

AN
~\t
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7\

7

&
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%

Effective
Treatment
(0.871)
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O
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LN

7

Classify WSI Through Generate 1x192 Calculate Attention Encode Regions to
Neural Network WSI Feature Vector Score for Each Region 1x192 Feature Vectors

Figure F.2 HIPT-ABMIL whole slide image classification pipeline.

We extracted features from each tissue region using the two-stage Hierarchical Image
Pyramid Transformer (HIPT_4K) [83]. This approach first uses a vision transformer
[62] to aggregate cell-level information (16 x 16 pixels) to patch-level (256 x 256), then
uses a second vision transformer to aggregate patch-level information to region-level
(4096 x 4096). This feature extractor was pretrained using over ten thousand total

histopathology slides from 33 cancer types using the self-supervised method DINO
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[242]. We trained the ABMIL network using these HIPT region embeddings to classify
WSIs. We also compared three other approaches - HIPT-CLAM, ResNet-ABMIL, and
HistoResNet-ABMIL. HIPT-CLAM replaced the ABMIL classifier with CLAM. ResNet-
ABMIL was the baseline model described in Section 4.1. HistoResNet-ABMIL was
the same model but with features extracted through a ResNet18 encoder which was
pretrained on a collection of 57 histopathology datasets [224] using the self-supervised
technique SImCLR [240]. The smaller patch size in the ResNet approaches gave more
patches per slide, with an average of 20214 (range of 2043 to 38828).

We trained our models using a cross-entropy loss and an Adam optimiser. As shown in
Table F.1, we tuned hyperparameters across 5-fold cross-validation experiments, using
a grid search strategy for five hyperparameters. The parameters were the learning
rate, dropout rate, weight decay, model size, and number of patches per slide for
training. The model size hyperparameter controlled the dimension of the attention
layer, and the subsequent hidden layer in the classification network had a dimension
half this size. One extra hyperparameter, B, was tuned for the CLAM model, which
controlled the number of regions which were clustered in feature space during training.
Each tuning configuration was repeated three times and the average loss was taken to
account for random variations. Multiple stages of hyperparameter grid tuning were
used, with earlier runs covering a wider range of parameters and influencing the
hyperparameter options available in later stages. Each model was evaluated with over

500 total hyperparameter configurations.

We selected the hyperparameters which minimised the average validation loss across
the 5-fold cross-validation to train the final model. Internal performance was measured
on the cross-validation test sets, and the same hyperparameters were used to train
a 4-fold ensemble model with 75%-25% train-val splits, with the mean predictions
for the external TMA images submitted to the ATEC23 challenge. Due to the
relatively small size of test set images, each one was represented as a single
4096 x 4096 region. All experiments were run on the HPC and code was made
available at https://github.com/scjjb/HIPT_ABMIL_ATEC23, alongside further details of

the hyperparameter tuning.
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Hyperparameter Function Initial :I'uning Second_ Tuning Third '_I'uning Fina.l
Options Options Options Selection
Sets the rate of change
Learning Rate of model parameters trained | 1e-3, 1e-4, 1e-5 | 1e-3, 5e-4, 1e-4 1e-3, 5e-4 1e-3
using the Adam optimiser
Sets the proportion
Dropout Rate of model weights to drop 0.25,0.5,0.75 0.6, 0.75, 0.9 0.8,0.85,0.9, 0.95 0.85
in each training iteration
Regularisation | S°tS thelevel of weightdecay | 4 o 1o 3 10 4| 6.1, 16-2, 16-3 | 160, -1, 1e-1,56-2 |  5e-1
in the Adam optimiser
Attention Sets the size of the attention
. layer, with the following hidden 64, 32, 16 32,16, 8 32,16 16
Layer Size . .
layer size set to half of this
Sets the number of patches
Patches per Slide | randomly selected from each 25,50, 75 25,50, 75 50, 75, 100 75
slide per training epoch

Table F.1

HIPT-ABMIL hyperparameters tuned using a three-stage grid search. The

same hyperparameters were tuned for ResNet-ABMIL and HistoResNet-ABMIL. An
additional hyperparameter was tuned for HIPT-CLAM to set the number of regions used
for clustering [78].

F.3 Results and Discussion
Method Balanced AUROC Accuracy F1 Score
Accuracy
Challenge Baseline* [147] NA NA 88.2% + 6%* 0.917 + 0.07*
HIPT-ABMIL 60.2% +2.9% 0.646 +=0.033 61.0% +2.9% 0.656 + 0.031
HIPT-CLAM 57.6% +2.9% 0.624 +£0.033 58.9% +2.9% 0.650 + 0.031
ResNet-ABMIL 52.7% +2.9% 0.569 £ 0.034 54.3% +3.0% 0.617 £ 0.031
HistoResNet-ABMIL 58.1% +2.9% 0.655 +0.032 59.6% +2.9% 0.660 + 0.030

Table F.2 5-fold cross-validation classification performance on the internal 282 WSIs
(mean + standard deviation from 100,000 iteration bootstrapping). *The best results
are highlighted in bold except for the baseline results, which were generated by
different researchers using different validation methods [147], as described in the
Discussion.

The HIPT-ABMIL model had the greatest performance for two evaluated metrics
and HistoResNet-ABMIL had the greatest performance for the other two. On the
internal 5-fold test set, the HIPT-ABMIL model achieved a balanced accuracy of
60.2%=+2.9%, AUROC of 0.646+0.033, and F1 score of 0.656+0.031 (mean =+ one
standard deviation from 100,000 iteration bootstrapping).
varied, with the AUROC per cross-validation fold being 0.381-0.825. There were

The results were highly

also large differences between validation and test set performance in most folds,
including a fold where validation AUROC was 0.400 higher (0.781 vs. 0.381) and
another where test AUROC was 0.389 higher (0.436 vs. 0.825). The performance of
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the histopathology-pretrained models was much greater than the ImageNet-pretrained
ResNet-ABMIL, which achieved just 52.7% balanced accuracy, barely greater than
random guessing. No clear classification benefit was found from using hierarchical
transformers compared to a ResNet, or from using CLAM rather than standard ABMIL.
The optimal HIPT-ABMIL and HistoResNet-ABMIL models were each applied to the
external ATEC23 TMA test set, though neither generalised well to this data (accuracies

of 35% and 55% respectively).
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Figure F.3 Receiver operating characteristic (ROC) curves and the AUROC for each
model from 5-fold cross-validation.

Our internal performance scores were much lower than the reported performance of
the baseline approach (optimal F1 of 0.660 compared to 0.917, accuracy of 60.2%
compared to 88.2% [147]). However, this is unlikely to be a fair comparison due to
differences in the pre-processing, validation, and data used. Further validation would
be beneficial in evaluating both approaches as there is a high risk that results were
artificially inflated by confounding and bias caused by the high levels of heterogeneity
in the relatively small dataset. We partially mitigated this by splitting data into
train-val-test splits per patient, reducing the unduly high level of correlation between
training and testing sets. However, there were other likely confounders which were

not adequately controlled, with the dataset containing small quantities of WSIs with
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significant differences to the majority, such as different histological subtypes (HGSC,
CCC, EC, MC, and unclassified carcinomas), tissue types/background histology
(omentum, peritoneum, lymph node) and artefacts (pen markings, image stitching,
out of focus regions). Such confounding could be moderated by using a larger, more
clinically representative dataset. The large standard deviations in the results were also
likely attributable to the relatively small dataset size, with a 95% confidence interval
for the optimal balanced accuracy being 54.5% to 66.0%. No challenge participant
achieved an accuracy greater than random chance, which may indicate that TMAs do

not contain sufficient prognostic information.

The clinical utility of these models would benefit from a more precise and clinically
relevant definition of outcome, as the ATEC23 binary classification grouped patients
who relapsed after just over 6 months together with patients who never relapsed.
Significant consideration should be given to the impact of carcinoma stage, grade
and morphological subtype on outcome beyond the Cox models presented in previous
research, which found strong but not statistically significant correlations between the
subtype and outcome, and between the stage and outcome [147]. Further details
about the cohort’s patients in terms of their differing responses to platinum-based
chemotherapy would also be informative as the model may be predicting response

to a mixture of combination and single-agent therapies.

—_—

(a) Raw histopathology slide (b) Corresponding ABMIL (c¢) Corresponding ABMIL
from the ATEC23 challenge heatmap from the initial heatmap from the final
training set. HIPT-ABMIL model. HIPT-ABMIL model.

Figure F.4 Example of a WSI in which the initial model heatmap exhibited a high level
of confounding, as evidenced by the background receiving greater attention than the
tissue. In the final model, the tissue segmentation preprocessing step was improved to
avoid including background, leading to heatmaps that do not exhibit clear confounding.

In our initial experiments, attention heatmaps showed that, in some WSIs, background

regions were given much higher attention scores than tissue regions, indicating that
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these slides were being classified according to irrelevant information. The chromatic
variability of WSIs was leading to inconsistent tissue segmentations, with some
including a large amount of non-tissue areas. As a result, we adjusted our tissue
segmentation parameters to achieve a more consistent performance, with the changes
to a resulting heatmap shown in Figure F.4. All results presented in this paper were
generated using these updated segmentations. Before this update, our 5-fold cross-
validation accuracy was 89.7% and the F1 score was 0.915, which was very similar
to the reported baseline model performance [147]. Improving the initial background
segmentation significantly reduced internal classification performance, indicating that
the slide backgrounds contained confounding information that could artificially inflate
internal performance. This highlights the need for explainability in digital pathology Al

to understand any model’s decision-making process.

F.4 Conclusion

Overall, it is unclear whether treatment response can be accurately predicted from
ovarian cancer histopathology slides alone, with our results indicating that WSIs may
contain some prognostic signal that can be leveraged using hierarchical transformers
and ABMIL. We found that it was beneficial to use feature extractors that were pre-
trained using large sets of histopathology data, though did not find transformer-based
models to outperform ResNet-based models. Given that the internal experiments were
conducted on a set of only 282 histopathology WSIs from 78 patients and that external
validations were conducted only on TMAs, more robust validations are required before

the scale of the clinical utility of these algorithms can be adequately evaluated.
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L K X P serous (5%)
+ Training and inference times are significantly

accuracy, macro AUROC, and macro F1 score

. i 9 y
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(and perhaps a slight improvement) computer (HPC) and personal computer (PC)
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Lower magnifications performed at least as well as the clinical standard 40x
while running much faster. Overall, 5x and 10x magnifications gave the best linkedin.com/in/jackjbreen
trade-off between speed and accuracy for ovarian cancer subtyping. github.com/scjjb/Ovarian_Subtype_Mags
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* Ovarian cancer subtypes are fundamentally
distinct diseases! with different genetics,
prognoses, and treatments

Graph networks can be integrated with
multiple instance learning (MIL) to learn
spatial context in pathology slides
Multi-resolution graphs often discard a high
proportion of patches, we utilise all data
Graphs offer a small benefit over attention-
based multiple instance learning (ABMIL)?
UNI® foundation model greatly improved
performance over ImageNet-trained ResNet
External validation balanced accuracies of 99%
and 77% may justify real-world testing

99% balanced accuracy is the greatest ever
external validation performance for this task
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* Patch features extracted using UNI

Endometrioid histopathology foundation model

(10%) « Attention-based graph message passing
and pooling layers (GATv2, SAGPool)
* Final subtype classification through fully
Cle(;;:)e” connected layer with 5 output nodes
* 13 hyperparameters tuned by iterative
grid-search (100+ configurations)
Low-grade * Models trained through 5-fold cross-
serous (5%) validation and ensembled for hold-out
testing and two external validations
Mucinous + Balanced accuracy, AUROC, and F1 score
(3%) * Results reported with 95% confidence

intervals from 10,000 bootstraps
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