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Abstract

This thesis integrates optical indices and SAR polarimetric features obtained from
Sentinel-1 SAR and Sentinel-2 optical imagery from different seasons using a
Random Forest classification algorithm to produce a detailed wetland map, first for
southern Nigeria, and then for the whole of the main continent of Africa at 10 m
resolution. Wetlands of southern Nigeria cover a total area of 29,924 km? and those
of Africa cover 947,750 km?, larger than that indicated in previous coarser global
wetland maps, excluding open water bodies. A wetland fragmentation and
population density index was developed indicating that ~13,021 km? of wetlands are
potentially threatened by human activity within Africa. Using the new map and
compiled wetland carbon inventory data, it was estimated that African wetland
contains about 54.30 Gt of carbon which is around 5% to 9% of wetland soil carbon
stored globally. Calculations across a range of climate zones suggest that drained
peatland, mangrove and marsh in Africa could emit 260Mt C yr' (936Mt CO2 yr
equivalents) which is equivalent to 2.4% of global net annual CO2 emissions. Field
sampling across Africa is required in order to include emissions from other wetland
types. Long-term assessment of changes within the wetlands of the Lake Chad
region for 2000-2020 showed that there was a net loss of wetland area. The greatest
wetland decline occurred between 2000 — 2005 with a net loss of 277 km? (+12 km?).
However, there was wetland loss for all periods studied, including during a wetter
period when it was anticipated that wetland extent would increase. The most
significant change occurred around the northern pool of the lake. The tools
developed by this study pave the way for ongoing high-resolution monitoring and

assessment of African and global wetlands.
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Chapter 1

Introduction

1.1 Problem statement

African wetlands include some of the most productive ecosystems in the world, and
in many cases serve as the exclusive source of natural resources upon which rural
economies depend (Amler et al., 2015; Nsengimana et al., 2017; Musasa and
Marambanyika, 2022), providing food, energy, medicine and building materials for
large human populations (Metz, 2017; Igu and Marchant, 2017; Ondiek et al., 2020).
In addition to water purification (Salimi and Scholz, 2021), flood attenuation, carbon
storage and sequestration, wetlands provide unique and highly productive
landscapes for fodder, fibre and fuel (Nhamo et al., 2017; Steinbach et al., 2021).
Wetlands, with their abundant store of freshwater, generally organic-rich soils, and
high productivity, play a central role in the economy of all large African river basins
and coastal zones (Adekola et al., 2012; Ondiek et al., 2020; Steinbach et al., 2021;
Matema et al., 2022). African wetlands are thought to store over 30 Pg of carbon but
are increasingly threatened by climate change, watershed development, agricultural
expansion, invasive species, and pollution (Ouyang and Lee, 2020; Ballut-Dajud et
al., 2022). Human interference in combination with effects of climate change, may
compromise the functionality of these socio-ecological systems (Amler et al., 2015;
Mandishona and Knight, 2022; Li et al., 2022). Recent studies estimate 30-50% loss
of some African wetland types in recent decades, underscoring the need for

improved conservation efforts (Rebelo et al., 2010; Bootsma et al., 2019).
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Yet, information about African wetlands is far from complete. The existing wetland
mapping products on a global scale, such as the Ramsar site database, only contain
information on wetlands that have been classified as of ‘international importance’.
The Global Lakes and Wetlands Database (GLWD) has information that is dated and
probably incomplete (Gumbricht et al., 2017; Hu, Niu and Chen, 2017; Steinbach et
al., 2021). Other recent mapping products such as PEATMAP (Xu et al., 2018) are
typically based on secondary data of varying quality and age with a mix of spatial
resolutions. An obvious example can be seen in the centre of Figure 1.1 where there
is a sudden discontinuity in peatland coverage between country borders. GLWD and
PEATMAP also do not provide information on the dynamic condition of African
wetlands. Consequently, this makes it more difficult to assess the impact of human
activities on the surrounding wetland ecosystem. Furthermore, in recognition of the
climate change problem, the IPCC (2013) Wetland Supplement shows that there is
a need to understand the distributions of wetlands and their interactions with the
climate system much more. There is also a need to investigate the result of human

interaction with wetlands, especially in densely populated regions of Africa.
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Figure 1.1. Distribution of African wetlands based on a combination of data

from the Global Lakes and Wetlands Database GLWD (Lehner and Doll, 2004)
(1km? resolution) and PEATMAP (Xu et al., 2018).

1.2 Research gap

Many existing continental and regional wetland maps rely on coarse resolution
sensors unable to differentiate wetland types and missing small/narrow wetlands

(Mahdianpari et al., 2018; Slagter et al., 2020). Continental products overlook newer
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high-resolution data that could improve mapping accuracy if leveraged (Kaplan et
al., 2019; Gulacsi and Kovacs, 2020). Studies utilizing high resolution data have
focused only on individual wetland sites rather than undertaken continental
approaches (Sahour et al., 2022). Studies to date have not fully exploited synergies
from multi-sensor integration of current high resolution optical and radar data for
continental-scale wetland mapping especially for African regions (Li et al., 2022).
Optical data alone has limitations for wetland classification while frequent cloud
cover restricts multi-temporal analysis in the tropics (Amani et al., 2017; Mahdavi et
al., 2018). The validation and calibration of remote sensing data often rely on limited
ground truthing, leading to uncertainties in the accuracy of wetland maps. Robust
ground-truth data collection is essential for improving the reliability of mapping
results (Jamali and Mahdianpari, 2022). The lack of a recent accurate continental

wetland baseline hampers monitoring of status, threats, and changes across Africa.

In this thesis, | seek to improve the mapping of African wetlands using a range of up-
to-date, high-resolution, remote sensing techniques and ground control data. This
approach serves as the foundation for improving our understanding of these
wetlands and supporting more informed conservation decisions. Through this
mapping, | will assess the characteristics of current African wetlands, their
fragmentation, and their potential as carbon stores. Additionally, | aim to study
wetland change over time in a case study region. Below, | provide an overview of

the study's research questions and methods.
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1.3 Research aim and objectives

The overall aim of the study is to develop combined approaches that enable the

production of a map and the associated assessment of the extent and types of

wetlands in Africa, at high spatial resolution, by employing a variety of remote

sensing techniques. In doing so, | seek to produce and interrogate a novel high

resolution wetland map for the whole continent. To achieve the general aim of the

research, the following research questions are defined:

1.

What is the current extent of wetland area in southern Nigeria and how is this
broken down into different wetland types? (Method prototype, described in

Chapter 4)

What is the current extent of wetland coverage across Africa? How is this
distributed across different wetland types and climate zones? What is the
estimated carbon storage in African wetlands, and how might greenhouse gas
emissions vary under different degradation scenarios? Additionally, what is
the relationship between population density and highly fragmented wetland
areas? (Chapter 5)

What is the trend of change in Lake Chad region wetlands (as a regional case
study) over two decades and can these changes be linked to clear human
drivers of change? This region is one of the most important transboundary

wetland regions in Africa (Chapter 6)

1.4 Summary of methods

To address the challenge of mapping African wetlands at high spatial resolution (10

m), to estimate the current distribution and extent of different wetland types and
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assess the association of human population with surrounding wetland fragmentation
in Africa, | took a remote sensing approach. However, | first gathered information on
the location and characteristics of wetlands in Africa from various sources. My
reference data were obtained from the Food and Agriculture Organization (FAQO)
global dryland assessment (Bastin et al., 2017), Ramsar Sites database (2019),
other organization reports, journal papers, and academic theses (both PhD and
MSc). In this study, | make use of Google Earth Engine (GEE) computational power
and the availability of advanced remote sensing data collected by Copernicus
Sentinels and other earth observation data. The whole study involved the extraction
of spectral indices such as Normalized Differential Vegetation Indices (NDVI),
Normalized Differential Water Indices (NDWI), Modified Normalized Differential
Water Indices (MNDWI) and Tessled Cap Wetness Indices (TCWI). The
classification was performed using random forest (RF) classifications. Once the
maps were produced, | then developed an index of wetland fragmentation and a
population index to analyze the relationship between wetland fragmentation and
population at 10 km grid scale. This was performed by overlaying the gridded
fragmentation layer with the gridded population layer to quantify the coincidence of
wetland fragments and human population. In addition, for Chapter 6, multi-year time
series Landsat data composites were used to map the spatial distribution and
temporal changes of wetland area in the Lake Chad region for the last two decades.
Change Vector Analysis (CVA) was used to assess the changes from wetland and

to different landcover type in Lake Chad region.
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Chapter 2

Remote sensing of wetlands

2.1 Overview

In this chapter | provides a general review of wetland characteristics and research
that has been conducted on the remote sensing of wetlands. | firstly outlines wetland
types before describing the significant role played by African wetlands and the
threats facing these ecosystems. | then review the applications of different remote
sensing datasets and techniques, highlighting their advantages and limitations for
mapping different wetland types. | then discuss different change detection methods,
their strengths and limitations, before outlining the most suitable approaches for my

study.

2.2 Wetland definitions

Wetlands are ecosystems that exist at the boundary between terrestrial and aquatic
environments. Wetlands occur where the water table is usually at, or near, the
surface, or in a region periodically inundated with shallow water and where, under
normal circumstances, the system is covered by active vegetation typically adapted
to life in waterlogged conditions (Oberholster et al., 2014; Wulder et al., 2018;
Mahdianpari et al., 2020; Mandishona and Knight, 2022). The Ramsar Convention
(1971) defines wetlands as "areas of marsh, fen, peatland, or water, whether natural
or artificial, permanent or temporary, with water that is static or flowing, fresh,
brackish, or salt, including marine areas where the depth at low tide does not exceed

siXx meters."



Wetlands can be grouped into mineral-soil systems and organic-soil systems.
Sometimes lakes are also classified as wetlands. Mineral soil systems include
marshes and some swamps. Marshes can often be found at the edges of lakes and
streams and are dominated by herbaceous rather than woody plant species (Li et
al., 2022; Zhang et al., 2023). The main source of water for marshes is by direct flow
from lakes or streams (Woodson, 2012), or sometimes from direct rainfall (Herbst,
2015). Marshes can also be found in the coastal zone between land and
open saltwater and these are known as salt or tidal marshes (Sun et al., 2016).
Saltmarshes are characterized by distinct vegetation types, highly dependent upon
soil salinity and being regularly flooded by tides (Van Beijma et al., 2014; Mitsch and
Gosselink, 2015; LaRocque et al., 2020). Mangroves are another dominant coastal
wetland ecosystem characterized by trees and shrubs that are salt-tolerant.
Mangroves are mostly evergreen forests that grow in sheltered low lying coasts
estuaries, and lagoons of tropical and subtropical regions (Adekanmbi and
Ogundipe, 2009; Lee and Yeh, 2009; Kuenzer et al., 2011; Dan et al., 2016; Navarro
et al., 2021). Swamps are forested wetlands (Jones, 1997; Lehner and DAll, 20044a;
Gumbricht et al., 2017) which occur along large rivers or on the shores of large lakes
where they are critically dependent upon natural water level fluctuations with
permanently or seasonally flooded mineral soil (Jones, 1997). Some swamps have
hummocks, or dry-land protrusions. Swamps are dominated by woody vegetation
that tolerates periodic inundation and waterlogging (Mahdianpari et al., 2017). Some

wetland classifications include swamps that occur on organic soils, often called peat



9
swamps (Connolly and Holden, 2017; Langan et al., 2018; Elshehawi et al., 2019).

Others, however, only refer to swamps on mineral soils.

Peatlands occur where the soil is formed predominately from dead plant material
that has not decayed, due to waterlogging. Bogs are peatlands that have no
significant groundwater inflow and receive water mostly through precipitation
(Connolly and Holden, 2017; Chico et al., 2019). Because the main source of water
is from precipitation, the nutrient content of bogs is low. The peat is generally
waterlogged, with low permeability reported from temperate at high latitude sites,
except for within a few cm close to the peat surface (Acreman and Holden, 2013)
and is associated with very slow rates of plant decomposition (Clarkson et al., 2012).
Tropical peatlands tend to have higher permeability (Baird et al., 2017). Fens are
mildly acidic or alkaline peatlands that receive their water primarily from groundwater
sources and a little from precipitation. They are more nutrient-rich than bogs and
support a wider variety of species because of their connection to groundwater

(Clarkson et al., 2012).

2.3 Importance of wetlands

Wetland ecosystems are important providers of multiple values to humans, including
socio-esthetical value, intrinsic value and economic value (Hu, Niu and Chen, 2017;
Gumbricht et al., 2017; Slagter et al., 2020; Musasa and Marambanyika, 2022). The
global contribution of wetland ecosystem services in monetary terms has been
estimated to be around 14 trillion US dollars every year, thereby making a vital

contribution to human livelihoods (Turpie and Kleynhans, 2010; Musasa and
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Marambanyika, 2021). Wetlands are thought to directly supply freshwater to around
1.5 to 3 billion people as well as provide 40% and 20% of water requirements for
industrial use and irrigation respectively (Frangois et al., 2005; White et al., 2015;

Klemas, 2016; Salimi and Scholz, 2021).

Wetlands are highly productive in terms of biological diversity supporting a richness
of flora and fauna (Junk et al., 2013; Mahdianpari et al., 2020; Mao et al., 2020).
They play key roles in regulating biogeochemical cycles, including water flows and
associated nutrients, flood and storm-damage protection, water-quality
improvement, aquatic and plant-biomass productivity, and shoreline stabilization
(Acreman and Holden, 2013; Junk et al., 2013; Mahdianpari et al., 2018; Lu and
Chang, 2023). One of the most important roles of wetlands is in regulation of global
climate through sequestering and long-term storage of carbon from the atmosphere
— globally they contain over 30% of terrestrial carbon (Mitsch et al., 2013; Hassan et
al., 2014; Gumbricht et al., 2017; Mahdianpari et al., 2018; Mitsch and Mander, 2018;
Xiu et al., 2019). Undisturbed wetlands are known to moderate or to counterbalance
their positive climate forcing via methane (CH4) and nitrous oxide (N20) emissions
with sufficient uptake of carbon dioxide (CO2) so that they have a net cooling effect,
while also acting as long-term soil carbon stores (Petrescu et al., 2015; Zou et al.,

2022).

2.3.1 Wetlands in Africa
Wetlands are common across Africa's diverse biomes, including major floodplains,

swamps, mangroves, peatlands, and riparian zones (Kariyasa and Dewi, 2011;
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Metz, 2017; Mandishona and Knight, 2022). Large wetland complexes include the
Sudd wetlands of South Sudan, Okavango Delta in Botswana, and Bangweulu
Swamps in Zambia. The percentage of wetland area in Africa has been estimated at
lying in a range of approximately 1% to 16% of the total area of the continent (Amler
et al., 2015; Li et al., 2022; Mandishona and Knight, 2022) though clearly with such
a range, there is very high uncertainty: a research gap that needs to be filled. For
example, in Equatorial Africa, the three largest wetland systems are believed to be
the Zaire swamps, spanning 80,000 km?, and the Sudd in the Upper Nile, covering
over 50,000 km? and the wetlands of the Lake Victoria Basin (about 50,000 km?)
(Vinet and Zhedanov, 2010). However, Dargie et al (2017) reported the discovery of
the Congo basin peatlands covering an estimated 145,500 km?2. Other major wetland
areas in Africa are thought to include the floodplains of the Niger and Zambezi
Rivers, and the Chad Basin which cover around 20,000 km?, and a further 12,000
km? of wetlands in southern Africa (Vinet and Zhedanov, 2010). However, due to a
lack of scientific investigation and inconsistent mapping policies in Africa, an exact
estimate of the total extent of wetlands in Africa is poorly constrained. According to
the Global Lakes and Wetlands Database (GLWD) the total area covered by
wetlands in Africa, excluding rivers, lakes and reservoirs, has been estimated as
1,514,804 km?. These wetlands vary in type from saline coastal lagoons in West
Africa to fresh and brackish water lakes in East Africa (Metz, 2017). The greatest
concentration of wetlands in Africa is thought to be roughly between 15°N and 20°S
(see Chapter 1, Figure 1.1). Despite widespread distribution across Africa,
knowledge of the African wetland extent and resources could be improved to support

management needs (Dixon et al., 2016; Davidson, 2017; Taylor et al., 2018).
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2.3.2 Threat to African wetlands

African wetlands face escalating threats from climate change, agricultural
expansion, pollution, invasive species, and infrastructure projects (Gumbricht et al.,
2017). Climate change such as rising temperatures, altered precipitation patterns,
and sea-level rise contribute to wetland loss and degradation. As the climate
changes, some regions experience prolonged and severe droughts (Meng et al.,
2016). Climate change will continue to impact, and exacerbate, changes in water
depth and flooding patterns. Irregular rainfall patterns have led to exceptionally dry
years during which wetlands are affected by low water flows that facilitate more
intense human exploitation, as observed, for example, in Nyando wetland, Kenya,
during 2004-2005 (Rongoei et al., 2013). The floodplains of Hadejia Jam’are and the
Zambezi basin have been affected as a result of reduced inflow caused by drought
(Olalekan et al., 2014). Climate change is recognized as a major threat to the survival
of species and integrity of ecosystems worldwide (Hulme, 2005; Halabisky et al.,
2016; Gitau et al., 2017; Penfound and Vaz, 2021). Wetlands represent a land cover
that is sensitive to climate change (Hu, Niu and Chen, 2017; Wu et al., 2021), and
vulnerable to changes in quantity and quality of their water supply. Climate change
may have a pronounced effect on wetlands through alterations in hydrological
regimes (Erwin, 2009; Mapeshoane, 2013; Berhanu et al., 2021). Regardless of the
potentially profound impact caused by current and future climate change on
wetlands, there is a lack of assessment of wetland degradation due to climate
change in Africa. This indicates a significant and urgent need to develop methods
for assessing potential changes in Africa's wetlands. The degradation of wetlands

also can lead to an increase in the release of greenhouse gases (GHG) which further
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exacerbate climate change (Limpert et al., 2020; Zou et al., 2022). However, one of
the major threats is increased wetland fragmentation driven by rapid human
population growth and associated land use changes across Africa (Kundu et al.,
2022; Wu et al., 2022; Magure et al., 2022). The growing human population
necessitates more land for various purposes, putting immense pressure on

wetlands.

Studies show extensive wetland loss and conversion to agriculture as African
populations expand and pressure intensifies for croplands (Bootsma et al., 2019). A
good example is the Yala swamp of Kenya which suffers a lot of pressure due to
high population, and this leads to uncontrolled exploitation of the wetland and its
resources (Olusola et al.,, 2016). The swamps of this area have been subject to
conversion since the 1960s, mostly for agricultural purposes, such as the growing of

rice, groundnuts, cassava, yams and sugarcane (Mwita, 2013; Olusola et al., 2016).

Agricultural expansion is inextricably linked to population growth in Africa. As the
population surges, the demand for food production rises. Wetlands, often
characterized by fertile soils and abundant water resources, become prime targets
for agricultural conversion (Mitsch and Gosselink, 2015). Draining wetlands for
farming and diverting water has fragmented hydrologic connectivity (Magure et al.,
2022). Population growth drives urbanization and infrastructure development, both
of which contribute to wetland destruction and fragmentation (Klemas, 2013). The
expansion of cities, the construction of roads, and the establishment of industrial

zones frequently encroach upon wetlands. For example, a large area of the Makurdi
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floodplain in Nigeria has been converted to a built-up area as a result of population
expansion (Anule and Ujoh, 2017). Better understanding the relationship between
population density and wetland fragmentation rates across Africa can help predict

future impacts and target conservation efforts.

The multifaceted threats to African wetlands are intricately connected to population
dynamics, emphasizing the need to understand the population-wetland
fragmentation relationship. By recognizing this connection, policy makers and
conservationists can develop effective strategies to mitigate the threats and ensure

the preservation of these invaluable ecosystems.

2.4 Remote sensing

Remote sensing technology allows for the observation, measurement, and analysis
of the Earth's surface and atmosphere, often resulting in the generation of imagery
and data that can be used for scientific research, environmental monitoring, and
decision-making (Alshammari et al., 2018; Kovacs et al., 2022). Data acquired
through remote sensing instruments allows for efficient mapping and analysis of land
cover over large areas. Several satellite systems have provided key data for land
cover mapping in recent years. These remotely sensed products are available at
different spatial, temporal, and spectral resolutions, by a range of spaceborne and
airborne sensors from multispectral sensors and hyperspectral sensors. These
sensors include widely used ones such as Landsat (Multispectral Scanner: MSS,
Thematic Mapper: TM, Enhanced Thematic Mapper. ETM+, Operational Land

Imager: OLI), Moderate Resolution Imaging Spectroradiometer (MODIS), as well as



15
Sentinel 2 and Sentinel 1 SAR. Medium resolution (10-30m) multispectral data from
Landsat 8, Sentinel-2, and SPOT have been widely used for broad vegetation and
land use classification (Maxwell and Warner, 2020). Hyperspectral sensors like EO-
1 Hyperion produce narrow-band spectra ideal for crop type discrimination
(Hirschmugl et al., 2017). SAR systems including Sentinel-1 and ALOS PALSAR
provide all-weather observation (Steele-Dunne et al., 2017) while Lidar data

increasingly provides 3D structure data (Anderson et al., 2010; Carless et al., 2019).

2.41 Remote Sensing of wetlands

The availability of remote sensing data offers an opportunity to map and monitor
wetlands in a spatially explicit manner in different climatic regions, lacking monitoring
systems (Gxokwe et al.,, 2020). However, accurately mapping wetlands is a
challenging task when using satellite data alone (Mwita, 2013; Gallant, 2015; Jamali
and Mahdianpari, 2022). While different wetland classes have distinctive
characteristics, they also share underlying ecological similarities that confuse
spectral and backscatter signatures (Kaplan and Avdan, 2018b). For example,
flooded forests and swamp forests exhibit similar flooding in radar and vegetation
patterns in optical data (Schmitt et al., 2014; Zhang et al., 2023). Transitions between
wetlands and uplands can also be gradational without clear boundaries (McCarthy
et al., 2018). Additionally, wetlands demonstrate significant spatiotemporal variability
due to change hydrology and phenology (Dabboor et al., 2017; Battaglia et al.,
2021). These factors make effectively discriminating diverse wetland ecosystems
difficult through remote sensing approaches. Low to medium resolution data such as

MODIS, Landsat and SPOT images have been widely and successfully used for
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monitoring the wetland vegetation and detecting the presence and extent of floods
(Bassi et al., 2014; Gumbricht et al., 2017; Wang et al., 2020; Wu et al., 2021).
However, their resolution may limit the ability to accurately identify detailed wetland
vegetation types. Powell et al. (2019) demonstrated the effectiveness of integrating
Landsat TM and ETM+ data sets coupled with digital elevation and light detection
and ranging (LIDAR) data sets to classify and map land-cover types in the semi-arid
wetlands of the Barwon-Darling River system, using the stochastic gradient boosting
algorithm and the fractional cover model. The study identified four land-cover classes
which included tree-dominated woodlands, shrub lands, vegetated swamps and
non-flood dependent terrestrial communities with an overall accuracy of 88%.
However, the study failed to distinguish between certain types of wetlands located
at the boundaries of the drier wetlands from the Landsat TM and ETM+ images used.
Li et al. (2015) assessed the effectiveness of MODIS spectral indices in monitoring
the hydrological dynamics of a small, seasonally flooded wetland (1364 ha) in semi-
arid southern Spain. Their analysis revealed a strong positive linear relationship
between the MODIS-inferred inundation area and field-measured water levels, with
an R? value of 0.96, indicating the success of the MODIS dataset in tracking the
hydrological dynamics of seasonal wetlands. However, the study focused on a single
seasonal wetland with only varying soil characteristics and unable to identify other
semi-arid and arid seasonal wetlands with diverging characteristics e.g., marshes
with dense emergent vegetation are even smaller and cover only a few MODIS
pixels. Chen et al. (2013) used a 250 m resolution MODIS dataset along with daily
field water levels to assess the effectiveness of MODIS time series data for

monitoring wetland cover dynamics. Four land-cover classes which were water,
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mudflats, submerged and emergent vegetation were identified with the overall
accuracy of 80.18% and Kappa coefficient of 0.734. There were, however, omission
errors of about 30% where water was confused with other classes such as mudflats
and emergent vegetation. Much of this water was located at the interface of mudflats
and other classes. Landmann et al. (2010) also utilised MODIS coupled with
topographical landform data set to map basic wetland classes in semi-arid Burkina
Faso and Mali. The results showed low accuracy in the classification of mapped land
cover types. Although the studies demonstrated the success of these freely available
datasets in detecting and mapping different wetland cover classes, the fine detailed

differentiation between the classes was a major challenge.

Advances in remote sensing technology have led to an increase in the availability of
high spatial and spectral resolution imagery. Sentinel-2 Multispectral Instrument
(MSI) launched by ESA in 2015, a new generation multispectral sensor, has been
successfully used in land use/land cover research, because of its high spatio-
temporal resolution, wide spatial coverage and broad spectrum. Furthermore, the
three red-edge bands of Sentinel-2 images are particularly effective for vegetation
monitoring (Kaplan et al., 2019). The study by Lefebvre et al. (2019) showed that
Sentinel 2 provided the highest performance (90%) than Landsat 7 (85%) and
Landsat 8 (86%) for monitoring the water dynamics of seasonal wetlands. According
to Sanchez-Espinosa and Schroder (2019) the use of Sentinel-2 improved the
accuracy of mapping Mediterranean wetland area compared to using Landsat 8
alone. However, optical satellite sensors are always vulnerable to cloudy and rainy

weather, so it is difficult to acquire adequate and clear Sentinel-2 images especially
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in the tropical and subtropical coastal areas. Indeed, optical imagery is crucial as it
provides important information on reflectance, which indicates the presence or
absence of vegetation, identifies vegetation types, and reveals soil moisture levels
in areas with dense canopies.(Cardoso et al., 2014; Amani et al., 2018; Mahdavi et

al., 2018).

Synthetic aperture radar (SAR) systems like Sentinel-1, RADARSAT, and ALOS-2
are frequently used for wetland mapping, flood detection, forest classification, crop
identification, and biomass mapping due to SAR's all-weather capability and
sensitivity to surface roughness, texture, and moisture content under vegetation
canopies (Clewley et al., 2015; White et al., 2015; Hribljan et al., 2017; Ruetschi and
Schaepman, 2018; Huang, 2019; LaRocque et al., 2020; Masoud Mahdianpari et al.,
2020). The utilization of SAR relies on both polarization and frequency
considerations, as highlighted by Mahdianpari et al. (2017). In line with the scatter
mechanisms of ground targets observed through Polarimetric SAR, numerous
studies have been undertaken to discern diverse land cover types based on distinct
shapes, structures, roughness, and permittivity. For instance, dual-polarization
(vertical transmit-vertical receive (VV) / vertical transmit-horizontal receive (VH))
data have been used for the identification of the water body and vegetation(Evans
and Costa, 2013; Mahdianpari et al., 2017; Kaplan and Avdan, 2018a) . Another
parameter in SAR, known as frequency or wavelength, is associated with the
penetration depths into ground targets, providing insights into the land surface
structure. Longer wavelengths, such as those in the P- and L-band, possess greater

penetration ability, allowing for the detection of the vegetation canopy and the
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quantification of soil moisture. Conversely, shorter wavelengths, like those in the C-
and X-band, exhibit better performance in classifying land cover in open areas, such
as open wetlands. Consequently, multi-frequency and multi-source SAR data have
been integrally exploited for wetland monitoring and achieved successful results
(Mahdianpari et al., 2017; DelLancey et al., 2019; Amani et al., 2021). However, the
high cost and challenges in acquisition often limit the feasibility of using multi-
frequency and multi-source Polarimetric SAR data, particularly in time series
analysis. Sentinel-1 satellites with a C-band and dual-polarization (VV/VH) sensor
provides a promising opportunity for time-series wetland land cover analysis at low
cost. Polarimetric features, such as backscatter coefficient interferometry data, the
degree of polarization and linear polarization ratio, have been widely utilized to help

identify wetland cover types (Guo et al., 2017; Mohammadimanesh et al., 2018).

Some studies reported that the backscatter coefficients in Sentinel-1 SAR time
series have the greatest utility among SAR features in wetland cover classification
and could obtain the highest classification accuracy (Li et al., 2020; Costa et al.,
2021). However, the accuracy of land use/cover classification using SAR data is
typically lower than that achieved with optical multispectral data at the same spatial
resolution. Combining optical and SAR data for land cover and vegetation mapping
brings accuracy higher than that of using only either optical or SAR images (Gao et
al., 2017; Mahdianpari et al., 2018; LaRocque et al., 2020; Sahour et al., 2022). With
the launch of many long-term observation missions, the volume and accessibility of
optical and SAR remote sensing images enable the accuracy improvement in

landcover research using remote sensing (Mahdianpari et al., 2020; Mahdianpari et
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al., 2018). However, limited studies on wetland monitoring have utilized dense time
series of optical and SAR images. Only recently, the time-series Sentinel-1 and
Sentinel-2 images were combined to improve the land surface monitoring accuracy
(Estupinan-Suarez et al., 2015; Slagter et al., 2020). Therefore, combining Sentinel-
1 and Sentinel-2 data could be very useful for large scale wetland mapping at high
resolution and has significant advantages in wetland mapping at regional or global

level (Mahdianpari et al., 2018; Slagter et al., 2020).

Several remote sensing techniques have been used for mapping different types of
wetlands (Ritchie and Das, 2015; Nhamo et al., 2017; Amani et al., 2019; Jamali et
al., 2021). These techniques are use either use for mapping and identification of
wetlands and different land covers. For example, an unsupervised classification
technique known as iterative self-organizing data analysis (ISODATA) has been
commonly used to map and classify wetland cover type (Mwita, 2013; Chen et al.,
2014). This classification technique requires no training data and there is no
expensive training phase in the classification process, only an analyst's time is
required to classify the clusters. However, it is possible that this method may not
produce spectral groupings that match the classes of interest resulting in
misclassification error (Ritchie and Das, 2015). Supervised classification techniques
such as Maximum Likelihood (ML), , Support Vector Machine (SVM), Atrtificial Neural
Network (ANN), K-Nearest-Neighbors (K-NN), Decision Tree (DT), and Random
Forest (RF) has been widely used for to classify wetland cover (Anule and Ujoh,
2017; Moser et al., 2016; Nhamo et al., 2017). These techniques may require training

data for the classification but do not require much of the analyst's time. These
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techniques also allow for the creation of classes matching those of interest (Ritchie
and Das, 2015; Dang et al., 2021) In terms of accuracy and commonly used
supervised classifiers for wetland mapping, RF is generally characterized by the
highest mean classification accuracy, followed by the SVM classifier and the DT
classifier, whereas those of NN and MLC are relatively lower (Gémez et al., 2016;

Ma et al., 2017; Mahdianpari et al., 2018; Jamali et al., 2021).

2.5 Change detection techniques

Change detection involves the process of identifying variations in the state of an
object or phenomenon by observing it at different times (Scharsich et al., 2017; Qu
et al., 2022). Generally, change detection involves the application of multi-temporal
datasets to quantitatively analyse the temporal effects of the phenomenon. Each
change detection algorithm has their strength over the other depending on the area
of application. Change detection algorithm can be into seven categories (Lu et al.,
2004): (1) algebra, (2) transformation, (3) classification, (4) advanced models, (5)
Geographical Information System (GIS) approaches, (6) visual analysis, and (7)

other approaches.

Change detection algebra methods include image differencing, image regression,
image ratioing, vegetation index differencing, change vector analysis (CVA) and
background subtraction. A common characteristic of these algorithms is the selection
of thresholds to identify areas of change. These methods (excluding CVA) are
relatively simple, straightforward, easy to implement and interpret, but cannot

provide complete matrices of change information. CVA is essentially an extension of
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image differencing, capable of detecting all changes that exceed specified
thresholds and offering detailed information about those changes. CVA can measure
change in more than two spectral bands, giving it an advantage when mapping
rapidly changing and highly diverse wetlands (Klemas, 2013; Gemechu et al., 2022).
It produces robust results for detecting wetland changes due its sensitivity to
variations in class reflectance caused by high intra-class variability influenced by
landscape heterogeneity (Landmann et al., 2013; Liu et al., 2020). Landmann et al.
(2013) used a MODIS CVA-approach to map wetland dynamics in the Linyanti
wetland from 2001-2010. The result showed the high potential of the CVA to detect
interannual wetland dynamics and trends over such a time period. The
transformation category includes PCA, KT, Gramm-Schmidt (GS), and Chi-square
transformations. One advantage of these methods is in reducing data redundancy
between bands and emphasizing different information in derived components
(Hussain et al., 2013; Hussaini et al., 2020). These methods can decrease the high
correlation between the spectral bands providing independent information on
change pixels of the wetland cover (Connell, 2012; Dronova et al., 2015;
Chatziantoniou et al., 2017). However, they cannot provide detailed change matrices
and require selection of thresholds to identify changed areas. Another drawback is
the challenge of interpreting and labelling change information on the transformed

images.

The classification type of change detection includes post-classification comparison
(PCC), spectral-temporal combined analysis, expectation—maximization algorithm

(EM) change detection, unsupervised change detection, hybrid change detection,
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and Artificial Neural Networks (ANN) (Ojaghi et al., 2017). The major advantage of
these methods is their capability of providing a matrix of change information and
reducing external impact from atmospheric and environmental differences between
the multi-temporal images (Hussain et al., 2013). However, selecting high-quality
and sufficiently numerous training sample sets for image classification is often
difficult, for historical image data classification. The time-consuming and difficult task
of producing highly accurate classifications often leads to unsatisfactory change
detection results, especially when high-quality training sample data are not available
(Mwita, 2010; Hussain et al., 2013). In a study by Sica et al. (2016) PCC produced
high accuracy for mapping and quantification of wetland changes in the Lower
Parana River Delta, Argentina. Dadaser-Celik and Cengi, (2013) successfully
employed an ANN model to simulate and predict water levels in the Sultan Marshes.
Debanshi and Pal (2020) demonstrated the potential of ANN for delineation and
monitoring of wetlands in the Ganges delta revealing details on the shrinkage of the

wetland area.

The advanced model-based change detection category includes the Li—Strahler
reflectance model, spectral mixture models (SMM), and biophysical parameter
estimation models. In these methods, the image reflectance values are often
converted to physically based parameters or fractions through linear or nonlinear
models (Guo et al., 2017). The transformed parameters are more intuitive to interpret
and better to extract wetland vegetation information than are spectral signatures
(Guo et al., 2017). For example, Halabisky et al. (2016) assessed the condition of

wetland changes and trends using a spectral mixture method but the disadvantage
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of these methods is the time-consuming and difficult process of developing suitable

models for converting image reflectance values into biophysical parameters.

The visual analysis category includes visual interpretation of multi-temporal image
composite and on-screen digitizing of changed areas. This method allows analysts
to fully leverage their expertise and knowledge. Key elements such as texture,
shape, size, and patterns in the images are essential for accurately identifying land
use and land cover (LULC) changes through visual interpretation. The disadvantage
of this method is the time consumed for a large area change detection application
and it is difficult to update the change detection results in a timely manner. It is also

difficult to provide detailed change trajectories.

The choice of particular change detection methods depends on their abilities to
detect specific changes in land use/landcover. PCC, for example, specifies changes
from a particular class to another, while CVA shows magnitude and the direction of
change (D. Liu et al., 2020), and ANN works better with small areas and is very
effective in also identifying areas with significant changes (Dadaser-Celik and
Cengiz, 2013; Debanshi and Pal, 2020). The selection of a suitable method to
implement accurate change detection for a specific research purpose or study area
is still difficult even though a variety of change detection techniques have been
developed. Post-classification comparison is the most common technique used in
wetland studies to quantify total wetland change and locate specific areas where
change has occurred (Tewkesbury et al., 2015; Ye et al.,, 2016). It involves

independently classifying images from different years and then comparing the results
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to detect change. However, conducting separate classifications introduces errors
into each map that are then compounded when the maps are compare (Baker et al.,
2007; Salih et al., 2017). This significantly impacts studies where most of the area is
unchanged which result to vast unchanged to be classified multiple times, each time
with new errors. This increases the overall error in the change analysis. In contrast,
change vector analysis (CVA) can detect subtle differences in class reflectance
resulting from high intra-class variability caused by landscape heterogeneity
(Rahman and Mesev, 2019). By analyzing the intensity and direction of change
vectors, CVA avoids the compounding of classification errors that often occurs when
comparing independent classifications from two time points (Landmann et al., 2013;
D. Liu et al., 2020). Additionally, CVA reduces the need for collecting training and
reference data for historical images. Since unchanged areas can be used as
reference data, this avoids errors introduced by collecting separate training data for

each image date (Landmann et al., 2013; Salih et al., 2017).

For the purpose of this study | propose the use of change vector analysis to
accurately quantify the changes between individual wetland class and other non-

wetland categories.

2.6 Summary

Some wetlands vary seasonally and over years in their appearance and size, and
they are sometimes highly dynamic. Others are fairly stable over long periods unless
degraded by human action, at which point degradation can be rapid. Since ancient

times wetlands have suffered from human disturbance, but over the past 200 years
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these disturbances have rapidly accelerated. The current wetland mapping products
on a global scale such as Global Lakes and Wetlands Database (GLWD) and the
Ramsar site database cannot match either the need for global wetland dynamic
monitoring or the need for understanding their internal processes due to their coarse
spatial resolution. Many of these global wetland maps rely on data that can be
decades old and, particularly in developing countries, with very limited ground truth
data. It is therefore important to improve maps of these ecosystems, using a range
of techniques, to get a complete picture of wetland area and to establish the range
and extent of different wetland types and their fragmentation. Comprehensive
wetland maps and an understanding of the nature of their fragmentation are needed
to build economic assessments of wetland ecosystem service provision and to
support decision-making by regional and international bodies seeking to protect
wetland systems as well as for inclusion in coupled land-surface—climatic models.
The latter is crucial since wetlands are important for land—atmosphere carbon

dynamics, greenhouse gas exchange, and the water cycle.

A high-resolution continental view about the types and distribution of wetlands in
Africa is lacking. Most of the studies on wetlands in Africa have been conducted at
a local scale and given the vastness of the continent, there is a dearth of studies of
wetland fragmentation which means that an overall assessment of the state and
condition of African wetlands is currently very challenging. There is potential for
remote sensing techniques to help with the assessment of the status and extent of

African wetlands.



27

Chapter 3
Methodology

3.1 Overview

| used high resolution (10m) optical and radar imagery to map wetlands, their
distribution and fragmentation, and to estimate the current extent of wetland area,
the potential carbon flux from wetland degradation, and the relationship between
population and highly fragmented wetland regions (Chapters 4 and 5). Following the
identification of the spatial distribution wetland types and their fragmentation in
Africa, a more focused change detection approach was conducted to analyse the
trend of wetland changes in one of the most important transboundary wetland

regions in Africa (Chapter 6).

To begin with, | produced an updated high resolution (10m) wetland map of Southern
Nigeria (Chapter 4) leveraging the computational power of Google Earth Engine
(GEE) and the availability of advanced remote sensing data collected by Copernicus
Sentinels and other earth observation data. The whole study involves the integration
of indices from both optical and radar imagery and classification of imagery using
the Random Forest (RF) algorithm supported by compiled reference points
containing information about the location and characteristics of wetlands from

multiple sources.

| then scaled this approach up to map wetland areas across the wider African

continent, adapting my methods to apply to different climatic zones (Chapter 5). The
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next step was to develop an index to model the distribution of wetland fragments in
relation to population, called Wetland Fragmentation and Population Index (WFPI)
(see Chapter 5). This aimed to identify the association of wetland fragmentation with
human population. To model the WFPI, the population datasets from the Gridded
Population of the World database (GPW V4), was combined with my new high
resolution wetland map. | used a fuzzy logic approach to create a membership rank
for the fragmentation grid and population grid layer. The gridded fragmentation
membership layer was overlayed with the gridded population membership layer to
quantify the coincidence of wetland fragments and human population. In addition, |
estimated the total carbon stocks stored in African wetlands and calculated the
potential carbon emissions from different wetland types for two wetland degradation

states in each of the five climate zones of Africa using the new wetland map.

In this chapter | outline the methods that underlie the work in the following chapters,
namely: (1) selection and preparation of satellite imagery, (2) identification and
collation of ground control points and (3) justification and ethos of the classification

method.

3.2 Data collection and preprocessing

3.2.1 Selection and preparation of satellite imagery

In this study, | used three remote sensing image datasets (Landsat, Sentinel-1 and
Sentinel-2, Table 3.1) accessed through the GEE Data Catalogue. For the 10m
resolution wetland mapping, Sentinel-1 radar images and Sentinel-2 optical images

were used, while Landsat images were acquired for the long-term wetland change
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detection. | selected 345 and 13596 images of Sentinel-2 Top of Atmosphere
reflectance data with 16 spectral bands for Southern Nigeria and the entire African
continent respectively. Due to cloud coverage affecting a large number of Sentinel-
2 observations in my study area, especially during rainy seasons, | used an initial
selection criterion of cloud fraction <20%. Then | applied a cloud mask to remove
cloud and cirrus-cover using the quality assurance bands available through GEE
(Hird et al., 2017; Mahdianpari et al., 2018; Gulacsi and Kovacs, 2020) before
formation of a composite image. Surface reflectance data for two Landsat data
products (Landsat 7 ETM+ and 8 OLI) from 2000 to 2022 were collected for the
change detection analysis. While the Landsat archive contains remotely sensed
imagery continuously acquired since 1972, frequent cloud cover creates substantial
data gaps over certain regions, especially wetland areas or during wet seasons. To
achieve my objectives, | created cloud-free image composites using scenes with
minimal cloud cover. Notably, after the 2003 failure of the scan line corrector (SLC)
on Landsat 7's ETM+ sensor, approximately 22% of pixels in its images contain data
gaps. To fill these SLC-off gaps, | utilized a common gap filling technique to
interpolate pixel values across the stripes of missing data (Chen et al., 2011). This
allowed me to reconstruct the full images needed for continuous wetland mapping.
For Sentinel-1 | used a total of 6112 Ground Range Detected interferometric wide-
swath images collected in ascending orbit, which are projected onto a regular 10 m
grid with dual VV/VH polarisation imagery available at an average acquisition interval
of 12 days within the study area. Similar preprocessing steps implemented in the
ESA SNAP Sentinel-1 toolbox including updating orbit metadata, thermal noise

removal, terrain correction, GRD border removal and radiometric calibration were
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applied. | then corrected for incidence angle (Hird et al., 2017) and reduced radar

speckle using an adaptive sigma Lee filter on the GEE platform.

Table 3.1 A description of image data and features extracted.

Image data Sensor Bands Feature extracted
type

Landsat 450-12500nm spectral bands 1 (blue), 2 (green), 3
(red) 4 (NIR) 5 and 7 (SWIR), the
normalized difference vegetation index

Landsat OLI 430-12500nm (NDVI, normalized difference water
index (NDWI), modified normalized
differential water Indices (MNDW]I), and

tasseled cap wetness index (TCWI).

ETM+

Sentinel-2 MSI 490-2190 nm spectral bands 2 (blue), 3 (green), 4
(red) 8 (NIR) 11 and 12 (SWIR), the
normalized difference vegetation index
(NDVI, normalized difference water
index (NDWI), modified normalized
differential water Indices (MNDWI), and

tasseled cap wetness index (TCWI).

Sentinel-1 SAR VV-VH vertically transmitted, vertically received
SAR backscattering coefficient o®VV.
vertically  transmitted,  horizontally
received SAR backscattering coefficient

o%H.

. . . 4%
the ratio polarized index VE’
VH-VV

VH+VV™

normalized polarized ratio

3.2.2 Image compositing and feature extraction
In this study two different types of image composites were generated: seasonal and
yearly composites (Table 3.2). Since Sentinel-1 SAR backscatter is unaffected by

cloud cover, | incorporated information from both dry and wet seasons to create two
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seasonal composites to capture explicit phenological information appropriate for
wetland mapping. However, it is only possible to produce a yearly composite for
Sentinel-2 and Landsat data due to the high number of cloudy images which makes
it impossible to collect sufficient cloud free image to generate full coverage seasonal
composites. For the southern Nigeria region, each composite was constructed from
the mean value for each pixel, per band basis, to obtain observations for the
available dates at a point in a single representative pixel, hence preserving
relationships between bands. To map the wetlands in different climate regions
across Africa, individual composites for each climate zone were constructed to
capture the semantic information of wetland classes within the different climate
zones. | created a composite using the maximum pixel value for the Arid and Semi-
arid climate zone to enhance wetland features within this drier region. The
composites for Tropical Wet (TW), Tropical Wet and Dry and Mediterranean
subtropical climate (MED) zones were constructed from the median pixel value of
the stacked images. or this study, | utilized blue, green, red, near-infrared, and short-
wave infrared bands from optical imagery. In addition to these optical bands, |
calculated several indices: Normalized Difference Vegetation Index (NDVI),
Normalized Difference Water Index (NDWI), Modified Normalized Difference Water
Index (MNDWI), and the Tasseled Cap Wetness Index (TCWI). SAR features
included backscatter from VV and VH, as well as the normalized difference (Ndiff =
(VH-VV)/(VH+VV)) and ratio indices (Nratio = VV/VH) for both wet and dry seasons.
The VH backscatter, which is vertically transmitted and horizontally received, is
sensitive to volume scattering within the vegetation canopy and is highly responsive

to vegetation structure (Steele-Dunne et al., 2017). On the other hand, VV, which is
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vertically transmitted and received, is more sensitive to surface roughness and soil
moisture, helping to distinguish flooded from non-flooded vegetation (Mahdianpari
etal., 2018). VV also provides distinctive returns for herbaceous wetlands and areas
with sparse or low vegetation, particularly during the early growth stages before

canopy closure (Baghdadi et al., 2010).
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Table 3.2 Composites and input variables for each region. The shaded box indicates the selected

variables of highest importance used as input for final classification in each region.

Study region Composites
Date value
Southern Nigeria Jan - Nov 2019 Mean
Jan - March
2019 (dry)

April — Oct 2019

(wet)

Tropical wet Jan - Dec 2021 Mean

Tropical wet and dry | Jan - Dec 2021 Mean

Mediterranean/Humid | Jan - Dec 2021 Mean

subtropical

Semi-arid Jan - April 2021 Maximum
(wet)

Arid/desert Jan - April 2021 Maximum

(wet)




34

3.2.3 Identification and collation of ground control points

The reference data for training were obtained from the Food and Agriculture
Organization (FAO) global dryland assessment (Bastin et al., 2017), Ramsar Sites
database (2019), Global Peatland Database (GPD), other organization reports,
journals, and academic theses (both PhD and MSc). The FAO datasets (7580 points
(87% of control points in this study) were generated through augmented visual
interpretation through Collect Earth (Bey et al., 2016) of VHR images available from
Google Earth. The reference points were collected from a squared cell centered at
a sample plot of 70 by 70 meters. The two imagery Sentinel 1 GRD (Interferometric
Wide swath mode (IW) has a pixel spacing of 10m and Sentinel 2 imagery has a 10
m resolution which are stack together to correctly train each individual pixel. Each
sample plot of training point closely aligned to 7x7 pixels of my Sentinel images
which provides high accuracy validation on several Sentinel pixels. Training points
from the Ramsar Sites database (2019) (415 points, 5% of ground control points),
Global Peatland Database (GPD) (352 points, 4% of control points), other
organization reports (54 points, 0.6%), journals (294 points, 3%), and academic
theses (both PhD and MSc) (165 points, 2%) originated from field surveys of the
different wetland sites across our study area. | checked and verified all the reference
points by visual interpretation of Digital Globe very high spatial resolution images (<
1 m pixels) made available for visualization through Google Earth. The verification
was performed to check for i) inconsistencies in wetland type among the references
point in each wetland region, ii) isolated and mislabelled reference points. To check

for inconsistencies, | compared the different reference points to make sure that all
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points matched the same wetland type in each climate zone. A total of 173 reference
points from different wetland regions were rejected due to inconsistency with the
wetland type between our data sources. Isolated and mislabelled reference points
were also excluded. The reference points were sorted into different climate zones to
accurately map wetland types according to their features within that zone. These
points were then grouped into training and validation points using random sampling
within each zone (Figure 3.1). To avoid bias in our classification, both our training

and validation points were uniformly distributed among the different wetland classes.

Training point
» Validation point

Mediterrean/

Humid subtropical
Semi Arid

Tropical wet
Tropical wet and dry
Arid

Highlands

0 500 1,000 km
[

Figure 3.1 Distribution of training and validation across the different climate
zones in Africa. Tropical wet (3,218 points), Tropical wet and dry (2,550 points),
Semi-arid (1,144 points), Arid (536) and Mediterranean/humid subtropical (846

points).
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3.3 Justification and ethos of classification method

The choice of a classification technique is based on three parameters - the accuracy,
complexity, and processing time. | used pixel by pixel classification because it is a
simpler and faster method when compared with object-based classification. In terms
of accuracy, several studies have demonstrated the high accuracy performance of
pixel-based classification (Moser et al., 2016; Acharya et al., 2017; Zhang et al.,
2023) and, in some cases, it produced higher accuracies than object-based methods
(Ardha Aryaguna and Danoedoro, 2016). Object-based classification has
computational limitations for large-scale mapping and is therefore less suitable for
continental-scale studies (e.g., Chapter 5). | considered supervised classification to
be appropriate for my goals because | was able to source sufficient training data to
allow image classification. These methods also allow for the creation of classes
matching those of interest (Ritchie and Das, 2015). For my pixel-based analysis, the
Random Forest (RF) machine learning algorithm was selected. The RF classification
is a relatively well-known supervised machine learning algorithm that produces an
ensemble of multiple decision trees iteratively using randomly selected subset of the
training dataset (Figure 3.2). RF is particularly suitable for handling variation within
land cover classes and reducing noise in the data and does not require prior

knowledge of the data distribution, unlike other classifiers (Slagter et al., 2020).

RF is a non-parametric classifier made up of a group of tree classifiers, capable of
handling high-dimensional remote sensing data (Belgiu and Dra, 2016). It uses
bootstrap aggregating (bagging) to produce an ensemble of decision trees by using

a random sample from the given training data and determines the best splitting of
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the nodes by minimizing the correlation between trees. Assigning a label to each
pixel is based on the majority vote of trees (Figure 3.2). The 'trees' are built at each
node by randomly selecting a subset of input variables for splitting, which helps
reduce overfitting and results in a more robust classification compared to other
classifiers. (Breiman, 2001). In the RF algorithm, certain parameters must be defined
to generate the forest trees: the number of decision trees to create (Ntree) and the
number of variables to be selected and tested for the best split during tree growth
(Mtry). The parameter Ntree was evaluated for values between 100 and 600, with a
value of 500 chosen, as the error rates for all classification models remained
constant beyond this threshold. | assessed the significance of sixteen variables
(Band 2, Band 3, Band 4, Band 6, Band 7, Band 8, Band 11, Band 12, NDWI, NDVI,
MNDWI, TCWI, (VH-VV)/(VH+VV), VV/(VH) (wet and dry)) as input channels for the
RF classification across each climate zone. After running the variable importance
algorithm for ten-fold, i then selected variables that were most important for
classification accuracy as input for our final classification. Although RF is an effective
and powerful machine learning algorithm, there are some drawbacks to consider
when using it. RF can overfit noisy datasets or data with outliers, particularly when
the number of trees is high. It is also susceptible to bias if there is imbalance in the
training sample, thereby having poor performance on minority class. In addition RF

is not suitable for real time analysis due to computational complexity.
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Figure 3.2 Training and classification phases of Random Forest classifier:
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variable j can have (reproduced from Belgiu and Dra, 2016)
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Chapter 4
Wetland mapping at 10 m resolution reveals fragmentation in

southern Nigeria

Abstract

Wetland ecosystems play key roles in global biogeochemical cycling, but their spatial
extent and connectivity is often not well known. Here, i detect the spatial coverage
and type of wetlands at 10 m resolution across southern Nigeria (total area: 147,094
km?), thought to be one of the most wetland-rich areas of Africa. | use Sentinel-1 and
Sentinel-2 imagery supported by 1500 control points for algorithm training and
validation. | estimate that the swamps, marshes, mangroves, and shallow water
wetlands of southern Nigeria cover 29,924 km? with 2% uncertainty of 460 km?2. |
found larger mangrove and smaller marsh extent than suggested by earlier, coarser
spatial resolution studies. Average continuous wetland patch areas were 120 km?,
11 km?, 55 km? and 13 km? for mangrove, marsh, swamp, and shallow water
respectively. My final map with 10 m pixels captures small patches of wetland which
may not have been observed in earlier mapping exercises, with 20% of wetland
patches being <1 km?; these were clustered around urban centres, suggesting
anthropogenic wetland fragmentation. My approach fills a knowledge gap between
very local (<400 km?) studies reliant on field studies and aerial photos, and low
resolution (>250 m pixel dimensions) global wetland datasets and provides data

critical for both improving land-surface climate models and for wetland conservation.
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4.1 Introduction

Wetlands are one of the world’s most important and productive ecosystem types,
playing a vital role in climate change mitigation (Hassan et al., 2014), hydrological
and biogeochemical cycles (Junk et al., 2013) and maintaining livelihoods (Hu et al.,
2017; Wilen & Bates, 1995). The southern part of Nigeria contains many wetlands
which are thought to consist mainly of marshes, mangroves and freshwater swamps
(Ayanlade & Proske, 2016; Olalekan et al., 2014). However, great environmental
pressure has been exerted on these ecosystems as result of land reclamation for
agriculture and industrialization (e.g. Niger delta; Chidumeje et al., 2015),
urbanization (e.g. Lekki lagoon of Lagos; Obiefuna et al., 2013) and contamination
from pollution (e.g. oil spills; Igu & Marchant, 2017; Ohimain, 1996). The regional
extent of existing wetlands that need protecting, and the extent of wetland loss and
degradation, has thus far only been quantified at coarse resolution. Although there
are some global wetland maps, such as Global Land Cover GLC250-2010 (250 m
pixels) and the Global Lakes and Wetlands Database (GLWD-3, 1 km pixels),
studies by Gumbricht et al., (2017), Hu et al., (2017) and Xu et al., (2018) show
inconsistencies between them due to differences in methods, data sources, and
validation. Many global wetland maps rely on data that can be decades old and,
particularly in developing countries, with very limited ground truth data. It is therefore
important to improve maps of these ecosystems, using a range of techniques, to get
a complete picture of wetland area and to establish the range and extent of different
wetland types and their fragmentation. Comprehensive wetland maps and an
understanding of the nature of their fragmentation are needed to build economic

assessments of wetland ecosystem service provision and to support decision-
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making by regional and international bodies seeking to protect wetland systems as
well as for inclusion in coupled land-surface - climatic models (e.g. JULES / QUEST:
Clark et al., 2011; Dadson et al., 2010). The latter is crucial since wetlands are
important for land-atmosphere carbon dynamics, greenhouse gas exchange, and

the water cycle.

Southern Nigeria is a low-lying region covering ~ 147,094 km? (between 4° 00" and
7° 00N, and 3° 00" and 9° O0'E, Figure 4.1) and is thought to have the most
extensive wetlands in west Africa (Gumbricht et al., 2017; Uloacha, 2004). However,
this area is undergoing huge population expansion and development and so the
wetlands may be at risk. The only wetland maps that currently span all of southern
Nigeria are from global projects (e.g., GLWD-3) and have relatively low resolution (1
km). However, there are some small-scale studies that have mapped a few small
areas of wetland in the region using satellite imagery (e.g. Ayanlade & Proske, 2016;
Obiefuna et al., 2013; Taiwo & Areola, 2009; locations shown in Figure 4.1. The
accuracy of these small-scale studies has yet to be assessed due to absence of
suitable ground truthing data. Furthermore, the techniques used in these studies are

not suitable for larger region or country-scale wetland mapping.

Satellite images have been used successfully to identify and map different wetland
types around the world (Fei et al., 2011; Guo et al., 2017; Klemas, 2011; Kuenzer et
al., 2011; Mahdianpari et al., 2018). Interpretation of multi-temporal imagery in
particular can aid classification of dynamic wetlands and their separation from other

ecosystems (Mahdianpari et al., 2018, Ozesmi & Bauer, 2002). Many wetlands have
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seasonal characteristics based on changes in water level and vegetation that can
assist their detection using remote sensing. For example, marshes experience
drying of vegetation and a decrease in water level during the dry season or low tide
periods (Hudson et al., 2006). This can be observed using optical images from a
decrease in the reflectivity in the near infrared and a slight increase in reflectivity to
the red band due to suspended particles settling out at low water levels (Hudson et

al., 2015).

The increasing availability of open access satellite data, and the growth of advanced
machine learning tools integrated with robust cloud computing resources has
recently made multi-temporal datasets more accessible (Mahdianpari et al., 2018).
The majority of previous studies have used multi-temporal Landsat imagery to
classify wetlands both with unsupervised classification algorithms (e.g. K-means and
ISODATA; Mwita et al., 2012; Ramsey & Laine, 1997) and with supervised
classification schemes (Bwangoy et al., 2010; Wright & Gallant, 2007), However, it
is now possible to supplement this with Synthetic Aperture Radar (SAR) C-band
multi polarization radar to discriminate between wetland types (Baghdadi et al.,
2010), with cross polarization (HV, VH) providing better discrimination between
some wetland classes. Combining multiple optical and SAR indices to classify
different wetland types has great potential for wetland classification (Kaplan, et al.,
2019; Mahdavi et al., 2018; Salehi et al., 2018), however, such approaches have not
yet been applied to the wetlands of southern Nigeria. As the only wetland maps that
currently span this entire globally important region have pixel sizes of 250 m and 1

km (Lehner and Doll, 2004; Gumbricht et al., 2017), there is a need for updated
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datasets that can be met by the combination of optical and radar satellite data. There
are limited attempts to map wetlands using remote sensing across certain parts of
Africa. Amongst the few studies i include that of Landmann et al. (2010) were
wetlands in western Burkina Faso and southern Mali (in West Africa) were mapped
using spectral indices from MODIS and topographic features from SRTM. Mwita et
al. (2012) map small scale wetlands in Tanzania and Kenya (in East Africa) using
both optical and microwave data employing the decision tree classification

techniques.

Here, i map for the first time, the extent of wetlands and categorize the different
wetland types for the whole of southern Nigeria (147,094 km?) at a 10 m resolution,
leveraging the open access SAR and optical images acquired from Sentinel-1 and
Sentinel-2 and exploiting cloud computing through Google Earth Engine (GEE). My
primary aim is to provide knowledge of wetland extent and character that is needed
to support both conservation efforts and land surface climate models. | anticipated
that higher resolution wetland mapping would capture smaller patches of wetland
than previously documented in regional or global datasets and that this would be

dominantly associated with areas near major cities.

4.2 Materials and methods

My approach to mapping the wetlands of southern Nigeria involves the integration
of indices from both optical and radar imagery and classification of imagery using
the implementation of the Random Forest (RF) algorithm in Google Earth Engine

(Gorelick et al., 2017). | use seasonal composite images in order to (a) maximise the
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number of cloud-free pixels and (b) incorporate the seasonal variations in wetland
characteristics into my classification (Section 4.3.1). | selected the most effective
variables for classification in southern Nigeria using an estimation of relative
importance (Section 4.3.3). This required the compilation of a new dataset of 1500
wetland and non-wetland control points for training and validation (Section 4.3.2,

Supplementary Information Appendix A).

4.3 Class definitions

Wetlands can be classified on the basis of hydrology, soil type and vegetation. They
include marshes (freshwater or saline waterlogged land areas that are periodically
flooded, dominated by herbaceous plants), swamps (mineral soil wetlands
dominated by trees with seasonal flooding), bogs (rain-fed peatlands, which can be
with or without trees) and fens (groundwater-fed peatlands, which can be with or
without trees) ((Mitsch and Gosselink, 2015). In this study, i consider swamps,
marshes, shallow water (including human-made wetlands and lakes) and the swamp
subtype of mangroves (coastal, characterised by salt-tolerant trees and shrubs), and
attempt to distinguish between these categories in my mapping. The presence of
peatlands (fens) across the southern region of Nigeria has been suggested by other
mapping studies (e.g. CIFOR, 2016). The Nigerian government, however, suggested
that the areas mapped by CIFOR as peatland are more likely to be
mangrove/swamps (FREL, 2019). One potential source of confusion is that tropical
‘peat swamps’ are often referred to in the literature as there is a lack of an agreed
tropical peatland classification system. Some swamps can have organic peat

deposits while others may have a mineral substrate. To avoid confusion, i strictly
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classify swamps for my control points as tree-dominated mineral soil wetland
systems which may have minimal peat cover. Given this definition, peatland and
swamp may in some cases still have similar Earth Observation signatures but would

not be confused if ground truthed.
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Figure 41 The study region: (a) Location of the study area using the
standard government classification of southern Nigeria, and the locations
used in previous studies referred to in the main text: Lagos lagoon (Taiwo and
Areola, 2009), Olague forest, Apoi creek and Oguta lake (Ayanlade and Proske,
2016).
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Figure 4.2 Methodological approach for mapping and characterization of
southern Nigerian wetlands. The technique used a seasonal composite from
Sentinel-2 optical imagery and Sentinel-1 radar for 2018.

4.3.1 Data selection

As the characteristics of wetland remote sensing signature varies between seasons,
i use composite image for both optical and radar imagery. The southern part of
Nigeria experiences a tropical climate with a well-defined wet and dry season.
Southern Nigeria is covered by dense cloud during rainy seasons, so i use an initial
selection criterion of cloud fraction <20% for each of 345 Sentinel-2 images from
2018 and apply a cloud mask to remove cloud and cirrus-cover (using the quality
assurance bands available through GEE) before formation of a composite images
(Figure 4.2). These are constructed from the median value for each pixel in 345
Sentinel-2 images acquired between January and November 2018 and are

dominated by dry season (January to March) values. | use blue (0.496 um, band 2),
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green (0.560 ym band 3), red (0.665 ym, band 4), and near infrared (NIR, 0.835 uym,
band 8), shortwave infrared 1 (SWIR1 1.613 pym, band 11) and short-wave infrared
2 (SWIR2 2.202 um, band 12) bands to derive optical indices used for classification:
Normalized Differential Vegetation Index (NDVI, Chatziantoniou et al., 2017; Dong
et al., 2014; G. Kaplan & Avdan, 2017; Xing et al., 2018;Mahdianpari et al., 2018),
Normalized Differential Water Index (NDWI, Chatziantoniou et al., 2017; Kaplan &
Avdan, 2017; Mahdianpari et al., 2018; Xing et al., 2018), Modified Normalized
Differential Water Indices ( MNDWI , Ashraf & Nawaz, 2015; Chen et al., 2013;
Ogilvie et al., 2015) and Tasseled Cap Wetness Index (TCWI , Tana, Letu, Cheng,

& Tateishi, 2013; Xing et al., 2018) (Figure 4.3b-e).
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Figure 4.3 The Sentinel 2 composite and derived indices for Jan-Dec 2018
used for wetland classification in this study: (a) RGB composite images, red
(band 11), blue (band 8), green (band 2), (b) MNDWI, (c) TCWI, (d) NDVI, (e)
NDWI. The green shade in the RGB image results from reflection of vegetation,
the dark blue shade represent reflection from water bodies, while urban
settlement surfaces are shown in purple shade, and the lighter brown shade
represents cultivated surfaces. For the indices (b-e) lighter gray shade
indicates higher moisture and or vegetation value while a darker shade

indicates lower values.
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Since SAR backscatter is unaffected by cloud cover, | are able to incorporate
information from dry (January-March) and wet seasons (April-July and September-
November) into my classification scheme. Differences between flooded and
unflooded periods are particularly strong since radar reflected by a water layer and
backscattered by a double-bounce from ground and tree trunk creates contrast
between the flooded and non-flooded terrain (Bwangoy et al, 2010b; Moser et al.,
2016). | constructed dry and wet season composites that select the median
backscatter value for each pixel, shown in Figure 4.2b and ¢ as RGB images where
dry season (January-March), wet season (April-July) and end of the wet season

(Sept-Nov) are the red, blue and green channels, respectively.

| use the Ground Range Detected interferometric wide-swath Sentinel-1 images in
ascending orbit from 2018 available through GEE, which are projected onto a regular
10 m grid. Dual VV/VH polarisation imagery was available at an average acquisition
interval of 12 days over southern Nigeria. VV polarization (vertically transmitted,
vertically received backscatter) is sensitive to surface roughness and soil moisture
and can discriminate flooded from non-flooded vegetation (Mahdianpari et al., 2018).
It also produces distinctive returns for herbaceous wetlands with low or sparsely
vegetated areas especially in the early growth stages before canopy closure
(Baghdadi et al., 2010). VH (vertically transmitted, horizontally received backscatter)
known as cross polarization produces signals affected by volume scattering within
the vegetation canopy and it is very sensitive to vegetation structures (Steele-Dunne
et al., 2017). Icorrected for incidence angle (Hird et al., 2017) and reduced radar

speckle using an adaptive sigma Lee filter on the GEE platform.. | calculated the
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VH-VV
VH+VV

and Nratio

normalized difference and ratio features for each image as: Ndiff =

= % where VH is a vertically transmitted, horizontally received SAR backscatter c0

from the Sentinel-1 sensor, while VV is vertically transmitted and received SAR

backscatter signal (Hird et al., 2017).
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Figure 4.4 Extracted features from Sentinel 1 composite: (a) annual
composite of VV and VH polarization; (b) seasonal composite images for Jan-
Dec 2018 producing a ratio polarized image; (c) seasonal composite images
for Jan-Dec 2018 producing a normalized polarized ratio image. The dry
season (January-March), wet season (April-July) and end of wet season
(September-November) composites were inserted into the red, green and blue
channels respectively. The bright yellow shade in (b) and bright white in (c)
shows high backscatter from urban areas in the red and green channels. The
dark blue and black shade are the result of low backscatter from cultivated

areas and water features.
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4.3.2 Compilation of control point data

| compiled information about the location and characteristics of wetlands in southern
Nigeria from multiple sources. My reference data were obtained from the Food and
Agriculture Organization (FAO) global dryland assessment (Bastin et al., 2017),
Ramsar Sites database (2019), other organization reports, journals, and academic
theses (both PhD and MSc) (see Supplementary Information). The FAO reference
points were compared with control sites from Ramsar and other studies, then verified
by visual interpretation of Digital Globe very high spatial resolution images (< 1 m
pixels) made available for visualization through Google Earth. My database
comprises a total of 1500 sample points for wetland and non-wetland locations. The
reference data were grouped into four wetland types which include swamp (205
points), mangrove (214 points), marsh (121 points), shallow water (184 points) and
four non-wetland types grouped into deep water (194 points), urban/bareland (206
points), cultivated land (180 points), and forest (196 points) categories. The photo-
interpreted database consists of both wetland and non-wetland cover classes with

many subtypes, while only wetland control points were acquired from other studies.

4.3.3 Random Forest classification and feature selection

RF is a non-parametric classifier (i.e. it does not make strong assumptions about the
form of the mapping function), comprised of a collection of tree classifiers, and can
handle high dimensional remote sensing data (Belgiu and Dra, 2016). RF
classification involves assigning a label to each pixel based on the majority vote of
‘trees’. The ‘trees’ are grown a node which is spilt using a random selection of the

subset input variables, which reduces overfitting and yields a more robust
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classification than other classifiers (Breiman, 2001). In the RF algorithm, i need to
specify the parameters in order to produce the forest trees: the number of decision
trees to be generated (Ntree); and the number of variables to be selected and tested
for the best split when growing the trees (Mtry). The parameter Ntree was assessed
for the values of 100 — 600: a value of 500 was selected as error rates for all
classification models were constant beyond this point. | tested the importance of

sixteen variables (Band 2, Band 3, Band 4, Band 6, Band 7, Band 8, Band 11, Band

VH-VV
VH+VV

12, NDWI, NDVI, MNDWI, TCWI,

, % (wet and dry)), as input channels for

the RF classification. | then selected six input variables that were most important for
classification accuracy (see Section 4.3.3). A total of 900 training points spanning
different landcover classes were used to train the RF classifier on the GEE platform.
All classifications were based on the same training data. The remaining 600 control
points were held back for validation (e.g., Liu et al., 2018). | divided the control points
between training and validation data to ensure a spread between landcover classes,
and otherwise to make their spatial distribution as even as possible across southern
Nigeria. The classification was carried out with each index separately, before
selecting the best combination to produce a final wetland map. | classified eight
different landcover classes: mangrove, swamp, marsh, shallow water, forest,
cultivated land, deep water, built-up/bare land. When selecting input variables used
for my final RF classification, | assessed each of the optical and SAR indices for (1)
the predictive power of each individual variable (Figure 4.5) and (2) the ability to

distinguish between wetland classes.



53
| examine the significance of each input variable by calculating variable importance
after training the RF classifier. The importance of a variable in this RF model is
assessed using the total decrease in impurity across all trees in the forest for a
specific choice of variable to split a node, where impurity refers to the probability of
a classification being wrong if it were assigned according only to the distribution of
classes in the data. The numerical values for importance assigned to each variable
is the sum of the reduction in error of the splitting variable accumulated over the
entire tree. Higher variable importance means that the variable played a significant
role in the classification, while a low importance means only limited added value by
that variable. Figure 4.5 illustrates the input variables and their corresponding

importance for discriminating wetland classes.
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Figure 4.5 The importance of each extracted Sentinel-1 and Sentinel-2
features using the training dataset for Random Forest classification. The
importance of the variable is the sum of decrease impurity each time the
variable is selected to be split at the node for the entire trees in the forest and
is unitless. The blue bars illustrate the importance of the optical bands, the
light yellow shows optical indices and SAR polarimetric indices is represented

by red bars.

As shown above, all the extracted variables from the Sentinel-1 seasonal composite
appear to have higher predictive power than the optical indices except for the
MNDWI and TCWI. With regards to variables extracted from the Sentinel-2
composite, the optical indices tend to possess higher significance when compared
with the individual bands. Among the indices, MNDWI| and TCWI have more

information available for wetland cover prediction. The most important variables
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VH-VV VV

, — (wet and dry)) from Sentinel-1 and Sentinel-2 were
VH+VV = VH

(MNDWI, TCWI, (

selected for my final classification. However, each variable may have different
strength in identifying a particular landcover class regardless of their relative
importance. | further perform classification on individual variable to optimize my

selection of combined model for the final classification map.

4.3.4 Wetland patch analysis

| calculate the number of patches and their individual sizes for each wetland class.
The average continuous patch size for each wetland class was also calculated using
the total count of connected pixels for continuous patches, which i define as pixels
that share face boundaries. Here, i consider patches where the number of pixels is
greater than 1000 (patch size> 1000 pixel) as continuous patches. The area of each
individual patch was calculated by multiplying each patch size with the pixel area
(10m?. The patch size is equivalent to the total number pixels in a patch while the

patch area is the patch size x pixel area (10m?). | use:

Pchgyg= Z?%ﬁ;’:t Equation 4.1

where Pchayg is the average continuous patch for each wetland class in a particular
climate zone, Pchcont is the sum of the pixels of continuous patches (for patch size >
1000 pixel) in each class, whereas Pchnis the total number of continuous patches for

each wetland class.
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4.4 Results

My final map (Figure 4.6) has a pixel size of 10 m and shows how wetlands are
distributed in southern Nigeria, broadly consistent with global datasets at low
resolution, but quite different when studied in detail at high resolution. | capture
wetlands of <1 km? that were omitted from global datasets and therefore provide
much needed additional data on wetland coverage. The result of my classification
shows high accuracy with 2% uncertainty. | have most confidence in my

classification of swamp and shallow water, relative to mangrove or marsh.

4.4.1 Classification validation

The results of RF classifications for each index and for my preferred combination of

VH-VV VV

oy vE (wet and dry)) were evaluated using one third

indices (MNDWI, TCWI, (

(600) of the total control points spatially selected from each class on a random basis.
The overall accuracy describes the effectiveness of the overall classification, which
can be determined by dividing the sum of correctly classified sample by the total
referenced sample (Table 4.1). The producer's accuracy shows how well the
referenced sample is represented in the classified map, while the user's accuracy
indicates the chances that a classified pixel of an individual landcover actually
represent the same category on ground (Table 4.2). The agreement, beyond chance,
of a classification and the real land cover can be described by the Kappa coefficient
(e.g., Ayanlade, 2014). The Kappa coefficient is more useful than the overall
accuracy as it provides a measure of how the classification performs in comparison
to the probability of randomly assigning pixels to their correct categories. With the

exception of NDVI, the classification results using spectral indices from optical
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imagery were more accurate than those from SAR imagery alone (Table 4.1).
However, the integration of the SAR normalized difference and ratio images with
MNDW!I and TCWI yield the highest accuracy. | attribute this to the improvement in
accuracy of the identification of marsh, swamp and mangrove classes due to the

information about vegetation structure captured by SAR imagery (Figure 4.4b &c).

Table 4.1 Overall accuracies and Kappa coefficients obtained from
classification of wetland versus non-wetland in this study. Perfect
classification of control points would yield a Kappa value of 1. S$S1+S2
represents my preferred combination of MNDWI and TCWI with the SAR

polarimetric indices.

Indices Overall accuracy (%) Kappa coefficient
NDVI 73.10 0.68
NDWI 77.16 0.72
MNDWI 83.78 0.82
TCWI 83.74 0.79
" (wet and dry) 85.14 0.83
% (wet and dry) 74.30 0.72
MNDW|+TCW|+;:;‘/"‘/’ +% 88.40 0.85

For all landcover classes, classification using a combination of optical and radar data

resulted in a higher accuracy than using any of the individual indices in isolation. My

VH-VV VV

preferred classification (MNDWI+TCWI+ +—in Table 4.1) performs as well as
VH+VV VH

any other index in its classification of mangroves (214 control sites) and swamps

(205 control sites), and better than any other index for classification of marsh (121
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control sites). All classes have higher producer's and user's accuracies except the
marsh with lower users accuracy, which was often misidentified as shallow water or
swamp (Table 4.2). Overall, the classification of wetland classes was less accurate

than for non-wetland classes. The combined use of optical indices (MNDW!I and

VH-VV VV .
vy Vo (wet and dry)) resulted in greater accuracy for

TCWI) and SAR features (

all the wetland classes than the use of either Sentinel-1 or Sentinel-2 imagery in

isolation, and so this combination was used to produce my final wetland map.

Table 4.2 Confusion matrix using the set aside validation data (40% of
control points). The rows are the classification results and the columns are the
true class. MNG = Mangrove, SWP= Swamp, FRST= Forest, SHW= Shallow
Water BTU= Built-up, DPW= Deep water, CTL = Cultivated land.

CLASS MNG SWP FRST MSH SHW BTU DPW CTL Total User
Accuracy

MNG 75 8 1 1 0 0 0 1 86 0.87
SWP 9 69 2 1 0 0 0 1 82 0.84
FRST 1 2 61 2 2 0 0 10 78 0.78
MSH 4 1 0 34 4 0 0 5 48 0.70
SHW 0 0 0 2 67 0 5 0 74 0.90
BTU 0 0 0 0 0 78 0 4 82 0.95
DPW 0 0 0 0 2 0 76 0 78 0.97
CTL 0 0 0 2 0 1 0 69 72 0.95
Total 89 80 64 42 75 79 81 90 600
Producer 0.84 086 0.95 0.80 0.89 098 093 0.76 0.88

Accuracy
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Figure 4.6 Final land cover map of southern Nigeria for 2018 obtained from
RF classification of indices derived from Sentinel-2 optical data and Sentinel-
1 SAR data (a), with inset (b) showing Oguta Lake and inset (c) showing Upper
Orashi forest, both being examples of Ramsar wetlands while (d) displays the
spatial distribution of uncertainty where the value 1 in white shade shows
matching landcover class and the value 0 in black shade indicates a mismatch
class from the comparison of a map produced using the entire control point
dataset with a map produced from a randomly selected subset (70%) of control

points.
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My final wetland cover map (Figure 4.6a) shows the distribution of all land-cover
classes, at 10 m resolution, across the extensive area of southern Nigeria. Both the
wetland and non-wetland cover are well delineated with an estimated mapping
accuracy of 88%. The detailed inset in Figure 4.6b & ¢ shows how shallow water
(e.g., Oguta lake, Figure 4.6b) and swamp (e.g., Upper Orashi swamp forest) are
correctly distinguished from other landcover classes at two Ramsar wetland
locations. | make an assessment of the spatial distribution of uncertainty in my
wetland map by comparing it to a map produced from a randomly selected subset
(70%) of control points with the map produced using the entire dataset (Figure 4.6d).
In Figure 4.6d i show locations where land cover classifications agree for the two
maps a value of 1 (white), and those that disagree a value of zero (black). | found
that mismatches mostly lie on swamp and marsh landcover classes (Figure 4.6d),

with fewer found to lie on mangrove and shallow water.

4.4.2 Wetland spatial extent

| estimate that the wetlands of southern Nigeria cover a total area of 29,924 km?
which is over one fifth of the area of the whole region. The dominant wetland type is
swamp which made up 44% of the total wetland area followed by mangrove (31%),
marsh (20%) and shallow lakes (5%) (Figure 4.7a). The vast majority of these
wetlands are located in the coastal region of the Niger delta and Lagos. My estimate
of total wetland cover is less than the estimate by Center for International Forestry
Research (CIFOR) (31,829 km?) but larger than GLWD (24,408 km?) (Figure 4.7a),

mainly resulting from my larger mapped area of mangrove and my identification of
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fewer marsh wetlands. While the maps look similar when viewed at low resolution,

they are quite different in detail (Figure 4.7b-c).
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Figure 4.7 A comparison of wetland map products for southern Nigeria: (a)
areas of different wetland classes in southern Nigeria - error bars show
misclassification levels based accuracy achieved for each wetland type in my
study; (b) map of southern Nigeria covered by wetlands identified in my study
showing only the wetland classes; (c) the Global Lakes and Wetlands
Database (GLWD) by Lehner & D6ll,(2004) and (d) the global wetland database
by the Center for International Forestry Research (CIFOR).
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4.5 Discussion

4.5.1 Wetland extent and fragmentation

| calculated the average continuous patch size for each wetland class using the total
pixel count of connected pixels for continuous patches, which i define as pixels that
share face boundaries. | found mean continuous wetland patches of 120 km?, 11
km?, 55 km? and 13 km? for mangrove, marsh, swamp, and shallow water
respectively. The maximum patch size was 2740 km?, 1530 km?, 160 km? and 50
km? with a standard deviation of 660 km?2, 765 km2, 25 km?2 and 26 km? for these
wetland types respectively. Larger patches of wetland are found along the coastal
areas while smaller fragments are mostly located around urban areas suggesting a
role for anthropogenic fragmentation of wetlands. Mangroves tended to be located
in zones with lower population density. There were a large number of small wetland
fragments, mostly of single pixel patches, especially for the marsh class. These
smaller patches were distributed across the map but had higher uncertainty relative
to larger patches. Understanding wetland fragmentation and its impacts on
biodiversity and ecosystem services, and the role of both larger and smaller wetland
patches in landscapes requires further work, but my dataset provides a starting point

for enhanced modelling of such effects.

The extent of wetland in southern Nigeria was found to be larger in this study when
compared to some previous studies but was smaller than the estimate by CIFOR
(Figure 4.7a). This discrepancy could be due to a combination of factors including
differences in wetland land cover class definitions (e.g. in CIFOR’s global wetland

database https://www.cifor.org/global-wetlands/ swamps and bogs are classed as
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one type of wetland, while many floodplain wetlands appear to be swamps in this
wetland map), classification methodology, timeframe (e.g. wetland loss or creation
between different studies), data resolution and time of acquisition. For example,
more conservative methods used by previous studies based on combining existing
maps with other data sources may have resulted in exclusion of a large proportion
of the swamp and mangrove that i identify here. Another major difference is my use
of satellite imagery with higher resolution (10 m pixel size, relative to 1 km for GLWD)
which improves my ability to identify small-scale wetlands (see Figure 4.9) and aids
in discriminating wetland and non-wetland features. Some areas where wetlands
have not previously been reported (e.g., around Akampka in Cross Rivers) have
been mapped in this study. Some studies have suggested that the GLWD may
underestimate wetland extent because of low resolution input data (Gumbricht et al.,
2017), so wetlands much smaller than 1 km? are missed. About 20% of the wetlands
that | identified in my new map have spatial extents of <1 km? (100 pixels). A series
of small wetlands may be very important at a landscape scale in terms of water,
nutrient and carbon cycling dynamics (Page et al., 2011) and so my work indicates
how higher resolution wetland mapping may be important for improving regional and

global environmental models.
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with number of pixels in each category.
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Figure 4.9 Comparison, for the same geographical area, between delineated
wetland cover in two example locations (first location shown in top row a-c,
second location shown as bottom row d-e): (a) and (d) this study using high
resolution Sentinel data (full map shown in Figure 4.6 (a), (b) and (e) GLWD
from a combination of low-resolution data, (c) and (f) the global wetland

database by the Center for International Forestry Research (CIFOR).

4.5.2 Sources of uncertainty

The most important sources of uncertainty in this study come from (1) the subtlety
of the differences in remote sensing signals between some wetland classes, and (2)

the distribution and characteristics of the control sites used as the reference for
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different land-cover types. Specifically, i expect uncertainties to be introduced by
both a lower number of control sites for marshes and similarities in the remote
sensing expression of marshes vs. mangroves, especially at 1610 nm and 2190 nm.
| assess the uncertainties by comparing classifications made using the entire control
point dataset with those produced using only a subset of control points selected at
random for each wetland class (see Figure 4.6d). The mismatched pixels from each
class were multiplied with the pixel area to obtain the mismatched area for each
class. Swamp, with a total area of 13,000 km? had the highest uncertainty of 250
km? followed by marsh (area of 6,000 km?) with uncertainty of 123 km?. Lower
uncertainty was estimated for mangrove (9,000 km?) at 72 km? and shallow water
(1,616 km?) with 14 km2. While this approach gives some indication of the
uncertainties associated with this classification accuracy and limitations in the
number of control points, it does not include systematic uncertainties associated with
my choice of landcover classes. However, more than 98% of the control points
accurately matched the classified land-cover class. Based on control point accuracy
values for each wetland type (Table 4.2) there was a higher error with marshes due
to their misinterpretation as mangroves and bare land / settlement features. A higher
uncertainty occurred in areas around Ovia (south-west Edo state), northern parts of
Ogun state and around Ndokwa in eastern Delta state due to the number of smaller
patches of marsh. There were no control points for fen peatlands. However, my
analysis suggests that areas mapped by other studies as peatlands (e.g., around
Apoi creek forest) (refer to Figure 4.1) in southern Nigeria are swamps (with total of

149 control points), for which i had a high confidence in their classification.
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4.5.3 Data limitations

Despite the high accuracy obtained from the classification model, there are some
limitations in the dataset that may lead to bias in the model. Using training data from
existing wetland locations is affected by ambiguity in definitions of wetland class and
variation in the landscape. The basic assumption that training data represent a
particular class may not always be absolutely correct as individual training points
may belong to other wetland classes. To address this, i characterize the training data
based on the class composition and internal variability. | then identify the possible
outliers from the distribution of each wetland class and filter them out from the
training data. Training data for ephemeral forested wetlands and peatlands such as
bogs, fens are missing from my dataset which would have improved the

classification.

The imbalance in the size of my training data for the wetland classes may bias
classification accuracy, because the model is sensitive to wetland class with larger
numbers of training points (in my case [mangrove]). This results in higher accuracy

than for wetland classes with small amounts of training data (e.g., marsh).

Users of this wetland map should also consider (1) the limitations of the class
definitions appropriate for use with satellite imagery and (2) the differences in
accuracy of classification for different classes due to different numbers and spatial
distribution of training points. For example, my EO-based classification of [swamps]
comprises wetland with a range of characteristics in terms of vegetation type, water

depth and soil composition.
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4.5.4 Applicability to different settings

My novel study adds to a small number of locations around the world where wetlands
have been mapped using combined SAR and optical Sentinel 1 and 2 data (e.g. Hird
et al., 2017; Mahdianpari et al., 2018; Slagter et al., 2020). However, here i have
covered a much larger area at high resolution. The wetlands of southern Nigeria are
thought to represent about 19% of west African wetland and 3% of the total wetlands
in sub Saharan Africa (Rebelo et al., 2010). Nigerian wetland ecosystems are similar
to those in the rest of west Africa, so | expect that similar classification approaches
could be adopted for this region. My methodological approach could be expanded to
explore wetland areas across the wider African continent as well as globally.
Furthermore, my technique can be used to globally detect changes and
connectivity/fragmentation of wetland ecosystem in response to human action such
as urbanization. Using data from different seasons is important for mapping and
distinguishing between different types of wetland extents. For example, seasonal
data has played an important role in identification of shallow water and marshes
(Figure 4.6a). Seasonal data will be essential for mapping the wetlands in the arid
regions of Africa, where wetlands exhibit dramatic seasonal cycles (e.g. the Sebkhel
el Kelbia of Tunisia). Challenges of producing high-resolution datasets over large
spatial areas can be minimized by employing the SAR polarimetric feature and
optical indices which help to distinguish between types of vegetation. Wetland types
such as peatlands which were not covered in this study should be mapped using
suitable control points to aid classification. There is also a need to incorporate
elevation/topographic data and a diverse range of multi-temporal datasets in order

to improve the identification of wetlands across different terrain, such as valley
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bottom wetlands. This will help to capture the hydro geomorphological properties of

the wetlands.

4.6 Conclusions

This study combined optical indices and SAR polarimetric features to map four
wetland types at 10 m resolution across southern Nigeria, filling a gap between
existing low spatial resolution global maps and a few very local studies at higher
resolution. Using freely available global satellite datasets (Sentinel-1 and 2), i
achieve a mapping accuracy of 88% by integrating optical indices and SAR
polarimetric features from different seasons using Random Forest classification. |
estimate that in 2018 southern Nigeria contained 29,924 km? of wetlands with an
uncertainty of 460 km?, covering 20% of the region. | found a large number of small
wetland patches, particularly around urban areas, consistent with human action
enhancing wetland fragmentation in Southern Nigeria. Given the rapid expansion of
population in Nigeria, it is now critical that wetland protection organizations
undertake more adequate change detection at high resolution and take action, while

modellers can utilise my high resolution land surface data.



70

Chapter 5
Wetland fragmentation associated with large populations across

Africa

5.1 Introduction

African wetlands are among the most productive ecosystems in the world (Langan
et al., 2018), providing a wide range of services that contribute to human wellbeing,
such as provision of water, food, dry season grazing, and fuel wood. They can
support flora and fauna and serve as an important carbon pool sequestrating large
amounts of carbon from the atmosphere, thereby regulating climate (Saunders et al.,
2012). Depending on topographic context, wetlands can also play a significant
function in flood attenuation and shoreline protection (Junk et al., 2013; Acreman
and Holden, 2013; Hu et al., 2017) and also play a key role in the hydrological cycle

(Acreman and Bullock, 2003).

Wetlands in Africa are experiencing immense pressure from human activities, the
most important being direct drainage and conversion to farmland, diversion of water
away from wetlands for agricultural irrigation, population growth and urban
expansion into wetland areas, pollution, overgrazing, and hydropower development;
there has often been excessive exploitation by local communities (Schuijt, 2002;
Francois et al., 2005; Mitchell, 2013). A large number of African wetlands are thought
to have been heavily modified by overexploitation (e.g. the Yala swamp and Kingwal
wetland in Kenya and Nakivubo swamps in Uganda) (Schuyt, 2005; Saunders et al.,

2012) and upstream developments altering the quality and flow of water feeding
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wetlands (e.g. Hadejia Jam are floodplain in Nigeria (Schuijt, 2002)). Many African
wetlands have been lost due to agricultural conversion such as the Ga-mampa
swamp in South Africa (Rebelo et al., 2015). However, the current extent of wetland
across Africa, at high resolution, is not known and most continental datasets are very
coarse estimates (e.g. 250 m to 1 km resolution) (Schuyt, 2005; Landmann et al.,
2013; Hu, Niu and Chen, 2017; Gumbricht, 2018; Y. Liu et al., 2020; Zhang et al.,
2023). Small-scale wetlands may have been omitted or overestimated in previous
continental mapping studies due to coarse resolution datasets, lack of ground control
points and validation (Bwangoy et al., 2010; Moser et al., 2014; Leemhuis et al.,
2016; Gumbricht et al., 2017; Mahdianpari et al., 2018). It is therefore not known
whether the cumulative coverage of small wetlands is significant and there is a need
to ensure appropriate representation of African wetlands for sustainable
management and for modelling climate mitigation and biogeochemical cycles. The
lack of high-resolution data hinders the estimates of the total amount of carbon
stored by these wetlands and estimates of the potential for net carbon uptake or loss
from African wetlands at a continental scale. Much wetland carbon is belowground,
yet potentially fragile and susceptible to rapid loss with wetland degradation (Poulter
et al.,, 2021). Wetlands can become divided or separated into smaller, isolated
patches or fragments due to both human activities and natural processes, including
urbanization, agriculture, infrastructure development, and changes in hydrology.
Wetland fragmentation poses a serious threat to the health and functionality of
wetland ecosystems, highlighting the need for conservation efforts focused on

preserving and restoring these valuable habitats.
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In this study, | used high resolution satellite datasets in combination with 8204
ground control points to systematically map the spatial distribution of wetland types
across Africa. | verify the classification of each wetland control point by visual
interpretation of Digital Globe very high spatial resolution images (< 1 m pixels)
through Google Earth and spanning 2018 -2021. My independent sources of data
for control points wetland types include papers, reports, and academic theses from
various dates spanning 2015 - 2019, so i consider verification with the more recent
Digital Globe imagery (2018 - 2021) a necessary step for classification of the 2020-

2021 Sentinel 1 and 2 imageries.

| grouped the control points into five wetland types including marsh (2202),
mangrove (1477), swamps (1891), peatland (1580) and seasonal wetland (1054).
Here i classify swamps as mineral soil wetlands, while peatlands include fen and bog
systems with or without trees (these include what are sometimes referred to as peat
swamps). These classes capture critical differences in wetland vegetation, soils and
water levels (see Appendix B Table B.3-B.7) and importantly are separable using
optical and radar-derived indices from freely available satellite datasets. Fragmented
wetlands are vulnerable to human development; thus, presence of human population
indicate potential threat to these wetlands. | analysed the relationship between
wetland patchiness derived from my map and population data from Gridded
Population of the World database (GPW V4) and test the hypothesis that highly
fragmented wetlands are associated with large populations. | used a 10 km grid for
fragmentation analysis based on my previous studies that suggested that average

continuous wetland patches cover an area of 10-11 km? (Chapter 4).
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| calculated total carbon stocks for each wetland type by multiplying the total area of
the wetland with typical values of carbon stock per hectare estimated by previous
studies (IPCC Task Force on National Greenhouse Gas Inventories, 2014; Adame
et al., 2015; Foerster et al., 2015; Samer Elshehawi et al., 2019; Ouyang and Lee,
2020; Csillik et al., 2022; Young et al., 2023). | then estimated the carbon emissions
from different wetland types for two wetland degradation states (pristine and drained

condition) in each climate zone.

5.2 Methods
5.2.1 Datasets

5.2.1.1 Ground control points

| collated data on the location and characteristics of wetlands across Africa from
reliable sources, including the Food and Agriculture Organization (FAO) global
dryland assessment database, Global Peatland Database (GPD), research journals,
academic and NGO reports. | verified each data point and screened them to exclude
any coordinates that were inaccurate, mislabelled or inconsistent by using visual
interpretation of very high spatial resolution digital globe images (>1m pixel) made
available for visualization through Google Earth. The final dataset used 8204 control
points for different wetland types in Africa. | sorted the control points based on the
climate zones in Africa and assigned to either training or validation points. Thus, |
grouped the control points into an equal number of training and testing points to

ensure robust accuracy assessment.
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5.2.1.2 Satellite data

Sentinel-1 and -2 satellite images covering the entire study area for the period of
January 2021 to December 2021 were available through the Google Earth Engine
platform (GEE) at 10 m resolution. | use the Ground Range Detected interferometric
wide-swath Sentinel-1 images acquired in dual-polarization (VV/VH) and pre-
processed as a Level-1 data product, with an average acquisition interval of 12 days.
A total of 5728 Sentinel-1 images in ascending order were collected for the study
area. Sentinel-2 Top of Atmosphere reflectance data with 16 spectral bands were
obtained through the GEE. Sentinel-2 images with cloud cover of <20% were
selected from January 2020 to January 2021 which resulted in a total of 13596

images.

5.2.1.3 Population data
| obtained information about population distribution from the Gridded Population of
the World database (GPW V4) provided by Center for International Earth Science

Information Network (https://sedac.ciesin.columbia.edu). The GPW dataset has an

approximate resolution of 30 arcsec, equivalent to 1 km at the Equator, that contains
global population counts, density, urban/ rural status, age and gender structures with
more than 12,500,000 input units maintained by NASA'’s Socio-Economic Data and
Applications Center (SEDAC). The population input data are collected at the finest
resolution available from the 2010’ round of censuses, which occurred between

2005 and 2014.


https://sedac.ciesin.columbia.edu/
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The data were used to produce population estimates for the years 2000, 2005, 2010,
2015, and 2020 (https://earthdata.nasa.gov/data/catalog?keyword=gpw-

v4/methods). | selected the population estimates for 2020 for our analysis.

5.2.2 Mapping of wetland extent

To accurately delineate the wetlands of Africa | classified the continent into different
major zones according to the climatic and ecological features. These zones include
tropical wet, tropical wet and dry or grassland, semiarid and desert or arid. | also
grouped the control points for each wetland type based on these climate zones. |
processed the images collected from Sentinel-1 and -2 images for the period of
2020-2021 to develop optical and radar indices for each climate zone. The optical
variables used include spectral bands 2 (blue), 3 (green), 4 (red), 8 (NIR), 11 and 12
(SWIR), the normalized difference vegetation index (NDVI), normalized difference
water index (NDWI), modified normalized differential water Indices (MNDWI), and
tasseled cap wetness index (TCWI). SAR variables included vertically transmitted,
vertically received SAR backscattering coefficient (c®VV), vertically transmitted,

horizontally received SAR backscattering coefficient (c°VH), and the normalized

VH-VV

difference (Ndiff=
VH+VV

) and ratio indices (Nratio= %) for the wet and dry season.

| then undertook a variable importance analysis (Kim et al., 2012; Van Beijma et al.,
2014; Suiter, 2015; Zabala, 2017; Na et al., 2018; Mohammadimanesh et al., 2018;
Jamali and Mahdianpari, 2022; Csillik et al., 2022) for each climate zone to select
the most important variables to input into the final classification. For all images in the
arid and semi-arid region | extracted the maximum pixel values while a median value

was used for other regions to enhance identification (Maxwell and Sylvester, 2012).
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Finally, | applied a Random Forest algorithm (RF) to classify and validate wetland

types in each climate zone.

RF is an ensemble classifier that produces multiple decision trees, using randomly
selected training samples and variables (Belgiu and Dra, 2016). RF is more robust
compared to other classification algorithms, solving the problems of over-fitting with
other decision trees. The RF is particularly suitable for handling variation within land
cover classes and reducing noise in the data. It does not require prior knowledge of
the data distribution compared to other classifiers. It involves assigning weight to
each pixel based on the number of votes received in each tree. The final result is
obtained after some level of correlation in fitting and majority voting (Breiman, 2001).
To produce the forest tree in RF we need to identify the two important parameters:
the number of decision trees to be generated (Ntree); and the number of variables
to be selected and tested for the best split when growing the trees (Mtry). The
parameter Ntree was assessed for the values of 100 — 600: a value of 500 was
selected as error rates for all classification models were constant beyond this point.

In this study | used the combined SAR and Optical indices as input variables.

5.2.3 Classification map accuracy and uncertainties

| undertook classification of wetlands according to each climate zone using the RF
classifier. The control points for different wetland types were compiled for each
climate region separately to classify the input variables developed for each region.
To accurately classify the wetland types based on their distinctive features in a

particular region, the input variables were extracted from composite images
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constructed from different pixel values over a particular period of the year. In the arid
and semi-arid region, seasonality is often a key property of wetlands. | therefore used
the variables extracted from seasonal composites of maximum pixel value to train
the RF classifier (Chapter 3 Table 3.2). | identified seasonal wetlands using the
maximum value from my seasonal composites. For the Tropical Wet (TW), Tropical
Wet and Dry (TWD) and Mediterranean subtropical climate (MED) zones, the
variables constructed from the mean pixel value composites were used to train the

RF classifier (Chapter 3, Table 3.2).

| assessed the accuracy of RF classifications for each climate zone using cross
validation by splitting the control points into two halves (50% training and 50% testing
points), spatially selected for each climate zone from each class on a random basis.
My accuracy estimation matrix includes the overall accuracy (OA), Kappa coefficient,
producer accuracy, and user accuracy. Overall accuracy determines how well the
classification algorithm performed, which can be measured by dividing the total
number of correctly identified sample point by the total number of the testing points
(Table B.3-B.7 Appendix B). | evaluated the uncertainties by comparing
classifications made using the entire control point dataset with those produced using
only a subset of control points selected at random for each wetland class in each
climate zone. The uncertainties are associated with my classification accuracy, high
confusion between wetland classes (e.g., swamps and peatlands) and limitations in
the number of control points. Common issue with the gridded population data is

misallocation of population to areas outside the urban areas. These errors were
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minimized by down sampling the 1 km grid population taking the average population

within 10 km grid.

5.2.4 Carbon loss estimation

| used the CO2 emission factor provided by the IPCC Wetland Supplement guidance
(IPCC Task Force on National Greenhouse Gas Inventories, 2014) to estimate the
amount of carbon loss from each wetland type for different climate zones in Africa.
An emission/removal factor is a coefficient that quantifies the emissions or removals
of a gas per unit area. Itis calculated using a sample of measurement data, averaged
to determine a representative emission rate for a specific activity level under defined
operating conditions. | multiplied the total area of each wetland type with its
corresponding emission/removal factor across the different climate zones for two
assumptions: 1) the wetlands are in pristine condition; 2) wetlands are drained. The

CO2 equivalent emission was calculated by:
COz2emissioni =Y, (EF * Area) Equation 5.1

where CO2 equivalent emission is the annual net carbon emission/uptake from a wetland
type in tonnes CO2 yr' area is the land area of drained land cover category in climate
domain ¢, in ha, and EF is the emission factor for drained organic soils, by climate

domain c, in tonnes C ha™' yr'.

| also adopted the empirical function of Zou et al. (2022) to estimate the wetland
carbon flux using water level as function of carbon emission. Equation 5-2 was used
to calculate the carbon flux from selected wetland types under different moisture

regimes in different climate zones:
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Emissiony= Y(Efs ;jx X Area;j,) Equation 5.2
where Efs is emission factors, i is the climate zone, j is the water-table level (coded

-3 10 2), y is the year and k is the wetland type.

5.2.5 Carbon stock estimation

The total amount of carbon stored by each wetland type in Africa was evaluated
using the acquired data of carbon stock per hectare from the studies by (IPCC 2014:
Adame et al., 2015; Boone and Bhomia, 2017; Dargie et al., 2017; Samer Elshehawi
et al., 2019; Ouyang and Lee, 2020). To calculate the total amount of carbon stored
by each wetland | multiplied the total area of the wetland with the value of carbon

stock per hectare:

Wetland carbon = Total wetland area (hectare) * Carbon stock (t C ha™)

Equation 5.3

5.2.6 Wetland fragmentation and population index (WFPI)

| compared the distribution of wetland fragments and population at the same cell size
across 10 km grid areas. For my analysis | used only the count of wetland fragments
estimated at a resolution of 10 km to allow comparison to the gridded population
data at 10 km resolution. This resolution was selected because it was found to be

the mean dimension of wetland fragments from my earlier study (Chapter 4).

| aimed to identify the association of wetland fragmentation with human population.
| used a fuzzy logic approach to create a membership rank for the fragmentation grid

and population grid (ranging from 0-1), with O representing lowest membership and
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1 the highest membership in increasing order. Lower membership indicates grid cells
with less fragments or which are sparsely populated, while grid cells with a large
number of wetland fragments or which are densely populated are assigned to a
higher membership group. Finally, | overlayed the gridded fragmentation
membership layer with the gridded population membership layer to quantify the
coincidence of wetland fragments and human population. Higher WFPI indicates
interaction of dense population with wetlands resulting to patchiness within the grid

cells.
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Figure 5.1. The 10-kilometer square gridded layer of population count of Africa.
The yellow regions indicate grids with lowest population count (maximum
count of 2,583 persons per 10 km?), while the ultra blue colored region
represents grids with a population count greater than 19,250 persons per 10

km?2. White patches have no data.
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5.2.6.1 Population grid

The population grid was created by transforming population data obtained from GPW

V4 data using 10 km grid reference cells across the continent of Africa. | classified

the cells in different class ranges from lowest to highest based on the population

count in each grid cell (Figure 5.1). Most of the grids with dense population are

located near major city centres, or close to river networks. | used this grid as an input

for the for fuzzy membership transformation.
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Figure 5.2. The 10-kilometer square gridded layer of wetland fragmentation in

Africa. The yellow regions indicate a non fragmented grid (fragment <=1), while

the ultra blue represents a highly fragmented grid.
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5.2.6.2 Fragmentation grid

To create the fragmentation grid, | converted the classified wetland raster to
polygons using the conversion tool in ArcGIS pro. | used an algorithm similar to
spatial aggregation by overlaying 10 km x 10 km grid on the original 10m resolution
fragmentation map. For every 10m cell within a 10 km grid, the number of unique
wetland fragments is calculated. | then identified and labelled distinct fragments
within each grid. The fragment count within each 10 km grid cell is computed to
derive a metrics of the total number of fragments. The total number of fragments per
grid cell was used to group the cells into eight groups from low to highly fragmented
(Figure 5.2). The total fragment in each cell was calculated by:

Fraggyiq= X7 Grid; Equation 5.4

where Fraggrid is the fragmentation grid (10 km), n is the number of fragments in grid

cell i, and i is the code of the grid cell.

5.2.6.3 Fuzzy membership

| transformed the population and fragmentation grid into a fuzzy membership layer
scaled from O to 1. O indicates grid cells that are not members of any set while 1 is
assigned to grid cells with full membership. | use the fuzzy linear membership
function to transform the input values linearly on the O to 1 scale, with 0 being
assigned to the lowest input value and 1 to the largest input value (Figure 5.3). All of
the values in between receive some membership value based on a linear scale, with

the larger input values being assigned a greater possibility, or closer to 1.
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Figure 5.3 Fuzzy membership showing the distribution from lowest to
highest members: (a) population grid, (b) fragmentation grid. From 0 to 1 in an
increasing order. 0 label represents the lowest membership which indicates
sparsely populated grids, while the label 1 indicates densely populated grids

assigned to the highest membership group.

5.2.6.4 Fuzzy overlay

The Fuzzy Overlay tool is used to evaluate the probability of a phenomenon
belonging to several sets in a multicriteria overlay analysis. It determines whether a
phenomenon is a possible member of a particular set and analyzes the relationships
between the membership of the multiple sets. | used the “fuzzy And” function to find
the relationship between the population and fragmentation membership layer. |
overlayed the population grid with the fragmentation grid using a fuzzy overlay tool
(Raines et al., 2010). This allowed me to analysed the relationship between the
multiple members set from each grid layer. Stronger relationships are found between
higher membership sets while lower membership sets showed weak relationships.

Coincidence of a dense population grid (higher population membership grid) with a
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highly fragmented grid (higher fragmentation membership grid) result in the highest

WEFPI region.

5.3 Results

5.3.1 The current extent of African wetland

My high-resolution continental study reveals that wetlands cover ~947,750 km? of
Africa (excluding deep water bodies) which constitutes ~3% of the total land area.
Marshes and swamps are the most dominant wetland covering 436,743 km? (46%
of total wetlands) and 231,776 km? (24%) respectively. Peatlands cover 208,842 km?
(22%), while seasonal wetlands (5%) and mangroves (3%) have the least coverage.
Most of these wetlands are concentrated in western and central parts of Africa
(Figure 5.4a), where there is a high amount of rainfall throughout the year. However,
some important wetland complexes are situated in North Africa such as in the Nile
region. The largest wetland complex is located in the Congo region of central Africa
covering about 278,450 km?, which contains the most extensive peatland area
(165,250 km?) in the entire continent (Figure 5.4e). Other important wetland
complexes are situated in southern Sudan (the Sudd) (67,150 km?) (Figure 5.4d),

the Zambia (43,170 km?), Angola (46,072 km?) and Nigeria (47,130 km?).

5.3.2 Distribution of wetland across African climate zones

| examined the spatial distribution of different wetland types according to the five
main climatic regions in Africa: Tropical Wet (TW), Tropical Wet and Dry (TWD),
Semi-Arid (SARD), Arid or Desert (ARD) and Mediterranean subtropical climate

(MED). TW has the most extensive wetland, hosting 57% (~448,210 km?) (Figure
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5.5b) of the total wetland area in Africa. Peatlands (37%) and swamps (34%) are the
most dominant wetland types of TW which cover 165,950 km? and 153,580 km?
respectively. Mangroves (2%) and seasonal wetlands (0.5%) are the least common

wetland types in TW covering only about 14,000 km?.
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Figure 5.4 The distribution of wetland in Africa, at 10 m resolution, derived
from classification of a combination of Sentinel-1 and Sentinel-2 composites
between January 2020 and January 2021 showing extensive wetland
complexes in (b) northern Algeria and Tunisia, (c) Nigeria, (d) South Sudan, (e)

part of the Congo basin, (f) Morocco, (g) Chad, (h) Botswana.

The largest climate region is the TWD, covering up to 38% of the total area of Africa.
Wetlands in this region constitute only 3.2% (~362,980 km?) (Table B.1 Appendix B)

of the total area with 52% being marshes (Figure 5.5a). This region has a distinct
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climatic feature with alternating wet and dry periods throughout the year, which plays
a significant role in the formation of different wetland conditions and variability across
the season. Thus, TWD has a higher amount seasonal wetland cover relative to
other climate zones (Figure 5.5). SARD is characterized by little rainfall throughout
the year, covering 6,700,000 km? (22%) of Africa. Only about 1.4% of SARD is
covered by wetland, of which seasonal wetlands are the most dominant type. ARD
is the second largest climatic region in Africa extending up to about 9,000,000km?

and has the lowest wetland coverage (0.4%).
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Figure 5.5 Distribution of wetland types in different climatic zones showing:
(a) division of Africa into different climate regions, (b) estimate of areal extent
of wetland types in each climate zone (c) the intensity of wetland
fragmentation in each zone per 10 km grid, (d) carbon stock in wetlands for

each climate zone.
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5.3.3 Wetland fragmentation and human population

| developed a wetland fragmentation and population index (WFPI) by overlaying the
gridded population layer with the gridded wetland fragmentation layer using the fuzzy
overlay method (section 5.2.4.4). The fragmentation index is an indicator of regions
with high wetland patches per 10 km grid and the population index is a count of
persons per kilometer grid indicating areas of high concentrations of population. My
WFPI shows areas where fragmentation is coincident with humans (Figure 5.6) using

10 km grid cells across Africa.
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Figure 5.6 Gridded wetland fragmentation and population index for 10 km
cells across Africa showing areas where fragmentation is associated with
population (values closer to 1). The insert map a-d shows areas of high WFPI

value.
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| identified nine regions with a WFPI value indicating highly fragmented grid cells
(80-226 wetland fragments per 10 km?) related to large population size (40,000-
300,000 persons per 10 km?). Six of these regions are in west Africa (Nigeria, Liberia,
Gabon, Guinea and Cameroon), two in north Africa (Egypt and Algeria) and one in
east Africa (Kenya). In west Africa, areas such as Rivers State and Lagos in Nigeria,
and Monrovia in Liberia, have highest WFPIs of 0.89, 0.76 and 0.83 respectively
(Table 5.1). These areas are characterized by high population growth associated
with urban expansion, thereby increasing pressure on nearby wetlands, mainly
coastal mangroves and swamps. Other areas with high WFPI include Conakry in
Guinea (0.68), Alexandra in Egypt (0.66), Algiers in Algeria (0.61) and Murang'a in
Kenya (0.59) often associated with agriculture encroaching on wetlands in these
regions (Kariyasa and Dewi, 2011; Hedjal et al., 2018; Maina and Mwangi, 2023).
The index indicates that a total of 13,021 km? of wetlands may be heavily threatened
by human activity within Africa (WFPI1.>0.5) and about 28,724 km? of wetland occurs
in populated areas that suggest a moderate at risk of human interactions (WFPI 0.3-
0.5). However, large wetland complexes with a high concentration of fragments (for
example the Congo basin wetlands) that are far away from settlements or sparsely
populated show little or no relation between fragmentation and human populations
(Figure 5.6). The high concentration of fragments in the Congo basin are thought to
be geomorphologically and climatologically controlled rather than driven by human
activities (Young et al., 2023), though these peatlands could be highly sensitive to

human-induced fragmentation in the future.
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Table 5.1  The location, number of fragments and population of high WFPI

10 km? grid cells across Africa.

Location Country Population per Fragmentation WFPI
grid cell per grid cell
Rivers State Nigeria 130698 209 0.89
Lagos Nigeria 303143 107 0.76
Greater Monrovia Liberia 136475 185 0.83
Alexandra Egypt 168943 94 0.66
Algiers Algeria 220546 76 0.61
Muranga Kenya 72349 61 0.59
Conakry Guinea 98844 174 0.68
Littoral Cameroon 67846 173 0.57
Estuarie Gabon 41947 226 0.55

5.3.4 Carbon stock in African wetlands

Healthy wetlands can store large amounts of carbon, but the quantity of carbon
stored varies among different wetland types (Adame et al., 2015; Poulter et al.,
2021). Among these wetland types, peatlands are thought to have the highest
carbon stock followed by mangroves, swamps and marshes (Adame et al., 2015;
Boone and Bhomia, 2017; Ouyang and Lee, 2020; Sjogersten et al., 2021). | use the
IPCC mean carbon stock for each wetland type to estimate the total carbon stored
in four wetland types of Africa. My new continental map indicates that African
wetland contains 54 £11 Gt of carbon which is around 5% to 9% of wetland soil
carbon stored globally (520 - 710 Gt C) (Poulter et al., 2021), and higher than that of

European wetlands (12-31 Gt) (Malak et al., 2021). Peatlands store about 41% of
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this African wetland carbon, while 28% is stored in marshes, 27% in swamps and

3% in mangroves.

5.3.5 Net carbon uptake or loss from African wetlands

| estimated the contribution of African wetlands to the global carbon budget across
each climatic region using empirically derived emission rates for selected wetland
types for which data are available (see Method). | used two approaches. First, | used
the default emission factor from the IPCC emission factor database to calculate total
carbon emissions from wetlands under two conditions (drained or natural). Using my
new map of wetlands in Africa, i calculated that drained peatland, mangrove and
marsh are capable of emitting 260Mt C yr' (936Mt CO2 yr' equivalents) which is
equivalent to 2.4% of global net annual CO2 emissions (Friedlingstein et al., 2022)
and almost ten times the mean net annual uptake under natural conditions of 27Mt
C yr' (98Mt CO2 equivalents yr') by these wetlands. Wetlands within high WFPI

areas, under drained conditions, could release 10.3Mt C yr' (37Mt COz2 equivalents

yr).

The net wetland carbon flux varies according to water level (Evans et al., 2021; Zou
et al., 2022). Therefore, in my second approach, i used the emission factor for
different wetland types at various water levels obtained from Zou et al. (2022) to
estimate the carbon flux for peatlands, marshes and swamps. The six categories of
water level range from -3 to 2 (WTL-3 <-70 cm; -70 cm < WTL-2 < -50 cm; -50cm <
WTL-1 < -30 cm; -30 cm < WTLO < -5 cm; -5 cm < WTL1 < 40cm; and 40 cm <

WTL2), where negative values indicate depth below the surface, while positive
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values indicate ponding. At water level -3 i estimated that African wetlands will have
a net release of 310Mt CO2 equivalent Yr-!, while for water level -2 they will emit 115Mt
CO2 yr' and 46Mt CO2 yr' for water level -1, while 91Mt CO2 yr-! will be taken up by

African wetlands when the water level is at level 1.

5.4 Discussion

My estimate of wetlands in Africa (947,750 km?) is larger than that of the coarser
global wetland dataset by CIFOR (859,278 km?) and that of GLWD (934,481 km?).
The biggest difference occurs in the classification of marsh followed by swamp and
mangrove. This variation may be due to the coarse resolution dataset used to
produce previous global wetland maps which may result in misclassification and
omission of small-scale wetlands. This inconsistency highlights the importance of
using high-resolution data to improve the estimation of wetlands, which in turn can
be used to develop policy and monitoring to protect wetlands. This study shows close
similarities with smaller geographical scale studies, such as the peatland map of

Angolan highlands constructed by Lourenco et al. 2022 (Figure 5.7)
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Figure 5.7 The Map of Angolan highlands peatlands by (a) Lourenco et al.
2022, (b) This study.

The overall accuracy of the trained algorithm compared to validation ground control
data was higher for wetlands in the TWD region (89%) with mangrove and marsh
well distinguished from other wetland classes with producer’s accuracies exceeding
80% (Table B.3-B.7 Appendix B). There was high confusion in discriminating mineral
soil swamps and peatlands especially in the TW region with user's and producer’s
accuracy below 70% and 80% respectively. There is also a common confusion
amongst other wetland classes such as swamps and mangrove, marsh, and
seasonal wetlands due to similarities in their visual and spectral signatures. The low
accuracy in the Arid region was a result of confusion in discriminating swamp and
peatlands along the Nile area, due to the presence of a peat deposit within the
swamps. Similar confusion occurs in TW and TWD due peat deposits in the swamp
and my method did not perform well in discriminating between non-peatland swamps

and peatland.
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The WEFPI analysis generally identifies sites where the presence of human
population poses a threat to nearby fragmented wetlands. My new map can be used
as a baseline to monitor and assess wetland changes over time at a fine scale (10m
resolution). It should also be noted that my method can now be used to generate
timeseries observations for analyzing human-driven and natural wetland changes as
well as their fragmentation, supporting future remotely sensed observations on the
success of different wetland protection policies. My future work will be concentrated
on gathering more and better-quality ground control data to support some future

timeseries analyses.

| explored the possible impact of African wetlands on global climate through net
carbon uptake/loss under natural and a range of drained conditions. | found that
the three selected wetland types (peatland, mangrove and marsh) under drained
conditions could contribute up to 3% of global net annual carbon loss, a value which
might be much higher if data for emissions from other wetlands become available
and included in the estimation. Human activities have been widely reported to be a
key driver of wetland degradation (Van Asselen et al., 2013; Dixon et al., 2016;
Davidson, 2017). The degradation of wetland is often related to deeper water-tables
which leads to increased decomposition and release of carbon to the atmosphere
(Laine et al., 1996; Limpert et al., 2020). | found that wetlands which are currently
highly fragmented in heavily populated areas of Africa have the potential to release
CO2 equivalent to 0.6 % of total global annual emissions. Hence, protection of
African wetlands, particularly in Tropical wet (TW), Tropical wet and dry (TWD)

regions and most areas with high WFPI where the largest carbon stocks and greatest
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net C emission potential is to be found, will be important for managing future land-

based emissions.

My analysis of African wetlands provides a high-resolution insight as to their extent,
condition and their potential contribution to the global carbon balance, providing data

critical for both improving land-surface climate models and for wetland conservation.
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Chapter 6
Detecting changes in wetland area of the Lake Chad region using

change vector analysis

6.1 Introduction

Wetland ecosystems play an important role in society by offering richly resourced
habitats and providing sustainable livelihood opportunities. These ecosystems help
develop, grow, and sustain the natural environment. Depending on their topographic
setting and local conditions, they can reduce flood impacts, enhance water quality
by absorbing pollutants, and serve as important faunal habitats, among many other
environmental, recreational, and economic advantages (Acreman and Holden, 2013;
Junk et al., 2013; Mitsch and Gosselink, 2015). Within the context of climate change
and resource exploitation, these ecosystems face significant threats from
anthropogenic activities that may lead to their widespread loss. Changes in land use
around wetlands may exacerbate the risks posed by climate change, potentially
causing disastrous effects on surrounding populations by impacting water and food

security (Lemoalle et al., 2012; Magrin, 2016; Pham-duc et al., 2020).

The Chad basin (2.5x106 km?) contains one of the largest wetland complexes in
Africa with Lake Chad as a key feature (Policelli et al., 2018). The wetland systems
cut across three main African climate zones including arid, semi-arid and tropical wet
and dry (Birkett, 2000; Lemoalle, 2005). The region comprises a complex of
permanent freshwater marshes inundated as part of Lake Chad, rivers and their

deltas, and the shallow lake itself (Lemoalle, 2005). The wetlands of this basin are
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economically important, providing water, fish, and other resources to the surrounding
populations (Lemoalle et al., 2012). However, | note that increasing rainfall variability
and irregularity over the past four decades, combined with human impacts such as
upstream dam construction, have led to the slow degradation of these wetlands
(Leblanc et al., 2011; WWF, 2014). The prolonged drought episodes over the region
from the 1970s to the 1990s and the lake retreat greatly modified natural resource
availability in the basin and around the Lake Chad wetlands. Degradation was further
escalated by human activities such as the damming of rivers, and abstracting water
in upper reaches, for irrigation. Studies have shown that there has been a slight
increase in the wetland extent around Lake Chad with a corresponding decrease in
open water area especially in the northern pool of the lake, while the wetlands in the
southern pool area of Lake Chad seem to be stable with the open water area slightly
increasing after the late 20th Century drought period (e.g. Leblanc et al., 2011;
Lemoalle et al., 2012; Pham-duc et al., 2020; Policelli et al., 2018). However, there
is a lack of high temporal-resolution data to capture dynamic changes in wetland

extent in this region.

Remote sensing has been used as an important tool for monitoring and identifying
wetland changes (Chen et al., 2014; Ashraf and Nawaz, 2015; Jochems et al., 2021;
Al-Nasrawi et al., 2021). Advancements in high spatial and spectral resolution
imagery have allowed for improved remote sensing capabilities for wetland mapping
(Klemas, 2011), which could be beneficial for long-term monitoring by detecting
patterns within wetlands and landscapes (Kelly et al., 2011). In addition, the

application of current remote sensing techniques not only helps quantify ecological



97
changes in wetlands over time, but such analysis can help to link environmental
changes to anthropogenic drivers (Byrd et al., 2004). A variety of techniques have
been developed for mapping landcover using remote sensing time series data (Xia
et al., 2002; Zhao et al., 2009; Zhu and Woodcock, 2014; Estupinan-Suarez et al.,
2015; Van Tricht et al., 2018). Time-series mapping based on phenological
differences provides critical information on spatiotemporal patterns of land cover.
However, applications of time-series remote sensing data to African wetland
ecosystems remain limited, with most studies focused on semi-arid West Africa
(Zhao et al., 2009; Kovacs et al., 2022). The complex water dynamics, diverse
wetland types, and spectral similarities between wetlands and other land cover
classes complicate the ability to conduct detailed and long-term monitoring of

wetland cover on a frequent basis (Ozesmi and Bauer, 2002; Niu et al., 2012).

Over the past decades, much literature on changes in the Lake Chad region has
investigated the variability of the extent of open surface water using satellite data
(Birkett, 2000; Leblanc et al., 2011; Lemoalle et al., 2012; Policelli et al., 2018). Zhu
et al. (2017) investigated the variations of water level in the southern pool of Lake
Chad for 25 years using satellite altimetry products and Landsat TM/ETM+ images.
Policelli et al. (2018) estimated the total surface water area of Lake Chad using a
combination of land surface temperature and radar remote sensing data. The study
utilized thermal infrared data to analyze land surface temperature variations,
identifying and delineating water bodies based on temperature differences between
water and land. Mahamat et al. (2021) utilized satellite images from Landsat-MSS to

Landsat-OLI of Lake Chad to explore alterations in the open water surface area
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across the years 1973, 1987, 2001, 2013, and 2017. They showed a decrease in
Lake Chad surface water area from 1973 to 2017. Despite these advances, | found
that few studies account for changes in the surrounding wetlands interlocking with
open water areas and other land cover types in Lake Chad. In a recent study by
Hussaini et al. (2020), changes in Lake Chad landcover were evaluated during the
preceding three decades by utilizing satellite imagery, encompassing OLI, ETM+,
and TM sensors. Changes in five land cover types were analyzed across three
epochs: 1985, 2000, and 2015. The findings revealed a significant growth in
farmlands and gallery forest from 1985 to 2015, whereas a decrease in barren land,
shrub, and water bodies was observed. However, the datasets and the approach
used in these studies may not be robust for quantifying the changes within the
wetland cover type in the Lake Chad basin due to lack of ground control points.
Furthermore, most of these studies focused exclusively on assessing surface water
dynamics and overlooked the changes in wetland systems within the Lake Chad
region. Thus, | emphasize the importance of obtaining up-to-date, high-resolution
information on wetland extents and changes in the Lake Chad area using advanced

remote sensing techniques.

My previous studies have demonstrated the potential of advanced remote sensing
techniques using machine learning with high resolution imagery to map wetlands of
southern Nigeria (Garba et al., 2023) and the African continent as a whole (Chapter
5). In this study | used Change Vector Analysis approaches to map the types and
quantify long-term dynamic changes of the wetlands of the Lake Chad area. CVA

has been found to have several advantages over other change detection
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applications (Karnieli et al., 2014). Firstly, it can concurrently process changes
across all available spectral bands simultaneously, rather than handling each band
separately. Secondly, by directly analyzing pixel vectors between dates, CVA avoids
compounding spatial and spectral errors that often occur when classifying each date
independently and comparing the classifications. Thirdly, CVA can detect not only
conversions between discrete land cover classes, but also more gradual changes in
the condition or state of a given cover type over time. Finally, CVA computes multi-
dimensional change vectors containing rich information on the magnitude and
direction of changes. These vectors can be separated into components representing
different change processes and synthesized into change images that preserve this
detailed change information to aid in interpretation and labelling of the changes
observed. My aim is to use CVA to quantify wetland changes, analyze trends over
the past two decades, and identify potential factors driving these changes in the Lake

Chad Basin.

6.2 Study area

The Lake Chad area is an extensive shallow depression in the central part of the
Sudano-Sahelian zone of Africa which lies between latitudes 12°0'N and 14°20'N
and longitudes 13°0'E and 15°20'E. It is bounded within the area of four countries:
Chad, Cameroon, Niger, and Nigeria (Leblanc et al., 2011; Mahamat et al., 2021).
The area is characterized by variable climate conditions with an average rainfall of
320 mm which mainly occurs during June to October, which is considered as a wet
season (Lemoalle, 2005; Lemoalle et al., 2012; Hussaini et al., 2020; Mahamat et

al., 2021). The Lake Chad area has been variously categorised as a large inland
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sea, a large lake with numerous islands, or a great marshy area (Sarch and Birkett,
2000; Leblanc et al., 2011; Ndayisaba et al., 2017). Historically, the surface area of
the lake has varied as a result of rainfall fluctuations, but the extent of the lake
surface also drastically decreased during the 1970s and 1980s (Lemoalle et al.,
2012). The region is characterized by an alternation of desert and vegetated areas
with hundreds of raised terrains in the middle of a desert environment. It is also

covered by a succession of dunes of variable dimensions.
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Figure 6.1 The study region, showing (a) the extent of the Lake Chad region
with the major rivers and their tributaries, (b) transboundary location of the
Lake Chad region and surrounding countries, (c) position of the Lake Chad

region within Africa.

The region is rich in fauna and flora, characterized by many species of fish and
migratory birds such as Fulvous Babbler, Marsh Warbler, River Prinia and Wattled

Starling. It provides an important resource for most of the rural population, which is
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growing very rapidly, because it provides for agricultural and pastoral lifestyles as

well as fish farming.

6.3 Materials and methods

| calculated the Tasseled Cap Index (TCT) using Landsat bands as input into the
CVA to identify changing pixels. | applied a machine learning random forest (RF)
classification algorithm to classify wetlands at each time step. Using the CVA
equation, | calculated the magnitude of spectral change among the three TC
components. My aim was to identify areas of substantial change in TC response,
regardless of the wetland areas' transitions, by focusing only on the magnitude of
the change vector while ignoring its direction. | determined the change threshold
value using areas with known wetland changes as a reference. | then classified only
the potentially changed locations (i.e., high change threshold values) using the RF
algorithm, utilizing my reference data. CVA allowed me to identify subtle differences
in class reflectance due to high intra-class variability resulting from landscape
heterogeneity. By interpreting the CVA magnitude and direction of change, | avoided
the accumulated error often associated with class-to-class comparisons between
two image dates. | implemented the overall methodology in Google Earth Engine
(GEE), a cloud-based geospatial analysis platform that provides access to over two

decades of imagery, making it feasible for analyzing landcover across large regions.

6.3.1 Selection of satellite imagery
| used atmospherically and terrain-corrected surface reflectance (SR) data from

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational
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Land Imager (OLI) Level-2 imagery, with a 30 m spatial resolution and a 16-day
temporal resolution, accessed via the Google Earth Engine (GEE) platform. |
acquired ETM+ data for the period 2000-2013 and OLI data for 2014-2020. To
address the spectral differences between the Landsat sensors, | harmonized the
ETM+ surface reflectance values to match the OLI range using OLS coefficients
(Roy et al., 2016), producing an analysis-ready time series. | created a spatial subset
of the region of interest from the spectrally calibrated series. Clouds and shadows

were removed using supplementary pixel quality assessment flags.

6.3.2 Reference data

| obtained reference data from the Food and Agriculture Organization (FAO) global
dryland assessment (Bastin et al., 2017). These datasets were generated by
photointerpretation of images of less than <1 metre resolution. | collected a total of
805 ground sample points for wetland and non-wetland locations in the Lake Chad
region. The reference data included wetland (401 points) and non-wetland types
grouped into open water (143 points), urban/bare land (152 points), cultivated land
(215 points), and grassland (194 points) categories. | randomly divided these points
into training (50%) and validation (50%) datasets, ensuring even geographic

coverage for classifier input (Chapter 4).

6.3.3 Creation of Image Composite
To achieve higher accuracy for identification and classification of my change
landcover, | created a composite image for each year and classified each composite

using a Random Forest (RF) classification algorithm. | created a multi-temporal
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composite using the mean value from the composite after cloud masking. Several
studies have shown that a yearly composite image captures explicit phenological
information suitable for wetland mapping (Griffiths et al., 2013; Mahdianpari et al.,
2018). | used the selected spectral bands and extracted indices (TCT) as an input
variable for each year into the RF classifier. An RF classifier is more robust
compared to the Decision Tree (DT) algorithm and easier to execute relative to a
Support Vector Machine algorithm (Rodriguez-Galiano et al., 2012). It uses
bootstrap aggregating (bagging) to produce an ensemble of decision trees by
adopting a random sample from the given training data and finds the best splitting of
the nodes by minimizing the correlation between trees (Breiman, 2001). About 400
training points for different landcover types were used to train my classifier. The rest
of the sample points were set aside to validate the accuracy of the classification (Liu

et al., 2018; Mahdianpari et al., 2018).

6.4 Change Detection Technique

6.4.1 Tasseled cap index

Tasseled Cap Transformation (TCT) was developed as a means of compressing and
visualizing data obtained from the Landsat-1 Multispectral Scanner (MSS), with a
specific focus on extracting information about agricultural landscapes. The TCT
components were selected because they are scene independent and have been
proven as highly effective for the interpretation, classification, and analysis of
phenomena and processes related to the dynamic changes in land use/cover
features (Rahman and Mesev, 2019; Stoyanov, 2022). | performed CVA for wetlands

and other landcover areas using the first three TC components derived from the
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Landsat images. These components measure brightness, greenness, and wetness,
which account for more than 97% of the spectral variability observed in a standard
scene (Baker et al., 2007). TC component brightness is a measure of image
brightness derived from the responses of all bands except thermal Landsat bands.
The greenness component is calculated primarily through differencing near infrared
with visible bands. The wetness component is determined by comparing visible and
near infrared responses with shortwave infrared responses. The brightness
component is an indicator associated with bare soil or bare ground: increase in
brightness signifies a shift towards bare soil, whereas a decrease in brightness
indicates a shift away from bare soil (Rahman and Mesev, 2019). Greenness is
directly related to chlorophyll presence and photosynthetic activity, and hence
alterations in the measured greenness can be attributed to increase or decrease in
vegetation (Baker et al., 2007; Thakkar et al., 2016; Poortinga et al., 2020). Wetness
can be an indicator of vegetation density and soil moisture, and hence decrease in
wetness indicates declining vegetation or soil moisture (Xu, 2006; Poortinga et al.,

2020).

6.4.2 Change Vector Analysis

Change vector analysis (CVA) assesses the magnitude and direction of change
between different dates within spectral space. Fundamentally, it applies a variation
of the Pythagorean theorem to calculate the Euclidean distance between the digital
values of a given pixel at Time 1 (T1) and that same pixel at Time 2 (T2). This
Euclidean distance represents the magnitude of spectral change that occurred at

that pixel location, while the direction of the change vector provides information
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about the nature of the change (Rahman and Mesev, 2019). CVA offers flexibility in
that it can be applied to diverse multispectral datasets enabling radiometric change
detection useful for monitoring a variety of landscape processes and dynamics over
time (Singh and Talwar, 2014). The CVA was conducted by computing the change
vector (CV) between vectors H and Q at dates t1, t2 given by H = (h1, hz, ......, hn)
and Q = (q1, g2, ..., Qn), respectively, and n is the number of bands, so that a change

vector is defined as:

hiy —qq
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The CVA method for magnitude was applied to three TC components using equation

6.2:

M| =/(az —a))? + (b, — b)? + (c; — ¢1)? Equation 6.2

where | M| denotes the total changes between the vector of the three-components
a, b and c corresponding to TC brightness, greenness, and wetness respectively at

two different times.

The greater the | M| the higher the chances of change illustrated in Figure 6.2a.
Magnitude values at or near zero identify areas with little or no change. However,
pixels that remain unchanged fall within a certain range around the origin due to
factors such as noise and imperfect normalization. This noise is removed by applying
a threshold to the magnitude. A decision on whether a change has occurred is

determined based on whether the change magnitude exceeds a predefined



106
threshold value. After a pixel is classified as having experienced change, further
examination of the change direction is conducted to ascertain the specific type of
change that took place. The type of change is often identified using the angle of the
vector in two spectral dimensions, or sector codes if more than two spectral

dimensions are involved (Figure 6.2b).
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Figure 6.2 Representation of change vector measure (a) change magnitude

for two input bands, (b) change direction sector code (after Yoon et al., 2003)

6.4.3 Determination of Optimal Threshold

Determining an appropriate threshold value to differentiate real changes from noise
or insignificant fluctuations in the dataset was a critical step in my CVA process. |
established the change threshold iteratively, selecting it based on training samples
that represented all possible types of changes. My assumption was that these
training samples adequately reflected the characteristics of the entire study area.

The change detection threshold, therefore, was determined using the remote
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sensing analyst’s expert knowledge: a threshold leading to the maximum accuracy

of change detection within the training samples is considered optimal for this study.

In this process, | first calculated the change magnitude image and selected
representative change areas as training samples. A sensitive change magnitude
value was then chosen to detect potential change pixels. As the threshold
decreased, the number of identified change pixels increased, enhancing accuracy
within the training samples. However, it is important to acknowledge that lowering
the threshold also increases the likelihood of identifying no-change pixels outside
the training samples as change pixels, consequently resulting in higher commission
errors. | used the potentially changed sites to create a mask for each image pair,
retaining only the changed pixels. The masked pixels (as shown in Table 6.1) were

classified, while the remaining study area pixels were treated as unchanged.

6.4.4 Change type classification

The evaluation of change types is essential in change detection. In this study,
change pixels are classified using the random forest algorithm. | used the collected
reference data for five landcover types to train the model to build up relationships for
different landcover categories. All training data were selected through random
sampling from areas designated as unchanged to assure that high classification
accuracies are achieved. The potentially changed pixels were also classified to
identify wetland and non-wetland landcover classes. These classes were then
compared to the same classes identified in the initial wetland classification from the
unchanged pixels to determine if landcover had changed regarding wetland areas

between the two image dates.
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6.4.5 Change accuracy

To evaluate the performance of the CVA method, | estimated the accuracy of both
“‘change/no-change” detection and “from-to change” detection levels. The sampling
locations were randomly selected to include all possible change types. However,
sampling pixels belonging to the no change area cover a larger proportion of the
sampling compared to change pixels, due to the latter constituting a larger area of
the study location. The error matrix of “change/no-change” detection constructed
from 2,500 sample pixels for four change periods is illustrated in Table 6.2. For the
“from-to change” detection level, the accuracy assessment was carried out based
on the changed pixels belonging to the different landcover types for four change
periods. The sampling pixels for the detected change area for each landcover type
were randomly selected using the collected reference data. The accuracies and
errors of detecting changes from wetland to other landcovers are shown in Table
6.3. Finally, | estimated the total area of wetland changed to different landcovers for

each change period.

6.5 Results

6.5.1 CVA change detection

| calculated the change vector and magnitude using Equations 6.1 and 6.2 for four
periods: 2000-2005, 2005-2010, 2010-2015, and 2015-2020. The spatial
distribution of change vectors varied throughout these periods. Figure 6.3 shows the
spatial distribution of change vectors for the TC components, ranging from -0.5 to
0.6. The analysis revealed a severe decline in wetness in the northeast basin of Lake

Chad and at the western edge of the southern basin’s archipelago between 2000
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and 2005 (Figure 6.3a), with moderate changes spread across the north and
southern parts of the basin. During 2005-2010, | observed widespread negative
changes in wetness and greenness, along with an increase in brightness pixels,
indicating expanded bare soil due to wetland decline (Figure 6.3a and b). For 2010—
2015, the majority of change pixels showed increased wetness and greenness
across the basin. However, for 2015-2020, all three components reversed,
confirming drying conditions during this period (Figure 6.3d).
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Figure 6.3 Change vector images of change vector analysis (CVA) in four
periods: (a) between 2000 and 2005; (b) between 2005 and 2010; (c) between
2010 and 2015, (d) between 2015 and 2020. The legend palette ranges from -
0.40 (deep blue) to 0.50 (dark red) for wetness, -0.27 (deep blue) to 0.26 (dark
red) for greenness and -0.52 (deep blue) to 0.60 (dark red) for brightness. The
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negative sign indicates a decrease in pixel value while a positive sign shows

an increase in pixel value within the period of change.
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| analyzed the change vector magnitude, as shown in Figure 6.4, which illustrates
spatial variations in change intensity ranging from 0 to 0.6 across four time intervals.
Most change magnitudes were below 0.4. Higher-intensity changes were
predominantly concentrated in the northern part of the basin, while moderate
changes were dispersed throughout the region. The periods 2000-2005 (Figure
6.4a) and 2010-2015 (Figure 6.4c) exhibited more pixels with high-level changes
compared to 2005-2010 and 2015-2020, which showed low-level changes, except

for patches in the northern and eastern parts of the lake (Figure 6.4b and 6.4d).
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Figure 6.4 Change magnitude images of change vector analysis (CVA) in
four periods: (a) between 2000 and 2005, (b) between 2005 and 2010, (c)
between 2010 and 2015, (d) between 2015 and 2020. The magnitude value
ranges from 0 (grey) to 0.6 (dark red)

| derived the change and no-change areas by thresholding the change magnitude

maps. The optimal threshold was selected from five sample areas of known change
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locations. For the periods 2000-2005, 2005-2010, and 2015-2020, | used a
threshold of 0.16, while for 2010-2015, a threshold of 0.2 was more appropriate for
distinguishing change/no-change areas. These thresholds captured 98% of the
known change areas, which were also identified using visual interpretation of raw

images.

Figure 6.6 illustrates the spatial pattern of changed pixels by applying the cut off
thresholds. Most of the pixels are masked out as unchanged for all periods (77% -
90%) (Figure 6.7). The highest amount of changed pixels occurred in 2010 — 2015
as shown in Figure 6.6c, covering about 576 km? (Table 6.1), while the least masked
change area was found in 2015 — 2020 (191 km?, Table 6.1) corresponding to only
about 7% of the total area. The threshold for 2000 — 2005 retained the largest
proportion of the initial changed pixels (82%) as observed from the pixel counts and
estimated area (Table 6.1), while about 50% — 60% of initial potential change pixels

are detected in other periods by the threshold.
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Figure 6.5 Time series change vector magnitude for yearly changes from
2000 to 2020.

Table 6.1 Estimate of mask change area using the suitable threshold for four

change periods

Change period Total change | Change pixel area | Threshold pixel | Threshold change

pixel count (km?) count area (km?)
2000 - 2005 3805111 342.46 3128209 281.53
2005 - 2010 4514524 406.31 2193038 197.38
2010 - 2015 10023724 902.14 6400843 576.07

2015 - 2020 4102177 369.19 2122727 191.05
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Figure 6.6 Change magnitude threshold image in four periods: (a) between
2000 and 2005, (b) between 2005 and 2010, (c) between 2010 and 2015, (d)
between 2015 and 2020.

6.5.2 Accuracy assessment

The overall accuracies for both “change/no-change” detection and “from-to change”
detection levels were high, as observed in Table 6.2 and Table 6.3, ranging from
93.11 to 97.88%. The change/no change for the period of 2010 — 2015 had a lower
accuracy as compared to other periods largely due to large number of unchanged
pixels (14.93%) wrongly identified as changed. The fewest errors were obtained in
the 2005 — 2010 change classification, which means the change/ no change pixels
were well distinguished with the highest accuracy (97.8%) (Table 6.2). In 2000 —

2005 and 2015 — 2020 a significant number of changed pixels were labelled as
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unchanged resulting in higher omission error (Table 6.2). For assessment of
changes from wetland to other landcovers, the highest confusion occurs in
classifying change pixels between wetland versus open water and wetland versus

forest vegetation for all four change periods (Table 6.3).



Table 6.2
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Error matrix for “change/no change” from 2000 - 2020 at five-year

interval. The omission error refers to the percentage of reference wetland

change sites that were left out. Commission error refers to percentage of

reference site change sites incorrectly classified as wetland change

Reference change

2000 - 2005

Change pixels  No Change pixel Sum  Commission error
Change Pixels 458 42 500 8.40%
Classified
change No Change Pixels 57 1943 2000 2.85%
Sum 515 1985 2500
Omission Error 11.06% 1.60%
Overall Accuracy 96.29%
2005 - 2010
Change Pixels 415 35 450 7.71%
No Change Pixels 18 2032 2050 0.87%
Sum 433 1985 2500
Omission Error 4.15% 1.70%
Overall Accuracy 97.88%
2010 - 2015
Change Pixels 368 32 400 8.00%
No Change Pixels 46 2054 2100 2.22%
Sum 414 2086 2500
Omission Error 11.11% 1.53%
Overall Accuracy 96.88%
2015 - 2020
Change Pixels 368 32 400 8.00%
No Change Pixels | 46 2054 2100 2.22%
Sum 414 2086 2500
Omission Error 11.11% 1.53%
Overall Accuracy 96.88%
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In 2010 — 2015 and 2015 — 2020 the accuracy of mapping changes between wetland
and cultivated lands were much lower than observed in other change periods with
both commission and omission error greater than 8%. The smallest error was
obtained with classifying changes from wetland to bare land where a high accuracy
level of 95% -100% for all periods was achieved (Table 6.3). This was achieved

because of the spectral distinction between wetland and bare land features.

Table 6.3 The accuracy assessment of “from-to” change detection for four
change periods. The omission error refers to the percentage of reference
wetland change sites that were left out. Commission error refers to percentage

of reference site change sites incorrectly classified as wetland change.

Change | Errors % Wetland Overall
period accuracy (%)
Open Forest Cultivated | Grassland | Bare Land
water Land
2000 - | Omission 14.81 10.25 4.79 6.08 0 95.41
2005 Commission | 7.84 8.05 2.29 0 0
2005 - | Omission 8.16 6.45 4.51 3.43 0 96.27
2010 Commission | 7.38 5.35 0 2.04 0
2010 - | Omission 7.57 9.25 9.05 4.04 3.03 93.11
2015 Commission | 9.09 14.76 11.88 3.45 2.08
2015 - | Omission 2.08 5.45 9.25 5.09 2.38 94.48
2020 Commission | 19.15 6.11 8.25 1.33 4.11

6.5.3 Evaluation of wetland change
Using the high accuracy classified change, | estimated the area of wetland changes
compared to other landcovers (Table 6.4). The overall result shows a net loss of

wetland in all four periods. The highest wetland decline was estimated between 2000
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— 2005 with a net loss of 277 km? (+12 km?) converted to different landcover types.
For this period, about 112 km? (11 km?) and 42 km? (+7 km?) area of wetland was
converted into forest, and open water (Table 6.4). However, there are patches of
wetland expansion during the period especially around the middle barrier of the
basin. High wetland loss of 116 km? (+ 6 km?) was also observed during the period
of 2005 — 2010, where a large area of wetland (47 km?) was converted to forest
vegetation. The lowest wetland decline occurred during 2010 — 2015 which accounts

for a total loss of 77 km? (x5 km?).

Table 6.4

negative value indicates the area of wetland loss (km?) due to conversion to a

Estimation of wetland change area for four change periods. The

given landcover type while the positive value indicates area of wetland gain

during the change period interval.

Change period Wetland net change
Open water | Forest Cultivated | Grassland | Bare Land
Land
2000-2005 -41.72 -111.99 -11.45 -35.52 -31.45
2005-2010 -15.49 -47.44 -14.43 -11.55 -22.69
2010-2015 -34.96 23.37 -27.84 0 -1.81
2015-2020 12.45 -30.35 -52.12 -28.33 12.71

6.6 Discussion

Lake Chad is an endorheic wetland ecosystem, where the source of water is mainly
from precipitation and surrounding rivers, which means any fluctuation in the annual
rainfall affects the basin directly. Several studies have highlighted the long-term

effect of climatic changes which result in the variation of lake extent and water level
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in the region (Lemoalle, 2005; Zhao et al., 2009; Lemoalle et al., 2012; Policelli et
al., 2018; Hussaini et al.,, 2020). Data about the variability of mean annual
precipitation obtained for my study periods from Climate Hazards Group InfraRed
Precipitation (CHIRP) shows strong connection with wetland changes. Since rainfall
is a key factor in the formation and succession of the wetland ecosystem, its dynamic
changes have a large impact on the system dynamics. During 2000 — 2005, the
mean annual precipitation dropped by about 42 mm from 302 mm to 260 mm (Figure
6.7). The mean annual precipitation further declined by 57 mm between 2005 - 2010
and was the lowest among the study periods, implying that climate variability was
one of the causes of wetland change. Concurrently the rate of wetland decline was
reduced with the increase in mean annual precipitation during 2010-2015 (reached

up to 390 mm).
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Figure 6.7 The mean annual precipitation of the changed area for 2000 —
2020.
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Anthropogenic activities were also an important likely cause of wetland changes in
the Lake Chad region. The shrinkage of the lake provides an increasing area of land
rich in silt, and wet all year-round, compared to surrounding areas, which has in
recent years been a pull factor for immigration into the region (Okpara et al., 2016).
Lake Chad has therefore attracted many people who have lost their former
livelihoods and have moved to practice fishing, cultivation and herding in the former
lakebed (Lemoalle et al., 2012). Population around Lake Chad has soared in recent
decades at a rate between 1.5% and 3.7% per year (IAEA, 2017). Increase in
population implies an increase in demand for water and land resources for a variety
of economic and livelihood activities. Zhu et al. (2019) reported that annual water
loss as result of human activities at Lake Chad increased threefold between 1997 to
2013. However, the major change observed in wetlands is towards forest rather than
agriculture, indicating that agriculture is not the sole driver of wetland change. This
occurs because of receding water levels causing previously flooded areas to become
exposed, allowing woody vegetation to establish and gradually convert wetland

areas to forest (Lemoalle et al., 2012).

My study has revealed spatial changes in wetland within the Lake Chad area
between 2000 and 2020. Wetland declined from 2000 to 2020 with a net loss of 511
km? (24%). During the 2000-2020 period much wetland area was changed to forest
vegetation which accounts for a net loss of 237 km?. In comparison with Hussaini et
al. (2019) who estimated wetland loss to gallery forest to be about 11% between
2000 to 2015, | found a slightly larger area of wetland converted to forest (14%)

(Figure 6.8). | also observed a large area of wetland had been changed to grassland
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(125 km?) and bare soil (82 km?), and this conversion was found to be greatest
between 2005-2010 (Table 6.4). This wetland loss likely occurred due to a decrease
in water discharge from the supplying lakes within the Lake Chad basin (Magrin,
2016; Policelli et al., 2018). However, between 2010 — 2015 the CVA result shows
that a net area of 136 km? (+15 km?) wetland was restored due to increasing water
supply to the basin mostly through rainfall from 2011 (see Figure 6.7). After 2015 the
wetland area begins to decline again leading to a loss of about 97 km? (x5 km?) by
2020, as a result of agricultural activities and to forest (Hussaini et al., 2020) with

conversion of a significant proportion of wetland area into cultivated fields and

grassland.
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Figure 6.8 Comparison of wetland area conversion to forest from 2000 to
2015 in the northern pool between (a) Hussain et al., 2020 and (b) this study
showing change vector classified as forest in 2015. The yellow polygon

illustrates the extent of change area from Hussain et al.,2020.
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Since many of the studies on changes to the Lake Chad area as described in section
6.1 are based on the analysis of surface water area covering different time spans,
they cannot be directly compared to my results. However, it is worth noting that most
studies (Birkett, 2000; Alfa et al., 2010; Lemoalle et al., 2012; Okpara et al., 2016;
Onamuti et al., 2017; Policelli et al., 2018; Mahamat et al., 2021) show a large decline
of the Lake Chad open water area. Hussaini et al., (2020) suggested there was a
decline in wetland area and an increase in gallery forest from 2000 - 2015, which is
consistent with a net loss of the wetland area during the same period of my research.
The results of my study aligns with the findings of Pham-duc et al., (2020) who
suggested that the northern pool shows higher variability (see Figure 6.5) with a
descending trend of the surface water extent from 2002 reaching its minimum in
2010 before starting to slowly increase again in the following years. The impact of
long-term rainfall variability the Lake Chad has been exceptional with an expansions
during wet years and severe contractions during droughts due to combined effects
of climatic and anthropogenic factors (Buma et al., 2018; Zhu et al., 2019; Gbetkom
etal., 2023). However, there is the potential for other African wetlands to be impacted
by rainfall dynamics: for example, the Sudd wetland has been significantly impacted
by long periods of drought (Zeleke et al., 2024). My results showed that the wetlands
in the Lake Chad region continued to decline for all periods, including the phase with
increased rainfall, from 2000 to 2020 which means that this wetland has become
fragile and susceptible to further changes. The rate of wetland loss to agriculture has
also doubled by 2020 (Table 6.4). This confirms that more in-depth understanding
and effective management plans are urgently needed in order to conserve and

preserve the Lake Chad wetlands especially those around the northern pool of the
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lake which seem to be more vulnerable (Lemoalle et al., 2012). The results of this
study provide a basis on which the respective organizations such as the Lake Chad
Basin Commission (LCBC) can incorporate wetland ecosystem protection in their

management plans.

While policies can be implemented to protect these wetlands from changes in land
use, findings from this study indicate that this wetland is highly sensitive to changes
in precipitation. Therefore, it remains uncertain how this wetland will respond to
future climate change. However, with the expectation of precipitation to generally
increase by about 5%-15% by 2100 within the region under warmer global
temperature scenarios (Schmitt and Simpson, 2018; Adeyeri et al., 2019; Sylvestre
et al., 2024), it is likely to positively affect the functioning of this wetland depending
on the nature of human interactions and land management. It is also important to
note that the rise in lake level can be associated with wetland loss due to complete

inundation.

An advantage of the relative change detection technique that | apply here between
successive images is that it reduces errors in classification. Accuracy of change
detection is therefore improved by 14% compared to previous studies of Lake Chad.
However, there remain many challenges associated with detecting long-term
changes in Lake Chad wetlands, among them is the seasonal variability of the rainfall
that might affect the spectral signal. Another challenge is short-term changes, such
as a rainy year followed by a drought year, which can introduce high uncertainty in

different areas. To improve the accuracy of the change estimate | recommend long-
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term analysis based explicitly on images of above-average rainy years and from the

same phenological stage.

6.7 Conclusion

In this study, a change detection approach for monitoring wetland dynamics was
developed using Tesseled cap indices and CVA. In this approach, wetness,
greenness, and brightness components of wetlands were derived from the Tesseled
cap index. Finally, the change magnitude and directions were calculated, which
refers to the detailed wetland change information. | further estimated the area of
wetland changes to other landcovers during four change periods in the Lake Chad
basin. During 2000-2010, a severe wetland decline occurred in the northern pool of
the lake, and marginal area of the southern pool of the lake, where the wetland was
mostly converted to forest vegetation. Despite a rise in rainfall from 2010 to 2015,
the wetland still faced a decline due to inundation from increase in lake levels. This
study has presented a novel and up to date quantification of wetland depletion trend
that occurred in the Lake Chad area over the past two decades (2000 — 2020). It
provides a good estimation of wetland changes by differentiating wetland and other
landcover classes using the CVA analysis. It is observed that the highest wetland
conversion was associated with forest vegetation (39%) which is dominant in the
northern pool, while the smallest wetland conversion was to cultivated land (9%). My
study reveals an unexpected outcome of net wetland loss during wetter periods,
which contrasts with assumptions from previous literature about wetland recovery
during periods of increased rainfall. The wetland change information in this study

was based on time-series remote sensing data; the results can offer guidance for
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scientific monitoring and sustainable management of wetlands. This approach could

be applied to wetland change studies in other areas.
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Chapter 7

Discussion and Conclusion

7.1 Section outline

In this Chapter | summarise the project as a whole and discuss how the work
contributed to answering the three underlying research questions:
1. What is the current extent of wetland area in southern Nigeria and how is this

broken down into different wetland types?

2. What is the current extent of wetland area across Africa, how is this broken
down into different wetland types and climate zones, what is its carbon store and
potential for GHG forcing under different degradation scenarios, and what is the

relationship between population and highly fragmented wetland regions?

3. What is the trend of change in Lake Chad region wetlands (as a regional case
study) over the past two decades and can these changes be linked to clear human

drivers of change?

The project findings are therefore discussed in the context of these questions and
subsequent implications for ecosystem services outcomes and conservation goals.
Areas in which the understanding or interpretation of past work has been extended
or challenged are also considered. The relevance of the work to the wider
international context and some of the project limitations are reflected upon. Finally,
overall conclusions and resulting recommendations for wetland management, policy

and future research directions are outlined.
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7.2 Implication of the research findings

7.2.1 Large-scale wetland mapping at 10m spatial resolution

This research produced the first systematic and comprehensive map of wetlands at
high spatial resolution (10 m) first for southern Nigeria and then for the whole of
Africa (Chapter 4 and 5), which provides a detailed and up-to-date resource for
numerous applications in conservation, wetland management, scientific research,
and sustainable exploitation. Sustainable wetland development can help to alleviate
poverty, enhance food security, and promote broader sustainable development in
Africa (Gardner et al., 2015). Reliable maps of African wetlands are crucial for
supporting livelihoods, reducing poverty, and advancing sustainable development
(Gardner and Finlayson, 2018). Additionally, the relationship between climate
change and wetlands is a key research focus, as African ecosystems are already
experiencing significant impacts from climate change, with more expected in the
future (Erwin, 2009; Field and Barros, 2014). Wetlands play a vital role in regulating
global climate by absorbing and releasing large quantities of carbon, and controlling
atmospheric concentrations of greenhouse gases like methane, carbon dioxide, and
nitrous oxide, which contribute significantly to global warming (Meng et al., 2016).
Maintaining the sustainability of African wetlands is critical for mitigating climate
change, and the high-resolution wetland map helps in accurately determining
wetland categories, estimating carbon stocks, and assessing greenhouse gas
emissions, thereby improving the understanding of wetland-climate interactions. My
wetland mapping using improved spatial resolution data captured a significant
amount of wetlands missed by existing global maps (Chapter 4, Figure 4.9). Existing

wetland mapping products on a global scale, such as the Ramsar site database,
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contains only information on wetlands that have been classified as of ‘international
importance’ and the Global Lake and Water Database (GLWD) has information that
is two decades old and probably incomplete (Gumbricht et al., 2017; Hu, Niu and
Chen, 2017; Steinbach et al., 2021). Recent mapping products such as PEATMAP
(Xu et al., 2018) and global wetland map (Gumbricht et al., 2017) are typically based
on secondary data of varying quality and age with a mix of spatial resolutions. This
thesis produced the first regional (Chapter 4) and continental wetland map (Chapter
5) at high spatial resolution (10 m) which provides high quality and detailed
information about the location, distribution, and extent of wetlands in Africa. This
mapping product could be easily integrated into global ecosystem models, climate
models, population models or hydrological models to investigate wetlands at a global
scale. The codes used to create this mapping products will be made available online
for other users. Analysis of the 10-metre wetland map suggests that in previous
global assessments, wetlands in Africa have been underestimated due to coarser
resolution investigation, resulting in misclassification and omission of small-scale
wetlands. For example, in comparison with the CIFOR global wetland dataset, about
80,400 km? of small-scale wetlands in Africa were identified by my study, that were
not included by CIFOR. This series of small wetlands contains a significant fraction
of stored carbon and could be an important target for conservation. Hopefully, my
study paves the way for further studies to assess the impact of human populations
around wetland margins, monitor wetland changes over time, and explore the

influence of climate change on dynamics of wetlands in Africa.
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7.2.2 Wetland patchiness and relationship to human populations

My 10-metre resolution wetland map reveals fragmentation which has significant
ecological, hydrological, socio-economic and policy implications. Fragmented
wetlands threaten biodiversity by isolating habitats, disrupting hydrological
processes essential for flood control and groundwater recharge, and diminishing
carbon sequestration capacity, contributing to climate change (Adade et al., 2017;
Kundu et al., 2022; Magure et al., 2022). For example, in Chapter 5 | found that
wetlands which are currently highly fragmented could potentially emit CO2 equivalent
to 0.6 % of total global annual emissions. They also become more vulnerable to
human encroachment from agriculture and urbanization, compromising ecosystem
services such as water purification, nutrient cycling and flood mitigation, which local
communities rely on. The map produced for my Nigerian study (Chapter 4), with 10
m pixels, captures small patches of wetland < 1 km? which were not captured in
earlier mapping products. These small patches may be more prone to degradation,
and are also susceptible to reduced biodiversity, and isolation, which limits species
movement and disrupts vital ecological processes such as migration and nutrient
cycling (Kundu et al., 2022). Therefore, stronger land use policies and targeted
interventions are required in southern Nigeria to protect these vital ecosystems from

further degradation.

The highest rate of wetland loss has been primarily attributed to human activities
such as agricultural and urban expansion in several cases (Ballut-Dajud et al., 2022;
Kundu et al., 2024; Magure et al., 2022). My continental-scale study (Chapter 5) and

the resulting WPFI index shows that highly fragmented wetlands are associated with
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large populations. | note that a total of 13,000 km? of wetlands (Chapter 5) are
currently heavily threatened due to their proximity to large population and about
28,700 km? of wetland lies in populated areas that suggest a moderate at risk of
human interaction. Therefore, being the first study to highlight regions where
fragmented wetlands are highly vulnerable to human activities in Africa, this work
provides the basis on which policy makers can plan and prioritize innovative policies

to preserve and restore wetland ecosystems in proximity to humans.

7.2.3 Estimation of potential carbon stock and carbon loss/uptake from
African wetlands
Carbon (C) sequestration is one of the valuable functions of wetlands which helps in
climate regulation (Villa and Bernal, 2018; Zou et al., 2022). About one-third of the
global organic soil C pool is thought to be stored in wetlands (Villa and Bernal, 2018).
The lack of high-resolution data hinders the estimates of the total carbon stored by
these wetlands and estimates of the potential for net carbon uptake or loss from
African wetlands at a continental scale. Much wetland carbon is below ground, yet
potentially fragile and susceptible to rapid loss with wetland degradation (Poulter et
al., 2021). Most of the existing estimations are at local level for countries and usually
for single categories of wetland (Ouyang and Lee, 2020; Raw et al., 2023). The
analysis of carbon storage in African wetlands in this study yielded an important
finding that four wetland types of Africa (peatlands, mangroves, swamps and
marshes) contain 54 +11 Gt of carbon which is around 5% to 9% of wetland soil
carbon stored globally (520 - 710 Gt C) (Poulter et al., 2021), and about twice that

of European wetlands (12-31 Gt) (Malak et al., 2021). It is also revealed that these
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wetlands under drained conditions could release up to 260Mt C yr' (936Mt CO2
equivalents yr') which is equivalent to 2.4% of global net annual CO2 emissions.
These results highlight the importance of protecting African wetlands and provide
data critical for both improving land-surface climate models and for wetland

conservation.

7.2.4 Wetland changes in the Lake Chad region

The most important factor in the formation and succession of the wetland ecosystem
is water, and changes to the water cycle can have a great impact on fragile wetland
ecosystems. The Lake Chad region has been reported to experience long-term
changes in surface water area (Chapter 6). However, earlier studies did not
accurately account for changes in wetland extent in the region. Referring to the
fragmentation index in Chapter 5, wetlands within the extreme northern and southern

pool areas of Lake Chad fall under the category of high fragmentation.

The results in Chapter 6 showed that there was a net loss of wetland area across
the first two decades (2000 — 2020) of the twentieth century, with the most significant
change occurring in the northern pool of the lake. Analysis showed that the wetland
loss was most likely driven by reduced rainfall and an increased demand for
agriculture. The continuous decrease in the wetland area implies that the ongoing
management and restoration policy in the region might not be effective. Thus, even
with increased future rainfall under climate change, wetlands in the area may be
degraded. As noted by Okonkwo and Demoz (2014) and Zieba et al. (2017), the

Lake Chad Basin Commission, which oversees policy and coordinates management
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plans for this ecosystem, is facing challenges due to limited human, material, and
financial resources required for monitoring and assessing the resources and
dynamics of the ecosystem. The results of this study can be used as a key reference
for scientific monitoring, rational planning of wetland restoration, and development

of sustainable management of wetland.

7.3 Research content and methods

In this study, | developed a technique using freely available global satellite datasets
from Sentinel-1 SAR and Sentinel-2 optical imagery, by integrating optical indices
and SAR polarimetric features from different seasons using a Random Forest
classification algorithm. The results from regional wetland mapping in Chapter 4
provide strong evidence of the performance of the technique with about 90%
accuracy. The technique in this study identifies small patches of wetland < 1 km?
which may not have been mapped in earlier mapping products (CIFOR, 2016;
Lehner and Doll, 2004; Li et al.,, 2022). | used different image compositing
approaches for different climatic regions as explained in Chapter 3, because similar
wetland types may appear differently under different climate settings (Guo et al.,

2017).

In the present study, | utilized a Random Forest (RF) classification algorithm for
delineating and classifying the wetland type. Compared to previous studies, the
classification algorithm used in my study is more universal and robust than other
classification algorithms in terms of wetland type, producing a higher accuracy result

(Mahdianpari et al., 2018; Potic and Potic, 2017). The RF algorithm is particularly
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suitable for handling variation within land cover classes and reducing noise in the
data. It does not require prior knowledge of the data distribution compared to other
classifiers. With further resources, other accuracy coefficients such as AUROC,

TSS, DelLong Test could be used to further test my classification.

To analyze the relationship between wetland patchiness and population | choose to
use gridded population data to ease comparison with wetland fragmentation. This
approach has the advantage of using a relatively uniform dataset instead of relying
on population indicators (like distances to village, city, road) that vary from country
to country. However, if a novel set of meaningful population indicator datasets
becomes available for comparison it should be used to better highlight the population

activities that are drivers of change in wetlands.

Finally in Chapter 6, | use Change Vector Analysis (CVA) approaches to map the
types and quantify long-term dynamic changes of the wetlands of the Lake Chad
area. CVA has been found to have several advantages over other change detection
applications (Karnieli et al., 2014). CVA can measure change in more than two
spectral bands, giving it an advantage when mapping rapidly changing and highly
diverse wetlands (Gemechu et al., 2022; Klemas, 2013). The CVA approach in this
study produces more accurate and reliable change results when compared to other
methods such as post classification comparisons as used by previous studies (e.g.,
Babamaaiji and Lee, 2014; Hussaini et al., 2020; Mahamat et al., 2021). My results
highlighted the high potential of the CVA to detect wetland dynamics and trends over

decades.
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7.4 Limitations of the work

7.4.1 Inconsistency of wetland definition

This project focused on high-resolution mapping and assessment of wetlands in
Africa and paves the way for global mapping and change detection in the future.
However, for certain aspects of this work there are limitations which should be
addressed in any future analysis. A key limitation is the absence of a single formal
definition of wetland that has been accepted worldwide. Also, there are different
classification schemes used to categorize wetland type both at local, country and
global scales. Therefore, it is difficult to extract and compare different wetland data
products across the region due to non-uniform definitions. Clear and consistent
definitions will be very important for ground truth datasets - there was a lack of
ground truth data for some wetlands in drier parts of Africa particularly in North Africa;
more work is required on the ground to map peatlands and seasonal wetland types
in these regions to aid the machine learning classifications. In addition, wetland
classification is often based mainly on soil composition resulting in high confusion
among wetland classes from EO data. To address this, | used derived indices from
EO data that categorize wetland classes in terms of vegetation type, moisture, as

well soil composition as observable from satellite imagery.

7.4.2 Exploring the impact of human population at global scale

Inclusion of human-induced population impact mapping which combines the wetland
map and population data could be used to indicate areas where detailed data on
wetland condition need be collected for better conservation and restoration

programmes. My approach could not define the actual drivers of wetland degradation
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across Chapters 4-6. It is possible that high resolution remote sensing tools could
be developed in the future that allow human impact attribution acquired through other
sources of information to be improved for wetlands so that drivers of change can be
better understood. This will be important not just for Africa, but for understanding
threats to wetlands globally. Upcoming satellite missions such as CHIME
(Copernicus Hyperspectral Imaging Mission for the Environment) will complement
Copernicus Sentinel-2 for land-cover mapping, and ROSE-L SAR with its longer
wavelength L-band will be able to penetrate the canopy and aims to support existing
Copernicus C-band SAR systems which will allow for improved wetland mapping in

the near future.

7.4.3 Misclassification of wetland types

Despite the high accuracy obtained from the classification model, there are some
limitations in the training dataset that may lead to bias in the model. Training data
from existing wetland locations can be influenced by ambiguities in wetland class
definitions and landscape variation. The fundamental assumption that training data
accurately represent a specific class may not always be entirely correct, as individual
training points could belong to different wetland classes. To address this, |
characterized the training data based on the class composition and internal
variability. | then identified the possible outliers from the distribution of each wetland
class and filtered them out from the training data. The inequality in the size of my
training data for the wetland classes may bias classification accuracy, because the
model is sensitive to wetland class with larger numbers of training points. This

produces higher accuracy than for wetland classes with small amounts of training
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data. Due to the complicated temporal dynamics and spatial and spectral
heterogeneity of wetlands, developing classification systems remains a challenging
task using remote sensing. The complexity in the differences in remote sensing
signals between some wetland classes makes it difficult to discriminate some
wetland classes across large geographical ranges. Different wetland types may
portray similar signals thereby making them more difficult to discriminate. For
example, the distinction between swamp and peat swamp wetlands, especially
within the Congo region, was not adequately addressed due to their complex
reflectance and given definition. To address this challenge, | mapped the different
wetland classes according to climate region in Africa, where wetlands are
distinguished based on similar phenological and geographic setting of each climate
zone to reduce the bias of class confusion (Chapter 5). Another limitation is the
inability to distinguish between bog and fen peatlands due to lack of specific peatland
control points. This increases uncertainty in accurately differentiating peatlands from
other wetland types. Improving the quality and accuracy of training data through

enhanced data collection would likely help mitigate this issue in future studies

7.4.4 Limitation of data sources

Another limitation is related to the production of cloud free seasonal composites in
the TWD and TW region of Africa. It is impossible to collect sufficient cloud-free
optical data (Sentinel-2 images) to generate full continental coverage, especially for
large-scale mapping due to the prevailing cloudy and rainy weather conditions in

regions characterized by high rainfall in this study. However, | produced composites
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from monthly data with less cloud cover for each season to capture explicit

phenological information appropriate for wetland mapping.

The estimation of wetland carbon stock and carbon flux is far from complete due to
limited availability of high-quality information on the carbon distribution within African
wetlands. My carbon flux estimation includes only three wetland classes due to data
constraints - therefore the potential impact of African wetland drainage to the global
carbon flux is not fully represented. More work is needed for detailed assessment of
the spatial distribution of carbon flux measurements from African wetlands of
different types and in different climate zones. In addition, comprehensive data about
the current water-table level for different wetland types for different climate zones is
needed to improve the estimate of the carbon flux at various water-table conditions.
It may be that remote sensing products can support such an assessment in the future

( e.g. Burdun et al., 2020).

7.5 Future work

7.5.1 Improving the quality of the data source

Detailed wetland maps at high resolution are important for conservation and climate
modelling. However, high resolution, up-to-date data on wetlands at global scales
are not available, and good coverage only exists in some well-studied smaller
regions. In this thesis | developed a process which could now be rolled out globally
to produce a high-resolution global wetland map. There will need to be a concerted
effort to gather ground truth data to support the development of such a product. But

the fact that this now seems achievable is because of the work conducted in this
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thesis. Africa is one of the least developed regions in the world and wetland datasets
are often fragmented and inconsistent from one country to another within the
continent. Using a standardized methodology developed in this study to compare
wetland data across regions or countries makes it possible to collect and verify large
amounts of wetland ground control data in Africa and this relatively simple
methodology could be applicable to other regions. However, in future studies, more
detailed field surveys, new remote sensing data and new classification algorithms
will be necessary. In addition, although | used the most recent and highest quality
datasets available, ongoing efforts to improve the quality of gridded population data,
carbon stock databases, carbon flux datasets and climate change scenarios will
further refine future analysis of wetland fragmentation, and estimates of carbon loss
from wetlands. It may also be possible to include topographic indices into machine
learning for the purpose of classifying wetland type (such as fen and bog peatlands)

and forecasting the impacts of drainage on carbon release and wetland degradation.

7.5.2 Dynamic wetland mapping using advanced techniques

It might be possible to automate the algorithms presented here so that a high
resolution African and global wetland map and change map can be updated
automatically as Sentinel data are collected and updated continuously. This can be
achieved by creating a conditional statement to update image collection for a
particular time and date to create a seasonal composite. The mapping accuracy can
improve dynamically by collecting more ground control points continuously using
automatic data entry into a database system to generate more training point and

evaluate the accuracy. With increasing availability of high-resolution imagery, such



138
as Sentinel datasets, global maps that distinguish seasonal/decadal wetland
changes from more ‘permanent’ wetland loss and continuous monitoring of wetland
at global scale can be achieved by automation via the Google Earth Engine cloud
computing platform. Automated studies to understand of the impacts of wetland
restoration programmes would also be welcome. The remote sensing tool developed
in this study could also be used to evaluate global wetland protection schemes or

treaties, to see if they are successful or not.

7.6 Conclusion

| produced a detailed wetland map both at regional (Chapter 4) and continental
(Chapter 5) level using high spatial resolution data (10 m) supported by ground
control data that | compiled from a range of sources. The total estimate of wetlands
in Africa (947,750 km?) is larger than that of the coarser global wetland dataset by
CIFOR (859,278 km?) and that of GLWD (934,481 km?) excluding open water
bodies. At regional level, | estimated that the wetlands of southern Nigeria cover a
total area of 29,924 km? which is less than the estimate by CIFOR (31,829 km?) but
larger than GLWD (24,408 km?) (Chapter 4). Larger patches of wetland are found
along the coastal areas while smaller fragments are mostly located around urban
areas suggesting a role for anthropogenic fragmentation of wetlands in southern
Nigeria. | identified nine regions with a WFPI value indicating highly fragmented grid
cells related to large population size. A total of 3021 km? of wetlands are currently
heavily threatened by human activity within Africa (WFPI of 0.7 to 1). The carbon
stock estimate indicates that African wetland contains about 54 Gt of carbon which

is around 5% to 9% of wetland soil carbon stored globally. Drained peatland,
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mangrove and marsh in Africa are capable of emitting 260Mt C yr' (936Mt CO2-e yr
) which is equivalent to 2.4% of global net annual CO2 emissions. The long-term
changes in wetlands around Lake Chad were closely linked to the fluctuation of the
water level driven by multi-annual climate phases and intensive human activities.
The results of this study indicate a net loss of Lake Chad wetlands across all
examined five year periods from 2000-2020, including the wettest period when it was
anticipated (based on earlier literature) that wetland area would increase. Thus
under future climate change with predicted increased rainfall for the region, Lake
Chad wetlands are not guaranteed to increase in extent, particularly given that
population pressures are growing, with the northern region of the Lake under the

greatest pressure.

Reflecting on the sustainable conservation, management, and development of
wetlands going forward, there is still a need for historical period classification and
dynamic monitoring of wetlands using multi-source remote sensing data to assess
the impacts of anthropogenic activities and climate change on wetland dynamics in
Africa. The overall approach developed could be expanded to produce a global
wetland map at high resolution and for continuous monitoring of changes in wetlands

at global scale.
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Appendix A
Supplementary table for Chapter 4

Table A.1  Ground control point for Wetland and non-wetland in southern
Nigeria. The class code is the identifier for each landcover type. 1 for Forest,
2 for Mangrove, 3 for Marsh, 4 for Swamp, 5 for Cultivated land, 6 for Built up,

7 for Deep water, 8 for Shallow water.

Class code Landcover type Location x Location y

1 Forest 5.9164 4.4032
1 Forest 7.1486 4.3947
1 Forest 7.0028 5.3445
1 Forest 7.7691 4.9326
1 Forest 7.922 4.796

1 Forest 7.1591 5.6148
1 Forest 7.7759 5.7465
1 Forest 7.1603 5.7506
1 Forest 8.6973 5.4693
1 Forest 8.385 4.9287
1 Forest 8.0826 5.6088
1 Forest 8.2333 5.2008
1 Forest 8.0815 5.4731
1 Forest 9.0093 6.0105
1 Forest 8.6941 5.0623
1 Forest 9.0104 6.1464
1 Forest 9.1653 6.2814
1 Forest 8.3916 5.7426
1 Forest 8.0849 5.8804
1 Forest 9.3192 6.2805
1 Forest 8.8565 6.1473
1 Forest 7.6117 4.5271
1 Forest 4.703 6.3117
1 Forest 6.6877 4.5332
1 Forest 5.0081 6.0376
1

Forest 5.4595 4.9485
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Class code Landcover type Location x Location y

1 Forest 6.2245 4.401

1 Forest 5.6186 5.4899
1 Forest 6.9969 4.6666
1 Forest 8.2289 4.6586
1 Forest 6.2269 4.6719
1 Forest 5.6173 5.3542
1 Forest 5.9177 4.5386
1 Forest 5.7675 4.9462
1 Forest 6.3882 5.4844
1 Forest 6.6985 5.7537
1 Forest 6.2319 5.2141
1 Forest 5.9252 5.352

1 Forest 6.6973 5.618
1 Forest 6.0767 5.0796
1 Forest 6.3821 4.8063
1 Forest 6.541 5.3476
1 Forest 6.3834 4.9419
1 Forest 6.3858 5.213
1 Forest 6.387 5.3487
1 Forest 5.6198 5.6256
1 Forest 5.3159 6.0353
1 Forest 5.471 6.17

1 Forest 5.9314 6.0308
1 Forest 8.3883 5.3355
1 Forest 7.6174 5.2047
1 Forest 7.6197 5.4761
1 Forest 6.5434 5.619
1 Forest 8.7037 6.2842
1 Forest 7.1544 5.0722
1 Forest 7.9209 4.6605
1 Forest 8.0804 5.3374
1 Forest 7.9287 5.6098
1 Forest 7.1532 4.9366
1 Forest 8.5423 5.3345
1 Forest 8.8523 5.604

1

Forest 8.3894 54712
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Class code Landcover type Location x Location y

1 Forest 8.5455 5.7417
1 Forest 8.2344 5.3364
1 Forest 8.8544 5.8756
1 Forest 8.3927 5.8784
1 Forest 8.8554 6.0114
1 Forest 8.8576 6.2832
1 Forest 9.0125 6.4183
1 Forest 9.1663 6.4174
1 Forest 8.8533 5.7398
1 Forest 8.6951 5.1979
1 Forest 8.2355 5.4721
1 Forest 5.7637 4.5397
1 Forest 8.23 4.7941
1 Forest 5.4608 5.084

1 Forest 7.1521 4.8011
1 Forest 6.5349 4.6698
1 Forest 5.9214 4.9451
1 Forest 6.2282 4.8074
1 Forest 5.9227 5.0807
1 Forest 6.6949 5.3466
1 Forest 6.5458 5.8906
1 Forest 5.4698 6.0341
1 Forest 5.9327 6.1667
1 Forest 5.7801 6.3037
1 Forest 5.0107 6.3094
1 Forest 5.162 6.0364
1 Forest 5.4672 5.7625
1 Forest 8.5498 6.2851
1 Forest 7.3119 5.4781
1 Forest 8.5433 5.4702
1 Forest 5.4659 5.6267
1 Forest 5.9239 5.2163
1 Forest 7.0052 5.6159
1 Forest 7.7737 5.4751
1 Forest 8.3861 5.0642
1

Forest 8.6994 5.7407
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Class code Landcover type Location x Location y

1 Forest 8.3905 5.6069
1 Forest 8.8512 5.4683
1 Forest 9.0114 6.2823
1 Forest 8.5444 5.6059
1 Forest 8.7026 6.1483
1 Forest 8.7005 5.8765
1 Forest 8.3872 5.1998
1 Forest 9.3202 6.4165
1 Forest 8.6962 5.3336
1 Forest 8.6983 5.605

1 Forest 8.5466 5.8775
1 Forest 5.3107 5.4921
1 Forest 7.7658 4.5261
1 Forest 5.9189 4.6741
1 Forest 5.611 4.6763
1 Forest 7.4577 4.5281
1 Forest 6.0729 4.673

1 Forest 6.2343 5.4855
1 Forest 5.9202 4.8096
1 Forest 5.77 5.2174
1 Forest 6.6913 4.9397
1 Forest 5.7687 5.0818
1 Forest 6.3846 5.0774
1 Forest 6.8465 5.0743
1 Forest 5.4723 6.306

1 Forest 5.7788 6.1678
1 Forest 4.8568 6.3105
1 Forest 5.9277 5.6234
1 Forest 5.6249 6.1689
1 Forest 8.0871 6.1521
1 Forest 7.9298 5.7456
1 Forest 8.0771 4.9306
1 Forest 7.3153 5.8854
1 Forest 8.5401 5.0633
1 Forest 8.2366 5.6078
1

Forest 9.0135 6.5543
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Class code Landcover type Location x Location y

1 Forest 4.0902 6.5885
1 Forest 4.2427 6.4512
1 Forest 3.7867 6.9993
1 Forest 3.0176 7.0055
1 Forest 4.5558 6.9932
1 Forest 4.8582 6.4465
1 Forest 6.547 6.0264
1 Forest 2.8638 7.0068
1 Forest 5.4749 6.5779
1 Forest 4.7096 6.992

1 Forest 4.5544 6.8571
1 Forest 4.3993 6.7221
1 Forest 5.1672 6.5802
1 Forest 3.7853 6.8631
1 Forest 3.6329 7.0005
1 Forest 4.7083 6.8559
1 Forest 3.4776 6.8656
1 Forest 4.8608 6.7186
1 Forest 4.4006 6.8583
1 Forest 6.0891 6.4375
1 Forest 6.0878 6.3015
1 Forest 4.8595 6.5825
1 Forest 5.0172 6.9897
1 Forest 6.7033 6.2972
1 Forest 7.9332 6.1531
1 Forest 7.7838 6.698

1 Forest 4.3979 6.5861
1 Forest 3.321 6.5946
1 Forest 7.63 6.6991
1 Forest 4.0888 6.4525
1 Forest 5.1698 6.8524
1 Forest 4.0943 6.9968
1 Forest 5.7826 6.5757
1 Forest 6.3968 6.4353
1 Forest 5.63 6.7129
1

Forest 5.0133 6.5814
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Class code Landcover type Location x Location y

1 Forest 4.5504 6.4489
1 Forest 5.6287 6.5768
1 Forest 4.8634 6.9909
1 Forest 3.7825 6.5909
1 Forest 5.3236 6.8513
1 Forest 5.4736 6.4419
1 Forest 3.479 7.0017
1 Forest 4.7056 6.5837
1 Forest 2.8609 6.7345
1 Forest 5.3249 6.9874
1 Forest 6.7021 6.1613
1 Forest 6.5506 6.4342
1 Forest 5.0146 6.7174
1 Forest 7.4761 6.7001
1 Forest 5.7813 6.4397
1 Forest 7.4715 6.1561
1 Forest 3.6301 6.7282
1 Forest 5.7838 6.7118
1 Forest 5.4762 6.714
1 Forest 6.094 6.9818
1 Forest 3.7839 6.727

1 Forest 5.9389 6.8468
1 Forest 4.2441 6.5873
1 Forest 3.9405 6.998

1 Forest 2.8016 6.618
1 Forest 2.9254 6.5064
1 Forest 5.3197 6.4431
1 Forest 51711 6.9886
1 Forest 4.8621 6.8547
1 Forest 6.7009 6.0254
1 Forest 5.9339 6.3026
1 Forest 7.1684 6.7021
1 Forest 7.4727 6.292

1 Forest 6.4016 6.9796
1 Forest 4.093 6.8607
1

Forest 7.3211 6.565
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Class code Landcover type Location x Location y

2 Mangrove 4.5969 6.2581
2 Mangrove 6.4229 4.4307
2 Mangrove 3.2227 6.4334
2 Mangrove 8.5207 4.7569
2 Mangrove 6.5951 4.461

2 Mangrove 5.0929 5.7338
2 Mangrove 5.7538 4.5801
2 Mangrove 5.3203 5.4314
2 Mangrove 6.0731 4.4317
2 Mangrove 5.9869 4.478

2 Mangrove 5.1142 5.7702
2 Mangrove 6.3582 4.4087
2 Mangrove 5.3125 5.7776
2 Mangrove 5.9576 4.4294
2 Mangrove 6.6497 4.4068
2 Mangrove 5.5246 5.4939
2 Mangrove 6.1876 4.6369
2 Mangrove 5.8049 4.4879
2 Mangrove 6.786 4.7289
2 Mangrove 6.3583 4.3749
2 Mangrove 5.7602 4.8374
2 Mangrove 6.6801 4.3891
2 Mangrove 4.6058 6.2445
2 Mangrove 5.4801 5.4685
2 Mangrove 5.7752 4.7916
2 Mangrove 4.6318 6.2378
2 Mangrove 8.4065 4.7456
2 Mangrove 5.7904 4.8362
2 Mangrove 6.6688 4.4095
2 Mangrove 6.0939 4.3273
2 Mangrove 5.4326 5.4878
2 Mangrove 5.7529 4.4876
2 Mangrove 5.4902 5.4783
2 Mangrove 5.2861 5.4592
2 Mangrove 5.9599 44775
2 Mangrove 5.7912 4.8183
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Class code Landcover type Location x Location y

2 Mangrove 5.2891 5.4331
2 Mangrove 5.7367 4.8096
2 Mangrove 5.7523 4.8299
2 Mangrove 5.1372 5.8994
2 Mangrove 5.7596 4.4985
2 Mangrove 3.4281 6.5654
2 Mangrove 6.2991 4.3795
2 Mangrove 5.5208 5.4787
2 Mangrove 6.7553 4.7698
2 Mangrove 3.1756 6.436

2 Mangrove 6.0964 4.4017
2 Mangrove 6.3785 4.3999
2 Mangrove 7.1294 4.5707
2 Mangrove 6.0705 4.4021
2 Mangrove 6.5365 4.4611
2 Mangrove 8.3184 4.8443
2 Mangrove 5.7244 4.7864
2 Mangrove 6.1099 4.3507
2 Mangrove 5.9976 4.4532
2 Mangrove 5.4596 5.4705
2 Mangrove 6.6865 4.3978
2 Mangrove 6.5666 4.4005
2 Mangrove 4.9469 5.9543
2 Mangrove 6.1935 4.3422
2 Mangrove 5.437 5.5138
2 Mangrove 8.2729 4.8987
2 Mangrove 7.0143 4.7386
2 Mangrove 6.7512 4.7387
2 Mangrove 5.5146 5.5165
2 Mangrove 5.2752 5.4414
2 Mangrove 6.0372 4.4353
2 Mangrove 5.5058 5.5019
2 Mangrove 8.3644 4.8635
2 Mangrove 6.7779 4.7633
2 Mangrove 6.3051 4.3948
2 Mangrove 3.4561 6.6147



179

Class code Landcover type Location x Location y

2 Mangrove 5.7662 4.8107
2 Mangrove 5.1965 5.9296
2 Mangrove 5.73 4.83

2 Mangrove 8.2841 4.9192
2 Mangrove 6.5465 4.4337
2 Mangrove 6.0937 4.4344
2 Mangrove 5.2667 5.9227
2 Mangrove 6.1838 4.4756
2 Mangrove 4.5492 6.2969
2 Mangrove 6.53 4.4173
2 Mangrove 6.4071 4.3765
2 Mangrove 6.7952 4.7176
2 Mangrove 5.8754 4.4143
2 Mangrove 5.8027 4.7849
2 Mangrove 6.3602 4.4282
2 Mangrove 6.666 4.3747
2 Mangrove 6.6868 4.4051
2 Mangrove 3.2174 6.4179
2 Mangrove 8.3449 4.8243
2 Mangrove 5.7466 4.5419
2 Mangrove 4.7048 5.7919
2 Mangrove 6.5104 4.3701
2 Mangrove 6.0445 4.3998
2 Mangrove 6.6867 4.3815
2 Mangrove 6.8095 4.7294
2 Mangrove 8.2449 4.9454
2 Mangrove 7.0525 4.7327
2 Mangrove 6.7473 4.721
2 Mangrove 5.8419 4.5108
2 Mangrove 6.0427 4.3623
2 Mangrove 3.4783 6.5752
2 Mangrove 6.8132 4.7504
2 Mangrove 4.5565 6.2849
2 Mangrove 6.3212 4.4213
2 Mangrove 5.2258 5.8992
2 Mangrove 8.2361 4.9657
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Class code Landcover type Location x Location y

2 Mangrove 5.1629 5.89

2 Mangrove 5.756 4.8267
2 Mangrove 6.5913 4.4368
2 Mangrove 5.5193 5.4627
2 Mangrove 8.4454 4.7427
2 Mangrove 6.4212 4.3934
2 Mangrove 5.4646 5.491
2 Mangrove 6.6662 4.3947
2 Mangrove 5.9309 4.4433
2 Mangrove 6.3111 4.3737
2 Mangrove 5.2022 5.9692
2 Mangrove 8.2513 4.9075
2 Mangrove 6.0516 4.4194
2 Mangrove 6.0516 4.4194
2 Mangrove 5.9509 4.4513
2 Mangrove 6.3343 4.3851
2 Mangrove 7.0518 4.7058
2 Mangrove 8.1978 4.9478
2 Mangrove 5.489 5.4922
2 Mangrove 7.0722 4.5423
2 Mangrove 5.7468 4.7862
2 Mangrove 8.3025 4.8114
2 Mangrove 6.5487 4.3611
2 Mangrove 3.1634 6.4143
2 Mangrove 5.7906 4.563
2 Mangrove 7.0132 4.6997
2 Mangrove 8.3001 4.9

2 Mangrove 4.9843 5.8916
2 Mangrove 5.7766 4.4786
2 Mangrove 6.0589 4.4383
2 Mangrove 6.5325 4.3989
2 Mangrove 6.6777 4.409
2 Mangrove 7.026 4.7198
3 Marsh 6.8171 6.674
3 Marsh 6.7593 6.6764
3 Marsh 6.7612 6.6228
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Class code Landcover type Location x Location y

3 Marsh 6.9302 6.6395
3 Marsh 6.8744 6.6706
3 Marsh 6.8656 6.6125
3 Marsh 6.923 6.5504
3 Marsh 6.9171 6.5323
3 Marsh 6.8625 6.3713
3 Marsh 6.8221 6.313

3 Marsh 6.7858 6.3382
3 Marsh 6.7914 6.2361
3 Marsh 6.7836 6.2015
3 Marsh 6.7153 6.2592
3 Marsh 6.7273 6.2164
3 Marsh 6.6002 6.0099
3 Marsh 6.6767 5.9811
3 Marsh 6.6121 5.9593
3 Marsh 6.6 5.9755
3 Marsh 6.6432 6.0217
3 Marsh 6.6594 6.0389
3 Marsh 6.6066 6.0695
3 Marsh 6.5861 6.026

3 Marsh 6.6582 6.1171
3 Marsh 6.7206 6.1465
3 Marsh 6.702 6.1193
3 Marsh 6.7533 6.1533
3 Marsh 6.7853 6.108

3 Marsh 6.7389 6.087

3 Marsh 6.8055 6.0699
3 Marsh 6.8061 6.013

3 Marsh 6.7225 5.9541
3 Marsh 6.6696 5.9138
3 Marsh 6.684 5.9402
3 Marsh 6.7071 5.9316
3 Marsh 6.3795 5.6138
3 Marsh 6.376 5.5713
3 Marsh 6.3379 5.5527
3 Marsh 6.3695 5.534
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Class code Landcover type Location x Location y

3 Marsh 6.3561 5.4371
3 Marsh 6.2945 5.4677
3 Marsh 6.1753 5.3274
3 Marsh 6.179 5.3921
3 Marsh 7.9725 5.8752
3 Marsh 7.9423 5.8301
3 Marsh 7.9634 5.7361
3 Marsh 8.005 5.6571
3 Marsh 5.3638 6.255
3 Marsh 5.2999 6.0943
3 Marsh 5.0874 6.2506
3 Marsh 5.0492 6.2776
3 Marsh 5.4193 5.8413
3 Marsh 5.2537 5.5119
3 Marsh 5.4726 5.1737
3 Marsh 6.913 7.0532
3 Marsh 6.9066 6.9298
3 Marsh 6.7435 6.9865
3 Marsh 6.6405 7.0592
3 Marsh 6.615 6.6966
3 Marsh 6.7036 6.343
3 Marsh 6.5832 6.93

3 Marsh 6.7142 7.2137
3 Marsh 5.6742 5.4757
3 Marsh 4.3966 6.4501
3 Marsh 3.3163 6.8397
3 Marsh 3.3883 6.5681
3 Marsh 3.1917 6.5747
3 Marsh 2.9819 6.4672
3 Marsh 2.887 6.4136
4 Swamp 5.8648 4.9509
4 Swamp 5.9022 4.8458
4 Swamp 5.7809 4.8689
4 Swamp 5.7494 4.9648
4 Swamp 5.8392 5.0151
4 Swamp 5.9165 5.0518
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Class code Landcover type Location x Location y

4 Swamp 5.9285 4.9565
4 Swamp 6.0302 4.8952
4 Swamp 6.0574 4.8266
4 Swamp 6.0604 4.7284
4 Swamp 6.0513 4.6385
4 Swamp 6.0109 4.3343
4 Swamp 6.0459 4.3032
4 Swamp 6.4975 5.002
4 Swamp 6.5022 4.9337
4 Swamp 6.5526 4.8434
4 Swamp 6.6097 4.9079
4 Swamp 6.7622 4.9271
4 Swamp 6.7752 4.971
4 Swamp 6.7602 5.011
4 Swamp 6.7387 5.0453
4 Swamp 6.6895 5.0793
4 Swamp 6.6533 5.1354
4 Swamp 6.7081 5.1865
4 Swamp 6.6005 5.2032
4 Swamp 6.5268 5.19

4 Swamp 6.3621 5.1991
4 Swamp 6.3727 4.6142
4 Swamp 6.2116 4.7356
4 Swamp 6.1724 4.7061
4 Swamp 5.8487 4.6991
4 Swamp 5.526 4.8608
4 Swamp 5.4822 4.9006
4 Swamp 5.5552 4.9382
4 Swamp 5.495 4.9883
4 Swamp 5.5186 5.0721
4 Swamp 5.6 5.244
4 Swamp 5.7925 6.2427
4 Swamp 5.8963 6.2181
4 Swamp 5.8782 6.2228
4 Swamp 5.9172 6.2129
4 Swamp 5.9886 6.2469
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Class code Landcover type Location x Location y

4 Swamp 5.9614 6.2321
4 Swamp 6.0549 6.3085
4 Swamp 5.7499 6.192

4 Swamp 5.7622 6.2754
4 Swamp 5.6759 6.166

4 Swamp 5.6655 6.0497
4 Swamp 5.5977 6.0317
4 Swamp 5.5523 5.9852
4 Swamp 5.4485 5.9576
4 Swamp 5.3003 5.8896
4 Swamp 5.3541 5.9365
4 Swamp 5.3107 6.0215
4 Swamp 5.2287 5.9439
4 Swamp 5.1953 5.9505
4 Swamp 5.1374 5.9448
4 Swamp 5.0413 6.038

4 Swamp 4.8875 6.0787
4 Swamp 4.7447 6.1761
4 Swamp 4.7533 6.2854
4 Swamp 4.6857 6.3385
4 Swamp 4.6705 6.4481
4 Swamp 4.6702 6.4191
4 Swamp 7.0434 6.4051
4 Swamp 7.0256 6.4478
4 Swamp 7.0846 6.3523
4 Swamp 7.1162 6.3076
4 Swamp 7.1372 6.2817
4 Swamp 6.7218 5.7635
4 Swamp 6.7409 5.7074
4 Swamp 6.68 5.7106
4 Swamp 6.6772 5.7525
4 Swamp 6.6891 5.6051
4 Swamp 6.6284 5.559

4 Swamp 6.6745 5.5273
4 Swamp 6.7325 5.8435
4 Swamp 6.6787 5.7979
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Class code Landcover type Location x Location y

4 Swamp 6.6788 5.8258
4 Swamp 6.7355 5.9054
4 Swamp 6.7545 5.8751
4 Swamp 6.6195 5.868
4 Swamp 6.6526 5.9506
4 Swamp 6.6507 6

4 Swamp 6.6931 6.0004
4 Swamp 6.6812 5.9808
4 Swamp 6.4351 5.9644
4 Swamp 6.3856 5.9338
4 Swamp 5.9991 5.6681
4 Swamp 5.8992 5.5839
4 Swamp 5.8905 5.5407
4 Swamp 5.9383 5.5732
4 Swamp 5.8341 5.4556
4 Swamp 5.7708 5.4332
4 Swamp 5.6368 5.3524
4 Swamp 5.6698 5.2547
4 Swamp 5.538 5.1596
4 Swamp 5.5368 5.1091
4 Swamp 5.576 5.1389
4 Swamp 5.6135 5.0254
4 Swamp 5.6281 4.9863
4 Swamp 5.7521 4.8835
4 Swamp 5.7648 4.8408
4 Swamp 5.2918 6.1706
4 Swamp 5.2578 6.1323
4 Swamp 5.3492 6.1862
4 Swamp 5.3621 6.2395
4 Swamp 5.4139 6.2723
4 Swamp 5.3537 6.2659
4 Swamp 5.437 6.2913
4 Swamp 5.4401 6.3356
4 Swamp 5.4526 6.3953
4 Swamp 5.295 6.074
4 Swamp 5.291 6.1126
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Class code Landcover type Location x Location y
4 Swamp 5.2155 6.0208
4 Swamp 5.0674 5.9897
4 Swamp 5.087 6.0094
4 Swamp 4.3466 6.4873
4 Swamp 4.2901 6.438
4 Swamp 4.2137 6.4742
4 Swamp 7.4914 4.8349
4 Swamp 7.5426 4.7184
4 Swamp 7.5485 4.6267
4 Swamp 7.5735 4.6064
4 Swamp 8.1309 5.0533
4 Swamp 8.096 5.0063
4 Swamp 8.0466 5.1144
4 Swamp 8.017 5.0729
4 Swamp 8.0854 5.1031
4 Swamp 8.1953 4.8861
5 Cultivated land 7.4669 5.6128
5 Cultivated land 6.85 5.4812
5 Cultivated land 7.6288 6.563
5 Cultivated land 8.5412 5.1989
5 Cultivated land 8.8586 6.4192
5 Cultivated land 6.3895 5.6201
5 Cultivated land 4.5531 6.721
5 Cultivated land 5.775 5.7602
5 Cultivated land 7.9254 5.2027
5 Cultivated land 7.9276 5.4741
5 Cultivated land 7.3142 5.7496
5 Cultivated land 7.9231 4.9316
5 Cultivated land 7.6152 4.9336
5 Cultivated land 7.313 5.6138
5 Cultivated land 7.7703 5.0681
5 Cultivated land 6.8512 5.6169
5 Cultivated land 7.614 4.798
5 Cultivated land 6.6997 5.8895
5 Cultivated land 8.0782 5.0662
5 Cultivated land 7.4635 5.2057
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Class code Landcover type Location x Location y
5 Cultivated land 7.7714 5.2037
5 Cultivated land 7.7816 6.426
5 Cultivated land 6.5543 6.8424
5 Cultivated land 8.5477 6.0133
5 Cultivated land 8.7015 6.0124
5 Cultivated land 8.0793 5.2018
5 Cultivated land 8.8597 6.5552
5 Cultivated land 6.2294 4.9429
5 Cultivated land 6.5398 5.212
5 Cultivated land 6.5373 4.9408
5 Cultivated land 5.1685 6.7163
5 Cultivated land 6.5446 5.7548
5 Cultivated land 6.3992 6.7074
5 Cultivated land 2.8623 6.8706
5 Cultivated land 5.9264 5.4876
5 Cultivated land 6.2441 6.5724
5 Cultivated land 6.3931 6.0275
5 Cultivated land 5.1646 6.3082
5 Cultivated land 5.3146 5.8994
5 Cultivated land 6.0853 6.0297
5 Cultivated land 7.0099 6.1592
5 Cultivated land 7.6254 6.1551
5 Cultivated land 6.7045 6.4332
5 Cultivated land 6.9993 4.9376
5 Cultivated land 3.1671 6.5959
5 Cultivated land 6.5482 6.1623
5 Cultivated land 7.1649 6.2941
5 Cultivated land 6.8548 6.0243
5 Cultivated land 6.8536 5.8885
5 Cultivated land 7.0004 5.0732
5 Cultivated land 7.0111 6.2951
5 Cultivated land 7.4612 4.9346
5 Cultivated land 7.4623 5.0701
5 Cultivated land 7.46 4.799
5 Cultivated land 7.7725 5.3394
5 Cultivated land 6.8489 5.3455
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Class code Landcover type Location x Location y
5 Cultivated land 7.6231 5.8833
5 Cultivated land 7.3072 4.9356
5 Cultivated land 7.3107 5.3424
5 Cultivated land 7.3061 4.8

5 Cultivated land 6.8572 6.2961
5 Cultivated land 7.777 5.8823
5 Cultivated land 7.6277 6.427
5 Cultivated land 8.0915 6.6961
5 Cultivated land 7.7849 6.8342
5 Cultivated land 7.7804 6.29

5 Cultivated land 8.397 6.4221
5 Cultivated land 8.2432 6.423
5 Cultivated land 7.6311 6.8352
5 Cultivated land 8.0882 6.288
5 Cultivated land 7.7793 6.1541
5 Cultivated land 7.0146 6.7031
5 Cultivated land 7.4704 6.0202
5 Cultivated land 7.6266 6.291
5 Cultivated land 7.9354 6.425
5 Cultivated land 8.3992 6.6941
5 Cultivated land 8.7069 6.6922
5 Cultivated land 7.0134 6.5671
5 Cultivated land 8.0904 6.56

5 Cultivated land 7.7827 6.562
5 Cultivated land 2.7992 6.397
5 Cultivated land 7.32 6.429
5 Cultivated land 8.0837 5.7446
5 Cultivated land 8.7058 6.5562
5 Cultivated land 8.2322 5.0652
5 Cultivated land 5.7713 5.3531
5 Cultivated land 6.8453 4.9387
5 Cultivated land 6.0779 5.2152
5 Cultivated land 6.5386 5.0764
5 Cultivated land 6.6961 5.4822
5 Cultivated land 5.7864 6.984
5 Cultivated land 6.3943 6.1634
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Class code Landcover type Location x Location y
5 Cultivated land 3.1714 7.0042
5 Cultivated land 4.7069 6.7198
5 Cultivated land 6.0829 5.758
5 Cultivated land 3.3252 7.003
5 Cultivated land 6.5494 6.2983
5 Cultivated land 6.2417 6.3004
5 Cultivated land 5.7775 6.0319
5 Cultivated land 5.9377 6.7107
5 Cultivated land 6.0841 5.8938
5 Cultivated land 6.2454 6.7085
5 Cultivated land 6.2478 6.9807
5 Cultivated land 3.17 6.8681
5 Cultivated land 5.1659 6.4442
5 Cultivated land 3.0133 6.5972
5 Cultivated land 6.3956 6.2993
5 Cultivated land 3.3238 6.8668
5 Cultivated land 5.3184 6.3071
5 Cultivated land 6.2392 6.0286
5 Cultivated land 6.0816 5.6223
5 Cultivated land 7.7669 4.6615
5 Cultivated land 7.4646 5.3414
5 Cultivated land 7.6129 4.6625
5 Cultivated land 7.0016 5.2088
5 Cultivated land 7.6186 5.3404
5 Cultivated land 7.6163 5.0691
5 Cultivated land 8.241 6.1511
5 Cultivated land 6.6925 5.0753
5 Cultivated land 6.0791 5.3509
5 Cultivated land 5.7763 5.896
5 Cultivated land 2.8004 6.5075
5 Cultivated land 5.6275 6.4408
5 Cultivated land 5.321 6.5791
6 Built up/bare land  7.359 4.8765
6 Built up/bareland  7.0692 5.0097
6 Built up/bare land  6.8789 5.0044
6 Built up/bare land  6.8156 51117
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Class code Landcover type Location x Location y
6 Built up/bare land  6.667 5.0882
6 Built up/bare land  6.4005 5.0362
6 Built up/bare land ~ 6.3273 4.9334
6 Built up/bare land  6.2842 4.831
6 Built up/bareland  6.0724 4.7991
6 Built up/bareland ~ 5.9192 5.6637
6 Built up/bare land  5.8882 5.5801
6 Built up/bareland  5.8219 5.609
6 Built up/bareland  5.8821 5.5044
6 Built up/bare land ~ 5.7999 5.4853
6 Built up/bareland  5.8184 5.5409
6 Built up/bareland  5.7191 5.52

6 Built up/bare land ~ 5.7023 5.5613
6 Built up/bare land  5.6499 5.6446
6 Built up/bare land ~ 4.9789 5.9091
6 Built up/bareland ~ 4.8199 6.0912
6 Built up/bareland  7.011 4.9465
6 Built up/bareland  7.1702 4.8734
6 Built up/bareland  7.1663 4.778
6 Built up/bareland  7.0886 4.7404
6 Built up/bare land  7.0307 4.7353
6 Built up/bareland  7.0334 4.9323
6 Built up/bare land  6.9339 4.8754
6 Built up/bare land  6.9232 4.9388
6 Built up/bare land  6.9538 4.7926
6 Built up/bareland  7.1324 4.792
6 Built up/bareland  7.0758 4.8511
6 Built up/bare land ~ 7.3359 5.0618
6 Built up/bare land  7.4381 5.1424
6 Built up/bareland  7.3138 5.1667
6 Built up/bare land  5.7266 6.5836
6 Built up/bare land  5.6324 6.5183
6 Built up/bare land  5.5925 6.4622
6 Built up/bare land  5.6551 6.4177
6 Built up/bare land  5.5659 6.3684
6 Built up/bare land  5.7688 6.411
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Class code Landcover type Location x Location y
6 Built up/bare land ~ 5.743 6.3273
6 Built up/bareland  5.7114 6.273
6 Built up/bareland  5.6311 6.1973
6 Built up/bare land ~ 5.5317 6.2769
6 Built up/bareland  5.6112 6.4106
6 Built up/bare land  6.0341 6.3139
6 Built up/bare land  6.1897 6.1393
6 Built up/bare land  6.3028 6.0841
6 Built up/bare land  6.2836 6.0267
6 Built up/bare land  6.2345 5.9697
6 Built up/bareland  6.1679 5.8541
6 Built up/bare land  6.1305 5.8033
6 Built up/bare land  6.0526 5.7021
6 Built up/bare land  5.8803 5.4513
6 Built up/bareland  5.9185 5.3745
6 Built up/bare land  7.9729 4.6398
6 Built up/bare land  7.9096 4.6902
6 Built up/bareland  7.94 5.0212
6 Built up/bare land  8.3389 4.9881
6 Built up/bareland  7.8361 5.6237
6 Built up/bare land  7.8407 5.6638
6 Built up/bare land  7.8569 5.5476
6 Built up/bare land  7.6253 5.625
6 Built up/bare land  7.5038 5.5004
6 Built up/bare land  7.5492 5.3912
6 Built up/bare land  7.2624 5.4651
6 Built up/bareland  7.036 5.5162
6 Built up/bare land  7.1472 5.6425
6 Built up/bare land  6.8487 5.966
6 Built up/bareland  7.0721 5.9109
6 Built up/bareland  7.1073 5.7579
6 Built up/bare land  6.9344 5.779
6 Built up/bare land  6.8964 5.6435
6 Built up/bare land  6.8966 5.5673
6 Built up/bare land ~ 3.3201 6.6425
6 Built up/bare land  3.2488 6.5767
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Class code Landcover type Location x Location y
6 Built up/bare land ~ 3.2928 6.4768
6 Built up/bare land  2.8679 6.3889
6 Built up/bareland  2.71 6.4306
6 Built up/bareland  4.6511 6.59

6 Built up/bare land ~ 4.9077 6.4827
6 Built up/bare land  4.8055 6.3468
6 Built up/bareland  4.8768 6.7094
6 Built up/bare land  4.8767 6.8028
6 Built up/bare land ~ 4.998 6.7747
6 Built up/bare land  5.1925 7.4286
6 Built up/bare land  5.2474 7.3337
6 Built up/bareland  5.1723 7.3481
6 Built up/bareland  5.1133 7.3495
6 Built up/bareland  5.1666 7.2288
6 Built up/bare land ~ 5.1287 7.2557
6 Built up/bare land  5.2349 7.1891
6 Built up/bareland  5.2691 7.2503
6 Built up/bareland  5.1524 7.2897
6 Built up/bare land  7.6964 5.2108
6 Built up/bareland  7.768 5.138
6 Built up/bareland  7.7156 5.1734
6 Built up/bareland  7.7172 5.1182
6 Built up/bareland  7.7719 5.018
6 Built up/bare land  7.8441 4.984
6 Built up/bareland  7.8672 5.0576
6 Built up/bare land  7.9787 5.0373
6 Built up/bare land  7.901 5.0028
6 Built up/bare land ~ 7.9961 4.9841
6 Built up/bare land ~ 8.0321 5.0371
6 Built up/bare land  8.0501 4.9066
6 Built up/bare land ~ 7.9501 4.9075
6 Built up/bare land  7.9143 4.8708
6 Built up/bare land  8.3346 4.9275
6 Built up/bare land  8.333 5.0369
6 Built up/bare land  8.3805 4.9721
6 Built up/bare land  8.3336 5.3426
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Class code Landcover type Location x Location y
6 Built up/bare land  8.3798 5.2345
6 Built up/bare land  7.8556 4.8302
6 Built up/bare land  7.0087 6.0233
6 Built up/bareland  7.3165 6.0212
6 Built up/bareland  7.1614 5.8864
6 Built up/bare land  6.8524 5.7527
6 Built up/bareland ~ 7.0063 5.7516
6 Built up/bareland  7.004 5.4802
6 Built up/bareland  7.1579 5.4791
6 Built up/bare land  7.1568 5.3434
6 Built up/bare land  7.4681 5.7486
6 Built up/bareland  7.7748 5.6108
6 Built up/bare land  7.3095 5.2068
6 Built up/bare land  7.9309 5.8814
6 Built up/bare land  6.0804 5.4865
6 Built up/bare land ~ 6.2331 5.3498
6 Built up/bareland ~ 6.9981 4.8021
6 Built up/bare land  3.0504 6.5054
6 Built up/bare land  3.6287 6.5922
6 Built up/bare land  3.0161 6.8694
6 Built up/bare land  3.6315 6.8643
6 Built up/bareland  3.1685 6.732
6 Built up/bare land  3.3224 6.7307
6 Built up/bare land  3.4762 6.7295
6 Built up/bare land  3.9377 6.7258
6 Built up/bare land  5.6224 5.8972
6 Built up/bareland  5.7738 5.6245
6 Built up/bare land  5.6262 6.3048
6 Built up/bare land ~ 5.1633 6.1723
6 Built up/bare land  7.3223 6.7011
6 Built up/bare land ~ 8.3959 6.2861
6 Built up/bare land  3.1657 6.4599
6 Built up/bare land ~ 3.3195 6.4586
6 Built up/bareland  3.4734 6.4574
6 Built up/bare land ~ 4.5491 6.3129
6 Built up/bare land  4.7016 6.1758
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Class code Landcover type Location x Location y
6 Built up/bare land ~ 7.1509 4.6656
6 Built up/bare land ~ 7.3049 4.6645
6 Built up/bare land  7.4589 4.6635
7 Deep water 3.4748 6.5934
7 Deep water 5.4506 5.3798
7 Deep water 5.5029 5.3989
7 Deep water 5.5075 5.4551
7 Deep water 5.5045 5.4188
7 Deep water 5.5007 5.4405
7 Deep water 5.4242 5.4384
7 Deep water 5.4415 5.4109
7 Deep water 5.3942 5.4842
7 Deep water 5.4006 5.515
7 Deep water 5.4319 5.4892
7 Deep water 5.3114 5.5632
7 Deep water 5.3116 5.6268
7 Deep water 5.3271 5.5935
7 Deep water 5.275 5.6034
7 Deep water 5.302 5.6093
7 Deep water 5.3258 5.6988
7 Deep water 5.303 5.6567
7 Deep water 5.3166 5.6663
7 Deep water 5.3195 5.6895
7 Deep water 5.3134 5.6889
7 Deep water 5.3059 5.6725
7 Deep water 5.3263 5.7307
7 Deep water 5.3285 5.7118
7 Deep water 5.2953 5.7094
7 Deep water 5.2994 5.6981
7 Deep water 5.2854 5.7303
7 Deep water 5.5736 5.9348
7 Deep water 5.6101 5.9117
7 Deep water 5.5483 5.9433
7 Deep water 5.5091 5.9379
7 Deep water 5.5193 5.9125
7 Deep water 5.5061 5.9236
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Class code Landcover type Location x Location y
7 Deep water 5.3823 5.8581
7 Deep water 5.4137 5.8254
7 Deep water 5.3338 5.8462
7 Deep water 5.2385 5.8678
7 Deep water 5.2491 5.8481
7 Deep water 5.1886 5.8506
7 Deep water 5.2145 5.8867
7 Deep water 5.2731 5.8989
7 Deep water 5.2668 5.8769
7 Deep water 5.2729 5.8653
7 Deep water 5.1564 5.8235
7 Deep water 5.084 5.7893
7 Deep water 5.1151 5.8196
7 Deep water 5.1472 5.7908
7 Deep water 5.0813 5.7558
7 Deep water 5.0755 5.7864
7 Deep water 3.4587 6.4975
7 Deep water 3.5198 6.4744
7 Deep water 3.513 6.53

7 Deep water 3.4354 6.5653
7 Deep water 3.4137 6.5411
7 Deep water 3.4016 6.4154
7 Deep water 3.357 6.4282
7 Deep water 3.3456 6.4358
7 Deep water 3.3495 6.4074
7 Deep water 3.3804 6.4129
7 Deep water 3.4241 6.4401
7 Deep water 2.8993 6.5135
7 Deep water 2.8943 6.5125
7 Deep water 2.8833 6.5396
7 Deep water 2.8481 6.4311
7 Deep water 2.8894 6.4087
7 Deep water 2.8791 6.4096
7 Deep water 2.8246 6.4457
7 Deep water 2.8202 6.4501
7 Deep water 3.1038 6.4826
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7 Deep water 7.2258 4.6484
7 Deep water 7.1755 4.6353
7 Deep water 7.2482 4.6113
7 Deep water 7.2061 4.6397
7 Deep water 6.6603 5.8435
7 Deep water 6.6458 5.8043
7 Deep water 6.6268 5.8101
7 Deep water 6.6421 5.8421
7 Deep water 6.6438 5.7614
7 Deep water 6.6356 5.7194
7 Deep water 6.599 5.6771
7 Deep water 6.6181 5.6473
7 Deep water 6.6258 5.6949
7 Deep water 6.5285 5.5254
7 Deep water 6.5395 5.4846
7 Deep water 6.5417 5.4423
7 Deep water 6.477 54118
7 Deep water 6.4936 5.3725
7 Deep water 6.3732 5.3102
7 Deep water 6.458 5.3298
7 Deep water 6.4107 5.2645
7 Deep water 6.3355 5.2291
7 Deep water 6.3409 5.1686
7 Deep water 6.3561 5.149
7 Deep water 6.3091 5.097
7 Deep water 6.261 5.0848
7 Deep water 6.2363 5.0581
7 Deep water 6.1929 5.0121
7 Deep water 6.1613 5.0338
7 Deep water 6.1205 5.0601
7 Deep water 6.0529 5.0042
7 Deep water 6.0807 4.9887
7 Deep water 6.1283 4.9414
7 Deep water 6.0868 4.9037
7 Deep water 6.1286 4.9087
7 Deep water 6.1766 4.8649
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7 Deep water 6.1488 4.8613
7 Deep water 6.1112 4.8382
7 Deep water 6.123 4.8699
7 Deep water 6.1863 4.8516
7 Deep water 6.1948 4.8584
7 Deep water 5.4914 4.8505
7 Deep water 5.5433 4.8228
7 Deep water 5.6323 4.8408
7 Deep water 5.6523 4.8006
7 Deep water 5.6395 4.8588
7 Deep water 5.6772 4.8846
7 Deep water 5.6271 4.886
7 Deep water 5.6085 4.8209
7 Deep water 5.572 4.8111
7 Deep water 5.5572 4.8302
7 Deep water 6.074 4.3715
7 Deep water 6.0787 4.2996
7 Deep water -62.3907 -62.3907
7 Deep water 3.707 6.5819
7 Deep water 4.056 6.469
7 Deep water 5.1887 5.5912
7 Deep water 5.3946 5.6015
7 Deep water 5.9714 4.3489
7 Deep water 6.2407 4.3394
7 Deep water 7.6028 4.4675
7 Deep water 8.3786 4.5997
7 Deep water 6.5373 5.4689
7 Deep water 6.6985 5.9479
7 Deep water 3.3944 6.4699
7 Deep water 7.0664 4.3879
8 Shallow water 6.8011 5.7038
8 Shallow water 6.7783 5.7082
8 Shallow water 6.7974 5.7098
8 Shallow water 6.8512 5.6844
8 Shallow water 6.7276 5.6344
8 Shallow water 5.5942 5.1193
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8 Shallow water 5.6488 5.0899
8 Shallow water 5.6052 5.0998
8 Shallow water 5.4514 5.4089
8 Shallow water 5.4763 5.9223
8 Shallow water 5.4895 5.905
8 Shallow water 5.4487 5.9119
8 Shallow water 5.4452 5.9179
8 Shallow water 5.4176 6.001
8 Shallow water 5.3461 6.0123
8 Shallow water 5.8555 6.2274
8 Shallow water 5.817 6.2264
8 Shallow water 5.8103 6.2283
8 Shallow water 7.1896 4.6574
8 Shallow water 5.6697 6.7693
8 Shallow water 5.6571 6.7808
8 Shallow water 5.6241 6.7562
8 Shallow water 5.5726 6.7002
8 Shallow water 5.5439 6.6904
8 Shallow water 5.5851 6.7219
8 Shallow water 5.4438 6.3461
8 Shallow water 5.4571 6.3223
8 Shallow water 6.5621 5.8333
8 Shallow water 6.5241 5.8124
8 Shallow water 6.5232 5.8062
8 Shallow water 6.4836 5.7747
8 Shallow water 6.4944 5.7665
8 Shallow water 6.5047 5.7857
8 Shallow water 6.5046 5.7775
8 Shallow water 6.4777 5.7419
8 Shallow water 6.4782 5.7321
8 Shallow water 6.4637 5.7273
8 Shallow water 6.4672 5.7239
8 Shallow water 6.4489 5.7418
8 Shallow water 6.4623 5.7194
8 Shallow water 6.448 5.7321
8 Shallow water 6.4984 5.7079
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8 Shallow water 6.4989 5.7056
8 Shallow water 6.4996 5.7028
8 Shallow water 6.5184 5.6401
8 Shallow water 6.5257 5.6447
8 Shallow water 6.5303 5.6443
8 Shallow water 6.5361 5.649
8 Shallow water 6.5518 5.6441
8 Shallow water 6.5587 5.6405
8 Shallow water 6.5603 5.6442
8 Shallow water 6.5471 5.637
8 Shallow water 6.4642 5.585
8 Shallow water 6.477 5.5736
8 Shallow water 6.4314 5.552
8 Shallow water 6.4476 5.5696
8 Shallow water 6.4521 5.5641
8 Shallow water 6.483 5.6173
8 Shallow water 6.5009 5.6205
8 Shallow water 6.4845 5.6252
8 Shallow water 6.4837 5.62

8 Shallow water 6.56 5.4693
8 Shallow water 6.5723 5.4832
8 Shallow water 6.0912 4.3835
8 Shallow water 6.1068 4.3744
8 Shallow water 6.129 4.3795
8 Shallow water 6.123 4.3846
8 Shallow water 6.5275 5.3286
8 Shallow water 6.7053 5.6791
8 Shallow water 6.6934 5.6869
8 Shallow water 6.7245 5.692
8 Shallow water 6.7043 5.7142
8 Shallow water 6.7321 5.5676
8 Shallow water 6.7239 5.5674
8 Shallow water 6.6945 5.5504
8 Shallow water 6.567 5.5117
8 Shallow water 6.456 5.5495
8 Shallow water 6.4307 5.5461
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8 Shallow water 6.4191 5.5455
8 Shallow water 6.4757 5.5479
8 Shallow water 6.4728 5.5587
8 Shallow water 6.433 5.561
8 Shallow water 5.2665 5.988
8 Shallow water 4.8943 6.3122
8 Shallow water 4.9341 6.3303
8 Shallow water 7.1601 5.6102
8 Shallow water 7.1428 5.5614
8 Shallow water 7.4915 5.9722
8 Shallow water 6.8003 6.6063
8 Shallow water 6.7187 7.0431
8 Shallow water 6.0039 5.5043
8 Shallow water 5.9944 5.5015
8 Shallow water 5.9991 5.5028
8 Shallow water 5.9701 5.4954
8 Shallow water 5.7209 5.5566
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Appendix B

Supplementary tables for Chapter 5

The spatial extent of wetland cover in different African climate

zones. Classification of satellite imagery was based on training which was

independent for each climate zone

Climate zone

Total area (km?)

Wetland area

Percentage wetland cover

T™W 1,948,865 448210 23.0
TWD 11,302,156 362,980 32
SARD 6,685,370 93811 1.4
ARD/DST 8,962,030 35,853 0.4
MED/HST 1,202,970 8,276 0.7
Table B.2 The description of each wetland type used in this study.

Wetland class

Soil systems

Water sources

Typical settings and
features

Plant species

Marsh Mineral Direct flow from Edges of lakes and Herbaceous
lakes, streams, streams, Coastal zone
precipitation (salt/tidal marshes)
Swamp Mineral or Organic  Precipitation, Along large rivers oron ~ Woody, forested
groundwater, the shores of large lakes
freshwater flooding
from rivers or lakes
Mangrove Organic Precipitation, Coastal zone mostly Trees and shrubs
groundwater and tidal grows in sheltered low
flow. lying coasts estuaries, and
lagoons
Peatland Organic Groundwater inflow  Standing water of lakes or Herbaceous plants,

or precipitation

margins of slow flowing
rivers,

Shrubs, small trees.

Seasonal wetland

Organic or mineral

Precipitation

Low lying areas and open
fields.

Herbaceous
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Table B.3 Confusion matrix for wetlands of Tropical wet and dry (TWD)

climate zone after applying RF.

Wetland Marsh Mangrove Swamp  Peatland  Seasonal Deep [Total User's
class wetlands water Accuracy
Marsh 510 2 0 10 0 526 0.97
Mangrove 4 9 6 0 0 190 0.90
Swamp 9 141 36 4 0 200 0.71
Peatland 6 23 117 0 0 150 0.78
Seasonal 13 2 0 124 6 147 0.84
wetlands

Deep water 0 0 0 12 384 396 0.97
Total 542 177 159 153 390 1609
Producer’s 0.94 0.80 0.74 0.81 0.98

Accuracy

Overall accuracy 89

(%0)

Table B.4 Confusion matrix for wetlands of Tropical wet (TW) climate zone

after applying RF

Wetland Marsh ~ Mangrove Swamp  Peatland  Seasonal Deep [Total User Accuracy
class wetlands water

Marsh 249 0 1 0 5 0 255 0.97
Mangrove 8 120 10 1 6 0 145 0.83
Swamp 10 9 107 29 6 0 161 0.66
Peatland 18 7 65 347 2 0 439 0.79
Seasonal 26 11 14 14 118 17 200 0.59
wetlands

Deep water 0 0 0 0 2 73 75 0.95
Total 311 147 197 391 139 90 1275
Producer 0.80 0.82 0.54 0.89 0.85 0.81

Accuracy

Overall 84

accuracy
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Table B.5 Confusion matrix for wetlands of Semi-Arid climate zone after

applying RF

Wetland Marsh Mangrove Swamp Peatland  Seasonal Deep [Total User's
class wetlands water Accuracy
Marsh 64 3 7 2 4 0 80 0.80
Mangrove 0 25 4 2 0 0 31 0.81
Swamp 2 3 32 11 2 0 48 0.64
Peatland 2 3 9 34 2 0 55 0.70
Seasonal 15 2 3 4 99 5 128 0.90
wetlands

Deep water 0 0 0 0 8 75 82 0.95
Total 83 36 55 53 115 80 424
Producer's 0.77 0.69 0.58 0.64 0.86 0.94

Accuracy

Overall 79
Accuracy (%)

Table B.6 Confusion matrix for wetlands of Arid/Desert climate zone after

applying RF

Wetland Marsh Mangrove  Swamp  Peatland  Seasonal Deep [Total User's
class wetlands water Accuracy
Marsh 131 2 4 5 3 0 145 090
Mangrove 0 64 5 3 0 0 73 0.88
Swamp 5 9 101 32 6 0 153 0.66
Peatland 2 2 8 35 0 0 47 0.74
Seasonal 7 2 5 3 40 7 64 0.63
wetlands

Deep water 0 0 0 0 1 89 90 0.99
Total 145 79 123 78 50 96 572
Producer's 0.90 0.81 0.82 0.45 0.80 0.93

Accuracy

Overall 77

Accuracy (%)
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Table B.7 Confusion matrix for wetlands of Mediterranean/Humid

subtropical climate zone after applying RF

Wetland Marsh  Mangrove Swamp Peatland Seasonal Deep ([Total User's
class wetlands water Accuracy
Marsh 31 1 2 2 3 0 39 0.79
Mangrove 1 17 5 2 0 0 25 0.68
Swamp 1 2 28 10 2 0 43 0.65
Peatland 2 3 11 29 0 0 45 0.64
Seasonal 10 0 2 4 43 4 63 0.68
wetlands

Deepwater O 0 0 0 2 51 53 0.96
Total 45 23 48 47 50 55 268

Producer’s 0.84 0.86 0.95 0.80 0.89 0.98 0.88
Accuracy

Overall 78

Accuracy(%)




