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Abstract

Digital pathology is a rapidly growing field, allowing for the development of assistive diagnostic

tools. Many tools use artificial intelligence (AI) to automatically provide insights from whole slide

images (WSIs), aiming to improve the accuracy, objectivity, and efficiency of the diagnostic

process. Research has typically focused on the most common cancers, but less common

cancers have received comparatively little attention. We focus on the histological subtyping of

ovarian cancer, an essential diagnostic task for determining optimal treatments and prognoses.

Through a systematic literature review, we find that previous research has been limited to model

prototyping with small homogeneous datasets, with little focus on clinical utility. We perform

the most thorough analyses of automated ovarian cancer histological subtyping to date, using

the largest training dataset and evaluating models through cross-validation, hold-out testing,

external validations, bootstrapping, and hypothesis testing. Analyses are based on attention-

based multiple instance learning (ABMIL) with an ImageNet-pretrained ResNet50 backbone,

a commonly used WSI classifier. The computational complexity of current AI models is a key

limitation, with pathology labs typically not having sufficient hardware for model deployment. We

propose an active tissue sampling technique and show that this approach can drastically reduce

the computational burden of inference with minimal impact on diagnostic performance. ABMIL

analyses tissue at only a single magnification, with high magnifications offering more cellular

detail and low magnifications providing broader tissue context. We find that 10x magnification

balances the cellular and histoarchitectural details to give the most accurate ovarian cancer

subtyping performance, while drastically reducing the computational burden compared to the

clinical standard 40x magnification. Recently, histopathology foundation models have promised

to revolutionise diagnostic AI. We analyse 14 foundation models and confirm that they give

significantly greater performance than previous feature extractors. In ABMIL, tissue patches are

treated as independent of each other. We propose a multi-resolution patch graph network to

better model spatial context and find this marginally improves performance. The optimal model,

a combination of a foundation model and a graph, achieved five-class balanced accuracies

of 88%, 99%, and 77% in three validation sets, where our baseline model achieved only

66%, 69%, and 52%, and individual pathologists achieved 74-91% concordance with similarly

determined labels. This gives us confidence that AI models could have clinical utility, so future

work should focus on the practicalities of implementation and real-world validation.
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Chapter 1

Introduction

Pathology is an increasingly digitised discipline, with tissue slides scanned at high

magnification to allow diagnostic pathologists to analyse them using a computer rather

than a microscope. Digital pathology offers an opportunity for the development of

computer-aided diagnosis tools to improve the efficiency and accuracy of diagnostic

workflows, which may help to mitigate the severe shortage of available pathologists as

diagnostic workloads continue to grow rapidly. There is a wealth of research in this

field for the most common cancers, such as breast and lung cancers, but much less for

lower-incidence malignancies such as ovarian cancer. Addressing such disparities in

research will be central to ensuring that any benefits from clinical artificial intelligence

(AI) are not confined to a handful of common diseases.

Digital pathology images are vastly larger than the images analysed in typical AI

models, making them particularly challenging to assess. Diagnostically relevant tissue

may form a very small proportion of the entire tissue area, and missing such diagnoses

may have severe consequences for the health of a patient. However, thoroughly

assessing every pixel in such huge images presents computational challenges, both in

the training of a model and in the inference of clinical samples. Therefore, it is pertinent

to design models specifically for use on digital pathology data, with mechanisms to

determine and focus on the most diagnostically relevant tissue, and with particular

consideration for computational efficiency.
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1.1 Aims and Objectives

The primary aim of this research is the development and thorough validation of AI

techniques to classify ovarian cancer subtypes from digitised pathology whole slide

images. It is hoped that such tools may offer significant clinical benefit in improving

the efficiency and accuracy of an essential aspect of cancer diagnosis which is often

time-consuming and resource-intensive. The specific objectives are to:

• Conduct a systematic literature review to characterise and quantify the

risks of bias associated with all previous research investigating diagnostic &

prognostic AI using ovarian cancer digital pathology slides.

• Apply state-of-the-art AI approaches from other pathologies to ovarian cancer

subtyping using the largest ovarian cancer histopathology dataset to date.

• Build upon these previous approaches using novel classification techniques

to boost the efficiency and discriminative ability of the models.

• Rigorously analyse optimal model configurations using hyperparameter tuning

procedures and thoroughly validate classification performance using multiple

validation datasets. Measure discriminative power through multiple metrics,

assess model efficiency, and qualitatively investigate performance.

1.2 Thesis Structure

Following this introductory chapter are eight subsequent chapters. Chapter 2 provides

a clinical overview of ovarian cancer and digital pathology, and a technical overview

of relevant AI methods. Chapter 3 is an extensive review of published literature in

the domain of AI for ovarian cancer diagnosis and prognosis. Chapter 4 describes

the methodology applied throughout the thesis, including explanations of the standard

models, validation methods, and datasets which are used in subsequent chapters.

Chapters 5-8 are primary research chapters, with each focusing on a different aspect

of the slide classification process. Chapter 5 explores approaches for active sampling

for a more efficient slide classification. Chapter 6 is a thorough analysis of how the

tissue magnification affects the efficiency and discriminative ability of a whole slide

classifier. Chapter 7 is a thorough analysis of feature extraction techniques, including
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recently developed histopathology foundation models. Chapter 8 introduces a novel

multi-resolution graph network for slide classification, building upon the lessons learned

in previous chapters. Finally, Chapter 9 provides a summary of the thesis, including the

limitations of the presented work and a view towards the future of research in this field.

These chapters are based on my primary author peer-reviewed articles published in

journals and conference proceedings. Chapter 3 is based on a published systematic

literature review [1] in NPJ Precision Oncology. Chapters 5, 6, and 8 are under-

pinned by conference papers in SPIE Medical Imaging 2023 [5], ISBI 2024 [6], and

MICCAI 2024 [7], respectively. The work underpinning Chapter 7 has recently been

published in NPJ Precision Oncology [2]. Chapters 2 and 4 include work from each of

these publications, as well as a published book chapter [9].
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Chapter 2

Clinical and Technical Background

In this chapter, we provide a clinical background to ovarian cancer, pathological

diagnostics, and in particular, ovarian cancer histological subtyping. We then describe

the wider context of AI in digital pathology the modelling techniques used in the field.

2.1 Ovarian Cancer

In the female reproductive system, egg cells are produced in the ovaries and travel

through the fallopian tubes to the uterus. The ovaries are situated in the lower

(infracolic) compartment of the abdominal cavity, close to the lower digestive and

urinary systems, a dense array of lymph nodes, and a large section of fatty tissue

called the omentum. Ovarian cancer encompasses primary malignant tumours of the

ovaries, fallopian tubes, and peritoneum (the inner lining of the abdominal cavity), with

some research suggesting that these all originate in the fallopian tubes due to the

findings of precursor lesions (serous tubal intraepithelial carcinoma) in patients who

received prophylactic surgery (salpingo-oophorectomy) due to genetic risk factors [13].

Ovarian cancer is the eighth most common malignancy in women worldwide [14]. It is a

notoriously difficult disease to detect due to the disease having vague symptoms similar

to those caused by menopause [15], which is particularly problematic since ovarian

cancer typically affects menopausal and post-menopausal women [16]. Furthermore,

a randomised controlled trial with 200,000 participants found that screening based

on ultrasound imaging and the blood biomarker CA125 did not improve early-stage

diagnosis rates sufficiently to save lives [17].

Without effective screening, ovarian cancer is typically only detected once it has spread

beyond the pelvis, giving a relatively poor prognosis. While overall survival trends

have somewhat improved [18], ovarian cancer remains a particularly deadly disease.

Worldwide, there are 324,000 new cases of ovarian cancer diagnosed each year,

leading to 207,000 deaths [14]. In the UK, overall 1-year and 5-year survival rates



Chapter 2 - Clinical and Technical Background 5

are around 76% and 38%, respectively, with the length of survival depending upon the

histological subtype and stage at diagnosis [19].

Figure 2.1 A digital pathology image containing ovarian biopsies.

In suspected cases, numerous tests may be used to confirm the presence of ovarian

cancer, including diagnostic imaging (radiology), blood tests, and biopsies. Biopsies

(Figure 2.1) contain very little tissue and are often only relied upon for confirming

the presence of cancer, with deeper pathological analysis performed after resection

surgery (Figure 2.2). In the initial surgery, resected tissue typically includes the ovaries,

fallopian tubes, uterus, omentum, and local lymph nodes.

Pathological diagnosis includes classification of the stage, grade, and subtype of the

cancer. International Federation of Gynecology and Obstetrics (FIGO) staging [20] is

used to quantify the spread of primary ovarian cancer based on the primary tumour,

local lymph nodes, and distant metastases. Stage I ovarian cancer is confined to the

ovaries, stage II has spread within the pelvis, stage III has spread within the peritoneum

or retroperitoneal lymph nodes, and stage IV has metastasized further away. Grading

instead measures the abnormality of the cancer cells, which in turn represents how

aggressively a cancer is likely to behave. This was historically a three-tier system,

with grade 1 tumours containing well-differentiated cells (most similar to normal cells),

grade 3 tumours containing poorly differentiated cells, and grade 2 falling somewhere



6 Chapter 2 - Clinical and Technical Background

Figure 2.2 A digital pathology image containing a slice of an entire resected ovary
from staging surgery. The upper left side shows connective tissue. The pale regions
towards the right side are corpus albicans, the scars left after egg cells are released.

in the middle. This system is still used for some ovarian cancer histological subtypes,

though serous ovarian cancers are instead categorised as being either high-grade or

low-grade, and clear cell ovarian cancers are all categorised as high-grade.

Treatment decision-making is influenced by a range of factors, including radiological

and pathological analysis, comorbidities, age, and the patient’s personal decisions [21].

Most patients will undergo both surgery and chemotherapy, though in some cases,

one of these will be sufficient alone, or treatment may not be administered due to

other factors. These treatments are highly variable, with variations in the extent of

surgery, the chemotherapy drugs used, and the number and timing of chemotherapy

cycles [22]. Additional pharmacological treatments may include VEGF inhibitors and/or

PARP inhibitors, which prevent blood vessel formation and DNA repair respectively.

The effectiveness of the latter depends upon genetic factors [23–25]. Optimal treatment

decisions require integrating data from a range of sources, with histological analysis

being an essential component, without which patients may be subjected to ineffective

treatments and have worse overall outcomes.
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The primary focus of this thesis is the diagnosis of histological subtypes, which are the

specific characteristics of the cancer determined by the cellular and histoarchitectural

features present in pathology samples. Most ovarian cancers are carcinomas (cancers

of epithelial origin), for which the World Health Organisation defines five main subtypes

[26] - high-grade serous carcinoma (HGSC), endometrioid carcinoma (EC), clear cell

carcinoma (CCC), low-grade serous carcinoma (LGSC), and mucinous carcinoma

(MC) (Figure 2.3). HGSC is the most common form of ovarian cancer, accounting

for approximately 70% of all cases [27]. Non-epithelial ovarian cancers account for

less than 10% of all ovarian malignancies and include germ cell, sex cord-stromal,

and mesenchymal tumours [28]. Histological subtypes are distinct in their genetics,

prognoses, and treatment options [29, 30], making their classification an essential

component of ovarian cancer diagnosis.

High-grade 
serous (70%)

Low-grade 
serous (5%)

Clear cell 
(7%)

Endometrioid 
(10%)

Mucinous 
(3%)

Figure 2.3 Examples of the five major morphological subtypes of epithelial ovarian
cancer with corresponding frequencies [30]. These frequencies do not sum to 100%
due to the existence of rarer subtypes, which are not shown here.

2.2 Histopathology

Histopathology is the microscopic evaluation of tissue for medical diagnosis. It is an

essential part of the diagnostic pathway for many diseases, including autoimmune

disorders, infections, and cancers. Tissue samples are taken either as small biopsies

or larger tissue resections, and typically they are fixed in formalin, embedded in

paraffin, sectioned, and stained. Formalin-fixed, paraffin-embedded (FFPE) samples

are the diagnostic gold standard and are suitable for long-term storage at ambient



8 Chapter 2 - Clinical and Technical Background

temperatures. Some samples are instead flash-frozen, a faster process which

allows pathologists to provide rapid information during surgery, but at the expense

of increased cell damage and inferior staining quality. Pathologists typically interpret

tissue stained with haematoxylin and eosin (H&E), where haematoxylin stains cell

nuclei blue and eosin stains other cellular structures, such as cytoplasm and cell

membranes, varying shades of pink and red.

Histological subtypes are diagnosed by pathologists assessing standard H&E-stained

tissue samples for their varied morphologies. Important features include histological

patterns and architecture of tumour cells (solid, papillary, glandular etc.), the frequency

of typical and atypical mitotic figures (dividing cells), the degree of cellular and nuclear

pleomorphism (variation in size and shape), the nuclear to cytoplasmic ratio, the colour

and consistency of cytoplasm, and the presence or absence of necrosis.

Ideally, histological subtypes are diagnosed using primary surgery resection speci-

mens, where the surgical removal of the tumour was the initial treatment. However, in

many cases a patient will receive neoadjuvant chemotherapy to reduce the size of the

tumour before surgery, with any resection surgery performed after chemotherapy (or

after the primary surgery) referred to as interval debulking surgery (IDS). IDS samples

are not typically considered appropriate for subtyping because of chemotherapy-

induced morphological changes, such as varying amounts of cell death and associated

changes in surrounding stroma. If it is not possible to analyse a primary surgery

resection specimen the next-best option is a pre-treatment biopsy, with IDS samples

only relied upon in cases where such a biopsy is not available.

The interpretation of H&E slides can be a subjective, time-consuming process, with

some tasks having a high level of inter-observer variation [31–33]. From an individual

ovarian carcinoma slide, pathologists only achieved a median 86% concordance rate

with the central review subtype diagnosis, and individual pathologists varied between

74-91% [32]. In the assessment of difficult cases, generalist pathologists may seek

assistance from subspecialty experts (such as gynaecological pathologists), and/or

use ancillary tests, such as immunohistochemistry (IHC) staining. IHC stains indicate

the presence of specific antigens to aid pathologists in identifying known phenotypic

profiles, helping to distinguish primary tumour types or histological subtypes [29]. For

example, p53 protein expression can be profiled, with abnormalities suggesting TP53
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gene mutations, which are particularly common in HGSC but not in LGSC. IHC can

also provide some indication of prognosis, with the quantity of CD8+ tumour-infiltrating

lymphocytes being associated with longer overall survival of HGSC patients [34], and

the level of oestrogen receptor and progesterone receptor expression being associated

with disease-specific length of survival in HGSC and EC [35]. However, ancillary testing

increases the complexity of diagnosis, so we instead focus on improving the accuracy

and objectivity of the information extracted from the standard H&E slides.

Pathological workloads are currently increasing [36, 37] alongside increasing cancer

rates [14], causing pathology departments to often be unable to meet demand. Most

NHS pathology departments resort to outsourcing work or hiring temporary locums [36]

despite the United Kingdom being one of the best-resourced countries worldwide [38].

The number of histopathologists in the NHS is projected to slightly decrease in the

coming years, exacerbating current issues [39].

There are significant variations between pathology departments, with smaller depart-

ments typically having only a few generalist pathologists whereas larger departments

often have many subspeciality experts. When seeking a second opinion from these

experts, pathologists often need to send samples over a long distance with an

associated financial cost and delay in diagnosis. While pathologists prioritise cases to

reduce delays in urgent cases, the constantly rising workload threatens to overwhelm

the system. Any delays resulting from demand outstripping diagnostic resources

risk catastrophic impacts on patient outcomes, with a four-week delay in cancer

treatment being associated with an approximately 10% increased mortality rate among

patients [40].

In recent years digital pathology scanners have started to be adopted in some

pathology departments, allowing pathologists to assess histology specimens using a

computer rather than a microscope. Digitisation can drastically improve the efficiency

of the diagnostic process [41, 42] with minimal impact on diagnostic decisions [43, 44].

Digital pathology images can be stored and transported much more easily than

physical slides, significantly reducing the logistical burden of outsourcing or seeking

a second opinion. Digital images are also much more accessible for the training of new

pathologists. However, high start-up costs and technical training requirements have

slowed the rate of adoption of digital pathology, with very few departments routinely
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digitising all pathology slides [45]. Implementing a digital pathology workflow typically

costs hundreds of thousands of dollars, causing adoption to be much more common

in the largest university hospitals and cancer centres than in smaller community

hospitals [45].

2.3 Pathology AI

While the digital pathology workflow has primarily been developed for logistical and

long-term financial reasons, it has also allowed for the development of diagnostic AI

tools by facilitating the creation of huge digital pathology data repositories. Models

have been developed for a wide array of diagnostic and prognostic tasks, including

diagnostic classification, tissue type segmentation, cell detection, treatment response

prediction, and overall survival prediction [1, 46]. These computer-aided diagnosis

tools aim to further increase the efficiency, accuracy, and objectivity of diagnosis. Such

tools may be able to automate the most routine aspects of pathological analysis and

offer assistance to pathologists in more complex aspects.

One key factor limiting the development of digital pathology tools is the huge size

of its images relative to other 2D medical imaging modalities. While a typical 2D

slice of a resection sample is only around one square inch in size, the whole slide

image (WSI) generated by scanning it at a standard 40x magnification is around

100,000 x 100,000 pixels. At a standard printing resolution of 240 pixels per inch,

this single image would cover half of a tennis court. These gigapixel WSIs are typically

stored in a pyramidal file format (Figure 2.4), including lower-resolution versions of the

same image to facilitate the multi-scale analysis which is required for many diagnostic

tasks. Each WSI file comprises gigabytes of information, and a single case of ovarian

cancer can generate dozens of samples. Individual data centres generate terabytes

of digital pathology data each year [45], and the largest studies are starting to utilise

petabytes of data [47]. Automatically analysing such a huge quantity of image data

can be incredibly computationally demanding, often requiring servers with expensive

graphics processing units (GPUs).
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Figure 2.4 Illustration of a pyramidal file including three native tissue magnifications.

The objective of diagnostic pathology is to classify the relevant anatomical differ-

ences between samples without being distracted by irrelevant sources of variability

(Figure 2.5). Digital pathology slides vary visually due to differences in the sample

processing [48] (e.g. cut-up, fixation, and staining protocol) and digitisation [49]

(e.g. scanner, magnification, file formatting), as well as anatomical differences [50]

(e.g. tissue type, disease, genetics). Such variations are likely to be minor over short

periods within a pathology lab, meaning that single-centre data will typically be more

homogeneous than multi-centre data. Models trained with single-centre data are likely

to generalise poorly to data from different data centres, and even to data from the

same centre over time due to changes in tissue processing and digitisation procedures.

Similarly, a model trained for a particular disease is unlikely to generalise well to other

diseases, with these models typically seen as narrow AI due to their focus on very

specific tasks.
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Scanner 1

Scanner 2

Scanner 3

Scanner 4

Figure 2.5 Examples of the visual variation in digital pathology images caused by
different scanners from the MIDOG 2021 Challenge training set [3]. Each tissue sample
was processed in the same laboratory following the same protocol and then digitised
with one of four available scanners.

The clinical implementation of digital pathology AI is at a very early stage, with the

United States Food and Drug Administration (FDA) having only approved the first

AI-enabled medical device in digital pathology imaging in 2021. This tool classifies

whether prostate biopsies contain malignant cells and indicates the most likely affected

area within the WSI [51]. While this is a success story for digital pathology AI, the

task of prostate biopsy malignancy classification has many enabling traits - it is a

very common disease [14], biopsy slides contain orders of magnitude less tissue than

resection slides, there are only two possible classes, and it has a relatively low level of

inter-rater variation, with pairwise consensus rates over 90% for the three pathologists

in the original study [51]. The high incidence rate of prostate cancer makes it possible

to collect vast quantities of varied data, and the relatively small size of biopsy samples

makes it possible to train a model with a huge number of samples, allowing for the

development of a robust model.

As of September 2023, pathology AI products had only been approved in Europe for

the analysis of primary breast, prostate, and gastrointestinal cancers (as well as the

detection of lymph node metastases) [52], which all have much greater incidence rates
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than ovarian cancer [14]. Most approved products focus on the detection/quantification

of cancer, with relatively few tools approved for more complex diagnostic or prognostic

tasks. It is notable that despite these products being approved, the evidence of

their efficacy is limited, with less than half of the products associated with peer-

reviewed external validations [52]. Further, evidence is extremely limited on the

cost-effectiveness and real-world usability of these models, with clinical validations

only starting to be published in 2023 [53]. To be used in the UK, it is expected

that AI tools will be evaluated by the Medicines and Healthcare products Regulatory

Agency (MHRA) as software as a medical device (SaMD). Only a handful of products

have successfully undergone this process and received the UK Conformity Assessed

(UKCA) marking [52]. While some AI tools are starting to achieve very limited

clinical adoption [45], none have yet undergone full evaluation by the National Institute

for Health and Care Excellence (NICE), so they are not routinely used in NHS

pathology departments [52]. Despite the limited adoption, most of the pathologists

who responded to an international survey reported optimistic views that AI would

complement their work in the future and many expressed an interest in tools to aid with

tumour classification (though with greater interest expressed in tools for the objective

scoring of IHC and the detection of lymph node metastases) [45].
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2.4 Technical Background

2.4.1 Neural Networks

AI comprises a very wide array of automated tools which mimic intelligence, typically by

making seemingly reasonable interpretations or taking seemingly reasonable actions

when given a specific type of input data. This includes machine learning (ML)

approaches, which learn the relevant patterns within the input data without explicit

instructions. The most common type of AI model applied to digital pathology is the

neural network.

Neural networks are mathematical models inspired by the neural pathways in the brain,

with nodes (neurons) connected by edges (synapses). Mathematical operations are

performed at each node using inputs from any previous nodes, and the result is passed

along the edges to any subsequent nodes. The mathematical operations in a node

are often described as a linear combination of the input values with a specific weight

θi applied to each input value xi, before an additional bias β value is added and an

activation function f(x) is applied to the result, giving the formula for the output y of the

given node:

y = f

(
N∑
i=1

θixi + β

)
, (2.1)

for N inputs. The most simple approaches are feed-forward neural networks, where

the initial data is passed to an input layer, passed through a series of hidden layers,

before reaching a final output layer. Feed-forward neural networks are typically fully

connected, meaning every node is connected to all nodes in the immediate prior layer

and the immediate subsequent layer. The output layer contains a series of nodes with

numerical outputs to be interpreted for the given task (for example, in classification

each node may represent a possible class and the one with the highest output value is

taken to be the class predicted by the model).

A neural network with more than one hidden layer is considered to be a deep neural

network, with deep learning increasing the abstraction between the input and output.

The abstraction is so great that these models are often referred to as black-box models

because of how difficult it is to interpret the steps between the input and output of the

model.
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Feed-forward neural networks are trained using backpropagation [54], which starts by

calculating a loss function at the output node, then steps backwards through the layers

of the neural network calculating the gradient of the loss at each node. The size and

direction of the gradient is used to determine the adjustments to be made to the model

weights in a gradient descent approach. The loss function must be differentiable to

allow for the application of the chain rule to calculate gradients, and should ideally be

continuous to allow for stable convergence to a local minimum.

2.4.2 Computer Vision

Image data is computationally represented as a 2D spatial matrix with red, green and

blue (RGB) colour channels, giving a total matrix size of height×width×3 per image.

Inputting this matrix directly to a neural network would disregard the inherent spatial

patterns, so instead a plethora of methods have been developed specifically for image

analysis. Traditional computer vision approaches used pre-defined image features to

capture the colours, textures, and edges within an image through approaches such as

filtering, thresholding, and histogram analyses [55]. This has been largely supplanted

in modern research by approaches which automatically learn relevant features, such

as convolutional neural networks (CNNs) and vision transformers (ViTs).

CNNs use convolutional layers in which many small filters (often only 3x3 pixels) are

passed over the entire image, with the trainable weights used in these filters multiplied

by the corresponding pixel values to quantify specific patterns. Stacking convolutional

layers iteratively increases the abstraction from the input image, allowing more complex

patterns to be modelled. These layers are interleaved with pooling layers, which

combine neighbouring pixels (often taking the average or maximum value) to reduce

the dimensionality of the feature representations. For image classification, the outputs

from the final pooling layer are typically flattened to generate a vector of image features

which are input to a fully connected neural network.

These models were first popularised in the 1990s, with CNNs increasingly capable

of classifying handwritten digits (0-9) in 28 x 28 greyscale images from the MNIST

dataset [56]. Their usage expanded in the 2010s as classification performance

drastically improved [57] on the 224 x 224 RGB images from the ImageNet dataset

[58], which included 1.4 million natural images from 1000 classes. Newer CNNs
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have been increasingly computationally intensive, from the five layers used in MNIST

classification and eight layers used in early winners of the ImageNet challenge [56, 57],

to newer models with tens or hundreds of layers [59], which can be impractical to train

without GPUs.

2.4.3 Transformers

Many computer vision approaches decompose the input image into many smaller sub-

sections, typically referred to as patches (Section 2.4.4). A sequence of patches in

an image is analogous to a sequence of words in a sentence, and so many modelling

approaches have been adapted from the field of natural language processing (NLP).

One such approach is the attention mechanism, which assigns weights to the tokens

in the sequence representing their relative importance, with these weights considered

when aggregating information from the tokens to make inferences about the sequence

as a whole [60].

The transformer extended the attention mechanism to self-attention, capturing the

pairwise relationships between tokens in a sequential input [61]. These were extended

from their origin in NLP to create the vision transformer (ViT), which captures

relationships between patches in images [62]. The patches are typically small to

maximise the learned relational information between pairs of patches (14 x 14, 16 x

16, or 32 x 32 pixels in the original paper [62]). The patch embeddings input to the

transformer blocks are simple linear encodings, where the flattened raw pixel values

are linearly projected to a desired dimension, which can be understood as passing the

input pixels through a single neural network layer.

The attention score matrix A in a transformer is calculated as a function of a query

matrix Q and a key matrix K, which is then multiplied by a value matrix V to give the

transformer block output [61]. The query, key, and value matrices are calculated by

multiplying the patch embeddings matrix X by a trainable weight matrix U{Q,K,V }. The

queries Q = XUQ represent what each token is seeking, and the keys K = XUK

are compared to the queries to determine the relevance of each token. The values

V = XUV are the encodings of the input tokens which will be aggregated using the

attention mechanism.
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The scaled dot product attention function is calculated as:

A = softmax
(
QK⊤
√
dk

)
, (2.2)

where the scaling factor 1√
dk

is a function of the dimension of the keys and values

dk. The output of the transformer block is then simply the attention-weighted values,

AV . Several transformer blocks are typically used in parallel with different weights to

create a multihead self-attention. We use self-attention, where the queries, keys, and

values all originate from the same input. The alternative, cross-attention, allows the

use of multi-modal data by taking keys and values from one data source and queries

from another.

Transformers need position embeddings to be input alongside the input tokens in order

to learn the importance of the arrangement of tokens [61]. In NLP there is a 1D

input which typically does not have a fixed sequence length, so a flexible, unbounded

function needs to be used to encode the relative positions of tokens (typically based

on a sine wave). When using ViTs it is typical to use a fixed input image size, giving a

fixed number of patches n, and thus a 1D position embedding can be applied simply

by flattening the patch sequence and numbering it from 1 to n. Some more complex

approaches have been attempted to accurately map the 2D spatial positions or to

calculate relative distances between patches, though these have not demonstrated

a benefit over the simple 1D embedding [62], which appears to provide sufficient

information to allow the model to learn the spatial structure [63].

ViTs are rapidly growing in popularity as an alternative to CNNs in medical imaging

[64]. These models are incredibly scalable [65] and (as with the transformers used

in NLP) they benefit from pre-training with huge datasets to create foundation models

[66, 67], which can be adapted to specific use cases. ViTs and foundation models are

extensively evaluated for the task of ovarian cancer histological subtyping in Chapter 7.

2.4.4 Multiple Instance Learning

Slide-level classification is a difficult task because WSIs are too large to be directly input

into standard computer vision methods such as CNNs and ViTs. Some researchers
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have applied these methods to small tissue subsections or heavily compressed WSIs,

but such approaches discard a wealth of potentially relevant diagnostic information.

We focus on the much more popular approach of multiple instance learning (MIL) [68],

where multiple instances with shared properties are aggregated in a bag for modelling.

In digital pathology, this means splitting the WSI into smaller patches for modelling,

with patch-level information aggregated to make inferences about the whole slide.

In previous literature, the term multiple instance learning (MIL) does not have a single

agreed definition with clear boundaries. In this thesis, MIL refers to any approach in

which patch-level information is aggregated to make slide-level inferences, including

voting-based approaches, attention-based aggregations, and graph models. It may be

argued that patch-level encoders that decompose inputs into tiny sub-patches (such as

ViTs) are a form of MIL, though we focus on approaches which can be applied to WSIs.

While MIL approaches have been researched since the 1990s [69], applications to

digital pathology classification did not occur until the mid-2010s [70]. Earlier work would

have been impractical due to the rarity and expense of digital pathology scanners and

the limitations of computational hardware. Generating pixel-wise annotations for such

large images is very time-consuming, so digital pathology MIL is typically used in a

weakly-supervised setting, where only slide-level class labels are provided for model

training [68]. Most MIL methods in histopathology can be described in five stages -

preprocessing, patching, embedding, aggregation, and classification.

Preprocessing refers to the initial adjustments applied to the digital pathology image.

Given that a large proportion of most WSIs is the non-tissue background region, it is

common to perform tissue segmentation as a preprocessing method [1], which allows

for the removal of the plain background to improve the efficiency of the model and to

increase the focus on tissue. Some researchers take this a step further by performing

tumour segmentation during preprocessing, further focusing the model on relevant

tissue. More complex methods may be employed to perform quality control, with

artefacts being detected and adjusted. Other typical preprocessing approaches include

downsampling to reduce the effective tissue magnification and hence the overall size of

the image, and chromatic adjustments to either reduce visual variability (normalisation)

or increase it (augmentation). Most approaches may be applied either before or after

patching.
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Patching is the process of splitting the WSI into computationally manageable subsec-

tions. Patch sizes can be variable, though 256 x 256 or 512 x 512 pixel patches will

typically be used for CNN-based models and 224 x 224 pixel patches for ViT-based

models. Larger patches give a greater context window, whereas smaller patches are

typically more computationally efficient. A standard 40x magnification WSI is around

100,000 x 100,000 pixels in size, so using a patch size of 256 x 256 pixels gives around

150,000 unique, non-overlapping patches.

Input WSI Tissue Detec�on

Patch Extrac�on

Figure 2.6 Example preprocessing and tissue patch extraction procedure, with tissue
segmentation preprocessing and 256 x 256 pixel patches extracted from a 40x
magnification WSI.

Embedding is the process of extracting features from the patches. While traditional

AI methods in histopathology used hand-crafted features, it is now more common to

use CNNs or ViTs to automatically learn relevant features [1]. Embedding patches

can drastically reduce their dimensionality to make further modelling computationally

tractable.

Transfer learning is typically employed during this stage, meaning that the feature

extractor is pre-trained using a particular source dataset and then adapted for usage

on a target dataset. Ideally a deep learning model would be trained end-to-end,

with all model weights updated in a single backpropagation pass, but this may be

computationally impractical when applying MIL to such large images. It is common

for the feature extractor to be frozen, meaning it is kept in a fixed state during the

training of the subsequent model weights, allowing patch features to be pre-computed

and stored before model training. The feature extractor may, however, be fine-tuned

to the target domain before being frozen within the MIL model. Transfer learning often
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improves the speed of model convergence and may also benefit the final classification

performance, especially when there is not a large enough target dataset to thoroughly

train a feature extractor from scratch, or when computational hardware is insufficient to

train a model end-to-end.

Aggregation approaches collate information from the different patches in a slide.

Aggregation methods can be grouped into instance classification and instance em-

bedding approaches based on whether the instances are individually classified. The

simplest instance classification approach is max-pooling, where the instance with the

highest individual classification score represents the entire bag. The simplest instance

embedding approach is mean-pooling, where a slide-level embedding is generated as

the mean of all patch-level embeddings and then passed through a slide-level classifier.

Classification approaches depend upon aggregation approaches. If an aggregation

approach generates slide-level embeddings then these can be classified through

standard classification approaches (support vector machines (SVMs), decision trees,

k-nearest neighbours, etc.), with neural networks being the most popular choice in

modern research [1]. For instance classification techniques, slide-level classification

depends upon instance scores/classes, for example taking the most common patch-

level class as the slide-level class. The phrases mean-pooling and average-pooling

in previous literature may refer to either the aforementioned instance embedding

approach [71] or to an instance classification approach in which the average patch

classification score is taken as the slide classification score [70], though this is more

commonly called average-vote. Bag classification techniques can also be adjusted to

perform bag-level regression, clustering, and ranking, though classification remains the

most common [72].

Instance Classification Approaches

Max-pooling is the simplest instance classification approach, but it is only suitable

when the traditional MIL assumption holds - if any instance is positive then so is the

entire bag, but if all instances are negative then the bag is negative. This applies

to malignancy classification, with a WSI classified as malignant if any patch within

it contains malignant tissue and classified as benign if no patch contains malignant

tissue. However, the assumption does not hold for multi-class subtyping.
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More complex instance classification approaches were introduced in the early 2000s,

leveraging multiple instances per bag. These approaches used instance classification

scores to identify a set of most relevant instances, then aggregated these using ML

approaches such as SVMs [73] and neural networks [74]. Often the number of relevant

instances per bag was set as a hyperparameter K, with the top-k instances used to

represent the bag. Some of these approaches have utilised instance embeddings,

but these are still instance classification methods since the aggregation depends upon

individual instance classification scores. These more complex approaches increased

the abstraction from the traditional MIL assumption and better accommodated multi-

class classification.

A modern application of top-k patch selection used a recurrent neural network (RNN)

to classify the slide based on the top-k patch feature embeddings [75]. This approach

achieved very high accuracy for malignancy classification with three different types of

cancer, and underpinned the first FDA-approved AI-enabled medical device in digital

pathology [51]. However, this was found to be a particularly data-hungry approach, with

an ablation study finding that at least 8,000 training WSIs were required to minimise

validation error in a homogeneous set of prostate biopsy slides. It is further noteworthy

that the top-k aggregation did not offer a significantly better performance compared to

a simple max-pooling aggregation in either the original study or a similar study which

applied the method in a fully-supervised manner [76].

Instance Embedding Approaches

Instance embedding is the more common MIL aggregation approach in digital pathol-

ogy, and is more directly applicable to multi-class classification. In instance embedding

approaches, patches are encoded to a latent embedding space and then combined to

generate a latent representation of the entire slide for classification. The most basic

approach is the aforementioned mean-pooling, with the average of the patch feature

embeddings used as the slide embedding for classification.
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Attention-based multiple instance learning (ABMIL) is a more advanced approach in

which the mean aggregation of instance embeddings is weighted based on trainable

attention scores [77]. The attention weight (ak) of an instance is calculated with the

following equation:

ak =
exp{w⊤ tanh(Vh⊤

k )}∑K
j=1 exp{w⊤ tanh(Vh⊤

j )}
, (2.3)

for 1×M instance embedding hk ∈ {h1, ...,hK}, L×1 parameter vector w, and L×M

parameter matrix V. Dimensions L and M are pre-defined hyperparameters. An

alternate version, gated attention, calculates weights similarly but includes a sigmoid

non-linearity in an attempt to better learn complex relations:

ak =
exp{w⊤(tanh(Vh⊤

k )⊙ σ(Uh⊤
k ))}∑K

j=1 exp{w⊤(tanh(Vh⊤
j )⊙ σ(Uh⊤

j ))}
, (2.4)

where U is also an L×M parameter matrix, σ is the sigmoid function, and ⊙ is

an element-wise multiplication. The seminal approach also included trainable

transformations before and after aggregation to increase model flexibility. In the

original publication [77], ABMIL achieved state-of-the-art results on two histopathology

datasets, though the images used were particularly small at less than 1000 x 1000

pixels each, where a typical WSI is around 100,000 x 100,000 pixels. It was unclear

whether standard attention or gated attention was better, with each outperforming the

other in some experiments.

Cluster-constrained attention MIL (CLAM) attempted to further refine the feature space

by clustering within high-attention regions during training [78]. Within this study it was

shown how attention-based methods could be extended to multi-class classification by

using a parallel attention branch for each class, with each of the class-specific slide

representations passed to the final classification layer of the network. Surprisingly,

the classification performance of ABMIL was not compared in the original study

despite CLAM being an adaptation of this approach. CLAM has since become a very

commonly used benchmarking model despite it remaining unclear whether it is better

than ABMIL and whether the multiple attention branches provide a benefit [79–82]. The
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popularity of CLAM may be influenced by its particularly well-developed open-source

code repository.

2.4.5 Spatial MIL Networks

One key limitation of the MIL methods explored thus far is that patches are processed

independently, with the WSI modelled as a bag of patches without any spatial structure.

However, the spatial arrangement of a tissue sample is likely to be diagnostically

relevant as it contains information such as the size of the tumour, the extent of invasion,

and the immune response to the tumour. As such, many recent approaches have

focused on modelling these spatial relationships, typically using either transformer or

graph networks.

Transformers

ViTs have been successfully applied to the classification of natural images and written

digits [62], but are limited in their applicability to WSIs by the quadratic computational

complexity of capturing the pairwise relationship between patches. In the original vision

transformer paper [62], a typical image contained only 196 patches (224 x 224 pixel

inputs with 16 x 16 patches), but a typical WSI contains thousands or tens of thousands

of patches. Taking larger patches may help to compensate but this results in less fine-

grained spatial information in the transformer and it requires a more computationally

complex patch embedding model, thus it is not a sufficient solution.

Approaches to implementing transformers for slide-level classification have included

taking an approximation to self-attention which is of linear complexity O(n) rather

than quadratic O(n2) [71], and stacking multiple transformers at different tissue scales

[83], with both approaches reported to improve performance over non-transformer

aggregation techniques. Recent research has focused much more heavily on applying

transformers during the patch embedding stage to create histopathology foundation

models, which are trained on large domain-specific datasets to learn domain-specific

features. We explore histopathology foundation models in Chapter 7.
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Graph Networks

Graph networks offer a different approach to modelling spatial relationships. In a graph,

nodes are connected by edges, and information is passed along the edges to allow

nodes to gain contextual information. Computationally, a graph can be characterised

by a pair of matrices g = (X, A). For a graph with n nodes, the feature matrix X ∈ Rn×m

is composed of m-dimensional node feature vectors x1, ...,xn, and the adjacency matrix

A ∈ Rn×n is a sparse matrix encoding which nodes are connected by edges.

In histopathology, graphs can model tissue as connected cells or tissue patches.

Cell graphs are typically only applied to small regions of interest rather than entire

resection specimens [84–94] as the incredibly vast number of cells per tissue sample

is computationally limiting. When cell graphs have been applied to WSIs they have

relied on subgraph sampling approaches, with analyses limited to relatively few WSIs

[95, 96]. Only one previous approach has performed slide-level classification directly

from a cell graph, and this was only applied to IHC specimens with drastically fewer

visible cells than in a standard H&E sample [97].

Patch graphs are more directly applicable to slide-level classification as the number of

patches is typically orders of magnitude smaller than the number of cells - a single

WSI may contain millions of cells [95, 98] but only tens of thousands of patches.

Patch graphs are a natural extension of MIL, with the bag and instances defined in the

same way, but connections added between (spatially) related instances. Some graph

approaches are neither cell graphs nor patch graphs, with adaptive graphs modelling

regions determined by segmentation or clustering approaches [99–101]. This may

reduce the computational complexity of the graph compared to a cell graph with more

flexibility than a patch graph, though these approaches have been less thoroughly

explored in previous literature [101].

When a graph structure has been defined, the graphs may be input into a graph

neural network (GNN) [102]. GNNs utilise message-passing layers to share information

between connected nodes, and graph-pooling layers to reduce the number of nodes,

with several of each of these layers used to pass information to distant parts of the

graph and to iteratively reduce the graph size. Graph-based MIL has been applied to

image classification for many years, with the graph layers followed by a MIL aggregation
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approach to turn the remaining nodes into a whole-graph feature embedding for

classification [103]. We explore graph-based MIL in Chapter 8.

2.5 Classification Metrics

The most straightforward metric to quantify WSI classification performance is accuracy,

though this metric only provides information at a single decision threshold and

becomes distorted by class imbalances. Balanced accuracy is an improvement as

it takes the average of the accuracy score for each class, thus it is more robust

to class imbalances. The F1 score is a similar metric which takes the harmonic

mean of precision and recall at a single threshold. The most commonly reported

metric in previous research is the area under the receiver operating characteristic

curve (AUROC) [1]. The receiver operating characteristic curve compares true

positive and false positive rates across classification thresholds, so the area under

this curve (the AUROC) gives a more holistic measure of model performance which is

independent of the classification threshold. However, this metric is too abstract to be a

clear measure of clinical utility alone.

Each of the chosen metrics gives a score between 0 and 1 (with higher scores

being better, and 1 being perfect), meaning they can be expressed as percentages.

When classifying a dataset with N classes, where the most common class accounts

for a proportion q of the dataset, to demonstrate predictive power a model should

outperform a model which always selects the most common class, which gives an

accuracy of q, balanced accuracy of 1
N

, macro-averaged F1 score of 2q
N(q+1)

, and

AUROC of 0.5. For example, in our largest cross-validation experiments (in Chapters

7 and 8), we have N = 5 classes and q = 0.68 as the proportion of the most common

class, giving baseline scores of 68% accuracy, 20% balanced accuracy, 0.16 F1 score,

and 0.5 AUROC.

Prediction
Positive Negative

Ground Truth
Positive True Positives (TP) False Negatives (FN)
Negative False Positives (FP) True Negatives (TN)

Table 2.1 Confusion matrix.
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Each metric can be expressed as a function of the number of true positive (TP), false

positive (FP), false negative (FN), and true negative (TN) class predictions (described

in Table 2.1) as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
,

Balanced Accuracy =
TPR + TNR

2

=
1

2

(
TP

TP + FN
+

TN
TN + FP

)
,

F1 Score =
2× precision × recall

precision + recall

=
2TP

2TP + FP + FN
,

AUROC =

∫ 1

0

TPR(FPR) d(FPR)

=

∫ 1

0

TP
TP + FN

(
FP

FP + TN

)
d

(
FP

FP + TN

)
,

where TPR is the true positive rate, TNR is the true negative rate, and FPR is the false

positive rate, and where TPR(FPR) is TPR as a function of FPR.

These metrics help to determine the discriminative performance of a model, but this

is not the only aspect of a model that is relevant to the clinical utility. Due to the

huge size of WSIs, classifiers are often computationally intensive, requiring multi-GPU

servers for training and inference. Such hardware is unlikely to be directly available to

clinicians, so it is also pertinent to measure the size and/or efficiency of models, which

can be done in terms of speed, memory requirements, or number of model parameters.

The efficiency of inference is more directly relevant to clinicians than the efficiency of

model training, as models can be trained in a research setting and then deployed to the

clinical setting for slide evaluation. Efficient model training may be beneficial in allowing

models to be trained with more data, more extensively tuned, or trained with additional

augmentation techniques, which can lead to benefits in the classification performance

of a model.
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Chapter 3

Systematic Literature Review

In this chapter, we explore published research for the diagnosis or prognosis of

ovarian cancer from digital pathology images. We systematically review such research,

characterising the methods used and the clinical tasks addressed. We assess the risks

of bias in each study and provide recommendations for subsequent research.

3.1 Introduction

AI in digital pathology is a broad and rapidly growing field. To conduct relevant,

high-impact research, it is essential to first understand the current state of the field.

Previous reviews of AI in gynaecological cancers have given broad overviews of the

field without a comprehensive synthesis of all published research using ovarian cancer

histopathology data [104–107]. We instead systematically reviewed all literature in

which AI techniques (comprising both traditional ML and deep learning methods) were

applied to digital pathology images for the diagnosis or prognosis of ovarian cancer

[1]. This included research which focused on a specific diagnostic factor (such as

histological subtype), and studies that performed computer-aided diagnostic tasks

(such as tumour segmentation).

In the review, we characterised relevant studies and assessed their quality. We then

provided insights and recommendations based on published literature to improve the

clinical utility of subsequent research, including reducing risks of bias, improving

reproducibility, and increasing generalisability.
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We developed and registered a study protocol (PROSPERO CRD42022334730)

defining the scope and methodology of the review. There were two research questions

to be addressed:

• What diagnostic/prognostic tasks have been addressed using AI methods for

ovarian cancer using histopathology data?

• What underlying AI methodology did these studies use, how well did they

perform, and how reliable was the research?

This was a multi-disciplinary effort in which I (JB) managed a group involving two

pathologists (KA, NMO), an oncologist (KZ), and a computer science academic (NR).

While I planned the review and wrote the manuscript, the other group members offered

regular feedback and were directly involved in the literature selection, risk of bias

assessment, and data synthesis stages to ensure a fair and balanced review process.

The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA)

2020 guidelines for reporting systematic reviews were followed, with the checklist

provided in Appendix B.

3.2 Literature Search and Selection

Literature Search

Searches were conducted in three research databases, PubMed, Scopus and Web

of Science, and two trial registries, Cochrane Central Register of Controlled Trials

(CENTRAL) and the World Health Organisation International Clinical Trial Registry

Platform (WHO-ICTRP). The chosen research databases only included journal papers

and conference proceedings which had undergone peer review, ensuring a basic level

of integrity in the included research.

The search strategy was composed of three distinct concepts - artificial intelligence,

ovarian cancer, and histopathology. For each concept, multiple relevant terms

were combined using the OR operator (e.g. "artificial intelligence" OR "machine

learning"), and then these were combined using the AND operator to ensure that

retrieved research included all three concepts. Many AI approaches build on statistical

models, such as logistic regression, which can blur the lines between disciplines.
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When conducting searches, a previously reported methodology was adopted [108]

in which typical AI approaches were identified by name (e.g. neural networks), and

other methods were identified by the authors describing their work using terms such as

artificial intelligence. Search terms are shown in Table 3.1 and the full search strategies

for each research database are shown in Appendix A.

Artificial Intelligence Ovarian Cancer Histopathology
Machine Learning Ovarian Carcinoma Histology

AI Ovarian Mass Digital Pathology
ML Ovarian Tumour Whole Slide Image

Deep Learning Ovarian Neoplasm Tissue Slide
Active Learning Ovarian Malignancy Pathology Slide

Computer-aided Diagnosis Fallopian Cancer† Pathology Image
Computer-assisted Diagnosis Fallopian Carcinoma† Tissue Microarray

Computer Vision Fallopian Mass† Immunohistochemistry
Neural Network Fallopian Tumour† Haematoxylin and Eosin
Deep Network Fallopian Neoplasm† Computational Pathology†

Recurrent Network Fallopian Malignancy†

Convolutional Neural Network Peritoneal Cancer†

Graph Network Peritoneal Carcinoma†

Perceptron Peritoneal Tumour†

Multiple Instance Learning
Support Vector Machine

Random Forest
Ensemble

Nearest Neighbour
Gradient Boosting
Backpropagation

Segmentation

Table 3.1 Systematic review search terms grouped by concept. Wildcards were used
to allow for different spellings and suffixes (e.g. "patholog*" to allow for "pathology" and
"pathologist"), and "AND/OR" operators were used to allow different combinations of
words (e.g. "fallopian AND cancer" to allow for "fallopian tubes cancer" or "cancer of
the fallopian tubes"). †These terms were added after peer-review feedback.

The widest possible set of search fields was used for each search engine except for

Scopus, where restrictions were imposed to avoid searching within the citation list

of each article, which was not an available field in the other search engines. The

terms ML and AI were restricted to specific fields due to the diversity of their possible

meanings. To ensure the most rigorous literature search possible, no restrictions were

placed on the publication date or article type during searching. Searches were initially
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conducted on 25/04/2022 and were most recently repeated for the systematic review

on 19/05/2023 after the first round of peer review. To bring the thesis up-to-date,

searches were repeated again on 25/06/2024, with the most recent literature described

in Section 3.5.3.

Literature Selection

First, duplicate papers were manually removed with the assistance of the referencing

software EndNote X9. Then, two researchers (JB, KA) independently screened all

articles for inclusion in two stages, the first based on the title and abstract alone,

and the second based on the full manuscript. In any case where these researchers

disagreed on whether a paper should be included in their independent assessments,

their inclusion was discussed and, if necessary, arbitrated by a third researcher

(NR or NMO). Trials in WHO-ICTRP did not have associated abstracts, so only the

titles were available for the initial screening.

The inclusion criteria required that research evaluated the use of at least one AI

approach to make diagnostic or prognostic inferences on human histopathology

images from suspected or confirmed cases of ovarian cancer. Studies were only

included where AI methods were applied directly to the digital pathology images,

or to features which were automatically extracted from the images. Fundamental

tasks, such as segmentation and cell counting, were included as these could be

used by pathologists for computer-aided diagnosis. Only conventional light microscopy

images were considered, with other imaging modalities, such as fluorescence and

hyperspectral imaging, excluded. Multi-modal approaches were included as long

as the pathology modality met this criteria. Publications which did not include

primary research were excluded (such as review papers and comments). Non-English

language articles and research where a full manuscript was not accessible were also

excluded.

The initial searches (25/04/2022) returned 1305 records, of which 28 were eligible

for inclusion, with the final searches (19/05/2023) bringing this up to 1573 records

and 45 inclusions. As shown in Figure 3.2, of the 1573 total records, 557 were

duplicates, 930 were excluded during the screening of titles and abstracts, and 41

were excluded based on full paper screening, including 3 records for which full articles
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could not be obtained. The remaining 45 studies included 11 conference papers and

34 journal articles. All accepted studies had originally been identified through searches

of research databases, with no records from trial registries meeting the inclusion

criteria. While the searches returned literature from as early as 1949, all of the research

which met the inclusion criteria had been published since 2010, with over 70% of the

included literature published since 2020, as shown in Figure 3.1.
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Publication Year
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Figure 3.1 Number of publications included in the systematic literature review by
publication year (final searches on 19/05/2023).

An AI model in an included study was considered to be a model of interest if it met

the same inclusion criteria as was used for selecting papers. Where multiple models

were compared for the same outcome, the model of interest was taken to be the newly

proposed model, with the best performing model during validation taken if this was

unclear. If multiple model outcomes were assessed in the same study, a model of

interest was taken for each model outcome, regardless of any similarity in modelling

approaches. Models investigating the same outcome at different levels of precision

(e.g. patch-level, slide-level, patient-level) were not considered to be different model

outcomes. Models didn’t need to be entirely independent, for example, the output of

one model of interest could have been used as the input of another model of interest

on the condition that model performance was separately evaluated for each model.

Applying these criteria, we found 80 models of interest in the 45 included studies, with

up to six models of interest per paper.
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Figure 3.2 PRISMA 2020 flowchart of the finalised study identification and selection
process for the systematic review. Records were screened on titles and abstracts
alone, and reports were assessed based on the full-text content.
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3.3 Data Synthesis

Data extraction was performed independently by two researchers (JB, KA) using a

form containing 81 fields within the categories Overview, Data, Methods, Results, and

Miscellaneous. Several of these fields were added or clarified during data extraction

with the agreement of both researchers and retroactively applied to all accepted

literature. The final data extraction form is available on GitHub (www.github.com/scjjb/

OvCaReview), with a summary shown in Table 3.2.

Category Data Extraction Fields
Overview Internal ID. Lead author. Year. Conference/Journal name.

Data

Number of development images. Total number of images. Type of samples.
FFPE/Frozen. Size of images. Tissue of origin. Number of development patients.

Total number of patients. Number of data collection centres. Type of stain.
Number of stainers. Scanners. Number of scanner types. Number of tissue

processing centres. Data origin countries. Number of pathologists for data labelling.
Online dataset. Prospective/retrospective. Clinical/research tissue. Data annotation.

Maximum magnification available. Supplementary datatypes.
Data exclusion reasons. Number of images excluded. Other cancer types included.

Methods

Outcome. Outcome measure/classes. Outcome standards/definition.
Magnifications used. Patch sizes. Patches per image. Task type. Feature extraction

type. Feature extractors. AI in main method. Other AI methods. Optimiser.
Number of external validations. Differences to external validation set. Total external
validation images. Number of cross-validation folds. Number of non-novel methods

compared. Number of GPUs. Type of GPUs.

Results
Internal test accuracy. AUROC. Sensitivity/specificity. Other metric(s).

External training type. External test accuracy. AUROC. Sensitivity/specificity.
Other metric(s). Type of error bounds. Model training time. Visualisation type.

Miscellaneous Code availability. Data availability. Notes.

Table 3.2 Summary of the fields used for data extraction in the systematic review.

Extracted data are presented in two tables, with Table 3.3 showing the 45 included

studies and Table 3.4 showing the 80 models of interest. The term model outcome

refers to the model output, whether this was a clinical outcome (diagnosis/prognosis),

or a diagnostically relevant outcome that could be used for computer-aided diagnosis,

such as tumour segmentation. Meta-analysis was not performed given the diversity of

included methods and model outcomes.

www.github.com/scjjb/OvCaReview
www.github.com/scjjb/OvCaReview
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Publication Ovarian Cancer
Data Source

Models of
Interest Outcome Type(s) Model Outcome(s) Published Code

Dong 2010(a) [109] Unclear 1 Other Stain segmentation None
Dong 2010(b) [110] Unclear 1 Other Stain segmentation None
Signolle 2010 [111] Unclear 1 Other Tumour segmentation None

Janowczyk 2011 [112] Unclear 1 Diagnosis Malignancy None
Janowczyk 2012 [113] Unclear 1 Other Stain segmentation None

Kothari 2012 [114] TCGA-OV (Multi-city, USA) 1 Diagnosis Malignancy None
Poruthoor 2013 [115] TCGA-OV (Multi-city, USA) 2 Diagnosis, Prognosis Grade; Overall survival None

BenTaieb 2015 [116] Transcanadian Study
(Multi-city, Canada) 1 Diagnosis Histological subtype None

BenTaieb 2016 [117] Transcanadian Study
(Multi-city, Canada) 1 Diagnosis Histological subtype Inaccessible

BenTaieb 2017 [118] Unclear 1 Diagnosis Histological subtype Inaccessible
Lorsakul 2017 [119] Unclear 1 Other Cell type None

Du 2018 [120] Unique (Oklahoma, USA) 1 Other Tissue type None
Heindl 2018 [121] TCGA-OV (Multi-city, USA) 1 Other Cell type https://yuanlab.org/file/Ov3sweave2.pdf
Kalra 2020 [122] TCGA-OV (Multi-city, USA) 4 Diagnosis Primary cancer type None

Levine 2020 [123] OVCARE (Vancouver, Canada) 1 Diagnosis Histological subtype https://github.com/AIMLab-UBC/pathGAN
Yaar 2020 [124] TCGA-OV (Multi-city, USA) 1 Prognosis Treatment response https://github.com/asfandasfo/LUPI

Yu 2020 [125] TCGA-OV (Multi-city, USA) 4 Diagnosis, Prognosis
Malignancy, Grade,

Transcriptomic subtype;
Treatment response

https://github.com/khyu/ovarian_ca/

Gentles 2021 [126] Unique (Newcastle, UK) 6 Other Stain quantity/intensity None
Ghoniem 2021 [127] TCGA-OV (Multi-city, USA) 1 Diagnosis Stage None

Jiang 2021 [128] Mayo Clinic (Rochester, USA) 1 Diagnosis Malignancy https://github.com/smujiang/
CellularComposition

Laury 2021 [129] Unique (Helsinki, Finland) 1 Prognosis Progression-free survival None

Paijens 2021 [130] Unique (Groningen & Zwolle,
The Netherlands) 1 Other Tissue type None

Shin 2021 [131] TCGA-OV (Multi-city, USA) &
Unique (Ajou, Korea) 1 Diagnosis Malignancy https://github.com/ABMI/

HistopathologyStyleTransfer

Zeng 2021 [132] TCGA-OV (Multi-city, USA) &
Unique (Shanghai, China) 5 Diagnosis, Prognosis

Genetic mutation, Transcriptomic
subtype, Microsatellite instability;

Overall survival
None

Boehm 2022 [133] TCGA-OV (Multi-city, USA) &
MSKCC (New York, USA) 3 Diagnosis, Prognosis Malignancy; Overall survival,

Progression-free survival https://github.com/kmboehm/onco-fusion

Boschman 2022 [134] OVCARE (Vancouver, Canada) 1 Diagnosis Histological subtype None
Elie 2022 [135] Unique (Caen, France) 3 Other Stain quantity/intensity None

Farahani 2022 [136] OVCARE (Vancouver, Canada) &
Unique (Calgary, Canada) 2 Diagnosis Malignancy, Histological subtype https://github.com/AIMLab-UBC/

ModernPath2022
Hu 2022 [137] TCGA-OV (Multi-city, USA) 1 Diagnosis Epithelial-mesenchymal transition https://github.com/superhy/LCSB-MIL

Jiang 2022 [138] Mayo Clinic (Rochester, USA) 4 Diagnosis, Other Tumour-stroma reaction;
Tumour segmentation

https://github.com/smujiang/
TumorStromaReaction

Kasture 2022 [139] TCGA-OV* (Multi-city, USA) 1 Diagnosis Histological subtype https://github.com/kokilakasture/
OvarianCancerPrediction

Kowalski 2022 [140] Unclear 1 Other Tumour segmentation None

Lazard 2022 [141] TCGA-OV (Multi-city, USA) 1 Diagnosis Homologous recombination
deficiency status https://github.com/trislaz/wsi_mil

Liu 2022 [142] TCGA-OV (Multi-city, USA) 1 Prognosis Overall survival https://github.com/RanSuLab/
EOCprognosis

Mayer 2022 [143] TCGA-OV (Multi-city, USA) &
Unique (Frankfurt, Germany) 1 Diagnosis Malignancy None

Nero 2022 [144] Unique (Rome, Italy) 2 Diagnosis, Prognosis Genetic mutation; Relapse None
Salguero 2022 [145] TCGA-OV (Multi-city, USA) 1 Diagnosis Malignancy None
Wang 2022(a) [146] Tri-Service (Taipei, Taiwan) 4 Prognosis Treatment response None
Wang 2022(b) [147] Tri-Service (Taipei, Taiwan) 1 Prognosis Treatment response None

Yokomizo 2022 [148] Unique (Tokyo, Japan) 3 Prognosis Overall survival,
Progression-free survival, Relapse Inaccessible

Ho 2023 [149] MSKCC (New York, USA) 2 Diagnosis, Other Genetic mutation;
Tumour segmentation

https://github.com/MSKCC-
Computational-Pathology/DMMN-ovary

Meng 2023 [150] Unique (Beijing, China) 1 Diagnosis Malignancy https://github.com/dreambamboo/
STT-BOX-public

Ramasamy 2023 [151] TCGA-OV* (Multi-city, USA) 2 Diagnosis, Other Primary cancer type;
Tumour segmentation None

Wang 2023 [152] Tri-Service (Taipei, Taiwan) 4 Prognosis Treatment response https://github.com/cwwang1979/
OvaryTreatment_AnginPKM2VEGF

Wu 2023 [153] TCGA-OV (Multi-city, USA) 1 Prognosis Overall survival None

Table 3.3 Characteristics of the 45 studies included in the systematic review. Details
are shown for individual models in Table 3.4. Code is labelled as inaccessible where it
could not be found despite a link being provided in the publication. *Indicates papers
where significant discrepancies were found regarding the data source, as described in
Section 3.5.

https://github.com/smujiang/CellularComposition
https://github.com/ABMI/HistopathologyStyleTransfer
https://github.com/AIMLab-UBC/ModernPath2022
https://github.com/smujiang/TumorStromaReaction
https://github.com/kokilakasture/OvarianCancerPrediction
https://github.com/RanSuLab/EOCprognosis
https://github.com/MSKCC-Computational-Pathology/DMMN-ovary
https://github.com/dreambamboo/STT-BOX-public
https://github.com/cwwang1979/OvaryTreatment_AnginPKM2VEGF
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Table 3.4 Characteristics of the 80 models of interest from the 45 papers included in
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Table 3.5 Model characteristics continued - diagnostic and prognostic outcomes.
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Table 3.6 Model characteristics continued - other outcomes.
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3.3.1 Data in Included Literature

The number of participants in internal datasets varied by orders of magnitude, with

each study including 1 to 776 ovarian cancer patients, and one study including over

10,000 total patients across a range of 32 malignancies [122]. Most research only used

data from the five most common subtypes of ovarian carcinoma, though one recent

study included the use of sex cord-stromal tumours [150]. Only one study explicitly

included any prospective data collection, and this was only for a small subset which

was not used for external validation [133].

As shown in Figure 3.3, the number of samples used was often much greater than

the number of patients included, with three studies using over 1,000 samples from

ovarian cancer patients [114, 125, 142]. In most studies, models were developed

using WSIs containing resected or biopsied tissue (34/45), with others using individual

tissue microarray (TMA) core images (5/45) or pre-cropped digital pathology images

(3/45). Most studies used H&E-stained tissue (33/45) and others used a variety of IHC

stains (11/45), with no two papers reporting the use of the same IHC stains. Some

studies included multi-modal approaches, using genomics [115, 124, 127, 132, 133],

proteomics [115, 132], transcriptomics [132], and radiomics [133] data alongside

histopathological data.
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Figure 3.3 Histograms showing (a) the number of ovarian cancer patients and (b) the
number of samples used in the development of each model. Many of these values are
uncertain due to incomplete reporting, as reflected in Table 3.4.
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The most commonly used data source was The Cancer Genome Atlas (TCGA) (18/45),

a project from which over 30,000 digital pathology images from 33 malignancies are

publicly available. The ovarian cancer subset, TCGA-OV [154], contains 1481 WSIs

from 590 cases of ovarian serous carcinoma (mostly, but not exclusively, high-grade),

with corresponding genomic, transcriptomic, and clinical data. This includes slides

from eight data centres in the United States, with most slides containing frozen tissue

sections (1374/1481) rather than FFPE sections. Other recurring data sources were

the University of British Columbia Ovarian Cancer Research Program (OVCARE)

repository [123, 134, 136], the Transcanadian study [116, 117], and clinical records at

the Mayo Clinic [128, 138], Tri-Service General Hospital [146, 147, 152], and Memorial

Sloan Kettering Cancer Center [133, 149]. All other researchers either used a unique

data source (12/45) or did not report the provenance of their data (8/45). TCGA-OV,

OVCARE, and the Transcanadian study are all multi-centre datasets. Aside from these,

few studies reported the use of multi-centre data [130–133, 136, 143]. Only two studies

reported the use of multiple slide scanners, with each slide scanned on one of two

available scanners [134, 136]. The countries from which data were sourced included

Canada, China, Finland, France, Germany, Italy, Japan, the Netherlands, South Korea,

Taiwan, the United Kingdom, and the United States of America.

3.3.2 Methods in Included Literature

The 80 models of interest included 37 diagnostic models, 22 prognostic models,

and 21 other models predicting diagnostically relevant information. Diagnostic model

outcomes included the classification of malignancy status (10/37), histological subtype

(7/37), primary cancer type (5/37), genetic mutation status (4/37), tumour-stroma

reaction level (3/37), grade (2/37), transcriptomic subtype (2/37), stage (1/37), mi-

crosatellite instability status (1/37), epithelial-mesenchymal transition status (1/37),

and homologous recombination deficiency status (1/37). Prognostic models included

the prediction of treatment response (11/23), overall survival (6/23), progression-free

survival (3/23), and recurrence (2/23). Other models performed tasks which could

be used to assist pathologists in analysing pathology images, including measuring

the quantity/intensity of staining (9/21), generating tumour (5/21) or stain (3/21)

segmentation masks, and classifying tissue (2/21) or cell (2/21) types.
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A variety of models were used, with the most common types being CNNs (41/80),

SVMs (10/80), and random forests (6/80). CNN architectures included GoogLeNet

[120], VGG16 [125, 138], VGG19 [123, 136], InceptionV3 [131, 146, 147, 152],

ResNet18 [133, 134, 136, 137, 141, 143], ResNet34 [148], ResNet50 [144, 150, 153],

ResNet182 [149], and MaskRCNN [138]. Novel CNNs typically used multiple stan-

dardised blocks involving convolutional, normalization, activation, and/or pooling layers

[124, 139, 140], with two studies also including attention modules [142, 152]. One study

generated their novel architecture by using a topology optimization approach on a

standard VGG16 [127].

Most researchers split their original images into patches to be separately processed,

with dimensions ranging from 60 to 2048 pixels, and the most common patch sizes

being 512 x 512 pixels (19/56) and 256 x 256 pixels (12/56). A range of feature

extraction techniques were employed, including both hand-crafted/pre-defined features

(23/80) and features that were automatically learned by the model (51/80). Hand-

crafted features included a plethora of textural, chromatic, and cellular and nuclear

morphological features. Hand-crafted features were commonly used as inputs to

classical ML methods, such as SVM and random forest models. Learned features

were typically extracted using a CNN, which was often also used for classification.

Despite the common use of patches, most models made predictions at the WSI level

(29/80), TMA core level (18/80), or patient level (6/80), requiring aggregation of patch-

level information. The methods used for this aggregation may be referred to as MIL

(Section 2.4.4), though few models of interest were reported using this terminology

[124, 137, 141, 144]. Instance embedding approaches (Section 2.4.4) generated

slide-level features using summation [150], averaging [115, 132, 149], attention-based

weighted averaging [137, 141, 142, 144, 153], concatenation [117, 122], as well as

more complex embedding approaches using Fisher vector encoding [116] and k-means

clustering [118]. Instance classification approaches (Section 2.4.4) aggregated patch-

level predictions by taking the maximum [124, 152], median [148], or average [127],

using voting strategies [134, 147], or using a random forest classifier [136].

Most studies included segmentation at some stage, with many of these analysing

tumour/stain segmentation as a model outcome [109–113, 130, 138, 140, 149, 151].

Some studies used segmentation to determine regions of interest for further modelling,
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either simply separating tissue from the background [114, 122, 144, 153], or using tu-

mour segmentation to select the most relevant tissue regions [126, 129, 146, 147, 152].

One study also used segmentation to detect individual cells for classification [121].

Some studies used segmentation in determining features relating to the quantity and

morphology of different tissues, cells, and nuclei [114, 115, 117, 128, 132, 133].

While attention-based approaches have been applied to other malignancies for several

years [77, 78], they were only seen in the most recent ovarian cancer studies [136, 137,

141, 142, 144, 146, 147, 152, 153], and none of the methods included self-attention

(Section 2.4.5), an increasingly popular method for other malignancies [155]. Most

models were deterministic (in that they used fixed weights and would generate the

same output if the same image were to be input multiple times), though hidden Markov

trees [111], probabilistic boosting trees [112], and Gaussian mixture models [135] were

also used.

Aside from the common use of low-resolution images to detect and remove non-tissue

areas, images were typically analysed at a single resolution, with only six papers

exploring multi-magnification techniques which may better leverage both cellular-level

and broader tissue-level features. Four of these combined features from different res-

olutions for modelling [116–118, 149], and the other two used different magnifications

for selecting informative tissue regions and for modelling [146, 147]. Out of the papers

for which it could be determined, the most common modelling magnifications were

20x (35/41) and 40x (7/41). Few models integrated histopathology data with other

modalities (6/80). Multi-modal approaches included the concatenation of separately

extracted uni-modal features before modelling [115, 127, 132], the aggregation of uni-

modal predictions from separate models [133], and a teacher-student approach where

multiple modalities were used in model training but only histopathology data was used

for prediction [124].

3.3.3 Analyses in Included Literature

Analyses were limited, with less than half of all models being evaluated with cross-

validation (39/80) and with very few externally validated using independent ovarian

cancer data (7/80), despite small internal cohort sizes. Cross-validation methods

included k-fold (22/39) with 3 to 10 folds, Monte Carlo (12/39) with 3 to 15 repeats,
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and leave-one-patient-out cross-validations (5/39). Some other papers included cross-

validation on the training set to select hyperparameters but used only a small unseen

test set from the same data source for evaluation. Externally validated models were all

trained with WSIs, with validations either performed on TMA cores (2/7) or WSIs from

independent data sources (5/7), with two of these explicitly using different scanners to

digitize internal and external data [134, 136]. Some reported methods were externally

validated with data from non-ovarian malignancies, but none of these included ovarian

cancer data in any capacity so they were not included in the review. However, there

was one method which trained with only gastrointestinal tumour data and externally

validated with ovarian tumour data [150].

Most classification models were evaluated using accuracy, balanced accuracy, and/or

AUROC, with one exception where only a p-value was reported measuring the

association between histological features and transcriptomic subtypes based on a

Kruskal-Wallis test [125]. Some models were also evaluated using the F1 score, which

was not tabulated (in Table 3.4) as the other metrics were reported more consistently.

Survival model performance was typically reported using AUROC, with other metrics

including p-value, accuracy, hazard ratios, and C-index, which is similar to AUROC but

can account for censoring. Segmentation models were almost all evaluated differently

from each other, with different studies reporting AUROC, accuracy, Dice coefficient,

intersection over union, sensitivity, specificity, and qualitative evaluations. Regression

models were all evaluated using the coefficient of determination (R2-statistic). For

some models, performance was broken down per patient [135, 143], subtype [150],

or class [121, 122, 132, 138], without an aggregated, holistic measure of model

performance.

The variability of model performance was not frequently reported (33/94), and when it

was reported it was often incomplete. This included cases where it was unclear what

the intervals represented (95% confidence interval, one standard deviation, variance,

etc.), or not clear what the exact bounds of the interval were due to results being plotted

but not explicitly stated. Within the entire review, there were only three examples in

which variability was reported during external validation [131, 134, 143], only one of

which clearly reported both the bounds and the type of the interval [131]. No studies

performed any Bayesian form of uncertainty quantification. Reported results are shown
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in Table 3.4, though direct comparisons between the performance of different models

should be treated with caution due to the diversity of data and validation methods used

to evaluate different models, the lack of variability measures, the consistently high risks

of bias (Section 3.4.2), and the heterogeneity in reported metrics.

3.4 Risk of Bias Assessment

3.4.1 PROBAST Assessment Tool

The risk of bias in research is the chance of reported results being distorted by

limitations within the study design, conduct, and analysis. The risks of bias of each

publication in the review were assessed using the Prediction model Risk Of Bias

ASsessment Tool (PROBAST) [156]. This includes 20 guiding questions which are cat-

egorised into four domains (participants, predictors, outcome, and analysis), which are

summarised as either high-risk or low-risk, or unclear if there is insufficient information

to make a comprehensive assessment and none of the available information indicates

a high risk of bias. As such, an unclear risk of bias does not indicate methodological

flaws, but incomplete reporting.

The participants domain covers the recruitment and selection of participants to ensure

the study population is consistent and representative of the target population. Relevant

details include the participant recruitment strategy (when and where participants were

recruited), the inclusion criteria, and how many participants were recruited.

The predictors domain covers the consistent definition and measurement of predic-

tors, which in this field typically refers to the generation of digital pathology images.

This includes methods for fixing, staining, scanning, and digitally processing tissue

samples before modelling.

The outcome domain covers the appropriate definition and consistent determination of

ground-truth labels. This includes the criteria used to determine diagnosis/prognosis,

the expertise of any persons determining these labels, and whether labels are

determined independently of any model outputs.

The analysis domain covers statistical considerations in the evaluation of model

performance to ensure valid and not unduly optimistic results. This includes many
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factors, such as the number of participants in the test set with each outcome, the

validation approaches used (cross-validation, external validation, bootstrapping, etc.),

the metrics used to assess performance, and methods used to overcome the effects of

censoring, competing risks/confounders, and missing data.

Different risk factors may be interrelated, for example, the risk of bias from using a small

dataset is somewhat mitigated by cross-validation, which increases the effective size

of the test set to match the size of the full dataset and can be used to assess variability,

reducing optimism in the results. Further, the risk caused by using a small dataset

depends on the type of outcome being predicted, for example, more data is required

for a robust analysis of 5-class classification than binary classification. There must also

be sufficient data within all relevant patient subgroups, for example, if multiple subtypes

of ovarian cancer are included, there must not be a subtype that is only represented by

a few patients. Due to these interrelated factors, there are no strict criteria to determine

the appropriate size of a dataset, though fewer than 50 samples per class or fewer than

100 samples overall is likely to be considered high-risk, and more than 1000 samples

overall is likely to be considered low-risk.

Risks of bias often arise due to inconsistent methodologies. Inconsistency in the

participants and predictors domains may cause heterogeneity in the visual properties

of digital pathology slides which may lead to spurious correlations, either through

random chance or systematic differences between subgroups in the dataset. Varied

data may be beneficial during training to improve model generalisability when using

large datasets, though this must be closely controlled to avoid introducing systematic

confounding. Inconsistent determination of the outcome can mean that the results of

a study are unreliable due to spurious correlations in the ground truth labels, or invalid

due to incorrect determination of labels.

While PROBAST provides a framework to assess risks of bias, there is some level

of subjectivity in the interpretation of signalling questions. As such, each model was

analysed by three independent researchers (any of JB, KA, NR, KZ, NMO), with at

least one computer scientist and one clinician involved in the assessment of each

model. The PROBAST applicability of research analysis was not implemented as it

is unsuitable for such a diverse array of possible research questions.
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3.4.2 Risk of Bias Results
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Figure 3.4 PROBAST risk of bias results summarised for the 45 studies included in
the systematic literature review.

The results of the PROBAST assessments are shown in Table 3.7. While some studies

contained multiple models of interest, none of these contained models with different risk

of bias scores for any section of the PROBAST assessment, so one risk of bias analysis

is presented per paper. All studies showed either a high overall risk of bias (37/45) or

an unclear overall risk of bias (8/45). Every high-risk study had a high-risk score in the

analysis section (37/45), with several also being at a high risk of bias in the participants

(6/45), predictors (11/45), or outcome (13/45) sections. Less than half of all studies

achieved a low risk of bias in any domain (21/45), with most low risks being found in

the outcome (16/45) and predictors (9/45) sections. Nearly all of the papers had an

unclear risk of bias in at least one domain, most commonly the participants (36/45)

and predictors (25/45) domains. Quantitative summaries are presented in Figure 3.4.
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Publication Participants Predictors Outcome Analysis Overall
Dong 2010(a) [109] High High High High High
Dong 2010(b) [110] High High High High High
Signolle 2010 [111] Unclear Unclear High High High

Janowczyk 2011 [112] Unclear Unclear Low High High
Janowczyk 2012 [113] Unclear High Unclear High High

Kothari 2012 [114] Unclear Low Low Unclear Unclear
Poruthoor 2013 [115] Unclear High High High High
BenTaieb 2015 [116] Unclear Unclear Low High High
BenTaieb 2016 [117] Unclear High Unclear High High
BenTaieb 2017 [118] Unclear Unclear Low High High
Lorsakul 2017 [119] Unclear Unclear High High High

Du 2018 [120] Unclear Unclear Unclear Unclear Unclear
Heindl 2018 [121] Unclear Low Low High High
Kalra 2020 [122] Unclear Low Low High High

Levine 2020 [123] Unclear Low Low Unclear Unclear
Yaar 2020 [124] Unclear Unclear Low High High
Yu 2020 [125] Unclear Low Low High High

Gentles 2021 [126] High Unclear High High High
Ghoniem 2021 [127] Unclear Unclear Unclear High High

Jiang 2021 [128] High High Unclear High High
Laury 2021 [129] Low High High High High

Paijens 2021 [130] Low High Unclear High High
Shin 2021 [131] Unclear Unclear Unclear High High
Zeng 2021 [132] Unclear Unclear Low High High

Boehm 2022 [133] Unclear High Unclear High High
Boschman 2022 [134] Unclear Low Low High High

Elie 2022 [135] Unclear Low High High High
Farahani 2022 [136] Unclear Unclear Low Unclear Unclear

Hu 2022 [137] Unclear Unclear Unclear Unclear Unclear
Jiang 2022 [138] Unclear Unclear High High High

Kasture 2022 [139] High High High High High
Kowalski 2022 [140] Unclear Unclear Unclear High High
Lazard 2022 [141] Unclear Unclear Unclear Unclear Unclear

Liu 2022 [142] Unclear Unclear Unclear Unclear Unclear
Mayer 2022 [143] Unclear Unclear High High High
Nero 2022 [144] Unclear Low High High High

Salguero 2022 [145] Unclear Unclear Low High High
Wang 2022(a) [146] Unclear Unclear Unclear High High
Wang 2022(b) [147] Unclear Unclear Low High High
Yokomizo 2022 [148] Low Low Unclear Unclear Unclear

Ho 2023 [149] Unclear Unclear Unclear High High
Meng 2023 [150] Unclear Unclear Low High High

Ramasamy 2023 [151] High High High High High
Wang 2023 [152] Unclear Unclear Unclear High High
Wu 2023 [153] Unclear Unclear Low High High

Table 3.7 PROBAST risk of bias assessment results for the 45 studies in the review.
This is presented as one row per study because every study that contained multiple
models of interest was found to have the same risk of bias score for each model.
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3.5 Discussion

The vast majority of published research on AI for diagnostic or prognostic purposes

in ovarian cancer histopathology was found to be at a high risk of bias due to

issues within the analyses performed. Researchers often used a limited quantity

of data and conducted analyses on a single train-test data split without using any

methods to account for overfitting and model optimism (cross-validation, bootstrapping,

external validation). These limitations are common in gynaecological AI research using

other data types, with recent reviews pointing to poor clinical utility caused by predom-

inantly retrospective studies using limited data [107, 157] and limited methodologies

with weak validation, which risk model performance being overestimated [105, 106].

The more robust analyses included one study in which several relevant metrics were

evaluated using 10 repeats of Monte Carlo cross-validation on a set of 406 WSIs, with

standard deviations reported for each metric [123]. Other positive examples performed

both internal cross-validation and external validation for the same outcome, giving a

more rigorous analysis [136, 143, 147]. While external validations were uncommon,

those which were conducted offered a real insight into model generalisability, with a

clear reduction in performance on all external validation sets except one [136]. The

only study which demonstrated high generalisability included the largest training set

out of all externally validated approaches, included more extensive data labelling than

many similar studies, and implemented a combination of three colour normalisation

approaches, indicating that these factors may benefit generalisability.

Studies frequently had an unclear risk of bias within the participants and predictors

domains of PROBAST due to incomplete reporting. Frequently missing information

included where the patients were recruited, how many patients were included, how

many samples/images were used, whether any patients/images were excluded, and

the methods by which tissue was processed and digitized. Only three papers were

found to be at low risk of bias for participants, with these including clear and reasonable

patient recruitment strategies and selection criteria, which can be seen as positive

examples for other researchers [129, 130, 148]. Information about the predictors

(histopathology images and features derived thereof) was generally better reported,

but still often missed key details which meant that it was unclear whether all tissue

samples had been processed similarly to avoid risks of bias from visual heterogeneity.
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When patient characteristics were reported they often showed a high risk of bias. Many

studies included very small quantities of patients with specific differences from the

majority (e.g. less than 20 patients with a different cancer subtype to the majority),

causing a risk of spurious correlations and results which were not generalisable to the

wider population.

Reporting was particularly sparse in studies which only used openly accessible data,

possibly indicating that AI-focused researchers were not taking sufficient time to under-

stand these datasets and ensure their research was clinically relevant. For example,

many of the researchers who used TCGA data included frozen tissue sections without

commenting on whether this was appropriate, even though pathologists do not consider

them to be of optimal diagnostic quality. One paper handled TCGA data more

appropriately, with a clear explanation of the positives and negatives of the dataset,

and entirely separate models for FFPE and frozen slides [122].

Sharing code can help to mitigate the effects of incomplete reporting and drastically

improve reproducibility, but only 19 of the 45 papers did this, with some of these

appearing to be incomplete or inaccessible. The better code repositories included

detailed documentation to aid reproducibility, including environment set-up information

[125, 150], overviews of included functions [133, 141, 149], and code examples used

to generate reported results [121].

Two papers were found to have major discrepancies between the reported data and

the study design, indicating much greater risks of bias than those seen in any other

research [139, 151]. In one paper [139], it was reported that TCGA-OV data was used

for subtyping with 5 classes, despite this dataset only including high-grade serous

and low-grade serous carcinomas. In the other paper [151], it was reported that

TCGA-OV data was used for slide-level classification into ovarian cancer and non-

ovarian cancer classes using PAS-stained tissue, despite TCGA-OV only containing

H&E-stained ovarian cancer slides. In the former paper [139], it was notable that

some of the images included in the manuscript and shared data file contained

watermarks and copyright information indicating non-TCGA data sources (such as

https://www.webpathology.com/), and further analysis showed that many images used

in the paper had been cropped to remove copyright symbols which were present in

WebPathology. In the latter paper [151], the manuscript contained many figures which

https://www.webpathology.com/
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were indistinguishable from those in several disparate studies (without references),

including a pathology image from a bat ovary [158] and performance graphs from the

training of an MRI brain tumour detection model [159]. In both of these cases, concerns

were reported to the editors of the journals in which the papers had been published.

3.5.1 Limitations of the Review

While the systematic review protocol was designed to reduce biases and maximise the

quantity of relevant research included, there were some limitations. The review was

restricted to published literature in the English language, however, AI research may

be published in other languages or made available as pre-prints without publication

in peer-reviewed journals, making this review incomplete. While most of the review

process was completed by multiple independent researchers, duplicate detection was

performed by a single researcher, raising the possibility of errors in this step of the

review process which would have resulted in incorrect exclusions. Due to the significant

time gap between the initial and final literature searches (approximately 12 months),

there may have been inconsistencies in interpretations, both for data extraction and risk

of bias assessments. Finally, this review focused only on conventional light microscopy

images of human histopathology samples relating to ovarian cancer, so may have

overlooked useful literature outside of this domain.

3.5.2 Development of the Field

The field of AI in ovarian cancer histopathology diagnosis is rapidly growing, with more

research published since the start of 2020 than in all preceding years combined. The

earliest research, published in 2010-2013, used hand-crafted features to train classical

ML methods such as SVMs. These models were used for segmentation [109–111,

113], malignancy classification [112, 114], grading [115], and overall survival prediction

[115]. Most of these early studies focused on IHC-stained tissue (5/7), which would be

much less commonly used in subsequent research (6/38).

The field was relatively dormant in the following years, with only 6 papers published

between 2014-2019, half of which had the same primary author [116–118]. These

models still used traditional ML classifiers, though some used automatically learned
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features rather than the traditional hand-crafted features. The models developed were

used for histological subtyping [116–118] and cellular/tissue classification [119–121].

Since 2020 there has been a much greater volume of research published, most of

which has involved the use of deep neural networks for automatic feature extraction

and classification. Recent research has investigated a broader array of diagnostic

outcomes, including the classification of primary cancer type [122, 151], mutation

status [132, 144, 149], homologous recombination deficiency status [141], tumour-

stroma reaction level [138], transcriptomic subtypes [125, 132], microsatellite instability

[132], and epithelial-mesenchymal transition status [137]. Three additional prognostic

outcomes have also been predicted in more recent literature - progression-free survival

[129, 133, 148], relapse [144, 148], and treatment response [124, 125, 146, 147, 152].

Despite progress within a few specific outcomes, there was no obvious overall trend

in the sizes of datasets used over time, either in terms of the number of slides

or the number of participants (Figure 3.5). Similarly, there was no evidence that

recent research included more rigorous internal validations, though external validations

have been increasing in frequency - no research before 2021 included any external

validation with ovarian cancer data, but seven studies published more recently did

[131, 132, 134, 136, 143, 147, 150]. While these external validations were typically

limited to small quantities of data, the inclusion of any external validation demonstrates

progress from previous research. Such validations are essential to the clinical utility of

these models as real-world implementation will require robustness to different sources

of visual heterogeneity, with variation occurring across different data centres and within

data centres over time. As this field continues to mature, researchers must conduct

thorough validations with larger, high-quality independent datasets, including clearly

reported protocols for patient recruitment and selection, pathology slide creation, and

digitization. This will help to reduce the biases, limited reproducibility, and limited

generalisability identified in most of the existing research in this domain.
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Figure 3.5 Boxplots showing the number of ovarian cancer patients and the number
of samples used in the development of each model by publication year. Many of these
values are uncertain due to incomplete reporting, as reflected in Table 3.4. There were
no accepted studies in 2014 or 2019.

3.5.3 Recent Literature

To find the most recent research, systematic searches were repeated on 25/06/2024,

and ad-hoc searches were conducted in Google Scholar, ResearchGate, and the

references of other relevant papers. Since the publication of the systematic review,

the field has continued to grow, with over 30 new papers identified and two ovarian

cancer histopathology challenges conducted.

Histological Subtyping

Histological subtyping has remained one of the most common tasks in recent months.

The Ovarian Cancer subtypE clAssification and outlier detectioN (OCEAN) [160]

challenge focused on the robustness of ovarian cancer subtyping, with data from over

20 centres, including both WSIs and TMAs, and an other class alongside the five most

common ovarian carcinoma subtypes. Across training and testing sets, the challenge

utilised 1006 WSIs and 1462 TMAs, one of the largest datasets ever used in ovarian

cancer subtyping. The greatest performance in this challenge was 66% balanced

accuracy, indicating the difficulty in handling such diverse data.

Unfortunately, most of the recently published research on histological subtyping has

either used the OCEAN dataset while it was still under embargo [161, 162] or the
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previously mentioned dataset [139] which had been misrepresented as TCGA-OV data

[163–167]. Multiple versions of the latter dataset have been removed from the data

hosting website Mendeley in response to our concerns, with Mendeley citing suspected

copyright infringement (https://data.mendeley.com/datasets/kztymsrjx9/1 and https://

data.mendeley.com/datasets/w39zgksp6n/1).

Some other recently published studies have also been of questionable value. One

study used a particularly small set of ovarian cancer images to validate a subtyping

model, with 12 images used for four-class subtyping and 186 images for two-class

subtyping [168]. A different study performed patch-level four-class subtyping on a total

of 82 WSIs, with it being unclear whether the train-test split was made at the patient

level. Another study reported 100% accuracy on the OCEAN challenge dataset [169],

but the veracity of this research was questionable due to numerous errors in the

manuscript, such as conflicting results, ROC curves made of only a single point, and

claims that an uncited ‘comprehensive literature review’ found only one study in ovarian

cancer histopathology. Another study reported 96% balanced accuracy on the OCEAN

dataset but with only a very small test set of 15% of the available data [170].

A few recent subtyping studies have been more promising. One used the largest

dataset from any previous study, consisting of 948 WSIs [136], to train and validate

a multi-scale graph network [82], reporting a cross-validation slide-level balanced

accuracy of 73%. Another study used a slightly larger set of 1113 WSIs to investigate a

novel domain adaptation approach, achieving optimal balanced accuracies of 81% on

internal data and 76% on external data [171]. Two other studies applied histopathology

foundation models (see Chapter 7) to ovarian cancer subtyping, with one reporting an

82% balanced accuracy on the OCEAN dataset [172], and the other reporting around

88% balanced accuracy in six-class subtyping with 559 WSIs [173]. These are the

highest accuracies reported in any studies to have used such large datasets.

https://data.mendeley.com/datasets/kztymsrjx9/1
https://data.mendeley.com/datasets/w39zgksp6n/1
https://data.mendeley.com/datasets/w39zgksp6n/1
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Other Diagnostic and Prognostic Tasks

Prognostic models have remained common in recent literature, with studies focused

on predicting survival [174–180], treatment response [181–186], and recurrence [187].

Some of these studies have focused on interpretable features in the tumour microenvi-

ronment, using AI to quantify tumour infiltrating lymphocytes [175, 177, 178], segment

tumour and stroma [174, 176], or quantify collagen disorder [177], then using these

features for prognostication in Cox regression models. Other approaches included

MIL for prognostication of survival [179, 188] and treatment response [181, 183, 185].

Three studies used multimodal models, combining histopathology with clinical data

for predicting recurrence [187] and survival [180], and with proteomics for predicting

treatment response [184].

There was also a challenge based on prognostication. Automated Prediction of

Treatment Effectiveness in Ovarian Cancer using Histopathological Images (ATEC23)

[189] was built upon previous studies in predicting treatment response [147, 152]. Chal-

lenge participants were provided 288 training WSIs from 78 patients and were tasked

with classifying whether patients would have six-month progression-free survival after

treatment using individual TMA core images. None of the participants were able to

achieve an accuracy greater than 70% despite a 57% class imbalance in the test set.

This challenge is explored further with respect to our own participation in Appendix F.

Both the ATEC23 and OCEAN challenges had a training set composed of mostly WSIs

and a test set of mostly TMAs. The tasks in these challenges (treatment response and

subtyping) are far from solved at the WSI level, so it is not surprising that participants

were not able to achieve great performance when using the vastly less informative

TMAs.

Six recent studies created patch-level malignancy classifiers [190–194], with these

using datasets derived from TCGA [192, 194], the ATEC23 challenge [190, 191, 193],

or an unclear dataset ‘from Kaggle’ [195]. These papers reported high classification

performance but exhibited several risks of bias including small validation sets, potential

data leakage between training and testing, and a lack of information concerning the

development of ground truth labels (with the open access datasets not containing

malignancy labels). Other studies included a cell segmentation model [196], and
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models for the classification of BRCA mutations [197] and ovarian cancer precursor

lesions [198], the first AI model for this task.

3.5.4 Current Limitations and Future Recommendations

A large proportion of previously published work did not provide sufficient clinical

and pathological information to fully assess the risk of bias. Researchers must

thoroughly report data provenance to understand the extent of data heterogeneity,

and to understand whether this has been appropriately accounted for in the study

design. Modelling and analysis methods must also be thoroughly reported to improve

reliability and reproducibility. It may be beneficial to refer to reporting checklists, such

as Transparent Reporting of a multivariable prediction model for Individual Prognosis

Or Diagnosis (TRIPOD) [199] and the recent AI-focused version, TRIPOD-AI [200], to

ensure that all relevant details of the given study are understood and reported. In many

studies, it was not clear how AI would fit in the clinical workflow, or whether there were

limitations in how the methods could be applied. AI research should be conducted with

an understanding of the clinical context of the data and any potential models, ideally

with the direct and regular involvement of expert clinicians, such as histopathologists

and oncologists.

Many previous studies did not make their data or code available, drastically reducing

their reproducibility. It is relatively easy to publish code and generate documentation

to enhance usability, and there are few drawbacks to doing so when publishing

research. Making data available is more often difficult due to data governance

requirements and the potential storage costs, but it can provide benefits beyond the

primary research of the original authors. Digital pathology research in ovarian cancer

is currently limited by the lack of openly accessible data, leading to over-dependence

on TCGA and, more recently, ATEC23 and OCEAN. Many researchers have also been

painstakingly collating similar but distinct internal datasets, which often contain little

of the heterogeneity seen in multi-centre, multi-scanner data, making it difficult to

train robust models or assess generalisability. Where heterogeneous data has been

included, it has often included small quantities of data which were different to the

majority, introducing risks of bias and confounding rather than helping to overcome

these issues. TCGA-based studies are prone to this, with significant differences
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between TCGA slides originating from different data centres [201], but with many of

these centres only providing small quantities of data, leading to a high likelihood of

spurious correlations between data subsets. These issues may also be present in

ATEC23 and OCEAN-based analyses, with ATEC23 being particularly heterogeneous

(Appendix F) and OCEAN not being well-documented (Section 4.2). Improved datasets

with detailed protocols describing data creation would allow researchers to conduct

more thorough analyses and significantly improve model generalisability and clinical

implementability.

For AI to achieve clinical utility in this field, it is essential that more robust validations are

performed, especially considering the limitations of the available datasets. This must

include thorough analyses, using techniques such as cross-validation, bootstrapping,

and external validations to ensure that results are robust and truly reflect the ability

of the models to generalise to unseen data, and are not simply caused by chance.

The variability of results should be reported (typically in a 95% confidence interval),

especially when comparing multiple models to help distinguish whether one model

is genuinely better than another or whether any difference is simply due to chance.

Statistical tests can also be beneficial for these evaluations.

Current literature in this field can be largely characterised as model prototyping with

homogeneous retrospective data. Researchers rarely consider the reality of human-

machine interaction, perhaps believing that these models are a drop-in replacement

for pathologists. However, these models perform narrow tasks within the pathology

pipeline and do not take into consideration the clinical context beyond their limited

training datasets and siloed tasks. These models are likely to be more beneficial

(and more realistic to implement) as assistive tools for pathologists, providing second

opinions or novel ancillary information. While current research is typically focused on

assessing model accuracy without any pathologist input, different study designs could

be employed to better assess the real-world utility of these models as assistive tools.

For example, usability studies could investigate which models are most accessible and

most informative to pathologists in practice, and prospective studies could quantify any

benefits to diagnostic efficiency and patient outcomes, and investigate the robustness

of models in practice. AI-clinician interaction has thus far been a relatively small field

of research [202], and we are not aware of any study in which pathologists have
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systematically compared the merits of different AI implementations for a specific task.

Such research would significantly benefit clinical translation.

3.6 Conclusion

In this chapter, we reviewed previous studies in which AI models were used for the

diagnosis or prognosis of ovarian cancer from histopathology slides. We identified

several weaknesses in previous research and explored how these may be addressed.

Many researchers did not sufficiently understand their data and ensure that planned

research was clinically relevant with direct oversight from clinicians. Many previous

studies had high risks of bias due to using small, heterogeneous datasets with minimal

validation techniques, which often did not involve cross-validation, external validation,

bootstrapping, or hypothesis testing. Many studies did not include key information

about the data used, including how patients were recruited and selected, and how

tissue specimens were processed to generate digital pathology images. Finally, few

researchers made their code or data accessible, reducing reproducibility and imposing

barriers on future researchers. While this field has been growing in recent years, it is

not clear that the quality of overall research is improving. The lessons learned through

this review have been instrumental in shaping the methodologies and reporting of our

primary research. The recommendations provided for future research included using

reporting checklists, publishing code, sharing data (where possible), performing deeper

validations, reporting variability, and assessing real-world utility.
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Chapter 4

Methodology

In this chapter, we detail recurring aspects of the methodology used throughout

the following chapters. This includes data acquisition, preprocessing, modelling,

hyperparameter tuning, and validation procedures. Some aspects differ in specific

chapters, for example, Chapter 5 contains much of the early work which influenced

subsequent study design, and Chapter 8 contains an entirely different classification

model developed based on the knowledge derived from earlier research.

4.1 Baseline Subtype Classification Model
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Figure 4.1 Attention-based multiple instance learning (ABMIL) [77] model pipeline for
ovarian cancer subtyping.

We adopted the standard ABMIL classifier [77] (Figure 4.1) as a baseline model for

our experiments using the implementation from the CLAM repository [78]. This is a

commonly used MIL approach which gives consistently strong performance across

many tasks, even when compared to more complex MIL approaches [79–81, 136].
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The default preprocessing method from the CLAM code repository [78] was imple-

mented to perform tissue segmentation and colour normalisation, with the latter step

applied after patch extraction. For tissue segmentation, a downsampled version of

each WSI was converted from RGB images into the hue-saturation-value (HSV) colour

space and a median blurring was applied to smooth the saturation channel and reduce

noise. The segmentation was performed by applying a saturation threshold of 8/255,

where all pixels with saturation greater than the threshold were labelled as tissue and

all other pixels were labelled as background. Morphological closing was then used to

smooth the edges and close small gaps in the detected tissue mask. These tissue

masks were defined by their outer contours, and these masks were rescaled to match

the size of the WSI.

To extract tissue patches, a rectangular bounding box was placed around each tissue

contour and split into 512 x 512 pixel non-overlapping patches [78]. Any patch in which

the central point was outside the tissue contour was dropped, leaving the set of viable

tissue patches. These patches were downsampled from 512 x 512 pixels at 40x native

magnification to 256 x 256 pixels at 20x apparent magnification, an approach which

was very common in previous research (Chapter 3) to reduce the effective size of

WSIs and hence the computational workload.

The baseline ABMIL model employed an ImageNet-pretrained ResNet50 encoder

to extract patch-level features. ImageNet (a set of 1.4 million natural images from

1000 classes) [58] is popular for model pretraining as the quantity and diversity of

labelled images enables the creation of a multi-purpose feature set. ResNet50 [59]

is a standard CNN which had been trained in a fully supervised manner, achieving

a reported 85.1% ImageNet classification accuracy. To use this model as a feature

extractor, outputs were taken from the end of the third residual block to give 1024

features per input patch. Before feature extraction, tissue patches were normalised

using the ImageNet standard RGB parameters (mean = (0.485, 0.456, 0.406),

std=(0.229, 0.224, 0.225)) using the standard statistical normalisation procedure
value−mean

std . The reduction from 256 x 256 x 3 (height x width x colour channels) to

1 x 1024 features compressed the patches by a factor of 192.

ABMIL feature aggregation used a trainable sigmoid gated-attention layer to give each

patch feature vector an attention score between 0 and 1, with an attention-weighted
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average of the patch features taken to generate a 1 x 1024 WSI feature vector. Finally,

this WSI feature vector was classified through a fully connected neural network with

one output node per class.

4.2 Datasets

The models presented in this thesis were exclusively developed and trained using ovar-

ian carcinoma WSIs from cases treated at Leeds Teaching Hospitals NHS Trust (LTHT),

with ethics approval provided by the Wales Research Ethics Committee (reference

18/WA/0222). This dataset was developed by a histopathologist concurrently with the

research presented in this thesis, meaning that the full dataset was only available for

the most recent work (Chapters 7 and 8). All models were initially validated using the

internal dataset, and when performance started to reach reasonable levels, external

datasets were sourced to further validate performance.

4.2.1 Internal Ovarian Cancer Dataset

Carcinoma
Subtype

Training WSIs
(Patients)

Hold-out WSIs
(Patients)

High-Grade Serous
(HGSC) 1266 (307) 20 (7)

Low-Grade Serous
(LGSC) 92 (21) 20 (6)

Clear Cell
(CCC) 198 (45) 20 (7)

Endometrioid
(EC) 209 (38) 20 (5)

Mucinous
(MC) 99 (22) 20 (5)

Total 1864 (433) 100 (30)

Table 4.1 Dataset breakdown for the training (cross-validation) set and independent
internal hold-out test set. Numbers in brackets indicate the number of unique patients.

The LTHT ovarian cancer dataset was retrospectively collected by a histopathologist

(Katie Allen) from cases treated between 2008 and 2022. Cases were only included

if a gynaecological pathologist had diagnosed them as one of the five most common

epithelial ovarian cancer subtypes (HGSC, LGSC, CCC, MC, EC). Tumours were only

included if they were carcinomas of tubo-ovarian-primary peritoneal origin with a single
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epithelial subtype present, and with associated clinical metadata available in the patient

health records. The histopathologist independently verified all diagnoses, removing

any cases with discrepancies. Several representative H&E-stained adnexal tissue

glass slides were selected for each case, with only FFPE samples used. Any mounting

artefacts were corrected, and slides were cleaned and anonymised before being

digitised at 40x magnification using a single Leica AT2 scanner.

As shown in Table 4.1, the final training dataset consisted of 1864 WSIs from

433 ovarian carcinoma cases, consisting of 1412 primary surgery sample WSIs from

296 cases, and 452 IDS sample WSIs from 137 cases. The population-level class

imbalance was reflected in the training set, with the least common subtype (LGSC)

represented by only 92 WSIs from 21 cases, compared to 1266 WSIs from 307 cases

for the most common subtype (HGSC). This set also reflected the high frequency of

stage III, high-grade cancers, particularly driven by the high proportion of HGSC cases

(Table 4.2). We aimed to classify primary surgery WSIs as these are generally of better

diagnostic quality than IDS specimens (Section 2.2). The training set included both

primary surgery samples and IDS samples as we found their inclusion to be beneficial

to model training [8].

An independent set was collected following the same protocol, from which 20 WSIs

of each carcinoma subtype were taken to form a class-balanced hold-out test set.

Rather than representing realistic clinical frequencies, this set focused on quantifying

performance across all subtypes equally. It also focused on the goal of accurately

classifying the clinical standard primary surgery samples, and so didn’t include any

IDS samples. Neoadjuvant chemotherapy usage is much more common in later-

stage cancers, so restricting this set to primary surgery samples (without neoadjuvant

chemotherapy) led to a much higher proportion of early-stage cancers than in the

training set (Table 4.2). Balancing the subtypes also led to the set containing a similar

proportion of high-grade and low-grade cancers.
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Training Set
Subtype HGSC LGSC CCC EC MC Total
Stage I 23 5 24 24 15 91
Stage II 33 0 5 10 2 50
Stage III 210 12 11 3 4 240
Stage IV 41 4 5 1 1 52

Grade 1 / Low Grade - 21 - 15 8 23
Grade 2 - - - 17 10 27

Grade 3 / High Grade 307 - 45 6 1 359
Ungraded 0 0 0 0 3 3

Primary Surgery 188 11 39 37 21 296
Interval Debulking Surgery (IDS) 119 10 6 1 1 137

Hold-out Test Set
Subtype HGSC LGSC CCC EC MC Total
Stage I 3 3 5 5 3 19
Stage II 2 1 0 0 0 3
Stage III 2 2 2 0 1 7
Stage IV 0 0 0 0 1 1

Grade 1 / Low Grade - 6 - 2 2 10
Grade 2 - - - 3 1 4

Grade 3 / High Grade 7 - 7 0 0 14
Ungraded 0 0 0 0 2 2

Primary Surgery 7 6 7 5 5 30
Interval Debulking Surgery (IDS) 0 0 0 0 0 0

Table 4.2 Clinical features of the 433 training set and 30 hold-out test set patients.
Grade 1 is combined with low grade, and grade 3 is combined with high grade, though
these terms are not interchangeable. Grades which are incompatible with specific
subtypes have been marked with hyphens (-).
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4.2.2 External Datasets

Carcinoma
Subtype

Transcanadian [203]
WSIs (Patients)

OCEAN Challenge
[160] WSIs

High-Grade Serous
(HGSC) 30 (30) 217

Low-Grade Serous
(LGSC) 9 (9) 42

Clear Cell
(CCC) 20 (20) 94

Endometrioid
(EC) 11 (11) 119

Mucinous
(MC) 10 (10) 41

Total 80 (80) 513

Table 4.3 Dataset breakdown for the external validation sets. Numbers in brackets
indicate the number of unique patients, which was not clear for the OCEAN dataset.

Ovarian cancer has a relative sparsity of available datasets, with the most commonly

used set in previous AI research (TCGA-OV [154]) only including serous carcinomas.

While there were no suitable external datasets available at the start of this research,

two sets recently became available. The first was a dataset from the Transcanadian

Study [203]. This set consisted of 80 WSIs from 80 cases digitised using an

AperioScope scanner and made available at 20x magnification, alongside subtype

labels that had been determined by a gynaecological pathologist. This dataset has

previously been used in the training and testing of a subtype classification model

[116, 117], but to the best of our knowledge, it has never previously been used as

a stand-alone validation set.

The second dataset was only made available for general research usage in April 2024,

following the OCEAN Challenge the previous year [160]. The publicly available part

of the dataset contained a total of 513 WSIs digitised at 20x magnification (as well as

30 TMAs, which we did not utilise given our focus on classifying WSIs). Details were

sparse regarding the data collection, curation, and labelling procedures, though these

were likely heterogeneous considering data was sourced from over 20 data centres

(including the TMAs and test WSIs which were not publicly available).
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With the exception of confirming that the Transcandian Study contained only primary

surgery specimens through direct contact with the primary author, we were unable to

obtain the clinical characteristics of either external dataset.

4.3 Hyperparameter Tuning and Model Training

An iterative grid search strategy was used to perform hyperparameter tuning for the

classification stage of ABMIL, with 2-3 of the hyperparameters selected to be adjusted

and evaluated at a time, and all other hyperparameters frozen at their previous best

values. The performance of each hyperparameter configuration was evaluated using

the average loss of each validation set in five-fold cross-validation. These cross-

validation splits were stratified at the patient level to give relatively class-balanced

folds while avoiding data leakage. The iterative tuning procedure risked finding a local

optimum rather than a global optimum, but it was the most rigorous available method

considering that it was not computationally feasible to conduct a full hyperparameter

grid search. The standard hyperparameters are defined in this section, though other

hyperparameters varied based on the specific requirements of each set of experiments.

The loss function used for model training in the CLAM repository was the cross-

entropy loss [78], though given the class imbalance in our dataset we instead used

the balanced cross-entropy loss:

l(y, c) = −wi log
exp (yc)∑m

i=1wi exp (yi)
, (4.1)

for classes c ∈ 1, 2, ...,m, class predictions y ∈ [0, 1)m, and with class weights wi. These

class weights are inversely proportional to the class frequencies n1 to nm to balance

the relative importance of each class, and are normalised using the average number

of slides per class 1
m

∑m
j=1 nj such that the average weight per WSI equals 1, which

reduces the instability caused by the scaled loss values having varied magnitudes:

wi =

∑m
j=1 nj

m× ni

. (4.2)
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Models were trained with an adaptive moment estimation (Adam) optimiser [204]

(as in CLAM [78]), a stochastic gradient descent method in which moving averages

estimating the mean and variance of the gradient are used to smooth the optimisation.

The Adam update procedure for parameters θt with gradients gt at timestep t is as

follows, where mt and vt are the rolling estimates of the first and second moments (the

mean and variance) of the gradient, and α, β1, β2, ϵ are hyperparameters:

mt =
β1 ·mt−1 + gt(1− β1)

1− β1

, (4.3)

vt =
β2 · vt−1 + g2t (1− β2)

1− β2

, (4.4)

θt = θt−1 − α
mt√
vt + ϵ

. (4.5)

These hyperparameters are the learning rate (α), first moment decay (β1), second

moment decay (β2), and numerical stability parameter (ϵ). As well as the initial

learning rate, hyperparameters controlled the rate of decay of the learning rate,

with one setting the LR decay patience (the number of training epochs without an

improvement before the learning rate was decreased), and another controlling the

LR decay factor (the factor by which the learning rate was multiplied during decay).

To attempt to reduce the effects of overfitting and hence improve model robustness,

three types of regularisation were employed during model training, each with a related

hyperparameter. The weight decay hyperparameter controlled the relative strength

of an imposed L2 regularisation penalty, which penalised the sum of squares of the

weights when calculating the loss function to incentivise small model weights and

hence a parsimonious model. The dropout rate controlled the proportion of model

parameters that were dropped (set to zero) before the final classification step in the

model. The max patches hyperparameter applied a similar procedure to the data, with

patches randomly selected from a slide and the other patches dropped. These dropout

procedures reduced overfitting by acting as efficient data and feature augmentation

techniques, making it more difficult for the model to take shortcuts and learn spurious

relationships [205].
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4.4 Model Validation

The best overall hyperparameter configuration from tuning was used to train a model

for each cross-validation fold, and these models were evaluated on the withheld test

splits, as shown in Figure 4.2. The cross-validation test sets were somewhat exposed

by their usage in the training/validation sets of other folds when determining the

optimal hyperparameters, so model performance was also evaluated using a hold-

out test set and external validation sets where possible. For such validations, the

five cross-validation model predictions were ensembled by taking the average of the

softmaxed classifier outputs. Classification performance was evaluated using the

balanced accuracy, AUROC, and F1 score (Section 2.5). Bootstrapping was used

to evaluate the variability of results, with all model predictions resampled 10,000 times

and the mean and 95% percentile confidence interval of each metric calculated.
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Figure 4.2 Five-fold cross-validation procedure for model training and evaluation.
Splits were made at the patient level and kept consistent between the different models.

We measured model efficiency both in terms of the number of model parameters and

the runtime in training and inference. We excluded the feature extraction requirements

from training time since this step is frozen, so only needs to be run once before any

tuning experiments. Feature extraction times were included when measuring inference

times to best represent the computational burden of a deployed model.
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4.4.1 Hypothesis Testing

In the most rigorous experiments, paired t-tests were used to statistically compare

model performance for each metric and each validation set across the cross-validation

folds. Where multiple models were compared against the same baseline, p-values

were adjusted for multiple testing using the Benjamini-Hochberg false discovery rate

correction [206]. Results were considered statistically significant given an adjusted

p-value < 0.05.

4.5 Software and Hardware

Experiments were conducted on two distinct devices which we refer to as the personal

computer (PC) and the high-performance computer (HPC). The PC was a standard

consumer desktop computer with a single NVIDIA GTX 1660 GPU with 6GB of VRAM,

an Intel i5-4460 central processing unit (CPU) @ 3.2GHz, and 16 GB of RAM. The

HPC was an NVIDIA DGX A100 server with 8 NVIDIA A100 GPUs and 256 AMD EPYC

7742 CPUs @ 3.4GHz. The HPC GPUs were each segmented into seven instances,

with only one instance used for all experiments except those using the largest feature

extraction models in Chapter 7.

All experiments were conducted using a PyTorch [207] code base developed as an

extension to the CLAM model pipeline [78]. WSIs were loaded from .svs files using the

Python openslide library and the cv2 package was used for many chromatic and mor-

phological operations in preprocessing and patch extractions. Hyperparameter tuning

was implemented using the Ray Tune Python library, with the TrialPlateauStopper

function used to stop training for any configuration where no improvement had been

found for a given number of epochs. Hypothesis testing was implemented with the

ttest_rel function in the scipy.stats Python module and p-values were adjusted

using the statsmodels function multipletests. The graph models in Chapter 8 were

implemented in Pytorch Geometric. For each set of experiments, a public GitHub

repository was published at https://github.com/scjjb, with code examples and further

guidance provided to aid reproducibility.

https://github.com/scjjb
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Chapter 5

Active Sampling for Efficient Multiple
Instance Learning

In this chapter, we describe our initial experiments in ovarian cancer subtyping.

We use an ABMIL backbone and propose an active sampling approach for efficient

slide inference by leveraging spatial relationships and attention scoring to determine

discriminative tissue regions. This approach is validated using the earliest iterations

of the Leeds ovarian carcinoma dataset, with these analyses being fundamental in

shaping the full dataset and subsequent modelling techniques.

5.1 Introduction

The huge size of digital pathology slides presents a significant computational burden

for AI models. In research settings, it is increasingly common to classify WSIs using

HPCs [75, 78, 81, 208], but these are unlikely to be available in the clinical setting due

to the financial cost of acquisition and maintenance. It may instead be expected that

pathology slides or their digitised image files are outsourced to a location with greater

hardware access, but there is still an associated financial cost to hire or maintain off-

site resources, and doing so increases the logistical complexity of pathology, which

may delay diagnosis and present data governance and security issues. It would

be beneficial for classification algorithms to instead be made efficient enough to run

on standard clinical hardware (either standard clinical computers or digital pathology

scanners). Such an approach may also benefit access to AI diagnostic tools in lower-

resourced healthcare settings, where the potential benefit of AI models is greatest

given the unavailability of subspecialty experts.

The scalability of digital pathology AI models is essential due to the huge quantity of

data generated. For example, at LTHT alone, over 290,000 H&E slides are generated

each year [209]. Not all slides contain as much tissue as a typical ovarian cancer

resection slide, and they may not all be the targets of AI models, though to apply a

model to even 20% of them would require processing a gigapixel WSI every 9 minutes,

non-stop. This will become an even greater issue as labs start applying several different
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algorithms to perform tasks such as quality control, tumour segmentation, metastasis

detection, prioritisation, diagnostic classification, and prognostic prediction.

As described in Section 2.4.4, it is common for slide-level classification to be performed

using MIL methods, where information is learned at the patch level and aggregated

to model the WSI. When using MIL methods in a setting with many instances per

bag, such as modelling a WSI as a collection of many patches, it may be pertinent

to use within-bag instance sampling to effectively reduce the number of instances.

Instance sampling approaches are intended to focus on relevant instances, improve

robustness to outlier instances, or reduce the overall computational burden. Within-

bag sampling can be as simple as randomly selecting instances [210, 211], or only

selecting instances within a specific region when using spatially related instances, such

as patches from within an image [212]. Multiple magnifications of a histopathology slide

can be efficiently leveraged by random instance selection across magnifications [118],

or by performing discriminative region detection on the lower-magnification (smaller)

image to guide instance selection on the higher-magnification (larger) image [213].

Within-bag sampling has previously been integrated with ABMIL [77] by splitting

each bag into a group of mini-bags - overlapping subsets of the original bag [214].

The ABMIL model is trained with these mini-bags, and the slide-level classes are

determined by the majority vote of classified mini-bags. This approach reduces

memory requirements, but the duplication of instances across multiple mini-bags is

likely to increase inference time. Further, as the key instance detection is based upon

the ABMIL attention weights, all instances are passed through the feature extractor,

which is typically the part of the model with the greatest computational burden.

Subsequent work [215] showed this approach to be less accurate than conventional

single instance learning for cytological data, but it has not been evaluated for whole

slide histopathological data, where single instance learning is not feasible due to

significantly larger image sizes.

Some MIL sampling approaches identify relevant patches using patch classification

scores rather than attention scores, following an instance classification MIL approach.

For example, in top-k sampling [75] all patches are evaluated and those with the highest

patch classification scores for the positive class are used for slide-level classification.

Monte Carlo sampling [216] instead takes an initial random sample, then iteratively
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replaces the patches with the lowest individual classification scores with new random

patches to improve the overall discriminative power of the sample. Patches can

also be sampled using expectation maximisation [70]. It is not clear that any of

these classification approaches offer efficiency improvements, with top-k sampling

and expectation maximisation requiring all patches to be processed through a CNN

before sampling, and Monte Carlo sampling reported to be slower than whole slide

processing. While these classification approaches have not demonstrated an increase

in efficiency, similar approaches have been shown to benefit WSI segmentation speed

without sacrificing accuracy [217, 218].

In this chapter, we present a novel patch sampling approach for use during the

inference step of ABMIL. This is an iterative approach in which the attention scores

of previously sampled patches are used to assign sampling weights to neighbouring

patches, aiming to sample the most diagnostically relevant tissue without fully process-

ing the entire slide and thus achieve high accuracy with improved algorithmic efficiency.

5.2 Methods

To investigate instance sampling for WSI inference, we proposed the approach of

Discriminative Region Active Sampling for Multiple Instance Learning (DRAS-MIL).

This method uses the trained baseline ABMIL model described in Section 4.1 with

an adjusted methodology for instance selection during inference. Where ABMIL uses

all available tissue patches, DRAS-MIL aims to find a discriminative subset of patches

at a much lower computational cost. Initially, DRAS-MIL takes a random sample of

patches and passes these through the trained ABMIL model to calculate their attention

scores. These attention scores are then used to generate sampling weights for the

remaining patches, with higher sampling weights given to patches in close spatial

proximity to high-attention patches. This process is repeated for a fixed number of

iterations, and finally, the sampled patches are used to classify the WSI through the

trained ABMIL model. This approach leverages the spatial relationships inherent to

ovarian carcinoma pathology slides, with diagnostically important tissue areas likely to

be clustered together rather than evenly dispersed throughout the entire slide.
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We developed and validated the DRAS-MIL model in two stages, with the initial

development performed using the earliest iteration of the LTHT ovarian cancer dataset,

and the final validation performed on a slightly larger and more refined dataset.

As shown in Table 5.1, model prototyping was conducted using a set of 655 WSIs

from 127 patients, and final validations were conducted using 714 WSIs from 147

patients. Many slides in this iteration of the dataset contained common non-adnexal

tissue types such as omentum and lymph nodes. The initial prototyping dataset also

included several WSIs containing rare metastases that had been erroneously included,

and so were removed for the final dataset. Despite this being one of the largest ovarian

cancer subtyping datasets at the time, there were only 11-16 patients for each of the

non-HGSC subtypes, so we focused on the binary classification of HGSC against all

other subtypes. The minority non-HGSC was class taken as the positive class.

Carcinoma
Subtype

Initial WSIs
(Patients)

Final WSIs
(Patients)

High-Grade Serous
(HGSC) 416 (75) 455 (92)

Low-Grade Serous
(LGSC) 64 (13) 75 (14)

Clear Cell
(CCC) 47 (12) 60 (15)

Endometrioid
(EC) 78 (16) 76 (15)

Mucinous
(MC) 50 (11) 48 (11)

Total 655 (127) 714 (147)

Table 5.1 Dataset breakdown for the initial and final modelling. Numbers in brackets
indicate the number of unique patients.

5.2.1 Initial Prototyping

For initial prototyping, a baseline ABMIL classifier was trained through a 10-fold cross-

validation for the binary classification of HGSC using the default hyperparameters from

the CLAM repository [78], except for the learning rate which was set to 5e-5 as the

default value of 1e-4 gave divergent behaviour. This model served as a backbone

for prototyping instance sampling techniques. The baseline version of the proposed

DRAS-MIL method started with a completely random sample of 100 patches and
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used the attention scores of these patches to assign initial sampling weights to the 20

nearest neighbours of each sampled patch. Any patch within the spatial neighbourhood

of multiple sampled patches was given the maximum attention-based sampling weight.

There were nine resampling iterations, with 100 extra patches sampled per iteration

(half at random, half through weighted sampling), each followed by recalculating the

sampling weights. A final weighted sample of 200 patches was then taken to give

a total of 1200 sampled patches per WSI. Finally, these 1200 patches were used to

classify the WSI through the trained ABMIL model.

Prototype models were compared with different numbers of nearest neighbours for

assigning sampling weights (20, 50, 80, 100), different numbers of sampling epochs

(4, 6, 10, 20), different final sampling strategies for classification (using all sampled

patches vs taking a smaller final sample), different random sampling strategies

(truly random vs spatially distributed in a grid), different sample weight combination

strategies (average vs maximum), and different proportions of random samples to

active samples (30%, 50%, 80%). A higher proportion of completely random sampling

would allow for more exploration, and a lower proportion would allow for greater

exploitation of the high-attention regions found in previous sampling iterations. The

baseline model, then, used 20 nearest neighbours, 10 sampling epochs, all previous

samples in the final sample, 50% truly random sampling, and maximum sample

weights.

Model prototypes were primarily evaluated using the AUROC across the ten cross-

validation folds, and this was repeated 10 times to measure the variability inherent to

sampling approaches. The best-performing active sampling model was also evaluated

with reduced quantities of patches per slide (specifically 250 and 500, where the

original approach used 1200), and these sampling approaches were compared to fully

random sampling.

5.2.2 Final Validations

Following the prototyping experiments, the most promising models were fully tuned

and validated using the refined set of 714 WSIs (Table 5.1). To make hyperparameter

tuning computationally feasible, the final validations were conducted using a 3-fold

cross-validation rather than the previous 10-fold. Three hyperparameters were tuned
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during the training of the baseline ABMIL model and four were separately tuned during

inference with the DRAS-MIL sampling method, all using a random hyperparameter

search (Table 5.2) to minimise the unbalanced cross-entropy validation loss on a

single cross-validation fold. A total of 100 configurations were evaluated for the

training hyperparameters and 500 configurations for the inference hyperparameters,

with this being a practical limit due to the computational complexity of the models. The

hyperparameters that were tuned during model training were the learning rate, weight

decay, and dropout rate (as described in Section 4.3).

The hyperparameters that were tuned during inference controlled the number of re-

sampling iterations, the number of nearest neighbours assigned sampling weights

around each previous sample, the initial completely random sampling proportion,

and the random sampling decay which reduced the random sampling proportion each

iteration. The options for the hyperparameters were influenced by the results of initial

prototyping experiments, which also influenced the decisions to sample a total of 800

patches per WSI, to use non-grid-based random samples, and to take the average

sampling weight rather than the maximum when a patch was spatially close to multiple

previous samples. The 800 patches per WSI were composed of 640 patches from the

iterative procedure (with the number of samples per iteration being 640 divided by the

number of resampling iterations), before a final set of 160 non-random samples.

Hyperparameter Function Distribution Best

Learning Rate The initial rate of change
for model parameters Log-Uniform (1e-5, 1e-2) 0.0038

Training Weight Decay The relative strength of L2
regularisation on loss function Log-Uniform (1e-10, 1e-2) 0.00079

Dropout Rate The proportion of model weights
dropped to reduce overfitting Uniform (0.00, 0.99) 0.020

Sampling

Resampling Iterations The number of
resampling iterations Choice [2,4,6,8,10,12,16] 16

Nearest Neighbours The number of nearest
neighbours assigned weights Choice [4,8,16,32,48,64] 64

Random Sampling
Proportion

The proportion of samples
which are randomly sampled Uniform (0.00, 0.75) 0.29

Random Sampling
Decay

The reduction in Random
Sampling Proportion each iteration Log-Uniform (0.0001, 0.5) 0.36

Table 5.2 Hyperparameters tuned using a random search. The first three were tuned
during baseline model training, and the subsequent four during inference.

The 800 patches sampled per WSI represented approximately 5% of the tissue area in

a typical slide (the slides had 740-33961 tissue patches each, with a mean average of
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(a) Unprocessed WSI (b) ABMIL attention scores

Figure 5.1 Attention scores from ABMIL whole slide processing.

(a) 100 Samples (b) 400 Samples (c) 800 Samples

Figure 5.2 Illustrative example of sampling weights generated through spatial sam-
pling at different stages of the active sampling process. The closest 50 patches to each
previous sample are assigned the corresponding sampling weight, and the proportion
of random samples taken is 0.5, giving a relatively high level of exploration.

15990 and a median of 16230). Any slide with fewer than 800 patches was evaluated

with whole slide processing, though this only applied to one slide in the dataset.

800 samples were sufficient to generate sampling weights for the majority of patches

in a slide, as shown in Figure 5.2. We compared the performance of DRAS-MIL to

completely random sampling with the same number of patches, and to the baseline

ABMIL approach using all available patches. To account for randomness and the

relatively small available dataset, we repeated each sampling approach 50 times and

performed 100,000 iteration bootstrapping, where each slide was represented exactly

once per iteration by one of the 50 predictions made for the slide. While the AUROC

was sufficient to give a holistic measure of performance when comparing models during

initial development, this would not provide sufficient understanding of clinical utility

for final validations, which were evaluated using balanced accuracy, AUROC, and F1

score.
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We compared the efficiency of the proposed DRAS-MIL model to the baseline model by

measuring the average inference time and the maximum GPU memory requirements

using a fixed test set of 50 randomly selected WSIs. There was a trade-off between

inference time and memory requirements, so we measured both of these metrics for

different batch sizes (1, 4, 8, 16, 32, and 64), which represented the maximum number

of patches processed concurrently. Efficiency experiments alternated between active

sampling and the default whole slide processing of ABMIL, running each three times

and taking the median value for each batch size as the true value.

Model training and hyperparameter tuning were conducted on the HPC (Section 4.5).

Efficiency experiments were conducted on the PC with the same CPU as found in the

computers in the LTHT pathology lab. The code for this chapter was made available at

https://github.com/scjjb/DRAS-MIL.

5.3 Results

5.3.1 Prototyping Results

Figure 5.3 shows the results from 13 prototyping configurations alongside completely

random sampling. Compared to the default ABMIL score of 0.790, completely random

sampling had a median AUROC of 0.788 across 10 repeats, though it was highly

variable, with a range of 0.028. The baseline DRAS-MIL method had a lower median

AUROC of 0.784, but was much less variable, with a range of 0.014.

The greatest overall performance from a DRAS-MIL prototype model was a median

AUROC of 0.789 and range of 0.016, a marginal improvement over random sampling,

though still behind default whole-slide processing. In this optimal prototype, the initial

sample of 200 patches was selected randomly (not spatially distributed), and then there

were 10 resampling iterations of 100 patches each, with 50% selected at random.

Sampling weights were propagated to the 50 nearest neighbours of previous samples,

with the maximum weight (rather than the average weight) applied for any patch in the

receptive field of multiple previous samples. Finally, all previously sampled patches

were retained when making the final classification.

https://github.com/scjjb/DRAS-MIL
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Only the aforementioned active sampling prototype model outperformed completely

random sampling overall, though two other prototypes gave comparable performance.

Both of these also used 50 nearest neighbours to propagate sampling weights, with

one starting with 80% random samples and reducing this by 8% on each resampling

iteration, and the other taking 50 patches per resampling iteration and taking the

average sampling weight for any patch in multiple receptive fields. These prototypes

gave median AUROCs of 0.788 and 0.787, respectively. All other prototypes had

median AUROC scores between 0.779 and 0.784.

As shown in Figure 5.4, both random and active sampling gave worse performance

with a smaller sample size. From a median AUROC of 0.789 with 1200 patches, the

active sampling prototype performance fell to 0.773 with 500 patches and 0.767 with

250 patches. Similarly, from a median AUROC of 0.788 with 1200 patches, the random

sampling performance fell to 0.777 with 500 patches and 0.771 with 250 patches.

As such, random sampling performed better than the active sampling approach when

using smaller sample sizes.
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Figure 5.3 AUROC scores from 10 repeats of 10-fold cross-validation for binary
classification of HGSC in the initial prototyping set of 655 WSIs, with sampling methods
evaluated using 1200 total patches per slide.
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Figure 5.4 AUROC scores from 10 repeats of 10-fold cross-validation using different
sample sizes with the optimal active sampling prototype and random sampling.
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5.3.2 Final Validation Results

Hyperparameter Tuning Results

The best hyperparameters found for training the baseline ABMIL model were a learning

rate of 0.0038, weight decay of 0.00079, and dropout rate of 0.020 (Table 5.2). For

active sampling, the best hyperparameters were 16 resampling iterations (40 patches

per iteration before the final sample of 160 patches), 64 sampling nearest neighbours,

and a random sampling proportion of 29% with this reduced to 0% after the first

iteration. The number of sampling neighbours and sampling iterations each took

the greatest values available, with no greater options tested given the increased

computational requirements.

Subtyping Results

Evaluation Method Balanced Accuracy AUROC F1 Score
Full ABMIL Evaluation 80.08% 0.8781 0.7472

Active Sampling 79.07%±0.69% 0.8679±0.0035 0.7337±0.0093
Random Sampling 78.94%±0.66% 0.8659±0.0034 0.7320±0.0089

Table 5.3 3-fold cross-validation binary classification results using different evaluation
approaches with the same ABMIL baseline model (mean ± one standard deviation from
100,000 iteration bootstrapping of 50 repeats). The best results are indicated in bold.

The baseline method of full ABMIL evaluation without sampling gave the best classifica-

tion performance, outperforming active sampling by approximately 1% for each metric

(Table 5.3). Active sampling slightly outperformed random sampling for each metric,

though these differences were not significant and performance was not consistently

better across folds. The median AUROCs for DRAS-MIL across the three folds were

0.806, 0.932, and 0.895, compared to the random sampling scores of 0.804, 0.926,

and 0.896 (Figure 5.5). Random sampling marginally outperformed active sampling in

the third fold, though the difference was small enough that this may be attributed to

chance.
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Figure 5.5 Boxplots comparing the AUROC scores from 50 repeats of each cross-
validation fold for random and active sampling with 800 patches per slide.

Efficiency Results

On the computational benchmarking dataset of 50 randomly selected WSIs, active

sampling reduced GPU memory utilisation from a maximum of 340MB to 60MB

(Table 5.4). The best total run time for active sampling was 47 minutes compared to

140 minutes for default ABMIL processing. This represents approximately 56s per WSI

for active sampling and 168s per WSI for default ABMIL classification. The difference

in run times was much greater when evaluating only using a CPU, with total times of 4h

8m for active sampling and 30h 32m for full MIL evaluation, representing approximately

5 minutes and 37 minutes per slide, respectively. Overall, DRAS-MIL reduced GPU

memory requirements by at least 82% and inference time by 67% when using a GPU,

and by 86% when using the CPU alone.
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Inference Method Batch Size Total Inference Time
for 50 WSIs

Average Inference
Time Per WSI

Maximum GPU
Memory Utilisation

ABMIL

1
4
8
16
32
64

4h 37m
2h 46m
2h 33m
2h 24m
2h 20m
2h 21m

332.0s
198.9s
183.8s
173.3s
167.8s
169.3s

340MB
342MB
356MB
471MB
702MB
1163MB

DRAS-MIL

1
4
8
16
32
64

47m
47m
49m
53m
58m

1h 1m

56.0s
56.2s
58.6s
63.5s
69.4s
73.6s

60MB
103MB
161MB
275MB
506MB
967MB

ABMIL (CPU) 32 30h 32m 2198.1s (36m 38s) 0MB
DRAS-MIL (CPU) 1 4h 8m 298.0s (4m 58s) 0MB

Table 5.4 Inference efficiency on a subset of 50 WSIs. Each experiment was
repeated three times and the median value was taken. All experiments used a GPU
except those labelled CPU. The best results are indicated in bold.

5.4 Discussion

The results indicated that active sampling could drastically reduce the computational

requirements for WSI inference with minimal impact on the classification accuracy.

Completely random sampling also retained classification performance, with active

sampling only performing marginally better. While random sampling appears to be a

viable approach, DRAS-MIL has the advantage that its sampling maps improve model

interpretability as an efficient proxy to the ABMIL attention heatmap (Figure 5.6).

The relatively high classification performance of the sampling approaches compared

to whole slide processing may have been influenced by the slides in the dataset

containing a relatively high proportion of tumour tissue, making it likely that tumour

tissue would be sampled by chance. This is supported by the relatively low level

of random sampling used in the tuned DRAS-MIL model, which may indicate that

it was possible to find diagnostically relevant tissue without extensive exploration.

Such approaches are likely to be inappropriate in highly heterogeneous samples,

or those with relatively small regions of interest, where the sampling approach may

not find sufficient relevant tissue. It remains to be seen whether pathologists will

support the use of models that do not thoroughly analyse all available tissue, and

further investigations using varied datasets will be required to understand whether the

sampling procedure is sufficiently robust.
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Input WSI Random Sampling DRAS-MIL

Figure 5.6 Example WSIs with corresponding random sampling attention maps and
DRAS-MIL sampling weight maps. Each method takes 800 sample patches per WSI.
Red indicates a higher attention/weight, and blue indicates a lower attention/weight.

The main limitation of this analysis was the dataset. The inclusion of non-adnexal

tissue was a potential source of bias as the model may have learned shortcuts based

on the heterogeneous tissue types, rather than based on the morphological tumour

subtypes. This was a particularly limiting factor given the relatively small dataset used,

with only a handful of examples given for some tissue types. As such, the non-adnexal

tissue WSIs were removed from the dataset for all subsequent research. Without

any hold-out or external validations, it was unclear whether the sampling method was

robust to different sources of variability. The models in this chapter were also limited

to performing binary classification of the most common subtype. Considering HGSC

composes around 70% of all ovarian cancers, a binary classifier may be beneficial

as an ancillary tool to rapidly confirm the majority of diagnoses, though this utility is

limited compared to the target five-class classification, which would cover over 90%
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of all ovarian cancers. To truly achieve utility, these models would likely also need to

indicate when a WSI does not fit one of these subtypes.

Sampling during inference could be useful in the clinical utility of classifiers, with a

model being trained on an HPC in a research setting, then then deployed to the clinic for

slide inference. If these models could be feasibly run on standard desktop computers

or integrated within the slide scanner hardware it would reduce the investment burden

and avoid the need to share data outside of the pathology lab. It is important to focus on

reducing barriers to clinical implementation of computer-aided diagnostic tools as the

underlying models are increasingly being shown to work at an expert level of accuracy

in research settings and are receiving regulatory approval [52], but they are not being

widely adopted. In particularly under-resourced settings, it may be worthwhile to trade

a small level of diagnostic accuracy for drastically improved efficiency, as this may

be the only feasible way to access an expert-level second opinion. However, such

low-resource settings may struggle to access digital pathology infrastructure.

5.5 Conclusion

In this chapter, we proposed an active patch sampling approach called DRAS-MIL.

This utilised the attention mechanism of ABMIL to generate sampling weights for

tissue regions, allowing diagnostically relevant tissue regions to be discovered and

leveraged without processing the whole slide. This drastically reduced inference time

with only a marginal impact on the discriminative ability of the classifier. Completely

random sampling was found to give a discriminative performance almost as great

as DRAS-MIL, though it reduced the interpretability of the corresponding attention

heatmaps. Improvements in the efficiency of slide classification inference will be

essential if models are to be deployed directly to the pathology clinic given the limited

computational resources and, in this chapter, we have found that active patch sampling

is a promising approach. However, the underlying models did not offer sufficient

performance to be considered for clinical deployment, with performance limited by a

relatively small, heterogeneous dataset.
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Chapter 6

Analysis of Tissue Magnifications

In this chapter we describe our first five-class subtype classification model, using the

same ABMIL backbone from the previous chapter with a larger training dataset and a

hold-out test set. We investigate how the tissue magnification used in these models

impacts performance, both in terms of classification accuracy and computational

efficiency. Through this chapter, we formalise the iterative hyperparameter tuning and

validation procedures used in subsequent research.

6.1 Introduction

While MIL approaches have become increasingly common for WSI-level classification

tasks, it is not clear which tissue magnification is optimal for computational analysis.

Higher magnifications provide more cellular-level detail, whereas lower magnifications

offer greater architectural context at the tissue level. Pathologists typically assess a

slide at multiple magnifications, with slides scanned at 40x magnification to facilitate

the highest required cellular resolution. However, the requirements of an AI model are

likely to differ from those of a human pathologist since a model can thoroughly process

all available information at the pixel level.

The optimal magnification likely depends upon the given task. Comparative studies

have often found either 10x or 20x magnification to be best, with 10x reported as

best for bladder cancer subtyping [82], cervical lymph nodes metastasis classification

[219], cervical cancer prognostication [219], and melanoma immune subtyping [81],

and 20x reported to be best for lymphoma subtyping [220], breast cancer lymph

node metastasis classification [219], and lung cancer subtyping [219]. However,

most comparisons were made between only two different magnifications, which often

appeared to be arbitrarily selected.

The optimal magnification may also depend on the specific models used. For example,

in the aforementioned melanoma immune subtyping study, 10x was determined to be

the best overall, but each of the other evaluated magnifications (2.5x, 5x, 20x, 40x)
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achieved the greatest performance in at least one experiment using different feature

extraction and MIL classification models [81]. Further, in two studies classifying the

primary cancer type in TCGA WSIs, one study found 10x to be best [221] and the other

found 20x to be best [222]. Both of these studies found 20x to be best specifically for

distinguishing ovarian cancer from other primary cancers, though both studies used

small ovarian cancer cohorts (<100 WSIs).

Previous MIL models for ovarian cancer subtyping have primarily used tissue patches

at 20x magnification [5, 134, 136, 160, 171, 173], with relatively few studies using

different magnifications [118, 123, 136]. The effects of the different magnifications

on classification performance have not been directly compared, though one study

did find that a multi-scale attention model applied different levels of attention to

different magnifications (5x, 10x, 20x) for different subtypes [82], reflecting the inherent

differences between magnifications.

A key limitation in previous research has been the lack of separate hyperparameter

tuning at each tissue magnification, making it likely that some models underperformed

due to using sub-optimal hyperparameters for the given magnification. In this chapter,

we present the most extensive analysis of the effects of tissue magnification on ovarian

cancer subtyping to date. A separate ABMIL classifier was trained for five-class

subtyping at each of six magnifications from 1.25x to 40x. Hyperparameter tuning was

performed separately at each magnification and both the classification performance

and model efficiency were evaluated using cross-validation and a hold-out test set.

6.2 Methods

6.2.1 Classification Methodology

To compare the effects of tissue magnifications on subtype classification performance,

we used the baseline model training and hyperparameter tuning protocols (Section

4.1) for the original 40x WSIs, as well as for downsampled WSIs at 20x, 10x, 5x,

2.5x, and 1.25x magnification. Patches were extracted such that the resulting patch

size was 256 x 256 pixels after downsampling (for example, 8192 x 8192 pixel

patches were downsampled to 256 x 256 for the 1.25x experiments given the 32x

downsampling factor). Downsampling by a factor of two reduced the overall slide
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40x

20x

10x

5x

2.5x

1.25x

Figure 6.1 Examples of 256 x 256 pixel tissue patches from a single WSI (shown in
Figure 4.1) at six different apparent magnifications after downsampling from the 40x
native magnification.

area by a factor of four
(

height
2

× width
2

)
, and so also reduced the number of patches

by an approximate factor of four. On average there were 68,913 patches per slide

at the highest magnification (40x), compared to only 81 at the lowest (1.25x). As in

the standard baseline model, an ImageNet-pretrained ResNet50 encoder was used

to extract 1 x 1024 feature vectors from the downsampled 256 x 256 pixel tissue

patches, and these features were used to train ABMIL classifiers [77] for ovarian cancer

subtyping.

6.2.2 Tuning and Validation

Iterative grid hyperparameter tuning was used, with eight hyperparameters tuned

until the validation loss stopped improving (Table 6.1). The first three stages of

tuning were limited to 30 epochs of model training, the subsequent six stages to

100 epochs, and the final four to 150 epochs. The tuned hyperparameters were the
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standard Adam optimizer hyperparameters (learning rate, first and second moment

decay, stability parameter) and regularisation hyperparameters (weight decay, dropout

rate, max patches per slide) described in Section 4.3, as well as a model size

hyperparameter controlling the dimensions of the attention layer and subsequent fully

connected layer in the classifier. Initial hyperparameters were influenced by the CLAM

default hyperparameters [78] and by the experiments in Chapter 5. Approximately

80 unique configurations were evaluated for classification at each tissue magnification.

Tuning Iteration
Hyperparameter 1 2 3 4 5 6 7 8 9 10 11 12 13

Learning Rate ✓ ✓ ✓ ✓ ✓

First Moment Decay ✓ ✓

Second Moment Decay ✓ ✓

Stability Parameter ✓

Weight Decay ✓ ✓

Dropout Rate ✓ ✓ ✓ ✓ ✓

Max Patches ✓ ✓ ✓ ✓ ✓

Model Size ✓

Table 6.1 Iterative hyperparameter tuning procedure. Tick marks indicate which
hyperparameters were adjusted at each stage of tuning, with all other hyperparameters
frozen at their previous best values.

Carcinoma
Subtype

Training WSIs
(Patients)

Hold-out WSIs
(Patients)

High-Grade Serous
(HGSC) 484 (107) 20 (7)

Low-Grade Serous
(LGSC) 23 (5) 20 (6)

Clear Cell
(CCC) 156 (33) 20 (7)

Endometrioid
(EC) 205 (36) 20 (5)

Mucinous
(MC) 95 (20) 20 (5)

Total 963 (201) 100 (30)

Table 6.2 Dataset breakdown showing the number of primary resection WSIs per
ovarian carcinoma subtype in the training (cross-validation) and independent hold-out
test sets for the analysis of tissue magnification. Numbers in brackets indicate the
number of unique patients.
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Five-fold cross-validation was conducted with a training set of 963 primary resection

adnexal specimen WSIs from 201 patients (Table 6.2), stratified at the patient level. An

average ensemble of the five-fold classifiers at each magnification was evaluated using

a class-balanced hold-out test set of 100 WSIs from 30 patients. Both datasets were

part of the internal LTHT dataset (Section 4.2).

As well as using the standard metrics to measure discriminative power (balanced

accuracy, AUROC, F1 score), we measured the classification efficiency through the

average training and inference times on the HPC, and the average inference time on

the PC (Section 4.5). Training times were measured as the average time to train a

classifier on a single cross-validation fold, whereas inference times were measured as

the average time to classify a slide using a class-balanced subset of 20 WSIs from

the hold-out test set. Preprocessing and feature extraction times were excluded from

training but included in inference times to represent the computational burden of a

deployed model. PyTorch-based code was made available at https://github.com/scjjb/

Ovarian_Subtype_Mags.

6.3 Results

6.3.1 Hyperparameter Tuning Results

Magnification
Hyperparameter 40x 20x 10x 5x 2.5x 1.25x

Learning Rate 1e-3 5e-4 5e-4 5e-4 1e-3 5e-4
First Moment Decay 0.95 0.99 0.8 0.95 0.9 0.9

Second Moment Decay 0.99 0.99 0.99 0.999 0.9999 0.999
Stability Parameter 1e-10 1e-8 1e-4 1e-14 1e-4 1e-14

Weight Decay 1e-4 1e-4 1e-4 1e-6 1e-5 1e-5
Dropout Rate 0.6 0.7 0.6 0.6 0.7 0.5
Max Patches 50000 8000 1000 400 40 7
Model Size 512, 256 256, 64 256, 64 128, 32 256, 64 256, 64

Table 6.3 The hyperparameters used to train the final model at each resolution,
determined through the iterative hyperparameter tuning procedure to minimise the
average balanced cross-entropy validation loss in 5-fold cross-validation.

The optimal hyperparameters found through hyperparameter tuning are shown in

Table 6.3 for each magnification. The clearest trend was that the optimal number of

https://github.com/scjjb/Ovarian_Subtype_Mags
https://github.com/scjjb/Ovarian_Subtype_Mags
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patches used in training at lower magnifications typically covered a lower proportion

of the entire slide area, with the 7 patches at 1.25x covering only 9% of an average

slide, compared to the 50,000 patches at 40x covering 73% of an average slide. The

size of the optimal model weakly corresponded to the magnification, with the 40x

model being the largest (795,408 parameters), and the 5x model being the smallest

(141,424 parameters). Other hyperparameters did not exhibit clear trends across

magnifications.

6.3.2 Magnification Validation Results

40x 20x 10x 5x 2.5x 1.25x
0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Cr
os

s-
Va

lid
at

io
n

Balanced Accuracy

40x 20x 10x 5x 2.5x 1.25x

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92
AUROC

40x 20x 10x 5x 2.5x 1.25x
0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70
F1 Score

40x 20x 10x 5x 2.5x 1.25x
0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

H
ol

d-
ou

t 
Te

st
in

g

40x 20x 10x 5x 2.5x 1.25x

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

40x 20x 10x 5x 2.5x 1.25x
0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Figure 6.2 Classification performance at each magnification in cross-validation and
hold-out testing, with error bars indicating the 95% confidence intervals from 10,000
iteration bootstrapping.

No single magnification gave the best classification results across all metrics in both

validations (Figure 6.2). In cross-validation (Table 6.4), the greatest classification

performance across the five folds was achieved by the 1.25x magnification model,

with 55.6% balanced accuracy, 0.888 AUROC, and 0.558 F1 score. Performance

did not vary greatly between magnifications, with the lowest balanced accuracy being

50.6% (at 20x), the lowest AUROC being 0.800 (at 10x), and the lowest F1 being
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0.506 (at 20x). 95% confidence intervals for the balanced accuracy and F1 score

were overlapping for all models, and 95% confidence intervals for AUROC were also

overlapping for most models.

In hold-out testing (Table 6.5), the greatest classification performance was achieved by

the 10x model, with 62.0% balanced accuracy, 0.850 AUROC, and 0.549 F1 score. The

5x model performed similarly, with a marginally lower balanced accuracy and F1 score,

but a marginally higher AUROC. Performance varied more across magnifications than

in cross-validation, with the lowest balanced accuracy being 54.0% (at 40x), the lowest

AUROC being 0.829 (at 20x), and the lowest F1 score being 0.477 (at 40x). However,

the 95% confidence intervals were all overlapping for each metric (Figure 6.2).

Magnif. Balanced
Accuracy AUROC F1 Score

40x 51.3% (48.4-54.2%) 0.825 (0.794-0.856) 0.516 (0.487-0.545)
20x 50.6% (47.9-53.3%) 0.846 (0.819-0.873) 0.506 (0.477-0.535)
10x 52.3% (49.8-54.8%) 0.800 (0.775-0.825) 0.515 (0.486-0.544)
5x 54.0% (51.5-56.5%) 0.817 (0.784-0.850) 0.538 (0.511-0.565)

2.5x 55.6% (52.7-58.5%) 0.877 (0.855-0.899) 0.557 (0.530-0.584)
1.25x 55.6% (52.3-58.9%) 0.888 (0.870-0.906) 0.558 (0.525-0.591)

Table 6.4 Classification results from five-fold cross-validation at each magnification.
Results are reported as the mean and 95% confidence intervals (in brackets) from
10,000 iterations of bootstrapping. The greatest results are shown in bold.

Magnif. Balanced
Accuracy AUROC F1 Score

40x 54.0% (46.2-61.8%) 0.860 (0.819-0.901) 0.477 (0.397-0.557)
20x 55.0% (47.4-62.6%) 0.829 (0.790-0.868) 0.485 (0.405-0.565)
10x 62.0% (54.9-69.1%) 0.850 (0.813-0.887) 0.549 (0.476-0.622)
5x 61.0% (53.9-68.1%) 0.858 (0.813-0.903) 0.545 (0.472-0.618)

2.5x 58.1% (50.8-65.4%) 0.857 (0.816-0.898) 0.516 (0.440-0.592)
1.25x 58.0% (50.6-65.4%) 0.855 (0.814-0.896) 0.529 (0.447-0.611)

Table 6.5 Classification resulting from hold-out testing at each magnification, with
predictions generated by an ensemble of the five-fold classification models. Results
are reported as the mean and 95% confidence intervals (in brackets) from 10,000
iterations of bootstrapping. The greatest results are shown in bold.



90 Chapter 6 - Analysis of Tissue Magnifications

Performance varied drastically between subtypes in both validations (Figure 6.3). The

optimal model from hold-out testing (10x magnification) failed to correctly classify the

least common subtype (LGSC) a single time in either validation, whereas it classified

the most common subtype (HGSC) with F1 scores of 0.846 and 0.727 in cross-

validation and hold-out testing, respectively.
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Figure 6.3 Confusion matrices of the optimal ABMIL model from hold-out testing (10x
magnification). Correct classifications are indicated in bold.

6.3.3 Efficiency Evaluations

The fastest models to train were the 5x (10m 37s) and 1.25x (10m 49s) magnification

models (Table 6.6). Model training was always faster at lower magnifications, with the

exception of the 5x model, which trained faster than the 2.5x or 1.25x models due to

having fewer parameters. The fastest models in inference were the 10x model (1m 9s

per slide on HPC, 3m 8s on PC), and the 5x model (1m 11s per slide on HPC, 3m 15s

on PC). The 40x model was the slowest by a wide margin for both training (3h 45m) and

inference (3m 51s per slide on HPC, 7m 29s on PC). The highest magnification models

were slowed by the slides containing more patches, and the lowest magnification

models by the larger size of patches before downsampling, which took slightly longer

to process. The large patch size would not be a factor for slides with a lower native

magnification, where the lower magnifications would be expected to always be faster

during inference. Such lower magnifications may be accessible at lower levels of the

pyramidal WSI file, though we chose to downsample from 40x for consistency as not

all WSI had the same lower magnifications available.
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Magnif.
Training

Time
per Fold

Inference
Time per

Slide (HPC)

Inference
Time per
Slide (PC)

40x 3h 45m 13s 3m 51s 7m 29s
20x 44m 23s 1m 20s 3m 56s
10x 12m 51s 1m 9s 3m 8s
5x 10m 37s 1m 11s 3m 15s

2.5x 12m 29s 1m 24s 4m 28s
1.25x 10m 49s 1m 58s 5m 42s

Table 6.6 Average training and inference times. Inference times were analysed
using a balanced subset of 20 WSIs from the hold-out test set on a high-performance
computer (HPC) and a personal computer (PC). The best times are indicated in bold.

6.4 Discussion

Our results indicate that the standard 40x and 20x magnifications used in the clinical

setting may not be optimal for computational ovarian cancer subtyping, with 10x and

5x each giving greater balanced accuracies in cross-validation and hold-out testing

while also running much faster. The balanced accuracy and F1 scores reported in this

chapter were lower than those in other studies using similar methodologies [82, 123,

136], likely due to the few available LGSC cases leading to very poor performance

at classifying this specific subtype. It is, however, worth noting that the models have

demonstrated discriminative power, with the optimal balanced accuracies of 56% and

62% in cross-validation and hold-out testing being much greater than the 20% baseline

from random 5-class classification.

The differences between results in the cross-validation and hold-out test sets were

likely influenced by the imbalance in the cross-validation set, with AUROC particularly

affected by class imbalance. The small size of the test sets caused a degree of

uncertainty in the results, reflected in the wide confidence intervals (Figure 6.2). As

such, most differences between results were not statistically significant, meaning we

cannot be confident that the improved classification at lower magnifications was not

caused by random chance. Differences in the efficiency of models were much clearer,

with the most efficient models running over twice as fast as the slowest across all

evaluations. While classification accuracies are highly dependent on specific datasets



92 Chapter 6 - Analysis of Tissue Magnifications

and modelling decisions, the improved efficiency is likely to hold across a range of

datasets and models.

Given the black-box nature of the deep learning models used in this analysis, it

is not entirely clear why performance was best at lower magnifications. The 40x

diagnostic standard allows pathologists to thoroughly assess aspects of cellular and

nuclear morphology that are less readily identifiable at lower magnifications, though

it may be that these features can be sufficiently analysed at a lower magnification

by computer vision models which can interrogate images down to a single pixel.

Wider histoarchitectural patterns and wider chromatic patterns may be possible to

assess at lower magnifications, and these lower magnifications may benefit the ABMIL

model by giving a wider context window within each patch. It may be the case

that no single magnification is optimal for the computational analysis of all subtypes.

A recent study [82] suggested that higher magnifications may be best for classifying

LGSC, where cellular features are necessary to determine the low grade, and lower

magnifications may be best for classifying EC, where the characteristic glandular

architecture may be readily assessed. The 10x magnification, which performed best

in our hold-out testing, may have offered the best trade-off between relevant features

from higher and lower magnifications, not so low as to lose relevant cellular and nuclear

features, and not so high as to miss the spatial context.

This investigation was limited to a single model type (ABMIL) which processed tissue

at a single magnification. Different models, such as graphs and transformers, may

perform differently due to their ability to model patch relationships (Section 2.4.5).

Multi-magnification models [82, 118] may be able to improve performance by combining

the cellular and histoarchitectural information from different magnifications, akin to how

pathologists interpret morphological features from multiple magnifications to obtain

overall diagnostic insight. This analysis was also limited to a single data centre,

so it is unclear how model generalisability may be affected by tissue magnification.

Implementation of these models will require improved accuracy and more extensive

validation to ensure model robustness.

While the routine collection of data at a lower native magnification would offer efficiency

benefits (reduced storage requirements and cost), this is unlikely to be clinically viable

as pathologists require higher magnifications for manual review. The benefit of lower
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magnification modelling (aside from improved classification performance) is in the

reduced computational requirements, allowing models to be deployed directly to the

pathology lab, avoiding any diagnostic delay and financial expense from exporting

samples off-site.

6.5 Conclusion

In this chapter, we reported the most extensive evaluation of tissue magnifications

for ovarian cancer subtyping conducted to date. We tuned ABMIL classifiers at six

different magnifications from 1.25x to 40x and found that downsampling to reduce

the apparent magnification from the standard 40x did not significantly degrade

discriminative performance, and in many cases, slightly improved it. The 10x and 5x

magnifications gave the greatest balanced accuracy in hold-out testing while also being

the fastest models in training and inference, classifying a slide in little over 3 minutes

on a desktop computer with a consumer-grade GPU. The classification performance

of even lower magnification models was also impressive, with 1.25x magnification

outperforming 40x and 20x by most metrics. The vastly reduced computational burden

of lower magnification models may allow them to be deployed directly to the clinic, but

classification accuracy and validation must first be improved.
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Chapter 7

Analysis of Histopathology Feature
Extraction Models

In this chapter we present our most comprehensive analysis of ovarian cancer subtype

classifiers, with ABMIL models trained using seventeen different feature extractors on

the final version of the Leeds ovarian carcinoma dataset, then validated through hold-

out testing and two external validations. Where previous classifiers used ImageNet-

pretrained CNNs for feature extraction, here we assess fourteen different histopathol-

ogy foundation models and an ImageNet-pretrained ViT to determine the extent of

the benefits that can be obtained through the newer architecture and domain-specific

pretraining. We perform an ablation study to quantify any benefits from hyperparameter

tuning, and we investigate the relationship between classification performance and

model efficiency. Finally, pathologists review the best models, assessing the ABMIL

attention heatmaps, and determining the potential causes of misclassified slides.

7.1 Introduction

Considering the vast size of histopathology WSIs, it is often impractical to train slide-

level classifiers end-to-end. It is common for these classifiers to instead be built using

frozen pre-trained patch encoders. As such, any limitation in the pretrained feature

extractor can limit the final classification performance. In applying MIL to WSI-level

classification, many researchers have used ImageNet-pretrained ResNet CNNs [59] for

patch feature extraction [5, 71, 78, 81, 134, 223]. ImageNet [58] is a huge set of labelled

natural images, making it very popular for model pretraining (Section 2.4.2). However,

the resulting generic features are likely to be suboptimal and computationally inefficient

when applied to histopathology images, which contain a relatively homogeneous and

restricted set of shapes and colours, with subtle differences being relevant to diagnostic

decisions [28, 203].

Recently, many researchers have attempted to create histopathology foundation

models, using self-supervised learning (SSL) techniques to generate broad histopatho-

logical feature sets which are not specific to a single organ/cancer type. The scale
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of these approaches has grown rapidly, from tens of thousands of WSIs used to

train models with tens of millions of parameters in 2022 and early 2023 [83, 224–

228] to millions of WSIs [47, 229, 230] and billions of parameters more recently

[173, 231]. Foundation models have typically been based on ViTs, utilizing the

impressive scalability of transformers seen across many fields, most notably with large

language models [232, 233].

Histopathology foundation models have exhibited impressive performance across

diverse tasks [208, 226, 234, 235] including ovarian cancer subtyping [172, 173],

although analyses have been relatively shallow, without thorough hyperparameter

tuning and rigorous statistical comparison of the resulting classifiers. Consequently,

it is unclear whether models were applied optimally (especially those exhibiting sub-

optimal performance), and whether the differences between them were significant.

Furthermore, many analyses have been conducted using single-centre data, limiting

the assessment of models’ generalisability.

In this chapter, we present the most comprehensive validation conducted to date

comparing feature extraction methods for ovarian cancer subtyping, including three

ImageNet-pretrained feature extractors and fourteen histopathology foundation mod-

els. The analysis includes rigorous hyperparameter tuning and evaluations through

five-fold cross-validation, hold-out testing, and external validations, and was conducted

with the largest collection of ovarian cancer WSIs used in any AI validation to

date. We aim to quantify any benefit of foundation models for this task and to find

which feature extractors give the best trade-off between diagnostic accuracy and

computational efficiency. We further investigate whether the classification performance

of the ImageNet-pretrained ResNet50 features can match those of the foundation

models through stain normalisation, tissue augmentation, or different tissue detection

techniques.
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7.2 Methods

7.2.1 Slide Classification Pipeline

Slide classification was performed using the baseline ABMIL classification pipeline

(Section 4.1), with different frozen patch feature extractors applied to 256 x 256 pixel

patches at 10x apparent magnification since this gave the best accuracy and efficiency

in Chapter 6. The patches were preprocessed following the specific procedure of

each feature extraction model, which typically involved first applying the standard

normalisation to the RGB colour channels (Section 4.1), and for ViT-based models

typically also involved resizing or cropping patches to 224 x 224 pixels. Patch features

were then used to train an ABMIL classifier for each feature extractor.

Analyses were conducted using the full LTHT training set of 1864 ovarian carcinoma

WSIs of adnexal tissue from 433 cases. Internal validations were performed using a

five-fold cross-validation on the training set, as well as a five-model average ensemble

on a hold-out test set of 100 WSIs from 30 patients. External validations were

performed using the same ensembling approach on a set of 80 WSIs from 80 patients

in the Transcanadian Study, and a set of 513 WSIs from an unknown number of patients

in the OCEAN Challenge. These datasets are described further in Section 4.2.

7.2.2 Feature Extraction Models

A total of seventeen patch feature extractors were compared (Table 7.1), three of

which had been trained through the traditional approach of supervised classification

on ImageNet data [58], and the other fourteen had been trained using histopathology

images through various SSL approaches. All feature extractors were available online,

with some requiring approval before they could be accessed.

The ImageNet-pretrained models were a ResNet50 [59], ResNet18 [59], and a large

vision transformer (ViT-L) [62]. The ResNet50 outputs were taken from the end of

the third residual block (as in CLAM [78]) to give 1024 features per input patch. The

ResNet18 does not have a layer this large, so 512 features were extracted from the end

of the fourth residual block instead. ViT-L was applied without a final fully connected

layer to give 1024 features per patch. ImageNet-pretraining for ResNet models had
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Feature
Extractor Backbone Data

Type Data Source Pretraining
Algorithm

Pretraining
Images

Pretraining
Magnification(s) Parameters Patch

Features
RN50 [59] ResNet50 Natural ImageNet-1k Supervised 1,431,167 NA 8,543,296 1024
RN18 [59] ResNet18 Natural ImageNet-1k Supervised 1,431,167 NA 11,176,512 512
ViT-L [62] ViT-L Natural ImageNet-21k Supervised 14,197,122 NA 303,301,632 1024

RN18-Histo [224] ResNet18 Histology 57 Open Sets SimCLR >25,000 WSIs 10x,20x,40x,100x 11,176,512 512
Lunit [226] ViT-S Histology TCGA + Internal DINO 36,666 WSIs 20x,40x 21,670,272 384

RN50-Histo [226] ResNet50 Histology TCGA + Internal Barlow Twins 36,666 WSIs 20x,40x 23,508,032 2048
CTransPath [225] CNN + SwinT Histology TCGA + PAIP Novel SSL 32,220 WSIs 20x 27,520,038 768

Hibou-B [229] ViT-B Histology Internal DINOv2 1,141,581 WSIs Unclear 85,741,056 768
Phikon [227] ViT-B Histology TCGA iBOT 6,093 WSIs 20x 85,798,656 768

Kaiko-B8 [236] ViT-B Histology TCGA DINO ∼29,000 WSIs 5x,10x,20x,40x 85,807,872 768
GPFM [172] ViT-L Histology 47 Open Sets Novel Distillation 72,280 WSIs Unclear 303,228,928 1024

UNI [208] ViT-L Histology Internal + GTEx DINOv2 100,426 WSIs 20x 303,350,784 1024
Hibou-L [229] ViT-L Histology Internal DINOv2 1,141,581 WSIs Unclear 303,659,264 1024
Virchow [230] ViT-H Histology Internal DINOv2 1,488,550 WSIs 20x 631,229,184 2560

Virchow2-CLS [47] ViT-H Histology Internal DINOv2 3,134,922 WSIs 5x,10x,20x,40x 631,239,424 1280
H-optimus-0 [231] ViT-g Histology Internal DINOv2 >500,000 WSIs 20x 1,134,774,272 1536

Prov-GigaPath [173] ViT-g Histology Internal DINOv2 171,189 WSIs 20x 1,134,953,984 1536

Table 7.1 Summary of the seventeen feature extraction models (grouped by the
pretraining data type and ordered by model size).

been conducted using the original 1,000 class ImageNet dataset alone, whereas the

ViT-L was first trained on the much larger set of nearly 22,000 classes, and then

fine-tuned to the same set of 1,000 classes. The reported ImageNet classification

accuracies were 80.9%, 69.8%, and 85.1% for ResNet50 [237], ResNet18 [238], and

ViT-L [239], respectively.

The SSL pretraining of the foundation models allowed large quantities of diverse data to

be leveraged without the need for extensive labelling. One of the earliest histopathology

foundation models was a ResNet18 trained through the SimCLR contrastive learning

strategy [240] with 57 open datasets in 2021 [224], which we refer to as ‘RN18-Histo’.

A similar approach was taken in a subsequent study to pre-train a ResNet50 with a

combination of TCGA and proprietary data using Barlow Twins [241], which we refer

to as ‘RN50-Histo’ [226]. Another early approach, CTransPath [225], used a novel

backbone which combined a CNN with a Swin Transformer, and pretrained these

through a novel SSL strategy using multiple open datasets.

Newer histopathology foundation models have typically used vision transformer back-

bones. The smallest such model, Lunit [226], used DINO distillation [242] to train a

small vision transformer (ViT-S) to create a model of a similar size as RN50-Histo

which had been pretrained with the same dataset. Three of the foundation models

were built using the base vision transformer (ViT-B) backbone with different pretraining
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procedures, with Phikon [227] trained using iBOT [243] on a small subset of TCGA

data, Kaiko-B8 [236] on a much larger set of TCGA data using DINO [242], and

Hibou-B [229] on a huge proprietary dataset using DINOv2 [244]. The authors of

Kaiko-B8 also made their model available with four other backbone sizes, though the

B8 variation gave the best overall performance in their evaluations [236]. Hibou-B was

included as it was the best-available version of this model when initial validations were

conducted, although the authors reported their larger model, Hibou-L, to have given

better performance [229].

The largest histopathology foundation models (all published in 2024) have typically

been vision transformers trained with proprietary datasets of over 50,000 WSIs using

DINOv2. GPFM [172], UNI [208], and Hibou-L [229] are large vision transformers

(ViT-L) trained with 72,280 WSIs, 100,426 WSIs, and 1,141,581 WSIs, respectively.

GPFM was the largest foundation model to not be trained using DINOv2, with a

novel distillation method used instead. Virchow [230] and its recent update, Virchow2

[47], are huge vision transformers (ViT-H) trained with the largest dataset for any

histopathology foundation model to date, with nearly 1.5m WSIs in the first version

and over 3m WSIs in the second version. Virchow also has the largest feature space

as the class tokens are concatenated with the average patch tokens from the ViT,

where typically only the class tokens would be used. As Virchow2 was reported by the

original authors to give better results using just the class tokens [47], we adopted this

version as ‘Virchow2-CLS’.

Prov-GigaPath [173] and H-optimus-0 [231] were the largest accessible histopathology

foundation models by far, with the ViT-g backbone giving over one billion parameters,

nearly twice as many as the next largest model (Virchow2-CLS), and over 100x as

many parameters as the smallest foundation model (RN18-Histo). These models had

also been trained with hundreds of thousands of WSIs using DINOv2. Prov-GigaPath

includes a patch-to-slide aggregator, though we focused only on the patch feature

extractor.

7.2.3 Normalisation and Augmentation Analysis

Previous studies have often used normalisations and augmentations to attempt to im-

prove the robustness of models based on ImageNet-pretrained CNNs [245], including
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models for ovarian cancer subtyping [134, 136]. To investigate whether the baseline

ImageNet-pretrained ResNet50 encoder could be made competitive with the modern

alternatives, we applied this feature extractor with a variety of data preprocessing tech-

niques, including normalisation, augmentation, and automated saturation thresholding.

These were compared to the default preprocessing approaches (Section 4.1).

Otsu thresholding [246] is applied during tissue segmentation to automatically deter-

mine the saturation threshold for each image by minimising the variance within the

separated high-saturation and low-saturation groups. Saturation thresholding is a

computationally efficient tissue segmentation approach, but risks including artefacts

such as bubbles, pen marks, and coverslip edges in the foreground region. While more

robust (and complex) tissue segmentation techniques exist [247, 248], we focused on

simple approaches as the attention mechanism in the classification models should

learn to ignore any remaining artefacts. We compared the CLAM [78] default static

saturation threshold (8/255) to Otsu thresholding with parameters manually adjusted to

qualitatively improve the segmentation (specifically by reducing the strength of median

blurring and increasing the strength of morphological closing to reduce separation

between small tissue segments).

Normalisation and augmentation techniques control data variability, which is par-

ticularly important for generalisability in histopathology, where varied staining and

scanning procedures between labs result in chromatic heterogeneity [4]. Normalisation

reduces variability, adjusting images into a consistent colour space to allow models to

learn general features. We investigated two commonly used [9] stain normalisation

techniques - Reinhard normalisation [249] and Macenko normalisation [250]. These

approaches work in logarithmic colour spaces, where stains behave linearly, making

them easier to separate and manipulate. Reinhard normalisation is a standard

normalisation technique applied in lαβ space (radiance l, blue-yellow α, red-green β).

Macenko normalisation uses singular value decomposition in logarithmic RGB space

to separate stain and saturation values, before scaling the stain values. Basic RGB

normalisations were also applied to all images (after any other colour adjustments)

to match the ImageNet pretraining procedure. The normalisation approaches were

implemented using the torchstain default hyperparameters. A target stain profile was

already provided for Macenko normalisation but not for Reinhard normalisation, for
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which we manually selected a single target image with a standard apparent colour

profile. These targets were fixed to give a consistent standardisation across both the

training and the validation sets. While many more sophisticated stain normalisation

techniques have been developed, it remains unclear whether any such approach is

better than Macenko normalisation overall [9].

Augmentation techniques conversely increase the variability of the training data to allow

the model to learn a more general domain. For such large images, training models

end-to-end to allow for online data augmentation (adjustments during training) is

extremely computationally intensive [251]. Some researchers have attempted to apply

online augmentations in the embedding space using generative models [223, 252],

though this adds an extra layer of complexity to an already resource-intensive model

pipeline. Instead, offline augmentation creates a finite set of augmented versions of

the original data, artificially increasing the diversity of training data to a lesser extent

than online augmentation. We investigated colour augmentations which adjusted

the brightness, contrast, saturation and hue of each patch using parameters from a

previous study [253], which we found to create plausibly altered colours (Figure 7.1).

Standard Patches Reinhard Normalised Macenko Normalised Colour Augmented 

Figure 7.1 Tissue normalisation and augmentation procedures illustrated using
256 x 256 pixel patches from a single whole slide image at 10x magnification.
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7.2.4 Hyperparameter Tuning and Validation Procedures

ABMIL classifiers were tuned using the iterative grid search procedure detailed in

Section 4.3. Ten hyperparameters were tuned, including the eight hyperparameters

tuned in Chapter 6, as well as the learning rate (LR) decay factor and LR decay

patience. The initial hyperparameters were taken from the tuned 10x magnification

ABMIL model with the ImageNet-pretrained ResNet50 encoder. Through 17 tuning

iterations (Table 7.2), over 150 unique hyperparameter configurations were evaluated

for each classifier. An ablation study was also conducted to investigate whether

hyperparameter tuning improved model performance, with the performance of the

tuned models compared to those using the default hyperparameters.

Tuning
Iteration

Learning
Rate (LR)

LR Decay
Patience

LR Decay
Factor

First
Moment
Decay

Second
Moment
Decay

Stability
Parameter

Weight
Decay

Dropout
Rate

Max
Patches

Model
Size

1 ✓ ✓

2 ✓ ✓

3 ✓ ✓

4 ✓ ✓

5 ✓ ✓

6 ✓ ✓

7 ✓ ✓

8 ✓ ✓

9 ✓

10 ✓ ✓ ✓

11 ✓ ✓

12 ✓ ✓

13 ✓ ✓

14 ✓ ✓

15 ✓

16 ✓ ✓

17 ✓ ✓ ✓ ✓ ✓

Table 7.2 Iterative hyperparameter tuning procedure, with check marks (✓) indicating
the hyperparameters that were adjusted at each stage of tuning, with all others frozen.
These are grouped into hyperparameters relating to the learning rate, Adam optimizer,
regularisation, and model architecture.

Paired t-tests were used to test for statistically significant differences in the discrimi-

native performance of each model compared to the baseline ResNet50 across the five

cross-validation folds, with p-values adjusted for multiple testing using a false discovery

rate correction [206]. Results were considered statistically significant given an adjusted

p-value < 0.05. Paired t-tests were also used in the hyperparameter tuning ablation

to determine whether tuning the ABMIL classifiers had a statistically significant effect

on the final results. Model efficiency was evaluated as the average time to preprocess
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and classify a WSI using a consistent class-balanced set of 20 WSIs from the internal

hold-out test set, with the evaluation repeated three times for each model and the

median result used to account for variability.

This work was reported following the TRIPOD+AI checklist [200] to ensure thorough

reporting, with the completed checklist available in Appendix C. Experiments were

conducted using the HPC (Section 4.5), and the PyTorch-based code was made

available at https://github.com/scjjb/Ovarian_Features.

7.3 Results

7.3.1 Foundation Model Validation Results

No single model gave the greatest results in every validation (Figure 7.2). Virchow2-

CLS gave the greatest performance in cross-validation (Table 7.3), H-optimus-0 in

hold-out testing (Table 7.4), GPFM in the Transcanadian Study external validation

(Table 7.5), and Virchow in the OCEAN Challenge external validation (Table 7.6).

RN18-Histo had the worst performance of any foundation model in all validations and

was the only foundation model to perform worse than any ImageNet-pretrained encoder

overall (Table 7.7).

The H-optimus-0 model achieved the greatest averaged performance across all

validations (Table 7.7), with 83.0% average balanced accuracy, 0.965 average AUROC,

and 0.822 average F1 score. This performance very was closely followed by that of

UNI and Virchow2-CLS. The worst averaged performances were given by CNN-based

feature extraction models (RN50, RN18, RN18-Histo), followed by the ImageNet-

pretrained vision transformer. Confusion matrices for the optimal H-optimus-0 model

(Figure 7.3) show that no single class was the best (or worst) classified across all

validations. The worst F1 scores were found for the classification of LGSC in cross-

validation (0.443) and the OCEAN Challenge validation (0.582), and for EC in the

OCEAN Challenge validation (0.606). In these validations, LGSC was often confused

with HGSC and there was a moderate level of confusion between EC and MC. Further

class-level results are provided in Table 7.8.

https://github.com/scjjb/Ovarian_Features
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Figure 7.2 Ovarian cancer subtyping results for each feature extractor and validation
(mean and 95% confidence interval generated by 10,000 iterations of bootstrapping).
Blue indicates ImageNet-pretrained feature extractors, orange indicates histopathology
foundation models. Hold-out testing and external validation results are based on an
ensemble of five cross-validation models.

Confusion matrices for the optimal H-optimus-0 model (Figure 7.3) show that the model

did not completely fail at classifying any one subtype (as in Chapter 6), though there

was still variability in class-wise performance, especially in validations that included

IDS samples (cross-validation and the OCEAN Challenge). The least common class in

the training set (LGSC) was poorly classified in these validations (F1 scores of 0.443

and 0.582) but was much better classified in the other validations (F1 scores of 0.865

and 0.941). The most consistently classified subtype was the most common in the

training dataset (HGSC), with F1 scores of at least 0.807 in all validations.
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Feature
Extractor

Balanced
Accuracy AUROC F1 Score

RN50 57.1% (53.8-60.4%) 0.893 (0.879-0.907) 0.596 (0.561-0.630)
RN18 56.1% (52.8-59.4%) 0.882 (0.866-0.898) 0.584 (0.551-0.617)
ViT-L 62.6% (59.2-66.0%) 0.893 (0.877-0.909) 0.628 (0.596-0.660)

RN18-Histo 59.1% (55.8-62.4%) 0.887 (0.871-0.902) 0.615 (0.582-0.648)
Lunit 66.6% (63.3-70.0%) 0.910 (0.894-0.926) 0.682 (0.649-0.714)

RN50-Histo 62.4% (59.2-65.6%) 0.925 (0.911-0.938) 0.651 (0.618-0.684)
CTransPath 67.3% (63.9-70.6%) 0.925 (0.912-0.938) 0.669 (0.638-0.700)

Hibou-B 67.7% (64.4-71.0%) 0.945 (0.935-0.954) 0.689 (0.656-0.720)
Phikon 67.0% (63.7-70.4%) 0.926 (0.912-0.938) 0.684 (0.653-0.715)

Kaiko-B8 70.3% (67.0-73.6%) 0.933 (0.919-0.946) 0.720 (0.688-0.751)
GPFM 70.9% (67.7-74.1%) 0.935 (0.923-0.948) 0.710 (0.680-0.739)

UNI 73.2% (69.9-76.4%) 0.945 (0.933-0.956) 0.734 (0.704-0.764)
Hibou-L 67.0% (63.6-70.3%) 0.930 (0.918-0.942) 0.690 (0.656-0.721)
Virchow 68.6% (65.3-71.8%) 0.936 (0.925-0.947) 0.688 (0.658-0.717)

Virchow2-CLS 74.7% (71.5-77.9%) 0.943 (0.930-0.954) 0.742 (0.713-0.771)
H-optimus-0 72.2% (68.9-75.4%) 0.947 (0.936-0.957) 0.726 (0.695-0.756)

Prov-GigaPath 71.2% (67.9-74.4%) 0.927 (0.913-0.941) 0.725 (0.696-0.754)

Table 7.3 Results of five-fold cross-validation. Results are reported as the mean and
95% confidence intervals (in brackets) from 10,000 iterations of bootstrapping. The
greatest results are shown in bold.
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Feature
Extractor

Balanced
Accuracy AUROC F1 Score

RN50 66.0% (58.1-73.7%) 0.916 (0.873-0.953) 0.634 (0.537-0.726)
RN18 64.0% (55.3-72.6%) 0.930 (0.893-0.963) 0.628 (0.530-0.723)
ViT-L 76.0% (67.8-83.7%) 0.926 (0.885-0.963) 0.747 (0.656-0.832)

RN18-Histo 65.0% (57.1-72.5%) 0.890 (0.843-0.932) 0.613 (0.531-0.698)
Lunit 79.1% (71.4-86.3%) 0.943 (0.904-0.977) 0.778 (0.693-0.857)

RN50-Histo 74.1% (65.7-81.9%) 0.946 (0.908-0.977) 0.730 (0.641-0.815)
CTransPath 81.0% (74.0-88.0%) 0.950 (0.911-0.982) 0.797 (0.716-0.873)

Hibou-B 87.0% (81.0-92.6%) 0.956 (0.921-0.985) 0.858 (0.783-0.925)
Phikon 79.0% (72.0-85.7%) 0.946 (0.907-0.979) 0.772 (0.689-0.852)

Kaiko-B8 83.0% (75.8-89.9%) 0.947 (0.909-0.980) 0.823 (0.746-0.896)
GPFM 82.0% (74.8-88.7%) 0.955 (0.918-0.985) 0.809 (0.728-0.884)

UNI 88.0% (81.5-93.8%) 0.957 (0.919-0.989) 0.875 (0.805-0.937)
Hibou-L 82.1% (75.5-88.4%) 0.959 (0.921-0.990) 0.804 (0.722-0.880)
Virchow 85.0% (78.4-91.1%) 0.964 (0.928-0.993) 0.839 (0.763-0.909)

Virchow2-CLS 88.0% (81.9-93.8%) 0.964 (0.926-0.994) 0.873 (0.802-0.937)
H-optimus-0 89.0% (83.1-94.3%) 0.963 (0.925-0.992) 0.883 (0.815-0.944)

Prov-GigaPath 84.0% (77.4-90.3%) 0.958 (0.924-0.986) 0.830 (0.752-0.900)

Table 7.4 Results of hold-out testing, with predictions generated by an ensemble
of the five-fold classification models. Results are reported as the mean and 95%
confidence intervals (in brackets) from 10,000 iterations of bootstrapping. The greatest
results are shown in bold.
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Feature
Extractor

Balanced
Accuracy AUROC F1 Score

RN50 69.2% (58.7-79.7%) 0.956 (0.928-0.980) 0.696 (0.582-0.807)
RN18 79.0% (68.8-88.6%) 0.959 (0.923-0.985) 0.804 (0.700-0.896)
ViT-L 80.7% (72.2-89.2%) 0.970 (0.937-0.993) 0.814 (0.712-0.908)

RN18-Histo 66.5% (55.2-77.5%) 0.930 (0.888-0.965) 0.653 (0.539-0.763)
Lunit 95.0% (89.3-99.1%) 0.998 (0.994-1.000) 0.930 (0.862-0.985)

RN50-Histo 94.4% (88.2-98.9%) 0.994 (0.985-0.999) 0.934 (0.870-0.985)
CTransPath 88.8% (80.9-95.6%) 0.982 (0.959-0.996) 0.861 (0.773-0.939)

Hibou-B 91.1% (83.0-97.9%) 0.990 (0.979-0.998) 0.921 (0.850-0.979)
Phikon 90.3% (81.9-97.8%) 0.994 (0.986-0.999) 0.919 (0.839-0.982)

Kaiko-B8 96.7% (93.8-99.2%) 0.997 (0.991-1.000) 0.937 (0.879-0.986)
GPFM 98.3% (95.6-100.0%) 0.999 (0.997-1.000) 0.977 (0.937-1.000)

UNI 93.2% (86.5-98.3%) 0.996 (0.988-1.000) 0.912 (0.835-0.974)
Hibou-L 89.3% (80.6-96.2%) 0.989 (0.975-0.998) 0.889 (0.805-0.959)
Virchow 87.5% (79.0-94.8%) 0.993 (0.984-0.999) 0.848 (0.750-0.931)

Virchow2-CLS 88.0% (79.8-95.3%) 0.997 (0.993-1.000) 0.871 (0.779-0.952)
H-optimus-0 96.7% (91.1-100.0%) 0.999 (0.998-1.000) 0.975 (0.931-1.000)

Prov-GigaPath 88.6% (80.2-95.9%) 0.995 (0.987-1.000) 0.878 (0.783-0.958)

Table 7.5 Results of external validation on the Transcanadian Study dataset, with
predictions generated by an ensemble of the five-fold classification models. Results
are reported as the mean and 95% confidence intervals (in brackets) from 10,000
iterations of bootstrapping. The greatest results are shown in bold.
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Feature
Extractor

Balanced
Accuracy AUROC F1 Score

RN50 52.4% (49.5-55.1%) 0.868 (0.847-0.889) 0.412 (0.380-0.444)
RN18 51.9% (48.6-54.9%) 0.841 (0.820-0.863) 0.412 (0.377-0.448)
ViT-L 59.5% (55.4-63.6%) 0.880 (0.857-0.902) 0.578 (0.532-0.625)

RN18-Histo 57.3% (54.0-60.4%) 0.850 (0.828-0.872) 0.523 (0.484-0.563)
Lunit 73.6% (69.7-77.5%) 0.954 (0.941-0.967) 0.729 (0.681-0.775)

RN50-Histo 68.0% (64.5-71.6%) 0.946 (0.930-0.959) 0.679 (0.634-0.725)
CTransPath 67.8% (64.0-71.7%) 0.934 (0.917-0.950) 0.676 (0.629-0.724)

Hibou-B 65.4% (61.4-69.4%) 0.935 (0.920-0.949) 0.633 (0.582-0.682)
Phikon 66.4% (62.8-70.1%) 0.898 (0.879-0.917) 0.642 (0.595-0.689)

Kaiko-B8 70.0% (65.4-74.5%) 0.941 (0.925-0.956) 0.695 (0.644-0.744)
GPFM 74.5% (70.4-78.5%) 0.935 (0.919-0.949) 0.746 (0.702-0.788)

UNI 77.2% (73.0-81.4%) 0.954 (0.939-0.966) 0.758 (0.714-0.801)
Hibou-L 69.3% (66.2-72.3%) 0.946 (0.931-0.959) 0.663 (0.622-0.706)
Virchow 79.2% (75.2-83.0%) 0.959 (0.946-0.970) 0.765 (0.722-0.807)

Virchow2-CLS 79.8% (75.8-83.6%) 0.958 (0.945-0.970) 0.759 (0.717-0.801)
H-optimus-0 74.0% (69.9-78.1%) 0.952 (0.939-0.963) 0.703 (0.656-0.748)

Prov-GigaPath 75.4% (71.3-79.3%) 0.959 (0.946-0.970) 0.729 (0.684-0.771)

Table 7.6 Results of external validation on the OCEAN dataset, with predictions
generated by an ensemble of the five-fold classification models. Results are reported
as the mean and 95% confidence intervals (in brackets) from 10,000 iterations of
bootstrapping. The greatest results are shown in bold.
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Feature
Extractor

Balanced
Accuracy AUROC F1 Score Avg Inference

Time (s/WSI)
ImageNet-
Pretrained

Models

RN50 61.2% 0.908 0.585 75.6
RN18 62.8% 0.903 0.607 75.4
ViT-L 69.7% 0.917 0.692 99.3

Histopathology
Foundation

Models

RN18-Histo 62.0% 0.889 0.601 76.1
Lunit 78.6% 0.951 0.780 76.4

RN50-Histo 74.7% 0.953 0.749 75.1
CTransPath 76.2% 0.948 0.751 75.7

Hibou-B 77.9% 0.957 0.775 76.9
Phikon 75.7% 0.941 0.754 76.9

Kaiko-B8 80.0% 0.955 0.794 129.0
GPFM 81.4% 0.956 0.811 125.1

UNI 82.9% 0.963 0.820 99.9
Hibou-L 76.9% 0.956 0.762 130.4
Virchow 80.1% 0.963 0.785 243.1

Virchow2-CLS 82.6% 0.966 0.811 245.8
H-optimus-0 83.0% 0.965 0.822 425.0

Prov-GigaPath 79.8% 0.960 0.791 319.8

Table 7.7 Averaged results across the four validations. The average inference times
were measured on a subset of the internal hold-out test set. The greatest result for
each metric is shown in bold.
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Figure 7.3 Confusion matrices for the optimal ABMIL classifier with features from the
H-optimus-0 foundation model. Correct classifications are indicated in bold.

The difference in performance between each foundation model (except RN18-Histo)

and the baseline ImageNet-pretrained ResNet50 was found to be significant by all

metrics in all validations (Table 7.9), except the AUROC in cross-validation (for nine

foundation models), RN50-Histo in internal validations, and Hibou-B in the external

validation on the OCEAN Challenge dataset. There was no significant difference

between the performance of the baseline model and either the RN18 or the RN18-Histo

model in most validations. The difference between the baseline ResNet50 and the

ViT-L feature extractor was statistically significant in most validations for the balanced

accuracy and F1 score, but not the AUROC.

There was a strong positive relationship (R2 = 0.93) between the size of feature

extraction models and the runtime (Figure 7.4). The most computationally efficient

models were typically the smallest, with an average inference time per WSI between

75 and 77 seconds for each of the ResNets, Lunit, CTransPath, Hibou-B, and Phikon

models (Table 7.7). Feature encoding was the slowest step of slide inference, taking

over 90% of the total computational time for all models, with the remaining time divided

between the initial tissue patch extraction and the subsequent forward pass of patch
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features through the trained ABMIL classifiers. The average inference times did not

vary greatly for any model over the three repeats, with a maximum range of 1.7s

(75.3 - 77.0s) per WSI from the CTransPath model. The largest models were the

slowest overall, with Prov-GigaPath averaging 320 seconds and H-optimus-0 averaging

425 seconds per WSI, over 5 times as long as the fastest models. These largest feature

extractors also required much greater computational resources (particularly VRAM)

as they were each over 4GB in size, whereas the smallest models were each under

100MB (RN50, RN18, RN18-Histo, Lunit, RN50-Histo).

Subtype F1 Score Precision Recall /
Sensitivity Specificity Balanced

Accuracy

Cross-
Validation

HGSC 0.925 0.925 0.926 0.841 0.883
LGSC 0.443 0.405 0.489 0.963 0.726
CCC 0.814 0.832 0.798 0.981 0.889
EC 0.782 0.766 0.799 0.969 0.884
MC 0.667 0.756 0.596 0.989 0.793

Hold-out
Testing

HGSC 0.870 0.769 1.000 0.925 0.963
LGSC 0.865 0.941 0.800 0.988 0.894
CCC 0.765 0.929 0.650 0.988 0.819
EC 0.976 0.952 1.000 0.988 0.994
MC 0.952 0.909 1.000 0.975 0.988

Transcanadian
Study

HGSC 0.968 0.938 1.000 0.960 0.980
LGSC 0.941 1.000 0.889 1.000 0.944
CCC 0.974 1.000 0.950 1.000 0.975
EC 1.000 1.000 1.000 1.000 1.000
MC 1.000 1.000 1.000 1.000 1.000

OCEAN
Challenge

HGSC 0.807 0.813 0.802 0.865 0.833
LGSC 0.582 0.622 0.548 0.970 0.759
CCC 0.777 0.635 1.000 0.871 0.936
EC 0.606 0.946 0.445 0.992 0.719
MC 0.747 0.638 0.902 0.956 0.929

Table 7.8 Additional classwise classification metrics for the optimal H-optimus-0
ABMIL classifier.
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Figure 7.4 Model inference times. The average inference time per WSI for each
model, including tissue patch extraction, feature encoding, and ABMIL classification
time.
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Cross-Validation p-values Hold-out Testing p-values

Model Balanced
Accuracy AUROC F1 Score Balanced

Accuracy AUROC F1 Score

RN18 0.736 0.557 0.736 0.601 0.028 0.317
ViT-L 0.033 0.824 0.074 0.003 0.051 0.002

RN18-Histo 0.365 0.964 0.613 0.870 0.192 0.967
Lunit 0.019 0.183 0.009 0.010 0.035 0.008

RN50-Histo 0.232 0.072 0.152 0.214 0.009 0.189
CTransPath 0.009 0.082 0.007 0.003 0.012 0.003

Hibou-B 0.019 0.029 0.012 0.003 0.006 0.003
Phikon 0.009 0.149 0.007 0.003 0.012 0.003

Kaiko-B8 0.013 0.063 0.010 0.003 0.011 0.002
GPFM 0.007 0.063 0.007 0.003 0.006 0.003

UNI 0.015 0.020 0.009 0.003 0.006 0.002
Hibou-L 0.007 0.072 0.007 0.003 0.009 0.003
Virchow 0.011 0.020 0.006 0.003 0.006 0.003

Virchow2-CLS 0.011 0.063 0.009 0.002 0.006 0.002
H-Optimus-0 0.005 0.020 0.001 0.003 0.006 0.002

Prov-GigaPath 0.013 0.063 0.007 0.008 0.006 0.008

Transcanadian Study p-values OCEAN Challenge p-values

Model Balanced
Accuracy AUROC F1 Score Balanced

Accuracy AUROC F1 Score

RN18 0.446 0.773 0.399 0.237 0.034 0.541
ViT-L 0.021 0.090 0.022 0.170 0.265 0.019

RN18-Histo 0.490 0.211 0.403 0.235 0.987 0.002
Lunit 0.003 0.011 0.006 0.002 0.004 0.001

RN50-Histo 0.015 0.011 0.018 0.018 0.004 0.003
CTransPath 0.007 0.023 0.018 0.002 0.005 0.001

Hibou-B 0.008 0.024 0.007 0.107 0.009 0.019
Phikon 0.002 0.011 <0.001 0.001 0.013 0.001

Kaiko-B8 0.007 0.011 0.022 0.004 0.006 0.003
GPFM 0.003 0.011 0.006 0.001 0.004 0.001

UNI 0.006 0.011 0.015 0.001 0.004 0.001
Hibou-L 0.003 0.013 0.003 0.002 0.005 0.002
Virchow 0.006 0.018 0.015 0.002 0.004 0.001

Virchow2-CLS 0.007 0.011 0.015 0.001 0.004 0.001
H-Optimus-0 0.003 0.011 0.004 0.002 0.004 0.001

Prov-GigaPath 0.019 0.017 0.035 0.005 0.004 0.002

Table 7.9 Resulting p-values from paired t-tests comparing the subtype classification
results with each feature extractor to the ImageNet-pretrained ResNet50 baseline.
False discovery rate p-value adjustments were applied to account for multiple testing
[206]. Values below 0.05 are indicated in bold.
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7.3.2 Normalisation and Augmentation Results

0.40

0.50

0.60

0.70

0.80

0.90

1.00
(a) (b)

RN
50

RN
18

ViT
-L

Re
inh

ard
Mac

en
ko

Ot
su

Ot
su

+Mac
en

ko
5A

ug
s

10
Au

gs
20

Au
gs

RN
18

-H
ist

o
RN

50
-H

ist
o

CT
ran

sP
ath

H-
op

tim
us

-0

0.40

0.50

0.60

0.70

0.80

0.90

1.00
(c)

RN
50

RN
18

ViT
-L

Re
inh

ard
Mac

en
ko

Ot
su

Ot
su

+Mac
en

ko
5A

ug
s

10
Au

gs
20

Au
gs

RN
18

-H
ist

o
RN

50
-H

ist
o

CT
ran

sP
ath

H-
op

tim
us

-0

(d)

Figure 7.5 Balanced accuracy (mean and 95% confidence interval from 10,000
iterations of bootstrapping) for each standard ImageNet-pretrained feature extractor
(blue), the seven ResNet50 models with varied preprocessing techniques (green), as
well as the three worst-performing (RN18-Histo, RN50-Histo, and CTransPath) and
the single best-performing foundation models (H-optimus-0) in (a) cross-validation,
(b) hold-out testing, (c) external validation on the Transcanadian Study dataset,
(d) external validation on the OCEAN Challenge dataset. For validations (b)-(d),
predictions were ensembled from the five cross-validation models.

Different preprocessing techniques had inconsistent effects on the ImageNet-

pretrained ResNet50 feature extractor (Figure 7.5), with some modest benefits in

internal validations, and variable effects in external validations. In cross-validation

(Table 7.10), no pre-processing method improved the balanced accuracy or F1 score by

more than 0.02, and no improvement was seen in AUROC with any method. In hold-out

testing (Table 7.11), only the 20x augmentation improved performance, increasing F1

by 0.023 and balanced accuracy by 0.020, but reducing AUROC by 0.012. However,
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in the external validation on the Transcanadian Study dataset (Table 7.12), every

preprocessing method improved performance compared to the baseline by over 0.05

balanced accuracy and F1 score, and 0.002 AUROC. The greatest performances in

this validation were found by combining Otsu thresholding with Macenko normalisation

and by 20x colour augmentations, which each increased the F1 score and balanced

accuracy above baseline performance by over 0.1, and AUROC by over 0.016. For

the OCEAN Challenge dataset (Table 7.13), most preprocessing methods gave worse

results than the baseline approach, with only Otsu thresholding providing any benefit

over the baseline performance.

Preprocessing
Approach

Balanced
Accuracy AUROC F1 Score

Baseline 57.1% (53.8-60.4%) 0.893 (0.879-0.907) 0.596 (0.561-0.630)
Reinhard Normalisation 51.3% (48.2-54.4%) 0.872 (0.856-0.887) 0.520 (0.488-0.553)
Macenko Normalisation 57.8% (54.5-61.2%) 0.882 (0.867-0.896) 0.601 (0.567-0.635)

Otsu Thresholding 53.9% (50.6-57.2%) 0.888 (0.873-0.903) 0.566 (0.532-0.600)
Otsu + Macenko 58.0% (54.6-61.4%) 0.882 (0.865-0.898) 0.605 (0.571-0.638)

5x Colour Augmentation 57.4% (54.0-60.7%) 0.888 (0.873-0.902) 0.592 (0.560-0.625)
10x Colour Augmentation 59.1% (55.7-62.4%) 0.891 (0.877-0.905) 0.615 (0.581-0.649)
20x Colour Augmentation 59.1% (55.7-62.4%) 0.892 (0.877-0.905) 0.596 (0.564-0.627)

Table 7.10 Results of five-fold cross-validation for the ImageNet-pretrained ResNet50
with varied preprocessing approaches. Results are reported as the mean and 95%
confidence intervals (in brackets) from 10,000 iterations of bootstrapping. The greatest
results are shown in bold.

Preprocessing
Approach

Balanced
Accuracy AUROC F1 Score

Baseline 66.0% (58.1-73.7%) 0.916 (0.873-0.953) 0.634 (0.537-0.726)
Reinhard Normalisation 65.0% (56.6-73.2%) 0.923 (0.881-0.961) 0.632 (0.534-0.727)
Macenko Normalisation 63.0% (54.4-71.5%) 0.915 (0.873-0.951) 0.620 (0.521-0.715)

Otsu Thresholding 65.0% (56.7-73.4%) 0.916 (0.872-0.955) 0.637 (0.542-0.732)
Otsu + Macenko 59.0% (50.3-67.6%) 0.918 (0.878-0.952) 0.577 (0.475-0.674)

5x Colour Augmentation 65.0% (57.0-72.9%) 0.916 (0.876-0.951) 0.630 (0.536-0.725)
10x Colour Augmentation 64.0% (55.9-72.1%) 0.906 (0.864-0.944) 0.616 (0.522-0.710)
20x Colour Augmentation 68.0% (59.7-76.0%) 0.904 (0.861-0.942) 0.657 (0.563-0.750)

Table 7.11 Results of hold-out testing for the ImageNet-pretrained ResNet50 with
varied preprocessing approaches, with predictions generated by an ensemble of the
five-fold classification models. Results are reported as the mean and 95% confidence
intervals (in brackets) from 10,000 iterations of bootstrapping. The greatest results are
shown in bold.
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Preprocessing
Approach

Balanced
Accuracy AUROC F1 Score

Baseline 69.2% (58.7-79.7%) 0.956 (0.928-0.980) 0.696 (0.582-0.807)
Reinhard Normalisation 75.8% (65.1-86.0%) 0.968 (0.943-0.986) 0.761 (0.647-0.861)
Macenko Normalisation 74.5% (64.3-84.3%) 0.959 (0.933-0.980) 0.756 (0.648-0.857)

Otsu Thresholding 77.2% (66.4-87.6%) 0.963 (0.937-0.985) 0.797 (0.685-0.895)
Otsu + Macenko 80.5% (70.4-89.9%) 0.983 (0.967-0.995) 0.834 (0.730-0.921)

5x Colour Augmentation 74.9% (63.8-85.6%) 0.966 (0.941-0.986) 0.762 (0.647-0.866)
10x Colour Augmentation 76.1% (65.0-86.6%) 0.962 (0.935-0.983) 0.768 (0.659-0.869)
20x Colour Augmentation 80.0% (69.2-90.0%) 0.973 (0.953-0.989) 0.806 (0.706-0.897)

Table 7.12 Results of external validation on the Transcanadian Study dataset for
the ImageNet-pretrained ResNet50 with varied preprocessing approaches, with pre-
dictions generated by an ensemble of the five-fold classification models. Results are
reported as the mean and 95% confidence intervals (in brackets) from 10,000 iterations
of bootstrapping. The greatest results are shown in bold.

Preprocessing
Approach

Balanced
Accuracy AUROC F1 Score

Baseline 52.4% (49.5-55.1%) 0.868 (0.847-0.889) 0.412 (0.380-0.444)
Reinhard Normalisation 51.0% (47.7-54.3%) 0.870 (0.850-0.888) 0.392 (0.350-0.437)
Macenko Normalisation 45.9% (41.8-50.0%) 0.837 (0.814-0.860) 0.407 (0.360-0.455)

Otsu Thresholding 54.7% (51.9-57.6%) 0.883 (0.864-0.901) 0.440 (0.401-0.482)
Otsu + Macenko 44.4% (40.7-48.3%) 0.840 (0.816-0.862) 0.388 (0.347-0.432)

5x Colour Augmentation 51.7% (48.4-54.8%) 0.867 (0.845-0.887) 0.401 (0.363-0.441)
10x Colour Augmentation 51.1% (47.8-54.2%) 0.877 (0.856-0.897) 0.404 (0.367-0.443)
20x Colour Augmentation 51.4% (48.4-54.4%) 0.874 (0.853-0.893) 0.391 (0.352-0.433)

Table 7.13 Results of external validation on the OCEAN Challenge dataset for the
ImageNet-pretrained ResNet50 with varied preprocessing approaches, with predic-
tions generated by an ensemble of the five-fold classification models. Results are
reported as the mean and 95% confidence intervals (in brackets) from 10,000 iterations
of bootstrapping. The greatest results are shown in bold.
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Despite some modest improvements offered by different preprocessing techniques,

particularly in the Transcanadian Study external validation, the best-performing model

based on the ImageNet-pretrained ResNet50 backbone was still outperformed by every

foundation model (except RN18-Histo) in every validation (Figure 7.5). Furthermore,

none of the different preprocessing methods gave statistically significant differences in

performance compared to the baseline approach in any validation.

7.3.3 Hyperparameter Tuning Ablation Results
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Figure 7.6 Average validation loss from five-fold cross-validation for each model and
each hyperparameter tuning iteration.

Hyperparameter tuning improved the average validation loss for every model by at

least 0.034 (CTransPath from 0.504 to 0.470), with a median improvement of 0.150,

and a maximum of 0.301 (Kaiko-B8 from 0.752 to 0.451). As shown in Figure 7.6, the

majority of this benefit was found within the first iteration of hyperparameter tuning for

every model (except the ImageNet-pretrained ResNet50), with a median improvement

of 0.121 validation loss from tuning only the learning rate and ABMIL model size.
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Figure 7.7 Balanced accuracy results for each model compared with the ABMIL
classifier trained using the default hyperparameters (pink) and the tuned hyperpa-
rameters (blue) for (a) cross-validation, (b) hold-out testing, (c) external validation on
the Transcanadian Study dataset, (d) external validation on the OCEAN Challenge
dataset. For validations (b)-(d), predictions were ensembled from the five cross-
validation models. *Indicates a significant difference in the paired t-test at the 5%
significance level.
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The balanced accuracies of the tuned ABMIL classifiers are compared to the untuned

models (using default hyperparameters) in Figure 7.7. The median impact of

hyperparameter tuning across all models and validations was an improvement of 1.9%

balanced accuracy, 0.005 AUROC, and 0.025 F1 score, though the effect on any

specific model in any given validation was variable, with balanced accuracies changed

by −6.6% to +15.0%, AUROCs by −0.013 to +0.041, and F1 scores by −0.073 to

+0.146. The only models which did not benefit from hyperparameter tuning were

those using the ResNet50, ResNet18, Phikon, and H-optimus-0 feature extractors.

All of the other models had a statistically significant difference between tuned and

untuned results in at least one validation (Tables 7.14 and 7.15), with these significant

differences only occurring in cases where tuning improved performance. The extent

of the benefits varied across validations, with a median change in balanced accuracy

of +3.1% in cross-validation, +3.0% in hold-out testing, −0.8% in the Transcanadian

Study external validation, and +1.9% in the OCEAN Challenge external validation. The

only models to significantly benefit in every validation were the ImageNet-pretrained

ViT-L and Hibou-L, though these benefits were not present for every metric. Exact

p-values are provided in (Appendix D)
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Cross-Validation Hold-out Testing
Feature

Extractor
Balanced
Accuracy AUROC F1 Score Balanced

Accuracy AUROC F1 Score

RN50 57.5% - 0.877 ↓ 0.593 - 68.0% ↑ 0.923 - 0.670 ↑↑
RN18 55.3% - 0.857 ↓ 0.561 ↓ 64.0% - 0.927 - 0.626 -
ViT-L 56.2% ↓↓↓* 0.857 ↓↓* 0.580 ↓↓* 61.0% ↓↓↓* 0.917 - 0.601 ↓↓↓*

RN18-Histo 56.0% ↓↓* 0.879 - 0.574 ↓↓* 62.1% ↓ 0.889 - 0.586 ↓
Lunit 65.3% ↓ 0.891 ↓* 0.646 ↓↓ 74.0% ↓↓↓ 0.932 ↓ 0.727 ↓↓↓

RN50-Histo 63.1% - 0.915 ↓ 0.656 - 74.9% - 0.943 - 0.739 -
CTransPath 68.8% ↑ 0.927 - 0.690 ↑ 78.0% ↓↓* 0.941 - 0.768 ↓*

Hibou-B 66.1% ↓ 0.911 ↓↓ 0.667 ↓ 78.0% ↓↓↓* 0.958 - 0.765 ↓↓↓*
Phikon 68.0% ↑ 0.912 ↓ 0.672 ↓ 80.1% ↑ 0.941 - 0.792 ↑

Kaiko-B8 62.7% ↓↓↓* 0.907 ↓ 0.633 ↓↓↓* 79.0% ↓↓ 0.949 - 0.786 ↓↓
GPFM 69.4% ↓ 0.912 ↓* 0.690 ↓ 84.0% ↑ 0.953 - 0.831 ↑

UNI 67.1% ↓↓↓* 0.915 ↓↓* 0.684 ↓↓↓* 82.0% ↓↓↓* 0.962 - 0.806 ↓↓↓*
Hibou-L 58.7% ↓↓↓ 0.889 ↓↓* 0.622 ↓↓↓ 75.0% ↓↓↓* 0.959 - 0.730 ↓↓↓*
Virchow 65.2% ↓↓* 0.896 ↓↓ 0.658 ↓↓ 81.0% ↓↓ 0.956 - 0.801 ↓↓

Virchow2-CLS 69.8% ↓↓ 0.917 ↓* 0.681 ↓↓↓ 89.1% ↑ 0.963 - 0.883 ↑
H-optimus-0 66.1% ↓↓↓ 0.916 ↓↓ 0.678 ↓↓ 85.0% ↓↓ 0.965 - 0.843 ↓↓

Prov-GigaPath 67.9% ↓↓ 0.919 - 0.675 ↓↓↓ 83.0% ↓ 0.949 -* 0.820 ↓

Table 7.14 Results of internal validations without hyperparameter tuning. Arrows
indicate the absolute difference in performance compared to the tuned models, with
one arrow (↑) for difference a of at least 1%, two arrows (↑↑) for a difference of at
least 3%, and three arrows (↑↑↑) for a difference of at least 5%. *Indicates a p-value
less than 0.05 when compared to the tuned model. While the Prov-GigaPath AUROC
only exhibited a reduction of 0.009 in hold-out testing, this was found to be statistically
significant.
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Transcanadian Study OCEAN Challenge
Feature

Extractor
Balanced
Accuracy AUROC F1 Score Balanced

Accuracy AUROC F1 Score

RN50 75.8% ↑↑↑ 0.969 ↑↑ 0.769 ↑↑↑ 51.0% ↓ 0.857 ↓ 0.411 -
RN18 80.1% ↑ 0.946 ↓ 0.807 - 49.0% ↓ 0.837 - 0.370 ↓↓
ViT-L 68.9% ↓↓↓* 0.960 ↓ 0.702 ↓↓↓* 48.3% ↓↓↓* 0.843 ↓↓* 0.506 ↓↓↓*

RN18-Histo 69.3% ↑ 0.942 ↑ 0.689 ↑↑ 55.0% ↓ 0.849 - 0.504 ↓
Lunit 92.4% ↓ 0.989 - 0.879 ↓↓↓ 68.8% ↓↓ 0.935 ↓* 0.661 ↓↓↓

RN50-Histo 91.8% ↓ 0.995 - 0.902 ↓↓ 66.6% ↓ 0.934 ↓* 0.684 -
CTransPath 88.1% - 0.978 - 0.847 ↓ 68.1% - 0.934 - 0.686 ↑

Hibou-B 85.3% ↓↓↓ 0.987 - 0.871 ↓↓↓ 64.0% ↓ 0.928 - 0.604 ↓
Phikon 94.6% ↑↑ 0.996 - 0.944 ↑ 63.2% ↓↓ 0.903 - 0.598 ↓↓

Kaiko-B8 93.3% ↓↓ 0.996 - 0.926 ↓ 64.1% ↓↓↓ 0.929 ↓* 0.596 ↓↓*
GPFM 97.7% - 0.998 - 0.964 ↓ 73.8% - 0.937 - 0.725 ↓

UNI 95.3% ↑ 0.996 - 0.952 ↑↑ 69.6% ↓↓↓* 0.948 -* 0.693 ↓↓↓*
Hibou-L 81.7% ↓↓↓ 0.988 -* 0.813 ↓↓↓* 64.7% ↓↓ 0.936 ↓* 0.615 ↓↓
Virchow 88.8% ↑ 0.991 - 0.864 ↑ 78.5% -* 0.948 ↓* 0.766 -

Virchow2-CLS 91.6% ↑↑ 1.000 - 0.915 ↑↑ 74.0% ↓↓↓* 0.956 - 0.719 ↓↓*
H-optimus-0 99.0% ↑ 1.000 - 0.991 ↑ 74.8% - 0.951 - 0.747 ↑↑

Prov-GigaPath 89.4% - 0.993 - 0.871 - 75.4% - 0.957 - 0.720 -

Table 7.15 Results of external validations without hyperparameter tuning. Arrows
indicate the absolute difference in performance compared to the tuned models, with
one arrow (↑) for difference a of at least 1%, two arrows (↑↑) for a difference of at least
3%, and three arrows (↑↑↑) for a difference of at least 5%. *Indicates a p-value less
than 0.05 when compared to the tuned model. In the OCEAN Challenge validation,
the UNI AUROC only exhibited a reduction of 0.006, and Virchow balanced accuracy
only exhibited a reduction of 0.7%, but these differences were found to be statistically
significant.
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Final Hyperparameters

Feature
Extractor

Learning
Rate (LR)

LR Decay
Patience

LR Decay
Factor

First
Moment
Decay

Second
Moment
Decay

Stability
Parameter

Weight
Decay

Dropout
Rate

Max
Patches

Model
Size

RN50 2e-3 20 0.75 0.75 0.95 1e-2 1e-3 0.4 800 [512,128]
RN18 1e-4 20 0.9 0.8 0.99 1e-4 1e-5 0.5 700 [1024,256]
ViT-L 5e-5 10 0.35 0.85 0.999 1e-3 1e-1 0.0 800 [512,384]

RN18-Histo 2e-4 20 0.9 0.9 0.99 1e-4 1e-4 0.6 1000 [512,512]
Lunit 1e-4 10 0.75 0.99 0.9999 1e-5 1e-1 0.6 900 [1024,512]

RN50-Histo 2e-4 25 0.75 0.8 0.99 1e-4 1e-3 0.6 700 [512,384]
CTransPath 1e-4 25 0.9 0.7 0.99999 1e-3 1e-3 0.4 1000 [256,128]

Hibou-B 4e-5 10 0.9 0.99 0.9999 1e-3 1e-2 0.3 1600 [256,128]
Phikon 5e-5 25 0.75 0.99 0.999 1e-5 1e-5 0.8 1200 [512,256]

Kaiko-B8 2e-5 10 0.75 0.95 0.9999 1e-5 1e-1 0.2 600 [512,128]
GPFM 1e-4 25 0.9 0.95 0.99 1e-4 1e-6 0.8 1000 [512,128]

UNI 1e-5 10 0.75 0.9 0.999 1e-5 1e-3 0.0 1000 [512,256]
Hibou-L 5e-5 25 0.75 0.75 0.99999 1e-4 1e-7 0.6 400 [256,128]
Virchow 2e-4 20 0.9 0.95 0.99 1e-3 1e-2 0.8 1100 [512,256]

Virchow2-CLS 2e-5 10 0.75 0.55 0.999 1e-4 1e-4 0.6 1000 [512,256]
H-optimus-0 2.5e-5 5 0.75 0.5 0.9999 1e-4 1e-2 0.4 1000 [128,32]

Prov-GigaPath 5e-5 15 0.75 0.7 0.99 1e-4 1e-4 0.7 1300 [512,256]
RN50 Reinhard 2e-3 25 0.75 0.75 0.95 1e-2 1e-3 0.4 400 [512,256]
RN50 Macenko 2e-3 15 0.75 0.85 0.95 1e-2 1e-3 0.3 400 [512,128]

RN50 Otsu 2e-3 15 0.9 0.75 0.95 1e-2 1e-3 0.1 600 [512,256]
RN50 Otsu+Macenko 2e-3 25 0.9 0.75 0.99 1e-3 1e-4 0.3 1000 [512,256]

RN50 5Augs 1e-3 25 0.6 0.8 0.99 1e-4 1e-4 0.4 700 [128,32]
RN50 10Augs 2e-3 20 0.75 0.8 0.99 1e-2 1e-3 0.4 700 [512,256]
RN50 20Augs 1e-3 20 0.75 0.7 0.999 1e-3 1e-4 0.6 1000 [512,128]

Table 7.16 The final hyperparameters of each model determined by an iterative grid
search tuning procedure using five cross-validation folds, including the models from the
ablation study. These are grouped into hyperparameters relating to the learning rate,
Adam optimizer, regularisation, and model architecture. The model size is the number
of parameters in the attention layer and subsequent fully connected layer.

The optimal hyperparameters (Table 7.16) typically did not vary greatly for models

using the same feature extraction backbone, with a few notable exceptions. The

regularisation hyperparameters (weight decay, dropout rate, max patches) varied

greatly across all models, including those with the same backbone. The classifier

based on the five-times augmented training data was the smallest ResNet50-based

classifier by far (and had the smallest stability parameter and LR decay factor), with only

0.1M parameters compared to the next smallest at 0.7M. The ViT-based models had

between 0.2M (H-optimus-0) and 1.6M parameters (Virchow). The largest ViT-based

encoders typically had smaller values for the first moment decay (0.5-0.75) than the

smaller ViT-based encoders (0.9-0.99). Other hyperparameters were relatively stable

within a given backbone architecture.
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Some hyperparameters varied greatly between model architectures. The learning rate

was much smaller for ViT-based models (0.00001-0.0002) than ImageNet-pretrained

ResNet50 models (0.001-0.002) and often had a faster rate of decay. The Adam

optimiser first and second moment decay parameters were also often higher in ViT-

based models than in ResNet50 models. Other hyperparameters were relatively

consistent between model architectures.

7.4 Discussion

In this chapter, we have thoroughly compared the effects of different patch feature

extractors on the slide-level classification of ovarian carcinoma morphological sub-

types. The results clearly indicated that transformer-based histopathology foundation

models improved classification performance when compared to non-domain-specific

and ResNet-based feature extractors, with 13 out of 14 foundation models outper-

forming all ImageNet-pretrained models in all evaluations. The only foundation model

which did not exceed ImageNet-pretrained model performance was RN18-Histo, which

was the single worst-performing model in hold-out testing and external validation on

the Transcanadian Study dataset, though it did outperform the ImageNet-pretrained

ResNet models in the other two validations. RN18-Histo was the earliest published

histopathology foundation model and as such it was one of the few foundation models

to not use a transformer-based backbone. In this study, RN18-Histo was also the

smallest foundation model, had the second-smallest feature space, and was pretrained

with the second-smallest dataset.

As shown in Figure 7.8, in most validations there was a slight positive relationship

between performance (specifically, balanced accuracy) and each of the foundation

model size and pretraining dataset size. These relationships were fairly weak, with

the relationship between performance and foundation model size having R2 values

between 0.02 and 0.36, and the relationship between performance and pretraining

dataset size between -0.01 and 0.24 (though the relationship between performance

and dataset size was unduly influenced by the particularly large dataset used in

Virchow2-CLS, with this causing clear outliers in Figure 7.8). The trends were weakly

positive for three validations, but there was no trend found in the Transcanadian

validation. It is not clear why this occurred, though as performance was consistently
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Figure 7.8 Balanced accuracy results for each histopathology foundation model-
based classifier in each validation shown in relation to the number of model parameters
and number of WSIs used in the pretraining of the foundation model. The line of
best fit and the corresponding coefficient of determination (R2) are provided for each
validation.

high on this dataset, it may be that a smaller model was sufficient. The greatest

performance in most validations was achieved by one of the largest models (Virchow,

Virchow2-CLS, H-optimus-0), though the smaller GPFM model performed best in the

Transcanadian Study external validation, and the single largest model (Prov-GigaPath)

did not achieve optimal results in any validation. Three models were trained with

over one million WSIs, with two being among the best-performing models (Virchow,

Virchow2-CLS), and the other being one of the worst-performing ViT-based foundation

models overall (Hibou-B).

To investigate which foundation models outperformed expectations, we investigated

which models had positive residuals of at least 1% when compared to the lines of

best fit in Figure 7.8. UNI and Kaiko-B8 consistently performed better than expected

given their foundation model size, with GPFM and Virchow2-CLS performing better

than expected in three of four validations. The UNI and GPFM models consistently

performed better than expected given the pretraining dataset size, with Kaiko-B8,

Virchow2-CLS and H-optimus-0 all better than expected in three of four validations.

These results indicate that UNI is particularly data-efficient and computationally-

efficient for a foundation model of its ability. Where the H-optimus-0 classifier took
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an average of 425s per WSI, UNI took only 100s (24% as long) with a reduction of only

0.1% average balanced accuracy across the four validations (Table 7.7). It was not

clear how UNI outperformed expectations in this way, with similar overall methodologies

employed in training models which did not achieve such great results. The proportion

of gynaecological WSIs in the UNI training set (5.8%) was exceeded in the training

of several other models [172, 224, 227, 229, 230], though for most models it was not

clear what proportion of the training set was specifically composed of the five ovarian

carcinoma subtypes of interest, so it was not clear whether this was an influential factor.

Different preprocessing techniques often had little impact on internal performance

(likely due to the homogeneity of the single-centre dataset) and the OCEAN Challenge

validation, but they did aid the generalisability to the Transcanadian Study dataset.

There was a modest positive trend between the number of augmentations used and

the resulting model performance which may continue beyond the 20 augmentations

per image used herein, though this may not be worth the considerable associated

computational burden since the normalisation approaches achieved a similar level of

performance. No individual normalisation, augmentation, or tissue detection approach

consistently improved performance, with each giving worse performance than the

baseline in at least one validation, and no statistically significant benefits found. As

such, we believe there is much greater value in selecting the optimal feature extractor

than there is in applying varied preprocessing techniques in the training of a WSI

classifier. This conclusion was also found in a recent study [254] which investigated

14 different feature extractors using ABMIL in the context of breast and colorectal

cancers (without hyperparameter tuning).

Hyperparameter tuning the ABMIL classifier had a modest but often significantly

beneficial effect on classification performance. This did not necessarily need to be

extensive to provide a benefit, with a large proportion of the benefit obtained simply

by adjusting the learning rate and model size. It is worth noting that the ABMIL

classifiers were orders of magnitude smaller than most of the feature extraction models,

making it much more computationally feasible to tune the classifiers rather than the

feature extractors. The variability in the benefits may reflect both the fitness of the

originally selected hyperparameters and the versatility of the models. The original

hyperparameters were taken from our previous work using the ImageNet-pretrained
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ResNet50 (Chapter 6), so the hyperparameters were likely better suited to this feature

extractor than those which used different architectures and training datasets. Most of

the benefit of hyperparameter tuning on the validation loss was achieved by adjusting

the learning rate and the size of the ABMIL classifier, so just tuning these may be

a more computationally efficient approach to improve model performance and the

robustness of validations.

Performance was generally higher in hold-out testing than in cross-validation and was

higher still in the external validation with the Transcanadian Study dataset. However,

the external validation with the OCEAN dataset gave a similar performance to that of

cross-validation. This may be influenced by the diagnostic quality of the data, with

the internal cross-validation dataset incorporating post-chemotherapy WSIs and the

OCEAN dataset being unclear in this regard. Validations using only staging data

achieved optimal balanced accuracies of 89% and 97%, compared to only 75% and

80% in the validations including IDS samples which can pose diagnostic challenges

(Section 2.2). In cross-validation, the balanced accuracy for IDS samples was only

64.7% (with all EC slides incorrectly classified), compared to 71.0% for primary surgery

samples (Figure 7.9). The challenge posed by neoadjuvant treatment is recognised by

pathologists, and it is recommended in these cases that tumour subtyping is performed

using pre-treatment biopsies rather than resection specimens [255].
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Figure 7.9 Confusion matrices for the optimal ABMIL classifier with features from the
H-optimus-0 foundation model in cross-validation broken down by treatment status.
Correct classifications are indicated in green.

Two pathologists (KA and NMO) reviewed a subset of 100 WSIs in the OCEAN set and

found that eight exhibited extensive TMA coring, two were almost entirely necrotic, and

one displayed image stitching problems. Furthermore, the staining and colour balance
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was inconsistent across this cohort, which comprised both biopsies and resection

specimens. These characteristics may have contributed to the poorer performance

noted on the OCEAN dataset. In contrast, the Transcanadian Study set contained a

single representative staging slide of the tumour per patient and the slides were largely

devoid of artefacts. This particularly high-quality data may represent a best-case

research scenario, rather than a more realistic representation of the variable quality

and tumour content of clinical slides, where guidance recommends the sampling of

heterogeneous areas of tumour that have the potential to compromise the quality of

slide preparation and interpretation, with features such as calcification or necrosis. The

hold-out and external validations likely also benefitted from the five-fold ensembled

predictions when compared to the five-fold cross-validation. While this is the most

comprehensive study of AI ovarian cancer subtyping to date, the relatively small size

of the test sets still resulted in a high level of uncertainty, as reflected in the wide

confidence intervals. Thus, part of the difference in performance between datasets

may be attributed to random chance.

The results in this chapter are similar to those of the only previous studies to use

large ovarian cancer subtyping datasets (each with around 1000 WSIs) [82, 136, 171].

One study presented a multi-scale graph model [82] and reported an optimal cross-

validation balanced accuracy of 73% and an F1 score of 0.69. Another [136]

evaluated four MIL approaches and reported an optimal cross-validation balanced

accuracy of 81%, AUROC of 0.95, and F1 score of 0.79. In an external validation

using an ensemble of cross-validation models on 60 WSIs, the authors reported a

balanced accuracy of 80%, AUROC of 0.96, and F1 score of 0.81. The final study

focused on adversarial domain adaptation [171] and achieved optimal internal and

external balanced accuracies of 80% and 83% from a CTransPath-based MIL classifier.

Other studies applying foundation models to ovarian cancer subtyping have reported

optimal balanced accuracies of 82% and ∼88% using UNI on the OCEAN dataset and

Prov-GigaPath on an internal dataset, respectively [172, 173]. These comparisons

are provided for context and should not be considered to be conclusive given the

differences in the datasets used. A sparsity of publicly available data has limited

external validations in most previous research [1], and for the largest accessible dataset

(the OCEAN Challenge set) very little information has been provided about the data

provenance.
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Whole Slide Image ResNet50 Heatmap UNI Heatmap

Figure 7.10 Attention heatmaps from the ABMIL classifier using the ImageNet-
pretrained ResNet50 and UNI foundation model features. (Upper) A typical difference
between heatmaps with different diagnoses. (Lower) The most extreme qualitative
difference found between heatmaps in the internal test set. In both examples, the UNI
classification was correct (upper - MC, lower - CCC), and the ResNet50 classification
was incorrect (upper - EC, lower - MC). These heatmaps are based on 256 x 256
pixel patches with 50% overlap at 10x apparent magnification, with visual differences
caused by the variable size of resection samples.
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To qualitatively analyse the differences between foundation models and CNNs, two

pathologists (KA and NMO) qualitatively compared the ABMIL attention heatmaps

generated using the ImageNet-pretrained ResNet50 and the UNI foundation model

(Figure 7.10). Most heatmaps were well-focused on tumour and relevant stromal

regions for both models, with often only subtle differences between them. The UNI-

based heatmaps generally indicated a slightly greater focus on tumour tissue, whereas

the ResNet50 model also paid attention to some stromal regions of variable diagnostic

relevance (Appendix E). Attention heatmaps can be useful for identifying potential

sources of error but should be interpreted with caution since they cannot provide a

complete explanation of classification decisions [256].

All of the WSIs which were misclassified by the optimal H-optimus-0 model (Figure 7.3)

in hold-out testing were reviewed by the pathologists involved in the study, who found

that the majority (6/11) had incorrect ground truth labels, and had been correctly

classified by the model. This underscores the value of the model in detecting the

human errors which occur in the production of large-scale repositories. A subsequent

review to identify any possible further labelling errors affecting internal data did not

locate any issues. The five slides that were truly misclassified by the model in hold-out

testing (three CCC classified as HGSC, one CCC classified as LGSC, and one LGSC

classified as EC) showed the typical morphology (both architectural and cytological) of

their true subtypes, making it unclear why these errors occurred.

The pathologists also reviewed a selection of misclassified slides in cross-validation.

The 42 EC slides classified as other subtypes all exhibited potentially confusing

morphological features that occur within the broad spectrum of EC, including vil-

loglandular and papillary architecture as well as foci of mucinous and squamous

metaplastic differentiation, and squamous morule formation. ECs misclassified as

HGSCs were of a higher grade and featured both greater nuclear pleomorphism and

a more solid growth pattern. It would be interesting to determine whether any of

these misclassifications reflect shared genetic features. The most commonly confused

subtypes were HGSC and LGSC, which is not surprising considering their similar

histoarchitecture. These entities were historically considered a single entity with a

three-tier grading system until the characterisation of their distinct molecular alterations

and clinical behaviours [257]. Collecting additional training data may help to improve
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the discrimination of these similar subtypes, with LGSC having only formed 5% of the

training set (Section 4.2) due to it being a relatively uncommon subtype.

The strong performance of the foundation models was particularly impressive con-

sidering that they were applied here at 10x magnification, despite often only being

trained using 20x magnification data. This was a practical computational limitation

when performing hyperparameter tuning, as 20x magnification tissue would produce

approximately 4 times as many patches per WSI as 20x magnification tissue, thus

quadrupling the total runtime. While we previously found 10x magnification to be

best when using the ImageNet-pretrained ResNet50 (Chapter 6), it may not have

been optimal when using foundation models that had typically been trained at

20x magnification. However, a previous study of foundation models for slide-level

classification found no consistent benefit from increasing to 20x magnification [254].

In this chapter, we reported the second-highest ever external validation performance

of an AI model for ovarian cancer subtyping (behind only our subsequent graph model

in Chapter 8), with 97% balanced accuracy on the Transcanadian Study dataset.

However, results were variable across datasets. The improved performance from

histopathology foundation models is promising for the potential clinical utility of these AI

approaches, though further work is required to ensure that the models generalise to all

relevant sources of variation, especially across different histopathology labs and slide

scanners. This may require larger, more diverse training datasets. Models should be

made robust to the influence of lower-quality data and artefacts to reduce the burden of

quality control. Ideally, models should also be able to accurately classify post-treatment

tissue, though if this proves infeasible it may be necessary to restrict the scope of

the models to the classification of high-quality primary surgery tissue samples, for

which these models already excel. Furthermore, it is currently unclear how best to

present automatically generated information to pathologists to assist them, rather than

to distract, frustrate, or confuse them. This may require improved model interpretability

and a measure of model uncertainty, especially considering the existence of rare

subtypes which are notoriously difficult to collect sufficient data on outside the context

of multi-centre collections.

Ideally, algorithms would be made more computationally efficient for use in the clinic,

but the best-performing foundation models are much less computationally efficient than
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the ResNet. This problem is exacerbated by the limited digitisation of histopathology

services, with most pathological diagnoses still made under a microscope. AI adoption

will be contingent on it being accessible and beneficial given limited computational

infrastructure and users who may not be technological experts. While various issues

are inhibiting the clinical translation of ovarian cancer subtyping models, these seem

increasingly likely to be overcome in the near future.

7.5 Conclusion

In this chapter, we conducted a rigorous validation of feature extraction methods for

ovarian cancer subtyping. We found that the features generated by histopathology

foundation models drastically improved classification performance when compared

to ImageNet-pretrained feature extractors. Several different data preprocessing

techniques were evaluated in an attempt to improve the performance of the ImageNet-

pretrained ResNet50 baseline, and while these somewhat improved performance, they

were far from sufficient to match the performance of the foundation models. Through a

five-fold ensemble of ABMIL classifiers, the best overall foundation model, H-optimus-0,

achieved a five-class balanced accuracy of 89% on internal test data and 97% and

80% on external test sets, compared to 68%, 81%, and 55% respectively for the best

ImageNet-pretrained ResNet models. This represents the greatest performance for the

ovarian carcinoma subtype classification task in any peer-reviewed literature to date.

The largest models and those pretrained with the largest datasets generally gave the

best performance, though the UNI foundation model was one of the best-performing

models despite a relatively moderate model and dataset size, giving an average

balanced accuracy only 0.1% lower than H-optimus-0 while running over 4 times

as fast. Hyperparameter tuning the classifiers improved classification performance

by a median of 1.9% balanced accuracy, although this was variable. While the

improved classification performance offered by histopathology foundation models may

be sufficient for clinical implementation, the need to address logistical hurdles and

conduct larger-scale validations remains.
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Chapter 8

Multi-Resolution Histopathology Patch
Graph Networks

In this chapter, we describe a novel multi-resolution graph network for slide-level

classification. This model uses a histopathology foundation model to extract patch

features at multiple magnifications, and we assess several techniques for combining

these features into a single graph. We use attention-based graph layers to prioritise

patches and share information in spatial neighbourhoods, giving a more complete

slide representation for classification. We use the same robust training and validation

procedures and datasets as in the previous chapter to determine whether capturing

spatial relationships provides a benefit in ovarian carcinoma subtyping.

8.1 Introduction

Many MIL models (including ABMIL) treat all instances as functionally independent

of one another. This misses the inherent spatial relationships between neighbouring

patches and hence does not model the local tissue context around each patch.

GNNs [102] offer an approach to model these spatial relationships. Graphs are

composed of nodes and edges. Each node contains some local information, and

GNN message-passing layers are used to share information along edges to provide

contextual information from connected nodes. A message-passing layer updates

node features based on first-order neighbours, and by stacking multiple such layers,

information can be passed from distant parts of the graph.

Given the relatively high computational complexity of cell graphs (Section 2.4.5), we

focus on patch graphs, where each graph node represents a tissue patch. While pathol-

ogists analyse tissue at multiple magnifications, slide-level patch graphs have typically

used data at only a single magnification [99, 258–261]. When multi-resolution graphs

have been implemented, they have often sampled patches to reduce the computational

complexity and balance the relative importance of different magnifications [82, 262],

though this discards potentially relevant diagnostic information. This has also been the

case for non-graph MIL methods for ovarian cancer subtyping [116–118]. To ensure
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a rigorous analysis of each slide, we instead follow the strategy of using all available

tissue at multiple magnifications using a multi-level grid structure [263–265].

Only one previous study has applied GNNs to ovarian cancer subtyping [82], where

it was reported that a novel multi-resolution graph model gave a better balanced

accuracy than other MIL methods including ABMIL, TransMIL [71], and single-

magnification graph models. This study used only a single set of hyperparameters

and a single dataset, making it unclear whether all models were optimally tuned to the

given task and data, and whether the models would generalise well to external data.

In this chapter, we present the most thorough evaluation of a GNN for ovarian cancer

subtyping to date, including hyperparameter tuning and both hold-out and external

validations. To the best of our knowledge, it was also the first multi-resolution

graph model implemented using features from the vision transformer (ViT)-based

histopathology foundation model, UNI [208].

8.2 Methods

8.2.1 Graph Model Pipeline

The WSI classification pipeline (Figure 8.1) included tissue patch extraction, patch

feature extraction, graph modelling for patch aggregation, and slide classification.

The tissue patch extraction procedures were the same as in the baseline model

(Section 4.1), with 256 x 256 pixel downsampled patches extracted at 5x, 10x, and

20x magnifications. At the native 40x magnification, this required taking 512 x 512

patches before downsampling for 20x, 1024 x 1024 patches for 10x, and 2048 x 2048

pixel patches for 5x, with each doubling of the apparent magnification quadrupling

the number of resulting patches. This was the only step that differed for the external

datasets, with smaller patches required before downsampling given the lower original

magnification. Features were extracted from all downsampled patches using the UNI

foundation model [208] (requiring further downsampling from 256 x 256 to 224 x 224

pixels), given its exceptional performance in the previous analysis of feature extractors

(Chapter 7). The models were also evaluated using the standard ImageNet-pretrained

ResNet50 feature extractor on 256 x 256 pixel patches [58, 59] to better understand
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Figure 8.1 Multi-resolution graph model pipeline for slide-level classification, illus-
trated using 5x and 10x magnification tissue patches. Graph blocks were composed of
at least one GATv2 message-passing layer [266] followed by a SAGPool graph-pooling
layer [267].

whether the UNI features were truly more discriminative, or whether the benefit was

dependent on using the ABMIL classifier.

As shown in Figure 8.2, graphs were constructed such that each patch was connected

to any other patch within a given spatial radius, which was set to allow connec-

tions to first-order lateral and diagonal neighbours. Connections were also made

between patches showing the same tissue at different magnifications, with each low-

magnification patch connected to four high-magnification patches (or fewer if not all

high-magnification patches contained tissue).
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Extract Patches Connect Spa�al Neighbours Connect Magnifica�ons

Figure 8.2 Multi-resolution graph construction, with each node representing a single
patch. Actual graphs have many more patches/nodes, with an average of 1138
tissue patches per slide at 5x magnification and 4423 tissue patches per slide at 10x
magnification.

Each graph model block contained at least one graph attention (GATv2) convolution

layer [266] for message passing, followed by a ReLU activation and a self-attention

graph pooling (SAGPool) [267] layer to reduce the number of nodes in the graph.

The trainable attention mechanisms weighed the relative importance of the nodes,

with GATv2 using node features to prioritise neighbours during message passing, and

SAGPool using node features and the graph topology to prioritise important nodes

during pooling. The GATv2 attention score ai,j for the edge between nodes i and j is

calculated as:

ai,j = softmaxj{w⊤σ(W · [xi||xj])}, (8.1)

where σ is the Leaky ReLU activation function, || is the concatenation function, m′ is

the chosen output node feature dimension, and w ∈ R2m′ and W ∈ Rm′×m are the

trainable weight vector and matrix, respectively. The SAGPool attention score vector

a ∈ Rn is calculated as:

a = σ(D̃−0.5ÃD̃−0.5Xp), (8.2)

where σ is the tanh activation function, Ã ∈ Rn×n is the graph adjacency matrix with

self-connections and corresponding diagonal degree matrix D̃ ∈ Rn×n, and p ∈ Rm is

the trainable weight vector.
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The outputs of each graph block were pooled using both mean and max pooling

across all remaining nodes, and these pooled features were concatenated together

to make a double-length feature set. All graph block outputs were summed to form a

WSI-level feature set (to which dropout was applied during training), and finally, these

were classified through a single fully connected network layer with five output neurons

corresponding to the five ovarian cancer subtypes.

One complexity in extending GNNs to multiple resolutions is in handling the features.

Different biological entities are represented by features at different magnifications; thus,

it may be naive to share the same features across magnifications. Further, the vastly

more common high-magnification patches may have an undue influence in a shared

feature space. Previous studies have concatenated features from different resolutions

[82, 262], though it is unclear whether this is beneficial. We compared the ‘naive’

approach in which the same features are shared across magnifications (making the

model magnification-agnostic) to two approaches in which there was a separate set of

features for each magnification. Each graph node initially represented a tissue patch

at only a single magnification, and so the features for the other magnification were

either initially set to zero (‘concat_zero’) or to the average of all patch features at the

relevant magnification (‘concat_avg’). The previous ovarian cancer GNN [82] instead

directly extracted multi-magnification features by analysing only one high-resolution

patch within each lower-resolution patch, though this discarded most of the high-

resolution tissue, where our proposed approach used all available tissue at multiple

magnifications.

8.2.2 Hyperparameter Tuning and Validation Procedures

GNN hyperparameters were tuned through the standard iterative grid search procedure

(Section 4.3), starting from the optimal hyperparameters of the UNI-based ABMIL

model in Chapter 7. At least 100 unique configurations were evaluated for each graph-

based model, with the ABMIL results taken directly from Chapter 7. As shown in Table

8.1, a total of 13 hyperparameters were tuned for the GNNs, including nine previously

described hyperparameters (Section 4.3) and four GNN architecture hyperparameters

controlling the number of message-passing layers per graph block, the number of

graph blocks (and hence the number of pooling layers), the graph pooling factor per
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graph block, and the node feature dimension per magnification. The node feature

dimension hyperparameter was applied within the first message passing layer, where

the dimension of the node features was reduced from the input dimension (from the

patch feature extractor) to the selected size, and this size was maintained through the

remaining graph network layers. In experiments where separate features were used

for two different magnifications, the number of node features was doubled to retain the

separate concatenated features for each magnification throughout the network.

Tuning Iteration
Hyperparameter 1 2 3 4 5 6 7 8 9 10

Learning Rate (LR) ✓ ✓

LR Decay Factor ✓

LR Decay Patience ✓

First Moment Decay (β1) ✓

Second Moment Decay (β2) ✓

Stability Parameter (ϵ) ✓

Weight Decay ✓

Dropout Rate ✓

Max Patches ✓ ✓

Message-Passing Layers ✓ ✓

Graph Blocks ✓ ✓ ✓ ✓

Pooling Factor ✓

Node Feature Dimension ✓ ✓

Table 8.1 Iterative hyperparameter tuning procedure, with check marks (✓) indicating
the hyperparameters that were adjusted at each stage of tuning, with all others frozen.
These are grouped into hyperparameters relating to the learning rate, Adam optimizer,
regularisation, and model architecture.

Seven models were evaluated to compare feature extractors, magnifications, and MIL

models. For the comparison of different architectures, we first created a baseline GNN

which was a multi-resolution graph at 5x and 10x magnifications (chosen based on the

analysis of magnifications in Chapter 6), using separate magnification-specific features

with average initialisation (concat_avg). Comparisons were conducted using a multi-

resolution GNN at higher magnifications (10x and 20x), a single-magnification GNN

at 10x, and ABMIL at 10x. Another comparison swapped the UNI vision transformer

feature extractor to an ImageNet-pretrained ResNet50. To compare different multi-

resolution feature spaces, the baseline approach (concat_avg) was compared to the
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separate features with zero initialisation (concat_zero) and to magnification-agnostic

features (naive). Each model was compared to the baseline using a paired t-test across

the five cross-validation folds, with p-values adjusted for multiple testing using a false

discovery rate correction [206].

The finalised LTHT dataset was used in this chapter, consisting of 1864 WSIs of

adnexal tissue from 433 patients for training and 5-fold cross-validation, and a further

100 WSIs from 30 independent patients for hold-out testing. The Transcanadian Study

dataset [203], consisting of 80 WSIs from 80 patients, and the OCEAN Challenge

dataset [160], consisting of 513 WSIs from an unknown number of patients, were

both used for external validation. These datasets are described further in Chapter 4.2.

All validations were conducted using the HPC (Section 4.5), and the code was made

available online at https://github.com/scjjb/MultiscalePathGraph.

8.3 Results

8.3.1 Hyperparameter Tuning Results

The best hyperparameters from tuning are shown in Table 8.2. The smallest tuned

classifiers were the single-resolution (10x GNN, 0.5M parameters; 10x ABMIL, 0.8M)

and magnification-agnostic models (naive features, 0.7M), followed closely by the zero-

initialised model (1.2M) and the higher magnification model (1.2M), with the largest

being the baseline model (7.9M) and the ResNet-based GNN (10.5M). In most cases,

the classifier was much smaller than the respective feature extractor, with the UNI

model having 303M parameters and ResNet50 having 9M. The multi-resolution GNNs

were typically larger than the single-resolution ABMIL classifiers in Chapter 7, which

had 0.1-1.6M parameters, with most under 1M.

https://github.com/scjjb/MultiscalePathGraph
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Model

Hyperparameter
ABMIL

10x only
GNN

Baseline
GNN

10x only
GNN

10x+20x
Naive

features
Concat_zero

features
ImageNet-
ResNet50

Learning Rate (LR) 1e-5 1e-4 5e-5 1e-4 2e-4 1e-4 2e-3
LR Decay Factor 0.75 0.9 0.9 0.9 0.45 0.9 0.6

LR Decay Patience 10 10 10 20 15 15 20
First Moment Decay (β1) 0.9 0.9 0.95 0.95 0.9 0.95 0.8

Second Moment Decay (β2) 0.999 0.9999 0.999 0.999 0.99999 0.99 0.95
Stability Parameter (ϵ) 1e-5 1e-5 1e-7 1e-7 1e-7 1e-7 1e-2

Weight Decay 1e-3 1e-2 1e-1 1e-2 1e-3 1e-2 1e-3
Dropout Rate 0.0 0.2 0.0 0.1 0.2 0.4 0.2
Max Patches 1000 6000 4000 14000 4000 5000 5000

Message-Passing Layers N/A 3 1 1 1 1 1
Graph Blocks N/A 4 1 2 2 2 4
Pooling Factor N/A 0.9 0.6 0.6 0.45 0.75 0.6

Node Feature Dimension 512 512 256 256 256 256 1024

Table 8.2 Optimal hyperparameters for each model found through an iterative grid
search on the validation sets from five-fold cross-validation. These are grouped into
hyperparameters relating to the learning rate, Adam optimizer, regularisation, and
model architecture.
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8.3.2 Graph Model Validation Results
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Figure 8.3 Ovarian cancer subtyping results (mean and 95% confidence interval from
10,000 iterations of bootstrapping) from cross-validation, internal hold-out testing, and
external validations [160, 203]. In hold-out testing and external validations, predictions
were ensembled from the five cross-validation models.
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Results are shown in Figure 8.3. The best-performing model in cross-validation (Table

8.3) was the zero-initialised multi-resolution GNN, with a balanced accuracy of 74.2%,

AUROC of 0.944 (second-best, behind the 0.945 of ABMIL), and F1 score of 0.759.

ABMIL performed best in hold-out testing (Table 8.4), with a balanced accuracy of

88.0%, AUROC of 0.957 (second-best, behind the 0.960 of the naive GNN), and an

F1 score of 0.875. In both external validations, the 10x+20x GNN performed best by

all metrics, with a balanced accuracy of 99.0%, AUROC of 1.000, and an F1 score of

0.991 on the Transcandian Study dataset (Table 8.5), and 77.2%, 0.962, and 0.770 on

the OCEAN Challenge dataset (Table 8.6).

Model Balanced Accuracy AUROC F1 Score
ABMIL 10x only 73.2% (69.9-76.4%) 0.945 (0.933-0.956) 0.734 (0.704-0.764)

GNN Baseline (5x+10x) 66.4% (63.1-69.6%) 0.922 (0.909-0.935) 0.688 (0.657-0.719)
GNN 10x only 72.8% (69.6-75.9%) 0.935 (0.920-0.948) 0.747 (0.716-0.776)
GNN 10x+20x 72.8% (69.5-76.0%) 0.936 (0.922-0.950) 0.744 (0.714-0.774)

GNN Naive features 70.2% (67.0-73.4%) 0.929 (0.914-0.942) 0.715 (0.684-0.745)
GNN Concat_zero features 74.2% (71.1-77.3%) 0.944 (0.931-0.956) 0.759 (0.729-0.787)
GNN ImageNet-ResNet50 57.0% (53.6-60.4%) 0.877 (0.861-0.893) 0.566 (0.534-0.599)

Table 8.3 Cross-validation results shown as the mean and 95% confidence intervals
generated by 10,000 iterations of bootstrapping. The best results are indicated in bold.

Model Balanced Accuracy AUROC F1 Score
ABMIL 10x only 88.0% (81.5-93.8%) 0.957 (0.919-0.989) 0.875 (0.805-0.937)

GNN Baseline (5x+10x) 79.0% (71.9-85.7%) 0.953 (0.914-0.984) 0.770 (0.681-0.852)
GNN 10x only 87.0% (80.8-92.8%) 0.957 (0.918-0.989) 0.861 (0.790-0.927)
GNN 10x+20x 88.0% (81.8-93.8%) 0.953 (0.913-0.987) 0.873 (0.805-0.937)

GNN Naive features 85.0% (78.5-91.1%) 0.960 (0.924-0.989) 0.838 (0.761-0.908)
GNN Concat_zero features 84.0% (77.2-90.4%) 0.952 (0.911-0.987) 0.830 (0.751-0.901)
GNN ImageNet-ResNet50 70.0% (61.5-78.4%) 0.897 (0.850-0.938) 0.685 (0.589-0.777)

Table 8.4 Hold-out testing results (ensembled across the cross-validation folds)
shown as the mean and 95% confidence intervals generated by 10,000 iterations of
bootstrapping. The best results are indicated in bold.

No single model performed best in all evaluations, though the 10x+20x magnification

model was the most consistent, never more than 0.014 behind the best for any given

metric. In internal validations, it was slightly outperformed by ABMIL and the naive

GNN, but it was best in external validations, with a clear margin in the Transcanadian

Study validation (3.6% balanced accuracy, 0.001 AUROC, 0.029 F1 score).
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Model Balanced Accuracy AUROC F1 Score
ABMIL 10x only 93.2% (86.5-98.3%) 0.996 (0.988-1.000) 0.912 (0.835-0.974)

GNN Baseline (5x+10x) 94.9% (88.1-100.0%) 0.998 (0.994-1.000) 0.962 (0.910-1.000)
GNN 10x only 93.5% (87.2-98.9%) 0.998 (0.995-1.000) 0.936 (0.863-0.992)
GNN 10x+20x 99.0% (96.7-100.0%) 1.000 (0.999-1.000) 0.991 (0.971-1.000)

GNN Naive features 92.7% (86.7-98.2%) 0.999 (0.996-1.000) 0.923 (0.845-0.984)
GNN Concat_zero features 95.4% (89.7-100.0%) 0.999 (0.997-1.000) 0.957 (0.899-1.000)
GNN ImageNet-ResNet50 83.7% (73.2-92.9%) 0.983 (0.965-0.996) 0.849 (0.749-0.932)

Table 8.5 Transcanadian Study external validation results (ensembled across the
cross-validation folds) shown as the mean and 95% confidence intervals generated
by 10,000 iterations of bootstrapping. The best results are indicated in bold.

Model Balanced Accuracy AUROC F1 Score
ABMIL 10x only 77.2% (73.0-81.4%) 0.954 (0.939-0.966) 0.758 (0.714-0.801)

GNN Baseline (5x+10x) 71.9% (68.0-75.6%) 0.939 (0.923-0.953) 0.725 (0.676-0.770)
GNN 10x only 74.4% (70.7-78.3%) 0.962 (0.951-0.972) 0.730 (0.682-0.776)
GNN 10x+20x 77.2% (73.3-81.1%) 0.962 (0.950-0.973) 0.770 (0.724-0.814)

GNN Naive features 75.7% (71.7-79.6%) 0.958 (0.946-0.969) 0.742 (0.694-0.786)
GNN Concat_zero features 72.2% (68.7-76.0%) 0.954 (0.942-0.966) 0.702 (0.653-0.750)
GNN ImageNet-ResNet50 42.7% (39.0-46.6%) 0.860 (0.841-0.879) 0.345 (0.304-0.389)

Table 8.6 OCEAN Challenge external validation results (ensembled across the cross-
validation folds) shown as the mean and 95% confidence intervals generated by 10,000
iterations of bootstrapping. The best results are indicated in bold.

The 10x+20x magnification GNN had the best average performance across the

validations (Table 8.7), with an average balanced accuracy of 84.3%, an average

AUROC of 0.962, and an average F1 score of 0.845. This was greater than the average

performance of any ABMIL-based model in Chapter 7 (balanced accuracy 83.0%,

AUROC 0.965, F1 score 0.822). The confusion matrices for the optimal 10x+20x

GNN (Figure 8.4) showed improvements to be fairly evenly spread across the classes

when compared to the optimal H-optimus-0 ABMIL model in Chapter 7. Performance

remained particularly variable for the least common subtypes, with the F1 scores for

LGSC being 0.483 and 0.603 in validations including IDS data, and 0.824 and 1.000

in those without IDS data. The optimal GNN was, however, slightly more consistent at

classifying the most common subtype (HGSC), with an F1 score of at least 0.858 in

all validations, compared to 0.804 for ABMIL. Overall, the improvements of the graph

compared to ABMIL were relatively marginal.
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The GNN using the ImageNet-pretrained ResNet50 feature extractor performed worst

in every evaluation, with significantly lower performance compared to the baseline GNN

in all validations except the Transcanadian Study external validation (Table 8.8). It thus

had the lowest averaged performance of 63.3% balanced accuracy, 0.904 AUROC, and

0.611 F1 score. This performance was still greater than that of the ABMIL model using

the same features in Chapter 7, which had an average balanced accuracy of 57.1%,

AUROC of 0.893, and F1 score of 0.596.

Model Balanced
Accuracy AUROC F1 Score

ABMIL 10x only 82.9% 0.963 0.820
GNN Baseline (5x+10x) 78.1% 0.953 0.786

GNN 10x only 81.9% 0.963 0.819
GNN 10x+20x 84.3% 0.962 0.845

GNN Naive features 80.9% 0.962 0.805
GNN Concat_zero features 81.5% 0.962 0.812
GNN ImageNet-ResNet50 63.3% 0.904 0.611

Table 8.7 Averaged results across the four validations. The best results are indicated
in bold.

The effects of modelling with different tissue magnifications varied across validations.

The 10x-only GNN typically performed better than the 5x+10x baseline, often with a

significant difference (Table 8.8), though it performed slightly worse in the external

validation with the Transcanadian Study dataset. The 10x+20x model outperformed

the 5x+10x model in all evaluations, though the differences were only statistically

significant for the AUROC in hold-out testing, and both the AUROC and balanced

accuracy in the OCEAN validation. The 10x+20x model gave a similar performance

to the 10x-only model in internal validations but performed much better in external

validations.

It was not clear which multi-resolution feature space was best overall. The baseline

average-initialised feature space generally performed worst by a small margin, with the

naive feature space best in hold-out testing and the OCEAN validation, and the zero-

initialised features best in cross-validation and the Transcanadian validation. However,

the improvements offered by the naive and zero-initialised features compared to the

average-initialised features were not significant in most cases.
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Figure 8.4 Confusion matrices for the optimal 10x+20x magnification GNN. Correct
classifications are indicated in bold.
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p-values

Validation Set Model
Balanced
Accuracy AUROC F1 Score

Cross-
Validation

ABMIL 10x only 0.078 0.264 0.105
GNN 10x only 0.046 0.756 0.035
GNN 10x+20x 0.093 0.398 0.067

GNN Naive features 0.226 0.360 0.158
GNN Concat_zero features 0.046 0.264 0.035
GNN ImageNet-ResNet50 0.050 0.049 0.035

Hold-out
Testing

ABMIL 10x only 0.015 0.023 0.020
GNN 10x only 0.015 0.044 0.020
GNN 10x+20x 0.106 0.023 0.113

GNN Naive features 0.106 0.017 0.136
GNN Concat_zero features 0.106 0.119 0.107
GNN ImageNet-ResNet50 0.021 0.008 0.032

Transcanadian
Study

ABMIL 10x only 0.926 0.312 0.681
GNN 10x only 0.418 0.464 0.166
GNN 10x+20x 0.926 0.312 0.681

GNN Naive features 0.418 0.364 0.166
GNN Concat_zero features 0.926 0.312 0.681
GNN ImageNet-ResNet50 0.103 0.272 0.114

OCEAN
Challenge

ABMIL 10x only 0.007 0.037 0.379
GNN 10x only 0.065 0.053 0.379
GNN 10x+20x 0.007 0.036 0.379

GNN Naive features 0.081 0.036 0.858
GNN Concat_zero features 0.425 0.053 0.858
GNN ImageNet-ResNet50 0.007 0.036 0.005

Table 8.8 Resulting p-values from paired two-tailed t-tests comparing each model to
the baseline 5x+10x GNN with UNI features and concat_avg initialisation. These were
calculated using the outputs of the five cross-validation models and were adjusted for
multiple testing [206]. Those less than 0.050 (before rounding) are indicated in bold.
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8.4 Discussion

The results indicate that multi-resolution GNN can offer modest improvements to

ovarian carcinoma subtyping. In particular, the 10x+20x magnification model achieved

near-perfect classification on the Transcanadian Study validation set, giving the

greatest reported performance for this task to date [1]. However, multi-resolution GNNs

offered only a small benefit over ABMIL overall, with the classification performance

only improved in one of the four validations. Considering the relatively small size of the

Transcanadian Study set, it was unclear how great a benefit the graph models offered

overall. Given the particularly poor performance of the ResNet-based GNN and the

relatively strong performance of the UNI-based ABMIL model, it was evident that the

chosen feature encoder had a much greater effect on model performance than the

subsequent MIL modelling approach.

The results may indicate that any spatial analysis required in ovarian cancer subtyping

is sufficiently achieved by applying ABMIL with a transformer-based patch encoder

at 10x magnification based on downsampled 1024 x 1024 pixel patches at 40x

magnification. The transformer-based approach may capture spatial relationships on a

cellular scale within patches, and the ABMIL aggregation may quantify relevant tissue

types across the slide. However, the ABMIL approach cannot represent inter-patch

(tissue-level) spatial relationships to the same extent as the graph model. Considering

the similar performance of these approaches, it appears that tissue-level spatial

relationships are not particularly important to ovarian cancer subtyping. Graphs may

be more beneficial for other slide classification tasks [90, 99], particularly prognostic

tasks in which spatial relationships between tumour, necrosis, and immune cells can

be particularly important [85, 264, 268]. However, it remains to be seen whether

graphs will still be relevant to these tasks when applied with the drastically improved

patch features from histopathology foundation models, and whether the local spatial

information encoded within the transformer-based patch encoders could be sufficient

within an ABMIL model.

In the external validation on the Transcanadian Study dataset, all models achieved

AUROC scores between 0.983 and 1.000, despite the balanced accuracy and F1

scores varying from 83.7%-99.0% and 0.849-0.991, respectively. In internal testing

models often also had highly similar AUROC scores but clearly distinct scores by the
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other metrics. This highlights the limitations of the AUROC for imbalanced multi-class

classification, with similarly high scores for all models despite obvious differences in

the balanced accuracy and F1 scores, which better represent clinical utility.

As in Chapter 7, performance was greatest in the hold-out test set and the Tran-

scanadian Study external validation set, which were the sets which specifically used

primary staging samples without any IDS samples. This indicates that this finding was

not unique to ABMIL-based methodologies, and is likely an inherent feature of this

type of data. As such, further work should be conducted to understand the variable

classification performance that can be achieved on different datasets.

One factor which was not accounted for in this study was the effects of constructing

graphs in different configurations - all graphs were constructed such that each patch

was connected to its direct neighbours (laterally and diagonally), though this may not

be the optimal approach. However, the effect of this was likely mitigated by the tuning

of the number of message-passing layers, with more layers having a similar effect

to longer connections in the graph. Further, the attention-based methods increased

the flexibility of the GNNs by allowing variable connection strengths between tissue

patches.

The five-class balanced accuracies of 88%, 99%, and 77% in hold-out and external

validations may be sufficient for clinical assistance tools, with these results comparing

favourably to the 74-91% concordance of pathologists [32], and so future work

should investigate whether pathologists can benefit from the assistance of such tools.

However, some limitations remain. The hold-out and Transcanadian Study validations

used data from only 30 and 80 patients, respectively, so cannot represent the vast array

of variability seen in clinical diagnostic cases. The models are also currently incapable

of indicating uncertainty, providing thorough explanations of classification decisions,

or coping with tissue which does not contain one of the five most common subtypes

of ovarian carcinoma (e.g. non-malignant tissue, carcinosarcomas and non-epithelial

malignancies). The large vision transformer and multi-resolution graphs also carry a

heavy computational burden, which is likely to lead to logistical difficulties in deploying

such models in the clinical setting. None of these issues are insurmountable, and

when they are overcome, these models could be invaluable as diagnostic assistive

tools offering a rapid second opinion to pathologists.
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8.5 Conclusion

Overall, we have shown that a multi-resolution GNN can slightly improve the accuracy

of ovarian carcinoma subtyping at the whole-slide level above the previous state-of-the-

art, though the benefit was not present in all validations. In an external validation of

80 WSIs, a GNN achieved a near-perfect 99% balanced accuracy, but in internal hold-

out testing this was 88%, and in another external validation only 77%, no greater than

ABMIL performance. The best GNN combined 10x and 20x magnification data, which

was better than combining lower magnifications or using only 10x magnification data,

though at an increased computational cost. While the highly accurate graph models

may offer a useful second opinion to pathologists, more extensive validations are

required to understand the reasons underlying performance variability across different

datasets and to improve model consistency.
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Chapter 9

Conclusions and Future Work

In this chapter, we provide an overview of the thesis, including our contributions and

key findings, the limitations of the research, and potential ideas for future research.

9.1 Thesis Summary

This thesis has focused on the development and thorough validation of an AI pipeline

for the classification of ovarian carcinoma subtypes at the whole slide level.

Chapter 1 introduced the thesis and set out the aims and objectives, which were to

be achieved by systematically reviewing relevant literature, applying state-of-the-art

approaches with a world-leading ovarian cancer dataset, building upon previous tech-

niques with novel classification approaches, and rigorously validating the performance

of the resulting classification pipelines. Finally, the overall structure of the thesis was

laid out, with the subsequent six chapters addressing the thesis objectives.

Chapter 2 introduced ovarian cancer and the current clinical problems faced in the

pathological diagnosis of ovarian carcinoma subtypes. It also gave context to the

current state of digitisation and AI utilisation in histopathology, and described how

an automated subtype classification pipeline could potentially improve the efficiency,

accuracy, and objectivity of diagnosis. It also provided the technical background for the

thesis, in particular describing the computer vision methods that are applied to digital

pathology images.

Chapter 3 provided an in-depth analysis of previous AI research for the diagnosis and

prognosis of ovarian cancer from histopathology slides. This was underpinned by a

systematic literature review and brought up-to-date with recently repeated searches.

The risks of bias in previous research were assessed, and recommendations were

provided to reduce these risks and improve the clinical viability of future research.

Chapter 4 was a methodological chapter, describing the AI model development

and validation methods used throughout the rest of the thesis. The concept of
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multiple instance learning was described in terms of the preprocessing, patching,

embedding, and aggregation steps used, and the baseline ABMIL classification model

was introduced. Approaches for ensuring rigorous validations were explored, including

hyperparameter tuning, different classification metrics, and hypothesis testing. Break-

downs were provided for three ovarian carcinoma subtyping datasets, with a world-

leading internal dataset and two external validation datasets used. Finally, the software

and hardware used to create and test models were described.

Chapter 5 proposed an approach to improve the efficiency of slide-level classification

by leveraging the patch attention scores of ABMIL to create an iterative active

patch sampling approach for use during inference. This utilised the inherent spatial

relationships within WSIs, with diagnostically relevant tissue patches often forming

spatial clusters. Sampling drastically reduced the proportion of the total tissue area

that was fully analysed, aiming to reduce the computational workload of classification.

Chapter 6 thoroughly analysed the performance of the standard ABMIL classifier with

six different tissue magnifications from the clinical standard 40x down to 1.25x. This

investigated the trade-off between the cellular-level detail at higher magnifications and

the greater tissue-level context at lower magnifications. It also included analysing the

efficiency of model training and slide inference at different magnifications.

Chapter 7 thoroughly analysed different feature extraction techniques in an ABMIL clas-

sifier, with a focus on comparing the newly available histopathology foundation models

to traditional ImageNet-pretrained feature extractors. This included an exploration as

to whether the ImageNet-pretrained ResNet50 model could be made competitive with

the newer approaches through varied preprocessing techniques such as normalisation

and augmentation. It also included an ablation study into the effects of hyperparameter

tuning on downstream classification.

Chapter 8 proposed a novel multi-resolution graph MIL network, utilising the spatial

relationships between patches in a pathology slide to improve classification perfor-

mance. The graph model was compared in six configurations, using different tissue

magnifications and multi-magnification feature modelling approaches. The effects

of foundation models were further analysed in relation to this different classification

approach.
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9.2 Key Contributions and Findings

The key contributions of this thesis were the systematic review of previous literature

in ovarian cancer histopathology, the development of novel WSI pipelines for the

classification of ovarian carcinoma subtypes, and the rigorous analysis and validation

of these subtyping models. The chapters, presented in chronological order, detailed

the process of interpreting previous research, applying state-of-the-art histopathology

models, analysing the classification performance and efficiency of these approaches

in varied configurations, and finally, creating and thoroughly validating novel classifiers

based on all of the previously learned lessons. The main findings of this research are

as follows.

In Chapter 3, it was found that previous research had been conducted to investigate

the utility of AI for a wide array of diagnostic and prognostic tasks in ovarian cancer

histopathology, with subtyping being one of the most common. Key limitations

were identified regarding the datasets, validations, and reporting in previous studies.

The sparsity of available ovarian cancer datasets was a common issue, with few

researchers able to assemble large enough datasets to thoroughly train and validate

models. This was often compounded by methodological flaws, with studies conducted

without cross-validation, external validation, bootstrapping, hyperparameter tuning, or

statistical analyses. No study achieved an overall low risk of bias score, with the most

promising papers only achieving an unclear risk of bias due to incomplete reporting.

In Chapter 5, it was found that the proposed active patch sampling method during

inference gave a similar classification performance to the standard ABMIL approach,

but with a drastically reduced computational burden given the reduced proportion of

tissue being fully processed by the classifier. For binary classification of HGSC using

the earliest version of the internal LTHT dataset, the baseline ABMIL classifier achieved

an 80.1% balanced accuracy and 0.878 AUROC, while the sampling approach using

only 5% of the available tissue patches achieved 79.1% and 0.868, respectively. This

small reduction in classification performance allowed inference time to be reduced by

up to 86%.

In Chapter 6, it was found that the 5x and 10x magnifications gave the best overall

classification performance in the ABMIL classifier, with these also drastically reducing
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the computational requirements of model training and slide inference when compared

to higher magnifications. In five-class hold-out testing, the optimal 10x model achieved

62.0% balanced accuracy and 0.850 AUROC, while reducing training time by 94% and

inference time by 70% compared to the clinical standard 40x magnification.

In Chapter 7, it was found that histopathology foundation models drastically improved

subtype classification performance compared to ImageNet-pretrained feature extrac-

tors, though at an increased computational cost. Where the baseline ImageNet-

pretrained ResNet50 model gave balanced accuracies of 66.0%, 69.2%, and 52.4% in

hold-out testing and two external validations, the optimal foundation model, H-optimus-

0, achieved 89.0%, 96.7%, and 74.0%. Further, the UNI foundation model achieved

similar performance to H-optimus-0 at a quarter of the computational cost. It was

found that hyperparameter tuning was beneficial to classification performance even

when employing the greatest feature extractors, with a median improvement of 1.9%

balanced accuracy attained. The foundation model-based classifiers were the first

models that were accurate enough to potentially compete with real pathologists, and

thus, these may be able to aid pathologists in diagnostic decision-making.

In Chapter 8, it was found that graph networks gave modest classification improve-

ments over ABMIL, specifically when combining 10x and 20x magnification data,

though the benefit was variable and much smaller than the benefit given by using

a foundation model rather than an ImageNet-pretrained encoder. Where the ABMIL

model achieved balanced accuracies of 88.0%, 93.2%, and 77.2%, the optimal graph

model achieved 88.0%, 99.0%, and 77.2%, only improving performance on one of the

three validation sets. Given the graph networks had much greater computational costs

than ABMIL, and the only improvement was found on the smallest test set, it was not

clear that this benefit was worthwhile.

9.3 Limitations and Further Work

The eventual goal of this research is to create a clinically implementable assistive

tool for pathologists, but there are several factors currently preventing this from being

attained. These factors could all be addressed in future work, with the scope of

potential work being that of several additional PhD theses.
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While we conducted analyses with the largest ovarian cancer subtyping dataset to

date, this was still not sufficient to ensure that classifiers were robust to all relevant

sources of variation in histopathology data. The hold-out and Transcanadian Study

external validation set were composed of only 80 and 100 WSIs, respectively, and

the UBC-OCEAN dataset appeared to be of mixed diagnostic quality, without sufficient

metadata provided to fully understand the resulting classification variability. Ideally,

subtyping models would be made robust to lower quality data to reduce the burden

on quality control in the lab, though if this goal proves unattainable, greater automated

quality control measures will be required before subtyping models are applied.

The models reported in this thesis are limited to the slide-level classification of the

five most common histological subtypes of ovarian carcinoma. Such models have

no understanding of rare carcinoma subtypes, non-carcinoma ovarian cancers, mixed

subtypes, or even non-ovarian cancer tissue, yet all of these would be classified as one

of the five most common ovarian carcinoma subtypes. Future work may seek to collect

data for the rarer subtypes, though given their rarity, it may never be possible to collect

a sufficient quantity to attain high classification performance. As such, future work

may instead seek to quantify the uncertainty in the classification predictions. It may

be expected that any input data that does not match one of the common subtypes

would be classified with a high level of uncertainty, and such cases could be prioritized

for manual analysis by pathologists. Along with automated quality control methods,

uncertainty quantification could be seen as a guardrail to aid the pathologists in safely

using the AI models.

The analyses presented have been limited to resection specimens, with the best

performance found on the diagnostically preferable primary resection specimens rather

than IDS samples (Section 2.2). In many ovarian carcinoma cases, it is not possible to

analyse a primary resection specimen, and as such it would improve the applicability

of the models if they could be accurately applied to pre-treatment biopsies or IDS

specimens. Achieving a high accuracy on these samples may not be possible due

to the drastically reduced tissue quantity in biopsies and the degraded tissue quality in

IDS specimens, though if a model could demonstrate comparable performance to an

expert pathologist it may still be clinically beneficial in cases of imperfect information.
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The methods used in this study are not easily interpretable, with the black-box models

only interrogated in this study using attention heatmaps, which provide very limited

insight into model decision-making. Truly explainable approaches would require

the use of interpretable features, which could be achieved by the use of hand-

crafted features or by extensive interrogations of the automated features extracted by

histopathology foundation models. A better understanding of model decision-making

would make it clearer whether models should be trusted, drastically improving their

utility.

One of the key problems with translating these models into the clinic is that it is

unclear how to best present the class predictions generated by these models to the

pathologists. Usability studies could be key in uncovering key principles for presenting

automated inferences to pathologists. Such studies could include investigating whether

pathologists benefit from supplementary information, such as uncertainty scores and

attention heatmaps, to understand whether this improves diagnostic accuracy or

whether it simply distracts the pathologist. These investigations may also help to

determine whether pathologists would require extra training to safely leverage AI-

generated insights. Understanding the human elements of diagnostic AI assistance

will help to maximise the benefits of these technologies.

The best-performing models in this thesis were also some of the most computationally

expensive, which drastically limits the real-world utility of these models to pathology

departments that can afford expensive computational infrastructure and those that

are willing to export their data off-site. To broaden access to these models it will be

essential to reduce their computational burden. This will likely require the combination

of many efficiency gains, potentially including improved active sampling approaches

and using the lowest viable tissue magnifications, but it will also require techniques

not covered in this thesis, such as pruning, mixed-precision modelling, and knowledge

distillation. It also may be possible to extend these methods to smaller tissue samples

and lower-quality images, potentially even making it feasible that a pathologist could

take a photograph through the microscope for computational analysis.
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9.4 Closing Remarks

It is absolutely clear that significant progress has been made in AI for ovarian cancer

subtyping (and for pathological diagnosis more widely) in recent years. This thesis

has highlighted that modern classifiers (especially those built using histopathology

foundation models) can accurately classify ovarian cancer subtypes to the extent that

clinical trials may now be considered, and it has also shown that there are viable

techniques to reduce the computational burden of such classifiers. It now seems

inevitable that these technologies will achieve clinical utility in the coming years. While

many questions remain unanswered, it is notable that some AI technologies are

starting to receive regulatory approval, and many new companies are entering the

field of digital pathology. To ensure the equitable deployment of these models, further

work will be needed to broaden access to digital pathology services and to reduce

the computational burden of the models. If successful, such tools may mitigate the

worldwide shortage of pathologists and improve diagnostic accuracy to optimise the

delivery of precision medicine.
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Appendices

A Systematic Review Search Strategy

The full searches used in the systematic literature review (Chapter 3) are shown

here, with any text which was not directly input to the search bar in bold. These

searches were each a combination of three aspects - artificial intelligence, ovarian

cancer, and histopathology. No filters were applied, and all options were left on their

default settings. The wildcard character, *, was used to search for multiple versions of

the same word, for example, “patholog*” searched for all of “pathology”, “pathologist”,

“pathologists”, and “pathological”.

A.1 PubMed

(“Machine Learning”[Mesh] OR “Artificial Intelligence”[Mesh] OR “Neural Networks,

Computer”[Mesh] OR “support vector machine”[MeSH] OR “Deep Learning”[Mesh]

OR “diagnosis, computer-assisted”[Mesh] OR “Machine learn∗” OR “Artificial

Intelligen∗” OR (ML[Title/Abstract] NOT (µgml[Title/Abstract] OR µ/ml[Title/Abstract]

OR mgml[Title/Abstract] OR pgml[Title/Abstract] OR ngml[Title/Abstract]

OR uiml[Title/Abstract] OR iuml[Title/Abstract] OR miuml[Title/Abstract]

OR muiml[Title/Abstract] OR uml[Title/Abstract] OR gml[Title/Abstract] OR

mlkg[Title/Abstract] OR milliliter∗[Title/Abstract])) OR AI[Title/Abstract] OR “Computer

Vision” OR “Neural network∗” OR “Deep Network∗” OR “Computer-aided Diagnosis”

OR “Computer aided Diagnosis” OR Perceptron∗ OR “Convolutional Network∗” OR

“Recurrent Network∗” OR “Graph Network∗” OR “Deep Learn∗” OR “Deep-Learn∗”

OR Backprop∗ OR “support vector∗” OR ensemble∗ OR “random forest∗” OR

“nearest neighbor∗” OR “nearest neighbour∗” OR “k-nearest neighbor∗” OR “k-nearest

neighbour∗” OR “Gradient boost∗” OR “XGBoost∗” OR “segmentation” OR “instance

learning” OR “multi-instance learning” OR “Active Learning”)

AND (((ovar∗ OR fallopian) AND (cancer∗ OR mass∗ OR carcinoma∗ OR tumour∗ OR

tumor∗ OR neoplasm∗ OR malignan∗ OR “carcinoma”[Mesh] OR “neoplasms”[Mesh]))
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OR “Ovarian Neoplasms”[Mesh] OR “peritoneal cancer” OR “peritoneal carcinoma” OR

“peritoneal tumo∗”)

AND ((digit∗ AND patholog∗) OR “computational patholog∗” OR “tissue microarray∗”

OR histopath∗ OR histolog∗ OR “Whole Slide Imag∗” OR “Tissue slide∗” OR “pathol-

ogy slide∗” OR “pathology image∗” OR Immunohistochem∗ OR ((Haematoxylin OR

Hematoxylin) AND Eosin) OR Histology[Mesh])

A.2 Scopus

TITLE-ABS-KEY(“Machine learn∗” OR “Artificial Intelligen∗” OR (“ML” AND NOT “∗

µ ml” AND NOT “∗g ml” AND NOT “∗ui ml” AND NOT “∗Ul ml” AND NOT “∗iu ml”

AND NOT “∗u ml” AND NOT “∗g ml” AND NOT “∗ml kg” AND NOT milliliter∗) OR AI

OR “Computer Vision” OR “Neural network∗” OR “Deep Network∗” OR “Computer-

aided Diagnosis” OR “Computer aided Diagnosis” OR Perceptron∗ OR “Convolutional

Network∗” OR “Recurrent Network∗” OR “Graph Network∗” OR “Deep Learn∗” OR

“Deep-Learn∗” OR Backprop∗ OR “support vector∗” OR ensemble∗ OR “random

forest∗” OR “nearest neighbor∗” OR “nearest neighbour∗” OR “k-nearest neighbor∗”

OR “k-nearest neighbour∗” OR “Gradient boost∗” OR “XGBoost∗” OR “segmentation”

OR “instance learning” OR “multi-instance learning” OR “Active Learning”)

AND TITLE-ABS-KEY(((ovar∗ OR fallopian) AND (cancer∗ OR mass∗ OR carcinoma∗

OR tumour∗ OR tumor∗ OR neoplasm∗ OR malignan∗)) OR “peritoneal cancer” OR

“peritoneal carcinoma” OR “peritoneal tumo∗”)

AND TITLE-ABS-KEY((digit∗ AND patholog∗) OR “computational patholog∗” OR

“tissue microarray∗” OR histopath∗ OR histolog∗ OR “Whole Slide Imag∗” OR “Tissue

slide∗” OR “pathology slide∗” OR “pathology image∗” OR Immunohistochem∗ OR

((Haematoxylin OR Hematoxylin) AND Eosin))

A.3 Web of Science

(ALL=(“Machine learn∗” OR “Artificial Intelligen∗” OR “Computer Vision” OR “Neural

network∗” OR “Deep Network∗” OR “Computer-aided Diagnosis” OR “Computer aided

Diagnosis” OR Perceptron∗ OR “Convolutional Network∗” OR “Recurrent Network∗”
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OR “Graph Network∗” OR “Deep Learn∗” OR “Deep-Learn∗” OR Backprop∗ OR

“support vector∗” OR ensemble∗ OR “random forest∗” OR “nearest neighbor∗” OR

“nearest neighbour∗” OR “k-nearest neighbor∗” OR “k-nearest neighbour∗” OR “Gra-

dient boost∗” OR “XGBoost∗” OR “segmentation” OR “instance learning” OR “multi-

instance learning” OR “Active Learning”) OR TS=(AI OR (“ML” NOT (“∗ µ ml” OR “∗g

ml” OR “∗ui ml” OR “∗Ul ml” OR “∗iu ml” OR “∗u ml” OR “∗g ml” OR “∗ml kg” OR

milliliter∗))))

AND ALL=(((ovar∗ OR fallopian) AND (cancer∗ OR mass∗ OR carcinoma∗ OR tumour∗

OR tumor∗ OR neoplasm∗ OR malignan∗)) OR “peritoneal cancer” OR “peritoneal

carcinoma” OR “peritoneal tumo∗”)

AND ALL=((digit∗ AND patholog∗) OR “computational patholog∗” OR “tissue

microarray∗” OR histopath∗ OR histolog∗ OR “Whole Slide Imag∗” OR “Tissue

slide∗” OR “pathology slide∗” OR “pathology image∗” OR Immunohistochem∗ OR

((Haematoxylin OR Hematoxylin) AND Eosin))

A.4 Cochrane Central Register of Controlled Trials

Search #1:

All text: (“Machine learn∗” OR “Artificial Intelligen∗” OR “Computer Vision” OR “Neural

network∗” OR “Deep Network∗” OR “Computer-aided Diagnosis” OR “Computer aided

Diagnosis” OR Perceptron∗ OR “Convolutional Network∗” OR “Recurrent Network∗”

OR “Graph Network∗” OR “Deep Learn∗” OR “Deep-Learn∗” OR Backprop∗ OR

“support vector∗” OR ensemble∗ OR “random forest∗” OR “nearest neighbor∗” OR

“nearest neighbour∗” OR “k-nearest neighbor∗” OR “k-nearest neighbour∗” OR “Gra-

dient boost∗” OR “XGBoost∗” OR “segmentation” OR “instance learning” OR “multi-

instance learning” OR “Active Learning”)

Search #2:

Title-Abstract-Keyword: (“AI” OR (“ML” NOT (“∗ µ ml” OR “∗g ml” OR “∗ui ml” OR “∗Ul

ml” OR “∗iu ml” OR “∗u ml” OR “∗g ml” OR “∗ml kg” OR milliliter∗))) in Title Abstract

Keyword
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Search #3:

All text: (((ovar∗ OR fallopian) AND (cancer∗ OR mass∗ OR carcinoma∗ OR tumour∗

OR tumor∗ OR neoplasm∗ OR malignan∗)) OR “peritoneal cancer” OR “peritoneal

carcinoma” OR “peritoneal tumo∗”)

AND ((digit∗ AND patholog∗) OR “computational patholog∗” OR “tissue microarray∗”

OR histopath∗ OR histolog∗ OR “Whole Slide Imag∗” OR “Tissue slide∗” OR “pathol-

ogy slide∗” OR “pathology image∗” OR Immunohistochem∗ OR ((Haematoxylin OR

Hematoxylin) AND Eosin))

Final search:

(#1 OR #2) AND #3

A.5 WHO-ICTRP

((“Machine learn∗” OR “Artificial Intelligen∗” OR “Computer Vision” OR “Neural

network∗” OR “Deep Network∗” OR “Computer-aided Diagnosis” OR “Computer aided

Diagnosis” OR Perceptron∗ OR “Convolutional Network∗” OR “Recurrent Network∗”

OR “Graph Network∗” OR “Deep Learn∗” OR “Deep-Learn∗” OR Backprop∗ OR

“support vector∗” OR ensemble∗ OR “random forest∗” OR “nearest neighbor∗” OR

“nearest neighbour∗” OR “k-nearest neighbor∗” OR “k-nearest neighbour∗” OR “Gra-

dient boost∗” OR “XGBoost∗” OR “segmentation” OR “instance learning” OR “multi-

instance learning” OR “Active Learning”) OR (“AI” OR (“ML” NOT (“µ/ml” OR “g/ml” OR

“ui/ml” OR “Ul/ml” OR “iu/ml” OR “u/ml” OR “g/ml” OR “ml/kg” OR milliliter∗))))

AND (((ovar∗ OR fallopian) AND (cancer∗ OR mass∗ OR carcinoma∗ OR tumour∗

OR tumor∗ OR neoplasm∗ OR malignan∗)) OR “peritoneal cancer” OR “peritoneal

carcinoma” OR “peritoneal tumo∗”)

AND ((digit∗ AND patholog∗) OR “computational patholog∗” OR “tissue microarray∗”

OR histopath∗ OR histolog∗ OR “Whole Slide Imag∗” OR “Tissue slide∗” OR “pathol-

ogy slide∗” OR “pathology image∗” OR Immunohistochem∗ OR ((Haematoxylin OR

Hematoxylin) AND Eosin))
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B PRISMA 2020 Reporting Checklist

The following PRISMA 2020 reporting checklist is from the published version of the

systematic literature review presented in Chapter 3.

PRISMA 2020 Checklist 

Section and 
Topic  

Item 
# 

Checklist item  
Location where item 
is reported  

TITLE   

Title  1 Identify the report as a systematic review. Page 1 line 1 

ABSTRACT   

Abstract  2 See the PRISMA 2020 for Abstracts checklist. Page 1 

INTRODUCTION   

Rationale  3 Describe the rationale for the review in the context of existing knowledge. Page 2 final paragraph 

Objectives  4 Provide an explicit statement of the objective(s) or question(s) the review addresses. Page 2 final paragraph 

METHODS   

Eligibility criteria  5 Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses. Page 3 – “Literature 
Selection” 

Information 
sources  

6 Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. 
Specify the date when each source was last searched or consulted. 

Page 2-3 “Literature 
Search” 

Search strategy 7 Present the full search strategies for all databases, registers and websites, including any filters and limits used. Page 20-21 “Appendix 
A” 

Selection process 8 Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened 
each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the 
process. 

Page 3 – “Literature 
Selection” 

Data collection 
process  

9 Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they 
worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation 
tools used in the process. 

Page 3-4 - “Data 
Synthesis” 

Data items  10a List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain 
in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to 
collect. 

Page 3-4 – “Data 
Synthesis” 

10b List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). 
Describe any assumptions made about any missing or unclear information. 

Page 22 – “Appendix 
B” 

Study risk of bias 
assessment 

11 Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers 
assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process. 

Page 3 – “Risk of Bias 
Analysis” 

Effect measures  12 Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results. Page 11-12 - “Analysis 
in Included Literature” 

Synthesis 
methods 

13a Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention 
characteristics and comparing against the planned groups for each synthesis (item #5)). 

Page 4 – “Data 
Synthesis” 

13b Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or 
data conversions. 

NA 

13c Describe any methods used to tabulate or visually display results of individual studies and syntheses. Page 4 – “Data 
Synthesis” 

13d Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe 
the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used. 

Page 4 – “Data 
Synthesis” 

13e Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-
regression). 

NA 

Figure B.1 PRISMA 2020 Checklist Page 1.
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PRISMA 2020 Checklist 

Section and 
Topic  

Item 
# 

Checklist item  
Location where item 
is reported  

13f Describe any sensitivity analyses conducted to assess robustness of the synthesized results. NA 

Reporting bias 
assessment 

14 Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases). NA 

Certainty 
assessment 

15 Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome. NA 

RESULTS   

Study selection  16a Describe the results of the search and selection process, from the number of records identified in the search to the number of studies 
included in the review, ideally using a flow diagram. 

Page 4 & 5 – “Results” 

16b Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded. NA 

Study 
characteristics  

17 Cite each included study and present its characteristics. Page 7 – “Table 2” 

Risk of bias in 
studies  

18 Present assessments of risk of bias for each included study. Page 6 – “Table 1” 

Results of 
individual studies  

19 For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its 
precision (e.g. confidence/credible interval), ideally using structured tables or plots. 

Page 9 – “Table 3” 

Results of 
syntheses 

20a For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies. Page 4 & 10-12 – 
“Results” 

20b Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its 
precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of 
the effect. 

NA 

20c Present results of all investigations of possible causes of heterogeneity among study results. NA 

20d Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results. NA 

Reporting biases 21 Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed. NA 

Certainty of 
evidence  

22 Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed. NA 

DISCUSSION   

Discussion  23a Provide a general interpretation of the results in the context of other evidence. Page 12 – 
“Discussion” 

23b Discuss any limitations of the evidence included in the review. Page 13-14 “Current 
Limitations and Future 
Recommendations” 

23c Discuss any limitations of the review processes used. Page 13 – “Limitations 
of the Review” 

23d Discuss implications of the results for practice, policy, and future research. Page 13-14 “Current 
Limitations and Future 
Recommendations” 

OTHER INFORMATION  

Registration and 
protocol 

24a Provide registration information for the review, including register name and registration number, or state that the review was not 
registered. 

Page 3 – “Literature 
search” 

Figure B.2 PRISMA 2020 Checklist Page 2.

PRISMA 2020 Checklist 

Section and 
Topic  

Item 
# 

Checklist item  
Location where item 
is reported  

24b Indicate where the review protocol can be accessed, or state that a protocol was not prepared. Page 3 – “Literature 
search” 

24c Describe and explain any amendments to information provided at registration or in the protocol. Page 3 – “Data 
Synthesis” 

Support 25 Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review. Page 15 – 
“Acknowledgements” 

Competing 
interests 

26 Declare any competing interests of review authors. Page 15 – “Competing 
Interests” 

Availability of 
data, code and 
other materials 

27 Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from 
included studies; data used for all analyses; analytic code; any other materials used in the review. 

Page 3 – “Data 
Synthesis” 

 
From:  Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 
10.1136/bmj.n71 

For more information, visit: http://www.prisma-statement.org/  

Figure B.3 PRISMA 2020 Checklist Page 3.
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C TRIPOD+AI Reporting Checklist

The following TRIPOD+AI reporting checklist is from the preprint paper created from

the work presented in Chapter 7.

Figure C.1 TRIPOD+AI Checklist Page 1.
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Figure C.2 TRIPOD+AI Checklist Page 2.
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D Results of Hypothesis Testing

The following results are supplementary to the hyperparameter tuning ablation in

Section 7.3.3.

Cross-Validation p-values Hold-out p-values

Model Balanced
Accuracy AUROC F1 Score Balanced

Accuracy AUROC F1 Score

RN50 0.617 0.264 0.133 0.171 0.252 0.133
RN18 0.967 0.259 0.170 0.326 0.252 0.170
ViT-L 0.012 0.005 0.010 0.006 0.095 0.010

RN18-Histo 0.002 0.095 0.145 0.086 0.671 0.145
Lunit 0.555 0.011 0.168 0.054 0.124 0.074

RN50-Histo 0.864 0.630 0.902 0.912 0.100 0.895
CTransPath 0.144 0.987 0.042 0.030 0.099 0.042

Hibou-B 0.159 0.069 0.009 0.008 0.207 0.009
Phikon 0.709 0.280 0.741 0.619 0.114 0.741

Kaiko-B8 0.039 0.089 0.124 0.099 0.063 0.124
GPFM 0.500 0.029 0.236 0.262 0.055 0.236

UNI 0.003 0.015 0.021 0.033 0.614 0.021
Hibou-L 0.104 0.050 0.070 0.019 0.193 0.016
Virchow 0.039 0.059 0.104 0.069 0.076 0.104

Virchow2-CLS 0.194 0.035 0.095 0.083 0.108 0.095
H-Optimus-0 0.111 0.069 0.133 0.119 0.089 0.133

Prov-GigaPath 0.412 0.297 0.215 0.194 0.035 0.215

Transcanadian Study p-values OCEAN Challenge p-values

Model Balanced
Accuracy AUROC F1 Score Balanced

Accuracy AUROC F1 Score

RN50 0.190 0.178 0.219 0.303 0.098 0.716
RN18 0.240 0.217 0.106 0.339 0.056 0.279
ViT-L 0.014 0.109 0.014 0.001 0.006 0.021

RN18-Histo 0.578 0.774 0.973 0.212 0.182 0.620
Lunit 0.099 0.774 0.099 0.104 0.049 0.056

RN50-Histo 0.601 0.135 0.479 0.818 0.023 0.605
CTransPath 0.853 0.341 0.998 0.790 0.630 0.562

Hibou-B 0.300 0.076 0.286 0.700 0.172 0.590
Phikon 0.740 0.085 0.306 0.119 0.467 0.189

Kaiko-B8 0.213 0.125 0.342 0.102 0.014 0.028
GPFM 0.386 0.120 0.405 0.861 0.080 0.176

UNI 0.370 0.085 0.959 0.002 0.008 0.014
Hibou-L 0.087 0.040 0.003 0.142 0.004 0.196
Virchow 0.478 0.379 0.460 0.049 0.012 0.057

Virchow2-CLS 0.057 0.871 0.057 0.017 0.066 0.035
H-Optimus-0 0.167 0.751 0.192 0.866 0.054 0.168

Prov-GigaPath 0.274 0.060 0.209 0.258 0.124 0.416

Table D.1 Resulting p-values from paired t-tests comparing the subtype classification
results for each feature extractor with and without hyperparameter tuning applied to the
ABMIL classifier. Values below 0.05 are indicated in bold.
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E Supplementary Attention Heatmap Analysis

This section contains supplementary information about the analysis of heatmaps

performed in Chapter 7. Two pathologists (KA and NMO) qualitatively compared the

UNI and ImageNet-pretrained ResNet50 attention heatmaps for ten class-balanced

example WSIs from the internal hold-out test set. These WSIs (shown in Figures 5.1,

E.1, and E.2) were selected from those in which a different classification had been

determined by each model (specifically using the first-fold model of the five-model

ensemble). Out of 39 total disagreements, the UNI-based model gave the correct

classification in 26 cases, the ResNet50-based model in 3 cases, and neither was

correct in 10 cases. The pathologists were only provided the heatmaps, and were

blinded to the models used and the predictions made.

The heatmaps were determined to be similar between models, with both giving

high attention to tumour regions and low attention to most stroma regions. Where

differences occurred, the ResNet50-based model typically gave high attention to

a larger tissue area, often including relevant stromal features (e.g. necrosis and

psammoma bodies), but sometimes also including irrelevant stroma. When considering

whether heatmaps had focused on diagnostically relevant regions, the pathologists

expressed a preference for the UNI-based heatmap in four cases and the ResNet50-

based heatmap in three cases, with no preference expressed for the remaining three

cases due to their overwhelming similarity. In eight of the selected cases, the UNI

model had correctly determined the classification, including all three cases in which

the pathologists had preferred the ResNet50-based heatmap. In these cases, the

UNI model did not appear to give sufficient attention to all relevant tissue, though it

still determined the correct classification. Thus, there was some level of divergence

between the pathologists’ interpretations and the model heatmaps.
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Whole Slide Image ResNet50 Heatmap UNI Heatmap
(a)

(b)

(c)

(d)

Figure E.1 Attention heatmaps from the ABMIL classifier using ImageNet-pretrained
ResNet50 and UNI foundation model features, where the classification differed be-
tween the two models. (a) Ground truth: MC, ResNet50: CCC, UNI: MC. (b) Ground
truth: CCC, ResNet50: HGSC, UNI: CCC. (c) Ground truth: EC, ResNet50: HGSC,
UNI: EC. (d) Ground truth: LGSC, ResNet50: HGSC, UNI: LGSC.
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Whole Slide Image ResNet50 Heatmap UNI Heatmap

(f)

(g)

(h)

(e)

Figure E.2 Attention heatmaps from the ABMIL classifier using ImageNet-pretrained
ResNet50 and UNI foundation model features, where the classification differed be-
tween the two models. (e) Ground truth: LGSC, ResNet50: HGSC, UNI: LGSC. (f)
Ground truth: HGSC, ResNet50: HGSC, UNI: EC. (g) Ground truth: HGSC, ResNet50:
HGSC, UNI: EC. (h) Ground truth: EC, ResNet50: HGSC, UNI: EC.
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F Predicting Treatment Response

This section is based on work conducted to predict treatment response from ovarian

cancer WSIs as part of the ATEC23 challenge [189] at MICCAI 2023. This strand of our

research has not yet been continued due to a lack of high-quality data for prognostic

tasks in ovarian cancer digital pathology. We instead continued to focus on histological

subtyping, where there was sufficient data to conduct rigorous validations.

F.1 Introduction

Treatment options are guided by the stage, grade, and morphological subtype of

ovarian cancer, and can often involve surgery, chemotherapy, and increasingly, im-

munotherapy. However, response to therapy can vary significantly, and the underlying

causes are not well understood despite significant progress in defined subgroups,

such as homologous recombination deficient tumours [269]. Due to this knowledge

gap, some patients may be exposed to the adverse effects of a given therapy without

deriving any clinical benefit. The ATEC23 challenge aimed to identify non-responders

using pre-treatment histopathology WSIs alone.

Studies reporting higher accuracy in this particular area have used IHC panels [152],

with performance being poorer in studies using H&E-stained tissue [124, 147]. A

prediction model using H&E WSIs alone would offer greater clinical benefit given

that this staining method is routine in all histopathological diagnostic interpretation of

ovarian cancer specimens. Instead, dependence on IHC staining would add financial

and time burdens to the diagnostic pathway.

An H&E baseline model was developed by the ATEC23 challenge organisers [147], in

which a hierarchical attention approach was used to segment the most relevant tissue.

ABMIL was then applied to this segmented tissue to classify WSIs. The reported

results from 5-fold cross-validation presented an accuracy of 88.2% and an F1 score

of 0.917, although the reported accuracy on an independent test set was no greater

than random guessing.

None of the previous ovarian cancer treatment response studies have employed

methods that capture spatial relationships within WSIs, such as vision transformers
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[62] or graph networks [270]. Such methods are likely to be beneficial as there are

established correlations between patient prognosis and the spatial arrangement of cel-

lular structures visible in WSIs, with tumour-infiltrating lymphocytes being associated

with survival in some ovarian cancer subtypes [34]. For this challenge, we combined

vision transformers with ABMIL to classify whether patients would respond to a specific

course of bevacizumab-based therapy from histopathology WSIs alone, as defined by

measurable recurrence/progression within 6 months of treatment.

F.2 Methods

Figure F.1 Eight whole slide images from the ATEC23 challenge training set

The challenge training data [271] comprised 288 H&E-stained tissue section WSIs from

78 tubo-ovarian and primary peritoneal cancer patients, of which 53 were determined

to have an effective response to treatment, and 25 were determined to have an

invalid response to treatment. We used 282 WSIs from 78 patients due to two

WSIs being inaccessible, two being duplicated, and two being erroneously excluded.

All patients received debulking surgery, chemotherapy, and bevacizumab therapy,

with treatment classified as effective if CA-125 levels fell and there was no tumour

progression/recurrence found in CT/PET images within 6 months of treatment. All

samples were originally collected from a single data centre and scanned using a single

Leica AT Turbo scanner at 20x magnification. Patients had a range of morphological

subtype diagnoses, including HGSC (n=58), CCC (n=7), unclassified carcinoma (n=7),

EC (n=4), and MC (n=2). The slides in the dataset were highly heterogeneous

(Figure F.1). Samples appeared to include a combination of adnexal, omental, and
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lymph node tissue, with some slides having differing colour profiles and artefacts,

such as pen markings. An independent challenge test set was collected at the same

data centre, consisting of 180 H&E-stained TMA single core images from patients

diagnosed with HGSC.

Our HIPT-ABMIL classification approach, shown in Figure F.2, used ABMIL to classify

WSIs based on region-level (4096 x 4096 pixel) features encoded through a two-stage

vision transformer [83]. Before modelling, we used Otsu thresholding to segment

tissue, then extracted 4096 x 4096 non-overlapping tissue regions for modelling. On

average, the tissue patching procedure generated 91 regions per slide (range of 13 to

166).

Take Whole Slide Image (WSI)
Extract 4096x4096

Pixel Tissue Regions
Segment Tissue with

Otsu Thresholding

HIPT_4K 
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Encode Regions to 
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Figure F.2 HIPT-ABMIL whole slide image classification pipeline.

We extracted features from each tissue region using the two-stage Hierarchical Image

Pyramid Transformer (HIPT_4K) [83]. This approach first uses a vision transformer

[62] to aggregate cell-level information (16 x 16 pixels) to patch-level (256 x 256), then

uses a second vision transformer to aggregate patch-level information to region-level

(4096 x 4096). This feature extractor was pretrained using over ten thousand total

histopathology slides from 33 cancer types using the self-supervised method DINO
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[242]. We trained the ABMIL network using these HIPT region embeddings to classify

WSIs. We also compared three other approaches - HIPT-CLAM, ResNet-ABMIL, and

HistoResNet-ABMIL. HIPT-CLAM replaced the ABMIL classifier with CLAM. ResNet-

ABMIL was the baseline model described in Section 4.1. HistoResNet-ABMIL was

the same model but with features extracted through a ResNet18 encoder which was

pretrained on a collection of 57 histopathology datasets [224] using the self-supervised

technique SimCLR [240]. The smaller patch size in the ResNet approaches gave more

patches per slide, with an average of 20214 (range of 2043 to 38828).

We trained our models using a cross-entropy loss and an Adam optimiser. As shown in

Table F.1, we tuned hyperparameters across 5-fold cross-validation experiments, using

a grid search strategy for five hyperparameters. The parameters were the learning

rate, dropout rate, weight decay, model size, and number of patches per slide for

training. The model size hyperparameter controlled the dimension of the attention

layer, and the subsequent hidden layer in the classification network had a dimension

half this size. One extra hyperparameter, B, was tuned for the CLAM model, which

controlled the number of regions which were clustered in feature space during training.

Each tuning configuration was repeated three times and the average loss was taken to

account for random variations. Multiple stages of hyperparameter grid tuning were

used, with earlier runs covering a wider range of parameters and influencing the

hyperparameter options available in later stages. Each model was evaluated with over

500 total hyperparameter configurations.

We selected the hyperparameters which minimised the average validation loss across

the 5-fold cross-validation to train the final model. Internal performance was measured

on the cross-validation test sets, and the same hyperparameters were used to train

a 4-fold ensemble model with 75%-25% train-val splits, with the mean predictions

for the external TMA images submitted to the ATEC23 challenge. Due to the

relatively small size of test set images, each one was represented as a single

4096 x 4096 region. All experiments were run on the HPC and code was made

available at https://github.com/scjjb/HIPT_ABMIL_ATEC23, alongside further details of

the hyperparameter tuning.

https://github.com/scjjb/HIPT_ABMIL_ATEC23


lxvi Appendices

Hyperparameter Function Initial Tuning
Options

Second Tuning
Options

Third Tuning
Options

Final
Selection

Learning Rate
Sets the rate of change

of model parameters trained
using the Adam optimiser

1e-3, 1e-4, 1e-5 1e-3, 5e-4, 1e-4 1e-3, 5e-4 1e-3

Dropout Rate
Sets the proportion

of model weights to drop
in each training iteration

0.25, 0.5, 0.75 0.6, 0.75, 0.9 0.8, 0.85, 0.9, 0.95 0.85

Regularisation
Sets the level of weight decay

in the Adam optimiser
1e-2, 1e-3, 1e-4 1e-1, 1e-2, 1e-3 1e-0, 5e-1, 1e-1, 5e-2 5e-1

Attention
Layer Size

Sets the size of the attention
layer, with the following hidden

layer size set to half of this
64, 32, 16 32, 16, 8 32, 16 16

Patches per Slide
Sets the number of patches

randomly selected from each
slide per training epoch

25, 50, 75 25, 50, 75 50, 75, 100 75

Table F.1 HIPT-ABMIL hyperparameters tuned using a three-stage grid search. The
same hyperparameters were tuned for ResNet-ABMIL and HistoResNet-ABMIL. An
additional hyperparameter was tuned for HIPT-CLAM to set the number of regions used
for clustering [78].

F.3 Results and Discussion

Method Balanced
Accuracy AUROC Accuracy F1 Score

Challenge Baseline* [147] NA NA 88.2% ± 6%* 0.917 ± 0.07*
HIPT-ABMIL 60.2% ± 2.9% 0.646 ± 0.033 61.0% ± 2.9% 0.656 ± 0.031
HIPT-CLAM 57.6% ± 2.9% 0.624 ± 0.033 58.9% ± 2.9% 0.650 ± 0.031

ResNet-ABMIL 52.7% ± 2.9% 0.569 ± 0.034 54.3% ± 3.0% 0.617 ± 0.031
HistoResNet-ABMIL 58.1% ± 2.9% 0.655 ± 0.032 59.6% ± 2.9% 0.660 ± 0.030

Table F.2 5-fold cross-validation classification performance on the internal 282 WSIs
(mean ± standard deviation from 100,000 iteration bootstrapping). *The best results
are highlighted in bold except for the baseline results, which were generated by
different researchers using different validation methods [147], as described in the
Discussion.

The HIPT-ABMIL model had the greatest performance for two evaluated metrics

and HistoResNet-ABMIL had the greatest performance for the other two. On the

internal 5-fold test set, the HIPT-ABMIL model achieved a balanced accuracy of

60.2%±2.9%, AUROC of 0.646±0.033, and F1 score of 0.656±0.031 (mean ± one

standard deviation from 100,000 iteration bootstrapping). The results were highly

varied, with the AUROC per cross-validation fold being 0.381-0.825. There were

also large differences between validation and test set performance in most folds,

including a fold where validation AUROC was 0.400 higher (0.781 vs. 0.381) and

another where test AUROC was 0.389 higher (0.436 vs. 0.825). The performance of
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the histopathology-pretrained models was much greater than the ImageNet-pretrained

ResNet-ABMIL, which achieved just 52.7% balanced accuracy, barely greater than

random guessing. No clear classification benefit was found from using hierarchical

transformers compared to a ResNet, or from using CLAM rather than standard ABMIL.

The optimal HIPT-ABMIL and HistoResNet-ABMIL models were each applied to the

external ATEC23 TMA test set, though neither generalised well to this data (accuracies

of 35% and 55% respectively).

Figure F.3 Receiver operating characteristic (ROC) curves and the AUROC for each
model from 5-fold cross-validation.

Our internal performance scores were much lower than the reported performance of

the baseline approach (optimal F1 of 0.660 compared to 0.917, accuracy of 60.2%

compared to 88.2% [147]). However, this is unlikely to be a fair comparison due to

differences in the pre-processing, validation, and data used. Further validation would

be beneficial in evaluating both approaches as there is a high risk that results were

artificially inflated by confounding and bias caused by the high levels of heterogeneity

in the relatively small dataset. We partially mitigated this by splitting data into

train-val-test splits per patient, reducing the unduly high level of correlation between

training and testing sets. However, there were other likely confounders which were

not adequately controlled, with the dataset containing small quantities of WSIs with
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significant differences to the majority, such as different histological subtypes (HGSC,

CCC, EC, MC, and unclassified carcinomas), tissue types/background histology

(omentum, peritoneum, lymph node) and artefacts (pen markings, image stitching,

out of focus regions). Such confounding could be moderated by using a larger, more

clinically representative dataset. The large standard deviations in the results were also

likely attributable to the relatively small dataset size, with a 95% confidence interval

for the optimal balanced accuracy being 54.5% to 66.0%. No challenge participant

achieved an accuracy greater than random chance, which may indicate that TMAs do

not contain sufficient prognostic information.

The clinical utility of these models would benefit from a more precise and clinically

relevant definition of outcome, as the ATEC23 binary classification grouped patients

who relapsed after just over 6 months together with patients who never relapsed.

Significant consideration should be given to the impact of carcinoma stage, grade

and morphological subtype on outcome beyond the Cox models presented in previous

research, which found strong but not statistically significant correlations between the

subtype and outcome, and between the stage and outcome [147]. Further details

about the cohort’s patients in terms of their differing responses to platinum-based

chemotherapy would also be informative as the model may be predicting response

to a mixture of combination and single-agent therapies.

(a) Raw histopathology slide
from the ATEC23 challenge
training set.

(b) Corresponding ABMIL
heatmap from the initial
HIPT-ABMIL model.

(c) Corresponding ABMIL
heatmap from the final
HIPT-ABMIL model.

Figure F.4 Example of a WSI in which the initial model heatmap exhibited a high level
of confounding, as evidenced by the background receiving greater attention than the
tissue. In the final model, the tissue segmentation preprocessing step was improved to
avoid including background, leading to heatmaps that do not exhibit clear confounding.

In our initial experiments, attention heatmaps showed that, in some WSIs, background

regions were given much higher attention scores than tissue regions, indicating that
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these slides were being classified according to irrelevant information. The chromatic

variability of WSIs was leading to inconsistent tissue segmentations, with some

including a large amount of non-tissue areas. As a result, we adjusted our tissue

segmentation parameters to achieve a more consistent performance, with the changes

to a resulting heatmap shown in Figure F.4. All results presented in this paper were

generated using these updated segmentations. Before this update, our 5-fold cross-

validation accuracy was 89.7% and the F1 score was 0.915, which was very similar

to the reported baseline model performance [147]. Improving the initial background

segmentation significantly reduced internal classification performance, indicating that

the slide backgrounds contained confounding information that could artificially inflate

internal performance. This highlights the need for explainability in digital pathology AI

to understand any model’s decision-making process.

F.4 Conclusion

Overall, it is unclear whether treatment response can be accurately predicted from

ovarian cancer histopathology slides alone, with our results indicating that WSIs may

contain some prognostic signal that can be leveraged using hierarchical transformers

and ABMIL. We found that it was beneficial to use feature extractors that were pre-

trained using large sets of histopathology data, though did not find transformer-based

models to outperform ResNet-based models. Given that the internal experiments were

conducted on a set of only 282 histopathology WSIs from 78 patients and that external

validations were conducted only on TMAs, more robust validations are required before

the scale of the clinical utility of these algorithms can be adequately evaluated.
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Efficient subtyping using active sampling in 
multiple instance learning

Jack Breen, Katie Allen, Kieran Zucker, Geoff Hall, 
Nicolas M. Orsi, & Nishant Ravikumar

Abstract
• Ovarian cancer is the 8th most common cancer 

in women worldwide [1] and has a very high 
mortality burden

• Ovarian cancer subtypes are fundamentally 
distinct diseases [2], with different genetics, 
prognoses, and treatments

• Pathology is the gold standard for diagnosing 
subtypes, but pathologists are in much greater 
demand than supply, especially experts

• AI may help, but computational requirements 
are too high – pathology labs rarely have the 
required GPUs for multiple instance learning

• We aim to improve efficiency by only 
processing a fraction of the available tissue 

• Through active sampling we improve inference 
speed by 3x on GPU and 7x on CPU alone, 
with minimal effects on accuracy
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The five most common 
subtypes of ovarian cancer

Method – Discriminative Region Active 
Sampling for Multiple Instance Learning 
(DRAS-MIL)
• Train attention-based multiple 

instance learning (ABMIL) [3]
• Randomly sample 100 initial patches 

and calculate their attention scores 
using ABMIL

• Assign sampling weights to 
neighbouring patches corresponding 
to attention scores 

• Iteratively sample more patches, 
calculate attention scores, and assign 
sampling weights to neighbouring 
patches

• Use all sampled patches for slide 
classification, aggregating patch 
scores with attention-weighted 
average (as in ABMIL)

Results - Efficiency

Results - Accuracy

Raw Histopathology Slide
- High-grade serous carcinoma sample
- H&E-stained, scanned at 40x magnification
- 2.87GB file 
- 113,288 x 93,803 pixels 

Full Attention Map
- Red indicates relevant tissue for diagnosis
- Generated with attention-based multiple 

instance learning [3]
- Over 30 minutes to generate on CPU alone

Our Sampling Attention Map
- Red indicates relevant tissue for diagnosis
- Generated with DRAS-MIL [4]
- Approximately 5% of the slide processed
- ~5 minutes to generate on CPU alone

Evaluation
• 714 whole slide images (WSIs) collected from 147 patients at 

Leeds Teaching Hospitals NHS Trust (455 high-grade serous, 
259 from other four subtypes combined)

• Binary classification of high-grade serous vs others
• 3-fold cross-validation 
• Hyperparameters tuned on first fold (learning rate, drop out, 

regularisation rate, sampling iterations, receptive field)
• Compared our DRAS-MIL approach to ABMIL and fully 

random sampling

Conclusion
• DRAS-MIL drastically increases WSI classification speed over 

ABMIL with a marginal reduction in accuracy
• Random sampling performs almost as well as DRAS-MIL, but 

does not generate explainable attention map

Figure G.1 Poster from the 2023 AI4Health Summer School based on the work in
Chapter 5. Winner of the Best Poster Prize.
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Artificial Intelligence in Ovarian Cancer 
Histopathology: A Systematic Review
Jack Breen, Katie Allen, Kieran Zucker, Pratik Adusumilli, Andy
Scarsbrook, Geoff Hall, Nicolas M. Orsi, & Nishant Ravikumar

PROBAST Risk of Bias Results

• All studies had high or unclear risk of bias overall
• High risk was common in the analysis, typically due

to small datasets and weak validation
• Most research is unclear regarding participants

and/or predictors due to poor reporting around
recruitment and tissue processing

• Many studies included small groups of patients with
significant differences to the majority, risking biases
due to spurious correlations

• Few studies achieved a low risk of bias in any
domain

Conclusion
• Limited quantity of research overall
• No models yet demonstrated to be

ready for real-world deployment
• High risks of bias common due to

poor study design and reporting
• Datasets were typically small single-

centre sets or TCGA-OV [4]
• Future work should use cross-

validation and/or external validations
• Code and data should be made

available where possible
• Usability studies are needed to

understand clinical requirements

Description of Included Studies
• 62 models of interest in 36 papers
• 1-1,375 slides from 1-664 ovarian

cancer patients
• Over 1/3rd of studies used the same

dataset - TCGA-OV [4]
• Typically whole slide images split in

to patches at 20x or 40x
magnification

• Most common outcomes were
overall survival, histological
subtypes, stain quantity, malignancy,
and primary cancer type

• More research since 2020 than all
previous years combined

• Most common methods were
convolutional neural networks,
support vector machines, and
random forests

• Less than half of outcomes were
evaluated with cross-validation
and/or external validation

• Variability of results was not
commonly reported (20/78)

Abstract
• Ovarian cancer is the 8th most common cancer in women

worldwide [1] and has a very high mortality burden
• There is no effective screening method and diagnosis is difficult,

with vague symptoms often being confused for the menopause
• Pathology is the gold standard for diagnosis, but pathologists

are in much greater demand than supply, especially domain
experts

• Interpretation of samples is subjective, with high inter-rater
variation [2]

• AI offers opportunities to improve efficiency and accuracy in
diagnosis

• AI may allow for the development of new diagnostic pathways
(e.g. genetic classification from standard pathology samples,
rather than requiring expensive sequencing)

• AI pathology tools are reaching clinical utility, with one model
approved by the FDA for prostate cancer diagnosis [3]

• We systematically reviewed all published literature to
characterise the current state of the field and to understand
how to accelerate clinical translation
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Examples of the five most common 
subtypes of ovarian cancer [5]
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REDUCING HISTOPATHOLOGY SLIDE MAGNIFICATION IMPROVES 
THE ACCURACY AND SPEED OF OVARIAN CANCER SUBTYPING

Jack Breen, Katie Allen, Kieran Zucker, Geoff Hall, 
Nicolas M. Orsi, & Nishant Ravikumar

Abstract
• Ovarian cancer subtypes are fundamentally 

distinct diseases1 with different genetics, 
prognoses, and treatments

• Pathology is the gold standard for subtyping, 
but demand for pathologists is overwhelming

• AI may help, but computational requirements 
are too high – labs typically don’t have HPCs

• We aim to improve efficiency by reducing 
tissue magnification for ABMIL classification 

• High magnifications give greater cellular 
detail, where lower magnifications give 
greater tissue-level context

• Training and inference times are significantly 
reduced by using lower magnifications with 
no reduction in classification performance 
(and perhaps a slight improvement)

Jack Breen
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linkedin.com/in/jackjbreen
github.com/scjjb/Ovarian_Subtype_Mags
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Most Common Subtypes Method
• Attention-based Multiple Instance Learning 

(ABMIL)2 classifier trained at six different 
magnifications from 1.25x to 40x (halving 
magnification quarters number of patches)

• Eight hyperparameters tuned at each 
magnification by iterative grid-search 

• 963 slides from 201 patients at Leeds 
Teaching Hospitals NHS Trust (484 HGSC, 23 
LGSC, 156 CCC, 205 EC, 95 MC)

• Five-class subtyping evaluated using five-
fold cross-validation and a balanced test set 
of 100 WSIs from 30 patients

• Three metrics evaluated – balanced 
accuracy, macro AUROC, and macro F1 score

• Results reported with 95% confidence 
intervals from 10,000 bootstraps

• Efficiency measured on high-performance 
computer (HPC) and personal computer (PC)

Results - Accuracy Results - Efficiency

Conclusion
Lower magnifications performed at least as well as the clinical standard 40x 
while running much faster. Overall, 5x and 10x magnifications gave the best 
trade-off between speed and accuracy for ovarian cancer subtyping.

Attention-Based Multiple Instance Learning (ABMIL) Example Patches at Each Magnification

IEEE ISBI 2024 
Paper #921
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Figure G.3 Poster from ISBI 2024 based on the work in Chapter 6. This poster was
not actually presented until the 2024 UKRI AI CDTs in Healthcare Conference due to
being changed to an oral presentation.
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Multi-Resolution Histopathology Patch Graphs 
for Ovarian Cancer Subtyping

Jack Breen, Katie Allen, Kieran Zucker, 
Nicolas M. Orsi, & Nishant Ravikumar

Abstract
• Ovarian cancer subtypes are fundamentally 

distinct diseases1 with different genetics, 
prognoses, and treatments 

• Graph networks can be integrated with 
multiple instance learning (MIL) to learn 
spatial context in pathology slides

• Multi-resolution graphs often discard a high 
proportion of patches, we utilise all data

• Graphs offer a small benefit over attention-
based multiple instance learning (ABMIL)2

• UNI3 foundation model greatly improved 
performance over ImageNet-trained ResNet

• External validation balanced accuracies of 99% 
and 77% may justify real-world testing

• 99% balanced accuracy is the greatest ever 
external validation performance for this task

Jack Breen

scjjb@leeds.ac.uk

linkedin.com/in/jackjbreen

github.com/scjjb/MultiscalePathGraph

Acknowledgements
JB is supported by the UKRI Engineering and Physical Sciences Research 
Council (EPSRC) [EP/S024336/1]. This work uses data provided by 
patients and collected by the NHS as part of their care and support.

References
[1] Kossaï, M., Leary, A., Scoazec, J.Y. and Genestie, C., 2018. Ovarian cancer: a heterogeneous disease. Pathobiology, 85(1-2), pp.41-49.
[2] Ilse, M., Tomczak, J. and Welling, M., 2018, July. Attention-based deep multiple instance learning. In International conference on machine learning (pp. 2127-2136). PMLR.
[3] Chen, R.J., Ding, T., Lu, M.Y., Williamson, D.F., Jaume, G., Song, A.H., Chen, B., Zhang, A., Shao, D., Shaban, M. and Williams, M., 2024. Towards a general-purpose foundation 
model for computational pathology. Nature Medicine, 30(3), pp.850-862.

Most Common Subtypes

• Multi-resolution graphs constructed as a 
grid of patches with connected spatial 
neighbours at each magnification

• Patch features extracted using UNI 
histopathology foundation model

• Attention-based graph message passing 
and pooling layers (GATv2, SAGPool)

• Final subtype classification through fully 
connected layer with 5 output nodes

• 13 hyperparameters tuned by iterative 
grid-search (100+ configurations)

• Models trained through 5-fold cross-
validation and ensembled for hold-out 
testing and two external validations

• Balanced accuracy, AUROC, and F1 score

• Results reported with 95% confidence 
intervals from 10,000 bootstraps

Results Conclusion

Graph models can slightly improve ovarian cancer 
subtype classification performance over ABMIL, but 
at an increased computational cost. Performance 
was greatest in pre-treatment slides (hold-out 
testing, Transcanadian Study). Future work should 
focus on the practicalities of clinical implementation. 
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MC 99 (22) 20 (5)

Total 1864 (434) 100 (30)

Subtype
Transcanadian Study 

WSIs (patients)
OCEAN 

Challenge WSIs

HGSC 30 (30) 217

EC 11 (11) 119

CCC 20 (20) 94

LGSC 9 (9) 42

MC 10 (10) 41

Total 80 (80) 513
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• Greatest balanced 
accuracies were from 
the 10x+20x mag. graph:

   73% Cross-validation

   88% Hold-out Testing

   99% Transcanadian Study

   77% OCEAN Challenge

• ABMIL performed as 
well in three out of four 
validations

• Graphs required greater 
computational workload 
than ABMIL
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Figure G.4 Poster from the MICCAI 2024 GRAIL workshop based on the work in
Chapter 8.
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