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Abstract

Cognitive Decline (CD) encompasses a spectrum of conditions affecting mil-

lions globally, manifesting in cognitive impairments such as memory and lan-

guage deficits. Neurodegenerative Dementias (NDs), including Alzheimer’s

Dementia (AD), represent a group of degenerative disorders contributing to

progressive CD. The early stages of CD often exhibit language disturbances,

and research indicates that early diagnosis can improve patient outcomes.

Speech has emerged as a prominent, non-invasive biomarker for CD assess-

ment, offering potential insights into disease progression. Studies investigat-

ing how speech is affected by CD have frequently reported that, as cognition

decreases, the presence of disfluencies such as unfilled pauses increases. This

thesis explores the diagnostic utility of disfluency analysis, as well as investi-

gating which tasks may elicit the most useful speech for analysis.

In CD detection, advancements in machine learning have led to the develop-

ment of Automatic Cognitive Decline Classification (ACDC) systems, which

demonstrate remarkable accuracy in distinguishing dementia patients from

healthy controls based on speech samples. However, ACDC methodologies of-

ten struggle to generalise across diverse demographics and lack transparency

in their classification rationale. This thesis presents evidence that integrating

disfluency features into ACDC systems enhances classification accuracy and

addresses issues of generalisation and transparency.

Additionally, Conversation Analysis (CA) has been employed to develop con-

versational profiles that could assist doctors in differentiating between pa-

tients with Neurodegenerative Dementia (ND) and those with Functional

Memory Disorder (FMD), a non-neurodegenerative psychological condition.

This thesis further investigates whether CA can be utilised to create con-

versational profiles that help differentiate between ND and Mild Cognitive

Impairment (MCI), an early stage of CD.
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1.1 Thesis Overview

This thesis employs three distinct methodologies to investigate speech from people diag-

nosed with different levels of Cognitive Decline (CD), and examines the potential role of

technology in the diagnostic pathway in the U.K. The first study employs a quantitative

analysis of speech to investigate the presence of disfluencies in individuals with varying

stages of CD. The speech analysed is directed at an intelligent virtual agent rather than a

human doctor, and was collected as part of the larger CognoSpeak project (introduced in

Section 2.5.3 of this thesis). Alongside healthy controls, the study examines people diag-

nosed with three conditions affecting cognition and language: functional memory disorder,

mild cognitive impairment, and neurodegenerative dementia. This study is motivated by

two primary considerations. Firstly, having data from healthy controls allows compari-

son with cognitively impaired groups and provides insight into disfluency rates in healthy

aging adults interacting with a virtual system. This enables comparison with previously

reported disfluency rates and suggests that the previous claim of lower disfluency rates in

computer-directed speech may not hold in conversational settings. Secondly, by includ-

ing participants at different stages of CD, we are able to investigate whether disfluency

information is useful for distinguishing among these conditions — a task known to be

challenging for clinicians using traditional diagnostic tools. This study addresses our first

and second research questions:

RQ 1: How do the frequency and duration of speech disfluencies differ when

participants engage in an interview-style task with a digital avatar in a sim-

ulated medical interview scenario, compared to similar interviews conducted

with human clinicians?

RQ 2: Can an analysis of speech disfluencies be used to discriminate between

different levels of cognitive decline?

After demonstrating that disfluency information can be used to discriminate between

different levels of CD, we shift our focus to another task commonly used to assist in

diagnosing CD: a picture description task. Given the elevated rates of disfluencies ob-
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served in the interview-style task, our third research question aims to investigate potential

differences across tasks when analysing disfluencies:

RQ 3: How do patterns of disfluency vary between an interview-style task and

a picture description task?

We subsequently adopt a Machine Learning (ML) approach, utilising the insights gained

from the manual disfluency studies to address our fourth research question:

RQ 4: Can disfluency information improve the accuracy of an automatic cog-

nitive decline classification system?

Our results from a proof-of-concept study indicate that incorporating disfluency infor-

mation in this way can enhance the accuracy of Automatic Cognitive Decline Classifi-

cation (ACDC) systems. Moreover, disfluency information is more interpretable than

many traditional features typically used for such tasks. Finally, we use Conversation

Analysis (CA) as a methodology to conduct an in-depth qualitative assessment of the dif-

ferences and similarities in how patients describe their memory issues to either a human

doctor or an intelligent virtual agent, addressing our final research question:

RQ 5: How do patients construct their problem presentation phases in a med-

ical interview with a human doctor versus a digital avatar?

By examining the distinct conversational actions used when speaking to a computer rather

than a human, we aim to understand how these systems could be designed to elicit the

maximum amount of useful information from patients. Results from this analysis indicate

that people interacting with a computer in this context display more pausing behaviours,

which contradicts previous research suggesting that humans exhibit fewer disfluencies

when interacting with a machine.

1.2 Motivation

The prevalence of CD is increasing alongside the increase in the number of people aged 65

and above. This increase is set to reach over 10 million people in the U.K alone over the
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next 40 years, with the category of people aged 80 and above being the fastest growing

subset, which is set to double in number [Centre for Better Ageing, 2020]. Dementia, a

range of syndromes and diseases, is especially pervasive in the ageing population. De-

mentia affects a person’s cognitive functioning in numerous different domains including

memory, attention, language, and orientation. This can severely impact a person’s daily

living, and people with more severe CD require frequent help from professional carers or

family members, placing considerable strain on both caregivers and healthcare systems

worldwide.

Accurately detecting and diagnosing CD is a particularly difficult task due to its het-

erogeneity and the countless different potential causes. Even more difficult is the task

of differentiating between different levels of CD, where differences are often subtle and

vary greatly from person to person. Recently there has been a growing interest in using

the analysis of speech as a potential solution to these challenges. Speech is complex and

can reflect various cognitive processes including language comprehension and production,

and executive functioning skills. Researchers have been exploring the use of speech as

a non-invasive and cost effective tool for assessing the presence and severity of cognitive

impairment. A range of different approaches have been investigated for this purpose.

Qualitative analyses can help researchers understand the underlying cognitive processes

and linguistic patterns associated with CD. This can offer valuable insights into early de-

tection of CD and intervention strategies. Quantitative (including ML) based approaches

can help us understand the statistical patterns and computational features that are in-

dicative of cognitive decline, often providing insight that humans alone would be unable

to access.

The advancement of ACDC systems marks a promising field of research. These systems

use Artificial Intelligence (AI) and ML algorithms to analyse speech and quickly extract

meaningful information which can be used to indicate levels of cognitive ability in many

different areas, including speech and language. By automating the process of speech anal-

ysis these systems could prove to be an efficient method of aiding doctors and clinicians in

diagnostic tasks. There are numerous benefits of using ACDC systems. There is evidence
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that such systems can help detect CD at a much earlier stage then current diagnostic

tests, and early detection has been proven to improve the outcomes of people with CD,

allowing them to make earlier lifestyle adjustments or start pharmacological treatments

sooner. These systems are also cheaper and more scalable; theoretically if a system can

be developed that works on a broad range of populations then it can be used on an in-

finite number of people. However, a combination of both qualitative and quantitative

approaches will provide the most thorough analysis and result in a broad range of data.

These systems have the potential to revolutionise the way CD is diagnosed and managed

which will ultimately enhance the lives and wellbeing of people affected by CD.

1.3 Thesis Contributions

1. The DisCo Taxonomy of Disfluency.

As detailed throughout this thesis, there are numerous different ways of measuring

and classifying speech disfluencies. This makes it difficult to directly compare results

from different disfluency studies, as such work is frequently not explicit in how exactly

the researchers are classifying each disfluency. This is particularly prevalent across

fields that are not directly related to linguistics or speech pathology, such as computer

science. In order to address this, this thesis proposes a novel way of classifying and

measuring disfluencies in speech. The Disfluencies in Cognition (DisCo) schema is

specifically designed to uncover various different types of disfluency in speech affected

by different levels of cognitive decline, but at a level that facilitates a (relatively)

straightforward approach to automating the process of analysing disfluencies. The

ability to automatically perform this analysis means that disfluency information can

be included in automatic cognitive decline detection systems.

2. Accuracy Improvements in Automatic Cognitive Decline Classification Sys-

tems.

This thesis demonstrates that disfluency information can be a valuable addition to

ACDC systems. Research into such systems is becoming increasingly popular as the

need for quick and accurate cognitive decline diagnosis increases. ACDC systems need
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to be able to generalise to diverse populations, and in order for them to be used in the

most effective way they should be able to be understood by doctors. Disfluency fea-

tures provide an interpretable measure of different levels of cognitive decline, and the

DisCo schema was created in such a way that enables the analysis of disfluencies across

a broad range of accents and dialects of English. Because disfluencies have predictable

language-specific patterns, the DisCo schema could be easily modified for use across a

range of different languages.

3. Classification of Problem Presentation Phases.

Researchers employing conversation analysis as a method for investigating medical

interviews have predominantly focussed on two main areas; how doctors design their

questions and how patients design their responses. In terms of patient responses,

research has found that these vary depending on how much prior knowledge of their

condition they assume the doctor to have. Much of this work has focused specifically

on check-ups or GP consultations, where the range of symptoms patients can discuss

is very broad. Our work specifically investigates medical interviews in memory clinics,

where we suggest that there is an underlying constraint that patients are aware of which

suggests they should be primarily discussing their memory symptoms. We observe

that when patients are asked about their memory problems there are two main types

of response. These are dependent on whether the patient accepts their symptoms as

memory related, or if they deny this link (or indeed that they are experiencing any

memory-related symptoms at all). In addition, we observe three different approaches

to discussing memory issues from the patients that fall into the “acceptee” group. The

first group of participants are accepting of their memory concerns and are able to give

specific examples of when their memory has let them down. In addition, these patients

describe these symptoms in terms of the emotional distress they are causing. The

second group does not attempt to minimise or deny their memory problems, but does

not offer specific examples of their memory failing. Rather, these patients talk in very

general terms with vague language. Whilst these patients signal that they are aware

of their memory issues by naming them, the lack of detail suggests that they don’t feel

these symptoms are severe enough to warrant investigation. Patients belonging to the
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final group of acceptees can identify that they have some memory related issues, but

offer no elaboration at all. These responses are short and lack even general descriptions

of what exactly the patients have been experiencing.

1.4 Publications

1. M. Thomas, N. Pevy, and T. Walker (2023). Disfluencies in Cognitive Decline: An

Investigative Study. Proceedings of the biennial symposium of the International Clinical

Phonetics and Linguistics Association (ICPLA 2023), University of Salzburg, 4-7 July

2023.

2. M. Thomas, S. Hollands, D. Blackburn, and H. Christensen (2023). Towards Disflu-

ency Features for Speech Technology Based Automatic Dementia Classification. Pro-

ceedings of the 20th International Congress of the Phonetic Sciences (ICPhS 2023),

Prague Congress Centre, Czech Republic, 7-11 August 2023.

1.5 Thesis Structure

This thesis presents a multidisciplinary approach to the analysis of speech for the pur-

pose of identifying cognitive decline. Each analysis chapter in this thesis uses a different

methodology and as such, a broad range of background knowledge about each methodol-

ogy is required. This thesis starts with a fundamentals chapter which lays out the general

background information required to understand the basics of the three methodologies used

in this thesis. Then, each analysis chapter begins with a more specific overview of the

methodology relevant to the particular analysis. This ensures that the most important

information for each analysis is presented alongside the analysis, in an attempt to avoid

confusion among the three different methodologies.
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2.1 Introduction

This chapter presents the general background knowledge of the main concepts and

methodologies discussed in this thesis. The first section (2.2) provides an overview of

the different types of Cognitive Decline (CD) that are investigated in this thesis, and

details the symptoms of each. This section then discusses how the different levels of

CD can affect speech and language, and presents an overview of the different language

tests currently used by doctors to help ascertain levels of cognitive decline. Section

2.3 introduces some of the most commonly used tests for assessing levels of CD.

Particular attention is paid to the tests that feature in the data analysed throughout

this thesis. Section 2.4 then turns the focus to disfluencies. A brief introduction to

the types of disfluencies that are paid particular attention to in this thesis is followed

by an overview of disfluencies in cognitively healthy older adults compared to those

with CD. Section 2.5 presents all the background knowledge required to understand

the Artificial Intelligence (AI) and Machine Learning (ML) aspects of this thesis. We

start with a general overview of Automatic Cognitive Decline Classification (ACDC)

systems, and describe the main components involved in these. We then present the

most commonly used metrics to assess the performance of ACDC systems. The next

section (2.5.3 introduces the CognoSpeak system, an intelligent virtual agent designed

to simulate a medical interview with a doctor in a memory clinic. This system provided

the bulk of data for analysis in this thesis, and serves as motivation for investigating

how disfluencies and disfluency information may be able to improve the performance of

such systems. The final section (2.6) provides a general introduction to Conversation

Analysis (CA) and covers the foundational principles of talk-in-interaction covering

turn-taking, sequence organisation, repairs and trouble sources, and preference structure.

After this we discuss another commonly used method for analysing medical discourse (the

Roter Interaction Analysis System), and address why this thesis favours the CA approach.
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2.2 Cognitive Decline

The term Cognitive Decline (CD) describes a decrease in different cognitive functions

such as memory, visual-spatial processing, and executive functioning. CD can be a non-

pathological effect of normal bodily ageing, the symptoms of which vary greatly from

person to person [Deary et al., 2009]. For example, individual differences such as education

level or brain physiology mean that no two cognitively healthy ageing people are the same.

In fact, studies have shown that normal ageing is primarily person-specific [Wilson et al.,

2002]. There are still large research gaps when considering the relationship between age

and cognition in the absence of diseases such as dementia. As Salthouse [2019] states,

without a thorough understanding of non-pathological cognitive ageing it is difficult to

identify the earliest stages of pathological CD and therefore more difficult to identify the

best time at which to start interventions intended to slow future decline. This in turn

minimises the effects of any potential treatments, and contributes to the many difficulties

faced by people living with CD.

However, it is important to understand the differences between language deficits as a re-

sult of CD, compared to those caused by normal cognitive ageing. There is no one model

of normal cognitive ageing when considering language processing and production. One

of the most specific models is the Transmission Deficit hypothesis Burke et al. [2000].

This hypothesis describes how the effect of normal ageing on language is asymmetric,

where semantic representations and retrieval are relatively well preserved throughout the

process of ageing compared to phonological and orthographic representations [Abrams

and Farrell, 2011]. Broadly speaking, there are two main categories of theories of cog-

nitive ageing; information-universal and information-specific [Burke and MacKay, 1997].

Information-universal theories suggest that a slowing of memory and cognitive function-

ing occurs with ageing, regardless of the kind of task or information that needs to be

processed. Individual theories that fall under this banner include the “sensory decline”

theory [Lindenberger and Baltes, 1994] which suggests that sensory functioning (specif-

ically visual and auditory acuity) is an important correlate of cognitive functioning in

old and very old age, or the “general slowing” theory posited by Salthouse [1996] which
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suggests that ageing causes a general slowing of all types of processing.

Conversely, information-specific theories of cognitive ageing suggest that the effects of age-

ing do depend on the task or information, and the respective parts of the brain responsible

for the processing of that information. Theories in this group explain the patterns of de-

ficiency seen in patients with similar lesions or damage to specific parts of the brain (such

as age-related lesions in the hippocampus leading to memory impairment but a preserva-

tion of general cognitive functions; as described in Moscovitch and Winocur [1992]), and

suggest that the effects of ageing are not always balanced, with people often experiencing

deficiencies with a particular cognitive function more than others.

The present work suggests that language problems could be used to differentiate between

the general slowing of cognitive processes we would expect to see given a person’s age, and

cognitive decline caused by other factors. For example, it is well reported that language

deficits in cognitively healthy ageing adults are often asymmetric, with production tasks

being more severely affected by age than comprehension tasks (see Abrams and Farrell

[2011] for a thorough overview of language in normal ageing). If, then, a patient presents

to a memory clinic with particularly impaired speech and severe aphasia, it follows that

something other than healthy ageing is having an effect on the patient. We take this

assumption one step further and suggest that different aspects of pathological speech could

be used to differentiate between different levels of CD. Whilst differences in pathological

language production and comprehension have been researched across different disorders,

there is little work supporting any differences in disfluency frequency according to differing

levels of pathological CD. This thesis aims to address this gap in literature by investigating

whether the presence of speech disfluencies could be an indicator of severity or type of

CD.

Whilst non-pathological cognitive ageing is under-researched, a much larger body of work

has focused on CD with causes outside of standard ageing. The remainder of this thesis

focuses on different levels of pathological CD. The following section focuses on dementia

and its various associated syndromes.
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2.2.1 Dementia

Dementia is an umbrella term referring to a group of syndromes or diseases characterised

by a loss of cognitive abilities severe enough to impact day-to-day life [Geldmacher and

Whitehouse, 1996]. The World Health Organisation (WHO) estimates that more than 55

million people worldwide currently live with dementia, and every year there are almost

10 million new cases [WHO, 2023]. Focusing specifically on the U.K, dementia was the

leading cause of death in 2022 and has been the leading cause of death for women since

2011, according to Alzheimer’s Research U.K [2023]. Surprisingly, dementia was still the

biggest killer of women in the U.K throughout the recent Covid 19 pandemic.

The term dementia is typically used when talking about neurodegenerative dementias,

although nondegenerative dementias do exist. Nondegenerative dementias typically occur

at a younger age, and can be caused by numerous different factors from nutritional prob-

lems to tumours (for a full overview of known causes of nondegenerative dementia, please

see Ghosh [2010]). Importantly, many types of nondegenerative dementia are treatable or

preventable, unlike most types of neurodegenerative dementia.

Neurodegenerative Dementia (ND) is characterised by a gradual worsening of symptoms

over time. Neurodegeneration has two pathological hallmarks; deposits of proteins into the

brain tissue and/or cell death [Matej et al., 2019]. Other examples of neurodegenerative

diseases include Parkinson’s Disease and Motor Neurone Disease. There are four main

types of ND. The most common, Alzheimer’s Dementia (AD), is discussed in detail in the

following section. The remaining three are discussed below. Although current research

agrees in these four main types of ND, there is increasingly more work suggesting that

these groups may not be so clear cut, and that there is potentially more overlap between

the groups than had previously been thought [Matej et al., 2019]. Further complicating

the matter of diagnosing different kinds of ND is the fact that each of the groups discussed

below also have their own subcategories (for example, Frontotemporal Dementia (FTD)

can be subdivided into a behavioural variant, a semantic variant, a non-fluent variant,

etc). Table 2.1 at the end of this subsection presents a condensed comparison of the four

most common types of ND.
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2.2.1.1 Lewy Body Dementia (and Parkinson’s Dementia)

Lewy Body Dementia (LBD) is a dementia caused by Lewy Body disease. This disease

causes small clumps of proteins (the Lewy Bodies) to form in the brain. Lewy Body

disease is also the cause of Parkinson’s disease. LBD is diagnosed when the symptoms of

dementia arise either before or alongside the onset of motor symptoms caused by Parkin-

son’s Disease. If symptoms of dementia arise one year or more after a Parkinson’s Disease

diagnosis, the condition is diagnosed as Parkinson’s Disease Dementia (PDD). Both LBD

and PDD share the same pathophysiology [Walker et al., 2015], and both dementias are so

similar that they are commonly referred to simply as LBD. Approximately 10-15% of all

dementia cases in the U.K are diagnosed as LBD [Alzheimer’s Research U.K, 2023].

2.2.1.2 Vascular Dementia

Vascular Dementia (VaD) is a type of ND responsible for around 15% of all dementia

cases worldwide. Although many symptoms of VaD overlap with other dementias, the

cognitive changes caused by VaD are more variable and depend on which neural substrates

are affected by the disease [O’Brien and Thomas, 2015]. It is widely recognised that a

diagnosis of VaD is dependent on the presence of white matter lesions in the brain, visible

through Magnetic Resonance Imaging (MRI) scans [Iadecola, 2013]. However, there may

be several causes of VaD including strokes and small vessel disease of the brain [ARUK,

2023], or other types of cerebrovascular disease [Jellinger and Attems, 2010].

2.2.1.3 Frontotemporal Dementia

FTD is a slow-progressing type of ND characterised by prominent personality change and

expressive language problems [Welsh-Bohmer and Warren, 2006]. In terms of communi-

cation deficits, primary progressive aphasia is common but dysarthria is rarely observed

[Horner et al., 2007]. FTD is the leading kind of early-onset dementia (affecting peo-

ple under the age of 65), but is often misdiagnosed as a psychiatric disorder due to the

personality and behavioural changes it can cause [Bang et al., 2015].
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2.2.2 Alzheimer’s Dementia

As previously mentioned, Alzheimer’s Dementia (AD) is the most common type of ND

and is frequently used in colloquial language as an umbrella term for all kinds of dementia,

despite having many differentiating features. AD accounts for around 60% of all dementia

cases in the U.K. While it is the most prevalent kind of dementia, AD tends to have a

longer survival time than other kinds of ND [Alzheimer’s Research U.K, 2023]. Such high

instances of the disease results in huge economic burdens. Nationally, AD and related

care costs £34.7 billion annually. Most people with AD in the U.K have to fund their

own care, resulting in a typical annual cost of £32,250 per person [Alzheimer’s Society,

2021]. This is particularly concerning given the average annual income of pensioners in

the U.K is only £12,000 [Office for National Statistics, 2022]. However, the cost of AD

is not purely felt by the patient. Families of AD patients often face indirect costs such

as the loss of earnings whilst caring for their loved ones [Castro et al., 2010]. There are

also countless emotional costs of living with or caring for someone with AD. Carers often

face distressing scenarios arising from the behavioural changes resulting from the disease

[Burns, 2000] alongside the usual difficulties that come with witnessing a loved one in ill

health.

2.2.2.1 Cognitive Symptoms

The most prevalent cognitive symptoms of AD are those concerning problems with mem-

ory. At earlier stages of the disease, patients may experience things such as misplacing

items or missing appointments. As the disease progresses these symptoms will become

more severe, and can result in patients forgetting key events from their past or close fam-

ily members. AD does not present the same in all patients. Some people may experience

deficits in executive functioning before the onset of memory loss, and a small number of

patients may not experience memory loss at all [López and DeKosky, 2008]. Anosognosia

(a lack of awareness of one’s own cognitive deficits) has been found to worsen along with

the progression of AD [Clare, 2004].

Visuospatial difficulties are also commonly experienced by people with AD. This refers

to the inability to picture parts in space, and difficulty in performing mental operations
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on spatial concepts. People with visuospatial deficits may not be able to detect colour

and motion, and will struggle to complete basic drawing tasks [Salimi et al., 2018].

Language difficulties complete the list of the most common cognitive symptoms of AD,

and these are covered in more detail in Section 2.2.5.

2.2.2.2 Non-Cognitive Symptoms

Behavioural symptoms of AD include things such as increased violence, overactivity, and

insomnia. A study by Margallo-Lana et al. [2001] found that up to 60% of people with

AD living in care facilities exhibit some form of aggressive behaviour.

Psychological symptoms of AD include hallucinations, delusions, depression, and fearful-

ness. In a study of more than 2,200 AD patients, it was found that delusions occurred

in up to 73% of all patients. Hallucinations were observed in up to 67% of patients, and

up to 30% of patients had misidentified people or places [Molchan et al., 1995]. Although

reported rates of depression in people with AD vary, depression is an important symptom

especially in terms of patient care, as people who have depression and AD but are not

experiencing anosognosia are often left in fear and grief when facing the fact that they

have a progressive degenerative disease [Borson and Raskind, 1997].

2.2.2.3 Current Diagnostic Pathway

Recent figures from an audit of memory assessment services [Royal College of Psychi-

atrists, 2022] has found that the average time to a diagnosis of AD is 2.8 years. This

includes months of worry before the patient decides to seek help from a GP, and a poten-

tial waiting time of 17 weeks to be referred to a specialist memory service. This situation

is worse for people diagnosed with early onset AD (those aged under the age of 65), where

the average waiting time is 4.4 years.

2.2.2.4 Biomarkers

At present, the most reliable way of diagnosing AD is by looking for in-vivo biomarkers

such as beta-amyloid plaques in brain tissue [Matej et al., 2019]. Biomarkers for AD are

present in Cerebrospinal Fluid (CSF). In order to assess the levels of biomarkers present
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in CSF a patient must undergo a lumbar puncture, a procedure involving a needle being

inserted into a patient’s lower spine to allow the collection of the CSF [Doherty and

Forbes, 2014]. It is also possible to investigate neuronal loss [Scheltens et al., 2016] which

is visible through neuroimaging. Whilst the analysis of in-vivo biomarkers is currently

the most accurate way of diagnosing AD, there are a number of potential issues with

these methods. For example, these tests need to be administered by a trained doctor or

clinician, and involve the use of expensive medical equipment. This contributes towards

the high costs of dementia care. In addition, these tests must take place in a hospital

which can cause problems for people who are less mobile. Recently, speech has been

investigated for its usefulness as a biomarker for assessing the presence of AD and other

kinds of CD (see, for example, Robin et al. [2020], Chakraborty et al. [2020], or Laguarta

and Subirana [2021]). Speech is easy to collect compared to in-vivo biomarkers, does not

require a doctor to be present during the collection process, and can (theoretically) be

collected from any location.

Comparison of the Four Main Types of Neurodegenerative Dementia

Alzheimer’s Dementia

(AD)

Vascular Dementia

(VaD)

Lewy Body Dementia

(LBD)

Frontotemporal Dementia

(FTD)

Onset and Course

insidious onset,

likely from 65+,

progressive,

slow

abrupt onset,

fluctuating course

early stages fluctuate between

cognitively normal and abnormal,

progressive,

rapid (1-5 years)

insidious onset,

likely before 65,

progressive,

slow

Profile

memory and cognition

deficits,

impaired daily life

function

memory and cognition

deficits,

impaired daily life

function

fluctuating attention,

visual hallucinations,

parkinsonism

varies from subtype but

executive dysfunction,

semantic deficits and

aphasia are common

Communication

Changes

aphasia is common,

semantic system most

affected,

syntax and phonology

affected later on,

slow progression to

mutism

motor speech disorder,

grammar simplification
parkinsonian dysarthric features

primary progressive

aphasia

Behavioural

Changes

depression, insomnia,

incontinence,

delusions, agitation

frequent falls,

dysarthria, visual

deficits

parkinsonian features common
not a major feature of

FTD

Table 2.1: Comparison of the four main types of neurodegenerative dementia, adapted
from Horner et al. [2007].
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2.2.3 Mild Cognitive Impairment

Mild Cognitive Impairment (MCI) is a type of CD that is often thought of as the early

stages of dementia such as AD. According to the Diagnostic and Statistics Manual 5,

[Sachs-Ericsson and Blazer, 2015], MCI should now be referred to as “Mild Neurocognitive

Disorder”. However, as this thesis uses data from 2014-2018 that is labelled as MCI, we

retain the name MCI to avoid confusion. The main difference between MCI and dementia

is that patients with MCI show a decrease in cognitive functioning that is greater than

average for their age and education level, but does not heavily interfere with their day-

to-day lives. MCI is generally regarded as the point between normal cognitive ageing and

very early CD [Petersen, 2016].

Attention was first brought to MCI (originally termed mild cognitive decline) in 1982 when

Reisberg et al. published their Global Deterioration Scale (GDS). Table 2.2 provides an

overview of the GDS. This work was important as it was the first dementia scale that

clearly differentiated between MCI and other levels of CD.

More recently, the First Key Symposium for Mild Cognitive Impairment held in Stock-

holm, Sweden, saw a group of experts from a range of different disciplines produce a

revised criterion for diagnosing MCI [Winblad et al., 2004]. These guidelines (the Stock-

holm Criteria) state that a patient can be diagnosed with MCI if:

• The patient is neither cognitively normal nor cognitively demented

• There has been a report of CD either from the patient or from an informant

• There is evidence of CD over time on objective cognitive tasks

• The basic activities of daily living are preserved

There is no consensus as to whether or not MCI always leads to dementia. In instances

where this progression does take place, MCI can sometimes be referred to as prodromal

dementia. Numerous different studies have unfortunately reached numerous different

conclusions to this question. For example, Chertkow et al. [2001] found that even after

10 years since the onset of memory complaints, a quarter of their MCI patients had not

converted to AD. Conversely, Morris et al. [2001] found that 100% of their participants
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The Global Deterioration Scale

Level Clinical Characteristics

1 - No Cognitive Decline No subjective complaints of memory

2 - Age Associated Memory
Impairment

Subjective complaints of memory deficit but no ob-
jective evidence of memory deficit in clinical inter-
view, and no objective deficits in employment or
social situations

3 - Mild Cognitive Impair-
ment

Objective evidence of memory deficit obtained
only through intensive clinical interview, decreased
performance in demanding employment and social
settings, experiences events such as concentration
deficits, forgetting names of new people, word and
name finding errors

4 - Mild Dementia May exhibit some deficit in memory of personal
history, inability to perform complex tasks, de-
creased knowledge of current or recent events, de-
creased ability to travel and handle finances

5 - Moderate Dementia Patient can no longer survive without assistance,
inability to recall major relevant aspects of their
lives such as their home address, frequent disori-
entation, but are usually able to remember their
spouses’ and children’s names and don’t require
help with eating or using the bathroom

6 - Moderately Severe De-
mentia

Unaware of most recent events or momentous oc-
casions in their lives, occasionally forgets spouses’
and children’s names, generally unaware of their
surroundings, may undergo personality changes

7 - Severe Dementia All verbal abilities will eventually be lost, require
assistance with most, if not all, of their daily tasks,
eventual loss of basic psychomotor skills

Table 2.2: The Global Deterioration Scale, adapted from Reisberg et al. [1982].

with MCI had progressed to AD over a span of 9.5 years. Yet another study [Gauthier

et al., 2006] states that more than half of people diagnosed with MCI will progress to AD

within five years.

There are numerous potential reasons for this disparity. Firstly, there is no single set of

guidelines for aiding in the diagnosis of MCI [Chertkow, 2002]. The Stockholm Criteria

highlighted above is only one example of several different MCI criteria, including the Pe-
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tersen Criteria [Petersen et al., 2001b] and the Global Deterioration Scale [Reisberg et al.,

1982]. It is also important to note that while these criteria exist, they should be thought

of as rating scales rather than diagnostic tools [Petersen et al., 1999]. Secondly, there is a

high level of interpersonal difference when it comes to the ways in which symptoms may

present, and in what order. Petersen et al. [2001a] suggest three different subgroups of

MCI which are categorised according to which cognitive functions are affected:

1. Amnestic MCI where only memory is affected

2. Multiple-Domain MCI where impairment is found across multiple cognitive domains

but is not severe enough to constitute dementia

3. Single Non-Memory Domain MCI where impairment is found in a single domain that

is not memory.

Expanding on this work, Petersen went on to suggest that specific subtypes of MCI may

be more likely to progress to specific types of dementia [Petersen, 2003]. At the same time

however, there is work to suggest that MCI subtype is a poor predictor of future dementia

type [Fischer et al., 2007]. This contradiction serves to prove how closely linked MCI and

dementia are, and that misdiagnoses between the two are not uncommon. In fact, some

people that were previously diagnosed with possible AD are now being reclassified as in

fact having MCI, thanks to advances in diagnostic criteria [McKhann et al., 2011].

Despite the various attempts to standardise the definition of what exactly constitutes

MCI, problems still arise when it comes to diagnosing the condition. In their review of

MCI clinical trials, Stephan et al. [2013] highlight the lack of consistency in how MCI

was diagnosed from study to study. Whilst researchers agree that the earlier CD can

be diagnosed the better, a lack of standardisation in diagnosis methods across the board

makes this a difficult task. Although there is disagreement surrounding the best criteria

for diagnosing MCI, this thesis uses the term to specifically refer to the level of CD

represented at level three on the GDS, irrespective of the subgroup classification.
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2.2.4 Functional Memory Disorder

Functional Memory Disorder (FMD) is a syndrome that causes many symptoms that over-

lap with those caused by neurodegenerative dementia. However, FMD is a non-organic,

non-progressive psychological disorder that is caused by distress or psychosocial burden

[Schmidtke et al., 2008]. FMD (also referred to in the literature as functional cognitive

disorder or functional cognitive impairment) results in significant patient distress, and can

greatly affect a person’s social life and employment [Pennington et al., 2015]. FMD also

impacts a person’s internal consistency, resulting in periods of time where the person can

function normally but other periods where a person is severely impaired [Ball et al., 2020].

One defining feature of FMD is the subjectivity of the memory complaints. Pennington

et al. [2015] found that patients frequently rated their memory abilities as excessively low

on self-reporting scales, resulting in many people with FMD often being misdiagnosed as

having early stages of neurodegenerative dementia.

Not much research exists examining potential language and communication-related symp-

toms of FMD. Elsey et al. [2015] found that in their study of 30 patients (half with ND

and half with FMD), the people with FMD interacted more confidently with doctors and

clinicians and provided more detailed descriptions of their symptoms compared to pa-

tients with ND. 11 of their ND patients were diagnosed with an early stage of dementia,

while the remaining four were diagnosed with amnestic MCI, described as being “highly

likely to develop into dementia”. Cognitive scores for participants were not reported in

this paper, so the comparison was based on the expectation that people with FMD are

less severely affected by cognitive decline than those with ND.

A study by Jones et al. in 2016 obtained similar results, and demonstrated that people

with FMD were better at following compound questions than those with ND, although

they did take more time when responding to questions. A 2019 study from Alexander

et al. found that FMD patients’ ability to provide detailed accounts of their symptoms in

itself constitutes conversational evidence of their cognitive and memory capacity, which

frequently contrasts with their subjective complaints.

The next section of this chapter examines the different language deficits caused by neu-
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rodegenerative dementia and mild cognitive impairment.

2.2.5 Effects of Cognitive Decline on Language and Communi-

cation

Researchers have always linked CD with a decline in linguistic ability. Even in the earliest

studies, language deficits were noted as symptoms of cognitive impairment, such as in

the seminal documentation of progressive mental deterioration observed in a 51 year old

woman which was produced in 1901 and later published in 1911 by Alois Alzheimer [Möller

and Graeber, 1998]. Numerous studies report that difficulties with language and speech

are amongst the earliest symptoms of dementia [Snowdon et al., 1996; Stanyon et al.,

2016; Tang-Wai and Graham, 2008]. Research also shows that as the disease progresses,

language difficulties become more severe [Kempler, 2005].

A large bulk of this research has focussed solely on Alzheimer’s Dementia, primarily as

it is the most common kind of dementia. Some of the most common language problems

found in severe AD are temporal changes such as speech rate and tempo [Forbes-McKay

and Venneri, 2005; Jarrold et al., 2014; Meilán et al., 2014], phonemic paraphasia (where

words are produced with unintended sounds) [Croot et al., 2000; Wutzler et al., 2013],

and word finding difficulties [Kempler and Goral, 2008; Santos et al., 2011; Taler and

Phillips, 2008]. There is also work investigating lesser known speech problems associated

with severe AD, such as a reduction in syntactic complexity and comprehension [Bickel

et al., 2000] and problems with grammaticality [Small et al., 1997].

More recently, some work has investigated different levels of cognitive impairment to

uncover differences in linguistic ability. Investigations into MCI (such as in Taler and

Phillips [2008]), different types of ND (as in Jiskoot et al. [2023] and Klimova and Kuca

[2016]), and prodromal stages of dementia (such as in Vincze et al. [2021] and Laske et al.

[2015]) make up the majority of this research and support the theory that the worse a

person’s dementia is, the more their speech and language abilities will be affected.

The remainder of this subsection describes some of the most commonly reported effects

of cognitive decline on speech and language.
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2.2.5.1 Aphasia

Aphasia is characterised by symptoms such as having difficulties speaking clearly or un-

derstanding speech, trouble remembering words, and trouble naming objects. Aphasia

is particularly pervasive in AD, with research from Cummings et al. [1985] finding in

their study of 30 AD patients that all patients were aphasic, and that language became

more impaired as the severity of AD increased. Anomia, a type of aphasia that causes

semantic impairments and affects the production of words such as names and numbers, is

frequently observed as a symptom of AD, although the reported number of people with

AD who experience anomic aphasia varies between studies [Aronoff et al., 2006]. Research

has shown that aphasia can also be a symptom caused by other kinds of dementia, such as

FTD [Kirshner, 2014] and LBD [Watanabe et al., 2020]. A study from Forbes et al. [2002]

that examined the language differences between people with “minimal AD” (people that

scored in the MCI range on neuropsychological tests) and healthy controls found that the

people with minimal AD took longer to produce words, and often used incorrect words

when describing a picture (for example saying “boy” instead of “girl”, a phenomenon

called semantic paraphasia).

2.2.5.2 Reduced Syntactic Complexity

People with CD often exhibit language with a reduced syntactic complexity compared

to age-matched healthy adults. Syntactic complexity refers to the range and diversity

of sentences present in language. Numerous studies have examined syntactic complexity

in patients with AD, including a study by Can and Kuruoglu [2018] which compared

sentence construction between people with early onset AD and healthy controls that had

been matched for age and education. This study used two different picture description

tasks, a random speech task, and a story picture sequencing task and found that the AD

patients produce fewer sentences than the healthy controls overall. The healthy controls

were also found to use longer sentences that included more conjunctions and compound

sentences in the cookie theft picture description task than the AD patients (p = 0.001).

A smaller study investigating syntactic complexity in eight people with MCI compared

to age and gender matched controls found that the patients with MCI produced speech
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that was less descriptive than their healthy counterparts, although syntactic complexity

did not differ between the two groups [Fleming and Harris, 2008].

2.2.5.3 Slower Speech and Articulation Rates

There is conflicting evidence as to whether or not CD causes slower speech and a lowered

articulation rate. Linguistic studies investigating speech and articulation have not found

any statistically significant differences in speech and articulation rate between people

with AD and healthy controls (see Murray [2010] and Ahmed et al. [2013]). However,

studies from speech and language technology that have automatically analysed speech

in an attempt to detect early levels of CD have reported that measures of speech and

articulation rate can help differentiate between demented and healthy speech when used

in combination with other measures. For example, Meilán et al. [2014] found that their

participants with AD had a mean speech rate of 2.55 syllables per second, compared to

a mean of 3.59 syllables per second for their healthy controls. Another study [Luz et al.,

2018] included syllables per minute in their analysis of patient dialogues for dementia

detection, finding a lower mean number of syllables per minute for the AD group (168

syllables per minute) compared to the healthy controls (180 syllables per minute).

2.2.5.4 Disfluency

Many aspects of fluency can be affected by CD, such as the frequency and duration

of pauses, repetitions, and hesitation phenomena. Disfluencies are further discussed in

Section 2.4 of this chapter.

2.3 Language and Memory Tests for Cognitive De-

cline

Memory and cognitive tests are commonplace in both GP practices and specialised mem-

ory clinics. Whilst their diagnostic utility has been proven, there are currently no guide-

lines in place dictating which of the several tests should be used for specific disease identi-

fication, resulting in a number of different assessment scales being proposed [Burns et al.,
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2002]. These tests also cannot be used on their own to diagnose ND, but would be used

in conjunction with a combination of the tests for in-vivo biomarkers, and an overview

of the patient’s medical history. The following section details the language and memory

tests used in this thesis, and discusses the pros and cons of each.

2.3.1 Mini Mental State Examination

First presented by Folstein et al. [1975], the Mini Mental State Examination (MMSE) re-

mains one of the most commonly used cognitive tests for the elderly [Burns et al., 2002].

The MMSE takes an average of ten minutes for a patient to complete, which is partic-

ularly helpful in cases where patients may have limited concentration. In general, it is

best to have the test conducted by someone who is familiar with the MMSE. However,

administering the test is very simple. Practitioners follow a set of questions and instruc-

tions in order, and make judgements as to the patient’s performance as they go. The

questions in the MMSE cover a variety of different topics, from orientation and attention

to language and recall. The language section of the test assesses patients on the basis of

naming simple items, repeating a sentence, comprehension in the form of following simple

instructions, reading, writing, and copying. The MMSE has been found to be highly

sensitive for moderate to severe levels of cognitive decline, although this sensitivity level

decreases at less severe levels of impairment. MMSE scores can be affected by age, level

of education, and cultural background [Tombaugh and McIntyre, 1992]. The MMSE is

scored out of 30, with a score of 25 or more being classed as unimpaired.

2.3.2 The Montreal Cognitive Assessment

The Montreal Cognitive Assessment (MoCA) was developed as an assessment tool specifi-

cally for MCI. Most individuals meeting the criteria for MCI score relatively highly on the

MMSE, making it difficult to differentiate these individuals from people in the healthy

range for the elderly using that scale [Nasreddine et al., 2005]. In comparison to the

MMSE, which has a sensitivity of around 18% for detecting MCI, the MoCA is able to

achieve a sensitivity of 90% for the same task. In terms of mild AD, the MoCA achieved
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a sensitivity of 100% compared to the MMSE’s 78%. Studies such as Smith et al. [2007]

have found that the MoCA is also helpful in determining which people with an existing

diagnosis of MCI may progress to dementia at a six-month follow-up exam.

The assessment consists of a 30 point test which can be administered in 10 minutes by

anyone who is able to follow the instructions on the website. However, only health profes-

sionals should interpret the results [Hobson, 2015]. A 2013 study found that the MoCA

was a superior tool to the MMSE, but also commented that the most accurate diagnoses

were made when these assessment tools were used in conjunction with other tests [Roalf

et al., 2013].

2.3.3 Picture Description Tasks

The general instructions to participants completing a picture description task are to de-

scribe a given picture in as much detail as they can. The pictures that participants are

presented with differ from study to study, although the Cookie Theft picture description

task is perhaps the most well-known (a full overview of which is presented in Chapter

4). In asking participants to describe a picture, doctors and clinicians are eliciting speech

that will contain quantifiable measures reflective of speech production abilities from four

different perspectives: production, elaboration, and complexity; speech disfluency; con-

sciousness; and the amount of information imparted [Cooper, 1990]. A comprehensive

review of studies using picture description task data from Mueller et al. [2018] found

that these tasks are able to accurately distinguish between healthy older adults and those

diagnosed with AD. Additionally, the review noted that there was a weak correlation

between picture description tasks and verbal fluency tasks (p.933). This suggests that

there is valuable information to be gained about cognition and speech production through

the analysis of connected speech which is not found in lists of singular words.

2.3.4 Verbal Fluency Tests

There are two main categories of verbal fluency tests used to assess levels of cognitive

decline: Phonemic Verbal Fluency (PVF) tests and Semantic Verbal Fluency (SVF) tests.
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PVF tests require a participant to produce as many words as they can that begin with a

given letter in a set time frame (usually within one minute). SVF tests are similar, but

require participants to produce words that all belong to a given semantic category, again

within a set time frame. These tests are scored according to the number of correct and

unique words they can produce for each category [Shao et al., 2014]. Studies have found

that people with AD score significantly worse on both kinds of fluency tests, although

SVF tests seem to be the worst affected (see Henry et al. [2004] for an analysis of studies

investigating verbal fluency tests and their results). Although recordings of verbal fluency

tests are not analysed as part of this thesis, the datasets used as part of this study do also

contain such recordings which could be used as part of some further investigations.

2.4 Disfluencies

When discussing research into disfluencies across various different fields, there are nu-

merous different terms that are frequently used interchangeably when they in fact refer

to different and distinct phenomena. This is exemplified by the differentiation (or lack

thereof) between the terms “disfluency” and “dysfluency”. The former should refer to a

broad range of speech disfluencies that are considered normal in everyday conversation,

and the latter used in instances of disruptions caused by a speech disorder. In practice,

“dysfluency” is usually reserved for talking specifically about stuttering (Koller [1983],

Horner and Massey [1983]). However, the two terms are often confused, especially in

studies where the study of disfluencies forms a small part of the overall research objec-

tive. This thesis uses the term “disfluency” to refer to phenomena that interrupt the flow

of speech (the prefix “dis” is key and denotes anything that is not, in this case, fluent).

This therefore allows us to include phenomena such as repetitions and repairs in the cat-

egory of disfluency.

It is important to note that disfluencies are a normal part of speech, particularly unre-

hearsed, spontaneous speech. Although exact figures differ between studies, for every 100

words of natural speech there can be up to six disfluencies [Fox Tree, 1995]. Research has

shown that most of the time, people essentially “tune out” disfluencies in the speech of
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their conversational partner [Brennan and Schober, 2001].

This thesis focuses on disfluencies present in speech rather than in text where authors

have the opportunity to revise and edit what is being written. When people wish to

edit something they have verbalised, this can result in a disfluency. Speech disfluencies

may also serve specific functions in conversation. For example, filled pauses (sometimes

referred to as hesitations or fillers depending on the field from which the research origi-

nates) can be used to signal to a conversational partner that the speaker is formulating

their response and not willing to give up the floor of the conversation. It is a signal to the

conversational partner that they should be patient, because a response is coming. Other

disfluencies do not have such clear-cut functions in conversation but may be representative

of the underlying processes of speech production.

This thesis adopts the approach first presented in Eklund [2004] in treating disfluencies as

inherently multidisciplinary phenomena, from which different conclusions can be drawn

according to how they are viewed. In Chapter 3 we present a novel disfluency categorisa-

tion system, designed to be simple enough to perform both manually and automatically,

but detailed enough to capture potential differences between “normal” and pathological

disfluencies (those caused by CD).

2.4.1 A Brief Introduction to Disfluency Categories

Due to the inherently multidisciplinary nature of disfluencies, there are various different

ways of classifying, measuring, and naming the various phenomena referred to as disfluen-

cies in this thesis. This section introduces the main categories of disfluencies investigated

in this thesis to solidify the use of specific terminology. A more extensive discussion of

these categories, as well as a discussion surrounding the issues associated with the use of

inconsistent terminology across different fields of research, is presented in Chpater 3.

2.4.1.1 Pauses

This thesis differentiates between silent and filled pauses, rather than combing the two

into one broader “pause” category. Silent pauses are breaks in conversation that interrupt
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the flow of speech. This thesis does not consider turn-initial silent pauses as part of this

category. Filled pauses appear in similar ways, but contain some vocalisation. They also

can mark the beginning of a speaker’s turn, or serve to “hold the floor” whilst a speaker

is searching for a word, informing their conversational partner that they have not finished

talking.

2.4.1.2 Repetitions

Repetitions in this thesis are divided into three different categories depending on which

segment is being repeated; part-word repetitions, whole-word repetitions, or phrase rep-

etitions.

2.4.1.3 Prolongations

Prolongations are sub-word segments that are extended in a manner that is not infitting

with the rest of the speech, and are not consciously produced for emphatic reasons (for

example, emphasis in a phrase such as “oh my god” often appears in the form of vowel

prolongations). A similar approach is described in Roberts et al. [2009].

2.4.1.4 Speech Errors

Speech errors form a category of disfluencies in this thesis that consist of substitutions,

additions, or deletions. This thesis does not differentiate between phonetic or phonological

speech errors. This category also includes malapropisms, lexical retrieval errors, and

circumlocutions.

2.4.1.5 Repairs

Repairs can be described as a speaker going back to fix a speech error they have made.

As discussed further in Chapter 5, repairs are often initiated by the speaker but may also

be initiated by a conversational partner who notices an error that the speaker themselves

may have overlooked.These error are often semantic in nature, such as:

“The boy is next to the chai- the table”
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2.4.2 Disfluencies in the Healthy Ageing Population

Much of the research into the presence of disfluencies has been based on data collected

from young children or young adult participants. As a result, few studies have focused

specifically on speech disfluencies amongst the healthy ageing population.

Bortfeld et al. [2001] presented a study of conversational differences amongst different

pairs of speakers; 16 pairs were young with a mean age of 28, 16 pairs were middle aged

with a mean age of 47, and 16 pairs were older with a mean age of 67. The disfluencies

the authors investigated as part of this study were repeated words or phrases, restarts,

and fillers. They found that overall the older participants had higher disfluency rates

(6.65) compared to the middle-aged group (5.69) and the young group (5.55), although

this difference was not found to be statistically significant.

Horton et al. [2010] conducted a large study of 336 participants aged between 17 to 68

in order to investigate age-related differences in the timing and content of spontaneous

speech. They found that the older participants had slower speech and produced more filled

pauses, particularly when the filled pauses were associated with lexical selection choices.

The authors argue that the older participants were (consciously or unconsciously) slowing

their speech in order to accommodate the increase in time taken for lexical retrieval.

Arslan and Göksun [2022] investigated disfluency and gesture production differences be-

tween younger and older adults. The group of younger adults consisted of 30 participants

(17 female, 13 male) with a mean age of 21. The older adult group also consisted of 30

participants (16 female, 14 male) with a mean age of 65. In terms of disfluencies they

investigated three different categories; filled pauses, word repetitions, and repairs. They

presented both groups with a picture description task to elicit speech and gesture samples.

The authors expected that the older group of participants would exhibit higher disfluency

rates than the younger adults. However, their study actually found comparable disfluency

rates across the two different age groups. Younger participants used more filled pauses in

their picture description tasks, whereas older participants produced more repetitions and

repairs.

More recently, Beier et al. [2023] presented a longitudinal study of 91 people who were

recorded completing interviews several times throughout the course of their lives, from
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ages 20-94. These people are well known public figures, and have careers such as singers,

directors, actors, and politicians. As participants aged, the researchers observed that they

exhibited more repetitions in their speech, as well as a reduced speaking rate. They did

not observe an increase in filled pauses or repairs.

2.4.3 Disfluencies in Cognitive Decline

Amongst the research investigating the effects of CD on speech and language, a body of

work looking specifically at disfluencies resulting from CD has started to emerge. These

studies focus predominantly on pauses (see Nasreen et al. [2021], and Pakhomov et al.

[2011]) and their ability to reliably differentiate between different levels of CD. Even the

more comprehensive studies of speech in ageing, such as Mart́ınez-Nicolás et al. [2022],

pay little attention to speech disfluencies other than pauses. Lee et al. [2011] presented a

study in which they compared the speech of healthy older adults with speech from older

adults diagnosed with AD. These authors included an analysis of prolongations (termed

“lengthenings” in their study) alongside an analysis of filled and unfilled pauses. They

found that for all three disfluency categories the disfluencies spoken by the AD patients

were longer in duration.

2.4.4 Disfluencies in Human-Computer Interaction

Early work investigating the speech of people communicating with computers (including

robots, intelligent systems, etc) found that, in general, people exhibit fewer disfluencies.

Oviatt [1995] presented a study specifically investigating speech disfluencies in human-

computer interactions. 44 participants of ages from mid-20s to 65+ who were all native

speakers of English were recruited and instructed to interact with a service transaction

system. This simulated either an automatic system for verbal-temporal tasks (such as

conference registrations, where the spoken content would be primarily proper nouns and

scheduling information) or computational-numeric (such as personal banking, where the

spoken content would be primarily digits). The authors also reanalysed previously col-

lected human-human speech data, in order to provide directly comparable disfluency
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rates. The study revealed substantially lower disfluency rates in the human-computer in-

teractions. In the human-computer unconstrained verbal-temporal interaction, the mean

disfluency rate was 1.74 disfluencies per 100 words. A one person non-interactive mono-

logue yielded a disfluency rate of 3.60 disfluencies per 100 words, and a human-human

telephone interaction yielded a disfluency rate of 8.83 disfluencies per 100 words. How-

ever, as the authors note, the mean utterance length in the human-computer interactions

was very short (between 2-5 words) and the nature of the interaction was more structured,

meaning that the participants had to do less planning of the conversation.

2.5 Automatic Cognitive Decline Classification

Before this section goes on to discuss Automatic Cognitive Decline Classification (ACDC)

systems and the current approaches to building them, there must be a short discussion

around the term “automatic cognitive decline classification” and why this thesis prefers

this over any of the numerous other titles such systems are given in the research.

Firstly, this thesis aims to be as specific as possible. This thesis does not deal purely with

data obtained from people with AD, or even just dementia, and therefore any reference

to “dementia” classification systems would be inaccurate. This inaccuracy is common in

speech technology fields, and it is not difficult to find examples. Weiner et al. [2017] de-

scribe a “dementia detection” system which in fact is actually a system that is trained and

tested on speech data from three groups; healthy controls, patients with age-associated

CD, or people with AD. In a similar vein, Chlasta and Wo lk [2021] present a dementia

screening tool which is designed to screen specifically for AD, with no mention of the nu-

merous other kinds of dementia. If the term dementia is being used as an umbrella term

to describe the range of different syndromes (as discussed in Section 2.2.1) then dementia

screening systems should be able to screen for more than just one specific disease.

Secondly, this thesis will not refer to these automatic systems as “prediction” or “detec-

tion” systems and rather favours the term “classification” systems. The term prediction

suggests that these systems are able to anticipate whether a person will go on to develop

CD. Detection suggests that systems can identify levels of CD in a person, even if they
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currently do not have any symptoms. Neither of the above statements are currently true.

Instead, these systems analyse a range of features derived from speech and decide if those

features are more likely to belong to one group or another based on how similar those fea-

tures are to the data the systems have been trained on, making a classification. Therefore,

such systems discussed throughout this thesis are termed ACDC systems, unless stated

otherwise.

The remainder of this chapter discusses the different component parts of ACDC systems

that are pertinent to the analyses presented in this thesis, and ends with an overview of

the CognoSpeak Intelligent Virtual Agent (IVA) system that provided the majority of the

data for these analyses.

2.5.1 ACDC Systems

Although there is a lot of variety in ACDC systems, they mostly share the same con-

stituent parts. Firstly, some kind of Automatic Speech Recognition (ASR) system is used

to transcribe the speech from selected recordings. Once the speech has been transcribed,

a number of different features are extracted from both the audio and the generated tran-

script. A process called feature selection then determines which of these features are the

most meaningful for the classification process, and features which are found to impede

classification are discarded. In Neural Networks (NNs), this process can be done auto-

matically during the training phase. The model is then trained on a subset of data, and

learns to associate features with the presence or absence of CD.

Once the model has been trained it is tested on some unseen (excluded from the training)

data which allows researchers to assess how well the model can generalise to data that it

has not yet encountered. The model is also validated which gives researchers an overview

of the model’s performance. This performance can be assessed in many different ways

through the use of metrics such as accuracy or precision which are usually automatically

computed, although human evaluation of model performance is also possible. A system

of sufficiently good performance can then be used to classify recordings, and the output

could (theoretically) be used to aid doctors and clinicians in making diagnostic decisions.



Fundamentals 34

Currently in the U.K these systems are not used by healthcare professionals, although

researchers from groups such as CognoSpeak are working to change this. The following

section describes the main parts of any typical ACDC system.

Figure 2.1: Simple Architecture for Automatic Cognitive Decline Classification Systems.
Adapted from Ammar and Ayed [2018].

2.5.1.1 Automatic Speech Recognition

At the most basic level, the role of an ASR system is to find speech sounds within a

recording and provide an appropriate transcription or label of those sounds. ASR systems

contain many of the same constituent parts as an ACDC system. However, ASR systems

use information from language and acoustic models during a decoding phase in which the

language and acoustic models determine the most probable sequence of words to match

an input recording [Wang et al., 2019]. Numerous open-source ASR toolkits are available

for researchers, such as the Kaldi ASR toolkit [Povey et al., 2011] which was used to

create the CognoSpeak system described below in Section 2.4.3.

In addition to CD classification, ASR has a number of different applications in fields such

as automatic transcription or voice search.

Language Models

A Language Model (LM) trained on a dataset learns the probability of any set of words

in that dataset occurring in a sequence, and serves as a probabilistic approximation of

language as expressed in that dataset. LMs are used by ASR systems to verify the plau-

sibility of transcription hypotheses. More recently, LMs scaled to billions of parameters
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and trained on vast amounts of data (i.e., Large Language Models (LLMs)) have led to

significant advancements in general-purpose language modelling, enabling the models to

perform a variety of tasks such as question answering or summarisation without the need

for task-specific adaptation.

Statistical LMs use n-grams to direct the search for the next word [Ghai and Singh, 2012].

“n-gram” is a term used to name a sequence of items according to the number (n) of items

in that sequence. These items are typically words, but may also be phonemes, characters,

or syllables. A unigram (1-gram) will typically be a single word. Using this label, we can

say that the sentence “this is an apple” contains four unigrams; “this”, “is”, “an” and

“apple”. A bigram (2-gram) usually refers to a pair of words, three of which can be found

in the above example; “this is”, “is an”, and “an apple”. The probability of a future

n-gram is based on only the last n-gram given in a sequence. For example, in trying to

predict the next word in a sentence starting with “this is an”, only the last n-gram in that

sequence (n-1 gram, in this case “an”) affects the probability of the upcoming n-gram.

Simple statistical LMs would not take into account the n-2 or n-3 grams (“is” and “this”,

respectively).

However, n-gram models are too simple to take into account the overall context of a text,

which can have a strong effect on the probability of the next word in a sequence. Another

drawback of n-gram models is that they would assign a probability of 0 to n-grams that

have not appeared in the training data, even if they are grammatically correct construc-

tions [Jing and Xu, 2019]. This particular issue is referred to as data sparsity.

To combat these shortcomings, a number of different Neural Network-based Language

Models (NNLMs) have been proposed. NNLMs use vector representations of words or

sentences as their inputs, which allow the semantic relationships between words to be

captured. NNLMs are deeply complex models, described in detail in Lebret [2016]. For the

present thesis it is enough to know what LMs are used for, how they generally accomplish

this task, and that most state of the art ASR systems will use some form of NNLM.

Acoustic Models

Acoustic Models (AMs) link particular features extracted from a sound file to a linguistic
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unit [Bhatt et al., 2020]. Linguistic units could be phonemes, diphones, triphones, or

other sub-word units. AMs learn the relationships between acoustic features and linguistic

units using statistical methods or NNs, and are required to enable ASR systems to create

accurate textual representations of speech. AMs are trained on datasets consisting of

speech recordings and their textual or phonetic transcriptions. However, these datasets

need to be large and very diverse as AMs can only recognise what has been present in

the training data [Aggarwal and Dave, 2011]. This presents numerous problems when

considering the complex relationship between acoustic features and linguistic units, and

the inherent diversity of speech. For example, AMs that have been trained on a dataset

that contains recordings of only Scottish-accented English speakers would likely not be

accurate if used on recordings containing Standard Southern British English accented

speech. This is particularly problematic in the case of non-native language speakers,

as exemplified in Hollands et al. [2022], where mispronunciations and abnormal pause

locations severely degrade the performance of ASR systems.

2.5.1.2 Feature Extraction

Following the production of a transcript of the speech in a recording by the ASR system,

the next step of the ACDC pipeline is feature extraction. Two types of features are

typically used in an ACDC system: acoustic and linguistic. Acoustic features include

metrics such as Mel Frequency Cepstral Coefficients (MFCCs), measurements of energy at

different frequencies, and other measurements that are extracted directly from the audio

recordings (Thomas et al. [2023]; Pulido et al. [2020]). Conversely, linguistic features

are those extracted from the transcripts of the speech produced by the ASR system as

described in Section 2.4.1.1, such as the number of nouns or the ratio of nouns to pronouns.

Below we delve into commonly extracted acoustic and linguistic features for the task of

CD classification.

Acoustic Features

Acoustic features are typically extracted through the use of toolkits such as openSMILE

[Eyben et al., 2010] that can extract specific sets of acoustic features. The combination

of acoustic features used in ACDC can affect system performance. Three of the most
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commonly used feature sets are described below.

emobase

The openSMILE toolkit provides a featureset consisting of 988 acoustic features under the

name emobase. These features are all Low-level Descriptors (LLDs), or features that are

closely related to the characteristics of the signal (rather than high-level descriptors which

carry semantic or syntactic meaning [Amatriain et al., 2005]). The LLDs that makeup

the features in emobase are: intensity, loudness, MFCCs, Fundamental Frequency (F0),

probability of voicing, F0 envelope, line spectral frequencies, and zero-crossing rate. Delta

regression coefficients are computed from these descriptors, and then functionals includ-

ing standard deviation, arithmetic mean, and skewness are applied to those coefficients

to produce the features. For more information about the emobase features and how

these are calculated, see the openSMILE documentation (https://audeering.github.

io/opensmile/get-started.html).

ComParE

The Computational Paralinguistics Evaluation (ComParE) feature set is a larger and en-

hanced version of the original emobase feature set [Eyben et al., 2013]. ComParE contains

6,373 suprasegmental features. These features are a combination of LLDs and functionals,

and removes features that were found to frequently contain zero information such as the

arithmetic mean of delta coefficients. There are new LLD features in ComParE; auditory

model loudness, Viterbi algorithm smoothing, psychoacoustic sharpness, and harmonicity

[Schuller et al., 2013]. These are used alongside LLDs that were included in emobase.

The functionals remain largely the same, with the addition of linear predictive coding

and more robust peak picking algorithms. A full overview of the LLDs and functionals in

ComParE can be found in Weninger et al. [2013].

eGeMAPS

The original Geneva Minimalistic Acoustic Parameter Set (GeMAPS) was created in an

attempt to refine the massive feature sets described above. Features were selected based

on their theoretical significance, how valuable they had proven to be in previous feature

sets, and how well they can index physiological changes in voice production [Eyben et al.,

https://audeering.github.io/opensmile/get-started.html
https://audeering.github.io/opensmile/get-started.html
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2015]. The GeMAPS features are: 18 LLDs with applied arithmetic mean and coefficient

of variation functionals which results in 36 parameters. Eight functionals are applied to

loudness and pitch, resulting in an additional 16 parameters. The arithmetic mean of

the Alpha Ratio, the Hammarberg Index, and spectral slopes are also included alongside

six temporal features including rate of loudness peaks and the number of continuous

voiced regions per second, bringing the total to 62 parameters [Eyben et al., 2015, p.193].

However, there were no cepstral and very few dynamic parameters included in GeMAPS,

therefore an Extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) was

proposed to include seven additional LLDs and a range of different functionals, bringing

the total number of parameters in eGeMAPS to 88 [Eyben et al., 2015, p.194]. GeMAPS

and eGeMAPS are frequently used by researchers to provide baseline classification results

which can be compared to results from more specific parameter sets, allowing for the

replication of findings and comparison between studies [Eyben et al., 2015, p.191].

Linguistic Features

Linguistic features are intended to capture patterns of language impairment that can be

observed in CD. The linguistic features used in ACDC systems vary from study to study

depending on which specific levels of CD are being investigated, and typically there will be

far fewer linguistic features than acoustic. Linguistic features can be grouped according

to the linguistic phenomena they are attempting to capture. Below is an overview of some

of the most common types of linguistic features used in ACDC tasks.

Part of Speech

Part of Speech (PoS) measures capture information surrounding the usage of different

word classes in speech. Common PoS measures include noun rates, verb rates, and rates

of pronoun usage. Bucks et al. [2000] measured pronoun, noun, verb, and adjective rates

per 100 words as part of their study investigating spontaneous speech from people with

AD, and found statistically significant differences between AD patients and healthy con-

trols in terms of all PoS measures that were analysed. AD patients were found to have

higher pronoun, verb, and adjective rates compared to the healthy controls, but lower

noun rates.
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PoS information can also be captured in the forms of ratios such as pronoun:noun or

noun:verb. Automatic taggers, such as the one provided by the spaCy NLP library [Alti-

nok, 2021] are used to identify which parts of speech each word in a text belongs to.

Temporal Rates

Articulation, phonation, and verbal rates are typically used as linguistic features, along

with other temporal measures such as total locution time and syllable duration. The

calculations for these measures are found below:

1. Total Phonation Time (TPT)

TPT = Speech− (Filled Pauses + Silence)

2. Standardised Phonation Time

Standardised Phonation Time =
Number of Words

TPT

3. Articulation Rate

Articulation Rate =
Number of Syllables

TPT

4. Total Locution Time (TLT)

TLT = Speech− Silence
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5. Verbal Rate

Verbal Rate =
Number of Words

TLT

6. Speech Rate

Speech Rate =
Number of Syllables

TLT

7. Average Syllable Duration

Average Syllable Duration =
TPT

Number of Syllables

More information about these measures can be found in Themistocleous et al. [2020], and

Calzà et al. [2021].

Lexical Richness

Measures of lexical richness are designed to capture information surrounding how broad

a person’s vocabulary is. Thomas et al. [2005] present an ACDC system for AD that

pays particular attention to lexical analysis. Three commonly cited measures of lexical

richness are described below:

1. Type to Token Ratio (TTR): A simple measure of richness calculated as

TTR =
Number of Unique Words

Total Number of Words

2. Honoré’s Statistic (HS ): Measures lexical diversity and takes into account the total

vocabulary size (number of unique words) and the proportion of words that occur only
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once in a text

HS = 100
log(V )

1− (V
1

N
)

where V is the number of distinct words, V 1 is the number of words that appear only

once, and N is the total number of words in the text. A higher HS indicates a more

diverse vocabulary.

3. Brunét’s Index (W ): A measure of lexical diversity that is independent of text length

W = N (V−a)

where N is the length of the text, V is the number of different words, and -a is a

scaling constant usually set at -0.172. A lower W value indicates a richer vocabulary.

Novel Feature Combinations

Whilst most ACDC systems will use a combination of both linguistic and acoustic features

for their purpose, some work has demonstrated the possibility of using only acoustic

features for classification [Warnita et al., 2018]. Likewise, there are studies that have

focussed more on the linguistic features, such as a study by Vincze et al. [2016] which found

that features based on morphology were able to discriminate between healthy controls and

participants with MCI. One issue with using “traditional features” is that they often are

difficult to interpret and describe. This issue is discussed further in Chapter 4.

A contribution of this thesis is the work investigating how a third set of features, disfluency

features, could be used in ACDC systems. Current ACDC systems typically do not make

use of disfluency information, other than that of unfilled pauses which can be extracted

acoustically by looking for periods of silence in the speech signal. This is largely due to

the fact that the LMs that ASR systems are trained on consist of large collections of texts,

or speech that has come from text (read speech). Authored texts by their nature contain

far fewer disfluencies than natural, spontaneous speech. This results in LMs that ideally

assign a much higher probability to utterances that are free of disfluencies [Zwarts and

Johnson, 2011]. In addition, disfluencies are typically regarded as problems in speech that

are unwanted in a transcript, with numerous ML studies aiming to “clean” spontaneous
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speech in an effort to remove disfluencies and improve LMs (Adda-Decker et al. [2003];

Rao et al. [2007]; Lou and Johnson [2020]). Chapter 5 details how different methods

can be used to combat these issues and leverage disfluency information to increase the

accuracy of ACDC systems.

2.5.1.3 Feature Selection

Feature selection allows for the removal of features that are not contributing to the perfor-

mance of the ACDC system. It also helps to reduce the complexity of ACDC models and

can help reduce the chance of overfitting, a problem that is of particular concern when

working with small datasets. The objective of training a predictive model is to discover

the underlying patterns in the observed data which may be true also of the general pop-

ulation the data is merely a sample of. Overfitting happens as a result of an ML model

too closely capturing the patterns of the training dataset. Although the model exhibits

excellent performance on the training data, that result cannot be matched on previously

unseen data, meaning that the model does not generalise well [Ying, 2019].

There are two main types of feature selection techniques: filter methods and wrapper

methods. Filter methods rank features in terms of how much they contribute to the

classification. Once features have been ranked, a subset of the best N features can be

chosen [Shardlow, 2016]. Filter methods work independently of the classifier being used.

Conversely, wrapper methods allow the classifier to make decisions as to which are the

best features. A wrapper model will select a subset of features from the original fea-

tureset, and evaluate the performance of an ML algorithm on that subset. If particular

features are found to be enhancing the performance of the algorithm, these features are

then included in the final feature subset. The wrapper then tests the performance of

different combinations of features, selecting the highest performing features until the fi-

nal feature subset contains the optimal combination of features for system performance.

Wrapper models generally give better results than filter models, but are typically much

more computationally expensive [Sánchez-Maroño et al., 2007].



43 2.5. Automatic Cognitive Decline Classification

2.5.1.4 Training and Testing

Data is required to train an ML model. Typically, a given data set will be split into two

groups, the training and the test set. Researchers may also decide to split the data three

ways, adding a validation set. In the training set, the information about each patient

(the features extracted above) are the inputs, and the possible diagnoses are the classes.

A binary AD classification system will have two classes; healthy control or Alzheimer’s

Dementia.

Typically, the training set will contain the majority of the original data ensuring that the

model has as many examples of different inputs and classes as possible. The model then

learns the patterns in the training data and maps this to the attributes [Alpaydin, 2014].

For example, the model could learn that the examples of data labelled as healthy all tend

to have a higher Honoré’s Statistic, and the data labelled AD have a lower. The model

can then use this information to sort the recordings according to the different classes,

but based on information from all of the inputs and their combinations, rather than a

single statistic. A validation set can be used to fine-tune the model by adjusting the

hyperparameters depending on the performance of the model during training.

The testing portion of the data has not been seen by the model before. The model then

uses the patterns it uncovered during the training to help sort the new data according to

what class the new data is most similar to. This gives researchers an idea of how well the

model generalises to new data and how well it carries out the given task.

2.5.1.5 Classification

Different models will perform differently on classification tasks, and the model choice

varies from study to study for a range of different reasons such as the computational

resources required or the amount of data available. The section below details the most

commonly found models used for ACDC tasks, as covered in the review paper by Petti

et al. [2020].

Decision Trees

Decision trees are hierarchical tree-like structures that are composed of nodes, with each
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node representing a rule based on the features of the input data. Decision trees are inter-

pretable thanks to their structure, which makes it easier to understand how a particular

classification decision has been reached [De Ville, 2013].

k-Nearest Neighbour

When unlabelled inputs are fed to a k-Nearest Neighbour (KNN) classifier, the KNN finds

the most similar instances from the training data and uses that information to determine

the appropriate label for the new inputs. Similarity between an unlabelled input and its

closest known neighbours is measured by a distance metric, such as Euclidean distance

or Hamming distance [Kramer, 2013].

Neural Networks

NNs are complex ML algorithms composed of nodes that are able to communicate with

other nodes via connections. Each node is a mathematical processing unit that learns

complex relationships between the input and the output. The first layer of nodes is the

input layer that directly “sees” the input data. Information from the input layer is then

passed to a set of hidden layers, and each node in the new layer receives input from each

node in the previous layer [Georgevici and Terblanche, 2019].

Deep Neural Networks (DNNs) are a type of NN that have the ability to learn hierarchical

representations of data. DNNs are often the models used in state-of-the-art systems for

a range of different applications due to their ability to capture patterns that people and

other ML models often are not able to capture. Whereas a traditional NN will have one-

to-three hidden layers, DNNs have tens or hundreds of them [Choi et al., 2020]. DNNs are

also reliably good at generalising these patterns to unseen data, enabling them to make

accurate classifications. In the field of CD classification the main argument against the

use of DNNs is that they require high volumes of data, something that is often unavailable

to researchers. They also often come with high computational costs.

Support Vector Machines

Support Vector Machines (SVMs) are particularly well suited to classification tasks, as

they work to find boundaries in data to define separate classes. SVMs use hyperplanes to

separate data points into different classes. We want these hyperplanes to have the largest
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margin possible to separate classes [Gil and Johnsson, 2011]. At its most basic level, an

SVM can be thought of as a way of drawing a line through data points to separate the

different data points into groups in a two-dimensional space. Figure 2.2 demonstrates

the different ways in which two different data classes could be separated, alongside the

optimal hyperplane which would be uncovered by the SVM.

Figure 2.2: Possible Hyperplanes vs. the Optimal Hyperplane [Gandhi, 2018].

Although not as complex as DNNs, SVMs are still commonly used in ACDC systems as

they work well with limited amounts of data. Early work from Orimaye et al. [2014] found

that an SVM was more accurate in their classification task when compared to other ML

models such as decision trees and NNs. More recent studies (Balagopalan et al. [2020];

Zolnoori et al. [2023]) still use SVMs for their classification tasks thanks to their high

performance with small datasets and comparably high accuracy when compared to other

models tested on the same task. For these reasons we chose to use an SVM for our own

classification task, as described in Chapter 4.

2.5.2 System Evaluation

Many different metrics can be used to assess how well an ML model is working for a given

task. These metrics will be selected according to the type of task being investigated. In

classification tasks there are two possible outcomes: the instance is classified correctly

or not. Correct classifications result in true positives or true negatives, and incorrect
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classifications result in false positives or false negatives. Evaluation metrics that are

commonly selected for classification tasks are described below [Vujović et al., 2021].

2.5.2.1 Accuracy, Precision, Recall, and Specificity

One of the most commonly reported metrics of ACDC system performance is accuracy.

This is defined as:

Accuracy =
Number of Correct Predictions

Total Number of Predictions

The best accuracy score is 1.0, with the worst being 0.0. Accuracy can be misinterpreted

when used with imbalanced datasets. A measure of precision can be used to assess how

good the model is at avoiding false positives:

Precision =
True Positives

(True Positives + False Positives)

As with accuracy, the best precision score is 1.0 and the worst is 0.0.

Recall (or sensitivity) measures the rate of true positives, and is calculated as:

Recall =
True Positives

(True Positives + False Negatives)

A high recall (1.0) is particularly important in medical fields where false negatives (for

example, diagnosing a person as healthy when they actually have a disease) could have

severe repercussions.

Specificity is the rate of true negatives:

Specificity =
True Negatives

(True Negatives + False Positives)

The highest specificity score is 1.0, the lowest is 0.0.
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2.5.2.2 F1-score

Precision and recall scores are often inversely related, where improving the score from

one metric will downgrade the score from the other. In order to balance the precision

and recall, the scores are combined with a weighted harmonic mean and report it as an

F score [Derczynski, 2016]. This is calculated as:

Fβ = (1 + β2)
PR

β2P + R

β is what determines the balance between precision and recall. Higher β values favour

recall. The β value is commonly set to 1, hence the name “F1 score” [Derczynski, 2016,

p.262].

2.5.2.3 Area Under the ROC Curve

Receiver Operating Characteristic (ROC) curve graphs plot the true positive rate against

the false positive rate at different thresholds. Deciding which threshold to use depends

on the specific task, system, and application. For example, in some scenarios it may be

reasonable to prefer a higher sensitivity at the cost of more false positives [Handelman

et al., 2019]. The closer the ROC curve is to the upper left corner of the graph (where

sensitivity is 1 and the false positive rate is 0), the better the classifier is. We measure

the area under the ROC curve, and the closer this value is to 1, the better the model is

performing [Vujović et al., 2021].

2.5.3 CognoSpeak and the Intelligent Virtual Agent

The original IVA that went on to form the basis of the CognoSpeak system was presented

in Mirheidari [2018]. The idea was to use an IVA to elicit information from patients in a

memory clinic, in a similar manner to how a human clinician would elicit information in

the same scenario. Using an IVA to collect data to be used in an ACDC system would

allow a fully automated approach to analysing speech from people with different levels of

CD.
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The first iteration of the IVA (the data from which is used for the analyses in Chapters 3,

4 and 5 of this thesis) consisted of an animated image of a human head. After obtaining

ethical consent, participants were invited to take part in the IVA study. Participants were

encouraged to bring an Accompanying Person (AP) with them on the day of recording.

Once participants arrived at the memory clinic, they were seated in front of a laptop

displaying the image of the IVA (Figure 2.3). When the study started, the laptop would

play a recording of a question to the participant. The participant then has two options. If

they experienced any trouble in understanding the IVA, participants were able to replay

the question by pressing space bar on the keyboard. If the participant was happy to

answer, they would simply speak their answer to the IVA and their speech would be

recorded by a microphone placed behind the computer. Once participants had answered

a question, they pressed the enter key on the keyboard to move onto the next one.

Figure 2.3: The Original IVA [Mirheidari, 2018, p.143].

The IVA system is a SVM-based classifier that consists of the components described above

in 2.5.1.

There were three phases to these studies. The first phase consisted of an interview style

conversation in which the IVA would ask participants questions designed to test their

memory and uncover information about their symptoms. During this phase the partic-

ipants are not constrained by time limits when they are answering the questions. The
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second phase had the IVA instructing participants to complete SVF and PVF tests. Once

participants started their answers to each of these tests, they were given 60 seconds until

they had run out of time and were instructed to move on. The third phase instructed

participants to complete a picture description task. Once again, there were no time re-

strictions imposed on participants when completing this task.

Slight adjustments were made to the questions the IVA played to participants over the

course of the three years it was used to collect data. A full description of these changes

can be found in Mirheidari [2018, p.145]. In total, recordings from 78 participants were

collected. These participants belonged to one of four groups: Healthy Controls (HCs),

people with Functional Memory Disorder (pwFMD), people with Mild Cognitive Impair-

ment (pwMCI), or people with Neurodegenerative Dementia (pwND).

The newest version of the CognoSpeak IVA has had numerous upgrades. The key differ-

ences are that there is now a lot more variation in the appearance of the virtual agent.

Users can select from a range of higher quality avatars based on their own personal prefer-

ences. These avatars are expressive and perform different gestures such as head tilts and

nods to indicate to the participants that they are being “listened” to. There have also

been changes made to the back-end infrastructure of the system, enabling the recruitment

of higher numbers of participants via the web.

2.6 Conversation Analysis

Conversation Analysis (CA) is the study of talk in interaction, with close links to the field

of ethnomethodology which investigates how social order is produced through interaction.

CA emerged in the 1960s and 1970s as a method of investigating interaction whilst taking

language as a main point of focus. Early investigations centred around the process of

turn-taking within a conversation, and how those turns are organised and shaped by the

discourse context in which they are found [Sacks et al., 1974]. Although CA emerged as

a method of analysing the social interactions found within ordinary conversations, CA is

now applied to a range of different interactional scenarios [Goodwin and Heritage, 1990].

Of particular interest for this thesis is the area of medical encounters, especially those
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that revolve around memory concerns or complaints. This topic is discussed further in

the background section of Chapter 5.

The remainder of this section focuses on key concepts within CA.

2.6.1 Turn-Taking

One of the most widely accepted principles of CA is that talk-in-interaction takes place in

turns, and that this structures talk in such a way as to minimise the overlap of speech from

different speakers. This organisation requires input from all members of the conversation

and is an inherently cooperative process. Turns are key to the sequencing of conversations

[Drew, 2013]. There are three main factors that shape the form of a turn; where in the

sequence a turn is taking place, what is being done in that turn, and who the turn is

addressed to [Drew, 2013, p.134]. The setting in which the conversation is taking place

will also have an effect on the design of the turns in conversation. For example, in

everyday conversation it is common to find turns being addressed to multiple people,

with all members of the conversation having an input on who should be the next speaker.

However, in an educational setting, the addressee of the turn is usually strictly dependent

on decisions made by one speaker, in this case a teacher [Gardner, 2004, p.272].

2.6.1.1 Turn Constructional Units and Transition Relevance Place

Sacks et al. [1974] note that turns are incrementally built out of Turn Constructional

Units (TCUs). These units could be words, phrases, clauses, or sentences, and are co-

herent and self-contained utterances [Clayman, 2013]. TCUs end with points of potential

completion, named Transition Relevance Places (TRPs). These TRPs signal to the other

conversational partners a potential point at which a turn could be finished, but they do

not necessarily have to be. Rules of turn allocation become relevant at every TRP [Sacks

et al., 1974].
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2.6.2 Adjacency Pairs

Another important foundational principle of CA is that talk happens in a sequential

and organised manner [Stivers, 2013]. This describes the way in which conversations set

expectations around what will happen next. For example, when you greet someone they

will probably greet you back; if they do not, there is a sense that something is missing

or absent. Observing these back and forth sequences revealed what CA researchers term

“adjacency pairs”- a pair of actions in conversation that are frequently found together

[Gardner, 2004]. Other examples of adjacency pairs include question-answer pairs and

farewell-farewell pairs. In a study of question-answer adjacency pairs in conversations

with people with AD, Varela-Suárez [2018] found that the ability to complete a question-

answer pair remains intact until very late stages of the disease, but the relevancy of the

answers given by dementia patients decreases as the disease progresses.

2.6.3 Repairs and Trouble Sources

In CA, the term “repair” refers to the structure of how interactants deal with troubles

in speaking, hearing, or understanding talk [Schegloff et al., 1977]. Repairs mark out

something in the prior talk as a “trouble source”. Trouble sources can be a number of

different things, such as a lack of attention being paid to the conversation, or a lack of

knowledge surrounding a certain topic. They could also be instances of incorrect word

usage, or speaker overlap. In people with aphasia, including those with some degree of CD,

commonly observed trouble sources often take the form of false starts and disfluencies such

as long pauses [Whitworth, 2003]. Trouble sources are often identified by their repairs,

but there may be cases where a repair is unsuccessful. These are referred to as “failures”,

although they are rare (p.363).

CA deals with repairs in two different ways; according to the initiation of the repair, or

how the actual repair is carried out. Self-initiated self-repairs are the most common type

of repair, and these involve the current speaker both initiating and producing the repair

[Kitzinger, 2013]. An example of this kind of repair can be found in the recording from

Participant 0252 in the IVA dataset. The participant (a healthy control) has been asked



Fundamentals 52

if they remember what has been in the news recently:

0252 - HC - IVA

Pt: oh and the se- the home secretary has resigned hasn’t she1

In this case, “se-” is treated as a trouble source, as the beginning of an incorrect word.

The repair sequence is “the home secretary”, which inserts a modifier of the original

“se-[cretary]” that offers more information and addresses the potential trouble of lack of

clarity or information.

Repairs can also be initiated by someone other than the speaker of the trouble source.

Other-initiated repairs locate the trouble source in the prior turn, and indicate to the

speaker of the trouble source that there has been some kind of misunderstanding. It is

usually the speaker of the trouble source that completes the repair (eg., other-initiated

self-repair). This frequently results in a repair sequence that is a repetition of the trouble

source, but often adjusted in terms of the volume or rate of speech [Kendrick, 2015].

2.6.4 Preference Structure

Preference in CA refers to the fact that many conversational events engender alternative,

but unequal, courses of action [Sacks, 1973]. These alternatives could be different utter-

ance designs or different sequence choices (amongst others), but preference in this context

does “not” refer to personal or subjective desires [Atkinson, 1985]. The concept of prefer-

ence provides insights into how people navigate social interactions and co-construct con-

versational sequences, and preference structures are “culturally shared principles” which

are “empirically evidenced by orderly ways of speaking that are produced in accord with

those principles” [Pomerantz and Heritage, 2013, p.210]. Preference in conversation takes

various different forms. For example, questions can be designed to show a preference

for a particular answer. Pomerantz and Heritage [2013] present the following example

(p.213):

1. “Do you belong to a church now?”

2. “You don’t want that lamb chop do you?”

The authors argue that question one is an example of a question that prefers a “yes”
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response, while question two prefers a “no”. They show that in response to yes/no ques-

tions, “where possible, speakers will avoid or minimise explicitly stated disconfirmations

in favour of confirmations” (p.213). Therefore, the positive stance of question one is

designed for agreement with “yes”, whilst the negative interrogative in question two is

designed to be confirmed with a “no” (ie., “no, I don’t want it”).

Another social behaviour exemplified in the structure of preferred responses is that in

conversation, people try to avoid or minimise rejections if they can [Atkinson and Drew,

1979]. This can also be observed in how people reject invitations. So-called dispreferred

responses happen in a variety of different ways, such as including components in the re-

sponse designed to minimise the rejection (“I’d love to, but. . . ”), or to soften the rejection

itself (“I don’t think I can” rather than an abrupt “no”). Additionally, delays and mit-

igations are commonly performed as part of a dispreferred rejection response, and these

delays frequently take the form of filled pauses.

Other disfluencies can also be a marker of preference in conversation. In a study of a

face-to-face medical consultation, Gill [2005] describes a situation in which the patient is

about to praise the work of their previous doctor. As noted, when praise is directed at

a person who is not present during the conversation it can often also act as a criticism

of the present member of the conversion who is a member of the same category as the

recipient of the compliment (p.466). The patient in this example produces numerous

different disfluencies (filled and unfilled pauses, multiple repairs) before they formulate

this compliment. Gill argues that the presence of these disfluencies demonstrates that the

patient treats this as a sensitive matter and a dispreferred activity (p.267).

2.6.5 Analysis of Medical Dialogues

When researching methods of analysing medical dialogues, use of the Roter Interaction

Analysis System (RIAS) is widely observed. This framework enables researchers studying

doctor-patient interactions to categorise the communication components from both the

doctor and the patient, capturing the fundamental elements of medical interactions [Roter

and Larson, 2002]. RIAS organises all doctor utterances during a medical interview
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into one of four groups; patient education and counselling, data gathering, relationship

building, and activating and partnering. Each of these categories contains a group of

communicative behaviours that have specific goals, such as biomedical information-giving

in the patient education group (“take this medication for seven days”) or emotional talk

in the relationship building group (“I’m sure things are going to improve”).

Although there are some similarities between the RIAS and CA methodologies, they are

two distinct approaches that have their own benefits and drawbacks. The following table

(2.3) briefly summarises the main differences between RIAS and CA:

Comparison Points RIAS CA

Focus
General description of the

interaction

Finely detailed descriptions

of the interaction

Methodology Type Quantitative Qualitative

Study Design
Used in combination with

statistical tests

Used alone or with other

methods such as

ethnography

Findings

General recommendations

and suggestions for

improving educational programmes

Detailed recommendations

that are specific to the type

of interaction e.g., strategies

for ensuring a patient is

understood

Table 2.3: Comparison of the RIAS and CA methodologies. Adapted from Alsubaie et al.
[2022, p.21]

Although both methodologies can be applied to similar domains, the biggest difference

between the two approaches is the resulting data. Using RIAS results in quantitative data,

and is useful at investigating things such as what percentage of the medical dialogue was

contributed to by the doctor vs the patient (for example, in a study using RIAS to analyse

oncological consultations, Ong et al. [1998] found that oncologists contributed 60% to the

consultation compared to the patients’ 40%). CA has the ability to describe in detail the

actions being taken by both the doctor and the patient in such interviews, and probes what

these actions are designed to achieve. Due to the amount of detailed analysis required for

CA, these studies typically include far fewer participants compared to studies that use

RIAS [Alsubaie et al., 2022].
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CA was chosen as a methodology for this thesis over RIAS for two main reasons. Firstly,

the limited amount of data available for this analysis allows for a more in-depth approach.

The second reason is how disfluencies are treated by each approach. In CA, attention

is paid to disfluencies in speech in terms of what function they might serve in talk-in-

interaction, along with what changes they prompt within a sequence. With RIAS, there

is no specific attention paid to speech disfluencies. In terms of filled and unfilled pauses,

RIAS lacks a method of coding them as events in a conversation which can result in their

functions of maintaining the floor or signalling a shift in topic being overlooked [Sandvik

et al., 2002, pp.237-238].

2.6.6 Conversation Analysis of Human-Computer Interac-

tions

Traditionally, CA has focused on human-human communication. In recent years, how-

ever, there has been a growing body of research employing CA methodologies to examine

human-computer interaction. Much of this work centres on leveraging CA to enhance the

naturalness of virtual conversational systems, enabling them to sound and behave in a

manner more akin to human interaction. Arend et al. [2017] conducted a case study using

CA to analyse interactions between a human participant and a NAO robot. NAO robots

are humanoid automatons that have been investigated for their potential as socially as-

sistive robots in tasks such as human-robot interaction therapy for children with autism

(see Shamsuddin et al. [2012]) or cooperative rehabilitation (see Assad-Uz-Zaman et al.

[2019]). Arend et al. [2017] introduced the concept of “dis-balanced” communication,

highlighting how the robot’s predetermined turn-taking rules frequently led to conversa-

tional challenges, such as unnatural pauses caused by the human participant waiting for

the robot to signal its recognition of speech.

It is not uncommon to find conversational systems designed with CA-informed research.

For instance, Stivers et al. [2009] discovered that, across the 10 languages investigated,

confirmations in conversation are delivered 100–500ms faster on average than disconfir-

mations. Roddy and Harte [2020] incorporated these findings into their neural models,
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enabling spoken dialogue systems to generate response times perceived as more realis-

tic.

2.6.7 Disfluencies in Conversation Analysis

When researchers use CA to analyse speech they frequently encounter instances of disflu-

encies within that speech. Rather than glossing over these disfluencies, CA allows them

to be treated as trouble sources; meaningful and interpretable parts of a speaker’s turn

which can be analysed sequentially to investigate what function they have in a conversa-

tion. Disfluencies may also serve as turn-holding devices, repair initiators, or markers of

dispreferred responses [Schegloff et al., 1977]. There are examples of work in dementia-

focused CA that have investigated the use of pauses in conversation. In a study of speech

from people with dementia, Müller and Guendouzi [2005] found that long pauses in speech

are used by the speakers in the same way that a minimal response would be; to signal to

their conversational partner that the speaker is having some difficulty in completing their

turn or formulating their response. Another CA study looking at conversations between

people with dementia and their carers found that when the carers permit long pauses in

the speech from the patients, the patients can be more successful in their communication

as they are given time to process information and formulate responses [Perkins et al.,

1998].

2.7 Summary

This chapter has presented the background knowledge required to understand the main

concepts and methodologies used in this thesis. This started in Section 2.2 with an

introduction to CD, paying particular attention to the levels of CD that are examined in

the analysis chapters of this thesis; FMD, MCI, and ND. The focus of this section then

turned to the effects that different levels of CD have on speech and language abilities,

and what tests are currently used to investigate speech for the presence of CD (Section

2.3).

Section 2.4 presented a brief overview of the types of disfluencies investigated as part
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of this thesis (pauses, repetitions, prolongations, speech errors, and repairs). We then

discussed previously reported disfluency rates in healthy ageing adults, and compared

this to disfluency statistics from people with different levels of CD (Section 2.4.2).

The next section presented the key background information about the automatic analysis

of speech for the purposes of CD classification. This started with an overview of the

main features of ACDC systems, beginning with ASR (Section 2.5.1.1) and ending with

an overview of different classification algorithms (Section 2.5.1.5). We then presented the

most common methods of evaluating ACDC systems in Section 2.5.2. This section ended

with an introduction to the CognoSpeak system, which provided the human-computer

memory clinic data analysed in this thesis.

The final section of this fundamentals chapter provided an introduction to CA (Section

2.6). We briefly introduced the history of CA and then presented the key principles of

this methodology (turn-taking, sequence organisation, trouble sources and repairs, and

preference structures). Another methodology commonly used for the analysis of speech in

medical interviews, the RIAS method, was then presented and compared to CA in Section

2.6.5 alongside justifications as to why this thesis prefers the CA method.

The next chapter in this thesis (Chapter 3) presents our first manual disfluency study;

comparing disfluency rates between the four different cognitive groups discussed above in

Section 2.2.
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3.1 Introduction

This chapter presents the first manual disfluency analysis and addresses the following

research questions:

1. How do the frequency and duration of speech disfluencies differ when participants

engage in an interview-style task with a digital avatar in a simulated medical interview

scenario compared to similar interviews conducted with human clinicians?

2. Can an analysis of speech disfluencies be used to differentiate between varying levels

of cognitive decline?

To answer these questions, a manual disfluency study was devised to investigate the types

of disfluency present in the speech of individuals interacting with a virtual agent during

an interview-style task. This chapter introduces the development of the Disfluencies in

Cognition (DisCo) schema, which is utilised to collect data on the frequency of various

types of speech disfluencies. To situate this work, the background section of the chap-

ter includes a discussion of different methods for defining and measuring disfluencies in

speech.

Subsequently, the methodology of the analysis is presented, detailing the data sources,

the process of capturing disfluency information from each recording, and the statistical

techniques employed in this study. Following this, the results are presented and analysed,

with a primary focus on the statistically significant findings. The chapter concludes with

a discussion of these results and outlines directions for future work.

3.2 Background

As discussed in the Chapter 2, previous studies have focussed on the effects of Cognitive

Decline (CD) on language and speech, although little work exists with a particular focus

on speech disfluencies. Where such work does exist, the actual phenomena being investi-

gated vary greatly between studies as there is no universally agreed disfluency taxonomy,

making the task of directly comparing disfluency studies difficult. For example, a study
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investigating the patterns of “pauses” in speech that actually only investigated unfilled

pauses would draw completely different conclusions to a similar paper that also included

an analysis of filled pauses. Yet, oftentimes such distinctions are not made.

This is also true of other disfluencies that are commonly mentioned in the context of CD,

including repetitions and repairs. Whilst it is not uncommon to include such phenomena

in disfluency studies, the definition of what constitutes a repetition or repair varies from

study to study. For example, Arslan and Göksun [2022] define their repetitions with

an example of a single word being repeated once in a sentence. There is no mention

of how instances of multiple word repetitions or part word repetitions are handled, or

if they are included in their analysis at all. The disfluency category in Rohanian et al.

[2021] consists of “self-repairs” (which are not defined in the paper, making it unclear

as to what exactly is being measured) and unfilled pauses, alongside “edit terms” which

include discourse markers such as “like” and “you know”, which are rarely treated as

disfluencies in disfluency studies.

Gómez-Vilda et al. [2015] include vowel prolongations in their “fillers” category alongside

what many other studies refer to as filled pauses or hesitations. However, vowel prolon-

gations in other disfluency studies are commonly treated as their own separate category

of disfluency. For example, following a comprehensive description of the different ways

of categorising disfluencies, Eklund [2004] notes that prolongations are disfluency events

that are entirely separate to “fillers”, and constitute their own category of “hesitations

without being silent” (p.208).

It is clear then that there are several disparities commonly seen when studying research

into disfluencies. Although the problem of different terms being used to describe the

same disfluency phenomena can make it difficult to directly compare studies, it rarely

causes a problem that cannot be overcome with some additional reading or searching.

However, the bigger issue occurs when it is not made explicitly clear in studies what

the chosen terminology is supposed to be referring to. One of the main aims of this

thesis is to present work that is unambiguous, ensuring that the procedures undertaken

in the analysis chapters can be repeated on a wide range of speech data. Therefore, this
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thesis clearly defines and describes each category of disfluency under investigation, and

makes clear exactly how a non-fluent event should be categorised according to our schema

(section 3.3.1).

This issue of a lack of clarity surrounding studies of disfluencies is not limited to investi-

gations of CD. Discrepancies such as those described above occur throughout disfluency

analysis work across a broad range of subjects including, but not limited to, psychol-

ogy, speech production, teaching and education, forensic speech science, and discourse

analysis. Of course, how disfluencies are studied will depend on the overall goal of the

particular disfluency analysis and the level of detail it requires. For example, when Sig-

mund Freud was compiling his Psychopathology of Everyday Life in 1901 he described

his theory that disfluencies represent hidden or suppressed feelings [Freud, 1989]. It did

not matter to Freud if the disfluencies he observed met a certain duration threshold or

number of occurrences. Rather, the importance was that the disfluency was present at

all. In contrast, a 2015 study from Braun et al. that investigated the speaker-specific

differences in hesitations (a category that would contain filled pauses and prolongations

if included in this thesis) needed a narrow focus, and therefore puts forward a method of

categorising hesitations according to very slight differences:

• Fillers of various kinds (vowel, vowel + nasal, nasal)

• Initial vowel lengthening

• Initial consonant lengthening

• Final vowel lengthening

• Final consonant lengthening

Due to the multidisciplinary nature of disfluencies it is unsurprising that there are nu-

merous different taxonomies of disfluency. In some instances it may be sufficient to define

a prolongation based on a subjective judgement of a phone that is longer than should be

expected in normal-paced, fluent speech (such as in Eklund [2004]). However, other work

may require a very granular definition of a prolongation, such as in the field of forensic

phonetics.
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This thesis pays particular attention to the Taxonomy of Fluency for Forensic Analysis

(TOFFA) presented by McDougall and Duckworth [2017]. TOFFA was designed to allow

for the analysis of disfluencies with a high level of phonetic detail in order to compare

the interspeaker variation of how these disfluencies occur within speech. Their schema is

presented in detail below:

1. Unfilled Pauses

In order to be classified as an unfilled pause according to TOFFA, a silence must last

more than 200ms and occur within a single speaker’s turn. These unfilled pauses can be

further categorised into two different types:

1. Unfilled pauses at grammatical boundaries: He came [unfilled pause] and I left

shortly after

2. Other unfilled pauses: He came and I [unfilled pause] left shortly after.

In addition, unfilled pauses found between the end of one speaker’s turn and the beginning

of another’s are not counted in the classification. However, if the beginning of another

speaker’s turn starts with a filled pause and is then followed by an unfilled pause, that

unfilled pause can be counted.

2. Filled Pauses

TOFFA defines a filled pause as a vowel that may or may not be followed by a nasal, and

identifies three main groups of filled pauses:

1. Standalone centralised vowels

2. Centralised vowels accompanied by a nasal

3. An “other” category consisting of other vowels or even no vowels such as [m:].

There is no distinction between long or short forms of filled pauses according to TOFFA,

although there is evidence from other studies (such as Kjellmer [2003]) that these may

have different functions in speech.

3. Repetitions

There are three main types of repetitions identified in TOFFA:
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1. Whole word repetitions: This- this one is mine

2. Part word repetitions: Th- this one is mine

3. Phrase repetitions: This one- this one is mine

TOFFA also includes a “multiple repetition” marker to annotate instances where a re-

peated segment is repeated more than once: This- this- this one is mine. The multiple

repetition marker is used in addition to one of the three categories described above, re-

sulting in annotations such as: This- this- this [whole word repetition] [multiple

repetition] one is mine.

4. Prolongations

A prolongation according to TOFFA is one or more speech segments in a word that are

prolonged. This does not include prolonged filled pauses. Prolongations are divided into

three different subcategories depending on the kind of phone that is being prolonged:

1. Prolongations of a vowel, nasal, lateral, or approximant

2. Prolongations of a fricative

3. Prolongations of plosive not including aspiration

5. Interruptions

An interruption is defined as a change that the speaker makes by interrupting themselves

as they are talking. There are two main types:

1. Interrupted phrases: I was going to come- I was going to leave early

2. Interrupted words: ye- no

TOFFA does not include “speech errors” such as phonetic additions, deletions, or substi-

tutions as unique disfluency classifications. Rather, these would fall under the “interrup-

tions” category.

This taxonomy is comprehensive and enables a very detailed disfluency analysis. However,

this level of classification would be unnecessary for studies that do not require such levels

of detail. For example, in the methodology of the present analysis as described below, it
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is of no consequence to us whether a filled pause presents with a nasal or not. An analysis

of disfluencies in fine phonetic detail is not appropriate in this case. Rather, the fact that

a filled pause is present is the main concern.

An earlier, yet even more detailed, taxonomy of disfluencies was presented in Dell [1986]

alongside a theory of retrieval processes in speech production. This taxonomy, which

focussed primarily on “slips of the tongue”, consisted of an amalgamation of disfluency

definitions from Stemberger [1982], Fromkin [1971], Garrett [1975], Shattuck-Hufnagel and

Klatt [1979], and Dell and Reich [1981]. Dell’s taxonomy directly contrasts with TOFFA

as it does not include classifications for phenomena such as pauses and prolongations,

but does describe in high levels of detail the different kinds of speech errors. In fact, Dell

identifies three main categories of errors (sound errors, morpheme errors, and word errors)

which are further broken down into 35 different subcategories. As the present study does

not examine speech errors in such detail it is not necessary to give an example of each of

the 35 different categories. However, some examples of different speech errors are given

below to highlight the specificity of Dell’s different speech error categories:

1. Anticipatory sound error: reading list - leading list

2. Noncontextual substitution sound error: department - jepartment

3. Anticipatory morpheme error: my car towed - my tow towed

4. Noncontextual substitution morpheme error: conclusion - concludement

5. Anticipatory word error: sun is in the sky - sky is in the sky

6. Noncontextual substitution word error: pass the pepper - pass the salt

In contrast to the granularity found in the taxonomies presented by McDougall and Duck-

worth [2017] and Dell [1986], Stasak et al. [2021] take a more high-level view of disfluencies.

The purpose of Stasak et al.’s study was to investigate whether a group of healthy con-

trols would produce fewer overall disfluencies compared to groups of participants that had

scored highly on a depression rating scale. The authors designed their disfluency cate-

gories with a view to being able to add them as a features into their automatic system
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for classifying suicidal behaviour. Therefore, the disfluencies had to be relatively simple

to identify in order to accurately recognise them automatically. The decision to keep

disfluency categories simple enough to identify automatically was carried through into

the schema proposed in this thesis. They present two main categories of disfluency that

encompass a broad range of phenomena:

1. Hesitations

Stasak et al. define this category as including any unnatural abrupt pauses, false starts,

word or phrase repetitions, or abnormal prolongations. In order to classify the hesitations,

the authors take into consideration the individual speech rate of each participant, noting

that some participants spoke slower than others. However, there is no given threshold

of duration for the classification of hesitations and hesitations are judged subjectively

according to each participant’s own idiosyncratic speech behaviours.

2. Speech Errors

Speech errors in this case are any deviations from the correct pronunciation of a given

target word. This induces phonological additions, substitutions, and deletions alongside

word and phrase repetitions and slips of the tongue. Although there is not much detail

describing the conditions which must be met in order to classify something as a speech

error, the authors do note that “incorrect” pronunciations that occur due to a regional

accent or dialect were not counted as disfluencies.

One of the more comprehensive studies of disfluencies occurring specifically in patients

with Alzheimer’s Dementia (AD) was presented in 2018 by Cera et al.. This study into

Portuguese speech classifies speech errors according to whether the error is phonetic or

phonological in nature. Below is a description of each category with an example of each

group taken from the study paper (in Portuguese):

1. Phonetic (motor) manifestations: this group includes occurrences of prolonged vowels

and consonants, schwa insertion between syllables, schwa insertion between consonant

clusters, and phone repetitions. For example: /"pedara/ instead of /"pedra/.

2. Phonological (linguistic) manifestations: includes substitutions of vowels, substitutions
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of consonants, whole word repetitions, syllable repetitions, anticipatory speech errors,

and phoneme substitutions. For example: /"öiza/ instead of /"öizu/.

3. Phonetic or phonological manifestations: attempts at the correct pronunciation of a

target word that do not cross the phoneme boundary but are produced with place,

manner, or voice deviations. For example: /"kasi/ instead of /"klasi/. This group can

include omissions (as in the example), additions and substitutions.

Whilst it is valuable to know whether certain disfluencies are of a phonetic or phonological

nature, particularly when considering potential speech therapy treatments, the distinction

between phonetic or phonological disfluencies is not made in the analysis presented in this

chapter. The present study is interested in the frequency of disfluencies across different

levels of CD, as opposed to investigating whether the disfluency is caused by phonetic-

motor disorders or language disorders. It would certainly be interesting to investigate

whether disfluencies produced at different levels of CD are predominantly phonetic or

phonological in nature, but that was beyond the scope of this thesis.

A more recent study specifically investigating language in dementia was presented by

Panesar and de Alba [2023]. Similarly to the work from Stasak et al. [2021], Panesar

and de Alba investigated disfluencies with a view to using disfluency information in an

Machine Learning (ML) model, although this time the model was designed to detect early

stages of CD. Whilst Panesar and de Alba are not specifically interested in disfluencies

and are instead more interested in language production parameters, their study does

include an analysis of phenomena that could be considered disfluencies. Some examples

of such phenomena are described below:

1. Repetition of words

2. Filled sound pauses

3. Timings of pauses (short, medium, or long)

Other measures that Panesar and de Alba investigate that are not related to disfluencies

include measures of lexical richness, the frequency of pronoun use, and the completeness

of sentences. Even though their study does not consider many different types of disflu-
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ency, the authors do include measures of severity for each of the disfluencies they look

at. For example, filled sound pauses can be classified as fluent, partial, or poor according

to the length of each pause (with short pauses being given a “fluent” label, long pauses

given a “poor” label, and medium pauses given a “partial” label). Each kind of disflu-

ency is given a severity rating which correlates to a score, and by the end of the study

the participants with a higher score were those participants with the fewest instances

of disfluencies (alongside more lexically diverse speech, and more frequent pronoun use

etc). Higher scores for language production also correlated with less severe levels of CD.

Although the idea of a severity score is not used in the analysis presented in this chapter,

it did inform some further work described in Chapter 4.

Given the different approaches to defining disfluencies as highlighted above, this the-

sis presents a new schema for categorising disfluencies for the purposes of investigating

different levels of CD. The DisCo taxonomy as presented below combines the clearly

defined categories and time-defined classifications of TOFFA with a less fine-grained ap-

proach to classifying speech errors as found in Stasak et al.’s 2021 study but follows a

similar approach to Dell [1986] in treating phenomena such as phonetic deletions, ad-

ditions, and substitutions as their own individual classifications. Following the DisCo

schema throughout this thesis ensures uniformity in the terminology used throughout the

analysis chapters, and makes disfluency classification decisions as clear as possible.

3.3 Methodology

This section commences with an overview of the creation of the DisCo schema used

throughout this thesis to perform manual disfluency analyses from a quantitative per-

spective. The data used in this first manual disfluency analysis is then presented, along

with a description of the process of collecting disfluency information and a brief over of

the statistical methods used as part of the analysis.
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3.3.1 The Disfluencies in Cognition Schema

The aim of this first analysis was to investigate whether different kinds of disfluencies

appear in speech at different levels of CD. This would serve as a precursory study to in-

vestigating whether disfluency information could help improve the accuracy of Automatic

Cognitive Decline Classification (ACDC) systems. Therefore, a balance was struck be-

tween capturing a high enough level of detail whilst still being sufficiently simple to im-

plement in the automatic system. The table below outlines the first version of the DisCo

schema used in this analysis, which is based largely on the TOFFA framework [McDougall

and Duckworth, 2017] discussed in Section 3.2. TOFFA was chosen as the starting point

for our schema as it makes very clear what exactly constitutes each different disfluency

category. However, as we hoped that we would eventually add this disfluency information

into an automatic system, we decided to reduce the level of granularity from that seen in

TOFFA. For example, whereas TOFFA differentiates between unfilled pauses at a gram-

matical boundary and unfilled pauses elsewhere, our schema does not. We did however

keep the 200ms threshold presented in TOFFA for classifying pauses and prolongations.

McDougall and Duckworth chose the 200ms threshold following from other studies such as

Butterworth [1980]. Additionally, a large study of pause durations across five languages,

Campione and Véronis [2002] found a trimodal distribution of pauses, with brief pauses

being less than 200ms , medium pauses being between 200-1000ms, and long pauses being

more than 1000ms. As we were not differentiating between medium and long pauses, we

retained the 200ms boundary to differentiate between a short, fluent silence or a disfluent

pause. This enabled us to make objective decisions when counting pauses and prolonga-

tions, rather than having to rely on subjective judgements which could differ from person

to person.

Unlike TOFFA, we excluded most classifications that relied on small phonetic differences.

For example, according to DisCo a filled pause is classed as a filled pause regardless

of whether it contains a nasal or not. Some of our disfluency groups do however go

into slightly higher levels of detail by containing subcategories, such as the repetitions

group. This follows TOFFA by categorising repetitions in three distinct ways according
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to whether the repeated segment is a whole word, whole phrase, or part of a single

word. However, in instances where multiple repetitions occur concurrently TOFFA adds a

[multiple repetition] marker in addition to the tag describing what kind of repetition

has occurred, such as:

This- this- this- [whole word repetition] [multiple repetition] this one is mine

However, the DisCo schema makes use of the number of instances a repetition happened,

so instead of tagging as a multiple repetition, each single repetition is marked in order to

be counted:

This- [word repetition] this- [word repetition] this- [word repetition] this

one is mine

Using the DisCo schema, we can tell that the sentence above contains three whole

word repetitions, whereas TOFFA would only tell us that the repetition observed was

a whole word repetition, and that there were multiple cases observed. There is no way of

knowing exactly how many repetitions occurred in that particular sentence according to

TOFFA.

As discussed in the previous section of this chapter, TOFFA does not include any cate-

gorisations for speech errors such as additions, deletions, or substitutions. This is stated

to be due to a lack of such phenomena in the data used to create TOFFA. However, in

Stasak et al. [2021] the number of speech errors (including those mentioned above) ob-

served proved to be significantly different between their healthy control group and their

depressed groups. Even though Stasak et al.’s study was not concerned with CD, no

work could be found that had included such speech errors in a disfluency analysis of de-

mented speech. Therefore, speech errors were included as a group of subcategories within

this study to investigate whether they would appear more frequently than the numbers

reported in Stasak et al.’s work.

It is important to note that the process of annotating the disfluencies in this experiment

started as a somewhat iterative process. Occasionally, a disfluency was encountered that

was not identifiable with the original iteration of DisCo. In such cases, the schema was
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updated to reflect the new disfluency category, and recordings that had already been

transcribed were revisited to make sure the transcriptions adhered to the updated version

of the schema. For this reason, the malapropism category of disfluency was included to

account for instances where an incorrect expression or word was used (such as in the

recording from Participant 0277 in the phrase:

I look back on my school days with great fondness and, um [fp], [ufp] enjoy [mal]

In this instance, [mal] was chosen to categorise the use of “enjoy” in place of “enjoy-

ment” or other suitable noun, as would be expected in normal, fluent speech. Table 3.1

demonstrates the DisCo schema used in this experiment. Following this is a more de-

tailed description of each category, supported by examples taken from the data used in

this study.
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Disfluency Description Annotation

Unfilled pause Silence >200ms [ufp]

Filled pause Typically a central vowel that may be followed [fp]

by a nasal lasting >200ms

E.g., [@:m] or [(@h)]

Repetition Part word repetition [pwrep]

E.g., “there’s a ca- cat”

Whole word repetition [wrep]

E.g., “there’s a cat- cat”

Phrase repetition [phrep]

E.g., “there’s a cat- there’s a cat”

Prolongation Phone lengthened to >200ms [pro]

Speech Error Deletion - phone is deleted [del]

Substitution - phone is changed to something else [sub]

Addition - phone is added [add]

Malapropism - unrelated substitutions for a word [mal]

Repair Noticing an error has been made and going back to
correct it

[repa]

Non-speech events Lip smacking, coughs, laughs, sighs, deep breaths,
etc

[nse]

Table 3.1: The DisCo Taxonomy.

Unfilled Pauses [ufp]

Unfilled pauses are any silences occurring within a participant’s utterance that lasts longer

than 200ms. In the case of this analysis, an utterance is defined as a single turn by a

speaker regardless of how many words or sentences comprise that turn. This usually

results in each utterance being an answer to a question. The utterance ends when the

participant decides that they have answered the relevant question in as much detail as

they would like, and presses a button to move on to the next question. The initial silence

that comes before a participant starts their response (even if the response is started with a

filled pause instead of speech) is not counted as an unfilled pause, as this is not included in

the utterance. The silences at the ends of an utterance (when the participant is deciding
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whether or not they have finished talking) were counted as unfilled pauses (providing they

met the 200ms threshold). Additionally, in instances of chains of filled and unfilled pauses

(e.g., [fp] [ufp] [fp] or [ufp] [fp] [ufp]), each pause is counted providing it meets

the 200ms threshold.

Filled Pauses [fp]

A filled pause is any silence-filling noise that is neither part of fluent speech nor a vocali-

sation related to coughs, throat clearing, laughter, et cetera. These can be vowels on their

own, such as [@:], or vowels followed by a consonant (typically a nasal such as [@m]).

Repetitions

DisCo classifies repetitions in three different ways, depending on what exactly is being

repeated:

1. Part Word Repetitions ([pwrep])

Th- [pwrep] there’s a cup on the table

2. Whole Word Repetitions ([wrep])

There’s- [wrep] there’s a cup on the table

3. Phrase Repetitions ([phrep])

There’s a cup- [phrep] there’s a cup on the table

As in TOFFA, contractions are counted as one word hence why the example in 2 above

is classed as whole word repetition rather than a phrase repetition.

A phrase repetition according to DisCo is a repetition of something that is more than a

sole word. This could be a [wrep] + [pwrep] as in:

I ha- [phrep] I have a cup

Or this could be a situation where multiple whole words are repeated sequentially:

I have a- [phrep] I have a cup

In cases of multiple repetitions, each repetition is marked separately. The final repetition

is left unmarked as it is considered to be start of the fluent portion of the sentence being

spoken:
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I want- [wrep] want- [wrep] want- [wrep] want to go to the shop

It should be noted that in the case of part-word repetitions it is difficult to be sure that

the repeated section is definitely a repetition and not a repair. For example, the “Th-” in

the example above could theoretically belong to a number of different “Th-” words (e.g.,

“this”, or “them”). We make the assumption that if the incomplete segment matches

the next fluent word then we have a part word repetition; if the incomplete segment

varies from the next fluent word (i.e., Thi- there’s a cup) then we class it as a repair (see

below).

Prolongations [pro]

A prolongation is any phone that is part of a word that is prolonged for more than 200ms

(again, this threshold remains unchanged from TOFFA). This is most commonly vowels

but could be any phone that meets the threshold.

Speech Errors

This is another broad category that includes a range of different disfluencies, each with

their own annotation tag:

1. Deletions ([del]):

specific → pecific [del]

2. Additions ([add]):

optimal → noptimal [add]

3. Substitutions ([sub]):

specific → sbecific [sub]

4. Malapropisms ([mal]):

(in describing a picture of some dogs) There’s five cats [mal]

Repairs [repa]

The [repa] tag is added to signify a speech error that has been identified by the speaker

which they then go on to correct:

I got in the car- no I got in the bus [repa]
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Non-Speech Events [nse]

Whilst non-speech events are not classed as disfluencies as such, DisCo includes an [nse]

tag which can be used to indicate vocalisations that are not speech but that might confuse

automatic systems attempting to measure the durations of speech segments, such as laughs

or coughs. By tagging such instances it becomes easier to remove them from calculations

of the total speaker locution time, ensuring that only speech is being counted.

Table 3.2 illustrates how different speech error phenomena could be classified accord-

ing to different disfluency taxonomies compared to the classification according to our

schema.

3.3.2 Data

This experiment uses existing data that was collected as part of research testing the effi-

cacy of an early version of what is now known as the CognoSpeak system. The Intelligent

Virtual Agent (IVA) dataset was collected between 2016 and 2019 as part of a joint project

between the University of Sheffield and the Royal Hallamshire Hospital [Mirheidari, 2018].

It includes recordings of 93 participants conversing and completing a number of different

language tasks with a virtual agent. Each recording is structured as follows:

1. Interview: during the interview section of the recordings, participants are asked a set

of predetermined questions by the virtual agent. Participants are free to respond for

as long as they like, and simply press a button on a computer keyboard to move to

the next question. The questions ask for a range of information and are based around

the questions a human doctor would ask a patient in a memory clinic setting. Patients

are asked a mixture of simple questions (such as “tell me what problems you have had

with your memory recently”), and compound questions (such as “who is most worried

about your memory, you, or somebody else? And what did you do last weekend?”).

2. Fluency Tests: after the interview portion of the recording, participants are asked to

complete two fluency tests. The first is the Semantic Verbal Fluency (SVF) test in

which participants are given 60 seconds to name as many animals as they can. The

second is the Phonemic Verbal Fluency (PVF) test, which asks participants to name
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Error Type According to
Dell [1986]

Type According to
Cera et al. [2018]

Type According to
DisCo

Sim swimmers sink Phoneme anticipa-
tion

Substitution of
vowel

Substitution

Some swummers sink Phoneme persever-
ation

Preservation of
phoneme

Some swinkers sink Cluster anticipa-
tion

Anticipation of
phoneme

Sim swummers sink Phoneme exchange Substitution of
vowel + Substi-
tution of vowel

Substitution +
Substitution
([s2m] → [sIm])
+ ([swIm@z] →
[sw@m@z])

Some simmers sink Phoneme deletion Omission Deletion

Swum simmers sink Phoneme shift Transposition of
phonemes

Addition +
Deletion ([s2m]
→ [sw2m]) +
([swIm@z] →
[sIm@z])

Some sinkers swim Stem exchange - Malapropism

Some swimmers swim Stem perseveration
or word substitu-
tion

-

Some swimmers
drown

Word substitution -

Table 3.2: A comparison of errors according to different disfluency schema, adapted from
Dell [1986].

as many words that begin with the letter “P” as they can in 60 seconds, excluding

proper nouns.

3. Picture Description Task: the final task for participants is to describe a picture in as

much detail as they can. Participants are shown the Cookie Theft picture, and given

as much time as they need to describe what they can see.

For this initial experiment, only the interview section of each recording was used. As

participants were given the freedom to be as concise or as descriptive as they wished during
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the interview, the length of these recordings varied between participants. Spontaneous

speech was the first choice for investigation as many studies have reported that read or

planned speech often has a slower speech rate with fewer disfluencies (see Howell and

Kadi-Hanifi [1991]; Pinto et al. [2013]; Lickley [2017]). Additionally, this analysis is more

robust and relevant by using speech samples that are representative of speech that would

be analysed in a real-world setting; in this case a memory clinic.

Whilst the virtual agent uses a predetermined set of questions for the interview portion of

the task, our IVA subset contains some slight variations in the wording of some questions,

depending on which iteration of the virtual agent was used during the data collection

process. This could potentially influence the way participants respond to the questions.

However, the analysis in this chapter is not concerned as much with the content of the

responses given by the participants, but rather the disfluencies occurring in whatever

they say. Therefore, the variations in the question formats were disregarded. Appendix C

contains the sets of questions asked by the virtual agent to all participants, and highlights

any small deviations between questions.

Each participant chosen for this study belonged to one of four cognitive groups; Healthy

Controls (HCs), people with Functional Memory Disorder (pwFMD), people with Mild

Cognitive Impairment (pwMCI), and people with Neurodegenerative Dementia (pwND).

As this analysis was investigative in nature, four classes were chosen for analysis rather

than the “Alzheimer’s Disease vs. Healthy Control” that is commonly seen in these

kinds of studies. This allowed us to not only compare disfluencies at different levels

of neurodegeneration, but also to compare to speech problems that are psychological in

nature as in the case of FMD. There is little work investigating disfluencies in speech from

people with FMD, so our study is an initial investigation into this. Some participants in

the original set of 93 recordings had been interviewed twice. In these cases, only the initial

interview was included in the data for this experiment. The resulting subset of data used

for this experiment consisted of 55 recordings from different participants. Table 3.3 shows

the breakdown of participants according to their subject groups. The standard deviation

(σ) is included to demonstrate the variance in each group [Livingston, 2004].
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Age
No. Fluent Words

in Recording
MMSE score

Subject

Group

No.

Participants

Male:

Female
Mean σ Mean σ Mean σ

HC 15 6:9 69.5 8 654.7 511.2 28.7 0.7

FMD 14 5:9 55.1 8.4 400.4 385.6 27.4 2.1

MCI 14 10:4 63.6 8.6 499.4 448.3 26.5 1.1

ND 12 10:2 68.1 7.9 490.7 500.8 23.6 4.7

Table 3.3: Participant Information for the first manual disfluency analysis, including num-
ber of participants, gender, age, number of fluent words per recordings, and participant
Mini Mental State Examination scores. Statistics are given as group means and standard
deviation.

One benefit of using this particular dataset is that there is already existing information

surrounding the kinds of features that have been found to be useful in discriminating

between the different cognitive groups (see Mirheidari et al. [2017]; Mirheidari et al. [2019];

O’Malley et al. [2020]; Beavis et al. [2021]; Walker et al. [2021]). These studies investigate

a mixture of features, such as Conversation Analysis (CA) features (number of participant

turns, average number of low frequency words, average number of topics discussed), lexical

features (average number of prepositions, vowels, determiners, conjunctions), and acoustic

features (average pitch, harmonics-to-noise ratio). It was therefore clear that disfluency

information other than pauses had not been tested, and warranted an investigation.

As this data was collected continually over a number of years, many studies using the data

have curated their own subsets to fulfill different criteria (such as being balanced for age,

gender, or only containing participants diagnosed with Mild Cognitive Impairment (MCI),

for example). This present work uses a subset called the IVA60, used previously in studies

such as O’Malley et al. [2021]. This subset contains 60 participants equally split into the

four cognitive groups.

3.3.2.1 Data Considerations

Due to the difficulties surrounding the collection of sensitive data such as health data,

this study used existing data that was already available to researchers at the University



79 3.3. Methodology

of Sheffield. Using this data comes with a number of benefits. As mentioned above, previ-

ous research has used the IVA data for investigations, allowing the disfluency information

found in this analysis to be added to the results from prior studies to create a more com-

prehensive overview of the data. Using existing data also benefits the many participants

who kindly volunteered their time to contribute to this dataset. Whilst cognitive tests

do not pose large risks to participants, it would also be unfair to ask participants to

participate in more studies when we already have a good selection of existing data. The

collection of this data started in 2016 as part of an earlier research project investigating

the potential use of an intelligent virtual agent as a method of screening patients in a

memory clinic [Mirheidari, 2018].

However, there are also a number of difficulties that come with using an existing dataset,

and the IVA data is no different. What follows is a short description of some of the issues

encountered when working with this particular dataset, and the steps taken to mitigate

any negative effects.

Purpose of Collection

This data was collected in order to train an ML model to recognise different stages of

CD through speech analysis. As part of a multidisciplinary project, lots of information

was collected about different aspects of the participants’ lives. For example, scores from

a range of different memory tests are recorded, along with information from other clinical

tests for cognitive decline such as Magnetic Resonance Imaging (MRI) scans and lumbar

punctures. However, the amount of collected information varies between participants.

Although there is usually a score from a cognitive test for each participant, the actual

tests vary. This means that while some people may have recorded Montreal Cognitive

Assessment (MoCA) scores, others have Mini Mental State Examination (MMSE) scores.

All cognitive scores were converted to an MMSE score for ease of comparison.

Some participants have recorded information relating to any medication they may be

taking, but some do not. This is potentially problematic as some medications may interfere

with speech or cognitive function. Where possible, participants that were identified as

having a comorbidity that is known to affect speech were removed from the subset of data.
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However, information regarding comorbidities such as Parkinson’s disease or strokes was

recorded inconsistently. This is potentially problematic as such comorbidities may also

affect speech, making it difficult to discern whether disfluencies found in this study are

a direct result of the effect of the CD each participant is experiencing, or a result of

the comorbidity. For more information about how the aforementioned conditions affect

speech see Proença et al. [2014], and Vidović et al. [2011].

Some participants have recorded PHQ-9 and GAD-7 scores (rating scales for severity

of depression and anxiety, respectively). Those who scored highly on either test were

removed from our sample. Again, this is due to the potential effects that depression and

anxiety may have on speech (Cummins et al. [2015]; Pope et al. [1970]). However, it

should be noted that participants that did not have this information recorded were still

included in our sample, in an attempt to retain as many different participants as possible.

Other participants that were removed from the sample were those observed to have speech

impairments, such as a stammer. In one recording, the participant notes how they have

recently been diagnosed with dysarthria. This participant was removed from the sample,

as the aim of the present study is to try to identify patterns in disfluencies related to

cognitive impairment, not disfluencies that may be associated with pathologies that may

not related to CD.

For speech corpora that are used throughout different fields of linguistics such as sociolin-

guistics and phonetics, it is generally expected that researchers will collect comprehensive

metadata concerning each participant’s linguistic experience [Niebuhr and Michaud, 2015].

This includes information regarding place of birth, socioeconomic status, and years of ed-

ucation. However, such detailed linguistic information is not available for participants

in the IVA dataset. Broadly speaking, most participants in the original IVA dataset are

native speakers of English and are from the greater Sheffield area.

Research has shown that disfluencies vary greatly depending on language proficiency

(Temple [2000]; Rieger [2003]; Klapi et al. [2011]; Gurbuz [2017]). In cases where it

was clear that a participant was not a native speaker of English (if, for example, they

discussed in the recording their time spent growing up in a non-English speaking country)
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they were removed from our subset. This allows us to compare results between people

with the same language proficiency, reducing the variation in disfluencies that could be

caused by factors other than CD.

Technical Difficulties

Although effort was made to keep the recording conditions as controlled as possible, some

recordings include a large amount of background noise. As part of this analysis a number

of gold-standard disfluency transcripts will be produced, which in turn could be used to

train an ACDC system. Gold-star in this case would refer to transcripts that we can rely

on for being highly accurate and checked by a human annotator, rather than transcripts

that have been created automatically which may contain errors. In order to make the

transcripts as accurate as possible it was imperative that the speech in all recordings was

clear and easy to understand. Therefore, any instances of background noise that impacted

the intelligibility of the speech were removed from the subset of data used for this task.

There were also a few recordings in which the virtual agent appeared to malfunction,

resulting in cases of the participants being asked the same questions repeatedly or the

virtual agent interrupting participants mid-flow. In such instances these recordings were

removed.

In total, five recordings were removed from the IVA60 subset due to the reasons above:

two participants were found to be non-native speakers (one of whom also talked about

having been diagnosed with a speech impediment) and the other three due to technical

problems with the recordings. This brought the total number of recordings used in this

analysis to 55.

Other Considerations

Before work on this experiment began, a decision was made to try to include as many

different participants as possible in order to have as many gold-star disfluency transcripts

for each subject group as possible. However, this came at the expense of ensuring that

subject groups were balanced and representative of real-world data. As this study is

investigating disfluencies according to level of CD and not according to gender or age,

including as many possible examples of each CD group was prioritised over ensuring age
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and gender were balanced in each group.

3.3.3 Disfluency Collection Process

Each recording was individually loaded into Praat [Boersma and Van Heuven, 2001], and

the recordings were trimmed to include only the interview portion of each recording. Four

text grid tiers were used to label the data as follows:

1. An orthographic transcription of the questions being posed by the virtual agent.

2. An orthographic transcription of the responses from the participant. All filled pauses

were recorded here as “er”, and all other deviations from a fluent word were marked

with a dash (for example, whole word repetitions would be recorded here “like- like

so”).

3. Disfluency labels according to DisCo.

4. Speech of Accompanying Persons (APs) or researchers, or any other notes.

Figure 3.1: A view of the different Praat text grid tiers used in the manual disfluency
analysis, with an unfilled pause highlighted.

Figure 3.1 illustrates the resulting text grids, and how each disfluency was tagged. By

recording the disfluencies this way it was possible to quantify not only the number of

each disfluency category present in each recording but also the durations of pauses and
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prolongations. Each recording was listened to a minimum of four times. All transcriptions

were completed by the researcher without the knowledge of which cognitive group the

participant belonged to in an attempt to avoid any bias. Thorough notes were kept

about each recording, and any questions or discrepancies were checked with other trained

phoneticians. With help from collaborators in the department of computer science, a

Python script was created to collect all the disfluency information from the text grid

files.

3.3.4 Statistical Methods

Once all transcriptions had been completed and double checked, disfluency information

was normalised by the number of fluent words in each recording to account for the range

of different recording lengths. Fluent words were counted using a Python script which

counted all words in the second text grid tier, minus “er” or any instances of a dash

followed by a space to remove non-fluent words (e.g., “the- ”).

The first step of the statistical analysis was to find out whether the disfluency data were

normally distributed. This was calculated in R using a Shapiro-Wilks test. The majority

of the disfluencies were not normally distributed across the dataset, so the Kruskall-Wallis

test for significance was used. In instances where the data were normally distributed,

ANOVA was used to test for significance. Once significance had been established, a Dunn

test with Bonferroni correction was applied to examine which were the significant groups,

and to account for the multiple comparisons. All statistics (apart from averages) are

performed on scores normalised by the number of fluent words spoken by each participant

in their recording. Normalising in this way allows a more direct comparison of disfluency

rates from person to person, independent of how long each participant spoke for. In early

disfluency studies, it was common to assess disfluency rates per 100 words (see Mahl

[1959], and Faure [1980]). The present study follows the method of Fox Tree [1995] in

excluding disfluencies from this measure as it is difficult to tell the difference between a

fluent and disfluent filled pause. Therefore, we normalise according to fluent words and

report disfluency rates per 100 fluent words.
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Participants in this study have a recorded cognitive test score. This is usually an MMSE

score, but some patients have MoCAscores instead. In order to facilitate an easier com-

parison, all scores are converted to MMSE scores according to the conversion table from

Mat́ıas-Guiu et al. [2018]. This method of conversion has demonstrated high reliability

when tested on a large scale (n = 500).

3.4 Results

This section details the findings from this first manual disfluency study which uses the

DisCo schema to investigate the frequency and duration of disfluencies in speech. These

are findings that are statistically significant or hold potential for being used as a diagnostic

aid. Please see Appendix A for a table consisting of all findings.

3.4.1 Total Disfluency Rates

This analysis revealed high total disfluency rates across all cognitive levels investigated.

Even our healthy controls exhibited much higher rates than have previously been reported

(around six disfluencies per 100 words not including unfilled pauses). These rates can be

found in Table 3.4.

Cognitive Group Total Disfluency Rate
Disfluency Rate Minus

Unfilled Pauses

HC 27.8 13.7

FMD 34.3 13.5

MCI 43.5 20.8

ND 53.7 27.1

Table 3.4: Comparison of total disfluency rates and disfluency rates excluding unfilled
pauses across the four different cognitive groups. Average rates are calculated per 100
fluent words.

3.4.2 Number of Fluent Words

Although no statistically significant difference was observed between the median number

of fluent words produced by the different cognitive groups, we found that there were
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participants in each of the three cognitively impaired groups who spoke a lot more than the

other members of their respective cohorts (see Figure 3.2). For example, whilst the median

number of words produced by the participants in the Neurodegenerative Dementia (ND)

group was 334.5, one participant (Participant 221) produced 2003 words in their interview

with the IVA.

Figure 3.2: Violin plot showing the number of fluent words according to cognitive group.

3.4.3 Unfilled Pauses

3.4.3.1 Number of Unfilled Pauses

Figure 3.3 is a violin plot showing the number of unfilled pauses (per 100 fluent words) per

cognitive group. Violin plots are used throughout this thesis as a method of visualising

data rather than box plots, as violin plots allow us to visualise the distribution of the

data within each cognitive group whilst box plots do not.

A Kruskal-Wallis test indicated that there was a significant difference in the number of

unfilled pauses per 100 fluent words across the four different cognitive groups, χ2 (3, N =

55) = 19.77, p = <.001. The Kruskall-Wallis test was chosen as the data was found to be
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Figure 3.3: Violin plot showing the number of unfilled pauses per 100 fluent words ac-
cording to cognitive group.

not normally distributed in a Shaprio-Wilkes test (W = 0.91, p = <.001). The median

number of unfilled pauses per cognitive group was 13.74 for HCs, 20.19 for FMDs, 21.82 for

MCIs, and 24.56 for NDs. Post-hoc comparisons using Dunn’s method with a Bonferroni

correction for multiple tests indicated that the median number of unfilled pauses from

people in the HC group was significantly smaller than the other three cognitive groups

(p = .03 for FMD, p = .01 for MCI, and p = <.001 for ND). However, there were no

significant differences in the number of unfilled pauses found between the FMD, MCI,

and ND groups.

3.4.3.2 Average Length of Unfilled Pauses

Figure 3.4 shows the average length of unfilled pauses per cognitive group. Results from

our analysis support findings from other studies (such as Singh et al. [2001]) that pause

duration can be significantly different between control groups and cognitively impaired

groups. A Kruskal-Wallis test indicated that there was a significant difference in the length

of unfilled pauses across the four different cognitive groups, χ2 (3, N = 55) = 10.90, p
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= <.01). The Kruskall-Wallis test was chosen as the data was found to be not normally

distributed in a Shaprio-Wilkes test (W = 0.78, p = <.001). The median average length

of unfilled pauses (in seconds) per cognitive group was 0.55s for HCs, 0.89s for Functional

Memory Disorders (FMDs), 0.82s for MCIs, and 0.98 for NDs. Post-hoc comparisons

using Dunn’s method with a Bonferroni correction for multiple tests indicated that the

only significant difference was between the lengths of unfilled pauses in the HC group

and the ND group, with the average length of unfilled pauses in the HC group being

significantly shorter (p = <.009).

Figure 3.4: Violin plot showing the average lengths of unfilled pauses according to cogni-
tive group.

3.4.4 Filled Pauses

3.4.4.1 Number of Filled Pauses

As demonstrated in Figure 3.5, our analysis did not find a significant difference in the

number of filled pauses across the four cognitive groups (p = .4). However, there is a
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slight trend of an increasing number of filled pauses as cognition worsens as shown in

Table 3.5:

Figure 3.5: Violin plot showing the number of filled pauses per 100 fluent words according
to cognitive group.

HC FMD MCI ND

Median Number of FP

per 100 Fluent

Words

5.7 7.7 8.3 9.8

Table 3.5: Comparison of the median number of filled pauses per 100 fluent words ac-
cording to cognitive group.

3.4.4.2 Average Length of Filled Pauses

Although there were no significant differences in the number of filled pauses across cog-

nitive groups, this study did find a significant difference in the average lengths of filled

pauses. A Kruskal-Wallis test indicated that there was a significant difference in the

length of filled pauses across the four different cognitive groups, χ2 (3, N = 55) = 11.32,

p = .01). The median average length of filled pauses (in seconds) per cognitive group
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was 0.45s for HCs, 0.57s for FMDs, 0.54s for MCIs, and 0.55 for NDs. Post-hoc com-

parisons using Dunn’s method with a Bonferroni correction for multiple tests indicated

that the only significant difference was between the lengths of filled pauses in the HC

group and the FMD group, with the average length of filled pauses in the HC group being

significantly shorter (p = .01) as demonstrated by Figure 3.6. Both the number and the

average lengths of filled pauses were smaller across all cognitive groups when compared

to the unfilled pauses.

Figure 3.6: Violin plot showing the average lengths of filled pauses according to cognitive
group.

3.4.5 Pause-to-Speech Ratio

Although pause to speech ratio is not technically part of the DisCo schema, it is eas-

ily calculated with the data resulting from a DisCo analysis. As pause-to-speech ratios

are commonly investigated in studies into speech in CD, it is included as part of this

analysis.

Despite FMD being the least “severe” of the cognitively impaired groups, participants in
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this group exhibited the highest pause to speech ratio, as demonstrated in Table 3.6.

Cognitive Group Rate of all Pauses Compared to Speech

HC 0.22

FMD 0.65

MCI 0.54

ND 0.59

Table 3.6: A comparison of the pause-to-speech ratios observed across cognitive groups.

3.4.6 Repetitions

A Kruskal-Wallis test indicated that there was a significant difference in the number of

whole-word repetitions per 100 fluent words across the four different cognitive groups,

χ2 (3, N = 55) = 12.35, p = .006. The median number of whole word repetitions (per

100 words) per cognitive group was 0.38 for HCs, 0.09 for FMDs, 0.63 for MCIs, and

0.94 for ND. Post-hoc comparisons using Dunn’s method with a Bonferroni correction for

multiple tests indicated that the median number of whole-word repetitions from people

in the FMD group was significantly smaller than in the ND (p = .004) group (as shown

in Figure 3.7).

In typical fluent speech, the average number of whole-word repetitions is around 1.5 per

100 fluent words according to Bortfeld et al. [2001]. As demonstrated in Table 3.7, we

found the average number of whole-word repetitions to be smaller across the board in our

study, with the ND group having the highest number of repetitions at 1.4 per 100 fluent

words.

No other significant differences were found in the number of whole-word repetitions be-

tween groups (p = .7 for part-word repetitions and p = .8 for phrase repetitions).

3.4.7 Prolongations

3.4.7.1 Number of Prolongations

A Kruskal-Wallis test indicated that there was a significant difference in the number

of prolongations per 100 fluent words across the four different cognitive groups, χ2 (3,
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Figure 3.7: Violin plot showing the number of whole-word repetitions per 100 fluent words
according to cognitive group

HC FMD MCI ND

Average Number of WREPs

per 100 Fluent

Words

0.7 0.2 0.8 1.4

Table 3.7: Comparison of the average number of whole-word repetitions per 100 fluent
words according to cognitive group.

N = 55) = 12.92, p = .004. The median number of prolongations per 100 words per

cognitive group was 3.89 for HCs, 6.07 for FMDs, 8.24 for MCIs, and 7.60 for NDs. Post-

hoc comparisons using Dunn’s method with a Bonferroni correction for multiple tests

indicated that the median number of prolongations from people in the HC group was

significantly smaller than in the MCI (p = .004) group. No other significant differences

were found between groups.

As can be seen in Figure 3.8, a participant in the MCI group and a participant in the

ND group had far greater numbers of prolongations than the rest of their respective

cohorts. Participant 87 (MCI group) had 50 prolongations per 100 fluent words, and
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Figure 3.8: Violin plot showing the number of prolongations per 100 fluent words accord-
ing to cognitive group

Participant 290 (in the ND group) had 86 prolongations per 100 fluent words. Upon

reviewing these interviews, we found that these inflated numbers of prolongations could

be due to the unusually slow speaking rates of each of these participants. This motivated

the adjustment made to the method of recording prolongations in the second disfluency

analysis (described in Section 4.3.2 in the next chapter).

3.4.7.2 Average Length of Prolongations

Figure 3.9 shows the average length of prolongations per cognitive group. A Kruskal-

Wallis test indicated that there was a significant difference in the length of prolongations

across the four different cognitive groups, χ2 (3, N = 55) = 8.60, p = .03). The Kruskall-

Wallis test was chosen as the data was found to be not normally distributed in a Shaprio-

Wilkes test (W = 0.92, p = 0.002). The median average length of prolongations (in

seconds) per cognitive group was 1.76s for HCs, 2.06s for FMDs, 2.16s for MCIs, and

2.13 for NDs. Post-hoc comparisons using Dunn’s method with a Bonferroni correction

for multiple tests indicated that the only significant difference was between the lengths
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of prolongations in the HC group and the MCI group, with the average length in the HC

group being significantly shorter (p = .04).

Figure 3.9: Violin plot showing the average lengths of prolongations according to cognitive
group.

3.4.8 Speech Errors

There were not enough examples of any of the classes of speech error found in our data

to facilitate a statistical analysis. Table 3.8 demonstrates how few examples of each type

of error were found per group.

Cognitive

Group
[del] [add] [sub] [mal]

HC 0 0 0 1

FMD 0 1 0 3

MCI 3 1 5 0

ND 4 5 2 6

Table 3.8: Comparison of the number of speech errors (deletions, additions, substitutions,
and malapropisms) from across the different cognitive groups.
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As we have seen across all the results, there is a slight trend of increasing amounts of

errors as the severity of the cognitive decline increases. However, more instances of each

error would be needed to assess whether this is statistically significant.

3.4.9 Summary

This small sub-section presents a summary of our findings. Section 3.4.9.1 presents a

condensed version of the differences found between the HCs and patients in the cognitively

impaired groups. Section 3.4.9.2 then explores the differences found among the cognitively

impaired groups. After these short summaries, results for each category of disfluency are

discussed in more detail.

3.4.9.1 Healthy Controls vs. Cognitively Impaired Participants

Statistically significant differences were observed between the HC group and the cogni-

tively impaired groups across nearly all of the disfluencies examined in this study. Both

the number and average duration of unfilled pauses were significantly smaller in the HC

group. Although no difference was found in the number of filled pauses, the average du-

ration of filled pauses in the HC group was significantly shorter than in the cognitively

impaired groups, specifically the FMD group. Healthy controls exhibited the smallest

pause-to-speech ratios, indicating that their rate of (all) pauses relative to the amount

of speech produced was lower than that of the cognitively impaired groups. With re-

gard to prolongations, HCs demonstrated significantly fewer and shorter prolongations

compared to the participants in the cognitively impaired groups. Although there were

insufficient instances of speech errors to conduct statistical testing, fewer instances of all

types of speech errors were observed in the HC group than in the cognitively impaired

groups.

3.4.9.2 Differences Between Cognitively Impaired Groups

The results indicated a statistically significant difference in the number of whole-word

repetitions between the FMD and ND groups (p = 0.004). No significant differences were
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observed in the number of part-word or phrase repetitions. This was the only significant

difference found between the cognitively impaired groups.

3.5 Discussion

3.5.1 Total Disfluency Rates

Our study observed much higher disfluency rates than have previously been reported,

even in the case of our HCs. We hypothesise that this is due to the unfamiliarity of the

situation in which the data was recorded. Previous research has shown that disfluency

rates directed at machines are lower than in spontaneous human-human conversation.

However, these rates are taken from studies that involve participants interacting with

automatic systems designed to carry out specific tasks. This results in interactions that

are oriented to said tasks in which the human participants need only produce simple,

short commands. Our results highlight that when asked more probing questions (to

which long and detailed answers are expected) the high disfluency rates are reflective of

an increased cognitive load in addition to a conversational style that the participants have

not experienced before.

3.5.2 Unfilled Pauses

This analysis found statistically significant differences between the number of unfilled

pauses in all cognitively impaired groups compared to the HC group. This aligns with

findings from other studies, such as Yuan et al. [2021] which found that their group

of people with AD had higher numbers of unfilled pauses of all durations (split into

four bins ranging from <0.5s to >2s) when compared to the HC group. Sluis et al.

[2020] analysed unfilled pause frequency and duration at three different cognitive levels;

healthy controls, mild dementia, and moderate dementia. Although they did not find a

statistically significant difference in the number of all pauses between groups, they did

find that the HC group had a significantly lower number of long unfilled pauses (>2s)

than the mild dementia group, which in turn also had significantly lower numbers of long
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pauses than the moderate dementia group. Studies such as Rohanian et al. [2021] have

already noted the salience of unfilled pauses as an identifier of CD, and have demonstrated

that including unfilled pause information in a deep learning model for detecting dementia

can help improve system accuracy.

In terms of the lengths of unfilled pauses, research supports the observation made in this

study that there are significant differences in unfilled pause durations between cognitively

impaired and cognitively healthy groups. Singh et al. [2001] found in their study of eight

healthy controls and eight participants with AD that there were statistically significant

differences in the mean duration of unfilled pauses between the two groups. It should

be noted, however, that unfilled pause duration is not always found to be significantly

different between control groups and cognitively impaired groups, even if the unfilled

pause rate is significant (see Lofgren and Hinzen [2022]).

3.5.3 Filled Pauses

There is conflicting evidence surrounding whether or not the number and length of filled

pauses is significantly different between HCs and cognitively impaired groups. One of the

biggest issues here is in how statistics surrounding pauses are reported in this field. Often,

it is not made clear whether researchers are including both filled and unfilled pauses in

their studies. For example, Pastoriza-Dominguez et al. [2022] mention the distinction be-

tween filled and unfilled pauses, yet treat them both as one “pause” classification, making

it difficult to separate how useful the filled pauses are alone at differentiating between

healthy and cognitively impaired groups. Likewise, Pakhomov et al. [2011] treated both

filled and unfilled pauses as one phenomenon. Other studies, such as Yunusova et al.

[2016], do not explicitly describe how they define a pause with regards to timings or

whether the pause is silent or filled. Zhu et al. [2022] differentiate between inter- and

intra-sentential pauses, but again provide no information about whether the pauses they

are measuring are filled or unfilled, or how exactly they differentiate between what they

are classifying as “short” pauses and “long” pauses.

Filled pauses are typically thought of as a method of facilitating recall in spontaneous
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speech. Research has shown that filled pauses can serve a “fluent communicative func-

tion”, such as aiding in turn-taking [Kosmala and Crible, 2022]. One possible explanation

for the reduced number of filled pauses in our data (compared to the number of unfilled

pauses observed) is that participants do not have a conversational partner with whom to

participate in the usual turn-taking process observed in spontaneous conversation. In nat-

ural conversation, filled pauses are often used to give the speaker time to formulate their

response whilst indicating to the listener that there is more information to follow [Cos-

savella and Cevasco, 2021]. It could be the case that our participants do not feel the need

to fill dead air when talking to the avatar, so exhibit more unfilled pauses instead.

3.5.4 Pause-to-Speech Ratio

There is little information available surrounding the differences in pause-to-speech ra-

tios between different levels of CD, despite the fact that pause-to-speech ratio has been

reported as a significant predictor of more severe levels of cognitive impairment (see

Pakhomov et al. [2010]). One study that used the original IVA dataset found a significant

difference between HCs and ND/MCI groups when looking specifically at the pause-to-

speech ratio in answers to only the remote memory questions [O’Malley et al., 2020]. The

same study did not find any statistically significant differences for the FMD group. Re-

sults from the present study contrast with those from an earlier study based on a different

subset of the IVA data. In Beavis et al. [2021], researchers found that the pause-to-speech

ratio was generally lower for people in the MCI and FMD groups, compared to the HCs.

As demonstrated in Table 3.6, our study found the lowest pause-to-speech ratio to be in

the control group, and the highest in our FMD group. Our findings reflect the higher filled

and unfilled pause rates observed in the three cognitively impaired groups, as presented

above. One possible explanation for the differences in reported pause-to-speech ratios is

that the present study uses a more fine-grained method of calculating these ratios. Our

method involved calculating a total phonation time for each participant by summing the

timings of only fluent segments of speech (so both filled and unfilled pauses, speech errors,

and repetitions were removed). This is then compared to the total sum of the timings of

both filled and unfilled pauses. In the Beavis et al. [2021] study, there is no clear definition
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of what constitutes a pause and it is likely the case that filled pauses were not included

in their “pauses” calculation. It is also important to note that while both studies use

IVA data, two different subsets are used. As both studies use small amounts of data, any

variation could result in quite a big difference in observations. For example, the Beavis

et al. study may have included a couple of HCs with large numbers of pauses which

simply were not included in the subset used in our experiment.

3.5.5 Repetitions

Little research exists examining the frequency and distribution of word repetitions at

different levels of CD. Where such work does exist, the studies are typically conducted

on either phonemic or semantic verbal fluency tests. Our analysis found that the number

of word repetitions was significantly higher in the ND group when compared to the FMD

group, which had the lowest number of word repetitions of all four cognitive groups. This

rate was also significantly lower than word repetition rates you would expect to see in

typical fluent speech [Bortfeld et al., 2001]. This could be due to the fact that our FMD

group spoke the least, although we found no significant differences in the number of words

spoken across all four groups.

3.5.6 Prolongations

Whilst we found a statistically significant difference between both the number and du-

ration of prolongations between the HC and MCI groups, there is little work from other

studies to support this finding. Cera et al. [2023] found in their study that the number

of vowel prolongations was higher in patients with AD compared to the HCs. This study

also investigated consonant prolongations, but found no statistical differences between

cognitively healthy and cognitively impaired groups.

3.6 Conclusions

In summary, this analysis provides additional evidence in agreement with previous findings

that significant differences in unfilled pause duration and frequency can be found between
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control groups and participants with moderate to severe cognitive impairment. However,

as shown above, this work did not find significant differences between cognitively impaired

groups when analysing the number of filled pauses. This could be due to the fact that the

human participants do not feel the need to signal to the avatar that they are formulating

additional things to say, as they know that the avatar will be listening until they tell it

not to. In terms of other disfluencies it was found that there were statistically significant

differences in the number of word repetitions, prolongations, and additions between the

HCs and the cognitively impaired groups. Whilst our findings come from a relatively

small dataset, they do indicate that disfluencies may have the potential to hold useful

information for diagnosing levels of CD

This study shows that differences in the number and length of disfluencies such as pro-

longations, unfilled pauses, and word repetitions can be a useful discriminator among

different levels of CD. Due to conflicting information surrounding disfluencies and CD,

this study remains cautiously optimistic about the usefulness of such features for aiding in

the early detection of conditions such as AD, but keeps in mind that at this stage there is

limited generalisability of the findings. The next experiment in this thesis uses a slightly

amended version of the original disfluency taxonomy to investigate the incidences of dis-

fluencies during a different cognitive task. This allows for a direct comparison between

two different cognitive tasks administered by a virtual agent, and investigates the effect

that the task difference has on the presence of disfluencies in speech.
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4.1 Introduction

This chapter reuses the Disfluencies in Cognition (DisCo) schema described in the previous

chapter and applies it to a different task from the Intelligent Virtual Agent (IVA) dataset

in a second manual disfluency study. This chapter then presents a proof-of-concept study

where disfluency information is added to an Automatic Cognitive Decline Classification

(ACDC) system. This chapter addresses a further two research questions:

3. How do the patterns of disfluency vary from the interview task to a picture description

task?

4. Can disfluency information improve the accuracy of an automatic cognitive decline

classification system?

The background section of this chapter begins with a description of the variations in the

presentation of disfluencies in spontaneous or semi-spontaneous speech that correlate with

different tasks. This section also expands on the introduction to ACDC systems found

in Chapter 2 towards the beginning of this thesis, but with a particular focus on recent

attempts at automatically deriving disfluency information.

The methodology section of this chapter then presents a new subset of the IVA dataset

that is used for this second manual disfluency study, and discusses minor revisions made

to the DisCo schema. The results section starts by describing the results from the second

disfluency analysis in this thesis, along with a discussion of these results. This is followed

by a description of the differences observed in the results from the two disfluency analyses

presented in this thesis. This chapter ends with a description and the results of a proof-

of-concept study in which disfluency information was incorporated into an ACDC system,

the findings from which were published in Thomas et al. [2023].

4.2 Background

This chapter investigates the differences in the frequency and duration of disfluencies

present in a picture description task across three different cognitive groups. The data
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used in this experiment is taken from the IVA dataset. For this analysis, the chosen task

is the Cookie Theft picture description task, a commonly used test for cognition. The

following section describes this task, and its usage and efficacy of evaluating levels of

cognition.

4.2.1 Picture Description Tasks

Picture description tasks provide a method of obtaining samples of spontaneous speech

in order to assess cognition, often after a brain injury of some type (Eg., stroke). One of

the most popular picture description tasks is the Cookie Theft task, which forms part of

the Boston Diagnostic Aphasia Examination [Goodglass and Kaplan, 1983].

Figure 4.1: The Cookie Theft Picture Description Task from Goodglass and Kaplan [1983].

At first glance, the task seems simple. Participants are asked to describe the scene in the

picture with as much detail as they can. Examiners are not allowed to ask for elaboration

or to ask the patient to talk about details that they have not already mentioned. This

makes a picture description task a clear choice for use with an IVA system, where the

virtual assistant administering the test is not programmed to ask participants to expand
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or clarify their original answers. During the task, seven main areas of a patient’s language

and cognition are being assessed, as detailed in Cummings [2019, pp.155-159]. Briefly,

these main areas are:

1. The Salience of Information

The most salient information within this picture would be the activities of the three

visible people. This is primarily what patients with Cognitive Decline (CD) focus on

during their description of the scene. However, there is also a good deal of less salient

information presented in the form of background details such as the plates stacked by

the sink and the garden that is visible through the window. Typically, participants with

no cognitive impairment will acknowledge the lower/lesser salience of this secondary

information by describing it towards the end of their description, whereas participants

with CD tend to neglect talking about this information.

2. Semantic Categories

In order to describe the picture fully, participants need to be able to use words from

various different semantic categories. For example, inanimate entities such as cup and

stool, animate entities such as mother and boy, concrete concepts likefalling and more

abstract concepts such as daydreaming. Typically, a person with advanced CD would

struggle with including words from abstract concepts, and may show less variation in

the number of different semantic categories they are able to produce words from.

3. Referential Cohesion

Referential cohesion is necessary for forming fully comprehensible descriptions and

stories. As such, descriptions and sentences tend to be shorter when coming from

people with cognitive impairment compared to Healthy Controls (HCs). Referential

cohesion has been found to be difficult for patients with Alzheimer’s Dementia (AD),

with studies such as Ripich et al. [2000] noting that the use of all cohesive devices

declines as severity of cognitive impairment increases.

4. Causal and Temporal Relations

The Cookie Theft picture is a static scene, but many events are happening as a result

of something else. For example, the sink is overflowing because the woman has left
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the tap on for too long. Again, in order to describe the picture to a full extent the

participants must be able to describe the temporal order of events, which is something

that people with Mild Cognitive Impairment (MCI) tend to have difficulties with.

5. Mental State Language

There are two kinds of mental states; cognitive mental states such as knowledge and

beliefs, and affective mental states, also known as emotions. Theory of mind is the

cognitive ability of attributing mental states to the minds of others and to oneself. If

theory of mind skills are intact then a person would be able to describe things such

as the tap overflowing because the lady forgot to turn the tap off. The lack of such

language could be an indicator of CD.

6. Structural Knowledge

This concerns phonology, syntax, semantics, and speech motor skills, and is what

clinicians can analyse for signs of anomia or aphasia; difficulties in lexical access and

retrieval. Problems with forming structurally correct sentences could indicate CD.

7. General Cognition and Perception

This is investigated by looking at things such as how many aspects of the picture have

been described more than once without the participant displaying awareness of the

repetition. It also concerns whether and how the participant conveys information in a

logical order.

When conducting a picture description task, the doctor or clinician administering the test

should take into account all of the points mentioned above. However, there is a degree

of subjectivity involved when clinicians are observing the results of a picture description

task. Although picture description tasks are commonly used, there is currently no set

guideline on how to grade the responses given by patients. Clinicians make a high-level

judgement of the speech as a whole, which is taken into consideration along with the

results of the other tests that patients will typically undertake in a memory clinic, such as

verbal fluency tests. Whilst a general impression of a patient’s fluency could contribute

to an assessment of the structural knowledge of their speech, clinicians do not focus on

disfluencies, and would not count or otherwise measure the number of disfluencies present
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in a patient’s speech.

A picture description task is, of course, not the only test from which the results will

be analysed with subjectivity, as these tests do not produce concrete results (especially

when compared to results from tests such as blood tests or lumbar punctures). As there

is subjectivity to the assessment of speech in memory clinics, there is therefore potential

for inter-rater differences. An audit of memory clinics in London in 2019 found “sub-

stantial” differences in the percentages of people aged 65 and over being diagnosed with

dementia across different services [Cook et al., 2020]. This ranged from 22% to 100% as

demonstrated in Figure 4.2.

Figure 4.2: Percentage of people aged 65 and over diagnosed with dementia or mild
cognitive impairment across different memory clinics in London [Cook et al., 2020].

The analysis presented in this chapter uses recordings of participants completing the

Cookie Theft picture description task as a way of eliciting speech for a disfluency anal-

ysis. This counters some of the subjectivity associated with scoring picture description

tasks because it will result in quantitative data, allowing for direct comparisons between

participants and cognitive levels. This could potentially help reduce the amount of sub-

jectivity involved in making diagnostic decisions, which in turn could help reduce the
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variation seen between different services.

4.2.2 Task Differences

Linguistic studies have examined speech in many different modalities, from spontaneous

conversational speech to scripted, read speech. It is important in our experiments to

consider the kind of speech that clinicians (human or digital) are likely to encounter when

conducting a spoken memory test. Although some cognitive tests may involve a reading

task, the majority of tests will involve responding freely to questions. In the IVA dataset,

the interview portion of the test allows participants to speak freely, although participants

are answering a predetermined set of questions. This is similar to the picture description

task, where all participants are given the same picture to describe, but decide themselves

how much or how little they would like to talk. However, with the picture description

task the possible responses that could be given by participants are much more constrained

as they are all seeing the same picture (compared to the fact that they have probably

all had different jobs, and done different things over the weekend). In the interview

section of the data, it is not uncommon to see large jumps between topics whilst still

falling under the umbrella of answering a question, for example the participant who ends

up fondly recalling meeting the Princess of Monaco after being asked what school they

attended. The scope for this kind of divergence from a question is much more limited

in the case of a picture description task. For this reason, the speech resulting from

a picture description task should fall somewhere between spontaneous speech and read

speech. Scripted or read speech has been shown to contain far fewer disfluencies than

spontaneous speech [Lickley, 2017]. As the speech resulting from the picture description

task is not fully spontaneous but is also not scripted in any way, the resulting speech

should contain “enough” disfluencies to allow for a thorough comparison to the fully

spontaneous question responses.

Little work has focused on the levels of disfluency in healthy adults completing a picture

description task. One such study [Duchin and Mysak, 1987] examined the performance

of groups of healthy adult males of different ages on three different speech tasks; oral
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reading, picture description, and conversation. Included in this study were two middle

aged groups, consisting of 15 participants each, and two elderly groups, again consisting

of 15 participants each. The first middle-aged group had a mean age of 49, the second had

a mean age of 60. The mean ages of the elderly groups were 68 and 80. The disfluencies

under investigation included part-word, whole-word, and phrase repetitions, interjections

(repairs), and “dysrhythmic phonations” (prolongations). There were two main conclu-

sions from this study; levels of disfluency across all three tasks did not differ between the

middle-aged and elderly groups, and more disfluencies were present in the conversation

task compared to the picture description. Given this information, we expect to observe

fewer disfluencies in the speech elicited via the picture description task compared to the

interview task that was analysed in Chapter 3).

4.2.3 Automatic Detection of Disfluencies

Although the field of ACDC is rapidly expanding, there is currently little work that

includes an automatic analysis of speech disfluencies in dementia. The majority of auto-

matic disfluency detection is used in fields such as second language learning, where it is

important for learners of a language to receive feedback on the kind of mistakes they are

making in their speech. Although these kinds of disfluency may vary from disfluencies

that will be present in a speaker’s native language, many of the methods for detecting

these disfluencies are transferable to the ACDC domain.

Aside from in the field of language learning, disfluencies are typically regarded as problems

to discard from an automatically created transcript, or to be removed from speech that will

be used to train a language model [Mirheidari, 2018]. Many applications of Automatic

Speech Recognition (ASR) would not require the transcription of disfluencies such as

filled pauses and repetitions. Usually, ACDC systems would be considered one of these

application. For example, a study by Tang et al. [2023] tested three different commercially

available ASR systems to create transcripts of speech to be used in an ACDC system.

They found that of the three ASR systems tested, all of them produced transcripts which

resulted in a system accuracy score equivalent to, if not better than, human transcribed
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speech in a system that used linguistic and acoustic features. Whilst these results are

promising for systems that use “traditional” acoustic and linguistic features, this approach

will not work for an automatic analysis of disfluencies. This is due to the fact that the ASR

transcriptions produced in the Tang et al. (and most automatically produced transcripts)

do not include transcriptions of disfluencies. They are instead left out of the transcript,

and if the transcript does not contain any disfluency information then the classification

model has no disfluency features to analyse.

However, for applications that do require the assessment of disfluencies such as in the

field of second language learning, there are a number of different methods of identifying

disfluencies in speech, enabling them to be transcribed and analysed. Below is an overview

of some of the most common methods of automatically detecting three kinds of speech

disfluency: unfilled pauses, filled pauses, and repetitions.

4.2.3.1 Unfilled Pauses

Regardless of the application, the approach to identifying unfilled pauses remains rela-

tively the same; examine the audio signal for regions of low energy or silence, and classify

them as an unfilled pause according to some pre-decided duration threshold. This can

be achieved via a process called Voice Activity Detection (VAD). Essentially, a VAD

component is able to make a decision on whether a given window or segment of an audio

file contains speech or not [Martin and Kolossa, 2012]. VAD can be used to detect silences

within an audio file, as seen in Kaushik et al. [2010]. This provides an automatic way of

detecting a pause within a sentence when used in combination with duration measures as

a method of defining and labelling unfilled pauses. Jaiswal and Hines [2018] present an

overview of different VAD algorithms, and assess their effectiveness for identifying silence

in sound files.

4.2.3.2 Filled Pauses

Filled pauses present a potentially more complicated task for automatic identification, as

they often resemble phones in a similar way to speech. Early work from O’Shaughnessy

and Gabrea [2000] employed a filled pause detection method including vowel identification
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and duration measures. Fundamental Frequency (F0) stability was used to decide whether

an identified phone could be classed as a vowel. A duration threshold of 120ms was chosen,

and any vowels found to last longer than the threshold were classified as a filled pause.

Whilst this is a simple process, it is somewhat flawed. The authors note that this method

frequently misclassified intended speech sounds such as word-initial or word-final schwas

as filled pauses. One potential method of mitigating this would be to raise the duration

threshold for filled pause classification. However, this would not work for differentiating

between filled pauses and prolongations. Barczewska and Igras [2013] present a method

based on the tracking of the first and second formants, as well as segment duration. They

used the first and second formants to track a central vowel, which they classed as a filled

pause. Other vowels, or cases where there was movement in the formants, resulted in the

segment being classed as a prolongation. Their study reports a classification accuracy of

around 68%.

4.2.3.3 Repetitions

Shriberg et al. [1997] developed a method of automatic disfluency detection that uses

decision tree classifiers and prosodic features. This included detection of filled pauses,

repairs, and repetitions. The basic goal of their model was to identify the boundary in

speech at which a disfluency occurs, as demonstrated in Figure 4.3.

Figure 4.3: Examples of the boundary (red) between a disfluency (bold) and fluent speech.
Adapted from Shriberg et al. [1997].
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Their aim was to improve natural language understanding and speech language models

in general, and they hypothesised that because their model is based only on prosodic

information that the model would be applicable to situations when word recognition

is unreliable. Each disfluency boundary in the database was represented by a feature

vector which also contained acoustic and gender information. A decision tree is used to

output posterior probability estimates of disfluency events. The authors also examined a

classifier-based n-gram Language Model (LM) for this purpose, and the results of both

were compared. They tried their models on the different disfluency types, and found that

overall the decision tree performed well, achieving an accuracy of 77.5% when detecting

word repetitions. The tree revealed that the most important features for classification in

this case were duration and the distance from pause.

4.3 Methodology of the Second Manual Disfluency

Study

This section introduces and then presents the second manual disfluency analysis under-

taken as part of the work investigating how well disfluencies can differentiate between

different levels of CD.

4.3.1 Data

This experiment again uses a subset of the IVA data, however some changes were made

which resulted in a slightly different subset to that used in the first disfluency analy-

sis.

As the first study did not identify any disfluencies capable of distinguishing between

Functional Memory Disorder (FMD) and other levels of CD, and given the limited research

on the effects of FMD on speech, this second study does not include FMD as a cognitive

group for investigation. Instead, we included additional participants from the two other

groups (MCI and Neurodegenerative Dementia (ND)), sourced from the original IVA

dataset (N = 93). Specifically, we included all available participants in the MCI and
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ND groups who had recorded picture description tasks and met the inclusion criteria

outlined in Section 3.3.2.1. This required good technical recording quality and excluded

participants who were non-native speakers of English, had diagnosed pathological speech

conditions, or had comorbidities known to affect speech. Of the original 15 HCs used

in the previous manual disfluency analysis, two participants did not complete picture

description tasks. This adjustment brought the total number of participants included in

this second study to 48.

Some participant information was missing; the table below shows the participant infor-

mation that had been recorded at the time the data was collected.

Subject

Group

No.

Participants

Male:

Female
Age

No. Fluent Words

in Recording

Mean MMSE

Score

Mean sd Mean sd

HC 13 4:10 69.4 8.3 165.5 88.3 28.7

MCI 17 11:6 62.3 8.1 97.9 86.1 26.7

ND 18 7:9∗ 69.4 7.0 90.2 54.1 23.1

Table 4.1: Participant information for the second manual disfluency study including num-
ber of participants, gender, age, number of fluent words per recordings, and participant
Mini Mental State Examination scores. Statistics are given as group means and standard
deviation. ∗Gender information missing for two participants.

4.3.2 Adjustments to Disfluency Schema

The original disfluency schema was updated for this experiment in order to mitigate

certain issues that arose with the original version. Primarily this surrounded the classifi-

cation of prolongations. An investigation of speech rates of our participants from the first

experiment showed that the majority of them spoke much slower than would typically

be expected in interview-style speech (approximately 190 words per minute; Tauroza and

Allison [1990]). This is probably due to the ages of our participants. Our participants’

speech rates ranged from 60 words per minute (ND group) to 197 words per minute (the

HC group). The median for the entire subset was 119 words per minute, although this will

have been impacted by the very low rate in the ND group. It seemed unfair to mark pro-

longations (a prolonged segment lasting >200ms) as a disfluency when analysing slower
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speech, as the rate of prolongations would be unnaturally high. In an attempt to combat

this, we introduced a rating scale to each prolongation notation. Two different rating

scales were included for each prolongation notation. Both of these ranged on a scale

from one to three. The first was a scale of perceived intentionality. This was included

because in the first round of manual disfluency annotations there were multiple instances

of prolongations that appeared to have occurred for specific reasons such as emphasis.

As this kind of classification relies on some subjectivity from the annotator, the inclusion

of an “intentional←→disfluent” scale allowed prolongations to be double checked for an

assessment as to whether the prolongation was in fact a disfluency. This builds on the

severity ratings of disfluencies proposed by Panesar and de Alba [2023], as described in

Chapter 3.

The second scale was a rating of annotator certainty. This was useful in instances where

segments met the prolongation length threshold of >200ms but did not appear to be out of

place, such in the case of speakers with a slower speech rate. This resulted in annotations

such as the following:

[pro 1-1]: a prolongation that the annotator is certain was for emphasis or some

other effect.

[pro 3-1]: a prolongation that the annotator is certain can be classed as disfluent.

[pro 1-3]: a prolongation that the annotator feels is intentional, but cannot be sure

of as it meets the criteria for being classified as a “true” prolongation.

Other changes to the original disfluency schema include the addition of three more speech

error classifications; blends, lexical selection errors, and circumlocution errors. Blends

occur when two words that would both be correct given the context are muddled together,

such as when one participant was describing the stool which is about to fall over:

Participant 0249: [t6p@lIN] + [tIpIN] = [tIp@lIN]

The lexical selection errors constitute a group of errors resulting as a modification of the

original malapropism group. The definition was changed to better reflect the data that

had already been observed in the first experiment. The key difference between a lexical
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selection error and a malapropism, in this case, is that words used in a lexical selection

error do not have to sound similar to the intended word, although in some cases they

may. Malapropisms could be thought of as a subset of lexical selection errors, but as

there were so few examples in the first study that it felt superfluous to include it as a

category of its own in this second study. Some examples of lexical selection errors in the

dataset include:

Participant 0263: “there’s tie-backs on the carton” rather than curtain

Participant 2111: “the mother is doing the shop” rather than pots

The third new category of speech errors is not technically an error or disfluency, as this

phenomenon makes up part of natural spontaneous speech. However, DisCo2.0 provides

a label for circumlocutions ([cir]), when words such as “thing” or “whatsit” are used in

place of the intended word. Whilst not strictly a disfluency, this was observed to be a very

common phenomenon in the first study so adding this category to DisCo2.0 allowed us to

investigate whether the prevalence of this phenomenon was higher at more severe levels

of cognitive impairment compared to the HCs (research such as Hier et al. [1985] suggests

that the amount of circumlocution in speech increases as cognitive ability decreases). The

updated disfluency schema can be found in Table 4.2.

The other main methodological change is the structure of the Praat text grids. Unlike in

the first study, this second study did not have a text grid tier containing a transcription of

the participant’s speech. This speech had already been manually transcribed and checked

by annotators, so it was not necessary to re-transcribe the speech orthographically for

inclusion in the text grids for this analysis. In this task there is no interference or any

additional questions from the virtual agent, so that did not need to be included in a tier.

Instead, the first text grid tier contains the disfluency annotations. As the manual part of

this experiment was undertaken with a specific view to automating the process, additional

tiers were included to contain syllable information in the hopes that this might be helpful

when trying to automate some of the disfluency analysis. A tier including information

marking phrase repetition boundaries was also added, resulting in the following overall

tier structure:
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1. All disfluency annotations.

2. Syllable boundaries that correspond to those disfluencies.

3. Phrases that are repeated in a [phrep] ([phr1], [phr2], etc).

4. Final syllable of repeated phrase if it’s not a complete word.

This resulted in text grids with the format as depicted in Figure 4.4.

Figure 4.4: A view of the different Praat text grid tiers used in the second manual
disfluency analysis.

The process of transcribing the data was largely the same as the process in the first manual

disfluency analysis (Chapter 3). The annotator was not aware of the cognitive group that

each participant belonged to in an attempt to mitigate bias. Each recording was listened

to at least four times. Comprehensive notes were kept alongside the transcripts to serve as

an aide-mémoire and to record any questions or queries that needed to be double checked

by a separate phonetician. Once the annotation was complete, statistics were calculated

and analysed in the same way as the previous manual disfluency analysis.
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Disfluency Description Annotation

Repetition Silence >200ms [ufp]

Does not count if at beginning of speaker’s turn

Filled pause Lasts >200ms [fp]

Usually a vowel

May be followed by a nasal

Repetition Part word repetition [pwrep]

Whole word repetition [wrep]

Phrase repetition [phrep]

Prolongation Segment lasting >200ms [pro x-x]

1st Scale = Prosodic - Unintentional

2nd Scale = Certain - Uncertain

(e.g. [pro 3-1])

Speech Error Deletion (phone is deleted) [dele]

Specific - pecific

Substitution (phone changed to something else) [sub]

Flap - flip

Lexical selection error (usually based on semantic relations) [lex]

Washing - drying

Circumlocution (using “thing” etc in place of correct word) [cir]

Out of the thing - out of the jar

Addition (phone added) [add]

Favourite - fravourite

Blend (two words blended together unintentionally) [ble]

Toppling + tipping = tippling

(either word would be appropriate in the context)

Repair Noticing the error and then correcting it (false start) [repa]

Could be saying the word incorrectly so starting again, or start-
ing a sentence and then going back and changing it

Edit to add: could also be the beginning of a word/phrase that
is left incomplete but not repeated

Non-Speech Not silence, but not a filled pause. Could be laughs, coughs,
sighs, etc

[nsel]

Event [nsec]

[nses]

Ignore Indicates that this segment of the recording should be ignored,
could fall outside of the turn

[ig]

Table 4.2: The DisCo2.0 Taxonomy.
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4.4 Results from the Second Manual Disfluency

Study

As with the previous manual disfluency analysis, this study used statistical tests to as-

sess the significance of differences in disfluencies between the different cognitive groups.

Kruskal-Wallis tests were performed for each of the different disfluency classes as none of

the data were normally distributed. Dunn’s test with Bonferroni corrections were then

used to investigate where the significant differences were between groups; these results

are described below.

4.4.1 Number of Fluent Words

Although the picture description task is a somewhat closed task with a limited number

of points to talk about, there was some variation in the number of fluent words produced

by each cognitive group.

A Kruskal-Wallis test indicated that there was a significant difference in the number fluent

words produced across the three different cognitive groups, χ2 (2, N = 48) = 10.93, p

= .004. The Kruskall-Wallis test was chosen as the data was found to be not normally

distributed in a Shaprio-Wilkes test (W = 0.83, p = <.001). The median number of

fluent words per cognitive group was 132 for HCs, 72 for MCIs, and 73.5 for NDs. Post-

hoc comparisons using Dunn’s method with a Bonferroni correction for multiple tests

indicated that the median number of fluent words produced by people in the HC group

was significantly larger than the other two cognitive groups (p = .01 for MCI and p = .009

for ND). There was no significant difference in the number of words produced between

the MCI and ND groups.



Second Manual Disfluency Analysis 118

Figure 4.5: Violin plot showing the number of fluent words according to cognitive group.

4.4.2 Unfilled Pauses

4.4.2.1 Number of Unfilled Pauses

Figure 4.6 is a violin plot showing the number of unfilled pauses (per 100 fluent words)

per cognitive group. A Kruskal-Wallis test showed that there was a significant difference

in the number unfilled pauses per 100 fluent words produced across the three different

cognitive groups, χ2 (2, N = 48) = 10.61, p = .004. The Kruskall-Wallis test was chosen

as the data was found to be not normally distributed in a Shaprio-Wilkes test (W =

0.96, p = .2). The median number of unfilled pauses (per 100 flunet words) per cognitive

group was 13.5 for HCs, 17.1 for MCIs, and 19.4 for NDs. Post-hoc comparisons using

Dunn’s method with a Bonferroni correction for multiple tests indicated that significantly

fewer unfilled pauses were produced by the HCs than the NDs (p = .004). There was

no significant difference in the number of unfilled pauses produced between the HC-MCI

groups or the MCI-ND groups.
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Figure 4.6: Violin plot showing the number of unfilled pauses per 100 fluent words ac-
cording to cognitive group.

4.4.2.2 Average Length of Unfilled Pauses

As demonstrated in figure 4.7, the HCs had shorter average unfilled pauses than both the

MCI and ND groups. A Kruskal-Wallis test showed that there was a significant difference

in the number unfilled pauses per 100 fluent words produced across the three different

cognitive groups, χ2 (2, N = 48) = 19.70, p = <.001. The Kruskall-Wallis test was chosen

as the data was found to be not normally distributed in a Shaprio-Wilkes test (W = 0.84,

p = <.001). The median average length of unfilled pauses per cognitive group was 0.6s

for HCs, 1.08s for MCIs, and 1.08s for NDs. Post-hoc comparisons using Dunn’s method

with a Bonferroni correction for multiple tests indicated that unfilled pauses from the HC

group were significantly shorter than both the MCI group (p = .002) and the ND group

(p = <.001). There was no difference in the average unfilled pause length between the

two cognitively impaired groups.
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Figure 4.7: Violin plot showing the average length of unfilled pauses (s) according to
cognitive group.

4.4.3 Filled Pauses

4.4.3.1 Number of Filled Pauses

Figure 4.8 shows the number of filled pauses produced during the picture description task

per 100 fluent words across the three groups. No statistically significant difference was

found across the groups (p = 0.64).

Figure 4.8: Violin plot showing the number of filled pauses per 100 fluent words according
to cognitive group.
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4.4.3.2 Average Length of Filled Pauses

Figure 4.9 shows the average lengths of filled pauses (s) in the picture description task

across the three cognitive groups. No statistically significant difference was found between

groups (p = .53).

Figure 4.9: Violin plot showing the average length of filled pauses (s) according to cognitive
group.

4.4.4 Repetitions

There were not enough instances of any of the different kinds of repetition found in this

data to perform statistical testing. Table 4.3 shows the total numbers of repetitions

produced per cognitive group. Although the number of word repetitions seems elevated

in the HC and MCI groups when compared to the ND group, the majority of these

repetitions came from a singular participant in each group. These participants accounted

for eight of the word repetitions in the MCI group, and nine of the instances in the HC

group.
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Cognitive Group
Part Word

Repetitions

Whole Word

Repetitions

Phrase

Repetitions
Total

HC 1 12 8 21

MCI 3 15 5 23

ND 8 9 7 24

Table 4.3: Number of part-word, whole-word, and phrase repetitions produced in the
picture description task according to cognitive group.

4.4.5 Prolongations

Figures 4.10 and 4.11 demonstrate that this second analysis found no statistically signifi-

cant differences between the number and average length of prolongations across the levels

of CD.

Figure 4.10: Number of Prolongations Figure 4.11: Length of Prolongations

4.4.6 Speech Errors

Despite the adjustments made to the disfluency schema, little information was gained

from investigating the different kinds of speech errors in this experiment. Only very small

numbers of each speech error were present in the data. For example, only one instance of

a circumlocution error was found, and only two instances of deletions, as shown in Table

4.4.
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Cognitive

Group
[add] [sub] [dele] [cir] [ble] [lex] Total

HC 0 1 0 0 1 1 3

MCI 0 0 1 0 1 0 2

ND 0 0 1 1 0 3 5

Table 4.4: The number of additions, substitutions, deletions, circumlocutions, blends,
and lexical retrieval errors produced in the picture description task according to cognitive
group.

4.4.7 Discussion of Results from the Second Manual Disfluency

Study

This analysis found significant differences between the number of fluent words produced by

people at different levels of CD when completing a picture description task. One possible

explanation for this is that participants in our control group are aware of the fact that

they are cognitively healthy. This could perhaps lead to participants feeling as though

they need to prove that they are healthy by really trying to inflate their vocabulary and

the number of features of the picture they decide to talk about. A similar conclusion

was drawn in a recent study analysing the same IVA data, which concluded that healthy

controls are both willing and able to “show off” their memory skills, whereas patients

with AD are generally unable to do the same [Walker et al., 2023]. However, it could also

be the case that the participants in the cognitively impaired groups lack the capacity to

pick up as many details to talk about as the HCs. In likelihood, it is some combination

of the two factors.

Below are examples of the responses given in the picture description task; one from a

participant in the control group and one from a participant in the ND group.

Participant 0251 - Healthy Control:

“Well a little boy is climbing on a stool, he looks as though he’s trying to get some biscuits

out of a jar. He’s got the lid off but it’s. . . Got a biscuit. He looks as though he might be

handing it to presumably his sister but the stool is overbalancing. He’s going to go with

an almighty crack and presumably. . . The children’s mother has got her back to them so
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she’s not really noticing so it’s going to be a bit of a shock for her. They’re all in the

kitchen. She’s busy drying a plate but she’s obviously distracted because she’s, um, the

tap isn’t turned off and there’s a flood coming out of the sink cascading onto the floor. I

should think her feet would be wet by now. But whether she’s daydreaming there doesn’t

appear to be anything happening out of the window for her to look at so I’m not quite sure

what’s going on there, but it looks as though there’s a potentially rather messy and quite

dramatic scene about to happen.”

Participant 2173 - Neurodegenerative Dementia:

“Right okay, um, well this- the children seem to be wanting something at the top of the

cupboard and they’re trying to get to it but the stool’s tipping over, er, and mum’s there

and not even looking really, she’s drying the dishes.”

From the two examples above, it is easy to observe the differences in the detail of the

responses. Participant 0251 captures most of what is happening in the scene. Their

response follows an order of salience, with the main points of the picture being mentioned

first before moving onto the less salient features (such as the fact that there is nothing

happening outside the window). This participant talks about abstract concepts such as the

mother daydreaming, and also references causal relationships such as the sink overflowing

because the lady in the picture has left the tap on. This participant also seems to have no

difficulty with referential cohesion. In contrast, Participant 2173 relays much less detail

about the picture, only describing the most prominent aspects of the scene.

Our data showed that the number of fluent words produced by participants decreased as

the level of CD increased. This contrasts with findings from Ripich and Terrell [1988] that

showed that people with AD produced twice as many words as their HC group. However,

this study involved people with dementia conversing with a human interviewer, which

could be the cause of the inflated number of words that Ripich and Terrell observed.

In terms of disfluencies, our analysis found significant differences in the rate and average

length of unfilled pauses between the HCs and the cognitively impaired groups. There
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were no significant differences observed for the rate and average length of filled pauses.

There were not enough instances of repetitions or speech errors present in the Cookie

Theft data to perform a statistical analysis. This analysis also did not reveal any statis-

tically significant differences in the rate and length of prolongations in the Cookie Theft

data.

4.5 Comparison of Results from Manual Disfluency

Studies One and Two

The first disfluency analysis presented in this thesis looked at disfluencies produced in

natural, spontaneous speech. The present analysis investigated disfluencies from speech

that is more constrained in terms of the topic, but still produced spontaneously. Numerous

differences were found in terms of the presentation of disfluencies between the two groups,

as discussed below.

4.5.1 Total Disfluencies

Our results found that, regardless of the task, disfluency rates exhibited in speech increase

along with the severity of CD. The increase is particularly noticeable in the interview

task, where HCs had a disfluency rate of 13.7 compared to the rate from the ND group

of 27.1, shown in Table 4.5.

Interview Task Picture Description Task

Total Disfluency Rate
Disfluency Rate

Excluding UFP
Total Disfluency Rate

Disfluency Rate

Excluding UFP

HC 27.8 13.7 25.6 12.5

MCI 43.5 20.8 33.1 16.1

ND 53.7 27.1 36.9 16.6

Table 4.5: Comparison of total disfluency rates and disfluency rates excluding unfilled
pauses between the two different virtual agent tasks. Average rates are calculated per 100
fluent words.
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4.5.2 Pauses

Table 4.6 shows the general trend of higher levels of impairment correlating with higher

rates and longer lengths of pauses across both tasks. One of the biggest differences found

was in the average rate of filled pauses for the ND group between the two tasks. In the

interview task, the rate of filled pauses was more than twice as much as the rate of filled

pauses found in the picture description task.

Interview Task Picture Description Task

Average

UFP

Rate

Average

UFP

Length

Average

FP

Rate

Average

FP

Length

Average

UFP

Rate

Average

UFP

Length

Average

FP

Rate

Average

FP

Length

HC 14.17 0.54 7.48 0.43 13.15 0.57 5.39 0.48

MCI 22.67 0.87 8.25 0.55 16.99 0.95 7.20 0.48

ND 26.57 0.92 10.70 0.53 20.01 1.33 4.86 0.61

Table 4.6: Comparison of pause rates and lengths between the two different virtual agent
tasks. Average rates are calculated per 100 fluent words.

4.5.3 Repetitions

It is not as easy to see patterns in these results as it was for the pause results discussed

above. However, this data does show that generally there are lower repetition rates in

the picture description task when compared to the interview task. It is also generally the

case that the rate of repetitions increases with the severity of the CD (Table 4.7).

Interview Task Picture Description Task

Average

PWREP

Rate

Average

WREP

Rate

Average

PHREP

Rate

Average

PWREP

Rate

Average

WREP

Rate

Average

PHREP

Rate

HC 0.32 1.08 0.29 0.04 0.55 0.37

MCI 0.58 1.60 0.31 0.18 0.84 0.30

ND 1.05 1.68 0.48 0.55 0.55 0.43

Table 4.7: Comparison of part-word, whole-word, and phrase repetition rates between the
two different virtual agent tasks. Average rates are calculated per 100 fluent words.
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Task Interview Task Picture Description Task

Cognitive

Group
HC MCI ND HC MCI ND

Min #

[pro]
0.42 1.98 2.48 3.45 0 0.94

Max #

[pro]
8.78 50.6 86.1 18.1 30.2 18.8

Standard

Deviation
2.05 12.0 23.1 4.58 7.76 5.86

Mean 6.68 11.2 13.4 8.79 8.73 8.54

Table 4.8: Comparison of prolongations per 100 fluent words between both tasks.

4.5.4 Prolongations

The control group had a higher number of prolongations per 100 fluent words in the picture

description task compared to the interview task. The number of prolongations produced

by participants in the MCI and ND groups remained similar, although we observed a

wider range of prolongation rates for the ND group in the picture description task (see

Table 4.8).

4.5.5 Speech Errors

The presence of all speech errors was reduced in the Cookie Theft data. Only 12 instances

were found across all 48 recordings. Although the number of speech errors was still small in

the interview data, 32 speech errors were found in total. This suggests that speech errors

are more common in spontaneous, interview-style speech compared to picture descriptions.

Although when comparing total speech error rates across the two tasks we observe a slight

increase for the healthy controls in the picture description task, in practice this relates to

only one more error than was found in the interview task (Table 4.9).

4.5.6 Discussion

The incidences of speech disfluencies were much higher in the interview task when com-

pared to the picture description task. The most commonly observed disfluency across
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Speech Error Rate

Interview Task

Speech Error Rate

Picture Description Task

HC 0.01 0.09

MCI 0.17 0.06

ND 0.26 0.12

Table 4.9: Comparison of total speech error rates per group between the two different
virtual agent tasks. Average rates are calculated per 100 fluent words.

both tasks were the unfilled pauses, but even when these are excluded from the total

disfluency rates we still observe higher rates in the interview task. The disfluency rates

observed here are higher than commonly reported rates for normal, spontaneous speech

in healthy adults (around 6/100 words). There are two factors at play here. Firstly, the

majority of our subjects are not healthy controls. Our research supports the general find-

ing that the severity of CD can result in more disfluencies. Although previous research

has found that this is mainly observed in higher levels of unfilled and filled pauses, our

research demonstrates that the frequency of all disfluencies increases with the severity of

CD. Secondly, our studies involve participants conversing with a digital avatar, rather

than another human being. As discussed in Section 2.4.4, research so far has suggested

that disfluency rates are typically lower in human-computer interactions. However, this

view was predominantly based on human responses that are much shorter (responses of

around five words long) than those in our datasets, where both tasks result in participants

forming long and complex sentences.

Turning to individual disfluency groups, our study found that participants exhibit more of

each category in the interview task compared to the picture description task (see Appendix

D for a table of all findings from the picture description task). The ND group exhibited

more than twice as many filled pauses in the interview task compared to the picture

description task. It is possible that the cognitive load of the first task is contributing to

this difference. Fraundorf and Watson [2011] note that filled pauses (referred to as fillers

in their study) aid in recall. Recall is important in the interview task as patients are

asked a mixture of both long term and short term memory questions, whereas recall is

not necessary in the picture description task. Research has also shown that filled pauses
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can be used as a method of saving face when trying to remember the answer to a question

[Smith and Clark, 1993]. This opens up another discussion; whether people feel the need

to “save face” when talking with a digital avatar. To answer such a question is beyond

the scope of this thesis, but interesting discussions on this topic can be found in Baron

[2015] and Guzman [2018].

4.6 Automatic Cognitive Decline Classification

In order to investigate whether disfluency information could help improve the accuracy

of an ACDC system, a proof-of-concept style experiment was designed to test a baseline

system with different feature combinations (including manual and automatically extracted

disfluency information) to see which combination provided the best classification accuracy.

This work was presented at the International Congress of Phonetic Sciences in 2023, and

the sections below describe this study and its results [Thomas et al., 2023]. The work on

automatically extracted features was completed by a colleague from the Department of

Computer Science at the University of Sheffield, whilst the disfluency analysis presented

in the first half of this chapter provided the transcripts and disfluency feature set.

4.6.1 Background

This proof-of-concept experiment focussed specifically on using interpretable features for

ACDC. In the fields of Machine Learning (ML) and Artificial Intelligence (AI), inter-

pretability refers to how much of an algorithm, feature set, or system as a whole can

be understood by humans. The more interpretable an ML model is, the easier it is for

humans to understand the decisions that are made by the system (a gentle but thorough

discussion surrounding interpretability in ML can be found in Molnar [2022]).

Interpretability is especially important when working within a healthcare field as numer-

ous studies have shown that both doctors and patients lack trust in ML models, which is

exacerbated by a lack of understanding in how these models work (Feldman et al. [2019];

Juravle et al. [2020]; Hallowell et al. [2022]). The interpretable features used for this study

were traditional linguistic features and newly-proposed disfluency features based on the
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manual disfluency analysis presented above. ACDC systems typically do not make use of

disfluency information other than those that can be extracted acoustically, such as un-

filled pauses. The use of transcript-derived disfluency information relies on the existence

of transcripts that capture disfluency information. As discussed in the Chapter 2, ASR

transcripts usually do not contain such information.

We also included some acoustic features in this study. These features are interpretable in

the sense that they are derived from algorithms that have been hand-coded. However, the

lack of interpretability for acoustic features comes from the abstractness of the features

(for example, what does a high 13th value of an MFCC actually mean?), along with the

fact that there are vast numbers of these features used, making it difficult to detangle

exactly what is working for the classification system. However, acoustic features are very

commonly used in ACDC systems, so we included them in order to compare our disfluency

features with a “typical” ACDC pipeline.

The aim of this study was to test whether disfluency features in particular could improve

the accuracy of ACDC systems whilst also providing interpretable information. This was

assessed in two ways; training the model on the manually produced disfluency transcripts,

and training the model on automatically produced disfluency analytics.

4.6.2 Data

This study used the same subset of participants as used in the manual disfluency analysis

as described above (48 Cookie Theft picture description tasks). Participants belonged

to one of three groups; HC, MCI, or ND. For the classification task we used a binary

classification of either healthy control or cognitively impaired, combining the MCI and

ND groups together, as we were working with a small dataset. Each recording in our

experiment came from a different participant to ensure there was no overlap between our

training and testing sets.
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4.6.3 Methodology

4.6.3.1 Manual Disfluency Features

The manual disfluency transcripts were made according to DisCo2.0 (see above). As with

previous analyses in this thesis, any diagnosis labels were hidden during annotation to

mitigate potential bias.

4.6.3.2 Automatic Disfluency Features

VAD was used to identify portions of the recordings that contained speech, and a Common

Voice [Ardila et al., 2019] based ASR system was used alongside a phoneme recogniser to

transcribe the speech and disfluencies present in the recordings.

4.6.3.3 Automatic Linguistic Features

Linguistic features used for this task included content density, speech rate, syntactic

complexity, and utterance length. These were extracted using a combination of part-

of-speech taggers (POS), tokenisers (Tok), semantic taggers (Sem Tag), syntactic tree

parsers (Tree), word lists (W List), co-reference taggers (CoRef), and part-of-speech pat-

tern matchers (POS Pat). Table 4.10 details these features.
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Feature(s) n=# Automated Components

Content Density 1 Tok, POS, W List

Part-of-Speech Rate 45 Tok, POS

Reference Rate to Reality 1 Tok, POS

Personal, Spatial and Temporal

Deixis Rate
3 Tok, POS, W List, CoRef

Relative Pronouns and Negative

Adverbs Rate
2 Tok, POS, W List

Lexical Richness 3 Tok

Action Verbs Rate 1 Tok, POS, Sem Tag

Frequency-of-Use Tagging 1 Tok, W List

Propositional Idea Density 1 Tok, POS, POS Pat

Mean Number of Words in

Utterance
1 Tok

Number of Dependent Elements

Linked to the Noun
2 Tok, POS, Tree

Global Dependency Distance 2 Tok, POS, Tree

Syntactic Complexity 1 Tok, POS, Tree

Syntactic Embeddedness 2 Tok, POS, Tree

Utterance Length 2 Tok

Table 4.10: Linguistic features used within this study (as used by Fraser et al. [2016]),
the number of features (n) within each category, and the automated elements needed for
each feature to function.

4.6.3.4 Automatic Acoustic Features

Acoustic features were extracted using the openSMILE toolkit in Python [Eyben et al.,

2010]. Commonly used feature sets (eGeMAPS, emobase, ComParE) were chosen as these

have been well established for use in the field (as described in Section 2.5.1.2).

4.6.4 Baseline System

Support Vector Machines (SVMs) were trained using the acoustic feature sets mentioned

above and were developed using 5-fold corss validation. For a binary (HC-MCI/ND)

classification task, the baseline performance was 78.4%.
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4.6.5 Results

An SVM trained only on the manual disfluency features was found to be the most accurate

in this classification task, with an accuracy of 88.8% (Table 4.11). Whilst the model

trained on only automatic disfluency features demonstrated only a slight improvement

to the baseline model, a substantial improvement was seen when automatic disfluency

features were combined with the traditional acoustic and linguistic features (83.2%).

Model Accuracy

Acoustic Only 77.6%

Linguistic Only 57.6%

Acoustic + Linguistic 68.8%

Manual Disfluency 88.8%

Automatic Disfluency 78.4%

Acoustic + Linguistic

+ Automatic Disfluency 83.2%

Table 4.11: Binary SVM Accuracy Results (5-fold cross validation)

4.6.6 Discussion

Our results demonstrate that disfluency features have the potential to enhance the per-

formance of ACDC systems. Although manually produced disfluency features performed

the best, there was still a large improvement in accuracy when automatically produced

disfluency features were used in combination with acoustic and linguistic features.

Our results also found that traditional linguistic features performed the worst on our data

in the binary classification task (with an accuracy of 57.6%). This contrasts with the

performance of these features on the Pitt Corpus, which we found produced an accuracy

of 78.8%. The Pitt Corpus is part of the DementiaBank dataset [Becker et al., 1994],

and is arguably the most widely used corpus of dementia affected speech. This corpus is

used in the popular Interspeech ADReSS challenges, designed to encourage researchers to

actively participate in dementia recognition tasks (see Luz et al. [2020]). However, this

results in a situation where almost all research into ACDC systems use the Pitt corpus

data, which in turn results in feature sets becoming fine-tuned to that data. This means
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that feature sets that seem to result in high system accuracy only achieve those results on

specific data, which is a problem when trying to use the feature sets on any other data.

This poses significant challenges for the generalisability of feature sets, and suggests that

the high accuracy commonly reported for ACDC systems is not a realistic representation

of the current capabilities of these systems for use on real-world data.

4.7 Conclusion

This chapter presented a second manual disfluency analysis. The DisCo schema was

updated to provide more accurate classification of prolongations and speech errors, and

was used to facilitate the creation of disfluency transcripts of picture description tasks

from people at three different levels of cognitive ability (HCs, people with MCI, and people

with ND). Differences were found in the presence and duration of disfluencies between

the interview task presented in chapter two and the picture description task presented

here. Whilst there were fewer statistically significant differences in the disfluencies from

the picture description task, a proof-of-concept study which used disfluency information

in an ACDC system found that disfluency information improved system performance

whether this information was produced manually or automatically.

Our results also demonstrate that even if statistical analysis does not find significant

differences in disfluency information, the information is still useful in an ACDC pipeline.

This is because significance tests look at the discriminatory power of one feature at a

time (for example the length of filled pauses). However, the SVM is able to exploit the

relationship between multiple different features and the experiment demonstrates that

when the disfluency features are used in combination with each other they have the

potential to greatly improve the accuracy of cognitive decline classification.
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5.1 Introduction

This chapter addresses our final research question:

5. How do patients construct their problem presentation phases in a medical interview

with a human doctor versus a digital avatar?

This chapter investigates how patients construct their problem presentation phases

when addressing a digital avatar. We begin with a continuation of the background to

Conversation Analysis (CA) presented in Chapter 2, but with a specific focus on how CA

is used in the field of dementia and health studies. Particular attention is paid to how

disfluencies are treated in CA, and what this can tell us that extends beyond a purely

quantitative approach to investigating speech. The analysis begins with an investigation

into how patients are formulating their responses to the opening questions of a problem

presentation phase in a medical consultation. The data used in this chapter primarily

consists of the Intelligent Virtual Agent (IVA) data used in previous chapters, along with

some control data where a human doctor is leading the consultation instead of an avatar.

We then narrow our focus to a single participant who had completed both the human

doctor and the virtual agent studies, and present a microanalysis of the similarities and

differences observed between the two recordings. This is followed by a discussion of the

findings from this investigation.

5.2 Conversation Analysis in Medical Interac-

tions

As discussed in Chapter 2, CA is the study of talk in interaction. CA has been used to

investigate medical interviews and doctor-patient interactions almost since the emergence

of CA as a methodology.

One of the earliest examples of an investigation into doctor-patient conversations was

presented in Byrne and Long’s study of primary care encounters in 1984. This study

involved an analysis of 2,500 doctor-patient interactions, and focussed primarily on the
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behaviours of the doctors during these interactions. Building on this work, Heritage and

Maynard published their collection of papers in 2006 which again investigated doctor-

patient interactions. However, unlike Byrne and Long’s study, this work was centred

around a co-constructive approach examining the conduct of both the doctor and the

patient, and the relationships between the two. Heritage and Maynard posit that a set

structure can be observed across a range of different acute primary care visits, as shown

in Figure 5.1.

I Opening: doctor and patient establish an interactional relationship

II Presenting Complaint: the patient presents the problem/reason for the visit

III Examination: the doctor conducts a verbal or physical examination or both

IV Diagnosis: the doctor evaluates the patient’s condition

V Treatment: the doctor (in consultation with the patient) details treatment or further
investigation

VI Closing: the consultation is terminated

Figure 5.1: The Overall Structure of Primary Care Visits according to Heritage and
Maynard [2006, p.14].

The analysis presented in this chapter focuses specifically on section two of the above

structure; the presenting complaint or the problem presentation phase. As noted above,

this phase starts after the expected introductions or re-familiarisations have been made

between the doctor and the patient. The problem presentation phase can be analysed in

two distinct ways; in terms of how the doctor is asking the patient about their concerns,

or the manner by which the patient chooses to present their concerns to the doctor.

5.2.1 Problem Presentation Phase

The problem presentation phase of a medical interview is the only phase in which patients

are able to describe their illnesses on their own terms [Heritage and Robinson, 2006, p.89].

It is common to observe patients justifying their need for a visit to a doctor [Teas-Gill and

Roberts, 2012]. This often manifests as patients demonstrating that they have tried to

deal with the problem themselves first, or that they have waited some time before visiting

a doctor to see if things would improve on their own [Halkowski, 2006].
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Problem presentation phases will also differ according to whether or not the patient is ac-

companied during their visit. In a study investigating how parents present their children’s

health concerns to a paediatrician, Stivers [2002] found two different methods commonly

employed. Firstly, a “symptoms only” problem presentation involves parents simply de-

scribing the symptoms that their child is experiencing. The second category, “candidate

diagnosis”, includes the addition of a suggested diagnosis alongside the description of the

symptoms. Ijäs-Kallio et al. [2010] built on this work and proposed a further two cate-

gories in addition to the two by Stivers. These are the “diagnosis implicative symptom

description” category, in which there is an implied diagnosis of the problem by the pa-

tient, or the “candidate diagnosis as background information” category in which patients

provide information about previously diagnosed conditions that they feel may be relevant

to their current symptoms.

Lee and Kim [2015] focussed more on the differences between how a patient describes their

own symptoms compared to how an Accompanying Person (AP) describes the patient’s

symptoms on their behalf. Their study investigated problem presentation phases taking

place in an emergency department of a hospital. They found that when patients describe

their own symptoms they are typically brief and include descriptions of the sensations

they have experiencing such as pain or discomfort. APs however tended to describe

symptoms from an observational point of view, and include much more patient history

in their description of what is wrong. The brief responses from patients could be linked

to the fact that they know that they are in an emergency department, and are aware

that responses should be brief given the high stress environment they are in. This would

contrast with a problem presentation phase taking part in a General Practitioner (GP)’s

office, where patients know that they have an allotted time and that there is no particular

need to rush their problem presentations.

There are two main decisions that conversational partners must make in the context of

a problem presentation phase that are of particular importance to the analysis presented

in this chapter. Firstly, the doctor must decide how much of their knowledge of the

patient’s condition should be revealed to the patient. Secondly, a patient needs to decide
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how much repetition would be acceptable in their response given what the doctor has

already revealed they know.

5.2.1.1 Question Design

The initiation of the problem presentation phase can have a significant impact on how

patients respond. In a study of 182 GP-patient interactions, Robinson [2006] notes that

even very slight differences in the phrasing of questions by the doctor can result in changes

to the action that the question is treated as performing, as shown by the type of response

provided. The way in which a doctor phrases these questions displays their perceived

reason for the visit. Robinson identifies three different types of visit that will influence

the approach the doctor takes during the problem presentation phase.

Firstly, there are patients who present with a problem that has not been discussed pre-

viously with their doctor. This builds on prior work from Heath [1981] in which the

author was able to categorise the type of questions used by the doctor in opening the

problem presentation phase according to whether the appointment was instigated by the

patient (a new appointment) or instigated by the doctor (a return appointment). Heath

found that the new appointment interviews started with open questions such as “How

can I help you?” or “What can I do for you?”. Return appointments were designed

with more specificity and frequently referred to known symptoms, such as “How’s your

arm?” or “Ah, it’s your foot isn’t it?” (p.76). A similar investigation into doctor-patient

consultations from Gafaranga and Britten [2003] found that the person who initiated the

appointment (doctor or patient) was of little significance to their findings, and differences

arose depending on whether the visit was new or a follow-up. The key findings from this

study were that there are certain “rules” that doctors follow in doctor-patient interactions

(such as the rules identified above, like asking “How are you?” for a follow-up consulta-

tion but starting consultations with a new patient with “What can I do for you?”). If

these rules are broken, there is scope to repair the sequence. The authors demonstrate

this by presenting an example of a doctor opening a problem presentation with “What

can I do for you?” despite having previously met with the patient about an ongoing

condition. This prompts the patient to remind the doctor that they have met before,
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resulting in the doctor repairing the sequence by acknowledging his mistake. However,

the authors demonstrate that if in instances of “deviations” the sequence is not repaired,

there could be resulting discrepancies in the consultation. These are important observa-

tions to note when considering data from the IVA dataset. The virtual agent is unable to

ask for clarification on any points raised by the patient during their problem presentation

phase, and if there are any deviations the virtual agent cannot initiate a repair.

The second type of visit identified by Robinson [2006] are those in which the consultation

revolves around an issue that was already discussed at an earlier point. These follow-up

visits are centred around the patient’s recovery and how effective the treatment decided

on in the previous consultation has been at addressing the patient’s concerns.

The final type of visit concerns routine concerns. These arise from long-term conditions

that are under control but require some monitoring, such as a patient dealing with high

blood pressure or type one diabetes. These visits are somewhat frequent, and are typ-

ically initiated by the doctor formulating their questions around whether the patient is

experiencing any new concerns related to their ongoing condition (Robinson focuses on

“What’s new?” type questions for routine visits).

For both the Hallamshire and the IVA data sets used in this analysis, all visits are treated

as new concern visits. Participants in the Hallamshire dataset may have spoken to their

GP about their memory concerns, but this is the first time the participants are seeing

a specialist in a memory clinic. Those in the IVA dataset may have seen a specialist

clinician before, but this is their first time interacting with a virtual agent that is taking

on the role of a clinician.

In addition to displaying the type of overall interaction that they expect to have with a

patient, doctors must also design the talk that they will use to open the problem presenta-

tion phase of medical interviews. Heritage and Robinson [2006] identified five main types

of questions that doctors use when inviting patients to describe their symptoms:

I. General Inquiry Questions

These questions can vary in terms of how much preexisting knowledge the doctor presents
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themselves as having, but do not constrain the content of what the patient can respond

with. Some examples of general inquiry questions include:

“How can I help you today?”

“What’s going on?”

II. Gloss for Confirmation Questions

These questions are formatted as yes or no questions, but invite further explanation from

the patient. They mention symptoms but in a general manner, such as:

“So you’ve been feeling sick?”

“Sounds like you’re uncomfortable?”

III. Symptoms for Confirmation Questions

This type of question is a request for confirmation of concrete symptoms. They constrain

patients from repeating information that the doctor has already signalled they’re aware

of, and discourage elaboration.

“So you’ve got a headache and a sore throat?”

“Your knee has been hurting for three weeks?”

IV. How Are You Questions

These questions are formatted to elicit general information, rather than an immediate

invitation to a problem presentation. This type of question can come with some

ambiguity, probably due to the fact that these questions are commonly observed in

ordinary conversation openings and typically invite a general and lacklustre response

[Jefferson, 1980]. Examples of these questions are:

“How are you feeling?”

“How are you doing?”

V. History-Taking Questions

These are close-ended questions that require highly constrained responses. Although
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not a common occurrence according to Heritage and Robinson’s study, it is possible for

patients to work around the constraints presented by this type of question and respond

with a problem presentation. An example of this kind of question would be:

“Have you had any aches and pains?”

As part of this work, Heritage and Robinson investigated the frequency of the above

question types in different medical consultations, and found general inquiry questions to

be the most common (62%). They also found that patients responded with significantly

longer problem presentations and included more information about current symptoms

when faced with a general inquiry question rather than a confirmatory question.

5.2.1.2 Patient Response

As discussed above, the way a question is phrased by a doctor will have an effect on

how the response is phrased by the patient. Another factor that will inform a patient’s

problem presentation phase is their own knowledge of the symptoms they have been

experiencing. Heritage and Robinson [2006] define two broad categories; known and

unknown problems. Known problems can be “routine”; things that numerous patients will

probably encounter at some point in their lives, such as the flu or a sore throat. They could

also be “recurrences”, where a patient is experiencing symptoms that have previously been

the object of medical diagnosis and treatment (p.50). Unknown problems on the other

hand are those that a patient has not experienced before. Patients experiencing unknown

problems may have difficulty describing exactly what the problem is to their doctor. They

may also include information about what they thought the problem was, until something

happened to make them question their original stance and thus prompting them to seek

medical advice. Halkowski [2006] names this device a “At first I thought X”, and argues

that this is a method of displaying oneself as reasonable and not dramatic by investigating

mundane causes first, only seeking help when turning up empty-handed. This serves as a

way of justifying the patient’s visit.

Elsey et al. [2015] show how the details of patients’ problem presentation phases provide

diagnostic value to clinicians. Their study included 25 participants who were diagnosed



A Conversation Analysis of Human-Avatar Data 144

with either Neurodegenerative Dementia (ND) or Functional Memory Disorder (FMD),

and their analysis revealed that each condition had a distinct conversational profile. Pa-

tients with FMD were able to respond in detail to questions and often included additional

details that were unprompted. These patients were able to respond to compound ques-

tions, and to display knowledge of when they were repeating themselves. Conversely, pa-

tients with ND could offer little detail in response to questions, often failed at addressing

both parts of a compound question, and frequently repeated themselves without display-

ing any awareness of doing so. This study provided the basis for the collection of data

which formed the Hallamshire dataset (described in more detail in Section 5.3.1).

5.2.1.3 Ending the Problem Presentation Phase

An additional area of interest is how the problem presentation phase is completed, and

how the consultation moves on afterwards. This is an area in which there are sometimes

mismatches in the agendas of the doctor and the patient. The doctor is acutely aware

that they have other appointments scheduled, and that there is specific information they

require from the patient before they can move on. The doctor does not necessarily need

a full medical history from the patient. However, for the patient, they are not aware of

the level of information required by the doctor, as they do not share the same level of

medical knowledge. This can often result in patients taking the floor for longer than the

doctor has time for.

It is not uncommon to observe doctors interrupting patients before they are finished

recounting their symptoms. Beckman and Frankel [1984] found that in 69% of the medical

interviews they examined, the doctor interrupted a patient’s problem presentation phase

by directing the conversation towards a specific symptom, only letting the patients talk

for an average of 18 seconds before taking the floor and moving the conversation forward

themselves. In only one case of the interviews that had been interrupted was a patient

able to go on to successfully complete their problem presentation. In a follow up to this

work 15 years later, Marvel et al. [1999] found that of the 264 doctor-patient interviews

they analysed only 28% of the patient’s initial problem presentation concluded without

being interrupted or redirected by the attending doctor. These findings raise concerns
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that symptoms could go undiscussed and that valuable information could be missed. This

points to a potential benefit of using an IVA to conduct medical interviews. The virtual

agent that is used as part of the CognoSpeak system does not have the ability to interrupt

a patient as they are describing their problems. Therefore, patients have room to describe

their symptoms as much as they wish, and the responsibility of moving the conversation

forward to the next stage of the medical interview rests solely on the patient.

5.2.2 Communicating with People with Neurodegenerative De-

mentia

Although problem presentation phases have been studied regularly, and there are accepted

stages of medical interviews that both the doctor and the patient will both adhere to,

there are some conversational barriers that are specific to conversing with people expe-

riencing cognitive impairment. For example, people with Alzheimer’s Dementia (pwAD)

often exhibit difficulties in participating in communication, which manifests as problems

with events such as greeting behaviours or engagement with the interaction [Rousseaux

et al., 2010]. This could result in shorter or more disjointed problem presentation phases.

However, various studies have found that whilst Cognitive Decline (CD) can affect how

people with dementia communicate, certain structural aspects of conversation are re-

tained. Hamilton [1994] conducted a longitudinal study of herself conversing with a

dementia patient over a period of four years. Hamilton found that while the patient’s

ability to formulate appropriate responses decreased over time in line with the effects of

their dementia, the patient retained the ability to participate appropriately in turn-taking

structures. This is highlighted when Hamilton notes that at the start of the study the

patient was able to issue requests, ask for clarification, and express wishes (amongst other

things), but by the end of the study the patient was only able to respond to utterances

and had seemingly lost the ability to initiate a verbal exchange. A similar conclusion

was reached by Müller and Guendouzi [2005] who observed that conversation skills were

maintained in their study participants despite the memory problems the participants were

experiencing. Even when memory disruptions were severe, participants were able to con-
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tribute to the continuation of the conversation (p.400).

These studies demonstrate that whilst people with Neurodegenerative Dementia (pwND)

can still participate in conversations they often require prompts to do so. They may

also have difficulty beginning new topics, or even maintaining a conversation beyond a

minimum exchange. This suggests that for effective communication with pwND, the

conversational partner may need to adjust their usual communicative practices.

5.2.3 Using Conversation Analysis to Study Human-Computer

Interactions

Although CA developed as a way of understanding human-human communication, a

more recent body of research has seen CA employed to analyse human-robot interaction.

Broadly speaking, there are three main types of verbal human-computer interactions.

Firstly are the interactions in which a computer is required to respond to a request from a

user. These systems are becoming increasingly popular thanks to the rise of smart home

technologies such as Amazon’s Alexa, or on-device intelligent assistants such as Apple’s

Siri. Generally speaking, these assistants are designed to answer basic questions (such as

“what will the weather be like tomorrow?”) or perform simple tasks (“set a five minute

timer”). These systems are not (yet) designed to converse with users and as such are

unable to hold back-and-forth conversations with users [Skantze, 2021].

The second type of interactions are those with social robots. These systems are designed

to perform a broad range of tasks, but the differentiating factor is that these robots give a

sense of real “communication” with the user. They respond to questions, hold conversa-

tions, and some can even simulate human emotions. Such systems hold promise for being

companions of elderly people and could help to alleviate loneliness amongst dementia

patients. Gasteiger et al. [2021] provide a comprehensive review of computer agents that

are designed to combat loneliness in the ageing population.

The third type of interactions are an inverse of the first; the system is designed to ask

questions to users in order to find out some specific information. The CognoSpeak system

(Section 2.5.3) belongs to this group. Such systems are not yet as commonplace as the
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first type, but companies such as Therapy Box Ltd [2024] (the company working with

researchers at the University of Sheffield on the CognoSpeak system) and Thymia Ltd

[2024] (who are working towards systems to objectively measure mental health conditions

through speech analysis) are working to change this.

Most of the work surrounding verbal human-robot interaction is concerned with how

the robot in question can be made to appear more natural; there is little existing work

that focuses on how humans are adjusting their own behaviour and language towards

the robot they are interacting with. One study from Pelikan and Broth [2016] used CA

to investigate the changes humans make when interacting with a humanoid robot called

Nao. Participants were sat in front of a Nao robot and told that the robot would initiate

the interaction and participants should follow the robot’s lead. This study found that

many key constructs of human interaction were maintained throughout the human-robot

interaction. For example, most participants would follow normal conversational rules and

introduce themselves to the robot after it initiated a conversation (typically with a “hello”

statement). The human participants also adjusted their behaviour depending on what the

robot was doing. They quickly learned that when the robot asked a yes or no question,

responses such as “sure” or “of course” should be abandoned as they were not recognised

as acceptable answers by Nao. Participants were also observed simplifying their language

as the interaction continued, eventually using primarily single words in the conversation.

When it appeared to participants that Nao was having a hard time “hearing” what they

were saying, they were quick to adjust the volume of their speech or alter their pitch to

emphasise specific pieces of information (p.4929). This study emphasises the fact that

cognitively healthy adults can adjust quickly to their conversational partner, even if that

partner is a machine.

One of the more prominent researchers investigating how humans converse with machines

is Clifford Nass. The bulk of Nass’ work surrounds his claim that humans behave the same

way with robots as they do with other humans. His research suggests that not only do

humans attribute human-like qualities such as gender to machines [Nass and Brave, 2005],

we also tend to treat machines with politeness despite knowing that we are not interacting
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with a sentient being [Nass, 2004]. A key feature of Nass’ theory is that this process is

unconscious (“mindless”), and is a result of social evolution rather than a conscious choice

2004. However, this view is contested by Kerstin Fischer, another prominent researcher

in the field. Fischer’s work argues that the fact that there is variation in how people

talk to robots [Fischer, 2006] along with the fact that some users do not treat machines

like humans [Fischer, 2011b] challenges Nass’ hypothesis. Fischer instead suggests that

the biggest influence on how a human will communicate with a machine is dependent

on what each person believes about the capabilities of the machine, and this will change

throughout the course of an interaction as the human learns more about the machine

[Fischer, 2011a].

5.2.4 Conversation Analysis as a Diagnostic Tool

Conversation analytic methodology holds that talk-in-interaction contains claims and dis-

plays of understanding, but does not inherently reflect inner psychological states [Antaki

and Wilkinson, 2013]. This does not, however, preclude the use of CA as a diagnostic aid;

the ways that talk is used may reflect different underlying cognitive states. Plug et al.

[2009] used CA to identify differences in how people described the experience of having

an epileptic seizure vs. a non-epileptic seizure. They found numerous different linguistic,

topical, and interactional diagnostic features. Those with non-epileptic seizures tended

to avoid describing their own subjective seizure experiences, whereas those with epilepsy

would volunteer such information and could discuss their symptoms in detail. Epileptics

also describe an active effort to fight against a seizure, whereas non-epileptics give no

descriptions of actively struggling against a seizure. Findings from this study informed

a further investigation by Ekberg and Reuber [2015]. This second study investigated

the differences between how neurologists approached the task of history-taking in routine

clinical interviews compared to the approach taken in the research interviews analysed by

Plug et al. [2009]. In the research interviews, the clinician generally started with open-

ended questions, allowing patients to decide for themselves what they wanted the focus

of the conversation to be. In contrast, the opening questions of the routine medical in-

terviews were much more constrained and focussed the topic immediately on seizures. As
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Ekberg and Reuber note, this is a time-effective method of gathering information from the

patients but it does limit how much the patient can contribute to the conversation. This

in turn limits the potential for identifying some of the linguistic differential diagnostic

features identified in the earlier research interviews. Ekberg and Reuber therefore suggest

that doctors should take a more passive approach to these medical interviews, allowing

the patients to produce uninterrupted speech which can then be used for a diagnostically

relevant linguistic and conversation analysis.

Abbas et al. [2022] investigated the conversational differences between neurotypical chil-

dren and children with autism. They found that, compared to the neurotypical children,

the children with autism take fewer turns in a conversation, produce speech that is abun-

dant with pauses, and may repeat the same words or phrases. The authors claim that an

investigation of these differences can help clinicians diagnose autism.

Elsey et al. [2015] identified numerous differences in conversational skills between people

with Functional Memory Disorder (pwFMD) compared to pwND. This study resulted in

the development of different conversational profiles which can be used in differentiating

between ND and FMD. These profiles are dependent on two key differences; who at-

tended the memory clinic and how the patients responded to the neurologist’s questions

during the visit. In terms of APs, it was found that 91% of their participants with ND

were accompanied, whereas only 40% of patients with FMD were accompanied. In the

ND group the APs acted as spokespersons for the patients, particularly during the pa-

tients’ problem presentation phases where the APs would offer up more information about

symptoms or more details about the history of the participants. In terms of how the pa-

tients were responding to the neurologist’s questions, one question in particular resulted

in a clear distinction between pwND and pwFMD. In most of the interviews Elsey et al.

investigated, the clinician would inevitably ask some variation of the question “Who is

the most concerned about your memory?”. Upon analysing the patients’ responses they

observed that all of the patients with FMD said that they themselves were the most con-

cerned about their memory problems. In four out of five of the participants with ND, it

was found that the AP was the most concerned about the memory issues, and frequently

the ND patients themselves were not aware of any problems or failed to respond to the
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question.

Mirheidari et al. [2017] built on the work from Elsey et al. [2015] and incorporated CA

derived information into an automatic system designed to differentiate between pwND and

pwFMD. Leveraging CA information in their automatic system yielded a system accuracy

of 97%, demonstrating the diagnostic potential of systems that can automatically analyse

conversational data.

5.3 Methodology

The analysis presented in this chapter examines the differences in how people interact

with a real-life clinician versus a virtual agent asking them questions about their memory

complaints. We make use of two existing datasets from the university of Sheffield. The

bulk of the data used in this analysis is the same data that was used in the first man-

ual disfluency analysis (Chapter 3). We include responses from people with FMD, Mild

Cognitive Impairment (MCI), and ND. In addition to the IVA data, we make use of nine

responses taken from participants in the Hallamshire dataset [Elsey et al., 2015]. This

dataset consists of recordings of people interacting with a human clinician who is asking

them questions in order to investigate memory complaints. A total of 99 patients were

recruited as part of this study, and their neurology consultations in a memory clinic ser-

vice at the Royal Hallamshire Hospital in Sheffield were recorded. A number of different

clinicians conducted the consultations in this dataset, but the present analysis focuses on

recordings from just one clinician (allowing the analysis of nine responses). This decision

was made in an attempt to control for the variation that will be exhibited by different

clinicians during a medical interview. Before patients attended the memory clinic they

were told that they could bring someone with them. Patients completed a neuropsycho-

logical battery of tests including the Mini Mental State Examination (MMSE), short and

long term memory tests, and tests for executive functioning. The collection of this data

was funded by the National Institute of Health Research, and full consent was obtained

from all participants.

In both datasets, the first question asked to participants (after necessary introductions are
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made) is designed to discover what they have been experiencing lately in terms of their

memory problems, and introduces the problem presentation phase as discussed above. In

the IVA dataset, the question is “Tell me what problems you’ve noticed with your memory

recently”. In the Hallamshire dataset there is more variation in how this question is

phrased, although these questions do all belong to the general inquiry type of questions

identified by Heritage and Robinson [2006], as discussed in Section 5.2.1.1.

The main difference in the interview sections of the recordings from both datasets is that

the IVA data, the participant takes as much (or as little) time answering the questions as

they like, and then presses a button on a computer to move on. In the Hallamshire data,

the human clinician is able to ask for clarification if necessary, or ask for more detail from

the participant. Of course, it is also possible that the clinician could choose to interrupt

the participant, or redirect them if it seemed they were veering off-topic. Our investigation

is particularly interested in the differences between the responses to the initial question

about participants’ symptoms, therefore the entire response to this question is considered

as part of our analysis. In the IVA data, we treat the problem presentation phase as

finished when the participant makes the conscious decision to move on from their own

problem presentation, something that would be unlikely to happen in a human-human

scenario where the decision to move the conversation onto the next phase would be more

co-constructive and involve both the patient and the doctor.

5.3.1 Participants

A total of 56 problem presentation phases from 55 different participants were analysed as

part of this work. 47 of these participants come from the IVA data, and the remaining

nine are from the Hallamshire dataset. These nine responses form our control group of

examples of people with ND attending a memory clinic in a real-world scenario. Ad-

ditionally, we did not include any responses from healthy controls in this study. This

is for two main reasons; first, the healthy controls in the IVA data know that they are

healthy controls. This means that when they are asked the question about their memory

concerns by the virtual agent, their responses are primarily something akin to “There’s
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nothing wrong with my memory” or “I’m just here to help with the study”. Second, the

Hallamshire dataset does not contain responses from any healthy controls for much of the

same reason; it would be unusual that a cognitively healthy person would find themselves

the subject of a memory-specific medical consultation in a specialised memory clinic if

they had never made any complaints about their memory, and therefore there is no ra-

tional basis for collecting such data. We chose to have a mixture of participants across

different levels of CD and across different datasets to allow for two main comparisons.

The first investigates the differences between people with ND conversing with a human

versus a virtual agent. The second investigates the differences that the level of impairment

(FMD vs MCI vs ND) have on conversations with the digital avatar.

Some information on participant age and MMSE scores was unavailable. Table 5.1 shows

the number of participants according to CD group and dataset.

After an initial inspection of the recordings from each dataset, it was discovered that

Participant 096 in the Hallamshire dataset seemed to be the same person as Participant

0221 from the IVA dataset. This was confirmed by verifying the participant’s date of

birth and conducting an in-depth comparison of the two files, something that has not

been noted in previous studies that. For the purposes of the present study, the inclusion

of both the responses to the digital and human doctor from the same person enabled us

to investigate the changes that occur as a direct result of who is opening the problem

presentation phase. We do not foresee this having any detrimental impact on the analysis

presented below, as even though the participant had prior experience of completing

memory tests by the time the IVA data was recorded, this was still his first time complet-

ing them with a digital avatar (as is the case for the other participants in the IVA dataset).

5.3.2 Procedure

All transcriptions were created based on the Jefferson transcription conventions (described

fully in Bolden and Hepburn [2018]). The full transcription conventions can be found in

Appendix E, but the most commonly used symbols are described in Table 5.2. The author
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Diagnostic

Category
IVA Hallamshire Total

Male Female Male Female

FMD 6 8 14

MCI 10 6 16

ND 11 6 5 4 26 (17+9)

Total 56

Table 5.1: Participant Information for the Conversation Analysis.

of this thesis was the transcriber and was unaware of the participants’ diagnoses in an

attempt to mitigate any bias.

Dr / VA / Pt / AP

Denotes who is talking; Dr = human doctor,

VA = virtual agent, Pt = patient, AP =

accompanying person

(.) Identifies a silent pause of less than 20ms

::::
Identifies the lengthening of a segment,

each colon representing 10ms

... Identifies a break in the transcript

(1.2) Silent pauses in seconds

Table 5.2: Frequently Used Transcription Symbols.

In the IVA transcripts the final time stamp is the amount of time that passes before the

participant moves on to the next question from the virtual agent. For the Hallamshire

dataset, the problem presentation phase was everything from the point of the doctor first

asking about symptoms to the doctor moving the conversation on to the next phase of

the interview. Hallamshire transcripts do not end in a time stamp and instead end with

the last thing the patient or AP says before the doctor moves the conversation to the

examination phase of the consultation.

5.4 Analysis

This section details the findings from this analysis. First, We compare the design of the

human doctor’s questions to those of the virtual agent, before turning to the responses
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produced by the participants. We then proceed to the case study of the participant who

had completed both the digital and human doctor interviews.

5.4.1 Comparison of Problem Presentation Phases Initiated by

a Human Doctor vs an Intelligent Virtual Agent

This section presents the differences between the problem presentation phases of people

talking to a human doctor, versus talking to a virtual agent. We identified two distinct

types of problem presentation phase, based on whether or not the patient accepts their

condition.

5.4.1.1 Design of the Initiation of the Problem Presentation Phase

In the IVA dataset, the problem presentation phases are opened with the question “Tell me

what problems you’ve noticed with your memory recently”. This question falls somewhere

between a Type I (general inquiry) and a Type III (symptoms for confirmation) question

according to the classification from Heritage and Robinson [2006] described above. This

question is vague in the sense that it does not mention memory-specific symptoms as we

would see in a true Type III question (perhaps something like “So you’ve been forgetting

people’s names?”), but at the same time is not so vague that the patient could start

talking about non-memory related symptoms, such as a sore throat.

In the Hallamshire data, we observed greater variation in the question design. Whilst the

same doctor is present in all of the Hallamshire recordings used as part of this analysis,

we found two different types of questions used when inviting a participant to start their

problem presentation: open-ended and constrained.

1. Open-Ended Questions

Open-ended questions would fit into the category of Type I questions from Heritage and

Robinson [2006] as described above. These questions do not limit the patient in terms

of what they can respond with. However, the memory clinic setting of the interviews

does in itself reinforce to the patients that they are supposed to be talking about their
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memory problems, even though the doctor has not explicitly mentioned them in his

question.

Examples from our data of these kinds of questions are:

033

Dr: what’s been the problem1

017

Dr: can you tell me what kind of problems you’ve been having1

056

Dr: so how can I help you1

2. Constrained Questions

The second type of question found in the Hallamshire data is similar in form to the

question asked by the virtual agent (“Tell me what problems you’ve noticed with your

memory recently”). These questions still allow the patient to talk about a wide range of

symptoms, but this design makes it absolutely clear that the aim of this consultation is to

discuss symptoms that are specifically related to memory concerns. For example:

083

Dr: can you just tell me what problems you’ve been having with1

your memory and when you first noticed them2

096

Dr: and from your perspective have you noticed any difficulties or1

problems with your memory2

One important difference in the way questions posed by the human doctor are designed is

that some of them are compound questions, and some are not. For example, the question

from recording 083 above is a compound question. This form of question requires the

patient to respond to two different requests in their singular response. Studies such



A Conversation Analysis of Human-Avatar Data 156

as Elsey et al. [2015] have found that pwND often struggle to answer both parts of a

compound question, and therefore this could potentially be used as an indicator that a

person is experiencing dementia or dementia-like symptoms. Results from our analysis

support this claim, with patients needing reminding that there is still part of the question

unanswered, such as in the following example from the Hallamshire dataset:

083

Dr: can you just tell me what problems you’ve been having with1

your memory and when you first noticed them2

Pt: when i first noticed them3

Dr: hm4

Pt: be back a while now (2.7) can’t remember exactly when5

Dr: okay6

AP: yeah i would say it’s approximately, what, two year i think7

Pt: roughly that yeah8

(2.1)9

Dr: and can you give me an example of how your memory has let you10

down11

In the example above, the doctor restates the first half of the question as the patient

has only responded to the latter (see lines 5-8). In this instance, the patient makes no

reference to the fact that they have forgotten to answer something and instead appears

unaware that they had left part of the question unanswered.

We also observed examples of participants who did not respond to both parts of a com-

pound question but did display awareness that they had forgotten something:

089

Dr: so can you tell m- i’ve read the letter from your general1

practitioner .hhhh can you tell me what (0.3) memory problems2

you’ve noticed and what your expectations are from (the)3

clinic today4

Pt: err::: i’ve noticed that me memory’s not very good people tell5

me things and i don’t remember what they’ve, they’ve, you know6

(.) when i’m trying to recall it (0.5) i don’t remember it7

(0.6) um:: events i’m okay with (.) it’s (.) it’s more or less8

conversations that i dont (.) i dont remember (.) um::::9

(1.3)10

Pt: what else did you say ((laughs))11

The difference between the question types from the Hallamshire dataset analysed above
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and those identified by Heritage and Robinson is that the latter are taken from an analysis

of general medical interviews. In both of the datasets used as part of this analysis it is

already known by both the patient and the clinician that the ensuing consultation will

be about memory complaints. Given this and the fact that the interviews from both

datasets take place in a memory clinic, it makes sense that the questions asked by the

doctor are not entirely general, but they are general within the constraint of discussing

memory problems.

5.4.1.2 Patients’ Responses

Patients’ responses can be broadly categorised into two main groups; those who display

acceptance of their condition and those who deny having memory problems. These groups

are described in more detail below, with each of the groups containing a mixture of

participants from both datasets. We found that rather than the interlocutor influencing

how the patient responded, this seemed to be more affected by whether or not the patient

accepted the reality of their condition. In turn, this was evenly spread across the diagnostic

groups, with no correlation found between the degree of CD and the type of response.

Figure 5.2 shows the percentages of participants that produced each response type. Table

5.3 breaks down the response types according to dataset, and Table 5.4 breaks down the

response types according to diagnostic group.
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Figure 5.2: Categorisation of Patients’ Responses

Category of Response

No. Participants

from Hallamshire

Dataset

No. Participants

from IVA

Dataset

Total No. Participants

per Response Category

Denier 1 10 11

Emotional

Acceptee
2 10 12

Generalising

Acceptee
4 17 21

Taciturn Acceptees 2 10 12

Total No.

Participants per

Dataset

9 47 56

Table 5.3: Breakdown of Response Types According to Dataset

Deniers

This group comprises three types of response: those that fully deny the existence of

memory concerns, those that attribute potential symptoms of memory problems to other

things, and those that downplay the extent to which their symptoms are affecting their

lives. 11 of the 56 conversations included in this analysis belong to this group, and the

group consists primarily of a mixture of patients diagnosed with MCI and ND. Exam-
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Category of Response
No. Participants

w. FMD

No. Participants

w. MCI

No. Participants

w. ND

Denier 1 5 5

Emotional

Acceptee
3 3 6

Generalising

Acceptee
8 4 9

Taciturn

Acceptees
2 4 6

Total No.

Participants per

Cognitive Group

14 16 26

Table 5.4: Breakdown of Response Types According to Diagnostic Group

ples 1-3 demonstrate how participants downplay any memory problems they may de-

scribe.

Example 1

2106 - ND - IVA

VA: tell me what problems you’ve noticed with your memory recently1

(1.3)2

Pt: er::m (.) i do not pick things up3

(1)4

very good with- (.) ‘cause of me hearing (0.2) .hhh (.) so i5

get things wrong (0.6) and sometime me memory (0.9) is at6

fault (0.8) but normally (0.2) .hhh i’m pretty good (0.4)7

round the house::: (0.2) doing things (.) .hhh (0.4) manually8

i’m fine ↓ (0.3) .hh (0.2) >it’s just if somebody asks me a9

question or i- i want-< .hhh i know the person .hhh but i10

can’t put a- a- er::: a name to him (.) .hh (.) and then (.)11

FIVE minutes later >it comes into me head and i-< (0.3) i’m12

away (3.05)13

The above example, from a participant diagnosed with ND, includes numerous instances

of minimising and downplaying symptoms. The participant starts out describing that

they do not pick things up very well, but is quick to add that this is because of their

hearing and not anything else. In lines 6-7 the participant relents that their memory is

sometimes at fault but again is quick to point out that normally they are fine, and this is
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backed up by examples of things that the participant has no trouble with such as doing

things around the house. This pattern is then repeated from line 9-onwards where the

participant describes sometimes having difficulties recalling names but again reassures the

clinician (in this case the virtual agent) that they go on to remember what it was that

they had forgotten, and that everything is fine a few minutes later.

Example 2

0212 - MCI - IVA

VA: tell me what problems you’ve noticed with your memory recently1

(1.8)2

Pt: .hhh (0.2) er:::::: (0.8) obviously i’m sixty nine year old3

and i er (0.2) i haven’t got the memory that i used to (0.9)4

((coughs)) (0.2) but i can er:::5

(1.5)6

i can more or less (0.3) carry on life as normal (0.2) (well)7

i just have a or- really bad memory (0.8) ((coughs)) (0.7)8

er::: maybe the dates or that kind of thing9

(1.0)10

so::::11

(1.8)12

i don’t think i can give you anything else i’m sorry13

(0.4)14

This next example, from a participant with MCI, provides another example of downplay-

ing symptoms by identifying that there might be some small issues, but that in other

areas everything is fine (“I can more or less carry on life as normal”). This participant

also seems to contradict himself. He states that he has a “really bad memory” but goes

on to give the example of “maybe the dates or that kind of thing”. This problem presen-

tation also demonstrates a clear example of a patient being polite to the virtual agent by

apologising, despite knowing that it is a machine (line 13). This example supports Nass’

hypothesis that humans have evolved to be polite, and that this remains intact even when

talking to something that we know cannot respond to us.

Example 3

0229 - MCI - IVA

VA: tell me what problems you’ve noticed with your memory recently1

(2.7)2

Pt: i have struggled with3
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(1.6)4

er::: some memory loss5

(2.0)6

w- which (0.8) i think has seem to improved (0.9) i’ve also7

struggled with my (.) mood (0.9) which (.) my wife confirmed8

today that i seem to be m- (.) much more stable9

(6.5)10

The extract from this participant follows the two previous examples by downplaying

the symptoms that they mention in their problem presentation phase. However, this

participant mentions the opinion of his wife, who presumably does not have any memory

problems. This serves to reinforce the participant’s view that he is doing better now (line

7). We also observe some emotive language (expressing the participant’s feelings rather

than being a neutral description) being used in this extract (line 3- “struggled”) but the

potency of this word is reduced by the confirmation that the participant is “much more

stable” according to an outside observer. This example (and Example 1 above) both end

with very long, unfilled pauses before the patient presses the key to move forward.

The three examples above were all taken from the IVA data. However, it is not just

participants conversing with the virtual agent that deny (or downplay) their diagnosis or

symptoms. The extract below is from the Hallamshire dataset:

Example 4

029 - ND - Hallamshire

Dr: from (.) your own perspective >what would you say have been1

the main things< you’ve been (0.5) er struggling with and- and2

why you’ve come3

(1.3)4

Pt: (hand) (0.7) um (0.2) er5

(2.0)6

Dr: struggling with a hand there (0.8)7

Pt: hm (0.4)8

Dr: did you [(per chance)]9

Pt: [(that one)]10

(0.3)11

...12

This example is particularly interesting. It seems that despite the fact that this con-

sultation is taking place in a memory clinic, this patient may not be completely aware
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of their surroundings or may not have inferred from those surroundings that they should

be talking about memory problems. Instead, the patient seems preoccupied by the issue

with his hand. At this point in the consultation, the AP steps in to give the doctor more

information about the hand problems, and to inform him that they are dealing with the

hand and will be attending an appointment to address the issue at a later date:

Example 4 (cont.)

AP: we’ve got an appointment at erm::::: (0.5) ((tuts)) Mexborough13

this afternoon for the [finger]14

Dr: [oh to get that looked at]15

AP: that’s- that’s you’re hand [in’t it]16

Dr: [i see]17

AP: you’re wanting to [get that done] but18

Dr: [oh yeah]19

(0.8)20

...21

The doctor then attempts to re-start the problem presentation by asking the patient more

specifically if he has had any issues with his memory:

Example 4 (cont.)

Dr: (has) there been a- a concern about things like your memory22

and- and managing day to day tasks23

(0.7)24

Pt: not really25

(0.5)26

...27

The above highlights the first response from the patient that directly challenges the as-

sumption that he has been experiencing memory concerns. The doctor attempts to gather

more information from the patient:

Example 4 (cont.)

Dr: mhm (0.8) and (0.2) do you think (0.4) if- for yourself kind28

of managing day to day do you struggle with things or do you29

manage things fairly well30

(.)31

as far as you’re concerned [at home]32

Pt: [mostly]33

...34
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The patient’s response of “mostly” on line 33 is delayed; it does not come within the

Transition Relevance Place (TRP) located at line 31. This late placement, along with

his use of minimising language, may indicate that the patient will ultimately admit to

memory problems. The doctor continues to attempt to find out more information from

the patient, by repeating his “mostly” in a turn-initial position and probing for something

“in particular”:

Example 4 (cont.)

Dr: mostly (0.4) is there anything in particular that you struggle35

with (0.8)36

Pt: well (hhenhh) ((gestures with his bad hand))37

Dr: apart from the hand obviously [(hhenhh)]38

Pt: [(hhenhh)] yeah39

...40

In attempting to elicit more information from the patient, the doctor asks another question

that does not explicitly signal to the patient that he is interested in memory concerns.

This results in the patient referring back to the problem with his hand. The doctor notices

this quickly and acknowledges the hand problem, but proceeds to clarify to the patient

that they should be talking about cognitive issues:

Example 4 (cont.)

Dr: things like kind of memory and orientation and um:::: .hhhhhh41

things to do around the house (0.2)42

Pt: yeah (.) ((clears throat)) (0.3) (i can) get round (.) (our)43

house yeah (0.3) [yeah]44

Dr: [good] okay45

This final attempt by the doctor to encourage the patient to talk about their memory

problems is met with another denial type of response, where the patient uses the doctor’s

example of “doing things around the house” to exemplify that he is fine.

As discussed earlier in Section 5.2.4, research has found that the presence of an AP in

clinical interviews can be a reliable indicator of dementia. Larner [2005] reported that if

attending a memory clinic with an AP were a diagnostic test it would have a sensitivity of

100%. Elsey et al. [2015] found that the AP often acts as a spokesperson for the patient



A Conversation Analysis of Human-Avatar Data 164

and aids them in describing their symptoms. In this example (and the next), an AP is

present. However, they behave rather differently. In Example 4, the AP does not talk

about memory symptoms at all and instead only speaks to clarify the problems with the

participant’s hand. Whilst the AP in this instance is not denying that her husband has

been experiencing memory concerns, she also does not offer up any additional information

that could help the doctor discern what the patient has been experiencing. In Example

5, we see both the participant and their AP denying memory issues. This example comes

from the IVA data:

Example 5

0276 - ND - IVA

VA: tell me what problems you’ve noticed with your memory recently1

(2.9)2

Pt: when3

(1.9)4

AP: ◦you-◦ i don’t think you’ve had any problems with your memory5

Pt: yeah6

(0.7)7

AP: ((after pressing button)) as such8

Neither the patient nor the AP presents any memory issues in response to the virtual

agent’s question. However, the increment “as such” by the accompanying person (line

8) suggests that there may be complaints related to cognitive issues in some other way.

If this were to happen in a setting with a real human doctor it is likely that the doctor

would then prompt for further information (as we saw in Example 3 from Participant 029

above, where the patient’s response on line 33 prompts the doctor to continue to dig for

information). However, because this patient is presenting to the virtual agent, there is no

further questioning and therefore there is the possibility that some symptoms have gone

unreported in this instance.

Out of the 14 responses from patients with FMD, only one falls into the denier category.

This is unsurprising; given that one of the hallmarks of FMD is subjective memory prob-

lems that often do not show up on clinical tests, it would unlikely for a patient to be

referred to a memory clinic if they did not perceive themselves as having any symptoms.

The participant whose response does fit this group demonstrates in their problem presen-
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tation phase that they no longer believe they have memory problems at all, attributing

the difficulties they experienced instead to a lack of confidence:

Example 6

0217 - FMD - IVA

VA: tell me what problems you’ve noticed with your memory recently1

(2.2)2

Pt: my problems weren’t actually to do with me::mory (0.3) it was3

my confidence and (.) i was (0.3) making assumptions when i4

was right that in fact that i had made mistakes (0.3) i had5

forgotten to do something (0.4) er::: so i::: was6

misidentifying it as memory7

(1.5)8

Acceptees

Unlike the responses in the examples above, which are characterised by denial or varying

degrees of minimisation, the participants whose responses are included in the acceptee

group consistently demonstrate some acknowledgment of having a memory problem. This

analysis revealed three distinct groups of acceptees that span the different datasets and

levels of cognition, these are detailed below.

1. Emotional Acceptees

Participants belonging to this group describe the symptoms they have been experiencing

and how these symptoms are having a negative effect on their day to day functioning or

emotional wellbeing.

Example 7

2105 - MCI - IVA

VA: tell me what problems you’ve noticed with your memory recently1

(1.6)2

Pt: i can’t remember (.) my mother and father properly (0.3) which3

is very upsetting (.) .hhhhh (.) i’m having to use4

photographs:::: (.) and a:::nd things like that to remind me5

and (0.2) what me children tell me (0.3) that they did with6

their grandma and grandad because i can’t remember .hhhhhhh7

(0.4) a::nd (0.2) also i’m coming out with (0.7) weird words8

(0.3) that i wouldn’t (.) normally (0.2) use9

(1.6)10
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Participant 2105 describes their specific memory related symptoms and how terrible this

is making them feel (line 4- “very upsetting”). There is no language that downplays

what the participant has been experiencing and there is no attempt by the participant to

attribute these symptoms to something less serious (cf. Example 1 from participant 2106

and their claim of hearing issues).

Example 8

0219 - MCI - IVA

VA: tell me what problems you’ve noticed with your memory recently1

(1.3)2

Pt: um::::: (.) .hhhh i’m unable to remember (0.3) um::::: (.)3

dates times (0.7) um:::: things that have happened hh. a::::nd4

um::: it’s very distressing5

(1.8)6

Some participants belonging to this group are less descriptive than others in their prob-

lem presentations. However, we still observe emotive language in the short problem

presentation phases from these participants, such as line 6-“very distressing” above from

Participant 0219.

Example 9

043 - ND - Hallamshire

Dr: what about recently what sort of things do you found that1

you’re struggling with2

(3.3)3

...4

Pt: (i’ve had) to give up um36

(1.6)37

rainbows and guides (0.8)38

Dr: oh i see (so) you used to volunteer with that was it39

Pt: i used to be a leader40

Dr: used to be a leader okay (0.5) and again do you find it was41

because of [memory difficulties is it you stopped]42

Pt: [i couldn’t cope with it yeah] i couldn’t remember43

their names i couldn’t remember what (i) was supposed to be44

doing45

Dr: i see [okay]46

Pt: [just got too difficult]47

The extract above from Participant 043 is an example of an emotional acceptee talking
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with the human clinician. After the clinician’s initial invitation to start the problem

presentation phase there is some back and forth with the AP in which they describe

some of the symptoms the participant has been experiencing, such as asking the same

question multiple times or forgetting both old and new memories (lines 4-35). There is

no emotional language used by either the patient or the AP during this back and forth.

It is not until the participant starts talking about a scenario that’s specific to their own

experience (giving up volunteering, from line 36) that they use more emotive language

(“I’ve had to give up” rather than “I no longer” or “I’ve stopped”).

2. Generalising Acceptees

This was the largest group of responses we found, with 37.5% of responses belonging to

this category from across the different interview modalities and cognitive groups. This

group consists of people who are accepting of the fact that they have memory problems,

but who tend to speak in very general terms. Some participants give examples, but

these examples are not specific to them. Rather than giving details, they instead use

vague language (such as “forgetting things” or “that sort of thing”). The use of such

circumlocution in this group indicates that participants are aware of their symptoms

(because they are able to name them) but simultaneously they claim that the symptoms

are not necessarily severe enough to warrant investigation.

Example 10

0218 - MCI - IVA

VA: tell me what problems have you had with your memory1

(1.7)2

Pt: err:::: forgetting dates (0.5) err:::: forgetting times of3

things (0.4) erm:::::::4

(1.7)5

just (0.3) o- odd (.) common or garden things6

(2.5)7

In the example above, Participant 0218 gives some examples of the difficulties they have

been experiencing, but these are general examples: “forgetting dates. . . forgetting times”.

Furthermore, these kinds of memory lapses are things that even cognitively healthy ageing

adults may experience from time to time [Kirk, 2023]. The problem presentation phase
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here is ended with a frequently used common phrase (line 6- “just odd common or garden

things”). By using this phrase, the participant claims that they are not particularly

concerned with the memory issues they have just described, and implies that his concerns

are not particularly special or require attention.

Example 11

0238 - ND - IVA

VA: tell me what problems have you had with your memory recently1

(2.0)2

Pt: .hhhhhh3

(1.1)4

er:::::5

(2.2)6

things like7

(1.0)8

walking into a (.) room and (.) forgetting (.) what (0.8) i’ve9

gone for (0.2) er::::10

(1.5)11

that sort of thing12

(2.4)13

walking upstairs (0.2) and14

(1.2)15

forgetting16

(1.6)17

why i’ve (0.2) gone18

(1.7)19

that sort of thing20

(1.2)21

We see a similar thing happening in the example above from Participant 0238. The virtual

agent is given some examples of general issues that the participant has experienced, and

then the participant ends the problem presentation phase with a general statement (line

20- “that sort of thing”). There is a notable absence of any language that would suggest

the participant is particularly distressed or worried about their condition. Participant

0238 also exhibits multiple long, unfilled pauses throughout their problem presentation.

Often these appear at TRPs (lines 6, 12, and 19). The fact that these unfilled pauses are

so long could be an artefact from the human-human conversations the participant is used

to having. For example, these TRPs indicate places where a human doctor could ask for
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elaboration from the patient.

In another example, this time from a patient with FMD, we observe the recounting of a

general memory complaint (difficulty finding words). Notably, the participant describes

this issue in a very general manner, without offering any insight into how the experience

made them feel at the time, nor providing specific details about where they were or what

they were doing when it occurred:

Example 12

0259 - FMD - IVA

VA: tell me what problems have you had with your memory recently1

(1.8)2

Pt: um:: (0.4) i’ve had problems finding words3

(0.4) er::: remembering things (.) doing things4

and getting distracted (0.8) and then f:::::orgetting5

(1.7)6

Pt: yeah (.) just forgetting (.) and getting muddled (1.2)7

3. Taciturn Acceptees

Patient responses that belong to this group provide very little information about a pa-

tient’s symptoms. Symptoms may be mentioned briefly but participants do not expand

on them, and instead keep their answers very brief.

Example 13

0215 - MCI - IVA

VA: tell me what problems have you had with your memory recently1

(1.0)2

Pt: um::::::::: (0.4) forgetting things3

(1.8)4

The participant in Example 13 above does not deny the presence of symptoms, but makes

no attempt at any kind of description of those symptoms. There are also no examples

of the kinds of things they might be forgetting. The participant exhibits quite a long

hesitation followed by a pause, before verbalising their short answer (line 3). Other

participants from the IVA dataset responded in a very similar manner, but without the

use of filled pauses:

Example 14
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0235 - MCI - IVA

VA: tell me what problems have you had with your memory recently1

(0.6)2

Pt: short term memory (.) hopeless3

(1.2)4

Again, this participant discloses very little information and decides to move the conver-

sation forward instead of offering any more detail. This response only tells us that the

participant has noticed issues with their short term memory, but we have no indication

of what kind of issues these might be. Note also that this participant does not use a com-

plete sentence. As this participant is diagnosed with MCI, his linguistic abilities should

be preserved enough that complete sentences are how he usually communicates. This

incomplete sentence could therefore be the result of the fact the participant is convers-

ing with the virtual agent, as this short and choppy sentence is similar to the types of

commands that people direct to in-home smart devices (which the participant may be

familiar with).

The taciturn responses from patients with FMD are no different, containing very little

information about what they have experienced and no sense of how this might be affecting

them emotionally:

Example 15

0209 - FMC - IVA

VA: tell me what problems have you had with your memory recently1

(1.2)2

Pt: err:::: (1.4) sometimes i forget (.) um:::::: (1.4) things3

(0.2)4

Whilst the examples above come from the IVA data, we also have examples of taciturn

acceptees in the human-human Hallamshire data interviews:

Example 16

033 - ND - Hallamshire

Dr: could you describe what’s- what you understand about why1

you’re here (0.4)2

Pt: u:::m (0.5) not entirely3

(2.2)4

Dr: what’s been the problem (0.4)5
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Pt: um::::::: (0.5) memory shortage (0.2)6

...7

Within the first four turns of the extract from this participant, we can see that whilst the

patient knows that there is a problem (line 6) he has already signposted to the doctor that

they might have difficulties talking in detail about this, as he is not entirely sure why he is

talking to the doctor in the first place (line 3). When the doctor confirms that the patient

has experienced memory shortage, he prompts the patient for more information:

Example 16 (cont.)

Dr: okay8

(3.8)9

so you feel you’ve had memory shortage10

Pt: yes11

(4.6)12

Dr: and (.) could you::: give me an example of last time your13

memory (0.3) let you down↑14

(1.7)15

Pt: u:::::::m16

(2.4)17

...18

The patient again confirms that he has been having memory shortage. However, he has

difficulty forming an example of his memory letting him down, as evidenced by the long

pause in line 17. At this point, the AP steps in to try to answer the doctors questions:

Example 16 (cont.)

AP: you can’t- you’ve lost your sense of direction (0.4) does that19

count20

Pt: right21

AP: (hhhhh)22

Pt: ((chuckles)) (0.3)23

AP: .hhhhh never needed a navigator before (hahaha (0.8) (hhhh)24

(2.4)25

u::::m (0.6) can’t remember how to:: (0.3) maintain the26

computers27

(1.4)28

Pt: a:::::greed29

(1.4)30

AP: u::::::m you can’t remember how to do your job any more31

(8.6)32
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...33

We can see from the above in lines 21 and 29 that the participant is accepting of the

points being raised by their AP. However, the participant is not offering any additional

information. There is an unusually long pause (line 32) before the doctor attempts to get

the participant to give their own account of their memory problems, rather than directing

additional questions to the AP:

Example 16 (cont.)

Dr: .hhhhh and could you- a- a- again i appreciate (0.3) y- (.)34

you might have difficulties er:::: doing this but could you::35

give me some examples of (0.7) of problems you’ve had with36

your memory(0.3)37

Pt: u:::::m hhh.38

(5.1)39

i40

(1.8)41

((patient looks at AP))42

AP: no (dad) this is down to you well is- what do y- your43

perception not mine44

...45

Once the doctor has asked the patient to give some examples of the memory problems he’s

been having, he hesitates and then pauses for a long time (line 39). This is an indicator

that the patient is having difficulty formulating his response. He looks to his AP for help,

but she reinforces to him that the doctor wants the patient to give his own examples.

After a pause, the patient continues:

Example 16 (cont.)

Pt: (1.4)46

i::: (.) can’t remember how to do my job47

(2.1)48

Dr: you can’t remember how to do your job49

Pt: yeah50

(6.2)51

...52

This is the first time in the consultation that the patient has been able to give a specific

example of the kind of memory problems he has been experiencing. However, the infor-
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mation he offers up is not new and is in fact a repetition of what his AP said back in line

31. The doctor confirms what the patient has just said by way of repetition (line 49),

and then we see another long pause in the conversation. The doctor has left enough time

for the patient to expand a bit more, but after he fails to do so the doctor reengages the

conversation by inviting the patient to resume talking by way of describing what their

job involves:

Example 16 (cont.)

Dr: and (0.6) what does that involve53

(1.3)54

Pt: er::: (.) joinery55

(7.7)56

...57

Once again, there is a large pause in the conversation at this point. The doctor prompts

the patient two more times for a description of specific problems related to his memory,

but the patient does not respond (data not shown), and the doctor then ends the problem

presentation phase.

5.4.1.3 Summary of Patients’ Responses

The analysis presented above has demonstrated the different kinds of problem presen-

tation phases observed in our data. There are two main kinds of problem presentation;

one in which participants deny their symptoms, and one where participants accept them.

In terms of the acceptees, we found three main approaches in how people accept their

conditions. Some participants talk about the emotional toll their symptoms have been

taking whilst describing specific instances where their memory has let them down. Some

participants talk only in very general language and do not offer any specific examples.

The remaining participants do not talk much at all. This is more obvious in the recordings

from the IVA data, where participants can say something as short as “forgetting things”

for their problem presentation phase and then manually move the conversation forward.

Taciturn acceptees from the Hallamshire data are questioned more by the human doctor,

who frequently presses these participants to expand on what little information they have

already given. However, we found that this was usually unsuccessful and would result
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in either the AP stepping in and acting as a spokesperson for the patient or the patient

discussing memory issues that have already been mentioned earlier on in the consulta-

tion.

Both the accept and deny groups contain a mixture of participants from both the human-

human and human-avatar datasets, as well as a mixture of people diagnosed with all

three different levels of cognitive decline investigated in this chapter. Whilst this analysis

was not able to uncover diagnostically valuable conversational profiles, our analysis does

suggest that as far as patients are concerned there may not be much of a difference

between presenting their problems to an avatar instead of a human being. The next

section highlights the relationship between how the doctor’s questions are phrased, and

how the patients respond.

5.4.1.4 The Relationship Between the Phrasing of the Doctor’s Questions

and the Patients’ Responses

The results above demonstrate that even when participants are asked the exact same

question from the virtual agent, the way they formulate their responses will vary from

person to person. Recordings from the IVA dataset show examples of all the different

kinds of responses identified by our analysis, so controlling for how the beginning of the

problem presentation phase is worded by the doctor seems to have little effect on what

kind of response the participant will offer.

This assertion is exemplified by two particular recordings from the Hallamshire dataset.

In the examples from Participants 029 and 043, the doctor uses the word “struggle” when

asking about the problems the participants have been experiencing. This could be seen

to project some emotion onto the response; before the patient has even started describing

what is wrong with them they are being told that they are struggling with something.

Indeed, Participant 043 does respond with an emotional description of her symptoms,

detailing the negative impacts of her memory problems. Participant 029 however never

uses emotional language in his problem presentation phase, even though the doctor uses

the word “struggle” four times throughout his questioning.



175 5.4. Analysis

5.4.1.5 Discussion of Results from the Comparative Study

It is perhaps not entirely surprising that some of the participants in the IVA dataset

give such short responses to the virtual agent. There is no prompting or fishing for more

information from the avatar, so responses can be short and that won’t be questioned by the

digital system. However, we also saw examples of taciturn responses from the Hallamshire

data. Despite the virtual agent’s inability to ask for more information, several participants

gave a detailed account of their memory complaints. The questions asked by the human

doctor were consistently general in nature but with a specific focus on memory complaints

as the interviews are taking place in a memory clinic. This was the same for the question

played by the avatar in the IVA data.

In terms of participants’ responses, two main groups were identified (deniers or acceptees).

Both of these groups contain participants from both datasets, and participants at the three

different levels of CD.

The first group of responses deny the existence of any memory concerns, or downplay their

symptoms by noting that they have seen some improvement in their condition recently.

Participants in this group may also attribute their symptoms to some other cause, such as

hearing loss. We found examples of this type of problem presentation in both the human-

human and human-avatar interviews. The concept of denial from a patient in a clinical

setting is not new, nor is it constrained to only diagnoses of neurodegenerative disorders.

In fact, some amount of denial is considered healthy to some extent as it can help to ward

off excessive worry, depression, or fear (see Ness and Ende [1994] for more discussion on

this topic). However, some of the patients in this group could be dealing with a level of

anosognosia (being unaware of their condition due to their cognitive deficits). Although

anosognosia may be caused by a broad range of different conditions, it is particularly

pervasive in dementia. According to a study from Wilson et al. [2016], anosognosia may

eventually be a symptom in almost all patients with dementia. Research has also found

that anosognosia can be experienced by people with MCI, although this is less common

[Morris and Mograbi, 2013].

The reason for the patients’ denial and lack of detail regarding symptoms may not be of
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much consequence to a digital system where the content of the speech is not as important

to the classification process as the acoustic or linguistic features that the system measures.

Although these systems could theoretically be used to make the diagnosis alone, given

larger training sets and computational improvements, realistically the output of a system

such as CognoSpeak would never be the sole determinant of a diagnosis and rather would

be used in conjunction with a doctor or clinician’s assessment. There are two main reasons

for this; the issue of explainability and trust, and the issue of responsibility in the case

of something going wrong. Heinrichs and Eickhoff [2020] discuss these issues in detail.

They also suggest that Artificial Intelligence (AI) systems that can provide diagnostic

analytics about a patient’s condition would be best used if they could demonstrate some

kind of report that clinicians could use to interpret the model’s decision. This is where

it is particularly important to have more detail about symptoms, and where patients

belonging to the denier group would need to be pressed more for information. This

suggests that an Automatic Cognitive Decline Classification (ACDC) system could be

particularly useful in cases where patients reveal little information about their symptoms.

However, our research has also demonstrated that it may still be difficult to elicit more

information from deniers or taciturn patients even when they are being interviewed by a

human doctor and repeatedly being asked for more information, as in the example from

Hallamshire Participant 029.

The second group of participants generally accept that they are experiencing memory

loss, but we found distinct differences in how these participants addressed their concerns.

Firstly are those participants who talk not only about the physical symptoms they have

been experiencing, but also how this is affecting them emotionally. They describe, often

in detail and using emotive language, specific incidents where their memory has let them

down which is then reinforced by descriptions of the negative effect on their daily lives or

emotional wellbeing. Our second group of acceptees admit to having memory issues but

only talk about them in a very general manner, often failing to give specific examples and

instead relying on broad statements such as forgetting people’s names or what the current

date is. Even when pressed by the human doctor for more information the participants

belonging to this group struggle to respond accordingly.
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The final group of participants who accept the fact that they have been experiencing mem-

ory issues are those who seem to have the most difficulty with their problem presentation

phases, and this is often demonstrated by short, non-specific answers and more frequent

hesitations and pauses. When these participants are presenting to the digital avatar and

are in charge of moving the conversation along themselves they frequently respond with

very short, vague answers. This was also observed in the human-human group, where

we found examples of the human doctor trying his best to get a taciturn patient to talk

more about their symptoms, but to little effect. One particularly interesting finding from

these results is that taciturn patients do not necessarily divulge more information when

conversing with a human compared to a digital avatar. Our examples of taciturn patients

in the Hallamshire dataset show that even when being repeatedly asked for more infor-

mation, they provide little or none. This supports the idea that while the virtual agent

does not ask follow up questions, it does not necessarily need to and there is no guarantee

that this would result in patients divulging more information.

5.4.2 Case Study: Participant 096/0221’s Problem Presenta-

tions

During the process of analysing the Hallamshire and the IVA datasets it was discovered

that one of the participants had completed both studies. This participant had attended

the Hallamshire human-human interview in June 2014, and then went on to complete

the IVA human-avatar interview in September 2016. Their diagnosis of ND remained the

same for both tests, although at the time of the Hallamshire interview they had an MMSE

score of 24 which had decreased to a 23 by the time of the IVA interview. However, both

of these scores are firmly within the mild ND category and the difference does not indicate

a substantial decline in the participant’s cognition during the time that passed between

the two recordings.

This analysis compares the patient’s problem presentations from each dataset. For clarity,

examples of the transcriptions are presented side-by-side in a table, with the transcripts

on the left coming from the human-human Hallamshire data and those on the right coming
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from the human-avatar IVA data. Despite the large differences in how the doctor and

the virtual agent’s initial questions are phrased, we found numerous similarities in the

content of the responses from the participant. We also observed a more frequent use of

hesitations and pauses in the patient’s recording from the IVA dataset.

5.4.2.1 The Doctor’s Opening Question

Table 5.5: Extract 1 - Doctor’s Questions

Dr: have you noticed any

problems with your memory

and if so what and what are

your expectations from this

clinic

...

VA: what problems have you had

with your memory

...

The virtual agent plays a straightforward question to initiate the patient’s problem pre-

sentation phase. As seen above, this question does not ask for specifics from the patient,

but does inform him that his response should focus on memory problems. The question

from the human doctor is another story entirely and is in fact three different questions

compounded into one; “Have you noticed any problems with your memory?”, “If you

have, what have you noticed?”, and “What are your expectations from this clinic?”. As

discussed earlier on (Section 5.2.1.2), research has shown that people with dementia may

have trouble answering all parts of a compound question. Having three parts to this com-

pound question makes it particularly difficult for the participant to follow, as evidenced

below.

5.4.2.2 The Patient’s Responses

After the doctor has initiated the problem presentation phase with the questions above,

the patient begins his response. With the human doctor, the patient starts by address-

ing the first part of the compound question that was asked to him (“Have you noticed

any problems with your memory?”). This is a very similar question to the one posed

by the virtual agent in the sense that both questions are asking about memory prob-
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lems in particular. This results in similar opening statements from the patient in both

recordings:

Table 5.6: Extract 1 - Patient’s Responses

Pt: well basically (0.4) i’ve

noticed a deterioration

(0.5) gradually (0.3) with

me memory (0.5)

...

Pt: memory (0.3) i::::

have to keep (0.9)

repeating myself a lot (0.6)

i:::::: get confused (0.7)

...

At first glance, these responses seem to be functioning in the same way; confirming that

the patient has experienced memory problems. One notable difference between the two is

the structure. The response from the Hallamshire data mirrors the wording of the doctor’s

question (“Have you noticed-”, - “I’ve noticed”). It then quantifies the progression of the

decline, letting the doctor know that whilst there have been changes with the patient’s

memory these have happened slowly.

The response from the IVA data is less syntactically complex, and does not make use of

any conjunctions. However, the participant is quick to give the virtual agent examples

of how his memory has been letting him down. These examples are interspersed with

hesitations that are longer than 0.5 seconds in duration, something we see no example of

in the recording from the Hallamshire dataset.

In the Hallamshire recording, the patient’s problem presentation phase then goes on to

address the final part of the doctor’s opening question (“What are your expectations from

this clinic?”):

Extract 2 - Patient’s Responses

Pt: i’m hoping that (2.0) there’ll be something (0.4) fulfilling1

that’s gonna come from (0.9) yourself and other colleagues2

(1.1)3

that will result in4

(1.1)5

a magic pill (as you might say) that (0.8) after all the tests6

that will (.) eradicate that (0.5)7

...8

This segment of the problem presentation phase is not a direct reflection of what the
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patient is expecting. Rather, the patient focuses on what he hopes might be the outcome.

This slight change suggests that the patient does not really believe that the doctors will

indeed find a magic pill to stop his memory deteriorating further (he does not expect that

this will happen), but this wording makes it clear that this would be an example of a best

case scenario for the patient.

We do not see any mention of a “magic pill” in the recording from the IVA data, as

the virtual agent did not ask what the patient was expecting to happen. However, from

this point onwards, both problem presentations seem to converge. In both examples, the

patient goes on to talk about things that he has already tried in an attempt to address

his memory issues:

Table 5.7: Extract 3 - Patient’s Responses

Pt: err::: (0.5) i know i’ve had

that many tests and scans

(1.0) but nothing’s been

err::: (1.2) really (0.5)

err:::::: (0.2) fulfilled

as far as saying that (0.4)

...

Pt: i’ve (0.5) took medication

.hhhhh (0.4) which er

didn’t work (0.6)

...

The extract from the Hallamshire data is more descriptive than its IVA counterpart.

However, both of these segments are doing the same thing; they are indicating to the

doctor that the patient has already sought help for his condition but has been unsuccessful.

In the Hallamshire data, this is achieved by telling the doctor about the tests and scans

that the patient has undergone which did not result in any clarity as to what is causing

the memory issues. In the IVA data, the patient talks about the medication that he has

been taking, which does not seem to have helped him.

In both recordings the participant now steers the conversation towards another concern he

has been having involving mobility issues. It is at this point in the problem presentation

that the patient really starts to talk in an emotive way, making it clear to the doctor that

his mobility issues are having a very detrimental effect not only to his physical health,

but also to his mental wellbeing:
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Table 5.8: Extract 4 - Patient’s Responses

Pt: er::::: (0.6) and obviously

(.) with this falls i have a

lot of falls

Dr: mhm (0.6)

Pt: and i am (1.1) most

concerned about that because

(1.0)

...

Pt: but also (0.6) i:::::

cannot walk i have a::::

mobility scooter (0.5) which

is very (0.7) helpful but

frustrating

...

In the Hallamshire data, this is the first time that the patient gives a real sense of his

worries. Up until this point he has talked about “gradual deterioration” with his memory

and his hopes for a “magic pill”, and now he is really getting to the crux of his issue,

stating that he is most concerned about the multiple falls he has been experiencing. This

is also the only point during the Hallamshire problem presentation that we have any kind

of response from the doctor. His “mhm” in this example is signalling to the participant

that the doctor has understood, and is giving him permission to continue steering the

conversation towards this slightly different topic.

It seems that in the two years since the Hallamshire recording the patient’s mobility issues

have worsened. He is now unable to walk and has to use a mobility scooter. The patient

goes on to describe why this is so distressing:

Table 5.9: Extract 5 - Patient’s Responses

Pt: i’ve always been (1.4) you

don’t know >this is probably

not relevant to the

situation but i’ve always

been< (0.9) keen eh

sportsman

...

Pt: because i used to walk (0.7)

er:::::: (0.2) very (0.3)

very long way my age is::::

er (1.0) seventy six (0.6) i

used to be extremely (0.7)

fit

...

The two extracts above highlight a difference in how the patient is framing his answer

depending on which doctor he is talking to. In the IVA data, he is continuing the topic
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of his mobility issues and is using examples of how he used to be very fit to demonstrate

how these issues are particularly difficult for him to deal with. In the Hallamshire dataset

the patient is doing the same thing, he has already brought up the subject of his mobility

issues and now he is justifying why these symptoms in particular are the most upsetting

to him. However, the patient also includes the statement “this is probably not relevant to

the situation but”. The phrasing of this sentence holds a lot of information for the doctor.

It signals to him that what the patient will talk about next is going to veer away from

the memory issues which have been the focus of the conversation so far. It also tells the

doctor that if he does not think the coming information is relevant it is okay to interrupt

or ignore because it is probably not relevant anyway. We do not see this kind of hedging

when the patient is talking to the virtual agent, despite the fact that he is making the

same shift in topic from memory to mobility issues. However, we do find more pauses and

hesitations.

The final parts of both problem presentation phases include justifications as to why the

mobility issues are so distressing for this patient in particular:

Table 5.10: Extract 6 - Patient’s Responses

Pt: and then (0.6) when

something like this happens

it makes it- well it’s bad

enough for everybody (0.8)

er:::: but it makes it worse

(.) when you’ve been (.)

used to being fit and then

you’re not (1.1) and er::

when y- you can’t get to the

bottom of what’s causing it

(0.8) er:::: (.) it is

frustrating

Pt: i::::: (0.3) held the

yorkshire record for the two

hundred metre- (0.4) two

hundred metres .hhhhh (.) i

walked the pennine wa:::y

(.) when i was fifty .hhhh

(0.3) so all this that’s

happened (0.4) is really a

big body blow to me (1.5)

In both of the extracts provided above we see more examples of emotive language being

used by the participant to describe his feelings about struggling with something he used to

be so good at. In the Hallamshire recording the participant is paying particular attention
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to the fact that he knows mobility issues are unpleasant for anyone who is experiencing

them, but is using his past as an athletic person to further justify why the experience is

worse for him. In the IVA recording the participant is continuing the list of his sporting

achievements. This again is pointing out the fact that he was not an ordinary person, he

held records and completed challenging walks even in his fifties, so it is no wonder he is

having a particularly tough time dealing with the fact that he now has to use a mobility

scooter.

5.4.2.3 Discussion of Results from the Case Study

Considering the time that passed between the recording of the Hallamshire and the IVA

interviews from this participant, both problem presentation phases share numerous sim-

ilarities. In the Hallamshire interview the doctor opens the problem presentation phase

with a compound question which the participant does a good job of following and re-

sponding to, although he does not give specific examples of memory issues to answer

the second part of the compound question (what those memory problems might be). In

the recording from the IVA dataset the virtual agent’s question is much easier to follow

and does indeed result in examples of memory problems from the participant. In both

recordings the participant shifts the main focus of the consultation from memory-specific

problems to mobility problems. In the human-human recording the participant exhibits

some hedging behaviour, which is not observed in the human-avatar recording. In both

interviews the patient is descriptive and uses emotive language when talking about his

mobility issues. He also gives descriptions of these mobility issues in both recordings,

although more hesitations are observed in the IVA data.

The results of this analysis suggest that patients might not need much input from a doctor

during their problem presentations to talk about their concerns, even if they think some

of the issues raised might not be directly relevant to the original topic of the consultation.

In the recording from the IVA dataset there is no interjection from the virtual agent to

signal to the patient that he is being listened to and is justified talking about his mobility

issues. However, the patient continues all the same.
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One difference that was observed between the two interviews was the hesitation markers

present in the participant’s problem presentation phases. In the human-avatar data the

participant exhibits more hesitation behaviours than in the human-human data, although

they are present in both recordings.

5.5 Conclusion

This chapter has compared the problem presentation phases in different clinical interview

settings using the methodology of CA to examine variations in how patients present their

concerns when engaging with a digital avatar compared to a human clinician. Distinct

differences were identified in the ways patients presented their concerns, though these var-

ied across the three levels of CD investigated and between the two interviewer modalities.

The broader results of our study suggest that adopting a more open-ended approach to

medical interviews (such as those facilitated by the digital avatar) may not necessarily

elicit more detailed problem presentations from patients.

The case study of participant 096/0221 revealed numerous similarities in his problem

presentations across both settings. However, notable differences were observed in the

frequency and duration of hesitations in his speech when interacting with the virtual

agent. Early research had posited that speech disfluencies are less frequent when humans

communicate with machines [Oviatt, 1995], but our analysis contradicts this assertion

and demonstrates that this is not always the case.
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6.1 Conclusions

Cognitive Decline (CD) can happen as a result of regular ageing but may also have

pathological causes. Dementia is a frequently used term in research and conversations

surrounding pathological CD that refers to a collection of syndromes and diseases char-

acterised by a loss of cognitive abilities severe enough to impact day-to-day life. The

severity of dementia symptoms can range from mild (which includes things such as for-

getting names, word-finding difficulties) to severe (forgetting important personal events

in one’s past, experiencing delusions and hallucinations, or exhibiting personality and

behavioural changes). The most common type of dementia, Alzheimer’s Dementia (AD),

accounts for around 60% of all cases of dementia in the United Kingdom. AD has devas-

tating economic and emotional effects on those diagnosed, in addition to their caregivers

and loved ones. It is estimated that AD and AD-related care costs £34.7 billion annually

in the U.K alone.

There are no cures for AD and other dementias, and symptoms will get progressively worse

over time. Due to how similar symptoms of different types of dementia can be, receiving

a diagnosis of dementia can take a long time. Those aged 65 and over typically wait

2.8 years, and younger people face an average waiting time of 4.4 years before receiving

a diagnosis. The most common tests for dementia are expensive and require specialised

equipment and trained doctors or neurologists. These are often used in combination with

cognitive tests designed to assess different areas of cognitive functioning, including speech

and language abilities. Difficulties with speech production are often reported as one of

the earliest signs of dementia and CD. This thesis investigated speech from people who

have been diagnosed with different levels of CD, and presented results of Conversation

Analysis (CA), analysis of the frequency and duration of speech disfluencies, and a proof-

of-concept study that suggests using disfluency information can enhance the accuracy of

Automatic Cognitive Decline Classification (ACDC) systems.

Numerous different approaches to analysing speech have been used to investigate what

else we can learn about different levels of CD. A popular qualitative method for analysing

speech, CA, has been used to investigate how people navigate medical consultations. Some
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studies have even found distinct conversational profiles that can help provide diagnostic

information to doctors and clinicians working with patients with CD. A qualitative ap-

proach to speech analysis provides rich, in-depth information about the complexities of

speech and how this varies across different situations.

Research has shown that the earlier CD can be diagnosed, the better the outcomes for

the patient. Therefore, there is an urgent need for cheaper, quicker, and more accurate

tests for CD. With recent advancements in Machine Learning (ML) and Artificial Intelli-

gence (AI), a growing body of research has investigated the use of speech as a non-invasive

biomarker of CD. Studies using ACDC systems have indicated that ML and AI methods

can be used to accurately identify speech differences between healthy controls and people

diagnosed with CD. These systems could be used to help accelerate the process of diag-

nosing cognitive impairment, as these systems only require recordings of speech which is

quick and easy to collect, and is not as expensive as traditional tests.

Previous studies have suggested that differences in pause length and duration can help to

discriminate between different levels of CD. Despite this, little work exists investigating

the usefulness of other disfluencies for this task. Due to the fact that there is such a

well-documented link between CD and difficulties with speech production, speech disflu-

encies could provide valuable information that could help improve the accuracy of ACDC

systems. However, quantitative analysis of speech can only give us so much information.

Combining the knowledge gained through disfluency analysis with that revealed by the

qualitative CA paints us a broader picture of the intricate relationship between cognitive

decline and speech.

The findings related to the five research questions addressed in this thesis are summarised

below.
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6.1.1 Assessment of Contributions

6.1.1.1 Research Question One

How do the frequency and duration of speech disfluencies differ when participants engage

in an interview-style task with a digital avatar in a simulated medical interview scenario,

compared to similar interviews conducted with human clinicians?

To complete the first manual disfluency analysis we first devised a new schema, the

Disfluencies in Cognition (DisCo) schema, as a method of accurately identifying and

measuring disfluencies in speech. The schema was developed in order to balance the

pressures of capturing a high enough level of detail whilst still being sufficiently simple

to implement in the automatic system. Given that previous research into disfluencies

has suggested an average rate of six disfluencies per 100 words in spontaneous, every-day

speech from healthy individuals, our research suggests that talking to a digital avatar

rather than a human resulted in higher disfluencies rates (13.7 disfluencies per 100 words

for our healthy controls). This is particularly interesting given that previous research

such as Oviatt [1995] found lower disfluency rates when humans were interacting with

machines.

Bortfeld et al. [2001] suggested three possible explanations for why previous research has

found lower disfluency rates in human-computer speech. Firstly, they suggest that people

may be more careful when speaking with machines. Whilst our results cannot comment

on how careful participants may or may not have been when communicating with the

Intelligent Virtual Agent (IVA), our research does suggest that the unfamiliarity of the

conversational situation (conversing with a virtual agent which is taking the role of a

clinician in a memory clinic) is having an effect on the presence of disfluencies in speech.

This is demonstrated by the high disfluency rates exhibited by the healthy participants

in their responses to both IVA tasks.

Secondly, they suggest that disfluencies are related to coordination processes that are

different with machine partners than with human partners. The datasets used for the

disfluency analyses in this thesis did not provide any video data, so an analysis of the
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link between gestures and disfluency was not possible in this case. Results from our

conversation analysis in Chapter 5 suggest that processes of communication are actually

rather similar between human-human and human-machine interaction. This is exemplified

by the similarities between the problem presentation phases from Participant 096/0221,

despite the changes in their conversational partner.

Thirdly, both Bortfeld et al. and Oviatt [1995] suggest that the structured nature of

human-computer interactions require less planning from human participants, resulting in

fewer disfluencies. Whilst this may certainly be true of spoken human-computer interac-

tions that follow a strict pattern (such as automated reservation or banking systems), our

research suggests that spontaneous and less-constrained “conversation” between humans

and computers results in the production of more disfluencies. This is potentially due to

the unfamiliarity of having those kinds of interactions with a virtual agent instead of a

human doctor. This finding has implications for various different fields. For example, as

the use of systems such as CognoSpeak increases, researchers should be aware that the

speech these systems elicit are likely to contain higher rates of disfluencies. Not only will

this impact researchers wishing to use such data, but could also affect how well these sys-

tems work as disfluencies have been shown to have negative effects on Automatic Speech

Recognition (ASR) systems.

6.1.1.2 Research Question Two

Can an analysis of speech disfluencies be used to discriminate between different levels of

cognitive decline?

Our first manual disfluency analysis in Chapter 3 revealed that the number and length

of unfilled pauses was significantly different between our Healthy Controls (HCs) and

our participants with Neurodegenerative Dementia (ND) (p = <0.001 and (p = <.009)

respectively). In addition, the number of unfilled pauses were significantly higher in the

Mild Cognitive Impairment (MCI) and Functional Memory Disorder (FMD) groups when

compared to the control group (p = 0.01 and p = 0.03). This supports previous findings

(for example from Vincze et al. [2021]; or Yuan et al. [2021]) that suggest the rate and
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duration of unfilled pauses increases with severity of CD.

In terms of other disfluencies, we found that the number of word repetitions were signifi-

cantly different between the FMD and ND groups (p = 0.004), with the FMD group ex-

hibiting a rate that was smaller than previously reported word repetition rates for healthy

individuals [Bortfeld et al., 2001]. The MCI group exhibited more frequent prolongations

than all other groups. This difference was statistically significant when compared to the

HCs (p = 0.004). There was also a statistically significant difference when considering the

length of prolongations between the HCs and the MCI group, with the prolongations in

the HC group being significantly shorter than those of the MCI group (p = 0.04).

Our results demonstrate that an analysis of disfluencies can yield statistically significant

information that could help to differentiate between different levels of CD. We also found

that the amount of speech elicited by the digital avatar was sufficient to allow for this

disfluency analysis to be conducted.

6.1.1.3 Research Question Three

How do the patterns of disfluency vary from the interview task to a picture description

task?

Our second manual disfluency analysis, presented in Chapter 4, found that disfluency

rates were higher in the interview task when compared to the picture description task.

We hypothesise that this is due to the more spontaneous nature of the interview task, in

line with previous research such as Fraundorf and Watson [2011] which found that rates of

disfluencies such as filled pauses increase during recall tasks. The questions asked of the

participants during the interview task include a mixture of long and short-term memory

questions (such as “Tell me what you did when you left school?” compared to “What has

been in the news recently?”). The picture description task does not require such recall,

as patients can rely on the picture in front of them to provide all the information they

need to produce a description. Although the disfluency rates are lower in the picture

description task, we again observe higher rates than have previously been reported for

healthy adults completing a similar task. For example, our healthy controls had a word
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repetition rate of 0.55 per 100 words. Duchin and Mysak [1987] report a word repetition

rate of 0.31 for their group of healthy adults aged between 65-74, comparable to the ages

of the healthy participants used in our study. Whilst this is a small increase, the rates of

disfluencies produced by the healthy participants in our analysis are consistently higher

than those reported by Duchin and Mysak. This could suggest that the presence of a

digital avatar rather than a human interviewer is having some effect on the frequency of

speech disfluencies produced during this task.

In addition, we found a general trend of the frequency of all disfluencies increasing along

with the CD. This supports previous findings in terms of unfilled pauses but also suggests

that (in line with our results from Chapter 3) other kinds of speech disfluency may also

be reflective of levels of CD.

6.1.1.4 Research Question Four

Can disfluency information improve the accuracy of an automatic cognitive decline clas-

sification system?

Our proof-of-concept study presented in Chapter 4 demonstrates that including disfluency

information in an ACDC system can enhance the classification accuracy. Other work in

this thesis has found that disfluency rates are higher when people are speaking with

the digital avatar. This implies that fully automatic data collection and classification

systems such as CognoSpeak are well positioned to leverage disfluency information to

improve classification accuracy. This is especially important when considering the need

for interpretable features in medical machine learning systems, where transparency is key

to helping doctors and clinicians trust the decisions made by these systems.

6.1.1.5 Research Question Five

How do patients construct their problem presentation phases in a medical interview with

a human doctor versus a digital avatar?

Chapter 5 revealed that patients’ problem presentation phases can be classified depending

on whether or not they are accepting of their memory issues (classified as “acceptees”
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and “deniers”). Acceptee responses could be categorised as one of three types: emotional,

generalising, and taciturn. We found that there was no correlation between category of

response and level of CD. We also found that there was no correlation between category of

response and type of interviewer (human clinician vs digital avatar). We found no evidence

that taciturn patients divulge more information to the human doctor when compared

to the digital avatar. This suggests that whilst many patients are receptive to further

inquiries, there are also patients who are not. This has implications for the design of

systems such as CognoSpeak, and suggests that having a system that is able to interject

with additional questions may not always elicit more information from participants.

The microanalysis of Participant 096/0221, who answered questions from both the human

and digital doctor, revealed numerous similarities in the way he presented his symptoms

on both occasions. This suggests that participants treat the digital avatar much in the

same way as they do the human doctor. We found that the main observable difference

between the two problem presentation phases was that more frequent and longer unfilled

pauses at transition relevance places were observed in the computer-directed speech. As

this patient’s Mini Mental State Examination (MMSE) score had barely changed in the

time between the two recordings, we assert that this increase in disfluencies is largely due

to the unfamiliarity of the situation from which the data was collected and the fact that

the avatar does not have the ability to “chime in” during the patients’ descriptions, and

therefore the length of these pauses depends entirely on the patient instead of being a

co-constructive act which can also be influenced by the conversational partner.

6.2 Limitations and Further Work

The following section discusses the limitations of the work completed in this thesis along-

side suggestions for further work. These are addressed according to the three different

methodologies used in each of the analysis chapters.
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6.2.1 Disfluency Analysis

The disfluency analyses conducted for this thesis were time consuming and required a

trained phonetician to complete. This makes such analyses an unlikely choice for use in

a clinical setting. Although our analyses included a fair amount of participants (55 for

Analysis I and 48 for Analysis II), more data would have provided a more representative

view of disfluencies. However, some researchers have argued that as little as five or six

participants per group allows for statistically sound generalisations to be made about the

collected data [Schleef and Meyerhoff, 2010]. Whilst there were participants in the larger

datasets that we did not include in our subsets, we have given justifications for this where

relevant (including low recording quality, too much overlapping speech, etc). Whilst we

have suggested that the disfluency analysis would remain largely the same for a variety of

accents and dialects in the UK, we do accept that some adjustments may need to be made

to the DisCo schema in order to investigate disfluencies across different languages.

Work also needs to be done to investigate conditions that are frequently found to be

comorbid with dementia, such as depression. Recent studies (such as Koops et al. [2023])

have shown that depression can affect speech in different ways, including reducing the

speech rate and resulting in more self-references. A thorough investigation into such

conditions is required to ensure that the disfluencies found are actually a result of the CD

under investigation and not anything else.

As part of the work in this thesis, numerous discussions were held with doctors and

clinicians about the feasibility of using both disfluency analysis and ACDC systems for

healthcare purposes. One of the major points raised is how to decide what constitutes

a piece of information that would actually affect a clinical decision. For example, where

is the point at which the number of repetitions observed in a person’s speech becomes

clinically significant? Recent work from Kothare et al. [2022] introduced the concept of a

Minimal Clinically Important Difference (MCID) used in conjunction with an automatic

system intended to investigate speech and facial metrics for Parkinson’s Disease assess-

ment. However, in order to define an MCID, gold-standard diagnostic labels are required.

These are difficult to obtain in cases of diseases such as dementia due to the difficulties



Conclusions and Further Work 194

doctors and clinicians face in correctly diagnosing these conditions. This is an important

concept that should be considered when continuing work on automatic machine learning

systems for clinical purposes.

6.2.2 Automatic Cognitive Decline Classification

Whilst we found an improvement in classification accuracy when testing a simple ACDC

system on our data, there needs to be an investigation into how well disfluency features

perform when being tested on other datasets. It would also be interesting to find out

how well the disfluency features perform when used alongside more complex classification

algorithms.

Further work should also examine how well the disfluency features from both the picture

description task and the interview task work when used together. We hypothesise that

this would lead to greater advances in classification accuracy. It would also be valuable to

investigate how well disfluency features perform on languages other than English.

Our results indicate a positive step towards improving ACDC systems, but there are

numerous considerations that need to be addressed when deliberating the use of such

systems in a healthcare environment:

Firstly, ACDC systems rely heavily on technology, including hardware and software com-

ponents. Any failures or glitches could disrupt how well the system is working, leading to

inaccurate classifications or even system downtime.

Secondly, ACDC systems typically process large volumes of sensitive data, which in this

instance would include patient health information. This raises concerns about data pri-

vacy and security. If not properly secured, the data stored by ACDC systems could be

vulnerable to unauthorised access, data breaches, or misuse, potentially compromising

patient confidentiality and trust.

Thirdly, like all machine learning systems, ACDC systems are susceptible to bias, which

may result in unfair or discriminatory outcomes, particularly if the training data used to

develop the system is unrepresentative of the target population. Biases in the system’s
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algorithms or decision-making processes could lead to disparities in healthcare delivery or

exacerbate existing inequalities.

Finally are the issues of interpretability and trust, as discussed in Section 4.6.1. Despite

efforts to improve interpretability, many ACDC systems are still considered to be “black

boxes”, making it challenging for both clinicians and patients to understand how decisions

are made. A lack of transparency and interpretability can undermine trust in the system,

especially in healthcare contexts where decisions have significant consequences for patient

care. In particular, patients may feel uneasy or distrustful if they perceive that their

healthcare decisions are being influenced or overridden by automated systems, potentially

undermining patient autonomy and the trust that patients hold in their doctors.

Overall, while ACDC systems offer promising opportunities to enhance clinical decision-

making and healthcare delivery, it is essential to carefully address the potential downsides

and challenges associated with their use to ensure that they are deployed ethically, re-

sponsibly, and effectively for healthcare settings.

6.2.3 Conversation Analysis

While the results of our conversation analysis suggest little correlation between level

of CD, interlocutor type (human-human vs. human-avatar) and type of response, we

acknowledge that further investigation on this data could still potentially reveal diagnostic

profiles (following from the work presented by Elsey et al. [2015]).

Our case study revealed that (at least in this case) participants treat the digital avatar

in much the same way as the human clinician. It would be interesting to investigate

whether the same thing can be observed across a different range of participants, including

younger participants who may be more familiar with directing speech at computers and

therefore having more preconceived notions of how they should adjust their own speech

in order to be better “understood” by the system. Expanding on this point, it would be

beneficial to include a more diverse range of participants. The participants involved in our

study represent a somewhat homogeneous group. It would be interesting to investigate

whether the types of problem presentation phases produced by these participants gener-
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alise to other groups. Exploring how different demographic groups interact with digital

avatars and human clinicians could provide insights into the homogeneity or variability of

communication strategies in healthcare scenarios. Additionally, such investigations could

inform the design and implementation of future ACDC systems, helping to further tailor

automatic systems to better meet the diverse needs of users across different age groups

and backgrounds.

With the ongoing improvements that are being made to the CognoSpeak system, it would

be an interesting future direction to compare the IVA data used here to the more recently

collected CognoSpeak data. This would allow us to compare any differences in the speech

of participants as the result of conversing with a more animated and natural virtual

avatar. Whilst the new version of the IVA still lacks the ability to interject or ask for

follow up information on specific points raised by the participants, the enhanced gestures

and body movements may serve to encourage participants to divulge more information

when compared to the more static and less natural original avatar.

6.3 Concluding Remarks

This thesis introduced a novel, multidisciplinary approach to assessing levels of cogni-

tive decline through speech. We explored conversation analysis, quantitative disfluency

analysis, and machine learning approaches to this problem. The proof-of-concept study

presented towards the end of this thesis confirmed that the inclusion of disfluency features

into automatic cognitive decline classification systems can provide accuracy improvements.

This contributes to the overall body of work that is focussed on using ACDC systems to

help address current issues surrounding the diagnosis of cognitive decline.
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HC FMD MCI ND

Average Age 69.5 55.1 63.6 68.1

Average MMSE Score 28.7 27.4 26.5 23.5

Total n. Fluent Words 8792 7542 5425 6547

Average n. Fluent Words 586 538 387 545

Total Locution Time (s) 3114.5 2878.0 2905.1 2805.9

Average Locution Time (s) 207.6 205.6 207.5 233.8

Rate of UFP per 100 Fluent

Words
14.1 20.7 22.6 26.5

Average Length of UFP (s) 0.54 1.12 0.87 0.92

Rate of FP per 100 Fluent

Words
7.4 6.2 8.2 9.2

Average Length of FP (s) 0.43 0.59 0.55 0.53

Rate of PRO per 100 Fluent

Words
3.5 5.8 8.6 11.1

Average length of PRO (s) 0.53 0.51 0.49 0.45

Rate of ADD per 100 Fluent

Words
n/a 0.013 0.018 0.076

Rate of DEL per 100 Fluent

Words
n/a n/a 0.055 0.061

Rate of SUB per 100 Fluent

Words
n/a n/a 0.092 0.030

Rate of MAL per 100 Fluent

Words
0.011 0.039 n/a 0.091

PWREP rate per 100 Fluent

Words
0.32 0.29 0.58 1.05

WREP rate per 100 Fluent

Words
1.08 0.22 1.60 1.68

PHREP rate per 100 Fluent

Words
0.29 0.13 0.31 0.48

REPA rate per 100 Fluent

Words
0.95 0.74 1.27 1.86



Appendix B

Individual counts and normalised

rates per 100 fluent words for part

word, whole word, and phrase

repetitions in the interview task.
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Participant

Number
PWREP WREP PHREP

Raw

Count
Rate

Raw

Count
Rate

Raw

Count
Rate

HC

0249 8 0.90 18 2.02 3 0.33

0250 0 0 1 0.27 0 0

0251 0 0 5 0.88 1 0.17

0252 3 0.21 46 3.24 17 1.19

0253 1 0.38 1 0.38 1 0.38

0265 1 0.10 2 0.20 2 0.20

0266 0 0 3 0.99 0 0

0267 2 0.58 0 0 0 0

0270 5 0.62 6 0.75 0 0

0271 0 0 1 0.38 1 0.38

0272 0 0 1 0.25 0 0

0273 1 0.22 0 0 0 0

0274 2 0.84 0 0 0 0

0277 2 0.17 8 0.69 1 0.08

0278 4 0.84 3 0.78 0 0
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Participant

Number
PWREP WREP PHREP

Raw

Count
Rate

Raw

Count
Rate

Raw

Count
Rate

FMD

0201 3 1.05 0 0 1 0.35

0203 1 0.07 3 0.21 4 0.29

0206 6 1.01 5 0.84 0 0

0207 2 1.14 0 0 0 0

0209 1 0.71 0 0 0 0

0210 4 0.76 1 0.19 1 0.19

0217 0 0 0 0 0 0

0239 1 0.18 2 0.37 0 0

0243 0 0 1 0.54 0 0

0259 0 0 0 0 0 0

0268 0 0 1 0.54 0 0

0279 2 0.09 4 0.19 2 0.09

0280 1 0.55 0 0 0 0

2114 1 0.18 0 0 1 0.18

MCI

0208 8 2.96 3 1.11 1 0.37

0212 1 0.17 4 0.70 0 0

0214 0 0 2 0.95 0 0

0215 3 1.29 1 0.43 0 0

0218 1 0.54 2 1.08 0 0

0219 0 0 1 0.55 1 0.55

0229 1 0.22 4 0.88 0 0

0236 2 3.17 0 0 0 0

0242 10 0.63 63 3.79 13 0.78

0258 4 0.92 3 0.69 0 0

0261 1 0.58 1 0.58 0 0

0262 0 0 0 0 0 0

2105 0 0 0 0 0 0

2112 1 0.18 3 0.54 2 0.36
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Participant

Number
PWREP WREP PHREP

Raw

Count
Rate

Raw

Count
Rate

Raw

Count
Rate

ND

0213 1 0.49 2 0.99 1 0.49

0221 15 0.74 29 1.44 7 0.34

0222 3 0.57 3 0.57 1 0.19

0223 0 0 12 4.08 0 0

0238 1 0.29 1 0.29 0 0

0275 0 0 0 0 0 0

0281 0 0 2 0.60 0 0

2100 2 0.60 3 0.90 0 0

2104 2 2.24 0 0 0 0

2106 1 0.29 5 1.48 0 0

2110 39 5.95 34 5.19 5 0.76

2111 5 0.37 19 1.42 18 1.35
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Variations in the Intelligent Virtual

Agent questions

Set One:

1. Why have you come in today, and what are your expectations?

2. Tell me, what problems have you had with your memory?

3. Who is most worried about your memory, you, or somebody else? And what did you

do over last weekend? Please give as much detail as you can.

4. What has been in the news recently? Please give as much detail as you can.

5. Tell me about the school you went to, and how old you were when you left.

6. Tell me about what you did when you left school. What jobs did you do?

7. Tell me about your last job. Give as much detail as you can.

8. Who manages your finances, you, or somebody else? And has this changed recently?

Set Two:

1. Why’ve you come today and what are your expectations?
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2. Tell me what problems you’ve noticed with your memory recently?

3. Who is most worried about your memory, you, or somebody else?

4. What did you do over last weekend? Giving as much detail as you can.

5. What has been in the news recently?

6. Tell me about the school you went to, and how old you were when you left.

7. Tell me what you did when you left school. What jobs did you do?

8. Tell me about your last job, give as much detail as you can.

9. Who manages your finances, you, or somebody else? Has this changed recently?

Set Three:

1. Where have you come in from today, and what are you hoping to find out?

2. Tell me what problems you’ve noticed with your memory recently?

3. Who is most worried about your memory, you, or somebody else?

4. What did you do over last weekend? Giving as much detail as you can.

5. What has been in the news recently?

6. Tell me about the school you went to, and how old you were when you left?

7. Tell me what you did when you left school, what jobs did you do?

8. Tell me about your last job, give as much detail as you can.

9. Who manages your finances, you, or somebody else? Has this changed recently?
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Table of all group-based results from

the second manual disfluency

study
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HC MCI ND

Average Age 69.5 62.4 69.4

Average MMSE Score 28.7 26.7 23.1

Total n. Fluent Words 2152 1665 1624

Average n. Fluent Words 165 97 90

Total Locution Time (s) 880.1 838.4 984.9

Average Locution Time (s) 67.7 49.3 54.7

Rate of UFP per 100 Fluent Words 13.2 17 20

Average Length of UFP (s) 0.57 0.95 1.33

Rate of FP per 100 Fluent Words 5.4 7.2 4.9

Average Length of FP (s) 0.48 0.49 0.61

Rate of PRO per 100 Fluent Words 0.05 0.06 0.08

Average length of PRO (s) 0.57 0.44 0.33

Rate of ADD per 100 Fluent Words n/a n/a n/a

Rate of DEL per 100 Fluent Words n/a 0.06 0.06

Rate of SUB per 100 Fluent Words 0.04 n/a n/a

Rate of CIR per 100 Fluent Words n/a n/a 0.06

Rate of LEX per 100 Fluent Words 0.04 n/a 0.18

PWREP rate per 100 Fluent Words 0.05 0.18 0.55

WREP rate per 100 Fluent Words 0.56 0.84 0.55

PHREP rate per 100 Fluent Words 0.37 0.30 0.43

REPA rate per 100 Fluent Words 0.88 1.74 1.73
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Transcription conventions for

conversation analysis
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VA / Dr / Pt / AP
Speaker labels (e.g., VA = virtual agent, Dr = doctor, Pt = patient,

AP = accompanying person)

[ ]
Encloses talk produced in overlap i.e., when more than one speaker is

speaking

= Links talk produced in close temporal proximity (latched talk)

> < Talk between symbols is rushed or compressed
◦ ◦ Encloses talk which is produced quietly

Underline
Underlining is used to mark words or syllables which are given special

emphasis of some kind

CAPS Words or parts of words spoken loudly

s:::::::: Sustained or stretched sound, each colon represents 10ms

.hhh Inbreath, each “h” represents 10ms

hhh. Outbreath, each “h” represents 10ms

(word) Parentheses represents transcriber doubt

(this/that) Alternative hearings

((description))

Description of what can be heard rather than transcription e.g.,

((shuffling papers))

cu- Cut-off word or sound

(0.6) Silence in seconds

(.) A silence of less than 20ms

↑ Indicates a marked pitch rise

↓ Indicates a marked fall in pitch

(hhenhh) Indicates laughter while speaking (aspiration)
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