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Abstract 

This thesis integrates optical indices and SAR polarimetric features obtained from 

Sentinel-1 SAR and Sentinel-2 optical imagery from different seasons using a 

Random Forest classification algorithm to produce a detailed wetland map, first for 

southern Nigeria, and then for the whole of the main continent of Africa at 10 m 

resolution.  Wetlands of southern Nigeria cover a total area of 29,924 km2 and those 

of Africa cover 947,750 km2, larger than that indicated in previous coarser global 

wetland maps, excluding open water bodies. A wetland fragmentation and 

population density index was developed indicating that ~13,021 km2 of wetlands are 

potentially threatened by human activity within Africa. Using the new map and 

compiled wetland carbon inventory data, it was estimated that African wetland 

contains about 54.30 Gt of carbon which is around 5% to 9% of wetland soil carbon 

stored globally. Calculations across a range of climate zones suggest that drained 

peatland, mangrove and marsh in Africa could emit 260Mt C yr-1 (936Mt CO2 yr-1 

equivalents) which is equivalent to 2.4% of global net annual CO2 emissions. Field 

sampling across Africa is required in order to include emissions from other wetland 

types. Long-term assessment of changes within the wetlands of the Lake Chad 

region for 2000-2020 showed that there was a net loss of wetland area. The greatest 

wetland decline occurred between 2000 – 2005 with a net loss of 277 km2 (±12 km2). 

However, there was wetland loss for all periods studied, including during a wetter 

period when it was anticipated that wetland extent would increase. The most 

significant change occurred around the northern pool of the lake. The tools 

developed by this study pave the way for ongoing high-resolution monitoring and 

assessment of African and global wetlands. 
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Chapter 1  

Introduction 

 

1.1  Problem statement 

African wetlands include some of the most productive ecosystems in the world, and 

in many cases serve as the exclusive source of natural resources upon which rural 

economies depend (Amler et al., 2015; Nsengimana et al., 2017; Musasa and 

Marambanyika, 2022), providing food, energy, medicine and building materials for 

large human populations (Metz, 2017; Igu and Marchant, 2017; Ondiek et al., 2020). 

In addition to water purification (Salimi and Scholz, 2021), flood attenuation, carbon 

storage and sequestration, wetlands provide unique and highly productive 

landscapes for fodder, fibre and fuel (Nhamo et al., 2017; Steinbach et al., 2021). 

Wetlands, with their abundant store of freshwater, generally organic-rich soils, and 

high productivity, play a central role in the economy of all large African river basins 

and coastal zones (Adekola et al., 2012; Ondiek et al., 2020; Steinbach et al., 2021; 

Matema et al., 2022). African wetlands are thought to store over 30 Pg of carbon but 

are increasingly threatened by climate change, watershed development, agricultural 

expansion, invasive species, and pollution (Ouyang and Lee, 2020; Ballut-Dajud et 

al., 2022). Human interference in combination with effects of climate change, may 

compromise the functionality of these socio-ecological systems (Amler et al., 2015; 

Mandishona and Knight, 2022; Li et al., 2022). Recent studies estimate 30-50% loss 

of some African wetland types in recent decades, underscoring the need for 

improved conservation efforts (Rebelo et al., 2010; Bootsma et al., 2019).  
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Yet, information about African wetlands is far from complete. The existing wetland 

mapping products on a global scale, such as the Ramsar site database, only contain 

information on wetlands that have been classified as of ‘international importance’. 

The Global Lakes and Wetlands Database (GLWD) has information that is dated and 

probably incomplete (Gumbricht et al., 2017; Hu, Niu and Chen, 2017; Steinbach et 

al., 2021). Other recent mapping products such as PEATMAP (Xu et al., 2018) are 

typically based on secondary data of varying quality and age with a mix of spatial 

resolutions. An obvious example can be seen in the centre of Figure 1.1 where there 

is a sudden discontinuity in peatland coverage between country borders. GLWD and 

PEATMAP also do not provide information on the dynamic condition of African 

wetlands. Consequently, this makes it more difficult to assess the impact of human 

activities on the surrounding wetland ecosystem. Furthermore, in recognition of the 

climate change problem, the IPCC (2013) Wetland Supplement shows that there is 

a need to understand the distributions of wetlands and their interactions with the 

climate system much more. There is also a need to investigate the result of human 

interaction with wetlands, especially in densely populated regions of Africa. 
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Figure 1.1. Distribution of African wetlands based on a combination of data 

from the Global Lakes and Wetlands Database GLWD (Lehner and Döll, 2004) 

(1km2 resolution) and PEATMAP (Xu et al., 2018). 

 

1.2  Research gap 

Many existing continental and regional wetland maps rely on coarse resolution 

sensors unable to differentiate wetland types and missing small/narrow wetlands 

(Mahdianpari et al., 2018; Slagter et al., 2020). Continental products overlook newer 
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high-resolution data that could improve mapping accuracy if leveraged (Kaplan et 

al., 2019; Gulácsi and Kovács, 2020). Studies utilizing high resolution data have 

focused only on individual wetland sites rather than undertaken continental 

approaches (Sahour et al., 2022). Studies to date have not fully exploited synergies 

from multi-sensor integration of current high resolution optical and radar data for 

continental-scale wetland mapping especially for African regions (Li et al., 2022). 

Optical data alone has limitations for wetland classification while frequent cloud 

cover restricts multi-temporal analysis in the tropics (Amani et al., 2017; Mahdavi et 

al., 2018). The validation and calibration of remote sensing data often rely on limited 

ground truthing, leading to uncertainties in the accuracy of wetland maps. Robust 

ground-truth data collection is essential for improving the reliability of mapping 

results (Jamali and Mahdianpari, 2022). The lack of a recent accurate continental 

wetland baseline hampers monitoring of status, threats, and changes across Africa. 

 

In this thesis, I seek to improve the mapping of African wetlands using a range of up-

to-date, high-resolution, remote sensing techniques and ground control data. This 

approach serves as the foundation for improving our understanding of these 

wetlands and supporting more informed conservation decisions. Through this 

mapping, I will assess the characteristics of current African wetlands, their 

fragmentation, and their potential as carbon stores. Additionally, I aim to study 

wetland change over time in a case study region. Below, I provide an overview of 

the study's research questions and methods. 
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1.3  Research aim and objectives  

The overall aim of the study is to develop combined approaches that enable the 

production of a map and the associated assessment of the extent and types of 

wetlands in Africa, at high spatial resolution, by employing a variety of remote 

sensing techniques. In doing so, I seek to produce and interrogate a novel high 

resolution wetland map for the whole continent. To achieve the general aim of the 

research, the following research questions are defined: 

1. What is the current extent of wetland area in southern Nigeria and how is this 

broken down into different wetland types? (Method prototype, described in 

Chapter 4) 

2. What is the current extent of wetland coverage across Africa? How is this 

distributed across different wetland types and climate zones? What is the 

estimated carbon storage in African wetlands, and how might greenhouse gas 

emissions vary under different degradation scenarios? Additionally, what is 

the relationship between population density and highly fragmented wetland 

areas? (Chapter 5) 

3. What is the trend of change in Lake Chad region wetlands (as a regional case 

study) over two decades and can these changes be linked to clear human 

drivers of change? This region is one of the most important transboundary 

wetland regions in Africa (Chapter 6) 

 

1.4  Summary of methods 

To address the challenge of mapping African wetlands at high spatial resolution (10 

m), to estimate the current distribution and extent of different wetland types and 
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assess the association of human population with surrounding wetland fragmentation 

in Africa, I took a remote sensing approach. However, I first gathered information on 

the location and characteristics of wetlands in Africa from various sources. My 

reference data were obtained from the Food and Agriculture Organization (FAO) 

global dryland assessment (Bastin et al., 2017), Ramsar Sites database (2019), 

other organization reports, journal papers, and academic theses (both PhD and 

MSc). In this study, I make use of Google Earth Engine (GEE) computational power 

and the availability of advanced remote sensing data collected by Copernicus 

Sentinels and other earth observation data. The whole study involved the extraction 

of spectral indices such as Normalized Differential Vegetation Indices (NDVI), 

Normalized Differential Water Indices (NDWI), Modified Normalized Differential 

Water Indices (MNDWI) and Tessled Cap Wetness Indices (TCWI). The 

classification was performed using random forest (RF) classifications. Once the 

maps were produced, I then developed an index of wetland fragmentation and a 

population index to analyze the relationship between wetland fragmentation and 

population at 10 km grid scale. This was performed by overlaying the gridded 

fragmentation layer with the gridded population layer to quantify the coincidence of 

wetland fragments and human population. In addition, for Chapter 6, multi-year time 

series Landsat data composites were used to map the spatial distribution and 

temporal changes of wetland area in the Lake Chad region for the last two decades. 

Change Vector Analysis (CVA) was used to assess the changes from wetland and 

to different landcover type in Lake Chad region.
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Chapter 2  

Remote sensing of wetlands 

 

2.1  Overview 

In this chapter I provides a general review of wetland characteristics and research 

that has been conducted on the remote sensing of wetlands. I firstly outlines wetland 

types before describing the significant role played by African wetlands and the 

threats facing these ecosystems. I then review the applications of different remote 

sensing datasets and techniques, highlighting their advantages and limitations for 

mapping different wetland types. I then discuss different change detection methods, 

their strengths and limitations, before outlining the most suitable approaches for my 

study. 

 

2.2  Wetland definitions 

Wetlands are ecosystems that exist at the boundary between terrestrial and aquatic 

environments. Wetlands occur where the water table is usually at, or near, the 

surface, or in a region periodically inundated with shallow water and where, under 

normal circumstances, the system is covered by active vegetation typically adapted 

to life in waterlogged conditions  (Oberholster et al., 2014; Wulder et al., 2018; 

Mahdianpari et al., 2020; Mandishona and Knight, 2022). The Ramsar Convention 

(1971) defines wetlands as "areas of marsh, fen, peatland, or water, whether natural 

or artificial, permanent or temporary, with water that is static or flowing, fresh, 

brackish, or salt, including marine areas where the depth at low tide does not exceed 

six meters." 
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Wetlands can be grouped into mineral-soil systems and organic-soil systems. 

Sometimes lakes are also classified as wetlands. Mineral soil systems include 

marshes and some swamps. Marshes can often be found at the edges of lakes and 

streams and are dominated by herbaceous rather than woody plant species (Li et 

al., 2022; Zhang et al., 2023). The main source of water for marshes is by direct flow 

from lakes or streams (Woodson, 2012), or sometimes from direct rainfall (Herbst, 

2015). Marshes can also be found in the coastal zone between land and 

open saltwater and these are known as salt or tidal marshes (Sun et al., 2016). 

Saltmarshes are characterized by distinct vegetation types, highly dependent upon 

soil salinity and being regularly flooded by tides (Van Beijma et al., 2014; Mitsch and 

Gosselink, 2015; LaRocque et al., 2020). Mangroves are another dominant coastal 

wetland ecosystem characterized by trees and shrubs that are salt-tolerant. 

Mangroves are mostly evergreen forests that grow in sheltered low lying coasts 

estuaries, and lagoons of tropical and subtropical regions (Adekanmbi and 

Ogundipe, 2009; Lee and Yeh, 2009; Kuenzer et al., 2011; Dan et al., 2016; Navarro 

et al., 2021). Swamps are forested wetlands (Jones, 1997; Lehner and Döll, 2004a; 

Gumbricht et al., 2017) which occur along large rivers or on the shores of large lakes 

where they are critically dependent upon natural water level fluctuations with 

permanently or seasonally flooded mineral soil (Jones, 1997). Some swamps have 

hummocks, or dry-land protrusions. Swamps are dominated  by woody vegetation 

that tolerates periodic inundation and waterlogging (Mahdianpari et al., 2017). Some 

wetland classifications include swamps that occur on organic soils, often called peat 
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swamps (Connolly and Holden, 2017; Langan et al., 2018; Elshehawi et al., 2019). 

Others, however, only refer to swamps on mineral soils. 

 

Peatlands occur where the soil is formed predominately from dead plant material 

that has not decayed, due to waterlogging. Bogs are peatlands that have no 

significant groundwater inflow and receive water mostly through precipitation 

(Connolly and Holden, 2017; Chico et al., 2019). Because the main source of water 

is from precipitation, the nutrient content of bogs is low. The peat is generally 

waterlogged, with low permeability reported from temperate at high latitude sites, 

except for within a few cm close to the peat surface (Acreman and Holden, 2013) 

and is associated with very slow rates of plant decomposition (Clarkson et al., 2012). 

Tropical peatlands tend to have higher permeability (Baird et al., 2017). Fens are 

mildly acidic or alkaline peatlands that receive their water primarily from groundwater 

sources and a little from precipitation. They are more nutrient-rich than bogs and 

support a wider variety of species because of their connection to groundwater 

(Clarkson et al., 2012). 

 

2.3  Importance of wetlands 

Wetland ecosystems are important providers of multiple values to humans, including 

socio-esthetical value, intrinsic value and economic value (Hu, Niu and Chen, 2017; 

Gumbricht et al., 2017; Slagter et al., 2020; Musasa and Marambanyika, 2022). The 

global contribution of wetland ecosystem services in monetary terms has been 

estimated to be around 14 trillion US dollars every year, thereby making a vital 

contribution to human livelihoods (Turpie and Kleynhans, 2010; Musasa and 
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Marambanyika, 2021). Wetlands are thought to directly supply freshwater to around 

1.5 to 3 billion people as well as provide 40% and 20% of water requirements for 

industrial use and irrigation respectively (François et al., 2005; White et al., 2015; 

Klemas, 2016; Salimi and Scholz, 2021). 

 

Wetlands are highly productive in terms of biological diversity supporting a richness 

of flora and fauna (Junk et al., 2013; Mahdianpari et al., 2020; Mao et al., 2020). 

They play key roles in regulating biogeochemical cycles, including water flows and 

associated nutrients, flood and storm-damage protection, water-quality 

improvement, aquatic and plant-biomass productivity, and shoreline stabilization 

(Acreman and Holden, 2013; Junk et al., 2013; Mahdianpari et al., 2018; Lu and 

Chang, 2023). One of the most important roles of wetlands is in regulation of global 

climate through sequestering and long-term storage of carbon from the atmosphere 

– globally they contain over 30% of terrestrial carbon (Mitsch et al., 2013; Hassan et 

al., 2014; Gumbricht et al., 2017; Mahdianpari et al., 2018; Mitsch and Mander, 2018; 

Xiu et al., 2019). Undisturbed wetlands are known to moderate or to counterbalance 

their positive climate forcing via methane (CH4) and nitrous oxide (N2O) emissions 

with sufficient uptake of carbon dioxide (CO2) so that they have a net cooling effect, 

while also acting as long-term soil carbon stores (Petrescu et al., 2015; Zou et al., 

2022).  

 

2.3.1 Wetlands in Africa 

Wetlands are common across Africa's diverse biomes, including major floodplains, 

swamps, mangroves, peatlands, and riparian zones (Kariyasa and Dewi, 2011; 
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Metz, 2017; Mandishona and Knight, 2022). Large wetland complexes include the 

Sudd wetlands of South Sudan, Okavango Delta in Botswana, and Bangweulu 

Swamps in Zambia. The percentage of wetland area in Africa has been estimated at 

lying in a range of approximately 1% to 16% of the total area of the continent (Amler 

et al., 2015; Li et al., 2022; Mandishona and Knight, 2022) though clearly with such 

a range, there is very high uncertainty: a research gap that needs to be filled. For 

example, in Equatorial Africa, the three largest wetland systems are believed to be 

the Zaire swamps, spanning 80,000 km2, and the Sudd in the Upper Nile, covering 

over 50,000 km2 and the wetlands of the Lake Victoria Basin (about 50,000 km2) 

(Vinet and Zhedanov, 2010). However, Dargie et al (2017) reported the discovery of 

the Congo basin peatlands covering an estimated 145,500 km2. Other major wetland 

areas in Africa are thought to include the floodplains of the Niger and Zambezi 

Rivers, and the Chad Basin which cover around 20,000 km2, and a further 12,000 

km2 of wetlands in southern Africa (Vinet and Zhedanov, 2010). However, due to a 

lack of scientific investigation and inconsistent mapping policies in Africa, an exact 

estimate of the total extent of wetlands in Africa is poorly constrained. According to 

the Global Lakes and Wetlands Database (GLWD) the total area covered by 

wetlands in Africa, excluding rivers, lakes and reservoirs, has been estimated as 

1,514,804 km2. These wetlands vary in type from saline coastal lagoons in West 

Africa to fresh and brackish water lakes in East Africa (Metz, 2017). The greatest 

concentration of wetlands in Africa is thought to be roughly between 15ºN and 20ºS 

(see Chapter 1, Figure 1.1). Despite widespread distribution across Africa, 

knowledge of the African wetland extent and resources could be improved to support 

management needs (Dixon et al., 2016; Davidson, 2017; Taylor et al., 2018).  



12 
 

2.3.2 Threat to African wetlands 

African wetlands face escalating threats from climate change, agricultural 

expansion, pollution, invasive species, and infrastructure projects (Gumbricht et al., 

2017). Climate change such as rising temperatures, altered precipitation patterns, 

and sea-level rise contribute to wetland loss and degradation. As the climate 

changes, some regions experience prolonged and severe droughts (Meng et al., 

2016). Climate change will continue to impact, and exacerbate, changes in water 

depth and flooding patterns. Irregular rainfall patterns have led to exceptionally dry 

years during which wetlands are affected by low water flows that facilitate more 

intense human exploitation, as observed, for example, in Nyando wetland, Kenya, 

during 2004-2005 (Rongoei et al., 2013). The floodplains of Hadejia Jam’are and the 

Zambezi basin have been affected as a result of reduced inflow caused by drought 

(Olalekan et al., 2014). Climate change is recognized as a major threat to the survival 

of species and integrity of ecosystems worldwide (Hulme, 2005; Halabisky et al., 

2016; Gitau et al., 2017; Penfound and Vaz, 2021). Wetlands represent a land cover 

that is sensitive to climate change (Hu, Niu and Chen, 2017; Wu et al., 2021), and 

vulnerable to changes in quantity and quality of their water supply. Climate change 

may have a pronounced effect on wetlands through alterations in hydrological 

regimes (Erwin, 2009; Mapeshoane, 2013; Berhanu et al., 2021). Regardless of the 

potentially profound impact caused by current and future climate change on 

wetlands, there is a lack of assessment of wetland degradation due to climate 

change in Africa. This indicates a significant and urgent need to develop methods 

for assessing potential changes in Africa's wetlands. The degradation of wetlands 

also can lead to an increase in the release of greenhouse gases (GHG) which further 
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exacerbate climate change (Limpert et al., 2020; Zou et al., 2022). However, one of 

the major threats is increased wetland fragmentation driven by rapid human 

population growth and associated land use changes across Africa (Kundu et al., 

2022; Wu et al., 2022; Magure et al., 2022). The growing human population 

necessitates more land for various purposes, putting immense pressure on 

wetlands. 

 

Studies show extensive wetland loss and conversion to agriculture as African 

populations expand and pressure intensifies for croplands (Bootsma et al., 2019). A 

good example is the Yala swamp of Kenya which suffers a lot of pressure due to 

high population, and this leads to uncontrolled exploitation of the wetland and its 

resources (Olusola et al., 2016). The swamps of this area have been subject to 

conversion since the 1960s, mostly for agricultural purposes, such as the growing of 

rice, groundnuts, cassava, yams and sugarcane (Mwita, 2013; Olusola et al., 2016).  

 

Agricultural expansion is inextricably linked to population growth in Africa. As the 

population surges, the demand for food production rises. Wetlands, often 

characterized by fertile soils and abundant water resources, become prime targets 

for agricultural conversion (Mitsch and Gosselink, 2015). Draining wetlands for 

farming and diverting water has fragmented hydrologic connectivity (Magure et al., 

2022). Population growth drives urbanization and infrastructure development, both 

of which contribute to wetland destruction and fragmentation (Klemas, 2013). The 

expansion of cities, the construction of roads, and the establishment of industrial 

zones frequently encroach upon wetlands. For example, a large area of the Makurdi 
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floodplain in Nigeria has been converted to a built-up area as a result of population 

expansion (Anule and Ujoh, 2017). Better understanding the relationship between 

population density and wetland fragmentation rates across Africa can help predict 

future impacts and target conservation efforts.  

 

The multifaceted threats to African wetlands are intricately connected to population 

dynamics, emphasizing the need to understand the population-wetland 

fragmentation relationship. By recognizing this connection, policy makers and 

conservationists can develop effective strategies to mitigate the threats and ensure 

the preservation of these invaluable ecosystems. 

 

2.4  Remote sensing  

Remote sensing technology allows for the observation, measurement, and analysis 

of the Earth's surface and atmosphere, often resulting in the generation of imagery 

and data that can be used for scientific research, environmental monitoring, and 

decision-making (Alshammari et al., 2018; Kovács et al., 2022). Data acquired 

through remote sensing instruments allows for efficient mapping and analysis of land 

cover over large areas. Several satellite systems have provided key data for land 

cover mapping in recent years. These remotely sensed products are available at 

different spatial, temporal, and spectral resolutions, by a range of spaceborne and 

airborne sensors from multispectral sensors and hyperspectral sensors. These 

sensors include widely used ones such as Landsat (Multispectral Scanner: MSS, 

Thematic Mapper: TM, Enhanced Thematic Mapper: ETM+, Operational Land 

Imager: OLI), Moderate Resolution Imaging Spectroradiometer (MODIS), as well as 
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Sentinel 2 and Sentinel 1 SAR. Medium resolution (10-30m) multispectral data from 

Landsat 8, Sentinel-2, and SPOT have been widely used for broad vegetation and 

land use classification (Maxwell and Warner, 2020). Hyperspectral sensors like EO-

1 Hyperion produce narrow-band spectra ideal for crop type discrimination 

(Hirschmugl et al., 2017). SAR systems including Sentinel-1 and ALOS PALSAR 

provide all-weather observation (Steele-Dunne et al., 2017) while Lidar data 

increasingly provides 3D structure data (Anderson et al., 2010; Carless et al., 2019).  

 

2.4.1 Remote Sensing of wetlands 

The availability of remote sensing data offers an opportunity to map and monitor 

wetlands in a spatially explicit manner in different climatic regions, lacking monitoring 

systems (Gxokwe et al., 2020). However, accurately mapping wetlands is a 

challenging task when using satellite data alone (Mwita, 2013; Gallant, 2015; Jamali 

and Mahdianpari, 2022). While different wetland classes have distinctive 

characteristics, they also share underlying ecological similarities that confuse 

spectral and backscatter signatures (Kaplan and Avdan, 2018b). For example, 

flooded forests and swamp forests exhibit similar flooding in radar and vegetation 

patterns in optical data (Schmitt et al., 2014; Zhang et al., 2023). Transitions between 

wetlands and uplands can also be gradational without clear boundaries (McCarthy 

et al., 2018). Additionally, wetlands demonstrate significant spatiotemporal variability 

due to change hydrology and phenology (Dabboor et al., 2017; Battaglia et al., 

2021). These factors make effectively discriminating diverse wetland ecosystems 

difficult through remote sensing approaches. Low to medium resolution data such as 

MODIS, Landsat and SPOT images have been widely and successfully used for 



16 
 

monitoring the wetland vegetation and detecting the presence and extent of floods 

(Bassi et al., 2014; Gumbricht et al., 2017; Wang et al., 2020; Wu et al., 2021). 

However, their resolution may limit the ability to accurately identify detailed wetland 

vegetation types. Powell et al. (2019) demonstrated the effectiveness of integrating 

Landsat TM and ETM+ data sets coupled with digital elevation and light detection 

and ranging (LIDAR) data sets to classify and map land-cover types in the semi-arid 

wetlands of the Barwon-Darling River system, using the stochastic gradient boosting 

algorithm and the fractional cover model. The study identified four land-cover classes 

which included tree-dominated woodlands, shrub lands, vegetated swamps and 

non-flood dependent terrestrial communities with an overall accuracy of 88%. 

However, the study failed to distinguish between certain types of wetlands located 

at the boundaries of the drier wetlands from the Landsat TM and ETM+ images used. 

Li et al. (2015) assessed the effectiveness of MODIS spectral indices in monitoring 

the hydrological dynamics of a small, seasonally flooded wetland (1364 ha) in semi-

arid southern Spain. Their analysis revealed a strong positive linear relationship 

between the MODIS-inferred inundation area and field-measured water levels, with 

an R2 value of 0.96, indicating the success of the MODIS dataset in tracking the 

hydrological dynamics of seasonal wetlands. However, the study focused on a single 

seasonal wetland with only varying soil characteristics and unable to identify other 

semi-arid and arid seasonal wetlands with diverging characteristics e.g., marshes 

with dense emergent vegetation are even smaller and cover only a few MODIS 

pixels. Chen et al. (2013) used a 250 m resolution MODIS dataset along with daily 

field water levels to assess the effectiveness of MODIS time series data for 

monitoring wetland cover dynamics. Four land-cover classes which were water, 
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mudflats, submerged and emergent vegetation were identified with the overall 

accuracy of 80.18% and Kappa coefficient of 0.734. There were, however, omission 

errors of about 30% where water was confused with other classes such as mudflats 

and emergent vegetation. Much of this water was located at the interface of mudflats 

and other classes. Landmann et al. (2010) also utilised MODIS coupled with 

topographical landform data set to map basic wetland classes in semi-arid Burkina 

Faso and Mali. The results showed low accuracy in the classification of mapped land 

cover types. Although the studies demonstrated the success of these freely available 

datasets in detecting and mapping different wetland cover classes, the fine detailed 

differentiation between the classes was a major challenge. 

 

Advances in remote sensing technology have led to an increase in the availability of 

high spatial and spectral resolution imagery. Sentinel-2 Multispectral Instrument 

(MSI) launched by ESA in 2015, a new generation multispectral sensor, has been 

successfully used in land use/land cover research, because of its high spatio-

temporal resolution, wide spatial coverage and broad spectrum. Furthermore, the 

three red-edge bands of Sentinel-2 images are particularly effective for vegetation 

monitoring (Kaplan et al., 2019). The study by Lefebvre et al. (2019) showed that 

Sentinel 2 provided the highest performance (90%) than Landsat 7 (85%) and 

Landsat 8 (86%) for monitoring the water dynamics of seasonal wetlands. According 

to Sánchez-Espinosa and Schröder (2019) the use of Sentinel-2 improved the 

accuracy of mapping Mediterranean wetland area compared to using Landsat 8 

alone. However, optical satellite sensors are always vulnerable to cloudy and rainy 

weather, so it is difficult to acquire adequate and clear Sentinel-2 images especially 
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in the tropical and subtropical coastal areas. Indeed, optical imagery is crucial as it 

provides important information on reflectance, which indicates the presence or 

absence of vegetation, identifies vegetation types, and reveals soil moisture levels 

in areas with dense canopies.(Cardoso et al., 2014; Amani et al., 2018; Mahdavi et 

al., 2018).  

 

Synthetic aperture radar (SAR) systems like Sentinel-1, RADARSAT, and ALOS-2 

are frequently used for wetland mapping, flood detection, forest classification, crop 

identification, and biomass mapping due to SAR's all-weather capability and 

sensitivity to surface roughness, texture, and moisture content under vegetation 

canopies (Clewley et al., 2015; White et al., 2015; Hribljan et al., 2017; Rüetschi and 

Schaepman, 2018; Huang, 2019; LaRocque et al., 2020; Masoud Mahdianpari et al., 

2020). The utilization of SAR relies on both polarization and frequency 

considerations, as highlighted by Mahdianpari et al. (2017). In line with the scatter 

mechanisms of ground targets observed through Polarimetric SAR, numerous 

studies have been undertaken to discern diverse land cover types based on distinct 

shapes, structures, roughness, and permittivity. For instance, dual-polarization 

(vertical transmit-vertical receive (VV) / vertical transmit-horizontal receive (VH)) 

data have been used for the identification of the water body and vegetation(Evans 

and Costa, 2013; Mahdianpari et al., 2017; Kaplan and Avdan, 2018a) . Another 

parameter in SAR, known as frequency or wavelength, is associated with the 

penetration depths into ground targets, providing insights into the land surface 

structure. Longer wavelengths, such as those in the P- and L-band, possess greater 

penetration ability, allowing for the detection of the vegetation canopy and the 
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quantification of soil moisture. Conversely, shorter wavelengths, like those in the C- 

and X-band, exhibit better performance in classifying land cover in open areas, such 

as open wetlands. Consequently, multi-frequency and multi-source SAR data have 

been integrally exploited for wetland monitoring and achieved successful results 

(Mahdianpari et al., 2017; DeLancey et al., 2019; Amani et al., 2021). However, the 

high cost and challenges in acquisition often limit the feasibility of using multi-

frequency and multi-source Polarimetric SAR data, particularly in time series 

analysis. Sentinel-1 satellites with a C-band and dual-polarization (VV/VH) sensor 

provides a promising opportunity for time-series wetland land cover analysis at low 

cost. Polarimetric features, such as backscatter coefficient interferometry data, the 

degree of polarization and linear polarization ratio, have been widely utilized to help 

identify wetland cover types (Guo et al., 2017; Mohammadimanesh et al., 2018).  

 

Some studies reported that the backscatter coefficients in Sentinel-1 SAR time 

series have the greatest utility among SAR features in wetland cover classification 

and could obtain the highest classification accuracy (Li et al., 2020; Costa et al., 

2021). However, the accuracy of land use/cover classification using SAR data is 

typically lower than that achieved with optical multispectral data at the same spatial 

resolution. Combining optical and SAR data for land cover and vegetation mapping 

brings accuracy higher than that of using only either optical or SAR images (Gao et 

al., 2017; Mahdianpari et al., 2018; LaRocque et al., 2020; Sahour et al., 2022). With 

the launch of many long-term observation missions, the volume and accessibility of 

optical and SAR remote sensing images enable the accuracy improvement in 

landcover research using remote sensing (Mahdianpari et al., 2020; Mahdianpari et 
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al., 2018). However, limited studies on wetland monitoring have utilized dense time 

series of optical and SAR images. Only recently, the time-series Sentinel-1 and 

Sentinel-2 images were combined to improve the land surface monitoring accuracy 

(Estupinan-Suarez et al., 2015; Slagter et al., 2020). Therefore, combining Sentinel-

1 and Sentinel-2 data could be very useful for large scale wetland mapping at high 

resolution and has significant advantages in wetland mapping at regional or global 

level (Mahdianpari et al., 2018; Slagter et al., 2020).  

 

Several remote sensing techniques have been used for mapping different types of 

wetlands (Ritchie and Das, 2015; Nhamo et al., 2017; Amani et al., 2019; Jamali et 

al., 2021). These techniques are use either use for mapping and identification of 

wetlands and different land covers. For example, an unsupervised classification 

technique known as iterative self-organizing data analysis (ISODATA) has been 

commonly used to map and classify wetland cover type (Mwita, 2013; Chen et al., 

2014). This classification technique requires no training data and there is no 

expensive training phase in the classification process, only an analyst's time is 

required to classify the clusters. However, it is possible that this method may not 

produce spectral groupings that match the classes of interest resulting in 

misclassification error (Ritchie and Das, 2015). Supervised classification techniques 

such as Maximum Likelihood (ML), , Support Vector Machine (SVM), Artificial Neural 

Network (ANN), K-Nearest-Neighbors (K-NN), Decision Tree (DT), and Random 

Forest (RF) has been widely used for to classify wetland cover (Anule and Ujoh, 

2017; Moser et al., 2016; Nhamo et al., 2017). These techniques may require training 

data for the classification but do not require much of the analyst's time. These 
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techniques also allow for the creation of classes matching those of interest (Ritchie 

and Das, 2015; Dang et al., 2021)  In terms of accuracy and commonly used 

supervised classifiers for wetland mapping, RF is generally characterized by the 

highest mean classification accuracy, followed by the SVM classifier and the DT 

classifier, whereas those of NN and MLC are relatively lower (Gómez et al., 2016; 

Ma et al., 2017; Mahdianpari et al., 2018; Jamali et al., 2021). 

 

2.5  Change detection techniques 

Change detection involves the process of identifying variations in the state of an 

object or phenomenon by observing it at different times (Scharsich et al., 2017; Qu 

et al., 2022). Generally, change detection involves the application of multi-temporal 

datasets to quantitatively analyse the temporal effects of the phenomenon. Each 

change detection algorithm has their strength over the other depending on the area 

of application. Change detection algorithm can be into seven categories (Lu et al., 

2004): (1) algebra, (2) transformation, (3) classification, (4) advanced models, (5) 

Geographical Information System (GIS) approaches, (6) visual analysis, and (7) 

other approaches. 

 

Change detection algebra methods include image differencing, image regression, 

image ratioing, vegetation index differencing, change vector analysis (CVA) and 

background subtraction. A common characteristic of these algorithms is the selection 

of thresholds to identify areas of change. These methods (excluding CVA) are 

relatively simple, straightforward, easy to implement and interpret, but cannot 

provide complete matrices of change information. CVA is essentially an extension of 
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image differencing, capable of detecting all changes that exceed specified 

thresholds and offering detailed information about those changes. CVA can measure 

change in more than two spectral bands, giving it an advantage when mapping 

rapidly changing and highly diverse wetlands (Klemas, 2013; Gemechu et al., 2022). 

It produces robust results for detecting wetland changes due its sensitivity to 

variations in class reflectance caused by high intra-class variability influenced by 

landscape heterogeneity (Landmann et al., 2013; Liu et al., 2020). Landmann et al. 

(2013) used a MODIS CVA-approach to map wetland dynamics in the Linyanti 

wetland from 2001-2010. The result showed the high potential of the CVA to detect 

interannual wetland dynamics and trends over such a time period. The 

transformation category includes PCA, KT, Gramm–Schmidt (GS), and Chi-square 

transformations. One advantage of these methods is in reducing data redundancy 

between bands and emphasizing different information in derived components 

(Hussain et al., 2013; Hussaini et al., 2020). These methods can decrease the high 

correlation between the spectral bands providing independent information on 

change pixels of the wetland cover (Connell, 2012; Dronova et al., 2015; 

Chatziantoniou et al., 2017). However, they cannot provide detailed change matrices 

and require selection of thresholds to identify changed areas. Another drawback is 

the challenge of interpreting and labelling change information on the transformed 

images. 

 

The classification type of change detection includes post-classification comparison 

(PCC), spectral–temporal combined analysis, expectation–maximization algorithm 

(EM) change detection, unsupervised change detection, hybrid change detection, 
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and Artificial Neural Networks (ANN) (Ojaghi et al., 2017). The major advantage of 

these methods is their capability of providing a matrix of change information and 

reducing external impact from atmospheric and environmental differences between 

the multi-temporal images (Hussain et al., 2013). However, selecting high-quality 

and sufficiently numerous training sample sets for image classification is often 

difficult, for historical image data classification. The time-consuming and difficult task 

of producing highly accurate classifications often leads to unsatisfactory change 

detection results, especially when high-quality training sample data are not available 

(Mwita, 2010; Hussain et al., 2013). In a study by Sica et al. (2016) PCC produced 

high accuracy for mapping and quantification of wetland changes in the Lower 

Paraná River Delta, Argentina. Dadaser-Celik and Cengi, (2013) successfully 

employed an ANN model to simulate and predict water levels in the Sultan Marshes. 

Debanshi and Pal (2020) demonstrated the potential of ANN for delineation and 

monitoring of wetlands in the Ganges delta revealing details on the shrinkage of the 

wetland area. 

 

The advanced model-based change detection category includes the Li–Strahler 

reflectance model, spectral mixture models (SMM), and biophysical parameter 

estimation models. In these methods, the image reflectance values are often 

converted to physically based parameters or fractions through linear or nonlinear 

models (Guo et al., 2017). The transformed parameters are more intuitive to interpret 

and better to extract wetland vegetation information than are spectral signatures 

(Guo et al., 2017). For example, Halabisky et al. (2016) assessed the condition of 

wetland changes and trends using a spectral mixture method but the disadvantage 
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of these methods is the time-consuming and difficult process of developing suitable 

models for converting image reflectance values into biophysical parameters.  

 

The visual analysis category includes visual interpretation of multi-temporal image 

composite and on-screen digitizing of changed areas. This method allows analysts 

to fully leverage their expertise and knowledge. Key elements such as texture, 

shape, size, and patterns in the images are essential for accurately identifying land 

use and land cover (LULC) changes through visual interpretation. The disadvantage 

of this method is the time consumed for a large area change detection application 

and it is difficult to update the change detection results in a timely manner. It is also 

difficult to provide detailed change trajectories. 

 

The choice of particular change detection methods depends on their abilities to 

detect specific changes in land use/landcover. PCC, for example, specifies changes 

from a particular class to another, while CVA shows magnitude and the direction of 

change (D. Liu et al., 2020), and ANN works better with small areas and is very 

effective in also identifying areas with significant changes (Dadaser-Celik and 

Cengiz, 2013; Debanshi and Pal, 2020). The selection of a suitable method to 

implement accurate change detection for a specific research purpose or study area 

is still difficult even though a variety of change detection techniques have been 

developed. Post-classification comparison is the most common technique used in 

wetland studies to quantify total wetland change and locate specific areas where 

change has occurred (Tewkesbury et al., 2015; Ye et al., 2016). It involves 

independently classifying images from different years and then comparing the results 
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to detect change. However, conducting separate classifications introduces errors 

into each map that are then compounded when the maps are compare (Baker et al., 

2007; Salih et al., 2017). This significantly impacts studies where most of the area is 

unchanged which result to vast unchanged to be classified multiple times, each time 

with new errors. This increases the overall error in the change analysis. In contrast, 

change vector analysis (CVA) can detect subtle differences in class reflectance 

resulting from high intra-class variability caused by landscape heterogeneity 

(Rahman and Mesev, 2019). By analyzing the intensity and direction of change 

vectors, CVA avoids the compounding of classification errors that often occurs when 

comparing independent classifications from two time points (Landmann et al., 2013; 

D. Liu et al., 2020). Additionally, CVA reduces the need for collecting training and 

reference data for historical images. Since unchanged areas can be used as 

reference data, this avoids errors introduced by collecting separate training data for 

each image date (Landmann et al., 2013; Salih et al., 2017).  

 

For the purpose of this study I propose the use of change vector analysis to 

accurately quantify the changes between individual wetland class and other non-

wetland categories. 

 

2.6  Summary 

Some wetlands vary seasonally and over years in their appearance and size, and 

they are sometimes highly dynamic. Others are fairly stable over long periods unless 

degraded by human action, at which point degradation can be rapid. Since ancient 

times wetlands have suffered from human disturbance, but over the past 200 years 
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these disturbances have rapidly accelerated. The current wetland mapping products 

on a global scale such as Global Lakes and Wetlands Database (GLWD) and the 

Ramsar site database cannot match either the need for global wetland dynamic 

monitoring or the need for understanding their internal processes due to their coarse 

spatial resolution. Many of these global wetland maps rely on data that can be 

decades old and, particularly in developing countries, with very limited ground truth 

data. It is therefore important to improve maps of these ecosystems, using a range 

of techniques, to get a complete picture of wetland area and to establish the range 

and extent of different wetland types and their fragmentation. Comprehensive 

wetland maps and an understanding of the nature of their fragmentation are needed 

to build economic assessments of wetland ecosystem service provision and to 

support decision-making by regional and international bodies seeking to protect 

wetland systems as well as for inclusion in coupled land-surface—climatic models. 

The latter is crucial since wetlands are important for land–atmosphere carbon 

dynamics, greenhouse gas exchange, and the water cycle. 

 

A high-resolution continental view about the types and distribution of wetlands in 

Africa is lacking. Most of the studies on wetlands in Africa have been conducted at 

a local scale and given the vastness of the continent, there is a dearth of studies of 

wetland fragmentation which means that an overall assessment of the state and 

condition of African wetlands is currently very challenging. There is potential for 

remote sensing techniques to help with the assessment of the status and extent of 

African wetlands.  
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Chapter 3  

Methodology 

 

3.1  Overview 

I used high resolution (10m) optical and radar imagery to map wetlands, their 

distribution and fragmentation, and to estimate the current extent of wetland area, 

the potential carbon flux from wetland degradation, and the relationship between 

population and highly fragmented wetland regions (Chapters 4 and 5). Following the 

identification of the spatial distribution wetland types and their fragmentation in 

Africa, a more focused change detection approach was conducted to analyse the 

trend of wetland changes in one of the most important transboundary wetland 

regions in Africa (Chapter 6).  

 

To begin with, I produced an updated high resolution (10m) wetland map of Southern 

Nigeria (Chapter 4) leveraging the computational power of Google Earth Engine 

(GEE) and the availability of advanced remote sensing data collected by Copernicus 

Sentinels and other earth observation data. The whole study involves the integration 

of indices from both optical and radar imagery and classification of imagery using 

the Random Forest (RF) algorithm supported by compiled reference points 

containing information about the location and characteristics of wetlands from 

multiple sources.  

 

I then scaled this approach up to map wetland areas across the wider African 

continent, adapting my methods to apply to different climatic zones (Chapter 5). The 
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next step was to develop an index to model the distribution of wetland fragments in 

relation to population, called Wetland Fragmentation and Population Index (WFPI) 

(see Chapter 5). This aimed to identify the association of wetland fragmentation with 

human population. To model the WFPI, the population datasets from the Gridded 

Population of the World database (GPW V4), was combined with my new high 

resolution wetland map. I used a fuzzy logic approach to create a membership rank 

for the fragmentation grid and population grid layer. The gridded fragmentation 

membership layer was overlayed with the gridded population membership layer to 

quantify the coincidence of wetland fragments and human population. In addition, I 

estimated the total carbon stocks stored in African wetlands and calculated the 

potential carbon emissions from different wetland types for two wetland degradation 

states in each of the five climate zones of Africa using the new wetland map. 

 

In this chapter I outline the methods that underlie the work in the following chapters, 

namely: (1) selection and preparation of satellite imagery, (2) identification and 

collation of ground control points and (3) justification and ethos of the classification 

method. 

 

3.2  Data collection and preprocessing 

3.2.1 Selection and preparation of satellite imagery  

In this study, I used three remote sensing image datasets (Landsat, Sentinel-1 and 

Sentinel-2, Table 3.1) accessed through the GEE Data Catalogue. For the 10m 

resolution wetland mapping, Sentinel-1 radar images and Sentinel-2 optical images 

were used, while Landsat images were acquired for the long-term wetland change 
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detection. I selected 345 and 13596 images of Sentinel-2 Top of Atmosphere 

reflectance data with 16 spectral bands for Southern Nigeria and the entire African 

continent respectively. Due to cloud coverage affecting a large number of Sentinel-

2 observations in my study area, especially during rainy seasons, I used an initial 

selection criterion of cloud fraction <20%. Then I applied a cloud mask to remove 

cloud and cirrus-cover using the quality assurance bands available through GEE 

(Hird et al., 2017; Mahdianpari et al., 2018; Gulácsi and Kovács, 2020) before 

formation of a composite image. Surface reflectance data for two Landsat data 

products (Landsat 7 ETM+ and 8 OLI) from 2000 to 2022 were collected for the 

change detection analysis. While the Landsat archive contains remotely sensed 

imagery continuously acquired since 1972, frequent cloud cover creates substantial 

data gaps over certain regions, especially wetland areas or during wet seasons. To 

achieve my objectives, I created cloud-free image composites using scenes with 

minimal cloud cover. Notably, after the 2003 failure of the scan line corrector (SLC) 

on Landsat 7's ETM+ sensor, approximately 22% of pixels in its images contain data 

gaps. To fill these SLC-off gaps, I utilized a common gap filling technique to 

interpolate pixel values across the stripes of missing data (Chen et al., 2011). This 

allowed me to reconstruct the full images needed for continuous wetland mapping. 

For Sentinel-1 I used a total of 6112 Ground Range Detected interferometric wide-

swath images collected in ascending orbit, which are projected onto a regular 10 m 

grid with dual VV/VH polarisation imagery available at an average acquisition interval 

of 12 days within the study area. Similar preprocessing steps implemented in the 

ESA SNAP Sentinel-1 toolbox including updating orbit metadata, thermal noise 

removal, terrain correction, GRD border removal and radiometric calibration were 
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applied. I then corrected for incidence angle (Hird et al., 2017) and reduced radar 

speckle using an adaptive sigma Lee filter on the GEE platform. 

 

Table 3.1 A description of image data and features extracted. 

 

3.2.2 Image compositing and feature extraction 

In this study two different types of image composites were generated: seasonal and 

yearly composites (Table 3.2). Since Sentinel-1 SAR backscatter is unaffected by 

cloud cover, I incorporated information from both dry and wet seasons to create two 

Image data Sensor 

type 

Bands  Feature extracted 

Landsat 

ETM+ 

450–12500nm spectral bands 1 (blue), 2 (green), 3 

(red) 4 (NIR) 5 and 7 (SWIR), the 

normalized difference vegetation index 

(NDVI, normalized difference water 

index (NDWI), modified normalized 

differential water Indices (MNDWI), and 

tasseled cap wetness index (TCWI).  

Landsat OLI 430–12500nm 

Sentinel-2 MSI 490–2190 nm spectral bands 2 (blue), 3 (green), 4 

(red) 8 (NIR) 11 and 12 (SWIR), the 

normalized difference vegetation index 

(NDVI, normalized difference water 

index (NDWI), modified normalized 

differential water Indices (MNDWI), and 

tasseled cap wetness index (TCWI).  

Sentinel-1  SAR VV-VH vertically transmitted, vertically received 

SAR backscattering coefficient  σ0𝑉𝑉. 

vertically transmitted, horizontally 

received SAR backscattering coefficient

  σ0𝑉𝐻. 

the ratio polarized index 
𝑽𝑽

 𝑽𝑯
 ,  

normalized polarized ratio 
 𝑽𝑯−𝑽𝑽

𝑽𝑯+𝑽𝑽
. 
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seasonal composites to capture explicit phenological information appropriate for 

wetland mapping. However, it is only possible to produce a yearly composite for 

Sentinel-2 and Landsat data due to the high number of cloudy images which makes 

it impossible to collect sufficient cloud free image to generate full coverage seasonal 

composites. For the southern Nigeria region, each composite was constructed from 

the mean value for each pixel, per band basis, to obtain observations for the 

available dates at a point in a single representative pixel, hence preserving 

relationships between bands. To map the wetlands in different climate regions 

across Africa, individual composites for each climate zone were constructed to 

capture the semantic information of wetland classes within the different climate 

zones. I created a composite using the maximum pixel value for the Arid and Semi-

arid climate zone to enhance wetland features within this drier region. The 

composites for Tropical Wet (TW), Tropical Wet and Dry and Mediterranean 

subtropical climate (MED) zones were constructed from the median pixel value of 

the stacked images. or this study, I utilized blue, green, red, near-infrared, and short-

wave infrared bands from optical imagery. In addition to these optical bands, I 

calculated several indices: Normalized Difference Vegetation Index (NDVI), 

Normalized Difference Water Index (NDWI), Modified Normalized Difference Water 

Index (MNDWI), and the Tasseled Cap Wetness Index (TCWI). SAR features 

included backscatter from VV and VH, as well as the normalized difference (Ndiff = 

(VH-VV)/(VH+VV)) and ratio indices (Nratio = VV/VH) for both wet and dry seasons. 

The VH backscatter, which is vertically transmitted and horizontally received, is 

sensitive to volume scattering within the vegetation canopy and is highly responsive 

to vegetation structure (Steele-Dunne et al., 2017). On the other hand, VV, which is 
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vertically transmitted and received, is more sensitive to surface roughness and soil 

moisture, helping to distinguish flooded from non-flooded vegetation (Mahdianpari 

et al., 2018). VV also provides distinctive returns for herbaceous wetlands and areas 

with sparse or low vegetation, particularly during the early growth stages before 

canopy closure (Baghdadi et al., 2010).
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Table 3.2 Composites and input variables for each region. The shaded box indicates the selected 

variables of highest importance used as input for final classification in each region.  

Study region Composites 

Date value B8 B12 NDVI NDWI MNDWI TCWI VV VH 

𝑽𝑽

 𝑽𝑯
 

 𝑽𝑯 − 𝑽𝑽

𝑽𝑯 + 𝑽𝑽
 

Southern Nigeria Jan - Nov 2019  

Jan - March 

2019 (dry) 

April – Oct 2019 

(wet) 

 

Mean            

Tropical wet Jan - Dec 2021  Mean           

Tropical wet and dry Jan - Dec 2021  Mean           

Mediterranean/Humid 

subtropical 

Jan - Dec 2021  Mean           

Semi-arid Jan - April 2021 

(wet) 

Maximum           

Arid/desert Jan - April 2021 

(wet) 

Maximum           
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3.2.3 Identification and collation of ground control points 

The reference data for training were obtained from the Food and Agriculture 

Organization (FAO) global dryland assessment (Bastin et al., 2017), Ramsar Sites 

database (2019), Global Peatland Database (GPD), other organization reports, 

journals, and academic theses (both PhD and MSc). The FAO datasets (7580 points 

(87% of control points in this study) were generated through augmented visual 

interpretation through Collect Earth (Bey et al., 2016) of VHR images available from 

Google Earth. The reference points were collected from a squared cell centered at 

a sample plot of 70 by 70 meters. The two imagery Sentinel 1 GRD (Interferometric 

Wide swath mode (IW) has a pixel spacing of 10m and Sentinel 2 imagery has a 10 

m resolution which are stack together to correctly train each individual pixel. Each 

sample plot of training point closely aligned to 7x7 pixels of my Sentinel images 

which provides high accuracy validation on several Sentinel pixels. Training points 

from the Ramsar Sites database (2019) (415 points, 5% of ground control points), 

Global Peatland Database (GPD) (352 points, 4% of control points), other 

organization reports (54 points, 0.6%), journals (294 points, 3%), and academic 

theses (both PhD and MSc) (165 points, 2%) originated from field surveys of the 

different wetland sites across our study area. I checked and verified all the reference 

points by visual interpretation of Digital Globe very high spatial resolution images (< 

1 m pixels) made available for visualization through Google Earth. The verification 

was performed to check for i) inconsistencies in wetland type among the references 

point in each wetland region, ii) isolated and mislabelled reference points. To check 

for inconsistencies, I compared the different reference points to make sure that all 
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points matched the same wetland type in each climate zone. A total of 173 reference 

points from different wetland regions were rejected due to inconsistency with the 

wetland type between our data sources. Isolated and mislabelled reference points 

were also excluded. The reference points were sorted into different climate zones to 

accurately map wetland types according to their features within that zone. These 

points were then grouped into training and validation points using random sampling 

within each zone (Figure 3.1). To avoid bias in our classification, both our training 

and validation points were uniformly distributed among the different wetland classes. 

 

Figure 3.1 Distribution of training and validation across the different climate 

zones in Africa. Tropical wet (3,218 points), Tropical wet and dry (2,550 points), 

Semi-arid (1,144 points), Arid (536) and Mediterranean/humid subtropical (846 

points). 
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3.3  Justification and ethos of classification method  

The choice of a classification technique is based on three parameters - the accuracy, 

complexity, and processing time. I used pixel by pixel classification because it is a 

simpler and faster method when compared with object-based classification. In terms 

of accuracy, several studies have demonstrated the high accuracy performance of 

pixel-based classification (Moser et al., 2016; Acharya et al., 2017; Zhang et al., 

2023) and, in some cases, it produced higher accuracies than object-based methods 

(Ardha Aryaguna and Danoedoro, 2016). Object-based classification has 

computational limitations for large-scale mapping and is therefore less suitable for 

continental-scale studies (e.g., Chapter 5). I considered supervised classification to 

be appropriate for my goals because I was able to source sufficient training data to 

allow image classification. These methods also allow for the creation of classes 

matching those of interest (Ritchie and Das, 2015). For my pixel-based analysis, the 

Random Forest (RF) machine learning algorithm was selected. The RF classification 

is a relatively well-known supervised machine learning algorithm that produces an 

ensemble of multiple decision trees iteratively using randomly selected subset of the 

training dataset (Figure 3.2). RF is particularly suitable for handling variation within 

land cover classes and reducing noise in the data and does not require prior 

knowledge of the data distribution, unlike other classifiers (Slagter et al., 2020).  

 

RF is a non-parametric classifier made up of a group of tree classifiers, capable of 

handling high-dimensional remote sensing data (Belgiu and Dra, 2016). It uses 

bootstrap aggregating (bagging) to produce an ensemble of decision trees by using 

a random sample from the given training data and determines the best splitting of 
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the nodes by minimizing the correlation between trees. Assigning a label to each 

pixel is based on the majority vote of trees (Figure 3.2). The 'trees' are built at each 

node by randomly selecting a subset of input variables for splitting, which helps 

reduce overfitting and results in a more robust classification compared to other 

classifiers. (Breiman, 2001). In the RF algorithm, certain parameters must be defined 

to generate the forest trees: the number of decision trees to create (Ntree) and the 

number of variables to be selected and tested for the best split during tree growth 

(Mtry). The parameter Ntree was evaluated for values between 100 and 600, with a 

value of 500 chosen, as the error rates for all classification models remained 

constant beyond this threshold. I assessed the significance of sixteen variables 

(Band 2, Band 3, Band 4, Band 6, Band 7, Band 8, Band 11, Band 12, NDWI, NDVI, 

MNDWI, TCWI, (VH-VV)/(VH+VV), VV/(VH) (wet and dry)) as input channels for the 

RF classification across each climate zone. After running the variable importance 

algorithm for ten-fold, i then selected variables that were most important for 

classification accuracy as input for our final classification. Although RF is an effective 

and powerful machine learning algorithm, there are some drawbacks to consider 

when using it. RF can overfit noisy datasets or data with outliers, particularly when 

the number of trees is high. It is also susceptible to bias if there is imbalance in the 

training sample, thereby having poor performance on minority class. In addition RF 

is not suitable for real time analysis due to computational complexity. 
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Figure 3.2 Training and classification phases of Random Forest classifier: 

i = samples, j = variables, p = probability, c = class, s = data, t = number of 

trees, d = new data to be classified, and value = the different values that the 

variable j can have (reproduced from  Belgiu and Dra, 2016)
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Chapter 4  

Wetland mapping at 10 m resolution reveals fragmentation in 

southern Nigeria  

Abstract 

Wetland ecosystems play key roles in global biogeochemical cycling, but their spatial 

extent and connectivity is often not well known. Here, i detect the spatial coverage 

and type of wetlands at 10 m resolution across southern Nigeria (total area: 147,094 

km²), thought to be one of the most wetland-rich areas of Africa. I use Sentinel-1 and 

Sentinel-2 imagery supported by 1500 control points for algorithm training and 

validation. I estimate that the swamps, marshes, mangroves, and shallow water 

wetlands of southern Nigeria cover 29,924 km² with 2% uncertainty of 460 km². I 

found larger mangrove and smaller marsh extent than suggested by earlier, coarser 

spatial resolution studies. Average continuous wetland patch areas were 120 km², 

11 km², 55 km² and 13 km² for mangrove, marsh, swamp, and shallow water 

respectively. My final map with 10 m pixels captures small patches of wetland which 

may not have been observed in earlier mapping exercises, with 20% of wetland 

patches being <1 km2; these were clustered around urban centres, suggesting 

anthropogenic wetland fragmentation. My approach fills a knowledge gap between 

very local (<400 km²) studies reliant on field studies and aerial photos, and low 

resolution (>250 m pixel dimensions) global wetland datasets and provides data 

critical for both improving land-surface climate models and for wetland conservation.  
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4.1  Introduction 

Wetlands are one of the world’s most important and productive ecosystem types, 

playing a vital role in climate change mitigation (Hassan et al., 2014), hydrological 

and biogeochemical cycles (Junk et al., 2013) and maintaining livelihoods (Hu et al., 

2017; Wilen & Bates, 1995). The southern part of Nigeria contains many wetlands 

which are thought to consist mainly of marshes, mangroves and freshwater swamps 

(Ayanlade & Proske, 2016; Olalekan et al., 2014). However, great environmental 

pressure has been exerted on these ecosystems as result of land reclamation for 

agriculture and industrialization (e.g. Niger delta; Chidumeje et al., 2015), 

urbanization (e.g. Lekki lagoon of Lagos; Obiefuna et al., 2013) and contamination 

from pollution (e.g. oil spills; Igu & Marchant, 2017; Ohimain, 1996). The regional 

extent of existing wetlands that need protecting, and the extent of wetland loss and 

degradation, has thus far only been quantified at coarse resolution. Although there 

are some global wetland maps, such as Global Land Cover GLC250-2010 (250 m 

pixels) and the Global Lakes and Wetlands Database (GLWD-3, 1 km pixels), 

studies by Gumbricht et al., (2017), Hu et al., (2017) and Xu et al., (2018) show 

inconsistencies between them due to differences in methods, data sources, and 

validation. Many global wetland maps rely on data that can be decades old and, 

particularly in developing countries, with very limited ground truth data. It is therefore 

important to improve maps of these ecosystems, using a range of techniques, to get 

a complete picture of wetland area and to establish the range and extent of different 

wetland types and their fragmentation. Comprehensive wetland maps and an 

understanding of the nature of their fragmentation are needed to build economic 

assessments of wetland ecosystem service provision and to support decision-
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making by regional and international bodies seeking to protect wetland systems as 

well as for inclusion in coupled land-surface - climatic models (e.g. JULES / QUEST: 

Clark et al., 2011; Dadson et al., 2010). The latter is crucial since wetlands are 

important for land-atmosphere carbon dynamics, greenhouse gas exchange, and 

the water cycle. 

 

Southern Nigeria is a low-lying region covering ~ 147,094 km² (between 4° 00` and 

7° 00`N, and 3° 00` and 9° 00`E, Figure 4.1) and is  thought to have the most 

extensive wetlands in west Africa (Gumbricht et al., 2017; Uloacha, 2004).  However, 

this area is undergoing huge population expansion and development and so the 

wetlands may be at risk. The only wetland maps that currently span all of southern 

Nigeria are from global projects (e.g., GLWD-3) and have relatively low resolution (1 

km). However, there are some small-scale studies that have mapped a few small 

areas of wetland in the region using satellite imagery (e.g. Ayanlade & Proske, 2016; 

Obiefuna et al., 2013; Taiwo & Areola, 2009; locations  shown in Figure 4.1. The 

accuracy of these small-scale studies has yet to be assessed due to absence of 

suitable ground truthing data. Furthermore, the techniques used in these studies are 

not suitable for larger region or country-scale wetland mapping.  

 

Satellite images have been used successfully to identify and map different wetland 

types around the world (Fei et al., 2011; Guo et al., 2017; Klemas, 2011; Kuenzer et 

al., 2011; Mahdianpari et al., 2018). Interpretation of multi-temporal imagery in 

particular can aid classification of dynamic wetlands and their separation from other 

ecosystems (Mahdianpari et al., 2018, Ozesmi & Bauer, 2002). Many wetlands have 
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seasonal characteristics based on changes in water level and vegetation that can 

assist their detection using remote sensing. For example, marshes experience 

drying of vegetation and a decrease in water level during the dry season or low tide 

periods (Hudson et al., 2006). This can be observed using optical images from a 

decrease in the reflectivity in the near infrared and a slight increase in reflectivity to 

the red band due to suspended particles settling out at low water levels (Hudson et 

al., 2015).  

 

The increasing availability of open access satellite data, and the growth of advanced 

machine learning tools integrated with robust cloud computing resources has 

recently made multi-temporal datasets more accessible (Mahdianpari et al., 2018). 

The majority of previous studies have used multi-temporal Landsat imagery to 

classify wetlands both with unsupervised classification algorithms (e.g. K-means and 

ISODATA; Mwita et al., 2012; Ramsey & Laine, 1997) and with supervised 

classification schemes (Bwangoy et al., 2010; Wright & Gallant, 2007), However, it 

is now possible to supplement this with Synthetic Aperture Radar (SAR) C-band 

multi polarization radar to discriminate between wetland types (Baghdadi et al., 

2010), with cross polarization (HV, VH) providing better discrimination between 

some wetland classes. Combining multiple optical and SAR indices to classify 

different wetland types has great potential for wetland classification (Kaplan, et al., 

2019; Mahdavi et al., 2018; Salehi et al., 2018), however, such approaches have not 

yet been applied to the wetlands of southern Nigeria.  As the only wetland maps that 

currently span this entire globally important region have pixel sizes of 250 m and 1 

km (Lehner and Döll, 2004; Gumbricht et al., 2017), there is a need for updated 
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datasets that can be met by the combination of optical and radar satellite data. There 

are limited attempts to map wetlands using remote sensing across certain parts of 

Africa. Amongst the few studies i include that of Landmann et al. (2010) were 

wetlands in western Burkina Faso and southern Mali (in West Africa) were mapped 

using spectral indices from MODIS and topographic features from SRTM. Mwita et 

al. (2012) map small scale wetlands in Tanzania and Kenya (in East Africa) using 

both optical and microwave data employing the decision tree classification 

techniques. 

 

Here, i map for the first time, the extent of wetlands and categorize the different 

wetland types for the whole of southern Nigeria (147,094 km2) at a 10 m resolution, 

leveraging the open access SAR and optical images acquired from Sentinel-1 and 

Sentinel-2 and exploiting cloud computing through Google Earth Engine (GEE). My 

primary aim is to provide knowledge of wetland extent and character that is needed 

to support both conservation efforts and land surface climate models. I anticipated 

that higher resolution wetland mapping would capture smaller patches of wetland 

than previously documented in regional or global datasets and that this would be 

dominantly associated with areas near major cities. 

 

4.2  Materials and methods 

My approach to mapping the wetlands of southern Nigeria involves the integration 

of indices from both optical and radar imagery and classification of imagery using 

the implementation of the Random Forest (RF) algorithm in Google Earth Engine 

(Gorelick et al., 2017). I use seasonal composite images in order to (a) maximise the 
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number of cloud-free pixels and (b) incorporate the seasonal variations in wetland 

characteristics into my classification (Section 4.3.1). I selected the most effective 

variables for classification in southern Nigeria using an estimation of relative 

importance (Section 4.3.3). This required the compilation of a new dataset of 1500 

wetland and non-wetland control points for training and validation (Section 4.3.2, 

Supplementary Information Appendix A).  

 

4.3  Class definitions 

Wetlands can be classified on the basis of hydrology, soil type and vegetation. They 

include marshes (freshwater or saline waterlogged land areas that are periodically 

flooded, dominated by herbaceous plants), swamps (mineral soil wetlands 

dominated by trees with seasonal flooding), bogs (rain-fed peatlands, which can be 

with or without trees) and fens (groundwater-fed peatlands, which can be with or 

without trees) ((Mitsch and Gosselink, 2015). In this study, i consider swamps, 

marshes, shallow water (including human-made wetlands and lakes) and the swamp 

subtype of mangroves (coastal, characterised by salt-tolerant trees and shrubs), and 

attempt to distinguish between these categories in my mapping. The presence of 

peatlands (fens) across the southern region of Nigeria has been suggested by other 

mapping studies (e.g. CIFOR, 2016). The Nigerian government, however, suggested 

that the areas mapped by CIFOR as peatland are more likely to be 

mangrove/swamps (FREL, 2019). One potential source of confusion is that tropical 

‘peat swamps’ are often referred to in the literature as there is a lack of an agreed 

tropical peatland classification system. Some swamps can have organic peat 

deposits while others may have a mineral substrate. To avoid confusion, i strictly 
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classify swamps for my control points as tree-dominated mineral soil wetland 

systems which may have minimal peat cover. Given this definition, peatland and 

swamp may in some cases still have similar Earth Observation signatures but would 

not be confused if ground truthed. 

 

Figure 4.1 The study region: (a) Location of the study area using the 

standard government classification of southern Nigeria, and the locations 

used in previous studies referred to in the main text: Lagos lagoon (Taiwo and 

Areola, 2009),  Olague forest, Apoi creek and Oguta lake (Ayanlade and Proske, 

2016). 
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Figure 4.2 Methodological approach for mapping and characterization of 

southern Nigerian wetlands. The technique used a seasonal composite from 

Sentinel-2 optical imagery and Sentinel-1 radar for 2018. 

 

4.3.1 Data selection 

As the characteristics of wetland remote sensing signature varies between seasons, 

i use composite image for both optical and radar imagery. The southern part of 

Nigeria experiences a tropical climate with a well-defined wet and dry season. 

Southern Nigeria is covered by dense cloud during rainy seasons, so i use an initial 

selection criterion of cloud fraction <20% for each of 345 Sentinel-2 images from 

2018 and apply a cloud mask to remove cloud and cirrus-cover (using the quality 

assurance bands available through GEE) before formation of a composite images 

(Figure 4.2). These are constructed from the median value for each pixel in 345 

Sentinel-2 images acquired between January and November 2018 and are 

dominated by dry season (January to March) values.  I use blue (0.496 µm, band 2), 
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green (0.560 µm band 3), red (0.665 µm, band 4), and near infrared (NIR, 0.835 µm, 

band 8), shortwave infrared 1 (SWIR1 1.613 µm, band 11) and short-wave infrared 

2 (SWIR2 2.202 µm, band 12) bands to derive optical indices used for classification: 

Normalized Differential Vegetation Index (NDVI, Chatziantoniou et al., 2017; Dong 

et al., 2014; G. Kaplan & Avdan, 2017; Xing et al., 2018;Mahdianpari et al., 2018), 

Normalized Differential Water Index (NDWI, Chatziantoniou et al., 2017; Kaplan & 

Avdan, 2017; Mahdianpari et al., 2018; Xing et al., 2018), Modified Normalized 

Differential Water Indices ( MNDWI , Ashraf & Nawaz, 2015; Chen et al., 2013; 

Ogilvie et al., 2015) and Tasseled Cap Wetness Index (TCWI , Tana, Letu, Cheng, 

& Tateishi, 2013; Xing et al., 2018)  (Figure 4.3b-e).  
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Figure 4.3 The Sentinel 2 composite and derived indices for Jan-Dec 2018 

used for wetland classification in this study: (a) RGB composite images, red 

(band 11), blue (band 8), green (band 2), (b) MNDWI, (c) TCWI, (d) NDVI, (e) 

NDWI. The green shade in the RGB image results from reflection of vegetation, 

the dark blue shade represent reflection from water bodies, while urban 

settlement surfaces are shown in purple shade, and the lighter brown shade 

represents cultivated surfaces. For the indices (b-e) lighter gray shade 

indicates higher moisture and or vegetation value while a darker shade 

indicates lower values. 

 



49 
 

 

Since SAR backscatter is unaffected by cloud cover, I are able to incorporate 

information from dry (January-March) and wet seasons (April-July and September-

November) into my classification scheme. Differences between flooded and 

unflooded periods are particularly strong since radar reflected by a water layer and 

backscattered by a double-bounce from ground and tree trunk creates contrast 

between the flooded and non-flooded terrain (Bwangoy et al, 2010b; Moser et al., 

2016). I constructed dry and wet season composites that select the median 

backscatter value for each pixel, shown in Figure 4.2b and c as RGB images where 

dry season (January-March), wet season (April-July) and end of the wet season 

(Sept-Nov) are the red, blue and green channels, respectively.  

 

I use the Ground Range Detected interferometric wide-swath Sentinel-1 images in 

ascending orbit from 2018 available through GEE, which are projected onto a regular 

10 m grid. Dual VV/VH polarisation imagery was available at an average acquisition 

interval of 12 days over southern Nigeria. VV polarization (vertically transmitted, 

vertically received backscatter) is sensitive to surface roughness and soil moisture 

and can discriminate flooded from non-flooded vegetation (Mahdianpari et al., 2018). 

It also produces distinctive returns for herbaceous wetlands with low or sparsely 

vegetated areas especially in the early growth stages before canopy closure 

(Baghdadi et al., 2010). VH (vertically transmitted, horizontally received backscatter) 

known as cross polarization produces signals affected by volume scattering within 

the vegetation canopy and it is very sensitive to vegetation structures (Steele-Dunne 

et al.,  2017).  Icorrected for incidence angle (Hird et al., 2017) and reduced radar 

speckle using an adaptive sigma Lee filter on the GEE platform.. I calculated the 
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normalized difference and ratio features for each image as: Ndiff = 
 𝑉𝐻−𝑉𝑉

𝑉𝐻+𝑉𝑉
 and Nratio 

= 
𝑉𝑉

𝑉𝐻
,  where VH is a vertically transmitted, horizontally received SAR backscatter σ0 

from the Sentinel-1 sensor, while VV is vertically transmitted and received SAR 

backscatter signal (Hird et al., 2017).  

 

Figure 4.4 Extracted features from Sentinel 1 composite: (a) annual 

composite of VV and VH polarization; (b) seasonal composite images for Jan-

Dec 2018 producing a ratio polarized image; (c) seasonal composite images 

for Jan-Dec 2018 producing a normalized polarized ratio image. The dry 

season (January-March), wet season (April-July) and end of wet season 

(September-November) composites were inserted into the red, green and blue 

channels respectively. The bright yellow shade in (b) and bright white in (c) 

shows high backscatter from urban areas in the red and green channels. The 

dark blue and black shade are the result of low backscatter from cultivated 

areas and water features. 



51 
 

 

4.3.2 Compilation of control point data 

I compiled information about the location and characteristics of wetlands in southern 

Nigeria from multiple sources. My reference data were obtained from the Food and 

Agriculture Organization (FAO) global dryland assessment (Bastin et al., 2017), 

Ramsar Sites database (2019), other organization reports, journals, and academic 

theses (both PhD and MSc) (see Supplementary Information). The FAO reference 

points were compared with control sites from Ramsar and other studies, then verified 

by visual interpretation of Digital Globe very high spatial resolution images (< 1 m 

pixels) made available for visualization through Google Earth. My database 

comprises a total of 1500 sample points for wetland and non-wetland locations. The 

reference data were grouped into four wetland types which include swamp (205 

points), mangrove (214 points), marsh (121 points), shallow water (184 points) and 

four non-wetland types grouped into deep water (194 points), urban/bareland (206 

points), cultivated land (180 points), and forest (196 points) categories. The photo-

interpreted database consists of both wetland and non-wetland cover classes with 

many subtypes, while only wetland control points were acquired from other studies.   

 

4.3.3 Random Forest classification and feature selection 

RF is a non-parametric classifier (i.e. it does not make strong assumptions about the 

form of the mapping function), comprised of a collection of tree classifiers, and can 

handle high dimensional remote sensing data (Belgiu and Dra, 2016). RF 

classification involves assigning a label to each pixel based on the majority vote of 

‘trees’. The ‘trees’ are grown a node which is spilt using a random selection of the 

subset  input variables, which reduces overfitting and yields a more robust 
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classification than other classifiers (Breiman, 2001). In the RF algorithm, i need to 

specify the parameters in order to produce the forest trees: the number of decision 

trees to be generated (Ntree); and the number of variables to be selected and tested 

for the best split when growing the trees (Mtry). The parameter Ntree was assessed 

for the values of 100 – 600: a value of 500 was selected as error rates for all 

classification models were constant beyond this point. I tested the importance of 

sixteen variables (Band 2, Band 3, Band 4, Band 6, Band 7, Band 8, Band 11, Band 

12, NDWI, NDVI, MNDWI, TCWI,  
 𝑉𝐻−𝑉𝑉

𝑉𝐻+𝑉𝑉
  , 

𝑉𝑉

 𝑉𝐻
 (wet and dry)), as input channels for 

the RF classification. I then selected six input variables that were most important for 

classification accuracy (see Section 4.3.3).  A total of 900 training points spanning 

different landcover classes were used to train the RF classifier on the GEE platform. 

All classifications were based on the same training data. The remaining 600 control 

points were held back for validation (e.g., Liu et al., 2018). I divided the control points 

between training and validation data to ensure a spread between landcover classes, 

and otherwise to make their spatial distribution as even as possible across southern 

Nigeria. The classification was carried out with each index separately, before 

selecting the best combination to produce a final wetland map. I classified eight 

different landcover classes: mangrove, swamp, marsh, shallow water, forest, 

cultivated land, deep water, built-up/bare land. When selecting input variables used 

for my final RF classification, I assessed each of the optical and SAR indices for (1) 

the predictive power of each individual variable (Figure 4.5) and (2) the ability to 

distinguish between wetland classes.  
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I examine the significance of each input variable by calculating variable importance 

after training the RF classifier. The importance of a variable in this RF model is 

assessed using the total decrease in impurity across all trees in the forest for a 

specific choice of variable to split a node, where impurity refers to the probability of 

a classification being wrong if it were assigned according only to the distribution of 

classes in the data.  The numerical values for importance assigned to each variable 

is the sum of the reduction in error of the splitting variable accumulated over the 

entire tree. Higher variable importance means that the variable played a significant 

role in the classification, while a low importance means only limited added value by 

that variable. Figure 4.5 illustrates the input variables and their corresponding 

importance for discriminating wetland classes.  
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Figure 4.5 The importance of each extracted Sentinel-1 and Sentinel-2 

features using the training dataset for Random Forest classification. The 

importance of the variable is the sum of decrease impurity each time the 

variable is selected to be split at the node for the entire trees in the forest and 

is unitless. The blue bars illustrate the importance of the optical bands, the 

light yellow shows optical indices and SAR polarimetric indices is represented 

by red bars. 

 

As shown above, all the extracted variables from the Sentinel-1 seasonal composite 

appear to have higher predictive power than the optical indices except for the 

MNDWI and TCWI. With regards to variables extracted from the Sentinel-2 

composite, the optical indices tend to possess higher significance when compared 

with the individual bands. Among the indices, MNDWI and TCWI have more 

information available for wetland cover prediction. The most important variables 
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(MNDWI, TCWI, ( 
 𝑉𝐻−𝑉𝑉

𝑉𝐻+𝑉𝑉
,

𝑉𝑉

𝑉𝐻
  (wet and dry)) from Sentinel-1 and Sentinel-2 were 

selected for my final classification. However, each variable may have different 

strength in identifying a particular landcover class regardless of their relative 

importance. I further perform classification on individual variable to optimize my 

selection of combined model for the final classification map. 

 

4.3.4 Wetland patch analysis 

I calculate the number of patches and their individual sizes for each wetland class. 

The average continuous patch size for each wetland class was also calculated using 

the total count of connected pixels for continuous patches, which i define as pixels 

that share face boundaries. Here, i consider patches where the number of pixels is 

greater than 1000 (patch size> 1000 pixel) as continuous patches. The area of each 

individual patch was calculated by multiplying each patch size with the pixel area 

(10m2). The patch size is equivalent to the total number pixels in a patch while the 

patch area is the patch size x pixel area (10m2). I use: 

𝑃𝑐ℎ𝑎𝑣𝑔= ∑
𝑃𝑐ℎ𝑐𝑜𝑛𝑡

𝑃𝑐ℎ𝑛

𝑛
𝑗      Equation 4.1 

where Pchavg is the average continuous patch for each wetland class in a particular 

climate zone, Pchcont is the sum of the pixels of continuous patches (for patch size > 

1000 pixel) in each class, whereas Pchn is the total number of continuous patches for 

each wetland class. 
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4.4  Results  

My final map (Figure 4.6) has a pixel size of 10 m and shows how wetlands are 

distributed in southern Nigeria, broadly consistent with global datasets at low 

resolution, but quite different when studied in detail at high resolution. I capture 

wetlands of <1 km2 that were omitted from global datasets and therefore provide 

much needed additional data on wetland coverage. The result of my classification 

shows high accuracy with 2% uncertainty. I have most confidence in my 

classification of swamp and shallow water, relative to mangrove or marsh. 

 

4.4.1 Classification validation 

The results of RF classifications for each index and for my preferred combination of 

indices (MNDWI, TCWI, ( 
 𝑉𝐻−𝑉𝑉

𝑉𝐻+𝑉𝑉
,

𝑉𝑉

𝑉𝐻
  (wet and dry)) were evaluated using one third 

(600) of the total control points spatially selected from each class on a random basis. 

The overall accuracy describes the effectiveness of the overall classification, which 

can be determined by dividing the sum of correctly classified sample by the total 

referenced sample (Table 4.1). The producer’s accuracy shows how well the 

referenced sample is represented in the classified map, while the user`s accuracy 

indicates the chances that a classified pixel of an individual landcover actually 

represent the same category on ground (Table 4.2). The agreement, beyond chance, 

of a classification and the real land cover can be described by the Kappa coefficient 

(e.g., Ayanlade, 2014). The Kappa coefficient is more useful than the overall 

accuracy as it provides a measure of how the classification performs in comparison 

to the probability of randomly assigning pixels to their correct categories. With the 

exception of NDVI, the classification results using spectral indices from optical 
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imagery were more accurate than those from SAR imagery alone (Table 4.1). 

However, the integration of the SAR normalized difference and ratio images with 

MNDWI and TCWI yield the highest accuracy. I attribute this to the improvement in 

accuracy of the identification of marsh, swamp and mangrove classes due to the 

information about vegetation structure captured by SAR imagery (Figure 4.4b &c).  

  

Table 4.1 Overall accuracies and Kappa coefficients obtained from 

classification of wetland versus non-wetland in this study. Perfect 

classification of control points would yield a Kappa value of 1. S1+S2 

represents my preferred combination of MNDWI and TCWI with the SAR 

polarimetric indices.  

Indices Overall accuracy (%) Kappa coefficient 

NDVI 73.10 0.68 

NDWI 77.16 0.72 

MNDWI 83.78 0.82 

TCWI 83.74 0.79 

 𝑉𝐻−𝑉𝑉

𝑉𝐻+𝑉𝑉
 (wet and dry) 85.14 0.83 

𝑉𝑉

 𝑉𝐻
 (wet and dry) 74.30 0.72 

MNDWI+TCWI+
 𝑉𝐻−𝑉𝑉

𝑉𝐻+𝑉𝑉
 +

𝑉𝑉

 𝑉𝐻
 88.40 0.85 

 

For all landcover classes, classification using a combination of optical and radar data 

resulted in a higher accuracy than using any of the individual indices in isolation. My 

preferred classification (MNDWI+TCWI+
 𝑉𝐻−𝑉𝑉

𝑉𝐻+𝑉𝑉
+

𝑉𝑉

 𝑉𝐻 
 in Table 4.1) performs as well as 

any other index in its classification of mangroves (214 control sites) and swamps 

(205 control sites), and better than any other index for classification of marsh (121 
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control sites). All classes have higher producer`s and user`s accuracies except the 

marsh with lower users accuracy, which was often misidentified as shallow water or 

swamp (Table 4.2). Overall, the classification of wetland classes was less accurate 

than for non-wetland classes. The combined use of optical indices (MNDWI and 

TCWI) and SAR features ( 
 𝑉𝐻−𝑉𝑉

𝑉𝐻+𝑉𝑉
,

𝑉𝑉

𝑉𝐻
  (wet and dry)) resulted in greater accuracy for 

all the wetland classes than the use of either Sentinel-1 or Sentinel-2 imagery in 

isolation, and so this combination was used to produce my final wetland map. 

 

Table 4.2 Confusion matrix using the set aside validation data (40% of 

control points). The rows are the classification results and the columns are the 

true class. MNG = Mangrove, SWP= Swamp, FRST= Forest, SHW= Shallow 

Water BTU= Built-up, DPW= Deep water, CTL = Cultivated land. 

CLASS  MNG SWP FRST MSH SHW  BTU DPW CTL Total User 

Accuracy 

MNG  75 8 1 1 0  0 0 1 86 0.87 

SWP  9 69 2 1 0  0 0 1 82 0.84 

FRST  1 2 61 2 2  0 0 10 78 0.78 

MSH  4 1 0 34 4  0 0 5 48 0.70 

SHW  0 0 0 2 67  0 5 0 74 0.90 

BTU  0 0 0 0 0  78 0 4 82 0.95 

DPW  0 0 0 0 2  0 76 0 78 0.97 

CTL  0 0 0 2 0  1 0 69 72 0.95 

Total  89 80 64 42 75  79 81 90 600  

Producer 

Accuracy 

 0.84 0.86 0.95 0.80 0.89  0.98 0.93 0.76  0.88 
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Figure 4.6 Final land cover map of southern Nigeria for 2018 obtained from 

RF classification of indices derived from Sentinel-2 optical data and Sentinel-

1 SAR data (a), with inset (b) showing Oguta Lake and inset (c) showing Upper 

Orashi forest, both being examples of Ramsar wetlands while (d) displays the 

spatial distribution of uncertainty where the value 1 in white shade shows 

matching landcover class and the value 0 in black shade indicates a mismatch 

class from the comparison of a map produced using the entire control point 

dataset with a map produced from a randomly selected subset (70%) of control 

points. 
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My final wetland cover map (Figure 4.6a) shows the distribution of all land-cover 

classes, at 10 m resolution, across the extensive area of southern Nigeria. Both the 

wetland and non-wetland cover are well delineated with an estimated mapping 

accuracy of 88%. The detailed inset in Figure 4.6b & c shows how shallow water 

(e.g., Oguta lake, Figure 4.6b) and swamp (e.g., Upper Orashi swamp forest) are 

correctly distinguished from other landcover classes at two Ramsar wetland 

locations. I make an assessment of the spatial distribution of uncertainty in my 

wetland map by comparing it to a map produced from a randomly selected subset 

(70%) of control points with the map produced using the entire dataset (Figure 4.6d). 

In Figure 4.6d i show locations where land cover classifications agree for the two 

maps a value of 1 (white), and those that disagree a value of zero (black). I found 

that mismatches mostly lie on swamp and marsh landcover classes (Figure 4.6d), 

with fewer found to lie on mangrove and shallow water.  

 

4.4.2 Wetland spatial extent 

I estimate that the wetlands of southern Nigeria cover a total area of 29,924 km² 

which is over one fifth of the area of the whole region. The dominant wetland type is 

swamp which made up 44% of the total wetland area followed by mangrove (31%), 

marsh (20%) and shallow lakes (5%) (Figure 4.7a). The vast majority of these 

wetlands are located in the coastal region of the Niger delta and Lagos. My estimate 

of total wetland cover is less than the estimate by Center for International Forestry 

Research (CIFOR) (31,829 km²) but larger than GLWD (24,408 km²) (Figure 4.7a), 

mainly resulting from my larger mapped area of mangrove and my identification of 
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fewer marsh wetlands. While the maps look similar when viewed at low resolution, 

they are quite different in detail (Figure 4.7b-c).  

 

 

Figure 4.7 A comparison of wetland map products for southern Nigeria: (a) 

areas of different wetland classes in southern Nigeria - error bars show 

misclassification levels based accuracy achieved for each wetland type in my 

study; (b) map of southern Nigeria covered by wetlands identified in my study 

showing only the wetland classes; (c) the Global Lakes and Wetlands 

Database (GLWD) by Lehner & Döll,(2004) and (d) the global wetland database 

by the Center for International Forestry Research (CIFOR).  
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4.5  Discussion 

4.5.1 Wetland extent and fragmentation 

I calculated the average continuous patch size for each wetland class using the total 

pixel count of connected pixels for continuous patches, which i define as pixels that 

share face boundaries. I found mean continuous wetland patches of 120 km2, 11 

km2, 55 km2 and 13 km2 for mangrove, marsh, swamp, and shallow water 

respectively. The maximum patch size was 2740 km2, 1530 km2, 160 km2 and 50 

km2 with a standard deviation of 660 km2, 765 km2, 25 km2 and 26 km2 for these 

wetland types respectively. Larger patches of wetland are found along the coastal 

areas while smaller fragments are mostly located around urban areas suggesting a 

role for anthropogenic fragmentation of wetlands. Mangroves tended to be located 

in zones with lower population density. There were a large number of small wetland 

fragments, mostly of single pixel patches, especially for the marsh class. These 

smaller patches were distributed across the map but had higher uncertainty relative 

to larger patches. Understanding wetland fragmentation and its impacts on 

biodiversity and ecosystem services, and the role of both larger and smaller wetland 

patches in landscapes requires further work, but my dataset provides a starting point 

for enhanced modelling of such effects.  

 

The extent of wetland in southern Nigeria was found to be larger in this study when 

compared to some previous studies but was smaller than the estimate by CIFOR 

(Figure 4.7a). This discrepancy could be due to a combination of factors including 

differences in wetland land cover class definitions (e.g. in CIFOR’s global wetland 

database https://www.cifor.org/global-wetlands/  swamps and bogs are classed as 

https://www.cifor.org/global-wetlands/
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one type of wetland, while many floodplain wetlands appear to be swamps in this 

wetland map), classification methodology, timeframe (e.g. wetland loss or creation 

between different studies), data resolution and time of acquisition. For example, 

more conservative methods used by previous studies based on combining existing 

maps with other data sources may have resulted in exclusion of a large proportion 

of the swamp and mangrove that i identify here. Another major difference is my use 

of satellite imagery with higher resolution (10 m pixel size, relative to 1 km for GLWD) 

which improves my ability to identify small-scale wetlands (see Figure 4.9) and aids 

in discriminating wetland and non-wetland features. Some areas where wetlands 

have not previously been reported (e.g., around Akampka in Cross Rivers) have 

been mapped in this study. Some studies have suggested that the GLWD may 

underestimate wetland extent because of low resolution input data (Gumbricht et al., 

2017), so wetlands much smaller than 1 km2 are missed. About 20% of the wetlands 

that I identified in my new map have spatial extents of <1 km2 (100 pixels). A series 

of small wetlands may be very important at a landscape scale in terms of water, 

nutrient and carbon cycling dynamics (Page et al., 2011) and so my work indicates 

how higher resolution wetland mapping may be important for improving regional and 

global environmental models. 
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Figure 4.8 Distribution of patch size for different wetland classes: (a) 

shallow water; (b) mangrove; (c) swamp; (d) marsh. The patch size is defined 

as the number of pixels within a patch, the count is the frequency of patches 

with number of pixels in each category. 
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Figure 4.9 Comparison, for the same geographical area, between delineated 

wetland cover in two example locations (first location shown in top row a-c, 

second location shown as bottom row d-e): (a) and (d) this study using high 

resolution Sentinel data (full map shown in Figure 4.6 (a), (b) and (e) GLWD 

from a combination of low-resolution data, (c) and (f) the global wetland 

database by the Center for International Forestry Research (CIFOR). 

 

4.5.2 Sources of uncertainty 

The most important sources of uncertainty in this study come from (1) the subtlety 

of the differences in remote sensing signals between some wetland classes, and (2) 

the distribution and characteristics of the control sites used as the reference for 
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different land-cover types. Specifically, i expect uncertainties to be introduced by 

both a lower number of control sites for marshes and similarities in the remote 

sensing expression of marshes vs. mangroves, especially at 1610 nm and 2190 nm. 

I assess the uncertainties by comparing classifications made using the entire control 

point dataset with those produced using only a subset of control points selected at 

random for each wetland class (see Figure 4.6d). The mismatched pixels from each 

class were multiplied with the pixel area to obtain the mismatched area for each 

class. Swamp, with a total area of 13,000 km2 had the highest uncertainty of 250 

km2 followed by marsh (area of 6,000 km2) with uncertainty of 123 km2. Lower 

uncertainty was estimated for mangrove (9,000 km²) at 72 km2 and shallow water 

(1,616 km²) with 14 km2. While this approach gives some indication of the 

uncertainties associated with this classification accuracy and limitations in the 

number of control points, it does not include systematic uncertainties associated with 

my choice of landcover classes. However, more than 98% of the control points 

accurately matched the classified land-cover class. Based on control point accuracy 

values for each wetland type (Table 4.2) there was a higher error with marshes due 

to their misinterpretation as mangroves and bare land / settlement features. A higher 

uncertainty occurred in areas around Ovia (south-west Edo state), northern parts of 

Ogun state and around Ndokwa in eastern Delta state due to the number of smaller 

patches of marsh. There were no control points for fen peatlands. However, my 

analysis suggests that areas mapped by other studies as peatlands (e.g., around 

Apoi creek forest) (refer to Figure 4.1) in southern Nigeria are swamps (with total of 

149 control points), for which i had a high confidence in their classification. 
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4.5.3 Data limitations 

Despite the high accuracy obtained from the classification model, there are some 

limitations in the dataset that may lead to bias in the model.  Using training data from 

existing wetland locations is affected by ambiguity in definitions of wetland class and 

variation in the landscape. The basic assumption that training data represent a 

particular class may not always be absolutely correct as individual training points 

may belong to other wetland classes. To address this, i characterize the training data 

based on the class composition and internal variability. I then identify the possible 

outliers from the distribution of each wetland class and filter them out from the 

training data. Training data for ephemeral forested wetlands and peatlands such as 

bogs, fens are missing from my dataset which would have improved the 

classification. 

 

The imbalance in the size of my training data for the wetland classes may bias 

classification accuracy, because the model is sensitive to wetland class with larger 

numbers of training points (in my case [mangrove]).  This results in higher accuracy 

than for wetland classes with small amounts of training data (e.g., marsh).  

 

Users of this wetland map should also consider (1) the limitations of the class 

definitions appropriate for use with satellite imagery and (2) the differences in 

accuracy of classification for different classes due to different numbers and spatial 

distribution of training points.  For example, my EO-based classification of [swamps] 

comprises wetland with a range of characteristics in terms of vegetation type, water 

depth and soil composition.  
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4.5.4 Applicability to different settings 

My novel study adds to a small number of locations around the world where wetlands 

have been mapped using combined SAR and optical Sentinel 1 and 2 data (e.g.  Hird 

et al., 2017; Mahdianpari et al., 2018; Slagter et al., 2020). However, here i have 

covered a much larger area at high resolution. The wetlands of southern Nigeria are 

thought to represent about 19% of west African wetland and 3% of the total wetlands 

in sub Saharan Africa (Rebelo et al., 2010). Nigerian wetland ecosystems are similar 

to those in the rest of west Africa, so I expect that similar classification approaches 

could be adopted for this region. My methodological approach could be expanded to 

explore wetland areas across the wider African continent as well as globally. 

Furthermore, my technique can be used to globally detect changes and 

connectivity/fragmentation of wetland ecosystem in response to human action such 

as urbanization. Using data from different seasons is important for mapping and 

distinguishing between different types of wetland extents. For example, seasonal 

data has played an important role in identification of shallow water and marshes 

(Figure 4.6a). Seasonal data will be essential for mapping the wetlands in the arid 

regions of Africa, where wetlands exhibit dramatic seasonal cycles (e.g. the Sebkhel 

el Kelbia of Tunisia). Challenges of producing high-resolution datasets over large 

spatial areas can be minimized by employing the SAR polarimetric feature and 

optical indices which help to distinguish between types of vegetation. Wetland types 

such as peatlands which were not covered in this study should be mapped using 

suitable control points to aid classification. There is also a need to incorporate 

elevation/topographic data and a diverse range of multi-temporal datasets in order 

to improve the identification of wetlands across different terrain, such as valley 
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bottom wetlands. This will help to capture the hydro geomorphological properties of 

the wetlands.  

 

4.6  Conclusions  

This study combined optical indices and SAR polarimetric features to map four 

wetland types at 10 m resolution across southern Nigeria, filling a gap between 

existing low spatial resolution global maps and a few very local studies at higher 

resolution. Using freely available global satellite datasets (Sentinel-1 and 2), i 

achieve a mapping accuracy of 88% by integrating optical indices and SAR 

polarimetric features from different seasons using Random Forest classification. I 

estimate that in 2018 southern Nigeria contained 29,924 km² of wetlands with an 

uncertainty of 460 km², covering 20% of the region. I found a large number of small 

wetland patches, particularly around urban areas, consistent with human action 

enhancing wetland fragmentation in Southern Nigeria. Given the rapid expansion of 

population in Nigeria, it is now critical that wetland protection organizations 

undertake more adequate change detection at high resolution and take action, while 

modellers can utilise my high resolution land surface data. 
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Chapter 5  

Wetland fragmentation associated with large populations across 

Africa 

 

5.1  Introduction 

African wetlands are among the most productive ecosystems in the world (Langan 

et al., 2018), providing a wide range of services that contribute to human wellbeing, 

such as provision of water, food, dry season grazing, and fuel wood. They can 

support flora and fauna and serve as an important carbon pool sequestrating large 

amounts of carbon from the atmosphere, thereby regulating climate (Saunders et al., 

2012). Depending on topographic context, wetlands can also play a significant 

function in flood attenuation and shoreline protection (Junk et al., 2013; Acreman 

and Holden, 2013; Hu et al., 2017) and also play a key role in the hydrological cycle 

(Acreman and Bullock, 2003).  

 

Wetlands in Africa are experiencing immense pressure from human activities, the 

most important being direct drainage and conversion to farmland, diversion of water 

away from wetlands for agricultural irrigation, population growth and urban 

expansion into wetland areas, pollution, overgrazing, and hydropower development; 

there has often been excessive exploitation by local communities (Schuijt, 2002; 

François et al., 2005; Mitchell, 2013). A large number of African wetlands are thought 

to have been heavily modified by overexploitation (e.g. the Yala swamp and Kingwal 

wetland in Kenya and Nakivubo swamps in Uganda) (Schuyt, 2005; Saunders et al., 

2012) and upstream developments altering the quality and flow of water feeding 
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wetlands (e.g. Hadejia Jam`are floodplain in Nigeria (Schuijt, 2002)). Many African 

wetlands have been lost due to agricultural conversion such as the Ga-mampa 

swamp in South Africa (Rebelo et al., 2015). However, the current extent of wetland 

across Africa, at high resolution, is not known and most continental datasets are very 

coarse estimates (e.g. 250 m to 1 km resolution) (Schuyt, 2005; Landmann et al., 

2013; Hu, Niu and Chen, 2017; Gumbricht, 2018; Y. Liu et al., 2020; Zhang et al., 

2023). Small-scale wetlands may have been omitted or overestimated in previous 

continental mapping studies due to coarse resolution datasets, lack of ground control 

points and validation (Bwangoy et al., 2010; Moser et al., 2014; Leemhuis et al., 

2016; Gumbricht et al., 2017; Mahdianpari et al., 2018). It is therefore not known 

whether the cumulative coverage of small wetlands is significant and there is a need 

to ensure appropriate representation of African wetlands for sustainable 

management and for modelling climate mitigation and biogeochemical cycles. The 

lack of high-resolution data hinders the estimates of the total amount of carbon 

stored by these wetlands and estimates of the potential for net carbon uptake or loss 

from African wetlands at a continental scale. Much wetland carbon is belowground, 

yet potentially fragile and susceptible to rapid loss with wetland degradation (Poulter 

et al., 2021). Wetlands can become divided or separated into smaller, isolated 

patches or fragments due to both human activities and natural processes, including 

urbanization, agriculture, infrastructure development, and changes in hydrology. 

Wetland fragmentation poses a serious threat to the health and functionality of 

wetland ecosystems, highlighting the need for conservation efforts focused on 

preserving and restoring these valuable habitats. 
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In this study, I used high resolution satellite datasets in combination with 8204 

ground control points to systematically map the spatial distribution of wetland types 

across Africa. I verify the classification of each wetland control point by visual 

interpretation of Digital Globe very high spatial resolution images (< 1 m pixels) 

through Google Earth and spanning 2018 -2021.  My independent sources of data 

for control points wetland types include papers, reports, and academic theses from 

various dates spanning 2015 - 2019, so i consider verification with the more recent 

Digital Globe imagery (2018 - 2021) a necessary step for classification of the 2020-

2021 Sentinel 1 and 2 imageries. 

  

I grouped the control points into five wetland types including marsh (2202), 

mangrove (1477), swamps (1891), peatland (1580) and seasonal wetland (1054). 

Here i classify swamps as mineral soil wetlands, while peatlands include fen and bog 

systems with or without trees (these include what are sometimes referred to as peat 

swamps). These classes capture critical differences in wetland vegetation, soils and 

water levels (see Appendix B Table B.3-B.7) and importantly are separable using 

optical and radar-derived indices from freely available satellite datasets. Fragmented 

wetlands are vulnerable to human development; thus, presence of human population 

indicate potential threat to these wetlands. I analysed the relationship between 

wetland patchiness derived from my map and population data from Gridded 

Population of the World database (GPW V4) and test the hypothesis that highly 

fragmented wetlands are associated with large populations. I used a 10 km grid for 

fragmentation analysis based on my previous studies that suggested that average 

continuous wetland patches cover an area of 10-11 km2 (Chapter 4). 
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I calculated total carbon stocks for each wetland type by multiplying the total area of 

the wetland with typical values of carbon stock per hectare estimated by previous 

studies (IPCC Task Force on National Greenhouse Gas Inventories, 2014; Adame 

et al., 2015; Foerster et al., 2015; Samer Elshehawi et al., 2019; Ouyang and Lee, 

2020; Csillik et al., 2022; Young et al., 2023). I then estimated the carbon emissions 

from different wetland types for two wetland degradation states (pristine and drained 

condition) in each climate zone.  

 

5.2  Methods 

5.2.1  Datasets 

5.2.1.1  Ground control points 

I collated data on the location and characteristics of wetlands across Africa from 

reliable sources, including the Food and Agriculture Organization (FAO) global 

dryland assessment database, Global Peatland Database (GPD), research journals, 

academic and NGO reports. I verified each data point and screened them to exclude 

any coordinates that were inaccurate, mislabelled or inconsistent by using visual 

interpretation of very high spatial resolution digital globe images (>1m pixel) made 

available for visualization through Google Earth. The final dataset used 8204 control 

points for different wetland types in Africa. I sorted the control points based on the 

climate zones in Africa and assigned to either training or validation points. Thus, I 

grouped the control points into an equal number of training and testing points to 

ensure robust accuracy assessment.  
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5.2.1.2  Satellite data 

Sentinel-1 and -2 satellite images covering the entire study area for the period of 

January 2021 to December 2021 were available through the Google Earth Engine 

platform (GEE) at 10 m resolution. I use the Ground Range Detected interferometric 

wide-swath Sentinel-1 images acquired in dual-polarization (VV/VH) and pre-

processed as a Level-1 data product, with an average acquisition interval of 12 days. 

A total of 5728 Sentinel-1 images in ascending order were collected for the study 

area. Sentinel-2 Top of Atmosphere reflectance data with 16 spectral bands were 

obtained through the GEE. Sentinel-2 images with cloud cover of <20% were 

selected from January 2020 to January 2021 which resulted in a total of 13596 

images. 

 

5.2.1.3  Population data 

I obtained information about population distribution from the Gridded Population of 

the World database (GPW V4) provided by Center for International Earth Science 

Information Network (https://sedac.ciesin.columbia.edu). The GPW dataset has an 

approximate resolution of 30 arcsec, equivalent to 1 km at the Equator, that contains 

global population counts, density, urban/ rural status, age and gender structures with 

more than 12,500,000 input units maintained by NASA’s Socio-Economic Data and 

Applications Center (SEDAC). The population input data are collected at the finest 

resolution available from the ‘2010’ round of censuses, which occurred between 

2005 and 2014.  

https://sedac.ciesin.columbia.edu/
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The data were used to produce population estimates for the years 2000, 2005, 2010, 

2015, and 2020 (https://earthdata.nasa.gov/data/catalog?keyword=gpw-

v4/methods). I selected the population estimates for 2020 for our analysis. 

 

5.2.2  Mapping of wetland extent 

To accurately delineate the wetlands of Africa I classified the continent into different 

major zones according to the climatic and ecological features. These zones include 

tropical wet, tropical wet and dry or grassland, semiarid and desert or arid. I also 

grouped the control points for each wetland type based on these climate zones. I 

processed the images collected from Sentinel-1 and -2 images for the period of 

2020-2021 to develop optical and radar indices for each climate zone. The optical 

variables used include spectral bands 2 (blue), 3 (green), 4 (red), 8 (NIR), 11 and 12 

(SWIR), the normalized difference vegetation index (NDVI), normalized difference 

water index (NDWI), modified normalized differential water Indices (MNDWI), and 

tasseled cap wetness index (TCWI). SAR variables included vertically transmitted, 

vertically received SAR backscattering coefficient (σ0𝑉𝑉), vertically transmitted, 

horizontally received SAR backscattering coefficient (σ0𝑉𝐻), and the normalized 

difference (Ndiff=
 𝑉𝐻−𝑉𝑉

𝑉𝐻+𝑉𝑉
) and ratio indices (Nratio= 

𝑉𝑉

𝑉𝐻
)  for the wet and dry season. 

I then undertook a variable importance analysis (Kim et al., 2012; Van Beijma et al., 

2014; Suiter, 2015; Zabala, 2017; Na et al., 2018; Mohammadimanesh et al., 2018; 

Jamali and Mahdianpari, 2022; Csillik et al., 2022) for each climate zone to select 

the most important variables to input into the final classification. For all images in the 

arid and semi-arid region I extracted the maximum pixel values while a median value 

was used for other regions to enhance identification (Maxwell and Sylvester, 2012). 
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Finally, I applied a Random Forest algorithm (RF) to classify and validate wetland 

types in each climate zone.  

 

RF is an ensemble classifier that produces multiple decision trees, using randomly 

selected training samples and variables (Belgiu and Dra, 2016). RF is more robust 

compared to other classification algorithms, solving the problems of over-fitting with 

other decision trees. The RF is particularly suitable for handling variation within land 

cover classes and reducing noise in the data. It does not require prior knowledge of 

the data distribution compared to other classifiers. It involves assigning weight to 

each pixel based on the number of votes received in each tree. The final result is 

obtained after some level of correlation in fitting and majority voting (Breiman, 2001). 

To produce the forest tree in RF we need to identify the two important parameters: 

the number of decision trees to be generated (Ntree); and the number of variables 

to be selected and tested for the best split when growing the trees (Mtry). The 

parameter Ntree was assessed for the values of 100 – 600: a value of 500 was 

selected as error rates for all classification models were constant beyond this point. 

In this study I used the combined SAR and Optical indices as input variables.  

 

5.2.3  Classification map accuracy and uncertainties 

I undertook classification of wetlands according to each climate zone using the RF 

classifier. The control points for different wetland types were compiled for each 

climate region separately to classify the input variables developed for each region. 

To accurately classify the wetland types based on their distinctive features in a 

particular region, the input variables were extracted from composite images 
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constructed from different pixel values over a particular period of the year. In the arid 

and semi-arid region, seasonality is often a key property of wetlands. I therefore used 

the variables extracted from seasonal composites of maximum pixel value to train 

the RF classifier (Chapter 3 Table 3.2). I identified seasonal wetlands using the 

maximum value from my seasonal composites. For the Tropical Wet (TW), Tropical 

Wet and Dry (TWD) and Mediterranean subtropical climate (MED) zones, the 

variables constructed from the mean pixel value composites were used to train the 

RF classifier (Chapter 3, Table 3.2). 

 

I assessed the accuracy of RF classifications for each climate zone using cross 

validation by splitting the control points into two halves (50% training and 50% testing 

points), spatially selected for each climate zone from each class on a random basis. 

My accuracy estimation matrix includes the overall accuracy (OA), Kappa coefficient, 

producer accuracy, and user accuracy. Overall accuracy determines how well the 

classification algorithm performed, which can be measured by dividing the total 

number of correctly identified sample point by the total number of the testing points 

(Table B.3-B.7 Appendix B). I evaluated the uncertainties by comparing 

classifications made using the entire control point dataset with those produced using 

only a subset of control points selected at random for each wetland class in each 

climate zone. The uncertainties are associated with my classification accuracy, high 

confusion between wetland classes (e.g., swamps and peatlands) and limitations in 

the number of control points. Common issue with the gridded population data is 

misallocation of population to areas outside the urban areas. These errors were 
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minimized by down sampling the 1 km grid population taking the average population 

within 10 km grid.  

 

5.2.4  Carbon loss estimation 

I used the CO2 emission factor provided by the IPCC Wetland Supplement guidance 

(IPCC Task Force on National Greenhouse Gas Inventories, 2014) to estimate the 

amount of carbon loss from each wetland type for different climate zones in Africa. 

An emission/removal factor is a coefficient that quantifies the emissions or removals 

of a gas per unit area. It is calculated using a sample of measurement data, averaged 

to determine a representative emission rate for a specific activity level under defined 

operating conditions. I multiplied the total area of each wetland type with its 

corresponding emission/removal factor across the different climate zones for two 

assumptions: 1) the wetlands are in pristine condition; 2) wetlands are drained. The 

CO2 equivalent emission was calculated by: 

CO2 emission i =∑ (𝐸𝐹 ∗ 𝐴𝑟𝑒𝑎)𝑖,𝑐,𝑦      Equation 5.1 

where CO2 equivalent emission is the annual net carbon emission/uptake from a wetland 

type in tonnes CO2 yr-1
, area is the land area of drained land cover category in climate 

domain c, in ha, and EF is the emission factor for drained organic soils, by climate 

domain c, in tonnes C ha-1 yr-1
. 

 

I also adopted the empirical function of Zou et al. (2022) to estimate the wetland 

carbon flux using water level as function of carbon emission. Equation 5-2 was used 

to calculate the carbon flux from selected wetland types under different moisture 

regimes in different climate zones:  
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Emissiony= ∑(𝐸𝑓𝑠 𝑖𝑗𝑘 ×  𝐴𝑟𝑒𝑎𝑖𝑗𝑦)     Equation 5.2 

where Efs is emission factors, i is the climate zone, j is the water-table level (coded 

-3 to 2), y is the year and k is the wetland type.  

 

5.2.5  Carbon stock estimation 

The total amount of carbon stored by each wetland type in Africa was evaluated 

using the acquired data of carbon stock per hectare from the studies by (IPCC 2014: 

Adame et al., 2015; Boone and Bhomia, 2017; Dargie et al., 2017; Samer Elshehawi 

et al., 2019; Ouyang and Lee, 2020). To calculate the total amount of carbon stored 

by each wetland I multiplied the total area of the wetland with the value of carbon 

stock per hectare: 

Wetland carbon = Total wetland area (hectare) * Carbon stock (t C ha-I)

 Equation 5.3 

 

5.2.6   Wetland fragmentation and population index (WFPI) 

I compared the distribution of wetland fragments and population at the same cell size 

across 10 km grid areas. For my analysis I used only the count of wetland fragments 

estimated at a resolution of 10 km to allow comparison to the gridded population 

data at 10 km resolution. This resolution was selected because it was found to be 

the mean dimension of wetland fragments from my earlier study (Chapter 4). 

 

I aimed to identify the association of wetland fragmentation with human population. 

I used a fuzzy logic approach to create a membership rank for the fragmentation grid 

and population grid (ranging from 0-1), with 0 representing lowest membership and 
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1 the highest membership in increasing order. Lower membership indicates grid cells 

with less fragments or which are sparsely populated, while grid cells with a large 

number of wetland fragments or which are densely populated are assigned to a 

higher membership group. Finally, I overlayed the gridded fragmentation 

membership layer with the gridded population membership layer to quantify the 

coincidence of wetland fragments and human population. Higher WFPI indicates 

interaction of dense population with wetlands resulting to patchiness within the grid 

cells. 

 

 

Figure 5.1. The 10-kilometer square gridded layer of population count of Africa. 

The yellow regions indicate grids with lowest population count (maximum 

count of 2,583 persons per 10 km2), while the ultra blue colored region 

represents grids with a population count greater than 19,250 persons per 10 

km2. White patches have no data. 
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5.2.6.1 Population grid 

The population grid was created by transforming population data obtained from GPW 

V4 data using 10 km grid reference cells across the continent of Africa. I classified 

the cells in different class ranges from lowest to highest based on the population 

count in each grid cell (Figure 5.1). Most of the grids with dense population are 

located near major city centres, or close to river networks. I used this grid as an input 

for the for fuzzy membership transformation. 

 

 

Figure 5.2. The 10-kilometer square gridded layer of wetland fragmentation in 

Africa. The yellow regions indicate a non fragmented grid (fragment <=1), while 

the ultra blue represents a highly fragmented grid. 
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5.2.6.2 Fragmentation grid  

To create the fragmentation grid, I converted the classified wetland raster to 

polygons using the conversion tool in ArcGIS pro. I used an algorithm similar to 

spatial aggregation by overlaying 10 km x 10 km grid on the original 10m resolution 

fragmentation map.  For every 10m cell within a 10 km grid, the number of unique 

wetland fragments is calculated. I then identified and labelled distinct fragments 

within each grid. The fragment count within each 10 km grid cell is computed to 

derive a metrics of the total number of fragments. The total number of fragments per 

grid cell was used to group the cells into eight groups from low to highly fragmented 

(Figure 5.2). The total fragment in each cell was calculated by: 

𝐹𝑟𝑎𝑔𝑔𝑟𝑖𝑑= ∑ 𝐺𝑟𝑖𝑑𝑖
𝑛
𝑖      Equation 5.4 

where Fraggrid is the fragmentation grid (10 km), n is the number of fragments in grid 

cell i, and i is the code of the grid cell. 

 

5.2.6.3 Fuzzy membership  

I transformed the population and fragmentation grid into a fuzzy membership layer 

scaled from 0 to 1. 0 indicates grid cells that are not members of any set while 1 is 

assigned to grid cells with full membership. I use the fuzzy linear membership 

function to transform the input values linearly on the 0 to 1 scale, with 0 being 

assigned to the lowest input value and 1 to the largest input value (Figure 5.3). All of 

the values in between receive some membership value based on a linear scale, with 

the larger input values being assigned a greater possibility, or closer to 1. 
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Figure 5.3 Fuzzy membership showing the distribution from lowest to 

highest members: (a) population grid, (b) fragmentation grid. From 0 to 1 in an 

increasing order. 0 label represents the lowest membership which indicates 

sparsely populated grids, while the label 1 indicates densely populated grids 

assigned to the highest membership group. 

 

5.2.6.4 Fuzzy overlay  

The Fuzzy Overlay tool is used to evaluate the probability of a phenomenon 

belonging to several sets in a multicriteria overlay analysis. It determines whether a 

phenomenon is a possible member of a particular set and analyzes the relationships 

between the membership of the multiple sets. I used the “fuzzy And” function to find 

the relationship between the population and fragmentation membership layer. I 

overlayed the population grid with the fragmentation grid using a fuzzy overlay tool 

(Raines et al., 2010). This allowed me to analysed the relationship between the 

multiple members set from each grid layer. Stronger relationships are found between 

higher membership sets while lower membership sets showed weak relationships. 

Coincidence of a dense population grid (higher population membership grid) with a 

. 

 

a b 
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highly fragmented grid (higher fragmentation membership grid) result in the highest 

WFPI region. 

 

5.3  Results 

5.3.1  The current extent of African wetland 

My high-resolution continental study reveals that wetlands cover ~947,750 km2 of 

Africa (excluding deep water bodies) which constitutes ~3% of the total land area. 

Marshes and swamps are the most dominant wetland covering 436,743 km2 (46% 

of total wetlands) and 231,776 km2 (24%) respectively. Peatlands cover 208,842 km2 

(22%), while seasonal wetlands (5%) and mangroves (3%) have the least coverage. 

Most of these wetlands are concentrated in western and central parts of Africa 

(Figure 5.4a), where there is a high amount of rainfall throughout the year. However, 

some important wetland complexes are situated in North Africa such as in the Nile 

region. The largest wetland complex is located in the Congo region of central Africa 

covering about 278,450 km2, which contains the most extensive peatland area 

(165,250 km2) in the entire continent (Figure 5.4e). Other important wetland 

complexes are situated in southern Sudan (the Sudd) (67,150 km2) (Figure 5.4d), 

the Zambia (43,170 km2), Angola (46,072 km2) and Nigeria (47,130 km2). 

 

5.3.2 Distribution of wetland across African climate zones 

I examined the spatial distribution of different wetland types according to the five 

main climatic regions in Africa: Tropical Wet (TW), Tropical Wet and Dry (TWD), 

Semi-Arid (SARD), Arid or Desert (ARD) and Mediterranean subtropical climate 

(MED). TW has the most extensive wetland, hosting 57% (~448,210 km2) (Figure 
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5.5b) of the total wetland area in Africa. Peatlands (37%) and swamps (34%) are the 

most dominant wetland types of TW which cover 165,950 km2 and 153,580 km2 

respectively. Mangroves (2%) and seasonal wetlands (0.5%) are the least common 

wetland types in TW covering only about 14,000 km2. 

 

Figure 5.4 The distribution of wetland in Africa, at 10 m resolution, derived 

from classification of a combination of Sentinel-1 and Sentinel-2 composites 

between January 2020 and January 2021 showing extensive wetland 

complexes in (b) northern Algeria and Tunisia, (c) Nigeria, (d) South Sudan, (e) 

part of the Congo basin, (f) Morocco, (g) Chad, (h) Botswana. 

 

The largest climate region is the TWD, covering up to 38% of the total area of Africa. 

Wetlands in this region constitute only 3.2% (~362,980 km2) (Table B.1 Appendix B) 

of the total area with 52% being marshes (Figure 5.5a). This region has a distinct 
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climatic feature with alternating wet and dry periods throughout the year, which plays 

a significant role in the formation of different wetland conditions and variability across 

the season. Thus, TWD has a higher amount seasonal wetland cover relative to 

other climate zones (Figure 5.5). SARD is characterized by little rainfall throughout 

the year, covering 6,700,000 km2 (22%) of Africa. Only about 1.4% of SARD is 

covered by wetland, of which seasonal wetlands are the most dominant type. ARD 

is the second largest climatic region in Africa extending up to about 9,000,000km2 

and has the lowest wetland coverage (0.4%).  

 

Figure 5.5 Distribution of wetland types in different climatic zones showing: 

(a) division of Africa into different climate regions, (b) estimate of areal extent 

of wetland types in each climate zone (c) the intensity of wetland 

fragmentation in each zone per 10 km grid, (d) carbon stock in wetlands for 

each climate zone. 
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5.3.3  Wetland fragmentation and human population 

I developed a wetland fragmentation and population index (WFPI) by overlaying the 

gridded population layer with the gridded wetland fragmentation layer using the fuzzy 

overlay method (section 5.2.4.4). The fragmentation index is an indicator of regions 

with high wetland patches per 10 km grid and the population index is a count of 

persons per kilometer grid indicating areas of high concentrations of population. My 

WFPI shows areas where fragmentation is coincident with humans (Figure 5.6) using 

10 km grid cells across Africa.  

 

Figure 5.6 Gridded wetland fragmentation and population index for 10 km 

cells across Africa showing areas where fragmentation is associated with 

population (values closer to 1). The insert map a-d shows areas of high WFPI 

value. 
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I identified nine regions with a WFPI value indicating highly fragmented grid cells 

(80-226 wetland fragments per 10 km2) related to large population size (40,000- 

300,000 persons per 10 km2). Six of these regions are in west Africa (Nigeria, Liberia, 

Gabon, Guinea and Cameroon), two in north Africa (Egypt and Algeria) and one in 

east Africa (Kenya). In west Africa, areas such as Rivers State and Lagos in Nigeria, 

and Monrovia in Liberia, have highest WFPIs of 0.89, 0.76 and 0.83 respectively 

(Table 5.1). These areas are characterized by high population growth associated 

with urban expansion, thereby increasing pressure on nearby wetlands, mainly 

coastal mangroves and swamps. Other areas with high WFPI include Conakry in 

Guinea (0.68), Alexandra in Egypt (0.66), Algiers in Algeria (0.61) and Murang'a in 

Kenya (0.59) often associated with agriculture encroaching on wetlands in these 

regions (Kariyasa and Dewi, 2011; Hedjal et al., 2018; Maina and Mwangi, 2023). 

The index indicates that a total of 13,021 km2 of wetlands may be heavily threatened 

by human activity within Africa (WFPI.>0.5) and about 28,724 km2 of wetland occurs 

in populated areas that suggest a moderate at risk of human interactions (WFPI 0.3-

0.5). However, large wetland complexes with a high concentration of fragments (for 

example the Congo basin wetlands) that are far away from settlements or sparsely 

populated show little or no relation between fragmentation and human populations 

(Figure 5.6). The high concentration of fragments in the Congo basin are thought to 

be geomorphologically and climatologically controlled rather than driven by human 

activities (Young et al., 2023), though these peatlands could be highly sensitive to 

human-induced fragmentation in the future. 
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Table 5.1 The location, number of fragments and population of high WFPI 

10 km2 grid cells across Africa. 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.4  Carbon stock in African wetlands 

Healthy wetlands can store large amounts of carbon, but the quantity of carbon 

stored varies among different wetland types (Adame et al., 2015; Poulter et al., 

2021). Among these wetland types, peatlands are thought to have the highest 

carbon stock followed by mangroves, swamps and marshes (Adame et al., 2015; 

Boone and Bhomia, 2017; Ouyang and Lee, 2020; Sjögersten et al., 2021). I use the 

IPCC mean carbon stock for each wetland type to estimate the total carbon stored 

in four wetland types of Africa. My new continental map indicates that African 

wetland contains 54 ±11 Gt of carbon which is around 5% to 9% of wetland soil 

carbon stored globally (520 - 710 Gt C) (Poulter et al., 2021), and higher than that of 

European wetlands (12-31 Gt) (Malak et al., 2021). Peatlands store about 41% of 

Location Country Population per 

grid cell 

Fragmentation 

per grid cell 

WFPI  

Rivers State Nigeria 130698 209 0.89 

Lagos Nigeria 303143 107 0.76 

Greater Monrovia Liberia 136475 185 0.83 

Alexandra Egypt 168943 94 0.66 

Algiers Algeria 220546 76 0.61 

Muranga Kenya 72349 61 0.59 

Conakry Guinea 98844 174 0.68 

Littoral Cameroon 67846 173 0.57 

Estuarie Gabon 41947 226 0.55 
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this African wetland carbon, while 28% is stored in marshes, 27% in swamps and 

3% in mangroves.  

 

5.3.5  Net carbon uptake or loss from African wetlands 

I estimated the contribution of African wetlands to the global carbon budget across 

each climatic region using empirically derived emission rates for selected wetland 

types for which data are available (see Method). I used two approaches. First, I used 

the default emission factor from the IPCC emission factor database to calculate total 

carbon emissions from wetlands under two conditions (drained or natural). Using my 

new map of wetlands in Africa, i calculated that drained peatland, mangrove and 

marsh are capable of emitting 260Mt C yr-1 (936Mt CO2 yr-1 equivalents) which is 

equivalent to 2.4% of global net annual CO2 emissions (Friedlingstein et al., 2022) 

and almost ten times the mean net annual uptake under natural conditions of 27Mt 

C yr-1 (98Mt CO2 equivalents yr-1) by these wetlands. Wetlands within high WFPI 

areas, under drained conditions, could release 10.3Mt C yr-1 (37Mt CO2 equivalents 

yr-1). 

 

The net wetland carbon flux varies according to water level (Evans et al., 2021; Zou 

et al., 2022). Therefore, in my second approach, i used the emission factor for 

different wetland types at various water levels obtained from Zou et al. (2022) to 

estimate the carbon flux for peatlands, marshes and swamps. The six categories of 

water level range from -3 to 2 (WTL-3 ≤ -70 cm; -70 cm < WTL-2 ≤ -50 cm; -50cm < 

WTL-1 ≤ -30 cm; -30 cm < WTL0 ≤ -5 cm; -5 cm < WTL1 ≤ 40cm; and 40 cm < 

WTL2), where negative values indicate depth below the surface, while positive 
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values indicate ponding. At water level -3 i estimated that African wetlands will have 

a net release of 310Mt CO2 equivalent yr-1, while for water level -2 they will emit 115Mt 

CO2 yr-1 and 46Mt CO2 yr-1 for water level -1, while 91Mt CO2 yr-1 will be taken up by 

African wetlands when the water level is at level 1. 

 

5.4  Discussion 

My estimate of wetlands in Africa (947,750 km2) is larger than that of the coarser 

global wetland dataset by CIFOR (859,278 km2) and that of GLWD (934,481 km2). 

The biggest difference occurs in the classification of marsh followed by swamp and 

mangrove. This variation may be due to the coarse resolution dataset used to 

produce previous global wetland maps which may result in misclassification and 

omission of small-scale wetlands. This inconsistency highlights the importance of 

using high-resolution data to improve the estimation of wetlands, which in turn can 

be used to develop policy and monitoring to protect wetlands. This study shows close 

similarities with smaller geographical scale studies, such as the peatland map of 

Angolan highlands constructed by Lourenco et al. 2022 (Figure 5.7)  
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Figure 5.7 The Map of Angolan highlands peatlands by (a) Lourenco et al. 

2022, (b) This study. 

 

The overall accuracy of the trained algorithm compared to validation ground control 

data was higher for wetlands in the TWD region (89%) with mangrove and marsh 

well distinguished from other wetland classes with producer’s accuracies exceeding 

80% (Table B.3-B.7 Appendix B). There was high confusion in discriminating mineral 

soil swamps and peatlands especially in the TW region with user`s and producer`s 

accuracy below 70% and 80% respectively. There is also a common confusion 

amongst other wetland classes such as swamps and mangrove, marsh, and 

seasonal wetlands due to similarities in their visual and spectral signatures. The low 

accuracy in the Arid region was a result of confusion in discriminating swamp and 

peatlands along the Nile area, due to the presence of a peat deposit within the 

swamps. Similar confusion occurs in TW and TWD due peat deposits in the swamp 

and my method did not perform well in discriminating between non-peatland swamps 

and peatland.  
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The WFPI analysis generally identifies sites where the presence of human 

population poses a threat to nearby fragmented wetlands. My new map can be used 

as a baseline to monitor and assess wetland changes over time at a fine scale (10m 

resolution). It should also be noted that my method can now be used to generate 

timeseries observations for analyzing human-driven and natural wetland changes as 

well as their fragmentation, supporting future remotely sensed observations on the 

success of different wetland protection policies. My future work will be concentrated 

on gathering more and better-quality ground control data to support some future 

timeseries analyses.  

  

I explored the possible impact of African wetlands on global climate through net 

carbon uptake/loss under natural and a range of drained conditions.  I found  that 

the three selected wetland types (peatland, mangrove and marsh) under drained 

conditions could contribute up to 3% of global net annual carbon loss, a value which 

might be much higher if data for emissions from other wetlands become available 

and included in the estimation. Human activities have been widely reported to be a 

key driver of wetland degradation (Van Asselen et al., 2013; Dixon et al., 2016; 

Davidson, 2017). The degradation of wetland is often related to deeper water-tables 

which leads to increased decomposition and release of carbon to the atmosphere  

(Laine et al., 1996; Limpert et al., 2020). I found that wetlands which are currently 

highly fragmented in heavily populated areas of Africa have the potential to release 

CO2 equivalent to 0.6 % of total global annual emissions. Hence, protection of 

African wetlands, particularly in Tropical wet (TW), Tropical wet and dry (TWD) 

regions and most areas with high WFPI where the largest carbon stocks and greatest 
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net C emission potential is to be found, will be important for managing future land-

based emissions. 

 

My analysis of African wetlands provides a high-resolution insight as to their extent, 

condition and their potential contribution to the global carbon balance, providing data 

critical for both improving land-surface climate models and for wetland conservation. 
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Chapter 6  

Detecting changes in wetland area of the Lake Chad region using 

change vector analysis 

 

6.1  Introduction 

Wetland ecosystems play an important role in society by offering richly resourced 

habitats and providing sustainable livelihood opportunities. These ecosystems help 

develop, grow, and sustain the natural environment. Depending on their topographic 

setting and local conditions, they can reduce flood impacts, enhance water quality 

by absorbing pollutants, and serve as important faunal habitats, among many other 

environmental, recreational, and economic advantages (Acreman and Holden, 2013; 

Junk et al., 2013; Mitsch and Gosselink, 2015). Within the context of climate change 

and resource exploitation, these ecosystems face significant threats from 

anthropogenic activities that may lead to their widespread loss. Changes in land use 

around wetlands may exacerbate the risks posed by climate change, potentially 

causing disastrous effects on surrounding populations by impacting water and food 

security (Lemoalle et al., 2012; Magrin, 2016; Pham-duc et al., 2020).  

 

The Chad basin (2.5×106 km2) contains one of the largest wetland complexes in 

Africa with Lake Chad as a key feature (Policelli et al., 2018). The wetland systems 

cut across three main African climate zones including arid, semi-arid and tropical wet 

and dry (Birkett, 2000; Lemoalle, 2005). The region comprises a complex of 

permanent freshwater marshes inundated as part of Lake Chad, rivers and their 

deltas, and the shallow lake itself (Lemoalle, 2005). The wetlands of this basin are 
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economically important, providing water, fish, and other resources to the surrounding 

populations (Lemoalle et al., 2012). However, I note that increasing rainfall variability 

and irregularity over the past four decades, combined with human impacts such as 

upstream dam construction, have led to the slow degradation of these wetlands 

(Leblanc et al., 2011; WWF, 2014). The prolonged drought episodes over the region 

from the 1970s to the 1990s and the lake retreat greatly modified natural resource 

availability in the basin and around the Lake Chad wetlands. Degradation was further 

escalated by human activities such as the damming of rivers, and abstracting water 

in upper reaches, for irrigation. Studies have shown that there has been a slight 

increase in the wetland extent around Lake Chad with a corresponding decrease in 

open water area especially in the northern pool of the lake, while the wetlands in the 

southern pool area of Lake Chad seem to be stable with the open water area slightly 

increasing after the late 20th Century drought period (e.g. Leblanc et al., 2011; 

Lemoalle et al., 2012; Pham-duc et al., 2020; Policelli et al., 2018). However, there 

is a lack of high temporal-resolution data to capture dynamic changes in wetland 

extent in this region. 

 

Remote sensing has been used as an important tool for monitoring and identifying 

wetland changes (Chen et al., 2014; Ashraf and Nawaz, 2015; Jochems et al., 2021; 

Al-Nasrawi et al., 2021). Advancements in high spatial and spectral resolution 

imagery have allowed for improved remote sensing capabilities for wetland mapping 

(Klemas, 2011), which could be beneficial for long-term monitoring by detecting 

patterns within wetlands and landscapes (Kelly et al., 2011). In addition, the 

application of current remote sensing techniques not only helps quantify ecological 
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changes in wetlands over time, but such analysis can help to link environmental 

changes to anthropogenic drivers (Byrd et al., 2004). A variety of techniques have 

been developed for mapping landcover using remote sensing time series data (Xia 

et al., 2002; Zhao et al., 2009; Zhu and Woodcock, 2014; Estupinan-Suarez et al., 

2015; Van Tricht et al., 2018). Time-series mapping based on phenological 

differences provides critical information on spatiotemporal patterns of land cover. 

However, applications of time-series remote sensing data to African wetland 

ecosystems remain limited, with most studies focused on semi-arid West Africa 

(Zhao et al., 2009; Kovács et al., 2022). The complex water dynamics, diverse 

wetland types, and spectral similarities between wetlands and other land cover 

classes complicate the ability to conduct detailed and long-term monitoring of 

wetland cover on a frequent basis (Ozesmi and Bauer, 2002; Niu et al., 2012). 

 

Over the past decades, much literature on changes in the Lake Chad region has 

investigated the variability of the extent of open surface water using satellite data 

(Birkett, 2000; Leblanc et al., 2011; Lemoalle et al., 2012; Policelli et al., 2018). Zhu 

et al. (2017) investigated the variations of water level in the southern pool of Lake 

Chad for 25 years using satellite altimetry products and Landsat TM/ETM+ images. 

Policelli et al. (2018) estimated the total surface water area of Lake Chad using a 

combination of land surface temperature and radar remote sensing data. The study 

utilized thermal infrared data to analyze land surface temperature variations, 

identifying and delineating water bodies based on temperature differences between 

water and land. Mahamat et al. (2021) utilized satellite images from Landsat-MSS to 

Landsat-OLI of Lake Chad to explore alterations in the open water surface area 
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across the years 1973, 1987, 2001, 2013, and 2017. They showed a decrease in 

Lake Chad surface water area from 1973 to 2017. Despite these advances, I found 

that few studies account for changes in the surrounding wetlands interlocking with 

open water areas and other land cover types in Lake Chad. In a recent study by 

Hussaini et al. (2020), changes in Lake Chad landcover were evaluated during the 

preceding three decades by utilizing satellite imagery, encompassing OLI, ETM+, 

and TM sensors. Changes in five land cover types were analyzed across three 

epochs: 1985, 2000, and 2015. The findings revealed a significant growth in 

farmlands and gallery forest from 1985 to 2015, whereas a decrease in barren land, 

shrub, and water bodies was observed. However, the datasets and the approach 

used in these studies may not be robust for quantifying the changes within the 

wetland cover type in the Lake Chad basin due to lack of ground control points. 

Furthermore, most of these studies focused exclusively on assessing surface water 

dynamics and overlooked the changes in wetland systems within the Lake Chad 

region. Thus, I emphasize the importance of obtaining up-to-date, high-resolution 

information on wetland extents and changes in the Lake Chad area using advanced 

remote sensing techniques.  

 

My previous studies have demonstrated the potential of advanced remote sensing 

techniques using machine learning with high resolution imagery to map wetlands of 

southern Nigeria (Garba et al., 2023) and the African continent as a whole (Chapter 

5). In this study I used Change Vector Analysis approaches to map the types and 

quantify long-term dynamic changes of the wetlands of the Lake Chad area. CVA 

has been found to have several advantages over other change detection 
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applications (Karnieli et al., 2014). Firstly, it can concurrently process changes 

across all available spectral bands simultaneously, rather than handling each band 

separately. Secondly, by directly analyzing pixel vectors between dates, CVA avoids 

compounding spatial and spectral errors that often occur when classifying each date 

independently and comparing the classifications. Thirdly, CVA can detect not only 

conversions between discrete land cover classes, but also more gradual changes in 

the condition or state of a given cover type over time. Finally, CVA computes multi-

dimensional change vectors containing rich information on the magnitude and 

direction of changes. These vectors can be separated into components representing 

different change processes and synthesized into change images that preserve this 

detailed change information to aid in interpretation and labelling of the changes 

observed. My aim is to use CVA to quantify wetland changes, analyze trends over 

the past two decades, and identify potential factors driving these changes in the Lake 

Chad Basin. 

 

6.2  Study area 

The Lake Chad area is an extensive shallow depression in the central part of the 

Sudano-Sahelian zone of Africa which lies between latitudes 12˚0'N and 14˚20'N 

and longitudes 13˚0'E and 15˚20'E. It is bounded within the area of four countries: 

Chad, Cameroon, Niger, and Nigeria (Leblanc et al., 2011; Mahamat et al., 2021). 

The area is characterized by variable climate conditions with an average rainfall of 

320 mm which mainly occurs during June to October, which is considered as a wet 

season (Lemoalle, 2005; Lemoalle et al., 2012; Hussaini et al., 2020; Mahamat et 

al., 2021). The Lake Chad area has been variously categorised as a large inland 
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sea, a large lake with numerous islands, or a great marshy area (Sarch and Birkett, 

2000; Leblanc et al., 2011; Ndayisaba et al., 2017). Historically, the surface area of 

the lake has varied as a result of rainfall fluctuations, but the extent of the lake 

surface also drastically decreased during the 1970s and 1980s (Lemoalle et al., 

2012). The region is characterized by an alternation of desert and vegetated areas 

with hundreds of raised terrains in the middle of a desert environment. It is also 

covered by a succession of dunes of variable dimensions. 

 

  

Figure 6.1 The study region, showing (a) the extent of the Lake Chad region 

with the major rivers and their tributaries, (b) transboundary location of the 

Lake Chad region and surrounding countries, (c) position of the Lake Chad 

region within Africa. 

 

The region is rich in fauna and flora, characterized by many species of fish and 

migratory birds such as Fulvous Babbler, Marsh Warbler, River Prinia and Wattled 

Starling. It provides an important resource for most of the rural population, which is 
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growing very rapidly, because it provides for agricultural and pastoral lifestyles as 

well as fish farming.  

 

6.3  Materials and methods  

I calculated the Tasseled Cap Index (TCT) using Landsat bands as input into the 

CVA to identify changing pixels. I applied a machine learning random forest (RF) 

classification algorithm to classify wetlands at each time step. Using the CVA 

equation, I calculated the magnitude of spectral change among the three TC 

components. My aim was to identify areas of substantial change in TC response, 

regardless of the wetland areas' transitions, by focusing only on the magnitude of 

the change vector while ignoring its direction. I determined the change threshold 

value using areas with known wetland changes as a reference. I then classified only 

the potentially changed locations (i.e., high change threshold values) using the RF 

algorithm, utilizing my reference data. CVA allowed me to identify subtle differences 

in class reflectance due to high intra-class variability resulting from landscape 

heterogeneity. By interpreting the CVA magnitude and direction of change, I avoided 

the accumulated error often associated with class-to-class comparisons between 

two image dates. I implemented the overall methodology in Google Earth Engine 

(GEE), a cloud-based geospatial analysis platform that provides access to over two 

decades of imagery, making it feasible for analyzing landcover across large regions. 

 

6.3.1  Selection of satellite imagery  

I used atmospherically and terrain-corrected surface reflectance (SR) data from 

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational 
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Land Imager (OLI) Level-2 imagery, with a 30 m spatial resolution and a 16-day 

temporal resolution, accessed via the Google Earth Engine (GEE) platform. I 

acquired ETM+ data for the period 2000–2013 and OLI data for 2014–2020. To 

address the spectral differences between the Landsat sensors, I harmonized the 

ETM+ surface reflectance values to match the OLI range using OLS coefficients 

(Roy et al., 2016), producing an analysis-ready time series. I created a spatial subset 

of the region of interest from the spectrally calibrated series. Clouds and shadows 

were removed using supplementary pixel quality assessment flags. 

 

6.3.2  Reference data 

I obtained reference data from the Food and Agriculture Organization (FAO) global 

dryland assessment (Bastin et al., 2017). These datasets were generated by 

photointerpretation of images of less than <1 metre resolution. I collected a total of 

805 ground sample points for wetland and non-wetland locations in the Lake Chad 

region. The reference data included wetland (401 points) and non-wetland types 

grouped into open water (143 points), urban/bare land (152 points), cultivated land 

(215 points), and grassland (194 points) categories. I randomly divided these points 

into training (50%) and validation (50%) datasets, ensuring even geographic 

coverage for classifier input (Chapter 4). 

 

6.3.3  Creation of Image Composite  

To achieve higher accuracy for identification and classification of my change 

landcover, I created a composite image for each year and classified each composite 

using a Random Forest (RF) classification algorithm. I created a multi-temporal 
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composite using the mean value from the composite after cloud masking. Several 

studies have shown that a yearly composite image captures explicit phenological 

information suitable for wetland mapping (Griffiths et al., 2013; Mahdianpari et al., 

2018). I used the selected spectral bands and extracted indices (TCT) as an input 

variable for each year into the RF classifier. An RF classifier is more robust 

compared to the Decision Tree (DT) algorithm and easier to execute relative to a 

Support Vector Machine algorithm (Rodriguez-Galiano et al., 2012). It uses 

bootstrap aggregating (bagging) to produce an ensemble of decision trees by 

adopting a random sample from the given training data and finds the best splitting of 

the nodes by minimizing the correlation between trees (Breiman, 2001). About 400 

training points for different landcover types were used to train my classifier. The rest 

of the sample points were set aside to validate the accuracy of the classification (Liu 

et al., 2018; Mahdianpari et al., 2018). 

 

6.4  Change Detection Technique 

6.4.1  Tasseled cap index 

Tasseled Cap Transformation (TCT) was developed as a means of compressing and 

visualizing data obtained from the Landsat-1 Multispectral Scanner (MSS), with a 

specific focus on extracting information about agricultural landscapes. The TCT 

components were selected because they are scene independent and have been 

proven as highly effective for the interpretation, classification, and analysis of 

phenomena and processes related to the dynamic changes in land use/cover 

features (Rahman and Mesev, 2019; Stoyanov, 2022). I performed CVA for wetlands 

and other landcover areas using the first three TC components derived from the 
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Landsat images. These components measure brightness, greenness, and wetness, 

which account for more than 97% of the spectral variability observed in a standard 

scene (Baker et al., 2007). TC component brightness is a measure of image 

brightness derived from the responses of all bands except thermal Landsat bands. 

The greenness component is calculated primarily through differencing near infrared 

with visible bands. The wetness component is determined by comparing visible and 

near infrared responses with shortwave infrared responses. The brightness 

component is an indicator associated with bare soil or bare ground: increase in 

brightness signifies a shift towards bare soil, whereas a decrease in brightness 

indicates a shift away from bare soil (Rahman and Mesev, 2019). Greenness is 

directly related to chlorophyll presence and photosynthetic activity, and hence 

alterations in the measured greenness can be attributed to increase or decrease in 

vegetation (Baker et al., 2007; Thakkar et al., 2016; Poortinga et al., 2020). Wetness 

can be an indicator of vegetation density and soil moisture, and hence decrease in 

wetness indicates declining vegetation or soil moisture (Xu, 2006; Poortinga et al., 

2020).  

 

6.4.2  Change Vector Analysis 

Change vector analysis (CVA) assesses the magnitude and direction of change 

between different dates within spectral space. Fundamentally, it applies a variation 

of the Pythagorean theorem to calculate the Euclidean distance between the digital 

values of a given pixel at Time 1 (T1) and that same pixel at Time 2 (T2). This 

Euclidean distance represents the magnitude of spectral change that occurred at 

that pixel location, while the direction of the change vector provides information 
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about the nature of the change (Rahman and Mesev, 2019). CVA offers flexibility in 

that it can be applied to diverse multispectral datasets enabling radiometric change 

detection useful for monitoring a variety of landscape processes and dynamics over 

time (Singh and Talwar, 2014). The CVA was conducted by computing the change 

vector (CV) between vectors H and Q at dates t1, t2 given by H = (h1, h2, …..., hn) 

and Q = (q1, q2, ..., qn), respectively, and n is the number of bands, so that a change 

vector is defined as: 

   ∆CV = H - Q = (

ℎ1 −𝑞1

ℎ2 −𝑞2

ℎ3 −𝑞3

ℎ𝑛 −𝑞𝑛

)     Equation 6.1 

The CVA method for magnitude was applied to three TC components using equation 

6.2: 

│M│ = √(𝑎2 − 𝑎1)2 + (𝑏2 − 𝑏1)2 + (𝑐2 − 𝑐1)2   Equation 6.2 

 

where │M│ denotes the total changes between the vector of the three-components 

a, b and c corresponding to TC brightness, greenness, and wetness respectively at 

two different times.  

 

The greater the │M│ the higher the chances of change illustrated in Figure 6.2a. 

Magnitude values at or near zero identify areas with little or no change. However, 

pixels that remain unchanged fall within a certain range around the origin due to 

factors such as noise and imperfect normalization. This noise is removed by applying 

a threshold to the magnitude. A decision on whether a change has occurred is 

determined based on whether the change magnitude exceeds a predefined 
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threshold value. After a pixel is classified as having experienced change, further 

examination of the change direction is conducted to ascertain the specific type of 

change that took place. The type of change is often identified using the angle of the 

vector in two spectral dimensions, or sector codes if more than two spectral 

dimensions are involved (Figure 6.2b).  

 

 

Figure 6.2 Representation of change vector measure (a) change magnitude 

for two input bands, (b) change direction sector code (after Yoon et al., 2003) 

 

6.4.3  Determination of Optimal Threshold 

Determining an appropriate threshold value to differentiate real changes from noise 

or insignificant fluctuations in the dataset was a critical step in my CVA process. I 

established the change threshold iteratively, selecting it based on training samples 

that represented all possible types of changes. My assumption was that these 

training samples adequately reflected the characteristics of the entire study area. 

The change detection threshold, therefore, was determined using the remote 
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sensing analyst’s expert knowledge: a threshold leading to the maximum accuracy 

of change detection within the training samples is considered optimal for this study. 

In this process, I first calculated the change magnitude image and selected 

representative change areas as training samples. A sensitive change magnitude 

value was then chosen to detect potential change pixels. As the threshold 

decreased, the number of identified change pixels increased, enhancing accuracy 

within the training samples. However, it is important to acknowledge that lowering 

the threshold also increases the likelihood of identifying no-change pixels outside 

the training samples as change pixels, consequently resulting in higher commission 

errors. I used the potentially changed sites to create a mask for each image pair, 

retaining only the changed pixels. The masked pixels (as shown in Table 6.1) were 

classified, while the remaining study area pixels were treated as unchanged. 

 

6.4.4  Change type classification 

The evaluation of change types is essential in change detection. In this study, 

change pixels are classified using the random forest algorithm. I used the collected 

reference data for five landcover types to train the model to build up relationships for 

different landcover categories. All training data were selected through random 

sampling from areas designated as unchanged to assure that high classification 

accuracies are achieved. The potentially changed pixels were also classified to 

identify wetland and non-wetland landcover classes. These classes were then 

compared to the same classes identified in the initial wetland classification from the 

unchanged pixels to determine if landcover had changed regarding wetland areas 

between the two image dates.  
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6.4.5  Change accuracy  

To evaluate the performance of the CVA method, I estimated the accuracy of both 

“change/no-change” detection and “from-to change” detection levels.  The sampling 

locations were randomly selected to include all possible change types. However, 

sampling pixels belonging to the no change area cover a larger proportion of the 

sampling compared to change pixels, due to the latter constituting a larger area of 

the study location. The error matrix of “change/no-change” detection constructed 

from 2,500 sample pixels for four change periods is illustrated in Table 6.2. For the 

“from-to change” detection level, the accuracy assessment was carried out based 

on the changed pixels belonging to the different landcover types for four change 

periods. The sampling pixels for the detected change area for each landcover type 

were randomly selected using the collected reference data. The accuracies and 

errors of detecting changes from wetland to other landcovers are shown in Table 

6.3. Finally, I estimated the total area of wetland changed to different landcovers for 

each change period. 

 

6.5  Results  

6.5.1  CVA change detection  

 I calculated the change vector and magnitude using Equations 6.1 and 6.2 for four 

periods: 2000–2005, 2005–2010, 2010–2015, and 2015–2020. The spatial 

distribution of change vectors varied throughout these periods. Figure 6.3 shows the 

spatial distribution of change vectors for the TC components, ranging from -0.5 to 

0.6. The analysis revealed a severe decline in wetness in the northeast basin of Lake 

Chad and at the western edge of the southern basin’s archipelago between 2000 
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and 2005 (Figure 6.3a), with moderate changes spread across the north and 

southern parts of the basin. During 2005–2010, I observed widespread negative 

changes in wetness and greenness, along with an increase in brightness pixels, 

indicating expanded bare soil due to wetland decline (Figure 6.3a and b). For 2010–

2015, the majority of change pixels showed increased wetness and greenness 

across the basin. However, for 2015–2020, all three components reversed, 

confirming drying conditions during this period (Figure 6.3d). 

 

Figure 6.3 Change vector images of change vector analysis (CVA) in four 

periods: (a) between 2000 and 2005; (b) between 2005 and 2010; (c) between 

2010 and 2015, (d) between 2015 and 2020. The legend palette ranges from -

0.40 (deep blue) to 0.50 (dark red) for wetness, -0.27 (deep blue) to 0.26 (dark 

red) for greenness and -0.52 (deep blue) to 0.60 (dark red) for brightness. The 

negative sign indicates a decrease in pixel value while a positive sign shows 

an increase in pixel value within the period of change. 
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I analyzed the change vector magnitude, as shown in Figure 6.4, which illustrates 

spatial variations in change intensity ranging from 0 to 0.6 across four time intervals. 

Most change magnitudes were below 0.4. Higher-intensity changes were 

predominantly concentrated in the northern part of the basin, while moderate 

changes were dispersed throughout the region. The periods 2000–2005 (Figure 

6.4a) and 2010–2015 (Figure 6.4c) exhibited more pixels with high-level changes 

compared to 2005–2010 and 2015–2020, which showed low-level changes, except 

for patches in the northern and eastern parts of the lake (Figure 6.4b and 6.4d). 

  

Figure 6.4 Change magnitude images of change vector analysis (CVA) in 

four periods: (a) between 2000 and 2005, (b) between 2005 and 2010, (c) 

between 2010 and 2015, (d) between 2015 and 2020. The magnitude value 

ranges from 0 (grey) to 0.6 (dark red) 

 

I derived the change and no-change areas by thresholding the change magnitude 

maps. The optimal threshold was selected from five sample areas of known change 
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locations. For the periods 2000–2005, 2005–2010, and 2015–2020, I used a 

threshold of 0.16, while for 2010–2015, a threshold of 0.2 was more appropriate for 

distinguishing change/no-change areas. These thresholds captured 98% of the 

known change areas, which were also identified using visual interpretation of raw 

images. 

 

Figure 6.6 illustrates the spatial pattern of changed pixels by applying the cut off 

thresholds. Most of the pixels are masked out as unchanged for all periods (77% - 

90%) (Figure 6.7). The highest amount of changed pixels occurred in 2010 – 2015 

as shown in Figure 6.6c, covering about 576 km2 (Table 6.1), while the least masked 

change area was found in 2015 – 2020 (191 km2, Table 6.1) corresponding to only 

about 7% of the total area. The threshold for 2000 – 2005 retained the largest 

proportion of the initial changed pixels (82%) as observed from the pixel counts and 

estimated area (Table 6.1), while about 50% – 60% of initial potential change pixels 

are detected in other periods by the threshold. 
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Figure 6.5 Time series change vector magnitude for yearly changes from 

2000 to 2020. 

 

Table 6.1 Estimate of mask change area using the suitable threshold for four 

change periods 

Change period Total change 

pixel count 

Change pixel area 

(km2) 

Threshold pixel 

count 

Threshold change 

area (km2) 

2000 - 2005 3805111 342.46 3128209 281.53 

2005 - 2010 4514524 406.31 2193038 197.38 

2010 - 2015 10023724 902.14 6400843 576.07 

2015 - 2020 4102177 369.19 2122727 191.05 
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Figure 6.6 Change magnitude threshold image in four periods: (a) between 

2000 and 2005, (b) between 2005 and 2010, (c) between 2010 and 2015, (d) 

between 2015 and 2020.  

 

6.5.2  Accuracy assessment 

The overall accuracies for both “change/no-change” detection and “from-to change” 

detection levels were high, as observed in Table 6.2 and Table 6.3, ranging from 

93.11 to 97.88%. The change/no change for the period of 2010 – 2015 had a lower 

accuracy as compared to other periods largely due to large number of unchanged 

pixels (14.93%) wrongly identified as changed. The fewest errors were obtained in 

the 2005 – 2010 change classification, which means the change/ no change pixels 

were well distinguished with the highest accuracy (97.8%) (Table 6.2). In 2000 – 

2005 and 2015 – 2020 a significant number of changed pixels were labelled as 
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unchanged resulting in higher omission error (Table 6.2). For assessment of 

changes from wetland to other landcovers, the highest confusion occurs in 

classifying change pixels between wetland versus open water and wetland versus 

forest vegetation for all four change periods (Table 6.3).  
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Table 6.2 Error matrix for “change/no change” from 2000 - 2020 at five-year 

interval. The omission error refers to the percentage of reference wetland 

change sites that were left out. Commission error refers to percentage of 

reference site change sites incorrectly classified as wetland change 

Reference change                                          2000 - 2005     

 

 

Classified 
change 

 Change pixels No Change pixel  Sum Commission error 

Change Pixels 458 42 500 8.40% 

No Change Pixels 57 1943 2000 2.85% 

Sum 515 1985 2500  

Omission Error 11.06% 1.60%   

Overall Accuracy 96.29%    

2005 - 2010 

 Change Pixels 415 35 450 7.71% 

No Change Pixels 18 2032 2050 0.87% 

Sum 433 1985 2500  

Omission Error 4.15% 1.70%   

Overall Accuracy 97.88%    

2010 - 2015 

 Change Pixels 368 32 400 8.00% 

No Change Pixels 46 2054 2100 2.22% 

Sum 414 2086 2500  

Omission Error 11.11% 1.53%   

Overall Accuracy 96.88%    

2015 - 2020 

 Change Pixels 368 32 400 8.00% 

No Change Pixels 46 2054 2100 2.22% 

Sum 414 2086 2500  

Omission Error 11.11% 1.53%   

Overall Accuracy 96.88%    
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In 2010 – 2015 and 2015 – 2020 the accuracy of mapping changes between wetland 

and cultivated lands were much lower than observed in other change periods with 

both commission and omission error greater than 8%. The smallest error was 

obtained with classifying changes from wetland to bare land where a high accuracy 

level of 95% -100% for all periods was achieved (Table 6.3). This was achieved 

because of the spectral distinction between wetland and bare land features.  

  

Table 6.3 The accuracy assessment of “from-to” change detection for four 

change periods. The omission error refers to the percentage of reference 

wetland change sites that were left out. Commission error refers to percentage 

of reference site change sites incorrectly classified as wetland change. 

Change 

period 

Errors % Wetland 

 

Overall 

accuracy (%) 

Open 

water 

Forest Cultivated 

Land 

Grassland Bare Land  

2000 - 

2005 

Omission 14.81 10.25 4.79 6.08 0 95.41 

Commission  7.84 8.05 2.29 0 0 

2005 - 

2010 

Omission 8.16 6.45 4.51 3.43 0 96.27 

Commission  7.38 5.35 0 2.04 0 

2010 - 

2015 

Omission 7.57 9.25 9.05 4.04 3.03 93.11 

Commission  9.09 14.76 11.88 3.45 2.08 

2015 - 

2020 

Omission 2.08 5.45 9.25 5.09 2.38 94.48 

Commission  19.15 6.11 8.25 1.33 4.11 

 

6.5.3  Evaluation of wetland change 

Using the high accuracy classified change, I estimated the area of wetland changes 

compared to other landcovers (Table 6.4). The overall result shows a net loss of 

wetland in all four periods. The highest wetland decline was estimated between 2000 
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– 2005 with a net loss of 277 km2 (±12 km2) converted to different landcover types. 

For this period, about 112 km2 (±11 km2) and 42 km2 (±7 km2) area of wetland was 

converted into forest, and open water (Table 6.4). However, there are patches of 

wetland expansion during the period especially around the middle barrier of the 

basin. High wetland loss of 116 km2 (± 6 km2) was also observed during the period 

of 2005 – 2010, where a large area of wetland (47 km2) was converted to forest 

vegetation. The lowest wetland decline occurred during 2010 – 2015 which accounts 

for a total loss of 77 km2 (±5 km2).  

 

Table 6.4 Estimation of wetland change area for four change periods. The 

negative value indicates the area of wetland loss (km2) due to conversion to a 

given landcover type while the positive value indicates area of wetland gain 

during the change period interval.  

Change period Wetland net change 

Open water Forest Cultivated 
Land 

Grassland Bare Land 

2000-2005 -41.72 -111.99 -11.45 -35.52 -31.45 

2005-2010 -15.49 -47.44 -14.43 -11.55 -22.69 

2010-2015 -34.96 23.37 -27.84 0 -1.81 

2015-2020 12.45 -30.35 -52.12 -28.33 12.71 

 

6.6  Discussion 

Lake Chad is an endorheic wetland ecosystem, where the source of water is mainly 

from precipitation and surrounding rivers, which means any fluctuation in the annual 

rainfall affects the basin directly. Several studies have highlighted the long-term 

effect of climatic changes which result in the variation of lake extent and water level 
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in the region (Lemoalle, 2005; Zhao et al., 2009; Lemoalle et al., 2012; Policelli et 

al., 2018; Hussaini et al., 2020). Data about the variability of mean annual 

precipitation obtained for my study periods from Climate Hazards Group InfraRed 

Precipitation (CHIRP) shows strong connection with wetland changes. Since rainfall 

is a key factor in the formation and succession of the wetland ecosystem, its dynamic 

changes have a large impact on the system dynamics. During 2000 – 2005, the 

mean annual precipitation dropped by about 42 mm from 302 mm to 260 mm (Figure 

6.7). The mean annual precipitation further declined by 57 mm between 2005 - 2010 

and was the lowest among the study periods, implying that climate variability was 

one of the causes of wetland change. Concurrently the rate of wetland decline was 

reduced with the increase in mean annual precipitation during 2010–2015 (reached 

up to 390 mm).  

 

  

Figure 6.7 The mean annual precipitation of the changed area for 2000 – 

2020. 
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Anthropogenic activities were also an important likely cause of wetland changes in 

the Lake Chad region. The shrinkage of the lake provides an increasing area of land 

rich in silt, and wet all year-round, compared to surrounding areas, which has in 

recent years been a pull factor for immigration into the region (Okpara et al., 2016). 

Lake Chad has therefore attracted many people who have lost their former 

livelihoods and have moved to practice fishing, cultivation and herding in the former 

lakebed (Lemoalle et al., 2012). Population around Lake Chad has soared in recent 

decades at a rate between 1.5% and 3.7% per year (IAEA, 2017). Increase in 

population implies an increase in demand for water and land resources for a variety 

of economic and livelihood activities. Zhu et al. (2019) reported that annual water 

loss as result of human activities at Lake Chad increased threefold between 1997 to 

2013. However, the major change observed in wetlands is towards forest rather than 

agriculture, indicating that agriculture is not the sole driver of wetland change. This 

occurs because of receding water levels causing previously flooded areas to become 

exposed, allowing woody vegetation to establish and gradually convert wetland 

areas to forest (Lemoalle et al., 2012). 

 

My study has revealed spatial changes in wetland within the Lake Chad area 

between 2000 and 2020. Wetland declined from 2000 to 2020 with a net loss of 511 

km2 (24%). During the 2000-2020 period much wetland area was changed to forest 

vegetation which accounts for a net loss of 237 km2. In comparison with Hussaini et 

al. (2019) who estimated wetland loss to gallery forest to be about 11% between 

2000 to 2015, I found a slightly larger area of wetland converted to forest (14%) 

(Figure 6.8). I also observed a large area of wetland had been changed to grassland 
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(125 km2) and bare soil (82 km2), and this conversion was found to be greatest 

between 2005-2010 (Table 6.4). This wetland loss likely occurred due to a decrease 

in water discharge from the supplying lakes within the Lake Chad basin (Magrin, 

2016; Policelli et al., 2018). However, between 2010 – 2015 the CVA result shows 

that a net area of 136 km2 (±15 km2) wetland was restored due to increasing water 

supply to the basin mostly through rainfall from 2011 (see Figure 6.7). After 2015 the 

wetland area begins to decline again leading to a loss of about 97 km2 (±5 km2) by 

2020, as a result of agricultural activities and to forest (Hussaini et al., 2020) with 

conversion of a significant proportion of wetland area into cultivated fields and 

grassland.  

 

  

Figure 6.8 Comparison of wetland area conversion to forest from 2000 to 

2015 in the northern pool between (a) Hussain et al., 2020 and (b) this study 

showing change vector classified as forest in 2015. The yellow polygon 

illustrates the extent of change area from Hussain et al.,2020.  
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Since many of the studies on changes to the Lake Chad area as described in section 

6.1 are based on the analysis of surface water area covering different time spans, 

they cannot be directly compared to my results. However, it is worth noting that most 

studies (Birkett, 2000; Alfa et al., 2010; Lemoalle et al., 2012; Okpara et al., 2016; 

Onamuti et al., 2017; Policelli et al., 2018; Mahamat et al., 2021) show a large decline 

of the Lake Chad open water area. Hussaini et al., (2020) suggested there was a 

decline in wetland area and an increase in gallery forest from 2000 - 2015, which is 

consistent with a net loss of the wetland area during the same period of my research. 

The results of my study aligns with the findings of Pham-duc et al., (2020) who 

suggested that the northern pool shows higher variability (see Figure 6.5) with a 

descending trend of the surface water extent from 2002 reaching its minimum in 

2010 before starting to slowly increase again in the following years. The impact of 

long-term rainfall variability the Lake Chad has been exceptional with an expansions 

during wet years and severe contractions during droughts due to combined effects 

of climatic and anthropogenic factors (Buma et al., 2018; Zhu et al., 2019; Gbetkom 

et al., 2023). However, there is the potential for other African wetlands to be impacted 

by rainfall dynamics: for example, the Sudd wetland has been significantly impacted 

by long periods of drought (Zeleke et al., 2024). My results showed that the wetlands 

in the Lake Chad region continued to decline for all periods, including the phase with 

increased rainfall, from 2000 to 2020 which means that this wetland has become 

fragile and susceptible to further changes. The rate of wetland loss to agriculture has 

also doubled by 2020 (Table 6.4). This confirms that more in-depth understanding 

and effective management plans are urgently needed in order to conserve and 

preserve the Lake Chad wetlands especially those around the northern pool of the 



122 
 

 

lake which seem to be more vulnerable (Lemoalle et al., 2012). The results of this 

study provide a basis on which the respective organizations such as the Lake Chad 

Basin Commission (LCBC) can incorporate wetland ecosystem protection in their 

management plans. 

 

While policies can be implemented to protect these wetlands from changes in land 

use, findings from this study indicate that this wetland is highly sensitive to changes 

in precipitation. Therefore, it remains uncertain how this wetland will respond to 

future climate change. However, with the expectation of precipitation to generally 

increase by about 5%-15% by 2100 within the region under warmer global 

temperature scenarios (Schmitt and Simpson, 2018; Adeyeri et al., 2019; Sylvestre 

et al., 2024), it is likely to positively affect the functioning of this wetland depending 

on the nature of human interactions and land management. It is also important to 

note that the rise in lake level can be associated with wetland loss due to complete 

inundation. 

 

An advantage of the relative change detection technique that I apply here between 

successive images is that it reduces errors in classification. Accuracy of change 

detection is therefore improved by 14% compared to previous studies of Lake Chad. 

However, there remain many challenges associated with detecting long-term 

changes in Lake Chad wetlands, among them is the seasonal variability of the rainfall 

that might affect the spectral signal. Another challenge is short-term changes, such 

as a rainy year followed by a drought year, which can introduce high uncertainty in 

different areas. To improve the accuracy of the change estimate I recommend long-
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term analysis based explicitly on images of above-average rainy years and from the 

same phenological stage.  

 

6.7  Conclusion 

In this study, a change detection approach for monitoring wetland dynamics was 

developed using Tesseled cap indices and CVA. In this approach, wetness, 

greenness, and brightness components of wetlands were derived from the Tesseled 

cap index. Finally, the change magnitude and directions were calculated, which 

refers to the detailed wetland change information. I further estimated the area of 

wetland changes to other landcovers during four change periods in the Lake Chad 

basin. During 2000–2010, a severe wetland decline occurred in the northern pool of 

the lake, and marginal area of the southern pool of the lake, where the wetland was 

mostly converted to forest vegetation. Despite a rise in rainfall from 2010 to 2015, 

the wetland still faced a decline due to inundation from increase in lake levels. This 

study has presented a novel and up to date quantification of wetland depletion trend 

that occurred in the Lake Chad area over the past two decades (2000 – 2020). It 

provides a good estimation of wetland changes by differentiating wetland and other 

landcover classes using the CVA analysis. It is observed that the highest wetland 

conversion was associated with forest vegetation (39%) which is dominant in the 

northern pool, while the smallest wetland conversion was to cultivated land (9%). My 

study reveals an unexpected outcome of net wetland loss during wetter periods, 

which contrasts with assumptions from previous literature about wetland recovery 

during periods of increased rainfall. The wetland change information in this study 

was based on time-series remote sensing data; the results can offer guidance for 
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scientific monitoring and sustainable management of wetlands. This approach could 

be applied to wetland change studies in other areas.  
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Chapter 7  

Discussion and Conclusion 

 

7.1  Section outline 

In this Chapter I summarise the project as a whole and discuss how the work 

contributed to answering the three underlying research questions: 

1. What is the current extent of wetland area in southern Nigeria and how is this 

broken down into different wetland types?  

2. What is the current extent of wetland area across Africa, how is this broken 

down into different wetland types and climate zones, what is its carbon store and 

potential for GHG forcing under different degradation scenarios, and what is the 

relationship between population and highly fragmented wetland regions?  

3. What is the trend of change in Lake Chad region wetlands (as a regional case 

study) over the past two decades and can these changes be linked to clear human 

drivers of change?  

The project findings are therefore discussed in the context of these questions and 

subsequent implications for ecosystem services outcomes and conservation goals. 

Areas in which the understanding or interpretation of past work has been extended 

or challenged are also considered. The relevance of the work to the wider 

international context and some of the project limitations are reflected upon. Finally, 

overall conclusions and resulting recommendations for wetland management, policy 

and future research directions are outlined. 
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7.2  Implication of the research findings 

7.2.1  Large-scale wetland mapping at 10m spatial resolution 

This research produced the first systematic and comprehensive map of wetlands at 

high spatial resolution (10 m) first for southern Nigeria and then for the whole of 

Africa (Chapter 4 and 5), which provides a detailed and up-to-date resource for 

numerous applications in conservation, wetland management, scientific research, 

and sustainable exploitation. Sustainable wetland development can help to alleviate 

poverty, enhance food security, and promote broader sustainable development in 

Africa (Gardner et al., 2015). Reliable maps of African wetlands are crucial for 

supporting livelihoods, reducing poverty, and advancing sustainable development 

(Gardner and Finlayson, 2018). Additionally, the relationship between climate 

change and wetlands is a key research focus, as African ecosystems are already 

experiencing significant impacts from climate change, with more expected in the 

future (Erwin, 2009; Field and Barros, 2014). Wetlands play a vital role in regulating 

global climate by absorbing and releasing large quantities of carbon, and controlling 

atmospheric concentrations of greenhouse gases like methane, carbon dioxide, and 

nitrous oxide, which contribute significantly to global warming (Meng et al., 2016). 

Maintaining the sustainability of African wetlands is critical for mitigating climate 

change, and the high-resolution wetland map helps in accurately determining 

wetland categories, estimating carbon stocks, and assessing greenhouse gas 

emissions, thereby improving the understanding of wetland-climate interactions. My 

wetland mapping using improved spatial resolution data captured a significant 

amount of wetlands missed by existing global maps (Chapter 4, Figure 4.9). Existing 

wetland mapping products on a global scale, such as the Ramsar site database, 
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contains only information on wetlands that have been classified as of ‘international 

importance’ and the Global Lake and Water Database (GLWD) has information that 

is two decades old and probably incomplete (Gumbricht et al., 2017; Hu, Niu and 

Chen, 2017; Steinbach et al., 2021). Recent mapping products such as PEATMAP 

(Xu et al., 2018) and global wetland map (Gumbricht et al., 2017) are typically based 

on secondary data of varying quality and age with a mix of spatial resolutions. This 

thesis produced the first regional (Chapter 4) and continental wetland map (Chapter 

5) at high spatial resolution (10 m) which provides high quality and detailed 

information about the location, distribution, and extent of wetlands in Africa. This 

mapping product could be easily integrated into global ecosystem models, climate 

models, population models or hydrological models to investigate wetlands at a global 

scale. The codes used to create this mapping products will be made available online 

for other users. Analysis of the 10-metre wetland map suggests that in previous 

global assessments, wetlands in Africa have been underestimated due to coarser 

resolution investigation, resulting in misclassification and omission of small-scale 

wetlands. For example, in comparison with the CIFOR global wetland dataset, about 

80,400 km2 of small-scale wetlands in Africa were identified by my study, that were 

not included by CIFOR. This series of small wetlands contains a significant fraction 

of stored carbon and could be an important target for conservation. Hopefully, my 

study paves the way for further studies to assess the impact of human populations 

around wetland margins, monitor wetland changes over time, and explore the 

influence of climate change on dynamics of wetlands in Africa. 
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7.2.2 Wetland patchiness and relationship to human populations 

My 10-metre resolution wetland map reveals fragmentation which has significant 

ecological, hydrological, socio-economic and policy implications. Fragmented 

wetlands threaten biodiversity by isolating habitats, disrupting hydrological 

processes essential for flood control and groundwater recharge, and diminishing 

carbon sequestration capacity, contributing to climate change (Adade et al., 2017; 

Kundu et al., 2022; Magure et al., 2022). For example, in Chapter 5 I found that 

wetlands which are currently highly fragmented could potentially emit CO2 equivalent 

to 0.6 % of total global annual emissions. They also become more vulnerable to 

human encroachment from agriculture and urbanization, compromising ecosystem 

services such as water purification, nutrient cycling and flood mitigation, which local 

communities rely on. The map produced for my Nigerian study (Chapter 4), with 10 

m pixels, captures small patches of wetland < 1 km2 which were not captured in 

earlier mapping products. These small patches may be more prone to degradation, 

and are also susceptible to reduced biodiversity, and isolation, which limits species 

movement and disrupts vital ecological processes such as migration and nutrient 

cycling (Kundu et al., 2022). Therefore, stronger land use policies and targeted 

interventions are required in southern Nigeria to protect these vital ecosystems from 

further degradation. 

 

The highest rate of wetland loss has been primarily attributed to human activities 

such as agricultural and urban expansion in several cases (Ballut-Dajud et al., 2022; 

Kundu et al., 2024; Magure et al., 2022). My continental-scale study (Chapter 5) and 

the resulting WPFI index shows that highly fragmented wetlands are associated with 
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large populations. I note that a total of 13,000 km2 of wetlands (Chapter 5) are 

currently heavily threatened due to their proximity to large population and about 

28,700 km2 of wetland lies in populated areas that suggest a moderate at risk of 

human interaction. Therefore, being the first study to highlight regions where 

fragmented wetlands are highly vulnerable to human activities in Africa, this work 

provides the basis on which policy makers can plan and prioritize innovative policies 

to preserve and restore wetland ecosystems in proximity to humans. 

 

7.2.3 Estimation of potential carbon stock and carbon loss/uptake from 

African wetlands 

Carbon (C) sequestration is one of the valuable functions of wetlands which helps in 

climate regulation (Villa and Bernal, 2018; Zou et al., 2022). About one-third of the 

global organic soil C pool is thought to be stored in wetlands (Villa and Bernal, 2018). 

The lack of high-resolution data hinders the estimates of the total carbon stored by 

these wetlands and estimates of the potential for net carbon uptake or loss from 

African wetlands at a continental scale. Much wetland carbon is below ground, yet 

potentially fragile and susceptible to rapid loss with wetland degradation (Poulter et 

al., 2021). Most of the existing estimations are at local level for countries and usually 

for single categories of wetland (Ouyang and Lee, 2020; Raw et al., 2023). The 

analysis of carbon storage in African wetlands in this study yielded an important 

finding that four wetland types of Africa (peatlands, mangroves, swamps and 

marshes) contain 54 ±11 Gt of carbon which is around 5% to 9% of wetland soil 

carbon stored globally (520 - 710 Gt C) (Poulter et al., 2021), and about twice that 

of European wetlands (12-31 Gt) (Malak et al., 2021). It is also revealed that these 
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wetlands under drained conditions could release up to 260Mt C yr-1 (936Mt CO2 

equivalents yr-1) which is equivalent to 2.4% of global net annual CO2 emissions. 

These results highlight the importance of protecting African wetlands and provide 

data critical for both improving land-surface climate models and for wetland 

conservation.  

 

7.2.4  Wetland changes in the Lake Chad region 

The most important factor in the formation and succession of the wetland ecosystem 

is water, and changes to the water cycle can have a great impact on fragile wetland 

ecosystems. The Lake Chad region has been reported to experience long-term 

changes in surface water area (Chapter 6). However, earlier studies did not 

accurately account for changes in wetland extent in the region. Referring to the 

fragmentation index in Chapter 5, wetlands within the extreme northern and southern 

pool areas of Lake Chad fall under the category of high fragmentation. 

 

The results in Chapter 6 showed that there was a net loss of wetland area across 

the first two decades (2000 – 2020) of the twentieth century, with the most significant 

change occurring in the northern pool of the lake. Analysis showed that the wetland 

loss was most likely driven by reduced rainfall and an increased demand for 

agriculture. The continuous decrease in the wetland area implies that the ongoing 

management and restoration policy in the region might not be effective. Thus, even 

with increased future rainfall under climate change, wetlands in the area may be 

degraded. As noted by Okonkwo and Demoz (2014) and Zieba et al. (2017), the 

Lake Chad Basin Commission, which oversees policy and coordinates management 
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plans for this ecosystem, is facing challenges due to limited human, material, and 

financial resources required for monitoring and assessing the resources and 

dynamics of the ecosystem. The results of this study can be used as a key reference 

for scientific monitoring, rational planning of wetland restoration, and development 

of sustainable management of wetland. 

 

7.3  Research content and methods  

In this study, I developed a technique using freely available global satellite datasets 

from Sentinel-1 SAR and Sentinel-2 optical imagery, by integrating optical indices 

and SAR polarimetric features from different seasons using a Random Forest 

classification algorithm. The results from regional wetland mapping in Chapter 4 

provide strong evidence of the performance of the technique with about 90% 

accuracy. The technique in this study identifies small patches of wetland < 1 km2 

which may not have been mapped in earlier mapping products (CIFOR, 2016; 

Lehner and Döll, 2004; Li et al., 2022). I used different image compositing 

approaches for different climatic regions as explained in Chapter 3, because similar 

wetland types may appear differently under different climate settings (Guo et al., 

2017).  

 

In the present study, I utilized a Random Forest (RF) classification algorithm for 

delineating and classifying the wetland type. Compared to previous studies, the 

classification algorithm used in my study is more universal and robust than other 

classification algorithms in terms of wetland type, producing a higher accuracy result 

(Mahdianpari et al., 2018; Potic and Potic, 2017). The RF algorithm is particularly 
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suitable for handling variation within land cover classes and reducing noise in the 

data. It does not require prior knowledge of the data distribution compared to other 

classifiers. With further resources, other accuracy coefficients such as AUROC, 

TSS, DeLong Test could be used to further test my classification. 

 

To analyze the relationship between wetland patchiness and population I choose to 

use gridded population data to ease comparison with wetland fragmentation. This 

approach has the advantage of using a relatively uniform dataset instead of relying 

on population indicators (like distances to village, city, road) that vary from country 

to country. However, if a novel set of meaningful population indicator datasets 

becomes available for comparison it should be used to better highlight the population 

activities that are drivers of change in wetlands. 

 

Finally in Chapter 6, I use Change Vector Analysis (CVA) approaches to map the 

types and quantify long-term dynamic changes of the wetlands of the Lake Chad 

area. CVA has been found to have several advantages over other change detection 

applications (Karnieli et al., 2014). CVA can measure change in more than two 

spectral bands, giving it an advantage when mapping rapidly changing and highly 

diverse wetlands (Gemechu et al., 2022; Klemas, 2013). The CVA approach in this 

study produces more accurate and reliable change results when compared to other 

methods such as post classification comparisons as used by previous studies (e.g., 

Babamaaji and Lee, 2014; Hussaini et al., 2020; Mahamat et al., 2021). My results 

highlighted the high potential of the CVA to detect wetland dynamics and trends over 

decades. 
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7.4  Limitations of the work 

7.4.1 Inconsistency of wetland definition 

This project focused on high-resolution mapping and assessment of wetlands in 

Africa and paves the way for global mapping and change detection in the future. 

However, for certain aspects of this work there are limitations which should be 

addressed in any future analysis. A key limitation is the absence of a single formal 

definition of wetland that has been accepted worldwide. Also, there are different 

classification schemes used to categorize wetland type both at local, country and 

global scales. Therefore, it is difficult to extract and compare different wetland data 

products across the region due to non-uniform definitions. Clear and consistent 

definitions will be very important for ground truth datasets - there was a lack of 

ground truth data for some wetlands in drier parts of Africa particularly in North Africa; 

more work is required on the ground to map peatlands and seasonal wetland types 

in these regions to aid the machine learning classifications. In addition, wetland 

classification is often based mainly on soil composition resulting in high confusion 

among wetland classes from EO data. To address this, I used derived indices from 

EO data that categorize wetland classes in terms of vegetation type, moisture, as 

well soil composition as observable from satellite imagery. 

 

7.4.2  Exploring the impact of human population at global scale 

Inclusion of human-induced population impact mapping which combines the wetland 

map and population data could be used to indicate areas where detailed data on 

wetland condition need be collected for better conservation and restoration 

programmes. My approach could not define the actual drivers of wetland degradation 
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across Chapters 4-6. It is possible that high resolution remote sensing tools could 

be developed in the future that allow human impact attribution acquired through other 

sources of information to be improved for wetlands so that drivers of change can be 

better understood. This will be important not just for Africa, but for understanding 

threats to wetlands globally. Upcoming satellite missions such as CHIME 

(Copernicus Hyperspectral Imaging Mission for the Environment) will complement 

Copernicus Sentinel-2 for land-cover mapping, and ROSE-L SAR with its longer 

wavelength L-band will be able to penetrate the canopy and aims to support existing 

Copernicus C-band SAR systems which will allow for improved wetland mapping in 

the near future. 

 

7.4.3  Misclassification of wetland types 

Despite the high accuracy obtained from the classification model, there are some 

limitations in the training dataset that may lead to bias in the model. Training data 

from existing wetland locations can be influenced by ambiguities in wetland class 

definitions and landscape variation. The fundamental assumption that training data 

accurately represent a specific class may not always be entirely correct, as individual 

training points could belong to different wetland classes. To address this, I 

characterized the training data based on the class composition and internal 

variability. I then identified the possible outliers from the distribution of each wetland 

class and filtered them out from the training data. The inequality in the size of my 

training data for the wetland classes may bias classification accuracy, because the 

model is sensitive to wetland class with larger numbers of training points. This 

produces higher accuracy than for wetland classes with small amounts of training 



135 
 

 

data. Due to the complicated temporal dynamics and spatial and spectral 

heterogeneity of wetlands, developing classification systems remains a challenging 

task using remote sensing. The complexity in the differences in remote sensing 

signals between some wetland classes makes it difficult to discriminate some 

wetland classes across large geographical ranges. Different wetland types may 

portray similar signals thereby making them more difficult to discriminate. For 

example, the distinction between swamp and peat swamp wetlands, especially 

within the Congo region, was not adequately addressed due to their complex 

reflectance and given definition. To address this challenge, I mapped the different 

wetland classes according to climate region in Africa, where wetlands are 

distinguished based on similar phenological and geographic setting of each climate 

zone to reduce the bias of class confusion (Chapter 5). Another limitation is the 

inability to distinguish between bog and fen peatlands due to lack of specific peatland 

control points. This increases uncertainty in accurately differentiating peatlands from 

other wetland types. Improving the quality and accuracy of training data through 

enhanced data collection would likely help mitigate this issue in future studies 

  

7.4.4  Limitation of data sources 

Another limitation is related to the production of cloud free seasonal composites in 

the TWD and TW region of Africa. It is impossible to collect sufficient cloud-free 

optical data (Sentinel-2 images) to generate full continental coverage, especially for 

large-scale mapping due to the prevailing cloudy and rainy weather conditions in 

regions characterized by high rainfall in this study. However, I produced composites 
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from monthly data with less cloud cover for each season to capture explicit 

phenological information appropriate for wetland mapping.  

 

The estimation of wetland carbon stock and carbon flux is far from complete due to 

limited availability of high-quality information on the carbon distribution within African 

wetlands. My carbon flux estimation includes only three wetland classes due to data 

constraints - therefore the potential impact of African wetland drainage to the global 

carbon flux is not fully represented. More work is needed for detailed assessment of 

the spatial distribution of carbon flux measurements from African wetlands of 

different types and in different climate zones. In addition, comprehensive data about 

the current water-table level for different wetland types for different climate zones is 

needed to improve the estimate of the carbon flux at various water-table conditions. 

It may be that remote sensing products can support such an assessment in the future 

( e.g. Burdun et al., 2020).  

 

7.5  Future work  

7.5.1 Improving the quality of the data source 

Detailed wetland maps at high resolution are important for conservation and climate 

modelling. However, high resolution, up-to-date data on wetlands at global scales 

are not available, and good coverage only exists in some well-studied smaller 

regions. In this thesis I developed a process which could now be rolled out globally 

to produce a high-resolution global wetland map. There will need to be a concerted 

effort to gather ground truth data to support the development of such a product. But 

the fact that this now seems achievable is because of the work conducted in this 
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thesis.  Africa is one of the least developed regions in the world and wetland datasets 

are often fragmented and inconsistent from one country to another within the 

continent. Using a standardized methodology developed in this study to compare 

wetland data across regions or countries makes it possible to collect and verify large 

amounts of wetland ground control data in Africa and this relatively simple 

methodology could be applicable to other regions. However, in future studies, more 

detailed field surveys, new remote sensing data and new classification algorithms 

will be necessary. In addition, although I used the most recent and highest quality 

datasets available, ongoing efforts to improve the quality of gridded population data, 

carbon stock databases, carbon flux datasets and climate change scenarios will 

further refine future analysis of wetland fragmentation, and estimates of carbon loss 

from wetlands. It may also be possible to include topographic indices into machine 

learning for the purpose of classifying wetland type (such as fen and bog peatlands) 

and forecasting the impacts of drainage on carbon release and wetland degradation. 

 

7.5.2  Dynamic wetland mapping using advanced techniques 

It might be possible to automate the algorithms presented here so that a high 

resolution African and global wetland map and change map can be updated 

automatically as Sentinel data are collected and updated continuously. This can be 

achieved by creating a conditional statement to update image collection for a 

particular time and date to create a seasonal composite. The mapping accuracy can 

improve dynamically by collecting more ground control points continuously using 

automatic data entry into a database system to generate more training point and 

evaluate the accuracy. With increasing availability of high-resolution imagery, such 
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as Sentinel datasets, global maps that distinguish seasonal/decadal wetland 

changes from more ‘permanent’ wetland loss and continuous monitoring of wetland 

at global scale can be achieved by automation via the Google Earth Engine cloud 

computing platform. Automated studies to understand of the impacts of wetland 

restoration programmes would also be welcome. The remote sensing tool developed 

in this study could also be used to evaluate global wetland protection schemes or 

treaties, to see if they are successful or not.  

 

7.6  Conclusion 

I produced a detailed wetland map both at regional (Chapter 4) and continental 

(Chapter 5) level using high spatial resolution data (10 m) supported by ground 

control data that I compiled from a range of sources. The total estimate of wetlands 

in Africa (947,750 km2) is larger than that of the coarser global wetland dataset by 

CIFOR (859,278 km2) and that of GLWD (934,481 km2) excluding open water 

bodies. At regional level, I estimated that the wetlands of southern Nigeria cover a 

total area of 29,924 km2 which is less than the estimate by CIFOR (31,829 km2) but 

larger than GLWD (24,408 km2) (Chapter 4). Larger patches of wetland are found 

along the coastal areas while smaller fragments are mostly located around urban 

areas suggesting a role for anthropogenic fragmentation of wetlands in southern 

Nigeria. I identified nine regions with a WFPI value indicating highly fragmented grid 

cells related to large population size. A total of 3021 km2 of wetlands are currently 

heavily threatened by human activity within Africa (WFPI of 0.7 to 1). The carbon 

stock estimate indicates that African wetland contains about 54 Gt of carbon which 

is around 5% to 9% of wetland soil carbon stored globally. Drained peatland, 
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mangrove and marsh in Africa are capable of emitting 260Mt C yr-1 (936Mt CO2-e yr-

1) which is equivalent to 2.4% of global net annual CO2 emissions. The long-term 

changes in wetlands around Lake Chad were closely linked to the fluctuation of the 

water level driven by multi-annual climate phases and intensive human activities. 

The results of this study indicate a net loss of Lake Chad wetlands across all 

examined five year periods from 2000-2020, including the wettest period when it was 

anticipated (based on earlier literature) that wetland area would increase. Thus 

under future climate change with predicted increased rainfall for the region, Lake 

Chad wetlands are not guaranteed to increase in extent, particularly given that 

population pressures are growing, with the northern region of the Lake under the 

greatest pressure.  

 

Reflecting on the sustainable conservation, management, and development of 

wetlands going forward, there is still a need for historical period classification and 

dynamic monitoring of wetlands using multi-source remote sensing data to assess 

the impacts of anthropogenic activities and climate change on wetland dynamics in 

Africa. The overall approach developed could be expanded to produce a global 

wetland map at high resolution and for continuous monitoring of changes in wetlands 

at global scale.  



140 
 

 

List of References 

Acharya, T.D., Subedi, A., Yang, I.T. and Lee, D.H. 2017. Combining Water 

Indices for Water and Background Threshold in Landsat Image. Proceedings. 

2(3), pp.143. 

Acreman, M. and Bullock,  a. 2003. The role of wetlands in the hydrological cycle. 

Hydrology and Earth System Sciences. 7(3), pp.358–389. 

Acreman, M. and Holden, J. 2013. How wetlands affect floods. Wetlands. 33(5), 

pp.773–786. 

Adame, M.F., Santini, N.S., Tovilla, C., Vázquez-Lule, A., Castro, L. and Guevara, 

M. 2015. Carbon stocks and soil sequestration rates of tropical riverine 

wetlands. Biogeosciences. 12(12), pp.3805–3818. 

Adekanmbi, O.H. and Ogundipe, O. 2009. Mangrove biodiversity in the restoration 

and sustainability of the Nigerian natural environment. Journal of Ecology and 

Natural Environment. 1(3), pp.064–072. 

Adekola, O., Whanda, S. and Ogwu, F. 2012. Assessment of policies and 

legislation that affect management of Wetlands in Nigeria. Wetlands. 32(4), 

pp.665–677. 

Adeyeri, O.E., Lawin, A.E., Laux, P., Ishola, K.A. and Ige, S.O. 2019. Analysis of 

climate extreme indices over the Komadugu-Yobe basin, Lake Chad region: 

Past and future occurrences. Weather and Climate Extremes. 23, pp. 194. 

Al-Nasrawi, A.K.M., Fuentes, I. and Al-Shammari, D. 2021. Changes in 

Mesopotamian Wetlands: Investigations Using Diverse Remote Sensing 

Datasets. Wetlands. 41(7), pp.1–17. 

Alfa, N., Adeofun, C. and Ologunorisa, E. 2010. Assessment of changes in Aerial 

Extent of Lake Chad using Satellite Remote Sensing Data. Journal of Applied 

Sciences and Environmental Management. 12(1), pp.101–107. 

Alshammari, L., Large, D.J., Boyd, D.S., Sowter, A., Anderson, R., Andersen, R. 

and Marsh, S. 2018. Long-term peatland condition assessment via surface 

motion monitoring using the ISBAS DInSAR technique over the Flow Country, 



141 
 

 

Scotland. Remote Sensing. 10(7), pp.1103. 

Amani, M., Mahdavi, S., Afshar, M., Brisco, B., Huang, W., Mirzadeh, S.M.J., 

White, L., Banks, S., Montgomery, J. and Hopkinson, C. 2019. Canadian 

wetland inventory using Google Earth Engine: The first map and preliminary 

results. Remote Sensing. 11(7), pp.1–20. 

Amani, M., Poncos, V., Brisco, B., Foroughnia, F., Delancey, E.R. and Ranjbar, S. 

2021. Insar coherence analysis for wetlands in alberta, canada using time-

series sentinel-1 data. Remote Sensing. 13(16), pp.3315. 

Amani, M., Salehi, B., Mahdavi, S. and Brisco, B. 2018. Spectral analysis of 

wetlands using multi-source optical satellite imagery. ISPRS Journal of 

Photogrammetry and Remote Sensing. 144, pp.119–136. 

Amani, M., Salehi, B., Mahdavi, S., Granger, J. and Brisco, B. 2017. Evaluation of 

multi-temporal landsat 8 data for wetland classification in Newfoundland, 

Canada. International Geoscience and Remote Sensing Symposium 

(IGARSS)., pp.6229–6231. 

Amler, E., Schmidt, M. and Menz, G. 2015. Definitions and mapping of East African 

Wetlands: A Review. Remote Sensing. 7(5), pp.5256–5282. 

Anderson, K., Bennie, J.J., Milton, E.J., Hughes, P.D.M., Lindsay, R. and Meade, 

R. 2010. Combining LiDAR and IKONOS Data for Eco-Hydrological 

Classification of an Ombrotrophic Peatland. Journal of Environmental Quality. 

39(1), pp.260–273. 

Anule, P. and Ujoh, F. 2017. Geospatial analysis of wetlands degradation in 

Makurdi, Nigeria. International Archives of the Photogrammetry, Remote 

Sensing and Spatial Information Sciences - ISPRS Archives. 42(2), pp.1075–

1081. 

Ardha Aryaguna, P. and Danoedoro, P. 2016. Comparison Effectiveness of Pixel 

Based Classification and Object Based Classification Using High Resolution 

Image In Floristic Composition Mapping (Study Case: Gunung Tidar Magelang 

City). IOP Conference Series: Earth and Environmental Science. 47, 

pp.12042. 



142 
 

 

Ashraf, M. and Nawaz, R. 2015. A Comparison of Change Detection Analyses 

Using Different Band Algebras for Baraila Wetland with Nasa’s Multi-Temporal 

Landsat Dataset. Journal of Geographic Information System. 07(01), pp.1–19. 

Van Asselen, S., Verburg, P.H., Vermaat, J.E. and Janse, J.H. 2013. Drivers of 

wetland conversion: A global meta-analysis. PLoS ONE. 8(11), pp.1–13. 

Ayanlade, A. 2014. Remote Sensing of Environmental Change in the Niger Delta , 

Nigeria. Thesis. pp.142-145. 

Ayanlade, A. and Proske, U. 2016. Assessing wetland degradation and loss of 

ecosystem services in the Niger Delta, Nigeria. Marine and Freshwater 

Research. 67(6), pp.828–836. 

Babamaaji, R.A. and Lee, J. 2014. Land use/land cover classification of the vicinity 

of Lake Chad using NigeriaSat-1 and Landsat data. Environmental Earth 

Sciences. 71(10), pp.4309–4317. 

Baghdadi, N., Bernier, M., Gauthier, R. and Neeson, I. 2001. Evaluation of C-band 

SAR data for wetlands mapping. International Journal of Remote Sensing. 

22(1), pp.71–88. 

Baird, A.J., Low, R., Young, D., Swindles, G.T., Lopez, O.R. and Page, S. 2017. 

High permeability explains the vulnerability of the carbon store in drained 

tropical peatlands. Geophysical Research Letters. 44(3), pp.1333–1339. 

Baker, C., Lawrence, R.L., Montagne, C. and Patten, D. 2007. Change detection of 

wetland ecosystems using Landsat imagery and change vector analysis. 

Wetlands. 27(3), pp.610–619. 

Ballut-Dajud, G.A., Herazo, L.C.S., Fernández-Lambert, G., Marín-Muñiz, J.L., 

Méndez, M.C.L. and Betanzo-Torres, E.A. 2022. Factors Affecting Wetland 

Loss: A Review. Land. 11(3), pp.434. 

Bassi, N., Kumar, M.D., Sharma, A. and Pardha-Saradhi, P. 2014. Status of 

wetlands in India: A review of extent, ecosystem benefits, threats and 

management strategies. Journal of Hydrology: Regional Studies. 2, pp.1–19. 

Bastin, J.-F., Berrahmouni, N., Grainger, A., Maniatis, D., Mollicone, D., Moore, R., 



143 
 

 

Patriarca, C., Picard, N., Sparrow, B., Abraham, E.M., Aloui, K., Atesoglu, A.., 

Attore, F., Bassüllü, Ç., Bey, A., Garzuglia, M., Groot, N., Guerin, G., 

Laestadius, L., Lowe, A.J. and Mamane, B. 2017. The extent of forest in 

dryland biomes. Science. 358(6365), pp.635–638. 

Battaglia, M.J., Banks, S., Behnamian, A., Bourgeau-Chavez, L., Brisco, B., 

Corcoran, J., Chen, Z., Huberty, B., Klassen, J., Knight, J., Morin, P., 

Murnaghan, K., Pelletier, K. and White, L. 2021. Multi-source eo for dynamic 

wetland mapping and monitoring in the great lakes basin. Remote Sensing. 

13(4), pp.1–38. 

Van Beijma, S., Comber, A. and Lamb, A. 2014. Random forest classification of 

salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation 

and optical RS data. Remote Sensing of Environment. 149, pp.118–129. 

Belgiu, M. and Dra, L. 2016. Random forest in remote sensing : A review of 

applications and future directions. ISPRS Journal of Photogrammetry and 

Remote Sensing. 114, pp.24–31. 

Berhanu, M., Suryabhagavan, K.V. and Korme, T. 2021. Wetland mapping and 

evaluating the impacts on hydrology, using geospatial techniques: a case of 

Geba Watershed, Southwest Ethiopia. Geology, Ecology, and Landscapes. 

6(3), pp.1–18. 

Bey, A., Díaz, A.S.P., Maniatis, D., Marchi, G., Mollicone, D., Ricci, S., Bastin, J.F., 

Moore, R., Federici, S., Rezende, M., Patriarca, C., Turia, R., Gamoga, G., 

Abe, H., Kaidong, E. and Miceli, G. 2016. Collect earth: Land use and land 

cover assessment through augmented visual interpretation. Remote Sensing. 

8(10), pp.1–24. 

Birkett, C.M. 2000. Synergistic remote sensing of Lake Chad: Variability of basin 

inundation. Remote Sensing of Environment. 72(2), pp.218–236. 

Boone, J.K. and Bhomia, R.K. 2017. Ecosystem carbon stocks of mangroves 

across broad environmental gradients in West-Central Africa: Global and 

regional comparisons. PLoS ONE. 12(11), pp.1–17. 

Bootsma, A., Elshehawi, S., Grootjans, A., Grundling, P.L., Khosa, S., Butler, M., 



144 
 

 

Brown, L. and Schot, P. 2019. Anthropogenic disturbances of natural 

ecohydrological processes in the Matlabas mountain mire, South Africa. South 

African Journal of Science. 115(5–6). 

Breiman, L.E.O. 2001. Random Forests. Machine Learning. 45, pp.5–32. 

Buma, W.G., Lee, S. Il and Seo, J.Y. 2018. Recent surface water extent of lake 

Chad from multispectral sensors and GRACE. Sensors (Switzerland). 18(7), 

pp.2082. 

Burdun, I., Bechtold, M., Sagris, V., Lohila, A., Humphreys, E., Desai, A.R., 

Nilsson, M.B., De Lannoy, G. and Mander, Ü. 2020. Satellite determination of 

peatland water table temporal dynamics by localizing representative pixels of 

A SWIR-Based Moisture Index. Remote Sensing. 12(18), pp.2936. 

Bwangoy, J.R.B., Hansen, M.C., Roy, D.P., Grandi, G. De and Justice, C.O. 2010. 

Wetland mapping in the Congo Basin using optical and radar remotely sensed 

data and derived topographical indices. Remote Sensing of Environment. 

114(1), pp.73–86. 

Cardoso, G.F., Souza, C. and Souza-Filho, P.W.M. 2014. Using spectral analysis 

of Landsat-5 TM images to map coastal wetlands in the Amazon River mouth, 

Brazil. Wetlands Ecology and Management. 22(1), pp.79–92. 

Carless, D., Luscombe, D.J., Gatis, N., Anderson, K. and Brazier, R.E. 2019. 

Mapping landscape-scale peatland degradation using airborne lidar and 

multispectral data. Landscape Ecology . 34, pp.1329–1345. 

Chatziantoniou, A., Petropoulos, G.P. and Psomiadis, E. 2017. Co-Orbital Sentinel 

1 and 2 for LULC mapping with emphasis on wetlands in a mediterranean 

setting based on machine learning. Remote Sensing. 9(12), pp.1259. 

Chen, J., Zhu, X., Vogelmann, J.E., Gao, F. and Jin, S. 2011. A simple and 

effective method for filling gaps in Landsat ETM+ SLC-off images. Remote 

Sensing of Environment. 115(4), pp.1053–1064. 

Chen, L., Jin, Z., Michishita, R., Cai, J., Yue, T., Chen, B. and Xu, B. 2014. 

Dynamic monitoring of wetland cover changes using time-series remote 

sensing imagery. Ecological Informatics. 24, pp.17–26. 



145 
 

 

Chen, Y., Huang, C., Ticehurst, C., Merrin, L. and Thew, P. 2013. An evaluation of 

MODIS daily and 8-day composite products for floodplain and wetland 

inundation mapping. Wetlands. 33(5), pp.823–835. 

Chico, G., Clutterbuck, B., Lindsay, R., Midgley, N.G. and Labadz, J. 2019. 

Identification and classification of unmapped blanket bogs in the Cordillera 

Cantábrica, northern Spain. Mires and Peat. 24, pp.1–12. 

Chidumeje, N.P.O., Lalit, K. and Subhashni, T. 2015. The Niger Delta wetland 

ecosystem: What threatens it and why should we protect it? African Journal of 

Environmental Science and Technology. 9(5), pp.451–463. 

Clark, D.B., Mercado, L.M., Sitch, S., Jones, C.D., Gedney, N., Best, M.J., Pryor, 

M., Rooney, G.G., Essery, R.L.H., Blyth, E., Boucher, O., Harding, R.J., 

Huntingford, C. and Cox, P.M. 2011. The Joint UK Land Environment 

Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation 

dynamics. Geoscientific Model Development. 4(3), pp.701–722. 

Clarkson, B., Peters, M. and Raised, U. 2012. Wetland Types, pp.23-42. 

Clewley, D., Whitcomb, J., Moghaddam, M., McDonald, K., Chapman, B. and 

Bunting, P. 2015. Evaluation of ALOS PALSAR data for high-resolution 

mapping of vegetated wetlands in Alaska. Remote Sensing. 7(6), pp.7272–

7297. 

Connell, J.O. 2012. Monitoring Changes to Irish Peatlands using Satellite Remote 

Sensing. Thesis, pp.76-142. 

Connolly, J. and Holden, N.M. 2017. Detecting peatland drains with Object Based 

Image Analysis and Geoeye-1 imagery. Carbon Balance and Management. 

12(1), pp.2–13. 

Costa, J. da S., Liesenberg, V., Schimalski, M.B., de Sousa, R.V., Biffi, L.J., 

Gomes, A.R., Neto, S.L.R., Mitishita, E. and Bispo, P. da C. 2021. Benefits of 

combining alos/palsar-2 and sentinel-2a data in the classification of land cover 

classes in the santa catarina southern plateau. Remote Sensing. 13(2), pp.1–

32. 

Csillik, O., Reiche, J., De Sy, V., Araza, A. and Herold, M. 2022. Rapid remote 



146 
 

 

monitoring reveals spatial and temporal hotspots of carbon loss in Africa’s 

rainforests. Communications Earth & Environment. 3(1), pp.1–8. 

Dabboor, M., Brisco, B., Banks, S., Murnaghan, K. and White, L. 2017. 

Multitemporal monitoring of wetlands using simulated radarsat constellation 

mission compact polarimetric SAR data. International Geoscience and Remote 

Sensing Symposium (IGARSS). 6, pp.4586–4589. 

Dadaser-Celik, F. and Cengiz, E. 2013. A neural network model for simulation of 

water levels at the Sultan Marshes wetland in Turkey. Wetlands Ecology and 

Management. 21(5), pp.297–306. 

Dadson, S.J., Ashpole, I., Harris, P., Davies, H.N., Clark, D.B., Blyth, E. and 

Taylor, C.M. 2010. Wetland inundation dynamics in a model of land surface 

climate: Evaluation in the Niger inland delta region. Journal of Geophysical 

Research Atmospheres. 115(23), pp.1–7. 

Dan, T.T., Chen, C.F., Chiang, S.H. and Ogawa, S. 2016. Mapping and Change 

Analysis in Mangrove Forest By Using Landsat Imagery. ISPRS Annals of 

Photogrammetry, Remote Sensing and Spatial Information Sciences. III–8, 

pp.109–116. 

Dang, A.T.N., Kumar, L., Reid, M. and Nguyen, H. 2021. Remote sensing 

approach for monitoring coastal wetland in the mekong delta, vietnam: 

Change trends and their driving forces. Remote Sensing. 13(17), pp.3359. 

Dargie, G.C., Lewis, S.L., Lawson, I.T., Mitchard, E.T.A., Page, S.E., Bocko, Y.E. 

and Ifo, S.A. 2017. Age, extent and carbon storage of the central Congo Basin 

peatland complex. Nature. 542(7639), pp.86–90. 

Davidson, N.C. 2017. How much wetland has the world lost ? Long-term and 

recent trends in global wetland area. Marine and Freshwater Research. 65, 

pp.934–941. 

Debanshi, S. and Pal, S. 2020. Wetland delineation simulation and prediction in 

deltaic landscape. Ecological Indicators. 108(September 2019), pp.105757. 

DeLancey, E.R., Kariyeva, J., Bried, J.T. and Hird, J.N. 2019. Large-scale 

probabilistic identification of boreal peatlands using Google Earth Engine, 



147 
 

 

open-access satellite data, and machine learning. PLoS ONE. 14(6), pp.1–23. 

Demenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L. and 

Yarusinsky, M. 2000. Abrupt onset and termination of the African Humid 

Period: Rapid climate responses to gradual insolation forcing. Quaternary 

Science Reviews. 19(1–5), pp.347–361. 

Dixon, M.J.R., Loh, J., Davidson, N.C., Beltrame, C., Freeman, R. and Walpole, M. 

2016. Tracking global change in ecosystem area: The Wetland Extent Trends 

index. Biological Conservation. 193, pp.27–35. 

Dong, Z., Wang, Z., Liu, D., Song, K., Li, L., Jia, M. and Ding, Z. 2014. Mapping 

Wetland Areas Using Landsat-Derived NDVI and LSWI: A Case Study of West 

Songnen Plain, Northeast China. Journal of the Indian Society of Remote 

Sensing. 42(3), pp.569–576. 

Dronova, I., Gong, P., Wang, L. and Zhong, L. 2015. Mapping dynamic cover types 

in a large seasonally flooded wetland using extended principal component 

analysis and object-based classification. Remote Sensing of Environment. 

158, pp.193–206. 

Elshehawi, Samer, Barthelmes, A., Beer, F. and Joosten, H. 2019. Assessment of 

Carbon (CO2) emissions avoidance potential from the Nile Basin peatlands. 

Elshehawi, S, Gabriel, M., Pretorius, L. and Bukhosini, S. 2019. Ecohydrology and 

causes of peat degradation at the Vasi peatland , South Africa. Mires and 

Peat. 24(33), pp.1–21. 

Erwin, K.L. 2009. Wetlands and global climate change: The role of wetland 

restoration in a changing world. Wetlands Ecology and Management. 17(1), 

pp.71–84. 

Estupinan-Suarez, L.M., Florez-Ayala, C., Quinones, M.J., Pacheco, A.M. and 

Santos, A.C. 2015. Detection and characterization of Colombian wetlands: 

Integrating geospatial data with remote sensing derived data. Using ALOS 

PALSAR and MODIS imagery. International Archives of the Photogrammetry, 

Remote Sensing and Spatial Information Sciences - ISPRS Archives. 40, 

pp.375–382. 



148 
 

 

Evans, C.D., Peacock, M., Baird, A.J., Artz, R.R.E., Burden, A., Callaghan, N., 

Chapman, P.J., Cooper, H.M., Coyle, M., Craig, E., Cumming, A., Dixon, S., 

Gauci, V., Grayson, R.P., Helfter, C., Heppell, C.M., Holden, J., Jones, D.L., 

Kaduk, J., Levy, P., Matthews, R., McNamara, N.P., Misselbrook, T., Oakley, 

S., Page, S.E., Rayment, M., Ridley, L.M., Stanley, K.M., Williamson, J.L., 

Worrall, F. and Morrison, R. 2021. Overriding water table control on managed 

peatland greenhouse gas emissions. Nature. 593(7860), pp.548–552. 

Evans, T.L. and Costa, M. 2013. Landcover classification of the Lower 

Nhecolândia subregion of the Brazilian Pantanal Wetlands using 

ALOS/PALSAR, RADARSAT-2 and ENVISAT/ASAR imagery. Remote 

Sensing of Environment. 128, pp.118–137. 

Fei, S.X., Shan, C.U.I.H. and Hua, G.U.O.Z. 2011. Remote Sensing of Mangrove 

Wetlands Identification. Procedia Environmental Sciences. 10, pp.2287–2293. 

Foerster, V., Vogelsang, R., Junginger, A., Asrat, A., Lamb, H.F., Schaebitz, F. and 

Trauth, M.H. 2015. Environmental change and human occupation of southern 

Ethiopia and northern Kenya during the last 20,000 years. Quaternary Science 

Reviews. 129, pp.333–340. 

François, G.G.H., K, G.F., Marcelle, G.S.L., Mooney, H.A., Cropper, A., Leemans, 

R., Arico, S., Bridgewater, P., Peterson, G., Revenga, C., Rivera, M., Peter, 

A.W., Fallis, A.., Dubay, L., Point, P., Aboutayeb, H., Mermet, L., Raphaël 

Billé, Maya Leroy, Poux, X. and Schuyt, K. 2005. Ecosystems and Human 

Well-being: Wetlands and Water - Synthesis. Regions and Cohesion. pp.127-

137. 

FREL 2019. National Forest Reference Emission Level ( FREL ) for the Federal 

Republic of Nigeria. Report., pp.1–54. 

Friedlingstein, P., Jones, M.W., O’Sullivan, M., Andrew, R.M., Bakker, D.C.E., 

Hauck, J., L.Q., C., Peters, G.P., Peters, W., Pongratz, J., Sitch, S., Canadell, 

J.G., Ciais, P., Jackson, R.B., Alin, S.R., Anthoni, P., Bates, N.R., Becker, M., 

Bellouin, N., Bopp, L., Chau, T.T.T., Chevallier, F., Chini, L.P., Cronin, M., 

Currie, K.I. and Decharme, B., Djeutchouang, L. M., Dou, X., Evans, W., 

Feely, R. A., Feng, L., Gasser, T., Gilfillan, D., Gkritzalis, T., Grassi, G., 



149 
 

 

Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Houghton, R. A., Hurtt, G. C., 

Iida, Y., Ilyina, T., Luijkx, I. T., Jain, J. 2022. Global Carbon Budget 2021,. 

Earth Syst. Sci. Data. 14, pp.1917–2005. 

Gallant, A.L. 2015. The challenges of remote monitoring of wetlands. Remote 

Sensing. 7(8), pp.10938–10950. 

Gao, Q., Zribi, M., Escorihuela, M.J. and Baghdadi, N. 2017. Synergetic use of 

sentinel-1 and sentinel-2 data for soil moisture mapping at 100 m resolution. 

Sensors (Switzerland). 17(9), pp.1966. 

Garba, S.I., Ebmeier, S.K., Bastin, J.F., Mollicone, D. and Holden, J. 2023. 

Wetland mapping at 10 m resolution reveals fragmentation in southern 

Nigeria. Wetlands Ecology and Management. 31(3), pp.329–345. 

Gbetkom, P.G., Crétaux, J.F., Tchilibou, M., Carret, A., Delhoume, M., Bergé-

Nguyen, M. and Sylvestre, F. 2023. Lake Chad vegetation cover and surface 

water variations in response to rainfall fluctuations under recent climate 

conditions (2000−2020). Science of the Total Environment. 857(October 

2022). 

Gemechu, G.F., Rui, X. and Lu, H. 2022. Wetland Change Mapping Using Machine 

Learning Algorithms, and Their Link with Climate Variation and Economic 

Growth: A Case Study of Guangling County, China. Sustainability 

(Switzerland). 14(1). 

Gitau, W., Camberlin, P., Ogallo, L. and Bosire, E. 2017. Trends of intraseasonal 

descriptors of wet and dry spells over equatorial eastern Africa. International 

Journal of Climatology. 1200(September 2017), pp.1189–1200. 

Gómez, C., White, J.C. and Wulder, M.A. 2016. ISPRS Journal of Photogrammetry 

and Remote Sensing Optical remotely sensed time series data for land cover 

classification : A review. ISPRS Journal of Photogrammetry and Remote 

Sensing. 116, pp.55–72. 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D. and Moore, R. 

2017. Remote Sensing of Environment Google Earth Engine : Planetary-scale 

geospatial analysis for everyone. Remote Sensing of Environment. 202, 



150 
 

 

pp.18–27. 

Griffiths, P., van der Linden, S., Kuemmerle, T. and Hostert, P. 2013. A Pixel-

Based Landsat Compositing Algorithm for Large Area Land Cover Mapping. 

IEEE Journal of Selected Topics in Applied Earth Observations and Remote 

Sensing. 6(5), pp.2088–2101. 

Gulácsi, A. and Kovács, F. 2020. Sentinel-1-imagery-based high-resolutionwater 

cover detection on wetlands, aided by google earth engine. Remote Sensing. 

12(10), pp.1–20. 

Gumbricht, T. 2018. Detecting trends in Wetland extent from MODIS derived soil 

moisture estimates. Remote Sensing. 10(4), pp.611. 

Gumbricht, T., Roman-Cuesta, R.M., Verchot, L., Herold, M., Wittmann, F., 

Householder, E., Herold, N. and Murdiyarso, D. 2017. An expert system model 

for mapping tropical wetlands and peatlands reveals South America as the 

largest contributor. Global Change Biology. 23(9), pp.3581–3599. 

Guo, M., Li, J., Sheng, C., Xu, J. and Wu, L. 2017. A review of wetland remote 

sensing. Sensors (Switzerland). 17(4), pp.1–36. 

Gxokwe, S., Dube, T. and Mazvimavi, D. 2020. Multispectral remote sensing of 

wetlands in semi-arid and arid areas: A review on applications, challenges and 

possible future research directions. Remote Sensing. 12(24), pp.1–19. 

Halabisky, M., Moskal, L.M., Gillespie, A. and Hannam, M. 2016. Reconstructing 

semi-arid wetland surface water dynamics through spectral mixture analysis of 

a time series of Landsat satellite images (1984-2011). Remote Sensing of 

Environment. 177, pp.171–183. 

Hassan, T.., Majid, M.., Davidson, S.A.. and Medugu, N.. 2014. The Role of 

Wetlands in Mitigating the Effect of Climate Change in Nigeria. Handbook of 

Climate Change Adaptation., pp.551–564. 

Hedjal, S., Zouini, D. and Benamara, A. 2018. Hydrochemical assessment of water 

quality for irrigation: A case study of the wetland complex of Guerbes-

Sanhadja, North-East of Algeria. Journal of Water and Land Development. 

38(1), pp.43–52. 



151 
 

 

Herbst, D.L. 2015. Wetlands: An ecosystem service South Africa can afford to 

protect ‘ A critical evaluation of the current legal regime and mechanisms to 

facilitate the use of payment for ecosystem services to the conservation of 

wetlands in South Africa’.Thesis , pp.1–89. 

Hird, J.N., Delancey, E.R. and Mcdermid, G.J. 2017. Google Earth Engine , Open-

Access Satellite Data , and Machine Learning in Support of Large-Area 

Probabilistic Wetland Mapping. Remote Sensing. 9(1315), pp.1315. 

Hirschmugl, M., Gallaun, H., Dees, M., Datta, P., Deutscher, J., Koutsias, N. and 

Schardt, M. 2017. Methods for Mapping Forest Disturbance and Degradation 

from Optical Earth Observation Data: a Review. Current Forestry Reports. 

3(1), pp.32–45. 

Hribljan, J.A., Suarez, E., Bourgeau-Chavez, L., Endres, S., Lilleskov, E.A., 

Chimbolema, S., Wayson, C., Serocki, E. and Chimner, R.A. 2017. Multidate, 

multisensor remote sensing reveals high density of carbon-rich mountain 

peatlands in the páramo of Ecuador. Global Change Biology. 23(12), pp.5412–

5425. 

Hu, S., Niu, Z. and Chen, Y. 2017. Global Wetland Datasets: a Review. Wetlands. 

37(5), pp.807–817. 

Hu, S., Niu, Z., Chen, Y., Li, L. and Zhang, H. 2017. Global wetlands: Potential 

distribution, wetland loss, and status. Science of the Total Environment. 586, 

pp.319–327. 

Huang, L. 2019. Local incidence angle referenced classification on polarimetric 

synthetic aperture radar images in mountain glacier areas. Applied Remote 

sensing. 10(2), pp.5015. 

Hulme, P.E. 2005. Adapting to climate change: is there scope for ecological 

management in the face of. Journal of Applied Ecology 2005 42, 784-794. 

42(5), pp.784–794. 

Hussain, M., Chen, D., Cheng, A., Wei, H. and Stanley, D. 2013. Change detection 

from remotely sensed images: From pixel-based to object-based approaches. 

ISPRS Journal of Photogrammetry and Remote Sensing. 80, pp.91–106. 



152 
 

 

Hussaini, A., Mahmud, M.R. and Tang, K.K.W. 2020. Change Detection for the 

Past Three Decades Using Geospatial Approach in Lake Chad, Central Africa. 

IOP Conference Series: Earth and Environmental Science. 540(1), pp.2001. 

Hussaini, A., Mahmud, M.R., Tang, K.K.W. and Abubakar, A.G. 2019. Water Level 

Fluctuation Assessment of Lake Chad for Environmental Sustainability using 

Remote Sensing and Geographic Information System Technique. International 

Archives of the Photogrammetry, Remote Sensing and Spatial Information 

Sciences - ISPRS Archives. 42, pp.261–266. 

IAEA 2017. Integrated and Sustainable Management of Shared Aquifer Systems 

and Basins of the Sahel Region. Lake Chad Basin. RAF/7/011. Vienna, 

Austria. 

Igu, N. and Marchant, R. 2017. Freshwater swamp forest use in the Niger Delta : 

perception and insights. Journal of Forest Research. 22(1), pp.44–52. 

IPCC Task Force on National Greenhouse Gas Inventories 2014. Methodological 

Guidance on Lands with Wet and Drained Soilds, and Constructed Wetlands 

for Wastewater.  

Jamali, A. and Mahdianpari, M. 2022. Swin Transformer and Deep Convolutional 

Neural Networks for Coastal Wetland Classification Using Sentinel-1 , 

Sentinel-2 , and LiDAR Data. Remote Sensingote sensing. 14(359), pp.359. 

Jamali, A., Mahdianpari, M., Brisco, B., Granger, J., Mohammadimanesh, F. and 

Salehi, B. 2021. Comparing solo versus ensemble convolutional neural 

networks for wetland classification using multi-spectral satellite imagery. 

Remote Sensing. 13(11), pp.2046. 

Jochems, L.W., Brandt, J., Monks, A., Cattau, M., Kolarik, N., Tallant, J. and 

Lishawa, S. 2021. Comparison of different analytical strategies for classifying 

invasive wetland vegetation in imagery from unpiloted aerial systems (Uas). 

Remote Sensing. 13(23), pp.4733. 

Jones, T. 1997. The European Region: An Overview of European Wetlands. 

Wetlands, Biodiversity and the Ramsar Convention. pp.80-86. 

Junk, W.J., An, S., Finlayson, C.M., Gopal, B., Květ, J., Mitchell, S.A., Mitsch, W.J. 



153 
 

 

and Robarts, R.D. 2013. Current state of knowledge regarding the world’s 

wetlands and their future under global climate change: A synthesis. Aquatic 

Sciences. 75(1), pp.151–167. 

Kaplan, G. and Avdan, U. 2017. Mapping and Monitoring wetlands using Sentinel-2 

satellite imagery. ISPRS Annals of the Photogrammetry, Remote Sensing and 

Spatial Information Sciences. 4, pp.271–277. 

Kaplan, G. and Avdan, U. 2018a. Monthly analysis of wetlands dynamics using 

remote sensing data. ISPRS International Journal of Geo-Information. 7(10), 

pp.411. 

Kaplan, G. and Avdan, U. 2018b. Sentinel-1 and Sentinel-2 Data Fusion for 

Mapping and Monitoring Wetlands. The International Archives of the 

Photogrammetry. XLII(3), pp.7–10. 

Kaplan, G., Yigit Avdan, Z. and Avdan, U. 2019. Mapping and Monitoring Wetland 

Dynamics Using Thermal, Optical, and SAR Remote Sensing Data. Wetlands 

Management - Assessing Risk and Sustainable Solutions. 264, pp.13. 

Kariyasa, K. and Dewi, Y.A. 2011. Wetlands of the Nile Basin Distribution, 

functions and contribution to livelihoods. Journal of Gender, Agriculture and 

Food Security. 1(3), pp.1–22. 

Karnieli, A., Qin, Z., Wu, B., Panov, N. and Yan, F. 2014. Spatio-temporal 

dynamics of land-use and land-cover in the Mu Us Sandy Land, China, using 

the change vector analysis technique. Remote Sensing. 6(10), pp.9316–9339. 

Kelly, M., Tuxen, K.A. and Stralberg, D. 2011. Mapping changes to vegetation 

pattern in a restoring wetland: Finding pattern metrics that are consistent 

across spatial scale and time. Ecological Indicators. 11(2), pp.263–273. 

Kim, J., Grunwald, S., Rivero, R.G. and Robbins, R. 2012. Multi-scale Modeling of 

Soil Series Using Remote Sensing in a Wetland Ecosystem. Soil Science 

Society of America Journal. 76(6), pp.2327. 

Klemas, V. 2013. Remote sensing of emergent and submerged wetlands: an 

overview. International Journal of Remote Sensing. 34(18), pp.6286–6320. 



154 
 

 

Klemas, V. 2011. Remote Sensing of Wetlands: Case Studies Comparing Practical 

Techniques. Journal of Coastal Research. 27(3), pp.418–427. 

Klemas, V. 2016. Using Remote sensing to select and monitor restoration site: An 

Overview. . 29(5), pp.1016–1028. 

Kovács, G.M., Horion, S. and Fensholt, R. 2022. Characterizing ecosystem change 

in wetlands using dense earth observation time series. Remote Sensing of 

Environment. 281, pp. 3267. 

Kuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T.V. and Dech, S. 2011. Remote 

sensing of mangrove ecosystems: A review. Remote Sensing. 3(5), pp.878–

928. 

Kundu, S., Pal, S., Mandal, I. and Talukdar, S. 2022. How far damming induced 

wetland fragmentation and water richness change affect wetland ecosystem 

services? Remote Sensing Applications: Society and Environment. 27, pp. 

777. 

Laine, J., Silvola, J., Tolonen, K., Alm, J., Nykänen, H., Vasander, H., Sallantaus, 

T., Savolainen, I., Sinisalo, J. and Martikainen, P.J. 1996. Effect of water-level 

drawdown on global climatic warming: Northern peatlands. Ambio. 25(3), 

pp.179–184. 

Landmann, T., Schramm, M., Colditz, R.R., Dietz, A. and Dech, S. 2010. Wide 

area wetland mapping in semi-arid Africa using 250-meter MODIS metrics and 

topographic variables. Remote Sensing. 2(7), pp.1751–1766. 

Landmann, T., Schramm, M., Huettich, C. and Dech, S. 2013. MODIS-based 

change vector analysis for assessing wetland dynamics in Southern Africa. 

Remote Sensing Letters. 4(2), pp.104–113. 

Langan, C., Farmer, J., Rivington, M. and Smith, J.U. 2018. Tropical wetland 

ecosystem service assessments in East Africa; A review of approaches and 

challenges. Environmental Modelling and Software. 102, pp.260–273. 

LaRocque, A., Phiri, C., Leblon, B., Pirotti, F., Connor, K. and Hanson, A. 2020. 

Wetland mapping with landsat 8 OLI, Sentinel-1, ALOS-1 PALSAR, and 

LiDAR data in Southern New Brunswick, Canada. Remote Sensing. 12(13), 



155 
 

 

pp.1–30. 

Leblanc, M., Lemoalle, J., Bader, J.C., Tweed, S. and Mofor, L. 2011. Thermal 

remote sensing of water under flooded vegetation: New observations of 

inundation patterns for the ‘Small’ Lake Chad. Journal of Hydrology. 404(1–2), 

pp.87–98. 

Lee, T.M. and Yeh, H.C. 2009. Applying remote sensing techniques to monitor 

shifting wetland vegetation: A case study of Danshui River estuary mangrove 

communities, Taiwan. Ecological Engineering. 35(4), pp.487–496. 

Leemhuis, C., Amler, E., Diekkrüger, B., Gabiri, G. and Näschen, K. 2016. East 

African wetland-catchment data base for sustainable wetland management. 

Proceedings of the International Association of Hydrological Sciences. 374, 

pp.123–128. 

Lefebvre, G., Davranche, A., Willm, L., Campagna, J., Redmond, L., Merle, C., 

Guelmami, A. and Poulin, B. 2019. Introducing WIW for detecting the 

presence of water in wetlands with landsat and sentinel satellites. Remote 

Sensing. 11(19), pp.10–14. 

Lehner, B. and Döll, P. 2004a. Development and validation of a global database of 

lakes, reservoirs and wetlands. Journal of Hydrology. 296(1), pp.1–22. 

Lehner, B. and Döll, P. 2004b. Global Lakes and Wetlands Database GLWD. 

Wetlands. 296(4), pp.1–7. 

Lemoalle, J. 2005. The Lake Chad basin. The World’s Largest Wetlands: Ecology 

and Conservation. pp.316–346. 

Lemoalle, J., Bader, J.C., Leblanc, M. and Sedick, A. 2012. Recent changes in 

Lake Chad: Observations, simulations and management options (1973-2011). 

Global and Planetary Change. 80–81, pp.247–254. 

Li, A., Song, K., Chen, S., Mu, Y., Xu, Z. and Zeng, Q. 2022. Mapping African 

wetlands for 2020 using multiple spectral, geo-ecological features and Google 

Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing. 193, 

pp.252–268. 



156 
 

 

Li, L., Vrieling, A., Skidmore, A., Wang, T., Muñoz, A.R. and Turak, E. 2015. 

Evaluation of MODIS Spectral Indices for Monitoring Hydrological Dynamics of 

a Small, Seasonally-Flooded Wetland in Southern Spain. Wetlands. 35(5), 

pp.851–864. 

Li, Z., Chen, H., White, J.C., Wulder, M.A. and Hermosilla, T. 2020. Discriminating 

treed and non-treed wetlands in boreal ecosystems using time series Sentinel-

1 data. International Journal of Applied Earth Observation and Geoinformation. 

85, pp.102007. 

Limpert, K.E., Carnell, P.E., Trevathan-Tackett, S.M. and Macreadie, P.I. 2020. 

Reducing Emissions From Degraded Floodplain Wetlands. Frontiers in 

Environmental Science. 8, pp.1–18. 

Liu, D., Chen, W., Menz, G. and Dubovyk, O. 2020. Development of integrated 

wetland change detection approach: In case of Erdos Larus Relictus National 

Nature Reserve, China. Science of the Total Environment. 731, pp.139166. 

Liu, Y., Gong, W., Hu, X. and Gong, J. 2018. Forest Type Identification with 

Random Forest Using Sentinel-1A, Sentinel-2A, Multi-Temporal Landsat-8 and 

DEM Data. Remote Sensing. 10(946), pp.1–25. 

Liu, Y., Liu, Yongxue, Li, J., Sun, C., Xu, W. and Zhao, B. 2020. Trajectory of 

coastal wetland vegetation in Xiangshan Bay, China, from image time series. 

Marine Pollution Bulletin. 160(163), pp.11697. 

Lu, D. and Chang, J. 2023. Examining human disturbances and inundation 

dynamics in China’s marsh wetlands by using time series remote sensing 

data. Science of the Total Environment. 863, pp.160961. 

Lu, D., Mausel, P., Brondízio, E. and Moran, E. 2004. Change detection 

techniques. International Journal of Remote Sensing. 25(12), pp.2365–2407. 

Ma, L., Li, M., Ma, X., Cheng, L., Du, P. and Liu, Y. 2017. A review of supervised 

object-based land-cover image classification. ISPRS Journal of 

Photogrammetry and Remote Sensing. 130, pp.277–293. 

Magrin, G. 2016. The disappearance of Lake Chad: History of a myth. Journal of 

Political Ecology. 23(1), pp.204–222. 



157 
 

 

Magure, M., Gumindoga, W., Makurira, H. and Rwasoka, D.T. 2022. Impacts of 

wetland loss and fragmentation on the hydrology of Zimbabwe’s highveld. 

Water Practice and Technology. 17(11), pp.2463–2483. 

Mahamat, A.-A.A., Al-Hurban, A. and Saied, N. 2021. Change Detection of Lake 

Chad Water Surface Area Using Remote Sensing and Satellite Imagery. 

Journal of Geographic Information System. 13(05), pp.561–577. 

Mahdavi, S., Salehi, B., Granger, J., Amani, M., Brisco, B. and Huang, W. 2018. 

Remote sensing for wetland classification: a comprehensive review. 

GIScience and Remote Sensing. 55(5), pp.623–658. 

Mahdianpari, Masoud, Granger, J.E., Mohammadimanesh, F., Salehi, B., Brisco, 

B., Homayouni, S., Gill, E., Huberty, B. and Lang, M. 2020. Meta-analysis of 

wetland classification using remote sensing: A systematic review of a 40-year 

trend in North America. Remote Sensing. 12(11), pp.1882. 

Mahdianpari, M, Jafarzadeh, H., Granger, J.E., Mohammadimanesh, F., Brisco, B., 

Salehi, B., Homayouni, S. and Weng, Q. 2020. A large-scale change 

monitoring of wetlands using time series Landsat imagery on Google Earth 

Engine: a case study in Newfoundland. GIScience and Remote Sensing. 

57(8), pp.1102–1124. 

Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Homayouni, S. and Gill, E. 

2018. The First Wetland Inventory Map of Newfoundland at a Spatial 

Resolution of 10 m Using Sentinel-1 and Sentinel-2 Data on the Google Earth 

Engine Cloud Computing Platform. Remote Sensing. 11(43), pp.3390. 

Mahdianpari, M., Salehi, B., Mohammadimanesh, F. and Motagh, M. 2017. 

Random forest wetland classification using ALOS-2 L-band , RADARSAT-2 C-

band , and TerraSAR-X imagery. ISPRS Journal of Photogrammetry and 

Remote Sensing. 130, pp.13–31. 

Maina, N.S. and Mwangi, J.W. 2023. Influence of Agricultural Practices and 

Activities on Conservation of the Ol-Bollosat Wetland in Kenya Njagi. . 4(1), 

pp.11–24. 

Malak, D.A., Marín, A.I., Trombetti, M. and San Román, S. 2021. Carbon pools and 



158 
 

 

sequestration potential of wetlands in the European Union. ETC/ULS Report. 

pp.8-21.  

Mandishona, E. and Knight, J. 2022. Inland wetlands in Africa: A review of their 

typologies and ecosystem services. Progress in Physical Geography. 46(4), 

pp.547–565. 

Mao, D., Wang, Z., Du, B., Li, L., Tian, Y., Jia, M., Zeng, Y., Song, K., Jiang, M. 

and Wang, Y. 2020. National wetland mapping in China: A new product 

resulting from object-based and hierarchical classification of Landsat 8 OLI 

images. ISPRS Journal of Photogrammetry and Remote Sensing. 164, pp.11–

25. 

Mapeshoane, B.E. 2013. Soil Hydrology and Hydric soil indicators of the Bokong 

wetlands in Lesotho. Thesis, pp.9-101. 

Matema, S., Eilers, C.H.A.M., van der Zijpp, A.J. and Giller, K.E. 2022. Wetlands in 

drylands: Use and conflict dynamics at the human–wildlife interface in Mbire 

District, Zimbabwe. African Journal of Ecology. 60(4), pp.1184–1200. 

Maxwell, A.E. and Warner, T.A. 2020. Thematic classification accuracy 

assessment with inherently uncertain boundaries: An argument for center-

weighted accuracy assessment metrics. Remote Sensing. 12(12), pp.1905. 

Maxwell, S.K. and Sylvester, K.M. 2012. Identification of ‘ever-cropped’ land (1984-

2010) using Landsat annual maximum NDVI image composites: Southwestern 

Kansas case study. Remote Sensing of Environment. 121, pp.186–195. 

McCarthy, M.J., Radabaugh, K.R., Moyer, R.P. and Muller-Karger, F.E. 2018. 

Enabling efficient, large-scale high-spatial resolution wetland mapping using 

satellites. Remote Sensing of Environment. 208, pp.189–201. 

Meng, L., Roulet, N., Zhuang, Q., Christensen, T.R. and Frolking, S. 2016. Focus 

on the impact of climate change on wetland ecosystems and carbon dynamics 

Focus on the impact of climate change on wetland ecosystems and carbon 

dynamics. Environmental Research letters. 11, pp.201. 

Metz, T. 2017. An overview of African ethics. Themes, Issues and Problems in 

African Philosophy., pp.61–75. 



159 
 

 

Mitchell, S.A. 2013. The status of wetlands, threats and the predicted effect of 

global climate change: The situation in Sub-Saharan Africa. Aquatic Sciences. 

75(1), pp.95–112. 

Mitsch, W.J., Bernal, B., Nahlik, A.M., Mander, Ü., Zhang, L., Anderson, C.J., 

Jørgensen, S.E. and Brix, H. 2013. Wetlands, carbon, and climate change. 

Landscape Ecology. 28(4), pp.583–597. 

Mitsch, W.J. and Gosselink, J.G. 2015. Wetlands Fifth Edition. pp.721. 

Mitsch, W.J. and Mander, Ü. 2018. Wetlands and carbon revisited. Ecological 

Engineering. 114, pp.1–6. 

Mohammadimanesh, F., Salehi, B., Mahdianpari, M. and Brisco, B. 2018. ISPRS 

Journal of Photogrammetry and Remote Sensing backscatter analysis of 

wetlands. ISPRS Journal of Photogrammetry and Remote Sensing. 142, 

pp.78–93. 

Moser, L., Schmitt, A., Wendleder, A. and Roth, A. 2016. Monitoring of the Lac 

Bam wetland extent using dual-polarized X-band SAR data. Remote Sensing. 

8(302), pp.1-31. 

Moser, L., Voigt, S., Schoepfer, E. and Palmer, S. 2014. Multitemporal wetland 

monitoring in sub-Saharan West-Africa using medium resolution optical 

satellite data. IEEE Journal of Selected Topics in Applied Earth Observations 

and Remote Sensing. 7(8), pp.3402–3415. 

Murray-Hudson, M., Wolski, P., Cassidy, L., Brown, M.T., Thito, K., Kashe, K. and 

Mosimanyana, E. 2015. Remote Sensing-derived hydroperiod as a predictor of 

floodplain vegetation composition. Wetlands Ecology and Management. 23(4), 

pp.603–616. 

Murray-Hudson, M., Wolski, P. and Ringrose, S. 2006. Scenarios of the impact of 

local and upstream changes in climate and water use on hydro-ecology in the 

Okavango Delta, Botswana. Journal of Hydrology. 331(1–2), pp.73–84. 

Musasa, T. and Marambanyika, T. 2022. Assessing the sustainability of land uses 

in Driefontein and Intunjambili wetlands, Zimbabwe. Scientific African. 16, 

pp.95. 



160 
 

 

Musasa, T. and Marambanyika, T. 2021. Drivers of Wetland Utilisation Patterns 

and The Current Status of Provisioning and Cultural Services In Driefontein 

and Intunjambili Wetlands , Zimbabwe. Research Square, pp.1–24. 

Mwita, E. 2010. Remote sensing based assessment of small wetlands in East 

Africa.Thesis, pp.22-52. 

Mwita, E., Menz, G., Misana, S., Becker, M., Kisanga, D. and Boehme, B. 2012. 

Mapping small wetlands of Kenya and Tanzania using remote sensing 

techniques. International Journal of Applied Earth Observation and 

Geoinformation. 21(1), pp.173–183. 

Mwita, E.J. 2013. Land Cover and Land Use Dynamics of Semi Arid Wetlands: A 

Case of Rumuruti (Kenya) and Malinda (Tanzania). Geophysics and Remote 

Sensing. S1, pp.1–9. 

Na, X., Zang, S., Wu, C., Tian, Y. and Li, W. 2018. Hydrological regime monitoring 

and mapping of the Zhalong wetland through integrating time series Radarsat-

2 and landsat imagery. Remote Sensing. 10(5). 

Navarro, A., Young, M., Macreadie, P.I., Nicholson, E. and Ierodiaconou, D. 2021. 

Mangrove and saltmarsh distribution mapping and land cover change 

assessment for south-eastern australia from 1991 to 2015. Remote Sensing. 

13(8), pp.1450. 

Ndayisaba, F., Nahayo, L., Guo, H., Bao, A., Kayiranga, A., Karamage, F. and 

Nyesheja, E.M. 2017. Mapping and monitoring the Akagera wetland in 

Rwanda. Sustainability (Switzerland). 9(2), pp.1–13. 

Nhamo, L., Magidi, J. and Dickens, C. 2017. Determining wetland spatial extent 

and seasonal variations of the inundated area using multispectral remote 

sensing. Water SA. 43(4), pp.1816–7950. 

Niu, Z.G., Zhang, H.Y., Wang, X.W., Yao, W.B., Zhou, D.M., Zhao, K.Y., Zhao, H., 

Li, N.N., Huang, H.B., Li, C.C., Yang, J., Liu, C.X., Liu, S., Wang, L., Li, Z., 

Yang, Z.Z., Qiao, F., Zheng, Y.M., Chen, Y.L., Sheng, Y.W., Gao, X.H., Zhu, 

W.H., Wang, W.Q., Wang, H., Weng, Y.L., Zhuang, D.F., Liu, J.Y., Luo, Z.C., 

Cheng, X., Guo, Z.Q. and Gong, P. 2012. Mapping wetland changes in China 



161 
 

 

between 1978 and 2008. Chinese Science Bulletin. 57(22), pp.2813–2823. 

Nsengimana, V., Weihler, S. and Kaplin, B.A. 2017. Perceptions of Local People 

on the Use of Nyabarongo River Wetland and Its Conservation in Rwanda. 

Society and Natural Resources. 30(1), pp.3–15. 

Oberholster, P.J., McMillan, P., Durgapersad, K., Botha, A.M. and De Klerk, A.R. 

2014. The development of a Wetland Classification and Risk Assessment 

Index (WCRAI) for non-wetland specialists for the management of natural 

freshwater wetland ecosystems. Water, Air, and Soil Pollution. 225(2), 

pp.1833. 

Obiefuna, J.N., Nwilo, P.C., Atagbaza, A.O. and Okolie, C.J. 2013. Land Cover 

Dynamics Associated with the Spatial Changes in the Wetlands of Lagos/Lekki 

Lagoon System of Lagos, Nigeria. Journal of Coastal Research. 288(3), 

pp.671–679. 

Ogilvie, A., Belaud, G., Delenne, C., Bailly, J.S., Bader, J.C., Oleksiak, A., Ferry, L. 

and Martin, D. 2015. Decadal monitoring of the Niger Inner Delta flood 

dynamics using MODIS optical data. Journal of Hydrology. 523, pp.368–383. 

Ohimain, E. 1996. Environmental Impacts of Dredging in the Niger Delta. Habitat., 

pp.9–19. 

Ojaghi, S., Farnood Ahmadi, F., Ebadi, H. and Bianchetti, R. 2017. Wetland cover 

change detection using multi-temporal remotely sensed data. Arabian Journal 

of Geosciences. 10(21), pp.470. 

Okpara, U.T., Stringer, L.C. and Dougill, A.J. 2016. Lake drying and livelihood 

dynamics in Lake Chad: Unravelling the mechanisms, contexts and 

responses. Ambio. 45(7), pp.781–795. 

Olalekan, E.I., Abimbola, L.-H.M., Saheed, M. and Damilola, O.A. 2014. Wetland 

Resources of Nigeria: Case Study of the Hadejia-Nguru Wetlands. Poultry, 

Fisheries & Wildlife Sciences. 2(2), pp.123. 

Olusola, A., Muyideen, A. and Abel, O. 2016. An Assessment of Wetland Loss in 

Lagos Metropolis , Nigeria. Developing Country Studies. 6(7), pp.1–7. 



162 
 

 

Onamuti, O.Y., Okogbue, E.C. and Orimoloye, I.R. 2017. Remote sensing 

appraisal of Lake Chad shrinkage connotes severe impacts on green 

economics and socio-economics of the catchment area. Royal Society Open 

Science. 4(11), pp.0–10. 

Ondiek, R.A., Vuolo, F., Kipkemboi, J., Kitaka, N., Lautsch, E., Hein, T. and 

Schmid, E. 2020. Socio-Economic Determinants of Land Use/Cover Change in 

Wetlands in East Africa: A Case Study Analysis of the Anyiko Wetland, Kenya. 

Frontiers in Environmental Science. 7(207), pp.1-16. 

Ouyang, X. and Lee, S.Y. 2020. Improved estimates on global carbon stock and 

carbon pools in tidal wetlands. Nature Communications. 11(1), pp.1–7. 

Ozesmi, S.L. and Bauer, M.E. 2002. Satellite remote sensing of wetlands. 

Wetlands Ecology and Management. 10(5), pp.381–402. 

Page, S.E., Rieley, J.O. and Banks, C.J. 2011. Global and regional importance of 

the tropical peatland carbon pool. Global Change Biology. 17(2), pp.798–818. 

Penfound, E. and Vaz, E. 2021. Analysis of Wetland Landcover Change in Great 

Lakes Urban Areas Using Self-Organizing Maps. Remote Sensing. 13(1), 

pp.4960. 

Petrescu, A.M.R., Lohila, A., Tuovinen, J.P., Baldocchi, D.D., Desai, A.R., Roulet, 

N.T., Vesala, T., Dolman, A.J., Oechel, W.C., Marcolla, B., Friborg, T., Rinne, 

J., Matthes, J.H., Merbold, L., Meijide, A., Kiely, G., Sottocornola, M., Sachs, 

T., Zona, D., Varlagin, A., Lai, D.Y.F., Veenendaal, E., Parmentier, F.J.W., 

Skiba, U., Lund, M., Hensen, A., Van Huissteden, J., Flanagan, L.B., Shurpali, 

N.J., Grünwald, T., Humphreys, E.R., Jackowicz-Korczyński, M., Aurela, M.A., 

Laurila, T., Grüning, C., Corradi, C.A.R., Schrier-Uijl, A.P., Christensen, T.R., 

Tamstorf, M.P., Mastepanov, M., Martikainen, P.J., Verma, S.B., Bernhofer, C. 

and Cescatti, A. 2015. The uncertain climate footprint of wetlands under 

human pressure. Proceedings of the National Academy of Sciences of the 

United States of America. 112(15), pp.4594–4599. 

Pham-duc, B., Sylvestre, F., Papa, F., Frappart, F., Bouchez, C. and Cr, J. 2020. 

The Lake Chad hydrology under current climate change. naure research. 



163 
 

 

10(5498), pp.1–10. 

Policelli, F., Hubbard, A., Jung, H.C., Zaitchik, B. and Ichoku, C. 2018. Lake Chad 

total surface water area as derived from Land Surface Temperature and radar 

remote sensing data. Remote Sensing. 10(2), pp.1–16. 

Poortinga, A., Aekakkararungroj, A., Kityuttachai, K., Nguyen, Q., Bhandari, B., 

Thwal, N.S., Priestley, H., Kim, J., Tenneson, K., Chishtie, F., Towashiraporn, 

P. and Saah, D. 2020. Predictive analytics for identifying land cover change 

hotspots in the mekong region. Remote Sensing. 12(9), pp.1–17. 

Poulter, B., Fluet‐Chouinard, E., Hugelius, G., Koven, C., Fatoyinbo, L., Page, 

S.E., Rosentreter, J.A., Smart, L.S., Taillie, P.J., Thomas, N., Zhang, Z. and 

Wijedasa, L.S. 2021. A Review of Global Wetland Carbon Stocks and 

Management Challenges. Wetland Carbon and Environmental Management , 

pp.1–20. 

Powell, M., Hodgins, G., Danaher, T., Ling, J., Hughes, M. and Wen, L. 2019. 

Mapping wetland types in semiarid floodplains: A statistical learning approach. 

Remote Sensing. 11(6), pp.609. 

Qu, Y., Zheng, Y., Gong, P., Shi, J., Li, L., Wang, S., Luo, C., Zhang, H. and Xu, L. 

2022. Estimation of wetland biodiversity based on the hydrological patterns 

and connectivity and its potential application in change detection and 

monitoring: A case study of the Sanjiang Plain, China. Science of the Total 

Environment. 805, pp.150291. 

Rahman, S. and Mesev, V. 2019. Change vector analysis, tasseled cap, and NDVI-

NDMI for measuring land use/cover changes caused by a sudden short-term 

severe drought: 2011 Texas event. Remote Sensing. 11(19), pp.2217. 

Raines, G.L., Sawatzky, D.L. and Bonham-Carter, G.F. 2010. New fuzzy logic tools 

in ArcGIS 10. ArcUser., pp.8–13. 

Ramsey, E.W. and Laine, S.C. 1997. Comparison of Landsat Thematic Mapper 

and High Resolution Photography to Identify Change in Complex Coastal 

Wetlands. Journal of Coastal Research. 13(2), pp.281–292. 

Rebelo, A.J., Le Maitre, D.C., Esler, K.J. and Cowling, R.M. 2015. Hydrological 



164 
 

 

responses of a valley-bottom wetland to land-use/land-cover change in a 

South African catchment: Making a case for wetland restoration. Restoration 

Ecology. 23(6), pp.829–841. 

Rebelo, L.M., McCartney, M.P. and Finlayson, C.M. 2010. Wetlands of Sub-

Saharan Africa: Distribution and contribution of agriculture to livelihoods. 

Wetlands Ecology and Management. 18(5), pp.557–572. 

Ritchie, M. and Das, S. 2015. A Brief Review of Remote Sensing Data and 

Techniques for Wetlands Identification. pp.1-5. 

Rodriguez-Galiano, V.F., Ghimire, B., Rogan, J., Chica-Olmo, M. and Rigol-

Sanchez, J.P. 2012. An assessment of the effectiveness of a random forest 

classifier for land-cover classification. ISPRS Journal of Photogrammetry and 

Remote Sensing. 67(1), pp.93–104. 

Rongoei, P.J.K., Kipkemboi, J., Okeyo-Owuor, J.B. and van Dam,  a a 2013. 

Ecosystem services and drivers of change in Nyando floodplain wetland , 

Kenya. African Journal of Environmental Science and Technology. 7, pp.274–

291. 

Roy, D.P., Kovalskyy, V., Zhang, H.K., Vermote, E.F., Yan, L., Kumar, S.S. and 

Egorov, A. 2016. Characterization of Landsat-7 to Landsat-8 reflective 

wavelength and normalized difference vegetation index continuity. Remote 

Sensing of Environment. 185, pp.57–70. 

Rüetschi, M. and Schaepman, M.E. 2018. Using Multitemporal Sentinel-1 C-band 

Backscatter to Monitor Phenology and Classify Deciduous and Coniferous 

Forests in Northern Switzerland. Remote Sensing. 10, pp.55. 

Sahour, H., Kemink, K.M. and O’Connell, J. 2022. Integrating SAR and Optical 

Remote Sensing for Conservation- Targeted Wetlands Mapping. Remote 

Sensing. 14, pp.159. 

Salehi, B., Mahdianpari, M., Amani, M., M. Manesh, F., Granger, J., Mahdavi, S. 

and Brisco, B. 2019. A Collection of Novel Algorithms for Wetland 

Classification with SAR and Optical Data Intechopen. 688, pp.110-125. 

Salih, A.A.M., Ganawa, E.T. and Elmahl, A.A. 2017. Spectral mixture analysis 



165 
 

 

(SMA) and change vector analysis (CVA) methods for monitoring and mapping 

land degradation/desertification in arid and semiarid areas (Sudan), using 

Landsat imagery. Egyptian Journal of Remote Sensing and Space Science. 

20, pp. 21–29. 

Salimi, S. and Scholz, M. 2021. Impact of future climate scenarios on peatland and 

constructed wetland water quality: A mesocosm experiment within climate 

chambers. Journal of Environmental Management. 289, pp. 2459. 

Sánchez-Espinosa, A. and Schröder, C. 2019. Land use and land cover mapping 

in wetlands one step closer to the ground:  Sentinel-2 versus landsat 8. 

Journal of environmental management. 247, pp.484–498. 

Sarch, M.T. and Birkett, C. 2000. Fishing and farming at Lake Chad: Responses to 

lake-level fluctuations. Geographical Journal. 166(2), pp.156–172. 

Saunders, M.J., Kansiime, F. and Jones, M.B. 2012. Agricultural encroachment: 

Implications for carbon sequestration in tropical African wetlands. Global 

Change Biology. 18(4), pp.1312–1321. 

Scharsich, V., Mtata, K., Hauhs, M., Lange, H. and Bogner, C. 2017. Analysing 

land cover and land use change in the Matobo National Park and surroundings 

in Zimbabwe. Remote Sensing of Environment. 194, pp.278–286. 

Schmitt, A., Wendleder, A., Roth, A. and Brisco, B. 2014. Water extent monitoring 

and water level estimation using multi-frequency, multi-polarized, and multi-

temporal SAR data. International Geoscience and Remote Sensing 

Symposium (IGARSS)., pp.1175–1178. 

Schmitt, L. and Simpson, N. 2018. IPCC WGII Sixth Assessment Report. 

Schuijt, K. 2002. Land and water use of wetlands in Africa: Economic values of 

African wetlands. Interim Report. pp.10-27. 

Schuyt, K.D. 2005. Economic consequences of wetland degradation for local 

populations in Africa. Ecological Economics. 53(2), pp.177–190. 

Sica, Y. V., Quintana, R.D., Radeloff, V.C. and Gavier-Pizarro, G.I. 2016. Wetland 

loss due to land use change in the Lower Paraná River Delta, Argentina. 



166 
 

 

Science of the Total Environment. 568, pp.967–978. 

Singh, S. and Talwar, R. 2014. A comparative study on change vector analysis. 

Sadhana. 39, pp.1311–1331. 

Sjögersten, S., de la Barreda-Bautista, B., Brown, C., Boyd, D., Lopez-Rosas, H., 

Hernández, E., Monroy, R., Rincón, M., Vane, C., Moss-Hayes, V., Gallardo-

Cruz, J.A., Infante-Mata, D., Hoyos-Santillan, J., Vidal Solórzano, J., Peralta-

Carreta, C. and Moreno-Casasola, P. 2021. Coastal wetland ecosystems 

deliver large carbon stocks in tropical Mexico. Geoderma. 403, pp. 173. 

Slagter, B., Tsendbazar, N.E., Vollrath, A. and Reiche, J. 2020. Mapping wetland 

characteristics using temporally dense Sentinel-1 and Sentinel-2 data: A case 

study in the St. Lucia wetlands, South Africa. International Journal of Applied 

Earth Observation and Geoinformation. 86, pp. 2009. 

Steele-Dunne, S.C., McNairn, H., Monsivais-Huertero, A. and Member, S. 2017. 

Radar Remote Sensing of Agricultural Canopies : A Review. IEEE Journal of 

Selected Topics in Applied Earth Observations and Remote Sensing. 10(2), 

pp.2249–2273. 

Steinbach, S., Cornish, N., Franke, J., Hentze, K., Strauch, A., Thonfeld, F., Zwart, 

S.J. and Nelson, A. 2021. A New Conceptual Framework for Integrating Earth 

Observation in Large-scale Wetland Management in East Africa. Wetlands. 

41(7), pp.93. 

Stoyanov, A. 2022. Application of Tasseled Cap Transformation of Sentinel-2—

MSI Data for Forest Monitoring and Change Detection on Territory of Natural 

Park “BLUE STONES”. Environmental Science Proceedings. 22, pp.42. 

Suiter, A.E. 2015. Remote Sensing Based detection of Forested Wetlands: An 

Evaluation of Lidar, Aerial Imagery, and their data fusion. Thesis, pp.52-61. 

Sun, C., Liu, Y., Zhao, S., Zhou, M., Yang, Y. and Li, F. 2016. Classification 

mapping and species identification of salt marshes based on a short-time 

interval NDVI time-series from HJ-1 optical imagery. International Journal of 

Applied Earth Observation and Geoinformation. 45, pp.27–41. 

Sylvestre, F., Mahamat-nour, A., Naradoum, T., Alcoba, M., Gal, L., Paris, A., 



167 
 

 

Cretaux, J., Pham-duc, B., Lescoulier, C., Recouvreur, R., Ahmat, M.M. and 

Gaya, D. 2024. Strengthening of the hydrological cycle in the Lake Chad Basin 

under current climate change. Nature Scientific Report , pp.1–13. 

Taiwo, O.J. and Areola, O. 2009. A spatial temporal analysis of wetland losses in 

the lagos coastal region, Southwestern Nigeria, using multi-date satellite 

imagery. International Geoscience and Remote Sensing Symposium 

(IGARSS). 3, pp.928–930. 

Tana, G., Letu, H., Cheng, Z. and Tateishi, R. 2013. Wetlands mapping in north 

america by decision rule classification using MODIS and ancillary data. IEEE 

Journal of Selected Topics in Applied Earth Observations and Remote 

Sensing. 6(6), pp.2391–2401. 

Taylor, A.R.D., Howard, G.W. and Begg, G.W. 2018. Developing Wetland 

Inventories in Southern Africa : A Review. . 118(1), pp.57–79. 

Tewkesbury, A.P., Comber, A.J., Tate, N.J., Lamb, A. and Fisher, P.F. 2015. A 

critical synthesis of remotely sensed optical image change detection 

techniques. Remote Sensing of Environment. 160, pp.1–14. 

Thakkar, A.K., Desai, V.R., Patel, A. and Potdar, M.B. 2016. An effective hybrid 

classification approach using tasseled cap transformation (TCT) for improving 

classification of land use/land cover (LU/LC) in semi-arid region: a case study 

of Morva-Hadaf watershed, Gujarat, India. Arabian Journal of Geosciences. 

9(3), pp.180. 

Van Tricht, K., Gobin, A., Gilliams, S. and Piccard, I. 2018. Synergistic use of radar 

sentinel-1 and optical sentinel-2 imagery for crop mapping: A case study for 

Belgium. Remote Sensing. 10(10), pp.1–22. 

Turpie, J. and Kleynhans, M. 2010. Wetland Valuation Volume IV. A protocol for 

the quantification and valuation of wetland ecosystem services. Report, pp.74. 

Uloacha, N.. and I.. O. 2004. Implications of wetlands degradation for water 

resources management. GeoJournal. 61(2), pp.151–154. 

Villa, J.A. and Bernal, B. 2018. Carbon sequestration in wetlands , from science to 

practice : An overview of the biogeochemical process , measurement methods 



168 
 

 

, and policy framework. Ecological Engineering. 114, pp.115–128. 

Vinet, L. and Zhedanov, A. 2010. Global biodiversity status of the earth’s living 

resources. Climate Change  - The Physical Science Basis. 1, pp.624. 

Wang, X., Xiao, X., Zou, Z., Hou, L., Qin, Y., Dong, J., Doughty, R.B., Chen, B., 

Zhang, X., Chen, Y., Ma, J., Zhao, B. and Li, B. 2020. Mapping coastal 

wetlands of China using time series Landsat images in 2018 and Google Earth 

Engine. ISPRS Journal of Photogrammetry and Remote Sensing. 163, 

pp.312–326. 

White, L., Brisco, B., Dabboor, M., Schmitt, A. and Pratt, A. 2015. A collection of 

SAR methodologies for monitoring wetlands. Remote Sensing. 7(6), pp. 7615-

7645 

Wilen, A.B.O. and Bates, M.K. 1995. The US Fish and Wildlife Service’s National 

Wetlands Inventory Project. Vegetatio. 118(1), pp.153–169. 

Woodson, R.D. 2012. Basic Information. Concrete Portable Handbook., pp.1–3. 

Wright, C. and Gallant, A. 2007. Improved wetland remote sensing in Yellowstone 

National Park using classification trees to combine TM imagery and ancillary 

environmental data. Remote Sensing of Environment. 107(4), pp.582–605. 

Wu, N., Shi, R., Zhuo, W., Zhang, C., Zhou, B., Xia, Z., Tao, Z., Gao, W. and Tian, 

B. 2021. A classification of tidal flat wetland vegetation combining phenological 

features with google earth engine. Remote Sensing. 13(3), pp.1–22. 

Wu, W., Zhi, C., Gao, Y., Chen, C., Chen, Z., Su, H., Lu, W. and Tian, B. 2022. 

Increasing fragmentation and squeezing of coastal wetlands: Status, drivers, 

and sustainable protection from the perspective of remote sensing. Science of 

the Total Environment. 811, pp. 339. 

Wulder, M.A., Li, Z., Campbell, E.M., White, J.C., Hobart, G., Hermosilla, T. and 

Coops, N.C. 2018. A National Assessment of Wetland Status and Trends for 

Canada’s Forested Ecosystems Using 33 Years of Earth Observation Satellite 

Data. Remote Sensing. 10(10), pp.1623. 

WWF 2014. Managing rivers wisely: Lake Chad case study. Wwf.Panda.Org. 



169 
 

 

38(3), pp.269. 

Xia, L., Ruan, R. and Zhang, X. 2002. Change Detection of Wetland in Hongze 

Lake Using. Water., pp.1734–1737. 

Xing, L., Tang, X., Wang, H., Fan, W. and Gao, X. 2018. Mapping Wetlands of 

Dongting Lake in China Using Landsat and Sentinel-1 Time Series At 30M. 

ISPRS - International Archives of the Photogrammetry, Remote Sensing and 

Spatial Information Sciences. XLII–3, pp.1971–1976. 

Xiu, L., Yan, C., Li, X., Qian, D. and Feng, K. 2019. Changes in wetlands and 

surrounding land cover in a desert area under the influences of human and 

climatic factors: A case study of the Hongjian Nur region. Ecological 

Indicators. 101, pp.261–273. 

Xu, H. 2006. Modification of normalised difference water index (NDWI) to enhance 

open water features in remotely sensed imagery. International Journal of 

Remote Sensing. 27(14), pp.3025–3033. 

Xu, J., Morris, P.J., Liu, J. and Holden, J. 2018. PEATMAP: Refining estimates of 

global peatland distribution based on a meta-analysis. Catena. 160, pp.134–

140. 

Ye, S., Chen, D. and Yu, J. 2016. A targeted change-detection procedure by 

combining change vector analysis and post-classification approach. ISPRS 

Journal of Photogrammetry and Remote Sensing. 114, pp.115–124. 

Yoon, G.W., Yun, Y.B. and Park, J.H. 2003. Change Vector Analysis: Detecting of 

Areas Associated with Flood Using Landsat TM. International Geoscience and 

Remote Sensing Symposium (IGARSS). 5, pp.3386–3388. 

Young, D.M., Baird, A.J., Morris, P.J., Dargie, G.C., Mampouya Wenina, Y.E., 

Mbemba, M., Boom, A., Cook, P., Betts, R., Burke, E., Bocko, Y.E., Chadburn, 

S., Crabtree, D.E., Crezee, B., Ewango, C.E.N., Garcin, Y., Georgiou, S., 

Girkin, N.T., Gulliver, P., Hawthorne, D., Ifo, S.A., Lawson, I.T., Page, S.E., 

Jovani-Sancho, A.J., Schefuß, E., Sciumbata, M., Sjögersten, S. and Lewis, 

S.L. 2023. Simulating carbon accumulation and loss in the central Congo 

peatlands. Global Change Biology. 29(23), pp.6812–6827. 



170 
 

 

Zabala, S. 2017. Comparison of multi-temporal and multispectral Sentinel-2 and 

Unmanned Aerial Vehicle imagery for crop type mapping. Msc Thesis, pp.7-

18. 

Zeleke, T.T., Zakaria Wani Lukwasa, A., Ture Beketie, K. and Yayeh Ayal, D. 

2024. Analysis of spatio-temporal precipitation and temperature variability and 

trend over Sudd-Wetland, Republic of South Sudan. Climate Services. 34, pp. 

451. 

Zhang, X., Liu, L., Zhao, T., Chen, X., Lin, S., Wang, J., Mi, J. and Liu, W. 2023. 

GWL_FCS30: a global 30 m wetland map with a fine classification system 

using multi-sourced and time-series remote sensing imagery in 2020. Earth 

System Science Data. 15(1), pp.265–293. 

Zhao, B., Yan, Y., Guo, H., He, M., Gu, Y. and Li, B. 2009. Monitoring rapid 

vegetation succession in estuarine wetland using time series MODIS-based 

indicators: An application in the Yangtze River Delta area. Ecological 

Indicators. 9(2), pp.346–356. 

Zhu, W., Jia, S., Lall, U., Cao, Q. and Mahmood, R. 2019. Relative contribution of 

climate variability and human activities on the water loss of the Chari/Logone 

River discharge into Lake Chad: A conceptual and statistical approach. 

Journal of Hydrology. 569, pp.519–531. 

Zhu, W., Yan, J. and Jia, S. 2017. Monitoring recent fluctuations of the southern 

pool of lake chad using multiple remote sensing data: Implications for water 

balance analysis. Remote Sensing. 9(10), pp.1032. 

Zhu, Z. and Woodcock, C.E. 2014. Remote Sensing of Environment Continuous 

change detection and classi fi cation of land cover using all available Landsat 

data. Remote Sensing of Environment. 144, pp.152–171. 

Zou, J., Ziegler, Alan D, Chen, D., McNicol, G., Ciais, P., Jiang, X., Zheng, C., Wu, 

Jie, Wu, Jin, Lin, Z., He, X., Brown, L.E., Holden, J., Zhang, Z., Ramchunder, 

S.J., Chen, A. and Zeng, Z. 2022. Rewetting global wetlands effectively 

reduces major greenhouse gas emissions. Nature Geoscience. 15(8), pp.627–

632. 



171 
 

 

Appendix A  

Supplementary table for Chapter 4 

Table A.1 Ground control point for Wetland and non-wetland in southern 

Nigeria. The class code is the identifier for each landcover type. 1 for Forest, 

2 for Mangrove, 3 for Marsh, 4 for Swamp, 5 for Cultivated land, 6 for Built up, 

7 for Deep water, 8 for Shallow water. 

 

Class code Landcover type Location x Location y  

1 Forest 5.9164 4.4032  

1 Forest 7.1486 4.3947  

1 Forest 7.0028 5.3445  

1 Forest 7.7691 4.9326  

1 Forest 7.922 4.796  

1 Forest 7.1591 5.6148  

1 Forest 7.7759 5.7465  

1 Forest 7.1603 5.7506  

1 Forest 8.6973 5.4693  

1 Forest 8.385 4.9287  

1 Forest 8.0826 5.6088  

1 Forest 8.2333 5.2008  

1 Forest 8.0815 5.4731  

1 Forest 9.0093 6.0105  

1 Forest 8.6941 5.0623  

1 Forest 9.0104 6.1464  

1 Forest 9.1653 6.2814  

1 Forest 8.3916 5.7426  

1 Forest 8.0849 5.8804  

1 Forest 9.3192 6.2805  

1 Forest 8.8565 6.1473  

1 Forest 7.6117 4.5271  

1 Forest 4.703 6.3117  

1 Forest 6.6877 4.5332  

1 Forest 5.0081 6.0376  

1 Forest 5.4595 4.9485  
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Class code Landcover type Location x Location y  

1 Forest 6.2245 4.401  

1 Forest 5.6186 5.4899  

1 Forest 6.9969 4.6666  

1 Forest 8.2289 4.6586  

1 Forest 6.2269 4.6719  

1 Forest 5.6173 5.3542  

1 Forest 5.9177 4.5386  

1 Forest 5.7675 4.9462  

1 Forest 6.3882 5.4844  

1 Forest 6.6985 5.7537  

1 Forest 6.2319 5.2141  

1 Forest 5.9252 5.352  

1 Forest 6.6973 5.618  

1 Forest 6.0767 5.0796  

1 Forest 6.3821 4.8063  

1 Forest 6.541 5.3476  

1 Forest 6.3834 4.9419  

1 Forest 6.3858 5.213  

1 Forest 6.387 5.3487  

1 Forest 5.6198 5.6256  

1 Forest 5.3159 6.0353  

1 Forest 5.471 6.17  

1 Forest 5.9314 6.0308  

1 Forest 8.3883 5.3355  

1 Forest 7.6174 5.2047  

1 Forest 7.6197 5.4761  

1 Forest 6.5434 5.619  

1 Forest 8.7037 6.2842  

1 Forest 7.1544 5.0722  

1 Forest 7.9209 4.6605  

1 Forest 8.0804 5.3374  

1 Forest 7.9287 5.6098  

1 Forest 7.1532 4.9366  

1 Forest 8.5423 5.3345  

1 Forest 8.8523 5.604  

1 Forest 8.3894 5.4712  
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Class code Landcover type Location x Location y  

1 Forest 8.5455 5.7417  

1 Forest 8.2344 5.3364  

1 Forest 8.8544 5.8756  

1 Forest 8.3927 5.8784  

1 Forest 8.8554 6.0114  

1 Forest 8.8576 6.2832  

1 Forest 9.0125 6.4183  

1 Forest 9.1663 6.4174  

1 Forest 8.8533 5.7398  

1 Forest 8.6951 5.1979  

1 Forest 8.2355 5.4721  

1 Forest 5.7637 4.5397  

1 Forest 8.23 4.7941  

1 Forest 5.4608 5.084  

1 Forest 7.1521 4.8011  

1 Forest 6.5349 4.6698  

1 Forest 5.9214 4.9451  

1 Forest 6.2282 4.8074  

1 Forest 5.9227 5.0807  

1 Forest 6.6949 5.3466  

1 Forest 6.5458 5.8906  

1 Forest 5.4698 6.0341  

1 Forest 5.9327 6.1667  

1 Forest 5.7801 6.3037  

1 Forest 5.0107 6.3094  

1 Forest 5.162 6.0364  

1 Forest 5.4672 5.7625  

1 Forest 8.5498 6.2851  

1 Forest 7.3119 5.4781  

1 Forest 8.5433 5.4702  

1 Forest 5.4659 5.6267  

1 Forest 5.9239 5.2163  

1 Forest 7.0052 5.6159  

1 Forest 7.7737 5.4751  

1 Forest 8.3861 5.0642  

1 Forest 8.6994 5.7407  
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Class code Landcover type Location x Location y  

1 Forest 8.3905 5.6069  

1 Forest 8.8512 5.4683  

1 Forest 9.0114 6.2823  

1 Forest 8.5444 5.6059  

1 Forest 8.7026 6.1483  

1 Forest 8.7005 5.8765  

1 Forest 8.3872 5.1998  

1 Forest 9.3202 6.4165  

1 Forest 8.6962 5.3336  

1 Forest 8.6983 5.605  

1 Forest 8.5466 5.8775  

1 Forest 5.3107 5.4921  

1 Forest 7.7658 4.5261  

1 Forest 5.9189 4.6741  

1 Forest 5.611 4.6763  

1 Forest 7.4577 4.5281  

1 Forest 6.0729 4.673  

1 Forest 6.2343 5.4855  

1 Forest 5.9202 4.8096  

1 Forest 5.77 5.2174  

1 Forest 6.6913 4.9397  

1 Forest 5.7687 5.0818  

1 Forest 6.3846 5.0774  

1 Forest 6.8465 5.0743  

1 Forest 5.4723 6.306  

1 Forest 5.7788 6.1678  

1 Forest 4.8568 6.3105  

1 Forest 5.9277 5.6234  

1 Forest 5.6249 6.1689  

1 Forest 8.0871 6.1521  

1 Forest 7.9298 5.7456  

1 Forest 8.0771 4.9306  

1 Forest 7.3153 5.8854  

1 Forest 8.5401 5.0633  

1 Forest 8.2366 5.6078  

1 Forest 9.0135 6.5543  
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Class code Landcover type Location x Location y  

1 Forest 4.0902 6.5885  

1 Forest 4.2427 6.4512  

1 Forest 3.7867 6.9993  

1 Forest 3.0176 7.0055  

1 Forest 4.5558 6.9932  

1 Forest 4.8582 6.4465  

1 Forest 6.547 6.0264  

1 Forest 2.8638 7.0068  

1 Forest 5.4749 6.5779  

1 Forest 4.7096 6.992  

1 Forest 4.5544 6.8571  

1 Forest 4.3993 6.7221  

1 Forest 5.1672 6.5802  

1 Forest 3.7853 6.8631  

1 Forest 3.6329 7.0005  

1 Forest 4.7083 6.8559  

1 Forest 3.4776 6.8656  

1 Forest 4.8608 6.7186  

1 Forest 4.4006 6.8583  

1 Forest 6.0891 6.4375  

1 Forest 6.0878 6.3015  

1 Forest 4.8595 6.5825  

1 Forest 5.0172 6.9897  

1 Forest 6.7033 6.2972  

1 Forest 7.9332 6.1531  

1 Forest 7.7838 6.698  

1 Forest 4.3979 6.5861  

1 Forest 3.321 6.5946  

1 Forest 7.63 6.6991  

1 Forest 4.0888 6.4525  

1 Forest 5.1698 6.8524  

1 Forest 4.0943 6.9968  

1 Forest 5.7826 6.5757  

1 Forest 6.3968 6.4353  

1 Forest 5.63 6.7129  

1 Forest 5.0133 6.5814  
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Class code Landcover type Location x Location y  

1 Forest 4.5504 6.4489  

1 Forest 5.6287 6.5768  

1 Forest 4.8634 6.9909  

1 Forest 3.7825 6.5909  

1 Forest 5.3236 6.8513  

1 Forest 5.4736 6.4419  

1 Forest 3.479 7.0017  

1 Forest 4.7056 6.5837  

1 Forest 2.8609 6.7345  

1 Forest 5.3249 6.9874  

1 Forest 6.7021 6.1613  

1 Forest 6.5506 6.4342  

1 Forest 5.0146 6.7174  

1 Forest 7.4761 6.7001  

1 Forest 5.7813 6.4397  

1 Forest 7.4715 6.1561  

1 Forest 3.6301 6.7282  

1 Forest 5.7838 6.7118  

1 Forest 5.4762 6.714  

1 Forest 6.094 6.9818  

1 Forest 3.7839 6.727  

1 Forest 5.9389 6.8468  

1 Forest 4.2441 6.5873  

1 Forest 3.9405 6.998  

1 Forest 2.8016 6.618  

1 Forest 2.9254 6.5064  

1 Forest 5.3197 6.4431  

1 Forest 5.1711 6.9886  

1 Forest 4.8621 6.8547  

1 Forest 6.7009 6.0254  

1 Forest 5.9339 6.3026  

1 Forest 7.1684 6.7021  

1 Forest 7.4727 6.292  

1 Forest 6.4016 6.9796  

1 Forest 4.093 6.8607  

1 Forest 7.3211 6.565  
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Class code Landcover type Location x Location y  

2 Mangrove 4.5969 6.2581  

2 Mangrove 6.4229 4.4307  

2 Mangrove 3.2227 6.4334  

2 Mangrove 8.5207 4.7569  

2 Mangrove 6.5951 4.461  

2 Mangrove 5.0929 5.7338  

2 Mangrove 5.7538 4.5801  

2 Mangrove 5.3203 5.4314  

2 Mangrove 6.0731 4.4317  

2 Mangrove 5.9869 4.478  

2 Mangrove 5.1142 5.7702  

2 Mangrove 6.3582 4.4087  

2 Mangrove 5.3125 5.7776  

2 Mangrove 5.9576 4.4294  

2 Mangrove 6.6497 4.4068  

2 Mangrove 5.5246 5.4939  

2 Mangrove 6.1876 4.6369  

2 Mangrove 5.8049 4.4879  

2 Mangrove 6.786 4.7289  

2 Mangrove 6.3583 4.3749  

2 Mangrove 5.7602 4.8374  

2 Mangrove 6.6801 4.3891  

2 Mangrove 4.6058 6.2445  

2 Mangrove 5.4801 5.4685  

2 Mangrove 5.7752 4.7916  

2 Mangrove 4.6318 6.2378  

2 Mangrove 8.4065 4.7456  

2 Mangrove 5.7904 4.8362  

2 Mangrove 6.6688 4.4095  

2 Mangrove 6.0939 4.3273  

2 Mangrove 5.4326 5.4878  

2 Mangrove 5.7529 4.4876  

2 Mangrove 5.4902 5.4783  

2 Mangrove 5.2861 5.4592  

2 Mangrove 5.9599 4.4775  

2 Mangrove 5.7912 4.8183  
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Class code Landcover type Location x Location y  

2 Mangrove 5.2891 5.4331  

2 Mangrove 5.7367 4.8096  

2 Mangrove 5.7523 4.8299  

2 Mangrove 5.1372 5.8994  

2 Mangrove 5.7596 4.4985  

2 Mangrove 3.4281 6.5654  

2 Mangrove 6.2991 4.3795  

2 Mangrove 5.5208 5.4787  

2 Mangrove 6.7553 4.7698  

2 Mangrove 3.1756 6.436  

2 Mangrove 6.0964 4.4017  

2 Mangrove 6.3785 4.3999  

2 Mangrove 7.1294 4.5707  

2 Mangrove 6.0705 4.4021  

2 Mangrove 6.5365 4.4611  

2 Mangrove 8.3184 4.8443  

2 Mangrove 5.7244 4.7864  

2 Mangrove 6.1099 4.3507  

2 Mangrove 5.9976 4.4532  

2 Mangrove 5.4596 5.4705  

2 Mangrove 6.6865 4.3978  

2 Mangrove 6.5666 4.4005  

2 Mangrove 4.9469 5.9543  

2 Mangrove 6.1935 4.3422  

2 Mangrove 5.437 5.5138  

2 Mangrove 8.2729 4.8987  

2 Mangrove 7.0143 4.7386  

2 Mangrove 6.7512 4.7387  

2 Mangrove 5.5146 5.5165  

2 Mangrove 5.2752 5.4414  

2 Mangrove 6.0372 4.4353  

2 Mangrove 5.5058 5.5019  

2 Mangrove 8.3644 4.8635  

2 Mangrove 6.7779 4.7633  

2 Mangrove 6.3051 4.3948  

2 Mangrove 3.4561 6.6147  
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Class code Landcover type Location x Location y  

2 Mangrove 5.7662 4.8107  

2 Mangrove 5.1965 5.9296  

2 Mangrove 5.73 4.83  

2 Mangrove 8.2841 4.9192  

2 Mangrove 6.5465 4.4337  

2 Mangrove 6.0937 4.4344  

2 Mangrove 5.2667 5.9227  

2 Mangrove 6.1838 4.4756  

2 Mangrove 4.5492 6.2969  

2 Mangrove 6.53 4.4173  

2 Mangrove 6.4071 4.3765  

2 Mangrove 6.7952 4.7176  

2 Mangrove 5.8754 4.4143  

2 Mangrove 5.8027 4.7849  

2 Mangrove 6.3602 4.4282  

2 Mangrove 6.666 4.3747  

2 Mangrove 6.6868 4.4051  

2 Mangrove 3.2174 6.4179  

2 Mangrove 8.3449 4.8243  

2 Mangrove 5.7466 4.5419  

2 Mangrove 4.7048 5.7919  

2 Mangrove 6.5104 4.3701  

2 Mangrove 6.0445 4.3998  

2 Mangrove 6.6867 4.3815  

2 Mangrove 6.8095 4.7294  

2 Mangrove 8.2449 4.9454  

2 Mangrove 7.0525 4.7327  

2 Mangrove 6.7473 4.721  

2 Mangrove 5.8419 4.5108  

2 Mangrove 6.0427 4.3623  

2 Mangrove 3.4783 6.5752  

2 Mangrove 6.8132 4.7504  

2 Mangrove 4.5565 6.2849  

2 Mangrove 6.3212 4.4213  

2 Mangrove 5.2258 5.8992  

2 Mangrove 8.2361 4.9657  
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Class code Landcover type Location x Location y  

2 Mangrove 5.1629 5.89  

2 Mangrove 5.756 4.8267  

2 Mangrove 6.5913 4.4368  

2 Mangrove 5.5193 5.4627  

2 Mangrove 8.4454 4.7427  

2 Mangrove 6.4212 4.3934  

2 Mangrove 5.4646 5.491  

2 Mangrove 6.6662 4.3947  

2 Mangrove 5.9309 4.4433  

2 Mangrove 6.3111 4.3737  

2 Mangrove 5.2022 5.9692  

2 Mangrove 8.2513 4.9075  

2 Mangrove 6.0516 4.4194  

2 Mangrove 6.0516 4.4194  

2 Mangrove 5.9509 4.4513  

2 Mangrove 6.3343 4.3851  

2 Mangrove 7.0518 4.7058  

2 Mangrove 8.1978 4.9478  

2 Mangrove 5.489 5.4922  

2 Mangrove 7.0722 4.5423  

2 Mangrove 5.7468 4.7862  

2 Mangrove 8.3025 4.8114  

2 Mangrove 6.5487 4.3611  

2 Mangrove 3.1634 6.4143  

2 Mangrove 5.7906 4.563  

2 Mangrove 7.0132 4.6997  

2 Mangrove 8.3001 4.9  

2 Mangrove 4.9843 5.8916  

2 Mangrove 5.7766 4.4786  

2 Mangrove 6.0589 4.4383  

2 Mangrove 6.5325 4.3989  

2 Mangrove 6.6777 4.409  

2 Mangrove 7.026 4.7198  

3 Marsh 6.8171 6.674  

3 Marsh 6.7593 6.6764  

3 Marsh 6.7612 6.6228  
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Class code Landcover type Location x Location y  

3 Marsh 6.9302 6.6395  

3 Marsh 6.8744 6.6706  

3 Marsh 6.8656 6.6125  

3 Marsh 6.923 6.5504  

3 Marsh 6.9171 6.5323  

3 Marsh 6.8625 6.3713  

3 Marsh 6.8221 6.313  

3 Marsh 6.7858 6.3382  

3 Marsh 6.7914 6.2361  

3 Marsh 6.7836 6.2015  

3 Marsh 6.7153 6.2592  

3 Marsh 6.7273 6.2164  

3 Marsh 6.6002 6.0099  

3 Marsh 6.6767 5.9811  

3 Marsh 6.6121 5.9593  

3 Marsh 6.6 5.9755  

3 Marsh 6.6432 6.0217  

3 Marsh 6.6594 6.0389  

3 Marsh 6.6066 6.0695  

3 Marsh 6.5861 6.026  

3 Marsh 6.6582 6.1171  

3 Marsh 6.7206 6.1465  

3 Marsh 6.702 6.1193  

3 Marsh 6.7533 6.1533  

3 Marsh 6.7853 6.108  

3 Marsh 6.7389 6.087  

3 Marsh 6.8055 6.0699  

3 Marsh 6.8061 6.013  

3 Marsh 6.7225 5.9541  

3 Marsh 6.6696 5.9138  

3 Marsh 6.684 5.9402  

3 Marsh 6.7071 5.9316  

3 Marsh 6.3795 5.6138  

3 Marsh 6.376 5.5713  

3 Marsh 6.3379 5.5527  

3 Marsh 6.3695 5.534  
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Class code Landcover type Location x Location y  

3 Marsh 6.3561 5.4371  

3 Marsh 6.2945 5.4677  

3 Marsh 6.1753 5.3274  

3 Marsh 6.179 5.3921  

3 Marsh 7.9725 5.8752  

3 Marsh 7.9423 5.8301  

3 Marsh 7.9634 5.7361  

3 Marsh 8.005 5.6571  

3 Marsh 5.3638 6.255  

3 Marsh 5.2999 6.0943  

3 Marsh 5.0874 6.2506  

3 Marsh 5.0492 6.2776  

3 Marsh 5.4193 5.8413  

3 Marsh 5.2537 5.5119  

3 Marsh 5.4726 5.1737  

3 Marsh 6.913 7.0532  

3 Marsh 6.9066 6.9298  

3 Marsh 6.7435 6.9865  

3 Marsh 6.6405 7.0592  

3 Marsh 6.615 6.6966  

3 Marsh 6.7036 6.343  

3 Marsh 6.5832 6.93  

3 Marsh 6.7142 7.2137  

3 Marsh 5.6742 5.4757  

3 Marsh 4.3966 6.4501  

3 Marsh 3.3163 6.8397  

3 Marsh 3.3883 6.5681  

3 Marsh 3.1917 6.5747  

3 Marsh 2.9819 6.4672  

3 Marsh 2.887 6.4136  

4 Swamp 5.8648 4.9509  

4 Swamp 5.9022 4.8458  

4 Swamp 5.7809 4.8689  

4 Swamp 5.7494 4.9648  

4 Swamp 5.8392 5.0151  

4 Swamp 5.9165 5.0518  
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Class code Landcover type Location x Location y  

4 Swamp 5.9285 4.9565  

4 Swamp 6.0302 4.8952  

4 Swamp 6.0574 4.8266  

4 Swamp 6.0604 4.7284  

4 Swamp 6.0513 4.6385  

4 Swamp 6.0109 4.3343  

4 Swamp 6.0459 4.3032  

4 Swamp 6.4975 5.002  

4 Swamp 6.5022 4.9337  

4 Swamp 6.5526 4.8434  

4 Swamp 6.6097 4.9079  

4 Swamp 6.7622 4.9271  

4 Swamp 6.7752 4.971  

4 Swamp 6.7602 5.011  

4 Swamp 6.7387 5.0453  

4 Swamp 6.6895 5.0793  

4 Swamp 6.6533 5.1354  

4 Swamp 6.7081 5.1865  

4 Swamp 6.6005 5.2032  

4 Swamp 6.5268 5.19  

4 Swamp 6.3621 5.1991  

4 Swamp 6.3727 4.6142  

4 Swamp 6.2116 4.7356  

4 Swamp 6.1724 4.7061  

4 Swamp 5.8487 4.6991  

4 Swamp 5.526 4.8608  

4 Swamp 5.4822 4.9006  

4 Swamp 5.5552 4.9382  

4 Swamp 5.495 4.9883  

4 Swamp 5.5186 5.0721  

4 Swamp 5.6 5.244  

4 Swamp 5.7925 6.2427  

4 Swamp 5.8963 6.2181  

4 Swamp 5.8782 6.2228  

4 Swamp 5.9172 6.2129  

4 Swamp 5.9886 6.2469  
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Class code Landcover type Location x Location y  

4 Swamp 5.9614 6.2321  

4 Swamp 6.0549 6.3085  

4 Swamp 5.7499 6.192  

4 Swamp 5.7622 6.2754  

4 Swamp 5.6759 6.166  

4 Swamp 5.6655 6.0497  

4 Swamp 5.5977 6.0317  

4 Swamp 5.5523 5.9852  

4 Swamp 5.4485 5.9576  

4 Swamp 5.3003 5.8896  

4 Swamp 5.3541 5.9365  

4 Swamp 5.3107 6.0215  

4 Swamp 5.2287 5.9439  

4 Swamp 5.1953 5.9505  

4 Swamp 5.1374 5.9448  

4 Swamp 5.0413 6.038  

4 Swamp 4.8875 6.0787  

4 Swamp 4.7447 6.1761  

4 Swamp 4.7533 6.2854  

4 Swamp 4.6857 6.3385  

4 Swamp 4.6705 6.4481  

4 Swamp 4.6702 6.4191  

4 Swamp 7.0434 6.4051  

4 Swamp 7.0256 6.4478  

4 Swamp 7.0846 6.3523  

4 Swamp 7.1162 6.3076  

4 Swamp 7.1372 6.2817  

4 Swamp 6.7218 5.7635  

4 Swamp 6.7409 5.7074  

4 Swamp 6.68 5.7106  

4 Swamp 6.6772 5.7525  

4 Swamp 6.6891 5.6051  

4 Swamp 6.6284 5.559  

4 Swamp 6.6745 5.5273  

4 Swamp 6.7325 5.8435  

4 Swamp 6.6787 5.7979  
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Class code Landcover type Location x Location y  

4 Swamp 6.6788 5.8258  

4 Swamp 6.7355 5.9054  

4 Swamp 6.7545 5.8751  

4 Swamp 6.6195 5.868  

4 Swamp 6.6526 5.9506  

4 Swamp 6.6507 6  

4 Swamp 6.6931 6.0004  

4 Swamp 6.6812 5.9808  

4 Swamp 6.4351 5.9644  

4 Swamp 6.3856 5.9338  

4 Swamp 5.9991 5.6681  

4 Swamp 5.8992 5.5839  

4 Swamp 5.8905 5.5407  

4 Swamp 5.9383 5.5732  

4 Swamp 5.8341 5.4556  

4 Swamp 5.7708 5.4332  

4 Swamp 5.6368 5.3524  

4 Swamp 5.6698 5.2547  

4 Swamp 5.538 5.1596  

4 Swamp 5.5368 5.1091  

4 Swamp 5.576 5.1389  

4 Swamp 5.6135 5.0254  

4 Swamp 5.6281 4.9863  

4 Swamp 5.7521 4.8835  

4 Swamp 5.7648 4.8408  

4 Swamp 5.2918 6.1706  

4 Swamp 5.2578 6.1323  

4 Swamp 5.3492 6.1862  

4 Swamp 5.3621 6.2395  

4 Swamp 5.4139 6.2723  

4 Swamp 5.3537 6.2659  

4 Swamp 5.437 6.2913  

4 Swamp 5.4401 6.3356  

4 Swamp 5.4526 6.3953  

4 Swamp 5.295 6.074  

4 Swamp 5.291 6.1126  
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Class code Landcover type Location x Location y  

4 Swamp 5.2155 6.0208  

4 Swamp 5.0674 5.9897  

4 Swamp 5.087 6.0094  

4 Swamp 4.3466 6.4873  

4 Swamp 4.2901 6.438  

4 Swamp 4.2137 6.4742  

4 Swamp 7.4914 4.8349  

4 Swamp 7.5426 4.7184  

4 Swamp 7.5485 4.6267  

4 Swamp 7.5735 4.6064  

4 Swamp 8.1309 5.0533  

4 Swamp 8.096 5.0063  

4 Swamp 8.0466 5.1144  

4 Swamp 8.017 5.0729  

4 Swamp 8.0854 5.1031  

4 Swamp 8.1953 4.8861  

5 Cultivated land 7.4669 5.6128  

5 Cultivated land 6.85 5.4812  

5 Cultivated land 7.6288 6.563  

5 Cultivated land 8.5412 5.1989  

5 Cultivated land 8.8586 6.4192  

5 Cultivated land 6.3895 5.6201  

5 Cultivated land 4.5531 6.721  

5 Cultivated land 5.775 5.7602  

5 Cultivated land 7.9254 5.2027  

5 Cultivated land 7.9276 5.4741  

5 Cultivated land 7.3142 5.7496  

5 Cultivated land 7.9231 4.9316  

5 Cultivated land 7.6152 4.9336  

5 Cultivated land 7.313 5.6138  

5 Cultivated land 7.7703 5.0681  

5 Cultivated land 6.8512 5.6169  

5 Cultivated land 7.614 4.798  

5 Cultivated land 6.6997 5.8895  

5 Cultivated land 8.0782 5.0662  

5 Cultivated land 7.4635 5.2057  
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Class code Landcover type Location x Location y  

5 Cultivated land 7.7714 5.2037  

5 Cultivated land 7.7816 6.426  

5 Cultivated land 6.5543 6.8424  

5 Cultivated land 8.5477 6.0133  

5 Cultivated land 8.7015 6.0124  

5 Cultivated land 8.0793 5.2018  

5 Cultivated land 8.8597 6.5552  

5 Cultivated land 6.2294 4.9429  

5 Cultivated land 6.5398 5.212  

5 Cultivated land 6.5373 4.9408  

5 Cultivated land 5.1685 6.7163  

5 Cultivated land 6.5446 5.7548  

5 Cultivated land 6.3992 6.7074  

5 Cultivated land 2.8623 6.8706  

5 Cultivated land 5.9264 5.4876  

5 Cultivated land 6.2441 6.5724  

5 Cultivated land 6.3931 6.0275  

5 Cultivated land 5.1646 6.3082  

5 Cultivated land 5.3146 5.8994  

5 Cultivated land 6.0853 6.0297  

5 Cultivated land 7.0099 6.1592  

5 Cultivated land 7.6254 6.1551  

5 Cultivated land 6.7045 6.4332  

5 Cultivated land 6.9993 4.9376  

5 Cultivated land 3.1671 6.5959  

5 Cultivated land 6.5482 6.1623  

5 Cultivated land 7.1649 6.2941  

5 Cultivated land 6.8548 6.0243  

5 Cultivated land 6.8536 5.8885  

5 Cultivated land 7.0004 5.0732  

5 Cultivated land 7.0111 6.2951  

5 Cultivated land 7.4612 4.9346  

5 Cultivated land 7.4623 5.0701  

5 Cultivated land 7.46 4.799  

5 Cultivated land 7.7725 5.3394  

5 Cultivated land 6.8489 5.3455  
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Class code Landcover type Location x Location y  

5 Cultivated land 7.6231 5.8833  

5 Cultivated land 7.3072 4.9356  

5 Cultivated land 7.3107 5.3424  

5 Cultivated land 7.3061 4.8  

5 Cultivated land 6.8572 6.2961  

5 Cultivated land 7.777 5.8823  

5 Cultivated land 7.6277 6.427  

5 Cultivated land 8.0915 6.6961  

5 Cultivated land 7.7849 6.8342  

5 Cultivated land 7.7804 6.29  

5 Cultivated land 8.397 6.4221  

5 Cultivated land 8.2432 6.423  

5 Cultivated land 7.6311 6.8352  

5 Cultivated land 8.0882 6.288  

5 Cultivated land 7.7793 6.1541  

5 Cultivated land 7.0146 6.7031  

5 Cultivated land 7.4704 6.0202  

5 Cultivated land 7.6266 6.291  

5 Cultivated land 7.9354 6.425  

5 Cultivated land 8.3992 6.6941  

5 Cultivated land 8.7069 6.6922  

5 Cultivated land 7.0134 6.5671  

5 Cultivated land 8.0904 6.56  

5 Cultivated land 7.7827 6.562  

5 Cultivated land 2.7992 6.397  

5 Cultivated land 7.32 6.429  

5 Cultivated land 8.0837 5.7446  

5 Cultivated land 8.7058 6.5562  

5 Cultivated land 8.2322 5.0652  

5 Cultivated land 5.7713 5.3531  

5 Cultivated land 6.8453 4.9387  

5 Cultivated land 6.0779 5.2152  

5 Cultivated land 6.5386 5.0764  

5 Cultivated land 6.6961 5.4822  

5 Cultivated land 5.7864 6.984  

5 Cultivated land 6.3943 6.1634  
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Class code Landcover type Location x Location y  

5 Cultivated land 3.1714 7.0042  

5 Cultivated land 4.7069 6.7198  

5 Cultivated land 6.0829 5.758  

5 Cultivated land 3.3252 7.003  

5 Cultivated land 6.5494 6.2983  

5 Cultivated land 6.2417 6.3004  

5 Cultivated land 5.7775 6.0319  

5 Cultivated land 5.9377 6.7107  

5 Cultivated land 6.0841 5.8938  

5 Cultivated land 6.2454 6.7085  

5 Cultivated land 6.2478 6.9807  

5 Cultivated land 3.17 6.8681  

5 Cultivated land 5.1659 6.4442  

5 Cultivated land 3.0133 6.5972  

5 Cultivated land 6.3956 6.2993  

5 Cultivated land 3.3238 6.8668  

5 Cultivated land 5.3184 6.3071  

5 Cultivated land 6.2392 6.0286  

5 Cultivated land 6.0816 5.6223  

5 Cultivated land 7.7669 4.6615  

5 Cultivated land 7.4646 5.3414  

5 Cultivated land 7.6129 4.6625  

5 Cultivated land 7.0016 5.2088  

5 Cultivated land 7.6186 5.3404  

5 Cultivated land 7.6163 5.0691  

5 Cultivated land 8.241 6.1511  

5 Cultivated land 6.6925 5.0753  

5 Cultivated land 6.0791 5.3509  

5 Cultivated land 5.7763 5.896  

5 Cultivated land 2.8004 6.5075  

5 Cultivated land 5.6275 6.4408  

5 Cultivated land 5.321 6.5791  

6 Built up/bare land 7.359 4.8765  

6 Built up/bare land 7.0692 5.0097  

6 Built up/bare land 6.8789 5.0044  

6 Built up/bare land 6.8156 5.1117  
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Class code Landcover type Location x Location y  

6 Built up/bare land 6.667 5.0882  

6 Built up/bare land 6.4005 5.0362  

6 Built up/bare land 6.3273 4.9334  

6 Built up/bare land 6.2842 4.831  

6 Built up/bare land 6.0724 4.7991  

6 Built up/bare land 5.9192 5.6637  

6 Built up/bare land 5.8882 5.5801  

6 Built up/bare land 5.8219 5.609  

6 Built up/bare land 5.8821 5.5044  

6 Built up/bare land 5.7999 5.4853  

6 Built up/bare land 5.8184 5.5409  

6 Built up/bare land 5.7191 5.52  

6 Built up/bare land 5.7023 5.5613  

6 Built up/bare land 5.6499 5.6446  

6 Built up/bare land 4.9789 5.9091  

6 Built up/bare land 4.8199 6.0912  

6 Built up/bare land 7.011 4.9465  

6 Built up/bare land 7.1702 4.8734  

6 Built up/bare land 7.1663 4.778  

6 Built up/bare land 7.0886 4.7404  

6 Built up/bare land 7.0307 4.7353  

6 Built up/bare land 7.0334 4.9323  

6 Built up/bare land 6.9339 4.8754  

6 Built up/bare land 6.9232 4.9388  

6 Built up/bare land 6.9538 4.7926  

6 Built up/bare land 7.1324 4.792  

6 Built up/bare land 7.0758 4.8511  

6 Built up/bare land 7.3359 5.0618  

6 Built up/bare land 7.4381 5.1424  

6 Built up/bare land 7.3138 5.1667  

6 Built up/bare land 5.7266 6.5836  

6 Built up/bare land 5.6324 6.5183  

6 Built up/bare land 5.5925 6.4622  

6 Built up/bare land 5.6551 6.4177  

6 Built up/bare land 5.5659 6.3684  

6 Built up/bare land 5.7688 6.411  
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Class code Landcover type Location x Location y  

6 Built up/bare land 5.743 6.3273  

6 Built up/bare land 5.7114 6.273  

6 Built up/bare land 5.6311 6.1973  

6 Built up/bare land 5.5317 6.2769  

6 Built up/bare land 5.6112 6.4106  

6 Built up/bare land 6.0341 6.3139  

6 Built up/bare land 6.1897 6.1393  

6 Built up/bare land 6.3028 6.0841  

6 Built up/bare land 6.2836 6.0267  

6 Built up/bare land 6.2345 5.9697  

6 Built up/bare land 6.1679 5.8541  

6 Built up/bare land 6.1305 5.8033  

6 Built up/bare land 6.0526 5.7021  

6 Built up/bare land 5.8803 5.4513  

6 Built up/bare land 5.9185 5.3745  

6 Built up/bare land 7.9729 4.6398  

6 Built up/bare land 7.9096 4.6902  

6 Built up/bare land 7.94 5.0212  

6 Built up/bare land 8.3389 4.9881  

6 Built up/bare land 7.8361 5.6237  

6 Built up/bare land 7.8407 5.6638  

6 Built up/bare land 7.8569 5.5476  

6 Built up/bare land 7.6253 5.625  

6 Built up/bare land 7.5038 5.5004  

6 Built up/bare land 7.5492 5.3912  

6 Built up/bare land 7.2624 5.4651  

6 Built up/bare land 7.036 5.5162  

6 Built up/bare land 7.1472 5.6425  

6 Built up/bare land 6.8487 5.966  

6 Built up/bare land 7.0721 5.9109  

6 Built up/bare land 7.1073 5.7579  

6 Built up/bare land 6.9344 5.779  

6 Built up/bare land 6.8964 5.6435  

6 Built up/bare land 6.8966 5.5673  

6 Built up/bare land 3.3201 6.6425  

6 Built up/bare land 3.2488 6.5767  
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Class code Landcover type Location x Location y  

6 Built up/bare land 3.2928 6.4768  

6 Built up/bare land 2.8679 6.3889  

6 Built up/bare land 2.71 6.4306  

6 Built up/bare land 4.6511 6.59  

6 Built up/bare land 4.9077 6.4827  

6 Built up/bare land 4.8055 6.3468  

6 Built up/bare land 4.8768 6.7094  

6 Built up/bare land 4.8767 6.8028  

6 Built up/bare land 4.998 6.7747  

6 Built up/bare land 5.1925 7.4286  

6 Built up/bare land 5.2474 7.3337  

6 Built up/bare land 5.1723 7.3481  

6 Built up/bare land 5.1133 7.3495  

6 Built up/bare land 5.1666 7.2288  

6 Built up/bare land 5.1287 7.2557  

6 Built up/bare land 5.2349 7.1891  

6 Built up/bare land 5.2691 7.2503  

6 Built up/bare land 5.1524 7.2897  

6 Built up/bare land 7.6964 5.2108  

6 Built up/bare land 7.768 5.138  

6 Built up/bare land 7.7156 5.1734  

6 Built up/bare land 7.7172 5.1182  

6 Built up/bare land 7.7719 5.018  

6 Built up/bare land 7.8441 4.984  

6 Built up/bare land 7.8672 5.0576  

6 Built up/bare land 7.9787 5.0373  

6 Built up/bare land 7.901 5.0028  

6 Built up/bare land 7.9961 4.9841  

6 Built up/bare land 8.0321 5.0371  

6 Built up/bare land 8.0501 4.9066  

6 Built up/bare land 7.9501 4.9075  

6 Built up/bare land 7.9143 4.8708  

6 Built up/bare land 8.3346 4.9275  

6 Built up/bare land 8.333 5.0369  

6 Built up/bare land 8.3805 4.9721  

6 Built up/bare land 8.3336 5.3426  
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Class code Landcover type Location x Location y  

6 Built up/bare land 8.3798 5.2345  

6 Built up/bare land 7.8556 4.8302  

6 Built up/bare land 7.0087 6.0233  

6 Built up/bare land 7.3165 6.0212  

6 Built up/bare land 7.1614 5.8864  

6 Built up/bare land 6.8524 5.7527  

6 Built up/bare land 7.0063 5.7516  

6 Built up/bare land 7.004 5.4802  

6 Built up/bare land 7.1579 5.4791  

6 Built up/bare land 7.1568 5.3434  

6 Built up/bare land 7.4681 5.7486  

6 Built up/bare land 7.7748 5.6108  

6 Built up/bare land 7.3095 5.2068  

6 Built up/bare land 7.9309 5.8814  

6 Built up/bare land 6.0804 5.4865  

6 Built up/bare land 6.2331 5.3498  

6 Built up/bare land 6.9981 4.8021  

6 Built up/bare land 3.0504 6.5054  

6 Built up/bare land 3.6287 6.5922  

6 Built up/bare land 3.0161 6.8694  

6 Built up/bare land 3.6315 6.8643  

6 Built up/bare land 3.1685 6.732  

6 Built up/bare land 3.3224 6.7307  

6 Built up/bare land 3.4762 6.7295  

6 Built up/bare land 3.9377 6.7258  

6 Built up/bare land 5.6224 5.8972  

6 Built up/bare land 5.7738 5.6245  

6 Built up/bare land 5.6262 6.3048  

6 Built up/bare land 5.1633 6.1723  

6 Built up/bare land 7.3223 6.7011  

6 Built up/bare land 8.3959 6.2861  

6 Built up/bare land 3.1657 6.4599  

6 Built up/bare land 3.3195 6.4586  

6 Built up/bare land 3.4734 6.4574  

6 Built up/bare land 4.5491 6.3129  

6 Built up/bare land 4.7016 6.1758  
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Class code Landcover type Location x Location y  

6 Built up/bare land 7.1509 4.6656  

6 Built up/bare land 7.3049 4.6645  

6 Built up/bare land 7.4589 4.6635  

7 Deep water 3.4748 6.5934  

7 Deep water 5.4506 5.3798  

7 Deep water 5.5029 5.3989  

7 Deep water 5.5075 5.4551  

7 Deep water 5.5045 5.4188  

7 Deep water 5.5007 5.4405  

7 Deep water 5.4242 5.4384  

7 Deep water 5.4415 5.4109  

7 Deep water 5.3942 5.4842  

7 Deep water 5.4006 5.515  

7 Deep water 5.4319 5.4892  

7 Deep water 5.3114 5.5632  

7 Deep water 5.3116 5.6268  

7 Deep water 5.3271 5.5935  

7 Deep water 5.275 5.6034  

7 Deep water 5.302 5.6093  

7 Deep water 5.3258 5.6988  

7 Deep water 5.303 5.6567  

7 Deep water 5.3166 5.6663  

7 Deep water 5.3195 5.6895  

7 Deep water 5.3134 5.6889  

7 Deep water 5.3059 5.6725  

7 Deep water 5.3263 5.7307  

7 Deep water 5.3285 5.7118  

7 Deep water 5.2953 5.7094  

7 Deep water 5.2994 5.6981  

7 Deep water 5.2854 5.7303  

7 Deep water 5.5736 5.9348  

7 Deep water 5.6101 5.9117  

7 Deep water 5.5483 5.9433  

7 Deep water 5.5091 5.9379  

7 Deep water 5.5193 5.9125  

7 Deep water 5.5061 5.9236  
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Class code Landcover type Location x Location y  

7 Deep water 5.3823 5.8581  

7 Deep water 5.4137 5.8254  

7 Deep water 5.3338 5.8462  

7 Deep water 5.2385 5.8678  

7 Deep water 5.2491 5.8481  

7 Deep water 5.1886 5.8506  

7 Deep water 5.2145 5.8867  

7 Deep water 5.2731 5.8989  

7 Deep water 5.2668 5.8769  

7 Deep water 5.2729 5.8653  

7 Deep water 5.1564 5.8235  

7 Deep water 5.084 5.7893  

7 Deep water 5.1151 5.8196  

7 Deep water 5.1472 5.7908  

7 Deep water 5.0813 5.7558  

7 Deep water 5.0755 5.7864  

7 Deep water 3.4587 6.4975  

7 Deep water 3.5198 6.4744  

7 Deep water 3.513 6.53  

7 Deep water 3.4354 6.5653  

7 Deep water 3.4137 6.5411  

7 Deep water 3.4016 6.4154  

7 Deep water 3.357 6.4282  

7 Deep water 3.3456 6.4358  

7 Deep water 3.3495 6.4074  

7 Deep water 3.3804 6.4129  

7 Deep water 3.4241 6.4401  

7 Deep water 2.8993 6.5135  

7 Deep water 2.8943 6.5125  

7 Deep water 2.8833 6.5396  

7 Deep water 2.8481 6.4311  

7 Deep water 2.8894 6.4087  

7 Deep water 2.8791 6.4096  

7 Deep water 2.8246 6.4457  

7 Deep water 2.8202 6.4501  

7 Deep water 3.1038 6.4826  
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Class code Landcover type Location x Location y  

7 Deep water 7.2258 4.6484  

7 Deep water 7.1755 4.6353  

7 Deep water 7.2482 4.6113  

7 Deep water 7.2061 4.6397  

7 Deep water 6.6603 5.8435  

7 Deep water 6.6458 5.8043  

7 Deep water 6.6268 5.8101  

7 Deep water 6.6421 5.8421  

7 Deep water 6.6438 5.7614  

7 Deep water 6.6356 5.7194  

7 Deep water 6.599 5.6771  

7 Deep water 6.6181 5.6473  

7 Deep water 6.6258 5.6949  

7 Deep water 6.5285 5.5254  

7 Deep water 6.5395 5.4846  

7 Deep water 6.5417 5.4423  

7 Deep water 6.477 5.4118  

7 Deep water 6.4936 5.3725  

7 Deep water 6.3732 5.3102  

7 Deep water 6.458 5.3298  

7 Deep water 6.4107 5.2645  

7 Deep water 6.3355 5.2291  

7 Deep water 6.3409 5.1686  

7 Deep water 6.3561 5.149  

7 Deep water 6.3091 5.097  

7 Deep water 6.261 5.0848  

7 Deep water 6.2363 5.0581  

7 Deep water 6.1929 5.0121  

7 Deep water 6.1613 5.0338  

7 Deep water 6.1205 5.0601  

7 Deep water 6.0529 5.0042  

7 Deep water 6.0807 4.9887  

7 Deep water 6.1283 4.9414  

7 Deep water 6.0868 4.9037  

7 Deep water 6.1286 4.9087  

7 Deep water 6.1766 4.8649  
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7 Deep water 6.1488 4.8613  

7 Deep water 6.1112 4.8382  

7 Deep water 6.123 4.8699  

7 Deep water 6.1863 4.8516  

7 Deep water 6.1948 4.8584  

7 Deep water 5.4914 4.8505  

7 Deep water 5.5433 4.8228  

7 Deep water 5.6323 4.8408  

7 Deep water 5.6523 4.8006  

7 Deep water 5.6395 4.8588  

7 Deep water 5.6772 4.8846  

7 Deep water 5.6271 4.886  

7 Deep water 5.6085 4.8209  

7 Deep water 5.572 4.8111  

7 Deep water 5.5572 4.8302  

7 Deep water 6.074 4.3715  

7 Deep water 6.0787 4.2996  

7 Deep water -62.3907 -62.3907  

7 Deep water 3.707 6.5819  

7 Deep water 4.056 6.469  

7 Deep water 5.1887 5.5912  

7 Deep water 5.3946 5.6015  

7 Deep water 5.9714 4.3489  

7 Deep water 6.2407 4.3394  

7 Deep water 7.6028 4.4675  

7 Deep water 8.3786 4.5997  

7 Deep water 6.5373 5.4689  

7 Deep water 6.6985 5.9479  

7 Deep water 3.3944 6.4699  

7 Deep water 7.0664 4.3879  

8 Shallow water 6.8011 5.7038  

8 Shallow water 6.7783 5.7082  

8 Shallow water 6.7974 5.7098  

8 Shallow water 6.8512 5.6844  

8 Shallow water 6.7276 5.6344  

8 Shallow water 5.5942 5.1193  
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8 Shallow water 5.6488 5.0899  

8 Shallow water 5.6052 5.0998  

8 Shallow water 5.4514 5.4089  

8 Shallow water 5.4763 5.9223  

8 Shallow water 5.4895 5.905  

8 Shallow water 5.4487 5.9119  

8 Shallow water 5.4452 5.9179  

8 Shallow water 5.4176 6.001  

8 Shallow water 5.3461 6.0123  

8 Shallow water 5.8555 6.2274  

8 Shallow water 5.817 6.2264  

8 Shallow water 5.8103 6.2283  

8 Shallow water 7.1896 4.6574  

8 Shallow water 5.6697 6.7693  

8 Shallow water 5.6571 6.7808  

8 Shallow water 5.6241 6.7562  

8 Shallow water 5.5726 6.7002  

8 Shallow water 5.5439 6.6904  

8 Shallow water 5.5851 6.7219  

8 Shallow water 5.4438 6.3461  

8 Shallow water 5.4571 6.3223  

8 Shallow water 6.5621 5.8333  

8 Shallow water 6.5241 5.8124  

8 Shallow water 6.5232 5.8062  

8 Shallow water 6.4836 5.7747  

8 Shallow water 6.4944 5.7665  

8 Shallow water 6.5047 5.7857  

8 Shallow water 6.5046 5.7775  

8 Shallow water 6.4777 5.7419  

8 Shallow water 6.4782 5.7321  

8 Shallow water 6.4637 5.7273  

8 Shallow water 6.4672 5.7239  

8 Shallow water 6.4489 5.7418  

8 Shallow water 6.4623 5.7194  

8 Shallow water 6.448 5.7321  

8 Shallow water 6.4984 5.7079  
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8 Shallow water 6.4989 5.7056  

8 Shallow water 6.4996 5.7028  

8 Shallow water 6.5184 5.6401  

8 Shallow water 6.5257 5.6447  

8 Shallow water 6.5303 5.6443  

8 Shallow water 6.5361 5.649  

8 Shallow water 6.5518 5.6441  

8 Shallow water 6.5587 5.6405  

8 Shallow water 6.5603 5.6442  

8 Shallow water 6.5471 5.637  

8 Shallow water 6.4642 5.585  

8 Shallow water 6.477 5.5736  

8 Shallow water 6.4314 5.552  

8 Shallow water 6.4476 5.5696  

8 Shallow water 6.4521 5.5641  

8 Shallow water 6.483 5.6173  

8 Shallow water 6.5009 5.6205  

8 Shallow water 6.4845 5.6252  

8 Shallow water 6.4837 5.62  

8 Shallow water 6.56 5.4693  

8 Shallow water 6.5723 5.4832  

8 Shallow water 6.0912 4.3835  

8 Shallow water 6.1068 4.3744  

8 Shallow water 6.129 4.3795  

8 Shallow water 6.123 4.3846  

8 Shallow water 6.5275 5.3286  

8 Shallow water 6.7053 5.6791  

8 Shallow water 6.6934 5.6869  

8 Shallow water 6.7245 5.692  

8 Shallow water 6.7043 5.7142  

8 Shallow water 6.7321 5.5676  

8 Shallow water 6.7239 5.5674  

8 Shallow water 6.6945 5.5504  

8 Shallow water 6.567 5.5117  

8 Shallow water 6.456 5.5495  

8 Shallow water 6.4307 5.5461  
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8 Shallow water 6.4191 5.5455  

8 Shallow water 6.4757 5.5479  

8 Shallow water 6.4728 5.5587  

8 Shallow water 6.433 5.561  

8 Shallow water 5.2665 5.988  

8 Shallow water 4.8943 6.3122  

8 Shallow water 4.9341 6.3303  

8 Shallow water 7.1601 5.6102  

8 Shallow water 7.1428 5.5614  

8 Shallow water 7.4915 5.9722  

8 Shallow water 6.8003 6.6063  

8 Shallow water 6.7187 7.0431  

8 Shallow water 6.0039 5.5043  

8 Shallow water 5.9944 5.5015  

8 Shallow water 5.9991 5.5028  

8 Shallow water 5.9701 5.4954  

8 Shallow water 5.7209 5.5566  
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Appendix B  

Supplementary tables for Chapter 5  

Table B.1 The spatial extent of wetland cover in different African climate 

zones.  Classification of satellite imagery was based on training which was 

independent for each climate zone  

Climate zone  Total area (km2)  Wetland area  Percentage wetland cover   

TW  1,948,865  448,210  23.0  

TWD  11,302,156  362,980  3.2  

SARD  6,685,370  93811  1.4  

ARD/DST  8,962,030  35,853  0.4  

MED/HST  1,202,970  8,276  0.7  

 

Table B.2 The description of each wetland type used in this study.   

Wetland class Soil systems  Water sources Typical settings and 

features 

Plant species 

Marsh Mineral Direct flow from 

lakes, streams, 

precipitation 

Edges of lakes and 

streams, Coastal zone 

(salt/tidal marshes) 

Herbaceous 

Swamp Mineral or Organic Precipitation, 

groundwater, 

freshwater flooding 

from rivers or lakes 

Along large rivers or on 

the shores of large lakes 

Woody, forested 

Mangrove Organic Precipitation, 

groundwater and tidal 

flow. 

Coastal zone mostly 

grows in sheltered low 

lying coasts estuaries, and 

lagoons 

Trees and shrubs 

Peatland Organic Groundwater inflow 

or precipitation 

Standing water of lakes or 

margins of slow flowing 

rivers,  

Herbaceous plants, 

Shrubs, small trees.  

Seasonal wetland Organic or mineral Precipitation Low lying areas and open 

fields. 

Herbaceous 
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Table B.3 Confusion matrix for wetlands of Tropical wet and dry (TWD) 

climate zone after applying RF.  

 

Table B.4 Confusion matrix for wetlands of Tropical wet (TW) climate zone 

after applying RF  

Wetland   

class  

Marsh  Mangrove  Swamp  Peatland  Seasonal 

wetlands  

Deep 

water  

Total  User`s 

Accuracy  

Marsh  510  4  2  0  10  0  526  0.97  

Mangrove  4  171  9  6  0  0  190  0.90  

Swamp  9  10  141  36  4  0  200  0.71  

Peatland  6  4  23  117  0  0  150  0.78  

Seasonal 

wetlands  

13  2  2  0  124  6  147  0.84  

Deep water  0  0  0  0  12  384  396  0.97  

Total  542  191  177  159  153  390  1609    

Producer`s 

Accuracy  

0.94  0.90  0.80  0.74  0.81  0.98      

Overall accuracy 

(%)  

              89  

Wetland 

class  

Marsh  Mangrove  Swamp  Peatland  Seasonal 

wetlands  

Deep 

water  

Total  User Accuracy  

Marsh  249  0  1  0  5  0  255  0.97  

Mangrove  8  120  10  1  6  0  145  0.83  

Swamp  10  9  107  29  6  0  161  0.66  

Peatland  18  7  65  347  2  0  439  0.79  

Seasonal 

wetlands  

26  11  14  14  118  17  200  0.59  

Deep water  0  0  0  0  2  73  75  0.95  

Total  311  147  197  391  139  90  1275    

Producer 

Accuracy  

0.80  0.82  0.54  0.89  0.85  0.81      

Overall 

accuracy  

              84  



203 
 

 

  

Table B.5 Confusion matrix for wetlands of Semi-Arid climate zone after 

applying RF 

 

 

Table B.6 Confusion matrix for wetlands of Arid/Desert climate zone after 

applying RF 

 

Wetland   

class  

  Marsh  Mangrove  Swamp  Peatland  Seasonal 

wetlands  

Deep 

water  

Total  User`s 

Accuracy  

Marsh    64  3  7  2  4  0  80  0.80  

Mangrove    0  25  4  2  0  0  31  0.81  

Swamp    2  3  32  11  2  0  48  0.64  

Peatland    2  3  9  34  2  0  55  0.70  

Seasonal 

wetlands  

  15  2  3  4  99  5  128  0.90  

Deep water    0  0  0  0  8  75  82  0.95  

Total    83  36  55  53  115  80  424    

Producer`s 

Accuracy  

  0.77  0.69  0.58   0.64  0.86  0.94      

Overall 

Accuracy (%)  

                79  

Wetland   

class  

  Marsh  Mangrove  Swamp  Peatland  Seasonal 

wetlands  

Deep 

water  

Total  User`s 

Accuracy  

Marsh    131  2  4  5  3  0  145  0.90  

Mangrove    0  64  5  3  0  0  73  0.88  

Swamp    5  9  101  32  6  0  153  0.66  

Peatland    2  2  8  35  0  0  47  0.74  

Seasonal 

wetlands  

  7  2  5  3  40  7  64  0.63  

Deep water    0  0  0  0  1  89  90  0.99  

Total    145  79  123  78  50  96  572    

Producer`s 

Accuracy  

  0.90  0.81  0.82  0.45  0.80  0.93      

Overall 

Accuracy (%)  

                77  
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Table B.7 Confusion matrix for wetlands of Mediterranean/Humid 

subtropical climate zone after applying RF 

 

 

Wetland   
class  

Marsh  Mangrove  Swamp  Peatland  Seasonal 

wetlands  
Deep 

water  
Total  User`s 

Accuracy  

Marsh  31  1  2  2  3  0  39  0.79  

Mangrove  1  17  5  2  0  0  25  0.68  

Swamp  1  2  28  10  2  0  43  0.65  

Peatland  2  3  11  29  0  0  45  0.64  

Seasonal 

wetlands  
10  0  2  4  43  4  63  0.68  

Deep water  0  0  0  0  2  51  53  0.96  

Total  45  23  48  47  50  55  268    

Producer`s 

Accuracy  
0.84  0.86  0.95  0.80  0.89  0.98    0.88  

Overall 

Accuracy(%)  
              78  


