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Abstract

Embedding a face image into a descriptor vector using a deep neural network is

a standard technique in face recognition. These embeddings are designed to cap-

ture only identity (ID) information. Their effectiveness is assessed by evaluating

recognition performance against datasets with diverse non-identity (non-ID) fac-

tors. This thesis examines the data within face embeddings and whether faces can

be reconstructed from these embeddings using a Generative Adversarial Network

(GAN) or a 3D Morphable Model (3DMM).

The first contribution of this work involves studying the ID and non-ID in-

formation encoded within face embeddings. Ideally, environmental data like back-

ground and lighting, along with variable facial aspects such as pose and accessories,

should be ignored in recognition. However, we find that attributes, landmark po-

sitions, and image histograms can be retrieved from ID embeddings of networks

like VGGFace2 and ArcFace. Building on this, we propose an adversarial training

method that more effectively excludes non-ID information by deploying a novel

network architecture that selectively penalizes non-ID attribute encoding, enhanc-

ing recognition performance.

The second contribution focuses on reconstructing 2D facial images directly

from embeddings. Our study reveals that these reconstructed images contain not

only identity but also certain non-ID characteristics such as pose, lighting, and

background. These findings highlight the privacy risks inherent in facial recogni-

tion technologies.

The final contribution shifts focus to the potential reconstruction of 3D face

geometry solely from recognition signals. By integrating a 3DMM with a Spatial

Transformer Network, we demonstrate that the localiser network can learn 3D

shape and pose parameters from identity signals in a warped UV space without

additional geometric labels. Our findings confirm that face representations retain

spatial information for 3D geometry. This potentially points to future face recogni-

tion architectures where most of the model capacity is used for alignment, leaving

a relatively simple feature extraction and recognition problem on the aligned face

image.
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1
Introduction

This thesis is concerned with face recognition and face reconstruction, two

fundamental and well-studied problems in computer vision.

Face recognition has been studied for over five decades [56]. The prob-

lem is challenging due to: 1. the small differences that distinguish different

identities, 2. the dramatic changes in appearance due to illumination, pose,

background, clothing and camera properties, 3. the fact that the face itself

changes with age and expression. After four decades of relatively little suc-

cess on this task, a step change in performance was obtained through the

rise of deep convolutional neural networks [64] and their application to face

recognition [114]. The most successful paradigm for face recognition is to

train a network that embeds a face image into a low-dimensional vector that

depends only on the identity (ID) of the face. Faces can be compared by the

similarity of their embeddings. Such approaches rely on having sufficiently

diverse training data that they can learn to discard all non-identity (non-ID)

factors in the embedding process. Hence, the goal is to learn to transform

an image to a representation that is invariant to everything but ID.

Face reconstruction on the other hand aims to explain an image in terms

of parameters that encode both identity and non-identity factors via a gener-

ative model. Sometimes ID and non-ID factors are disentangled. For exam-

ple, a 3D Morphable Model (3DMM) explicitly models ID (in the form of 3D
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geometry and texture), expression, lighting and pose in order to optimally re-

construct a given image. Classically, this was done via analysis-by-synthesis

[14] though here too, CNN-based direct regression methods have dramati-

cally improved performance [118, 39, 116]. In other cases, for example in a

2D Generative Adversarial Network (GAN) [57], both ID and non-ID factors

are modelled together in a black box latent space.

In this thesis, we argue that face reconstruction and recognition are in-

timately related and that the relationship between them has been little ex-

plored. The theme of the thesis is the interplay between the two, particularly

how advancements in one area can enhance the other. For instance, using

reconstruction to demonstrate the challenges of removing non-ID factors in

recognition, enhancing recognition by reducing these elements, and learning

reconstruction techniques from recognition by disentangling 3D pose/shape

from the feature extraction process.

1.1 Identity and Non-Identity Factor

Distinguishing between ID factors and non-ID factors is essential in face

recognition and reconstruction. ID factors refer to intrinsic characteristics

unique to individual identity, such as facial shape, skin texture, and specific

facial features [86]. In contrast, non-ID factors refer to variations caused

by external influences or environmental conditions, such as pose, lighting,

expression, accessories (e.g., glasses or hats), and even background or cam-

era settings [17]. These non-ID factors can vary significantly, altering the

appearance of a face without affecting the identity of the individual.

Certain factors may even contain elements of both ID and non-ID infor-

mation. For example, facial landmarks encode intrinsic shape information
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(an ID factor) but also change with pose (a non-ID factor). Effective face

recognition systems, therefore, aim to be invariant to non-ID factors while

maintaining high sensitivity to ID factors to ensure that only identity in-

formation is captured in the embedding [28]. However, fully achieving this

balance remains challenging due to the entanglement of certain ID and non-

ID attributes [36].

1.2 Exploration of Face Embedding

In recent years the hidden representations of CNNs, have dominated face

recognition. These CNNs are structured to encode facial data into a com-

pact, lower-dimensional space known as an embedding [17, 97, 86]. A mea-

sure of distance between face embedding is used to represent dissimilarity

in identity. CNNs are structured hierarchically, where layers of abstraction

progressively refine raw input data into identity-specific representations. The

goal of training such networks is to minimise the within-class scatter while

maximising the between-class scatter for all identities. The former goal re-

quires that the face representation should depend only on the identity of the

person in the image. Environmental conditions such as the lighting, back-

ground, and properties of the camera as well as changeable aspects of the face

such as pose, expression and the presence of accessories should not affect the

face representation (i.e. should not introduce within-class scatter). In other

words, the embedding network should learn invariance to these factors.

To achieve this invariance, the engineering of training datasets, network

architectures, and loss functions has been extensively explored in face recog-

nition [17, 43, 28, 102]. Datasets are designed to expose a wide variety of

non-ID factors, and loss functions are developed to ensure that the same
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identity embeds to the same point across different conditions, facilitating in-

variance learning. However, despite these efforts, studies have shown that

face recognition networks often encode soft biometrics such as age, race, and

gender during training, posing significant privacy risks [36, 30, 15]. This

raises substantial concerns regarding the unauthorized extraction of individ-

ual information. Additionally, recent research suggests that the removal of

such soft biometric data can potentially improve the performance of facial

recognition systems [81, 31, 40].

1.3 Leakage of Non-ID information

In this thesis, we investigate to what extent this has been achieved. In par-

ticular, we ask: how well do modern face embedding networks successfully

remove non-ID factors when embedding a face image? Moreover, we propose

innovative solutions aimed at mitigating these privacy risks. This investiga-

tion is segmented into two chapters, each addressing different facets of the

problem and contributing to a comprehensive discussion on improving the

security and efficacy of face recognition technology.

Our first study comprises two sections. Initially, we critically examine the

nature of ID embeddings in state-of-the-art networks like VGGFace2 [17] and

ArcFace [28], questioning whether these embeddings solely contain identity-

related information. Our findings reveal that non-ID attributes such as land-

mark positions and image histograms can indeed be predicted from these ID

embeddings, with accuracy comparable to predictions made from the origi-

nal images. Additionally, we introduce a novel adversarial training approach

within the facial recognition network aimed at penalizing the inclusion of

non-ID information in ID embeddings. By doing so, we seek to purify the
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embeddings of unnecessary non-ID data, thereby enhancing network perfor-

mance. Our results demonstrate that eliminating unnecessary non-identity

information can improve the performance of facial recognition networks to a

certain extent.

In Chapter 4, we present an optimization strategy utilizing a generative

model (specifically, StyleGAN2 for faces) to recover images from an ID em-

bedding. We achieve photorealistic inversion from ID embedding to face

image, where not only is the ID realistically reconstructed, but also the pose,

lighting, and background/apparel to some extent. The successful visualiza-

tion of non-ID factors from face embeddings provides crucial insights into

privacy concerns and opens new possibilities for enhancing security measures

in biometric systems.

1.4 Spatial information in face representation

Recent studies have primarily focused on improving the robustness of face

recognition against various transformations. While CNNs inherently support

a degree of spatial invariance through mechanisms like shared weights and

localized receptive fields, they do not fully achieve spatial neutrality. The

networks generally maintain sufficient spatial information to facilitate accu-

rate recognition,effectively handling minor translations and shifts in position.

However, the exploration of the extent of spatial invariance within face rep-

resentations remains relatively underexplored. Additionally, the opaque na-

ture of CNNs end-to-end training processes makes face representations akin

to ‘black boxes’—highly abstract and complex, thereby complicating further

analysis.

Building on this foundational understanding, we propose a novel approach
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in Chapter 5 that investigates the extent of spatial information retained in

face embeddings. This method learns 3D face alignment and reconstruction

using only the facial identity information captured through a recognition

loss. It integrates a 3DMM within a Spatial Transformer Network (STN)

framework. Initially, the model estimates the 3D shape and orientation of

a face, which it then projects onto a UV texture map. This map serves as

the input to our face recognition network, ensuring that the extracted facial

representation is inherently spatially invariant. We show for the first time

that 3D face alignment (i.e. estimation of pose and shape parameters) can

be learnt using a recognition signal alone.

1.5 Outline

The structure of the remainder of this thesis is as follows:

1. Chapter 2 reviews all of the essential basic concepts for the theoretical

groundings of all three works described by this thesis. Specifically,

we review related work in the areas of generative face modelling, face

recognition, face reconstruction, geometric alignment, face editing and

privacy implications.

2. Chapter 3 presents our first significant finding: identity embeddings

from state-of-the-art face embedding networks contain not only identity

information but also non-ID attributes. Additionally, we incorporate

adversarial training to eliminate non-ID information from the face em-

beddings. Our results suggest that removing non-identity information

can improve facial recognition capabilities.

3. Chapter 4 details our second contribution: building on the findings from
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the Chapter 3, we introduce an optimization approach using a genera-

tive model—specifically, StyleGAN2—to recover not only the identity

but also non-ID attributes such as pose, expression, and to some extent,

the background/lighting from these identity embeddings.

4. Chapter 5 describes our third contribution: we introduce an innova-

tive approach to face recognition that involves reconstructing 3D facial

geometry using only identity signals, without the need for additional

geometric labels.

5. Chapter 6 concludes our contributions and discusses prospects for fu-

ture work.
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2
Literature Review

This chapter will cover all the related work for our three contributions. We

start with fundamental ideas and methods in each section, then introduce

state-of-the-art methods.

2.1 Generative Face Model

Generative face models represent a rapidly advancing field within facial recog-

nition technologies. These models learn to identify and extrapolate the pat-

terns and features present in a given distribution of facial data samples. Such

capability allows the models to generate novel, realistic facial images that

were not present in the original datasets. The study of generative models is

critically important, as these can be optimized efficiently through scaling the

training processes and datasets to produce higher quality and more convinc-

ing facial images. In this section, we introduce the foundational concepts and

review related work that is crucial for understanding the research problems

addressed in this thesis.

2.1.1 3D Morphable Model (3DMM)

The most commonly used 3D face model is the 3DMorphable Model (3DMM)

proposed by Blanz and Vetter [14]. 3DMM is a statistical model with intrinsic
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components of a face (e.g., albedo, texture, and shape). It shows that it is

possible to reconstruct facial features by solving a non-linear optimization

problem that is constrained by linear statistical models of facial texture and

shape.

In 3DMM, the face is in a dense point-to-point correspondence which

allows the linear combinations of faces may produce more photo-realistic

faces. The visual appearance of 3D faces and scenes is a function of their

shape s and surface texture t properties referred to as albedo. The face

model in 3DMM can be represented in terms of shape and texture as a pair

of vectors:

s = (x1, y1.z1, ..., xn, yn, zn)
T

t = (r1, g1.b1, ..., rn, gn, bn)
T

(2.1)

where n is a number of vertices. The general approach of 3DMM to construct

more statistical models is to remove redundancy by means of Principal Com-

ponent Analysis (PCA). The key equation can be represented as:

s = s0 + Sα

t = t0 + Tβ

(2.2)

where s0 and t0 are the mean shape and the mean texture, respectively. α

and β are the shape coefficients and texture coefficients, respectively. By

changing α and β we can generate, or morph new faces, as seen in Fig. 2.1.

3DMM could handle the ill-posed reconstruction problem and produce

acceptable results. However, the reconstruction result lacks fine-scale skin

detail, e.g., freckles, wrinkles. Moreover, it is hard to guarantee that the

produced result is physical plausibility. Therefore, many recent works try to
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Figure 2.1. The expressiveness of the 3DMM. The deviation of a prototype from
the average is added (+) or subtracted (−) from the average. Adding and sub-
tracting deviations independently for shape S and texture T on each of the four
segments produces several distinct faces. Taken from [14].

go beyond this coarse reconstruction to personalize the model further and

recover the missing dimensions. In the following, we will give a detailed

overview of these approaches.

2.1.2 Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GANs) are a relatively new concept in

Machine Learning, introduced by Goodfellow et al. [41]. Their goal is to

synthesize artificial samples, such as images, that are indistinguishable from

authentic images. The resolution and quality of images produced by genera-

tive methods, especially GANs, are improving rapidly. While GANs images

became more realistic over time, one of their main challenges is controlling

their output, i.e., changing specific features such as pose, face shape, and

hairstyle in an image of a face.

GANs consist of two main components: a generator G and a discrimi-
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nator D. These two components play a minimax two-player game with the

following value function:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.3)

Here, x represents real data samples, and z is a noise vector sampled from

a probability distribution pz(z). The generator G attempts to generate data

that are indistinguishable from real data by learning to map the noise vector z

to the data space. On the other hand, the discriminatorD aims to distinguish

between samples provided by the generator and real data samples. The

discriminator maximizes its ability to identify real and generated samples,

while the generator tries to minimize the probability that the discriminator

makes the correct classifications (see Fig. 2.2).

Figure 2.2. Generative Adversarial Network framework.

Generative Adversarial Networks (GANs) have emerged as a powerful

tool in computer vision and machine learning, particularly for synthesizing

photo-realistic images. Among the notable advancements, NVIDIA’s intro-

duction of the Style-Based Generator Architecture for GANs, known as Style-

GAN, and its subsequent iteration, StyleGAN2, by Karras et al. in 2019 and

2020 [57, 58], respectively, have set new benchmarks in data-driven uncon-

ditional generative image modeling. These models are capable of generating

high-resolution, lifelike face images, showcasing state-of-the-art results. A
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distinctive feature of StyleGAN lies in its generator architecture, which inno-

vatively uses an input latent code z ∈ Z, not just at the network’s inception

but transforms it through a mapping network into an intermediate latent

code w ∈ W . This code then undergoes affine transformations to produce

styles that meticulously control the synthesis network’s layers, enhancing the

model’s ability to create novel images with remarkable detail and variation.

Additionally, the incorporation of stochastic variation through random noise

maps further enriches the synthesized images realism and diversity. Fig. 2.3

shows a set of novel images generated from the StyleGAN.

Figure 2.3. A set of images produced by StyleGAN generator. StyleGAN uses
baseline progressive GAN architecture which means the size of generated image
increases gradually from a very low resolution (4 × 4) to high resolution (1024 ×
1024). Taken from [57]

StyleGAN introduces a progressive approach to image generation, starting

from a very low resolution and increasing to high resolutions (e.g., 1024 ×

1024 pixels). By separately modifying the input at each resolution level, the

generator finely tunes visual features ranging from coarse aspects like pose

and face shape to finer details such as hair colour, without affecting other
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levels.

One of the critical innovations in StyleGAN is its Mapping Network,

which transforms the initial latent vector z ∈ Z into the intermediate vector

w ∈ W . This mechanism allows StyleGAN to produce images that more

closely mimic the training data set, as it facilitates more precise control over

the visual features by the input vector. The transformation output w is

then passed through a learned affine transformation A, utilized via adaptive

instance normalization (AdaIN), to generate styles that control the stylistic

elements of the generated image. The Fig. 2.4. summarizes the StyleGAN

generator structure.

Figure 2.4. The framework of StyleGAN generator. The input to the AdaIN is
generated by applying A to w. Taken from [57].

GAN inversion Recent work has shown that GANs can encode a rich

set of semantics in their latent space. Beyond image generation, recently,

attempts have been made to invert the GAN generating process from the

image back to latent space for the purpose of image manipulation or analysis,

which is widely known as GAN inversion. Predominantly, existing methods
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employ one of three approaches: they either develop an additional encoder

or regressor external to the GAN structure [9, 94], directly optimize the

latent code to align with a specific target image [126], or utilize a hybrid

strategy that begins with an initial optimization seeded by the outputs of a

regressor [141].

For StyleGAN specifically, recently, several works have shown that it is

possible to retrieve the latent code w of a target image [101, 117]. The works

show that inverting to the latent space W is easier than to Z. However,

accurately reconstructing a target image is still an ongoing challenge. In

another recent work, Abdal et al. [2, 3] proposed a framework that projects

an image into an extended latent space W+, where W+ contains separates

latent vectors for the specific scales of StyleGAN. This approach effectively

allows for the reconstruction of features at multiple levels of the target image.

Additionally, Yin et al. [135] introduced a deep-inversion method that em-

ploys a pretrained neural network to generate synthesized class-conditional

input images, facilitating data-free knowledge transfer.

2.1.3 Hybrids

Due to the complexity and high dimensionality of human face images, mod-

elling faces accurately using solely the 3DMM or GANs presents significant

challenges. The 3DMM approach offers the advantage of generating realistic

morphological face structures that adhere to the distribution of actual human

faces. In contrast, GANs excel in creating detailed texture models within a

high-resolution UV space. Recent efforts aim to integrate these two tech-

niques to develop a hybrid model that yields more convincing and realistic

facial representations.

Shammai et al. [100] presents a facial synthesis approach that begins with
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transforming facial scans into 2D images to create new textures via a GAN.

These textures are then correlated with 3D facial geometries using 3DMM,

providing a cohesive method for generating realistic facial textures and their

corresponding geometries. Gecer et al. [38] propose GANFIT, which utilizes a

GAN to enhance the texture representation in 3DMM, enabling high-fidelity

3D face reconstruction from single images. This method has excellent results

in photorealistic 3D face reconstructions and achieves facial texture recon-

struction with high-frequency details for the first time.

This approach complements other influential models like FaceVerse [124],

which employs a coarse-to-fine strategy merging PCA-based shape and tex-

ture models with conditional StyleGAN networks for detailed facial feature

synthesis from hybrid datasets. The Next3D framework by Galanakis et

al. [105], utilizing neural texture rasterization in a 3D GAN framework, syn-

thesizes multi-view consistent, high-fidelity facial images from unstructured

single-view 2D imagery, integrating 3DMM for fine-grained control over facial

attributes.

The Exp-GAN [67] and cGOF [106] models exemplify the effectiveness of

hybrid approaches in providing robust and detailed control over various facial

attributes, including identity, expression, pose, and illumination. Recently,

Rai et al. [91] introduced AlbedoGAN, which leverages StyleGAN2 to pro-

duce high-quality albedo textures and precise 3D facial shapes. This method

combines 2D face generation with semantic face manipulation to allow direct

control of facial expressions in 3D through latent space exploitation, enabling

text-based editing of 3D faces. These models excel at disentangling these at-

tributes, significantly enhancing the realism and diversity of the generated

facial images.
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2.2 Face recognition

Face recognition has emerged as a key area of research within artificial in-

telligence and computer vision, boasting considerable advancements over the

past four decades. Initially, the field faced significant hurdles due to lim-

ited computing resources and rudimentary algorithms, which impeded the

achievement of high accuracy [122, 73, 25, 1]. The emergence of deep con-

volutional neural networks (DCNNs) marked a turning point, substantially

mitigating these early [64, 102, 114, 28, 108]. Today, DCNNs facilitate the

creation of highly accurate and reliable face recognition systems. This section

will begin with an overview of traditional methodologies in face recognition,

transitioning to an in-depth discussion of contemporary DCNNs. We will

explore pivotal contributions to the development of feature extraction tech-

niques and face recognition, including influential network architectures, loss

functions, and datasets that have defined modern face recognition systems.

2.2.1 Pre-deep learning methods

Face recognition techniques have advanced remarkably since the early 1990s,

transitioning from basic algorithms to sophisticated image analysis methods

that map facial features to a lower dimensional subspace. Initially, holistic or

appearance-based approaches treated the entire face region using both linear

and non-linear methods.

Principal Component Analysis (PCA), known as eigenfaces [122], linear

discriminative analysis, known as fisherfaces [11] and independent compo-

nent analysis (ICA) [24] represent the most commonly used linear techniques

in facial recognition systems. The eigenface technique, a landmark in face

recognition, describes each image as a vector of weights derived by project-
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ing the image onto a set of principal components, enabling the system to

identify the nearest face class by comparing distances within this face space.

However, these linear holistic algorithms often underperform when the in-

put data lacks a linear structure. This is particularly relevant for human

facial features, which vary widely due to factors such as facial expressions,

self-occlusion, lighting conditions, and accessories like glasses or hats. These

variations introduce non-linearities and complex spatial relationships that

linear methods may fail to capture effectively. Consequently, Support Vector

Machines (SVMs) emerged as non-linear holistic approaches that differen-

tiate faces more effectively by finding an optimal hyperplane [25]. By the

2000s, local feature-based face recognition methods gained popularity. These

methods utilize hand-crafted features to describe the face, such as Gabor

filters [73]and Local Binary Patterns (LBP) [4], along with their advanced

extensions [136, 21], demonstrating robust performance due to their invariant

properties. Subsequently, the face recognition community began integrating

learning-based local descriptors that learn discriminant image filters using

shallow techniques [1, 68]. Unlike earlier methods that relied heavily on

predefined features, these learning-based descriptors adaptively adjust their

parameters to maximize discriminative power, making them more resilient to

variations in facial expressions, lighting, and other environmental changes.

This progression marked a pivotal shift towards more adaptive methodolo-

gies, setting the stage for the next wave of innovation with deep learning

approaches.

2.2.2 Deep learning based methods

The evolution of face recognition has been significantly accelerated by the

introduction of DCNNs, especially after the landmark success of AlexNet in
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the 2012 ImageNet competition [64]. The utilization of DCNNs for face rep-

resentation through embeddings has emerged as the predominant method in

contemporary face recognition systems. Deep learning methods use a cascade

of multiple layers of processing units for feature extraction and transforma-

tion. These methods learn multiple levels of representations corresponding to

varying degrees of abstraction, creating a hierarchical structure of concepts.

This structure exhibits strong invariance to changes in face pose, lighting,

and expression, enabling CNNs to extract more effective features for distin-

guishing between different faces.

A number of successful systems, such as DeepFace [114], FaceNet [97],

VGGFace [17, 86] have demonstrated impressive performance in face iden-

tification and verification. Notably, DeepFace [114] marked a significant

milestone by nearly reaching human-level performance under unconstrained

conditions [49]. Subsequent innovations, including the use of the ResNet ar-

chitecture and its variations [137, 92, 76, 45], have continued to refine the

accuracy and efficiency of face recognition systems. Liu et al. [74] introduced

a novel approach known as Deep Hypersphere Embedding (SphereFace). In

particular, they proposed an angular Softmax loss (A-Softmax), which allows

deep CNN to learn discriminative facial features with the angular margin by

imposing constraints on a hypersphere manifold. IN 2019, Deng et al. [28]

presented an additive angular margin loss (ArcFace) achieved 99.83%verification

performance on LFW with ResNet-100 architecture, and MS-Celeb-1M train-

ing dataset [43].

Network Architecture In this section, we focus on three widely recog-

nized CNN architectures—AlexNet, VGGNet, and ResNet—that have sig-

nificantly advanced face recognition technologies. These networks employ
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convolutional layers, pooling layers, and non-linear activation functions to

progressively transform raw image data into highly abstract representations.

AlexNet [64] marked a pivotal shift in deep learning by introducing deeper

architectures with five convolutional layers and three fully connected lay-

ers. It leveraged the ReLU activation function for non-linearity and adopted

dropout to combat overfitting, demonstrating the feasibility of training large-

scale networks on GPUs and leading to significant improvements in recogni-

tion tasks. Building on this, VGGNet [102] refined deep networks by consis-

tently employing small 3×3 convolutional filters across its layers, enabling a

gradual increase in depth and feature map dimensions. This uniform design

validated the effectiveness of deeper architectures in improving large-scale

recognition accuracy. ResNet [46] addressed the challenges of training very

deep networks through its introduction of residual blocks with skip connec-

tions, which effectively mitigated vanishing gradient problems and enabled

the learning of complex patterns in extremely deep models. These architec-

tures collectively laid the foundation for modern face recognition systems by

enabling robust and scalable hierarchical feature extraction.

Learning Metrics The choice of loss functions plays a pivotal role in opti-

mizing the performance of face recognition systems. These functions can be

broadly categorized into classification-based and distance-based approaches.

Classification-based losses, such as softmax loss and its variants, focus on

maximizing inter-class dispersion. In contrast, distance-based approaches

like contrastive and triplet losses aim to optimize the feature space by en-

hancing discrimination between different classes, effectively penalizing dis-

similarities.

Classification-based loss function The softmax loss [110] is commonly
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used as the supervision signal in object recognition, simplifying the output

layer into a multi-class classifier where the cross-entropy between the pre-

dicted and actual distributions is minimized, which can be written as follows:

L = −
∑
i

yi log(pi) (2.4)

where yi are the true labels , and pi denotes the predicted probabilities. The

softmax loss function, while effective at achieving inter-class dispersion, does

not inherently promote intra-class compactness. To address this limitation

and enhance feature discriminability, several modifications based on softmax

loss have been proposed [74, 123, 127, 29, 89]. An extension of softmax loss

named center-loss [127] attempted to achieve the missing intra-class com-

pactness by taking into account the Euclidean distance between the feature

vector and the centre of the class.

Further enhancing the traditional softmax loss, angular or cosine-margin-

based losses introduce an angular margin to improve the discriminability

of the learned features. This method adjusts the decision boundary in the

angular space, ensuring that the learned embeddings not only separate classes

effectively but also do so with a margin that enhances generalization to new

examples. Several angular margin-based losses, such as SphereFace [74],

AM-softmax [113], CosFace [123] progressively improve the performance on

various benchmarks to the newer level. In 2019, Deng et al. [28] introduce an

additive angular margin loss (ArcFace) achieving a considerable improvement

on LFW with 99.83% accuracy. their mathematical equation is as follows:

L = − log
es(cos(θyi+m))

es(cos(θyi+m)) +
∑

j ̸=yi
es cos θj

(2.5)

Where θyi is the angle for the correct classm is the margin added, and s is
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a scaling parameter.

Distance-based approaches Distance-based approaches represent an

alternative optimization strategy distinct from softmax loss and its variants.

In metric learning, the network is trained using sample images and penalized

based on whether the samples belong to the same class or different classes.

Popular methods include contrastive loss and triplet loss.

The contrastive loss [108, 107, 111, 112, 134] initially proposed by Had-

sell et al. [44] requires pairs of face images, pulling together positive pairs and

pushing apart negative pairs. It has been utilized extensively in face recogni-

tion systems, notably the DeepID series [107, 111, 108], and other [112, 134].

The contrastive loss can be mathematically defined as follows:

L = (1− y)
1

2
(D)2 + y

1

2
max(0,m−D)2 (2.6)

Where, D represents the Euclidean distance between the two samples, y

is a binary label (0 for similar pairs and 1 for dissimilar pairs), and m is a

predefined margin.

Along with FaceNet [97] proposed by Google, Triplet loss [97, 32, 85, 104]

was introduced into FR. IN The triplet loss function involved an anchor a, a

positive example p of the same class and a negative example n of a different

class. The objective is to train the CNN such that the distance between the

matching pair is minimized, and the distance between the non-matching pair

is maximized. The triplet loss function is mathematically defined by:

L = max(D(a, p)−D(a, n) +m, 0) (2.7)

Where D(a, p) and D(a, n) represent the distances from the anchor a to the

positive example p and the negative example n, respectively, with m again
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being the margin.

2.2.3 Datasets

In the realm of face recognition, datasets serve a dual role as both training

material and benchmarks for system validation. The quality of training data

significantly influences the performance of deep neural networks, while the

quality of validation data impacts the reliability of benchmark results.

Initially, face datasets such as CelebFaces [77] and CASIA-Webface [134]

consisted mostly of high-quality images featuring celebrities. These datasets

included images captured in less controlled environments, presenting more

realistic challenges that systems might face in real-world applications. Mod-

ern datasets, such as MS-Celeb-1M [43] and VGGFace2 [17] have expanded

vastly, providing vast amounts of data critical for training DNNs with robust

face recognition capabilities. For instance, VGG-Face2 [17] includes images

from 2,622 identities, each represented by approximately 1,000 samples, cov-

ering a diverse spectrum of ethnicities, lighting conditions, poses, and expres-

sions. MS-Celeb-1M [43], currently the largest public face dataset, contains

10 million images of 10,000 celebrities.

For benchmark datasets, LFW [49] is the most typical benchmark for

unconstrained face recognition. It comprises 13,233 facial images of 5,749

people under varying conditions of pose, lighting, focus, and resolution, tar-

geting the pair-matching problem/face verification. Following LFW, Youtube

face (YTF) [128] serves as another important testing datasets. The dataset

comprises 3425 videos of 1595 individuals. YTF evaluates pair matching

under two protocols: restricted and unrestricted. The IJB series [62, 79] is

known for its stringent testing protocols and includes both images and videos,

providing a robust platform for evaluating the performance of face recog-
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nition systems across a variety of pose angles and illumination conditions.

MegaFace [60] further evaluates face recognition and verification performance

against up to 1 million distractors (approximately 672K identities), crucial

for applications that require identification from very large populations. A

detailed comparison of the datasets discussed in this section is provided in

Table 2.1, highlighting their size, the number of identities and key features.

Dataset Size Identities Key Features
CelebFaces [77] 202,599 10,177 Unconstrained, celebrity images
CASIA-Webface [134] 494,414 10,575 Realistic challenges, diverse environments
VGGFace2 [17] 3.3M+ 2,622 Diverse poses, lighting, and expressions
MS-Celeb-1M [43] 10M+ 10K Largest public dataset, celebrity images
LFW [49] 13,233 5,749 Pair-matching, various conditions
YTF [128] 3,425 1,595 Video-based pair matching
IJB-C [79] 31K+ 3,531 Benchmarking, varied poses
MegaFace [60] 1M+ 672K Large-scale distractors

Table 2.1. This table compares popular face datasets in terms of size, number of
identities, and key features relevant to training and evaluation.

2.3 Face reconstruction

This section reviews existing works on 3D face reconstruction from monocular

images. Reconstructing a face from a single 2D image presents an ill-posed

problem, necessitating the estimation of various parameters including intrin-

sic and extrinsic camera parameters, lighting conditions, shape, and texture.

Despite these challenges, face reconstruction has significant applications in

fields such as surveillance, medicine, security, and entertainment.

The classical approach to face reconstruction employs an analysis-by-

synthesis architecture. This methodology explains an observed data vector,

such as an image, in terms of the hidden features that generated it. In

the context of face reconstruction, this involves recovering the facial shape
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by comparing a target image with an image produced through computer

graphics-based rendering. The specific reconstruction approach discussed

below adheres to this analysis-by-synthesis framework.

2.3.1 3DMM fitting

A 3DMM-based face reconstruction typically involves two primary stages:

model building and model fitting. In the model building stage, a 3D sta-

tistical face model is generated using training datasets. During the model

fitting stage, the 3D face model is projected onto the face in a given image

to facilitate reconstruction.

Zhmoginov et al. [140] present a gradient descent approach to invert

FaceNet embeddings for image recovery. This process utilizes an autoen-

coder structure, where the autoencoder is designed to approximate the iden-

tity mapping by coupling an encoding stage with a decoding stage to learn

a compact intermediate representation, known as the code vector. These

architectures have been widely used to extract facial features from images,

offering the significant advantage of being generally unsupervised.

Their result is shown in Fig. 2.5, while not perfect, demonstrate that

neural network embedding losses, when combined with simple regulariza-

tion functions, have the potential to reconstruct faces that look realistically

human.

In recent years, people have done much work on how to employ DCNNs

for face reconstruction. The first such methods are trained differentiable

render (i.e. image-to-parameter mapping) to regress 3DMM parameters.

Richardson et al. [95] proposed a methodology utilizing an iterative Con-

volutional Neural Network (CNN) trained on synthetic datasets for estimat-

ing parameters of a 3DMM. This initial geometric prediction is further refined
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Figure 2.5. Sample result of face reconstruction: (a) generic “male” guiding image;
(b) generic “female.” guiding image; (c) image used for calculating the target
embedding e; (d) reconstruction of e with the guiding image (a); (e) reconstruction
of e with the guiding image (b). Taken from [140].

using a real-time shape-from-shading technique. To enhance detail extrac-

tion, they later developed an end-to-end CNN framework that incorporates

a coarse-to-fine approach, significantly advancing the field of facial geometry

reconstruction [96].

Training deep neural networks usually requires a great quantity of data,

but face images with 3D ground truth shapes are hardly available. Tewari et

al. [118] which can be trained on unlabeled photographs to predict shape,

expression, texture, pose, and lighting simultaneously. MoFA integrates deep

learning-based and model-based capture within an end-to-end trainable ar-

chitecture, facilitated by a differential renderer that enables unsupervised

training on in-the-wild face images.

The framework of MoFA is illustrated in Fig. 2.6, Here, a differential de-

coder processes the code vector produced by a convolutional encoder network

that captures faces, effectively reconstructing the face. This semantic vec-

tor stores 3DMM parameters, perspective camera parameters, and spherical

harmonics in a unified manner:

x = (α, θ, β, T, t, γ) (2.8)

Where shape α ∈ R80, facial expression γ ∈ R80,skin reflectance β ∈ R80,
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Figure 2.6. The framework of MOFA [118]. A deep model-based face autoen-
coder enables unsupervised end-to-end learning of semantic parameters. Taken
from [118].

camera rotation T ∈ SO80 and translation t ∈ R3, and the scene illumination

γ ∈ R27.

MoFA employs a robust dense photometric loss function that enables

end-to-end training of the encoder. It is possible because the decoder is

differentiable, which allows MOFA to compute the gradients of the rendered

image with respect to the parameters of the 3DMMmodel. The loss combines

three terms:

Eloss(X) = wlandEland(X) + wphotoEphoto(X) + wregEreg(X) (2.9)

Here they enforce sparse landmark alignment Eland, dense photometric align-

ment Ephoto and statistical plausibility Ereg of the modelled faces.

Genova et al. [39] also propose an encoder-decoder architecture for 3D

face reconstruction. Their method utilizes a CNN followed by fully con-

nected layers, which effectively map extracted features to 3D Morphable

Model (3DMM) parameters. This architecture enables the learning of re-

alistic facial geometries through iterative refinement from a diverse dataset

comprising both synthetic and real-world images. A distinctive feature of

their approach is the implementation of a batch distribution loss, which is

specifically designed to align the distribution of the output with that of the

morphable model. This method shows improved resistance to confounding
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Figure 2.7. Overview of the architecture of GANFIT [38]. GANFIT optimize the
parameters with the supervision of pretrained deep identity features through our
end-to-end differentiable framework. Taken from [38].

variables such as identity, expression, skin tone, and lighting, compared to

MoFA.

Despite these technological advancements, the methods we mentioned

above, continue to face challenges in capturing high-frequency details in tex-

tures. Moreover, because the reconstruction process permits deviations from

the 3DMM space, it remains vulnerable to outliers, such as glasses or ear-

rings, which can be inaccurately represented in shape and texture.

2.3.2 Face reconstruction with GANs

Face reconstruction with GANs can utilize the characteristics of GANs to

generate high-quality facial texture. In the past few years, some work has

explored the use of GANs for face reconstruction [100, 38]. The fundamen-

tal concept behind these methods involves employing GANs in conjunction

with a differentiable renderer to develop a potent generator of facial textures.

This differentiable renderer operates within a model-based encoder-decoder

architecture, where the decoder processes the 3DMM parameters predicted

by the encoder to reconstruct a 3D face onto a 2D image plane. Addition-
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ally, the differentiable render allows the latent vector of GANs to be easily

optimized by backpropagation via gradient descents.

In [38], the authors employ an end-to-end differentiable renderer com-

bined with GANs to train a sophisticated generator of facial texture in UV

space. This setup integrates 3DMM to determine the optimal latent parame-

ters that not only reconstruct the test image but also adapt it to a new scene.

The overall architecture of this system, GANFIT, is illustrated in Fig. 2.7.

Within the GANFIT structure, the reconstruction mesh is formed by a

3D morphable shape model and textured by the generator network’s output

UV map. A differentiable renderer is used to project the 3D reconstruction

onto a 2D image plane using a deferred shading model, with specified cam-

era and illumination parameters. Furthermore, to enhance the robustness

of identity-related parameters, the authors render a secondary image with

random expression, pose, and illumination [38]. This end-to-end differen-

tiable architecture enables the propagation of loss all the way back to the

latent parameters through gradient descent optimization, thereby allowing

deep networks to function either as a generator or as part of the cost func-

tion. The results of GANFIT (shown in Fig. 2.8) show that GANFIT has

higher photorealistic texture reconstructions than has higher photorealistic

texture reconstructions than other methods that regress their texture from

the MOFA model.

Building upon GANFIT method, Lattas et al. [66] introduced AvatarMe,

a groundbreaking method designed to reconstruct photorealistic 3D faces

from single ”in-the-wild” images, incorporating an unprecedented level of

detail. Initially, AvatarMe employs a 3D Morphable Model (3DMM) to re-

construct the basic shape and texture of a 3D face from a single image at low

resolution. Subsequently, a completed UV texture is synthesized to enhance
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Figure 2.8. Qualitative results of GANFIT for the images from various
datasets [38]. It is worth noting that GANFIT is not only good at capturing
high-frequency details of the identities but robust to occlusion (e.g., glasses), low
resolution and black-white in the photos and generalizes well with ethnicity, gen-
der and age. Taken from [38].

the facial details. The GAN framework aids in the inference of the final

material properties such as specular albedo and normals. These elements

are essential for simulating realistic light interactions with the facial surface,

thereby significantly enhancing the overall photorealism of the reconstructed

faces. This process vividly demonstrates the capability of GANs to generate

high-fidelity, detailed textures from limited input data, making it integral

to the AvatarMe system’s performance in rendering photorealistic 3D faces

from in-the-wild images.

2.3.3 Reconstruction from features

Both the 3DMM-based and GAN-based reconstruction methods are based on

analysis-by-synthesis loops of forming a face image and minimizing the dif-

ference between the input image and the model appearance. However, recent

studies suggest that analysis-by-synthesis fitting algorithms can be compu-

tationally burdensome and prone to getting trapped in local minima [143].
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Where the reconstruction from features method is opposed to the reconstruc-

tion from images. An alternative to this approach is the reconstruction from

features method, which contrasts sharply with image-based reconstruction.

Instead of using images as input, this method utilizes features extracted from

images, such as face ID descriptors, for the fitting task. This approach re-

duces dependency on the initial quality of reconstruction and increases the

efficiency of the fitting process.

Despite its potential, the reconstruction of a face solely from face descrip-

tors remains a relatively unexplored area in research. Only a few studies

have investigated the inversion of a face descriptor back into a face image

[140, 118, 23, 39, 93].

Huber et al. [51] and Zhu et al. [143] use local features with regression-

based methods to fit a 3D Morphable Model (3DMM) to 2D face images.

Zhu et al. [143] particularly focus on reconstructing shape from the histogram

of oriented gradients (HOG) features around face landmarks. More recent

work employs face recognition networks to generate face ID descriptors, which

serve as input features for their regression networks, verifying that the output

closely resembles the input photograph [90, 116].

Concerning non-ID information contained in face descriptors, early work

by Kumar et al. [65] found that using an ’inverse crop’—removing the face

from an image—still allowed for surprisingly high face recognition rates on

LFW. Notably, these inverse crops included hair and parts of ears/chin, con-

tributing to the recognition rates exceeding 99%, even a decade ago. How-

ever, it remains largely unexplored whether any background or other non-ID

information is present in face descriptors, particularly in modern state-of-

the-art networks like VGGFace2. To the best of our knowledge, no work

so far has investigated if any non-ID properties can be recovered from iden-
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tity descriptors. In Chapter 5, we will introduce our attempt to reconstruct

non-ID attributes from face descriptors.

2.3.4 Geometric alignment

Face alignment is the process of moving and deforming a face model to an

image, so as to extract the semantic meanings of facial pixels. It is an essen-

tial preprocessing step for many face analysis tasks, recognition, animation,

tracking, attribute classification and image restoration. In the field of com-

puter vision, face alignment remains a critical challenge that has garnered

significant interest. Initially, numerous 2D facial alignment techniques were

developed to locate fiducial 2D facial landmarks, treating 2D Face Alignment

as a regression problem where the landmark locations are directly regressed

from the face images [75, 129]. Additionally; CNN-based methods are also

largely used on 2D landmark location [87, 16, 72]. Sun et al. [109] firstly

uses CNN to regress landmark locations with the raw face image. Liang et

al. [72] improve the flexibility by estimating the landmark response map.

Zhang et al. [137] further combine face alignment with attribute analysis

through multi-task CNN to boost the performance of both tasks. Jourabloo

and Liu [55] further propose a CNN architecture that enables the end-to-end

training ability of their network cascade to improve its alignment. How-

ever, the limitation of 2D landmarks is that they only regress visible points,

which fails to adequately describe face shape under large pose variations. For

faces with large poses or occlusions, the incorporation of strong 3DMM face

shape priors has proven advantageous, which begins with fitting a 3DMM to

a 2D image [80, 42, 142]. Recently, regression based 3DMM fitting, which

estimates the model parameters by regressing the features at projected 3D

landmarks, has looked to improve the efficiency [54, 118, 121]. Nonetheless,



48 Literature Review

given that 3DMM parameters vary in importance during the fitting process,

directly minimizing parameter error may not always yield optimal alignment

results, as smaller parameter errors do not necessarily correlate with reduced

alignment discrepancies [18].

Jaderberg et al. [53] proposed the Spatial Transformer Network (STN),

a neural network module that explicitly handles pose and nonrigid deforma-

tions in input data, enabling it to handle inputs with significant translation

and pose variations more effectively. Bas et al. [8] extended this work to

align a 3DMM using STN (3DMM-STN). The author uses the localiser to

predict 3DMM shape parameters and pose. According to the predicted pa-

rameter, the grid generator projects the 3D geometry to 2D. At the same

time, an occlusion mask is computed from the estimated 3D geometry. Sub-

sequently, a bilinear sampler resamples the input image onto a regular output

grid, which is then masked by the previously computed occlusion mask. This

methodology demonstrates robust performance in handling images with sig-

nificant pose variations. Our work presented in Chapter 5 is based on their

architecture, we leverage the STN-3DMM approach to enhance face recogni-

tion, focusing on pose-invariance through advanced mapping and occlusion

handling, distinctly aiming to achieve efficiency with less data compared to

existing methods.

2.3.5 Semantic Face Editing

Semantic face editing aims at manipulating the facial attributes of a given

image. Different from simply changing the greyscale and other low-complex

information of the facial image, manipulating attributes of a face (e.g., chang-

ing the pose, expression, ageing or even gender) is a more complex and chal-

lenging modification to perform. In this case, in order to obtain realistic
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results, a skilled human with image edition software would often be required.

In recent years, many learning-based methods are deployed to solve this

problem and have achieved certain results.

Face editing with 3DMMs The robust statistical priors inherent in

3D Morphable Models (3DMMs) prove highly beneficial for face editing

tasks [12, 13]. 3DMMs allows for the parameterization of face manipulations,

providing a controlled framework for altering facial attributes. Typically, face

editing involves an initial 3D shape reconstruction by fitting the 3DMM to an

image within an analysis-by-synthesis loop. Once this model is fitted, prior

knowledge about the shape and texture of faces becomes available, enabling

substantial and plausible edits to the full 3D shape and texture of a face,

even from a single image.

Early research in this area focused on modifying specific attributes such

as pose [12, 55, 88], expression [13, 119, 20], and aging [61, 139]. However,

these approaches often cater to specific editing tasks and rely on prior knowl-

edge that may not be universally applicable to new editing challenges. This

limitation underscores the need for more adaptive and generalized methods

that can handle a broader range of editing tasks without extensive retraining

or recalibration.

Face editing with GANs GANs have shown significant potential in face

editing due to their ability to generate plausible and realistic data. However,

despite recent advancements in high-fidelity image synthesis using GANs,

there remains a limited understanding of how facial semantics are encoded

within their latent space. This lack of understanding restricts our ability to

manipulate facial attributes effectively using GAN inversion methods.

One popular approach, known as Invert and Edit, involves a two-step
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process during which an image is first inverted into the latent space of a GAN,

and then the resulting latent code is edited in a semantically meaningful

way [130]. This method allows for intuitive, semantic editing of the image,

as demonstrated by Shen et al. [101] in their work on InterFaceGAN. The

author finds that for any binary semantic (e.g., male v.s. female, young vs

old) there exists a hyperplane in latent space as the separation boundary

such that all samples from the same side are with the same attribute. Each

hyperplane has a specific unit average vector n, the distance between a latent

space z to this hyperplane as:

d(n, z) = nT z (2.10)

A semantic scoring function f : X → S that is a mapping from image

space S to semantic spaceX. When a sample semantic lies near the boundary

and is moved toward and across the hyperplane, both the “distance” and

the semantic score can change accordingly. Therefore, the correspondence

between facial semantics and hyperplane can be modelled as:

f(g(z)) = λd(n, z) (2.11)

The manipulation of a single attribute of a synthesized image can straight-

forwardly adjust the original latent z with zedit = z+α. However, when edit-

ing involves multiple semantic attributes, unintended interactions between

these attributes may occur due to potential couplings within the semantic

features. To address this complexity, the conditional manipulation technique

employs orthogonal projection of vectors, which effectively decouples these

attributes, thereby facilitating precise control. This work underscores the

potential of GANs in semantic face editing, yet it also highlights the neces-
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Figure 2.9. Illustration of the conditional manipulation in subspace. Two hyper-
planes with normal vectors n1 and n2. Moving samples along the projected direc-
tion n1 − nT

1 n2 can change the ”semantic from the blue plane” without affecting
the ”semantic of the purple plane”. Taken from [101].

Figure 2.10. The results of manipulating a specific attribute by InterfaceGAN.
Taken from [101].

sity for a deeper understanding of latent encoding mechanisms to fully utilize

this technology. An illustration of this conditional manipulation is shown in

Fig. 2.9, with some results depicted in Fig. 2.10.

One of the primary challenges in GAN-based face synthesis models is the

difficulty in controlling the images they generate, primarily because a ran-

dom distribution typically serves as the input for generators. To address this

issue, modified GAN architectures such as Conditional GANs (C-GAN) [82]

have been developed. These models set conditions on both the generative

and discriminative networks to facilitate conditional image synthesis. How-

ever, the mapping in C-GAN does not restrict the output strictly to the
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Figure 2.11. The results for various controls over StyleGAN images: pose, expres-
sion, and illumination edits. Taken from [117].

target manifold, allowing outputs that may deviate significantly from the

desired results. Additionally, generating identity-preserving faces remains an

unsolved challenge within these frameworks.

Mokhayeri et al. [83] introduced a novel approach to this problem with a

cross-domain face synthesis method that utilizes a controllable GAN frame-

work. This method employs a 3D face model as a simulator to generate

face images under various poses. These simulated images, along with noise,

are then input into a C-GAN, which incorporates an additional adversarial

game involving a third player to preserve specific attributes. The C-GAN

is designed to generate highly consistent, realistic, and identity-preserving

synthetic face images under specific pose conditions. However, this model

requires the training of a specific refiner for each attribute and does not con-

trol other aspects of facial appearance such as illumination and expression

during the synthesis process.

Tero et al. [2] proposed an embedding algorithm to project images to

the latent space of StyleGAN. The pseudo-cod of their embedding algorithm

is illustrated in Fig. 2.12. While this algorithm facilitates semantic image

editing operations, it lacks explicit rig-like 3D control over the generative

model, a feature that remains highly sought after in the field.
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Figure 2.12. The pipeline of the embedding algorithm. The loss function that
is weighted combination of the VGG-16 perceptual loss and pixel-wise MSE loss,
where F ′ is the feature output of VGG-16 layers conv1 1 , conv1 2 , conv3 2 and
conv4 2 . Taken from [2].

To explicit control over a set of semantic face parameters that are inter-

pretable in 3D, Tewari et al. [117] proposed a method that obtain both the

controllable parametric nature of face models and the high-photo realism of

generative face models (Sample result shows in Fig. 2.11). Their method is

to provide a face rig-like control over a pretrained and fixed StyleGAN via

a 3DMM. A new rigging network, RigNet is trained between the 3DMM’s

semantic parameters and StyleGAN’s input. This method is trained in a

self-supervised manner and does not require any additional images or man-

ual annotations. Fig. 2.13 shows an overview of StyleRig architecture.

However, StyleRig is not able to exploit the full expressivity of the para-

metric face model. The author attributes these problems to the bias in the

images StyleGAN has been trained on. For instance, StyleGAN is trained

on the FFHQ dataset [7] that without in-plane rotations, hence styleRig will

also ignore the in-plane rotation of the face mesh.
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Figure 2.13. StyleRig Structure: The rig-like is based on a RigNet that is trained
between the 3DMM’s semantic parameters and StyleGAN’s input. The differen-
tiable face reconstruction (DFR) and StyleGAN networks are trained, and their
weights are fixed, The consistency and edit losses in the image domain using a
differentiable renderer. Taken from [117].

2.4 Privacy leakage & Adversarial learning

Past studies have shown that face recognition networks encode soft biometric

attributes (e.g., race and gender) while training [36, 37, 31]. This indicates

that face descriptors are at risk of privacy leaks. Tinsley et al. [120] present

that there is also privacy leakage in GAN. In addition, respectable studies [81,

31, 40] have shown that privacy leaks will affect the performance of facial

recognition systems.

To address bias, Alvi et al. [6] proposed a joint learning and unlearning

method to reduce bias in neural network embeddings, employing confusion

loss to unlearn bias through the calculation of cross-entropy between the

classifier output and a uniform distribution. In the realm of GANs, ap-

proaches [131, 15, 19, 71] such as differential privacy have been employed

to protect privacy by adding noise, thereby masking the maximum change

in data-related functions. This method has been further refined by Xu et

al. [133] with the introduction of GANobfuscator, which mitigates informa-
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tion leakage by injecting noise into gradients during the learning process.

Similarly, Chen et al. [22] have implemented differential privacy on the dis-

criminator using autoencoders to protect privacy while preserving data util-

ity.

Parallel to concerns about bias and privacy, there is a growing interest in

understanding and mitigating the risks associated with ID descriptor infor-

mation and its inversion. Mahendran and Vedaldi’s seminal work in 2015 [78]

explored the potential for reconstructing images from their encoded repre-

sentations, showing that deep networks retain rich visual information that

can support image reconstruction. This research is particularly relevant for

face identity descriptors derived from the final layer of a deep network, rep-

resenting the most invariant and abstract image representation.

Building on this foundation, several works employ an identity loss in 3D

face model fitting, for example, GANFIT [38]. Cole et al. [23] also perform an

ID-only inversion for face frontalisation. They assume that the face encoder

successfully removes all non-ID information and trains to reconstruct only

frontal image landmarks and textures. Since they do not use a GAN, their

results are not photorealistic. Some recent works [93, 33] have investigated

a so-called black-box attack, which is whether given only an ID descriptor,

and no access to an attacked model, one could reconstruct an image of the

face, and they have presented encouraging (technically) as well as concern-

ing (from a privacy perspective) results. These investigations have yielded

both technically impressive and privacy-concerning results, underscoring the

need for continued research into methods that can protect individual privacy

without compromising the utility of facial recognition technologies.
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2.5 Conclusion

The comprehensive review of literature presented in this chapter highlights

significant advancements and challenges in generative face modeling, face

recognition, face reconstruction, and privacy considerations. Recent progress

in face reconstruction has been primarily driven by the integration of deep

generative models, enabling high-fidelity and realistic facial reconstructions.

Techniques that leverage unsupervised learning, hybrid approaches combin-

ing 3D geometry with neural rendering have gained significant traction. In

domain of face recognition, current trends focus on optimizing embeddings

to improve both discriminability and fairness. Methods such as contrastive

learning and angular margin-based losses have improved the robustness of

recognition systems under diverse conditions.

Despite these advancements, critical gaps remain, particularly concerning

the leakage of non-ID information in state-of-the-art face recognition systems.

Although identity embeddings are designed to capture only identity-specific

features, research has shown that these embeddings inadvertently encode

non-ID attributes such as soft biometrics (e.g., age, gender, and race), as

well as pose, lighting, and background. This unintended encoding raises

significant privacy concerns and ethical challenges in the deployment of facial

recognition technologies [36, 37, 31].

Building on this foundation, the subsequent chapters of this thesis aim

to address these gaps by investigating the extent and implications of non-ID

information leakage. Specifically, this work introduces adversarial training

techniques to minimize its impact. Furthermore, by leveraging the spatial

information retained in identity embeddings, this research demonstrates that

spatial features encoded in recognition signals can be repurposed for tasks

like face alignment and 3D reconstruction. This dual nature of non-ID leak-
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age is critical: while it poses risks to privacy and fairness, it also presents

opportunities for advancing related applications.

These contributions aim to enhance the technical rigor, security, and eth-

ical deployment of face recognition technologies, paving the way for systems

that are not only more accurate but also more accountable.
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3
Leakage of non-ID information into face

descriptors and its mitigation

3.1 Introduction

State-of-the-art face recognition relies on the use of deep neural networks

(usually CNNs) to embed a face image to an identity vector [17, 97, 86]. A

measure of distance in this embedding space is used to represent dissimilarity

in identity. The goal of training such networks is to minimise the within-class

scatter while maximising the between-class scatter for all identities. The for-

mer goal necessitates that the embedding should depend only on the identity

of the person in the image. Environmental conditions such as the lighting,

background and properties of the camera as well as changeable aspects of the

face such as pose, expression and the presence of accessories should not af-

fect this embedding (i.e. should not introduce within-class scatter). In other

words, the embedding network should learn invariance to these factors.

In this chapter, we ask whether ID embeddings truly contain only ID-

related information. The engineering of training datasets, network archi-

tectures and loss functions has been widely studied in the face recognition

literature in order to satisfy the goal of invariance to non-ID factors in the

input image. Datasets are created specifically to introduce lots of variation in

these non-ID factors. Then, by designing a loss function that encourages the
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same ID to embed to the same point, invariance to these factors is hopefully

learnt. In this thesis, we investigate to what extent this has been achieved. In

particular, we ask: how well do modern face embedding networks successfully

remove non-ID factors when embedding a face image?

In an early work, Kumar et al. [65] came to the perhaps surprising result

that using a so-called inverse crop, where the face is cut out of an image,

leads to surprisingly high face recognition rates on LFW. It should be noted

though that these inverse crops do contain hair and part of ears/chin, and

that LFW is a fairly simple dataset (recognition rates achieved are over 99%,

even a decade ago) - so it is largely unexplored, if any background or other

non-ID information is present in face descriptors, especially in today’s state-

of-the-art networks.

Having established that non-ID information does leak into the ID descrip-

tors of modern face embedding networks, we secondly investigate whether

this leakage can be mitigated and whether this improves face recognition

performance. Any leakage of non-ID information degrades the value of the

ID descriptors for recognition by introducing distractor information that is

unhelpful for recognition. We therefore expect that the removal of this infor-

mation might improve recognition performance. Consider a concrete example

of a person who regularly wears hats. Leaking the non-ID information “wear-

ing hat” into the descriptor is useful for recognising this individual but will

degrade performance when trying to recognise this person not wearing a hat.

Recent studies have underscored significant privacy and bias concerns as-

sociated with facial recognition technologies. Works such as [36, 48, 115] have

demonstrated that face recognition networks encode protected attributes like

race, gender, and age while being trained for identity classification. The en-

coding of such sensitive attributes raises serious privacy and bias issues. One
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approach to mitigating these issues involves training face recognition systems

with datasets that are balanced in terms of sensitive attributes. However,

compiling large datasets balanced in these attributes is challenging, costly,

and time-consuming. Another prevalent strategy is the application of differ-

ential privacy [34], which reduces information leakage by injecting noise into

the gradients during the learning process [133, 22, 131, 15, 19, 71]. Neverthe-

less, introducing additional noise in descriptors during network training typ-

ically results in a degradation of overall performance [50]. Moreover, in con-

trast to the impacts of soft biometric privacy on facial recognition, the influ-

ence of non-ID information—such as background elements and occlusions—

on biases within facial identification systems remains insufficiently explored.

In this work, we focus on on the leakage of non-ID information into ID

descriptors and explore how mitigating this leakage can enhance face recogni-

tion performance. We introduce a technique to detect the presence of non-ID

information in face descriptors and propose an adversarial training procedure

designed to minimize the leakage of protected attributes. This approach aims

to improve the performance and reliability of face recognition systems by en-

suring that the ID descriptors are less influenced by irrelevant or sensitive

attributes.

3.2 Non-ID attribute prediction from ID

We begin by exploring to what extent we are able to estimate non-ID “at-

tributes” from an ID descriptor provided by a pretrained face encoder CNN.

We use “attribute” here in very general terms, including image-based at-

tributes such as landmark positions and colour histograms and non-ID face

attributes such as the presence or absence of a smile, glasses or hat. For each
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attribute, we train an MLP that maps from an ID descriptor to the target

attribute. All of our MLPs are trained on the CelebA dataset [77], which

contains 202,599 celebrity face images annotated with 40 binary attributes.

CelebA is selected for its rich annotations and the wide diversity it offers

in terms of facial attributes, poses, and lighting conditions, making it par-

ticularly suitable for evaluating attribute prediction tasks. These detailed

annotations also support robust training and evaluation of models, ensur-

ing high-quality learning and attribute-specific performance. In this study,

we use the smiling, glasses, and wearing hat annotations provided by

CelebA as representative non-ID face attributes for training purposes. We

aligned and cropped the original CelebA to a VGGFace2 compatible version

and scaled all images to resolution 224.

We train in a supervised fashion using either labelled real data or synthet-

ically generated data. In all cases, we embed images I to an ID descriptor,

d = fID(I), where fID : [0, 1]H×W×3 → RN is the network that embeds to

an N dimensional latent space. In practice, we experiment with both the

VGGface2 face encoder [17], where N = 2048, and the ArcFace encoder [28],

where N = 512. Fig. 3.1 illustrates our proposed Non-ID attribute regression

framework.

3.2.1 Discrete Binary Attributes

We begin by estimating discrete binary attributes. These have been manually

labelled as part of the CelebA [77] dataset. We train an MLP, f : RN → [0, 1],

that predicts the probability of the binary class from the ID descriptor. Our

MLP consists of 3 fully connected layers with 256 hidden neurons and a

sigmoid output layer. We train the classification MLP using Binary Cross

Entropy loss, the Adam optimiser with learning rate 10−3, for 20 epochs. We
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Figure 3.1. Non-ID attribute regression via an ID bottleneck. Only the green
component is trained: an MLP that maps an ID vector to the appropriate attribute
(such as expression, landmarks, image histogram etc). The labels either come from
a pretrained (and fixed) attribute estimation network that takes an image as input,
or they are provided as manually assigned labels or they are computed directly
from the input image (in the case of the image histogram attribute).

train separate networks for the smiling, glasses and wearing hat binary,

non-ID attributes.

3.2.2 Histogram regression

Histograms of RGB intensities provide a global summary of an image that

encapsulates not only ID but also environment-related features such as back-

ground, camera settings and lighting. We therefore investigate whether image

histograms can be recovered from ID descriptors.

For each image, we compute a ground truth histogram of intensities for

each colour channel and use this as the label for training. Here, the three

colour values are binned into fixed width bins, with one histogram per colour

channel.

We found that a very small MLP provides best performance for the task
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of image histogram regression from ID vector. We use 2 fully connected

layers with ReLU activation and 8 neurons per layer. We apply softmax to

the output layer such that the output represents a normalised histogram.

We use N = 10 bins. We train this network using mean squared error loss,

Adam with learning rate of 10−6, and batch size 32, for 20 epochs.

3.2.3 Landmark regression

Finally, we attempt to directly regress the coordinates of 68 face landmarks

from the ID vector. We apply the dlib landmark detector [59] to all images in

the CelebA dataset [77]. We use these as pseudo ground truth labels for our

regressor. We use a three-layer MLP to predict landmarks from ID vector

with 256 neurons per hidden layer and 136 outputs for the 2D coordinates of

each landmark. For comparison, we also train a more conventional image to

landmark regressor using a CNN. We use a simple architecture comprising

5 convolutional layers followed by 2 fully connected layers. The activation

function is ReLUs. Both image to landmark and ID vector to landmark

networks are trained using mean squared error loss and the SGD optimiser

with learning rate 10−3, batch size 16, and for 150 epochs. Tinsley et al. [120]

is the first work to present identity leakage in StyleGAN. They find that

identity information in face images can leak from the training datasets into

synthetic result.

3.2.4 Results

We now evaluate our prediction of non-ID attributes from ID vectors, as

provided by the VGGFace2 network. We show quantitative results for all

attributes in Table 3.1. The evaluation images we used are 15k test images

from CelebA with the remaining 188k images for training. To validate our
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Attribute Landmarks Histogram
Smiling Wearing Hat Eyeglasses mean EMD

From ID (VGGFace2 [17]) 91.0% 99.0% 99.7% 9.3% 2.68
From ID (ArcFace [28]) 81.7% 96.7% 96.7% 7.3% 2.45
From image [77] 92% 99% 99% 8.2% 0.0
Baseline 50.4% 96.7% 94.0% 11% 2.97

Table 3.1. Quantitative results for attribute prediction (discrete binary attributes,
landmarks and image histogram) from ID vectors (row 1 and 2) and images (row
3). In row 4 we show baseline performance in which we simply always predict
the most common class, the mean landmarks or the mean histogram respectively.
The attribute prediction results show accuracy (higher is better), the landmark
prediction is measured in percentage of interocular distance (lower is better), and
for the histograms we measure Earth Mover’s disance (EMD) to ground truth
(lower is better).

results, we repeat the experiments with ID vectors generated by the ArcFace

network.

For discrete binary attributes, we show the percentage classified correctly.

Our result regressed from the ID vector is shown in the first and second rows.

This shows that non-ID leakage exists in different networks. For comparison

in the third row we show the result from [77] computed from the original

image. In the fourth row, we show the baseline performance obtained by

always guessing the more common class for the binary attribute prediction,

the mean landmarks for the landmark prediction, and the mean histogram

for the histogram prediction. We can see that we significantly outperform

that baseline and, remarkably, match or even exceed the performance of an

image-based method despite only having access to an ID vector that should

be independent of these non-ID attributes. In Fig. 3.2 and Fig. 3.3 we show

some examples of correctly and incorrectly classified samples. It is interesting

to note that quite subtle smiles are encoded in the ID vectors such that we

correctly classify them and, even in the case of the false positives shown, there

are still smile-like features in the wrinkles around the mouth. Similarly, the



3.2 Non-ID attribute prediction from ID 65

Correctly classified

S
m
il
in
g

W
ea

ri
n
g
h
a
t

E
y
eg

la
ss
es

Figure 3.2. Examples of correctly classified samples. We show the original images
but note that the classification is done only on the ID vectors derived from these
images.

false positives for wearing hat are in fact wearing headgear.

We now evaluate image-based attributes. In Table 3.1 we show quan-

titative results for landmark prediction in the fifth column and histogram

prediction in the sixth column. For the landmark error, we show Euclidean

distance averaged over landmarks expressed as a percentage of the interoc-

ular distance. For histogram error, we show the Earth Mover’s distance to

ground truth. Our prediction from ID vector outperforms the baseline and

is only marginally worse than prediction from images (in the case of land-

marks). In the case of histogram, the prediction from images is exact. In

Fig. 3.4 we show qualitative results for landmark and histogram estimation
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Figure 3.3. Examples of incorrectly classified samples. The classification errors
include both false positives and false negatives, based only on the ID vectors derived
from these images.

from ID vectors. In the first row we show the original image with ground

truth (dlib) landmarks overlaid. In the second row we show the original

images with the landmarks regressed from the ID vector overlaid. The land-

marks are qualitatively convincing and clearly reconstruct pose - an entirely

non-ID related property. In the third row we show the ground truth (dotted

lines) and estimated (solid lines) RGB image histograms.

This section of our work demonstrates the capability of our approach

to accurately predict non-ID information attributes, such as landmarks and

color histograms, from face embedding. Notably, our method’s performance

in landmark prediction closely approaches that achieved by direct image anal-
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0 255 0 255 0 255 0 255 0 255

Figure 3.4. Qualitative results for histogram and landmark regression. row 1:
input image with ground truth landmarks, row 2: landmarks regressed from ID
vector, row 3: ground truth image histograms (dotted) and histograms regressed
from ID vector (solid).

ysis, underscoring the depth of information encoded within ID embedding.

Furthermore, the reconstruction of image histograms from ID embedding

underscores the potential for non-ID information leakage in face recognition

systems. The reconstruction of image histograms from ID embeddings unveils

the potential for recuperating environmental information, such as background

elements, from face embeddings, thereby amplifying concerns related to pri-

vacy. Our work not only investigate the extent to which non-ID attributes

can be inferred from identity embedding but also lays the groundwork for fu-

ture works aimed at improving the privacy and integrity of face recognition

network through the mitigation of such leakage.

3.3 Mitigating non-ID leakage

In this section, we aim to suppress the leakage of non-ID information into

facial descriptors. Preliminary findings, discussed in Section 3.2, reveal that
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even state-of-the-art ID embeddings inadvertently retain elements of expres-

sion information, such as the ability to predict a subject’s smile from their

ID embedding. This issue is corroborated by recent studies which show that

encoding non-ID attributes like race, gender, and age within facial descrip-

tors can compromise the effectiveness of facial verification and matching sys-

tems [31, 36, 69]. Our objective is to refine facial descriptors to minimize the

retention of non-ID information, thereby enhancing the performance of facial

recognition systems in verification tasks. To achieve this, we propose an ad-

versarial training method designed to selectively mitigate non-ID attributes

from the descriptors while ensuring that the identity information crucial for

accurate verification remains robust. We hypothesize that this approach will

not only reduce bias but also improve the performance of face recognition

technologies.

3.3.1 Adversarial Debiasing

Method overview The key idea in our proposed approach is to train a

model to classify identities while discouraging it from predicting a specific

protected attribute.

Let Ii denote the ith training face image and F (·) represent the feature ex-

traction function performed by the backbone network F . The corresponding

feature vector, i.e. face descriptor, di for each image is obtained as follows:

di = F (Ii). (3.1)

We present our network architecture in Fig. 3.5. The proposed architec-

ture consists of three main components:

1. Face embedding network (backbone) F : The face embedding net-
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Figure 3.5. Overall Pipeline of Our Method. In stage 1, face descriptors d are
extracted from a pre-trained network F . In stage 2, these extracted descriptors
are input into a non-ID attribute classifier D, which is trained to classify specific
non-ID attributes using the gradients of the loss function Ladv. In stage 3, an
identity classifier C is trained to utilize the gradients of both Ladv and Lclass. The
gradients from Ladv are employed to debias d with respect to the target attribute
while also enabling the classification of identity.

work is responsible for extracting identity features di from face images

Ii. In the context of adversarial learning, we can also think of this as

the generator network, which generates face descriptors.

2. Classifier C: A classifier that takes in di and generates a prediction

vector for identity classification.

3. Non-ID attribute classifier D: An attribute prediction model that

takes di as input and attempts to classify non-ID attributes. In the

context of adversarial learning, this network plays the role of the dis-

criminator.

We now explain our network as an adversarial approach. Backbone F is

used to generate descriptors di. di is fed to the prediction modelD which acts

as a discriminator and aims to classify the non-ID attribute. The goal is to

train F and C to maximise face classification performance while minimising
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the ability of the adversary D to extract non-ID information from the face

embeddings.

3.3.2 Losses

Training discriminators The non-ID discriminator D aims to classify

non-ID attributes based on the feature descriptors di. Let D(·) denote the

discrimination function of non-ID discriminator D, and yi represent the true

non-ID attribute labels. The loss function LD for updating D is defined as

the cross-entropy loss between the predicted and true labels:

LD(di, yi) = −
C∑
c=1

yi,c log(D(di)c), (3.2)

where C is the number of non-ID attribute classes, and yi,c is a binary indi-

cator of whether class c is the correct classification for observation i.

Adversarial Training to Fool discriminator During adversarial train-

ing, the goal is to update the face embedding network to generate features

that discriminator D cannot easily classify, by minimizing the negative of the

loss function used for D. The adversarial loss Ladv for updating the backbone

is defined as:

Ladv(di, yi) =
C∑
c=1

yi,c log(D(di)c). (3.3)

Identity Recognition Training The identity recognition component of

the model is trained using a modified ArcFace loss [28], which enhances the

discriminability of the identity features.

Let C(·) represent the identity recognition function, and zi the identity
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label for image Ii. The ArcFace loss LArcFace is defined as:

Lclass(di, zi) = − log
eC(di)zi∑N
j=1 e

C(di)j
(3.4)

where N is the number of identity classes, and C(di)j represents the score

of class j for the feature vector di.

Overall Training Objective The overall training objective combines the

adversarial loss with the identity recognition loss, aiming to simultaneously

improve the identity recognition capability of the backbone while reducing

its sensitivity to non-ID attributes. The combined loss L for a given input

image xi and its corresponding identity and non-ID labels zi and yi is:

L(di, zi, yi) = Lclass(di, zi) + λLadv(di, yi) (3.5)

where λ is used to balance between the two losses (a high value of lambda will

sacrifice recognition accuracy in order to remove more non-ID information

from the descriptor).

3.3.3 Training Steps

We now discuss the training process of our network, which utilizes an ad-

versarial training mechanism. This approach systematically updates both

the identity recognition network and the non-ID discriminator in a specific

sequence, with the aim of mitigating non-ID information from the facial de-

scriptors. The identity recognition network consists of the face embedding

network F , which serves as the feature extraction backbone, and the clas-

sifier C, which maps the extracted features to identity labels. The training

process can be broken down into the following steps:
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Step 1 - Feature Extraction: The face embedding network F extracts

descriptors di from the input face images Ii.

Step 2 - Update non-ID Discriminator: di are then fed into the

discriminator network D, which attempts to classify non-ID attributes based

on the features. The loss from the discriminator is used to update the weight

ofD denoted as øD, encouraging it to accurately distinguish between different

non-ID attributes.

Step 3 - Adversarial Training: Next, the face embedding network F is

updated to encourage the removal of non-ID information from the descriptors.

The adversarial training involves calculating the gradient of the adversarial

loss Ladv with respect to the descriptors di and backpropagating this into

the face embedding network to update the weights ωF . This encourages the

backbone F to generate features that are challenging for the discriminator D

to classify, effectively purging non-identity information from the descriptors.

This step is pivotal in debiasing the feature representations towards pure

identity information.

Step 4 - Identity Recognition Training: Finally, classifier C and face

embedding network F are updated to reduce the ArcFace loss to enhance the

discriminability of identity features.

3.3.4 Implementation Details

We employ VGGFace2 [17] and MS1MV3 [43] as our training datasets to

conduct comparisons with other methods. For the embedding network, we

adopt the ResNet-50 architecture as described in [28].

The VGGFace2 dataset is widely used in deep face recognition. It com-

prises over 3.3 million images across more than 9,131 identities. Sourced

from Google, the images are characterized by their diversity, encompassing
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variations in pose, age, lighting, and ethnicity. This diversity makes it an

ideal choice for training face recognition networks due to its extensive scope

and scale.

The MS1MV3 dataset, a cleaned version of MS1MV0 using a semi-

automatic approach, has been instrumental in the development and bench-

marking of face recognition algorithms. It includes approximately 5.2 mil-

lion images of 93,000 individuals, offering a diverse collection of facial images

sourced from the internet. This diversity covers a wide range of variations in

pose, lighting, expression, and occlusion, presenting a challenging yet realistic

scenario for training robust face recognition systems.

During training, we employ the LFW [49], CFP-FP [98], and AgeDB-

30 [84] datasets as validation sets to monitor the convergence status of the

model. For evaluation, we utilize aligned faces from the IJB-C dataset [79].

The IJB-C dataset encompasses 3,531 subjects with 31,300 still images and

117,500 frames from 11,779 videos. There are two evaluation protocols em-

ployed on the IJB-B and IJB-C datasets: 1:1 verification and 1:N identifi-

cation. In our study, we adhere to the 1:1 face verification protocol, which

includes 12,115 templates featuring 10,270 genuine matches and 8 million

impostor matches.

Pretraining Non-ID Attribute Classifier: Expression MLP We em-

ploy the methodology outlined in Section 3.2 to train a Multi-Layer Per-

ceptron (MLP) classifier, referred to here as the Non-ID Attribute Classi-

fier D, for categorizing facial expressions encoded in ArcFace descriptors,

which are extracted from the MS1M dataset [43]. The expression classifier

D is trained in a supervised manner, utilizing expression labels predicted by

DeepFace [99], which outputs prediction scores for seven expressions: dis-
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gust, fear, happiness, sadness, surprise, anger, and neutral. The dominant

expression for each image is determined by selecting the emotion with the

highest score among these categories. While our approach could use any

attribute or combination of attributes, we chose expressions as an exemplar

and obvious non-ID feature that can be reliably labelled from images.

The expression classifier D comprises 13 hidden layers, each containing

16 neurons with ReLU activation functions. The output layer is equipped

with a number of neurons corresponding to the different facial expression

categories. We conduct the training with a learning rate of 0.01 across 400

epochs and the classifier is subsequently evaluated on descriptors derived

from the IJB-C dataset. This procedure allows D to serve as an adversary,

estimating non-ID characteristics, specifically expressions, from an ArcFace

ID embedding.

Training Setting. For data preprocessing, we follow the paper [28] to

generate the normalized faces (112× 112) with five landmarks predicted by

RetinaFace [27]. For the embedding network, we adopt Resnet50. We set the

batch size to 512 and trained models on 4 NVIDIA TESLA V100 GPUs. The

models are trained with SGD, with momentum to 0.9 and weight decay 5e−4.

The learning rate for the feature embedding network starts from 1e−2 and is

divided by 10 at 10, 16, 22, 28 epochs. The learning rate for the discriminator

is fixed at 1e−3. The training process is finished at 35 epochs. the value of λ

for adversarial loss is set to 5.0.

3.3.5 Experiments

Experimental Settings As outlined in Section 3.3.4, we utilize the MS1MV3

and VGGFace2 datasets separately as our training data to facilitate a fair

comparison with current state-of-the-art face recognition methods. For the
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Datasets IJB-C(↑)
MS1MV3 95.55
Vggface2 90.9

MS1MV3 (ours) 97.70
Vggface2 (ours) 91.93

Table 3.2. The 1 : 1 verification accuracy (TPR@FPR=1e− 3) on IJB-C datasets.
All methods use a deep network ResNet-50 as its backbone. The previous results
of Arcface and Vggface2 are from [138]

embedding network, we employ a modified ResNet-50 architecture, similar

to that used in ArcFace [28]. This configuration is designed to produce 512-

dimensional discriminative features for each image.

Arcface [28] achieves state-of-the-art performance in face verification and

identification. Hence, we construct the baselines and our framework based on

the top of Arcface descriptors, i.e. we initialise with a conventionally trained

Arcface network and finetune from there. We also perform similar experi-

ments with VGGface2 datasets with ResNet50 [17]. For evaluation, we use

aligned faces from IJB-C [79] and follow the same 1:1 face verification proto-

col. The 1:1 verification protocol is specifically designed to assess the efficacy

of face recognition algorithms by calculating the likelihood that two facial

images represent the same individual. This involves computing similarity

scores derived from facial features extracted by the recognition model. In

the IJB-C dataset, there are 23,124 templates, encompassing 19,557 genuine

matches and 15,639K impostor matches. Performance metrics for this proto-

col primarily involve the True Positive Rate (TPR) at various False Positive

Rate (FPR) thresholds. This comprehensive approach offers a detailed eval-

uation of an algorithm’s precision in confirming identities under the stringent

conditions set forth by the IJB-C framework.

In Table 3.2, we present our 1:1 verification results alongside those ob-

tained using the ArcFace and VGGFace2 methods on the IJB-C dataset,
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respectively. It can be seen that by integrating our adversarial learning

approach with the ArcFace and VGGFace2 frameworks, our methods are

capable of further enhancing performance, achieving an accuracy of 97.70%

on ArcFace and 91.93% on VGGFace2. Notably, our adversarial technique

yields more substantial performance improvements when applied to ArcFace

trained on the MS1MV3 dataset compared to its application on the VG-

GFace2 dataset. This suggests that our approach is particularly effective

when deployed on larger-scale datasets.

The MS1MV3 dataset, which is sourced mainly from the internet, in-

cludes about one million images of 100,000 individuals. It features a mix

of non-celebrity images and a higher degree of noise and variability. In

stark contrast, the VGGFace2 dataset contains over 3.31 million high-quality

images from 9,131 celebrities, characterized by diversity in age, ethnicity,

and pose. Consequently, the presence of non-ID information—encompassing

background, lighting conditions, expressions, and more—is markedly more

pronounced in MS1MV3, posing greater challenges to facial recognition algo-

rithms. The application of adversarial learning to remove non-ID information

on the MS1M dataset enables models to focus more on discriminative fea-

tures, thereby leading to more significant performance improvements. This

outcome emphasizes the necessity of eliminating non-ID information from

facial features, particularly in an era where training datasets are increasingly

expansive.

3.4 Conclusion

Our investigation into the leakage of non-ID information into facial descrip-

tors has unveiled a critical vulnerability in the current face recognition tech-
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nologies. This leakage, characterized by the unintended encoding of extra-

neous attributes such as environmental conditions, facial expressions, and

accessories within identity vectors, poses a substantial challenge to the in-

tegrity and reliability of these systems. Non-ID information is a nuisance

factor for face recognition. It means that some of the capacity of the em-

bedding space is wasted on useless information and that distance measures

incorrectly observe identity dissimilarity when in fact the difference is due to

non-ID factors.

Through a methodical exploration, employing both predictive modelling

and adversarial learning techniques, we have quantitatively assessed the ex-

tent of this leakage and its implications on the performance of face recognition

models. It shows that the presence of non-ID information can introduce a

potential bias, thereby compromising the accuracy and fairness of face recog-

nition tasks. The application of adversarial learning in our work provides a

route to improving face recognition performance while also alleviating pri-

vacy concerns. By effectively penalizing the inclusion of non-ID information,

this approach not only reduces leakage but also improves face verification

performance.



78 ID2image: Inversion from face descriptors to images

4
ID2image: Inversion from face descriptors to

images with a generative model

4.1 Introduction

In this chapter, we first ask whether it is possible to create an image from an

identity (ID) vector that correctly recreates the identity of the person. Con-

ventional text-based passwords are usually passed through a cryptographic

hash function for storage [5]. Since these are pseudo-one-way functions, it is

extremely difficult to invert an encrypted password to cleartext, with brute

force or dictionary attacks as the only options. For password verification,

only the encrypted version needs to be stored and a leak is not critical due

to the difficulty of inversion.

It is tempting to assume that ID embeddings from face images possess

similar characteristics. For example, the Face ID facial recognition system

developed by Apple Inc. makes this argument in its advertising to reassure

users:

Face ID doesn’t store an image of your face. Instead of storing

an image, Face ID saves a mathematical value created from the

characteristics of your features. It’s impossible for anyone else to

recreate your likeness from this [52].

However, since the embedding of a face image to an ID vector is a noisy pro-
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cess, it cannot be assumed that an identical embedding will arise from any

image of the same person’s face. Therefore, the ID vector cannot be passed

through a hash function for storage since the hashed value will change dra-

matically with small changes in the ID vector. From a security perspective,

this means that raw ID vectors must be stored for future identification. Addi-

tionally, from an inversion perspective, similar images tend to map to similar

ID vectors. Since embeddings are computed using a differentiable function

in deep neural networks, it is feasible to optimize an image representation

to minimize ID vector loss. This means that it is possible to optimise an

image representation to minimise an ID vector loss, thereby reconstructing

an image with the desired identity (subject to suitable regularisation, which

we achieve via a generative model).

We connect this line of investigation to the work in Chapter 3 by asking

whether it is possible to recover an image from an ID vector that not only

captures the correct face identity but also non-ID characteristics of the actual

image that was used to compute the ID vector. The possibility of ID vector

to image inversion raises privacy and security questions.

For the reasons mentioned above, ID descriptor vectors cannot be stored

securely hashed. This means that any third party with whom identity must

be verified is receiving an encoding of a face image from which an image can

be recovered. Where non-ID information leaks into this representation, it

means the image itself can potentially be recovered. This could, for example,

leak unintended information in the background of the image or maybe an

unflattering image that the user would not wish to be made public.

Against this backdrop, we utilize advanced generative models for ID-to-

image inversion to explore non-ID information leakage in face embeddings,

aiming to investigate the privacy leakage problem in current facial recognition
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systems.

GANs have proven effective in generating photorealistic images, spark-

ing significant interest in reversing the GAN generation process—a technique

commonly referred to as GAN inversion [9, 94, 126]. Particularly, StyleGAN,

developed by Karras et al. [57, 58], excels in creating high-resolution, lifelike

facial images. Several studies have successfully demonstrated the reconstruc-

tion of target images from latent codes using StyleGAN [101, 117, 2, 3, 135].

These methods typically perform image-to-latent inversion, where a given

image is mapped back to the latent code of a GAN through an inversion

process. In contrast, our research focuses on ID-descriptor to image inver-

sion, where we use StyleGAN as the generative model to map ID descriptors

directly to StyleGAN codes and subsequently to images.

Few works have attempted to invert face descriptors back to face images.

Genova et al. [39] tried inverting face descriptors by using unsupervised train-

ing to convert face descriptors into face images, training a regressor to map

ID descriptors to 3DMM parameters and minimizing the ID loss between

the ID descriptor of the original image and the ID descriptor of a rendered

3DMM image. Similarly, Gecer et al. [38] and Cole et al. [23] utilized an iden-

tity loss in 3D face model fitting for face inversion; however, their methods,

which do not leverage a GAN, produce outcomes lacking photorealism.

To date, the potential for recovering non-ID information from face de-

scriptors remains largely unexplored. An early investigation by Kumar et

al. [65] into the use of an ”inverse crop” technique—where the face is re-

moved from an image—revealed surprisingly high face recognition rates on

the relatively straightforward LFW dataset, despite the inclusion of only pe-

ripheral features such as hair and parts of the ears and chin. This suggests

that background or other non-ID information may be encoded in face descrip-
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Figure 4.1. Reconstructing an image from an ID descriptor, including preservation
of non-ID properties (pose, expression, and color distribution). We assume we only
have access to the ID descriptor of a real image. We initialise the optimisation
using a regression network to predict GAN latent code from ID descriptor. We
then iteratively optimise the GAN latent code in order to produce an image that
matches the ID, landmarks and histogram predicted from the target ID descriptor
using pretrained networks.

tors, a hypothesis that remains underexplored. To the best of our knowledge,

no study has yet investigated the recovery of non-ID properties from identity

descriptors thoroughly.

4.2 Image from ID with a generative model

We now set out to investigate if, and how well, an image of a person can

be recovered from an ID descriptor. Having shown that non-ID attributes

can be estimated, or extracted, from a face descriptor, we also explore to

what extent the original image itself, including non-ID information, can be

reconstructed from an ID descriptor.
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4.2.1 ID-only inversion

We begin by attempting to create an image that is recognisably the same

identity as the person in the original image but not necessarily similar in

other ways to the original image. We pose this as an optimisation problem

and use a generative face model to constrain the problem. Specifically, we

restrict the solution to the space of images represented by the StyleGAN2

face model [58]. We denote by I = G(z) the face image that arises via the

generator, G from the latent code z. At inference time, the only optimisation

variable is the GAN latent code which is iteratively optimised. The generator

itself is never trained (we use a pre-trained StyleGAN2 generator which we

keep fixed).

Through this adversarial training mechanism and structured latent rep-

resentation, StyleGAN2 effectively explores the complex diversity of facial

images, achieving the transformation from the latent space z to high-fidelity

facial images. It also provides more nuanced control over the image gen-

eration process, resulting in visually coherent and diverse outcomes. A key

feature of the StyleGAN architecture is the introduction of two latent spaces:

the original latent space Z and the mapped latent space W . The Z space

is typically a high-dimensional, randomly sampled vector space, following a

standard distribution such as Gaussian. In contrast, the W space is derived

from the Z space through a mapping network. W is designed to produce a

more disentangled representation, where variations in theW space have more

linear and interpretable effects on the generated images. This disentangle-

ment effectively separates high-level attributes and stochastic variations (e.g.,

freckles, hair) from the structural aspects of the image, enabling precise con-

trol over the synthesis process. While the W space enhances image quality

and control, its complexity introduces uncertainty in inverse tasks such as
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face restoration. Therefore, in our work, we directly optimize the latent code

in the Z space to reconstruct the input image I, thereby simplifying the in-

verse process and reducing uncertainties associated with the transformation

step to the W space.

Suppose we are given a target ID descriptor, d, then we wish to solve the

following optimisation problem:

min
z

LID(z), where LID(z) = ∥F (G(z))− d∥22 , (4.1)

where F is the same pretrained face encoder network as in the previous

chapter. F (G(z)) is therefore the descriptor extracted from the face image

synthesised by the GAN generator according to latent code z. We can solve

this optimisation problem with gradient descent over the unknown latent

code parameters.

In practice, this optimisation is prone to convergence on local minima

and sensitive to initialisation. For this reason, we train a network that we

use for initialisation that regresses a StyleGAN2 latent code directly from an

ID descriptor.

We introduce the ID-to-GAN Latent Regressor, denoted as N , which is

trained to regress the GAN latent code z from a given target ID descriptor

d. We can train this network in a supervised manner by generating training

data as follows. A random latent code is drawn from a Gaussian distribution

zi ∼ N (0, I). The corresponding descriptor is computed as di = F (G(zi)).

Now, the regressor is trained to predict a GAN latent from di that is close

to the target by minimising the following loss:

Linv = ∥N(di)− zi∥22 . (4.2)
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This loss function is designed to minimize the Euclidean distance between

the predicted latent codes and the actual latent codes. This minimization

aids the network in effectively optimizing z to align with the target identity

features represented in d.

The regressor network architecture consists of a Multilayer Perceptron

(MLP) with three hidden layers, each equipped with 2,048 ReLU-activated

units, and it outputs a StyleGAN2 latent vector. We optimize the network

using the Adam optimizer with a learning rate of 0.001 as specified in Equa-

tion 4.1. Some of the results from our ID to GAN latent Regressor are

displayed in the second column of Fig. 4.2. The regressed results can be

subsequently refined by nonlinear optimisation of (4.1).

4.2.2 Image reconstruction

The results of the above process successfully produce an image with the

correct identity, as shown in Table 4.1 and Fig. 4.2, which demonstrate the

alignment between the reconstructed images and target identities. However,

the reconstructed images often fail to accurately capture certain features of

the original image, such as the pose and expression of the face, the lighting

in the image, the background, and the presence of apparel.

The results of the above process successfully produce an image with the

correct identity. However, they often fail to reconstruct certain features of

the original image, for example, the pose and expression of the face, the

lighting in the image, the background and the presence of apparel. We have

shown that, with suitable supervision and training, it is possible to extract

some of these properties from weak signals that find their way into the ID

descriptor. Once reconstructed, we now show that these can be used to

provide additional, direct supervision to the inversion problem. Essentially,
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we ask that not only the ID be reconstructed but that additional, non-ID,

features estimated from the ID descriptor also be reconstructed (specifically

pose and image histogram).

To clarify, we treat landmarks as a non-ID factor in this study. While

landmarks can encode intrinsic identity-related features, such as facial shape,

their variations are primarily influenced by extrinsic factors, including pose

and expression. These extrinsic factors are our primary focus in the context of

image reconstruction. Consequently, the landmarks are designed to capture

pose and expression information rather than identity. In subsequent discus-

sions, we consistently refer to ”landmarks” as representing non-ID properties

to ensure terminological consistency and emphasize the disentangling of iden-

tity and non-ID features.

Overview of Inversion Fig. 4.1 provides an overview of the proposed

ID-descriptor to image inversion framework. The process begins with an ID

descriptor, d, which encodes identity-specific features extracted from face

images. Instead of directly using face images as inputs, the ID descriptor

serves as the starting point for inversion. A generative model, specifically

StyleGAN, is employed to map d to its corresponding latent code in the

GAN’s latent space, which is then used to synthesize realistic face images.

The inversion framework is guided by a combination of ID and non-ID su-

pervisory signals. The ID supervision ensures that the reconstructed images

preserve identity-relevant features embedded in d, ensuring fidelity to the

original descriptor. Non-ID supervision focuses on reconstructing additional

attributes, including pose and expression (represented by facial landmarks)

and overall color distribution (represented by the image histogram). These

non-ID attributes are estimated from d through pretrained auxiliary net-
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works fID→landmarks and fID→histogram. Dedicated loss functions are introduced

to enforce consistency between the reconstructed image and the estimated

non-ID attributes, encouraging the framework to model pose, expression, and

overall image appearance accurately.

Landmarks From the target ID descriptor, d, we use the pretrained re-

gression network described in Section 3.2.3 to compute approximate target

landmarks, fID→landmarks(d). During reconstruction, we compare the target

landmarks with those extracted from the current image reconstruction using

the pretrained image to landmark regression CNN, fimage→landmarks(i):

Llandmarks(z) = ∥fimage→landmarks(G(z))− fID→landmarks(d)∥22 . (4.3)

Soft histogram For the histogram reconstruction loss, we follow a similar

strategy. We use the pretrained regression network described in Section 3.2.2

to compute an approximate target histogram, fID→histogram(d). The exact his-

togram of the reconstructed image is discrete and therefore not differentiable.

For this reason, we use a differentiable soft approximation of the image his-

togram.

The idea is to use sigmoid to softly assign values to bins. Consider a

vector x ∈ RM ofM values. We wish to compute a soft histogramH(x) ∈ RN

which softly assigns all values in x to N ∈ Z+ histogram bins. We specify

minimum and maximum values (we use min = 0 and max = 255 for image

histograms) and the bin width by δ = max−min
N

. The ith bin centre is given

by ci = min + δ(i− 0.5). Then, the value of the kth bin in H is:

H(x)k =
M∑
j=1

f(xj − ck + δ/2)− f(xj − ck − δ/2), (4.4)
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where f is an assignment function. In a hard (non-differentiable) histogram,

f is the Heaviside step function. In our soft histogram, we use sigmoid,

f(x) = Sigmoid(σz), with parameter σ which controls the softness of the

bins. When σ is very large, the soft histogram approaches the hard histogram

but the gradient vanishes, while small σ yields a very soft histogram that

badly approximates the true histogram. We use σ = 1.85 in our experiments.

To compute a soft image histogram, we apply (4.4) to all values in one

colour channel of an image, yielding three histograms. Now we can write the

histogram loss as:

Lhistogram(z) = ∥H(G(z))− fID→histogram(d)∥22 . (4.5)

Image reconstruction We now pose the image reconstruction problem as

optimising the weighted sum of the ID, landmark and histogram losses:

min
z

w1LID(z) + w2Llandmarks(z) + w3Lhistogram(z), (4.6)

where we use w1 = 1, w2 = 0.0006 and w3 = 0.01 in our experiments.

4.2.3 Qualitative results

We now present results of inversion from ID to image. We begin with an

ablation study of ID-only inversion in Fig. 4.2. The results show that ID loss

optimisation significantly improves over direct regression. The identities in

the third column are clearly a better visual match to those in the first col-

umn. We then follow with an ablation study of our full inversion pipeline in

Fig. 4.3. We show input images in the first column and results with various

combinations of losses in columns 2-4. We initialise with our ID to GAN

latent code regressor. Then we iteratively optimise only ID loss (column 2
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- as in Section 4.2.1), ID loss and landmark loss (column 3) and all of ID,

histogram and landmark losses (column 4). The result in column 2 convinc-

ingly reconstructs the ID of the original person but the pose and lighting

are wrong. Introducing landmark loss largely corrects the pose (though note

StyleGAN2 is biased towards frontal poses which means large pose angles

are often underestimated). Introducing histogram loss yields similar lighting

and skin tone producing an image similar to the original.

Next, we illustrate that our approach is capable of reconstructing differ-

ent images of the same person under different conditions. In Fig. 4.4 we

show pairs of real images of the same person in column one. From left to

right, these exhibit different lighting, expression and pose. We show our full

inversion result in column two. Even though both original images should

yield the same ID descriptor, there is enough leaked information that we are

able to convincingly reconstruct lighting, expression and pose.

Finally, we show additional inversion results in Fig. 4.5. The last row

shows a failure case in which the pose is incorrectly reconstructed. This

occurs when estimated landmark accuracy is low and is further compounded

by the StyleGAN2 bias towards frontal faces.

4.2.4 Quantitative results

We quantitatively evaluate the reconstructed images, comparing them to

the original images. To facilitate that, we calculate the mean squared error

(MSE), peak signal-to-noise ratio (PSNR) and structural similarity index

(SSIM) [125] between each reconstructed image and the original image, on the

MoFA-Test dataset [118], containing 84 images and 78 identities. Table 4.1

shows an ablation study of reconstructing only with ID loss, with ID and

landmark loss, and with all losses. It can be seen that overall, the extra
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ID only ID+LMs ID+LMs+Hist

MSE (lower better) 2.05 2.14 2.03
PSNR (higher better) 12.98 13.21 13.35
SSIM (higher better) 0.14 0.14 0.15

Table 4.1. Quantitative evaluation on MOFA-test, comparing reconstruction with
only ID loss, ID and landmark loss, and ID, landmark and histogram loss.

losses help to recreate the actual image and not just the identity of a person.

Second, we test how well the reconstructed images (using all losses) pre-

serve identity on the MoFA-Test dataset. We use cosine similarity on VG-

GFace [86] (as opposed to VGGFace2, which is used for our inversion) em-

beddings as a measure of how well a method was able to reconstruct the

identity. Fig. 4.6 shows the distribution of similarity scores of our method,

compared with Genova et al. [39], Tran et al. [121], and MoFA [118]. Note

that these three methods solve a different problem: reconstruction with a 3D

morphable model given the original image. However, Genova et al. [39] do

this via an ID bottleneck meaning the comparison is meaningful. With an

average similarity score of 0.77, we significantly outperform all other methods

(0.40 for Genova et al., 0.22 for Tran et al., and 0.18 for MoFA). This is par-

ticularly notable given that we reconstruct the image only from an ID vector.

The difference is likely partly down to using a generative model (StyleGAN2)

that is much more powerful than a 3DMM.

4.3 Conclusion

In this chapter, we have demonstrated the feasibility of reconstructing facial

images from ID descriptors using a generative model, specifically through the
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process of inversion from ID descriptors to images. Our approach successfully

reconstructs the identities of individuals from their face embeddings and also

uncovers the potential to recover non-ID attributes, such as facial expressions

and image histograms, that are encoded within these descriptors. The ability

to reconstruct not only an image that matches the identity but also the actual

original input image carries significant privacy and security implications.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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Rendering-to-photo cosine similarity on MoFA-Test
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Genova et al.

Tran et al.

MoFA

Figure 4.6. Distribution of VGGFace cosine similarity for MoFA-Test. We show
the distribution of similarity scores of our method, Genova et al. [39], Tran et
al. [121], and MoFA [118] for the original images and their corresponding recon-
struction.
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Input Direct regression ID optimisation

Figure 4.2. Comparison between direct regression and ID loss optimisation for
StyleGAN2 latent code. Left column: Input images. Middle column: Output of
ID to StyleGAN2 latent code regression network. Right column: After subsequent
optimisation of StyleGAN2 latent code to minimise LID.
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Target ID ID + ID + Landmark
Landmark + Histogram

Figure 4.3. Ablation study. We show inversion results with only ID loss, ID and
landmark losses and all three proposed losses.
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Figure 4.4. Qualitative results for reconstruction for the same person under very
different conditions (lighting, pose, expression). The first row labels indicate the
type of image, and the left column labels describe the condition being varied for
each set of images.
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Target ID only Final Result

Figure 4.5. Additional inversion results. We show the original target image (left),
reconstructions using only ID loss (middle), and full reconstruction result (right)
for each set. The section below the separator line highlights a failure case.
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5
Learning 3D alignment from recognition

supervision

5.1 Introduction

The success of face recognition over the past 10 years has been dominated by

data-driven approaches, relying on large CNN models and very large training

datasets exhibiting large variations in pose, illumination, expression, back-

ground and so on. The assumption is that the CNN is able to disentangle

these non-identity related factors from identity purely by volume of data and

a powerful enough learning architecture. However, it is still interesting to

explore whether explicit disentanglement of one or more of these features

can assist face recognition and whether they can be separated using only a

recognition signal. In this chapter, we consider the disentanglement of 3D

geometry and pose from 2D appearance.

Spatial Transformer Networks (STNs), as introduced by Jaderberg et

al. [53], offer a novel mechanism to perform spatial manipulations of data

within the network. STNs can be incorporated into a neural network archi-

tecture, giving the network the ability to explicitly account for the effects of

pose and nonrigid deformations, thus providing a robust framework for pose-

invariant face recognition. Building upon this capability, this work proposes

an innovative approach that extends the utility of STNs by investigating
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whether 3D face alignment and reconstruction can be learned solely from a

recognition signal, without the need for additional labels. This method aims

to streamline the face fitting process and enhance the discriminative capacity

of facial embeddings, even in pose-varied scenarios.

By focusing on spatial variations within identity embeddings, we seek

to develop a more effective pose-invariant face recognition network. In this

chapter, we will investigate two pivotal questions: 1. Can we learn to re-

construct the 3D shape of a face using only identity supervision? 2. Does

reconstructing the 3D shape of a face enable recognition without spatial in-

variance? Both of these questions are tackled by constructing a network in

two parts. The first predicts a 3D shape and then uses this prediction to

normalise the image to a pose-free space. The second performs recognition

on the normalised image using a customised CNN architecture that does not

have spatial invariance. The idea is that the lack of spatial invariance en-

courages the normalisation to align facial features to the same position in

the normalised space. The only way to achieve this is via an accurate fit of

the 3D model. Hence, we expect the recognition loss from the recognition

network to provide a training signal to better align the 3D model to the 2D

image. The answers to these questions could profoundly impact the future

of face recognition technology, the amount of training data and the required

complexity of the network can be significantly reduced.

Briefly stated, our main contributions in this chapter are as follows: First,

we propose a 3D extension of the spatial transformer network that integrates

a 3D morphable model and appropriate parameterisation of pose and shape.

Second, we introduce a differentiable approximation of visibility so that we

can correctly handle self-occlusion. Third, we propose a CNN architecture

that does not exhibit spatial invariance. Finally, we combine these ingredients
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in a phased training procedure and show that our model is able to learn 3D

spatial alignment with only recognition supervision.

5.2 Method

5.2.1 Overview

In this section, we present a novel approach to face recognition that employs

a 3DMM as an STN to achieve face alignment from a single image. The

essence of our approach is to first estimate the 3D shape and orientation of

a face using the 3DMM-STN framework, which then projects the 3D facial

geometry onto a UV texture map. This texture map is subsequently utilized

as the input for a face recognition network, thereby facilitating the extraction

of robust facial features essential for recognition tasks.

A critical aspect of our method is the implementation of a visibility re-

gressor designed to compute occlusion masks, which addresses the challenges

of inaccuracies and artefacts in texture mapping due to self-occlusion com-

monly observed in profile views of the face. Fig. 5.2 illustrates a UV image

that has been generated by projecting an input image using a 3DMM into

a 2D UV map. Notably, distortion around the side facial areas results from

these parts being invisible in the 2D source image, which leads to inaccura-

cies in the UV texture mapping. By accurately predicting which vertices of

the 3D face model are occluded, the regressor facilitates selective masking

of these areas on the UV map. This enhancement significantly improves the

fidelity and accuracy of the resultant texture mapping.

Our approach leverages end-to-end training, optimizing STN parameters

via backpropagation from the face embedding loss. Unlike many methods

that rely on a landmark loss, which requires either costly landmark labels
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from datasets or manual landmark detection prone to inaccuracies [35, 87, 16,

72], our process eliminates the need for such manual interventions, thereby

simplifying the learning process. Requiring less data and exhibiting lower

complexity than traditional methods, our system offers a streamlined and

efficient solution for learning pose invariance.

Fig. 5.1 summarises our pipeline. The steps in the pipeline are as follows:

1. 3D Modeling and Texture Mapping:

• Employ a 3DMM-STN to estimate and project the 3D shape and

orientation of a face from a 2D image onto a UV texture map.

2. Visibility Handling with Regressor:

• Implement a visibility regressor to calculate occlusion masks and

enhance the UV map by employing facial symmetry to address

inaccuracies in texture mapping and fill in occluded or invisible

areas.

3. Face Recognition on UV Textures:

• Optimize STN parameters through backpropagation of face em-

bedding loss, eliminating the need for explicit facial landmark de-

tection.

• Train the face recognition network directly on these enhanced UV

facial textures, inherently achieving pose invariance and focusing

on identity features rather than pose variability.
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Figure 5.1. Overview of Our Face Recognition Pipeline. The localiser predicts
3DMM shape parameters and pose. Then 3D geometry is projected to 2D. A
bilinear sampler then resamples the input image onto a regular output grid, which
undergoes processing by our UV completion method to fill in pixels missing due to
self-occlusion. Finally, this newly resampled image is fed into the face recognition
network.

Figure 5.2. From left to right: Overlay of input image and aligned shape, (b)
Sampled image in UV space
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(a) (b)

Figure 5.3. (a) is the RGB albedo at UV coordinate, (b) is the 3D position of the
model interpolated at UV coordinate

5.2.2 Projecting a 3DMM to UV and pixel space

The original STN introduced by Jaderberg et al. [53] enables spatial trans-

formations on images or feature maps through a (sub-)differentiable module

that takes 2D pixel or 3D voxel data as input, applies 2D or 3D transfor-

mations such as rotations and translations to a regular grid, and outputs a

resampling of the input data onto the grid. The parameters of the transfor-

mation are estimated from the original input by a network called the localiser,

the regular grid computed by a component known as the grid generator and

the final output computed by a bilinear sampler.

Our proposed 3DMM-STN includes the same components with some dif-

ferences. Similar to the original STN, we estimate transformation parameters

with a localiser network. However, the localiser estimates a 3D transforma-

tion from 2D input data. The grid generator is replaced by the geometric

model from a 3DMM. The sampler remains the same and is 2D since we

sample the input 2D image data. Since we must also handle occlusion due to

the projection from 3D to 2D, we introduce an extra component to compute

per-vertex visibility. To enable the resampled output to be processed by a
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conventional CNN, we flatten the 3DMM into a 2D UV space. In this way,

the sampled 2D colours can be transferred via the 3D model from the 2D

input into a 2D UV space output with aligned features.

This strategy ensures that the output image maintains an approximately

uniform area with respect to the face shape, thereby obviating the need

for the face recognition network to learn the complex invariants associated

with different head poses. Consequently, this allows for the employment of a

shallower MLP as the face CNN, as opposed to a deeper architecture. The UV

mapping provides a consistent representation of facial features irrespective of

the original head pose in the image, significantly reducing the network’s need

to learn pose variations. This consistency is crucial as it allows the network to

focus more on distinguishing between different identities, potentially leading

to faster convergence and improved generalization.

3DMM A face, as represented by a 3DMM, is represented as a 3D triangle

mesh, yet the face surface itself is a 2D manifold embedded in 3D space.

This dual nature allows us to define a mapping—commonly referred to as

an embedding, flattening, or parameterization—of the face surface into 2D

space, designated as UV space. One significant advantage of this approach

is that both the 3D face and any textures on the face can be treated as 2D

images, thereby facilitating processing using standard methods, such as 2D

CNNs. We employ this UV space as a canonical, pose-free representation

for faces, focusing solely on the geometric component of the 3DMM. The

3D morphable model layer generates a shape X composed of N 3D vertices,

achieved through a linear combination of D basis shapes stored within the

matrix P, and the mean shape µ. This configuration is influenced by shape
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parameters α, as described by:

X(α)i,j = x(α)3(j−1)+i (5.1)

with i ranging from 1 to 3, and j ranging from 1 to N . Here, the vector x(α)

is defined as:

x(α) = µ+Pα. (5.2)

5.2.3 3D localiser

The localiser network is a CNN that takes a face image as input and regresses

the geometric parameters of a face. Specifically, the 3DMM shape (intrinsic)

and 3D pose (extrinsic) parameters, which we refer to as θ:

θ =

R, t, s︸ ︷︷ ︸
pose

, α︸︷︷︸
shape

 . (5.3)

Here, R ∈ SO(3) is a rotation, t ∈ R2 is the translation vector, s is an

orthographic scale and α the 3DMM shape parameters.

To ensure the scale parameter s remains positive, it is modelled as the

exponent of its logarithmic estimate. Hence, the localiser output is treated

as log s which is subsequently exponentiated to guarantee a positive scale.

For the rotation, we regress the 9 values unconstrained and post-process it

as described below.

For our localiser network, we initialise with pretrained ResNet-18 archi-

tecture, delete the classification layer and add a new fully connected layer

with 9 +D outputs. Here the value of D = 10 corresponds to the weight of

the first ten 3D basis shapes of the 3DMM.
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Mapping unconstrained matrices to rotation matrices Given that

directly regressed R̂ provided by the localiser may not fulfil the orthogonality

constraints required of a valid rotation matrix, a subsequent mapping step

is required to project R̂ onto the space of rotation matrices, SO(3). We

deal with this problem as the orthogonal Procrustes problem. This method

finds the nearest orthogonal matrix to the input matrix, ensuring that the

resultant matrixR is a valid rotation matrix. Mathematically, this is achieved

by solving the optimization problem:

min
R

∥R− R̂∥F . (5.4)

subject to the constraint R ∈ SO(3), where ∥ · ∥F denotes the Frobenius

norm, and SO(3) represents the set of 3× 3 special orthogonal matrices.

The solution involves the use of Singular Value Decomposition (SVD).

The SVD of R̂ is given by:

R̂ = UΣV T (5.5)

where U and V are orthogonal matrices, and Σ is a diagonal matrix with

singular values.

To project R̂ onto SO(3), the resulting matrixR should also be orthogonal

and det(R) = 1 (indicating a proper rotation without reflection). The closest

orthogonal matrix R can be computed as follows:

R = UV T

This mapping process is differentiable, which allows the backpropagation of

gradients from loss functions defined on the rotation matrix R. This approach

to rotation matrix regression has been shown to be the most stable [70].
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5.2.4 Grid generator and sampler

The grid generator and sampling networks are engineered to transform an

input image into a canonical, pose-normalized view by outputting sampled

textures into a 2D embedding. The intensities extracted from this source im-

age, based on the 3DMM, are then mapped to corresponding points within a

flattened 2D grid. We utilize an architecture similar to that described in [8],

combining a linear statistical model with a scaled orthographic projection as

illustrated in Fig. 5.1. This type of projection is chosen because it preserves

the spatial relationships by projecting 3D points onto a 2D plane without

introducing perspective-related distortion, though our method could easily

be extended to a perspective model. The transformation parameters θ, esti-

mated by the localiser network, dictate the alignment and scaling of the 3D

model to the 2D grid. The orthographic projection of a 3D mesh vertex p3D

to a point in 2D image space is given by:

p2D = s ·

1 0 0

0 1 0

 ·R · p3D + t, (5.6)

where s is the scale and R the rotation respectively, and t is the translation

vector. This equation succinctly describes the transformation from 3D space

to a normalized 2D plane.

For sampling image intensities from the source to the grid, we employ

differentiable bilinear sampling. The intensity at a target location (xti, yti)

in a color channel c is calculated using:

V c
i =

H∑
j=1

W∑
k=1

Icjk ·max(0, 1− |xs
i − k|) ·max(0, 1− |ysi − j|) (5.7)

Here, Icjk is the intensity at the (j, k) coordinate of the input image, with H
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and W being the height and width of the image. The bilinear sampling is dif-

ferentiable and thus suitable for gradient-based optimization techniques [53].

The result of this process is a 2D image, retaining the original dimensions of

the input image, which captures the detailed textures mapped from the 3D

mesh.

5.2.5 Model-based differentiable visibility

As implemented above, the bilinear sampler assigns a colour to every vertex in

the 3D morphable model (and therefore every pixel in the UV warped image)

regardless of whether that vertex is self-occluded. This introduces spurious

content into the UV images that is unhelpful for recognition. For example,

if a face is turned to the left so that its right side is visible, then pixels from

the right-hand side of the face would be copied to occluded vertices on the

left-hand side of the face. See for example Fig. 5.2.

Vertex visibility is a binary function. A vertex is either occluded or

not occluded by another part of the face. This means that the visibility

function is discontinuous and not differentiable at changes in occlusion. If

we were to compute exact binary visibility (for example by rasterisation or

ray casting) and use this within our framework, the recognition loss could not

backpropagate through the visibility function and the network could not learn

how changes in visibility influence the sampling and therefore recognition

result. For this reason, we propose a novel, differentiable approximation to

visibility using a neural field. The method is also very efficient requiring only

a single forward pass through a small MLP (see Fig. 5.4).

Neural field representation The shape of the face is determined entirely

by the estimated shape parameter, α. Visibility is also affected by the pose
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of the face, captured by the estimated rotation matrix, R. However, only

two of the three components of rotation affect visibility (in-plane rotations

about the optical axis do not change vertex visibility). We therefore start by

extracting the pitch and yaw rotation angles from R as follows:

θ = arcsin(R21) (5.8)

ϕ = arctan

(
−R20

R22

)
(5.9)

Vertex visibility can then be expressed as a function solely of (α, θ, ϕ). We

choose to represent this as a conditional neural field, i.e. a function fα,θ,ϕ :

[−1, 1]2 → [0, 1] that maps a position in UV space, (u, v) ∈ [−1, 1]2 to a soft

visibility value in the range 0 . . . 1 (where a value of 0 represents full occlusion

and 1 full visibility).

At inference time, we can pass the estimated shape parameters and ro-

tation angles as conditioning and the UV coordinates of every point in our

regular grid in order to estimate a UV space 2D visibility map.

Neural field architecture We implement the neural field using a MLP,

adopting the ‘conditioning-by-concatenation’ approach [132]. This method

involves stacking the input UV coordinates, shape parameters, and rotation

angles into a D+4 dimensional vector, which is then fed into the MLP. The

architecture of our MLP is based on SIREN [103], utilizing a sine activation

function instead of ReLU. This design allows for processing all pixel coor-

dinates for a visibility map in a single training iteration. During inference,

a complete visibility map is generated in one forward pass, with the output

being transformed via a sigmoid activation function to produce a visibility

probability between 0 and 1.
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Visibility neural field training We pretrain the neural field on synthetic

data, subsequently freezing its weights during the training of the localizer and

recognition networks. Despite the weights being frozen, gradients can still

backpropagate through the visibility neural field, enabling the network to

adapt based on changes in visibility. Practically, this adaptability is facili-

tated by softening the boundaries of the binary visibility masks. This soften-

ing creates a smooth transition between visible and non-visible areas within

the neural field, enhancing the model’s ability to handle varying visibility

conditions effectively.

For the creation of our training dataset, we produced a sequence of head-

shot renders using a 3D renderer [63]. This process began with arbitrary

values for pitch, yaw, and facial expressions to ensure a diverse range of

facial perspectives. To determine the ground truth visibility of each vertex

on the 3D model, we defined a ray in the view direction for each vertex

and checked for intersections against all triangles of the mesh. A vertex was

considered non-occluded if its corresponding ray did not intersect with any

part of the mesh.

This dataset comprises 10,000 rendered facial images with varying angles,

randomly generated to represent a diverse range of 3D facial shapes. Each

image is annotated with the rotation angle of the 3D shape, which ranges

from -90 to 90 degrees, and the visibility status of each 3D vertex. We

trained our network using BCE loss, which involves comparing the network’s

predicted visibility map with the baseline visibility map. Examples of faces

generated in our synthesized dataset are illustrated in Fig. 5.5.
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Figure 5.4. An overview of our neural field network. We decompose the output
of the localiser to extract the pitch and yaw angles of the aligned 3DMM shape,
as well as the coefficients of the 3DMM shape basis and the 2D coordinates of the
UV map. These extracted parameters serve as inputs to our neural field. The
synthesized visibility map M is then compared with the corresponding ground
truth map of the image to compute the Binary Cross-Entropy (BCE) loss. Note
that our visibility map is differentiable, allowing the computed gradients to be
utilized for back-propagation.

5.2.6 UV image completion

Once we have the estimated 3DMM shape and visibility map of the facial

image, we can start to unwrap them to the UV coordinate to obtain a cor-

responding UV-map. Directly unwarped face textures lack face information

in the invisible facial area owing to self-occlusion. Many recent work utilize

deep encoder-decoder architectures to recover the facial texture from partial

and masked facial images [26, 7, 35]. Our work aligns with this objective,

aiming to preserve identity information in the unwrapped texture. However,

we adopt a more straightforward approach by mirroring the face to fill in the

texture of the occluded parts.

Given the visibility map predicted by the visibility regressor and the

sampled UV texture, we first apply symmetry operations to both, creating a

mirrored version of the face through horizontal flipping. Then, the visibility
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(a) Pitch:14.2◦ Yaw:-46.5◦ (b) Pitch:61.8◦ Yaw:-30.0◦ (c) Pitch:-4.4◦ Yaw:57.8◦

(d) Pitch:-29.8◦ Yaw:-27.4◦ (e) Pitch:-30.6◦ Yaw:69.0◦ (f) Pitch:-13.6◦ Yaw:2.7◦

(g) Pitch:46.2◦ Yaw:29.8◦ (h) Pitch:-27.1◦ Yaw:23.0◦ (i) Pitch:53.2◦ Yaw:14.7◦

(j) Pitch:-11.3◦ Yaw:8.1◦ (k) Pitch:-13.3◦ Yaw:40.8◦ (l) Pitch:-40.0◦ Yaw:24.5◦

Figure 5.5. Examples of faces with 3D render generated at random angles
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Figure 5.6. The illustration of UV image completion. Input image and the pre-
dicted shape and pose by the localizer shown in left. On the right, the results of
our step-by-step visualization are shown. The final resampled image is presented
at the bottom.

map is used to determine which parts are visible in the original image and

which parts require completion using the mirrored image. Thus, the occluded

or invisible parts can be pasted directly through their visible symmetrical

counterparts. Given a resampled image V and a visibility mapM , the process

of facial reconstruction in UV space can be formalized as follows:

R = (1− flip(M))⊙ (M ⊙ flip(V )) + flip(M)⊙ V, (5.10)

where R denotes the final completion UV re-sampled image. flip(·) represents

the horizontal flipping operation, and ⊙ signifies element-wise multiplication.

Our pipeline is depicted in Fig. 5.6.

5.2.7 UV face recognition CNN

To provide a useful training signal to the localiser network, we must design

our recognition network to not exhibit spatial invariance. In other words,

if the 3D alignment (and therefore the image-to-UV space warping) changes
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Input Aligned Shape Texture Visibility Mask Complement Output

Figure 5.7. More examples for our UV completion. From left to right: input
image; alignment shape; re-sample images; visibility masks; Complements used to
fill in invisible areas; final re-sampled textures.

then the features extracted by the recognition network must change. This is

in stark contrast to typical recognition CNNs that aim to achieve invariance

to translations and perhaps other geometric transformations. This allows

the network to robustly recognize faces irrespective of their position or scale

within an image. In traditional CNNs, max pooling is used to reduce the

spatial dimensions of feature maps [102]. This has a side effect of introducing

spatial invariance: so long as the max feature lies within the same max

pooling window, the output will be the same.

However, since retaining spatial features in face embeddings is pivotal

in our method, we leverage spatial signals for face alignment. To preserve

spatial features, our network adopts a different downsampling strategy. We

use stridden convolution layers to replace traditional pooling layers and do

not use fully connected layers at the end of the network (which can learn some

transformation invariance) creating a purely convolutional architecture.

Our face recognition network processes a 64×64 UV texture map through
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Figure 5.8. The architecture of our purely convolutional face recognition network.
It intentionally removes spatial invariance that is conventionally introduced by
max pooling layers. Features retain the spatial position until the final layer.

six convolutional layers. Each layer uses a 3 × 3 kernel with a stride of 2,

successively reducing dimensions from 64×64 to 32×32, 16×16, 8×8, 4×4,

and finally 2× 2. A final convolution layer then collapses the spatial dimen-

sion to 1× 1 to produce classification logits. Each layer uses a combination

of stridden convolutions, batch normalization, and ReLU activations. By us-

ing stridden convolutions instead of traditional pooling layers, our network

design retains more spatial information within the image while still reducing

dimensionality. The full architecture of our face CNN is depicted in Fig. 5.8,

which also illustrates the utilization of convolutional layers with a stride of

2 to reduce the size of features throughout the network.
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Initialisation In our experiments, we observed that the training of the

localizer is extremely sensitive to its initialization. Therefore, we pretrained

the localizer with fixed θfixed parameters to standardize outputs to the mean

face shape (α = 0), frontal views and a fixed scale, irrespective of the face

angles in the input images (see in Fig. 5.9). The settings for θfixed include

Rfixed = I3, indicating no rotation; tfixed = [0, 10
112

]; sfixed =
Winput

276
, where

Winput is the width of the input image; and αfixed = 0, ensuring the 3DMM

initial shape. These configurations ensure that the initial face shape aligns

well with the majority of faces in the dataset, providing a solid foundation

for further training.

The initial weights, Winit, are optimised using a loss function L(y, ŷ)

designed to minimize the error between the target label y and predicted

label ŷ:

L(yx, ŷx) =
1

N

N∑
i=1

|yi
x − ŷi

x| (5.11)

where x can be r, t, s, α representing the respective parameter sets.

Another way to initialise the localiser to always output these standard

parameters would be to initialise the bias of the final layer with the de-

sired values. However, we found that this made the network very difficult

to train. Instead training the network with real input images and the tar-

get pseudo-label ensures all layers of the network are suitably initialised to

predict sensible parameters for any input.

The pretrained weightsWinit were utilized as the initial weights for the lo-

caliser network, ensuring to stabilize the initial training. The whole localiser

is then fine-tuned as part of the subsequent training.

This formulation allows the training process to emphasize different as-

pects of the facial geometry by adjusting the weights for each parameter type,
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Figure 5.9. Some examples of our adaptive initialization method.

thus tailoring the loss function to the specific requirements of the model’s

application.

5.2.8 Training Strategy

For training, we selected the CASIA-WebFace dataset [134] due to its estab-

lished role as a benchmark in face recognition and its specific advantages for

our task. CASIA-WebFace consists of 494,414 images from 10,575 individu-
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(a) 0◦ to 10◦ (b) 0◦ to 20◦

(c) 0◦ to 30◦ (d) Full dataset

Figure 5.10. Yaw angles distributions on CASIA-TOP200 with yaw distributing
at: (a) 0◦ to 10◦, (b) 0◦ to 20◦ , (c) 0◦ to 30◦ and (d) Full dataset

als, offering a large-scale dataset suitable for deep learning-based methods.

In addition to its extensive size, the dataset provides a significant number

of images per identity with considerable diversity in pose, expression, and

viewing angles. This diversity is particularly beneficial for our method, as

it facilitates the training of the 3D localiser by ensuring robust coverage of

spatial variations. By leveraging these characteristics, the CASIA-WebFace

dataset enables the proposed framework to effectively learn alignment fea-

tures across different poses and expressions, which is critical for subsequent

3D alignment tasks.

However, when the estimated parameters from the localiser are highly

inaccurate, sampling to UV space becomes ineffective, providing no mean-

ingful supervision through the recognition loss to improve parameter estima-

tion. Despite the diversity of CASIA-WebFace, training directly on a dataset
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with varied facial angles often leads to tricky convergence for several reasons:

(1) The amount of training required for facial recognition and alignment to

converge differs. (2) Training the entire network from scratch can cause oscil-

lations in the learning process. (3) Challenging facial poses made the network

prone to falling into local minima without proper initialization.

Therefore, it was essential to warm-up the network and incrementally

train it with increasingly challenging samples. To ensure a balanced ratio

of data for facial recognition and alignment, we first selected the top 200

subjects with the highest sample volume from the CASIA-WebFace as our

new dataset. We then use 6DRepNet [47] to determine the yaw angles of each

facial image in the CASIA-WebFace dataset, categorizing it into subsets of

[0◦,10◦], [0◦,20◦], [0◦,30◦]. In the warm-up phase, we initially trained our

facial recognition module on the [0◦,10◦] subset. Subsequently, we trained

our complete network progressively on [0◦,10◦], [0◦,20◦] and [0◦,30◦] subset.

Our dataset comprises 7,3545 images from 200 subjects, 3,2409 images in

[0◦,10◦], 4,7849 images in [0◦,20◦] and 5,7043 images in [0◦,30◦]. Fig. 5.10

illustrates the pose distribution of our datasets.

5.2.9 Losses

Our loss function contains two terms: a classification loss to provide the

recognition signal and a shape regularization term to ensure the predicted

3DMM geometry remains plausible.

Recognition loss The flattened UV map of a face is passed to the recogni-

tion CNN. This computes logits for each of the face identities in the training

set. We compute the cross entropy loss for these logits against the identity
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labels as:

Lid = −
C∑
c=1

yc log(p̂c) (5.12)

where C denotes the total number of identity classes in the dataset. yc is

a binary indicator (0 or 1) signifying whether class label c is the correct

classification. p̂c represents the output of the final convolutional layer for

class c.

Statistical regularisation loss To prevent unreasonable deformations

of the 3D Morphable Model during training, we incorporate a shape regular-

ization loss function. This loss function is designed to constrain the magni-

tude of shape basis parameters α, thereby the structural integrity of the 3D

model within reasonable bounds. Specifically, the shape regularization loss

is mathematically formulated as follows:

Lreg = λ · ∥α∥22 (5.13)

where, λ represents the weight that adjusts the strength of the regularization

effect; shape basis params denotes the shape basis parameters of the 3DMM;

By penalizing the square of the L2 norm of the 3DMM coefficients, this loss

function encourages the network to maintain reasonable estimations of the

3DMM shape during training.

Gradient flow The recognition loss is backpropagated through the recog-

nition CNN and into the output of the STN. Via the differentiable sampler,

the gradient is backpropagated through the estimated 3DMM parameters

and into the localiser. In this way, the localiser seeks to modify its estimated

parameters such that the recognition CNN produces a higher probability for

the correct identity. Our assumption is that it achieves this by encourag-
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Figure 5.11. Qualitative Results of the Visibility Regressor. The left grids of
images show the input face images with the overlaid 3D face shapes rendered
using the estimated shape and pose. The right grid displays the corresponding
visibility masks predicted by the visibility neural field.

ing better spatial alignment of the image features. The recognition loss also

backpropagates into the visibility network. Points that are close to a visibil-

ity boundary have intermediate visibility which provides a gradient to either

hide or uncover a feature in the image as deemed useful by the recognition

network.

The regularisation loss directly backpropagates into the localiser and en-

courages conservative shape parameter estimates, discouraging large, unlikely

values.

5.3 Experimental Results

5.3.1 Quantitative Results

Landmark error To evaluate the face alignment performance of our 3D

Morphable Model Spatial Transformer Network (3DMM-STN), we utilize

the landmark error, which serves as a proxy for the quality of fit. We use a
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face landmark detection [10] to locate 68 landmarks from the input image,

where we select 14 landmarks that most comprehensively summarize the

facial features. These provide our ground truth. The predicted landmarks,

on the other hand, are derived from the 3DMM by selecting the 14 vertices

that best correspond to these 14 selected facial landmarks (see Fig. 5.14).

The loss is calculated using the mean Euclidean distance between the two

sets of landmarks:

Llandmark =
1

N

N∑
i=1

∥vi −Pi∥2, (5.14)

where N = 14 represents the number of selected landmarks. Here, vi denotes

the coordinates of the i-th predicted vertex within the 3DMM, designed to

correspond to the facial landmarks. Pi represents the coordinates of the i-th

ground truth landmark obtained from the image.

It is important to note that this landmark loss is utilized exclusively for

performance evaluation and is not incorporated into the training process

of the network. When the value is low (or reducing) we assume that this

corresponds to a good (or improving) fit. If it increases, we assume this

corresponds to the fit becoming worse.

Average image sharpness metric Besides utilizing landmark loss to as-

sess the face alignment performance of our method, we also introduce the

Average Image Sharpness Metric (AISM). This metric evaluates the sharp-

ness of the mean average of all of the UV re-sampled images, acting as an

indicator for determining if the 3DMM-STN is effectively learning to predict

the correspondence between the model and the images throughout train-

ing. An increase in the sharpness of the average face—evidenced by rising

gradient magnitude values across epochs—indicates an improvement in the

localizer’s ability to accurately align faces within the images. When faces are
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misaligned, features appear at different locations in UV space and become

blurred, leading to a less sharp image.

Given the average UV image V , the gradient components Gx and Gy are

computed using the Sobel operators Sx and Sy:

Gx = Sx ∗ V , Gy = Sy ∗ V (5.15)

The gradient magnitude at each pixel, indicating the sharpness of edges, is

calculated as:

G =
√
G2

x +G2
y (5.16)

The AISM is quantified as the mean of the gradient magnitudes across

the entire image:

AISM =
1

N

h·w∑
p=1

Gp (5.17)

where N is the total number of pixels in V . A higher AISM represents more

precisely aligned.

In Fig. 5.15a, we present the recognition loss and accuracy curves ob-

served during our phased training on three subsets of the CASIA dataset,

divided according to their absolute yaw angles: [0◦-10◦], [0◦-20◦], and [0◦-30◦].

Initially, we train our model from scratch on the [0◦-10◦] subset, subsequently

utilizing the learned weights for further training on the [0◦-20◦] and [0◦-30◦]

subsets. Fig. 5.15b and Fig. 5.15c display the sharpness and landmark ac-

curacy metric curves, respectively. We also show the final loss and metrics

values for each phase in Table 3.1. In Fig. 5.12, we present a comparison

of mean resampled images before and after the training phases. This figure

illustrates the changes in UV-resampled images across the three subsets.

In [0◦-10◦] and [0◦-20◦] stages, a notable correlation is observed between
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the reduction in loss and improvements in sharpness metrics, while landmark

errors concurrently decrease. However, this trend shifts when introducing

more challenging samples with larger pose variations in the [0◦-30◦] stage.

Here, the progression of loss reduction, increase in sharpness metrics and

decrease in landmark errors noticeably slows down. This behaviour is vi-

sually corroborated in Fig. 5.12, where the average resampled face images

transition from initially blurred to progressively clearer facial features dur-

ing the [0◦-10◦] and [0◦-20◦] phases, with the greatest enhancement in facial

clarity evident within the [0◦-10◦] phase. In the [0◦-30◦] phase, improvements

in clarity become minimal, suggesting that the model’s ability to learn face

alignment faces challenges with the incorporation of samples featuring ex-

tensive pose variations.

5.3.2 Qualitative results

Fig. 5.16 shows qualitative fitting results. In the first row, we show input

images. In the second we show the overlay of the estimated 3D morphable

model geometry. Note the good alignment between the model and image

and that the 3D rotation is well estimated. In the third row, we show the

UV resampled images before visibility masking. Note that facial features are

consistently mapped to UV space (e.g. the eyes, nose and mouth always map

to approximately the same positions). In the fourth row, we show the predic-

tion of the visibility regressor (please note that they are horizontally flipped

relative to the UV images). These maps correctly predict occlusions on the

side of the face when it is rotated out of the plane. Finally, in the bottom

row, we show the completed UV maps using symmetry information. These

normalised images are suitable for recognition with a spatially-dependent

representation (since all features are aligned).
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[0◦-10◦] [0◦-20◦] [0◦-30◦]
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Figure 5.12. Comparison of mean resampled images before and after training
across different phases of the proposed phased training approach. The columns
represent training phases corresponding to subsets of the CASIA dataset, divided
by absolute yaw angles: [0◦-10◦], [0◦-20◦], and [0◦-30◦]. Each phase shows the
mean UV-resampled face images before training (top row) and the corresponding
mean images after training (bottom row). This figure illustrates the progressive
improvements in face clarity and alignment across the different training phases.

In Fig. 5.18, we further investigate our facial alignment accuracy by com-

paring the ground truth of 14 selected landmarks with those predicted by

our 3DMM-STN. There is in general a good agreement, however, accuracy

degrades with larger pose angles. Fig. 5.17 illustrates failure cases where

misalignments have caused distortions in the resampled images, leading to

training instabilities. Our method still faces challenges in situations involv-

ing complex shadows and occlusions, extreme poses, and extreme lighting

conditions.

Phased training Fig. 5.13 presents an ablation study that examines the

effectiveness of phased training strategies. In scenario (a), a model trained
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(a) (b)

Figure 5.13. Ablation Study: (a) Results from directly training a pretrained model
on a 0◦-30◦ dataset after initial training on a 0◦-10◦ set. (b) Results from progres-
sively training the same model on 0◦-10◦, 0◦-20◦, and 0◦-30◦ datasets.

CASIA-TOP200 Dataset
Metrics initial [0◦ − 10◦] [0◦ − 20◦] [0◦ − 30◦]
Loss (↓) 5.3910 0.1562 0.1850 0.1984
Landmark Loss (↓) 10.0850 7.6871 7.3666 7.5357
Gradient Magnitude Loss(↑) 0.1817 0.1845 0.1814 0.1791

Table 5.1. The training loss, landmark loss, and sharpness loss on CASIA-TOP200.

from scratch on the 0◦-10◦ training set is directly transferred and further

trained on the 0◦-30◦ training set. Scenario (b) represents the results from

a model that undergoes gradual training expansion, starting from the 0◦-10◦

training set, then extending to the 0◦-20◦, and finally the 0◦-30◦ training

sets. It is evident that phased training leads to a model better able to fit to

large pose angles whereas the model with reduced phasing fails to learn to fit

in several cases. The findings emphasize the necessity of adopting a phased

training strategy to achieve better results.
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Figure 5.14. 14 selected landmarks, these points are crucial for effectively cap-
turing the variations in key facial features. Each landmark is chosen to represent
significant anatomical regions on the face

5.4 Conclusion

In this chapter, we have shown how to incorporate a 3DMM within an STN

framework. We have shown that training the STN end-to-end with a recog-

nition network that does not exhibit spatial invariance allows the network to

learn 3D face alignment entirely from a recognition signal without any direct

supervision on the 3D face geometry, or the 3D-2D alignment. Of particu-

lar interest is the balance between the size of the localiser and recognition

networks. In typical face recognition CNNs (that comprise only a single net-

work), the network must learn both feature extraction and alignment within

a single network. This usually requires very large networks with 10s of mil-

lions of parameters. In our work, we have shown that the pre-alignment of

the input UV images means the recognition network can be very small: only

22,888 for the architecture we use. Our localiser network is a ResNet-18

which contains 11 million parameters. This provides evidence that the 3D

alignment is the harder part of the task. Once the features are well-aligned

in a 2D space, the task becomes much easier and a relatively shallow CNN

can extract discriminative, spatial features.

Our work not only enhances the understanding of pose-invariant face

recognition but also proposes a potential framework for face recognition tech-
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(a) Recognition Loss and Accuracy Curves

(b) Average Image Sharpness Metric versus Epoch

(c) Landmark Error versus Epoch

0◦ to 10◦ 0◦ to 20◦ 0◦ to 30◦

Figure 5.15. Training loss and evaluation metrics versus epoch on CASIA dataset
with yaw distribution at: [0◦ - 10◦], [0◦ - 20◦] and [0◦ - 30◦]. (a) Training Loss and
Accuracy Curves, (b) the Average Image Sharpness Metric versus Epoch, and (c)
Landmark Error versus Epoch.

nologies by reducing dependence on large-scale annotated datasets and com-

plex network architectures. While our pipeline can achieve geometry label-

free alignment, our system still encounters challenges in scenarios involving

extreme poses, complex shadows, and severe lighting conditions.
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Figure 5.16. Result of 3DMM-STN



5.4 Conclusion 127

Aligned Shape Texture Mask Output

Figure 5.17. Failures cases. From left to right: alignment shape; re-sample images;
visibility masks; final re-sampled textures.
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Figure 5.18. Examples show that our face alignment accuracy via landmarks.
Green: ground truth landmarks from [10]. Red: predicted landmarks by our
method
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6
Conclusions

In this chapter, we summarise what has been achieved and draw overarching

conclusions that can be taken from the work conducted in this thesis. Finally,

we discuss the potential future work, that can build upon the work that has

been presented in this thesis.

This thesis explores the potential interplay between facial reconstruction

and recognition, focusing on the distinction between identity-specific and

non-identity information in deep face representations. Chapter 3 examines

the extent to which non-ID information is unintentionally retained within

ID embeddings. Contrary to the intended design, our findings reveal that

non-ID attributes are encoded alongside identity features, posing potential

risks to user privacy and system integrity. By training a specific MLP to

map ID descriptors to target attributes, our method has demonstrated that

non-identity information—including expressions, whether hats or glasses are

worn—along with pose and lighting conditions, can be accurately predicted

from face descriptors (Section 3.2). To mitigate these non-ID attributes

from face descriptors, in Section 3.3, we introduced an adversarial train-

ing methodology aimed at mitigating non-ID attributes, facial expression,

from the Arcface descriptors. By integrating our adversarial learning method

with the ArcFace framework and training on the VGGFace2 and MS1MV3

datasets, our model achieves higher accuracy on the IJB-C dataset compared
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to the original methods.

Chapter 4 examines the capabilities of generative models, with a specific

focus on StyleGAN2, to reconstruct facial images from embeddings. Sec-

tion 4.2.1 validates the feasibility of using StyleGAN2 for reconstructing fa-

cial images directly from ID embeddings. Further elaborated in Section 4.2.2,

with adequate supervision and training, it is possible not only to reconstruct

the identities of individuals from their face embeddings but also to capture

potential non-ID attributes such as facial expressions and image histograms

embedded within these descriptors.

In Chapter 5, we introduce an innovative approach to face recognition that

involves reconstructing 3D facial geometry using only identity signals, with-

out the need for additional geometric labels. This method, named 3DMM-

STN and detailed in Section 5.2.2, integrates a 3DMM with a STN. Central

to this approach is the localizer network, adept at learning 3D shape and

pose parameters exclusively from identity-related data. In Section 5.2.6, we

detail our facial UV completion method, specifically designed to address the

challenge of missing pixels due to self-occlusion. Following this, Section 5.2.7

describes our face recognition network, which processes the UV-resampled

images as inputs. This network is composed entirely of convolutional layers

and eschews traditional pooling layers to preserve a greater amount of spatial

information within the face descriptors.

6.1 Conclusions

Non-ID information leaks into face embeddings We have presented an

unexpected conclusion that contradicts common assumptions in face recog-

nition techniques, revealing that not only identity but also non-identity at-
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tributes can be recovered from ID embeddings created by deep CNNs. De-

spite the usual objective of deep CNN embeddings to capture solely identity-

specific information, discarding changeable aspects of the face or environ-

ment, we found this is not the case. In-depth analysis of state-of-the-art face

embedding networks, VGGFace2 and ArcFace, showed that non-identity at-

tributes, such as landmark positions (which reflect pose and expression) and

the image histogram, could be recovered from the ID embedding. Although

landmarks also encode intrinsic identity-specific information like facial shape,

our work primarily focus their role in capturing non-ID features. In fact, these

attributes can be predicted from ID embeddings with comparable accuracy

to predictions from the original image. This is a surprising conclusion that

may have implications beyond faces and face recognition about unintentional

leakage of information within learnt representations.

Reducing non-ID information leakage improves face recognition

performance Non-ID information is a distraction for face recognition that

can introduce unwanted bias. For example, if a person is smiling in all

of their training images, then embedding the non-ID characteristic “smiling”

into the ID vector appears useful at training time. However, if at test time the

same person is not smiling, performance will be degraded. This is essentially

the common observation that differences in the distribution of data between

training and test sets will hamper performance. However, our conclusion is

that this can be explicitly improved if we have knowledge about the distractor

characteristics. Knowing a prior that expression is not useful for recognition

means that we can supervise our encoder adversarially to avoid embedding

such information. Again, this conclusion may extend to other objects besides

faces and other tasks besides recognition.

Input images can be reconstructed from ID embeddings We fur-
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ther conclude that photo-realistic images can be reconstructed from ID em-

beddings by utilising an optimization strategy using StyleGAN2, a generative

model, enabling inversion back to the original image, including details like

pose and lighting. These findings challenge existing paradigms and open up

new considerations in the security and usage of facial recognition systems.

ID supervision is sufficient to learn 3D alignment Our final con-

clusion is that there is enough information in a recognition supervisory signal

to learn to reconstruct the 3D shape of a face or, equivalently, to align a 3D

model to an image. By posing the recognition problem as one of alignment

followed by alignment-sensitive recognition, we can learn alignment without

any explicit alignment supervision. Again, this is an unexpected finding.

3D reconstruction methods focus almost exclusively on image-based cues or

supervision of geometric features. We are the first to show 3D alignment

to an image without any geometric supervision or rendering self-supervision.

This provides insight that there is sufficient information in ID to convey 3D

geometric information.

6.2 Future Work

The works presented in this thesis can be expanded in multiple directions.

Non-Identity information in face representation. We successfully

predicted non-ID information within VGGFace2 and ArcFace descriptors and

proposed an adversarial training procedure to minimize leakage of protected

attributes in face descriptors. There are many important avenues for future

work. First, it is important to replicate these results on other face embedding

networks (our initial experiments suggest that our findings indeed transfer

between networks). Furthermore, including additional explicit non-ID fea-
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tures could improve inversion performance, addressing both privacy concerns

and the broader challenge of information leakage in identity vectors. Our in-

vestigation currently focuses on expression- and pose-related non-identity

information, which is only the initial step in tackling the broader issue of

non-identity information leakage. Non-identity attributes encompass a wide

range, including lighting conditions, background elements, and transient fa-

cial changes like ageing or makeup. Future research will focus on developing

specialized adversarial learning frameworks and techniques tailored for spe-

cific non-identity attributes.

In Chapter 4, We demonstrated the feasibility of reconstructing facial im-

ages and non-ID attributes from ID descriptors using StyleGAN2. An inter-

esting future direction involves utilizing a broader array of training datasets,

model architectures, and combinations of loss functions to more compre-

hensively test the leakage of non-identity information. Another promising

direction is the refinement of inversion techniques to enhance the fidelity and

accuracy of reconstructed images, particularly in replicating specific non-ID

attributes and background elements. Another interesting idea would be to

train our ID embedding to GAN latent regressor in a different way. The

objective function we used measured the error in the predicted latent vector.

However, if we wanted to encourage the model to reconstruct all scene ele-

ments including the background, it would be interesting to instead use the

image reconstruction error as the training loss. In this case, we don’t mind

if the predicted GAN latents are different, so long as they reconstruct the

whole image well. A variant of this idea could even mask out the face pixels

from this image reconstruction error, forcing it to only seek to reconstruct

the background.

Furthermore, developing network visualization tools for quantitatively
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studying the types and extents of non-identity information leakage could

provide valuable insights. Investigating the categories of identity information

prone to leakage will enhance our understanding of the intrinsic relationships

within facial features and the information they encode. Exploring the po-

tential of non-ID leakage in terms of categories and contextual information

could open new perspectives on privacy protection.

Learning 3D alignment from recognition supervision. We trained

our 3DMM-STN solely with a classification loss on relatively small datasets.

It would be intriguing to switch to a metric learning setup, such as triplet loss,

and train on much larger datasets. Can this combination of 3D alignment,

sampling, and recognition without spatial invariance match the performance

of end-to-end face embedding networks?

Our approach discards information outside the 3DMM crop, including

some identity-specific information like hair and parts of the neck, as well as

external elements such as clothing and background that might provide useful

context for recognition. A potential avenue for future work would be to

integrate the descriptor extracted by our approach with another descriptor

that observes the image regions outside the 3DMM crop.

While our primary goal was to demonstrate that 3D alignment could

be learned solely from a recognition loss, in practice—if the objective is to

maximize recognition performance—it may be beneficial to employ auxiliary

losses to guide the 3D alignment. For example, landmark error could serve

as a training loss. Other potential losses might include supervision of the

3DMM expression parameters using an expression classifier or shape consis-

tency losses, where pairs of images with the same identity are encouraged

to regress similar 3DMM shape parameters. Generally, these losses aim to

assist the localizer in converging to the optimal alignment, which may not
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be achievable using only the recognition loss, especially from a poor initial

setup.

Unsupervised disentanglement. In our work, we rely on choosing

attributes or features explicitly that we then seek to reconstruct or remove

from the ID embedding. However, in practice, it is difficult or impossible

to enumerate all possible non-ID factors that might unhelpfully correlate

with identity. It would be interesting in future to try to solve this as an

unsupervised disentanglement problem. i.e. given ID-labelled face images

and their embeddings, to try to further factorise these into possible non-

ID explanations. For example, could we discover the attribute ‘wearing hat’

without ever having hat labels or training a ‘wearing hat’ attribute predictor?

This seems very challenging but an important direction for future work in

face recognition to further improve generalisation beyond a training set which

may contain these unhelpful correlations.
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