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Abstract

Background 4D-flow magnetic resonance imaging (MRI) provides non-intrusive

blood flow reconstructions in the left ventricle (LV) and other cardiac cham-

bers and has the potential to become a key tool in both research and clinic.

However, low spatio-temporal resolution and the presence of significant noise

artifacts hamper the accuracy of derived haemodynamic quantities and thus

limit the effectiveness of the modality to establish links between haemodynamic

abnormalities and pathologies. Furthermore, models that are constrained by

boundary conditions are impacted by additional uncertainty which arises due

to the low spatial resolution of the structural cine-MRI.

Methods 4D-flow MRI data corruption, introduced by low resolution and

noise artefacts, may be alleviated through super-resolution and de-noising

methods, which have been explored in the literature for haemodynamic flow

in the vasculature. In this thesis, a physics-informed neural network (PINN)

model is introduced to provide super-resolution and de-noising, specifically of

cardiac 4D-flow MRI. The model is constrained through weak enforcement us-

ing the low-resolution 4D-flow MRI data, the no-slip boundary condition on

the endocardium and the governing physical equations. Model components

are compared and incorporated to address specific challenges introduced by

modelling haemodynamic flow in the heart chambers, such as flow across a

range of length and time scales within a heavily deforming domain. Validation

of the model is performed across synthetic and in vivo studies, evaluating the

robustness of the model to uncertainty in both the 4D-flow MRI data and the

position of the deforming endocardium. Following this, the model is applied

to a small cohort of LV remodelling patients.

Results It is demonstrated that the PINN model is able to effectively upsam-

ple and de-noise the velocity field across a range of spatio-temporal resolutions
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and signal-to-noise ratios (SNR), and is robust to positional uncertainty in

the deforming endocardium for flow variables measured away from the domain

boundaries. Further, variables that are not directly measured, such as relative

pressure and flow derivatives, are reconstructed to an acceptable degree of ac-

curacy. In the dual-resolution in vivo validation study, it is shown the model is

generally independent to the spatial resolution and SNR of the input 4D-flow

MRI data.

Conclusions Through synthetic and in vivo validation studies, it is demon-

strated that the PINN model introduced in this thesis is effective. It is con-

cluded that the use of this type of model is feasible for super-resolution of

cardiac 4D-flow MRI data, although certain limitations should be addressed

and the model should be further validated using in vivo or in vitro data.
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Glossary

4D-Flow MRI Phase contrast magnetic resonance imaging technique used to visualise

time-resolved, three-dimensional velocity fields in the cardiovascular system.

aliasing A phenomenon experienced in PC-MRI acquisition in which discontinuities ap-

pear in the constructed solution field due to velocity measurements exceeding the

prescribed venc.

background noise Noise present in magnetic resonance imaging, arising from radiofre-

quency coil resistance, electronic noise in the preamplifier, and dielectric and induc-

tive losses in the imaged object.

cine-MRI Any time-resolved MRI technique. Typically used to describe time-resolved

MR images of tissue structure.

diastole The refilling period of the cardiac cycle, during which the ventricle myocytes

relax to draw blood into the chamber.

eccentric hypertrophy In the LV, this describes an increase in the volume of the cham-

ber through lengthening of the myocardium tissue.

encoding velocity (venc) Prescribed by the imaging expert during acquisition, this value

must be higher than any expected velocities in the region of interest.

endocardium The innermost tissue of the myocardium, in contact with the ventricular

chamber.

haemodynamic forces (HDFs) The force generated by the flow of intracardiac blood,

calculated by integrating the pressure gradient field over the heart chamber.

haemodynamics The dynamics of blood flow within the cardiovascular system.
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heart failure (HF) Occurs when the heart can no longer pump blood efficiently.

hypertrophy Increase in the size of muscular tissue, such as thickening of the my-

ocardium in the LV.

in silico A process that takes place within a computer model/simulation.

in vitro A process that takes place outside of a living organism.

in vivo A process that takes place within a living organism.

learning rate (LR) A tuning parameter in machine learning that determines the step

size at each iteration during optimisation.

left ventricle (LV) The largest chamber of the heart, tasked with supplying oxygenated

blood to the body.

left ventricular remodelling Describes changes in the size, shape and function of the

left ventricle as a result of myocardial infarction.

magnetic resonance imaging (MRI) A medical imaging technique used for visualis-

ing structure and processes within the body that is powered by magnetic fields.

mitral valve The heart valve between the left atrium and the left ventricle, through

which blood is drawn in during diastole.

myocardial infarction (MI) Otherwise known as a heart attack, describes damage to

the myocardium imparted by a loss of blood supply.

myocardium The muscle tissue in the heart.

myocyte A muscle cell.

network generalisation The capability of a neural network to be applied to data that

lies outside of the training set.

neural network (NN) A type of machine learning algorithm, consisting of layers of

connected nodes, that approximates functions by training the connecting weights

between each node. In the case of supervised learning, a collection of labelled exam-

ples is used to train the network by minimising the loss function, which is the error

between prediction and example.

neural tangent kernel (NTK) A kernel that may be used to describe the training dy-

namics of wide neural networks.
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phase contrast magnetic resonance imaging (PC-MRI) Magnetic resonance imag-

ing technique that utilises the magnetic phase shift rather than the signal magnitude,

allowing quantification of fluid velocities.

physics-informed neural network (PINN) Similar to a neural network, but an addi-

tional loss function term is included, which contains any known physical laws of the

system that is being predicted. The physics is included in the form of residual PDEs,

and therefore minimising them ensures that the network prediction approximately

satisfies them.

registration The process of transforming data sets onto a specified coordinate system.

segmentation Describes the generation of a computational domain from medical images.

stroke volume The volume of blood pumped from the left ventricle during systole.

structured noise Noise present in magnetic resonance imaging, arising due to subject

motion, ghosting and reconstruction artefacts.

super-resolution The process of enhancing the resolution of an image.

systole The contraction period of the cardiac cycle, during which blood is pumped from

the ventricle.

trabeculae carneae The complex muscular structures present on the inside of the my-

ocardium in the left ventricle.

wall shear stress (WSS) The tangential force applied to a surface through viscous

shearing of fluid in the boundary layer.
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Chapter 1

Introduction

1.1 Motivation

The emergence of 4D-flow magnetic resonance imaging (MRI) has facilitated the quan-

tification of a wide array of haemodynamic parameters in the left ventricle (LV), which

has allowed for the discovery of novel clinical markers linked with the development of

complex cardiac pathologies. It has been proposed that measurable disturbances to the

haemodynamic field often precede those observed in the myocardium [174], and as such,

quantification of certain flow parameters may also facilitate earlier-stage patient risk strat-

ification. 4D-flow MRI provides reconstructions of time-resolved velocity fields in three

spatial dimensions, allowing for comprehensive assessment of haemodynamic flow in the

LV. Further, from the measured velocity field, it is possible to compute additional haemo-

dynamic parameters, such as kinetic energy (KE), vorticity and pressure drops, vastly

expanding the space of potential cardiac disease biomarkers when compared with studies

utilising structural imaging techniques alone.

Despite the extensive use of 4D-flow MRI in a research capacity, its wider application in

a clinical setting has been hampered by a variety of shortcomings. Low spatio-temporal

resolution and noise artefacts reduce the accuracy of the measured velocity field, with

quantities that are not directly measured highly susceptible to data corruption. As such,

considerable uncertainty may be present in directly-measured and derived haemodynamic

markers, reducing confidence in results. To address such shortcomings, a limited selection

of super-resolution methods have been proposed to increase the resolution of the measured

velocity fields whilst reducing the impact of noise [72, 75, 203, 195]. Super-resolution of

4
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4D-flow MRI is an emerging field, with all publications so far dedicated to addressing the

problem in vascular flow. Comparable studies in the cardiac chambers do not exist, which

provides the underlying motivation for this thesis.

1.2 Research Questions

The primary research aims and corresponding objectives are outlined below:

1. Identification of a suitable computational method for super-resolution of cardiac

4D-flow MRI

• Assess existing methods for super-resolution of vascular 4D-flow MRI

• Identify requirements of the model relevant to the present application

– Applicability to flow data within deforming domains

– Ability to assimilate multiple sources of (incomplete) information

2. Adaptation of the selected model to the present application

• Establish key sources of uncertainty/error in the data and model

– Uncertainty present in the flow data (i.e. spatio-temporal resolution and

noise)

– Uncertainty in the boundary conditions (i.e. positional uncertainty in the

segmented endocardium)

– Model limitations (i.e. spectral bias and gradient imbalances)

• Identification of methods to mitigate the above limitations

• Assessment of the robustness of the model to the above limitations

3. Demonstration of the feasibility and validity of the super-resolution model

• Synthetic validation studies in idealised and patient-specific flow domains

• In vivo validations study in a single volunteer at two spatial resolutions

• In vivo exploratory study in a small cohort of left ventricular remodelling pa-

tients

These aims and objectives are dispersed throughout the thesis, which is outlined in the

next section.

2025 5
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1.3 Thesis Outline

The objective of this thesis is to develop and assess the suitability of a physics-informed

neural network (PINN) model for the super-resolution of cardiac 4D-flow MRI, specifically

in the LV. By constraining model outputs using the governing physical equations, PINNs

are able to operate in the absence of high-resolution data labels, which are typically infeasi-

ble to acquire in cardiac 4D-flow MRI studies. Further, such physics-based regularisation

allows for simple quantification of variables of interest that are not directly measured,

such as relative pressure and velocity derivatives, avoiding the requirement for complex

post-processing techniques. To the best of the authors knowledge, the work presented in

this thesis represents the first attempt to super-resolve cardiac in vivo flow imaging data,

obtained from either 4D-flow MRI or other modalities, and the first to model fluid flow in

moving boundaries using PINNs.

Literature review

In chapter 2, we provide a detailed review of established haemodynamic markers in cardiac

disease progression, before outlining the principles and shortcomings of 4D-flow MRI. This

is followed by an overview of current 4D-flow MRI super-resolution approaches, before

providing a detailed introduction to physics-informed machine learning, its applications

and key methodological contributions in the field.

Robustness to 4D-flow MRI corruption

The image quality of 4D-flow MRI is degraded by three main sources of corruption, namely

low spatial resolution, low temporal resolution and low signal-to-noise ratio (SNR), which

impact the quality of the directly measured velocity field and reduce the accuracy of

quantities that are derived from it. Inter-patient variability of these effects is also present,

due to differences in heart rate, LV volume and patient discomfort. As such, our model

must be robust across differing levels of data corruption to be applicable across patient

cohorts. To this end, in chapter 3 we assess the robustness of our super-resolution model

across a range of degradation configurations using two synthetic, idealised LV cases. We

also establish a preferred model configuration by comparing a range of architecture choices,

chosen specifically to negate the effects of spectral bias and loss component imbalances

during training.
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Robustness to geometric uncertainty

Positional uncertainty poses a significant problem for MRI-based, boundary-constrained

flow modelling approaches in the LV, where low spatial resolution of structural cine-MRI

reduces the accuracy of the derived endocardium and other interior surfaces. This is

a significant hindrance to CFD-based approaches, owing to their strong dependence on

boundary conditions, but the impact such geometrical uncertainty may have on PINN-

based models has not been explored. In Chapter 4, we obtain results in a cohort of

synthetic cases in CT-derived, patient-specific LV geometries. For each case, we extract

three distinct endocardial surfaces using different levels of smoothing to quantify the effects

of geometrical uncertainty in the applied no-slip boundary condition. This is performed

alongside detailed comparison of clinically-relevant variables derived from both PINN re-

sults and competing methods utilised in the literature.

Application to real 4D-flow MRI data

In Chapter 5, the PINN model established in the preceding chapters is applied to a limited

in vivo 4D-flow MRI validation data set and a small cohort of real LV cases with varying

levels of LV remodelling. In the validation study, 4D-flow MRI were obtained at two

distinct spatial resolutions, with PINN results compared using each data set. In the

LV remodelling study, clinically-relevant variables of interest are obtained and compared,

providing a brief comparison between disease states.
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Literature Review

2.1 Literature Search Approach

The literature discussed within this chapter was assembled using a variety of electronic

databases (Pubmed, Google Scholar, Web of Science) using the keywords listed below,

which are categorised based on the application. Given the limited amount of literature

around the primary application (methods for super-resolution of 4D-flow MRI), a sys-

tematic approach to literature searching was deemed to not be necessary, although in-

vestigation into potential computational methods was limited to machine learning-based

approaches only.

• 4D-flow MRI principles: “4D-flow MRI/magnetic resonance imaging”, “cardio-

vascular magnetic resonance”, “phase-contrast MRI/magnetic resonance imaging”,

“compressed sensing”, “parallel imaging”, “encoding strategies”

• 4D-flow MRI super-resolution: “4D-flow MRI/magnetic resonance imaging”,

“super-resolution”, “acceleration”, “upsampling”, “de-noising”

• Machine learning approaches for modelling fluid flow: “machine learning”

+ “fluid dynamics/mechanics/flow”

• Physics-informed machine learning: “physics-informed machine learning”, “physics-

informed neural network”, “scientific machine learning”

• Haemodynamic markers evaluated in the cardiac chambers: “left ventricle/-

cardiac” + (“hemodynamic”, “velocity”, “4D-flow MRI/magnetic resonance imag-

ing”, “pressure”, “forces”, “vorticity/vortex”, “kinetic energy”)
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2.2 Haemodynamic Flow in the Left Ventricle

2.2.1 Clinical Motivation

Cardiovascular diseases (CVDs) are the leading cause of death worldwide [157], accounting

for an estimated 17.9 million deaths per year [30]. CVDs also carry significant economical

expense, where it is forecast that the direct medical costs of cardiovascular disease in the

US alone will reach $818 billion by 2030 [98]. In the UK, this figure currently stands at

£7.4 billion, with further costs estimated to incur an extra £15.8 billion [97], highlighting

the significant societal strain imparted by both the morbidity and mortality of CVDs.

The term CVD covers an array of pathologies across the cardiovascular system, however,

those that develop within the heart chambers are the largest contributors to the global

death toll. Ischaemic heart disease alone is responsible for more deaths per year than the

next four most lethal CVDs combined [219], claiming an estimated 9.44 million lives each

year, with heart failure (HF) expected to increase in prevalence by 46% by 2030 [16].

To reduce the impact of cardiac disease, improvements in early-stage patient risk stratifi-

cation are required to provide targeted interventions. To do this, a greater understanding

of how certain pathologies progress over time and what triggers their development is a

necessity, leading researchers to look beyond traditional metrics that may not become

measurable until lasting damage has been done to the heart. The identification of alter-

native metrics that are measurable at an earlier stage allows for targeted treatment prior

to the onset of irreversible damage.

2.2.2 Intraventricular Flow

Flow fields in the left ventricle (LV) and other cardiac chambers have traditionally been

considered as passive, with specific patterns and characteristics thought to impart no

influence on the function of the beating heart. However, growing evidence suggests that

this theory is untrue. Haemodynamic forces in the apico-basal and aortic valve direction

have been shown to drive filling and ejection throughout the cardiac cycle, where minimal

differences across healthy subjects and elite athletes when indexed to LV volume indicates

that the forces are optimised for the individual heart [180]. Haemodynamic forces have

also been demonstrated to stimulate healthy embryonic growth of the heart [172], while it

is hypothesised that the LV shape is optimised during development to facilitate the proper
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formation of the mitral vortex ring [7]. In the adult heart, the diastolic mitral vortex ring

in diastole is a key indicator of healthy LV function, facilitating penetration of the inflow

jet with minimal energy loss, whilst aiding the redirection of flow to the aortic valve in

systole [156].

2.2.3 Haemodynamic Influence on Cardiac Pathology

Whilst the healthy LV may be characterised by certain haemodynamic properties, distur-

bances to such features may be indicative of maladaptive cardiac function. There exists

an intimate relationship between the myocardium and the adjacent flow in the LV, and

as such, subclinical mechanical dysfunction can impart measurable changes on haemody-

namic parameters[198, 156, 174]. The emergence of in vivo flow imaging technologies, such

as phase-contrast MRI (PC-MRI) and Doppler echocardiography, has enabled researchers

to explore these connections, facilitating the discovery of novel markers for cardiac disease.

Although the directly-measured velocity field itself can provide key insights in cardio-

vascular analysis, it also facilitates the calculation of many additional haemodynamic

parameters that are challenging to obtain otherwise. These include spatial flow deriva-

tives, such as vorticity [156, 52, 198, 63, 131, 34, 100, 2, 33, 125] and stresses (wall shear

stress, in particular) [27, 96, 220, 213, 41], and relative pressure [128, 173, 243, 104, 46, 46,

209, 70, 168, 95, 62, 77, 59, 155, 74], which have been extensively investigated in disease

progression in both the vasculature and the cardiac chambers.

Velocity

Metrics obtained directly form the velocity field, such as peak long-axis velocity, deceler-

ation time and the E/A ratio (the ratio between peak velocities in E-wave and A-wave,

respectively), have been explored extensively in relation to cardiac dysfunction [82, 53,

121]. Such parameters have been linked with diastolic HF [82], congestive HF [3] and LV

remodelling [53], among more, although alternative quantities computed from the velocity

field have gained more attention in recent years.

Kinetic Energy

Kinetic energy (KE), defined as:

KE =
1

2
m |u|2 , (2.1)
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for fluid mass m and velocity u, is an important variable of interest in cardiac studies,

linked with myocardial infarction (MI) [84, 31, 15], LV remodelling [53, 15, 48], heart

failure (HF) [119, 6] and ischaemic LV dysfunction [32]. KE in the LV is reflective of

the work performed by the heart [84], and subtle changes in mechanical function may

result in measurable changes in the KE patterns in the early stages of disease [6]. In [84],

MI patients displayed a reduction in mean overall KE and systolic KE (indexed to end

diastolic volume (EDV)), which can be observed in Fig. 2.1, whilst exhibiting an increase

in the proportion of in-plane KE, which was independently associated with infarct size.

Conversely, systolic KE was found to increase acutely post-MI, although this gradually

decreased over the following 12 months [15]. Mean systolic KE was also linked with HF in

[119], where HF patients showed a decrease in mean systolic KE when indexed to EDV.

Using multivariate analysis, a reduction in peak A-wave diastolic KE was identified as

an independent marker for LV remodelling at all levels of severity in [53]. HF, separated

into subclinical left ventricular diastolic dysfunction (LVDD), HF with preserved ejection

fraction (EF) and HF with reduced EF groups, was characterised by an increase in diastolic

KE [6].

Figure 2.1: Peak systolic kinetic energy blood flow mapping: Comparison between healthy and
infarcted patients, taken from [84].

Vorticity

Vorticity, defined as:

ω = ∇× u, (2.2)
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for velocity u, is a vectorial quantity that describes the rotational motion of a continuum

of fluid, and has emerged in recent years as a variable of interest for cardiac haemodynamic

analyses. In the healthy heart, diastolic flow is characterised by the formation of a large

vortex ring, alongside smaller vortices, induced by the formation of a shear layer on the

mitral valve leaflets [174]. Previously considered a passive phenomenon, the formation

of such flow structures is thought to facilitate efficient filling of the left ventricle (LV)

[34], minimising viscous energy loss by a factor of 2-4× [63], whilst improving washout

and aiding the redirection of flow to the aortic valve in systole [174, 202]. It is even

hypothesised that the shape and volume of the LV is constructed during embryonic growth

to optimise the formation and propagation of the mitral vortex ring [7].

Where the healthy heart can be characterised by the presence of the aforementioned vor-

tical structures, measurable disturbances of such features could indicate cardiac dysfunc-

tion at a prior stage to the emergence of typical clinical markers [156]. To this end, a

range of LV vorticty parameters have been investigated in vivo in the literature, using

4D-flow MRI [52, 198, 63, 131], planar PC-MRI [34] and echocardiographic particle imag-

ing velocimetry (echo-PIV) [100, 2, 33]. Reduced vortex depth and pulsatility power in

diastole were shown to contribute to apical thrombus formation in anterior MI patients

in [125]. Similarly, mean and peak vorticity was shown to be lower in MI patients [52],

with elevated mean and peak systolic vorticity at the basal region for MI patients with

LV thrombus present. In [33], patients suffering from heart failure with reduced ejec-

tion fraction (HFrEF) exhibited fragmented vortex patterns, using maximum number of

vortices in systole, early diastole and late diastole as a marker. It was also found that

vortices had a reduced area (when indexed by LV end diastolic diameter), with a weaker

systolic vortex. The connection between mitral vortex formation and viscous energy loss

was investigated in [63], where it was found that abnormal vortex formation resulted in

elevated viscous energy loss, particularly in cases where no vortex ring was formed. The

suitability of 4D-flow MRI-derived vorticity as a marker for early LVDD in patients with

mild-to-moderate chronic obstructive pulmonary disease (COPD) was assessed in [198].

COPD patients showed a significant reduction in early diastolic vorticity, displaying no

or only mild signs of LVDD compared with controls, indicating that disturbances to the

vorticity field precede mechanical changes. This finding is in agreement with [174], where

it is postulated that mechanical dysfunction is preceded, and even driven, by unstable flow

patterns, which are measurably reflected in the vorticity field.
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Pressure

There is a consensus that intraventricular pressure and pressure gradients play an impor-

tant role in the healthy function of LV flow [173, 243], however their usage in a clinical

setting has been restricted by the difficulties faced in acquiring accurate measurements

[173]. The invasive nature of cardiac catheterisation to measure absolute pressure [104,

46] has motivated the development of image-based pressure quantification techniques for

use in both cardiac and vascular studies.

Although coupled to the velocity field through the Navier-Stokes equations, reconstruction

of cardiovascular pressure fields from velocity measurement data is not a trivial task. Tra-

ditional methods utilise velocity data obtained using Doppler-echocardiogram (Doppler-

ECG) to approximate the pressure drop, ∆p, between two distinct points in the flow

region, using the Bernoulli theorem, in either a simplified or modified form [46, 209, 70,

168, 95, 62, 77], or the Euler equations [237, 20]. Recent methods have exploited ad-

vancements in imaging technology to derive relative pressure in the cardiovascular system

from planar PC-MRI and 4D-flow MRI, with notable contributions including the use of

a virtual work-energy function (vWERP) [59, 155, 74], pressure Poisson equations [242,

132, 69] and machine learning-based methods [204, 128].

Early approaches to quantify intraventricular pressure drop based on the simplified [209]

and modified [77] Bernoulli equations have been shown to correlate poorly with catheter

data [58], owing to the number of simplifications made about the intermediate flow field.

The vWERP approach has been successfully adapted for use in the cardiac chambers [155],

utilising the arbitrary Lagrangian-Eulerian form of the Navier-Stokes equations across

dynamic sub-domains of the chamber. However, although this model is significantly more

accurate than the aforementioned Bernoulli approaches, it also only provides pressure

drop values between two regions in the LV. As with velocity, the pressure field in the

LV is complex and spatially heterogeneous [69], and cannot be fully characterised by

relative differences. However, despite the potential usefulness of reconstructing localised

pressure differences, there has been limited investigation into suitable methods. In [69,

179], the pressure Poisson equations are used to reconstruct pressure distributions from

4D-flow MRI data, however the resulting field is highly dependent on the accuracy of

flow gradients, which can be limited [155]. Alternatively, in [26], acceleration maps are

integrated to reconstruct pressure distributions.
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Wall Shear Stress

Wall shear stress (WSS) is an important variable of interest in the vasculature, linked with

aneurysm formation and rupture [27], atherosclerosis [96] and vessel remodelling [220]. It

describes the tangential force applied to a surface through viscous shearing of the fluid in

the boundary layer, and is defined as:

WSS = 2µS̃ · n̂, (2.3)

for strain-rate tensor S̃ and inward wall-normal vector n̂. WSS is a highly sensitive variable

that requires the accurate calculation of spatial velocity derivatives in the immediate vicin-

ity of the wall, and therefore high spatial resolution in the near-wall region is desirable for

acceptable results. This requirement proves problematic when attempting to approximate

WSS using 4D-flow MRI, where low spatial resolution is a limiting factor [71]. Accurate

reconstruction of the boundary layer in the near-wall region is crucial for calculating re-

alistic velocity gradients, however, this flow feature typically occurs on length scales that

are far smaller than the minimum voxel volume available to 4D-flow MRI, and thus are

not properly resolved. This effect is further exaggerated at higher velocities, where the

thickness of the boundary layer is reduced and voxel averaging becomes more problem-

atic [42]. The result is that, while the reconstructed WSS distribution may be similar to

reality, 4D-flow MRI persistently underestimates the magnitude of WSS by a significant

factor [182]. To improve results, techniques such as parabolic curve fitting [208] and linear

extrapolation [182], have been investigated to obtain sub-voxel velocity gradient approxi-

mations in the near-wall region [220, 213, 41]. When compared with Computational fluid

dynamic (CFD) results in corresponding geometries, however, significant differences in

WSS magnitude were still noted, although overall the WSS distributions were generally

captured appropriately [214]. More recently, WSSNet, an ML-based model trained using

CFD simulation data, was proposed [76]. WSSNet was shown to achieve significantly

increased accuracy than the competing parabolic curve fitting method, particularly in

attaining the correct WSS magnitude.

Despite the magnitude being under-predicted in in vivo imaging studies, an understanding

of the role WSS plays in the progression of vascular disease is relatively well-established,

where changes in the intensity or oscillatory characteristics of WSS have been shown

to trigger a response from endothelial cells by means of mechanotransduction, which can

cause disease [27, 96, 220]. The endocardium is similarly lined with endothelial cells, which

have been shown to influence cardiac performance and remodelling [200], however, few

studies have attempted to quantify the relationship with WSS. This is due to a combination
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Figure 2.2: 4D-flow MRI: At each slice location, time-dependent phase images are reconstructed
in three orthogonal directions, namely right-left (RL), anterior-posterior (AP) and foot-head (FH).
Complete coverage of the LV cavity and cardiac cycle over the scan duration produces a time-
varying, 3D volume of haemodynamic flow (shown as 4D).

of the aforementioned limitations of 4D-flow MRI, but more importantly, limitations in

the structural MRI methods used to segment the moving endocardium. The complex

structures that line the surface of the endocardium are not fully resolved, owing to low

spatial resolution of structural cine-MRI, which means the surface on which WSS is being

estimated is not anatomically correct. This is then coupled with extreme deformation

of the boundary throughout the cardiac cycle, which is difficult to accurately capture,

resulting in significant uncertainty in both the position and motion of the endocardium.

This makes the task of deriving an accurate WSS approximation directly from 4D-flow

MRI in the LV challenging, and further, given such significant differences in the boundary

surface, the validity of such WSS measurements could also be questioned.
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2.2.4 Quantification of Ventricular Flow

4D-Flow Magnetic Resonance Imaging

Given the inherent 3D nature of haemodynamic flow in the heart chambers, 4D-flow MRI

has emerged as the gold standard in vivo flow imaging modality in LV studies, owing to

its ability to reconstruct time-varying velocity fields in three spatial dimensions (3D) at

a higher spatial resolution than competing methods (the title 4D refers to three spatial

dimensions + time). This allows for full characterisation of the intraventricular velocity

field, setting 4D-flow MRI apart from Doppler ECG and planar PC-MRI, which are only

able to provide velocity in a single direction on a 2D plane. However, the acquisition

of such a dense set of velocity measurements incurs large scan times, requiring 15-25

minutes to reconstruct a single cardiac cycle [152], and MRI machines are expensive and

generally scarce within healthcare systems in low income countries. In Fig. 2.2, a simple

demonstration of the phase images acquired and resulting velocity field is provided.

Computational Fluid Dynamics

Computational fluid dynamics (CFD) describes the numerical simulation of fluid flows,

and has seen extensive use in cardiac haemodynamic studies [39, 40, 222, 194, 135, 43,

134, 199, 60, 167, 9, 193]. CFD approximates the Navier-Stokes equations to a high de-

gree of accuracy, allowing for the reconstruction of noise-free, high-resolution velocity and

pressure fields in the cardiovascular system. The use of dense computational meshing

procedures near flow boundaries also permits the calculation of WSS to a high degree of

accuracy, which is challenging using in vivo flow imaging [213]. However, CFD approaches

in the LV suffer from a number of significant drawbacks which reduce their clinical appli-

cability. Firstly, the approximated solution fields are highly dependent on the accuracy

of boundary conditions. This can be limited in cardiac studies, given uncertainty in the

endocardium position and motion, and the inability to reconstruct the valve leaflets at the

mitral inlet from structural imaging. The result of this is that, while they conform to the

Navier-Stokes equations and the given boundary conditions, the reconstructed solution

fields may not represent those truly present in the patient LV. This can be somewhat

corrected using in vivo measurement data to calibrate the boundary conditions, but this

requires the computation of multiple simulations. Secondly, CFD simulations in the LV

are computationally expensive, and typically require many manual steps, from segmenta-

tion and registration to meshing [160]. This renders them challenging to apply to a large

patient population.
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Where CFD simulations can be particularly useful in this setting is for the generation of

synthetic flow imaging data in real cardiovascular geometries [75, 71, 72, 203]. Although

solution fields that have been simulated using CFD may not correspond directly to the true

patient flow in a particular geometry, they are noise-free, of a high spatio-temporal reso-

lution and satisfy the governing equations to an acceptable degree of accuracy. Therefore,

it is possible to use the CFD results as reference ground truth data and artificially down-

sample from this to produce synthetic image data. This type of study setup is helpful for

validating 4D-flow MRI super-resolution methods, where validation in vivo is challenging

given the absence of more accurate flow modalities. Further, using synthetic data allows

for a controlled application of image corruption, which is helpful in determining the upper

bounds of applicability of the model (in terms of levels of image degradation). Therefore,

synthetic validation studies are common across all 4D-flow MRI super-resolution publica-

tions to date [75, 71, 72, 203].

2.2.5 The Complex Structures of the Endocardium

The interior surface of the LV cavity, called the endocardium, is lined with a matrix of

complex, ridge-like structures called trabeculae carneae. From the endocardial surface,

two papillary muscles protrude through the cavity and connect to the mitral valve by a

web of fibrous tissue called chordae tendineae. The function of the papillary muscles and

chordae tendineae in the LV is to prevent inversion of the mitral valve, (and subsequent

regurgitation into the left atrium), during systole, where myocardial contraction generates

extreme high pressures [162]. The functionality of trabeculae carneae, on the other hand,

is less clear. Previously considered a passive byproduct of embryonic development [230],

there is some evidence to suggest that they play a role in the haemodynamic function of

the LV. It is hypothesised, for instance, that the trabeculae carneae help to squeeze blood

from the apical region under contraction, improving washout in systole [170], while it is

also postulated that their presence may reduce the diastolic load on the myocardium by

slowing the inflow and thus dispersing the KE [25].

Limitations of Structural Imaging

Regardless of their function, the presence of trabeculae carneae, papillary muscles and

chordae tendineae has an impact on the observed intraventricular flow patterns due to

their physical intrusion into the LV cavity [133]. However, most simulation-based studies

of LV flow neglect to include these complex wall features, instead assuming that the
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endocardium is a smooth surface with no protrusions [60, 39, 40, 28, 167, 90]. This

simplification is primarily due to the low spatial resolution of in vivo structural imaging,

in particular cine-MRI, but also due to the computational costs incurred by simulating such

a complex, deformable mesh [194]. Cardiac cine-MRI has an in-plane spatial resolution of

∼ 1.5mm2, but a through-plane resolution of ∼ 8mm [160], so while larger trabeculations

may be visible within each planar slice, it is challenging to delineate these features in

the apico-basal direction. Alternatively, cardiac computed tomography (CT) is able to

achieve an isotropic spatial resolution of ∼ 0.5mm3, which is sufficient to reconstruct all

but the smallest endocardial surface features. However, few publications have utilised this

capability with CFD simulations, likely due to the computational challenges associated

with prescribing motion to such a complex geometry [135].

There has been some investigation into the impact that trabeculae carneae, papillary

muscles or chordae tendineae have on LV flow parameters [194, 222, 161, 164, 135, 133],

with studies comparing CFD results with and without the presence of such features in-

cluded on the endocardium. The influence of trabeculae carneae and papillary muscles

on flow parameters and patterns is studied in [194], where CFD simulations are per-

formed in patient-specific LV geometries using smoothed and trabeculated representations

of the same endocardial surface, which can be seen in Fig. 2.3. It is observed that the

trabeculations reduce WSS, increase pressure drop and alter the breakup pattern of the

mitral vortex ring in diastole, in agreement with the theory discussed in [25]. It is also

demonstrated that the inclusion of a thin, porous layer to represent the trabeculated re-

gion in the smoothed model can reproduce many of the flow characteristics observed in

the trabeculated geometry, which may be a useful course of direction to emulate realistic

intraventricular flow patterns without the computational cost of modelling the complex,

anatomically-correct boundary. The authors use rigid walls, however, so the influence

of contraction and relaxation of the different boundary representations is not considered.

Such effects are investigated in [222], where a similar study is performed including motion

of the lumen, again segmented from CT images. The authors found that the presence of

trabeculations and papillary muscles produced more complex vortical features, inducing a

deeper penetration of flow to the apex of the LV which may improve mixing and washout.

In [135], CT-derived CFD simulations are again performed in geometries with and with-

out trabeculations and papillary muscles. The latter feature in particular was found to

impact the simulated inflow due to blockage of the mitral jet, reducing flow to the apex,

which is in contradiction with the findings in [222]. Further, regions of high residence
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time were found to exist within the small spaces on the trabeculated surface, which may

induce flow stagnation. However, it is unclear whether this phenomenon occurs in reality,

or is a consequence of modelling simplifications that neglect contraction of the trabecu-

lae during systole, which may act to squeeze the blood out [170]. A comparable study

using segmentations from cine-MRI is performed in [161], in which CFD simulations are

performed using three representations of the same endocardium, from smooth to trabec-

ulated. It is found that the time-averaged WSS is elevated on ridged features near the

mitral valve, with the trabeculated geometries exhibiting higher residence time in the apex

due to decreased penetration of the mitral jet. This is in agreement with [135], although

the endocardial segmentations used in this instance are of a poor quality, being derived

from cine-MRI instead of CT, and do not appear anatomically accurate. The impact of

chordae tendineae, which are comparatively less prominent than trabeculae carneae and

papillary muscles, is analysed in [164]. The authors find that, although small, localised

flow effects are induced behind the chordae tendineae, the effect on overall flow energetics

and patterns is limited. Therefore, it is deemed that for most applications, the inclusion

of chordae tendineae in CFD simulations is not required.

Figure 2.3: A demonstration of the level of detail present on the endocardial surface when
segmented from computed tomography images (right-hand of each figure from A-E), displayed
alongside the type of smoothed surface that cardiac blood flow modelling is typically performed in
(left-hand of each figure from A-E) [194]
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2.3 4D-Flow Magnetic Resonance Imaging

2.3.1 Physical Principles of Phase-Contrast Magnetic Resonance Imag-

ing

Non-invasive quantification of blood flow in the cardiovascular system can be achieved us-

ing a variety of imaging techniques, however the increasingly dominant modality of choice

for this application is Phase Contrast MRI (PC-MRI) [233]. Disregarded in structural

MRI examinations, PC-MRI makes use of frequency and phase information recorded dur-

ing acquisitions to reconstruct haemodynamic velocity fields in the cardiovascular system.

Under the effect of a magnetic frequency gradient, the spin angle of a proton in a region

of interest will change if observed for a period of time, leading to an altered phase shift.

Applying two equal but opposite magnetic gradient pulses in sequence results in stationary

protons having zero phase shift, whilst moving protons exhibit different degrees of phase

shift dependent on their change in position relative to the gradient direction [233]. The

phase shift experienced by a proton is directly proportional to its velocity in the gradient

direction, and thus this information can be used to reconstruct a 2D slice of in-plane blood

velocity. This process is outlined in Fig. 2.4.

Figure 2.4: This figure explains how a bipolar gradient pulse can be used to identify protons in
motion, and thus calculate the related velocity. 1) Initially, each of the protons in both the moving
frame (blue, green, red and purple protons) and stationary frame (remaining green protons) are
in phase. 2) A gradient pulse is applied in the flow direction, producing a phase shift in each
proton that is dependent on the position in the domain. 3) After the protons within the moving
frame travel, their phase shift is different with respect to the neighbouring proton in the stationary
frame. 4) An equal but opposite gradient pulse is applied. Protons in the stationary frame now
exhibit zero net phase shift, whereas protons in the moving frame exhibit a constant phase shift,
with protons travelling at the same velocity generating equal phase shift. 5) An inverted bipolar
gradient is finally applied, resulting in an opposite phase shift. Values from the normal and inverted
bipolar gradients are subtracted from one another, removing signal from the tissue regions [233].

The first application of this principle was realised in planar PC-MRI, in which through-

plane velocity is measured on a single 2D slice [163]. This technique is well-suited to
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studies in the vasculature, where analyses of cross-sectional flow can provide useful insights;

However, the inherent 3D nature of flow in the heart chambers limits its usage in cardiac

applications. The more recently developed 4D-flow MRI (3 spatial dimensions plus time)

is far better suited for quantifying the haemodynamics of the heart [93, 84, 153, 218].

4D-flow Magnetic Resonance Imaging

To construct 3D velocity fields for 4D-flow MRI, the principle of planar PC-MRI is ex-

tended by acquiring multiple orthogonal sequences to cover each spatial dimension at a

particular point in time. Initially, to obtain velocity components in all three dimensions,

six acquisition sequences were used to obtain the three dimensional velocity field (one pos-

itive and one negative in each spatial direction), resulting in the six-point method [233].

However, more recent encoding strategies including the four-point referenced method (one

sequence in each spatial dimension, one sequence in some reference direction) [45] and

the four-point balanced method (four equidistant points, with the initial used as a refer-

ence direction) [175] have become more popular. By acquiring two sequences fewer than

the six-point method, the four-point methods reduce the overall scan time required, with

the balanced approach improving velocity-to-noise ratio. The five-point balanced method

[118] is one of the most recently developed encoding strategies, deploying an additional

low-resolution encoding point to increase the velocity-to-noise ratio by 63% whilst increas-

ing scan times by only 1% when compared to the four-point balanced method.

2.3.2 Limitations of 4D-Flow MRI

Whilst providing unrivalled visualisation capabilities in the cardiovascular system, 4D-

flow MRI is affected by a combination of hindrances. A balance between spatio-temporal

resolution, velocity-to-noise ratio (VNR) and scan time must be realised to obtain accept-

able results [72, 203, 75], where improved resolution and VNR can be achieved with scans

of a longer duration, at the expense of more severe motion artefacts and increased flow

averaging.

Scan Duration

The total scan time required to obtain adequate 4D-flow MRI results is universally large,

when compared against Doppler-ECG and planar PC-MRI, although it differs depending

on the location in the cardiovascular system. For cardiac imaging, acquisition times range

from 5-25 minutes [61] (achieving a spatial resolution of ∼ 2.5 − 3mm3), the highest of
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any region in the body. Scan times of this duration or longer can result in the patient

becoming uncomfortable and restless, particularly if they suffer from a debilitating illness,

which can result in excessive motion artefacts. Further, scans of this duration may also

increase variability in heart rate, leading to increased averaging in the measured flow

and misalignment between cine-MR images and 4D-flow MRI [23]. Such flow averaging is

inherent to 4D-flow MRI, potentially reducing peak velocities while removing beat-by-beat

variations in the velocity field [210], but is exacerbated by longer scan times.

Spatio-Temporal Resolution

For studies in the cardiac chambers, the recommended spatial resolution is 2.5mm3, up to

a maximum of 3mm3, with scan duration a limiting factor [89]. At this resolution, small-

scale flow features are missed and spatial gradients of the velocity field, which are required

to calculate an array of clinically-relevant variables, can be of poor quality [182]. The

temporal resolution of cardiac 4D-flow MRI is typically around 30–40ms [61], resulting in

∼20–30 phases per cardiac cycle. Whilst this is not a limiting factor, it can result in a

reduction in peak velocity measurements [61].

Noise Corruption

Noise in MRI can be categorised into structured noise, like that occurring as a result of

motion and ghosting, and random noise, which arises from the MRI machine itself [65].

Random noise in the measured raw MRI data, which consists of complex (real and imag-

inary) signals, is complex Gaussian in distribution [92, 29, 169, 106]. This is then skewed

into a Rician distribution when converted to magnitude images [92, 29], whilst the phase

information, from which velocity measurements are derived, can be characterised by a

Gaussian distribution in high VNR regions, which is skewed in low VNR regions [106]. An

important distinction to make here is that velocity-to-noise ratio (VNR) and signal-to-

noise ratio (SNR) describe different parameters in the context of PC-MRI. SNR typically

describes the signal-to-noise ratio in the magnitude images, which is independent of ve-

locity values, whereas VNR is dependent on the measured velocity. The two parameters

are related by:

VNR ≃ π

2

|u|
venc

SNR, (2.4)

for voxel speed |u| and encoding velocity venc [138]. This equation explains why VNR is

reduced when the venc is set excessively high.

In the synthetic studies in this thesis, we will consider data corruption in the form of re-
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duced spatio-temporal resolution and increased levels of random noise. Whilst the impact

of of structured noise is an important consideration, realistic synthesis of such effects is

challenging.

2.3.3 Advancing 4D-Flow MRI

Given the shortcomings discussed in the previous section, there has been a long-standing

motivation in the field to accelerate acquisitions from as far back at the 1970s (for general

MRI) [112], allowing for acquisitions of a higher quality. A range of approaches have been

explored to achieve this goal, such as parallel imaging [57, 185, 217, 91, 102], compressed

sensing [112, 149, 101, 207, 171, 85], novel encoding strategies [175, 118, 138, 45] and

alternative k-space sampling patterns [178, 183, 12].

Parallel Imaging

Parallel imaging, utilised in almost all modern MRI machines, provides the framework to

use multiple receiver coils in unison, which collectively acquire an undersampled set of

k-space data. By acquiring a smaller amount of data from the k-space, significant accel-

eration is achieved [57]. This undersampling is made possible due to the fact that signals

originating from coils at different spatial locations emit different information about spa-

tial localisation [112]. MR images are then reconstructed from the data using techniques

such as SENSE (Sensitivity encoding for fast MRI) [185, 217] and GRAPPA (Generalised

Autocalibrating Partial Parallel Acquisition) [91, 102]. Although parallel imaging is a

generalised MR method, it is similarly applicable 4D-flow MRI.

Compressed Sensing

Compressed sensing is a technique associated with a wide range of signal processing ap-

plications. It relies upon enforcing prior assumptions and conditions, primarily that the

underlying signal is sparse (or, at least, can be represented sparsely), to reconstruct a

representation of a signal using only a sparse set of measurements. Image compression,

where raw images are condensed into much smaller files by utilising only a small set of

frequency information without losing important details in the image, led to the concept

of compressed sensing, where it was hypothesised that it may not be necessary to store

such high-quality raw images since much of the information is discarded during compres-

sion [112]. This is of relevance in the field of MRI, where data acquisition is incredibly

expensive, and thus in the last two decades this area of research has attained much focus.
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Compressed sensing of MRI data is achieved through targeted undersampling of the k-

space during acquisition [112]. Applied to cardiac 4D-flow MRI, an acceleration factor of

4.84 was achieved in [101] using Poisson disc k-space undersmapling and a combined paral-

lel imaging and compressed sensing algorithm (L1-SPIRiT). More recently, the respiratory

controlled adaptive k-space reordering (ReCAR) has been introduced [149], for which an

acceleration factor of 7.7 was achieved whilst maintaining relative errors of 13% for peak

velocity and peak flow, compared with conventional 4D-flow MRI. This approach has been

adopted in a number of recent publications across a range of cardiovascular applications

[207, 171, 85].

K-Space Sampling Strategies

Whilst compressed sensing methods achieve acceleration through undersmapling of k-space

points, the grid on which points are sampled can also be modified to provide acceleration

and improve robustness to motion artefacts [178]. Since the 1980s, Cartesian sampling

strategies, in particular the spin-warp technique [78], have been the dominant choice, in

which coverage is achieved by sampling lines across the k-space. The main benefit of this

approach is that it improves computational efficiency, where the fast Fourier transform

(FFT) is simple to apply to points on a Cartesian grid [68]. Radial sampling strategies,

which actually out-date the more popular Cartesian methods, have since gained more

attention with the emergence of the periodically rotated overlapping parallel lines with

enhanced reconstruction (PROPELLER) approach [183], which has since been adopted

by Siemens (BLADE) (Siemens Healthcare Limited, Camberley, UK) and Philips (Mul-

tiVane) (Philips Healthcare, Best, The Netherlands), among other manufacturers [67].

Radial sampling strategies are more robust to motion artefacts, owing to the natural over-

sampling of the central region of the k-space image (within which the most important

spatial information is contained) as the sampling lines rotate. However, re-gridding is

required to convert the non-Cartesian sample points onto a regular grid to apply the FFT.

Specifically for use with 4D-flow MRI acquisitions, spiral sampling approaches have also

been proposed [12], in which sampling occurs on a golden-angle spiral within the k-space.

In a similar fashion, a Cartesian pseudo-spiral approach is deployed in addition to com-

pressed sensing in [178], in which points are sampled in a spiral pattern, but on a Cartesian

grid. In doing this, the fast reconstruction time of undersampled Cartesian sampling is

maintained, however, the spiral pattern used mitigates eddy current artefacts by reducing

the distance between sampling points.
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2.3.4 Super-Resolution of 4D-Flow MRI

As mentioned in [203], the acceleration techniques discussed in section 2.3.3 can, rightly,

be considered super-resolution techniques, as they allow for increased spatio-temporal res-

olution and VNR at the same scan duration. However, there is a small, but growing,

community of researchers working on the development of direct super-resolution methods,

which are applied directly to existing 4D-flow MRI velocity data. The main distinction be-

tween the two categories of acceleration-based super-resolution and direct super-resolution

is that the former must be decided upon and applied prior to acquisition, whereas the sec-

ond can be applied to existing data sets. It is also important to note that both approaches

can be used in conjunction.

Direct super-resolution of 4D-flow MRI is an emerging field, and thus there are only a lim-

ited number of relevant publications to date. Early attempts utilised CFD simulations and

proper orthogonal decomposition alongside ridge regression [9], Lasso regularisation [71]

and dynamic mode decomposition [181]. Other approaches include [139], where an efficient

super-resolution approach is introduced in which a Navier-Stokes-based L2-penalised cri-

terion is minimised, and [129], which uses a Fourier spectral dynamic method to assimilate

4D-flow MRI data into CFD studies.

Figure 2.5: Velocity component fields: Comparison between the 4DFlowNet model [75] and
competing methods, taken from [75].

Given the groundbreaking success machine learning-based models have had when applied
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to super-resolution tasks, it is unsurprising that most recent methods in 4D-flow MRI

super-resolution also deploy similar strategies. In [75], a residual network is adapted from

the generator section of the super-resolution generative adversarial network (SRGAN)

model [137], and is used to denoise vascular velocity fields whilst increasing spatial reso-

lution by a factor of 2×, as visualised in Fig. 2.5.

Figure 2.6: Velocity streamlines: Comparison between the SRflow model [203] and competing
methods, taken from [203].

A residual network is again deployed in [203] to perform spatial super-resolution, at an

upsampling factor of 4×, and denoising in vascular flows, in which the authors introduce

a mutually projected L1 loss designed to disentangle magnitude and direction of predicted

velocities. Results are visualised in Fig. 2.6. Both approaches here use architectures

designed for single image super-resolution, and therefore address only spatial upsampling.

Not only does this not provide temporal super-resolution of 4D-flow MRI data, but the

rich information stored in flow data at neighbouring time points is not utilised, which may

also improve the spatial upsampling capabilities. Additionally, the methods rely upon

the presence of paired low-resolution input data and high-resolution labels, which are not

readily available in standard 4D-flow MRI studies.

In contrast, super-resolution in both space and time in vascular flows is achieved in [72],

without high-resolution target data, using a physics-informed neural network (PINN), as

seen in Fig. 2.7. Upsampling factors of 100× and 5× in space and time respectively are

reported, and by utilising the often overlooked 4D-flow MRI magnitude images to estimate

boundary location, their method avoids the need for complex manual steps such as seg-

mentation and registration. However, whilst this is feasible for the simple rigid geometries

presented in [72], it is unlikely that this approach would work in ventricular geometries due

to the large deformation of the endocardium throughout the cardiac cycle. Further, the

network architecture and internal components used are not capable of capturing complex,

small-scale flow features, like those present in cardiac flow.
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Figure 2.7: Velocity component and magnitude field: PINN super-resolution model reconstruc-
tion against reference data, taken from [72].

A key benefit of the PINN model [72], when compared to those based on residual networks

[75, 203], is the inclusion of strict, physics-based model regularisation, enforced through

loss constraints. This regularisation, the key feature of PINNs, ensures that predicted

solution fields satisfy the underlying physical constraints that govern the haemodynamic

flow. This provides confidence that the interpolated velocity field, and subsequent quan-

tities that are derived from it, are physically consistent, which is of particular importance

in cardiovascular studies where in vivo validation is challenging. This also links to the

ill-posed nature of super-resolution, in that multiple (or even infinite) high-resolution

predicted fields may correspond to the given low-resolution input, and thus having the as-

surance that the predicted fields at minimum satisfy the underlying physics is beneficial.

To date, there have been no publications addressing super-resolution of 4D-flow MRI in

the cardiac chambers. There are a number of unique challenges posed in this setting,

such as extreme deformation of the flow domain boundary and the presence of complex,

multi-scale flow features, both of which are less prominent in vascular studies.
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2.4 Physics-Informed Neural Networks

2.4.1 An Introduction to Machine Learning

The term machine learning (ML) covers a collection of methods from the field of artificial

intelligence, in which models automatically learn relationships between input and output

data. Model training strategies can be broadly divided into supervised or unsupervised

learning (self-supervised and semi-supervised are also popular, but are omitted here).

Supervised learning utilises data samples that are manually labelled prior to training.

For instance, in supervised image recognition, an input-output data pair may consist of

an input image, coupled with a text label output specifying the object in that image.

Once trained on a set of paired data of sufficient size, the model will be able to classify

new images based on the discrete set of labels defined beforehand. Typical use cases for

supervised ML algorithms can be divided into classification and regression tasks. In the

former, the outputs of an ML model are discrete, for instance in image recognition tasks.

For regression tasks, an ML model can be used to fit a continuous function to a discrete

set of data points, an example use case being super-resolution tasks [10]. Unsupervised

learning is, conversely, training a model using unlabelled data. The classical use case for

unsupervised learning is clustering, in which patterns and correlations in large sets of data

are identified to generate natural groupings.

ML model training is facilitated through the minimisation of a loss function with respect to

the trainable parameters of the network. For a fully connected network (otherwise labelled

a multi-layer perceptron), the set of trainable parameters is a collection of weights and

biases that connect a matrix of neurons, which apply a non-linear activation function

to their output. Loss functions can take many forms depending on the application and

available data type. As an example, for supervised regression tasks there will typically

be a data loss function, which consists of the error (usually mean squared error) between

predicted values and the corresponding data measurement at the given input point. During

training, the gradient of the loss function with respect to the trainable parameters of the

network is calculated using backpropagation, with these gradients then used to update

the trainable parameters at each iteration using one of many optimisation algorithms

(typically stochastic gradient descent and its variants).

In inference mode, a trained ML model is able to produce output predictions from a given

input, regardless of whether that input was included in the training data set. The error
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attained by testing the model using unseen input data is labelled generalisation error,

which is typically the main metric of importance, and the most challenging to reduce

satisfactorily. Generalisation error is closely tied to the problem of over-fitting, which

describes the scenario in which an ML models begins to represent noise in the training

data as the underlying approximated function itself. This occurs when a model is over-

parameterised, or is allowed to train for too many iterations, to the detriment of the

models generalisation capabilities.

Machine Learning for Super-Resolution Tasks

Traditionally an imaging concept, the term super-resolution describes the task of recov-

ering high-resolution (HR) images from low-resolution (LR) inputs. Due to the ill-posed

nature of the problem, with multiple HR images corresponding to one LR image [229],

exact recovery of HR images is not possible. However, there are a number of ways to

achieve this objective to a satisfactory degree of accuracy, mainly through the use of fil-

tering, statistics and prior knowledge. Given the challenging nature of the problem, it is

difficult to formulate algorithms a priori that can perform this task effectively. Therefore,

it is a field for which ML is well-suited.

There has been extensive exploration into the development of ML methods for super-

resolution over the last decade, many of which can be found in within [229]. Similarly,

these methods have been successfully applied to structural medical imaging data across a

range of modalities. A review of these methods can be found in [140].

Super-Resolution of Fluid Flows

Whilst super-resolution of 4D-flow MRI data is a field in its infancy, super-resolution of

fluid flows in general is relatively well established. This is partly due to a long-standing de-

mand for high-fidelity flow reconstructions calculated in a shorter time than those achiev-

able with traditional methods such as direct numerical simulation (DNS) and large eddy

simulation (LES), but also for improving the resolution of experimental flow measure-

ments, which tend to be sparse and noisy [55]. As a consequence of the former, there is a

notable interest in super-resolution of turbulent flows, particularly for industrial applica-

tions where DNS simulations are too costly [142]. Super-resolution techniques have been

used for particle image velocimetry data for over two decades [123, 215, 211, 11, 236, 197].

A variety of approaches have been attempted, from Kalman-filtering and χ2-testing [215]

to the integration of particle tracking velocimetry (PTV) algorithms [11, 211]. Further
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techniques include the successive abandonment method [236] and the redefinition of the

resolution to correspond to either the mean particle spacing or mean particle displacement

[123].

Well established in the imaging domain [229], machine learning is showing great promise

in the field of fluid dynamics, especially in situations where measured data is readily

available [24]. As with general machine learning-based super-resolution tasks, generative

adversarial network (GAN) [55, 126, 234] and convolutional neural network (CNN) [80,

142, 79] architectures dominate more recent publications in this field, with low-resolution

data used in these cases either downsampled from the high-resolution target [142, 126, 80,

55] or obtained using a turbulence closure model such as LES [126].

In [146], the authors deploy two CNNs to produce super-resolved reconstructions of tur-

bulent flow, namely static CNNs (SCNNs) and multiple temporal paths CNNs (MTPC).

The MTPC model is a novel contribution, leveraging not only the spatial LR data but

also temporal data, unlike static models. The model is able to recover HR flow fields

whilst preserving physical features such as kinetic energy spectra. With previous, static,

methods, only the instantaneous spatial LR data is used at each time frame. Although

this approach has been shown to be effective, data from other time frames is wasted. The

MTPC method provides the network with a sequence of time frames, imparting further

constraints whilst learning the temporally non-local properties of the turbulence. Fur-

ther applications of CNNs to super-resolution are provided in [79, 80], who investigate

the reconstruction of DNS-generated turbulent flows from both coarse input data and

LES-generated data.

Generative adversarial networks (GANs) [88] are unsupervised learning algorithms that

employ a two-player zero-sum game in which one player (the generator network) attempts

to learn the distribution of input samples, and the other player (the discriminator net-

work) learns to discriminate between real and generated samples [229]. The outcome is a

generator network capable of producing new samples that are indistinguishable from the

input data. These networks have been applied to the problem of single-image SR [229],

and this has been successfully extended to flow SR. In [234], the TempoGAN method is

proposed to provide SR of fluid flows, deploying a novel temporal discriminator which

forces the generator to produce results displaying consistent temporal evolution. In [55],

two methods previously used in image SR are adapted for use in fluid SR, super-resolution

GAN (SRGAN) and enhanced SRGAN (ESRGAN). They use flow data acquired experi-

mentally using PIV and are able to upsample by a factor of up to 82. The drawback of this
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approach is the requirement for paired HR data in training. This issue is circumvented

in [126] by applying a cycle-consistent GAN (CycleGAN), capable of performing unsuper-

vised SR with unpaired data. The results of their approach can be seen in figure (2.8),

in which the authors use their model to reconstruct 2-dimensional turbulence (only the

u velocity is displayed) from DNS-generated LR input data, displaying good capability

even for downsampling by a factor of 16. Whilst this approach allows the use of unpaired

data, it still assumes the existence of HR data, which are commonly not available. A

drawback of GANs in general is their tendency to hallucinate features in the predicted

fields. In tasks such as image super-resolution, this is not such a major issue. However, the

presence of such hallucinations in predicted velocity fields would likely prove problematic

when applied in practice. This effect can be seen in the right-hand column in Fig. 2.8. At

first glance, the model has successfully super-resolved the velocity field, generating many

of the small-scale flow features present in the target data. However, on closer inspection,

the position and intensity of such features are misaligned. The underlying architectures

Figure 2.8: The u velocity of 2D turbulence reconstructed from LR input by cycleGAN [126]

of both CNNs and GANs were originally developed for single image super-resolution, and

thus the input data typically have to be structured on a regular grid in order to perform the

necessary convolutions. Therefore, these methods are difficult to apply to non-rectangular

flow domains, which precludes their usage in a wide number of fluid applications. This

issue is addressed in [83], in which the authors apply an elliptic coordinate transformation
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to project a regular grid onto an irregularly shaped flow domain, permitting the use of a

CNN. They are also able to address another limitation of the methods discussed above,

namely the requirement for both low- and high-resolution data during training. They

do this by using the Navier-Stokes equations and boundary conditions, enforced in the

loss function, to constrain the predicted solutions. These physical constraints are im-

posed by convolving over the predicted velocity field using fixed finite difference filters,

then minimising the resulting fields. This approach belongs to a class of machine learning

methods, of which PINNs also belong, called physics-informed machine learning, which

will be discussed later in this chapter.

2.4.2 Physics-Informed Machine Learning

Around 2009, the emergence of highly parallel graphics processing unit (GPU) technology

enabled significant acceleration of ML tasks, sparking interest in the development of com-

plex models with millions of trainable parameters. This field of research became known

as deep learning, owing to the high number of stacked layers within the neural networks

used, i.e. depth. With the increased computational complexity of ML models came the ca-

pacity to learn features and correlations across vast, multi-dimensional input spaces [120].

Training of such models relies heavily on having large amounts of data across such input

spaces, making deep learning models a natural fit for tasks such as image recognition and

natural language processing where immense banks of publicly available data exist.

When working on scientific problems, comparatively large data sets are often unavailable,

precluding the application of many deep learning approaches when modelling physical

phenomena. This may be due to the cost of acquisition [189], difficulty in accessing the

problem domain or inability to directly measure variables of interest [191]. However, in

this setting we often have detailed a priori knowledge of the physical system at hand, not

utilised by purely data-driven deep learning models, which can include known physical

laws, boundary conditions, symmetries or empirically validated information [189]. This

additional information can be utilised to heavily regularise model outputs by instilling

physically-meaningful inductive biases, to compliment existing observational biases [120],

which allows for effective model training in the small-data regime in which scientific prob-

lems commonly lie. Methods that utilise such a priori physical information form the field

of physics-informed machine learning (PIML).

There exist numerous distinct realisations of this concept, with differences in how the

2025 32



The University of Leeds Chapter 2

informed regularisation is applied. The two approaches can be broadly categorised into

soft and hard constraint enforcement strategies. The former penalises outputs if they

do not conform to a particular constraint, whereas the latter forces the model to follow

some condition, usually via modifications of the architecture [148]. The majority of works

in the PIML literature, including the popular PINNs [189], utilise soft constraints, which

generally involve minimising physical laws or boundary conditions as additional loss terms.

2.4.3 An Introduction to PINNs

The term PINN is generally used to describe architectures like that used in the original

publication [190], which consists of a fully-connected neural network that maps spatial

and/or temporal coordinates to corresponding solution fields, constrained in a soft manner

to obey some underlying physical condition via a physics-informed term within the loss

function.

Overview

In Fig. 2.9, an overview of a standard PINN setup for a steady 1D problem with one

output variable, u, is shown. The objective here is to predict a continuous solution to u

across an entire domain in x, where the exact solution is shown in the upper figure. It is

assumed that there is access to a sparse set of measurements of the variable at positions

x, given by u, and it is known that the underlying partial differential equation (PDE)

governing the dynamics of our system is given by

∂xu = G(u, x). (2.5)

Given the sparsity of our measurements, u, traditional data-driven machine learning tools

to approximate u across the whole domain cannot be applied. However, using a PINN it

is possible to exploit the a priori knowledge of the system, given by the PDE in Eq. 2.5.

The PDE is re-formulated as a residual, to give:

F (u, x) = ∂xu−G(u, x), (2.6)

which can be used as a soft constraint in the loss function. By including F (u, x) in the

loss function, network predictions that violate the underlying PDE are penalised, which

heavily restricts the space of possible solutions in u. The derivative terms to be used
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within the PDE loss component are calculated using automatic differentiation [13], a

standard tool included in all major machine learning codes which is used primarily for

calculating gradients during backpropagation. This powerful algorithm is exploited in

PINNs to calculate the gradients of the output variable, here u, with respect to the input

variable, here x, to machine precision. This PDE constraint is used in conjunction with

a data loss term, which penalises predictions that do not comply with the sparse set of

existing measurements. The total loss is therefore taken to be the sum of the individual

loss components, i.e.

L = LPDE + Ldata, (2.7)

where

LPDE =
1

Np

Np∑
i=0

|F (u(xi), xi)|2 , (2.8)

Ldata =
1

Nd

Nd∑
i=0

|u(xi)− ui|2 , (2.9)

for collocation (PDE) set size Np and data set size Nd. By minimising both loss terms in

unison, the PINN is trained to fit a continuous approximation of u to the underlying data

whilst also satisfying the governing equations.

A distinct set of coordinates are used to interrogate both data and PDE loss terms, as

seen in the upper figure in Fig. 2.9, where, conventionally, the PDE loss points are named

‘collocation’ points. It is typical to sample the collocation point set far more densely

than the data point set, as it is computationally inexpensive to do so in comparison with

acquiring more measurement data. In an analogy to numerical methods, the collocation

point cloud can be viewed as the computational mesh, although there is no concern for

connectivity here. Sampling more densely generally provides more accurate solutions,

but unlike with conventional numerical methods, the parallelisation afforded by GPU

architectures means increasing the density of the collocation point set is not as costly

as increasing the density of a computational mesh. However, there exists a number of

adaptive collocation cloud refinement strategies to further reduce computational overhead,

which will be discussed later in this chapter.

Whilst they are able to operate without measurements of the system at hand, arguably the

greatest benefit PINNs have over numerical and other such methods is the ease with which

data is assimilated, and therefore a large number of application-focused publications utilise

PINNs in this manner. In a practical setting, this is advantageous as data measurements
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Figure 2.9: A basic overview of the PINN workflow, using a simple 1D example.

are rarely constrained to a boundary or initial state, and rather distributed randomly

across a solution domain.

Network Architecture

As defined in [190], the internal architecture of a PINN takes the form of a fully connected

neural network (FCNN), also referred to as a multi-layer perceptron (MLP). A FCNN

is built by stacking multiple layers of neurons, specifically, an input layer, m − 2 hidden

layers, and an output layer. Each hidden layer, Li for i ∈ 2, ...,m− 1, contains mi neurons

(which is generally fixed across layers but may vary), with each neuron in layer i connecting

to each neuron in layer i + 1 and vice versa for i ∈ 2, ...,m− 1. Hidden layer Li of the

network receives the output from the previous layer, given by xi−1 ∈ RNi−1 , and applies

a transformation of the form:

Li(x
i−1) = W ixi−1 + bi. (2.10)

Here, W i ∈ RNi×Ni−1 corresponds to the weight matrix of layer i, with bi ∈ RNi the bias

vector. The matrix W i is composed of all the weights connecting each neuron in layer
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i − 1 to layer i, where the vector bi contains individual bias values for each neuron in

layer i. A non-linear activation function, σi(·), is then applied to each neuron in layer i,

and this setup is repeated for each layer in the network. Finally, the complete network is

composed as:

yθ(x0) = (Lm ◦ σm−1 ◦Lm−1 ◦ . . . ◦ σ2 ◦L2)(x0), (2.11)

for network input x0 and complete set of trainable parameters θ, where

θ =
m∑
i=2

Wi + bi. (2.12)

The input to a PINN typically consists of spatial and temporal coordinates within the solu-

tion domain in a low-dimensional manner, meaning one training sample is given by a single

point in space and time. This is distinct from many common machine learning approaches,

where high-dimensional input spaces are used to encode large input arrays, such as pixels

structured on an image. Similarly, the output to a PINN is also low-dimensional, where

predicted variables at each given spatio-temporal location are produced. This structure

is referred to as an implicit neural representation [206], where the neural network itself

can be viewed as a continuous parameterisation of the underlying function being approx-

imated on the domain of interest. There are notable benefits to using such a structure.

Firstly, the network approximates a continuous solution field during training, meaning

predictions are agnostic to the grid resolution. This allows simple evaluation on grids of

differing resolution if required. Secondly, and most importantly in the context of PINNs,

by structuring the network in such a way we are able to calculate the gradients required for

the physics-based loss constraints to machine precision, using automatic differentiation.

Automatic Differentiation

Automatic differentiation refers to a class of methods used to compute function derivatives,

and is used across a wide range of applications from machine learning [13] and optimisation

[223], to fluid dynamics [86, 21]. It is algorithmically distinct to both numerical (finite

difference, finite element, finite volume etc.) and symbolic differentiation (as found in

Mathematica (Wolfram Research, Inc., 2024), Maple (Maplesoft, a division of Waterloo

Maple Inc., Waterloo, Ontario) etc.), and alleviates many of the issues associated with

these techniques. Numerical differentiation is prone to round-off and truncation errors

[114], but more importantly, scales poorly for gradients. Given that machine learning

requires gradients with respect to millions of parameters, this effectively rules out the

utilisation of numerical differentiation for this task. Conversely, symbolic differentiation
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is not so prone to the same errors as numerical differentiation, but requires converting

computational code into a mathematical expression. For large-scale, complex tasks, such

as machine learning, this is almost intractable.

Automatic differentiation suffers from none of the aforementioned shortcomings, allowing

for computation of derivatives at machine precision with minimal computational overhead

[13]. The cornerstone of automatic differentiation is the decomposition of differentials,

facilitated by the rules of differential calculus [223]. Every numerical computation can be

expressed as the composition of a finite set of operations, for which derivatives are known,

such as arithmetic operations and trigonometric functions [13]. It is therefore possible to

construct a set of operations and the corresponding derivative compositions, from which

a trace of elementary operations can be constructed to form a graph. An example of

forward mode automatic differentiation, published originally in [13], can be found in Tab.

2.1. Here, the function y is decomposed into a set of operations, given by vi, to form

the primal trace, found in the left side of the table. Then, for each vi, the corresponding

derivatives, v′i, are listed in the derivative (or tangent) trace, on the right hand side of

the table. By evaluating both traces in unison at a particular set of values for x1 and

x2, we are able to calculate the specified derivative. A review of this topic and further

applications of automatic differentiation can be found in [13], with an introduction to the

topic found in [223].

Table 2.1: An example taken from [13], in which the forward mode automatic differentiation is
used to evaluate the derivative, ∂y

∂x1
, of the function y = ln(x1)+x1x2− sin(x2) at (x1, x2) = (2, 5).

With x′
1 = 1, we specify that we intend to calculate the derivative with respect to x1.

Forward primal trace Forward derivative trace

v0 = x1 = 2 v′0 = x′1 = 1
v1 = x2 = 5 v′1 = x′2 = 0
v2 = ln v0 = ln 2 v′2 = v′0/v0 = 1/2
v3 = v0 × v1 = 2× 5 v′3 = v′0 × v1 + v′1 × v0 = 1× 5 + 0× 2
v4 = sin v0 = sin 5 v′4 = v′1 × cos v1 = 0× cos 5
v5 = v2 + v3 = 0.693 + 10 v′5 = v′2 + v′3 = 0.5 + 5
v6 = v5 − v4 = 10.693 + 0.959 v′6 = v′5 − v′4 = 5.5− 0

y = v5 = 11.625 y′ = v′6 = 5.5

Backpropagation, which is ubiquitous in the field of machine learning and optimisation,

is a specific instance of reverse mode automatic differentiation. Therefore, it is natural

that other, more general forms, of automatic differentiation are implemented in modern

machine learning packages such as TensorFlow [1], which provide ease of usage. This

functionality is exploited in PINNs to generate the necessary gradients for use in the

loss function, where, in practical terms, one simply has to specify an input and output

variable over which to calculate the gradient, provided the two are connected through the
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computational graph. For instance, returning to the example in Fig. 2.9, assume we would

like to calculate the first and second derivatives of our output variable, u, with respect to

the input variable, x, (which is possible because x and u are connected through the neural

network). Written in TensorFlow, this operation is simply carried out using the code:

def gen_gradients(x):

u = PINN(x)

u_x = tensorflow.gradients(u, x)[0]

u_xx = tensorflow.gradients(u_x, x)[0]

return u_x, u_xx

Note that here PINN() represents the neural network itself, and thus u = PINN(x) gener-

ates the network output with respect to x.

Activation Function

The term activation function, denoted σ, defines the non-linear function applied to the

output of a neuron within a neural network. The use of non-linear activation functions is

necessary for a neural network to approximate non-linear functions, since a composition

of linear functions is itself a linear function. Common activation functions include sigmoid

(or logistic) (S(x)), hyperbolic tangent (tanh(x)) and rectified linear unit (ReLU(x)) [81].

These functions are defined as:

S(x) =
1

1 + e−x
, (2.13)

tanh(x) =
ex − e−x

ex + e−x
, (2.14)

ReLU(x) = max(0, x). (2.15)

In Fig. 3.9, we plot curves for these three activation functions, displaying the charac-

teristics of each function. Across all machine learning applications in the last decade,

the ReLU activation function is by far the most dominant choice owing to several useful

properties. Firstly, neurons receiving inputs that are less than zero produce no output

which promotes sparsity, reducing model complexity. Secondly, the derivative of a ReLU

is always constant, alleviating issues around vanishing gradients which are present with

other activation functions. However, it has been shown theoretically and empirically that

a PINN model operating with non-smooth activation functions, such as ReLU, does not

converge to the exact solution under ideal circumstances [151], owing to the fact that
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Figure 2.10: Curves for three of the most common fixed activation functions, S(x) (sigmoid),
tanh(x) and ReLU(x).

non-smooth functions are only Lipschitz continuous [159]. Therefore, smooth activation

functions such as S(x) and tanh(x) are used as standard in the PINN literature, alongside

more advanced activation functions which will be discussed later in this section.

Loss Function

For the purposes of this section, it is to be assumed that the loss function is of the

form in Eqn. 2.7, which consists of one measurement error constraint and one physics

regularisation constraint. This basic form encompasses much of the wider field of PINNs,

in which measurement data is assimilated into physics-based models. There are PINN

architectures and applications that do not use measurement data, in which model outputs

are constrained by physical constraints and boundary conditions only; however, these are

in the minority across the wider literature and are less relevant for the present application.

As introduced in 2.7, the total loss function, L, in a PINN is formed as the summation

of the individual loss constraints, in this case LPDE and Ldata. For the individual loss

components, the mean-squared error (MSE) loss is used almost ubiquitously throughout

the PINN literature, taking the form as shown in Eqn. 2.8. The key benefit to the

MSE function is its ability to suppress outliers present within data, although models

incorporating the MSE in the loss function may be sensitive to these outliers if significant

levels of high-magnitude noise are present. Since the function is squared, higher-magnitude

errors between measurement and prediction contribute more significantly to the loss value.
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However, this benefit can also become a hindrance if a large quantity of significant outliers

(i.e. high levels of noise) are present within a training data set, where outliers impart too

strong an influence on model training at the expense of learning the underlying function.

As is perhaps intuitively obvious, combining two or more distinct loss components in

the form of Eqn. 2.7 can produce imbalances in training convergence if the magnitude

of individual loss components is imbalanced. To account for this, static and dynamic

weighting strategies have been proposed, which will be discussed in detail later in this

chapter.

2.4.4 The Limitations of PINNs

Spectral Bias

The term spectral bias characterises the tendency of deep neural networks, including

PINNs, to favour low-frequency solutions, with high-frequency solution components re-

quiring significant training time to learn without the implementation of necessary counter-

measures [187]. A consequence of spectral bias is prohibitively slow convergence to func-

tions that exhibit multiple scales or dominant high-frequency components, which are fre-

quently encountered in the field of fluid dynamics, for instance. In [187], this phenomenon

is demonstrated theoretically and empirically, analysing the rate of learning across different

frequency ranges in both synthetic and real experiments. In approximating complex sinu-

soidal functions, there is a clear hierarchy of learning throughout the training cycle, with

low-frequencies learned first, followed by higher-frequencies. An interesting discovery is the

apparent attenuation of spectral bias when embedding data that lies on a low-dimensional

manifold into a higher-dimensional input space, dependent on the shape of the data man-

ifold. It is shown that the learning of higher-frequency components commences earlier

when data is embedded on manifolds of increasingly complex shapes.

Loosely related to this work is the Fourier feature network, introduced in [216]. Here, the

authors focus specifically on implicit neural representation networks (labelled ‘coordinate-

based’ MLPs here), and find that mapping input coordinates onto a vector of Fourier

features [188], seen in equation 2.16, greatly improves the capability of such networks

to capture high-frequency solution modes. In this formulation, input coordinates x are

mapped to:

γ(x) =
[
a1 cos(2πb

T
1 x), a1 sin(2πb

T
1 x), . . . , am cos(2πbTmx), am sin(2πbTmx)

]T
(2.16)
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before being passed to the hidden layers of the network, for frequency vectors bi.

The problem of spectral bias is framed in the context of neural tangent kernel (NTK)

theory [107], which relates the training of neural networks to kernel methods by using

a kernel (the NTK) applied to wide neural network architectures. The NTK describes

the dynamics of a neural network during training, where it has been demonstrated in [5]

and other publications that convergence rate during training is governed by eigenvalues of

the NTK matrix, where eigenvectors corresponding to higher eigenvalues are learned at a

faster rate. In relation to spectral bias, it is shown in [216] that the eigenvalue spectrum of

an NTK decays as a function of frequency. With a standard neural network, low-frequency

function components correspond to NTK eigenvectors with larger eigenvalues, and thus

will be learned at a faster rate. However, the eigenvalues of the NTK corresponding to

higher-frequency components typically decay rapidly, which means that learning function

components that relate to such eigenvectors is slow [216]. Thus, by transforming the NTK

to increase the magnitude of eigenvectors corresponding to higher-frequency solution com-

ponents, it can be expected that effects associated with spectral bias may be alleviated.

The inclusion of a Fourier feature mapping achieves this, whilst making the NTK sta-

tionary (or shift-invariant), a desirable feature for image processing applications. There

still remains a problem-specific tuning required to select the correct frequency vectors, bi,

which is discussed at length in [216].

There are similarities between Fourier feature [216] and Siren [206] networks, in which

sinusoidal activation functions are used in conjunction with a specific initialisation strategy,

which are highlighted in [239]. Through Thm. 1 in [239], it is shown that both network

compositions encode signals in a similar manner, and share a similar expressive power (the

space of functions that can be represented with these networks).

Where the frequency vectors, bi, are tuned to attenuate spectral bias in Fourier feature

networks, tuning an initialisation frequency, ω0, has a similar effect within Siren networks.

When bi are generated by drawing samples from N (0, σ2) (which is shown to be the most

effective technique in [216]), selecting a σ value that is too low can lead to underfitting,

whereas setting this value too high leads to overfitting and noisy solution fields. An

almost identical effect is seen when altering ω0 in the Siren network. The relationship

between these two parameters becomes apparent when comparing the first layer of the

Siren network with the Fourier mapping of the Fourier feature network. Firstly, consider

a Fourier mapping that consists solely of sinusoidal functions with ai = 1, and the elements
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of bi drawn from N (0, σ2), given by:

γ(x) = sin(Bx), (2.17)

where B =
[
bT1 , . . . , b

T
m

]
. Then, the first layer of a Siren network, after the application of

the activation function, is given by:

z1(x) = sin
(
ω0(W

0x+ b0)
)
. (2.18)

At initialisation, the weights in the Siren network, wi, are randomly drawn from a uniform

distribution, given by U(−
√
6/n,

√
6/n), where n is the input shape (of x). It is shown in

[206] that under this initialisation strategy, the input to each sinusoidal activation function

is normally distributed with a standard deviation of 1, and thus, in Eq. 2.18, elements in

the array z0 = W 0x + b0 will follow this normal distribution. Therefore, multiplication

of z0 by ω0 acts to transform the standard deviation from 1 to ω0, which is analogous to

altering σ directly in the Fourier feature network. It is apparent from Eqs. 2.17 and 2.18

that the input layer in the Siren network is essentially a special case of the Fourier feature

mapping, in which only sinusoidal features are considered. Therefore, it should perhaps

be expected that both network architectures possess similar capabilities in modulating

spectral bias.

In fluid flow applications, high-frequency solution components correspond to flow features

that occur on small length and time scales. Given the multi-scale nature of LV flow, the

modulation of spectral bias is important to fully resolve the corresponding velocity field.

Generalisation of Physics-Informed Neural Networks

Generalisation of an ML model refers to its applicability to data not seen in the training

set. In the context of PINNs, generalisation can be interpreted in two ways: Either gen-

eralisation across unseen spatio-temporal locations for a single computational domain, or

generalisation across differing computational domains (which can be defined by varying

the geometry or boundary conditions, for example). PINNs are effective at generalisation

under the former definition, where they have demonstrated exceptional performance in

interpolation and, to a lesser degree, extrapolation tasks. However, they are incapable of

generalisation under the latter definition, which we will define as inter-domain generalisa-

tion from this point onward. This is due to the formulation of PINNs, at least in the form

introduced in [190], in that the network takes as input the spatio-temporal coordinates

only. Therefore, a single PINN model is constructed such that it is only able to approxi-
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mate solution fields across one configuration of a physical system, i.e. one set of governing

physical laws, geometry and boundary conditions [122, 176].

There have been two main courses of action to address the issue of inter-domain generali-

sation. Firstly, acceleration methods can circumvent the problem by providing significant

speed-ups with regards to training convergence. Techniques that have been applied here

include transfer learning [235, 176, 56], which pre-trains the hidden layers of a shared

PINN on a family of differential equations before fine-tuning for specific configurations.

The second approach to address inter-domain generalisation has been to re-formulate

the architecture of PINNs to allow domain-specific information to be learnt. Examples

here include the utilisation of PointNets [122, 186], in which the geometric features of

a computational domain are learnt alongside solution approximation, and hypernetworks

[14, 94], in which one network, the hypernetwork, learns to generate weights for another

network, in this case the PINN, based on paramterisations of the physical system.

The ultimate goal for our present application is to develop a model that is capable of

performing flow super-resolution across large cohorts of 4D-flow MRI data, in a reasonable

time and with minimal manual input required. Therefore, in future work it would be highly

beneficial to develop a PINN model configuration that has either a fast convergence rate,

without the requirement for case-specific hyperparameter tuning, or some natural inter-

domain generalisation capabilities. To this end, we will discuss future opportunities in

this regard in the final chapter of this thesis.

Multi-Component Loss Imbalance

NTK theory has been used to analyse and diagnose common failings during PINN training,

beyond issues of spectral bias. When analysing the individual eigenvalues associated with

both the boundary condition loss and the PDE residual loss, it is found in [228] that, in

some cases, there is a large discrepancy in eigenvalue magnitude between the two individual

kernel matrices. The consequence of this finding is a discrepancy in convergence between

the two loss terms, where the term with the largest eigenvalue magnitude in its kernel

matrix converges faster, to the detriment of the competing loss term. This results in the

trained PINN satisfying one constraint whilst violating the other – an undesirable property

that frequently results in the PINN converging to the trivial solution to the Navier-Stokes

equations given by zero-values everywhere in the domain. By simply using a weighted sum

approach, attaching manually-selected weights to each of the loss components, the authors
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are able to balance the magnitudes of competing eigenvalues and reduce the relative L2

error by two orders of magnitude.

The importance of addressing loss imbalances is increased when noise is present in the

measurement data. In this instance, not only is the magnitude of individual loss com-

ponents a concern, but loss components may also produce conflicting gradients, where

outliers present in the measurement data may not conform to underlying physics. This is

observed empirically in chapter 4.

The issue of balancing distinct constraints is not unique to PINNs, and there is a well-

established collection of literature in the broader field of multi-objective (MO) optimisa-

tion. Most work in this setting is framed in the context of identifying the Pareto front

– a set of ‘trade-off’ optimal solutions given by different model configurations in the face

of conflicting objectives [51]. To identify the Pareto front of a particular MO model, the

weighted sum approach is used extensively [154], alongside more advanced methods such

as evolutionary MO optimisation [51]. While similarities exist, a key distinction between

general MO optimisation and deep learning with MO loss functions is the considerable

difference in convergence time for a single model configuration. Deep learning models can

take days to fully converge for a single hyperparameter configuration, and thus identify-

ing the Pareto front using the weighted sum method and other approaches is typically

infeasible. Further, PINN models specifically must be trained on a case-by-case basis, and

the optimal configuration of loss weights is not common across cases. While fixed weights

can be optimised using a hyperparameter ablation study, doing so alongside all other hy-

perparameters can significantly expand the size of the search space, leading to excessively

large parameterisation studies. Therefore, there has been a motivation to develop dynamic

loss weighting strategies in the MO deep learning literature, as with the PINN literature,

which will be discussed in the following section.

2.4.5 Key Methodological Contributions

Novel Activation Functions

Given the unique nature of PINNs and other implicit neural representation models, there

has been considerable effort afforded to the development of tailored activation functions.

These include functions that are locally and globally adaptive [110, 111, 109], or that

express derivatives to a high degree of accuracy [206].
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Whilst the use of adaptive activation functions is not unique to PINNs [105], their first

application in this context can be found in [110], where globally adaptive activation func-

tions are applied to a set of benchmark PINN problems. Adaptivity is introduced to

fixed activation functions through a trainable slope parameter, a. For example, the tanh

activation function is reformulated as:

tanh(ax) =
eax − e−ax

eax + e−ax
. (2.19)

In Fig. 2.11 This method is considered globally adaptive since a is a single scalar that

Figure 2.11: Curves displaying the effect of varying the slope parameter a in the adaptive
activation function tanh(ax).

controls the slope of every activation function in the network. The introduction of a train-

able slope parameter is shown to reduce training time across all studies investigated, with

decreased L2 errors in each case. The authors investigate performance through frequency

analysis, where it is shown that the adaptive activation functions somewhat mitigate the

impact of spectral bias, where the authors use the F-principle [117] to demonstrate the

capability of their models to capture high-frequency solution components in fewer training

iterations.

Locally adaptive activation functions for PINNs are introduced by the same author in [109],

in which the principle of globally adaptive activation functions is extended to allow for

distinct layer-wise or neuron-wise scalable parameters. The authors demonstrate improved

convergence and accuracy over both fixed activation functions and the globally adaptive
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predecessor, whilst incurring minimal additional overhead. An additional slope recovery

term is introduced to the loss function, which has the effect of increasing the magnitude

of the activation slope quickly, accelerating overall training convergence.

Alongside adaptive activation functions, there has been interest in finding alternative

activation functions that are designed specifically for use in implicit neural representation

networks. Introduced in the previous section, the Siren network [206] uses periodic sine

activation functions alongside a specific initialisation strategy.

The suitability of the sine activation function for implicit neural representation tasks

arises from the fact that that the derivative of a sine function is itself a phase-shifted

sine function, and thus derivatives of a Siren network inherit the properties of the Siren.

This ensures that derivatives that are calculated for loss constraints, such as those used

in physics-based constraints in PINNs, are well behaved, which is an important feature

for any model being used to represent signals. In Fig. 2.12, multiple implicit network

architectures are compared alongside the Siren network for an image reconstruction task.

Qualitatively, it is apparent that the Siren network captures the function derivatives most

accurately, whilst also achieving the highest peak signal-to-noise-ratio.

Figure 2.12: An example case using the Siren implicit network to reconstruct an image, f(x)
(top row), with comparison against other activation functions. The network is supervised by the
image alone, however the first- and second-order derivatives are displayed (middle and lower rows
respectively). The Siren network is able to represent both derivatives to a high degree of accuracy,
whilst achieving significant improvements in peak signal-to-noise ratio (PSNR) [206].

Whilst there is limited discussion on the topic of spectral bias in [206], further publications

have highlighted some properties of Siren networks that negate some of the associated

effects [239].
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Loss Weighting Strategies

To mitigate the effects of gradient imbalances in MO applications, dynamic loss weighting

strategies have been proposed. For general MO deep learning tasks, methods such as

GradNorm [37], SoftAdapt [99], dynamic weight averaging (DWA) [145], uncertainty-based

weighting schemes [124, 141] and gradient surgery [238] have been proposed. GradNorm

[37] acts to balance gradient contributions between different loss terms by modifying the

magnitudes of individual gradient values passed to the network weights during training,

dependent on historical convergence rate. The update step for weight modification incurs

an additional loss component, and thus an additional optimisation round, which, combined

with storing and accessing gradient terms from previous iterations, makes this approach

computationally expensive. Inspired by GradNorm, DWA [145] dynamically adjusts the

loss term weights using only the rate of change of individual task losses, which improves

efficiency by avoiding costly operations directly on the internal gradients of the model. The

underlying algorithm of SoftAdapt [99] is similar to DWA, with both methods updating the

weights based on the rate of change of loss components, however, the equation for updating

the weights in SoftAdapt is formed as a Softmax function. In [124], a weighting scheme is

proposed that utilises information on the homoscedastic (or task-dependent) uncertainty

of each learning task, followed by a revised (and generally improved) formulation in [141].

A variety of PINN-specific dynamic weighting strategies have been proposed, where there

is some methodological crossover with previous methods for general MO deep learning

applications. Returning to [228], the authors not only analyse PINN performance across a

range of manually-selected weights, but also introduce a dynamic weighting scheme derived

from eigenvalues of the individual kernel matrices. The same authors also introduce a

‘learning rate annealing’ (LRA) method [225], which updates weights based on the ratio

between gradient contribution magnitudes. Given a loss function containing a PDE loss

term, LPDE , and data loss term, Ldata, the total loss at iteration k is given by:

L = LPDE + αkLdata, (2.20)

for dynamic loss weight αk, where:

LPDE =
1

Np

Np∑
i=0

|F (u(xi), xi)|2 , (2.21)

Ldata =
1

Nd

Nd∑
i=0

|u(xi)− ui|2 . (2.22)
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The weighting term αk is calculated in moving-average form as:

αk = (1− λ)αk−1 + λα̂k, (2.23)

for constant λ, with a recommended value of 0.1 suggested in [225], previous weight αk−1

and weight update term:

α̂k =
maxθ {|∇θLPDE |}
|∇θαk−1Ldata|

, (2.24)

where maxθ {|∇θLi|} and
∣∣∇θLi

∣∣ are the maximum and mean, respectively, of the gra-

dient of loss component i w.r.t. the network weights, θ. There are similarities between

this approach and GradNorm [36] in that gradient information is required to perform

the weight updates, and therefore an additional back-propagation step is required. How-

ever, GradNorm requires an additional loss constraint and optimisation step to update the

weights, whereas LRA simply uses gradient statistics [158]. In [22], the LRA, GradNorm

and SoftAdapt schemes are compared for both forward and inverse PINN problems. The

authors also introduce another dynamic loss weighting scheme titled ReLoBRaLo (rela-

tive loss balancing with random lookback), which incorporates some of the most beneficial

features from the previous approaches. As with SoftAdapt, the ReLoBRaLo operates on

loss statistics instead of gradient information, and thus is less computationally expensive

than GradNorm or LRA. Of the four methods compared, the LRA and ReLoBRaLo tech-

niques generally give the best performance for forward and inverse approximation across

the examples considered, with the ReLoBRaLo approach achieving slightly lower train and

validation errors. Further, ReLoBRaLo is less computationally intensive than LRA, with

a lower standard deviation of error across different training runs. Aside from generally

poor performance, GradNorm and, to some degree, SoftAdapt are inadequate for accurate

estimation of inverse parameters, and thus not recommended for use with PINNs in their

current formulation. The LRA method introduced in [225] is modified slightly in [116],

specifically for use in fluid flow problems. Equation 2.24 is replaced with:

α̂k =
|∇θLPDE |
|∇θLdata|

. (2.25)

Following this, equation 2.23 is calculated as before. Note that the maxθ operators in the

numerators are replaced by the mean value, and the contributions from previous weights

αk and βk in the gradient calculations in the denominators are removed. Results therein

indicate minimal differences in performance between the formulation given in equations

2.24 and 2.25.

2025 48



The University of Leeds Chapter 2

An entirely distinct approach is introduced in [158]. Inspired by advances in deep learn-

ing architectures, specifically attention mechanisms, for natural language processing [221],

the authors propose a self-adaptive soft attention mechanism for PINNs, titled SA-PINNs.

Expanding on the idea of dynamic weighting of distinct loss terms, the SA-PINN model at-

taches a trainable weight to each individual training sample. Doing so allows the model to

not only balance contributions between loss terms, but also between training samples, al-

lowing for greater ‘attention’ on samples that incur higher losses. This typically translates

to larger weights attached to samples in regions with higher solution gradients, such as in

the immediate vicinity of a boundary. As with loss weighting, increasing the magnitude of

weights attached to the samples in the SA-PINN scheme improves the rate of convergence

at these points, while decreasing the rate of convergence at points with relatively lower

weights. Assuming a two-component loss function as in the previous paragraph, using the

mean-squared error loss function, the SA-PINN is formulated as:

L = LPDE + Ldata, (2.26)

where

LPDE =
1

Np

Np∑
i=0

m(λk
p) |F (u(xi), xi)|2 , (2.27)

Ldata =
1

Nd

Nd∑
i=0

m(λk
d) |u(xi)− ui|2 . (2.28)

Here, Np and Nd correspond to the number of collocation, data and wall training points

respectively, where vectors λp and λd correspond to the self-adaptive weight vectors, with

each value λk
i within λi = {λ1

i , ..., λ
Ni
i } corresponding to a single weight. The mask

function, m(λi), is defined to be a non-negative, differentiable and strictly increasing

function of λi, with polynomial and logistic maps suggested in [158]. Whilst the network

weights, w, are minimised during training, the trainable weight vectors λp and λd are

instead maximised, transforming the optimisation problem from strictly minimisation to

a min-max formulation, given by:

min
w

max
λp,λd

= L(w,λp,λd). (2.29)

The maximisation of λp and λd is carried out using distinct optimisers for each loss term,

which allows for some additional tuning to a priori improve the balance between loss

components, such as modifying the starting weights or the learning rates of respective

optimisers. These can be tuned as part of a hyperparameter ablation study, as we will
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show later in this thesis. Whilst this provides some user-defined flexibility, it is not strictly

necessary for effective function of the model, since the weights λp and λd already act to

balance gradient contributions based on both spatio-temporal location and associated loss

terms.

An extension to the SA-PINNs formulation is proposed in [241], titled differentiable adver-

sarial SA-PINNs (DASA-PINNs). The DASA-PINN approach shares the same underlying

logic of SA-PINNs, which is that dynamically adjusting only loss term weights ignores

the interplay between individual training samples, and thus neglects the heterogeneity

of the solution fields across the spatio-temporal domain. An additional sub-network is

introduced to predict the attention weights, which is again maximised using a distinct

optimiser, although much of the approach is closely related to SA-PINNs. The authors

provide a comparison between their method, DASA-PINNs, and SA-PINNs, finding con-

sistently improved performance over the latter on a small collection of problems.

A residual-based attention (RBA) scheme is introduced in [4], providing similar function-

ality to both SA-PINNs and DASA-PINNs by applying weights to each training sample

individually (but applied only to the collocation point cloud here, giving single weight

vector λ). A key distinction in the RBA scheme is the use of PDE residual values at the

corresponding collocation points to compute the attention weights, instead of learnable pa-

rameters, reducing the computational overhead by removing additional backpropagation

steps. Further, the incorporation of the PDE residual values directly relates the attention

weights to the local performance of the network in capturing the physics. At iteration k,

the attention weight i is updated as:

λk+1
i = γλk

i + η∗
|F (u(xi), xi)|

maxi (|F (u(xi), xi)|)
, i ∈ {0, 1, ..., Np} , (2.30)

for decay parameter γ and RBA learning rate η∗ (distinct from the network learning rate,

η).

Adaptive Collocation Cloud Refinement

Three of the approaches discussed above, SA-PINNs [158], DASA-PINNs [241] and RBA

[4], can increase attention in regions of the solution field that are challenging to learn

by increasing multiplicative weights attached to samples in those regions. However, the

usefulness of these approaches diminishes if the density of the collocation point cloud,

at which the physics-based regularisation is applied, is too low. For instance, in areas
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containing steep solution gradients, if the collocation point cloud is too sparse to ob-

tain multiple samples within the high-gradient region, sharp solution information will not

be accurately reconstructed, regardless of increased attention. Therefore, the collocation

point cloud used for PINN applications is typically required to be dense [47], particularly

when approximating complex solution fields with high-frequency components. However,

when using PINNs to approximate three-dimensional, time-dependent solution fields, to

capture all solution scales to an acceptable degree of accuracy can require a collocation

point cloud with a prohibitively large cardinality, incurring significantly increased compu-

tational costs. Drawing inspiration from adaptive meshing techniques for numerical [18]

and meshless methods [177], adaptive collocation cloud refinement techniques have been

proposed for use with PINN methods. The underlying assumption is that increased den-

sity is required in regions where the solution is challenging to approximate, such as areas

containing high solution gradients, whereas regions of relatively simple solution complexity

do not require as many points to accurately reconstruct.

In [147], the residual-based adaptive refinement (RAR) method is introduced – the first

method proposed of its kind in the context of PINNs. Starting from a coarse collocation

point cloud, this approach iteratively increases the density of collocation points in regions

where the PDE residual loss component is largest, which typically occurs near steep so-

lution gradients. As such, the implementation of this approach can significantly enhance

the performance of a PINN when used to approximate solution fields that are governed by

PDEs exhibiting such behaviour [231]. Monte Carlo integration is used to probe the PDE

residual values at each point in some randomly sampled dense set S, where the m points

with the greatest residual value are added to the collocation point cloud (here m is a user-

defined scalar parameter). This simplified selection criterion can result in regions with

smaller residual values being disregarded during training [231], and thus modifications

to this strategy have been investigated. An alternative importance sampling approach is

proposed in [165], where, at each update step, an entirely new set of collocation points

is selected based on a probability density function (PDF). The theoretically ideal PDF is

based on the L2-norm of the PDE loss gradient at each new point, however, this is com-

putationally expensive, requiring a backpropagation pass for each new collocation point.

Therefore, the PDF is instead constructed from the actual PDE loss values, which are

correlated to the gradient norm values [165], and thus the PDF is proportional to PDE

residual value at a candidate collocation point. Using the PDF to draw samples instead of

a strict in/out criterion defined by a scalar value, as with RAR, helps to nullify the issue

of neglecting regions with low PDE residual values. Further, since the collocation point
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cloud is resampled each time, the cardinality of the collocation point set does not increase

to an unmanageable size, as with RAR.

The issue of growing collocation point set size for the RAR method is addressed in [240]

and [50]. In [240], the authors introduce residual-based adaptive exchange (RAE). This is

similar to RAR in that the m points with the highest PDE residual values are added to the

collocation point set at each update, however, the RAE method additionally removes them

points with the lowest PDE residual values, maintaining the same collocation point cloud

density throughout training. When compared with RAR, it is shown that this approach

does not reduce the accuracy of the PINN model, but reduces the computational overhead

by ∼ 25%. In [50], an evolutionary sampling (Evo) technique is proposed, which, as with

RAE, removes points with the lowest PDE residual values, based on a threshold value.

However, instead of directly generating new points where the PDE residuals are highest,

additional points are simply sampled from a uniform distribution instead. This approach

is more closely related to evolutionary algorithms in optimisation, in the that the most

important aspect is the ‘survival’ of samples, rather than a targeted increase of density in

problem regions. Of course, redistributing collocation points in such a manner will still,

over time, increase the density of points in regions with high PDE residuals, but it may

not be the most efficient strategy for doing so. Although not discussed in the related

literature, it would be an intuitive assumption that RAE, Evo and other similar methods

exacerbate the issue of ‘neglect’ in regions with low PDE residual values, particularly in

the latter stages of training, where the redistribution may result in regions with very sparse

collocation point cloud density.

In [231], the RAR [147] and importance sampling [165] strategies are compared, and

two new approaches are introduced, namely residual-based adaptive distribution (RAD)

and residual-based adaptive refinement with distribution (RAR-D). The RAD approach

draws inspiration from the importance sampling technique, however the sampling PDF

is modified by raising the PDE loss value contained to a power k ≥ 0, and introducing

an additive constant c ≥ 0, which generalises the importance sampling strategy (which

itself is equivalent to RAD with k = 1 and c = 0). The constant k acts to increase

the concentration of new points where the highest PDE loss values are located, whereas

c acts to uniformly spread points across the domain. The RAR-D method combines

functionality from both the importance sampling and RAR techniques, in that a smaller

set of points are sampled from the same PDF as with RAD, however, these are added to

the existing collocation point cloud instead of replacing it. Across a range of problems,
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the RAD formulation is shown to consistently outperform non-adaptive and competing

adaptive sampling strategies [231], where the inclusion of parameters k and c allows for

problem-specific tuning, dependent on the governing PDE and boundary conditions.

In [212], it is argued that excessive attention on local optimisation of the solution fields

may result in convergence to local minima at the expense of global convergence. To

alleviate this issue, a cosine annealing strategy is deployed, which periodically alters the

ratio of uniformly-sampled points to adaptively sampled points. The PDF for the adaptive

sampling is either based directly on the PDE loss constraint (ADAPTIVE-R) or the spatial

gradient of the PDE loss constraint (ADAPTIVE-G).

Improving Inter-Case Generalisation

As discussed earlier in this section, inter-case generalisation is a present problem for PINNs

and has hampered their applicability to real-life problems. In this context, transfer learn-

ing has been applied successfully to significantly accelerate the training convergence of

PINNs when deployed across similar domains [184, 56, 176, 235]. The main theory behind

this approach is that the majority of trainable parameters learnt in a model are not entirely

specific to one individual task. Therefore, it is possible to use a shared weight configuration

for an array of distinct, but similar, tasks, training only a small number of task-specific

weights (typically within the output layer) when applying the model to individual tasks.

An example in the domain of medical imaging is seen in [150], in which an image classifica-

tion model is pre-trained using ImageNet [44], a dataset of over 1.2 million natural images,

before fine-tuning to be utilised for classification and detection of Alzheimer’s disease from

brain MRI. Although a model trained entirely on brain MR images would likely perform

better, such a large database of labelled images does not exist. However, the convolutional

filters for image classification models, particularly those closer to the input layer, learn to

extract generic features such as edges, whereas the domain-specific features are typically

only extracted in the final few layers of the model [150]. Therefore, regardless of the

image type used for training, the majority of the learned weights in such a model will be

similar. It is therefore more beneficial to utilise a far larger, but generalised, dataset for

pre-training, before fine-tuning the final few layers on a smaller, domain-specific dataset.

This concept holds true for PINN applications, where we may want to apply a model

to distinct computational domains that share close similarities, such as similar domain

geometries and underlying physical laws. This is certainly the case for the present appli-

cation, where the variance across LV morphologies is small (relative to the wider context
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of fluid modelling applications), the governing equations and boundary conditions remain

fixed and there is limited variability in the temporal scales (affected only by heart rate).

In [56], transfer learning is applied to a selection of ordinary differential equations (ODEs)

and PDEs. The hidden layers of a PINN model are pre-trained across a family of related

differential equations, with domain-specific fine-tuning of a single linear output layer per-

formed when applying the model to specific cases in inference mode. Training of this single

linear layer in inference mode for an unseen parameterisation of the Poisson equation is

completed in only 33.2 seconds, achieving a test accuracy of 3.6× 10−5. This approach is

elaborated on in [176], in which a multi-head output architecture is deployed to facilitate

knowledge transfer of distinct initial conditions or potential field parameterisations for a

given non-linear ODE. Further applications of transfer learning with PINN models can be

found in [184, 235].
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Chapter 3

Super-Resolution of Cardiac

4D-Flow MRI: An Idealised in

Silico Study

Much of the content in this chapter has been published in F. Shone, N. Ravikumar,

T. Lassila, et al. “Deep Physics-Informed Super-Resolution of Cardiac 4D-Flow MRI”,

In: Information Processing in Medical Imaging (IPMI) 2023, Springer Lecture Notes in

Computer Science, vol. 13939 (2023), DOI: 10.1007/978-3-031-34048-2 39 [205].

3.1 Introduction

In this chapter, we introduce the PINN model to be be used for super-resolution of left

ventricular 4D-flow MRI, and demonstrate its capabilities using synthetic, idealised LV

cases in 2D and 3D. We investigate the robustness of the PINN model across varying

spatio-temporal resolutions and SNRs, which is of importance in real studies, and provide

a comparison between competing methods used to mitigate the effects of spectral bias and

gradient imbalances during training.

As discussed in chapter 2, corruption of 4D-flow MRI can be characterised by low spatial

resolution, low temporal resolution, background noise (influencing SNR and thus VNR)

and structured noise. The presence of such effects has hampered the application of 4D-

flow MRI in clinic due to uncertainty in the measured velocity field. Moreover, clinically-
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relevant quantities like pressure, vorticity and WSS are not directly measured, and are

instead obtained through calculation of the spatial derivatives of the velocity field, which

are particularly susceptible to effects of corruption [42]. In this chapter, we consider the

impact of low spatio-temporal resolution and background noise, whilst assuming perfect

reconstruction of the endocardium and its motion. We do not consider the effects of

structured noise, as it is challenging to accurately synthesise and is generally mitigated by

other approaches during acquisition [183].

Spatio-temporal super-resolution and de-noising of 4D-flow MRI using ML has previously

been addressed in vascular flows [75, 74, 72, 203, 195]. Fixed spatial upsampling factors of

2 [75, 74] and 4 [203] have been achieved, utilising residual networks, alongside arbitrary

spatial upsampling rates [72, 195] using implicit neural representation networks (to which

PINNs belong). De-noising of background noise has been demonstrated for SNR values

ranging from 2 to 20, and temporal upsampling of arbitrary rates has been demonstrated

[72, 195] using implicit neural representation networks.

In this work, we utilise a PINN architecture [190] to achieve spatio-temporal super-

resolution and de-noising of ventricular 4D-flow MRI. We opt to use this approach for

a few reasons. Firstly, the physics regularisation used in the loss function ensures that the

calculated fields and quantities derived from them conform to the underlying physics of the

system, providing explainability. Secondly, PINNs do not require paired low- and high-

resolution training data, improving their applicability to real 4D-flow MRI datasets where

paired data is challenging to obtain. PINNs have no natural inter-domain generalisation

capabilities, and thus must be re-trained for each case, placing them at a disadvantage

against the approaches introduced in [75, 203]. However, it is the author’s opinion that,

through the application of appropriate acceleration methods, PINNs may be able to pro-

vide state-of-the-art results in this domain.

3.2 Methodology

In this section, we describe the PINN model used and the procedures followed to generate

synthetic 4D-flow MRI data sets. PINNs belong to a class of ML methods called implicit

neural representation networks, in which a fully-connected neural network is deployed to

produce a continuous approximation to a function on a given spatio-temporal domain. In

this context, the PINN model learns to approximate continuous velocity and pressure fields

at the spatio-temporal coordinates defined for the given LV geometries. These predictions
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are regularised by the available low-fidelity 4D-flow MRI data, alongside physics-based

constraints. Once trained, the combination of these loss components produces a network

capable of making predictions that both correspond to the existing data and obey the

underlying physics.

Figure 3.1: The physics-informed neural network (PINN) used in this thesis approximates a
mapping from spatio-temporal coordinates to the corresponding velocity and pressure fields in the
flow domain. The network is fully connected, utilising adaptive Siren activation functions [206].
The predictions are constrained by a multi-component loss function, consisting of a data loss term
to minimise velocity prediction-measurement error, a boundary loss term to enforce the no-slip
condition on the domain walls, and a physics loss term that enforces the Navier-Stokes equations
in the flow domain. A self-adaptive weighting strategy is used in the loss function to balance the
gradient contributions of each sample point during training [158]. Automatic differentiation is used
to generate the relevant derivatives for the physics loss term.

3.2.1 PINN Model

The PINN approach used in this thesis deploys a fully connected deep neural network

to approximate a function mapping spatio-temporal coordinates within the domain to

corresponding velocity and pressure fields. The predicted solutions are constrained through

a multi-component loss function using velocity measurements and known physical laws,

namely the Navier-Stokes equations and no-slip boundary condition. Unlike purely data-

driven approaches, the presence of these physics-based constraints in the loss function

restricts the space of possible solutions by penalising non-physical predictions, facilitating

efficient training with sparse data. The schematic for the PINN (shown here for 3D

applications, using a self-adaptive loss weighting strategy [158]) can be found in Fig. 3.1.

The loss function consists of three components: Data loss, Ldata, in which the error be-

tween velocity predictions and 4D-flow MRI measurement data is minimised, PDE (partial

differential equation) loss, LPDE , containing residuals of the Navier-Stokes equations, and

BC (boundary condition) loss, LBC , where predictions on the domain wall are constrained
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to obey the no-slip condition. In all cases, mean-squared error (MSE) loss is used.

3.2.1.1 Governing Physical Laws

In large vessels and cardiac chambers, blood is considered to be a Newtonian, incompress-

ible fluid. Therefore, the flow physics are governed by the incompressible Navier-Stokes

equations, given by

ρ(∂tu+ (u · ∇)u) = −∇p+ µ∇2u (3.1)

∇ · u = 0, (3.2)

for velocity u, density ρ, pressure p and dynamic viscosity µ. For all cases discussed in

this chapter, it is assumed that ρ = 1066 kg m−3 and µ = 0.0035 Pa s [196].

The no-slip boundary condition, which is applied on the chamber walls, states that no

fluid may penetrate or slip tangentially at a given boundary, and is thus formulated as:

u = uw, (3.3)

for fluid velocity u and wall velocity uw. If such a wall is rigid, this condition reduces to

u = 0, enforcing zero flow. However, in our use case, uw is non-zero due to the myocardial

deformation across the cardiac cycle.

3.2.1.2 Nondimensionalisation and standardisation

The importance of nondimensionalising input and output variables when working with

PINNs, as with neural networks in general, has been highlighted [128, 72, 195]. Network

training is typically ineffective when the scales of input and output variables are signif-

icantly different [87], as is commonly the case in fluid dynamics problems. To address

this issue, we nondimensionalise each input and output variable using characteristic scales

to ensure each is of an approximate order of magnitude of 1. Whilst physiology-based

characteristic scales for velocity and length are used in [128], we have found that simply

using the maximum velocity magnitude, U , and maximum distance, L, encountered in the

training set provides adequate results. The pressure and time scales are then selected to be

ρU2 and L/U respectively, for fluid density ρ. This dynamic pressure scale is appropriate

for ventricular flow as, for the most important phases of the cardiac cycle, inertial flow
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effects dominate. Thus, our dimensionless variables are given by:

x∗ =
x

L
(3.4)

t∗ =
Ut

L
(3.5)

û =
u

U
(3.6)

p̂ =
p

ρU2
. (3.7)

To conform with best practices for ML applications [136], we follow this by standardising

our network inputs to have zero mean and unit variance, as per [128], giving dimensionless

and standardised spatio-temporal coordinates:

x̂i =
x∗i − µx∗

i

σx∗
i

(3.8)

t̂ =
t∗ − µt∗

σt∗
, (3.9)

for i ∈ {1, 2, 3}, means µ and standard deviations σ. The dimensionless and standardised

variables are used as inputs and outputs in the network and so in inference mode we must

nondimensionalise and standardise the network inputs, and multiply the network outputs

by their respective scales.

Using the characteristic scales, we are able to convert the Navier-Stokes equations to a

dimensionless form, given by:

F1−3 =
1

σt∗
∂t̂û+ (û · ∇̂)û+ ∇̂p̂− 1

Re
∇̂2û = 0 (3.10)

F4 = ∇̂ · û = 0, (3.11)

where

∇̂ =

(
1

σx∗
1

∂x̂1 ,
1

σx∗
2

∂x̂2 ,
1

σx∗
3

∂x̂3

)T

, (3.12)

∇̂2 =
1

σ2
x∗
1

∂2
x̂1

+
1

σ2
x∗
2

∂2
x̂2

+
1

σ2
x∗
3

∂2
x̂3
, (3.13)

for Reynolds number Re = ρUL/µ. Note that we must account for the multiplicative

effects of the standard deviations used in standardising our input variables.
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3.2.1.3 Loss Function

The total loss function, L, is given (in unweighted form) by:

L = LPDE + LBC + Ldata. (3.14)

Each loss term utilises a distinct set of coordinates, since in the present application there

is sparsity in available measurement data.

Let the spatio-temporal LV flow domain be denoted Ω, enclosed by boundary ∂Ω. Ldata

is evaluated at the voxel centres of the 4D-flow MRI data, masked to exist only within

Ω, and considered coarse in space and time owing to its low spatio-temporal resolution.

Conversely, LPDE is evaluated at a dense set of collocation points across Ω in space

and time, which are distinct to the 4D-flow MRI voxel coordinates. The point cloud for

LBC is sampled densely on ∂Ω, where nodal correspondence is required between phases

to calculate the associated wall velocity. As previously mentioned, all loss components

assume the MSE form.

PDE Loss Term

The available 4D-flow MRI data in cardiac studies is sparse and corrupted by noise, pre-

cluding the use of purely data-driven ML approaches in this setting (assuming no avail-

ability of high-resolution data labels). However, we have knowledge of the physical system

at hand, in the form of the governing PDEs. Therefore, it is possible to constrain the out-

puts of an ML model using such information, which heavily restricts the space of possible

solutions.

To this end, we ensure solutions fields approximated by our PINN model conform to the

underlying physics using a PDE loss term that minimises residuals of the Navier-Stokes

equations, as defined in Eq. 3.10. In vanilla form, the PDE loss component is given by:

LPDE =
1

Np

4∑
i=1

Np∑
k=1

||Fi(x̂k, t̂k, ûk, p̂k)||2, (3.15)

(x̂k, t̂k) ∈ Ω̂, (3.16)

for collocation set of cardinality Np, and dimensionless and standardised domain Ω̂.

2025 60



The University of Leeds Chapter 3

Data Loss Term

The data loss term assumes the form of a typical supervised loss term, in which (mean-

squared) errors between model outputs and available data are minimised. The data loss

term, in vanilla form, is given by:

Ldata =
1

Nd

Nd∑
k=1

||û(x̂k, t̂k)− uk/U ||2, (3.17)

(x̂k, t̂k) ∈ Ω̂, (3.18)

for total number of 4D-flow MRI voxels in space and time Nd and associated velocity data

uk.

In [72], the data loss term is reformulated into Cartesian images, which are able to negate

effects of aliasing (or phase-wrapping), which occurs when velocity values in the domain

exceed the pre-defined venc. However, in practice, the venc is typically selected prior to

acquisition to exceed the maximum expected velocity, and thus such modifications to the

loss function are generally not necessary. Further, the authors introduce a voxel averaging

step, in which the velocity in each voxel is spatio-temporally averaged using Gaussian

quadrature. It was found in this work that this additional step had no impact on the

accuracy of results, whilst incurring additional computational overhead. It was also noted

that the synthetic data used in [72] did not account for such temporal averaging effects,

although this component may have been beneficial in their phantom 4D-flow MRI case.

BC Loss Term

When using PINNS in a setting for which we have sparse and noisy measurement data, it

is sensible to utilise as many sources of a prioi domain knowledge as possible to constrain

model outputs. In real cardiac 4D-flow MRI studies, we typically do not have access to

accurate inflow and outflow boundary conditions, but we know that the no-slip boundary

condition must apply to all interior surfaces in the domain, which we are able to seg-

ment and track in time. Therefore, we are able to apply this knowledge as an additional

constraint in our loss function, and thus we enforce the no-slip boundary condition on

the endocardium. In all studies in this thesis, we apply the boundary condition on the

endocardium only, with the valve regions and much of the LV base excluded. This is done

to ensure the model can operate using a partial boundary condition, as is typically the

case with real 4D-flow MRI data sets, where it is challenging to accurately reconstruct the

basal and valvular region of the LV using structural cine-MRI.
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In real 4D-flow MRI studies, using a registration technique with nodal correspondence

allows temporal interpolation of the endocardium, from which the wall velocity, uw, can

be calculated using either a numerical central difference scheme in time, or by taking the

first derivative of the interpolation spline. In the synthetic case discussed in this chapter,

however, we assume that we have complete knowledge of the boundary motion, and thus

the CFD data at the boundaries is used to enforce the no-slip condition.

In vanilla form, the BC loss component is given by:

LBC =
1

Nb

Nb∑
k=1

||û(x̂k, t̂k)− uw
k /U ||2, (3.19)

(x̂k, t̂k) ∈ ∂Ω̂, (3.20)

for BC point set of cardinality Nb, wall velocity data point uw
k and dimensionless and

standardised boundary ∂Ω̂.

Note that the velocity scaling, U , is included in Eqs. 3.19 and 3.17. Our model output, û,

is dimensionless, and therefore both uk (interior velocity data) and uw
k (wall velocity data)

are divided by U to match. Division of the velocity data by U , as opposed to multiplication

of the model output, is done to ensure that LBC and Ldata are both dimensionless, as with

LPDE , removing any dependency of the loss terms on U .

Additionally, since pressure data and associated boundary conditions are not readily avail-

able in real 4D-flow MRI studies, no pressure constraints beyond the derivative terms that

appear in the Navier-Stokes equations are enforced. However, the PDE and BC loss con-

straints are sufficient to allow the PINN to fully reconstruct to the relative pressure field

in Ω.

Loss Weighting

Much attention in the PINN literature has been focused on the development of loss weight-

ing schemes to balance gradient contributions of each loss component during training,

where unweighted approaches commonly result in strong imbalances in the rate of descent

of individual loss components. This imbalance tends to produce sub-optimal solutions,

where one or more loss constraints may not be satisfied to an acceptable level. This issue

is further exacerbated when using noisy measurement data, as the loss components may

produce conflicting gradients.
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Fixed, non-unity weights have been shown to address these issues [227, 226, 72], however

the selection of such weights is heavily dependent on the problem at hand. Therefore,

dynamic weighting schemes have received much attention. In our previous work [205], the

learning rate (LR) annealing loss weighting technique, introduced in [116], was utilised.

However, results published in [205] were found to be heavily influenced by noise corrup-

tion at higher spatial downsampling rates, with the PINN model seemingly over-fitting to

noise in the training data. Therefore, alternative strategies have since been explored to

mitigate these issues. In this chapter, we provide a comparison between three loss weight-

ing approaches, namely fixed non-unity weights, the LR annealing scheme introduced in

[116], and the self-adaptive soft attention (SA-PINN) scheme introduced in [158]. Al-

though more dynamic weighting strategies have been proposed in the PINN literature [22,

228, 226, 241], there is significant overlap between competing methods, where the three

schemes compared here represent three completely distinct approaches, which led to their

inclusion.

For both the fixed weight configuration and the LR annealing scheme, the total loss func-

tion is given by:

L = LPDE + αLdata + βLBC , (3.21)

where α and β are weights associated with the data loss and BC loss terms respectively.

These weights can be fixed or dynamically updated. For the LR annealing scheme, at

iteration k we calculate:

α̂k+1 =
|∇θLPDE |
|∇θLdata|

, β̂k+1 =
|∇θLPDE |
|∇θLBC |

, (3.22)

where |∇θLi| is the mean of the gradient of loss component i w.r.t. the network weights,

θ. Following this, the weights for iteration k + 1 are updated as:

αk+1 = (1− λ)αk + λα̂k+1 (3.23)

βk+1 = (1− λ)βk + λβ̂k+1, (3.24)

for constant λ, chosen to be 0.1 as per [115], and previous weights αk and βk.

Conversely, for the SA-PINN model [158], the total loss to be minimised during training

is given by

L = LSA
PDE + LSA

data + LSA
BC , (3.25)
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where

LSA
PDE =

1

Np

4∑
i=1

Np∑
k=1

m(λk
p)||Fi(x̂k, t̂k, ûk, p̂k)||2 (3.26)

LSA
data =

1

Nd

Nd∑
k=1

m(λk
d)||û(x̂k, t̂k)− uk/U ||2 (3.27)

LSA
BC =

1

Nb

Nb∑
k=1

m(λk
b )||û(x̂k, t̂k)− uw

k /U ||2. (3.28)

The vectors λp,λd and λb correspond to the self-adaptive weight vectors, which are non-

negative, trainable values to be updated during network training. Each value λk
i within

λi = {λ1
i , ..., λ

Ni
i } corresponds to a single weight, which is applied specifically to training

point k. During training, this allows the network to balance gradient contributions from

each loss component, as with the previous approaches, but also balances contributions

based on local solution complexity. In practice, regions of the solution field that are difficult

to learn or have a significant impact on global convergence (for instance, regions near a

boundary in space or near an initial state in time) are given larger weights, increasing the

gradient magnitude from these points. Finally, the mask function, m(λi), is defined to be

a non-negative, differentiable and strictly increasing function of λi. In [158], polynomial

and logistic maps are proposed, however we simply use the identity mask, m(λi) = λi,

in line with the experiments used in the original publication [158]. Whilst the network

weights, w, are minimised during training, the trainable weight vectors λp,λd and λb are

instead maximised, using individual optimisers, transforming the optimisation problem

from strictly minimisation to a min-max formulation, given by:

min
w

max
λp,λd,λb

= L(w,λp,λd,λb). (3.29)

We make a minor alteration to the scheme used in [158] by allocating individual learning

rates for the physics, data and boundary condition SA weight optimisers, given respectively

by ηp, ηd and ηb. It has been observed empirically that there is, generally, a negative

correlation between the number of trainable parameters in a neural network and the

optimal learning rate of the optimiser used. Therefore, it is reasonable to assume that

such a correlation may exist for the self-adaptive loss weighting strategy. Given the large

differences between Np, Nd and Nb, and thus the cardinality of λp,λd and λb, it was

stipulated that a shared learning rate may not provide the best performance for each

optimiser. Further, individual learning rates allow for accelerated learning of particular

loss components, which may be beneficial under certain circumstances. This hypothesis
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was supported by results obtained during optimisation studies in this thesis, with the

optimal configurations in each case exhibiting ηd, ηb > ηp, where Nd < Nb < Np.

3.2.1.4 Activation Function

As with loss weighting schemes, the selection of an appropriate activation function within

the hidden layers of a PINN model has been shown to have a significant effect on the rate

and stability of convergence during training [108, 111, 206]. This is primarily related to

the issue of spectral bias, which describes the tendency of PINNs (and other deep learning

models) to favour low-frequency solution components, particularly during the earlier stages

of training. This results in vanilla PINN architectures not fully resolving high-frequency

components until very late in the training cycle, if at all. This is of particular importance

to this study, where ventricular flow is complex and occurs across a range of length and

time scales.

The network architecture used in this chapter and throughout this thesis is a fully con-

nected Siren network, in which each hidden layer uses a periodic sine activation function

[206], except for the output layer which uses a linear activation. For hidden layer i, the

activation is formulated as

ϕi(xi) = sin(Wixi + bi), (3.30)

for input xi, weights Wi and biases bi. Weights in each hidden layer, wi, are drawn from

wi ∼ U(−
√

6/n,
√
6/n) at initialisation, as per [206]. Additionally, the input layer to the

network is constructed as:

ϕ0(x0) = sin(ω0W0x0 + b0), (3.31)

for initialisation frequency ω0, and is instead initialised by drawing weights from w0 ∼

U(−1, 1).

Siren networks were proposed for implicit neural representation tasks for their natural

signal representation properties and their ability to reconstruct high-order derivatives

accurately [206]. However, in a similar fashion to the popular Fourier feature network

[216], it has since been demonstrated that the initialisation frequency, ω0, can be used to

modulate the effects of spectral bias, where the value of ω0 dictates the dominant frequency

modes of predicted solutions [239]. For this reason, Siren networks have previously been
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applied to super-resolve 4D-flow MRI data [195], without the use of a PDE constraint,

to good effect. Their ability to modulate spectral bias and thus resolve high-frequency

solution components makes them an ideal candidate for approximating complex, multi-

scale flow fields, such as those encountered in the cardiac chambers.

The choice of activation was made after testing with a variety of functions, including

hyperbolic tangent (as per [189]) and Swish [192], finding consistently improved qualitative

and quantitative performance with Siren network architectures, owing to their ability to

capture complex, sub-grid flow features. Details of this study can be found in section 3.3.

3.2.1.5 Network Specifics

PINNs can be trained using a dual-optimiser strategy, composed of an initial training

phase using the stochastic ADAM optimiser [127], followed by a fine-tuning phase with

the limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm [144]. The

L-BFGS algorithm is a second-order, quasi-Newton method which can provide improved

accuracy when used in a dual-optimiser setup. However, it is only applicable as a full-

batch method since the descent direction requires an accurate approximation of the entire

Hessian matrix. Given the large data set sizes used in this paper, it is infeasible to use a full-

batch algorithm due to memory limitations, and thus we use the ADAM optimiser alone.

Whilst multi-batch L-BFGS approaches have been explored in the literature [17], they have

not yet been applied to PINNs and their reliability is relatively unknown. However, given

the performance improvements offered, the development and application of multi-batch,

quasi-Newton optimisation algorithms for PINNs could be a fruitful avenue of investigation

in future work.

In the present study, an initial maximum learning rate of 1 × 10−4 is used, which was

selected to be the highest possible value without divergence of loss values. If divergence of

loss values occurs during the training cycle, the learning rate is divided by 4 and training

restarted from the previously completed epoch. Additionally, plateau-based learning rate

annealing is used, where the learning rate decays by a factor of 0.1 if the validation loss

plateaus, within a tolerance of 10−6. The annealing scheme initiates after 5 epochs, and

has a cool down period of 3 epochs following a decay action. All code is written in Python

3.7, primarily using the package TensorFlow 2 [1].

As discussed previously, Nd, Nb and Np are very large, and thus a mini-batch approach
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Figure 3.2: Outline of the mini-batch training process used when Nd ̸= Nb ̸= Np.

must be used to reduce the memory overhead during network training. Unlike with the

L-BFGS algorithm, this is not an issue with stochastic gradient descent (SGD) algorithms,

such as ADAM. In fact, it is commonly recommended that mini-batch schemes are used as

opposed to full-batching to avoid convergence to local minima during training [136]. Based

on empirical findings, we selected the largest batch size possible, which was restricted by

the 4D-flow data size, Nd. This resulted in batch sizes of 500 for the 2D case, and 5000

for the 3D cases. Our findings are consistent with those presented in [35], where it was

demonstrated that larger batch sizes, between ∼ 1000 − 16000 reduced prediction error.

This is at odds with common practice in the machine learning field, where batch sizes

between 2 and 32 have been shown to improve both generalisation and convergence in

many applications. However, PINNs are a very distinct sub-field of machine learning, and

likely require special treatment.

A final consideration when using mini-batching with Nd ̸= Nb ̸= Np is how to structure

the training cycle most efficiently. To maintain a consistent batch size across each data

type, we loop continuously through the batches of the smaller data sets until the full epoch

is completed, shuffling the data after each complete pass through the respective data type.

This ensures that the model weights are continuously updated based on gradients from

all three loss components during training, whilst using a common batch size. A visual

explanation of this process can be found in Fig. 3.2

3.2.1.6 Hyperparameter Optimisation Studies

A critical stage of ML model construction is the optimisation of the network architecture

and hyperparameter values using ablation studies, with the function approximation capa-

bilities of ML models highly sensitive to these choices. This holds true for PINNs, where

it has been consistently shown in publications across a range of applications that problem-

specific hyperparameter tuning is vital to ensure acceptable results. Since PINNs have
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no natural inter-domain generalisation capabilities, problem-specific tuning is required to

achieve the best results. However, this becomes intractable when required for very large

studies, which has, in part, motivated the search for adaptive and dynamic methods for

PINN applications [111, 158, 116, 227, 226].

In this chapter, we wish to establish a PINN model configuration that provides consistent

results across a range of data degradation levels. This is important for this application

since spatio-temporal resolution and SNR are not fixed across patients, due to variations

in LV morphology and heart rate.

There are a wealth of optimisation strategies available for ML applications, from grid

searching to Bayesian optimisation strategies. To perform our studies we used the Bayesian

tree-structured parzen estimator algorithm from the Python package Hyperopt [19]. Bayesian

optimisation methods are typically more efficient than exhaustive methods such as grid

searching, since the total number of model evaluations required is reduced by selective

choice of updated model parameters, decided upon by the particular Bayesian algorithm

used.

3.2.2 Synthetic Data Generation

As outlined in chapter 2, the utilisation of synthetic data in 4D-flow MRI super-resolution

studies is critical [75, 203, 72, 195], since validation of results in vivo poses significant

challenges. CFD-generated synthetic data provide clearer insight into model performance

by allowing control over the severity of artefacts such as noise and resolution, whilst

permitting access to high-fidelity ground truth results.

3.2.2.1 Computational Fluid Dynamics

All model generation, meshing and CFD modelling was undertaken using ANSYS Space-

Claim, Mechanical and Fluent (ANSYS Inc., Canonsburg, PA).

2D Idealised Left Ventricle

The synthetic case used in this chapter consists of a 2D idealised ventricle in which a

one-way fluid-structure interaction (FSI) coupling drives the fluid flow in both cardiac

phases. The primary focus for this experiment is to test various PINN components, such
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as activation functions and loss weighting schemes, without using large, 3D data sets,

which would incur much greater computational costs. To facilitate this, we aimed to

replicate conditions found in typical LV flow in 2D, such as moving boundaries, valve

leaflets and flow features across a range of spatial and temporal scales. For reference, the

domain and mesh detail for the 2D idealised ventricle can be found in Fig. 3.3.

Figure 3.3: 2D idealised ventricle. Flow domain in end diastole (left) with mesh details (middle
and right). In end diastole, the mesh consisted of 330,000 elements.

Boundary motion was prescribed analytically across the lower edge of the domain using a

sinusoidal function, with node position on the boundary updated at time step i as:

f i = −0.04− 0.03 cos(4πti) (3.32)

xi = xi−1 (3.33)

yi = f i
√
1− (xi)2/0.000625. (3.34)

for simulation time ti. This resulted in a complete cardiac cycle of 0.5 seconds, producing a

peak Reynolds number of 5600, in line with expectations for true LV flow. In diastole, the

inlet was opened and the outlet closed, and vice versa in systole. Two small protrusions

were placed at the inlet to represent the open leaflets of the mitral valve, designed to

produce vortex shedding in diastole. Zero-normal stress conditions were applied to the

inlet and outlet when opened, with the no-slip condition applied on the walls and closed

openings. We used a highly-resolved mesh of ∼330k elements (in end-diastole) and error-

based adaptive time-stepping to capture flow features across a range of scales and emulate

similar flow patterns to those observed in a real LV. The minimum time step was 10−6
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seconds. Adaptive meshing was used with diffusion-based smoothing, remeshing every 3

time steps based on a maximum cell skewness of 0.6, and minimum and maximum length

scales based on the initial mesh sizing.

The Navier-Stokes equations were solved using direct numerical simulation (DNS), neglect-

ing to include a sub-grid turbulence model. Given the time- and space-averaged nature

of cardiac 4D-flow MRI data, the inclusion of turbulent effects in the training data was

considered to be of minimal benefit. It would also be unrealistic to assume that, in prac-

tice, the PINN model would be able to reconstruct accurate turbulent features of the flow,

and it is unlikely that such features would provide beneficial insights into cardiac disease.

Further, blood flow in the heart is not fully turbulent, with a wide range of velocities

experienced throughout the cardiac cycle including low-velocity flow between systole and

diastole. The use of a turbulence model in this setting may introduce non-physical effects

which would likely not be possible to capture using the PINN model.

3.2.2.2 Synthetic 4D-Flow MRI

Synthetic 4D-flow MRI data were generated from CFD results following a modality-specific

downsampling procedure, modified from that found in [72] and [75]. Whilst temporal

downsampling was performed by simply dropping a certain number of frames from the

cardiac cycle, spatial downsampling and noise synthesis was applied in the k-space, match-

ing the characteristics of real 4D-flow MRI acquisitions. We have included the equivalent

procedure for generating both 2D and 3D synthetic 4D-flow MRI data, which will be used

throuhgout this chapter an the following chapter. The process used was as follows: 1)

velocity data at each time step were interpolated onto a high-resolution Cartesian grid,

and then a square (in 2D) or cubic (in 3D) region of interest (ROI) was extracted, re-

moving the inflow and outflow channels; 2) the encoding velocity, venc, was determined

to be the maximum velocity experienced across all time steps, plus 10%; 3) a four-point

balanced encoding [175, 118] was then applied to the velocity data to form four phase

images; 4) complex signals were generated and then converted to k-space images using

the fast Fourier transform (FFT); 5) spatial downsampling was achieved by cropping the

outer edges of the k-space images using a circular (in 2D) or spherical (in 3D) mask, which

has the effect of truncating high-frequency modes [75]. To maintain the square (in 2D)

or cubic (in 3D) image shape, zero-padding was applied to the corner regions outside the

mask; 6) zero-mean Gaussian noise was added in the frequency domain to both real and

imaginary signals, matching the true noise distribution of 4D-flow MRI data [75, 72]. A
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Figure 3.4: Shown here is the workflow used to process the synthetic 4D-flow MRI data, where
spatial downsampling and noise synthesis are applied in the k-space.

target signal-to-noise ratio (SNR) was achieved by controlling the standard deviation of

the synthetic noise based on the signal power in the particular phase image; 6) finally,

the inverse FFT (IFFT), followed by the balanced four-point decoding, was applied to

recover the downsampled solution data in the spatial domain. The outline of this process

(in 2D) can be seen in Fig. 3.4, with the equations used for generating the phase images

and complex signals shown below. In 3D, the four phase images are given by:

ϕ1 =
π

venc
(−u− v − w), (3.35)

ϕ2 =
π

venc
(u+ v − w), (3.36)

ϕ3 =
π

venc
(u− v + w), (3.37)

ϕ4 =
π

venc
(−u+ v + w), (3.38)

where venc is the encoding velocity. For the 2D procedure, we construct four phase im-

ages as above, with w = 0 for each image. For phase image j, the complex signals are

constructed as:

Sj = M exp(iϕj), (3.39)

where M is the magnitude image and i is the imaginary unit. The magnitude image is

constructed so that each voxel inside the flow domain is set to 1 and each voxel outside

the flow domain set to 0, which ensures that there are distinct noise distributions in the

flow and non-flow regions, namely Gaussian noise in the flow domain and uniform noise

in the non-flow domain. Since we only consider flow voxels when downsampling in this

study, however, we can neglect M .

2025 71



The University of Leeds Chapter 3

Noise Synthesis

To synthesise the correct distribution and intensity for MRI background noise, we follow

the process outlined in [75], in which the appropriate standard deviation of zero-mean

Gaussian noise is determined inversely from a target SNR. First, a target SNR (in decibels)

is selected a priori, which is converted to an ‘effective’ SNR, SNR10, given by:

SNR10 = 10SNR/10. (3.40)

Then, at time step j, the signal power is approximated as:

Ps(Sj) =
1

N

N∑
n=0

∣∣Sn
j

∣∣2 , (3.41)

for total number of voxels N . By taking the absolute value of the complex signal, Sj , this

equation is calculating the signal power based on the magnitude image, which is related

to the VNR as described in chapter 2 and [138]. Next, the noise power in the complex

image, Pn(Sj), which corresponds to the variance, σ2
j , is calculated as:

Pn(Sj) =
Ps(Sj)

SNR10 . (3.42)

We add the noise independently to the real and imaginary components of Sj , and thus the

standard deviation of zero-mean Gaussian noise added to each signal component is given

by:

σj =

√
Pn(Sj)

2
. (3.43)

Under this procedure, the SNR of the synthetic data remains fixed, whilst σj is variable

dependent on the signal power at time step j. The SNR synthesised here is translated to

the visible VNR [138] as:

VNR ≃ π

2

|u|
venc

SNR. (3.44)

Here, it becomes apparent why visible noise in 4D-flow MRI is exacerbated in low-flow

regions, or when the venc is set too high. The selection of the venc should therefore

correspond to the lowest possible value without causing aliasing, or phase-wrapping, of

the velocity reconstruction.
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3.2.2.3 Boundary Conditions and Physics Interrogation

The final consideration is how best to apply the boundary conditions and generate the

collocation point cloud, at which the physics regularisation is probed.

Boundary Conditions

The location and motion of the endocardium in real 4D-flow MRI studies is determined

through segmentation and registration of structural MRI scans, which are acquired along-

side the 4D-flow MRI data. Therefore, synthetic boundary velocity data do not require

the same downsampling procedure as synthetic 4D-flow MRI. For both cases discussed in

this chapter, we use the clean CFD data at the boundary nodes as our boundary condi-

tion. By doing this, we assume that we have complete knowledge of the applied boundary

condition, allowing us to focus efforts solely on uncertainty in the flow data. Positional

uncertainty is present in real MRI-based cardiac studies, although these effects will be

investigated in chapter 4

Collocation Point Cloud

The final consideration is the generation of the collocation point clouds, on which we ap-

ply the PDE loss during PINN training. In both cases in this chapter, the point cloud

is chosen to simply correspond to the nodes of the CFD mesh used, since this is already

highly resolved and evenly distributed in space and time. As has been covered extensively

in the literature, the collocation point cloud must be spatio-temporally dense to achive

satisfactory results. In studies with real 4D-flow MRI data, uniform sampling of points

across the segmented LV domain can provide the collocation point cloud. When downsam-

pling synthetic 4D-flow MRI data temporally, we assume that we maintain access to both

the boundary velocities and collocation point cloud at all time steps. This approach is

consistent with studies using real 4D-flow MRI data later in this thesis, where we are able

to interpolate the endocardial surface in time to generate both point clouds and associated

boundary velocity data using point-wise splines and their derivatives.

3.2.3 Metrics

In this chapter, we assess the quantitative accuracy of the PINN model with respect to both

the velocity and pressure fields. We defer analysis of clinically-relevant derived quantities,

such as WSS and vorticity, to Chapter 4. We evaluate performance using max-normalised
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velocity root mean square error (RMS), for velocity (RMSu) and pressure (RMSp), with

additional velocity metrics in the form of alignment similarity index (ASI) and magnitude

similarity index (MSI)[72]. These metrics are defined as:

RMSu :=
1

max|u|

√√√√ 1

N

N∑
k=1

(upred − u)2k, (3.45)

RMSp :=
1

max|p|

√√√√ 1

N

N∑
k=1

(ppred − p)2k, (3.46)

ASI :=
1

2

(
1 +

upred · u
|upred||u|

)
, (3.47)

MSI := 1−
∣∣∣∣ |u|
max|u|

−
|upred|

max|upred|

∣∣∣∣ , (3.48)

where upred = U û and ppred = ρU2p̂, with u and p the ground truth velocity and pressure,

respectively, at N interrogation points. Given that the pressure prediction is accurate only

up to a constant, we calculate RMSp by zero-centring the mean value for prediction and

ground truth data at each time step, in essence extracting the relative pressure. ASI and

MSI can be calculated at each interrogation point, in which case the form above is used,

or the mean value across N points can be used to provide a single value.

3.3 Results

This results section is structured as follows: first, the optimised model configuration is

introduced, with results presented across a range of data degradation levels (in terms of

resolution and SNR); following this, competing architecture choices, such as activation

function and loss weighting strategies, are compared and assessed with regards to perfor-

mance with low-resolution and noisy data.

3.3.1 2D Idealised Ventricle

The PINN model hyperparameter configuration used in this section can be found in Tab.

3.1, alongside descriptions of the hyperparameters specified. A hyperparameter optimisa-

tion study was used to tune network depth and width, dropout rate and activation function
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Table 3.1: PINN architecture and hyperparameter values used for the 2D idealised LV model.

Components

Activation function Periodic sine (Siren) [206]
Loss weighting Self-adaptive PINN (SA-PINN) [158]

Hyperparameters Description

Depth 7 Number of hidden layers in the network
Width 800 Number of neurons per hidden layer
Initial learning rate 10−4 Learning rate defined at the start of training
Dropout rate 0.55 Governs the proportion of neurons randomly re-

moved from specified layers in the network
Batch size 3,200 Size of data, PDE and BC mini-batches
Initialisation frequency (ω0) 10 Parameters used to modulate spectral bias in

the Siren network [206]
Data loss learning rate (ηd) 0.08 Learning rate for the ADAM optimiser used

to update data loss weights in the SA-PINN
scheme [158]

PDE loss learning rate (ηp) 0.0001 Learning rate for the ADAM optimiser used
to update PDE loss weights in the SA-PINN
scheme [158]

BC loss learning rate (ηb) 0.03 Learning rate for the ADAM optimiser used to
update BC loss weights in the SA-PINN scheme
[158]

Figure 3.5: 2D idealised ventricle: velocity magnitude (top row) and pressure (bottom row)
contour plots in late diastole, comparing our model (centre right) with that used in [72] (centre left)
and cubic spline (left). Here we have used training data with temporal and spatial downsampling
rates of 5 and 4 respectively, with a SNR of 6.6. Insert displays the resolution of training data.
Reported values are RMS for the respective fields.
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choice, following the technique outlined in Section 3.2.1.6. The search space defined for

this hyperparameter study can be found in Tab. 3.3, where we performed 140 training

runs in total. Further details about this study can be found in section 3.3.2. A grid search

was used to tune the SA-PINN learning rates, rather than using Bayesian optimisation.

This was done because the specific values of ηd, ηp and ηb are dependent on the level of

corruption present in the synthetic 4D-flow MRI data, and as such, extensive optimisation

using a single data configuration would reduce the ability of the model to generalise across

different configurations of resolution and noise. Further details for this study can be found

in section 3.3.4.

In Fig. 3.5, we compare the performance of our PINN model configuration given in Tab.

3.1 against two competing methods: cubic spline interpolation and the PINN configuration

used in Section 4.2 of [72]. Qualitatively, our model shows robustness to noise whilst still

being able to capture most of the solution features present in the ground truth data.

Conversely, the cubic spline algorithm is heavily corrupted by the presence of noise and

is clearly unsuitable in this context, while the PINN model used in [72] is able to remove

the data noise at the expense of removing the finer flow details, which is also shown

quantitatively with increased RMS values. The architecture and components used in [72]

correspond to the ‘vanilla’ formulation of PINNs, as used in the original publication [190].

As such, no techniques were implemented to mitigate the effects of spectral bias, and fixed

weights were utilised in the loss function. Further, the network used was relatively narrow,

at a width of 25. Therefore, the model did not have the requisite capacity to represent all

length and time scales present in the underlying velocity and pressure fields.

The impact of increasing spatial resolution is assessed in Figs. 3.6 (for noise-free data) and

3.7 (SNR of 6.6), where we compare PINN predictions across three spatial downsampling

rates. For both noisy and noise-free data, the PINN model is able to effectively reconstruct

both velocity and pressure fields effectively across all downsampling rates analysed. In the

presence of noise at the spatial downsampling rate of 16, some small-scale flow features

are not captured and peak flow values are reduced, although this downsampling rate

corresponds to a spatial resolution of 5mm2, below what would be expected in real 4D-

flow MRI studies. An animated version of these results can be found at: https://driv

e.google.com/drive/folders/1pxuEz3VfdZSJNxUtvj0o41oDvkgHAAZ8?usp=sharing.

In this animation, PINN results, training data and the ground truth data are shown, with

data obtained at spatial and temporal downsampling rates of 8 and 5, respectively, at a

SNR of 6.6.
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In Tab. 3.2, results are compared across two temporal downsampling rates, three spatial

downsampling rates and two SNR levels. Across all configurations of data degradation,

RMSu ranges from a minimum of 0.023 to a maximum of 0.079, whilst RMSp ranges from

0.011 to 0.031. For reference, the competing method displayed in Fig. 3.5 exceeds the

maximum RMSu and RMSp values attained across all data degradation configurations.

Table 3.2: 2D idealised ventricle: Errors in predicted velocity and pressure fields across all
configurations of data degradation types, using the model configuration introduced in Tab. 3.1.

SNR DST DSS RMSu ASI MSI RMSp

∞ 0 4 0.023 0.990 0.982 0.011
∞ 0 8 0.038 0.978 0.971 0.015
∞ 0 16 0.054 0.964 0.957 0.021
∞ 5 4 0.039 0.981 0.972 0.019
∞ 5 8 0.051 0.970 0.962 0.022
∞ 5 16 0.065 0.956 0.949 0.027
6.6 0 4 0.029 0.985 0.976 0.014
6.6 0 8 0.041 0.973 0.965 0.018
6.6 0 16 0.066 0.950 0.945 0.027
6.6 5 4 0.040 0.975 0.968 0.020
6.6 5 8 0.052 0.963 0.960 0.023
6.6 5 16 0.079 0.936 0.936 0.031

3.3.2 Activation Function

The selection of an appropriate activation function can have a significant impact on PINN

model convergence rates and reconstruction quality. Most early PINN publications utilised

fixed tanh activation functions, alongside ReLU [81], Swish [192] and, less frequently,

Sigmoid functions. However, as has been demonstrated for PINNs and other implicit

neural representation networks [109, 110, 216, 206], the use of such activation functions

can result in a model that is unable to resolve high-frequency solution components within

a reasonable training time, due to spectral bias. Since then, focus has been placed on

the development of activation functions that are able to modulate spectral bias, utilising

adaptive components [110, 109] or input feature projection [206, 216, 239].

In this section, we compare model performance using three fixed activation functions,

Table 3.3: Search space defined for the 2D hyperparameter optimisation study.

Search space: activation function study

Hidden layers 5-12
Neurons per layer 100-1000
Dropout rate 0-0.8
Activation Function tanh, Swish, Siren
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Figure 3.6: 2D idealised ventricle: pressure (top row) and velocity magnitude (second row)
contour plots in late diastole, using noise-free training data with a temporal downsampling rate
of 5, and spatial downsampling rates specified at the top of the figure, alongside the ground truth
fields (right). Inserts show the resolution of training data.

Figure 3.7: 2D idealised ventricle: pressure (top row) and velocity magnitude (second row) con-
tour plots in late diastole, using training data with an SNR of 6.6, with a temporal downsampling
rate of 5, spatial downsampling rates specified at the top of the figure, alongside the ground truth
fields (right). Inserts show the resolution of training data.
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Figure 3.8: 2D idealised ventricle: Here we show contour plots of the velocity magnitude at one
time step for ground truth CFD data (A) and synthetic 4D-flow MRI data using different levels of
data degradation (B and C). The data used in to compare activation functions (B) is noise-free,
with a spatial downsampling (DS) rate of 4, whereas the data used to compare loss weighting
strategies (C) has a SNR of 6.6 and a spatial DS rate of 8.

namely tanh, Swish [192] and periodic sine functions (Siren network) [206]. Under the

assumption that network size and dropout rate interact with each activation, we performed

an ablation study across activation function choice, network depth and width and dropout

rate. The complete search space for this study can be found in Tab. 3.1. The data used in

this study was noise-free and downsampled by factors of 5 and 4 in time and space. The

main qualitative marker for performance here is the capacity of each activation function to

resolve small-scale flow features, and thus we used noise-free data to remove the potential

risk of over-fitting. Further, using noise-free data removes the potential for conflict between

loss components, reducing the impact of sub-optimal loss weight configurations. Thus, we

were able to use the weight configuration proposed in our previous publication [205], which

was selected to provide the best performance for this data configuration. A visualisation

of the synthetic training data used can be found in Fig. 3.8B.

In Fig. 3.9, we compare velocity and pressure results for the best performing configurations

found for each activation function. From the magnified region, we see the periodic sine

activation is superior in its ability to resolve small-scale flow features, which is consistent

with the results presented in [206]. From Tab. 3.4, we find that the Siren also outper-

formed the other activation functions quantitatively, achieving the best scores across all

error metrics. Given that the Siren network architecture incurs minimal additional com-

putational overhead, the results shown here present it as the obvious candidate for this

application. The collection of activation functions studied here is not exhaustive, and

additional exploration into adaptive activation functions may be beneficial.
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Table 3.4: Optimal results for each activation function analysed in the ablation study.

Activation RMSu ASI MSI RMSp

tanh 0.0582 0.963 0.958 0.027
Swish 0.0551 0.968 0.961 0.0253
Siren 0.0437 0.98 0.972 0.0209

Figure 3.9: 2D idealised ventricle: contour plots of velocity magnitude (top) and pressure (bot-
tom) at one time step, comparing three activation functions: Tanh, Swish and Siren. Qualitatively,
the Siren activation provides the greatest similarity to the ground truth data (right), preserving
more of the high-frequency solution details, as shown in the insert.

3.3.3 Initialisation Frequency

An additional consideration when using the Siren network is the tuning of the initialisa-

tion frequency, ω0. This parameter dictates the dominant frequency spectra of predicted

solutions, which enables the architecture to modulate the effects of spectral bias [239].

It was found empirically that, for our application, the default value used in the original

publication [206], ω0 = 30, did not provide satisfactory results. To this end, we reduced

the value to ω0 = 10 for the Siren architectures used throughout this chapter. Here, we

demonstrate the quantitative effect of changing ω0. Using noise-free data, the appropriate

selection of ω0 is not so impactful, since there is no risk of over-fitting. Therefore, to

test the effects of this value we use noisy data, utilising the configuration found in Fig.

3.8C. In Tab. 3.5, we observe results for this study, where ω0 = 10 provides considerably

better performance than other values. The optimal value of ω0 is case-specific, since it is

dependent on the relevant frequency modes of that are of importance in the underlying

solution fields.
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Table 3.5: Error metrics for different values of the initialisation frequency ω0 in the Siren network
architecture.

ω0 RMSu ASI MSI RMSp

1 0.129 0.906 0.887 0.054
10 0.052 0.963 0.960 0.023
30 0.064 0.949 0.950 0.027
50 0.076 0.949 0.933 0.036

3.3.4 Loss Weighting Strategies

Following the publication of [205], it was observed that the PINN configuration used was

adversely impacted by noise corruption at higher spatial downsampling rates. Although a

dynamic weighting strategy was used in [205], the influence of the initial weights, α0 and β0,

was not fully characterised. Therefore, it was determined that the over-fitting was related

to sub-optimal weighting of the individual loss components, in particular over-weighting

of Ldata, and thus alternative strategies were investigated. To this end, we compare PINN

results using three distinct loss weighting strategies, namely 1) fixed loss weights, 2) LR

annealing scheme as proposed in [116] and 3) SA-PINN scheme [158], exploring different

parameter choices for each method.

There is a key distinction between scheme 3) and the other two that should be reiterated.

Where methods 1) and 2) apply a single weight to each loss component, given by α and β,

the SA-PINN approach applies a weight to each individual training sample, with each loss

component using a distinct optimiser to apply the necessary gradients (for instance, LPDE

has its own optimiser to maximise the weights associated with the collocation points). This

allows the network to balance gradient contributions from each loss component, as with the

previous approaches, but also balances contributions based on local solution complexity.

In practice, regions of the solution field that are difficult to learn or have a significant

impact on global convergence (for instance, regions near a boundary in space or near an

initial state in time) are given larger weights, increasing the magnitude of gradients from

these points.

The motivation for this study is to establish a weighting strategy that both performs well

under significant data degradation, but is also insensitive to initial parameter choices.

There is an emphasis on the latter point, since we require our PINN model to be robust

across different levels of data degradation and would like the model configuration to be

independent of this. Further, we also wish to reduce the dependency of PINN performance

on initial parameter choices, since the model must be applicable to large cohorts of patients
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for which case-specific tuning is infeasible.

When comparing competing activation functions earlier in this chapter, we used noise-

free data at a relatively low spatial downsampling rate, since the aim was to assess the

capacity of the selected activation functions to resolve high-frequency solution components

without concern over artefacts due to noise over-fitting. However, here we are motivated

by improving model robustness to noise at high spatial downsampling rates, for which we

have conflicting loss objectives which are more challenging to weight correctly. Therefore,

the flow data here are downsampled by factors of 5 and 8 in time and space, respectively,

with a SNR of 6.6. This combination of parameters results in heavily corrupted training

data, which can be seen visually in Fig. 3.8C.

For weighting strategies 1) and 2), we produce results with weights initialised (or fixed)

across four distinct orders of magnitude. With strategy 3), we instead look at distinct

values for the respective learning rates (LRs), given by ηp (PDE loss LR), ηd (data loss

LR) and ηb (BC loss LR). As stated in [158], it is possible to also initialise the self-adaptive

weights using non-unity values, however, altering the respective learning rates should have

an equivalent effect and provide a solution that is less problem-dependent. For strategies

1) and 2), the weights α and β are applied to Ldata and LBC , respectively, where LPDE

maintains a fixed weight of 1. Therefore, adjusting α and β modifies the relative balance

of weights in the loss function, where the absolute value of the weights is less important.

This does not hold true for the equivalent parameters, ηp, ηd and ηb, in the SA-PINN

configuration, where the absolute magnitude impacts the sensitivity of each optimiser.

Improper configuration of these values may result in training divergence or convergence

to local minima. Therefore, we compare SA-PINN configurations using a fixed relative

balance between the respective learning rates (configurations SA-PINND, SA-PINNE and

SA-PINNF ) to establish the effect of absolute values, alongside a comparison quantifying

the effect of relative imbalances (configurations SA-PINNopt, SA-PINNA, SA-PINNB and

SA-PINNC). In chapter 4, we explore this area further, where we establish that the key

determinant for acceptable results is identifying the correct ratio between ηp, ηd and ηb.

The loss strategy configurations used can be found in Tab. 3.6.

The performance of each loss weighting configuration using the data defined in Fig. 3.8C

can be found in Tab. 3.6. In the LR annealing scheme [116], it was found that model

performance was highly dependent on the selection of appropriate initial weights, α0 and

β0, which is unconventional for a dynamic method. Whilst the weights update dynam-

ically throughout training, the magnitude of weights selected at initialisation persisted.
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Table 3.6: 2D idealised ventricle: Hyperparameter selections used for each configuration of loss
weighting strategies, and quantitative results obtained from each loss weighting configuration.

Config. α0 β0 ηp ηd ηb RMSu ASI MSI RMSp

Fixed0.1 0.1 0.1 - - - 0.086 0.935 0.929 0.039
Fixed1 1 1 - - - 0.058 0.957 0.956 0.026
Fixed10 10 10 - - - 0.059 0.958 0.955 0.026
Fixed100 100 100 - - - 0.072 0.939 0.940 0.028
Dynamic0.1 0.1 0.1 - - - 0.088 0.933 0.927 0.039
Dynamic1 1 1 - - - 0.056 0.960 0.957 0.025
Dynamic10 10 10 - - - 0.055 0.956 0.957 0.023
Dynamic100 100 100 - - - 0.072 0.939 0.941 0.028
SA-PINNopt - - 0.0001 0.08 0.03 0.052 0.963 0.960 0.023
SA-PINNA - - 0.001 0.08 0.03 0.055 0.961 0.958 0.024
SA-PINNB - - 0.01 0.08 0.03 0.058 0.958 0.954 0.026
SA-PINNC - - 0.1 0.08 0.03 0.114 0.919 0.897 0.053
SA-PINND - - 0.0001 0.0001 0.0001 0.057 0.959 0.957 0.025
SA-PINNE - - 0.001 0.001 0.001 0.057 0.960 0.956 0.025
SA-PINNF - - 0.01 0.01 0.01 0.066 0.954 0.946 0.03

This can be seen in Tab. 3.7, where we display the initial and final loss weights for the

four configurations studied. Similarly, the individual learning rates, ηp, ηd and ηb, affected

prediction accuracy with the SA-PINN method. The relative balance between these pa-

rameter values was shown to have a greater impact than the absolute values, although this

did play a role, as can be seen in SA-PINN configurations D-F in Tab. 3.6. We find the

best performing configuration, overall, to be SA-PINNopt, which achieves the best scores

across all metrics.

Table 3.7: 2D idealised ventricle: Initialised weights, α0 and β0, and final weights (after N weight
updates), αN and βN , for the LR annealing method.

Config. α0 β0 αN βN

Dynamic0.1 0.1 0.1 0.35 0.38
Dynamic1 1 1 2.56 6.19
Dynamic10 10 10 17.0 39.2
Dynamic100 100 100 235 598

Based on the findings in Tab. 3.6, the relative balance between LPDE and the other

two loss constraints appears to be the determining factor for acceptable performance. The

regularisation provided by the PDE loss constraint acts to modulate learning of the velocity

data, where configurations balanced too heavily in favour of LPDE lead to under-fitting.

Under these conditions, solutions are too heavily regularised by the physics constraint,

resulting in overly smoothed solution fields. This effect can be seen qualitatively in Fig.

3.10, where each loss weighting scheme displays under-fitting in the ‘physics-dominated’

regime, for which LPDE dominates the training cycle. Conversely, configurations balanced
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Figure 3.10: 2D idealised ventricle: A demonstration of under-fitting and over-fitting induced
by poorly configured weights. Velocity magnitude contour plots in late diastole, predicted using
different configurations of fixed weights, LR annealing scheme initial weights (Dynamic) and SA-
PINN learning rates.

too heavily in favour of Ldata lead to over-fitting in the presence of data noise.

We observe that the fixed and LR annealing schemes are severely impacted by noise

artefacts for configurations Fixed100 and Dynamic100. The SA-PINN scheme appears less

prone to over-fitting, which is corroborated in Fig. 3.10 and corresponding configurations

in Tab. 3.6. Across SA-PINN configurations D-F, it can also be observed that the SA-

PINN model is only slightly affected by changes in the absolute values of the learning rates

ηp, ηd and ηb. This suggests a reduced sensitivity of the SA-PINN configuration to initial

parameters, which is a desirable property for the present application, in which we wish to

restrict the requirement for hyperparameter tuning between distinct cases.

Beyond comparing performance in a single data configuration, we also wish to assess the
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Figure 3.11: 2D idealised ventricle: Predicted solution fields using a fixed configuration of the
SA-PINN scheme. Pressure (top row) and velocity magnitude (bottom row) contour plots in late
diastole, using training data with an SNR of 6.6, with a temporal downsampling rate of 5, spatial
downsampling rates specified at the top of the figure. Insert displays the resolution of training
data. Reported values are RMS for the respective fields.

applicability of each scheme across multiple spatial resolutions, without additional hyper-

parameter tuning. To this end, the best performing configurations from loss weighting

schemes 2) and 3) are deployed across three distinct data degradation configurations,

each of which is downsampled by a factor of 5 in time with a SNR of 6.6, across spa-

tial downsampling rates of 4, 8 and 16. In Fig. 3.11, the SA-PINNopt configuration is

used to produce results across the data ranges specified above. Although not all features

are reconstructed at the spatial downsampling rate of 16, there are no visible issues with

over-fitting. Further, reconstruction of the pressure field is consistent across all spatial

resolutions, with the dominant solution features approximated well. As a comparison, in

Fig. 3.12, the best performing LR annealing configuration, Dynamic10, is applied to the

same collection of data. It is observed that this model actually outperforms SA-PINNopt

for the data with a spatial downsampling rate of 4, quantitatively. However, for data

at the spatial downsampling rate of 16, severe over-fitting occurs, significantly degrading

solution accuracy.
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Figure 3.12: 2D idealised ventricle: Predicted solution fields using a fixed configuration of the
LR annealing (dynamic) scheme. Pressure (top row) and velocity magnitude (bottom row) contour
plots in late diastole, using training data with an SNR of 6.6, with a temporal downsampling rate
of 5, spatial downsampling rates specified at the top of the figure. Insert displays the resolution of
training data. Reported values are RMS for the respective fields.
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3.4 Discussion

3.4.1 Spectral Bias

The selection of an appropriate activation function is critical in the current study, where

ventricular flow is characterised by features across a range of length and time scales.

In vanilla form, PINNs are generally able to capture large-scale (or low-frequency) solu-

tion components well, but spectral bias reduces to capacity of the model to reconstruct

small-scale (or high-frequency) solution components. The effects of spectral bias can be

mitigated by modifying certain network components, including the activation function

used in the hidden layers. It has been demonstrated qualitatively and quantitatively in

this chapter that the Siren network, which utilises periodic sine activation functions, is

an effective tool in alleviating issues of spectral bias, in line with the content discussed in

section 2.4.4.

3.4.2 Gradient Imbalances

PINNs are typically able to regularise network outputs to mitigate the effects of measure-

ment uncertainty through the imposition of the physical loss terms, LPDE and LBC . How-

ever, under the influence of significant levels of measurement noise, appropriate weighting

of these terms is more important, since Ldata, LPDE and LBC provide conflicting objec-

tives. This makes the learning task more challenging, since the backpropagated gradients

from each loss term may counter-act each other, and excessive weighting of one term in

this scenario promotes sub-optimal solutions that satisfy one term too heavily, to the detri-

ment of the other objectives. As seen in Fig. 3.12, increased degradation of the important

low-frequency solution information at highest downsampling rate (16) results in increased

uncertainty in the velocity data, and thus increased disagreement between the PINN loss

terms. Therefore, the initial weight used in the LR annealing scheme for Ldata, given by

α0 = 10, leads to excessively large gradient contributions from Ldata while neglecting the

conflicting gradients from LPDE (since LBC is only applied to points on the boundary,

its impact on flow away from the wall is minimal). This reduces the regularising effects

of the physics-based loss term and induces over-fitting. Whilst the LR annealing scheme

is intended to be dynamic, results presented in Tab. 3.7 demonstrate that the respective

weights remain fixed around the order of magnitude selected at initialisation. As such,

strong gradient imbalances are perpetuated throughout the training cycle.
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In Fig. 3.12, we observe the impact of increased spatial downsampling rates with an SNR

of 6.6 for LR annealing scheme. Whilst the model is able to effectively de-noise the velocity

fields and uncover the pressure fields to an acceptable quality for spatial downsampling

rates of 4 and 8, severe over-fitting can be observed at a rate of 16. This distinction

between results using different spatial downsampling rates in the presence of noise can

be understood by re-examining the method used to construct the synthetic noise in the

k-space. With the target SNR (and thus SNR10) fixed, the power of the noise at time

point j is determined by the equation:

Pn(Sj) =
Ps(Sj)

SNR10 , (3.49)

for signal power Ps(Sj), which is calculated by taking the mean k-space signal value.

As seen in Fig. 3.4, before downsampling, much of the k-space (away from the centre

of the image) is populated by low-magnitude signal intensities, which will contribute to

a relatively small overall mean signal power, and thus noise power. When this noise

is applied to the k-space image, the low-signal regions in the higher-frequency bands

become populated by comparatively large amounts of noise, which helps to explain why the

background noise is visually characterised by high-frequency patterns in the spatial domain

at higher resolutions. However, the comparative intensity of this noise in relation to the

high-intensity region in the centre of the image is small. This central region corresponds

to the lower-frequency spatial information, within which the most important structural

details of the solution are contained. Therefore, since the intensity of the noise added

to this region is comparably small, most of the important structural information remains

intact. Conversely, at higher downsampling rates (in which more of the outer region

of the k-space image is cropped), a higher proportion of the image is populated by the

higher-intensity signals in the central region, thus producing a greater noise power. Since

the intensity of this noise is then larger in comparison to signals in the central region

of the k-space image, the important structural information in the spatial domain is more

heavily degraded. To summarise, increasing the spatial downsampling rate in this synthetic

setup promotes the generation of noise with a power that scales with the signal power of

decreasing frequency, and thus increasing intensity.

With real MRI acquisitions, increasing the voxel size has the effect of increasing SNR, since

the total signal received within a voxel is greater [66]. However, in this synthetic study,

the point of interest is assessing model performance at a particular target SNR. Therefore,

this is the quantity that remains fixed, which implies that the noise power must increase

with decreasing spatial resolution. Such a exaggerated SNR values at very low spatial
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resolutions is unrealistic, however, it demonstrates the effectiveness of the PINN model in

extreme conditions.

Results presented in this chapter suggest that the SA-PINN scheme is less sensitive to

initial hyperparameter choices, as seen when comparing Figs. 3.11 and 3.12, which is a

desirable quality for the present application. In real 4D-flow MRI studies, variability in

LV size and heart rate across subjects results in different spatio-temporal resolution and

SNR values, and as such, optimising loss weighting parameters on a case-by-case basis

is infeasible. Whilst the LR annealing scheme outperforms the SA-PINN scheme at the

spatial downsampling rate of 4 in Figs. 3.11 and 3.12, this is less important than the

results obtained at the higher downsampling rates. Data obtained at rates of 8 and 16

correspond to spatial resolutions of 2.5 and 5mm2, which are closer to the recommended

values in clinical practice in LV studies [23]. Therefore, acceptable reconstruction at these

resolutions if of greater importance than at the spatial downsampling rate of 4, which

corresponds to a spatial resolution of 1.25mm2, far higher than is plausible in the LV.

3.4.3 Robustness to Data Corruption

In Figs. 3.6 and 3.7, we illustrate velocity and pressure reconstructions at distinct spatial

downsampling rates, with and without noise added. The similarity in reconstruction

quality between noise-free and noisy data, without re-configuring hyperparameter values,

demonstrates robustness of the PINN model to changes in SNR, where an SNR value of

6.6 exceeds what would be expected in real 4D-flow MRI studies. Similarly, there is only

a small degradation in quality across spatial downsampling rates of 4, 8 and 16, with no

noise artefacts present at higher downsampling rates, unlike those observed with the LR

annealing scheme.

A comprehensive assessment across all data degradation levels can be found in Tab. 3.2. As

expected, model accuracy increases with increasing spatial resolution, temporal resolution

and SNR.

3.5 Conclusion

In this chapter, the PINN model used to perform cardiac 4D-flow MRI super-resolution

was introduced, and competing architecture choices were compared to mitigate the im-
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pacts of spectral bias and gradient imbalances. An extensive study was performed to

establish a model configuration able to produce accurate results using data of a low SNR

at high spatio-temporal downsampling rates. Model selection was based on both perfor-

mance at a fixed level of data degradation, but also insensitivity to initial hyerparameter

choices. The selected model configuration, which utilised the SA-PINN weighting scheme

[158], was shown to perform best on both metrics. It was then demonstrated that a

fixed model configuration, SA-PINNopt, was able to operate successfully across a range of

spatio-temporal downsampling rates and SNR values without case-specific tuning. It was

also demonstrated that the Siren network architecture (with periodic sine activation func-

tions) [206] provided the best results when compared with competing activation functions.

The ability to modulate the effects of spectral bias using the initialisation frequency, ω0,

presented a clear advantage, where the accurate reconstruction of small-scale flow features

is of importance in the current study.
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Assessing Robustness to Positional

Uncertainty in the Endocardium

4.1 Introduction

Fluid flow in the LV is subject to a complex fluid-structure interaction (FSI), where sys-

tolic and diastolic flow are driven by contraction and relaxation of the myocardium. The

resulting haemodynamic flow field is therefore highly dependent on the structure and mo-

tion of the endocardium with which it interacts. For MRI-based haemodynamic simulation

studies in the LV that require the imposition of boundary conditions, this dependency on

the position and motion of the boundary is problematic, as low spatial resolution, partic-

ularly in the apico-basal direction, results in poorly reconstructed endocardial surfaces.

Much of the wall detail that is present on the real endocardial surface, such as trabeculae

carneae and papillary muscles, is not included in resulting segmentations, and through-

plane motion in the apico-basal direction is not appropriately resolved. This results in

significant positional uncertainty, which likely has a detrimental effect on the simulation

of patient-specific flow in the LV. This is particularly problematic in the absence of in-

traventricular velocity measurements, such as with CFD-based studies, as the simulated

solution fields are entirely dictated by the boundary conditions. However, such issues

also likely persist when using PINN-based models that are only partially constrained by

the boundary condition, even given the availability of flow measurement data within the

domain.

The impact of positional uncertainty on CFD simulations in the LV has been covered in the
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literature, with studies characterising the fluid response to trabeculae carneae [194, 222,

135, 161], papillary muscles [194, 222, 135, 161] and chordae tendineae [164]. Whilst the

function of trabeculae carneae is still unknown, the presence of these features along with

papillary muscles were observed to significantly impact fluid flow reconstruction within the

LV, reducing WSS, increasing pressure drop and altering the breakup of vortical structures

in diastole [222, 194].

The primary motivation behind these publications has been to better understand the

haemodynamic function of trabeculae carneae and papillary muscles. However, in the

present study we are primarily concerned with the accurate reconstruction of patient-

specific haemodynamic solution fields. As these previous publications demonstrate, the

presence of complex endocardial features can exert a significant influence, quantitatively

and qualitatively, on the observed LV flow. Therefore, simulation studies that assume

the endocardium to be smooth, (or otherwise not representative of the true topography),

produce solution fields that are likely not patient-specific, and generate quantitative values

that do not accurately reflect the underlying flow.

Mitigation of positional uncertainty with PDE-constrained optimisation methods is ad-

dressed in [166], where flow fields in synthetic 3D domains in the vasculature are re-

constructed from planar PC-MRI. Such optimisation methods require segmentation of the

vascular lumen, however, positional uncertainty can restrict the accuracy of such methods.

Instead of enforcing the no-slip condition, an alternative, parameterised slip/transpiration

boundary condition is proposed on the segmented lumen, under the assumption that the

approximated boundary lies within the flow domain. The parameters of this boundary

condition are then estimated as part of the optimisation process. The assumption that

the segmented lumen lies within the flow domain precludes the usage of this approach in

the current study, where segmented LV boundaries typically lie outside the physical flow

domain along the compact endocardium.

Given the utilisation of existing intraventricular velocity measurements, which are derived

directly from the patient-specific velocity field, the PINN-based model introduced in this

thesis is only partially constrained by the boundary condition. This reduced dependency

on the boundary constraint should somewhat mitigate the impact of positional uncertainty,

when compared with CFD-based methods, but this area has not yet been explored. Given

the uncertainty present in the endocardial position, it may appear sensible to simply

remove the boundary condition constraint from the PINN loss function. However, doing

so removes the capability to accurately resolve the near-wall flow, and thus WSS, which
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is a desirable variable of interest in the LV.

In this chapter, errors arising from positional uncertainty are characterised. Synthetic 4D-

flow MRI data are generated in three patient-specific LV geometries, generated from CFD

simulations using end-diastolic CT segmentations. The use of CT imaging data allows for

the reconstruction of all but the smallest details present on the endocardial surface, and

thus the generated CFD data are dependent on such features. From these high-resolution

segmentations, three approximated boundary representations are produced, each using

different quantities of smoothing. The boundary generated using the highest level of

smoothing is intended to represent an expected segmentation from cine-MRI. We isolate

the effects of positional uncertainty by assuming we have complete knowledge of the ground

truth boundary motion, omitting the characterisation of uncertainty arising due to inac-

curate approximation of the myocardial deformation. Super-resolved solution fields are

obtained with each boundary representation and results are compared, so as to quantify

the impact of positional uncertainty. Beyond the error metrics introduced in chapter 3,

we also derive clinically-relevant flow variables that have been explored in the literature,

comparing the PINN results with those produced directly from synthetic 4D-flow MRI and

obtained using competing methods. These variables include vorticity, relative pressure,

kinetic energy and WSS.

4.2 Methodology

4.2.1 Study Setup

The focus of this study is to investigate the impact of uncertainty in the position of the

endocardial surface, examining the effect that different levels of smoothing impart on

model performance. In standard 4D-flow MRI studies, the position and velocity of the

endocardium are extracted from a sequence of structural cine-MR images. At each time

point in the cardiac cycle, these typically consist of a short-axis stack of 2D slices in the

apico-basal direction, with a slice thickness of 6 − 10mm and in-plane spatial resolution

of 1 − 2mm2 [130]. Although trabeculations and papillary muscles may be partially dis-

cernible within each slice, the low spatial resolution in the apico-basal direction makes it

highly challenging to extract such complex endocardial features across an entire ventric-

ular volume, which would require spatial interpolation between slices. Even still, details

present between slices would likely be highly inaccurate. Trabeculae carneae range in
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Figure 4.1: A comparison of endocardial surfaces segmented from cine-MRI and CT (in different
patients). For each modality, three figures are included to illustrate the segmented endocardial
surface, which demonstrates the significant difference in level of detail available between cine-MRI
and CT. Alongside the short-axis stack (as seen for one slice in the upper left figure), with cine-
MRI, single slice acquisitions are also produced in four-chamber (4CH) and long-axis (LA) views, at
an in-plane resolution of 1− 2mm2. Comparatively, CT is capable of achieving an isotropic spatial
resolution of ∼ 0.5mm3, which is sufficient to reconstruct most of the endocardial wall features.
However, CT is only obtained at a fixed phase in the cardiac cycle, typically end-diastole.
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length from around 0.5 − 3mm, and posses a diameter of around 50 − 500µm. There-

fore, they are challenging to reconstruct, even using higher-resolution structural imaging

modalities such as CT. Similarly, they exist in the sub-grid size in relation to the 4D-flow

MRI resolution.

Additional effects, such as through-plane motion and the presence of motion artefacts

imparted by long, potentially uncomfortable, scan times, further degrade the quality of

segmentations [160]. Therefore, high levels of uncertainty arise in both the position and

velocity of the endocardium when segmenting and registering from MR images. In Fig.

4.1, typical segmentations obtained from both cine-MRI and CT are compared. The com-

parable lack of detail in the cine-MRI segmentation, and the resulting source of positional

uncertainty, is apparent.

Standard practice in MRI-based CFD studies in the LV is to produce a smooth, ap-

proximated endocardial boundary, usually corresponding to the location of the compact

endocardium [199]. Inter-slice interpolation of such a boundary is a simpler task, resulting

in a uniformly smooth surface across the entire volume. However, it has been shown that

the presence of complex endocardial features significantly impact the resulting flow both

quantitatively and qualitatively [194, 222, 135, 161]. The effect of endocardial smooth-

ing, or positional uncertainty in general, has not been quantified for PINN-based models

such as ours, where the presence of flow data in the chamber alongside the boundary

condition is likely to pose unique challenges. In CFD simulations, flow results are highly

dependent on the imposed boundary conditions, where small inaccuracies in position or

velocity may significantly impact results. However, with PINN-based models, predictions

are constrained primarily by the available 4D-flow MRI data, with the boundary condition

imparting less influence, at least far from the wall.

In this study, we quantify the impact of endocardial smoothing on predicted solution fields,

assessing results using a number of distinct boundary approximations across increased

levels of smoothing. Three patient-specific geometries are used to obtain three distinct

cases of ground truth flow data, each including a high level of endocardial detail such as

trabeculations and papillary muscles. The resulting CFD data are therefore dependent on

these complex wall structures, and the purpose of this study is to determine whether the

PINN super-resolution model can still reasonably predict all necessary variables without

full knowledge of the endocardial structure. For simplicity, we assume that the motion,

and thus velocity, of the boundary, which is again prescribed using an analytical function,

is known across all boundary representations, and thus the task is restricted to quantifying
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sensitivity to error in position. A schematic for this experiment can be found in Fig. 4.2.

Figure 4.2: Assessing the impact of positional uncertainty – experimental setup. (A-C) CFD
data are generated in patient-specific LV geometries, segmented from end-diastolic CT imaging data
with trabeculae carneae and papillary muscles present. (D) Synthetic 4D-flow MRI data (denoted
syn. 4D-flow MRI) are generated from the CFD results, to be used as flow measurement training
data. (E) From the high-resolution CT segmentation, three distinct boundary representations are
produced, namely S1, S2 and S3, each generated using different quantities of smoothing. (F) From
these, three sets of boundary condition and collocation point clouds, and associated velocities,
are generated. (G) Individual PINN models are then used to produce results across each of the
boundary representations for comparative analysis.

4.2.2 Synthetic Data Generation

4.2.2.1 Ground Truth Flow Data

Acquisition and Segmentation

The image data used in this study were provided by the Multi-Modality Whole Heart Seg-

mentation (MM-WHS) challenge [244], from which we randomly selected three LV volumes

acquired using computed tomography (CT) imaging. Each volume was acquired in end-

diastole, with an in-plane resolution of 0.78mm2 and a slice thickness of 1.6mm, capable of

accurately extracting many of the complex features on the endocardium. The MM-WHS

challenge contains a mixture of healthy and impaired subjects, suffering from a variety

of cardiovascular diseases, including cardiac function insufficiency (NYHA II), cardiac

edema, hypertension (III), sick sinus syndrome, arrhythmia, atrial flutter, atrial fibrilla-

tion, artery plaque, coronary atherosclerosis, aortic aneurysm (dilated aorta), Tetralogy of

Fallot (right ventricle hypertrophy), dilated cardiomyopathy (left ventricle), aortic steno-

sis, pulmonary artery stenosis or a combination of the above. This produces geometries

with a range of shapes and sizes. The specific condition of the cases used in this study is
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unknown, however, the cases were selected to cover a range of ventricular volumes.

Ground truth LV volumes, with which CFD simulations were performed, were segmented

using the open source medical image processing software 3D Slicer (http://www.slicer.org)

[73], where the grow from seeds region growing algorithm was used. This resulted in

three surface geometries that displayed a realistic level of wall detail, including trabeculae

carneae and protrusions from papillary muscles. The ground truth LV volumes produced

for this study were compared with the reference endocardium segmentations included

within the MM-WHS data set to ensure consistency, with good agreement shown between

our segmentations and those produced by the authors of the data set.

The three segmented geometries are illustrated in Fig. 4.3.

Figure 4.3: Segmented surface geometries from three patient-specific CT image sets, namely
cases A,B and C.

CFD Setup

The CT image data provided in the MM-WHS challenge set were obtained at one fixed

time point, in end diastole, and thus motion could not be derived directly from a sequence

of volumes as with functional MRI-based studies. Therefore, we utilised an analytical

function to prescribe the node-wise motion of the endocardium throughout the cardiac

cycle. A sinusoidal function was used to define the motion in time, controlling radial and

axial contraction and dilation, and, distinct from the approach used in chapter 3, torsional
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motion. Under torsional motion, the apex of the LV was rotated by approximately 15◦ −

25◦, based on values suggested in [201], whilst the base remained fixed in space. The

range of values explored was constrained by numerical stability of the surface during CFD

simulation. The equations governing boundary node displacement at time step i + 1 are

given by:

xi+1 = ri(1− RSiδitz
i) cos(ϕi +TSiδitz

i), (4.1)

yi+1 = ri(1− RSiδitz
i) sin(ϕi +TSiδitz

i), (4.2)

zi+1 = zi(1 + ASiδit), (4.3)

where

Si = − sin(2πti), (4.4)

r(x, y) =
√
x2 + y2, (4.5)

and

ϕ(x, y) =


tan−1(y/x), if x > 0 and y > 0

tan−1(y/x) + 2π, if x > 0 and y < 0

tan−1(y/x) + π. otherwise/

Constants R, A and T are used to control the amount of radial, axial and torsional motion

respectively, whilst δit represents the time step size at time step i. The current time is

given by ti. For cases B and C, we used R = 45, T = 75 and A = 0.3, whereas for case A we

used R = 22.5, T = 75 and A = 0.3. These values were selected empirically for numerical

stability during the CFD simulation, where case A required a lower amount of radial

compression since the lower initial chamber volume resulted in challenging deformation of

the mesh.

The mitral valves used in this study transition directly from fully open to fully closed, and

mitral valve leaflets have not been included (with no fluid-structure interaction modelled on

the leaflets). Further, the boundary condition on the papillary muscles does not account

for contraction and relaxation throughout the cardiac cycle, and these features do not

directly attach (via chordae tendineae) to the mitral valve. Although this presents a

simplification, it was deemed that the impact on the fluid flow characteristics within the

modelled LV would be limited, and therefore this detail was omitted. It is also worth

noting that the ground truth data, alongsise the boundary condition as used by the PINN

model, is produced using this condition.
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The use of a sinusoidal function to dictate temporal motion of the endocardium is an over-

simplification of myocardial deformation, where the use of realistic LV volume curves to

produce distinct A-wave and E-wave phases would be more accurate. However, the focus

of this study is the recovery of high-resolution ground truth solution fields from synthetic

4D-flow MRI data, and thus the use of realistic myocardial deformation is not necessarily

required, so long as the solution complexity in the ground truth flow data is sufficiently

similar to real LV flow.

As with chapter 3, the Navier-Stokes equations were solved via DNS.

4.2.2.2 Synthetic 4D-flow MRI

Synthetic 4D-flow MRI data were obtained following the same workflow as outlined in

section 3.2.2.2. To replicate realistic acquisition conditions, the 4D-flow MRI data should

be masked using the approximated LV segmentations, which would include some flow

voxels that correspond to tissue regions. In the magnitude images, these voxels contain

zero values since there is no signal present. This produces uniform noise, which scales with

the encoding velocity (venc), in the corresponding regions in the phase images [75], which

can therefore induce severe corruption. Since we are primarily concerned with positional

uncertainty in this study, we neglect to include such tissue regions in our synthetic 4D-flow

MRI data.

For each case in this section, the synthetic 4D-flow MRI data were generated to achieve a

spatial resolution of 3mm3, a temporal resolution of 48ms and a SNR of 10. The spatio-

temporal resolution was selected to align with expected values in typical cardiac 4D-flow

MRI studies [23], which corresponds to spatial and temporal downsampling rates of 4

and 5, respectively. The particular SNR value used can be considered relatively low when

compared to synthetic 4D-flow MRI studies in the literature [155, 72, 75], but was selected

to demonstrate the effectiveness of our model under challenging conditions.

4.2.2.3 Boundary Representations

For each case, A,B and C, we generated three boundary approximations, Si
1, S

i
2 and

Si
3 for i ∈ {A,B,C}, where smoothing operations were applied sequentially to remove

progressively larger features from the surface. The surface smoothing was performed in

3D Slicer (http://www.slicer.org) [73] using the ‘closing holes’ and ‘Gaussian’ smoothing

2025 99



The University of Leeds Chapter 4

operations. The ‘closing holes’ operation fills sharp corners and holes smaller than the

specified kernel size (in mm), and does not remove any material from the segmentation.

This operation is used to add material to the segmentation, which has the effect of dilating

the endocardial surface. The ‘Gaussian’ operation smooths all details with a specified

kernel size (in mm), which typically shrinks the segmentation. This operation is used

to smooth the smaller details that remain on the segmentation after the ‘closing holes’

operation has been applied. The surfaces with the highest level of smoothing applied, Si
1,

were designed to replicate segmentation of the compact endocardium, in which all wall

features and protrusions are removed. Details of the parameters used for the smoothing

operations used can be found in Tab. 4.1, with the corresponding surfaces produced (for

case C) shown in Fig. 4.4.

Table 4.1: Details of the smoothing parameters used to reconstruct surfaces Si
1, S

i
2 and Si

3 for
cases A, B and C.

Surface Closing holes (mm3) Gaussian (mm3)

Si
3 5 1

Si
2 10 1.5

Si
1 20 2

Figure 4.4: The endocardial surfaces reconstructed using smoothing operations outlines in Tab.
4.1, for LV case C.

A limitation in this study is the procedure used to downsample the LV volumes, where

smoothing operations are applied directly to the surface. A more appropriate workflow

may be provided by artificial downsampling of the CT images, both in-plane and through-

plane, to match the typical resolution and slice thickness of cine-MRI before segmenting

the low-resolution LV volumes. However, it was deemed that smoothing the surfaces

directly would not significantly affect the objectives of this study, although this may be a

beneficial avenue for further research.
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4.2.3 PINN Model

The model used in this chapter, and associated components, is that established in chapter

3. As such, the PINN model architecture is composed of a Siren network [206] and utilises

the self-adaptive PINN (SA-PINN) loss weighting scheme [158].

4.2.3.1 Hyperparameter Optimisation Studies

As in chapter 3, the establishment of a common model configuration for the three cases

introduced in this chapter is important. Here, we keep spatio-temporal resolution and

SNR fixed across cases, however the geometry, boundary motion and simulated flow are

different. As in chapter 3, the Bayesian tree-structured Parzen estimator algorithm from

the Python package Hyperopt [19] is again utilised here to perform optimisation studies.

Since three distinct cases are considered here, the goal is not to establish an optimal model

configuration for each geometry, but instead identify a range of common hyperparameter

values that perform adequately in each case. In each case, the ground truth boundary

condition was used so that an effective model configuration could be identified without

considering the effects of positional uncertainty. Data were downsampled by a factor of

2 in both space and time, with a SNR of 10. An initial, exhaustive study was performed

using case A, the search space of which can be found in Tab. 4.2. Given the similarities in

problem setup between cases, it was a assumed that a more restricted search space could

be used for cases B and C, based on the exclusion of model configurations that performed

poorly in the initial optimisation study. As such, the restricted search space can be found

in Tab. 4.3. For the parameter ηp, the lower bound is also extended slightly, as is the

upper bound of ηd.

Table 4.2: The complete search space identified for hyperparameter optimisation studies in case
A. The parameter Np here represents the percentage of the total collocation cloud used, with a
maximum value of 160M points. The upper bound for Np, selected to be 30%, was required to
reduce the overall training time. Training runs performed above this value were prohibitively slow.

Complete search space

Hidden layers [5 . . 9]
Neurons per layer [400 . . 800]
Batch size [500 . . 8000]
Dropout rate [0.1, 0.9]
Siren initialisation frequency (ω0) [1 . . 30]
PDE loss SA-PINN learning rate (ηp) [0.0001, 0.05]
Data loss SA-PINN learning rate (ηd) [0.001, 0.1]
BC loss SA-PINN learning rate (ηb) [0.0001, 0.05]
Np (%) [1 . . 30]
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Table 4.3: The restricted search space identified for hyperparameter optimisation studies in cases
B and C.

Restricted search space

Hidden layers [8 . . 9]
Neurons per layer [500 . . 800]
Batch size [4000 . . 8000]
Dropout rate [0.1, 0.9]
Siren initialisation frequency (ω0) [1 . . 30]
PDE loss SA-PINN learning rate (ηp) [0.00005, 0.01]
Data loss SA-PINN learning rate (ηd) [0.05, 0.15]
BC loss SA-PINN learning rate (ηb) [0.01, 0.05]
Np (%) [20 . . 30]

4.2.4 Mesh Independence Study

We evaluate mesh convergence in one case, namely case A, by analysing velocity and

pressure errors at one time step along three lines of interest, as seen in Fig. 4.5a. The

time step was chosen to be in late-diastole in the final completely simulated cardiac cycle.

The most complex flow features are observed in late-diastole, and thus we would expect

to find the greatest level of deviation here. Further, by selecting the final cardiac cycle,

we eradicate any effects from poor initialisation. We produce results at three resolutions,

given by fine (12,892,639 elements), medium (8,375,301) and coarse (3,771,507 elements)

meshes. Given the similarity between cases, and by using an identical meshing procedure

across each, it is sufficient to perform the mesh independence study once.

(a) (b)

Figure 4.5: Lines of interest used to compare mesh results (left) and top-down slice displaying
the medium mesh resolution (right).
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In Tab. 4.4, we compare relative errors of both pressure and velocity for the coarse and

medium meshes (against the fine mesh). The medium mesh obtains mean relative errors

of 3.4% and 0.16 % for velocity and pressure, respectively, which falls within an acceptable

tolerance of accuracy. In Fig. 4.6, we plot velocity and pressure profiles for each mesh

across our three lines of interest. We find the profiles for medium and fine meshes match

well across each line investigated. Given the similarity in results using the medium and

fine meshes, we conclude that the solution obtained with the medium mesh is satisfactorily

independent of the mesh resolution, and therefore will be used across all studies.

Table 4.4: Relative error (from fine mesh) of selected variables for coarse and medium meshes at
three lines of interest.

Variable Mesh Horizontal line Vertical line Mitral valve line Mean

Velocity Coarse 0.1485 0.0516 0.0384 0.0795
Medium 0.0594 0.0077 0.0348 0.034

Pressure Coarse 0.0381 0.0324 0.0358 0.0354
Medium 0.0019 0.0016 0.0014 0.0016

4.3 Results

4.3.1 Optimisation Studies

Results for the extended hyperparameter optimisation study, using only case A, can be

found in Fig. 4.7. As in chapter 3, the respective learning rates for each loss term optimiser

in the SA-PINN scheme, given by ηp, ηd and ηb, played an important role in the accuracy

and convergence of PINN model configurations. In Fig. 4.7a, a clear relationship between

ηd and ηp emerges, where runs performed using high values of ηd and low values of ηp

produced the most accurate results. This is corroborated in Fig. 4.7c, where it can be

observed that RMSu decreases as the ratio ηp/ηd decreases. The ratio between BC loss and

data loss learning rates, ηb/ηd, also appears to play some role, although from Fig. 4.7b, the

main influence is seemingly exerted by ηd as opposed ηb, given more pronounced variation

in the horizontal axis than the vertical axis. There is no obvious trend when considering

the total number of collocation points used, as seen in Fig. 4.7. The expected result would

be that a greater number of collocation points produces the most accurate results, but

that does not transpire, where the best three configurations use Np ≈ 10− 15%.

Results from the restricted optimisation study, where cases A,B and C are included, can

be found in Fig. 4.8. Ratios between ηp, ηd and ηb are again compared. As demonstrated

by the reported RMSu values across the three cases, the search space identified for the
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Comparing velocity (left column) and pressure (right column) profiles of three mesh
resolutions across each line of interest, defined in Fig. 4.5a.
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Figure 4.7: Optimisation study results for case A, primarily examining the impact of the respec-
tive SA-PINN learning rates, ηp, ηd and ηb. Comparisons between ηd and ηp (a), and ηd and ηb
(b) are shown. Analysis of the ratios between learning rates is performed (c), alongside the impact
of collocation point set size, Np. In (a-c), marker colour and size is defined by RMSu and Np,
respectively.

Figure 4.8: Restricted optimisation study results for all cases, examining the impact of ratios
between the respective SA-PINN learning rates, ηp, ηd and ηb. Marker colour and size is defined
by RMSu and Np, respectively, with reported values in (b) referring to ω0.
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restricted study (as shown by the box in Fig. 4.8a) appears to define an appropriate range

of ηp, ηd and ηb values. There are some outliers for case B, however, the reported ω0 values

(which were only included for configurations with ω0 > 25) explain this, where ω0 values

close to 30 appear to negatively affect results.

Above values of ∼ 1000, batch size was found have minimal impact on performance,

similarly for depth (above ∼ 6 layers) and width (above ∼ 600 neurons per layer).

The optimal configurations uncovered for individual cases A, B and C can be found in

Tab. 4.5, alongside the shared configuration to be used across all three cases. The shared

configuration was selected based on aggregating the five best performing runs in each

individual study, instead of basing this choice entirely on the optimal configurations in

each case.

Table 4.5: Optimal individual hyperparameter configurations for cases A, B and C, alongside a
shared configuration to be used across all cases.

Hyperparameter Case A Case B Case C Shared configuration

Hidden layers 6 8 8 6
Neurons per layer 687 746 785 750
Batch size 2885 5309 5180 4000
Dropout rate 0.71 0.47 0.776 0.65
ω0 19 7 13 12
ηp 0.0003 0.0015 0.0044 0.0045
ηd 0.0853 0.1319 0.1033 0.113
ηb 0.0165 0.0350 0.0126 0.024
Np (%) 12 25 24 20

4.3.2 Clinically-Relevant Quantities

4.3.2.1 Velocity Field

To assess the performance of our PINN model, we first analyse its ability to reconstruct

the velocity field, as per chapter 3. We use RMSu, ASI and MSI to assess results across

the three boundary representations, and compare these against the synthetic 4D-flow MRI

data. In Tab. 4.6, velocity errors are obtained using each PINN configuration for each

case, alongside those derived directly from the synthetic 4D-flow MRI data. Error values

for the synthetic 4D-flow MRI data are calculated through nearest neighbour interpolation

of the high-resolution ground truth data onto the low-resolution grid, whereas PINN error

metrics are obtained directly on the ground truth grid. Additionally, the PINN error

metrics are obtained at all time points in the ground truth data, where the synthetic
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Figure 4.9: Case A: Velocity magnitude contour plots in late-diastole at short-axis and long-axis
planes. Fields derived from synthetic 4D-flow MRI (left), our three PINN configurations (centre)
and the ground truth velocity data (right).

Figure 4.10: Case B: Velocity magnitude contour plots in late-diastole at short-axis and long-axis
planes. Fields derived from synthetic 4D-flow MRI (left), our three PINN configurations (centre)
and the ground truth velocity data (right).
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4D-flow MRI data are downsampled by a factor of 4 in time. As such, 75% of the spatio-

temporal coordinates at which PINN error metrics are evaluated are obtained at time

points for which no flow data is present. This helps in explaining why the synthetic

4D-flow MRI data attains better scores for both similarity indices, although all PINN

configurations achieve lower RMSu values across the three cases.

In Figs. 4.9, 4.10 and 4.11, we compare PINN-derived velocity fields with the synthetic

4D-flow MRI data and the ground truth field. The PINN is able to effectively de-noise

the velocity fields, although regions of peak velocity in the mitral jet are not fully resolved

across all three cases. Flow near the valve region is also not accurately reconstructed by

the PINN, since knowledge of the valve structure is assumed to be unavailable and thus

the no-slip boundary condition is not applied to the valve leaflets. However, given that the

flow reconstruction within the chamber is generally unaffected, such discrepancies around

the valve are not important for the current study as the clinically-relevant quantities that

are discussed in this chapter are measured deeper in the ventricle. In case A, PINN

predictions across all boundary configurations exhibit streaking artefacts in the mitral jet.

As a consequence of the simplified endocardial motion, the mitral jet penetrates deeply into

the ventricular chamber, particularly in Cases A and B. This arises due to the relatively

slow expansion of the chamber, as prescribed by the sinusoidal function in this synthetic

study. This causes an abrupt stalling of the inflow jet towards the apex of the ventricle.

In reality, diastolic filling occurs in two distinct phases - E-wave and A-wave - which both

occur, individually, over short time scales. During E-wave filling, the myocardium expands

rapidly through relaxation to induce filling, with deceleration of the mitral jet occurring

closer to the base of the ventricle. Similarly, during A-wave filling the left atrium contracts

rapidly to force blood into the ventricle, again inducing deceleration closer to the base.

It is perhaps important to note that, while the ground truth flow data may not entirely

reflect what is observed within the true LV, this likely does not invalidate the effectiveness

of the PINN model. The key challenges for the model in this setting are super-resolution

of flow across a range of length and time scales within heavily deforming domains, for

which artificial positional uncertainty is introduced. These challenges are present within

the ground truth flow data used here, and it is unlikely that the PINN model would

not be applicable to data that were more realistic. Similar penetration of the mitral jet

is observed, for instance, in experimental studies [232], which are still considered to be

realistic.
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Figure 4.11: Case C: Velocity magnitude contour plots in late-diastole at short-axis and long-axis
planes. Fields derived from synthetic 4D-flow MRI (left), our three PINN configurations (centre)
and the ground truth velocity data (right).

In Fig. 4.11, it is apparent that a number of holes are present through the ground truth

slices. These are produced by the papillary muscles penetrating through the blood pool,

and large-scale trabeculations present on the endocardial surface. This case exhibited a

number of large trabeculations on the endocardial surface, which are reproduced in the

reference segmentations as provided within the MM-WHS data set. The cause for such

features is not apparent, however, it can be assumed that the impact on the ground truth

flow data is similar to that of the papillary muscles.

Table 4.6: Error metrics for predicted velocity and pressure fields, alongside values derived
directly from synthetic 4D-flow MRI. Reported RMS values are RMS ± one standard deviation of
the relative error, and reported SI values are SI ± one standard deviation of SI.

Case RMSu ASI MSI

A PINN-S1 0.068± 0.053 0.881± 0.192 0.940± 0.076
PINN-S2 0.068± 0.054 0.881± 0.194 0.940± 0.077
PINN-S3 0.065± 0.051 0.886± 0.190 0.942± 0.076
Syn. 4D-flow MRI 0.072± 0.049 0.895± 0.180 0.967± 0.043

B PINN-S1 0.073± 0.055 0.905± 0.179 0.947± 0.069
PINN-S2 0.072± 0.054 0.907± 0.175 0.946± 0.066
PINN-S3 0.072± 0.055 0.906± 0.176 0.945± 0.069
Syn. 4D-flow MRI 0.089± 0.057 0.918± 0.153 0.960± 0.048

C PINN-S1 0.073± 0.052 0.909± 0.176 0.945± 0.064
PINN-S2 0.070± 0.051 0.916± 0.166 0.947± 0.062
PINN-S3 0.068± 0.050 0.916± 0.169 0.948± 0.062
Syn. 4D-flow MRI 0.081± 0.043 0.909± 0.157 0.961± 0.038
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4.3.2.2 Vorticity

Vorticity, defined as:

ω = ∇× u, (4.6)

is a vectorial quantity that describes the rotational motion of a continuum of fluid, and

has emerged in recent years as a variable of interest for cardiac haemodynamic analyses.

Guided by studies in the literature, in particular those that utilised 4D-flow MRI, a se-

lection of vortcity parameters at relevant time points were identified, which can be found

in Tab. 4.7. Details on such studies and associated vorticity parameters can be found in

section 2.2.3 in chapter 2.

Table 4.7: A list of vorticity (ω) parameters analysed in this study with their respective descrip-
tions.

SSIMt Structural similarity index against ground truth at time t

MS-SSIMt Multi-scale structural similarity index against ground truth at time t

MIt Mutual information against ground truth at time t

RMStu Max-normalised root mean square error against ground truth at time t

|ω|tmean Mean vorticity at time t

|ω|tpeak Peak vorticity at time t

εC Absolute error of vortex core centre point from ground truth

εθ Absolute error of vortex core orientation from ground truth

As vorticity is calculated by taking spatial derivatives of the velocity field, it is highly

susceptible to low spatial resolution and noise corruption in the measured velocity field

[42]. As a consequence of the former, averaging of flow values across voxels results in less

sharp changes in velocity, and thus lower magnitude spatial gradients. As such, vorticity

values derived directly from 4D-flow MRI data are likely to be under-predicted. This

effect is visualised in Fig. 4.12, where it can be observed that the synthetic 4D-flow MRI

data with the lowest spatial resolution produces reconstructions of the lowest quality, with

significant under-prediction of vorticity. This is apparent qualitatively, but is also reflected

in the quantitative values. The influence of noise is less pronounced, as observed across

the other two data configurations. Reduction of the SNR to 6.6 from 10 results in slightly

increased mean vorticity, but coincides with a decrease in peak vorticity.

In Tabs. 4.8 and 4.9, vorticity errors across all cases are quantified at four distinct phases

of the cardiac cycle for the three PINN configurations and the synthetic 4D-flow MRI data,

the latter of which is linearly interpolated onto the ground truth mesh for comparison. All
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Figure 4.12: Case B: Demonstrating the impact of SNR and spatial resolution on vorticity
reconstruction. Contour plots of vorticity magnitude in late-diastole at short-axis and long-axis
slices, derived from synthetic 4D-flow MRI data at three distinct downsampling configurations,
alongside ground truth vorticiy fields.

Table 4.8: Max-normalised vorticity RMSE at 4 time points, namely mid systole (TMS), early
diastole (TED), mid diastole (TMD), and late diastole (TLD), comparing performance of each
PINN configuration against the synthetic 4D-flow MRI data, which here is interpolated onto the
ground truth mesh to provide error values.

Case RMSMS
v RMSED

v RMSMD
v RMSLD

v

A PINN-S1 0.0504 0.0479 0.0518 0.0655
PINN-S2 0.0507 0.0479 0.0517 0.0675
PINN-S3 0.0498 0.0478 0.0515 0.0643
Syn. 4D-flow MRI 0.0531 0.0492 0.0537 0.0691

B PINN-S1 0.0681 0.0514 0.0501 0.0831
PINN-S2 0.0674 0.0513 0.0499 0.0814
PINN-S3 0.0671 0.0514 0.0498 0.0814
Syn. 4D-flow MRI 0.0708 0.0547 0.0525 0.0896

C PINN-S1 0.0675 0.0477 0.0556 0.0674
PINN-S2 0.0667 0.0475 0.055 0.0642
PINN-S3 0.0665 0.0474 0.0546 0.0616
Syn. 4D-flow MRI 0.0681 0.0511 0.0577 0.0649
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Figure 4.13: Case B: Contour plots of vorticity magnitude in late-diastole at short-axis and
long-axis slices, derived directly from the synthetic 4D-flow MRI data (left), alongside the ground
truth vorticity data (right) and PINN predictions acorss three boundary configurations (centre).

PINN configurations provide more accurate reconstructions than direct measurement from

synthetic 4D-flow MRI, as is demonstrated with each error metric. The most pronounced

difference can be observed for the MS-SSIM metrics, where significant improvement over

the synthetic data is observed. Both of these metrics assess global differences between

structures within each field, and therefore, slight misalignment of the vortices are not as

heavily penalised as with point-wise metrics like RMS. Of the four phases of the cardiac

cycle investigated, the highest errors are attained in late-diastole, for both PINN predic-

tions and synthetic 4D-flow MRI. This is, perhaps, to be expected, where breakup and

dissipation of the mitral vortex ring produces small-scale coherent structures that are chal-

lenging to reconstruct to the level of detail present in CFD results, as observed in Fig.

4.13.

In Tab. 4.10, results from Tabs. 4.8 and 4.9 are condensed to provide mean and standard

deviation values across all time steps and cases. Using T-tests, shared p-values for each

error metric, across all PINN configurations, range from 0.27 to 0.92, demonstrating mini-

mal variation in accuracy across each boundary representation. Similar analysis comparing

collated PINN results with synthetic 4D-flow MRI produces p-values well under 0.05 for

all metrics except RMSv, which produces a p-value of 0.43. As discussed above, point-wise

error quantification on gradient fields with sharp features and large peak values heavily

penalises misalignment of features, and thus the PINN configurations generally perform

poorly with RMSv. These results demonstrate that significantly improved vorticity results

can be obtained using the PINN model. Further, minor variation in results across PINN
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boundary configurations suggests that positional uncertainty in the endocardium plays a

minimal role in vorticity reconstruction.

Qualitatively, the PINN predictions are of a higher quality than direct calculation of

vorticity from the synthetic 4D-flow MRI data, as can be seen in Fig. 4.13. Although peak

vorticity values are visually not captured, the vortical structures present in the flow field

are more refined and are present in the correct regions of the LV. Such under-estimation

of peak vorticity is reflected quantitatively in Tab. 4.11, where peak and mean vorticity

values are produced at three phases of the cardiac cycle. Across all PINN configurations

in each case, both peak and mean vorticity are under-predicted (except PINN predictions

of peak vorticity for case C in mid-systole and early-diastole), with significant variation

in peak vorticity across PINN boundary configurations. Mean vorticity is predicted more

consistently across PINN boundary representations, with relative errors ranging from 0.6%

to 36%. For comparison, results obtained through direct calculation of vorticity from

synthetic 4D-flow MRI are under-predicted by as much as two orders of magnitude.

Table 4.9: Vorticity MS-SSIM at 4 time points, namely mid systole (TMS), early diastole (TED),
mid diastole (TMD), and late diastole (TLD), comparing performance of each PINN configuration
against the synthetic 4D-flow MRI data, which here is interpolated onto the ground truth mesh to
provide error values.

Case MS-SSIMMS MS-SSIMED MS-SSIMMD MS-SSIMLD

A PINN-S1 0.769 0.781 0.78 0.731
PINN-S2 0.778 0.793 0.813 0.736
PINN-S3 0.793 0.816 0.822 0.754
Syn. 4D-flow MRI 0.638 0.695 0.729 0.613

B PINN-S1 0.821 0.86 0.857 0.861
PINN-S2 0.821 0.864 0.858 0.859
PINN-S3 0.822 0.871 0.858 0.853
Syn. 4D-flow MRI 0.682 0.744 0.763 0.717

C PINN-S1 0.871 0.806 0.824 0.798
PINN-S2 0.871 0.811 0.832 0.804
PINN-S3 0.877 0.839 0.851 0.824
Syn. 4D-flow MRI 0.762 0.678 0.754 0.695

Table 4.10: Vorticity error metrics across all evaluated time points, calculated for individual
configurations across all three cases, alongside collated results for all configurations and those
derived directly from synthetc 4D-flow MRI. Reported values are mean ± one standard deviation,
accounting for variation across cases and time steps.

Configuration RMSv MI SSIM MS-SSIM

PINN-S1 0.059± 0.011 1.225± 0.069 0.739± 0.047 0.813± 0.042
PINN-S2 0.058± 0.010 1.234± 0.055 0.745± 0.044 0.820± 0.038
PINN-S3 0.058± 0.010 1.230± 0.055 0.752± 0.040 0.832± 0.033
PINNall 0.058± 0.010 1.230± 0.060 0.746± 0.044 0.822± 0.039
Syn. 4D-flow MRI 0.061± 0.011 1.147± 0.062 0.623± 0.047 0.706± 0.046

Such large discrepancies between predicted and ground truth mean and peak vorticity
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Table 4.11: Peak and mean vorticity values in mid systole (TMS), early diastole (TED) and mid
diastole (TMD), for each PINN configuration, synthetic 4D-flow MRI and ground truth data.

Case |ω|MS
peak |ω|MS

mean |ω|ED
peak |ω|ED

mean |ω|MD
peak |ω|MD

mean

A PINN-S1 519.7 34.7 244.7 22.2 519.3 48.3

PINN-S2 970.5 39.4 418 24.1 1905.3 59.5

PINN-S3 391.8 38.3 309.3 24.8 865.2 61.4

Syn. 4D-flow MRI 98 23.6 122.4 6.6 216.3 43.5

Ground truth 1638.6 75.6 659.4 43.9 2747.7 131.1

B PINN-S1 865.8 42.4 595.8 30.2 869.6 52.2

PINN-S2 455.5 58.8 365.1 28.8 791.2 49.3

PINN-S3 313 37.3 218.8 28 777.2 49

Syn. 4D-flow MRI 143.2 25.6 124.5 19.4 163.4 38.2

Ground truth 1107.1 73.1 686.5 50.7 1463.1 112.2

C PINN-S1 478.5 20.5 634.1 28.4 1349.5 38.8

PINN-S2 413.5 18.2 370.2 24.6 992.9 32.9

PINN-S3 394.8 17.4 474 26.7 966.7 33.9

Syn. 4D-flow MRI 85 6.6 49.8 6 150.7 11.9

Ground truth 350.6 29.4 448 51.2 1661.2 71.4

values can be partially explained by analysing the differences in the endocardial boundary.

As can be seen in the short-axis plots in Fig. 4.13, vorticity values with the greatest

magnitude are attained near the flow boundaries. As such, peak and mean vorticity

are highly dependent on the position of the boundary and, in particular, the tangential

velocity of the fluid in adjacent regions. The ground truth CFD data generated with the

real endocardial boundaries experience interactions between high-velocity flow and the

wall, generating large velocity gradients. Conversely, the approximated boundaries used

by the PINN models typically lie outside of the masked flow domain, and thus no synthetic

4D-flow MRI measurements exist in close proximity to the wall. As such, near-wall flow

is generally of a lower velocity, producing smaller gradients. There are exceptions to this,

which can be seen in near-wall regions that share some topology with the ground truth

endocardium in Fig. 4.13.

The centre point and orientation of the mitral vortex ring in diastole has been explored

previously as a marker for cardiac disease [64, 63, 54]. Here, we investigate errors in

the vortex core centre point, εc, and angle of penetration, εθ, across PINN predictions

and measurements made directly from synthetic 4D-flow MRI data. The vortex cores are

formed using the Q-criterion, which is defined as

Qcrit =
1

2

(
||Ω||2 − ||S||2

)
, (4.7)
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for vorticity tensor Ω and strain rate tensor S. It is used in the field of fluid dynamics

to visualise coherent structures, which can be considered vortices [113], since it isolates

regions of flow where either rotational or viscous effects dominate. To isolate the vor-

tex ring, an appropriate Q-criterion value is first selected so as to maximise the vortex

ring volume whilst removing any trailing features and maintaining a fully connected ring.

Whilst the volume of the vortex ring is sensitive to the choice of Qcrit, c and θ are less

so. Further, since we are considering the error in c and θ between model predictions and

ground truth data, the selected Qcrit values are consistent across all prediction types. For

cases A and B, a value of Qcrit = 1000 was used, whereas for case C, a value of Qcrit = 500

was used. Then, all coherent structures in the domain except the largest connected region

are discarded, leaving only the vortex ring. For ground truth isosurfaces, some manual

clipping is also required to remove trailing features that intersect the vortex ring. Once

the ring is isolated, the centre point, C, is identified as the centre of mass of the structure.

The angle of penetration, θ, is defined by the normal vector direction to the best fit plane

through the vortex ring, which is constructed using singular value decomposition. In Fig.

4.14, a visual explanation of the parameters C and θ is provided.

Figure 4.14: Two variables of interest in vortex core analysis, vortex core centre position and
angle of penetration. Instead of calculating values for C and θ, we instead only analyse errors in
both measurements.

In the literature [64, 63, 54], C and θ are defined relative to a cylindrical cardiac coordinate

system, allowing for comparison and analysis across cases. However, here we are only

interested in the accuracy of such measurements, and thus we only analyse the error
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between the measured vortex core parameters and the ground truth values, given by εc

and εθ. In Fig. 4.15, qualitative and quantitative assessment of vortex ring formation

is performed for synthetic 4D-flow MRI data, PINN predictions and ground truth flow

data in case C in mid-diastole. Visually, delineation of the vortex ring directly from

synthetic 4D-flow MRI data appears a feasible approach. However, from εGT values in

Tab. 4.12, errors in the vortex centre position exceed those of all PINN predictions in

each case. Additionally, errors in the angle of penetration are reduced using the PINN

model in cases A and B (except for PINN-S3 in case A), although they are increased in

case C. Vortex ring orientation can vary across subjects by as much as 83◦ [63], and as

such, errors of ∼ 10◦, although not insignificant, are relatively small. Further, extraction

of an isolated vortex ring from the ground truth data is challenging, since there exist

many smaller-scale coherent structures that intersect the main vortex core. As such,

manual clipping of the isosurfaces is required, which cannot completely remove all trailing

features, imparting some influence on the measured vortex centre position and angle of

penetration. When isosurfaces of the Q-criterion are derived from in vivo 4D-flow MRI

data, using either direct measurement or a data assimilation model, the interference of

small-scale coherent structures is typically less problematic. Such structures arise in CFD

data as a consequence of its high spatial resolution, which allows for the reconstruction of

flow features on very small scales. Voxel averaging effects, in both space and time, remove

most of the small-scale flow features present in the velocity field with in vivo flow imaging,

and although some recovery of these features is possible with the PINN model, most of

the smaller coherent structures are not reconstructed. As such, discrepancies in vortex

position and angle arising due to the presence of trailing coherent structures in the ground

truth data are isolated to studies comparing synthetic 4D-flow MRI data with CFD data,

such as this.

To assess variability of results across the three boundary representations, errors in the

position and angle of the mitral vortex ring are also derived from the mean values obtained

across each PINN configuration, which can be found in the εmean values in Tab. 4.12.

Good agreement in vortex ring position is achieved across the three PINN configurations

used in each case, with more significant positional errors arising with results derived from

the synthetic 4D-flow MRI data. Further, errors in the angle of penetration are reduced

across all PINN configurations when compared with the synthetic 4D-flow MRI data. As

such, there is minimal variation across the PINN boundary configurations used, suggesting

that positional uncertainty in the endocardial boundary condition does not significantly

influence reconstruction of the mitral vortex ring.
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Figure 4.15: Case C: Vortex core formation in mid-diastole. Isosurfaces of Qcrit = 500 delineate
the mitral vortex ring in the synthetic (syn.) 4D-flow MRI (left), PINN predictions (centre) and
ground truth data (right). Absolute errors in vortex core centre point, εc, and angle of penetration,
εθ, are displayed underneath each figure.

Table 4.12: Absolute errors in the position and angle of penetration of the mitral vortex ring,
calculated from the ground truth (εGT ) mean values across PINN configurations (εmean).

Case εGT
c (mm) εGT

θ (◦) εmean
c (mm) εmean

θ (◦)

A PINN-S1 1.53 3.67 0.29 2.49
PINN-S2 1.70 5.73 0.52 6.50
PINN-S3 1.85 11.0 0.35 8.99
Syn. 4D-flow MRI 2.67 10.2 2.89 13.1

B PINN-S1 2.66 4.60 0.86 1.95
PINN-S2 1.67 4.80 1.19 1.23
PINN-S3 3.14 2.61 0.81 2.72
Syn. 4D-flow MRI 4.36 11.5 4.28 8.34

C PINN-S1 5.62 10.12 0.51 2.48
PINN-S2 6.84 5.91 1.11 4.10
PINN-S3 5.59 8.36 0.61 2.41
Syn. 4D-flow MRI 7.66 3.38 4.56 4.59
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4.3.2.3 Kinetic Energy

Kinetic energy (KE) is defined as:

KE =
1

2

∫
v
ρ|u|2, (4.8)

for fluid of density ρ in volume v. It has been explored extensively in the literature in

relation to cardiac disease, details of which can be found in section 2.2.3 of chapter 2.

Based on findings from the literature, a collection of KE parameters were identified for

study in this chapter, given in Tab. 4.13. Note that instead of peak E-wave (early diastolic

filling) and A-wave (atrial contraction) KE, which have been investigated in previous

publications, only the peak diastolic KE (KED
peak) is included here. This is because the

simplified LV motion in our synthetic cases does not include distinct E-wave and A-wave

phases. In-plane KE (IPKE) is defined as the proportion of KE that is directed in the

short-axis direction (defined as a percentage), either at a particular cardiac phase or across

the whole cardiac cycle [84, 53, 48]. This is an important variable of interest as KE should

be primarily directed in the apico-basal direction for efficient pumping, with deviations

fromthis arrangement indicative of pathological flow.

Table 4.13: A list of kinetic energy (KE) parameters analysed in this study with their respective
descriptions. For simplicity, all parameters are normalised by the fluid mass.

KEmin Minimum KE value across cardiac cycle

KEmean Mean KE value across cardiac cycle

IPKE Proportion of in-plane KE to total KE

KES
mean Mean systolic KE

KED
mean Mean diastolic KE

KED
peak Peak diastolic KE

In Tab. 4.14, predicted KE parameter values for each PINN boundary configuration are

compared against those extracted directly from synthetic 4D-flow MRI data. The PINN

model reconstructs each parameter to a higher level of accuracy than synthetic 4D-flow

MRI data for all KE parameters, except KED
peak for case C. Aside from KED

mean in case

C, the values extracted directly from the 4D-flow MRI data significantly overestimate the

mean KE. This irregularity can be attributed to the presence of noise in the synthetic

4D-flow MRI data, where near-zero flow regions in the ground truth data are corrupted

by non-zero velocity noise when downsampled to generate the 4D-flow MRI data. This

effect can also be seen in Fig. 4.16, where overall (a-c) and mean KE (d-f) are far higher
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for the synthetic 4D-flow MRI data than PINN predictions and ground truth. In this

context, the de-noising capabilities of the PINN model are demonstrated by the improved

accuracy of mean KE parameters.

In Fig. 4.16, we see that the PINN model provides significant improvement in overall

KE characteristics (a-c), mean KE throughout the cardiac cycle (d-f) and IPKE (g-i)

compared to direct quantification from synthetic 4D-flow MRI. The plots shown in Fig.

4.16 demonstrate only small variations between the three PINN boundary configurations,

particularly when compared to the difference between PINN results and synthetic 4D-flow

MRI data. Across all three cases, mean, peak and median KE decreases slightly from

PINN S1-S3, with the inverse trend demonstrated for in-plane KE. However, differences

are small, and it can be deduced that positional uncertainty in the endocardium does

not heavily influence KE quantification. Conversely, KE parameters derived directly from

synthetic 4D-flow MRI are highly susceptible to noise corruption. It is unclear exactly

what relationship governs the interplay between SNR and KE in 4D-flow MRI data, but

removing this dependency using the PINN model improves the repeatability of results

across cases.

Table 4.14: Quantification of kinetic energy (KE) parameters derived using the three PINN
configurations, synthetic 4D-flow MRI and ground truth data.

Case KEmin KEmean IPKE KES
mean KED

mean KED
peak

A PINN-S1 2.7× 10−9 0.00475 0.514 0.00439 0.00592 0.404
PINN-S2 1.004× 10−8 0.00448 0.525 0.00425 0.0052 0.4
PINN-S3 1.12× 10−9 0.00423 0.538 0.00391 0.00528 0.397
Syn. 4D-flow MRI 9.151× 10−7 0.0114 0.5 0.00743 0.0132 0.417
Ground truth 1.29× 10−14 0.0055 0.613 0.00506 0.00692 0.322

B PINN-S1 4.231× 10−9 0.00547 0.444 0.00508 0.00677 0.233
PINN-S2 1.014× 10−8 0.00518 0.457 0.00487 0.00619 0.238
PINN-S3 8.07× 10−10 0.00472 0.482 0.00451 0.00537 0.248
Syn. 4D-flow MRI 2.765× 10−6 0.0133 0.468 0.0121 0.0126 0.295
Ground truth 6.199× 10−11 0.00654 0.496 0.00636 0.00713 0.245

C PINN-S1 5.68× 10−9 0.003 0.432 0.00274 0.00388 0.117
PINN-S2 1.91× 10−8 0.00292 0.434 0.00266 0.0038 0.117
PINN-S3 2.25× 10−9 0.00275 0.46 0.00252 0.00355 0.116
Syn. 4D-flow MRI 1.837× 10−6 0.0056 0.436 0.00615 0.0038 0.135
Ground truth 1.812× 10−12 0.0032 0.476 0.00294 0.00407 0.132

4.3.2.4 Wall Shear Stress

Wall shear stress (WSS) describes the tangential force applied to a surface through viscous

shearing of the fluid in the boundary layer, and is defined for a Newtonian fluid with
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Figure 4.16: Comparison of kinetic energy (KE) characteristics of synthetic 4D-flow MRI data,
PINN results and ground truth data for cases A, B and C, from left to right. (a - c) box and
whisker plots for point-wise KE across whole cardiac cycle, where the boxes represent the first and
third quartiles, whiskers display maximum and minimum values (with outliers removed), the solid
orange line represents the median value and the green dashed line represents the mean value. (d -
f) mean KE throughout the cardiac cycle. (g - i) in-plane KE throughout the cardiac cycle.
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viscosity µ as:

WSS = 2µS̃ · n̂, (4.9)

for strain-rate tensor S̃ and inward wall-normal vector n̂. WSS is a highly sensitive

variable that requires the accurate calculation of spatial velocity derivatives in the im-

mediate vicinity of the wall region, and therefore high spatial resolution in the near-wall

region is desirable for accurate reconstruction. This requirement proves problematic when

attempting to approximate WSS using 4D-flow MRI, where low spatial resolution can

significantly hamper accuracy [71]. Accurate reconstruction of the boundary layer in the

near-wall region is crucial in calculating realistic velocity gradients, however, this flow fea-

ture is typically far smaller than the minimum voxel volume available to 4D-flow MRI, and

thus not properly resolved. This effect is further exaggerated at higher velocities, where

the thickness of the boundary layer is further reduced and voxel averaging becomes more

problematic [42]. To negate the impact of low spatial resolution, interpolation techniques,

such as parabolic curve fitting, have been investigated to obtain sub-voxel velocity gradient

approximations in the near-wall region [220, 213, 41]. When compared with CFD results

in corresponding geometries, however, significant differences in WSS magnitude were still

noted, although overall the WSS distributions were generally captured appropriately [214].

Figure 4.17: Case C: WSS magnitude on the endocardium in late-diastole, derived directly from
synthetic 4D-flow MRI data (left), from PINN results using four distinct boundary representations
(centre) and CFD ground truth (right). PINN-GT utilises the exact ground truth boundary during
training.

Despite the magnitude of WSS being under-predicted in in vivo imaging studies, an un-

derstanding of the role it plays in the progression of vascular disease is relatively well-
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established, where changes in the intensity or oscillatory characteristics of WSS have been

shown to trigger a response from endothelial cells by means of mechanotransduction,

which can lead to disease [27, 96, 220]. The endocardium is similarly lined with endothe-

lial cells, which have been shown to influence cardiac performance and remodelling [200],

however, few studies have attempted to quantify the relationship with WSS. This is due to

a combination of the aforementioned limitations of 4D-flow MRI but, equally importantly,

limitations in the structural MRI methods used to segment the moving endocardium. As

discussed previously, the complex structures on the surface of the endocardium are not

fully resolved, owing to low spatial resolution of structural cine-MRI, which means the

surface on which WSS is being estimated is not anatomically correct. This is then coupled

with extreme motion of the boundary throughout the cardiac cycle, which is difficult to

accurately capture, resulting in significant uncertainty in both the position and motion of

the endocardium. This makes the task of deriving an accurate WSS approximation in the

LV challenging, and further, given such significant differences in the boundary surface, the

validity of such WSS measurements could also be questioned.

The problem setup outlined in this chapter allows for the characterisation of the relation-

ship between WSS obtained directly from the anatomically-correct endocardium and that

calculated on approximated boundary surfaces. To this end, we compare WSS distribu-

tions across each boundary representation, Si
1 − Si

3, for each case, and compare against

PINN predictions using the ground truth boundary and the ground truth WSS itself.

In Fig. 4.17, contour plots of WSS magnitude on the endocardium are compared in case

C in late-diastole. We analyse results across the three PINN boundary configurations,

S1, S2 and S3, and also compare these against PINN results obtained using the ground

truth boundary, labelled PINN-GT. On the anteroseptal side, the WSS distribution is

approximately correct across PINN-S1, PINN-S2 and PINN-S3, although there is a clear

discrepancy in magnitude compared to the ground truth result. This is somewhat repeated

on the inferolateral side of the LV, although there is a greater drop-off in WSS magnitude.

This side of the LV experiences the greatest difference in boundary surface detail, as is

visible in the figure. As such, it is expected that WSS reconstructions are of the lowest

accuracy here. Quantitatively, peak WSS values increase from PINN-S1 to PINN-S3,

which can be visualised in the anteroseptal view. Conversely, mean WSS decreases, which

is a surprising result. With increasing detail on the approximated endocardium, it would

be expected that WSS accuracy increases too. This hypothesis is supported by the PINN-

GT model, which attains the best qualitative and quantitative results, although there is
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still some under-prediction in WSS magnitude.

Direct point-wise quantification of WSS error is not possible in the current study, since

the surface topology is different between boundary approximation types. Instead, bull’s

eye plots are utilised to quantify errors in mean and peak WSS across seventeen distinct

regions of the endocardium, as implemented in [194]. By subdividing the myocardium into

17 distinct regions, these plots are useful for comparing surface variables in the LV across

distinct topologies, and have been used extensively in the literature to classify regional

parameters such as scar extent [179] and myocardial strain [143]. In Fig. 4.18, the regions

of the endocardium extracted for the bull’s eye plots are displayed. The exact regions in

Fig. 4.18a extend beneath the numbered sections to the next slices, so that the entire

endocardium is dissected.

Figure 4.18: An explanation of the regions of the endocardium extracted during bull’s eye plot
analysis.

In Fig. 4.19, absolute mean WSS values are collated in bull’s eye plots across all config-

urations in each case. As noted in Fig. 4.17, WSS is uniformly under-predicted by all

PINN configurations. In cases B and C, there is little variation across the WSS patterns

obtained using the three PINN boundary configurations, although the PINN model pre-

dictions are uniformly poor when compared against the ground truth. In case B, elevated

mean WSS in the mid anteroseptal region is correctly identified, with PINN-S1 and PINN-

S2 also reconstructing the slightly higher mean WSS around the mid septal and inferior
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Figure 4.19: Bull’s eye plots of absolute mean WSS in mid-diastole, comparing synthetic 4D-flow
MRI, PINN predictions and ground truth.

Figure 4.20: Bull’s eye plots of relative mean WSS in mid-diastole, comparing synthetic 4D-flow
MRI, PINN predictions and ground truth.
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Figure 4.21: Bull’s eye plots of relative mean WSS error (against ground truth) in late-diastole.
Reported values are mean relative error across all segments.

regions. The relatively lower mean WSS in the basal region is also well characterised. In

case C, the elevated mean WSS in the mid anterior and mid anteroseptal regions is well

reconstructed, alongside relatively lower mean WSS in the apical region. Mean WSS is

poorly reconstructed by all three PINN boundary configurations in case A. In Fig. 4.21,

relative mean WSS errors are displayed across all cases. For case A, errors across all PINN

boundary configurations are comparable with the synthetic 4D-flow MRI data. However,

in cases B and C, the PINN offers a pronounced reduction in relative error, although errors

still remain high.

In Fig. 4.20, bull’s eye plots are used again, characterising max-normalised mean WSS,

where normalisation is performed individually for each configuration. This allows for

exposure of the mean WSS distribution, without accounting for differences in magnitude.

Given that WSS is derived on distinct boundary representations, some discrepancy in

magnitude should be expected, but the ability to reconstruct a similar distribution of WSS

could also prove beneficial. For case B, the distribution of mean WSS is generally good

for all three PINN boundary configurations, with significantly elevated mean WSS in the

mid anteroseptal region, and reduced mean WSS in the basal and apex regions. relative

mean WSS is slightly under-predicted across the entire mid region, and with PINN-S3

there is a slight over-prediction in the basal anterior region. For case C, the two regions
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that experience the greatest mean WSS values, the mid anteroseptal and mid anterior

regions, are correctly characterised, alongside comparatively reduced mean WSS in the

apical region. PINN-S1 also correctly reconstructs the reduced mean WSS in the basal

septal region, although PINN-S2 and PINN-S3 fail to do so. Whilst direct calculation from

the synthetic 4D-flow MRI data does correctly provide the elevated mean WSS in the mid

anteroseptal region, relative mean WSS in the basal region is significantly over-predicted.

As is evident from the absolute mean WSS bull’s eye plots, WSS reconstruction in case A

is again poor, with little consistency across PINN configurations.

Bull’s eye plots of absolute and max-normalised peak WSS are shown in Figs. 4.22 and

4.23, respectively, with peak WSS error shown in 4.24. Absolute and max-normalised peak

WSS in cases A and C is generally poorly reconstructed, although in case C all PINN

configurations are able to reconstruct the maximum peak WSS in the correct region,

namely the mid anterior, with relatively low peak WSS in the apical region. Elevated

peak WSS in the mid LV region, with relatively low peak WSS in the basal and apex

regions, is demonstrated for case B across ground truth, PINN predictions and synthetic

4D-flow MRI.

Figure 4.22: Bull’s eye plots of absolute peak WSS in mid-diastole, comparing synthetic 4D-flow
MRI, PINN predictions and ground truth.

As has been well documented [76], direct quantification of WSS from 4D-flowMRI is unreli-

able, which can been seen qualitatively and quantitatively in Figs. 4.17,4.19,4.21,4.22,4.24.

In vascular studies, linear or parabolic curve fitting can be utilised to interpolate the veloc-

ity field in the near-wall region, improving the accuracy of spatial derivative calculations.
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Figure 4.23: Bull’s eye plots of relative peak WSS in mid-diastole, comparing synthetic 4D-flow
MRI, PINN predictions and ground truth.

Figure 4.24: Bull’s eye plots of relative peak WSS error (against ground truth) in late-diastole.
Reported values are mean relative error across all segments.
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However, such approaches assume axisymmetric flow with parabolic profiles in the near-

wall region [38], which is not a valid assumption in the cardiac chambers. As such, they

are not viable methods for comparison in this setting.

Figure 4.25: Case C, mid-diastole: Contour plots of velocity gradient magnitude (large figures
and top row of inserts) and velocity magnitude (bottom inserts) for ground truth solution fields
(left), PINN predictions using the ground truth boundary (centre left), predictions using PINN-S1

(centre right) and synthetic 4D-flow MRI data (right). The red line displayed in the PINN-S1

inserts corresponds to the ground truth boundary position.

In general, results presented in this section suggest that WSS is under-predicted by the

PINN model when using approximated endocardial boundary representations. Given the

discrepancy in boundary position, differences in magnitude are to be expected. Surfaces

S1, S2 and S3 are typically positioned to the exterior of the true flow domain, and as

such, there is no flow data present in the immediate vicinity of the boundary. In the

absence of measurement data, velocities predicted by the PINN in the near-wall region

are likely to be low, which in turn generates lower magnitude velocity gradients. In Fig.

4.25, velocity gradient magnitude in the near-wall region is compared for ground truth,

PINN predictions in both the ground truth boundary and the S1 approximated boundary,

alongside synthetic 4D-flow MRI data. The region for analysis, identified by the black

box in the top row of figures, was selected to be an area with high ground truth WSS

magnitude. This corresponds to an area containing high local velocity gradients in the

near-wall region, which can be observed in the ground truth, and, to a lesser extent, the

PINN-GT fields in the top inserts. As demonstrated by the red line in the PINN-S1 inserts,

the approximated S1 boundary is positioned to the exterior of the true endocardium, and
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therefore does not intersect the higher-velocity flow near the incoming mitral jet to the

same extent. This results in lower velocity in the near-wall region, and thus velocity

gradients of a lower magnitude.

The enforcement of the no-slip boundary condition on the endocardium is key in facili-

tating the quantification of WSS using the PINN model, since it allows for the accurate

calculation of velocity gradients in the near-wall region (relative to the boundary position

and adjacent flow). As such, it is more beneficial to use an approximated boundary con-

dition than no boundary condition at all, even in the presence of positional uncertainty.

Overlooking the under-prediction of WSS magnitudes, the similarities in WSS distribu-

tions between ground truth data and PINN configurations S1, S2 and S3, at least for cases

B and C, suggest that the calculation of WSS on approximated boundaries may still pro-

vide useful information. Further, the variation in WSS magnitude and distribution across

the three PINN boundary configurations, particularly in isolating the peak and minimum

WSS regions, is quite low, demonstrating some level of robustness to small positional

differences in segmented surfaces.

Although the greatest discrepancy in WSS magnitude can be accounted for by positional

uncertainty, the PINN results obtained using the ground truth boundary, PINN-GT, sug-

gest that under-prediction of WSS magnitude remains an issue, as with other methods for

the quantification of WSS from 4D-flow MRI [182, 42, 214]. In Fig. 4.26, 2D histograms

are used to compare the magnitude of WSS derived directly from the ground truth with

that predicted using the PINN-GT configuration, across four phases of the cardiac cycle.

From all four histograms, WSS magnitude appears to be uniformly under-predicted, with

a slightly stronger bias at lower WSS values. Linear and parabolic extrapolation methods

exhibit a strong bias at higher WSS magnitudes [182], with tail-off at under ∼ 1Pa for

the former and ∼ 7Pa for the latter. The PINN model does not appear to be as adversely

affected by such bias at the range of WSS magnitudes tested, with roughly uniform under-

prediction shown. Whilst the work presented here suggests that PINNs could be a suitable

method for quantification of WSS from 4D-flow MRI given more detailed knowledge of a

boundary surface, the particular problem setting is highly complex, with moving bound-

aries and multi-scale flow. Full characterisation of errors arising due to limitations of the

PINN model itself, rather than positional uncertainty, should be performed in simpler test

cases, using rigid walls and exploring a larger range of WSS values. This has been briefly

explored [191, 8], but a more detailed study across a wide range of flow states is required

to full characterisation.
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Figure 4.26: Case C: 2D histogram plots comparing WSS magnitude obtained using PINN-GT
and the ground truth data, at mid-systole (TMS), early-diastole (TED), mid-diastole (TMD) and
late-diastole (TLD). The red line indicates a perfect match in magnitude between prediction and
ground truth.
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4.3.2.5 Pressure

There is a consensus that intraventricular pressure and pressure gradients play an impor-

tant role in the healthy function of LV flow [173, 243], however their usage in a clinical

setting has been restricted by the difficulties faced in acquiring accurate measurements

[173]. The invasive nature of cardiac catheterisation to measure absolute pressure [104,

46] has motivated the development of image-based pressure quantification techniques for

use in both cardiac and vascular studies.

Although coupled to the velocity field through the Navier-Stokes equations, reconstruction

of cardiovascular pressure fields from velocity measurement data is not a trivial task.

Traditional methods utilised doppler echocardiography (ECG) to approximate the pressure

drop, ∆p, between two distinct points in the flow region, using the Bernoulli theorem, in

either a simplified or modified form [46, 209, 70, 168, 95, 62, 77], or the Euler equations

[237, 20]. Recent methods have exploited advancements in imaging technology to derive

pressure from planar PC-MRI and 4D-flow MRI, with notable contributions including the

use of a virtual work-energy function (vWERP) [59, 155, 74], pressure Poisson equations

[242, 132, 69] and machine learning-based methods [204, 128].

Early approaches to quantify intraventricular pressure drop based on the simplified [209]

and modified [77] Bernoulli equations have been shown to correlate poorly with catheter

data [58], owing to the number of simplifications made about the intermediate flow

field. The virtual Work-Energy Relative Pressure (vWERP) method has been successfully

adapted for use in the cardiac chambers [155], utilising the arbitrary Lagrangian-Eulerian

form of the Navier-Stokes equations across dynamic sub-domains of the chamber. However,

although this model is significantly more accurate than previous approaches, it similarly

only provides pressure drop values between two regions in the LV. As with velocity, the

pressure field in the LV is complex and spatially heterogeneous [69], and cannot be fully

characterised by relative differences. However, despite the potential usefulness of recon-

structing localised pressure differences, there has been limited investigation into suitable

methods. In [69, 179], the pressure Poisson equations are used to reconstruct pressure

distributions from 4D-flow MRI data, however the resulting field is highly dependent on

the accuracy of flow gradients, which can be limited [155].

In our PINN model, relative pressure fields are recovered naturally during training through

the PDE loss constraint, without the use of any pressure data. We assess the point-wise

accuracy of the derived pressure fields against the ground truth data, and use the PINN
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Figure 4.27: Case B: 2D contours of the relative pressure field through through the centre of
the LV, at four distinct phases of the cardiac cycle, namely mid-systole (TMS), early-diastole
(TED), mid-diastole (TMD) and late-diastole (TLD). Fields are derived from the ground truth
pressure field and the three PINN boundary configurations, where the mean pressure value is used
to generate the relative pressure.
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model to compute intraventricular pressure drop estimations by probing points in the

pressure field to compare against the simplified Bernoulli (SB) approach [209].

In Fig. 4.27, relative pressure distributions at four distinct phases of the cardiac cycle are

produced in case B using the ground truth pressure data and the three PINN boundary

configurations. Generally, there is good qualitative agreement between PINN predictions

and ground truth data, although there is some discrepancy in pressure magnitude in mid-

and late-diastole (TMD and TLD). The range of relative pressure values experienced

within the ground truth data is slightly lower than would be expected in reality [155].

Therefore, given the under-estimation of extreme relative pressure values by the PINN

model, validation with a larger range of pressure values would be useful in future work.

Visually, results across the three PINN boundary configurations are consistent, although

there is a minor difference in magnitudes in late-diastole. This consistency across PINN

configurations S1, S2 and S3 can also be observed quantitatively in Tab. 4.15, with each

model obtaining max-normalised RMS values within 0.1% of each other.

In Fig. 5.6, pressure drop, ∆p, is evaluated between the LV base and apex at four distinct

cardiac phases using the three PINN boundary representations, ground truth pressure

data and the SB approach. The SB method estimates pressure drop between two points,

q1 and q2, directly from the velocity field, as:

∆p =
1

2
ρ
(
u22 − u21

)
, (4.10)

where ui = u(qi) · n̂ with i = 1, 2 and n̂ the unit vector between points q1 and q2.

In Fig. 5.6, it is apparent that the PINN model offers a significant improvement over

the SB method in quantifying ∆p, whilst there is also minimal variation between PINN

boundary representations in all cases. However, ∆p is under-predicted by the PINN model,

particularly at higher relative pressure magnitudes. This is also demonstrated in Fig. 4.27,

where the greatest discrepancy between ground truth and PINN predictions is observed

in mid-diastole, where the largest pressure gradients occur.

Overall, the ability of the PINN model to derive continuous relative pressure fields in

the LV, without the use of any pressure data or additional constraints, provides a sig-

nificant contribution. Most previous approaches are only able to characterise pressure

drops between points or planes in the LV, and those that are able to derive the relative

pressure distribution are computationally complex and heavily afflicted by corruption in

the 4D-flow MRI data [155]. The PINN model also exhibits minimal variation in pressure
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Table 4.15: Point-wise, max-normalised RMS error of the relative pressure field.

Case RMSp

A PINN-S1 0.019
PINN-S2 0.0199
PINN-S3 0.018

B PINN-S1 0.014
PINN-S2 0.014
PINN-S3 0.015

C PINN-S1 0.011
PINN-S2 0.011
PINN-S3 0.011

Figure 4.28: Pressure drop, ∆p, across all three cases at four distinct phases of the cardiac cycle,
namely mid-systole (TMS), early-diastole (TED), mid-diastole (TMD) and late-diastole (TLD). ∆p
is calculated between point A (distal basal region) and point B (distal apical region), as demon-
strated in the upper left figure, using direct measurement of the relative pressure fields for ground
truth and PINN quantification, and the simplified Bernoulli approach for direct quantification from
synthetic 4D-flow MRI. The curves used in the plots are fit using cubic splines, and are intended
to simply improve readability of results. Therefore, they are not necessarily representative of ∆p
at intermediate time points.
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distributions derived using each of the boundary configurations, which is demonstrated

quantitatively and qualitatively in the results presented in this section. As such, it can

be concluded that positional uncertainty in the boundary condition plays a minimal role,

demonstrating robustness across inter-operator variability in segmentation accuracy.

4.3.3 Positional Uncertainty

Positional uncertainty arises in MRI-based studies in the LV due to low spatial resolution of

cine-MRI, resulting in inaccurate segmentation of the endocardium and other surfaces. For

CFD-based studies, the consequences of such uncertainty can be extreme, as the simulated

solution fields are highly dependent on the enforced boundary conditions [194, 222, 135].

While the PINN model introduced in this thesis is constrained by the no-slip boundary

condition on the endocardial surface, it is also constrained by velocity data throughout

the LV chamber, and as such, the impact of positional uncertainty on predicted fields may

not be so detrimental.

To investigate the effects of positional uncertainty in PINN-based models in the LV, re-

sults were obtained and compared using distinct boundary representations in each case.

In this section, these results are analysed to assess the variability across results obtained

using each PINN model configuration. To do this, mean predicted fields are produced

by averaging the results obtained using PINN-S1, PINN-S2 and PINN-S3 for each cal-

culated variable. From this, error fields are generated for each boundary configuration

(metrics denoted by (·)m), allowing for quantification of the variability across PINN-S1,

PINN-S2 and PINN-S3. This is compared against the corresponding metrics against the

ground truth (metrics denoted by (·)gt), for comparison. Errors for the synthetic 4D-flow

MRI data are also generated against the mean PINN configuration and the ground truth

data. The ultimate purpose of this analysis is to assess variability across PINN bound-

ary configurations, with the error against the ground truth data used as for comparison.

Where errors against the mean PINN boundary configuration are significantly lower than

errors against the ground truth data, it can be concluded that the variability across PINN

boundary configurations is small, and therefore the impact of positional uncertainty is

limited for the particular variable of interest.

Variability in the reconstructed velocity and relative pressure fields is assessed first. In

Fig. 4.29, absolute error characteristics for velocity and relative pressure are compared

across all boundary configurations. Max-normalised absolute errors against the mean
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configuration (denoted (·)m) and ground truth data (denoted (·)gt) are produced, where it

can be observed that there is minimal variability across PINN-S1, PINN-S2 and PINN-S3

for both predicted variables.

Figure 4.29: Box and whisker plots for point-wise, max-normalised error against the mean PINN
configuration (denoted (·)m) and ground truth (denoted (·)gt) in velocity (left) and pressure (right)
fields, for cases A (top row), B (centre row) and C (bottom row). The PINN-all configuration
consists of all errors from PINN-S1, PINN-S2 and PINN-S3 concatenated.

A similar analysis is performed for mean and peak vorticity, denoted |ω|peak and |ω|mean,

respectively, in Fig. 4.30. Here, relative errors against both the mean PINN configuration

and ground truth data are calculated across all cardiac phases analysed, with results

across all cases collated. As with velocity and relative pressure, the variability in mean

vorticity calculation across PINN boundary configurations is low, although relative errors

against the ground truth data are large. For peak vorticity, much larger variability across

PINN boundary configurations is observed. As discussed earlier in this chapter, such

discrepancies are expected, since the regions containing the highest-magnitude vorticity

are those in the near-wall region. Given the differences in boundary topology, it is expected

that near-wall flow will vary significantly across PINN-S1, PINN-S2 and PINN-S3.

In Fig. 4.31, box and whisker plots are presented for max-normalised absolute error

in mean and peak KE, measured individually at each cardiac phase. As with velocity
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Figure 4.30: Box and whisker plots for relative error against the mean PINN configuration
(denoted (·)m) and ground truth (denoted (·)gt) in mean vorticity (left) and peak vorticity (right)
measurements, where results across all cases are collated. The PINN-all configuration consists of
all errors from PINN-S1, PINN-S2 and PINN-S3 concatenated.

reconstructions, variability in both mean and peak KE errors across PINN boundary

configurations is minimal, especially in relation to errors measured against the ground

truth data. This result is generally consistent across all cases, although larger variation

in mean KE error across boundary configurations can be observed in case C. However, in

relation to errors computed against the ground truth data, such variations are relatively

small.

Finally, the impact of positional uncertainty on WSS calculations is assessed in Fig. 4.32,

where relative error in mean and peak WSS is analysed in mid-diastole for all three cases.

Given the difference in surface topology, it would be expected that WSS varies greatly

across PINN boundary configurations. However, although some variation is observed, it is

not as pronounced as expected, at least in cases B and C. Lower errors computed against

the mean configuration than ground truth are demonstrated for all PINN configurations,

although in case A this feature alone may be misleading. Given the poor accuracy of

WSS when calculated directly from 4D-flow MRI, we would like to see high errors when

computed against both the mean PINN configuration and the ground truth data. However,

the similarity in error characteristics between PINN configurations and the synthetic 4D-

flow MRI data in case A indicates that the PINN model is not functioning well, even

though variation across configurations is small. This is not true for cases B and C, where

there is a pronounced difference between PINN results and those obtained through direct

quantification. There is a greater variance mean and peak WSS across configurations in

case B than case C, which is evidenced by larger quartiles in the PINN-allm.

Overall, results presented in this section demonstrate that positional uncertainty imparts

a minimal effect on the quantification of flow variables away from the wall, which is char-
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Figure 4.31: Box and whisker plots for max-normalised error against the mean PINN configu-
ration (denoted (·)m) and ground truth (denoted (·)gt) in mean KE (left) and peak KE (right),
measured at each cardiac phase for cases A (top row), B (centre row) and C (bottom row). The
PINN-all configuration consists of all errors from PINN-S1, PINN-S2 and PINN-S3 concatenated.
Results for synthetic 4D-flow MRI data are not included as errors were too large.
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Figure 4.32: Box and whisker plots for relative error against the mean PINN configuration (de-
noted (·)m) and ground truth (denoted (·)gt) in mean WSS (left) and peak WSS (right), measured
in mid-diastole for cases A (top row), B (centre row) and C (bottom row). Relative errors are
calculated using the bull’s eye segments outlined in Fig. 4.18.
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acterised by low variance across PINN configurations for velocity, pressure, mean vorticity

and KE predictions. Flow variables that are measured on or near the wall are more af-

fected, which is evidenced by higher variance across PINN configurations for peak vorticity

and mean and peak WSS errors. This suggests that errors arising from uncertainty in the

no-slip boundary condition are generally confined to the near-wall region, and do not

propagate into the LV chamber. This is likely due to the presence of the data loss term,

which constrains the PINN model using velocity measurements throughout the entirety of

the flow domain.

4.4 Conclusion

In this chapter, the PINN model introduced in chapter 3 is applied to a small cohort of

synthetic LV cases in patient-specific geometries, where clinically-relevant variables are

derived and predicted fields are compared with baseline methods utilised in the literature.

The variables discussed include velocity, vorticity, kinetic energy, wall shear stress and rela-

tive pressure. To characterise the impact of positional uncertainty in the no-slip boundary

condition, PINN results are obtained and compared in each case using three distinct en-

docardial representations. Variance in predicted fields across each boundary configuration

is then quantified to assess the impact of positional uncertainty on the quantification of

clinically-relevant variables.

Across all variables discussed, the PINN model is demonstrated to provide more accurate

results than either direct measurement from the synthetic 4D-flow MRI data or competing

methods. In particular, quantities that are calculated from spatial derivatives of the

velocity field are reconstructed to a far higher quality. Further, it is demonstrated that

positional uncertainty only affects the accuracy of variables measured in, or impacted by

flow in, the near-wall region. Flow variables measured elsewhere in the domain remain

largely unaffected by uncertainty in the endocardial position.

The application of PINNs in this domain presents a unique perspective for flow quantifica-

tion in the LV. Although principally a super-resolution technique, the PINN model is able

to accurately reconstruct a wide array of clinically-relevant variables that are not directly

measurable from 4D-flow MRI, such as relative pressure and vorticity, in an inherently

patient-specific manner. Competing methods are often computationally expensive and

complex to apply, particularly in the case of pressure quantification, and as such have not

been adopted in clinic. Further, work presented in this chapter suggests that the model
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is robust to positional uncertainty in the no-slip boundary condition, at least for the ma-

jority of flow variables measured. Therefore, segmentation errors, which are inherent to

MRI-based flow studies, impart less influence on results when compared to other modelling

techniques, such as CFD.
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Chapter 5

Super-Resolution of in Vivo

Cardiac 4D-Flow MRI

5.1 Introduction

In this chapter we apply our PINN super-resolution model to real in vivo 4D-flow MRI

data. The chapter is structured as so: firstly, the model is applied to a dual-resolution

study, in which 4D-flow MRI acquisitions were made at two distinct spatial resolutions,

where the dependence of the PINN model and predicted variables on the input spatial

resolution is assessed; secondly, the model is applied to a small cohort of volunteer data

with varying levels of LV remodelling, and clinically-relevant variables are assessed in

relation to patient outcomes.

5.1.1 Validation With Real 4D-Flow MRI

The validation of PC-MRI super-resolution models in vivo presents a number of challenges.

4D-flow MRI is the gold standard in vivo flow imaging modality, and thus the acquisition

of reference data using a higher-quality imaging technique is infeasible. It is possible to

acquire 4D-flow MRI data at two distinct resolutions, with the aim of recovering the high-

resolution data by training the model with the low-resolution data. However, variability in

heart rate and patient motion between acquisitions, for example, can result in unforeseen

changes in the observed flow patterns, leading to poor repeatability. Further, the maximum

spatial resolution in clinic for cardiac studies is limited to around 2.5mm3 [23], which could
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still be considered coarse for the quantification of flow derivatives and small-scale features.

Another issue arising in in vivo studies is the presence of additional data corruption, in the

form of structured noise, which is challenging to artificially replicate in synthetic studies

and thus account for in the model. This poses an additional challenge for models that

have been configured using synthetic data.

Previous publications addressing super-resolution of 4D-flow MRI, which are restricted

to studies in the vasculature, have demonstrated the efficacy of proposed models in vivo

and in vitro, with varying rigour. The use of in vitro phantoms allows for controlled flow

conditions, leading to good repeatability between scans, and for this reason studies of this

kind have been utilised in the literature. In [72], a single in vitro aneurysm phantom was

used, for which both 4D-flow MRI (at spatial and temporal resolutions of 0.57mm3 and

82.8ms respectively) and high-resolution particle image velocimetry (PIV) (at spatial and

temporal resolutions of 0.141mm3 and 20ms respectively) were acquired. Visually, velocity

field reconstructions using their model appear accurate when compared with the PIV data,

however quantitative analysis indicated no notable improvement in similarity indices (ASI

and MSI) when compared to the raw 4D-flow MRI data. An in vitro study was also used

in [75], where the trained model was applied to 4D-flow MRI data measured in a single

bifurcation phantom, for which acquisitions at spatial resolutions of 2mm3 and 4mm3

were made. Qualitatively, effective de-noising was demonstrated, with the model able to

reconstruct the 2mm3 scan effectively. Relative errors in flow rate at three planes were

used as a quantitative performance metric, where slight improvement over the competing

method (sinc interpolation) was noted.

The model in [75] was also applied in vivo to flow in the aorta in a single volunteer. As

noted in the publication, there was no course for rigorous validation in this example (aside

from comparing flow rates across three planes), and thus it was used simply to demonstrate

the visual improvement in the velocity reconstruction, with particular emphasis on the

near-wall region. A larger in vivo study was performed in [203], producing super-resolved

velocity reconstructions in 10 whole heart, 11 thoracic aorta and 3 intracranial aneurysm

volunteers (24 volunteers in total). The intracranial aneurysm acquisitions were obtained

at a spatial resolution of 0.82mm3, with the remaining 21 acquisitions obtained at a spatial

resolution of 2.1 − 2.5mm3. The acquired 4D-flow MRI data were considered the high-

resolution ground truth, from which low-resolution data were generated by synthetically

downsampling in space by factors of 2×, 3× and 4× to evaluate model performance. Whilst

this approach allows for quantification of reconstruction errors with in vivo data, it should
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still be considered a synthetic study, since the super-resolution task is performed only to

reverse the artificial downsampling steps. In [195], a single in vivo study is performed

in the thoracic aorta of a volunteer, at spatial and temporal resolutions of 1.14mm ×

1.14mm × 0.9mm and 30ms, respectively. The de-noising capabilities of their model are

demonstrated qualitatively, although without high-resolution reference data, it is unclear

whether small-scale flow features are also falsely removed. Quantitative performance is

assessed by comparing mean flow rate, max flow rate and reversed flow index computed

with both their model and the raw 4D-flow MRI.

5.1.2 This Chapter

5.1.2.1 In Vivo Model Validation

The validation approach used in this chapter uses 4D-flow MRI data acquired at two dis-

tinct spatial resolutions, namely 2.5mm3 and 4mm3, in a single volunteer. As discussed

earlier in this section, variability between acquisitions means reconstructing the 4D-flow

MRI velocity field at a higher resolution by training the model with low-resolution in-

put data is challenging. As such, the validation approach is instead structured around

obtaining PINN model results using both data sets, and assessing the variability in pre-

dicted quantities – in particular, quantities that are measured globally throughout the LV

rather than point-wise. To this end, we would like to demonstrate that the prediction of

important variables is not dependent on the input resolution of the training data.

It must be noted that this study, being limited in scope, is intended to serve a blueprint

for a future in vivo validation study, rather than provide robust conclusions. Validation

acorss more cases is required to do this.

5.1.2.2 In Vivo Exploratory Study

In this part of the chapter, the PINN model is applied to a small cohort (4 cases) with

varying levels of LV impairment. Here, the PINN model is used to investigate correla-

tions between clinically-relevant variables and levels of impairment. As with the validation

study, this section does not contain enough cases to rigorously conclude that certain vari-

ables are linked to cardiomyopathy. However, it does demonstrate the type of variables

that are obtainable directly from the model.
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5.2 Methodology

5.2.1 Model

The model, and associated components, used in this chapter is largely that established in

chapter 3. As such, the PINN model architecture is composed of a Siren network [206] and

utilises the self-adaptive PINN (SA-PINN) loss weighting scheme [158]. An additional loss

term is included to account for temporal periodicity, and the type of loss function used is

altered. The hyperparameters used were tuned using grid searches, which will be discussed

later in this section.

5.2.1.1 Loss Function

The loss function used in this chapter is similar in form to that established in chapters 3

and 4, however the type of loss used for each component is changed from mean-squared

error (MSE) to Huber loss [103], and an additional loss component is included to account

for temporal periodicity. The Huber loss is a piece-wise combination of MSE and mean

absolute error (MAE), taking the form of MSE in the immediate neighbourhood of zero,

and MAE outside of these bounds. As such, the Huber loss is more robust to significant

outliers, as with MAE. This is a desirable property for training with real 4D-flow MRI

data as structured noise, not accounted for in our synthetic studies, can introduce high-

magnitude outliers which can significantly impact training convergence. In particular,

when tissue regions intrude into the masked flow domain in phase images, they produce

what is called ’phase offset error’, where uniform noise drawn from U ∼ [−venc, venc] is

generated in affected voxels. This can produce high-magnitude outliers in the training

data which significantly hamper training convergence.

Due to temporal pseudo-periodicity in the acquired 4D-flow MRI data, we are able to

enforce an additional constraint in the loss function by ensuring continuity of the velocity

and pressure fields and their first derivatives in time. As such, the total loss function is

given by:

L = LSA
PDE + LSA

BC + LSA
data + LSA

PT , (5.1)

for PDE loss, LPDE , boundary condition loss, LBC , data loss, Ldata, and the additional
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temporal constraint, LPT . This additional constraint is given by:

LSA
PT = L1

PT + L2
PT + L3

PT + L4
PT , (5.2)

where

L1
PT = Huber(ût0 − ûtN+1) (5.3)

L2
PT = Huber(∂tût0 − ∂tûtN+1) (5.4)

L3
PT = Huber(p̂t0 − p̂tN+1) (5.5)

L4
PT = Huber(∂tp̂t0 − ∂tp̂tN+1), (5.6)

where ti is the ith time step, N is the number of time steps in the upsampled sequence

of results, ûti is the velocity at time step ti and p̂ti is the pressure at time step ti. Time

step tN+1 is entirely artificial, and therefore there is no data present here. However, this

additional constraint enforces periodicity by assuming the velocity and pressure fields at

time tN+1 are equal to that at time t0.

5.2.1.2 Hyperparameter Optimisation

In this chapter, hyperparameter optimisation was performed in each case individually,

using grid searches instead of the Bayesian optimisation method used in the previous

chapters. Extensive hyperparameter optimisation in this setting is ineffective, as the

absence of ground truth data means there is no suitable metric for performance. To this

end, the grid searches are performed to produce results that maintain as much of the

peak velocity present in the 4D-flow MRI data without over-fitting. This is not intended

to produce an ‘optimal’ model configuration, it is simply to eradicate obviously poor

configurations.

5.2.2 Data Acquisition

The data utilised in this chapter were obtained from two sources, namely our own data

set, referred to as the dual-resolution data set, and the DTI INMI data set (British Heart

Foundation Intermediate Clinical Research Fellowship (FS/13/71/30378)) as used in [49].

In Tab. 5.1, information about the acquisitions and clinical outcome can be found for all

cases. It should be noted that the scan date (acute or 3 months post-infarct) was selected
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only based on the availability of data.

Table 5.1: Volunteer details (LV function).

Case Data set Acq. time LV dysf. EF Infarct size Infarct loc.

Case A Dual-res. N/A Healthy 60− 65% 0% N/A
Case B DTI INMI 3 months Moderate 45% 23% Inferior
Case C DTI INMI Acute Normal 56% 0% Inferior
Case D DTI INMI 3 months Severe 34% 36% Anterior

5.2.2.1 Dual-Resolution Data

Two acquisitions were made in one subject in the dual-resolution 4D-flow MRI study, the

details of which can be found in Tab. 5.2. Data were acquired at two spatial resolutions,

2.5mm3 and 4mm3, using the SENSE parallel imaging acceleration technique. The tem-

poral resolution was fixed at 30.7ms, with an encoding velocity of Venc = 2ms−1. The

machine used was a 1.5 Tesla Philips Ingenia, with a flip angle of 8◦, repetition time of

4.1ms, echo time of 2.24ms and number of signal averages of 1. For all acquisitions, the

reconstructed in-plane spatial resolution was 1.5625mm× 1.5625mm, with through-plane

resolution defined by the acquired spatial resolution. Case A in Tab. 5.1 corresponds to

dual-resolution scan S2.5.

Table 5.2: Dual-resolution 4D-flow MRI study: acquisition details for the two distinct scans,
outlining acquired spatial and temporal resolutions (res.).

Scan name Acceleration Spatial res. Scan duration

S2.5 SENSE (factor 6) 2.5mm3 16:05
S4 SENSE (factor 6) 4mm3 6:29

In addition to 4D-flow MRI, structural cine-MRI data were also acquired in long-axis (LA),

short-axis (SA) and four-chamber (4CH) views. The SA stack was obtained with a slice

thickness of 10mm with 10mm spacing between slices. Reconstructed in-plane resolution

for all cine-MRI acquisitions was 1.4063mm× 1.4063mm.

5.2.2.2 DTI INMI Data Set

Alongside the dual-resolution acquisition, acquisitions in three additional subjects were

used from the DTI INMI study. For the 4D-flow MRI data, the number of phases acquired

per cardiac cycle was fixed at 30, with Venc = 1.5ms−1. The machine used was a 3 Tesla

Philips Achieva, with a slice thickness of 3mm with 3mm spacing between slices. SENSE

parallel acceleration was utilised, with a SENSE factor of 2, with a number of signal

averages of 1. Further details for each subject can be found in Tab. 5.3.
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Table 5.3: DTI INMI 4D-flow MRI data: acquisition details for the three distinct volunteers.

Subject B (009) C (019) D (028)

Flip angle (◦) 10 10 10
Repetition time (ms) 8.21 6.8 8.4
Echo time (ms) 3.51 3.67 3.46
Acquired spatial res. (mm) 3.03× 3.08× 3 3.04× 3.09× 3 3.03× 3.03× 3
Reconstructed spatial res. (mm) 2.27× 2.27× 3 1.93× 1.93× 3 2.27× 2.27× 3

For each subject, the SA stack was acquired with a slice thickness of 8mm, with 10mm

spacing between slices, alongside LA and 4CH views. The reconstructed in-plane spatial

resolution was 1.18× 1.18mm for all cine-MRI acquisitions.

5.2.3 Data Processing

5.2.3.1 Segmentation and Volume Interpolation

Two distinct procedures were used to segment the endocardial surface, dependent on

the data set used. For the dual-resolution data set, segmentation and registration were

performed by the author, under supervision from a trained clinician, using the open-source

medical image processing software 3D Slicer (http://www.slicer.org) [73]. Contours were

delineated in end-diastole using the LA, 4CH and SA stack using the grow from seeds

algorithm, before the SlicerHeart module was used to interpolate the contours, generating

a 3D volume. This volume was then registered in time to produce the beating LV and

endocardium.

For the DTIINMI data set, segmentation and registration were performed by a trained

clinician using the commercial software package Circle Cvi42 (https://circlecvi.com). Con-

tours were delineated in all cardiac phases using the LA, 4CH and SA stack, producing

a 3D volume. Then, the feature tracking module was used to register the endocardial

motion in time. Using feature tracking, the extracted boundary motion included torsional

effects, with the aim of improving the accuracy of near-wall velocity.

3D Slicer was used due to software availability issues, where Circle Cvi42 was only available

for a brief period.

To enable temporal super-resolution using the PINN, the collocation and boundary con-

dition point clouds must be sampled more densely in time. As such, interpolation of the

LV volume and endocardium is required. For both data sets, this was performed using
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node-wise cubic spline interpolation in time, sampling every second time point to reduce

fluttering artefacts. The resulting volume was upsampled by a factor of 5 temporally

in each case. Velocity values for the endocardial motion were calculated by taking the

derivative of the cubic spline interpolant.

5.2.3.2 4D-flow MRI

Processing of 4D-flow MRI data was performed using a self-built Python script, based

partially on that found in [75]. The process for generating the requisite PINN data was

as follows: 1) 4D-flow MRI DICOM files, each structured on a single slice, were first

imported; 2) DICOM headers were used to determine the heart rate (HR) and frames per

cardiac cycle (FPC), allowing for the calculation of the temporal resolution as:

Temp Res =
60

HR× FPC
; (5.7)

3) pixel values (p) in each DICOM image were converted to velocity using the DICOM

headers for the rescale slope (RS) and rescale intercept (RI) using the formula:

u =
1

100
(RS× p− RI); (5.8)

4) the spatial locations of each voxel centre were obtained using the DICOM headers for

pixel spacing (dx), patient position (Sx, Sy, Sz) and patient orientation (Xx, Xy, Xz, Yx, Yy, Yz),

which define the location of the upper left corner of the DICOM image and the orientation

of the x and y axes. These values form the matrix:

M =


Xxdx Yxdx 0 Sx

Xydx Yydx 0 Sy

Xzdx Yzdx 0 Sz

0 0 0 1

 , (5.9)

which generates an array of pixel locations using matrix multiplication with the voxel

indices; 5) the corresponding LV volume at each phase is used to mask the LV flow

domain in the reconstructed 4D-flow MRI data volume; 6) the velocity data are converted

to comma-separated files for input to the PINN.
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5.2.4 Variable Calculation

Kinetic Energy

To improve comparability with the wider literature, kinetic energy (KE) is quantified as

KE per unit volume (KE/ml), using the units millijoules per millilitre (mJ/ml). As such,

KE/ml (which may be interchangeably referred to as simply KE throughout this chapter),

is given by:

KE =
1

2
ρ |u|2 , (5.10)

where a value of ρ = 1066kgm−3 is used.

In-plane KE (IPKE) is calculated using using a plane with the normal, n̂, aligned in the

apico-basal direction. Then, IPKE is calculated throughout the LV as:

IPKE =
KEsum

IP

KEsum , (5.11)

where

KEsum
IP =

Nt∑
i=0

(KEi −KEi
TP ) (5.12)

KEsum =

Nt∑
i=0

KE, (5.13)

for Nt voxels at time t, and

KETP =
1

2
ρ |u · n̂|2 . (5.14)

Relative Pressure

Without an additional pressure constraint, the PINN model can only predict pressure up

to a constant, and as such, can only predict relative pressure. Relative pressure in this

chapeter is formed by subtracting the mean pressure, calculated across all time points,

from the pressure field predicted by the PINN. Millimetres of mercury (mmHg) are used

as the standard unit instead of Pascals (Pa) for ease of referencing across the literature.

Direct quantification of pressure drop, ∆p, from 4D-flow MRI data uses the simplified

Bernoulli approach, as detailed in chapter 4.

Haemodynamic Forces

Haemodynamic forces (HDFs) are calculated in the LV by integrating the pressure gra-

dient, ∇p, over the flow domain. A transformation of coordinates is performed to align
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the x-axis with the lateral-septal (LS) direction, the y-axis with the inferior-anterior (IA)

direction and the z-axis with the apical-basal (AB) direction. Then, components of the

HDF in the LS, IA and AB directions are taken to be the x, y and z components of the

integrated ∇p field.

5.3 Results

The results in this chapter are constructed as follows: first, results from the in vivo

validation study are presented; following this, the model is applied to a small cohort of

patients with varying levels of LV impairment following MI.

5.3.1 Model Validation: Dual-Resolution Study

In this section, results are presented using the dual-resolution 4D-flow MRI data set,

for which low- (4mm3 voxel volume) and high-resolution (2.5mm3 voxel volume) 4D-flow

MRI data were acquired in a single volunteer. A range of clinically-relevant variables

are predicted using the PINN model with training data at the two different resolutions,

which are compared against results obtained directly from the 4D-flow MRI data, where

available.

5.3.1.1 Velocity

In Fig. 5.1(a), comparisons are made between PINN results obtained using the low-

and high-resolution 4D-flow MRI data (namely spatial resolutions of 4mm3 and 2.5mm3,

respectively). As can be observed, in both cases the predicted velocity fields contain less

noise than is observed in the corresponding 4D-flow MRI data, although it is not possible

to conclusively discern noise from small-scale flow features without ground truth data.

There are observable differences between the predicted velocity fields at each of the three

cardiac phases. As seen in Figs. 5.1(b) and 5.1(c), there is a significantly greater similarity

between PINN predicted fields than between the raw 4D-flow MRI data. Further, at both

resolutions, the PINN predicted fields attain consistently lower mean and peak values than

the corresponding 4D-flow MRI data throughout the cardiac cycle.

In Fig. 5.1(d), it can be seen that the magnitude of RMSu (calculated point-wise) between
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Figure 5.1: (a) 2D contours of the velocity magnitude taken at a long-axis slice in systole,
peak E-wave and peak A-wave, comparing PINN results obtained using the high-resolution (left
column) and low-resolution (right column) 4D-flow MRI data. Inserts display the raw 4D-flow
data for the respective resolution; (b) Mean velocity magnitude throughout the cardiac cycle; (c)
Peak velocity magnitude throughout the cardiac cycle; (d) Max-normalised root mean squared
error in the velocity field (RMSu) ± 1 standard deviation of the max-normalised relative error
throughout the cardiac cycle, calculated directly between the low- and high-resolution 4D-flow
MRI data (green) and between PINN fields predicted using the low- and high-resolution 4D-flow
MRI data (red).
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PINN predicted velocity fields correlates with the magnitude of RMSu between the raw

4D-flow MRI data. This is similarly seen in Fig. 5.1, where the greatest qualitative

differences can be observed during peak A-wave filling, where the 4D-flow MRI data appear

least similar. Although the variance remains large, there is a marked reduction in error

between the PINN predictions than between the raw 4D-flow MRI data, with a decrease

in RMSu and corresponding variance in diastole.

Figure 5.2: (a) 2D contours of the relative pressure field taken at a long-axis slice in systole,
peak E-wave and peak A-wave, comparing PINN results obtained using the high-resolution (left
column) and low-resolution (right column) 4D-flow MRI data; (b) Pressure drop (∆p) between
short-axis slices in the basal and apical region (where the simplified Bernoulli method [209] is
used to calculate ∆p directly from the 4D-flow MRI data); (c) Max-normalised root mean squared
error in the pressure field (RMSp) ± 1 standard deviation of the max-normalised relative error
throughout the cardiac cycle, between PINN fields predicted using the low- and high-resolution
4D-flow MRI data.

5.3.1.2 Relative Pressure

In Fig. 5.2(a), a qualitative analysis of the relative pressure field is made, in which the

PINN predictions obtained using the low- and high-resolution data are compared. At the
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three cardiac phases analysed, there are clear similarities between the predicted fields,

with good agreement in the presence and position of localised regions of low pressure,

particularly in diastole. There is, however, some discrepancy in the range of pressure

values attained, which is most clear during systole. This is corroborated in Fig. 5.2(b),

in which pressure drop (∆p) between the basal and apical region is plotted throughout

the cardiac cycle. Here, there is an obvious reduction in the maximum ∆p when using

the 2.5mm3 4D-flow MRI data, particularly in the systolic phase, but also during E- and

A-wave filling.

In Fig. 5.2(c), RMSp (± 1 standard deviation of the max-normalised relative error)

between the PINN predicted fields is plotted throughout the cardiac cycle. Similar to

RMSu, there is a sharp reduction in the pressure error in diastole.

5.3.1.3 Haemodynamic Forces

Figure 5.3: Haemodynamic forces (HDFs) in the LV in the lateral-septal, inferior-anterior and
apical-basal direction throughout the cardiac cycle.

In Fig. 5.3, HDFs generated by the PINN using the low- and high-resolution 4D-flow MRI

data are plotted throughout the cardiac cycle. In the lateral-septal and inferior-anterior

directions, the predicted HDFs show good agreement. In the apical-basal direction, the

agreement is acceptable in diastole but not in systole. This is in agreement with Fig.

5.2(b), where a large difference in peak ∆p (which is intrinsically linked to HDFs) is

observed in systole.

5.3.1.4 Kinetic Energy

In Fig. 5.4, KE is compared across low- and high-resolution 4D-flow MRI data and the

corresponding PINN results obtained. In Fig. 5.4(a), box and whisker plots highlight

the difference in KE/ml characteristics between PINN model predictions and raw 4D-flow

MRI data, with PINN predictions exhibiting a significant reduction in peak and average
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Figure 5.4: (a) Box and whisker plots for point-wise kinetic energy per unit volume (KE/ml)
across the whole cardiac cycle, where the boxes represent the first and third quartiles, whiskers
display maximum and minimum values (with outliers removed), the solid orange line represents
the median value and the green dashed line represents the mean value; (b) In-plane KE (IPKE)
throughout the cardiac cycle; (c) Mean KE/ml throughout the cardiac cycle; (d) Peak KE/ml
throughout the cardiac cycle.

KE/ml when compared with the 4D-flow MRI data. In Fig. 5.4(b), IPKE is compared

across the cardiac cycle. At both resolutions, there is a consistent increase in IPKE

throughout the cycle. In Figs. 5.4(c) and (d), mean and peak KE/ml are compared

across the cardiac cycle. In both cases, consistently good agreement between PINN model

predictions is exhibited, with a marked reduction in mean and peak KE/ml from data to

model predictions.

5.3.1.5 Limitations

Both vorticity and WSS have not been considered in this section. Both variables were

challenging to reconstruct without the effects of noise corrupting results. Therefore these

have been omitted from this study.

5.3.2 Exploratory Study: Myocardial Infarction

In this section, the PINN model is used to produce results in a small cohort of patients with

varying levels of LV impairment following MI. Clinically-relevant variables are generated
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and assessed in connection with LV remodelling.

5.3.2.1 Relative Pressure

Figure 5.5: 2D contours of relative pressure on two long-axis planes in peak systole, peak E-wave
filling and peak A-wave filling, with velocity vectors overlaid.

In Fig. 5.5, 2D contours of the relative pressure distribution are presented for all cases
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in systole, E-wave filling and A-wave filling. Pressure fields in both E-wave and A-wave

filling are characterised by regions of relatively low pressure inside the mitral vortex ring,

whereas the systolic pressure distribution is more uniform from apex to aortic valve, with

low relative pressure in the outflow tract.

Curves of pressure drop, ∆p, throughout the cardiac cycle, calculated between basal and

apical slices, are shown in Fig. 5.6 for all cases. As expected, the greatest apico-basal

pressure drop values are attained in the healthy subject (case A), with the smallest systolic

∆p attained in the subject with severe LV dysfunction (case D), which is to be expected.

Case D also experiences extreme pressure load in E-wave filling. This trend is visible in

the relative pressure contours for cases A and D in Fig. 5.5.

Figure 5.6: Pressure drop, ∆p, calculated between planes in the apical and bsal region throughout
the cardiac cycle for all four cases.

5.3.2.2 Haemodynamic Forces

Figure 5.7: Lateral-septal, inferior-anterior and apical-basal HDFs throughout the cardiac cycle
in all cases.
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In Fig. 5.7, HDFs in the LS, IA and AB directions are presented for all cases. Curves for

HDFs in the apico-basal direction resemble those of apico-basal pressure drop, although

in systole, cases B and D produce more pronounced curves. This is likely a consequence of

the LV in these cases having a greater volume, where the HDF is calculated by integrating

the pressure gradient over the domain. As with pressure drop, case D experiences elevated

HDFs in the apico-basal direction in E-wave filling, which is accompanied by an increase

and reversal of HDFs in the later-septal direction.

In Figs. 5.8 (case D) and 5.9 (case B), a selection of variables, namely relative pressure,

velocity, vorticity, HDFs and WSS, are collated into one figure. These are plotted at 6

time points during E-wave filling, with the particular variables selected to demonstrate any

potential interactions between them. In-plane coherent structures are delineated by taking

isosurfaces of the Q-criterion (Qcrit) at Qcrit = 200. In case D (severe LV remodelling, Fig.

5.8), the mitral vortex ring is unbalanced, with one dominant side producing transversal

pressure gradients and thus transversal HDFs. This imbalance leads to elevated WSS on

the septal wall where the larger vortex re-circulates upwards towards the base. Conversely,

the mitral vortex ring in case B (moderate LV remodelling, Fig. 5.9) is more balanced,

and as such, HDFs are more closely aligned with the apico-basal direction.

Figure 5.8: Case D: 2D contour plots of relative pressure on septal-lateral and anterior-inferior
slices throughout E-wave filling, with the velocity vector field superimposed and WSS magnitude
on the endocardium included around the boundary. Using in-plane isosurfaces of the Q-criterion,
the green contours delineate the coherent structures of the mitral vortex ring. Large black arrows
dictate the direction and magnitude (denoted by arrow length) of the HDFs in the LV.
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Figure 5.9: Case B: See Fig. 5.8 for details.

Figure 5.10: Case C: WSS magnitude contours on the endocardium (bottom row) in systole,
E-wave filling and A-wave filling, from left to right.

2025 159



The University of Leeds Chapter 5

5.3.2.3 Wall Shear Stress

In Fig. 5.10, WSS contours are presented in systole, E-wave filling and A-wave filling for

Case C. Elevated WSS magnitude can be observed in the septal region in systole, and

the anterior region in both diastolic phases. In Fig. 5.11, mean and peak WSS is plotted

throughout the cardiac cycle in the four major longitudinal regions of the endocardium,

for all cases. In Fig. 5.11, mean and peak WSS are plotted through the cardiac cycle

across the four major segments of the endocardium, in all cases. As depicted in Fig. 5.10,

case C experiences relatively extreme WSS values in the septal and anterior regions. Case

D displays high WSS in the septal region across diastole and in the lateral region in early

E-wave filling.

5.3.2.4 Kinetic Energy

In Fig. 5.12, PINN-derived KE characteristics are presented across the cardiac cycle,

with results compared against direct quantification from 4D-flow MRI data. KE per unit

volume (KE/ml) is used instead of KE per unit mass to allow for comparison with other

publications.

Across all cases, systole, E-wave filling and A-wave filling are discernible from mean KE

and peak KE plots. IPKE is slightly elevated in systole, where flow ejected out of the

aortic valve is generally not aligned in the vertical direction. Conversely, the mitral jet is

typically directed from the base to the apex, and as such generates a higher proportion

of through-plane KE. Case A (healthy) generates the largest KE values, with a particular

increase in systolic KE. Case D experiences the lowest systolic KE, which correlates with

the reduced pressure drop from apex to to base in Fig. 5.6.

2D contour plots of KE in case A can be found in Fig. 5.13, with results obtained from

the PINN model compared with direct quantification from 4D-flow MRI.
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Figure 5.11: Mean WSS (left) and peak WSS (right) across the cardiac cycle in the septal,
anterior, lateral and inferior regions of the endocardium for all cases.
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Figure 5.12: Comparison of KE (per unit volume) characteristics of 4D-flow MRI data and
PINN cases A,B,C and D, from left to right. (a - c) box and whisker plots for point-wise KE/mL
across whole cardiac cycle, where the boxes represent the first and third quartiles, whiskers display
maximum and minimum values (with outliers removed), the solid orange line represents the median
value and the green dashed line represents the mean value. (d - f) mean KE/mL throughout the
cardiac cycle. (g - i) peak KE/mL throughout the cardiac cycle. (j - l) in-plane KE throughout
the cardiac cycle.

Figure 5.13: Case A: 2D contour plots of KE per unit volume (KE/mL) in peak systole (left),
peak E-wave (centre) and peak A-wave (right), derived from the PINN and 4D-flow MRI at long-
axis and short-axis planes.
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5.4 Discussion

5.4.1 Model Validation

In this chapter, model validation was performed by producing results using the PINN

model trained with 4D-flow MRI data of different spatial resolutions. Where possible,

these results are compared against those directly quantified from the 4D-flow MRI data.

Across all variables analysed, there is generally good agreement between the PINN results

obtained using the low- and high-resolution data. This contrasts with the results obtained

directly from the 4D-flow MRI data, where results are inconsistent between the two spatial

resolutions.

The largest discrepancies between PINN predictions occur in systole, which is particularly

notable in the apico-basal direction as demonstrated in the ∆p and corresponding HDFs

curves. The largest pressure gradients experienced in the LV occur in this direction (and

in phase of the cardiac cycle), and therefore it should be expected that this is where the

greatest difference in pressure and HDFs should occur. However, this trend is not as clearly

observed in the velocity predictions, where RMSu is only slightly elevated in systole, and

mean and peak |u| achieve good agreement. Given that the enforced boundary motion is

identical between the low- and high-resolution PINN results, and that the reconstructed

velocity field is similar (globally, at least), it is unclear what drives the discrepancy in

relative pressure and HDFs in systole. Additionally, it is unclear why this discrepancy is

only exhibited in the apico-basal direction. Analysing the lateral-septal HDFs in Fig. 5.3,

the forces experienced are of a similar magnitude to those seen in the apico-basal direction,

although agreement is far better. This suggests that the discrepancy is not simply linked

to the magnitude of the pressure difference. Overall, the qualitative similarities between

PINN model predictions using low- and high-resolution data are displayed in Fig. 5.2(a).

Given the qualitative differences exhibited in the velocity field, as shown in Fig. 5.1(a),

the visual agreement shown in the pressure field is perhaps surprising.

As shown in Fig. 5.4, similar trends as observed with synthetic data in section 4.3.2.3

of chapter 4 emerge, where the overall KE is significantly higher when quantified directly

from 4D-flow MRI data. In chapter 4, having access to ground truth data made it possible

to assert that KE was significantly over-estimated when measured directly from 4D-flow

MRI , where it was deduced that the presence of noise in the data was responsible for

this. In the present study, it is not possible to conclusively state this fact in the absence
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of reference data, however it appears likely that in vivo 4D-flow MRI is affected by noise

in the same manner. This is corroborated by the clear differences between KE measured

from the 4D-flow MRI data at low- and high-resolutions, with the former experiencing

lower peak and average KE values. With 4D-flow MRI, SNR scales with voxel size, since

the total signal received within a voxel is greater. Therefore, with the low-resolution 4D-

flow MRI data exhibiting lower overall KE characteristics, it appears likely that higher

levels of noise in the data contributes to the over-estimation of KE. Overall, there is very

good agreement in KE between the PINN predictions at low- and high-resolutions. It is,

of course, unclear in this study whether this is due to model bias or that the predicted

values are representative of the ‘true’ KE field.

5.4.2 LV Function Trends

As seen in Fig. 5.6, there is a clear discrepancy between healthy (case A) and severe

dysfunction (case D) in systolic pressure drop, where the subjects with moderate (case

B) and mild (case C) dysfunction attain systolic pressure drop values that lie between

cases A and D. It would be expected that case C would display larger systolic ∆p values

given increased LV function, however, case C was obtained directly after infarct, whereas

case B was obtained 3 months after infarct, and thus LV function was partially recovered.

A pronounced negative pressure drop (high basal pressure and relatively lower apical

pressure) can be observed for cases A and B during isovolumic relaxation, inducing closure

of the aortic valve. Whilst present in cases C and D, this feature is less pronounced. Cases

B (moderate LV dysfunction) and D (severe LV dysfunction) exhibit pressure reversal

between systole and diastole, which has previously been linked with the onset of dilated

cardiomyopathy [224]. Relative to systolic ∆p, elevated ∆p is observed during early E-

wave filling in case D. This is accompanied by a sharp increase in HDF in the apical-basal

direction, as seen in Fig. 5.7, and elevated mean KE relative to systolic KE, as seen in

Fig. 5.12.

In Fig. 5.5, qualitative differences in the pressure distribution in E-wave filling are ap-

parent between case D and the others. The re-circulation region around the mitral jet,

characterised by low relative pressure, is unbalanced in case D, with one side of the vortex

ring far larger that the other. This is studied in detail in Fig. 5.8, where the interplay

between velocity, relative pressure, vorticity, HDFs and WSS is examined. The core of

the mitral vortex ring in E-wave filling (denoted by the green contours) has a significantly

larger area on the anteroseptal side when compared with the inferolateral side, which
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dominates the pattern of flow throughout the LV. This is most apparent in the latter two

time points in the anterior-inferior slice, where the large coherent structure in the centre

of the domain corresponds almost entirely to the anteroseptal side of the vortex ring. Such

imbalances are potentially induced by altered patterns of myocardial relaxation, caused

by inhomogeneous tissue properties post-infarct. Imbalance in the mitral vortex ring pro-

duces an imbalance in pressure, resulting in strong transversal HDFs, particularly in early

E-wave filling. This is discernible in Fig. 5.7, with a sharp increase in HDFs in both the

lateral-septal and inferior-anterior directions in early E-wave filling. This finding is con-

sistent with observations made in [172], where the development of transversal HDFs was

hypothesised to anticipate LV remodelling. However, its onset is likely not driven through

direct load on the myocardium, but through endothelial mechanotransduction via shear

stresses on the endocardium that are disturbed by maladaptive HDF distributions. This

interaction is investigated here, where significantly elevated WSS in the basal septal re-

gion can be observed in case D, with minor elevation in the basal lateral region. This is

similarly observed in Fig. 5.11, with mean and peak WSS elevated throughout E-wave

filling in the septal region and in early E-wave filling in the lateral region.

A similar study is demonstrated in a less impaired subject, namely case B , in Fig. 5.9. In

this case, the mitral vortex ring is more balanced in size, particularly in the septal-lateral

plane, with two low-pressure regions of approximately equivalent volume. As such, the

transversal HDFs are comparatively smaller in magnitude than in case D, with stronger

alignment in the apico-basal direction. There is a slight increase in WSS observed in the

mid anterior region in early E-wave filling in Fig. 5.9, which appears to persist throughout

diastole in the mean WSS in Fig. 5.11. However, from Fig. 5.11, it appears that mean and

peak WSS values attained in the anterior region are only slightly elevated (mean values)

or lower (peak values), compared with case D.

Given the difference in clinical outcome between cases B (moderate LV dysfunction) and D

(severe LV dysfunction), the interplay between velocity, pressure, HDFs and WSS appears

influential. It has been previously noted that large transversal HDFs may anticipate

adverse LV remodelling [172], but the intermediate influence of WSS has not been assessed.

Results presented here suggest that there is an interaction between elevated transversal

HDFs and WSS, and WSS in general, which in turn may influence clinical outcome, but

more evidence is required to state this conclusively.

Another interesting finding is the pronounced increase in WSS magnitude observed in

Fig. 5.11 for case C, particularly in the septal and anterior regions. This can also be seen
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qualitatively in Fig. 5.10, with areas of high local WSS in the septal region (in systole)

and the anterior region (diastole). Although the outcome after 12 months was only mild

LV dysfunction, case C was acquired acutely post-infarct, as opposed to 3 months post-

infarct for cases B and D. As such, any structural adaptation of the myocardium (either

positive or negative) as a consequence of disturbed haemodynamic flow would not have

yet occurred. This could indicate that WSS, and subsequent mechanotransduction on the

endocardium, does indeed drive remodelling in the LV, although analysis in a larger cohort

of subjects is required to state this conclusively.

5.4.3 Variable Prediction Using PINNs

Kinetic Energy

In chapter 4, it was observed that KE calculated directly from synthetic 4D-flow MRI

was over-predicted, which was deduced to be a consequence of background noise artefacts.

A similar trend emerges in the present chapter, in this section and in section 5.4.1, as

evidenced in the top row of Fig. 5.12, where a discrepancy in KE magnitude between

PINN results and those derived directly from 4D-flow MRI is observed. Comparing against

results presented with synthetic data in chapter 4, it could be hypothesised that noise

corruption, both background and structured, is again responsible for such a pronounced

discrepancy. However, unlike in section 5.4.1, some abnormal patterns here suggest there

may be problems with the PINN model reconstruction. In diastole, particularly in E-wave

filling, the discrepancy in mean KE between the PINN and direct quantification is larger

than in systole. If background noise corruption was the sole reason for the difference in KE

magnitude, a similar drop-off would be expected in systole. This effect can be observed

qualitatively in Fig. 5.13, where regions of peak KE are not fully resolved by the PINN

in diastole.

Additionally, a distinction must be made between background and structured noise, in

particular uniform noise that is present when tissue regions intrude into the phase images

(phase offset error). Case C encountered a large amount of tissue intrusions, and as such,

introduced uniform noise drawn from U ∼ [−venc, venc]. As seen for case C in Fig. 5.12, this

induces an additive increase in peak and mean KE when comparing direct quantification

with PINN results, which is independent of KE itself. Cases A, B and D were less impacted

by tissue intrusions, which is corroborated in the mean KE curves. It appears the noise

intensity in the 4D-flow MRI data is dependent on the underlying velocity magnitude (and

thus KE), as is typical of background noise artefacts, matching the behaviour observed in
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chapter 4.

Without ground truth data reference, it is difficult to state conclusively whether the dif-

ferences in KE characteristics arise as a consequence of de-noising by the PINN model, or

incorrect prediction of the velocity field. However, based on the results in this section and

those in section 5.4.1, it is likely that both contribute.

Wall Shear Stress

As was discussed at length in chapter 4, positional uncertainty can hamper the accuracy of

WSS calculations, particularly in attaining the correct magnitude. However, it was shown

that the large-scale WSS distribution remained approximately the same across distinct

boundary representations when using the PINN, with regions of highest and lowest WSS

correctly predicted. As such, whilst the true WSS magnitude and distribution on the

trabeculated endocardium may be impossible to recover using an approximated surface,

there is at least consistency in the predicted distribution and magnitude using the PINN.

Under the assumption that under-prediction of the magnitude is consistent between cases,

the use of an ‘effective’ WSS may be suitable for the purpose of marker identification.

In the model validation study, WSS predictions were severely corrupted, and hence were

omitted from this chapter. It is unclear why the results were so poor and whether this was

a result of the data or the model itself, but factors such as phase offset error, segmentation

errors and training issues likely contribute. Predictions with the DTI INMI data set were

more consistent, although the validity of these results is unclear.

5.5 Conclusion

In this chapter, we have presented results from a limited in vivo validation study and

produced some initial results in a small cohort of LV remodelling patients with varying

levels of impairment. It was found that global measures of variables such as velocity,

pressure and KE were largely independent of the input resolution of the training data,

where significant differences were found when comparing direct quantification from the

4D-flow MRI data at different resolutions. Whilst the validation study used too few cases

to rigorously validate the PINN model in vivo, it introduced a methodology for achieving

this which may be expanded on in future work.
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The PINN model was also used to produce clinically-relevant variables in four subjects

across healthy, mild, moderate and severe outcomes with regards to LV dysfunction. The

interplay between vorticity, relative pressure, HDFs and WSS was investigated in two

cases, with severe and moderate adverse outcomes. It was demonstrated that imbalanced

mitral vortex formation in E-wave filling contributed to an increase in transversal HDFs,

which subsequently produced elevated WSS. Increased mean and peak WSS was also

observed in the case acquired acutely post-infarct, indicating that WSS may be a trigger

for remodelling.

The variables of interest presented in this chapter have been previously assessed in vivo

in the literature, however, few approaches are able to derive all variables discussed in a

unified manner. The PINN model is able to quantify a wide selection of variables that

are not directly measured by 4D-flow MRI, for which multiple models would have been

previously required to obtain. As such, it is possible to investigate the interplay between

particular variables and their role in driving clinical outcomes.

Given apparent discrepancies between parameters calculated directly from 4D-flow MRI

and those obtained with the PINN model, particularly those associate with KE, rigorous

validation in vivo or in vitro is required to bridge the gap between results obtained in

synthetic data and those obtained in vivo.
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Conclusions and Outlook

In this thesis, a physics-informed neural network (PINN) model is introduced for the

super-resolution of cardiac 4D-flow MRI data. The PINN not only provides the velocity

field at a higher resolution, but is also capable of directly exposing a wide array of solu-

tions fields such as relative pressure and flow derivatives, without the need for numerical

approximation. The model is validated across three distinct studies, comprised of two

synthetic and one in vivo setups. Following this, the model is applied to a small cohort of

volunteer and patient data to demonstrate the applicability of the model to real data. It

is concluded that the use of this type of model is feasible in this setting, although certain

limitations should be addressed and the model should be further validated using in vivo

or in vitro data.

6.1 Summary

Phase-contrast magnetic resonance imaging (PC-MRI) has emerged as a powerful tool for

the non-invasive quantification of haemodynamic markers in the cardiovascular system,

improving understanding of the links between maladaptive blood flow and cardiovascular

disease (CVD). By measuring changes in the spin angle of protons under two equal but

opposite magnetic gradient pulses, PC-MRI is able to reconstruct blood velocity either on

a 2D plane (planar PC-MRI) or within a 3D volume (4D-flow MRI). From the measured

velocity field, it is possible to extract variables such as haemodynamic forces (HDFs), wall

shear stress (WSS) and relative pressure drop using a variety of techniques.

For analyses in the heart chambers, 4D-flow MRI is the dominant PC-MRI technique
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used today, owing to its ability to reconstruct time-resolved velocity fields in three spatial

dimensions. This allows for comprehensive assessment of haemodynamic variables, which

are often 3D in nature, throughout the whole cardiac chamber at once. However, the

accuracy of both the velocity field and any quantities derived from 4D-flow MRI can be

limited, owing to low spatio-temporal resolution and noise artefacts which are inherent

to the modality. This has led to a recent interest in super-resolution methods that are

designed to address the aforementioned limitations, although this field is emerging. As

such, only a limited number of approaches have been developed at the time of writing, all

of which are applied to the simpler task of vascular flow.

In this thesis, PINN model is introduced to provide super-resolution and de-noising of car-

diac 4D-flow MRI. PINNs have previously been demonstrated to be an effective technique

for 4D-flow MRI super-resolution [72]. Through weak enforcement via the loss function,

the underlying physics governing the haemodynamic flow acts to regularise the network

during training. This ensures that model outputs conform to the correct physics and

boundary conditions, and allows the model to perform super-resolution without paired

low- and high-resolution training data, which are not readily available for in vivo 4D-flow

MRI studies. Further, the physics-based regularisation allows for the quantification of

variables that are not directly measured, such as relative pressure, without the applica-

tion of additional techniques which can be complex to use and may introduce numerical

error.

In chapter 3, the PINN model was introduced and applied to an idealised synthetic data

set. The overall aims for this chapter were two-fold: Firstly, it was demonstrated that

a PINN model can provide super-resolution of 4D-flow MRI data and is robust to the

effects of low spatio-temporal resolution and signal-to-noise ratio (SNR); Secondly, a model

architecture was established that was able to operate effectively across data at different

spatio-temporal resolutions and SNRs. To this end, synthetic 4D-flow MRI data were

generated across a range of spatio-temporal resolutions and SNRs, from computational

fluid dynamics (CFD) results generated in a 2D idealised left ventricle model. Then

the PINN model was used to reconstruct the corresponding solution fields, where it was

demonstrated that the optimised model configuration was suitably robust across the range

of spatio-temporal resolutions and SNR levels examined.

In chapter 4, the PINN model was applied to a small cohort of synthetic cases generated

using CFD in patient-specific LV geometries, for which three distinct boundary representa-

tions were produced in each case. The primary aim of the chapter was to assess the impact
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of positional uncertainty (i.e. uncertainty that arises due to errors in the segmentation

and registration of the deforming endocardium), but it was also used to demonstrate the

effectiveness of the model in calculating clinically-relevant quantities that are not directly

measured by 4D-flow MRI in a realistic setting. The accuracy of such quantities was

compared against baseline methods from the literature, with the PINN model shown to

outperform most competing approaches. It was also demonstrated that positional uncer-

tainty played a minimal role in the quantification of variables measured away from the

endocardium, although variables measured in the near-wall region differed significantly

across boundary representations.

In chapter 5, a limited in vivo validation study was presented, for which PINN model

results were obtained using 4D-flow MRI data at two distinct spatial resolutions. Then,

the PINN model was used to obtain a variety of clinically-relevant quantities in a small

cohort of LV remodelling patients, at varying levels of impairment. It was shown that

PINN model predictions were largely independent of the resolution of the input data,

with the validation study providing a blueprint for a larger study in the future. Further,

whilst the number of cases was limited, there were a number of interesting trends observed

across the diseased population. However, it is noted that such studies were limited and

are required to be extended in future work to make any conclusive statements.

6.2 Limitations

6.2.1 Hyperparameter Sensitivity

Hyperparameter tuning is a process that is ubiquitous throughout ML, however, from

experience, PINN models appear particularly susceptible to sub-optimal hyperparameter

choices. This is particularly true for hyperparameters related to the weighting of loss

terms, where gradient imbalances impart a significant influence on the stability of model

training. In this thesis, over 150 training runs were required in each study to obtain

acceptable results. Many of the model configurations obtained were unusable, due to

either over-fitting to data noise or under-fitting.

Whilst dynamic weighting methods are an active area of research within the field of

physics-informed ML, many approaches still introduce sensitive parameters that impart

a strong influence on the quality of results. Additionally, much of the related literature
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introduces such methods using a small number of simplified cases, and does not demon-

strate that a single parameter configuration is able to operate across differing domains

and conditions.

To progress the current work, more effort should be placed into identifying or formulating

novel dynamic loss weighting strategies that require less case-specific tuning. This is

critical for this type of model to be adopted within research and clinic, where extensive

hyperparameter tuning will not be possible.

6.2.2 Inter-Case Generalisation

As discussed in chapter 3, PINNs (in the generalised form) have no mechanism for inter-

case generalisation, with case-specific training required for each new geometry, set of

boundary conditions or set of physical parameters. In the present work, this is a hindrance

when attempting to scale up the number of LV cases used within a study, particularly in

relation to the previous section on hyperparameter sensitivity.

To address this, a future avenue of work could be to adopt a transfer learning approach, in

which a shared set of model weights are used across distinct, but similar, domains. This

would significantly reduce the training time required to ‘fine-tune’ the model in each case,

where typically only weights in the last layer of the network are trained.

6.2.3 Wall Shear Stress

Of the variables that the PINN model is able to generate, WSS is the most problem-

atic to accurately reconstruct. In chapter 5, it was shown that WSS was consistently

under-predicted, particularly when positional uncertainty was a factor, but also somewhat

when the true LV boundary was used for model training and evaluation. Although par-

tially investigated in a handful of small studies [191, 8], the suitability of PINNs for the

quantification of WSS has not been fully characterised.

Positional uncertainty exerts a significant influence on WSS calculations due to the sen-

sitivity of the variable to inaccuracies in the boundary layer. This is problematic in the

present application, where significant positional uncertainty is present in endocardial sur-

faces segmented from MRI. The validity of WSS when calculated on a surface that is

affected by such large amounts of uncertainty is questionable.
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To address the aforementioned issues, the capability of PINN models to accurately recon-

struct WSS should be assessed across a range of simplified fluid flow scenarios at various

Reynolds numbers, with synthetic 4D-flow MRI data at varying spatial resolutions. Since

WSS is typically under-predicted when calculated from 4D-flow MRI, either directly or

using curve fitting, it should be assessed whether PINNs are able to successfully overcome

this.

6.2.4 Synthetic Data Limitations

The synthetic data used within this thesis include significantly idealised, 2D CFD models

and CFD models within patient-specific geometries, albeit with simplifications. These

simplifications include contraction and relaxation of the myocardium being driven by a

sinusoidal function in time instead of realistic volume curves with distinct E-wave and A-

wave phases, which results in a deep penetration of the mitral jet into the ventricle. This

is not typically observed in real LV flow, where deceleration of the mitral jet occurs in

the basal region in both E-wave and A-wave filling. However, it is unlikely that the PINN

model would face any additional challenge modelling LV flow with these characteristics,

which is the primary purpose of these studies.

An additional modelling assumption made within the synthetic data is the use of a fixed

mitral valve, defined on the mitral valve plane, without the inclusion of flexible valve

leaflets. Whilst this construction is not representative of the true LV physiology, it pro-

duces flow patterns that are characteristic of LV flow, primarily in the formation of the

mitral vortex ring. While it is certain that the inclusion of flexible valve leaflets would

provide a more accurate representation, they would introduce significant computational

expense, given that a two-way fluid-structure interaction would be required to model them.

It was determined that, for the purposes of the study, the fixed mitral valve presented an

accurate enough representation of LV flow.

Finally, the synthetic data used within this thesis included artefacts introduced by back-

ground MRI noise only, and did not consider structured noise. Structured noise, arising

due to patient motion and ghosting, for example, is more challenging to synthesise but may

impart a strong influence on results. The addition of these artefacts should be considered

in future work.
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6.3 Outlook

The key obstacle in the adoption of computational methods in cardiovascular research

is appropriate validation of models. This thesis has introduced a technique for super-

resolution of cardiac 4D-flow MRI data and demonstrated its applicability in a small

number of synthetic and real cases. However, extensive validation is still required for such

a model to be used in practice.

6.3.1 Model Validation

It is the authors opinion that model validation should be undertaken in four stages: Val-

idation of variable predictions should first be demonstrated using synthetic, in vitro and

in vivo data; This should be followed by a larger in vivo study utilising a patient pop-

ulation with diverse clinical outcomes, in which the capability of the model to produce

haemodynamic metrics that can be used to correctly classify patient outcomes is assessed.

6.3.1.1 Validation With Synthetic Data

Synthetic data sets are useful for validation as they provide ground truth data that are of an

arbitrarily high resolution and free of noise artefacts. They also allow for the introduction

of data corruption in a controlled manner, where the level of degradation can be rigorously

controlled. However, they should not be used in isolation, as not all data degradation

types can be readily simulated. Examples include structured noise artefacts, such as those

introduced by patient motion, and the complex averaging of the velocity field experienced

throughout the MRI acquisition. With these effects missing, synthetically generated data

presents a simplified picture of 4D-flow MRI limitations.

In chapters 3 and 4, synthetic data have been used to configure the PINN model and

demonstrate model efficacy. Whilst the number of cases used was limited, synthetic 4D-

flow MRI data were generated using different spatio-temporal resolutions and SNR values

in each case, which helped to replicate variability between acquisitions. Still, this type

of study should be extended to explore the variability in flow patterns and values, such

as Reynolds number, experienced with real LV flow. The generation of CFD data can

be a significant bottleneck, where simulating fluid flow in a 3D, patient-specific heart can

take weeks to complete. However, whilst it is important to include some complex synthetic
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cases, replicating similar flow characteristics in simpler models may suffice, allowing greater

exploration of flow patterns and characteristics.

6.3.1.2 Validation With In Vivo Data

As discussed in chapter 5, validation of a 4D-flow MRI super-resolution method in vivo can

be challenging. Firstly, cardiac 4D-flow MRI is limited by the spatio-temporal resolution

that is possible to achieve within a reasonable scan time, with an upper limit on the spatial

resolution of around 2.5mm3. There is no alternative modality that can provide flow data

at a higher resolution in vivo, and therefore a voxel size of 2.5mm3, which is still relatively

coarse, is the best resolution available. Secondly, variability in heart rate and patient

motion between acquisitions leads to poor repeatability and can produce artefacts in the

data, particularly the case of cardiac 4D-flow MRI.

Due to the above, using higher-resolution 4D-flow MRI scans as reference data is not a

plausible approach. Where in the synthetic studies in this thesis it was possible to attempt

to reconstruct the reference CFD results (which are of a very high resolution and free from

noise) from corrupted flow data, such an approach is not recommended for in vivo data.

Instead, a more suitable approach is to produce PINN model results using both the low-

and high-resolution 4D-flow MRI data and assess the consistency of predictions, focused

more on globally measured variables instead of point-wise velocity values. Whilst this has

been done at two resolutions in this thesis, this could be extended to include three or four

distinct scans at varying spatial resolutions. Additionally, more cases are required in a

study of this type.

6.3.1.3 Validation With In Vitro Data

In addition to in vivo validation with 4D-flow MRI, it is possible to provide model val-

idation in vitro using a physical phantom. This type of study has been undertaken to

validate 4D-flow MRI methods previously [72, 75], where silicone phantoms were used to

replicate flow in a section of the vasculature. In [75], low- and high-resolution 4D-flow

MRI data were acquired at spatial resolutions of 4mm3 and 2mm3, respectively. In [72],

PIV imaging was used to obtain the high-resolution reference data, at a spatial resolution

of 0.141mm3, with low-resolution training data obtained using 4D-flow MRI at a spatial

resolution of 0.57mm3.
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With a phantom setup, issues around repeatability are alleviated, with no limitation on

scan duration and no variation in heart rate or patient position. This allows for acquisitions

at a higher resolution and SNR than is possible in vivo, with limited artefacts arising in

the form of structured noise. Further, the use of more accurate flow imaging techniques,

such as PIV, is possible in vitro by using transparent (or translucent) silicone to construct

the flow domain walls. It would also be possible to measure additional variables, such as

pressure, directly, which would allow for validation of such variables when approximated

with the PINN model.

Constructing a beating LV phantom would likely be a challenging task. Instead, replicating

the key flow conditions in a rigid-wall setup would likely be sufficient alongside synthetic

and in vivo validation studies in deforming domains.

6.3.1.4 Patient Classification

Given the PINN model introduced in this thesis is intended to be used in stratifying LV

remodelling patients, it is important to assess the ability of the model to correctly perform

this task. To do this, a cohort of patients with known clinical outcomes may be used, with

4D-flow MRI data acquired acutely post-infarct. The validation task is to attempt to

correctly classify the diseased subsets of the population (using a classification model that

is distinct to the PINN), using the PINN results as input. This may be performed by

analysing variables that have been previously linked with ALVR, but may also allow for

new haemodynamic marker discovery.
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